Interval Analysis — Basics

University of Vienna

Hermann Schichl and Arnold Neumaier

Interval Arithmetic
Function Evaluation
Centered Forms
Systems of Equations - general case

Systems of Equations - linear case




Introduction

+ Interval analysisis one of the tools for glok
optimization.

+ It combinesinterval arithmetic with analytic
estimation techniques to obtain global infor
tion that is otherwise inaccessible.

e It can also be used for computassiste

proofs using finite precision calculations, si
It correctly accounts for rounding errors.
+ Implementations: INTLAB, SUN Fortran




History

¢ 1960 developed bW oore for error control

¢ =1970McCormick used interval arithmetic for
optimization (a posteriori enclosures)

¢ =1980Hansen, Evtushenko first global optimizatiotr
application.

¢ since 1985 computer assisted proofs: Feigenbaul
conjecture, chaos in molecules

¢ 1999Hales solved Kepler's 300 years old conjectt
on the densest packing of equal spheres usinglir
programming and interval analysis.




Interval Analysis In
Global Optimization
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In the last few years several groups started to ust
Interval analysis for deterministic global
optimization.

¢ The most important developments are
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Jansson/Knuppel (only for bound constraints)
INTOPT 90, GLOBSOL (Kearfott)

BARON (Sahinidis)

Numerica (Van Hentenryck)

oBB (Floudas)

GLOPT-2 (Neumaier)




Overview

+ Interval Arithmetic

+ Function Evaluation

+ Centered Forms

+ Systems of Equations — general case
+ Systems of Equations — linear case




Intervals

¢ Intervals [ x|=[x,x|=|[X—rad| x],%x+rad x]]| |,
where Xx=mid(x)=(x+x) ar x|=,(x—Xx)
can e.g. be interpreted as numbers not exa
known: |x—X|<rad| x|

+ The higher dimensional generalization isax
(interval vector)| x]={xeR|x €[ x ],i=1,...,n|

+ Point intervals (radius zero) will be identifie
with the unique number they contaxis| x, x|




Interval Operations

+ The arithmetic operations-,[J,» are extende!

to intervald x|l y|:=[]{ xoy|x€| x|, yely]] ,

where||S denotes the smallest box contait

the set S.

+ Examples:
*|4,8]+|-3,2|=[1,10]
o [—2,3]%[- 12] (—4,6]

o [1,31%%=[1,81

 [1,3)/[-1,2]=[~00, ]




Elementary functions

+ Elementary functions are extended to interve
using the same ide&.([ x]):=[]{ @ (x)|x€[ x]|

+ Examples:
+ sin([0,7])=[0,1]
o [—2,3]"=]0,81]

+ The absolute value of an interval iIs defined k
| x]|=max(x,—x) and it has to be dististped
from the interval extension of the function ab




Rounded interval operations

+ In a computer system intervals are representea@ias
of floating point numbers, the bounding pointsiud t
Interval.

+ The rounding of the bounds after every interval
operation has to be performed in such a way tleat |
rounded intervatontains the original interval.

+ Hence, the bounds must be roundadvard (the
lower towards-o, the upper towardso).
o Example (3 significant digits)
[—1.15,2.21+[12.2,13.1=[11.0,15.4




Algebraic Properties

+ The algebraic properties of intervals differ

considerably from the properties of real
numbers.

+ Many algebraic laws are weakened. E.qg.
o [X]-[x|20 e.g0,1]-|0,1]=]—-1,1]
o |a]([b]+[c])c[a][b]+[a]]c](subdistributivity)

+ One has to be careful in theoretical argume
Involving interval arithmetic.




Interval Evaluation of
Expressions (1)

¢ The simplest way to compute bounds for the range
functionf over an interval¥] is using interval
arithmetic.

+ Using an arithmetic formula fdy one replaces all
variable occurrencies by intervals and evaluates th
expression using interval arithmetic.

+ Note that in general different expressions fordame
function give different results.

¢ Example: £(x)

f([1.5,2.9)

X+1=""
(2.5,35c[1.5,12.5




Interval Evaluation of
Expressions (2)

+ Interval arithmetic haBnear approximation
order. radf([x,],....[ x |)=0O(maxrad| x, |)

+ If every variable appears only once inside an
arithmetic expression, no overestimation occ

+ Interval arithmetic is memoryless
dependence results averestimation of the
range.[—1,1F=[0,1]c[-1,1]=[-1,1]%[-1,1]

o Caution: [x]=[-2,2], f(x)=1/(1-x+Xx*)

=  f(|x])=[—00,+00]




Computing Estimates by
Interval Analysis

+ Range estimates obtained by interval arithme
are usuallybetter than those computed by
analytical estimates, If in both cases estimatiol

techniques are equally careful applied.

+ Example:
s analytic: |x—1|<1, |y+2|<2 = |xy+2|<2+2+2=6
[ X=X|=r, |y—=y|=s = |xy—Xy|<r|y|+s|X|+rs
+ interval: |0,2]x[—4,0]=[-8,0|=—4=+4
xe|[ x|, yely] = |xy—mid|x]||y||<r|y|+s|X|+rs in gen.




The Mean Value Form

+ Evaluation of functions can be improved by using
Taylor expansions. E.g. the mean value theorerassi

that
f(x)=f(z)+f (£)(x—2z), Eexz

ef(z)+f (| x])(|x|—2z), if x,z€|xX]
¢ Theapproximation order isquadratic:

radf([ x])=rad range fO(rad| x|*)

+ For wide boxes the estimate may be bad, but faone
boxes it is much better than interval evaluation.




Centered Forms, Slopes (1)

+ Decompositions of the form
f(x)=f(z)+f|zx|(x—2)
lead tocentered formsf ([ x])ef(z)+[s](| x|—2).

o Thedopesf|z,x| can be computed recursive
In the same way as in automatic differentiati
f (x)=f|x, x|
+ In dimension one, the slope is a divided diffe
ence: f|lzx|=(f(x)—f(z))/(x—2z)
+ In higher dimensions slopes are not unique.




Centered Forms, Slopes (2)

+ In general, slopes yield enclose the range of
function by a factor 2 better than the mean vg
form.

o Example:  f(x)=x?, [x]=[z—r,z+r]
derivative evaluation: fx)=2x, radf(|x|)=2r
slope evaluation: [fz, x |=x+2z, radf|z|x||=r

+ Further improvement by recursive intersectiotl
Interval evaluation and slope form.




Interval Linear Algebra

o An mxninterval matrix [ A]=[ A, A] IS an nxn
array of intervals.

+ Interval matrix addition is defined componer
wise, and interval matrix multiplication is
defined like ordinary matrix multiplication
generalized to interval arithmetic.

+ Again, many algebraic laws are weakened.
particular, associativity of multiplication fails




Nonlinear Equations

o Find Enclosurex,| for all solutions  of
F(x)=0 In a box [X].

+ Using the mean value form, we can lineariz
this problem to

F(x,)+F ([ x,])(x=x,)20

An analogous formula holds for slopes.

o A Newton operator N(x,[x]|) is an enclosi
of the solution set of the above linear equat
in [x].




Properties of
Newton Operators

+ The Newton operator has the following
Important properties:

+ Reduction:[ X |=[x]NN([ x]) is usually smalle
+ Elimination: [ X ]N[x]=# = no solutior
o Existence:N(| x|)<int(| x|]) = existenct

+ Uniqueness:
F'(| x]) regular= unique solutiol

F|| x|,| x"|| regular is sufficier




EXxistence proofs

+ EXxistence proofs for the Newton operator
normally use one of the following techniques

+ Brouwer’sfixed point theorem

+ Other fixed point theorems (Leray — Schauder,...)
+ Implicit function theorem

+ Topological degree

+ Gives no improvement compared to the prev
slide, if only linearized information is used.




Linear Equations (1)

o Thesolution set for [ A]x=|b| Is defined as

([ A],[b]):={xeR"|Ax=b for someAg| A],beg[b]}

+ Itis connected and piecewise convex with 1
to 2" pileces.

o Example: [A]=(%% 20, [b]=("27)

0

2 (LAL[b])




Linear Equations (2)

o Inordertha. ([ A],[b]) is bounded, aditrices in [A]
have to be nonsingular. Then [A] is callesjular.

o Computing optimal enclosures is Niard.

+ Nearly optimal enclosures are obtained by
preconditioning.

+ Preconditioning with a matrix C changes the linear
Interval system to C[A] x = C[Db].

+ This step increases the solution set.

2(LALIb])=2. (ClA],C[b])




Linear Equations (3)

+ Themidpoint inverseis the best choice.

« After preconditioning withC=A" we have
CIA] = [l -R, I + R] with small R.

o If for any preconditioning matrix C we have
|| | —=C[A] || =B < 1 then [A] Is (strongly)
regular.

+ The overestimation in preconditioning Is[33)\.




Krawczyk’'s Method

+ The simplest method of improving an enclos
[X] for the solution set.
+ The relation
A *b=Ch—(CA—1)(A*b)eC|b]—(C|] Al—-I)[ X]
leads to th&rawczyk iteration
Z’]:=[x], [27]:=(C[b]~(C[A]-1)[Z])n[Z]
+ The first iteration is the most useful one:
| has theuadr atic approximation property,
f [2’] has the linear approximation property.

[ 1
If




Gauss — Seidel,
Hansen — Bliek

+ Krawczyk’s method can be improved
significantly without much extra work.

+ The intervalGauss—Seldel method produces

better enclosures with O(n?) operations (aft
preconditioning), where n=dim(A).

+ TheHansen—Bliek method is optimal after
preconditioning but takes O(n3) operations.
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