Applications of
Interval Computations

Edited by

R. Baker Kearfott

University of Southwestern Louisiana

and

Vladik Kreinovich

University of Texas at El Paso

V|

(A

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON



A C.LP. Catalogue record for this book is available from the Library of Congress.

ISBN 0-7923-3847-2

Published by Kluwer Academic Publishers,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Kluwer Academic Publishers incorporates
the publishing programmes of
D. Reidel, Martinus Nijhoff, Dr W. Junk and MTP Press.

Sold and distributed in the U.S.A. and Canada
by Kluwer Academic Publishers,
101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed
by Kluwer Academic Publishers Group,
P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved

© 1996 Kluwer Academic Publishers

No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,

including photocopying, recording or by any information storage and

retrieval system, without written permission from the copyright owner.

Printed in the Netherlands



7

INTERVAL ARITHMETIC IN
QUANTUM MECHANICS

Charles L. Fefferman* and Luis A. Seco**

*Department of Mathematics, Princeton University, Princeton NJ 08544

**Department of Mathematics, University 'of Toronto, Toronto,
Canada M5S 1A4, email seco@math.toronto.edu

Quantum mechanics is an area which, over the last ten years or so, has sparked a
respectable amount of rigorous computer assisted work (see, for example [9, 13,
20, 39, 38], and their applicationsin [10, 11,12, 3, 4, 5, 14, 15, 16, 17, 18, 19, 20)).
The purpose of this review is to select a piece of that body of work, and to
give a more or less detailed account, both of the quantum mechanical problem
surrounding the computer work and of the computer assisted proof itself. We
hope this will be enlightening since much of the other computer assisted work
in quantum mechanics shares many of the main features presented below.

The underlying theme under discussion here is the proof presented in [14, 15, 16,
17, 18, 19, 20, 21] of a precise asymptotic formula for the ground-state energy
of a non-relativistic atom. One of the ingredients of that proof, namely the
content of [21], was to establish an elementary inequality that plays a crucial
role in the rest of the proof of that formula. This inequality was settled as a
computer-assisted proof using interval arithmetic. :

The inequality concerns the Thomas—Fermi potential Vrr(r) = —y(r)/r, where
y(r) is defined as the solution of

y'(z) =z~ y"(z), y(0)=1, y(co)=0. (0.1)
Define y
z 2\
r@) = [ (-”(x—’ - %)+ dz,  Qe(0,9),

where a; = max(a,0), and a number . will be defined at the beginning of
Section 2. The function F(2) depends smoothly 6n §2 [41], and the main result
in [21] is as follows:
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Theorem 0.1. F(Q) <c < 0 for allQ € (0,9,).

This is a quantitative form of the non-periodicity of almost all zero-energy
orbits for the Hamiltonian H = [¢|2 + Vrp(|z]) on R® = {(z,€) |z € R3, £ €
R3}. In fact, an easy computation shows that a zero—energy orbit with angular
momentum €2 is periodic if and only if the derivative F’(2) is a rational multiple
of 7 (see [1].) Hence, Theorem 0.1 shows that closed zero—energy orbits arise
for only countably many Q.

This review will be organized as follows: first, we will present the quantum me-
chanical picture relevant for this theorem: this gives a meaning to Theorem 0.1,
but can be skipped if the reader is not interested in its applications. Afterwards,
we will present the basic computer set—up for the proof of Theorem 0.1, which
will involve two main things: the rigorous solution to the Thomas—Fermi equa-
tion, and the actual computation of the function F above; the final sections of
this review will be devoted to these issues.

Our review here will be just a brief sketch of the actual proof. We refer
the reader to the original paper [21] for the complete details. The paper
itself with the proof of Theorem 0.1, together with the complete programs
used in our proof are publicly available by anonymous ftp from the machine
math.utexas.edu (Internet number 128.83.133.215). Our programs are stored
in the directory /pub/papers/seco.

1 QUANTUM MECHANICS

The ground-state energy E(N, Z) for N electrons and a nucleus of charge Z is
defined ! as the infimum of the spectrum of the Hamiltonian

N
Hyz = Z (—An - lekl—l) + z |zj — :ckl—l,
k=1 1<j<k<N

acting on antisymmetric ¥(z,...,zn) € L2(R3V). The ground-state energy
of an atom is then defined as
E2)= IIvn>l‘IllE(N, z),

and our problem is to compute E(Z) asymptotically for large Z. Building on
the previous work of Thomas [43], Fermi [22], Dirac [6] and Scott [37] (see the

1In this survey we neglect electron spin to simplify notation.
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survey article of Lieb [30]), Schwinger [36] proposed the refined formula
E(Z)m —coZ® + 122 — 1 Z°/3 (1.1)

for some explicitly defined positive constants cg, c1. After the early work of Lieb
and Simon [31] on molecules, Hughes and Siedentop-Weikard [24, 40, 41, 42]
gave a rigorous proof of the “Scott conjecture”, namely E(Z) = —c0Z"/3 +
222 + 0(Z"), with ¥ < 2. Recently, Ivrii and Sigal [27] proved the analogue
of the Scott conjecture for molecules. Our main result, announced in [14] and
proved in [15, 16, 17, 18, 19, 20, 21}, is as follows.

Theorem 1.1. E(Z) = —coZ2"/% + 122 —¢1Z25/3 4 0(Z3/3-%°) with &0 = 53z -

The starting point in discussing atoms is an elementary observation on free
particles in a box. For N free particles in a box @ C R3, the minimum possible
kinetic energy KE(N, Q) is equal to the lowest eigenvalue of —A acting on
antisymmetric ¥(z,, - - -, zn) € L?(Q") with appropriate boundary conditions.
One computes KE(N, Q) trivially, by separation of variables. For large N, the
answer is

KE(N, Q) = c1rp®?|Q| (1.2)

where p = N/|Q| is the density of particles in the box, and crF is a universal
constant.

This suggests a way to approximate the energy (Hnz ¥, ¥) of a wave function
U(zq,...,2yN) in terms of the electron density

p(z1) =N/ I‘I’(Il,zz,---,ZN)|2da:g...d:cN.
R3(N-1)

In fact, we set

Err(p) = e / P13 (e)de — / Ep(z)d=+ 1 / / p(z)pv) dzdy.
RS R |2 2 JJrsxms |z -l

(1.3)
Here, the first term on the right is an approximation to the kinetic energy
motivated by (1.2), and the remaining terms on the right are simply the classical
electric potential energy for a charge density p and a nucleus of charge Z.
Thomas and Fermi independently proposed that the ground-state energy E(Z)
is approximately equal to the minimum of £rr(p) over all possible densities
p(z). Moreover, they proposed the minimizing density prr for (1.3) as an
approximation to the electron density for an atom in its ground state. This is
an immense simplification, since the original problem deals with ¥(z; ...zN)
for N > 1, while Thomas—Fermi theory deals merely with a function on R3. An
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elementary computation with the Euler-Lagrange equation for (1.3) leads to an
ordinary differential equation for prr, which is essentially (0.1). In particular,
Thomas—Fermi theory predicts that

E(Z) ~ —cp 2713,
which is correct as far as it goes, but much too crude.

A more refined prediction for FE(Z) comes from the Hartree-Fock
approzimation®. The idea is that since the electron density is approximately
pTF, each electron behaves as if it was moving in a potential

VTF(m) = ——q-. -+. M'
lz| ~ Jrs lz—yl

Therefore it is reasonable to approximate the ground-state of the true Hamil-
tonian Hyz by that of the much simpler Hamiltonian

N
Hys = Z (—Ags, + Vrr(zi)), acting on antisymmetric ¥(z1,...,zn). (1.4)
k=1

Unlike the original Hamiltonian, (1.4) can be diagonalized using separation of
variables, and the state of lowest energy can be written explicitly in terms of
the eigenfunctions of —A + V. So again, the problem is reduced from 3N to 3
variables. In fact, suppose Ej are the (negative) eigenvalues of —A + Vg, and
let ¢k () be the corresponding (normalized) eigenfunctions. Then the ground-
state wave function for (1.4), which we call Wy, is an antisymmetrized product
of the p;. As an approximation to the ground-state energy of an atom, it is
natural to use

En(Z) = (HNz¥nt, Uns) -

Note that we are using the exact Hamiltonian Hyz, even though W¥y,¢ arose from
the simplified Hamiltonian (1.4). Elementary computation gives the formula

Eynt(Z) = sneg(—A + Vpr) — %/ RS | R? pTFl(:)—p'ZT(y)'dzdy—
1 S(z, y)I?
) /-/11°st o= o] dedy
+} / fR 3x;a[m(z) — pre(2)][pue(y) — m(y)]%, (1.5)

2This is not exactly the same as the usual Hartree-Fock approximation.
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with

sneg(~A+Var) = Y Er,  pe(z) =3 lea(@) S(z,0) =D or()en(y).
k k k

To get more explicit information from (1.5), we approximate sneg(—A + Vrr),
punt and S. The semi-classical approzimations for these quantities are as follows.

sneg(—A + Vrr) & —15—1,,5/ |Vrr(z)|%/ %de, (1.6a)
R3
pue(z) = g3 |Var ()2, (1.6b)
dzd
3 / f IS(a:,y)Iz| =Y mep / pie (z)de, (1.6¢)
R3xR3 T — yl R3

for a universal constant cp.

We omit the motivation for (1.6a), (1.6b) and (1.6¢c) and content ourselves with
the remark that they are closely related to Weyl’s theorem on eigenvalues of
the Laplacian. Formula (1.6¢) and its application to atoms are due to Dirac.

Putting (1.6a), (1.6b) and (1.6¢) into (1.5), we obtain the semi-classical approx-
imation for Epns(Z). From the first two terms on the right in (1.5), we recover
the Thomas—Fermi energy —coZ7/3. The third term on the right of (1.5) takes
the form —c) Z%/3 for a universal constant c}. The final term in (1.5) vanishes
in the semi-classical approximation. Altogether, we have

Ene(2) m —co 2713 — ¢, 2%/, (1.7)

The last term in (1.7) is called the Dirac correction. Comparing (1.7) with the
correct formula in Theorem 1.1, we see that the Z2-term is missing from (1.7),
and the Z5/3 coefficient is wrong. The trouble is that (1.6a) is only a crude
approximation.

A refined form of (1.6a) was proposed by Scott [37] and Schwinger [36]. For
potentials V with a Coulomb singularity V(z) & —Z|z|~! at the origin, their
formula is

aneg(~A+ V) % ks [ V42 / vieav.

Scott guessed the Z2-term by working out the elementary example

V(z) = Eo — Z|z|™*.
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Schwinger deduced the last term in (1.8) from the form of the heat kernel for
e~*(=4+V) which in turn he guessed from the known case of the harmonic
oscillator. Using (1.8), (1.6b) and (1.6¢) to approximate the right-hand side of
(1.5), we obtain Schwinger’s formula (1.1) for the ground-state energy.

The rigorous comparison of Eps with E(Z) was originally done in [15], but
that proof has been greatly simplified first by Bach [2] and then Graf-Solovej
in [23]. Theorem 0.1 affects (1.8) as follows: Although (1.8) was guessed by
Schwinger and Scott by comparison with the hydrogen atom and the harmonic
oscillator, it is easily seen that (1.8) in fact fails for these two potentials; thus,
that it continues to be true for the Thomas—Fermi potential must be a deep
fact. This is the aperiodicity described at the beginning of this review, which
is the essential content of Theorem 0.1.

Aperiodicity of zero—energy Hamiltonian paths is well-known to play a crucial
role in the study of eigenvalues and eigenfunctions. In our setting, Theorem 0.1
enters because our formulas for the eigenvalue sum and density involve expres-

sions of the form
s= ¥ p(Z * Pz
- P

1<icz'sq,
for elementary functions such as B(t) = t — [t] — 1. (Here [t] is the greatest
integer in ¢.) Since 3 is bounded, we obtain trivially the estimate S = O (Z l”) .

If F(Q) = mpQ2+ v with p rational, then the trivial estimate for S is easily seen
to be the best possible. On the other hand, if d2F/dQ? < ¢ < 0, then one can
prove that the numbers

$1= Z5F(27"1)
are equidistributed modulo 7. (The argument is close to Hardy’s estimates on

the number of lattice points in a disc.) Since B(t) is periodic and has average
zero, it follows that S = O(Z7) with y < §.

Thus, Theorem 0.1 allows us to improve on the trivial estimate for the sum S,
which appears in the eigenvalue sum and density for Hys.

The proof of Theorem 0.1 is necessarily rather delicate. For small perturbations
of Vrr in a natural topology, the analog of Theorem 0.1 fails. Therefore, we
have to make strong use of the differential equation defining y(r). We remark,
however, that without' a computer it can also be seen that F" vanishes at
most finitely many times (Proposition 4.8 in [21]; see also the independent
proof in [25]), which also implies that zero—energy periodic orbits have measure
zero, which in turn also implies the same results stated above for sums S,
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and therefore our result for atomic energies. Theorem 0.1, however, is better
because it implies better error terms for all those formulas. Moreover, if one
wants to understand ground-state energies to a greater accuracy, (see [3, 4, 5)),
then Theorem 0.1, in its full strength, is unavoidable.

~

2 COMPUTER-ASSISTED SET-UP

The first issue at hand is a derivation for a formula for F”/(2). This is not a
trivial matter at first sight, since differentiation twice inside the integral sign
gives rise to an unconditionally divergent integral.

To understand the formula for F”, consider the new function u(z) = zy(z);
this function has a single maximum Q2 reached at r,, and for 2 € [0,Q.] there
are two solutions, denoted by ri1(2) and r3(f2), to the equation u(r) = Q2.
Then,

rg(ﬂ)—& 3

F"(Q) = — lim (/ (u(z) - Q%) " y(z)dz + c(Q)&"l/’) ,  (2.1)
§—0 ()46

where ¢(2) is uniquely specified by requiring the finiteness of the limit. Note

here the delicate cancelations taking place in the limit in (2.1). The proof of

(2.1) can be found in [21]. There it can also be seen that the function F in fact

extends as an analytic function to a complex neighborhood of (0,52.], and that

F blows up like Q77 at 2 =0, for y = 9;2@‘

The proof of theorem 0.1 will be done by obtaining strictly negative uniform
bounds for (2.1) on a finite number of small intervals Q} covering (0,9, ). This
was done using interval arithmetic, which we now briefly review.

Let R be the set of “representable numbers” in a computer, that is those
numbers that the computer can represent exactly. Since computers can only
perform arithmetic in an approximate way, the idea to perform rigorous arith-
metic is to instruct the computer on how to produce upper and lower bounds
to the true results of arithmetic operations between representable numbers; in
other words, we work with intervals with endpoints in R, and we implement
arithmetic operations on intervals in such a way that given two intervals, the
computer will produce a third that is guaranteed to contain the result of all
arithmetic operations between points in the initial intervals.
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The next step is to perform a similar kind of arithmetic, where objects are func-
tions in some Banach space, not numbers. A convenient Banach space to use
in this theory is the space of piecewise analytic functions, with a lower bound
on the size of the domains of analyticity. Occasionally, it will be convenient
to switch to genuine real variable theory, for which we will do our work on
C°[—1,1]. The reason for this is that inversion of functions in R! is a little
easier than the complex counterpart, mainly because the domain of definition
problem is trivial in the real case.

More precisely, consider the Banach algebras

H' = {f(z) = ia"z" i lan] < oo},
n=0 n=0

and
C° = {f(z)|f is continuous on [-1,1]},

with norms

17 =)"lanl, Il = sup|f(2)l,

n=0

respectively. H! is a subspace of the set of analytic functions in the unit disk.

Our substitute for intervals in H! are sets (sometimes called “neighborhoods”,
even if they are not actually neighborhoods) U'(lo,...,In;Ch,Cy;k) of the
form

00 [+ =]
{f(z) = Ea,,z" + 2¥g(2)|an €I, 0<n < N, Z lan| < Ch, l9l, < C,}
n=0 n=N+1
(2.2)

where C, and C, are positive real numbers and the I, are intervals in the
real line. For the computer implementation, C, and C, will run over the
set of computer-representable numbers, and the intervals will be those with
representable endpoints. We refer to C, and C,; as high and general order
error terms respectively, for obvious reasons. The number k will be referred
as type (set to infinity if C; = 0), and N will be referred to as order of U.
In our implementation, N will not be fixed, but chosen adaptively during the
execution of the programs.

By trivial scaling, we will be able to do analysis on

> (52)

n=0

H‘(Iz—zolsr)={f(Z)= Zlan|<°°}
n=0



Interval Arithmetic in Quantum Mechanics 153

a subspace of the set of analytic functions on the disk of center z; and radius
r.

As for C°, we will use sets — “neighborhoods” — of the kind

N o
U(Io, .. o IN;Cp,Cy; k; S) = {f(z) = Zanz" + zN"'lh(z) + 2% g(2)

n=0

an € In, 0< n < N, sup |h(z)| < Ch, sup |g(z)| < Cg} (2.3)
zZ€S ZES

where S is a subset of [—1,1], and h and g are continuous functions on S.
We will use the superscript 0 or 1 whenever we want to emphasize in which
topology we are taking these “neighborhoods”.

The U° will not allow us to perform as many operations —such as differentiation—
as the smaller &', but we can still add, multiply, raise to fractional powers and
integrate (among others) in terms of them; furthermore, the formulas for these
neighborhood operations are exactly the same as those for the 1. We refer
the reader to [35, 39] and [21] for a description of some of these operations.

These U become more useful when they are rescaled appropriately and strung
together: in this way, one can have complete local and global control of analytic
functions defined over very large sets. This constitutes a mild novelty in this
set—up, since a single variable, consisting of a pointer to an array of & will
capture the global behavior of a piecewise analytic function.

Although computer-assisted analysis has become fairly standard, we refer the
reader to [34] and [28] for a description of the basic ideas. The technique for
solving ODE’s is adapted from [39] and [38], and is tailored to handle our
particular ODE. See [33] for a thorough discussion on ODE solving techniques,
with very good general algorithms. Also, we refer the reader to [7, 8, 13, 29, 32]
and [35] for a sample of computer-assisted proofs of a wide variety of problems.
Main ideas in our approach go back to those proofs.

Our interval arithmetic package is an adaptation of the one used in [38] and
[39], which in turn is an adaptation of the one developed by D. Rana. See [35]
and [38] for details on the software.
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3 THE THOMAS-FERMI EQUATION

In this section we will be concerned with the problem of getting good bounds for
the solution of the Thomas—Fermi equation (0.1). The analysis will be broken
into two main parts: the solution of initial value problems, and the solution of
the boundary value problem. The first will be further broken into three main
problems: initial value problem at 0, at infinity and elsewhere.

We will use the following well known results [26] about y:
—wo = lim y(r) <0, (3.1)

exists, and that y admits a power series expansion
[>#]
y(r) = 144r'3(2 bnr'"a), (3.2)
n=0

convergent for r large enough, with b = 1, b < 0 and & = %(\/7_3 —T). Also,
y is always positive, decreasing, and it is the only such solution of the ODE
satisfying (3.1) and (3.2).

The Initial Value Problem Outside
the Singularities

In this section we will be concerned with the solution to the Initial Value

Problem L s
u'(2) = 2~ Pu(z), u(zo)=uo W(zo)=wm (3.3)

for zg, up > 0, which can be viewed as the fixed point of

3,

z t (7
T(u) = ug +/ (u1 +/ e 1/(8) ds) dt.
To Zo &9

If we regard u as '
u(z) = up+uy -1z + 22 f(2)

with z = (z—20)/r, f € H' and r small, we see that T' induces in a trivial way
an operator T' of which f is its fixed point. Thus, the following algorithm is a
simple consequence of the fixed point theorem on Banach spaces. The relevant
norm — denoted by | | — throughout this section we will be | |;.
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Algorithm 3.1. We deduce conditions on up, uy, 2o, r and a under which T
is a well-defined contraction in B(0,a) C H', and we compute an upper bound

for HTIILIP
This algorithm is then applied to the following

Algorithm 3.2. Given appropriate intervals *, uy and uj, and representable
r, we construct a neighborhood U(Iy, ..., IN;0,Cy;0) such that for any zo € z*,
ug € uj, and uy € ul, and any solution u of (3.3) with any of these initial
conditions, we have

T — Zo

u(z):uo+u1~(z—zo)+zzf(z), z= —

for some f €U.

Description. First, we construct, in a heuristic way, a polynomial

N .
p(z) = pid,

[E)

which approximately solves Tp = p, and we set a such that |p] < a. Next,
we look for ag > a such that the conditions on =z, ug, uy, r and ag given by
Algorithm 3.1 hold uniformly for all z¢ € z*, uo € ug and u; € uj. Next, since
f is the fixed point of 7', we have

lp— Tpl
1= ITﬂan

We get the required U, by putting I; = [p;,p;] for i =0,..., N and setting C,
equal to the ratio above. Q.E.D. This has the following easy consequence :

lp— 1l <

Algorithm 3.3. Given disjoint intervals zj and z3}, and intervals uf and uj,
we construct intervals y; and yi such that all solutions u to (3.8) with initial
values equal to any ug € uy and any u; € u}, for any z € zj are guaranieed to
ezist as positive solutions on [z,2'], and furthermore satisfy

u(z') €y,  u(z') €4,

forallz' € z3.
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The Initial Value Problem at 0
It concerns the solution to the Initial Value Problem
u(z) = 2 Pu"(z) uw(0)=1 w'(0)=—w (3.4)

for w > 0, which can be viewed as the fixed point of

T(u) =1+ /0 ’ (—w+ /D t ":’1,(23) ds) dt.

w(z)=1-—w-r 22+ 22f(2), (3.5)

with z = (z/r)%, f € H!, and r is small, T induces again an operator T of
which f is its fixed point. After this, we just proceed in a similar manner to
the previous case.

If we put -

The Initial Value Problem at Infinity
This is Ls
u"(z) =z~ #u”(z) u(co)=0 b =b (3.6)

where the last condition is interpreted in the sense of (3.2). The solution will
be written as

u(z) = f—: (14 bz~ + 22£(z2)) , (3.7
where f € H!, z = R*z~%, for some R large. If we set
Ty(f) = bR~z + 2(2)
Ty(g) = (1 +9)™

anzn—2

(na + 3)(na+4)’

g9(2) = Z apz".

n>0

Ts(9) = 12f:

n=2

A solution of (3.6) comes from an f satisfying Tf = f, with_f" =Tz0Th0Ty.
As before, we would like to go ahead and check that indeed T is a contraction,
but the problem here is considerably more subtle than in the previous cases,
due to the fact that 73 does not scale with R. As a consequence, contraction
properties of T either hold or don’t, and taking large R won’t help much. We
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are lucky, however, that the norm of T3 is essentially g-, and that the norm of

T3 is essentially 19

2a+3)2a+4) ©

which says that the Lipschitz norm of T will approximately be %. The following
result is thus crucial.

1
2

Lemma 3.4. Put § = 0.3. Assume that |5| = R™%|b] < 0.23. Then T is a
contraction in B(0, ), and |T|Lip < 0.8652.

Once this is settled, everything proceeds as before, and we can easily conclude
the following:

Algorithm 3.5. Given b* (interval) and R (representable), we produce U,
such that, for any b € b*, the solution u of (3.6) is given by

144
y(z) = gy (1+ bz~ >+ 22f(2)) , z=R%z7°,

with f € Uy. Here, Uy depends only on b*, i.e., it is independent of which
particular b in b* we are considering. In particular, we can produce two intervals
ugy and ui such that, if u is the solution to (3.6), we have u(R) € u} and
u'(R) € uj.

The Boundary Value Problem

Next we discuss how to solve
w(z) = 2~ Pu"(z) u(0)=1 u(oco) = 0.

Unlike the previous section, we will avoid a serious formulation of the method
(which becomes a little technical), and instead we concentrate on the main
simple ideas.

What we will be using here is a rigorous variant of the shooting method: we
will begin making a heuristic guess for, say, 3'(0), and we will then follow the
solution forward until it violates one of the properties we know to be true for
the true Thomas—Fermi function: this will determine whether our choice was
an upper bound or a lower bound for the actual value for 3/(0). This yields
bounds for ~wg = y/(0). We then carry out a similar procedure at co. Let’s
get into a little more detail:
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Pick a value w and, with the aid of the algorithms in the previous section,
obtain bounds for the solution of

w(z) =2~ Bu"(z) uw(0)=1 v'(0) = —w,

around small intervals covering, say, [0,M]. If, at some point, we can deduce
using these bounds that u is increasing, a trivial ODE analysis shows that this
choice w is a lower bound for wo = —y'(0). If however, the solution vanished,
the same trivial ODE analysis yields that wg < w. The problem here is that
the computer alone won’t ever be able to tell us that the solution vanishes,
since it needs it to be positive to perform the different algorithms above: so, in
practice, even if the solution would vanish at some point, the computer will just
require, at each step, smaller and smaller intervals to propagate the solution
forward, without ever giving negative bounds for u(z). Hence, the following
simple lemma is helpful:

Lemma 3.6. Let u be the solution of (3.3), with u; < 0. If

5,
u/?
To

then, there exists a point t > zo such that u can be ertended as a well-defined
positive solution of the ODE to [zo,t) and, furthermore, inf ¢(5, 1) u(z) = 0.

As a consequence, the word vanishes used above is simply replaced by the more
feasible property (3.8), and we obtain the following

Algorithm 3.7. Given a representable w, we construct an algorithm that, if
successful, will indicate whether w < wg or w > wy. Hence, given appropriate
z; ER , we can produce yf and y'; €Z,i=0,...,m, such that

yz)ey, Y(@)ey:, i=0,...,m

We now do the same at infinity.

Algorithm 3.8. Given a representable b, and assuming bounds for wo, we
construct an algorithm that, if successful, will indicate whetherb < by ord > b;.
Nezi, we use these bounds to produce z; €R, and y}, ¥/ €Z,i=1,...,m,
such that

) y(zl)ey:) y’(a:.)Ey':, i=1,...,m
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The details are easy. In fact we can use the extra information given by Algo-
rithm 3.3 to detect easily when the test solution goes beyond bounds. Note
that afterwards we can take the best of the two sources of information about
the Thomas—Fermi function, coming from 0 or from infinity.

A delicate point here is the choice of the z; above, but we refer the interested
reader to [21] for details.

Note also that the refined bounds for u given by Algorithm 3.8, allow us to
sharpen our bounds for wo. These improved bounds for wo will in turn improve
on the older bounds for b;, and we are all set for a recursive algorithm, the
result of which is quite precise bounds for the Thomas—Fermi function:

Algorithm 3.9. We can produce z;, r; € R, and
Ui(Th, ... I;ChiyCoiy2), i=1,...,m,
such that
y(zi +z-15) Ell.-(I(",, . ..,I‘I'V;C;.‘.-,Cg,.-,2), i=1,...,m,

and

m
U(iﬂi —ri,zi+ 1) = (21— r1,2m +7m) C (0,00)

=1
What follows is some rigorous numerical values we obtained for several Thomas—
Fermi parameters.
Lemma 3.10. The following inequalities hold:
1.588071022611278 < wp < 1.588071022611471

—13.2709738479 > b, > —13.2709738482
0.486348538043594 < Q2 < 0.486348538046869
2.104025280219 < r. < 2.104025280274
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4 THE APERIODICITY INEQUALITY

Once we have appropriate bounds for the Thomas—Fermi function, the next
step is to use them to prove Theorem 0.1.

There is the straightforward approach of simply computing expression (2.1)
for a finite collection of small intervals Q2 which cover all of (0,Q2).. As we
will see here, this will work with more or less trivial modifications only for
for intervals which are not near 0 or .; intervals near 0 will require a more
sophisticated approach to computing (2.1), but near . we will have to use a
completely different approach. This section explains the analysis involved in
the computation of F" for the different Q.

Case 1

We begin with the computation of F"(Q2*) for Q* sufficiently far from 0 and
Q.. Use (2.1) to write F(Q) = L,(Q) + (Q) + I3(Q) with

b 3
L = ‘/a (u(r) - Q%" " y(r)dr (4.1a)

6—0 1(ﬂ)+6

I = lim ( / ’ (u(r) - 92)‘3” y(r)dr ~ Gl(Q)é‘l”) (4.1b)

. ra(Q)-6 _3, .
Iy = lim / (u(r) — 02) " y(r)dr — Go(Q)5~ (4.1¢)
- ]
with the G; such that the limit is finite, and a < b carefully chosen.

The computation of I; seems to be rather easy at first sight: we just break up

I = E/:i“ (u(r) - 92)_3/2 y(r)dr,

s=1 V%

with ¢ = a and ¢,41 = b. This involves only basic operations with u and
thus feasible with the standard interval arithmetic packages. A deeper issue
is that of speed: it turns out that we will be forced to take the intervals Qf
very small, and thus need to compute I; many times; in fact, so many that
the direct computation approach fails due to time considerations, and we are
forced to use a certain amount of trickery which we will omit here.
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The computation of I and I3 is much easier: we use Algorithrﬁ 3.2 to compute
U, such that

u(z) = R+ 2f(2), z= ”—‘EL(Q—) feu, (4.2)

where r > |a — r1(Q)| and U, is uniform for all @ € Q*. Therefore,

_/r ’ (u(z) - 92)_% y(z)dz = / 2~ f(2)de,

1(Q)+6 ri(0)+6

for a new function f(z) = y(z) f~"(z), that can also be enclosed in a com-
putable &/. Thus, if

f(z) = Z an2™ €U(Jo, ..., IN;Ch,Cy; 1),

n>0
we see that
z____u—r']!n!
a _3
/ (u(z) - 9% " ya)dz =r Y oy 2"7H ,
ri(§3)+46 n—s
1()+ n>0 2 s

which implies

N _ n—."-.
LerY ""1(" '1(“)> e,
n— 3 r

n=0 2

with |e| <r (F‘}I— + 209). I3 is done in a similar manner.
2

Case 2

The problem now is that when € is small, (4.2) would have to be done either
very far (for I3) of very close to 0 (for I5), and this is impractical. The answer
to this degenerate case goes through the change of variables given by r(t), the
inverse of u around 0 for I, and around infinity for I3; we will concentrate here

on I;. This change of variables yields
_d a n-% dr\ _d u(a) o —Ya
Ig_m(Q/n(m(u(r)—Q) r)‘?i'si(ﬂfm t—02) " w(t)t ),

for w(t) = r(t)/r(t). The first step is therefore to compute w, which hinges on
the following inversion algorithm.
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Algorithm 4.1. Given N > 0, we produce intervals a}, ..., a}, and a constant
Cn, such that

N
r(t) — t(l + ;ant_")

for constanis a; € a}, i =2,...,N, and fort <.

12
_ _ t
<Oyt IV, i= (_) ’

To

The point to realize here is that the function u(z) is not analytic either around
0 (where it is still is analytic in 1/Z), and is even worse around infinity, where it
is a combination of z=2 and powers of z(7-V™/2_ Ip spite of the fact that this
function is not analytic, we can in principle design an algorithm for this case by
combining different manipulations with analytic functions. However, it turns
out to be more effective to switch here to genuine real variable theory, and to
use the Banach algebra C? instead of analytic functions. As a consequence, the
calculation of the derivatives has to be dealt with in a different manner than
before. Of course we omit all details, and simply state the main final result:

Algorithm 4.2. We produce a neighborhood U°(Iy, ..., In;Ch,0;00) such that
ht) € ') +u) = f0),  fel’,
fort <.

Say then that
N
@ = aat"+H®E), |HO <™, 0<t<y,
=0

for a, in computable intervals and £, bounded by a computable number. Then

d ’ oY dr d [, [FuO 1, R
. (n/ﬁ(m (u(r) - 07) 7) == (n /1 (t — 1)~ w(tn?)dt

Q™ %u($) N 1
= 20 / (t = 1) h(tQ?)dt — 2 (u(6) — 02) " w(u(s))u(s)
1

N n 0~ %u(9) Yoa o« -
=20 anzy ’29“/1 L (t=1)""t¥dt 4 h(Q) - (u(é) — 0?) * 62;‘,((?)

n=0 .
' (4.3a)
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with

. N41) [97%u(5) 1, (N41
Ih(ﬂ)|52QN+zehzo'L_Z2 f -1 (4.35)

This formula, and a similar formula for I3, allow us to compute I3 and I3 for
many small Q*. There is a limit again, however, since as {8 — 0 the integrals
above are extended over an intervals spreading to infinity. This calls for a final
— but fortunately easy — analysis to control these integrals for very small *.
We simply state that this can be done and refer the interested reader to [21]
for all the details.

Case 3

We are finally left with the proof that F"(Q) < ¢ < 0 for  sufficiently close
to §.. The previous method fails for these 2 mainly because the derivatives
of u at the crossing points r; degenerate to 0. The idea here is to change the
approach completely, and consider the change of variables given by r(t), the
inverse of t(r) = £4/9Q2 — u(r), which allows us to rewrite

—F'(Q) =0 /_ 11(1 — ) hw(Dt)dt, w(t)= % D?=02-Q2 (4.4)

The main difficulty here is to gain control over the function r(t) (or w(t)),
which is done via the following technical lemma in complex variables.

Lemma 4.3. Let u € H'(|z — r.| < R), smooth on the boundary of B(rc, R),
of the form

-7

R y

u(z) = Q2 — uaR%2? + 2 f(2), z= £(0) = usR?,

satisfying

1. ufll < h, ug >0 and usR? > h.
2. For a constant M we have [u)(z)| < M for |2| < 1.
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Then, t(z) can be extended analytically to B(r., R), and there is an inverse
r(w) of t(z), analytic in |w| < T, where T < v/uzRZ — h and
' 2Vuy + hIZ—i
sup |r'(w)] <
|lw|LT 2u, —3|U3IR— -G-M}z2

2\/‘“2 + hR_2
n>0

<nlT™™
’w""'l(o)l " 2u; — 3|us| R — M R? -

As a consequence, we obtain the following:

Algorithm 4.4. Set u(z) = Q2 — 22f(z), with z = (z—r.)/R. If we know that
f € Uo(Io, .. IzN+1,C).,0 oo) and that A° < |y(z)| < Ao when |z —r.| < R,
for bounds A° < Ag, we can then construct T and U, such that w(t) = g(t/T),
with g € Uy. We use this to compute a bound for F" sufficiently close to Q..

Description. The construction of #; is rather easy from the lemma above.
Therefore, we know that w(t) = }_ wa(t/T)" and we have good control on the
wy,. We insert this into (4.4) to obtain

N D 2n D 2n
1 v — :
—2F'(Q) = an_-%wz" (-—1—,) a, + 0 Z Way, (T) oy,

n>N

1
= % /_ At — 1)~y = (2:) 272", (4.5)

The first term above is computed and the second is just an error term, which
is easily estimated in absolute value from above. Q.E.D.

with
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