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In this paper we describe the use of interval arithmetic in an experiment fi~r determining G, Newum's 
ccmstant of gravitation. Using an interval verskm cff Gaussian quadrature, we bound the effects of 
numerical errors and of .several tolerances in the physical experiment. This allowed to identify "critical" 
tolerances which must be reduced in order to obtain G with the desired accuracy. 
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yMeHblUeHa /IJl.q aoc r t txeu t t~  rpe6yeMofi TOqH()~l'H G. 

1. Introduction 
Of all the fundamental physical constants, the Newtonian constant of gravitation G is known 
with the least precision. The CODATA (Committee on Data for Science and Technology of the 
International Council of Scientific Unions)recommends the value G = 6.67259.10 -11 m3kg-ls  2 
with a relative uncertainty of 1.28.10 -a [1]. Since gravitation is the most obvious physical force 
in everyday life and the dominant force in medium to very large distance ranges, much effort 
has been undertaken to determine this constant to a higher precision [4]. 

Several different experiments have been made in the last few years. Some of the results 
are claimed to have a relative error of less than 10 -4 [2, 9]. However, since these results differ 
from each other by more than 10 -3 , not all of them are correct. Therefore, care must be 
taken to monitor every possible error introduced in the physical experiment itself and in the 
following computations. 

One of the experiments for determining G takes place at the University of Wuppertal 
[13, 14]. Its ultimate goal is to obtain a value for G with a relative uncertainty in the order 
of 10 -s. The project described in this paper  was initiated to provide verified bounds for an 
important intermediate result in the computational part of the experiment and to investigate 
the sensitivity of this result to tolerances in the geometry of the experiment [5]. 

In the following section, we shortly summarize the physical background of the experiment. 
In Section 3 the goal of our project is specified. Then we briefly describe how the verified 
computations were done using Gaussian quadrature with result verification. In Section 5 we 
report the results. 

~) O. Holzmann, B. Lang, H. Schiitt, 1996 
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2. Physical background 
The experiment used in Wuppertal is sketched in Figure 1. Its main components are two 
massive cylinders (/ield masses) M1, M2 made of brass and a pair of pendulums whose bodies 
P1, P2 are p~t ioned midway between the field masses. The four bodies are all aligned on 
a common axis of symmetry, and the field masses can be moved along this axis. When MI 
is moved from the "far" position (solid lines in Figure 1) to  the ~near" position (dotted lines) 
then its attractive force to both pendulums increases, causing them to move towards M1. As 
the force is inversely proportional to the square of the distance, R1 is deflected more than P2, 
and the distance b between the pendulums increases by a small amount Ab. When both field 
masses move synchronously, Ab doubles. (The main reason for using two field masses is that 
some systematic errors almost cancel out due to the symmetry.) 

Although the field masses are quite heavy (each weighing more than half a ton!, the value 
Ab is tiny (approximately 12 nm). To be able to measure these small relative movements with 
high accuracy, the inner faces of the pendulums are spherical mirrors, so that together they 
work as a microwave resonator (Fabry.P~rot resonator). Thus, increasing the distance between the 
pendulums decreases the frequency of resonance, which in turn can be measured to very high 
accuracy. 

The constant G is obtained by equating the measured value of Ab with a value computed 
as follows [5, 13]. 

According to Newton's law of gravitation, a point mass mt is attracted by another point 
mass mu with the force 

F - -  _ t:lal} 2 

where d 6 ~3  is the vector from the first mass rr h to the second mass m2 and d = d/tidll. 
Therefore, the pendulum Pi is attracted by the field mass Mj with the force 

Fo = G /a /M ' P'PJd dvj dVi 

where the integration is over the volumes of the bodies and Pi, Pj denote the density functions 
within the pendulum and the field mass, resp. 

I 

..... . . . . . .   iiiii tii  ...... D .... 
6 6 

Figure 1. The principle of the experiment. Solid and dotted lines denote the "far" and "near" 
position, resp. (the movement of the pendulums is extremely over-emphasized). The common 
symmetry axis is shown as a dashed line 
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Figure 2. Decomposition of  the pendulum's body into six parts 
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Figure 3. Coordinate system used in the integration 

To  facilitate the integration, the pendulum is decomposed into six simpler shaped parts 
6 

Pik, see Figure 2. Thus  we have Fij = ~ Fikj, where 

Fi~j = G fp~k /Mt PiPJd'cvdVik. 
ildfl a " " :  

Making use of the common axis of  symmetry, we introduce cylindrical coordinates (see Figure 3): 

M: = {(rjcos~j,  rjsin~j,  zj) : rj 6 [O,~j], ~j 6 [0,27r], zj 6 [zj,~:]}. 

Note that for part 4 from Figure 2, gik is a function of  ri. Then,  the volume integral becomes 

frll -- 2w Fikj ~ G 'f02~:j(Z"(r')fOrJf0 fz ~j pipjd • _ z~k z j ~ r l r j  azj d~j drj dzi d~i dri 

where d = (r3 cos ~j  - ri cos qai, r :  sin ~:  - ri sin ~ ,  zj - z~). Substituting ¢fl --- tp~ - qaj and 
¢ = ~i + ¢Pj one obtains 

G f,~ f F~j _ _. H ~  rlrj 
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with 

r j  cos - ri cos 
d =  (r ,s in? - r i s i n F  

Z j  - Z i  

and 

If we assume radial density profiles (i.e., that p, and pj are functions of ri and r j ,  resp.), 
then the innermost integral can be evaluated explicitly. In particular, its x and y components 
are zero. Therefore, only the z component of Fikj must be computed: 

where a = rj -t T; - 2rjri cos cp 2 0. Again, the innermost integration can be done analytically: 

with f (ri, r,, p, 4) = 114- - 114-. For nm-verfid numerical evalu- 
ation (see the remark in Section 4) with a Gaussian quadrature method, the integrals can be 
further simplified with the substitutions x = gj - q and y = Zj - z, and the indefinite integral 

Thus, computing Fikj amounts to numerically evaluating a triple integral. 
In a final step, Ab is obtained from the Fikj values. The two masses generate the force 

on the pendulum P,,  resulting in the pendulum's deflection from the rest position: 

Here, m, and ~IJ, = \lgll, denote the pndulumys mass and frequency, resp. Therefore, placing 
the fieid masses at a certain position "posn increases the distance of the pendulums by 

Ab(pos) = Azl (pos) + Arz(pos) 

as compared to having no fieid masses. Moving the field masses from the "far" to the 'nearn 
position causes the distance to change by 

Note that 48 integrations Fikj are necessary to compute this value Ab which, together with the 
measured value, yields G. 
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3. The g0al of the project 
It is clear from the previous section that Ab must be measured and computed to high accuracy 
to yield G with small relative uncertainty. In the experiment, Ab can be measured with a 
relative error well below 10 -4 . Therefore, the error in the computed value should not be 
s/gnificandy larger. This error consists of two components: 

• Numerical errors: Using a quadrature formula yields only approximations to the exact 
values of the integrals. In addition, rounding errors are made during the computations. 

• Geometrical errors: The arguments of Section 2 made heavy use of the alignment of all 
four bodies on a common axis of symmetry. In practice, this perfect geometry cannot 
be achieved. In addition, the dimensions of the bodies are only known within certain 
tolerances. 

Interval arithmetic provides adequate means to capture both categories of uncertainty. The 
goal of this project was to use interval arithmetic to answer (if possible) the following questions: 

• Assuming a perfect geometry, can we guarantee a relative (numerical) error < 10-a? 

• Are the tolerances in the geometry small enough to guarantee a relative error < 10-5? 
In particular, tolerances in the following dimensions were to be investigated: 

- the radii and heights of the field masses Mj, 

- the dimensions of the pendulums, 

- the distance of the field masses from each other, 

- the displacement of the pair of pendulums from the midpoint 

* along the axis of symmetry and 

* perpendicular to this axis, 

- a twisted resonator, and 

- -  tilted field masses. 

4. Gaussian quadrature with result verification 
There exist a number of algorithms for numerical integration with result verification (see, 
e.g., [7]). The sophisticated i n t e g r a t i o n  program [I1] turned out to be not fully adequate 
for our particular application because its adaptive part took an excessive number of recursive 
subdivisions in order to achieve the prescribed accuracy. Instead, we used multidimensional 
Gaussian quadrature [8, I2] with inclusion of the remainder term, preceded by a static subdivision 
of the integration domain [3], to enclose the multiple integrals that arise in the computation 
of F~a. 

The following enclosures are needed to evaluate an n-dimensional m x ra x . . .  x m point 
Gaussian quadrature formula (a product of n one-dimensional m point formulae) with result 
verification. 

* Enclosures [xi], [Ai], and [el for the nodes, weights, and the norming factor in the 
remainder term, resp., of the one-dimensional ra point quadrature formula. These enclosures 
were provided by Ulrike Storck [10]. 
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• Enclosures for the range of f over the small boxes x, = [xi,] x [zi2] x . . .  x [zi,] that 
contain the nodes of the multidimensional Gaussian formula. These were obtained using 
the "natural" ("naive") interval evaluation of f .  

• Enclosures [D~ m] for the range of the partial derivatives oZmf/Ox~m over the whole domain 
of integration. These were computed at runtime using the mi'caylor module by Ulrike 
Storck, which works with automatic differentiation. 

In order to reduce the diameter of the resulting enclosure for the integral, the integration 
domain was split. In the following, the shorthand Gauss (s ,m)  indicates that the domain of 
integration was subdivided into s parts along each axis (that is, into s n subdomains) and that an 
m x m x . . .  x m point Gaussian quadrature formula was used on each subdomain. 

Remark. The last simplification (6) of the integrals in Section 9. cannot be made in the context 
of interval evaluation and automatic differentiation. This representation of the indefinite 
integral is only valid if a > 0. But a is zero on two line segments on the boundary of 
the integration domain D (both given by the relations ri = rj  and cos qo = 1). There we 
have f x - l d x  = logx + (7. Thus, the r igh t  hand side of (6) is not a valid representation of 
the integrand over the whole domain D. This fact goes unnoticed in (non-verified) Gaussian 

quadrature, because the nodes of the Gaussian formula are chosen from the interior of D. For 
the interval evaluation of the partial derivatives, however, the boundary of D is included in 
the computations. Therefore. we had to use the quadruple integral (5) to enclose Fid.  

11 Numerical results 
The computations were done on a SUN SPARCstation 10 using Pascat-XSC [6]. We first 
considered the effect of numerical errors alone. Then, the influence of various tolerances in 
the geometry of the experiment was investigated, where the ranges of these tolerances were 
provided by the experimental physicists. If not explicidy stated otherwise, both--geometrical 
and numerical--errors are captured in the following results. 

As pointed out in Section 3, geometrical tolerances are considered ~adequate" if they do 
not cause the relative uncertainty gab in Ab to exceed 10 -6. 

5.1. Perfect geometry 

For the reasons given in Section 4, the simplification (6) could not be made when interval 
arithmetic and automatic differentiation were used. Instead, we had to compute the quadruple 
integrals (5) even when a perfect alignment of the bodies was assumed. With Gauss(2,7)  we 
obtained the inclusion 

Ab E [11.839672, 11.839691] nm 

implying ~Ab < 10 -a. Thus, the numerical errors alone do not obstruct the desired accuracy. 

5.2.  Tolerances in the dimensions of the field masses 
The tolerances for the diameter and height of each field mass are ±0.3 mm. Since the mass of 
M i is known with a relative precision m 10 -6 it can be considered constant. Therefore, changes 
Ahj in the height were compensated by appropriately changing the diameter. The biggest 
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ab [.m] 

11.843 

. . . . .  h [ram] 
-0.3 -0.12 . . 

Figure 4. Variation of the height of the field masses. The error bars show the resulting 
intervals for the eleven equidistant values of Ah which were considered, while the dashed 
horizontal lines indicate the "acceptable" area  (the relative uncertainty Cab in Ab is < 10-5). 
The line connecting the midpoints of the intervals approximates the (seemingly almost linear) 
functional dependence of Ab on Ah 

deviations in Ab occured when both cylinders were altered in the same way, i.e., sign Aht = 
signAh2. For this reason we will only report the results obtained with Ahl = Ah2 =: Ah. 

The computations with Gauss (2 ,6 )  for the quadruple integrals (5) revealed a big influence 
of Ah on Ab, see Figure 4. Only for Ah = 0 the desired bound Can < t0 -5 can be guaranteed; 
for all other values of Ah that we have tried in our experiments (see Figure 4), the error Ab 
varies by more than this amount. A second set of runs with Ah E [-0.04, 0.04] mm shtwed 
that the height of the field masses must be known to 4.0.01 mm in order to have Cab < 10 -5. 

5.3. Tolerances in the dimensions of the pendulum bodies 
Due to a high precision manufacturing process, the tolerances in the dimensions of the pendu- 
lum bodies are only +1 #m. In contrast, their masses are not known with comparable precision. 
Therefore, the volume and the mass of the bodies were changed for the computation. More 
precisely, the boundaries were uniformly offset towards the interior ('shrink") or exterior ('blow 
up"). 

Again, the quadruple integrals (5) were evaluated with Gauss(2 ,7) .  (With a six point 
formula, the small deviations of Ab were completely shadowed by the widths of the resulting 
intervals.) 

The precision of the pendulums seems to be sufficient, as e a b <  7.5.10 -6 over the whole 
range of tolerance. 

5.4. Tolerance in the distance of the field masses 
An optical procedure was used to measure the distance d from one field mass to the other with 
a tolerance of 4-20 #m. As in Section 5.3, Gauss(2 ,7)  was used to evaluate the quadruple 
integrals (5). 

The computations revealed that the tolerance must be reduced to 4-5 #m in order to 
guarantee Cab < 10 -5, see Figure 5. This tolerance must also cover the effects o f  thermic 
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Ab [nm] 
11,8401 

ZZ.SZSS [mm] 
-0',02 ' '-O.O08IZ. 8393 0.008 " ' - ~ 0 2  

Figure 5. Tolerance in the distance of the field masses from each other 

expansion on the transport mechanism which is used to move the field masses. Therefore, 
either the temperature or the distance must be monitored permanently. 

5.5. Displacement of the pendulums 
Since the pendulums are placed in a vacuum tank it is difficult to determine their exact 
position, e,g., with respect to (he fidd masses. Therefore, the tolerance for the offset of the 
pair of pendulums from the midpoint is quite large: 4"1.0 ram. 

We first considered a displacement Az along the axis of symmetry. The computations 
with Gauss(2,7)  for the quadruple integrals (5) yielded cab <~ 10 -5 over the whole range, see 
Figure 6. Thus, the big tolerance is acceptable. 

Note that Ab attains its minimum not at Az = 0 (i.e.. when the pair of pendulums is 
placed exacdy midway between the field masses), but at a small offset. This asymmetry comes 
from the fact that the field masses differ slightly, as do the masses of the pendulums. 

For investigating offsets perpendicular to the axis of the field masses, it is sufficient to 
consider a single direction (e.g., the x direction). In contrast to all previous arrangements of 
the bodies, the force now has nonzero components in the z and x directions, and the coordinate 
systems in the cylindrical parameterizations of -P/k and Mj do not coincide. Therefore, the 
distance d and its norm in (1) slightly differ from (2) and (8), resp. 

Let us first consider the computation of the (dominating) z component of the force. Now 
the innermost of the six integrals can no longer be evaluated explicitly. But still the integration 
over the height of the field mass can be done similarly to the transition from (4) to (5). Since 

Ab [nm] 

-1 -0.4 0.4 Z Az [mm] 

Figure 6. Displacement of the pair of pendulums along the axis of symmetry 
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Ab [nm] 

,t- 
~ A x  [mm] 

Figure 7. Displacement of the pair of pendulums perpendicularly to the axis of symmetry 

the integration over zi cannot be done analytically in the context of result verification (see 
the remark in Section 4), a five-dimensional integral must be evaluated numerically. Here, the 
limits of our integration algorithm were reached. While the midpoints of the resulting intervals 
for Ab dearly fulfill the desired relation ¢ a b <  10-5 (see Figure 7), the intervals are too wide 
to allow guaranteeing this bound. But as the bound is exceeded only by a small factor and the 
computations with Gauss(2 ,6)  already took some days, we did not switch to a higher order 
formula. 

For the comp.utation of the x component of the force, the situation seems even worse 
because the full six-dimensional integral must be computed numerically. Fortunately, though, a 
"cheap" four point formula was sufficient to prove that this component does not cause relative 
changes > 10 -5 in Ab. (On the other hand, the results did not even allow to determine the 
direction of the pendulums' movement.) 

5.6.  Twisted pendulums and tilted field masses 
With these changes in the geometry, different coordinate systems must be chosen for the 
pendulums and the field masses, which means that none of the six integrals in (1) can be 
solved analytically. In addition, all three components of the force may be nonzero. A rough 
estimate for the computation time yielded some months, if reasonably narrow guaranteed bounds 
are required. 

Therefore, the computations for these two tolerances were done with "a lower order 
quadrature formula and without inclusion of the remainder terra. The results suggest (but do not 
prove) that the orientation of the pendulums and of the field masses is known with an adequate 
precision. 

6. Conclusions 
By using interval arithmetic we were able to give guaranteed bounds for the effect of rounding 
errors and of geometrical tolerances to the computed value Ab. Some of these effects had 
already been estimated (using standard Gaussian integration from a numerical library), and 
their magnitude could be confirmed. For other effects (e.g., numerical errors and tolerances in 
the dimensions of the field masses) no quantitative estimates were known before. 

We could identify some tolerances that must be reduced substantially in order to obtain 
the ultimately desired relative accuracy ~, 10 -5 for G. In particular, it became clear that 
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the temperature must be controlled to 4-0.2 degrees centigrade. But it must be emphasized 
that even with the current values of these tolerances the accuracy for O is comparable to 
experiments made at other sites. 

For the effect of a few tolerances no guaranteed bounds could be computed because 
the six-dimensional integration takes too much time. A parallel implementation is planned to 
alleviate this problem. 
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