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Newton's constant of gravitation and verified
numerical quadrature

Ouver Horzmann, Bruno Lang, and Horger ScuirT

In this paper we describe the use of interval arithmetic in an experiment for determining G, Newton’s
constant of gravitation. Using an interval version of Gaussian quadrature, we bound the effects of
numerical errors and of several tolerances in the physical experiment. This allowed to identify “critical”
tolerances which must be reduced in order to obtain G with the desired accuracy.
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1. Introduction

Of all the fundamental physical constants, the Newtonian constant of gravitation G is known
with the least precision. The CODATA (Committee on Data for Science and Technology of the
International Council of Scientific Unions) recommends the value G = 6.67259-1071! m3kg~!s?
with a relative uncertainty of 1.28-107* [1]. Since gravitation is the most obvious physical force
in everyday life and the dominant force in medium to very large distance ranges, much effort
has been undertaken to determine this constant to a higher precision [4].

Several different experiments have been made in the last few years. Some of the results
are claimed to have a relative error of less than 107% [2, 9]. However, since these results differ
from each other by more than 1073, not all of them are correct. Therefore, care must be
taken to monitor every possible error introduced in the physical experiment itself and in the
following computations.

One of the experiments for determining G takes place at the University of Wuppertal
[13, 14]. Its ultimate goal is to obtain a value for G with a relative uncertainty in the order
of 107°. The project described in this paper was initiated to provide. verified bounds for an
important intermediate result in the computational part of the experiment and to investigate
the sensitivity of this result to tolerances in the geometry of the experiment [5]

In the following section, we shortly summarize the physical background of the experiment.
In Section 3 the goal of our project is specified. Then we briefly describe how the verified
computations were done using Gaussian quadrature with result verification. In Section 5 we
report the results.
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2. Physical background

The experiment used in Wuppertal is sketched in Figure 1. Its main components are two
massive cylinders (field massesy M;, My made of brass and a pair of pendulums whose bodies
Py, P; are positioned midway between the field masses. The four bodies are all aligned on
a common axis of symmetry, and the field masses can be moved along this axis. When M,
is moved from the “far” position (solid lines in Figure 1) to the “near” position (dotted lines)
then its attractive force to both pendulums increases, causing them to move towards M;. As
the force is inversely proportional to the square of the distance, P is deflected more than P,
and the distance b between the pendulums increases by a small amount Ab. When both field
masses move synchronously, Ab doubles. (The main reason for using two field masses is that
some systematic errors almost cancel out due to the symmetry.)

Although the field masses are quite heavy (each weighing more than half a ton), the value
Ab is tiny (approximately 12 nm). To be able to measure these small relative movements with
high accuracy, the inner faces of the pendulums are spherical mirrors, so that together they
work as a microwave resonator (Fabry-Pérot resonator). Thus, increasing the distance between the
pendulums decreases the frequency of resonance, which in turn can be measured to very high
accuracy.

The constant G is obtained by equating the measured value of Ab with a value computed
as follows [5, 13}

According to Newton’s law of gravitation, a point mass m; is attracted by another point
mass My with the force e

1mg =
=

where d € IR® is the vector from the first mass m; to the second mass my and d = d/||d]|.
Therefore, the pendulum P, is attracted by the field mass M; with the force

ol [ pPil L,
Py =G [, ], T

where the integration is over the volumes of the bodies and p;, p; denote the density functions
within the pendulum and the field mass, resp.
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Figure 1. The principle of the experiment. Solid and dotted lines denote the “far” and “near”
position, resp. {the movement of the pendulums is extremely over-emphasized). The common
symmetry axis is shown as a dashed line
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Figure 2. Decomposition of the pendulum’s body into six parts
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Figure 3. Coordinate system used in the integration

To facilitate the integration, the pcndulum is decomposed into six simpler shaped parts

P, , see Figure 2. Thus we have F;; = Z Fi,;, where

pip;d
Fu=G[ [ fEzavav,.
I P, I ”d“3 J k
Making use of the common axis of symmetry, we introduce cylindrical coordinates (see Figure 3):

P, = {(ricosgi, mising;, zi) : € [15,, 7], 0 €[0,27), 2z € [z, 7,1},
M; {(rjcosj, rjsing;, z;) @ 1 € (0,7, ¢; € [O, 2n), 2z; € [_z_j,Zj]}.

]

Note that for part 4 from Figure 2, Z;, is a function of r;. Then, the volume integral becomes

Ty /Qﬂ' /z‘k{r,) /- 2 /z, 2i Pg)
Fij= T it dz; dp; drj dz; dp; dr;
k3 _/ f TEIE j0z; 0p5 ary P

where d = (r;cosp; — ricosp;, Tising; — rising;, z; — z;). Substituting ¢ = ¢; — ¢; and
@ = w; + @; one obtains

Fyj = 2 /";k / /21r /z‘k / / ﬂ‘é’l’la rir; do dz; dz; dp dr; dr; (1)
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with
r; cos 252 — r; cos 252
d= r,sm?——-‘e —r,smu ()
Zj -2
and
ldll = \/;]2 +1? = 2rricosp + (2 — z)? . (3)

If we assume radial density profiles (ie., that p; and p; are functions of 7; and r;, resp)),
then the innermost integral can be evaluated explicitly. In particular, its 2 and y components
are zero. Therefore, only the z component of F;, ; must be computed:

Fi;= ZWG'[I:;iTi/(;; ‘/272;;‘/21\/__;___); dz; dz; dy dr; dr (4)

a+(z—z

where a = rjz- + 72— 2r;7;co8 > 0. Again, the innermost integration can be done analytically:

Fiy F; I %,
Fog=21G [ pri [ ey [ [ £(rurs, 0,20 des dpdr dr, (5)
Sy Eiy

with f(ri,r5,0,2:) =1/ \ﬁz +(z; -z -1/ \/a + (Z; — z:)%. For non-verified numerical evalu-
ation (see the remark in Secuon 4) with a Gaussian quadrature method, the integrals can be
further simplified with the substitutions £ = z; — z; and ¥ = Z; — z; and the indefinite integral

dzr = log(z + Va + z2) + C. (6)

/ 1
va + z?
Thus, computing F;,; amounts to numerically evaluating a triple integral.

In a final step, Ab is obtained from the Fj; values. The two masses generate the force

F = Fiki

2 6
1=lk=1
3,

s deflection from the rest position:
Fi
mw?’

on the pendulum P, resulting in the pendulum

Az =
Here, m; and w; = 4/g/l; denote the pendulum’s mass and frequency, resp. Therefore, placing
the field masses at a certain position “pos” increases the distance of the pendulums by
Ab(pos) = Azy(pos) + Azy(pos)

as compared to having no field masses. Moving the field masses from the “far” to the “near”
position causes the distance to change by

Ab = Ab(near) — Ab(far). (7)

Note that 48 integrations F},; are necessary to compute this value Ab which, together with the
measured value, yields G.
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3. The goal of the project

It is clear from the previous section that Ab must be measured and computed to high accuracy
to yield G with small relative uncertainty. In the experiment, Ab can be measured with a
relative error well below 10™%. Therefore, the error in the computed value should not be
significantly larger. This error consists of two components:

o Numerical errors: Using a quadrature formula yields only approximations to the exact
values of the integrals. In addition, rounding errors are made during the computations.

e Geometrical errors: The arguments of Section 2 made heavy use of the alignment of all
four bodies on a common axis of symmetry. In practice, this perfect geometry cannot
be achieved. In addition, the dimensions of the bodies are only known within certain
tolerances.

Interval arithmetic provides adequate means to capture both categories of uncertainty. The
goal of this project was to use interval arithmetic to answer (if possible) the following questions:

e Assuming a perfect geometry, can we guarantee a relative (numerical) error < 1075?

e Are the tolerances in the geometry small enough to guarantee a relative error < 107°?
In particular, tolerances in the following dimensions were to be investigated:
~ the radii and heights of the field masses M;,
- the dimensions of the pendulums,
~ the distance of the field masses from each other,
— the displacement of the pair of pendulums from the midpoint
* along the axis of symmetry and
* perpendicular to this axis,

— a twisted resonator, and

tilted field masses.

4, Gaussian quadrature with result verification

There exist a number of algorithms for numerical integration with result verification (see,
eg. [7]). The sophisticated integration program [11] turned out to be not fully adequate
for our particular application because its adaptive part took an excessive number of recursive
subdivisions in order to achieve the preseribed accuracy. Instead, we used multidimensional
Gaussian quadrature [8, 12] with inclusion of the remainder term, preceded by a static subdivision
of the integration domain [3], to enclose the multiple integrals that arise in the computation
of F,.

The following enclosures are needed to evaluate an n-dimensional m xm x - - X m point
Gaussian quadrature formula (a product of n one-dimensional m point formulae) with result
verification.

¢ Enclosures [z;], [4;], and [e] for the nodes, weights, and the norming factor in the
remainder term, resp., of the one-dimensional m point quadrature formula. These enclosures
were provided by Ulrike Storck {10].
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e Enclosures for the range of f over the small boxes x; = [z;,] X [zi,] X -+ % [z;,] that
contain the nodes of the multidimensional Gaussian formula. These were obtained using
the “natural” (“naive”) interval evaluation of f.

e Enclosures [D?™] for the range of the partial derivatives 8*™ f /8™ over the whole domain
of integration. These were computed at runtime using the mitaylor module by Ulrike
Storck, which works with automatic differentiation.

In order to reduce the diameter of the resulting enclosure for the integral, the integration

domain was split. In the following, the shorthand Gauss(s,m) indicates that the domain of
integration was subdivided into s parts along each axis (that is, into s™ subdomains) and that an
m X mXx -+ xm point Gaussian quadrature formula was used on each subdomain.
Remark. The last simplification (6) of the integrals in Section 2 cannot be made in the context
of interval evaluation and automatic differentiation. This representation of the indefinite
integral is only valid if a > 0. But @ is zero on two line segments on the boundary of
the integration domain D (both given by the relatons r; = r; and cosg = 1). There we
have [z~ !dz = logz + C. Thus, the right hand side of (6) is not a valid representation of
the integrand over the whole domain D. This fact goes unnoticed in {non-verified) Gaussian
.quadrature, because the nodes of the Gaussian formula are chosen from the interior of D. For
the interval evaluation of the partial derivatives, however, the boundary of D is included in
the computations. Therefore, we had to use the quadruple integral (5) to enclose Fy,;.

5. Numerical results

The computations were done on a SUN SPARCstation 10 using Pascal-XSC [6]. We first
considered the effect of numerical errors alone. Then, the influence of various tolerances in
the geometry of the experiment was investigated, where the ranges of these tolerances were
provided by the experimental physicists. If not explicitly stated otherwise, both—geometrical
and numerical—errors are captured in the following results.

As pointed out in Section 3, geometrical tolerances are considered “adequate” if they do
not cause the relative uncertainty a5 in Ab to exceed 107°.

51 Perfect geometry

For the reasons given in Section 4, the simplification (6) could not be made when interval
arithmetic and automatic differentiation were used. Instead, we had to compute the quadruple
integrals (5) even when a perfect alignment of the bodies was assumed. With Gauss(2,7) we

obtained the inclusion
Ab € {11.839672, 11.839691] nm

implying €44 < 1078, Thus, the numerical errors alone do not obstruct the desired accuracy.

52. Tolerances in the dimensions of the field masses

The tolerances for the diameter and height of each field mass are +0.3 mm. Since the mass of
M; is known with a relative precision ~ 107° it can be considered constant. Therefore, changes
Ah; in the height were compensated by appropriately changing the diameter. The biggest
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Figure 4. Variation of the height of the field masses. The error bars show the resulting
intervals for the eleven equidistant values of Ah which were considered, while the dashed
horizontal lines indicate the “acceptable” area (the relative uncertainty a5 in Ab is < 107%).
The line connecting the midpoints of the intervals approximates the (seemingly almost linear)
functional dependence of Ab on Ah

deviations in Ab occured when both cylinders were altered in the same way, ie., signAh; =
sign Ahy. For this reason we will only report the results obtained with Ahy = Ahy =: Ah.
The computations with Gauss(2,6) for the quadruple integrals (5) revealed a big influence
of Ah on Ab, see Figure 4. Only for Ah = 0 the desired bound €45 < 1075 can be guaranteed;
for all other values of Ah that we have tried in our experiments (see Figure 4), the error Ab
varies by more than this amount. A second set of runs with Ah € [-0.04, 0.04] mm showed
that the height of the field masses must be known to £0.01 mm in order to have €4 < 1075,

53. Tolerances in the dimensions of the pendulum bodies

Due to a high precision manufacturing process, the tolerances in the dimensions of the pendu-
lum bodies are only =1 um. In contrast, their masses are not known with comparable precision.
Therefore, the volume and the mass of the bodies were changed for the computation. More
precisely, the boundaries were uniformly offset towards the interior (“shrink”) or exterior {“blow
up”).

Again, the quadruple integrals (5) were evaluated with Gauss(2,7). (With a six point
formula, the small deviations of Ab were completely shadowed by the widths of the resulting
intervals.)

The precision of the pendulums seems to be sufficient, as €45 < 7.5- 107% over thé whole
range of tolerance.

54. Tolerance in the distance of the field masses

An optical procedure was used to measure the distance d from one field mass to the other with
a tolerance of £20 pm. As in Section 5.3, Gauss(2,7) was used to evaluate the quadruple
integrals (3).

The computations revealed that the tolerance must be reduced to +5 pm in order to
guarantee £ap < 107%, see Figure 5. This tolerance must also cover the effects of thermic
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Figure 5. Tolerance in the distance of the field masses from each other

expansion on the transport mechanism which is used to move the field masses. Therefore,
either the temperature or the distance must be monitored permanently.

55. Displacement of the pendulums

Since the pendulums are placed in a vacuum tank it is difficult to determine their exact
position, e.g., with respect to the field masses. Therefore, the tolerance for the offset of the
pair of pendulums from the midpoint is quite large: £1.0 mm.

We first considered a displacement Az along the axis of symmetry. The computations
with Gauss(2,7) for the quadruple integrals (5) yielded €as < 1078 over the whole range, see
Figure 6. Thus, the big tolerance is acceptable.

Note that Ab attains its minimum not at Az = 0 (i.e.. when the pair of pendulums is
placed exactly midway between the field masses), but at a small offset. This asymmetry comes
from the fact that the field masses differ slightly, as do the masses of the pendulums.

For investigating offsets perpendicular to the axis of the field masses, it is sufficient to
consider a single direction (e.g., the z direction). In contrast to all previous arrangements of
the bodies, the force now has nonzero components in the 2z and z directions, and the coordinate
systems in the cylindrical parameterizations of P, and M; do not coincide. Therefore, the
distance d and its norm in (1) slightly differ from (2) and (3), resp.

Let us first consider the computation of the (dominating) z component of the force. Now
the innermost of the six integrals can no longer be evaluated explicitly. But still the integration
over the height of the field mass can be done similarly to the transition from (4) to (5). Since

Ab fnm]
+2:8396 y
‘\X\l\f&f—”
Y 0.3 0.4 7 Oz [mm]

Figure 6. Displacement of the pair of pendulums along the axis of symmetry
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Figure 7. Displacement of the pair of pendulums perpendicularly to the axis of symmetry

the integration over z; cannot be done analytically in the context of result verification (see
the remark in Section 4), a five-dimensional integral must be evaluated numerically. Here, the
limits of our integration algorithm were reached. While the midpoints of the resulting intervals
for Ab clearly fulfill the desired relation €55 < 1075 (see Figure 7), the intervals are too wide
to allow guaranteeing this bound. But as the bound is exceeded only by a small factor and the
computations with Gauss(2,6) already took some days, we did not switch to a higher order
formula.

For the computation of the r component of the force, the situation seems even worse
because the full six-dimensional integral must be computed numerically. Fortunately, though, a
“cheap” four point formula was sufficient to prove that this component does not cause relative
changes > 107° in Ab. (On the other hand, the results did not even allow to determine the
direction of the pendulums’ movement.)

56. Twisted pendulums and tilted field masses

With these changes in the geometry, different coordinate systems must be chosen for the
pendulums and the field masses, which means that none of the six integrals in (1) can be
solved analytically. In addition, all three components of the force may be nonzero. A. rough
estimate for the computation time yielded some montfs, if reasonably narrow guaranteed bounds
are required.

Therefore, the computations for these two tolerances were done with *a lower order
quadrature formula and without inclusion of the remainder term. The results suggest (but do not
prove) that the orientation of the pendulums and of the field masses is known with an adequate
precision.

6. Conclusions

By using interval arithmetic we were able to give guaranteed bounds for the effect of rounding
errors and of geometrical tolerances to the computed value Ab. Some of these effects had
already been estimated (using standard Gaussian integration from a numerical library), and
their magnitude could be confirmed. For other effects (e.g., numerical errors and tolerances in
the dimensions of the field masses) no quantitative estimates were known before.

We could identify some tolerances that must be reduced substantially in order to obtain
the ultimately desired relative accuracy ~ 107° for G. In particular, it became clear that
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the temperature must be controlled to 0.2 degrees centigrade. But it must be emphasized
that even with the current values of these tolerances the accuracy for G is comparable to
experiments made at other sites.

For the effect of a few tolerances no guaranteed bounds could be computed because
the six-dimensional integration takes too much time. A parallel implementation is planned to
alleviate this problem.
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