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What is validated numerics?

• set-valued mathematics;

• intervals replace real numbers.

Why use validated numerics?

• provides rigorous error bounds;

• models uncertainty;

• may produce faster numerical methods.

Early work: R. C. Young (1931), M. War-

mus (1956), T. Sunaga (1958), R. E. Moore

(1959) Interval Analysis (1966).



Intervals

We will adopt the short-hand notation

[a] = [a, ā] = {x ∈ R : a ≤ x ≤ ā},
and let IR denote the set of all compact inter-

vals of the real line:

IR = {[a] : a, ā ∈ R; a ≤ ā}.
We allow for thin intervals with a = ā.

Example: [1, π] ∈ IR, but not [2,1] or [1,∞].

As sets, intervals inherit relations such as

= ⊆ ⊂ 6= 6⊂ . . .

Furthermore, we can define the operations

[a] t [b]=[min{a, b},max{ā, b̄}],

[a] ∩ [b]=







∅ : if ā < b or b̄ < a,

[max{a, b},min{ā, b̄}] : otherwise.



Useful functions

Functions from IR to R:

rad([a])= 1
2(ā − a); mid([a]) = 1

2(ā + a),

mig([a])=







0 : if 0 ∈ [a],

min{|a|, |ā|} : otherwise;

mag([a])=max{|a|, |ā|}.

Functions from IR to IR:

abs([a]) = {|a| : a ∈ [a]} = [mig([a]),mag([a])].

IR as a metric space:

We can turn IR into a metric space by equip-

ping it with the Hausdorff distance:

d([a], [b]) = max{|a − b|, |ā − b̄|}.
Using the metric, we can define the notion of

a convergent sequence of intervals:

lim
k→∞

[ak] = [a] ⇔ lim
k→∞

d([ak], [a]) = 0.



Arithmetic over IR:

Definition: If ? is one of the operators +,−,×,÷,

and if [a], [b] ∈ IR, then

[a] ? [b] = {a ? b : a ∈ [a], b ∈ [b]},
except that [a] ÷ [b] is undefined if 0 ∈ [b].

Uncountable many cases to consider!

Continuity, monotonicity, and compactness ⇒

[a] + [b]=[a + b, ā + b̄]

[a] − [b]=[a − b̄, ā − b]

[a] × [b]=[min{ab, ab̄, āb, āb̄},max{ab, ab̄, āb, āb̄}]
[a] ÷ [b]=[a] × [1/b̄,1/b], if 0 /∈ [b].

On a computer we use directed rounding:

[a] + [b] = [5(a ⊕ b),4(ā ⊕ b̄)].

We then have [a] ? [b] ⊇ {a ? b : a ∈ [a], b ∈ [b]}.



Properties of interval arithmetic

(1) IA is associative and commutative.

(2) IA is not distributive:

[−1,1]([−1,0] + [3,4]) = [−1,1][2,4] = [−4,4],

[−1,1][−1,0] + [−1,1][3,4] = [−1,1] + [−4,4] = [−5,5].

We do, however, always have

[a]([b] + [c]) ⊆ [a][b] + [a][c].

(3) IA has no multiplicative or additive inverse:

0 ∈ [a] − [a]; 1 ∈ [a] ÷ [a].

(4) IA is inclusion monotonic, i.e., if [a] ⊆ [a′],
and [b] ⊆ [b′], then

[a] ? [b] ⊆ [a′] ? [b′],

where we demand that 0 /∈ [b′] for division.



Interval extensions

One of the the main goals is to enclose the

range of a function f :

R(f ;D) = {f(x): x ∈ D}.
This is achieved by constructing an interval ex-

tension F : IR → IR of the real-valued function

f : R → R.

Monotone functions are easy!

e[x] = [ex, ex̄]
√

[x] = [
√

x,
√

x̄] if 0 ≤ x

log [x] = [log x, log x̄] if 0 < x
arctan [x] = [arctanx,arctan x̄] .

Piecewise monotone functions are also OK!

[x]n =



























[xn, x̄n] : if n ∈ Z+ is odd,

[mig([x])n,mag([x])n] : if n ∈ Z+ is even,

[1,1] : if n = 0,

[1/x̄,1/x]−n : if n ∈ Z−; 0 /∈ [x].



Standard/elementary functions

We define the class of standard functions to

be the set

S={ex, log x, xa,absx, sinx, cos x, tanx, . . .

. . . ,arccos x,arctanx, sinh x, cosh x, tanhx}.
For any f ∈ S, we can construct a sharp inter-

val extension F , i.e.,

f ∈ S ⇒ R(f ; [x]) = F ([x]).

Building new functions is easy...

We use finite combinations of constants, ele-

ments of S, {+,−,×,÷}, and ◦ to build the

elementary functions E. Interval versions of

S and {+,−,×,÷} provide the corresponding

interval extensions.



... but we may now overestimate the range.

If f(x) = x
1+x2, then F ([x]) = [x]

1+[x]2
. For the

interval [x] = [1,2], we have

R(f ; [1,2]) = [25, 1
2] ⊆ [15,1] = F ([1,2]).

Looks are important!

f1(x) = 1 − x2 = (1 − x)(1 + x) = f2(x),

but

F1([x]) = 1− [x]2 6= (1− [x])(1+[x]) = F2([x]),

since

F1([−1,1])=1 − [−1,1]2 = [1,1] − [0,1] = [0,1],

F2([−1,1])=(1 − [−1,1])(1 + [−1,1])

=[0,2] × [0,2] = [0,4].

Different representations – different functions.



Interval enclosures

Theorem 1: If f ∈ E, and F ([x]) is well-

defined, then

R(f ; [x]) ⊆ F ([x]).

How tight is the enclosure?

Theorem 2: If f ∈ E, [x] = [x1] ∪ · · · ∪ [xk],

and F ([x]) is well-defined, then

R(f ; [x]) ⊆
k
⋃

i=1

F ([xi]) ⊆ F ([x]).

If f is Lipschitz on [x] there is a K ≥ 0 s.t.

rad





k
⋃

i=1

F ([xi])



−rad
(

R(f ; [x])
)

≤ K max
i

rad ([xi]) .

I.A. (almost) gives us access to R(f ; [x]).



Computer-aided proofs

An important consequence of Theorem 1 is

y /∈ F ([x]) ⇒ y /∈ R(f ; [x]).

Exercise: Let f(x) = (sin x − x2 + 1) cos x.
Prove that f(x) 6= 0 for x ∈ [0, 1

2].

Solution: Define F ([x]) = (sin [x]−[x]2+1) cos [x].
Then, by Theorem 1, we have

R(f ; [0, 1
2])⊆ F ([0, 1

2]) = . . .

. . .=[34 cos 1
2,1 + sin 1

2] ⊆ [0.65818, 1.4795].
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Graph enclosures

Exercise: Draw the graph of the function

f(x) = cos3 x + sinx

over the interval [−5,5].

Solution: Define F ([x]) = cos3 [x]+sin [x], and
bisect the domain into smaller pieces until

max
i

rad
(

F ([xi])
)

≤ TOL.
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“Impossible” cases too

Exercise: Draw the graph of the function

fa(x) = x2 − 3
10e

−(a(x−1
2))2

for a = 200 over the interval [−1,1].
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f(x) = sqr(x) − 3/10*exp(−sqr(200(x − 1/2)))

Even when a is huge, the I.A.-methods cannot

miss the sharp bend! Conventional methods

must miss it.



Root enclosures

Exercise: Find all roots of the function

f(x) = sinx(x − cos x)

over the domain [−10,10].

Solution: Define F ([x]) = sin [x]([x] − cos [x]),
bisect the domain, and throw away all pieces

that satisfy 0 /∈ F ([xi]).
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#--------------------------------------------------------------#
Domain : [-10,10]
Tolerance : 0.001
Function calls: 227
Root list :
1: [-9.4251,-9.4244] 4: [-0.0007,+0.0000] 7: [+3.1414,+3.1421]
2: [-6.2836,-6.2829] 5: [+0.0000,+0.0007] 8: [+6.2829,+6.2836]
3: [-3.1421,-3.1414] 6: [+0.7385,+0.7392] 9: [+9.4244,+9.4251]

#--------------------------------------------------------------#



Implicit curves (R2)

Exercise: Draw the locus defined by

f(x, y) = sin (cos x2 + 10 sin y2) − y cos x = 0;

restricted to the domain [−5,5] × [−5,5].

MATLAB produces the following picture:

−5 0 5
−5

0

5

The locus |f(x, y)| = 0, however, is empty!?!



Implicit curves...

The validated enclosure in both cases is

#--------------------------------------------------------------#
Number of split calls : 9
Number of function calls: 87550
Number of solution boxes: 19718
Maximal box diameter : 0.0195312
#--------------------------------------------------------------#



Implicit curves...

A sharper look at the previous picture...

No zeroes can exist outside the boxes:

0 /∈ F ([x(i)]) ⇒ 0 /∈ R(f ; [x(i)]).



Optimization

Exercise: Find the minimum of the function

fa(x) = x2 − 3
10e

−(a(x−1
2))2

for a = 10000 over the interval [−3
2, 3

2].

Solution: Adaptive branch and bound.

#--------------------------------------------------------------#

Domain : [-1.5,1.5]

Tolerance : 9.09495e-13 (2^-40)

Function calls : 3810
Global minimizer : [4.9999998318185e-01,4.9999998348404e-01]

Global minimum : -5.000000833367428e-02 +- 3.412409245e-13

Non-rigorous estimate: 3.113063833543e-09

#--------------------------------------------------------------#

Prove that the minimum is negative:

#--------------------------------------------------------------#
Domain : [-1.5,1.5]

Tolerance : 0.03125 (2^-5)

Function calls : 67

Global minimizer : [4.9996948242187e-01,5.0001525878907e-01]

Global minimum : -4.914849425348847e-02 +- 8.820223934e-04

Non-rigorous estimate: 3.71e-04
#--------------------------------------------------------------#



Newton’s method in IR

Assume that f ∈ C1([x], R), and that x∗ ∈ [x]

is a root of f . Also assume that 0 /∈ F ′([x]),
and define

Nf([x]) = mid([x]) − f(mid([x]))

F ′([x])
.

Theorem 3: Assume that Nf([x]) exists. Then

Nf([x]) ∩ [x] = ∅ ⇒ f has no roots in [x];

Nf([x]) ⊆ [x] ⇒ f has a unique root in [x].

mid([x]) [x]
[x’]

N ([x])f



Newton’s method in IR

Set [x(0)] = [x], and consider the sequence

[x(k+1)] = Nf([x
(k)]) ∩ [x(k)], k ∈ N.

Bonus: The iterates behave very regularly.

Theorem 4: If Nf([x
(0)]) exists, and [x(0)]

contains a root x∗ of f , then so do all [x(k)],

k ∈ N. Furthermore, the intervals [x(k)] form a

nested sequence converging to x∗.

Major drawback: The Newton operator Nf is

undefined when 0 ∈ F ′([x]).

Fix 1: Use bisection to single out subintervals

[x̃] on which 0 /∈ F ′([x̃]). These are sent to the

interval Newton method. Also keep all small

[x̃] with 0 ∈ F ′([x̃]) and 0 ∈ F ([x̃]).



Newton’s method in IR

Example: Consider the function

fa(x) = x2 − 3
10e

−(a(x−1
2))2

with a = 10000 over the interval [14,1]. Recall

that this function has a very sharp bend.

#--------------------------------------------------------------#
Searching the domain [0.25,1] with TOL = 0.00390625 (2^-8).
After the adaptive bisection, we have:

1 subdomain where f may have roots.

There may be roots within
1: [0.496094,0.501953]

#--------------------------------------------------------------#

Decrease the tolerance...

#--------------------------------------------------------------#
Searching the domain [0.25,1] with TOL = 1.52588e-05 (2^-16).
After the adaptive bisection, we have:

2 subdomains where f is strictly monotone.

Sending [0.500031,0.500122] to the Newton operator...
Finite convergence!
The unique root is within: +5.000426791339584e-01 +- 2.77556e-16

Sending [4.99939e-01,4.99985e-01] to the Newton operator...
Finite convergence!
The unique root is within: +4.999572808660400e-01 +- 1.38778e-16
#--------------------------------------------------------------#



Extended interval arithmetic

Fix 2: Extend the interval arithmetic to allow

for division by zero.

Example: [1,2] ÷ [−3,5] =???

[1,2]÷ [−3,5] = [1,2] ÷ ([−3,0] ∪ [0,5])

=([1,2] ÷ [−3,0]) ∪ ([1,2] ÷ [0,5])

Now we define the division as follows:

[1,2]÷[−3,0]
def
= lim

ε→0−
[1,2]÷[−3, ε] = [−∞,−1

3]

and

[1,2] ÷ [0,5]
def
= lim

ε→0+
[1,2] ÷ [ε,5] = [15,+∞].

Answer: [1,2] ÷ [−3,5] = [−∞,−1
3] ∪ [15,+∞].



The extended interval Newton Method

When computing the Newton iterates, the un-

bounded intervals are intersected back to com-

pact domains by the scheme

[x(k+1)] = Nf([x
(k)]) ∩ [x(k)], k ∈ N.

Example: Again the function f10000(x).

#--------------------------------------------------------------#
Domain : [2.500000e-01,1.000000e+00]
Tolerance : 9.536743e-07 (2^-20)
Unique root within : [+0.49995676466028721,+0.49995838064162701]
Unique root within : [+0.50004262913481123,+0.50004274553256134]
Function calls : 34
#--------------------------------------------------------------#



The Lorenz equations

Introduced in 1963 by Edward Lorenz.

ẋ1=−σx1 + σx2

ẋ2=%x1 − x2 − x1x3

ẋ3=−βx3 + x1x2,

Classical parameters: σ = 10, β = 8/3, % = 28.

Symmetry: S(x1, x2, x3) = (−x1,−x2, x3).

Three fixed points: the origin 0 and

C± = (±
√

β(% − 1),±
√

β(% − 1), % − 1).

Stability: The origin is a saddle point with

0 < −λ3 < λ1 < −λ2.

C± are unstable spirals.



Solutions of the Lorenz equations



The Lorenz equations...

Thus, the stable manifold of the origin W s(0)

is two-dimensional, and the unstable manifold

of the origin Wu(0) is one-dimensional.

Constant divergence:

∂ẋ1

∂x1
+

∂ẋ2

∂x2
+

∂ẋ3

∂x3
= −(σ + β + 1),

The volume of a solid at time t can be ex-

pressed as

V (t) = V (0)e−(σ+β+1)t ≈ V (0)e−13.7t,

for the classical parameter values.

Absorbing region: U containing the origin.

Maximal invariant set:

A =
⋂

t≥0

ϕ(U , t).

A must have zero volume, and W u(0) ⊆ A.



Lorenz observed:

[1] An attracting invariant set A

[2] Sensitive dependence on i.c.

[3] Fractal structure of A

[4] Robustness of A
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He observed a strange attractor!



A geometric model:

Introduced by Guckenheimer and Williams (1979)

Return map: R : Σ \ Γ → Σ.

The return plane Σ is foliated by stable leaves.

Projecting along these stable leaves induces a

1-d singular function:

f : [−1,1] → [−1,1]



The function f : [−1,1] → [−1,1] satisfies:

[1] f(−x) = −f(x);

[2] limx→0 f ′(x) = +∞;

[3] f ′′(x) < 0 on (0,1];

[4] f ′(x) >
√

2;

[1] - [4] ⇒ f is topologically transitive on [−1,1].



What is a strange attractor?

We need to prove:

(1) There exists a compact N ⊂ Σ, such that

R(N \ Γ) ⊂ N.

(2) On N , there exists a cone field C such that

for all x ∈ N ,

DR(x) · C(x) ⊂ C(R(x)).

(3) There exists C > 0 and λ > 1 such that for

all v ∈ C(x), x ∈ N , we have

|DRn(x)v| ≥ Cλn|v|, n ≥ 0.

Open conditions - Perfect for I.A.!

Computing R and DR requires solving interval-

valued differential equations. This is still an

open field of research.



How do we use these results?

(1) proves the existence of an attracting

set. This could be a single periodic orbit.

(2)+(3) rule out the possibility of just ob-

serving a stable periodic orbit.

Strong enough expansion ⇒ topological tran-

sitivity.

R area contracting + expansion in C(x) ⇒
stable foliation.

Theorem: For the classical parameter values,

the Lorenz equations support a robust strange

attractor A – the Lorenz attractor!



The wrapping effect

Example: Solve the ODE (ẋ1, ẋ2) = (x2,−x1).

Exponential growth of the solution set!

Fix: The Lorenz equations are strongly volume

contracting. An adaptive bisection scheme damp-

ens the overestimation of R and DR.

Analytic (non-numerical) techniques are needed

near the fixed point of the flow.
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