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Abstract. We present statistical and interval techniques for evaluating the uncertainties associated
with geophysical tomographic inversion problems, including estimation of data errors, model errors,
and total solution uncertainties. These techniques are applied o the inversion of traveltime data
collected in a cross well seismic experiment. The inversion method uses the conjugate gradient
technique, incorporating expert knowledge of data and model uncertainty to stabilize the solution.
The technigue produced smaller uncertainty than previous tomographic inversion of the data.

1. Introduction: Goals of Geophysics, and How Statistical and Interval
Computations Can Help to Achieve These Goals

1.1. FORMULATION OF THE PROBLEM IN GEOPHYSICAL TERMS
L.1.1. In Geophysics, Indirect Measurements Are Necessary

From under the earth, come minerals, water, and other commodities. From the earth,
also comes destruction: earthquakes and volcanos. The main goals of geophysics
are:

* 10 locate minerals (oil, gas, fresh and saline water, etc.);

* tolocate and predict earthquakes (seismology), and to help design buildings that
can withstand earthquakes (earthquake engineering),

* to predict what will happen if we place some substances under the earth: e.g.,
if we use water to release oil, if we dump nuclear or toxic wastes into cavities
{environmental engineering).
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In the majority of these problems, we cannot directly measure the quantity y in
which we are interested. For example, the only way to directly measure the amount
of o1l in an area is to drill several wells, but dnilling is a very expensive procedure,
and the whole idea of geophysics is to predict the amount of oil without drilling in
all possible places. Since we cannot measure y directly, a natural idea is to estimate
v indirectly, i.e.:

* to estimate some other (easier to measure) physical quantities x, ..., x, that are
related to y, and then

» to compute an estimate y for y based on the results ¥, ..., %, of measuring the
quantities xj, ..., x,.

For example, we measure the characteristics xp, ...,x, Of the sound wave that
has passed through a region of interest, and we want to reconstruct the geophysical
properties of this region.

1.1.2. Indirect Geophysical Measurements Allow a Solution to a Tomographic
Inverse Problem

In geophysics, we usually know the equations that describe the propagation of the
signal in the area. So, if we know the characteristics yy, ..., ym of the medium (e.g.,
velocities of sound in the points through which the sound wave has passed), we
can solve these equations and compute the resulting characteristics of the signal
X = filvi, ....¥m). 1 < i < n(here, f; denotes the algorithm that computes x; from
¥;). The problem of computing x; from y; is called a direct problem, because it is
indeed the direct problem of science: we have some information about the object,
and we want to use this knowledge to make predictions. In reality, we do not know
the values y;, we want to find them. So, we have to determine the values y; from
the system of equations x; = fi(y1, ..., y»). The problem of finding y; from x; is in
some sense fnverse to the problem of finding x; from y;, and it is, therefore, called
the inverse problem (see, e.g., [45]).

A specific feature of inverse problems in geophysics is that we can measure the
characteristics x; on the surface, and we have to predict the characteristics y; of the
deep layers. Methods of solving such problems are called tomography. The most
well-known example is medical tomography. where we determine the properties
of the human body by measuring the waves that have passed through the body at
different angles.

1.1.3. In Geophysics, We Usually Cannot Uniquely Determine the Desired
Parameters from Measurement Results

In medical tomography, we can place the source and the receiver at arbitrary places
outside the patient’s body. By careful placement of sources and receivers, we look
at 2-D slices of the paticnt that can then be collected to form a 3-D image. This
enables us to uniquely determine the parameters of the body.
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Figure 1. Illustration of how crosswell seismic traveltime data are collected (modified from
[53]). The seismic tomography method is used to determine the velocity (or slowness) structure
between the source well and receiver well.

In geophysical tomography, we can only place sources and receivers at the
surface, or within shallow boreholes (Figure 1); hence, we do not get a 360°
coverage. As aresult, the total number n of parameters x; that we can measure is often
much smaller than the number m of parameters yi. ..., v,, that we want to know. So,
we get an under-determined system of equations: n equations for m > n unknowns,
and such systems usually have many different solutions. Although overdetermined
systems (1 > m) are seldom encountered in geophysical applications, they too can
be non-unique.

In view of this, the traditional goal of geophysics was to find a solution, i.e.,
a possible model that explained the existing measurement results. The question
of the model’s accuracy was not even raised because usually, other (radically
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different) models could also explain the same data. This attitude was reflected in
the following fact: When the authors of the first successful medical expert system
MYCIN [12], [52] tried to apply their approach to geophysics, the main obstacle
turned out to be the fact that in geophysics (due to impossibility to measure as many
parameters as in medicine), experts have to be less cautious in making decisions.
The level of uncertainty in a geophysicist’s dream-come-true is an exploratory
surgeon’s nightmare (the fact that experts from different areas do think differently
was confirmed by numerous psychological experiments; see, e.g., [58]).

1.1.4. In Many Geophysical Problems, It Is Now Important to Guarantee the
Correctness of the Model and to Describe Its Accuracy

Nowadays, geophysical measurements are getting better and better. New geophysi-
cal techniques and complicated computer processing algorithms enable us to predict
subsurface properties to an cxtent that mining is not such a high-risk endcavor any-
more. Hence, economic payout on success becomes far more predictable while
errors have a very high cost. For example, if we want to decide whether a particular
well is worth drilling, and the estimate for the amount of oil is ¥ = 100 mln. tons,
then before we start drilling, we would like to know whether the actual amount is,
say, 100 £ 5, in which case, we should probably start drilling, or it is 100 100
(maybe 100, maybe 0, maybe 200), in which case we would rather undertake further
{and more accurate) measurements.

Errors are especially intolerable in earthquake and environmental engineering,
where a mistake can mean not only loss of money, but a disastrous loss of lives. For
such problems, we want guaranteed estimates. _

Therefore, we want to know not only a possible model, but wc want to know al!
models that are consistent with the given observations and measurements.

The possibility for such a guaranteed estimate stems from the above-mentioned
fact that in the last decades, the quality and quantity of geophysical measurements
have drastically increased. The results of these measurements enabled the experts
to understand geophysical processes much better. Therefore, now, experts can often
conclude that out of all mathematically possible solutions yy, ..., y,, of the system
xi = fiy1, ... ¥m), only one (or, at most, a few) make geophysical sense. In oth-
er words, in many reasonable cases, in addition to n equations, we have expert
knowledge that further restricts the values of y;.

This expert knowledge is usually represented in terms of intervals of possible
values of either the quantities y; themselves, or some characteristics zi rclated to y;:
Zk = gx(¥1, ..., Ym). The first case can be viewed as a particular case of the second
one, with g¢(y1,....¥ ....Ym) = ¥r. As a result, the general type of the expert
knowledge can be represented as gg(V1, ..., ¥m) € [7, .27, 1 < k < e, where z,f are
given estimates, and g are given functions,



ESTIMATING UNCERTAINTIES FOR GEOPHYSICAL TOMOGRAPHY 245

Comment. Historically the first expert data was described and used in [3], where
they stated that the spatial derivatives of geophysical parameters cannot exceed a
certain value. Further use of expert estimation was pioneered in [33] and [55].

As a result, we arrive at the following problem.

1.1.5. Problem

Suppose that we have processed the measurement results xi, ..., x, and expert esti-
mates zl"’,z{', ...,z,_,_,z;, and we came up with a model yq, ..., y, thal is consistent
both with these results and with the expert knowledge:

e Can we guarantee that this model is the only possible one (i.e., is it true that
every other set of values y; that is consistent with the observations and with the
expert estimates is close to our estimates ¥,)?

s If the model is unique, then what is the accuracy of the resulting indirect
measurement (i.e., how different can the actual values y; be from our estimates

¥)?

1.2. INPUT DATA FOR THE PROBLEM

1.2.1. Required Input Data

In order to formulate these problems in mathematical terms, we must describe their
input, the available data. According to our description, this data must include:

« functions f1, ..., fr that relate the desired values y; with the measured quantities
X1y ooy X

» measurement results X1, ..., %,

« information on the accuracy of the measurement results, i.e., on the possible
values of measurement error Ax; = % — x;.

» functions g, ..., g. that relate the desired values y; with the quantities zj, ..., 2z,
estimated by the experts;

o expert estimates zy ,2y, .2 »%p 5

+ information on the accuracy of expert estimates, i.e., on the possible values of
measurement error Az = Z; — ¢, Where Zx = (2, +z)/2.

1.2.2. Traditional Data Processing Techniques Are Based on Gaussian
Distributions

In traditional measurement theory [25], [49], [57], it is usually assumed that we
know the probabilitics of different values of measurement errors Ax; = X; — x;,
and moreover, that these probabilities are normally distributcd. For such situations,
there exist numerous methods that compute statistical characteristics of the resulting
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error Ay = § — y (see, e.g., [25], [49], [57]). Currently, these methods are the most
frequently used in geophysics.

A serious problem with these methods is that they have been designed for pro-
cessing measurement results, and in geophysical problems, we also have expert
estimates, whose inaccuracy is described by intervals. So, in order to apply Gauss-
ian techniques to expert estimates, it is usually assumed that the crrors of these
expert estimates are also distributed according to the Gaussian law. The standard
deviation o[z;] of the corresponding Gaussian distribution is determined from the
known fact that the actual values of the quantities z; = gi(yy, ..., ¥) belong to
the expert’s intervals z; = [z; ,z;] in about 95% of the cases. So, we choose
olz] in such a way that a distribution with a center in 7, has a 95% proba-
bility to be inside this interval. For a Gaussian distribution, this probability is
attained for 2o(z;] deviations. Therefore, we determine o[z; ] from the equation z; =
[Zr — 20lz], 2 + 20lz]10: so, o,f = ,(f) / 2, where we denoted A,(f) =%~z =
G L= -z )2

1.2.3. In Geophysics, Distributions Are Often Not Gaussian

The main fundamental motivation to use Gaussian distributions is that according
to the central limit theorem, under reasonable assumptions, the distribution of the
sum of several (N) independent small random variables tends to the Gaussian
distribution as N — oo. Therefore, if we eliminate major error components in the
measurement error, the resulting error will be caused by the cumulative effect of
many independent small components, and hence, its distribution will be closc to
Gaussian (see, e.g., [57]).

For example, in radioastronomical measurements, one of the major sources of
crror is the density of the water vapor in the troposphere. We can measure that
density by an independent measurement device, pre-compute this error component,
subtract it, and thus, eliminate this major source of error.

In some cases, error distribution in geophysical measurements is Gaussian (e.g.,
in gravity measurements). However, in other cases, the distribution is different. The
reason why the above fundamental argument is not always applicable to geophysi-
cal measurements is that for these measurements, we know several major sources of
error, but we cannot eliminate the corresponding error components because without
the very drilling that we are trying to avoid, we cannot measure the corresponding
error-inducing characteristics. As a result, the actual error distribution is often far
from being Gaussian. For example, in some data, exponential distribution ([13],
[28]) with probability density const - exp(—k|x[), or 4 more general Weibuli-type
distribution with density const - exp(—k|x}?) for some p > 0 [26) are more ade-
quate.

Part of the data comes from experts. The error distribution for expert estimates
1s also usually not Gaussian.
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1.2.4. In Geophysics, It Is Difficulr 1o Derermine the Probabiliry Distriburion

In traditional measurements, the probabilities of errors are usually obtained if we
calibrate the measuring systcm, i.c.:

o we use the calibrated measuring system in conjunction with a much more accu-
rate one (called a standard) in several measurements;

e for each measurement, we compute a difference ¢ = ¥® — x® between the
results of these two instruments, and use this difference as an estimate of the
error of the measurement performed by the calibrated system;

= we reconstruct the error probability distribution from the recorded sample errors
(0 &)
e, e,

In geophysical measurements, however, we are usually using top-of-the-line
measuring instruments that have the highest accuracy possible, so, there is simply
no “more accurate” measuring instrument that we can use for calibrating.

In those rare occasions when (for research purposes) error distributions have
been estimated, it turned out that the probability distribution is not universal: it
differs from site to site, so, we cannot assign a single probability distribution to a
given measuring system. This fact is especially true for expert estimates, because
the errors of expert’s estimates differ not only from site to site, but also from expert
to expert.

1.2.5. What Is Left Is Intervals

Since we do not know the probabilities of different measurement errors, the only
information that we have about an error Ax; = ¥; — x; is the guaranteed accuracy
A; that is usually provided by the manufacturer of the measuring system, i.e., a
guaranteed upper bound for Ax;. For example, if A; = 0.1, this means that the
measurement error cannot exceed 0.1. If our measurement result is ¥;, then the
possible values of x; = %; — Ax; form an interval x; = [X; — Ay, % + Al

Let us give examples of geophysical measurements in which intervals are a
natural description of uncertainty:

s Measuring velocity of sound. When we have a well, we can extract samples
from different depths and measure the correspondent velocities of sound. In
velocity measurement, the major source of inaccuracy is that down in the well,
where the sample was originally located, it was under a huge pressure. When
we take the sample out, we release it from the pressure. As a result, the sample
can expand. Also, when we lift the sample and thus decrease the pressure,
gases that were filling the tiny cracks of the sample expand drastically. These
expanding gases can widen the cracks and thus decrease the resulting density of
the sample and increase the velocity of sound. Both effects lead to the fact that
the measured velocity # can be smaller than the original velocity v of this sample.
This difference can be up to 20% of #. So, the only thing that we can conclude
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from the measurement result v is that the actual velocity v belongs to an interval
[¥, 1.2-¥]. The probability of different errors depends on the presence of gas, on
the amount of mini-cracks, etc, and, as a result, these probabilities differ from
site to site. If, instead of extracting the rocks, we place the velocity-measuring
tool inside the well, we still get a different value, because, first, drilling damages
rocks and distorts the resulting velocity, and second. the velocity of sound
depends on the frequency, and the frequency used by the velocity-measuring
tool differs from the velocity determined in the crosswell experiments.

¢ An important part of geophysical measurements is measuring traveliime 1, 1.e.,
time that is took for a signal to pass from the source (a natural earthquake or an
artificial source) to the receiver. Here, the main problem is that the signals are
usually rather weak. As a result, we may not be able to pick the first moment
when the signal actually arrives (this first arrival will be drowned in noise), and
we can erroneously take the arrival of the second maximum of the seismic wave
as the measured value 7 of the traveltime. We could also start picking the wave
before the second maximum. As aresult, if the measured value is 7, the only thing
that we can guarantee about the actual value ¢ is that ¢ is in the interval [f — T, 7],
where T is the period of the signal wave. Probabilities of different errors inside
this interval depend on the seismic noise level and therefore, drastically differ
from site to site.

If the source is not a pertodic, but rather an explosion-type signal, then it can
also happen that the receiver will skip the first received signal that arrives by
the shortest possible path and pick only a later signal that may be the result of
several reflections, and therefore, stronger than the original one. In this case, we
also have an interval of possible values of ¢.

Because of these and other examples, geophysicists agree that an interval is “the
most natural assessment of uncertainty” (see, e.g., [45], Section 3.01). However, this
description of uncertainty is rarely used in geophysics, simply because statistical
methods (based on Gaussian distribution) are well-developed, while methods of
processing interval data are not so developed and, mainly, not so well-known. So,
we arrive at the following natural idea:

1.2.6. Idea: Let Us Apply Interval Computations

Since in geophysical problems, the inaccuracy in input data is described by inter-
vals, ler us apply interval computations technigues (see, e.g., [29] [30], [41]) ta
geophysical data processing.

1.2.77. Beyond Intervals

Estimates that we get using interval computations can be viewed as worst-case
crror estimates. Usually, if we know probabilities of different distributions, we can
get better estimates. In geophysical problems, we do not know the probabilities a
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priori, so, we cannot apply statistical methods with given probability distributions.
However, for each site, we usually make lots of measurements (about 1000), and
after we have performed these measurements, we can try to use these measurement
results to get the a posteriori distributions, and then to use these distributions to get
better {narrower) estimates.

1.3. THE STRUCTURE OF THE PAPER

In this paper, we will congider all three approaches: (Gaussian (in Section 3), interval
(in Section 4), and an attempt to go beyond intervals (Section 5). These approaches
will be illustrated by a case study presented in Section 2. A brief description of
another case study (carthquake cngincering) is given in the Appendix.

A major part of this paper first appeared as a M.S. Thesis [26] defended by one
of the authors; the reader is referred to this thesis for technical details and tables
of data. This research was also presented at the 2nd Borehole Seismics Conference
(Tohoku University, Sendai, Japan, November 1993) [14].

2. Case Study

2.1. THE CHOICE OF THE CASE STUDY: TRAVELTIME MEASUREMENTS IN A CROSS
WELL SEISMIC EXPERIMENT

Methods described in this paper are very general, and can be applied to various
geophysical problems. As a case study, we want {o take the techniques that are the
most useful in practice; so, let us analyze which of possible measurements are most
useful.

Without going to huge expense, we can only measure characteristics on the
surface or in the shallow wells. The parameters x; that we can measure include
density p, velocity of sound v, gravitational and electromagnetic fields, electric
currents, etc. To get some information about the properties of the deep layers,
we must measure the signals that are somehow influenced by these layers. Since
these layers are usually pretty inactive (in the sense that they do not generate strong
sound or electromagnetic waves), we must either wait until some strong wave passes
through the layer, or artificially generate the wave that will go through that layer.
As a result, we have two bastc geophysical techniques:

e passive screening, when we wait for an earthquake and then measure the earth-
quake waves after they have passed through the layer that we analyze;

e active screening, when we generate the signal, and measure the result of its
passing through the analyzed layer.

Passive methods often lead to better results because waves generated by earth-
quakes are much stronger than anything that we can artificially generate, and
therefore, because of the huge signal-lo-noise ralio, we can achieve a very detailed
knowledge of the region of interest. Passive methods are, therefore, invaluable for
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fundamental geophysics: i.e., in learning about the deep structures of the mantle,
crust, etc. However, since the times and directions of earthquakes are unpredictable,
we cannot rely on passive methods for practical (everyday) geophysical problems.
For such problems, active methods are mainly used.

The active screening can be done using either acoustic or electromagnetic (EM)
signals. Rocks are generally poor conductors of electromagnetic waves, and the
high contrast in physical properties leads to extremely non-unique interpretations.
On the other hand, rocks are known to be great conductors of sound. Because of
thart, in the majority of geophysical situations, the sound signat passing through the
rocks carries more unambiguous information about the medium than the electro-
magnetic one. As a result, seismic (acoustic) screening is the major experimental
technique (although EM measurements do provide us with important additional
knowledge).

The received signal can be characterized by the dependency r(z) of its amplitude
on time. For active screening, the resulting signal is usvally weak (barely above the
noise), so, the actual amplitude can be only measured with a very low accuracy; for
such a measurement, to be within 10% of the actual amplitude might be considered
perfect, so, from each measurement, we get one decimal digit. These uncertain
measurements do not bring us much information about the rocks. Another physical
characteristic of the process can, however, be easily measured with a much beuer
accuracy: the fraveltime, i.e., the time that it took for the first signal from the source
reach the receiver. Time can be measured with an accuracy 1% and better, so, from
each measurement, we get 2 or more decimal digits. The amount of information
from measuring traveltimes is much larger than the amount of information from
measuring amplitudes, therefore, commonly, only traveltimes are processed.

So, we arrive at the following experiment: we have two wells, and measure
traveltimes between the source placed at different depth in the first well, and the
receiver placed in the second well (Figure 1).

2.2. EXPERT KNOWLEDGE

Traveltimes depend on the velocity of sound in different areas. So, as expert knowl-
edge, we took the expert estimates of the velocities that were based on the experts’
knowledge of the particular area and of the general geophysical patterns.

First, for both wells, we have the velocities of sound of the rocks at the edges
of the wells. For places in the close vicinity of the well, the density (and hence, the
velocity of sound) is close to the values obtained from these direct measurements. To
estimate the velocities in between the wells, we can use the known geophysical fact
that the change in velocity cannot exceed a certain value C. As a result, the velocity
in a point at distance r from the well must belong to the interval [v~ — Cr, v* + Cr],
where [v™, v} is the interval obtained from measuring velocity at a corresponding
point of the well.
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In addition to these intervals, we consider the values obtained from more sophis-
ticated geophysical knowledge. This knowledge is usually presented not in the form
of a single set of intervals, but in the form of several possible sets of intervals for
velocities that constitute several geophysically possible models. Some of these
models may turn out to be inconsistent with the measurement results. So, we must
try ali the models, and pick those that are consistent.

2.3. CASE STUDY: GENERAL MATHEMATICAL DESCRIPTION OF THE
EXPERIMENT

We measnre traveltimes ¢, . t, (i.e., x; = t;), and we want to estimate the velocities.
The actual velocity is continuously changing with spatial coordinates. We know,
however (as we have just mentioned), that velocities in nearby points are close.
Therefore, it makes sense to divide the entire area between the wells into several
blocks, and assume that within a block, the velocity is constant. So, the unknowns
here are the values of the velocities of sound vy, ..., v, in different biocks.

‘We are measuring traveltime, i.e., the time interval between the moment when
the signal was emitted and when the first signal was received. Therefore, we are
actually measuring the time that it takes for the signal to follow the fastest path
between the source and the receiver. We know exactly the locations of the source
and of the receiver. If we knew the exact values of the velocity, we would be
ahle tn describe the exact fastest trajectory between the source and the receiver.
Usually, expert estimates give more or less accurate values of the velocity, so, we
can determine the paths more or less accurately. For the path that corresponds to
i-th mcasurement, let /; denote the length of the part of this path that goes through
J-th block (0 if the path does not go through block j). Then, the total traveltime is
£ = >~ I / v;. If we know the paths /;; and the times exactly, we get a linear system
for the variables 1 /v;. Therefore, in geophysical tomography, these inverse values
s; = 1/vj (called slownesses) are usually taken as unknowns (so, y; = s;). In terms
of slownesses, the above equation takes the form ¢; = 3 I;;5;. The expert knowledge
consists of approximate values of 5; for 1 < j < m.

2.4. THE DESCRIPTION OF THE ACTUAL MEASUREMENT SETUP

We used a data set of traveltimes collected from a seismic crosswell experiment
called “MWX” run in an oil field near Rifle, Colorado [1]. Figure 1 illustrates the
experimental setup. In the MWX study the two wells used were separated by 34 m.
We concentrated on data collected between depths of 1800 and 2100 m in a rcgion
believed to be highly seismically non-uniform due to the presence of thinly layered
rock and to the presence of natural gas. A 2.2 kHz source transmitted seismic
signals al a rate of 1.5 pulses/m. The receiver was held stationary for each transit
of the source and then was moved 1.5 m between transits.
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3. Gaussian Approach
3.1. MATHEMATICAL FORMULAS

In the Gaussian approach, we know the standard deviation o; of the measurement
errors, and the standard deviations o[z;] of the expert errors. We assume that the
errors are independent random variables with () average. For Gaussian distributions,
the maximum likelihood method leads to the following formula for determining the
unknowns y;:

"o, 52
Z(f:(yls »¥n) — +Z(gk(yl,--’yn) %) in . 3.1)

(olz)? Yir e Y

i=1 j=1

In particular, for our case study, we get the formula

, =2
Z(Elm L) Z(Sk Zx) — min . (3.2)

i=1 (G[Zk])2 815 Sm

For our case study, we must minimize a quadratic function, so, in principle, we have
a linear system. However, the number of equations and unknowns is about 1000,
<0, we cannot use the existing methods of solving linear systems. Instead, to solve
these minimization problems, we used the conjugate gradient technique {50].

The problem is to estimate the accuracy of the resulting estimates. In general,
formulas for the standard deviations and correlation matrix for s; are well known
in statistics [25], [57]; these methods, however, are based on the solution of the
system of linear equations. We cannot directly apply these methods to our case,
since the large size of the system precludes this Lype of solution.

3.2. PREVIOUSLY USED METHODS FOR ESTIMATING UUNCERTAINTY

Previously, the following methods have been used:

3.2.1. Hit Count

The idea of this method is that blocks having more rays (or “hits”) pass through
them are supposedly better sampled, and hence better resolved (i.e., the accuracy
of s; is better). This idea sounds reasonable; however, as we will demonstrate later
in this paper, the “hit count” method does not provide a useful estimate of solution
uncertainty.

3.2.2. Monte-Carlo Approaches

These methods were first applied to geophysical data in [48].
In [31], Gaussian noise r; (with 0 avcrage and standard deviation o) is added to
the measured values ¢, after which the same inversion technique is applied to the



ESTIMATING UNCERTAINTIES FOR GEOPHYSICAL TOMOGRAPHY 253

same expert estimates Z; and to the simulated traveltimes #; + n;. As a result, we
get the modified values y;. We repeat this experiment several (V) times, and use the
(1) @)

resutlts yi7, .., ;" of this experiment to estimate the standard deviation of y; as the
mean square average
L gm0
5 2.0 - (3.3)
p=1

This method underestimates the errors in s;, because it does not take into consider-
ation that the expert estimates are also only approximately known.

In [32], simulated random errors n; are added not to the traveltimes, but to the
expert estimates Zz. The resulting error characteristics of y; take into considera-
tion inaccuracy of expert estimates, but not of the traveltimes and are, therefore,
underestimates.

3.2.3. Bootstrap Approach

In the bootstrap approach [32], to estimate the error in y;, we take several (V;
usually 100 or more) subsets of the original set of measurements results. For each
subset p, 1 < p <N, we solve the inversion problem using only the data from this
subset, find the values yf”), and then estimate o[y;] by using formula (3.3). In [46],
the bootstrap approach is applied to earthquake location,

This method underestimates the errors in y;, because it does not take into con-
sideration that the expert estimates are also only approximately known.

Comment. The fact that all these methods underestimate the errors in y; was first
shown in [4], [5].

3.3. PROPOSED METHOD

We suggest the application of a Monte-Carlo approach in which we add Gaussian
noise both to x; and to zi (i.e., in our case study, both to #; and to Z;). Then, we can
use formula (3.3) to find the standard deviation of y;.

This method is easily parallelizable, because we can run different simulations on
different processors [37]. In [56], parallelization is described for a mesh architecture,
In [9], [10], parallelization is described for a network of workstations.

3.4. APPLICATION TO CASE STUDY

We applied this method to MWX data with o; = 0.2 masce, for four diffcrent
models (sets of expert estimates): two isotropic and two anisotropic. Figures 2
and 3 show slownesses according to the anisotropic a priori models, along with the
results obtained from inversion of a data set of perturbed traveltimes and a priori
slownesses,
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To find the appropriate number of Monte-Carlo iterations N, wc repeated this
inversion process for N = 1,2, ... (we actually did different iterations in parallel
[42]). We found that after N = 7 — 10, these estimates practically do not change,
which means that after 10 iterations, we get a correct estimate. The resulting
standard deviations are shown in Figures 4 and 5. As expected, the velocity uncer-
tainties are small close to the wells (where expert estimates were narrower} and
larger farther from the wells. The figures also indicate that there are regions of large
uncertainty; some of these regions appear to correspond with portions of the well
where highly emergent seismic waves were observed Phillips [47]. When seismic
waves are emergent, their exact arrivals in time are difficult to pick, leading to larger
traveltime uncertainties.

The number of “hits” per block is compared to horizontal and vertical total
uncertainties in Figure 6. Note that hit density is not a reliable predictor of block
slowness uncertainty.

4. Interval Approach
4.1. GENERAL CASE

In general, if we know the values X;, A;, %, and A,((Z), then the problem is, for

every J, to find the set (interval) of possible values y; for which for some yy, ..., Y,

the following inclusions hold: fi(yi,....,¥n) € [& — A X + Al 8e(¥1s -5 9m) €
z _ Ald = (z)

4.2. CASE STUDY

In particular, for our case study, if we can determine the intervals 1; of possible
values of path lengths, then, to find the intervals of possible values of slownesses,
we must solve the following system of linear interval equations: >_ l;s; = t; and

s € sj, where t; = [f; — A;, i+ A and s; = [§; — A}Z), 5 +A}Z)] (here, by a solution,
we mean the tuple (sy, ..., ) for which s; € s; for all f, and 7 ls; = ¢ [or sume
l;j € 1, and 1; € t;). This problem can be solved, e.g., by one of the methods from
[43].

Often, we can neglect the inaccuracy in /; and consider a simplified system: find
s; from the conditions that 37 l;s; € t; and s5; € s;. This is a linear programming
problem: to find the upper bound of the interval of possible values of s;, we must
solve the problem s; — max under the above linear inequalities (s; — min for
the lower bound). Algorithms for solving linear programming problems are well
known. This approach was used for our case study, with the resulting intervals for
8; 3 to 30 times larger than in the Gaussian case.
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4.3. COMBINATION OF INTERVAL AND STATISTICAL APPROACHES
4.3.1. Checking Whether We Have Described All Possible Models

Interval computations can be used to check that we have found all possible solutions
to an optimization problem (3.1).

4.3.2. Estimating Accuracy of Statistical Models

Necessity. If we are not sure about the values 7, and we feel that an interval of
possible values of Z; will be a better description of our expert knowledge, then, we
can use interval computations to find the intervals of possible values of y;.
Another situation is when we know that the measurement error in x; consists
of two components: a (Gaussian) random component with a 0 average and known
standard deviation, and a systematic component Agyg x;, about which we only know
the interval [—AY™, A™™] of possible values. In this case, we can still apply
formula (3.1), if instead of the actually measured value ¥;, we take the difference
X = ¥ — Agysexit this difference is distributed according to the Gaussian law.
The ounly problem here is that we de not know the exact value of this corrected
measurement result ¥7°"; we only know that this corrected value belongs to the
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interval %; = [% — A, % + A7¥™]. So, to find the set of possible values of ¥j» we
must find @/ solutions of the system
n _ zCOIry2 e . — 73?
3o ion, yz) Hom? 3 B, yn)z “W L, omin . G
P o} i (olz]) Yoo ¥m

with f"co" € X;.
In our case study, we have used two methods to estimate the resulting intervals
for y;: naive interval computations and Monte-Carlo technique.

Naive interval computations. To estimate the interval of possible values of Vj, we
can apply naive interval computations, i.e., we can repeat all computations of the
inversion algorithm step-by-step, but with intervals instead of numbers [29], [30],
[41].

Monte-Carlo tcchnique. If we know that the intervals of possible values of %
are narrow, and we can therefore approximate the desired dependency of §; on Z
by a linear expression, then, we can use the following Monte-Carlo techniques
described in [37], [39] (see [9], [10], [37], |56] for the parallelization):

Namely, if we have an algorithm F that transforms X;,..,X, into ¥ =
F(X1,...,X,), if we know the intervals X; = [X; — A;, X; + A], and if the func-
tion F is linear in the neighborhood of X;, then we can apply F to X = X+ n,(” ),
1 < p < N, where nEp ) is distributed according to Cauchy law with a param-
eter A; (density p(n) = const - (1 + (n/ A)?)"1). We know that F is linear:
FXi+ni,. .. X +n) = F+Fn + - +F ., where F = F(%X,,....%,), and
F ; is i-th partial derivative of F at a point (X, ..., X,,). Therefore, the resulting
values Y@ are a linear combiuation of independent Cauchy-distributed random
variables, and hence, the values ¥ — F" are distributed according to Cauchy distri-
bution with the parameter A = |F j|A| +- - - +|F ,|A,. This is exactly the semi-width
of the interval of possible values of Y. So, by applying statistical techniques to the
sample Y, we can determine the desired value of A.

5. Beyond Intervals
5.1. MAIN IDEA

Error estimates described by interval computations are an order of magnitude larger
than Gaussian ones. If we knew the probability distribution of errors. we could
have possibly ended up with smaller intervals. We do not know these distributions
a priori, but after we have made lots of measurements, we can try to determine the
distribution, and to apply the resulting distributions to get narrower intervals.
According to the experimental data analyzed in [44], the error distribution of the
majority of measuring instruments can be described by a Weibull-type distribution
with the probability density const-exp(—k|x|7). If we assume that both measurement
errors and expert errors are distributed according to these laws (with parameters p
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and p*®), then the maximum likelihood method leads to the following optimization
problem:

Ol i G-D

n a e ~ Z
fits - yn) — X &xYis vnyn) - )P

3 Ul S 5 o

i=1 1 =

Comments.

 This class of Weibull-type distributions can be also justified by the requirement
that the corresponding maximum likelihood method lead to a scale-invariance
formula, i.e., a formula whose minimum will be the same if we use a different
unit to measure x;; see [11], [34], [36], [51].

» These distributions have been actively (and successtully) applied to geophysics;
see, €.g., a monograph by Tarantola [54] and references therein. The existing
applications of these distributions are based on the assumption that we already
know the type of the distribution, i.e., that we at least know the value of the
parameter p. In the existing applications, no algorithms for estimating p are
used; instead, it is assumed that an expert estimates the value of p hased on her
expertise of the problem. Expert estimates are always subjective, and therefore,
the resulting estimates for the desired geophysical parameters are not guaranteed.
We proposed, instead, to estimate p from the same data as all other parameters
of the unknown distribution (and to use general statistical techniques to estimate
p). As a result, in contrast to the existing applications, we can have different
value of p for different portions of data (for example, in the above terms, we can

have p # p,).

5.2. ALGORITHM AND ITS JUSTIFICATION

If we have a sample of values vy, ....v;, ..., vy, that is distributed according to
a Weibull-type law with an unknown p, then we can estimate the parameter p
from estimating the fourth moment of this distribution: namely, we can esti-
mate the second and fourth moments as up = o[v]? = (1/N)- Ev? and yuy =
(1/N)- Y v}, estimate the excess € = iy / ,ug, and determine p from the equation
e=T(1/p)y-TI'(5/p)/ T3¢ p))z. A good approximation for p can be obtained by
using the following formula |44], (5-27a):
1.46
In(e —2/9 —10.7/¢7y — 0.289°
Therefore, we can use the following iterative technique [34]:

p::

o First, we find the Gaussian solution y; using formula (3.1) (i.e., use p = 2 as the
initial approximation).

 After that, we compute the error values f;(v1, ..., vn) — % and gg(y1, ..o, ¥n) — .
Applying the above-described technique to these values, we (ind the values p
and p® that are most adequate to describe these errors.
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Figure 7. Distribution of data errors using an isotropic a priori slowness model,

* Then, we solve the system (35.1) with the newly found values p and p*. (To solve
this system, we used a slightly modified conjugate gradient technique of Scales
et al. [50] that was originally developed for the case when, in our terms, p = p%.)
As a result, we get corrected values y;. Then, we re-compute the errors using
these corrected values of y;, and compute p and p* again. The process stops when
the new values of p and p* are practically equal to the ones from the previous
iteration.

5.3. CASE STUuDY

We applied this technique to our MWX data. For our examples, the second iteration
lead to practically the same values of p and p? as the first one; therefore, just one
iteration was sufficient to determine p and p=.

Measurement errors are shown in Figure 7. For these errors, the resulting values
of p turned out to be between 1.8 and 1.9. This means that for measurement errors,
the Gaussian model (with p = 2) is a good approximation. On the other hand, since
the values of p are diffcrent from 2 (and the difference is statistically significant),
Gaussian methods do not give statistically correct estimates.
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Figure 8. Distribution of model errors using an isotropic a priori slowness model.

Expert errors are shown on Figure 8. For these errors, the values p* turned out
to be between 0.7 and 1.1.

6. Conclusions

We have presented techniques to estimate uncertainties associated with seismic
tomography problems. These techniques involves the explicit use of a priori (expert)
model estimates and data uncertainties in the inversion process. The techniques can
be applied to any geophysical problem for which a feasible inversion algorithm
exists.
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Appendix. Earthquake Engineering

In earthquake engineering problems, linearization is impossible. One of the
main goals of civil engineering is to make sure that the designed structures do not
collapse (or in general, do not fail}. Collapsing is a very unstable process: small
changes in the initial data may make a difference between stability and catastrophic
failure. Therefore, linearization techniques, in which we neglect quadratic and
higher order terms, are not always sufficient, and interval methods are needed (see,
e.5., [35]). Another reasonn why we betler nol neglect any erms (even small ones)
is that failures can be catastrophic, so we must have guaranteed estimates.
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Interval and generalized intervals. In [35], an interval version of finite element
analysis is used to describe stress and strain caused by loading. Generalized intervals
(convex sets) are used to estimate stress concentration and predict collapse in [6],
[7]. [27]; in particular, these methods are used to predict natural frequencies of the
structures [16]-[24], [40]. This is especially important for earthquake engineering,
because during an earthquake, the major damage is caused by resonance, so we
must be sure that the natural frequencies of the structure are different from the
frequencies that we can expect during an earthquake.

Using expert knowledge ([15]). Earthquakes are extremely difficult to predict.
Because of that, if we only use the equations and the measured data x;, we get
very wide wide intervals of possible magnitudes and frequencies v, intervals that
are known to be much wider than the interval of actual values. So, if we use
these wide intervals [y, y*] to design a building that is guaranteed to withstand a
typical earthquake, these buildings will be unneccesarily (and often unrealistically)
expensive. To make the requirements more realistic, in addition to guaranteed
measurement results, expert estimates are normally used. For every parameter x;
(c.g., for the frequency of earthquakes), estimates by different experts form a nested
interval (sometimes, a nested set). In [15], for each expert, interval methods are
used to compute the corresponding interval of y from this expert’s estimates of x;,
To estimate the range of f ona box x| X - - - X X,, the box is subdivided into several
subboxes small enough that each subbox contains at most one local extremum point;
for each subbox, the range is estimated. Then, the union of the estimates for subbox
ranges is taken as an estimate for the total range. On each subbox, the maximum of
f is attained either in the interior point (in which case this point is a local extremum
of f), or on one of the sides. For each side, we can repeat the similar procedure, and
end up with a conclusion that the maximum is attained either in one of the corners,
or in the local extremum point of one of the sides of smaller dimension. There
are al most = 2" vertices and Iocal extremum points in each subbox, so, for small
n, we can simply enumerate them all. The resulting intervals y, corresponding to
different experts, are presented to the decision makers.

Design in earthquake-resistance engineering. During an earthquake, the major
source of damage is a resonance: if the Earth vibrates with an eigen frequency of
the construction, then even small vibrations, if applied for a sufficiently long time,
will cause serious damage to the building. So, one way to prevent the earthquake
damage is to change the eigen frequencies of a building so as to make them equal to
the least powerful earthquake modes. Eigen frequencies are eigenvalues of a matrix
A that describes the building’s reaction to external forces. In order to change A, we
may use springs to connect the building with additional ohjects. As a resnlt of this
connection, the matrix changes to A + ¢jAy + - - - + ¢, A, where A; are matrices of
these additional objects, and ¢; are spring coefficients. In this case, the problem is:
given the matrices A and A, to find the cocfficicnts ¢, for which the resulting matrix
has the given eigenvalues. This problem is called an inverse matrix eigenvalue
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problem. There are other modifications of this problem, in which we can change
the characteristics A; of the additional bodies. It is vitally important to be sure that
the eigen frequencies are in the prescribed limits; therefore, it is reasonable to apply
interval methods that give guaranteed bounds for the results. Interval methods for
solving an inverse matrix eigenvalue problem have been proposed in [2] (actually,
an interval version of the Newton’s method is used to solve the corresponding
system of equations).

Dynamic control ([38]). If it is impossible (or too expensive) to design an earth-
quake-safe building, in which all eigen frequencies are different from the earth-
quake’s ones, then we can at least provide this building with a dynamic system that
would change the building’s eigen frequencies as soon as it becomes necessary.
For that, we must constantly measure the displacements of different parts of the
building, and estimate the eigenvalues based on the results of these measurements.
In [38], interval methods are used for processing the measurements results.



