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Abstract. Input-outpul models are subject 10 uncertainty. It these models are selved without regard
to the elfects of the uncertainty the selutions can be substantially in crror. [nterval arithmetic offers a
means by which the effects of this uncertainty can be assessed. They also offer a means of evaluating
changes in the technical coetficients and a means of determining inverse important coefficients.
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1. Introduction

The values of the technical coefficients of input-output models are usually not
precisely known. The effects of uncertainty are rarely examined though they can
be substantial. Kelly and Wyckoff (1989) report that the estimate of GNP for 1983
was revised by $100 billion when the 1977 national input-outpul benchinark was
released. The problem of uncertainty is particularly true for regional models where
analysts rarely have the resources to conduct samples and must adapt national
tables to regional economies. West (1986) has denved a method of producing
customary confidence limits for multipliers i terms of the parameters of the
distributions of the technical coefficients. This requires some way of determining
the distributions of the coefficients and of estimating their parameters. This may be
a practical impossibility, particularly for regional economists. Interval arithmetic
offers a promising method of evaluating the effects of uncertainty when suhjective
uncertainty assignments can be made to the technical coefficients. In what follows,
we will consider a simple input-output model

r=Axr+b
(I — Az — Lz — b

where A is a matrix of technical coefficients, b a vector of final demand, and z is
the level of output from various industnies. It will be uscful for what follows later
to designate the Leontief matrix as L = (I — A).
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The rules of interval arithmetic that are needed for this research are discussed in
Section 2. Section 3 considers various solutions to interval equations. M -matrices,
a special class of matrices, are discussed in Section 4 and example is shown in
Section 3. Matrices that are not A -matrices are considered in Section 6 and the
use of interval arithmetic to discover inverse important coefficients is discussed in
Section 7. A brief conclusion 1s in Section 8.

2. Interval Arithmetic

Interval arthmetic was developed by R, E. Moore (1959) while studying the prop-
agation and control of truncation and roundoff error using floating point arithmetic
on a digital computer. Moore (1979) was able to generalize this work into an
arithmetic independent of machine considerations.

One of the nice features of interval arithmetic is that the rules are easy to
implement. In what follows upper case letters, such as X. will be used to indicate
intervals while lower case letters, such as z, will indicate point values. An interval
is defined to be the real compact interval X = [z, 7] where z and T indicate the
lower and upper endpoints. Interval vecters and matrices will will be indicated by
bold face lower case and uppercase characters, respectively. It is very difficult to
devise an unambiguous symbology for interval mathematics and still preserve a
notation that most readers will be familiar with. At times it will be necessary to
explicitly state in the text when a quantity is an interval and when it is a point
value. A hox is a vector of intervals such as x = (X, X3). Geometrically a box
1s a rectangle in two dimensions and a rectangular solid in three dimensions. For
example,

X =[1.0,2.0]
is an interval while
x X1\ /[ [1.0,2.0]
CANXy ) \[-3.2,20]
is a4 box. If X and Y are intervals, the binary operations for interval arithmetic
are

X+Y=[z+yz+y)
X—Y:[gmgjf—y}

If 0 € Y then the result for division is either two intervals [—o0, a] and [b, +-oc]
or a single interval [—oco, +00]. The arithmetic resulting from division by zero
is called extended interval arithmetic. The rules for this extended arithmetic are
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Fig. 1. The solution set of Ax = b.

not discussed here. Details can be found in Ratschek and Rokne (1988). Interval
expressions can be developed for functions of intervals but these are not needed
here. Additional interval operations that will be needed later are defined to be

| X |= maz{|z],| |}
(X} =min{|z|,] Z [}if 0 X, {z) = 0 otherwise,
dX)=F -2

and are called the absolute value, the magmtude, and the diameter ot X, respec-
tively.

3. Solutions of Linear Interval Equations

Interval equations have three kinds of solutions, One of these is called the solution
set, the second is called an interval solution, and the third is called the hull solution.
The solution set of Ax = b is defined to be (Ratchek, 1988)

¢p={x€ R": Az =btorsome A € A,b € b}.

Here ¢ represents a set of points in a real number space of dimension n. The set
¢ consists of the points found by solving every point equation Az = b that can
be composed from Ax = b. In short, any point & € ¢ will satisfy the equation
Az = b. For example, consider the interval equations

[2,4]X; + [~1,1]X; = [-3,3]
[—1, 11X + [2,4] X2 = [0,0].

The solution set of these equations i1s shown in Figure 1. Usually the solution set
will not be a box and will be quite complicated in higher dimensions. Finding the
solution set is very difficult for problems of even modest dimensions and usually is
not even considered. Further, it is difficult to know how one might practically use
it. For these reasons solutions using the rules of mterval arithmetic are sought.

An interval solution, x = A~'h, is a box found using the rules of interval
arithmetic in some solution technique such as Gaussian elimination or Cramer’s
rule. Such a solution is shown in Figure 2. An unfortunate feature of interval
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Fig. 2.  Aninterval solution of Ax = b.
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Fig. 3. The hull solutien of Ax = b.

arithmetic is that different solution techniques will yield different boxes. All of the
boxes, however, will enclose the solution set if the A matrix is regular, that is if
cvery point matrix A belonging to A has rank nn (Ncumaicr, 1990).

The hull solution, A b, is the smallest box that encloses the solution set. The
hull solution for the example system of equations is shown in Figure 3. Finding
the hull solution for a set of linear equations is an important problem in interval
arithmetic and is usually a difficult task. A/-matrices are a special class of matrix
for which hull solutions are relatively easy to obtain. The Leontief matrix will most
likely be an A -matrix.

4. M-matrices

M -matrices were introduced by Ostrowski (1937) and have been widely studied.
Economists often call them Metzler matrices (Takayama, 1987) for his pioneering
work (Metzler, 1945, 1950). The first application to interval matrices was made by
Barth and Nuding (1974). If the Leontief matrix is an M -matrix the hull solution
18 given by

[L7'5,L7'8) ifb20;
L b=l =< (L '5L7'5] ifb<0o<h (H
IL-'5T '8} ifb <O

where b and b are point vectors formed by using the lower and upper endpoints of
the elements of the interval vector b. Likewise [, and I are point matrices formed
by using the endpoints of the matrix L. The condition b > (0 means that the lower
endpoint of every element of b is nonnegative. Only the condition b > 0 need be
considered here because final demand must be non-negative. The Leontief matrix
will be an M -matrix (Neumaier, 1990) if

(1} Lj; £ 0forallsi # j,and
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0987 .0000 .0004 .0036 .0000 .0010 .0006 .0002 .0001
.0000 .0053 .0003 .0001 .0013 .0000 .000Q .0000 .0001
.0039 .0013 .0006 .0018 .0079 .0015 .0260 .0046 0147
0089 .0022 .0440 .1018 .0141 .0107 .0018 .0108 .0013
A= | .0220 .0119 .0355 .0444 .0721 .0315 .0074 .0220 .0247
0075 .0022 .0537 0115 .0040 .0047 .0003 .0067 .0005
0569 .0150 .0176 .0129 .0243 .0315 .0451 .0379 .0018
0151 .0052 .0790 .0185 .0271 .0234 .0111 .0537 .0017
0062 .0026 .0028 .0051 .0048 .0064 .0037 .0078 .0037

Fig. 4. The technical coefficient matrix for Coconino County.

(i1) Lu > 0O for some positive vector u.

While these results are given for point matrices, the application to interval matrices
in the next section. For condition (1), note that all off diagonal wrms will be of
the form —A;; and that the elements of the technical coefficient matrix must be
positive. For condition (ii), let u = (1,1,---,1)" and form Lu. The value of the
first element of L is

I —Ay —Ap—--— Ap,. (2)

This element should be positive because the elements of the technical coefficient
matrix represent the proportion of the output form industry 1 used as intermediate
goods. Equation (2) can be zero only for a good with no final demand. If so, this
good can be aggregated with a closely related good to avoid the problem. If this
1s not acceptable, a means of working with matrices that are not M-matrices is
considered later.

5. An Example

The College of Business Administration at Northern Arizona University has been
charged with analyzing the economic impact of the University on Coconino County,
Arizona and on the state of Arizona. Because of the short length of time given for
the project (4 months) and because sampling costs are prohibitive, we are using a
commercially vended product, IMPLAN, 10 estimate the technical coefficients for
both the county and state. IMPLAN adjusts the national coefficients to regional
coefficients which provides a source of uncertainty {Olson and Lindall, 1994).
IMPLAN produces a technical coefficient matrix for approximately 200 industries
depending on the region chosen. These were aggregated into 9 industries for
purposes of display. The technical coefficient matrices for Coconino County and
the state of Arizona are shown in Figure 4 and Figure 5.
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.0803 .0002 .0046 .0108 .0003 .0013 .0050 .0021 .0008
0005 1995 0022 0178 .0032 .0000 .0000 .0000 .0011
0068 .0053 .0009 .0021 .0122 .0017 .0226 .0066 .0193
0310 .0165 .0482 1001 .0140 .0193 .0032 .0255 0018
A= | 0233 .0466 .0315 .0274 0722 .0223 .0092 .0235 .0270
0255 .0127 .0802 .0231 .0084 .0074 .0006 .0109 .0034
0504 0170 0192 .0120 .0276 .0286 .0600 .0449 .0029
0475 0350 .0871 .0288 .0406 .0441 .0315 .0844 .0058
0070 .0269 .0033 .0061 .0054 .0071 .0043 .0093 .0083

Fig. 5. The technical coefficient matrix for Arizona.

The industries are aggregated using IMPLAN Industrial Numbers (IIN). The
industry aggregates are agriculture, forestry and fisheries (IIN 1), mining (1IN 29),
construction (ITN 48), manufacturing (IIN 58), transportation, communications and
atilities (IIN 443), trade (IIN 447), finance, insurance and real estate (IIN 456),
services (IIN 463), and government (IIN 512).

Final demand cannot be forecast for either Coconino County or for the state. For
that reason various regional multipliers will be calculated for these regions. These
are shown in Table I for Caconina County and Table I for Arizona. It is useful to
have the Leontief inverse to calculate these multipliers rather than consider solving
(essentially) the same problem a number of times. These multipliers assume that
the technical cocfficient matrix for both Coconino County and the state are subject
to uncertainty of +1%. Wage and total income are assumed to have a level of
uncertainty of £0.1%.

Neumaier {1990) gives the following results that will be useful for fiuding the
inverse of the interval Leontief matrix

(i) A will be an M-matrix iff A and A arc M-matrices;

(i) if A is an M-matrix then A™! =[A - AT

(iii) if A is an M-matrix then Gaussian elimination will produce the hull solution
of Ax = b if b is nonnegative.

Here A and A are point matrices formed using the endpoints. The first result
indicates the interval Leontief matrix will be an M-matrix for reasonable choices
for uncertainty. This should be checked of course. The third provides a means of
obtaining the hull inverse. Use an interval version of Gaussian elimination to solve
Lx = u;,4i = 1,n, where u, is a unit vector with the i-th element equal to one and
the other elements equal to zero.

The calenlations were coded in C-XSC. a library of C++ classes (Klatte et
al., 1993). This library provides an interval class and interval vector and matrix
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TABLE 1. Multipliers for Coconino County

Industry
[N

Output
Mulitipkier

Wage income
Multiplier

Total Income
Multiplier

Employment
Multiplier

1
29
48
58
433
447
456
463
5i2

[1.259,1.266]
[1.051,1.053]
[1.270,1.277]
[1.236,1.243]
[1.180,1.185]
[1.126,1.130]
[1.110,1.114]
[1.164,1.168]
[1.057,1.059]

[1.319,1.328]
{1.150,1.155]
[1.472,1.484]
11.304,1.312}
i1.213,1.219]
[1.079,1.081]
[1.222,1.229]
[1.118,1.121]
[1.017,1.018]

[1.265,1.273]
[1.039,1.041]
[1.552,1.5GG]
11.304,1.312]
[1.202,1.208]
[1.125,1.129]
[1.090,1.094]
[1.155,1.160]
[1,027,1.029]

[1.236,1.242]
[1.417,1.428]
[1.476,1.488]
[1.374,1.384]
{1.324,1,333)
[1.053,1.055]
[1.168,1.173]
[1.103,1.106]
[1.022,1.024]

TABLE 1. Multipliers for Arizona

Industry
1IN

Output
Multiplier

Wage Income
Multiplier

Total Income
Multiplier

Employment
Multiplier

l
29
48
38
433
447
456
463
512

{1.337,1.347]
[1.483,1.498]
[1.335,1.344]
[1.286,1.294]
[1.224,1.230]
[1.159,1.164]
{1.163,1.170]
[1.251,1.258]
[1.086,1.0851

[1.493,1.507]
[2.043,2.073]
[1.541,1.555]
[1.323,1.333]
[1.280.1.288]
[1.108,1.311]
[1.292,1.301]
[1.191,1.197]
[1.036,1.038]

[1.375,1.385]
[1.794,1.817]
[1.613,1.629]
[1.329,1.338]
[1.230,1.237}
[1,140,1.145]}
[1.170,1.175]
[1.221,1,228}
[1.050,1.052]

[1.292,1.301]
[2.689,2.739]
[1.583,1.598]
[1.486,1.500]
[1.389,1.400]
[1.086,1.089]
[1.257,1.265]
[1.173,1.178]
[1.042,1.044]

95

classes. This interval implementation provides directed rounding. Directed round-
ing will insure that the results of an interval computation will always enclose the
results that would be generated by a computer where no rounding would occur,
The values from IMPLAN are input as interval values and all values, including the
subjective uncertainty, were treated as interval values.

Rohn (1978, 1980) has derived the conditions under which the input-output
system will have economically feasible solutions when the technical coefficients
are intervals. He did not directly consider them in context of the M -matrix or
consider the Leontief inverse or multipliers. Lorenzen (1985, 1989), Lorenzen and
Maas (1989), and Maier (19835) have also considered input-output models with

inexact data.



66 MAX E. JERRELL

0.16 0.26 0.03 0.05 0.13 0.13 0.19
0.08 0.07 0.18 0.03 0.08 0.18 0.24
0.11 0.04 0.21 0.03 0.13 0.07 0.07
A= 0.17 0.02 0.05 0.21 0.16 0.09 0.06
(.06 0.00 0.03 0.36 0.08 0.04 0.12
0.03 0.11 0.18 0.15 0.05 0.13 0.11
0.25 0.32 0.18 0.13 0.18 0.20 0.0l

Fig. 6. Miernyk’s Technical Cocfficient Matrix

6. What if L is not an M-matrix

Suppose the Leontief matrix is not an M-matrix. Such a case might arise if the
household sector is made endogenous. Consider the hypothetical example used
in Miernyk’s (1965) classical book on input-output analysis, where the technical
coefficient matrix (with households endogenous) is shown in Figure 6.

Hansen (1965) has developed a method for dealing with more general matrices.
This method, while not guaranteed to produce the hull solution, it is, under con-
ditions mentioned below, guaranteed to enclose the solution set. [Iansen’s method
consists of constructing a preconditioning point matrix L with elements

Liy =Ly | Liy)/2

=T
and solving
(LY 'Lx = (L) 'b.

The calculation of ( L¢) ™' L produces a result close to an identity matrix and should
be a strictly diagonally dominant matrix. A strictly diagonally domimant matrix is
one where

(Ay) > D> | Agy | for i # 3.

Note that the quantities in the equation above are intervals. Strict diagonal domi-
nance ts sufficient for A to be an I7-matrix (Neumaier, 1790}, another special case
of interval matrices. H-matrices have an important characteristic of A -matrices,
they are regular. Recall regularity means that an interval solution will produce abox
that will enclose the solution set. Gaussian elimination performed on H-matrices
will not produce the hull solution and often leads to sever: overestimation. Howev-
er, experimental evidence shows that Hansen’s precondizioning gives H-matrices
that yield results close to the hull solution (Wongwises, 1975a, 1975b). At any rate,
if the resulting interval values are small then one can be confident of the results.
The interval results for the output multipliers from Miemyk’s example are
shown in Table 111 . The levels of uncertainty are arbitrarily assigned to be A plus
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TABLE TI1. Type 1[I Multipliers

(1 +0.00134 (10014 (14+0.059)A4
Industry ~ Multiplier Multiplier Multiplier

[4.812, 4.883] [4.488,5.221] [2.867,7.300]
[3.794, 3.848]  [3.553,4.008] [2.354,5.634]
[6.340,6.436]  |5.903,6.802]  [3.715,9.690]
9.200, 9.3481 [8.525,10.052] [5.125,14.416]
]
]

[
[6.035,6.127] [5.615,6.565] [3.508,9.267]
[

hoB oL by —

$.711,5.797]  [5.322,6.202]  [3.377.8.697]

or minus a percentage of A. For those who wish to check these results against
Miemnyk’s should note that his Leontief inverse is slightly in error. The results
presented here will enclose Miemyk’s results if the correct inverse is used.

7. Inverse Important Coefficients

Some research has suggested that perturbations in certain technical coefficients will
produce relatively large changes in the Leontief inverse and in the multipliers. These
have been designated as inverse important coefficients (Hewings, 1984). Jensen
and West (1980) report that many of the technical coefficients could be replaced
with zeros without substantially effecting impact analysis. If resources are available
to estimate uncertainty, clearly they should be directed 1o estimating the inverse
important coefficients. Bullard and Sebald (1977) used the Sherman-Morrison
Theorem (Sherman, 1950) as an efficient means of determining the importance of
individual technical coefficients. Suppose that we have already found an inverse
matrix A~'. Now suppose there is a “small” change to some element of A. The
Sherman-Morrison formula calculates a new inverse using the elements of the old
one. This formula is given by (the quantities here are point quantities) Press et
al. (1994) as

(Atuoo) ! = (IT+A47 u@u) AT
= (I—Ail-u®’u+A_l-u®v~A_l-u®w—...)iA“'
— AT AT u@u- AT A+ A - )

(A w)@(w-AH

= A"l -
1A :

where
A=n-A"u

and 1 @ v is a matrix whose #, 7 —th element is the product of the i —th element of ©
and the j—th element of v. Note the benefit of the Sherman-Morrison formula is that
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TABLE 1V. Inverse Important Coefficients

Coconino County Arizona
Diamcter Element Diameter Element

0.0077 (44 0.0189 2,2)
0,0056 {5,5) 0.0085 (4,4)
0.0049 (2,3) 0.0080 (£,8)
(.0040 {8,8) 0.0060 {&,%
0.0027 (7.8) 0.0047 7.7
0.0021 (2,5) 0.0040 (7.8)
0.0015 (8,6 0.0033 {2.5)
0.0010 (], 0.0033 (8,6)
0.0008 @n 0.0026 (8,7)
0.0005 (9,8 0.0019 9,2)

TABLE V. Inverse Important Coeflicients

Coconino County Arizona
Diameter  Blement Diameter Element

0.1984 (4.4) 0.365441 (2,2)
0.1688 (5,5) 0.222852 (8.8}
0.10615 (8.3) 0.188637 (8,3)
0.1390 (8,8) 0.167369 (7.8)
0.1188 (8,3) 0.154153 (8.5)
0.0984 8.4 0141994 (8,6
0.0943 (8,6) 0.136294 (8,7
0.0916 (8,7 0.107747 (9.2)
0.0807 .3 0.100770 (7,2)
0.0790 (9,8) 0.097817 (9.8)

the inverse matrix need only be calculated once. For our purposes the correction
terms will be

u=c-¢ and v =¢;

where ¢; and ¢; are unit vectors and ¢ 15 some correction factor. This has the
effect of adding ¢ to element A;; of A. The results when the correction factor is
A;{14-0.01} are shown in Table TV. The results for a correction factor of A;; +0.05
are shown in Table V. These results were obtained by applying the correction factors
exhaustively to each term of the matrix, applying the Sherman-Morrison Theorem,
and then finding the interval sum of the output multipliers. The diameters of the ten
largest sums, d(sum), are presented for both Coconino County and for the state.
The element that was perturbed is shown next to the sum.

These tables show some interesting results. For both the relative and absolute
changes the largest technical coefficient was associated with the largest sum. Not
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cvery large coefficicnt was associated with a large sum, however. Note that a
perturbation of element A;; did not produce a large sum for either the county or
the state. The results also depend on whether the change is relative or absolute.
Finally note the prominence of row eight (services) in all cases, This may be the
result of the strong service sector in Arizona.

8. Conclusions

Interval arithmetic offers a way of evaluating the effects of uncertainty in input-
output analysis. While these results are not as satisfying as traditional confidence
intervals they offer an alternative when the traditional methods cannot be used. With
no further information the user will have to arbitrarily assien levels of uncertainty
and experiment with the model. Because of the conservative nature of method,
i’ the resulting intervals are small the user can be reasonably confident of the
results,
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