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What is validated numerics?

e set-valued mathematics;

e intervals replace real numbers.

Why use validated numerics?

e provides rigorous error bounds;

e Mmodels uncertainty;

e Mmay produce faster numerical methods.

Early work: R. C. Young (1931), M. War-
mus (1956), T. Sunaga (1958), R. E. Moore
(1959) Interval Analysis (1966).



Intervals

We will adopt the short-hand notation

[a] = [a,a] = {z € R:a<zx<a}l,

and let IR denote the set of all compact inter-
vals of the real line:

R = {[a]: a,a € R;a < a}.

We allow for thin intervals with a = a.
Example: [1,n] € IR, but not [2,1] or [1, o0].

As sets, intervals inherit relations such as
— C C 7= Z ...
Furthermore, we can define the operations

[a] U [b] = [min{a, b}, max{a, b}],

1] cifa<borb<a,
[a] M [0] ={ AR .
[max{a, b}, min{a,b}] : otherwise.



Useful functions

Functions from IR to R:

rad([a]) =3(a — a); mid([a]) = 5(a + a),

.. _]o . if 0 € [a],
m'g(-“-)_{min{a|,|a|} . otherwise;
mag([a]) = max{al, [al}.

Functions from IR to IR:

abs([a]) = {|al: a € [a]} = [mig([a]), mag([a])].
IR as a metric space:

We can turn IR into a metric space by equip-
ping it with the Hausdorff distance:

d([a], [b]) = max{|a —bl, |a — b]}.

Using the metric, we can define the notion of
a convergent sequence of intervals:

k”_@o[ak] =la] <« Nm d(lag], [a]) = O.



Arithmetic over [R:

Definition: If x is one of the operators 4+, —, x, =

and if [a], [b] € IR, then

[a] x [b] = {a*xb: a € [a],b € [b]},

except that [a] = [b] is undefined if O € [b].

Uncountable many cases to consider!

Continuity, monotonicity, and compactness =

la] +

-a,-

a]

a]

X

(SANSERNSIaS

a+ b,a+ b]

— :Q - E? 5, - b]
= [min{ab, ab, ab, ab}, max{ab, ab, ab, ab}]

a] x [1/B,1/b], if O ¢ [b].

On a computer we use directed rounding:

[a] + [b] = [V(a® b), A(a @ b)].
We then have [a] x[b] D {axb: a € [a],b € [b]}.



Properties of interval arithmetic

(1) IA is associative and commutative.

(2) IA is not distributive:
[-1,1][-1,0] + [-1,1][3,4] = [-1,1] + [-4,4] = [-5,5].

We do, however, always have

[a] ([b] 4 [c]) € [a][b] + [a][c].

(3) IA has no multiplicative or additive inverse:

0 € [a] — [a]; 1€ [a] = [a].

(4) IA is inclusion monotonic, i.e., if [a] C [a'],
and [b] C [¥], then

[a] * [b] C [a] % [6'],

where we demand that O ¢ [b'] for division.



Interval extensions

One of the the main goals is to enclose the
range of a function f:

R(f; D) = {f(x): = € D}.

T his is achieved by constructing an interval ex-
tension F': IR — IR of the real-valued function
f: R —R.

Monotone functions are easy!

el?] = [eZ, 7]

Vlal = [v& Val f0<az
log [x] = [logz,logx] if0o<zx
arctan[x] = [arctang,arctanz].

Piecewise monotone functions are also OK!

(

2™, T - ifne ZT is odd,

(2] = ¢ mig([z])™, mag([z])"] : if n € ZT is even,
1, 1] . ifn=0,

[1/z,1/z]™" . ifneZ™; 0¢ [z].




Standard/elementary functions

We define the class of standard functions to
be the set

S ={e*, logx,z% absz,sinxz,cosx,tanz, ...
...,arccosx,arctan x,sinh x,cosh z,tanh z}.

For any f € G, we can construct a sharp inter-
val extension F', i.e.,

f €6 = R(f;[z]) = F([z]).

Building new functions is easy...

We use finite combinations of constants, ele-
ments of G, {+4,—, x,+}, and o to build the
elementary functions ¢. Interval versions of
S and {4, —, x, =} provide the corresponding
interval extensions.



.. but we may now overestimate the range.

If f(z) = 157, then F([2]) = 1J£3[3}U]2. For the

interval [z] = [1,2], we have

R(f:[1,2]) = [2,3] C [3,1] = F([1,2]).

LLooks are important!

fil@)=1—-2°=(1-2)(1+z) = fa(x),
but

Fi([z]) = 1—[2]* # (1— [z (1 +[2]) = Fa([=]),

since

F([-1,1])=1-[-1,1]*=[1,1] - [0,1] = [0, 1],
K ([-1,1D=0 - [-1,1D@ +[-1,1])
= [0, 2] x [0,2] = [0, 4].

Different representations — different functions.



Interval enclosures

Theorem 1: If f € €& and F([z]) is well-
defined, then

R(f; [=]) C F([z]).
How tight is the enclosure?

Theorem 2: If f € &, [z] = [z1] U - U [xx],
and F'([z]) is well-defined, then

k
R(f;[z]) € U F(l=]) € F([z]).
i=1

If f is Lipschitz on [z] there is a K > 0O s.t.

k
rad ( U F([a:i])) —rad(R(f; [:p])) < K maxrad ([z;]) .
i=1 ¢

I.LA. (almost) gives us access to R(f; [x]).



Computer-aided proofs

An important consequence of Theorem 1 is

y & F([z]) = y ¢ R(S; [z]).

Exercise: Let f(z) = (sinz — z2 + 1) cosz.
Prove that f(z) # 0 for = € [0, 3].

Solution: Define F([z]) = (sin [z]—[x]?4+1) cos [z].
Then, by Theorem 1, we have

R(f;[0,5) CF([0,5]) = ...
. [% cos%, 1 -+ sin %] C [0.65818,1.4795].

0.6

L L L L L L L L
] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5



Graph enclosures

Exercise: Draw the graph of the function
f(z) = cos3z +sinx
over the interval [—5,5].
Solution: Define F([z]) = cos3[z]+sin [z], and
bisect the domain into smaller pieces until
miax rad(F([xi])) < TOL.

f(x) = (:os(x)3 + sin(x)




“Impossible’” cases too

Exercise: Draw the graph of the function

fa(ac) p— wQ _ %e—(a(x_%))Q

for a = 200 over the interval [—1, 1].

f(x) = sqr(x) — 3/10*exp(-sqr(200(x — 1/2)))

Even when a is huge, the I.A.-methods cannot
miss the sharp bend! Conventional methods
must miss it.



Root enclosures

Exercise: Find all roots of the function

f(x) = sinz(x — cosx)
over the domain [-10, 10].
Solution: Define F([x]) = sin [z]([z] — cos [x]),

bisect the domain, and throw away all pieces
that satisfy 0 ¢ F'([x;]).

10

#t------——————————— #
Domain : [-10,10]

Tolerance : 0.001

Function calls: 227

Root list

1: [-9.4251,-9.4244] 4: [-0.0007,+0.0000] 7: [+3.1414,+3.1421]
2: [-6.2836,-6.2829] 5: [+0.0000,+0.0007] 8: [+6.2829,+6.2836]
3: [-3.1421,-3.1414] 6: [+0.7385,+0.7392] 9: [+9.4244,+9.4251]



Implicit curves (R?)

Exercise: Draw the locus defined by
f(z,y) = sin (cosz? 4+ 10siny?) — ycosz = 0;
restricted to the domain [-5,5] x [-5, 5].

MATLAB produces the following picture:

=
@,

O A ot

The locus |f(x,y)| = 0, however, is empty!?!



Implicit curves...

The validated enclosure in both cases is

Number of split calls : 9

Number of function calls: 87550
Number of solution boxes: 19718
Maximal box diameter : 0.0195312



Implicit curves...

A sharper look at the previous picture...

NoO zeroes can exist outside the boxes:

0 ¢ F([z)]) = 0 ¢ R(f; [«D)).



Optimization

Exercise: Find the minimum of the function
_ _1\\2
falz) = 22 — B (@F—2)
for a = 10000 over the interval [-3,3].

Solution: Adaptive branch and bound.

#--------——————— #
Domain : [-1.5,1.5]

Tolerance : 9.09495e-13 (27-40)

Function calls : 3810

Global minimizer : [4.9999998318185e-01,4.9999998348404e-01]
Global minimum : -5.000000833367428e-02 +- 3.412409245e-13
Non-rigorous estimate: 3.113063833543e-09
#--------——————— #

$t--------—-—--(-—V—-/-/ - #
Domain : [-1.5,1.5]

Tolerance : 0.03125 (2°-5)

Function calls . 67

Global minimizer : [4.9996948242187e-01,5.0001525878907e-01]
Global minimum : —4.914849425348847e-02 +- 8.820223934e-04

Non-rigorous estimate: 3.71e-04



Newton’s method in [R

Assume that f € C1([z],R), and that z* € [x]
is a root of f. Also assume that 0 ¢ F'([x]),
and define

Ny ([a]) = mid(fa]) — L0,

E'([])

Theorem 3: Assume that N;([x]) exists. Then
N¢([z]) N [z] =0 = f has no roots in [z];
N¢([z]) C [z] = f has a unique root in [z].

A

mid([x]) [X]




Newton’s method in [R

Set [2(0)] = [z], and consider the sequence

[z D] = N ([ N [2P], ke

Bonus: The iterates behave very regularly.

Theorem 4: If Ny([z(?)]) exists, and [2(0)]
contains a root z* of f, then so do all [z(*)],
k € N. Furthermore, the intervals [:z;(k)] form a
nested sequence converging to z*.

Major drawback: The Newton operator Nf IS
undefined when 0 € F'([x]).

Fix 1: Use bisection to single out subintervals
[Z] on which O ¢ F’([Z]). These are sent to the
interval Newton method. Also keep all small
[Z] with 0 € F/([z]) and 0 € F([z]).



Newton’s method in [R

Example: Consider the function

fa(z) = 2° — 1—306_(6‘(37_%))2

with a = 10000 over the interval [3,1]. Recall
that this function has a very sharp bend.

Searching the domain [0.25,1] with TOL = 0.00390625 (2°-8).
After the adaptive bisection, we have:
1 subdomain where f may have roots.

There may be roots within
1: [0.496094,0.501953]

Searching the domain [0.25,1] with TOL = 1.52588e-05 (2°-16).
After the adaptive bisection, we have:
2 subdomains where f is strictly monotone.

Sending [0.500031,0.500122] to the Newton operator...
Finite convergence!
The unique root is within: +5.000426791339584e-01 +- 2.77556e-16

Sending [4.99939e-01,4.99985e-01] to the Newton operator...
Finite convergence!
The unique root is within: +4.999572808660400e-01 +- 1.38778e-16



Extended interval arithmetic

Fix 2: Extend the interval arithmetic to allow
for division by zero.

Example: [1,2] ~[-3,5] =777

[1,2] - [-3,5] = [1,2] + ([-3,0] U [0, 5])
=([1,2] + [-3,0) u ([1,2] + [0, 5])

Now we define the division as follows:

[1,2]=[-3,0] & im [1,2]+[-3,¢] = [0, -1
and
1,2+ [0,5] = lim [1,2] + [, 5] = [, +oo].

Answer: [1,2] - [-3,5] = [~o0, —%] U [%, ~+o0].



T he extended interval Newton Method

When computing the Newton iterates, the un-
bounded intervals are intersected back to com-
pact domains by the scheme

[T D] = N ([ n[2P], ke

01—

Example: Again the function f1g00o0(x).

B #
Domain : [2.500000e-01,1.000000e+00]
Tolerance : 9.536743e-07 (2°-20)

Unique root within : [+0.49995676466028721,+0.49995838064162701]
Unique root within : [+0.50004262913481123,+0.50004274553256134]
Function calls : 34



The Lorenz equations

Introduced in 1963 by Edward Lorenz.

r1=—0x1 + oxo
TD = 0T1 — T — T1T3
r3 = —LBx3 + T172,

Classical parameters: ¢ = 10, 8 = 8/3, o = 28.
Symmetry: S(z1,z2,23) = (—x1, —22,%3).

Three fixed points: the origin O and

CF = (£/B(e— 1), +1/8(o — 1), 0 — 1).

Stability: The origin is a saddle point with

0 < - A3 <A1 <=M

C* are unstable spirals.



40
an

Solutions of the Lorenz equations



The Lorenz equations...

Thus, the stable manifold of the origin W*$(0)
iIs two-dimensional, and the unstable manifold
of the origin W¥%(0) is one-dimensional.

Constant divergence:

Oi1 = Oip  Oij
=+ L4 == 1
(9331 +8$2+8$3 (U+6+ >7

The volume of a solid at time ¢t can be ex-
pressed as

V() = V(0)e (T8t o v (0)e 137

for the classical parameter values.
Absorbing region: U containing the origin.

Maximal invariant set:

A= (] eU,1).
t>0

A must have zero volume, and W4(0) C A.



Lorenz observed:

[1] An attracting invariant set A
[2] Sensitive dependence on i.c.
[3] Fractal structure of A

[4] Robustness of A
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He observed a strange attractor!



A geometric model:

Introduced by Guckenheimer and Williams (1979)

Return map: R: X\ — X.
The return plane > is foliated by stable leaves.

Projecting along these stable leaves induces a
1-d singular function:

f: [_17 1] — [_17 1]



The function f: [-1,1] — [—1, 1] satisfies:

f(—z) = —f(z);
lim,_.o f'(z) = 4o0;
f"(x) < 0 on (0,1];
f(x) > V2;

BWON =

[1] - [4] = f is topologically transitiveon [—1,1].



What is a strange attractor?

We need to prove:

(1) There exists a compact N C %, such that
R(N\TI') C N.

(2) On N, there exists a cone field ¢ such that
for all x € N,

DR(x) -€(x) C €(R(x)).

(3) There exists C > 0 and A > 1 such that for
all v € €(z), x € N, we have

|IDR"(x)v| > CA\"|v], n > 0.

Open conditions - Perfect for I.A.l

Computing R and DR requires solving interval-
valued differential equations. This is still an
open field of research.



How do we use these results?

(1) proves the existence of an attracting
set. This could be a single periodic orbit.

(2)4+(3) rule out the possibility of just ob-
serving a stable periodic orbit.

Strong enough expansion = topological tran-
Sitivity.

R area contracting + expansion in ¢(x) =
stable foliation.

Theorem: For the classical parameter values,
the Lorenz equations support a robust strange
attractor A — the Lorenz attractor!



The wrapping effect

Example: Solve the ODE (z1,22) = (22, —x1).

T

T

Exponential growth of the solution set!

Fix: The Lorenz equations are strongly volume
contracting. An adaptive bisection scheme damp-
ens the overestimation of R and DR.

Analytic (non-numerical) techniques are needed
near the fixed point of the flow.
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