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This paper addresses the problem of mechanical systems in which parameters are
uncertain and bounded. Interval calculation is used to find an envelope of transfer
functions for mechanical systems modeled with Finite Elements. Within this con-
text, a new formulation has been developed for Finite Elements problems involving
bounded parameters, to avoid the problems of overestimation. An iterative algo-
rithm is introduced, which leads to a conservative solution for linear mechanical
problems. A method to ensure the convergence of this algorithm is also proposed.
This new algorithm has been tested on simple mechanical systems, and leads to a
conservative envelope of the transfer functions.
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Nomenclature
x scalar
{x} vector
[A] matrix
x interval
x interval lower bound
x interval upper bound
rad(x) interval radius
m(x) = xc = x+x

2 interval center
w(x) = x − x interval width
{x} interval vector
[A] interval matrix
[M ] mass matrix
[K] stiffness matrix
η hysteretic damping coefficient
E Young’s modulus
DOFF Degrees Of Freedom
flops floating point operations
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1. INTRODUCTION

The physical parameters used to describe a structure are often uncertain, due
to physical and geometrical uncertainties, or modeling inaccuracies. They are for
instance Young’s modulus, Poisson’s ratio, length, volumic mass or thickness of
plates. These uncertain parameters are generally identified to random variables,
and introduced in a stochastic approach of the problems. Different methods can be
used to solve these stochastic problems. A Monte Carlo simulation may for example
be carried out. Several other methods exist ([1]), such as the perturbation method,
the Neumann expansion series, or a projection on homogeneous chaos. But all
of these methods consider stochastic variables for which the density of probability
is known (Gaussian variables are mostly used). Furthermore, real variables are
bounded, which is not the case for most stochastic variables. The Monte Carlo
method is very expensive on a CPU point of view, and the others often encounter
convergence problems. Moreover, only the mean value and the moments (often the
variance only) are known, and since the density of probability of the solution is not
known, these informations are difficult to use. As most of the time, the variables
can be bounded, it seems to be judicious to investigate the mechanical problems
containing uncertain parameters from the interval arithmetic theory point of view.
Thus, interval arithmetic (R.E. Moore [2], G. Alefeld and J. Herzberger [3], Kearfott
[4]) will be applied in connection with the Finite Element Methods.
We are interested in solving linear systems of equations, which correspond to the
classical mechanical problem of finding the transfer function of a structure:(

[K](1 + iη) − ω2[M ]
)

[H] = [I] (1)

where [K] and [M ] are the stiffness and mass matrices, η the coefficient of hysteretic
damping, ω the excitation frequency, [H] is the dynamic compliance matrix, and
[I] the identity matrix.
These problems have already been studied by several researchers (R. Chen and A. C.
Ward [5], A. D. Dimarogonas [6], Koyluoglu [7]). They applied numerical methods
developed for ”reliable computing” based on interval matrices algebra (E. R. Hansen
[8], Rump [9], S. Ning and R. B. Kearfott [10]). Elishakoff et al have focused on the
bounds of eigenvalues of such dynamic systems ([11–15]). Chen [5] has pointed out
the limitations of these formulations, which present a major drawback: the classical
formulation does not take into account the way the matrices are built for mechanical
problems. In fact, the terms of the matrices are not independent from each other,
since they are calculated from the same parameters, for instance Young’s modulus
or density.
We will first introduce some basic concepts about interval arithmetic, and we will
present the problematic of solving linear systems of interval equations. We will then
introduce a new formulation of the problem, based on interval parameters which is
adapted for the modeling of mechanical systems.
An adaptation of the Rump’s algorithm ([9]) will be proposed which takes into
account this novel interval formulation. The new algorithm is iterative, therefore
the convergence criteria will be evaluated. The algorithm will be tested on a simple
case to enable a comparison with the classical formulation. We will finally study
frequency response functions for different mechanical systems, and also evaluate the
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amount of computations on simple discrete systems, as well as the accuracy of the
solutions.

2. RESOLUTION OF INTERVAL LINEAR SYSTEMS

The interval arithmetic has been first introduced by Moore ([2]), who was in-
terested in the error propagation due to truncation of the mantissa in computers.
Many publications (in particular the book of Alefeld and Herzberger [3]) give the
basic and advanced concepts of this theory.
In this paper, boldface, lower cases, underscores and overscores respectively denote
intervals, scalars, lower and upper bounds of intervals.

x = [x, x] (2)

The basic interval operations are presented in appendix 7. The interval arithmetic
has special properties (in particular the property of sub-distributivity (x)(y + z) ⊆
xy + xz), that can lead to problems of overestimation when evaluating functions.
We shall then be mindful to that problem in this paper.
One can also define interval vectors and interval matrices. Interval matrices can be
expressed as follows:

[A] = [Ac] + [−[rad([A])], [rad([A])]] (3)

which is a quite convenient form.
The special properties of interval matrices have been investigated for example by
Ning & al and Rohn in [10, 16].

2.1. SOLVING LINEAR SYSTEMS

If we are interested in the dynamic behavior of an industrial mechanical struc-
ture, one has to consider Finite Element Modeling, which leads to matrices (such
as stiffness, mass, or damping matrix). Thus finding frequency response functions
corresponds to solving linear systems of equations. If some of the mechanical param-
eters are uncertain at design stage, they can be modeled using the interval theory.
The uncertain parameters can be geometrical ones (length, thickness, clearance...),
or physical ones (Young’s Modulus... ). Then the matrices given by the Finite El-
ement theory are interval matrices, and the problem is generally (static problems,
frequency response functions) written as:

[A]{x} = {b} (4)

with [A] ∈ [A] and {b} ∈ {b}. Although several problems can be distinguished, as
done by Chen and Ward in [5] and by Shary in [17], we will focus exclusively in this
paper on the solution set of the outer problem which is defined as Σ∃∃([A], {b}):

Σ∃∃([A], {b}) = {x ∈ R
n|(∃[A] ∈ [A]), (∃{b} ∈ {b})/[A]{x} = {b}} (5)

where [A] is an interval matrix and {b} an interval vector.
In general this set is not an interval vector. It is a non convex polyhedra (see [5] or
[17] for examples). The Oettli and Prager theorem [18] gives an expression to get
the exact solution set (5):
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Theorem 1 (Oettli et Prager Lemma). Let [K] ∈ IR
n×n and {f} ∈ IR

n.

{x} ∈ Σ∃∃([K], {f}) ⇔ |m([K]){x} − m({f})| ≤ rad([K])|{x}| + rad({f}) (6)

Nevertheless, this expression is quite difficult to use with matrices corresponding to
real physical cases in a n-dimensional problem. Most of the time, only the smallest
interval vector containing Σ∃∃([A], {b}) will be considered, which is defined as
2Σ∃∃([A], {b}). In this case, this ensures that the true solution is included in the
numerical solution found 2Σ∃∃([A], {b}). Within the context of this problematic,
equation (4) can be rewritten as:

[A]x = {b} (7)

Several algorithm intend to solve this problem. For example the Gaussian elimina-
tion algorithm can be adapted to the resolution of a linear system whose coefficients
are interval. Alefeld gives some basic results in [3]. J. Rohn has shown in [19] that
this algorithm could lead to an important overestimation of the solution. It even
sometimes cannot solve the system because of zero pivot encountered.
Ning and Kearfott have made a review in [10] of existing methods for finding either
2Σ∃∃([A], {b}) or an interval vector containing 2Σ∃∃([A], {b}). These methods
use particular forms of the matrices, that do not exactly correspond to mechanical
cases, and are more appropriate for the treatment of numerical uncertainties as they
are not well suited for dealing with large uncertainties.
Another useful method is based on a residual iteration, it is called the inclusion
method of Rump [9]. It is an iterative method relying on the fixed point theorem,
that leads to sharp results quite fast.

3. FORMULATION ADAPTED TO FINITE ELEMENTS METHODS

The existing algorithms used to solve Σ∃∃([A], {b}) have been formulated for
reliable computing on a numerical point of view. In an interval matrix for instance,
each term can vary independently of each other in its interval, which is generally
sharp.
If the interval formulation has to be adapted to mechanics, the dependence between
the parameters must be taken into account, because many of the terms of the ma-
trices are depending on the same parameters. For example if the Young’s modulus
varies in E, a stiffness matrix could formally be written:

E

[
k11 k12

k21 k22

]
(8)

which is not the same as [
Ek11 Ek12

Ek21 Ek22

]
(9)

that is treated in the classical interval techniques as:[
E1k11 E2k12

E3k21 E4k22

]
(10)

with E1, E2, E3, E4 varying in E independently.
When including the parameters in the terms of the matrices and vectors, the width of



Interval Computations Applied to FEM. 5

Σ∃∃([A], {b}) grows substantially (see example in 4.2). If all the matrices [K] ∈ [K]
are considered, it must be noticed that many of them do not physically correspond
to stiffness matrices, because stiffness matrices are symmetric positive and definite.
For the different interval parameters in the matrix [A] to be put into factor as in
equation (8), [A] and {b} are developed as follows:

[A] = [A0] +
N∑

n=1

εn[An] {b} = {b0} +
P∑

p=1

βp{bp} (11)

N and P are the number of interval parameters to be taken into account when
building the matrix [A] and the vector {b}. εn and βp are independent centered
intervals, generally [−1, 1]. [A0] and {b0} correspond to the matrices and vector
built from the mean values of the parameters.
For a mechanical problem, the stiffness matrix will be written with factorized pa-
rameters:

[K] = [K0] +
N∑

n=1

εn[Kn] (12)

For each value of εn in εn, [K] remains symmetric positive and definite, due to the
physical character of the parameters.

4. A NEW ALGORITHM OF RESOLUTION

For the particular form of the problem shown in equation (11), where the interval
parameters are put into factor in front of the matrices, it is necessary to adapt the
algorithms. The new algorithm of resolution proposed here relies on the Rump’s
technique, that has been presented by Rohn in [21]. His demonstration is reminded
in appendix 8. The inclusion method of Rump ([9]) relies on the fixed point theo-
rem, and had to be adapted to avoid the problems of overestimation due to the loss
of dependence in interval arithmetic. As the basic method of Rump, our algorithm
is iterative, and then subject to convergence criteria that will be analyzed in 4.1.

Let us first consider a system in which only one parameter is an interval, then

[A] = [A0] + α[A1] α is centered (13)

is the equation of the system.
The implementation of the algorithm is presented below:

• First, an initialization stage
ε = [0.9, 1.1] is the so called inflation parameter.
[R] = inv(mid[A]) = [A0]−1 is an estimation of the inverse of mid[A].
{xs} = [R] ∗ {b} is an estimation of the solution.
[B] = [A0]−1[A1]
{g} = [R] ∗ ({b} − [A] ∗ {xs}) = −α[A0]−1[A1][A0]−1{b} = −α[B]{xs}
{x0} = {g} initialization of the solution {x∗}
[G] = [I] − [R] ∗ [A] = −α[B] is the iteration matrix in the equation

{x∗} = [G]{x∗} + {g} (14)
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• Second, iterative resolution
{y} = ε ∗ {x}
{x} = {g} + [G] ∗ {y}
until {x} ⊂ {

y0
}
.

If the condition {x} ⊂ {
y0
}

is satisfied, then {x} is a conservative solution of
the equation [A]{x} = {b}.

It must be noticed that all the matrices multiplications and linear system resolu-
tions only concern deterministic matrices (opposed to interval ones). The interval
formulation is preserved, and the interval parameters are put into factor in front
of deterministic matrices. The control of the intervals is essential to avoid large
overestimations of the solutions.
After n iterations, the solutions are given by the equations:

{yn} = {yn−1} + (−1)nαnεn[B]n{xs} (15)
{xn} = {xn−1} + (−1)n+1αn+1εn[B]n+1{xs} (16)

where the interval parameters have been put in factor in front of the deterministic
matrices.
The main difference with the algorithm of Rump is the control of the interval pa-
rameters inside the iterative scheme, that avoids dramatic overestimations.
Rohn and Rex have shown in [22, 21] that the algorithm converges if and only if
ρ(|[G]|) < 1, where ρ(|[G]|) is the spectral radius of the absolute value of [G].
Few iterations are necessary to get a result if the matrix [G] is contracting. If the
number of iterations remains small, the overestimation of the solution is not impor-
tant, and that is why making [G] as much contracting as possible is interesting: it
reduces the number of iterations and by the way the overestimation effect.
The method proposed above on a system with one interval parameter can easily be
generalized to the problems where

[A] = [A0] +
N1∑
i=1

αi[Ai]

{b} = {b0} +
N2∑
j=1

βj{bj}

4.1. CONVERGENCE OF THE METHOD

We have proposed an iterative algorithm for solving the linear systems with in-
terval parameters. This algorithm is based on the fixed point theorem, and the
iteration matrix must be contracting. The problem of the convergence of the algo-
rithm is then crucial to get solutions.
We have seen that the equation

{x∗} = [G]{x∗} + {g} (17)
is convergent if and only if ρ(|[G]|) < 1. In the general case, The iteration matrix
is given by:

[G] =
N1∑
i=1

ei[A0]−1[Ai] (18)
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and the condition is:

ρ(|
N1∑
i=1

−ei[A0]−1[Ai]|) < 1 (19)

which is quite difficult to evaluate.
To estimate this value, we use the theorem 2 (see [23]).

Theorem 2 (Perron-Froebenius). Let [A] and [B] be two n × n matrices with 0 ≤
|[B]| ≤ [A].
Then,

ρ([B]) ≤ ρ([A]) (20)

And as it is well known that |A + B| ≤ |A| + |B|, we can say that if the stronger
convergence condition

ρ(
∑

i

| − ei||[A0]−1[Ai]|) < 1 (21)

is verified, then equation (19) is also true.
The condition ρ(|[G]|) < 1 is not always true, especially for systems with wide

interval parameters. We propose a method to avoid this problem and also to improve
the contracting level of [G].
For a system with one interval parameter ([A0] + e[A1]){x} = {b}, the iteration
matrix is

[G] = −e[A0]−1[A1] (22)

and the condition of convergence is

ρ(|[G]|) = |e|ρ(|[A0]−1[A1]|) < 1 (23)

e is a centered interval, so that [A0] is the mean value of [A0] + e[A1]. [A0] is
depending on the position of the center of e.
If e is a relatively wide interval (it means that the terms of e[A1] are relatively wide
with respect to the corresponding terms in [A0]), the condition (23) can be false
and the algorithm will be divergent. If this is the case, the strategy proposed is
to split the interval into a partition of it, and then work on narrower intervals, on
which the condition (23) will be verified. If we consider a partition of the interval
e = ∪ei, we have

Σ∃∃([A0] + e[A1], {b}) = ∪iΣ∃∃([A0] + ei[A1], {b}) (24)

From e to ei, [A0] becomes [A0] + m(ei)[A1], and [A1] remains the same. The
equation to be solved is:

([A0] + m(ei)[A1] + [−rad(ei), rad(ei)][A1]){xi} = {b} (25)

Let us define d as:

d = Sup
ei⊂e

(ρ(|([A0] + m(ei)[A1])−1[A1]|)) (26)
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For all interval ei such that w(ei) < 1
d ,

|ei|ρ(|[A0]−1[A1]|) < 1 (27)

It is then possible to split the interval e into a partition of it ∪iei, where the
algorithm is convergent for each interval ei.
For multi interval parameters problems, the same kind of splitting technique can
be used, leading to the same result. Moreover, this technique can also be used to
accelerate the convergence of the iterative scheme. The smaller the spectral radius of
|[G]|, the faster the convergence of the algorithm and the smaller the overestimation
of the solution.

4.2. TEST OF THE NEW ALGORITHM ON A SIMPLE CASE

A new version of the algorithm of Rump has been developed to handle the case
in which the interval parameters are put into factor in front of the matrices. The
intervals are then controlled all along the algorithm, to avoid too large an overes-
timation. Moreover the convergence of the algorithm can be guaranteed, and even
improved by splitting the intervals into a partition of them.
We will now test the proposed algorithm on a simple case to emphasize it’s efficiency
with respect to the basic method.

We have proposed a new interval formulation adapted to mechanical problems.
The results found with the modified Rump’s algorithm are often much sharper than
the ones found with the classical formulation. To show the efficiency of the method
for finding the solution of a linear system [A]{x} = {b}, we will consider the very
simple example of a clamped free beam:

F

M

d

θ

Figure 1. Clamped free beam

F and M are respectively the shear force and bending momentum applied at the
free end of the beam, d and θ correspond to the displacement and slope at the free
end of the beam.
The characteristics of the beam are:

The Young’s modulus E ∈ [2.058e11, 2.142e11] (2.1e11 ± 2%) (28)
The Inertia I ∈ [8.82e − 8, 9.18e − 8] (9e − 8 ± 2%) (29)

The length l = 1 (30)

The shear force and bending momentum are also interval parameters:

{f} =
{

[−10.2,−9.8]
[29.4, 30.6]

}
(31)
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If we consider the elementary Finite Element matrix of the Euler Bernoulli theory
[24], the static matrix equation of the problem is given by:


2EI

9l

−EI

3l2−EI

3l2
2EI

3l3



{

d
θ

}
=
{

F
M

}
(32)

And from a numerical point of view, the stiffness matrix is an interval matrix:[
[4033.68, 4369.68] [−6554.52,−6050.52]

[−6554.52,−6050.52] [12101.04, 13109.04]

]
(33)

The first problem that can be solved is finding the solution set corresponding to the
numerical equation:[

[4033.68, 4369.68] [−6554.52,−6050.52]
[−6554.52,−6050.52] [12101.04, 13109.04]

]{
d
θ

}
=
{

[−10.2,−9.8]
[29.4, 30.6]

}
(34)

The Oettli and Prager lemma gives the exact solution set Σ∃∃([A], {b}) and 2Σ∃∃([A], {b})
(dotted line) shown in Figure 2. All the terms in the matrix are said to be inde-
pendent.
Let us consider the mechanical problem with factorized interval parameters:

EI

[
2/9l −1/3l2

−1/3l2 2/3l3

]{
d
θ

}
=
{

F
M

}
(35)

As this system is quite simple, the solution can be found analytically. The exact
mechanical solution set is given in Figure 2. It is called mechanical exact solution
set. The hull of this set (which is an interval vector) has also been drawn. The
mechanical exact solution set is included in Σ∃∃([A], {b}), and is really small in
comparison. This shows how important the factorization is for solving mechanical
problems.
To test our algorithm, we have computed the result of the modified Rump’s algo-
rithm. It is illustrated on Figure 2. As we can see, it is overestimating the exact
solution, but it gives a good idea of the size of the solution. Above all it is really
smaller than the range computed when considering all the terms in the matrices
independent, as in the initial Rump’s algorithm.

As it had been noticed in [5], a large overestimation is obtained when including
the parameters in the elements of the matrices. For finite element matrices, this
overestimation can become critical, and often leads to an insolvable problem. As we
have shown above, even on 2×2 matrices, the overestimation can reach 10 times or
more. Such an adaptation of this algorithm enables its use for industrial problems
involving huge size matrices.

5. APPLICATIONS ON MECHANICAL SYSTEMS

We will now focus on several specific examples to show the efficiency of the new
algorithm. Each one is associated to a particular difficulty, for instance the num-
ber of parameters, or the development of the matrices into a sum with interval
parameters put into factor.
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Modified Rump’s algorithm

Figure 2. Solution sets for the clamped free beam. EI is uncertain (±2%). Numerical global
problem, and reduced mechanical problem, and their respective hulls.

5.1. PROBLEM WITH SEVERAL PARAMETERS

This problem has two Degrees of Freedom, and is presented in Figure 3. The three
stiffnesses are uncertain and vary in bounded intervals. We will focus on finding
the transfer function envelope of the system.

k1 k2 k3

m1 m2

x1 x2

f1 f2

Figure 3. 3 springs system. x1 and x2 are the displacements of the masses m1 and m2, that are
subject to the forces f1 and f2 respectively.

Each spring of stiffness ki is subject to hysteretic damping ηi. Each value of the
stiffness is uncertain (ki = k0

i + [−1, 1]k1
i , or k0

i − k1
i < ki < k0

i + k1
i ).

The numerical values of the parameters are:
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TABLE 1

Numerical values of the parameters

k0
1 = 100 N.m−1 k0

2 = 10 N.m−1 k0
3 = 100 N.m−1

k1
1 = 0.04k0

1 k1
2 = 0.04k0

2 k1
3 = 0.04k0

3

η1 = 0.02 η2 = 0.02 η3 = 0.02
m1 = 1 kg m2 = 1 kg

We consider the dynamic problem, and the set of equations for the transfer func-
tion is given below:([

(1 + iη1)k0
1 + (1 + iη2)k0

2 −(1 + iη2)k0
2

−(1 + iη2)k0
2 (1 + iη2)k0

2 + (1 + iη3)k0
3

]
+ e1

[
(1 + iη1)k1

1 0
0 0

]

+e2

[
(1 + iη2)k1

2 −(1 + iη2)k1
2

−(1 + iη2)k1
2 (1 + iη2)k1

2

]
+ e3

[
0 0
0 (1 + iη3)k1

3

]
− ω2

[
m1 0
0 m2

]){
H1

H2

}
=
{

f1

f2

}
(36)

The resolution of this problem will be done on a frequency band including all the
modes, represented by 61 points linearly spaced. The use of our algorithm leads to
envelope bounds of both real and imaginary parts of the transfer function for each
frequency evaluated (see Figure 4). To have a very contracting iterative scheme, the
spectral radius is imposed to be less than 0.3, and the inflation parameter is [0, 2].
To compare our results with the ones of a Monte Carlo simulation, we have made
10000 stochastic tests on each of the 61 frequency. The Monte Carlo simulation
leads to an estimation of the envelope interval which is not conservative. We can
then compare the results of both methods for a particular value of the frequency.
For ω = 9.5 rad/s, the results are given in table 2. The Monte Carlo simulation
gives results that are included in the true bounds, whereas the proposed algorithm
can find envelope bounds.

TABLE 2

Real and imaginary parts of the collocated transfer function H(1, 1) for ω = 9.5 rad/s.

Monte Carlo Monte Carlo Proposed algorithm
5000 tests 20000 tests

flops 1380000 5520241 123500
real(H(1,1)) [0.05020, 0.09722] [0.05007, 0.09755] [0.04829, 0.09964]
imag(H(1,1)) [−0.02754,−0.00649] [−0.02773,−0.00644] [−0.02916,−0.00557]

It must be noticed that the amount of computations for the proposed algorithm
is small compared to the amount needed by the Monte Carlo simulation. If the
example is computed with a smaller uncertainty (±2% for instance), the algorithm
will be even faster (10500 flops for ω = 9.5 rad/s). For the computation on all the
61 points, a ±2% uncertainty on each spring will use 16, 6 Mflops, and a simulation
with ±4% uncertainty 126.5 Mflops. The result is also quite good, the envelope
is wrapping the deterministic transfer functions, without overestimating the true
envelope too much (see Figures 4 and 5).

5.1.1. Nonlinear dependence of the parameters

The decomposition of the finite element problems into a factorized sum as in
equation (11) is not obvious. Let us consider a very simple finite element problem.
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Figure 4. Real and imaginary parts of the collocated transfer function (1,1) of the system shown
in Figure 3. Solid lines represent the transfer function for several values of the stiffnesses. Crosses
represent the envelope calculated with the modified Rump’s algorithm, for ±4% uncertainties.
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Figure 5. Real and imaginary parts of the collocated transfer function (1,1) of the system shown
in Figure 3. Solid lines represent the transfer function for several values of the stiffnesses. Crosses
represent the envelope calculated with the modified Rump’s algorithm, for ±2% uncertainties.
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We have meshed a clamped free plate whose thickness varies in an interval (see
Figure 6). If we call t the thickness of the plate, both t and t3 appear in the
elementary matrices of the Love-Kirchhoff theory (the stiffness matrix depends on
t3, and the mass matrix on t).
The dynamic problem is written:(

t3[K](1 + iη) − ω2t[M ]
)
{H} = {F} (37)

The intervals t and t3 cannot be considered as independent. Thus we have to use
an approximate expression to take this dependence into account :
t can be written m(t) + [−1, 1]rad(t), or t0 + δt. Then t3 is

(t0 + δt)3 = t30 + 3δt.t20 + 3t0.δt
2 + δt3 (38)

The matrix equation (37) becomes :((
t30[K](1 + iη) − ω2t0[M ]

)
+ δt

(
3.t20[K](1 + iη) − ω2[M ]

)
+
(
3t0δt

2 + δt3
)

[K](1 + iη)
)
{H} = {F} (39)

Where δt varies in [−rad(t), rad(t)] = [−dt, dt].
If δt and 3t0δt

2 + δt3 are said to be independent (which is false, but for δt <<
t0, δt >> 3t0δt

2 + δt3), we will get a new equation of form:

(A0 + ε1A1 + ε2A2)X = b (40)

where ε1 = [−dt, dt] and ε2 = [0, 3t0dt2 + dt3].
The equation (39) as been modified so that the dependence between the preponder-
ant terms is conserved (ie the terms in δt). The other terms are then considered to
be independent of δt. Taking these terms into account is anyway essential for the
algorithm to lead to conservative results. By treating the new equation with the
modified Rump’s algorithm, we can get a conservative result of the transfer function
of the plate.

The numerical example we have treated is a clamped free plate (dimensions 4m×
1m), whose thickness is t = 5.10−2m± 6%. The value of the hysteretic damping in
the plate is 2%. The plate is meshed with 5 ∗ 3 elements (see Figure 6).

(1,1)

F

Figure 6. Clamped free plate meshed with 15 elements.

The collocated transfer function calculated in point (1, 1) (see Figure 6) is repre-
sented in the Figures 7 and 8. The algorithm leads to an envelope of the real and
imaginary parts of the transfer function, and the overestimation remains small.
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Figure 7. Collocated transfer function (real and imaginary parts) for the plate at node (1,1).
Several deterministic transfer functions have been drawn, corresponding to different values of the
thickness. The crosses correspond to the robust interval algorithm.
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Figure 8. Zoom of the collocated transfer function for the plate.
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5.1.2. System with multiple eigenvalues

A last example will be treated to show the efficiency of the interval calculus,
when taking into account small uncertainties that are inherent to mechanical sys-
tems. The new algorithm permits in this case to bring out important effects due to
these small fluctuations.
We will consider a three bladed-disk that is modeled with a 7 DOFF system (see
Figure 9). The blades are modeled with the Euler-Bernoulli theory, and only hys-
teretic damping is considered. The values of the parameters are: length L = 1 m,
area S = π10−4 m2, Young’s modulus E0 = 210 GPa, and volumic mass ρ =
7800 kg/m3. The damping coefficient is η = 2%. The Young’s modulus of one
blade is uncertain (E = E0 ± 10%).
As the 3 blades are identical in the crisp tuned model, the eigenfrequencies are
found as multiple eigenvalues of a matrix system. If one of the blades is mistuned,
then the eigenvalues are no more multiple ones, and new resonances can appear.
This is a complete modification of the structure, and that kind of phenomenon is
well know in aeronautics (see [25, 26]) and can lead to the appearance of a much
stronger dynamics than the one expected for a tuned system. Let us consider the
transfer function H(1, 3). When all the 3 blades are identical, the transfer function
shows only two resonances. If one of the blades is mistuned (for instance, if it’s
Young’s modulus is not exactly the same than for the other blades) two new reso-
nances appear on the transfer function.
On Figure 10 the modulus of the transfer function H(1, 3) is shown (it’s special
calculation is explained in appendix 9). Dashed line represent the deterministic
case for which all of the three blades are identical, and solid lines the envelope of
the transfer function for the system in which one blade has an uncertain Young’s
modulus (E = E0 ±10%). The envelope shows four resonance zones. This is due to
the mistuning phenomenon. This deep modification of the spectrum due to a small
perturbation brings out the efficiency of the method, that can predict a priori non
expected phenomena.

7

1

2

3

4

5

6

Figure 9. 3 bladed-disk, and the 7 DOFF.
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Figure 10. Modulus of the transfer function H(1, 3). The Young’s modulus of the first blade is
uncertain (E = E0 ± 10%). Dashed line represent the deterministic case for which all the blades
are identical, solid lines are the envelope calculated with the proposed algorithm.

For that kind of computation too, the modified algorithm gives accurate results,
once again with the advantage of getting a robust envelope. This method can im-
prove considerably the accuracy of prediction of the dynamic behavior of mechanical
systems involving inaccurate parameters.

6. CONCLUSION

The vibrating systems are often modeled with a Finite Element Method. When
they are depending on uncertain and bounded parameters, they can be studied
thanks to the interval calculus. For the resolution of linear systems, in which some
variables are intervals, one can find well suited algorithms, but they consider only
full interval matrices, whereas this doesn’t correspond to real physical problems.
A new formulation is introduced in which the interval parameters are factorized
when building Finite Elements matrices. Using this factorized formulation, a novel
algorithm is presented. It corresponds to a reformulation of the iterative algorithm
of S.M. Rump [9] adapted to the Finite Elements formulation. The convergence of
this method has been studied, and a dichotomy scheme ensures the convergence of
the algorithm. It is easy to notice on a simple example that the factorization and
the proposed algorithm lead to better results than classical methods. On standard-
sized Finite Elements Models, the classical methods wouldn’t work, hence the novel
method proposed is interesting. This method enables to find bounds of the transfer
function of dynamic problems in which some of the parameters are uncertain and
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bounded. The relevance of such an envelope is that one can be certain that all of
the solutions corresponding to the bounded parameters are in this envelope. This
is the robust aspect of the method.
If used in a design stage, this algorithm allows to take into account from the be-
ginning of it’s life the uncertainties in the physical parameters of a product. Fur-
thermore, if the algorithm is used for analysis, it will be possible, as the bounds of
the physical parameters are known, to find guaranteed bounds for the static and
dynamic responses. Then safety zones can be defined, where a given level of the
responses will never be reached.
The algorithm is based on Finite Elements Modeling, and the result is depending on
the accuracy of the numerical model. Moreover, as for classical deterministic FEM,
the refinement of the mesh has some kind of influence on the solution. It is also
necessary to take into account the models errors in addition to the uncertainties on
the parameters, but this is beyond the scope of this paper. The proposed algorithm
can only handle a limited number of interval parameters. For working on industrial
models, with tens or hundreds of uncertain parameters, the algorithm will have to
be improved. But for a design stage, when few parameters are subject to important
uncertainties, it should reveal really useful.
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7. APPENDIX: OPERATIONS ON INTERVALS

As the interval arithmetic is different from the classical arithmetic, we will define
several arithmetic operations on intervals.
The four classical arithmetic operations are also defined:

x + y =
[
x + y, x + y

]
(41)

x − y =
[
x − y, x − y

]
(42)

x ∗ y =
[
min(xy, xy, xy, xy), max(xy, xy, xy, xy)

]
(43)

1/x = [1/x, 1/x] (0 6∈ x) (44)
x/y = x ∗ (1/y) (0 6∈ x) (45)

An interval vector {x} is a vector whose components are intervals.

{x} =




x1
...

xn


 (46)

An interval matrix [A] is a matrix whose components are intervals.

[A] = [Aij] i = 1..m, j = 1..n (47)

8. APPENDIX: ALGORITHM OF RUMP

The problem to be solved is:

[A]{x} = {b} (48)

[A] is a square matrix.
For an arbitrary non singular matrix [R], and a vector {x0},

[A]{x} = {b} (49)

is equivalent to

{x∗} = [G]{x∗} + {g} (50)

with

[G] = [I] − [R][A] (51)
{g} = [R]({b} − [A]{x0}) (52)
{x} = {x0} + {x∗} (53)

In practice, [R] ≈ [A−1], and {x0} = [R]{b}, so that [G] and {g} are of small
norms, and {x∗} is close to 0.

Let the interval vector {X} satisfy:

[G]{X} + {g} ⊂ {
X0

}
(54)

where [G]{X} + {g} = {[G]{X} + {g}; {X} ∈ {X}}, and
{
X0

}
is the interior of

{X}. Then,

{x∗} = [G]{x∗} + {g} (55)

has a unique solution {x∗} ∈ [G]{X} + {g} (Rump [9]).
The proof is true in the abstract, but the algorithm is used on computers that do
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not always give true results (due to the mantissa truncation). The programs used
to compute interval arithmetic have to take that problem into account (for example
the package BIAS from Olaf Knuppel [27, 28]). If � and ⊕ denote the computed
interval multiplication and sum (they overestimate the true intervals), and

[G] � {X} ⊕ {g} ⊂ {
X0

}
(56)

is true in computed interval arithmetic, then we have also:

[G]{X} + {g} ⊂ {
X0

}
(57)

since

[G]{X} + {g} ⊂ [G] � {X} ⊕ {g} (58)

The algorithm can be summarized as:

• First, an initialization stage
ε = [0.9, 1.1] is the so called inflation parameter.
[R] = inv(mid[A]) is an estimation of the inverse of mid[A].
{x0} = [R] ∗ {b} is an estimation of the solution.
{g} = [R] ∗ ({b} − [A] ∗ {x0})
{x} = {g} initialization of the solution {x∗}
[G] = I − [R] ∗ [A] is the iteration matrix in the equation

{x∗} = [G]{x∗} + {g} (59)

• second, iterative resolution
{y} = ε ∗ {x}
{x} = {g} + [G] ∗ {y}
until {x} ⊂ {

y0
}

or too many iterations.
If the condition {x} ⊂ {

y0
}

is satisfied, then {x} is a conservative solution of
the equation [A]{x} = {b}.

9. APPENDIX: MODULUS OF THE TRANSFER FUNCTION

The modulus of the dynamic compliance vector is normally calculated as:

|H| =
√

H2
r + H2

i (60)

To avoid the problem of overestimation due to the dependence of the real and
imaginary parts of the dynamic compliance, we propose a method to compute the
bounds of its modulus.
For a system with one interval parameter, the compliance vector could be written in
the formalized way, after N iterations, according to the recurrent scheme proposed
in 4: {

HN
i

HN
r

}
=

{
HN−1

i

HN−1
r

}
+ εN

{
XN

i

XN
r

}
(61)

where HN
i is the imaginary part of the vector H, computed at the loop N of the

algorithm. The real and imaginary parts of H are both depending on the same
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interval parameter εN , and applying directly the equation (60) would lead to large
overestimations of |H|. The equation (61) can be written as:{

HN
i

HN
r

}
=

N∑
n=1

εn
{

Xn
i

Xn
r

}
(62)

The modulus can then be calculated as

mod({H}) =

√√√√ N∑
n=1

ε1
2n
(
Xn

i
2 + Xn

r
2
)

+ 2
N−1∑
n=1

N∑
p=n+1

ε1
n+p (Xn

i Xp
i + Xn

r Xp
r )

(63)

and the dependence between the real and imaginary parts is preserved in a better
way than applying the equation (60) directly.


