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Interval first-derivative-based iterative methods
with high order of convergence for solving

nonlinear systems of equations

P.S. Senyo, M.V. Hnatyshyn∗

Abstract. In the present paper we propose technique of construction and investigation
of new effective iterative interval methods for solving nonlinear systems of equations. Two
methods of such type and their main features are presented and compared by efficiency.
The fields of their preferable application are defined.
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The whole variety of application of the interval analysis can be conventionally
shared into two basic directions: the analysis of mathematical models with uncer-
tainties without taking into account distributions of probabilities of such data and
with the known borders of their change and solving of the mathematical models
which we receive as a result of approximation of the considered problem by another
one, methods of receiving the solution for which are known, that makes the main
problem of the applied and, in particular, computational mathematics. Comput-
ing algorithms thus frequently do not converge, converge not to the solution of a
problem, require information about the unknown solution (about existence, multi-
plicity, bifurcation, etc.). Besides at realization even entirely determined algorithms
on computer some difficulties are generated also by discrete-type structure of its
memory. This demands rounding, which even after a small time period of work
collects a huge amount.

The second direction of application of the interval analysis frequently is applied
to construction of interval methods for solving the systems of nonlinear equations.
However here, on the whole, the investigations are limited to construction of various
updating of the interval analogues of the Newton method [1]. It is caused by
that fact, that the interval estimation of derivatives of supreme orders demands
great volume of calculations and decomposition algorithms of interval expansions
of functions in Taylor’s series are unknown.

In a basis of construction of new interval methods of the supreme orders of
convergence for solving nonlinear systems of equations

f (x) = 0, (1)

where f : Rk → Rk, k ∈ N, we put the next ideas [2, 3]:

• Idea of “immersing” of the given problem in the wider class of problems.
Among solutions of such problem there are also all solutions of a problem (1)
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which it is necessary to allocate in special manner (“to make a filtration”)
with beforehand established accuracy or, at least with the greatest possible
accuracy;

• Idea Runge of approximation with the greatest possible accuracy of supreme
order derivatives of mapping f (x) by linear combinations of values of its first
derivative in corresponding points;

• Taking into account the behavior of “average” points of residual members in
Laugrange form of the generalized Taylor series of mapping f (x) in the case
of compression of interval of decomposition into a point and ratio between
these points at decomposition in Taylor’s series of mapping f (x) and its first
derivative.

Let

gm(x, y) = f(xn) + (α1f
′(xn) + α2f

′(xn + β2(x− xn)) + . . . +

αmf ′(xn + βm(x− xn)))(y − xn), (2)

where αi (i = 1, 2, . . . ,m), βj (j = 1, 2, . . . ,m) – real coefficients, m ≥ 2.
Mappings f (x) and gm (x, y) satisfy to conditions of their decomposition in

Taylor’s series in the corresponding neighborhoods of a point xn. Coefficients αi,
βj we shall choose so that decompositions

f(x) = f(xn) + f ′(xn)(x− xn) +
1
2!

f ′′(xn)(x− xn)2 + . . . +

1
(p− 1)!

fp−1(xn)(x− xn)p−1 +
1
p!

fp(xn + θ(0)(x− xn))(x− xn)p, (3)

and

gm(x, x) = f(xn) + (α1 + . . . + αm)f ′(xn)(x− xn) +

(α2β2 + . . . + αmβm)f ′′(xn)(x− xn)2 + . . . +
1

(p− 2)!
(α2β

p−2
2 + . . . + αmβp−2

m )fp−1(xn)(x− xn)p−1 +

1
(p− 1)!

(
α2β

p−1
2 fp(xn + θ

(1)
2 β2(x− xn)) + . . . +

αmβp−1
m fp(xn + θ(1)

m βm(x− xn))
)
(x− xn)p, (4)

θ(0), θ
(1)
j ∈ (0, 1), j = 2, . . . ,m,

would coincide with the greatest possible accuracy. It is easy to show [3], that they
should be solutions of the system of equations

m∑
i=1

αi = 1,
m∑

i=2

αiβ
s
i =

1
s + 1

, s = 1, 2, . . . , p− 1, (5)
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 Yn = xn −
(

1
4
f ′ (xn) +

3
4
f ′

(
xn +

2
3

(Xn − xn)
))−1

f (xn) ,

X(n+1) = X(n) ∩ Y(n), n = 0, 1, . . . , xn = mid(Xn),
(6)

which, at carrying out corresponding enough common conditions [2] converges to
solution of system (1) and has the order of convergence not less than 3.

If m = 3, then, according to the described above techniques for solving of system
(1) we receive method [3]

Yn = xn − (α1f
′(xn) + α2f

′(xn + β2(Xn − xn)) +

α3f
′(xn + β3(Xn − xn)))−1f(xn),

X(n+1) = X(n) ∩ Y(n), n = 0, 1, . . . ,

(7)

where xn = mid(Xn),

α1 =
1
9
; α2 =

16−
√

6
36

; β2 =
6 +

√
6

10
; α3 =

16 +
√

6
36

; β3 =
6−

√
6

10
.

Method (7) has some effective features, which we shall present in the next
theorems.

Theorem 1. Let mapping f : Rk → Rk is twice continuously differentiable and
x∗ ∈ X0 where x∗ is the solution of system (1). Then

a) every interval Xn, n = 0, 1, 2, . . . , calculated by (7), contains the solution of
system (1);

b) if all matrices F ′
(
X(n)

)
, n = 0, 1, 2, . . . , are not singular, then lim

n→∞
Xn = x∗.

Theorem 2. Let mapping f : Rk → Rk is five times continuously differentiable
and x∗ ∈ X0 where x∗ is the solution of system (1) and matrices F ′

(
X(n)

)−1,
n = 0, 1, . . . , exist, then sequence of intervals

{
X(n)

}∞
n=0

calculated by (7) converges
to x∗, moreover ω(Xn+1) ≤ c · (ω(Xn))5, where c is a positive constant.

Here F ′ (X) = α1f
′ (x) + α2f

′ (x + β2 (X − x)) + α3f
′ (x + β3 (X − x)), x =

mid(X).

To prove those both theorems, we preliminary have proved the next lemma,
which also has the independent importance.

Lemma. Let mapping f : Rk → Rk is twice continuously differentiable and x∗ is
the real solution of system (1), x∗ ∈ X0 and x0 < x∗. Then, if

Υ0 ⊇
[
x0, x0 +

1
k

(x∗ − x0)
]

then

f ′′
(
x0 + θ

(0)
2 (x∗ − x0)

)
(x∗ − x0)2 ⊂ f ′′

(
x0 + k[θ(1)](Υ0 − x0)

)
(Υ0 − x0)2,

where [θ(1)] ∈ [0, 1], θ
(0)
2 ∈ (0, 1), k > 0 is a constant.
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Method (7) has advantage over method (6) not only in the order of convergence,
but also in that fact, that we must not analyze intermediate intervals if they contain
solution x∗ of system (1) and it is no necessity to expand them, if they do not contain
x∗.

In [3], we have presented methods received by the described above technique for
solving system (1) with the order of convergence not less than 7 and 9 correspond-
ingly.
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