4ECM Prize lecture, June 29 2004

Validated numerics

and the art of dividing by zero

Warwick Tucker Department of Mathematics Uppsala University warwick@math.uu.se

June 23, 2004

Validated numerics

and the art of dividing by zero

Warwick Tucker Department of Mathematics Uppsala University warwick@math.uu.se

What is validated numerics?

- set-valued mathematics;
- intervals replace real numbers.

Why use validated numerics?

- provides rigorous error bounds;
- models uncertainty;
- may produce faster numerical methods.

Early work: R. C. Young (1931), M. Warmus (1956), T. Sunaga (1958), R. E. Moore (1959) *Interval Analysis* (1966).

Intervals

We will adopt the short-hand notation

 $[a] = [\underline{a}, \overline{a}] = \{ x \in \mathbb{R} \colon \underline{a} \le x \le \overline{a} \},\$

and let ${\rm I\!R}$ denote the set of all compact intervals of the real line:

 $\mathbb{R} = \{ [a] : \underline{a}, \overline{a} \in \mathbb{R}; \underline{a} \leq \overline{a} \}.$

We allow for *thin* intervals with $\underline{a} = \overline{a}$.

Example: $[1,\pi] \in \mathbb{R}$, but not [2,1] or $[1,\infty]$.

As sets, intervals inherit relations such as

 $= \subseteq \subset \neq \not \subset \dots$ Furthermore, we can define the operations $[a] \sqcup [b] = [\min\{\underline{a}, \underline{b}\}, \max\{\overline{a}, \overline{b}\}],$

 $[a] \cap [b] = \begin{cases} \emptyset & : \text{ if } \overline{a} < \underline{b} \text{ or } \overline{b} < \underline{a}, \\ [\max\{\underline{a}, \underline{b}\}, \min\{\overline{a}, \overline{b}\}] & : \text{ otherwise.} \end{cases}$

Useful functions

Functions from \mathbb{R} to \mathbb{R} :

 $\operatorname{rad}([a]) = \frac{1}{2}(\bar{a} - \underline{a}); \qquad \operatorname{mid}([a]) = \frac{1}{2}(\bar{a} + \underline{a}),$ $\operatorname{mig}([a]) = \begin{cases} 0 & : \text{ if } 0 \in [a], \\ \min\{|\underline{a}|, |\overline{a}|\} & : \text{ otherwise;} \end{cases}$ $\max\{|\underline{a}|, |\overline{a}|\}.$

Functions from \mathbb{R} to \mathbb{R} :

 $abs([a]) = \{|a| : a \in [a]\} = [mig([a]), mag([a])].$

\mathbb{R} as a metric space:

We can turn \mathbb{R} into a metric space by equipping it with the Hausdorff distance:

 $d([a], [b]) = \max\{|\underline{a} - \underline{b}|, |\overline{a} - \overline{b}|\}.$

Using the metric, we can define the notion of a convergent sequence of intervals:

$$\lim_{k \to \infty} [a_k] = [a] \quad \Leftrightarrow \quad \lim_{k \to \infty} d([a_k], [a]) = 0.$$

Arithmetic over \mathbb{R} :

Definition: If \star is one of the operators $+, -, \times, \div$, and if $[a], [b] \in \mathbb{R}$, then

$$[a] \star [b] = \{a \star b \colon a \in [a], b \in [b]\},\$$

except that $[a] \div [b]$ is undefined if $0 \in [b]$.

Uncountable many cases to consider!

Continuity, monotonicity, and compactness \Rightarrow

$$[a] + [b] = [\underline{a} + \underline{b}, \overline{a} + \overline{b}]$$

$$[a] - [b] = [\underline{a} - \overline{b}, \overline{a} - \underline{b}]$$

$$[a] \times [b] = [\min\{\underline{ab}, \underline{a}\overline{b}, \overline{a}\underline{b}, \overline{a}\overline{b}\}, \max\{\underline{ab}, \underline{a}\overline{b}, \overline{a}\underline{b}, \overline{a}\overline{b}\}]$$

$$[a] \div [b] = [a] \times [1/\overline{b}, 1/\underline{b}], \quad \text{if } 0 \notin [b].$$

On a computer we use *directed rounding*:

 $[a] + [b] = [\bigtriangledown (\underline{a} \oplus \underline{b}), \triangle (\overline{a} \oplus \overline{b})].$

We then have $[a] \star [b] \supseteq \{a \star b \colon a \in [a], b \in [b]\}.$

Properties of interval arithmetic

(1) IA is associative and commutative.

(2) IA is *not* distributive: [-1,1]([-1,0] + [3,4]) = [-1,1][2,4] = [-4,4], [-1,1][-1,0] + [-1,1][3,4] = [-1,1] + [-4,4] = [-5,5].We do, however, always have

 $[a]([b] + [c]) \subseteq [a][b] + [a][c].$

(3) IA has no multiplicative or additive inverse:

 $0 \in [a] - [a];$ $1 \in [a] \div [a].$

(4) IA is *inclusion monotonic*, i.e., if $[a] \subseteq [a']$, and $[b] \subseteq [b']$, then

 $[a] \star [b] \subseteq [a'] \star [b'],$

where we demand that $0 \notin [b']$ for division.

Interval extensions

One of the the main goals is to enclose the range of a function f:

$$R(f; D) = \{f(x) \colon x \in D\}.$$

This is achieved by constructing an *interval extension* $F \colon \mathbb{R} \to \mathbb{R}$ of the real-valued function $f \colon \mathbb{R} \to \mathbb{R}$.

Monotone functions are easy!

$e^{[x]}$	=	$[e^{\underline{x}},e^{\overline{x}}]$	
$\sqrt{[x]}$	=	$[\sqrt{\underline{x}},\sqrt{\overline{x}}]$	if $0 \leq \underline{x}$
$\log[x]$	=	$[\log \underline{x},\log \overline{x}]$	if $0 < \underline{x}$
$\arctan[x]$	=	[arctan $\underline{x},$ arctan \overline{x}] .	

Piecewise monotone functions are also OK!

 $[x]^{n} = \begin{cases} [\underline{x}^{n}, \overline{x}^{n}] & : \text{ if } n \in \mathbb{Z}^{+} \text{ is odd,} \\ [\text{mig}([x])^{n}, \text{mag}([x])^{n}] & : \text{ if } n \in \mathbb{Z}^{+} \text{ is even,} \\ [1,1] & : \text{ if } n = 0, \\ [1/\overline{x}, 1/\underline{x}]^{-n} & : \text{ if } n \in \mathbb{Z}^{-}; \ 0 \notin [x]. \end{cases}$

Standard/elementary functions

We define the class of *standard* functions to be the set

 $\mathfrak{S} = \{e^x, \log x, x^a, \operatorname{abs} x, \sin x, \cos x, \tan x, \dots\}$

 \ldots , arccos x, arctan x, sinh x, cosh x, tanh x}.

For any $f \in \mathfrak{S}$, we can construct a *sharp* interval extension F, i.e.,

$$f \in \mathfrak{S} \Rightarrow R(f; [x]) = F([x]).$$

Building new functions is easy...

We use finite combinations of constants, elements of \mathfrak{S} , $\{+, -, \times, \div\}$, and \circ to build the *elementary* functions \mathfrak{E} . Interval versions of \mathfrak{S} and $\{+, -, \times, \div\}$ provide the corresponding interval extensions.

... but we may now overestimate the range.

If $f(x) = \frac{x}{1+x^2}$, then $F([x]) = \frac{[x]}{1+[x]^2}$. For the interval [x] = [1, 2], we have

$$R(f; [1, 2]) = \left[\frac{2}{5}, \frac{1}{2}\right] \subseteq \left[\frac{1}{5}, 1\right] = F([1, 2]).$$

Looks are important!

$$f_1(x) = 1 - x^2 = (1 - x)(1 + x) = f_2(x),$$

but

$$F_1([x]) = 1 - [x]^2 \neq (1 - [x])(1 + [x]) = F_2([x]),$$

since

$$F_1([-1,1]) = 1 - [-1,1]^2 = [1,1] - [0,1] = [0,1],$$

$$F_2([-1,1]) = (1 - [-1,1])(1 + [-1,1])$$

$$= [0,2] \times [0,2] = [0,4].$$

Different representations – different functions.

Interval enclosures

Theorem 1: If $f \in \mathfrak{E}$, and F([x]) is well-defined, then

$$R(f; [x]) \subseteq F([x]).$$

How tight is the enclosure?

Theorem 2: If $f \in \mathfrak{E}$, $[x] = [x_1] \cup \cdots \cup [x_k]$, and F([x]) is well-defined, then

$$R(f; [x]) \subseteq \bigcup_{i=1}^{k} F([x_i]) \subseteq F([x]).$$

If f is Lipschitz on [x] there is a $K \ge 0$ s.t.

$$\operatorname{rad}\left(\bigcup_{i=1}^{k} F([x_i])\right) - \operatorname{rad}\left(R(f; [x])\right) \leq K \max_{i} \operatorname{rad}\left([x_i]\right).$$

I.A. (almost) gives us access to R(f; [x]).

Computer-aided proofs

An important consequence of Theorem 1 is

$$y \notin F([x]) \Rightarrow y \notin R(f; [x]).$$

Exercise: Let $f(x) = (\sin x - x^2 + 1) \cos x$. Prove that $f(x) \neq 0$ for $x \in [0, \frac{1}{2}]$.

Solution: Define $F([x]) = (\sin [x] - [x]^2 + 1) \cos [x]$. Then, by Theorem 1, we have

$$R(f; [0, \frac{1}{2}]) \subseteq F([0, \frac{1}{2}]) = \dots$$
$$\dots = [\frac{3}{4} \cos \frac{1}{2}, 1 + \sin \frac{1}{2}] \subseteq [0.65818, 1.4795].$$

Graph enclosures

Exercise: Draw the graph of the function $f(x) = \cos^3 x + \sin x$ over the interval [5.5]

over the interval [-5, 5].

Solution: Define $F([x]) = \cos^3 [x] + \sin [x]$, and bisect the domain into smaller pieces until

 $\max_{i} \operatorname{rad} \left(F([x_i]) \right) \leq \operatorname{TOL}.$

"Impossible" cases too

Exercise: Draw the graph of the function $f_a(x) = x^2 - \frac{3}{10}e^{-(a(x-\frac{1}{2}))^2}$ for a = 200 over the interval [-1, 1].

Even when *a* is huge, the I.A.-methods *cannot* miss the sharp bend! Conventional methods *must* miss it.

Root enclosures

Exercise: Find all roots of the function

$$f(x) = \sin x(x - \cos x)$$

over the domain [-10, 10].

Solution: Define $F([x]) = \sin [x]([x] - \cos [x])$, bisect the domain, and throw away all pieces that satisfy $0 \notin F([x_i])$.

Implicit curves (\mathbb{R}^2)

Exercise: Draw the locus defined by $f(x,y) = \sin(\cos x^2 + 10 \sin y^2) - y \cos x = 0;$ restricted to the domain $[-5,5] \times [-5,5].$

MATLAB produces the following picture:

The locus |f(x, y)| = 0, however, is empty!?!

Implicit curves...

The validated enclosure in both cases is

Number of solution boxes: 19718 Maximal box diameter : 0.0195312 #-----#

Implicit curves...

A sharper look at the previous picture...

No zeroes can exist outside the boxes:

 $0 \notin F([x^{(i)}]) \Rightarrow 0 \notin R(f; [x^{(i)}]).$

Optimization

Exercise: Find the minimum of the function

$$f_a(x) = x^2 - \frac{3}{10}e^{-(a(x-\frac{1}{2}))^2}$$

for a = 10000 over the interval $\left[-\frac{3}{2}, \frac{3}{2}\right]$.

Solution: Adaptive branch and bound.

#	#
Domain :	[-1.5,1.5]
Tolerance :	9.09495e-13 (2^-40)
Function calls :	3810
Global minimizer :	[4.9999998318185e-01,4.9999998348404e-01]
Global minimum :	-5.000000833367428e-02 +- 3.412409245e-13
Non-rigorous estimate:	3.113063833543e-09
#	#

Prove that the minimum is negative:

#	#
Domain :	[-1.5,1.5]
Tolerance :	0.03125 (2^-5)
Function calls :	67
Global minimizer :	[4.9996948242187e-01,5.0001525878907e-01]
Global minimum :	-4.914849425348847e-02 +- 8.820223934e-04
Non-rigorous estimate:	3.71e-04
#	#

Newton's method in ${\ensuremath{\mathbb R}}$

Assume that $f \in C^1([x], \mathbb{R})$, and that $x^* \in [x]$ is a root of f. Also assume that $0 \notin F'([x])$, and define

$$N_f([x]) = \operatorname{mid}([x]) - \frac{f(\operatorname{mid}([x]))}{F'([x])}$$

Theorem 3: Assume that $N_f([x])$ exists. Then

 $N_f([x]) \cap [x] = \emptyset \Rightarrow f$ has no roots in [x];

 $N_f([x]) \subseteq [x] \Rightarrow f$ has a unique root in [x].

Newton's method in ${\ensuremath{\mathbb R}}$

Set
$$[x^{(0)}] = [x]$$
, and consider the sequence
 $[x^{(k+1)}] = N_f([x^{(k)}]) \cap [x^{(k)}], \quad k \in \mathbb{N}.$

Bonus: The iterates behave very regularly.

Theorem 4: If $N_f([x^{(0)}])$ exists, and $[x^{(0)}]$ contains a root x^* of f, then so do all $[x^{(k)}]$, $k \in \mathbb{N}$. Furthermore, the intervals $[x^{(k)}]$ form a nested sequence converging to x^* .

Major drawback: The Newton operator N_f is undefined when $0 \in F'([x])$.

Fix 1: Use bisection to single out subintervals $[\tilde{x}]$ on which $0 \notin F'([\tilde{x}])$. These are sent to the interval Newton method. Also keep all small $[\tilde{x}]$ with $0 \in F'([\tilde{x}])$ and $0 \in F([\tilde{x}])$.

Newton's method in \mathbb{R}

Example: Consider the function

$$f_a(x) = x^2 - \frac{3}{10}e^{-(a(x-\frac{1}{2}))^2}$$

with a = 10000 over the interval $\left[\frac{1}{4}, 1\right]$. Recall that this function has a *very* sharp bend.

```
#-----#
Searching the domain [0.25,1] with TOL = 0.00390625 (2^-8).
After the adaptive bisection, we have:
    1 subdomain where f may have roots.
There may be roots within
    1: [0.496094,0.501953]
#------##
```

Decrease the tolerance...

Extended interval arithmetic

Fix 2: Extend the interval arithmetic to allow for division by zero.

Example: $[1,2] \div [-3,5] = ???$ $[1,2] \div [-3,5] = [1,2] \div ([-3,0] \cup [0,5])$ $= ([1,2] \div [-3,0]) \cup ([1,2] \div [0,5])$

Now we *define* the division as follows:

 $[1,2] \div [-3,0] \stackrel{\text{def}}{=} \lim_{\varepsilon \to 0^-} [1,2] \div [-3,\varepsilon] = [-\infty,-\frac{1}{3}]$ and

$$[1,2] \div [0,5] \stackrel{\text{def}}{=} \lim_{\varepsilon \to 0^+} [1,2] \div [\varepsilon,5] = [\frac{1}{5},+\infty].$$

Answer: $[1,2] \div [-3,5] = [-\infty, -\frac{1}{3}] \cup [\frac{1}{5}, +\infty].$

The extended interval Newton Method

When computing the Newton iterates, the unbounded intervals are intersected back to compact domains by the scheme

Example: Again the function $f_{10000}(x)$.

#		
π		п
Domain	:	[2.500000e-01,1.000000e+00]
Tolerance	:	9.536743e-07 (2^-20)
Unique root within	:	[+0.49995676466028721,+0.49995838064162701]
Unique root within	:	[+0.50004262913481123,+0.50004274553256134]
Function calls	:	34
#		#

The Lorenz equations

Introduced in 1963 by Edward Lorenz.

$$\dot{x}_{1} = -\sigma x_{1} + \sigma x_{2}$$
$$\dot{x}_{2} = \rho x_{1} - x_{2} - x_{1} x_{3}$$
$$\dot{x}_{3} = -\beta x_{3} + x_{1} x_{2},$$

Classical parameters: $\sigma = 10$, $\beta = 8/3$, $\varrho = 28$.

Symmetry: $S(x_1, x_2, x_3) = (-x_1, -x_2, x_3).$

Three fixed points: the origin 0 and

$$C^{\pm} = (\pm \sqrt{\beta(\varrho - 1)}, \pm \sqrt{\beta(\varrho - 1)}, \varrho - 1).$$

Stability: The origin is a saddle point with

$$0<-\lambda_3<\lambda_1<-\lambda_2.$$

 C^{\pm} are unstable spirals.

Solutions of the Lorenz equations

The Lorenz equations...

Thus, the stable manifold of the origin $W^{s}(0)$ is two-dimensional, and the unstable manifold of the origin $W^{u}(0)$ is one-dimensional.

Constant divergence:

$$\frac{\partial \dot{x}_1}{\partial x_1} + \frac{\partial \dot{x}_2}{\partial x_2} + \frac{\partial \dot{x}_3}{\partial x_3} = -(\sigma + \beta + 1),$$

The volume of a solid at time t can be expressed as

$$V(t) = V(0)e^{-(\sigma+\beta+1)t} \approx V(0)e^{-13.7t},$$

for the classical parameter values.

Absorbing region: $\ensuremath{\mathcal{U}}$ containing the origin.

Maximal invariant set:

$$\mathcal{A} = \bigcap_{t \ge 0} \varphi(\mathcal{U}, t).$$

 \mathcal{A} must have zero volume, and $W^u(0) \subseteq \mathcal{A}$.

Lorenz observed:

- [1] An attracting invariant set ${\cal A}$
- [2] Sensitive dependence on i.c.
- [3] Fractal structure of ${\cal A}$
- [4] Robustness of ${\cal A}$

He observed a strange attractor!

A geometric model:

Introduced by Guckenheimer and Williams (1979)

Return map: $R: \Sigma \setminus \Gamma \to \Sigma$.

The return plane Σ is foliated by stable leaves.

Projecting along these stable leaves induces a 1-d singular function:

$$f\colon [-1,1]\to [-1,1]$$

The function $f: [-1, 1] \rightarrow [-1, 1]$ satisfies:

[1]
$$f(-x) = -f(x);$$

[2] $\lim_{x\to 0} f'(x) = +\infty;$
[3] $f''(x) < 0$ on $(0, 1];$
[4] $f'(x) > \sqrt{2};$

[1] - [4] \Rightarrow f is topologically transitive on [-1, 1].

What is a strange attractor?

We need to prove:

- (1) There exists a compact $N \subset \Sigma$, such that $R(N \setminus \Gamma) \subset N$.
- (2) On N, there exists a cone field \mathfrak{C} such that for all $x \in N$,

 $DR(x) \cdot \mathfrak{C}(x) \subset \mathfrak{C}(R(x)).$

(3) There exists C > 0 and $\lambda > 1$ such that for all $v \in \mathfrak{C}(x)$, $x \in N$, we have

 $|DR^n(x)v| \ge C\lambda^n |v|, \qquad n \ge 0.$

Open conditions - Perfect for I.A.!

Computing R and DR requires solving intervalvalued differential equations. This is still an open field of research. How do we use these results?

(1) proves the existence of an attracting set. This *could* be a single periodic orbit.

(2)+(3) rule out the possibility of just observing a stable periodic orbit.

Strong enough expansion \Rightarrow topological transitivity.

R area contracting + expansion in $\mathfrak{C}(x) \Rightarrow$ stable foliation.

Theorem: For the classical parameter values, the Lorenz equations support a robust strange attractor \mathcal{A} – the Lorenz attractor!

The wrapping effect

Example: Solve the ODE $(\dot{x}_1, \dot{x}_2) = (x_2, -x_1)$.

Exponential growth of the solution set!

Fix: The Lorenz equations are strongly volume contracting. An adaptive bisection scheme dampens the overestimation of R and DR.

Analytic (non-numerical) techniques are needed near the fixed point of the flow.

Other articles using I.A.

D. Gabai, G. R. Mayerhoff, and N. Thurston, *Homotopy hyperbolic 3-manifolds are hyperbolic*. Annals of Mathematics, **157**, 335–431, 2003.

J. Hass, M. Hutchings, and R. Schlafly, *The Double Bubble Conjecture*. Electr. Research Announcements of the Amer. Math. Soc., **1**, 98–102, 1995.

T. C. Hales, *Some algorithms arising in the proof of the Kepler conjecture*. Discrete and computational geometry, **25**, 489–507, Algorithms Combin., 2003.

K. Makino and M. Berz, *Taylor Models and Other Validated Functional Inclusion Methods*. Int. J. of Pure and Appl. Math., **4**, 379–456, 2003.

I. Mitrea, W. Tucker, *Some Counterexamples for the Spectral Radius Conjecture*. Differential and Integral Equations, **16:12**, 1409–1439, 2003.

N. S. Nedialkov, K. R. Jackson and G. F. Corliss, Validated Solutions of Initial Value Problems for Ordinary Differential Equations. J. Applied Math. and Comp., **105**, 21–68, 1999.

P. Zgliczynski, *Attracting fixed points for the Kuramoto-Sivashinsky equation*, SIAM J. Applied Dynamical Systems, **1:2**, 215–235, 2002.

References:

G. Alefeld and J. Herzberger, *Introduction to Interval Computations*. Academic Press, New York, 1983.

W. Kahan, *IEEE Standard 754 for Binary Floating-Point Arithmetic*. lecture notes, 1996. Available from http://www.cs.berkeley.edu/~wkahan/

E. N. Lorenz, *Deterministic Non-periodic Flow*. J. Atmos. Sci. **20** 130–141, 1963.

R. E. Moore, *Interval Analysis*. Prentice-Hall, Englewood Cliffs, New Jersey, 1966.

T. Sunaga, *Theory of interval algebra and its application to numerical analysis*. In: RAAG Memoirs, Ggujutsu Bunken Fukuy-kai. Tokyo, **2** 29–46, 1958.

W. Tucker, A Rigorous ODE Solver and Smale's 14th Problem, Found. Comput. Math. **2:1**, 53–117, 2002.

M. Warmus, *Calculus of Approximations*. Bulletin de l'Academie Polonaise de Sciences, **4:5** 253–257, 1956.

R. C. Young, *The algebra of multi-valued quantities*. Mathematische Annalen, **104** 260–290, 1931.

Interval Computations Web Page

http://www.cs.utep.edu/interval-comp