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An interval algorithm combining symbolic
rewriting and componentwise Newton method
applied to control a class of queueing systems∗
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Introduction

The idea of Componentwise Newton Operator has been presented in [9]. It seems
up to now not much attention has been paid to this concept.

In this paper we present properties of the Componentwise Newton Operator and
show how they can be used in numerical algorithms. It seems they are especially
important when transforming the problem by some symbolic methods, based on
the computation of Groebner bases.

The resulting algorithm will be applied to a problem of optimizing control rules
for a queueing system.

1. Componentwise Newton method

1.1. The definition. According to [9] we define the interval componentwise New-
ton operator as follows.

Assume we try to solve the equation system:
g1(x1, . . . , xn) = 0,

. . .
gn(x1, . . . , xn) = 0,

where x1 ∈ X1, . . . xn ∈ Xn.
We denote real variables by small letters and intervals by cardinal letters. Real–

valued functions and its interval envelopes are denoted by the same small letters
(this should not lead to any misunderstanding. The symbol mid(X) denotes the
midpoint of the interval X.

The componentwise Newton operator for this equation system with respect to
box X, equation i and variable j is defined as:

Ncmp(X, i, j) = mid(Xj)−
gi(X1, . . . , Xj−1,mid(Xj), Xj+1, . . . , Xn)

∂gi
∂xj

(X1, . . . , Xn)
. (1)
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1.2. Known properties. In [9] two simple properites of the Ncmp operator are
proven:

Proposition 1. All roots of the equation system belonging to the box X (if any)
must lie in X ∩Ncmp(X, i, j) for any i, j.

Proposition 2. If for an arbitrary i and j we have X ∩ Ncmp(X, i, j) = ∅ then
there are no roots in the box X.

1.3. New properties. One of the most interesting and very useful properties
of traditional interval Newton operators (wide literatur available, e. g. [10]) is that
they allow to verify not only the existence of a root in a box, but also the uniqueness
of it. We omit the details due to the fact that they are well-known.

Can analogous properties be found for the componentwise method? The answer
is positive, though they hold for special classes of functions only.

Theorem 1. Assume that for a given i the function gi( · · · ) depends only on xj:

gi(x1, . . . , xn) = gi(xj). (2)

Then if the componentwise Newton operator satisfies the condition:

Ncmp(X, i, j) ⊂ Xj (3)

then there is a unique value of xj ∈ Xj for which gi(x1, . . . , xn) = 0. The method
has quadratic rate of convergence.

The proof is obvious because for the considered case the componentwise New-
ton operator is equivalent to the univariate Newton operator of a one–dimensional
function.

The condition (2) is not as restrictive as it may seem; if we seek for zeros of the
gradient of a separable function, it will be satisfied for all equations.

Can it be somehow applied to non–separable problems, such as the one in section
3, though? The answer is positive again (at least for polynomial equations), but we
have to apply some symbolic transformations first.

2. Groebner bases

2.1. Basics. The formal definition of a Groebner basis may be found e. g. in [5] or
many other works and books. We will not describe the sophisticated theory here,
we just say informally that the computation of a Groebner basis of a polynomial
equation system is analogous to transforming the linear equation system to its
triangular form.

The meaning is as follows.
Consider an ordering of the variables, say x1 ≺ x2 ≺ · · · ≺ xn. We can trans-

form the polynomial system to an equivalent one, for which the last equation will
depend only on x1, the previous one – on x1 and x2 etc. (this property is called the
elimination property of Groebner bases with lexical ordering).
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Groebner bases have already been used in connection with interval analysis (see
[3, 4]) and they proved useful. Interval Newton methods were more efficient on
transformed equation systems, due to reduced dependency problem.

For componentwise method the problem is a bit different. We would like to
have univariate equations for each of the variables, not only for one of them. We
can obtain it by computing Groebner bases for different orderings and taking the
univariate equations from each of them.

2.2. Conversions of Groebner bases. Unfortunately, the cost of computing a
Groebner Basis may be exponential. However, the conversion of one Groebner Basis
to another one (e. g. the basis for another ordering of variables) may be done by
quite efficient polynomial algorithms.

There are a few methods for such conversions – the FGLM method [8], the
Groebner Walk method [6] or the LLL method [2] to name a few.

They differ in many details. In our application most interesting will be the
FGLM method. It is restricted to systems with zero-dimensional ideal, but it will
allow us to find the univariate equation (for the “smallest” variable) without com-
puting the whole basis.

This gives us a fast way to obtain univariate equations for each variable.

2.3. Application to an interval method. The resulting system of n univariate
equations won’t be equivalent to the primary problem; it will constitute necesssary
conditions only. It seems however that using such equations in addition to the
original problem may increase the efficiency of the algorithm, because we can quickly
reduce the dimensions of boxes by cheap iterations of univariate Newton method.

3. An example – long-run optimization of the Mendelson’s
queueing system

The considered example is a combination of problems from [7] and [11]. We
try to optimize the long-run behaviour of a priority queueing system. The notion
“long-run” means in this context that we can control not only the arrival rates
λ1, . . . , λR, but also the service rate µ.

The problem is as follows:

max
λ1,...,λR,µ

J =
R∑
i=1

Vi(λi)−
R∑
i=1

λi ·Gi(λ1, . . . , λR;µ)− C(µ), (4)

s.t.
0 ≤ λi ≤ Λi ∀i = 1, . . . , R, (5)

R∑
i=1

λi < µ. (6)

Meaning of the parameters is as follows:

• Vi(·), i = 1, . . . , R, is the aggregate value received by the clients from class i;
authors generally assume the form Vi(λi) = ai · λ−

ai
2Λi

· λ2
i ,
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• G(· · · ) is the delay cost (see below),

• C(µ) is the capacity cost (authors assume linear cost C(µ) = b · µ).

The problem is known to be nonconvex and multiextremal [12].
In case when delay cost has linear structure, we can write it as:

Gi(λ1, . . . , λR) = δ ·Wi(λ1, . . . , λR).

Mendelson and Whang claim [11] that the expected sojourn times for a non–
preemptive priority queue are given by the following equation:

Wi(λ1, . . . , λR) =

∑R
j=1 λj/µ

2
j

(1−
∑i−1
j=1 ρj) · (1−

∑i
j=1 ρj)

+
1
µi
, (7)

where ρj =
λj
µj

.

The motivation for the above formula may be found e. g. in [1].
For homogeneus service times for all client classes, i. e. for µ1 = . . . = µR = µ

equation (7) takes the form:

Wi(λ1, . . . , λR) =

∑R
j=1 λj

(µ−
∑i−1
j=1 λj) · (µ−

∑i
j=1 λj)

+
1
µ
. (8)

In the optimization problem formulated above a strict inequality
∑R
i=1 λi < µ

is present. Changing it to a non–strict inequality we risk obtaining infinite values
of the function during the computations.

We can overcome this difficulty e. g. by the following substitution of the vari-
ables:

µ =
R∑
i=1

λi + ψ ψ ∈ [εψ,+∞]

where εψ is a small positive number.
In practice the upper bound on the ψ guaranteeing that the maximal value of µ

is a few times bigger than the sum of maximal values of the arrival rates is enough
in both cases.

The following bounds were used in numerical computations: ψ ∈ [0.0005, 5.0].

4. Comments

The problem from the previous section is obviously non–separable. All functions
may be described by polynomials, though. The developed method seems to be
suitable then.

The implementation will be done in C++ and will base on C–XSC 2.0 beta3
and CToolbox 2.0 beta3 (see [14]) and the library from [13] extended by the first
author. The symbolic computations use the PoSSoLib package ver. 4.99 [15].

In many cases it may be especially profitable to use the PoSSoLib polynomial
coefficients in computations. The coefficients are then polynomials of “variables”
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ai, Λi, δi. Symbolic computations on them may reduce the overestimation due to
occurence of these parameters (usually known only aproximately) in many equa-
tions.

Other details of the implementation and numerical results are planned to be
presented during the Workshop.
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