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Introduction 

A Interval analysis is one of the tools for global 
optimization.

A It combines interval arithmetic  with analytic 
estimation techniques to obtain global informa−
tion that is otherwise inaccessible.

A It can also be used for computer−assisted 
proofs using finite precision calculations, since 
it correctly accounts for rounding errors.

A Implementations: INTLAB, SUN Fortran



History

A 1960 developed by Moore for error control
A ≈1970 McCormick used interval arithmetic for 

optimization (a posteriori enclosures)
A ≈1980 Hansen, Evtushenko first global optimization 

application.
A since 1985 computer assisted proofs: Feigenbaum 

conjecture, chaos in molecules
A 1999 Hales solved Kepler’s 300 years old conjecture 

on the densest packing of equal spheres using linear 
programming and interval analysis.



Interval Analysis in
Global Optimization

A In the last few years several groups started to use 
interval analysis for deterministic global 
optimization.

A The most important developments are
A Jansson/Knüppel (only for bound constraints)
A INTOPT 90, GLOBSOL (Kearfott)
A BARON (Sahinidis)
A Numerica (Van Hentenryck)
A αBB (Floudas)

A GLOPT−2 (Neumaier)



Overview 

A Interval Arithmetic

A Function Evaluation

A Centered Forms

A Systems of Equations − general case

A Systems of Equations − linear case



Intervals

A Intervals                                                       , 
where                                and                           
can e.g. be interpreted as numbers not exactly 
known:

A The higher dimensional generalization is a box 
(interval vector)

A Point intervals (radius zero) will be identified 
with the unique number they contain 

[ x ]=[ x , x ]=[ x̌Brad[ x ] , x̌+rad[ x ] ]
x̌=mid( x )=1

2
( x+x ) rad[ x ]=1

2
( xBx )

|xB x̌|≤rad[ x ]

[ x ]={x∈þ|x i∈[ x i ] ,i=1,…,n}

x≡[ x , x ]



Interval Operations

A The arithmetic operations +,−,∗,/,^ are extended 
to intervals                                                  ,      
where       denotes the smallest box containing 
the set S.

A Examples:
A

A

A

A

[ x ]6[ y ]:=[ ] {x 6 y|x∈[ x ] , y∈[ y ]}
[ ]S

[4,8]+[B3,2]=[1,10]

[B2,3]∗[B1,2]=[B4,6]

[1,3][2 , 4]=[1,81]
[1,3]⁄[B1,2]=[B∞ ,∞]



Elementary functions

A Elementary functions are extended to intervals 
using the same idea.

A Examples:

A

A

A The absolute value of an interval is defined by     
                           and it has to be distinguished 
from the interval extension of the function abs.

î([ x ] ):=[ ] {î( x )|x∈[ x ]}

sin( [0,π
2
])=[0,1]

[B2,3]4=[0,81]

|[ x ]|=max( x ,Bx )



Rounded interval operations

A In a computer system intervals are represented as pairs 
of floating point numbers, the bounding points of the 
interval.

A The rounding of the bounds after every interval 
operation has to be performed in such a way that the 
rounded interval contains the original interval.

A Hence, the bounds must be rounded outward (the 
lower towards −∞, the upper towards +∞).

A Example (3 significant digits)
[B1.15,2.21]+[12.2,13.1]=[11.0,15.4]



Algebraic Properties

A The algebraic properties of intervals differ 
considerably from the properties of real 
numbers.

A Many algebraic laws are weakened. E.g.

A                       e.g. 

A                                                     (subdistributivity)

A One has to be careful in theoretical arguments 
involving interval arithmetic.

[ x ]B[ x ]�0

[a ]([b ]+[ c ] )⊆[a ][b ]+[a ][ c ]

[0,1]B[0,1]=[B1,1]



Interval Evaluation of 
Expressions (1)

A The simplest way to compute bounds for the range of a 
function f over an interval [x] is using interval 
arithmetic.

A Using an arithmetic formula for f, one replaces all 
variable occurrencies by intervals and evaluates the 
expression using interval arithmetic.

A Note that in general different expressions for the same 
function give different results.

A Example: f ( x )=x+1= x2B1

xB1

f ([1.5,2.5])=[2.5,3.5]⊂[1.5,12.5]



Interval Evaluation of 
Expressions (2)

A Interval arithmetic has linear approximation 
order.

A If every variable appears only once inside an 
arithmetic expression, no overestimation occurs.

A Interval arithmetic is memoryless ⇒   
dependence results in overestimation of the 
range.

A Caution:

rad f([ x1] ,…,[ xn ])=O(maxi rad[ x i ])

[B1,1]2=[0,1]⊂[B1,1]=[B1,1]∗[B1,1]
[ x ]=[B2,2], f ( x )=1⁄(1Bx+x2)

1 f ( [ x ])=[B∞ ,+∞]



Computing Estimates by 
Interval Analysis

A Range estimates obtained by interval arithmetic 
are usually better than those computed by 
analytical estimates, if in both cases estimation 
techniques are equally careful applied.

A Example:
A analytic:

A interval:
|xB x̌|≤r, |yB y̌|≤s 1 |xyB x̌ y̌|≤r|y̌|+s|x̌|+rs

|xB1|≤1, |y+2|≤2 1 |xy+2|≤2+2+2=6

x∈[ x ], y∈[ y ] 1 |x yBmid[ x ][ y ]|<r|y̌|+s|x̌|+rs in gen.

[0,2]∗[B4,0]=[B8,0]=B4±4



The Mean Value Form

A Evaluation of functions can be improved by using 
Taylor expansions. E.g. the mean value theorem states 
that

A The approximation order is quadratic:

A For wide boxes the estimate may be bad, but for narrow 
boxes it is much better than interval evaluation.

f ( x )=f ( z )+f’ (ξ)( xBz ), ξ∈x z

∈f ( z )+f’ ([ x ])([ x ]Bz ), if x ,z∈[ x ]

rad f([ x ])=rad range f+O( rad[ x ]2)



Centered Forms, Slopes (1)

A Decompositions of the form                                
                 

   lead to centered forms                                      .
A The slopes           can be computed recursively 

in the same way as in automatic differentiation;

A In dimension one, the slope is a divided differ−
ence:

A In higher dimensions slopes are not unique.

f ( x )=f ( z )+ f [ z, x ]( xBz )
f ([ x ] )∈f ( z )+[ s ]([ x ]Bz )

f [ z , x ]

f [ z, x ]=( f ( x )Bf ( z ))⁄( xBz )

f’ ( x )=f [ x, x ]



Centered Forms, Slopes (2)

A In general, slopes yield enclose the range of a 
function by a factor 2 better than the mean value 
form. 

A Example:

A Further improvement by recursive intersection of 
interval evaluation and slope form.

f ( x )=x2 , [ x ]=[ zBr, z+r ]
derivative evaluation: f’( x )=2 x, rad f’( [ x ])=2r
slope evaluation: f[ z, x ]=x+z, rad f[ z, [ x ]]=r



A An m×n interval matrix                    is an m×n 
array of intervals.

A Interval matrix addition is defined component− 
wise, and interval matrix multiplication is 
defined like ordinary matrix multiplication 
generalized to interval arithmetic.

A Again, many algebraic laws are weakened. In 
particular, associativity of multiplication fails.

Interval Linear Algebra

[ A ]=[ A , A ]



Nonlinear Equations

A Find Enclosure       for all solutions      of          
              in a box [x].

A Using the mean value form, we can linearize 
this problem to

    An analogous formula holds for slopes.
A A Newton operator                   is an enclosure 

of the solution set of the above linear equation 
in [x].

F( x )=0

F( x0)+F’ ([ x0])( xBx0)�0

N( x0,[ x ])

[ x l ] x l
∗



Properties of
Newton Operators

A The Newton operator has the following 
important properties:

A Reduction:  

A Elimination:  

A Existence:   

A Uniqueness:  

[ x’ ]=[ x ]∩N ([ x ] )  is usually smaller

[ x’ ]∩[ x ]=∅ 1 no solution

N ([ x ])⊆int ([ x ] ) 1 existence

F’ ([ x ] )  regular 1  unique solution

F[[ x ] ,[ x∗] ]  regular is sufficient



Existence proofs

A Existence proofs for the Newton operator 
normally use one of the following techniques:

A Brouwer’s fixed point theorem

A Other fixed point theorems (Leray − Schauder,...)

A Implicit function theorem

A Topological degree

A Gives no improvement compared to the previous 
slide, if only linearized information is used.



Linear Equations (1)

A The solution set for                   is defined as

A It is connected and piecewise convex with up 
to      pieces.

A  Example:

[ A ] x=[b ]

∑([ A ] ,[b ]):={x∈þn|Ax=b  for some A∈[ A ] ,b∈[b ]}

[ A ]=( [2,4] [B1,1]

[B1,1] [2,4] ), [b ]=( [B3,3]

0 )

∑ ([ A ] ,[b ])

2n



Linear Equations (2)

A In order that                     is bounded, all matrices in [A] 
have to be nonsingular. Then [A] is called regular.

A Computing optimal enclosures is NP−hard. 

A Nearly optimal enclosures are obtained by 
preconditioning. 

A Preconditioning with a matrix C changes the linear 
interval system to C[A] x = C[b].

A This step increases the solution set.

∑ ([ A ],[b ])

∑ ([ A ] ,[b ] )⊆∑ (C [ A ] ,C [b ] )



Linear Equations (3)

A The midpoint inverse is the best choice.

A After preconditioning with             we have        
C[A] = [I −R, I + R] with small R. 

A If for any preconditioning matrix C we have      
|| I −C[A] || = β < 1 then [A] is (strongly) 
regular.

A The overestimation in preconditioning is O(β²).

C= ǍB1



Krawczyk’s Method

A The simplest method of improving an enclosure 
[x] for the solution set. 

A The relation

     leads to the Krawczyk iteration

A The first iteration is the most useful one:
      has the quadratic approximation property, 
if        has the linear approximation property.

AB1b=CbB(CABI )( AB1b)∈C [b ]B(C [ A ]BI )[ x ]

[ z0 ]:=[ x ] , [ zl+1]:=(C [b ]B(C [ A ]BI )[ zl ])∩[ zl ]

[ z1]
[ z0]



Gauss − Seidel,
Hansen − Bliek

A Krawczyk’s method can be improved 
significantly without much extra work.

A The interval Gauss−Seidel method produces 
better enclosures with O(n²) operations (after 
preconditioning), where n=dim(A).

A The Hansen−Bliek method is optimal after 
preconditioning but takes O(n³) operations.
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