BOUNDING
APPROACHES

TO SYSTEM
IDENTIFICATION

Edited by

MARIO MILANESE,

JOHN NORTON,

HELENE PIET-LAHANIER,
and

ERIC WALTER



Bounding Approaches to
System Identification



Bounding Approaches to
System Identification

Edited by

Mario Milanese

Politecnico di Torino
Torino, Italy

John Norton

University of Birmingham
Birmingham, England

Hélene Piet-Lahanier

Office National d’Etudes et de Recherches Aérospatiales
Chatillon, France

and

Eric Walter

CNRS — Ecole Supérieure d Electricité
Gif-sur-Yvette, France

Springer Science+Business Media, LLC



Library of Congress Cataloging-in-Publication Data

On file

Chapters 2,4—-7,9, 10, 12— 15, 1722, 24 - 26, and 30 are published with the permission of
Pergamon Press Ltd., Oxford, and

Chapter 3 with the permission of Marcel Dekker, New York. The material has been revised and
updated for publication in this volume.

ISBN 978-1-4757-9547-9 ISBN 978-1-4757-9545-5 (eBook)
DOI 10.1007/978-1-4757-9545-5

© Springer Science+Business Media New York 1996
Originally published by Plenum Press, New York in 1996
Softcover reprint of the hardcover 1st edition 1996

10987654321
All rights reserved
No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form

or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise,
without written permission from the Publisher



Contributors

L. V. R. Arruda e Universidade Estadual de Campinas/FEE/DCA—Cidade
Universitaria “Zeferino Vaz,” Campinas (SP), Brazil

G. Belforte o Dipartimento di Automatica e Informatica, Politecnico di Torino,
10129 Torino, Italy

T. J. J. van den Boom e Department of Electrical Engineering, Delft Univer-
sity of Technology, 2600 GA Delft, The Netherlands

V. Cerone o Dipartimento di Automatica e Informatica, Politecnico di Torino,
10129 Torino, Italy

A. A. H. Damen o Department of Electrical Engineering, Eindhoven Univer-
sity of Technology, 5600 MB Eindhoven, The Netherlands

J. R. Deller, Jr. o Department of Electrical Engineering, Michigan State Uni-
versity, East Lansing, MI 48824

G. Favier o Laboratoire 13S, CNRS URA-1376, Sophia Antipolis, 06560 Val-
bonne, France

T. F. Filippova e Institute of Mathematics and Mechanics of Russian Academy
of Sciences, Ekaterinburg, Russia

G. Fiorio o Dipartimento di Automatica e Informatica, Politecnico di Torino,
10129 Torino, Italy



vi CONTRIBUTORS

K. Forsman e ABB Corporate Research, Ideon, S-223 70 Lund, Sweden

P-0. Gutman e Faculty of Agricultural Engineering, Technion—Israel Institute
of Technology, Haifa 32000, Israel

E. Halbwachs ¢ Heudiasyc, CNRS, Université de Technologie de Compiégne,
60206 Compiegne, France

L. Jaulin * Laboratoire des Signaux et Systémes, CNRS Ecole Supérieure
d’Electricité, 91192 Gif-sur-Yvette Cedex, France

B. Z. Kacewicz o Institute of Applied Mathematics, University of Warsaw, 02-
097 Warsaw, Poland

K. J. Keesman o Department of Agricultural Engineering and Physics, Univer-
sity of Wageningen, 6703 HD Wageningen, The Netherlands

V. M. Kuntsevich ¢ V.M. Glushkov Institute of Cybernetics, Academy of Sci-
ences of Ukraine, 252207 Kiev, Ukraine

A. B. Kurzhanski o Moscow State University, Moscow, Russia

L. Ljung e Department of Electrical Engineering, Link6ping University, S-581
83 Linkoping, Sweden

S. Malan e Dipartimento di Automatica e Informatica, Politecnico di Torino,
10129 Torino, Italy

S. M. Markov e Division of Mathematical Modelling in Biology, Institute of
Biophysics, Bulgarian Academy of Sciences, BG-1113 Sofia, Bulgaria

D. Meizel o Heudiasyc, CNRS, Université de Technologie de Compiegne,
60206 Compiegne, France

Y. A. Merkuryev o Riga Technical University, LV-1658 Riga, Latvia

M. Milanese » Dipartimento di Automatica e Informatica, Politecnico di
Torino, 10129 Torino, Italy.

J. P. Norton e School of Electronic and Electrical Engineering, University of
Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom



CONTRIBUTORS vii

H. Piet-Lahanier o Direction des Etudes de Synthése/SM Office National
d’Etudes et de Recherches Aérospatiales F-92322, Chitillon Cedex, France

E. D. Popova e Division of Mathematical Modelling in Biology, Institute of
Biophysics, Bulgarian Academy of Sciences, BG-1113 Sofia, Bulgaria

A. Preciado-Ruiz ¢ ITESM—Campus Toluca, Toluca, Edo. de Mexico, Mexico

L. Pronzato e Laboratoire I3S, CNRS URA-1376, Sophia Antipolis, 06560 Val-
bonne, France

A. K. Rao « COMSAT Labs, Clarksburg, MD 20871
K. Sugimoto e Okayama University, Okayama, Japan

T T. Tay o Department of Electrical Engineering, National University of Singa-
pore, Singapore 0511

I. Valyi e National Bank of Hungary, Budapest, Hungary

S. M. Veres e School of Electronic and Electrical Engineering, University of
Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

A. Vicino e Facolta di Ingegneria, Universita degli Studi di Siena, 53100 Siena,
Italy

E. Walter o Laboratoire des Signaux et Systemes, CNRS-Ecole Supérieure
d’Electricité, 91192 Gif-sur-Yvette Cedex, France

G. Zappa e Dipartimento di Sistemi e Informatica, Universita di Firenze,
50139 Firenze, Italy

L. S. Zhiteckij ¢ V.M. Glushkov Institute of Cybernetics, Ukrainian Academy
of Sciences, 252207 Kiev, Ukraine



Contents

CHAPTER 1. Overviewof theVolume . . . . . . . ... ... ....... 1
J. P. Norton
References . . . . . . . . . . . . e 4

CHAPTER 2. Optimal Estimation Theory for Dynamic Systems with Set

Membership Uncertainty: An Overview

M. Milanese and A. Vicino

Abstract . . . . ... e e 5
2.1. Introduction . . . .. ... ... e 6
2.2. Problem Formulation . ... ... ... ... ............ 6
2.3. Main Definitions and Concepts . . . . . .. ... ... ....... 12
2.4. Nonlinear Problems . . . .. . ... ... ... ........... 15
2.5. LinearProblems . . . . . ... ... .. ... .. ... .. ..., 18
2.6. Other Typesof Results . . . . . .. ... ... ... ......... 23
2.7. Applications . . . . . ... Lo e 24
2.8. ConClusions . . . . . . . .. e e 24
References . . . . . . . . . . . . ... 25



X CONTENTS

CHAPTER 3. Solving Linear Problems in the Presence of Bounded Data
Perturbations

B. Z. Kacewicz

3.1. Introduction . . . . ... ... .. 29
3.2. Example: A Signal Recovery Problem . . .. . ... ... .. ... 31
3.3. General Problem Formulation . . . . .. ... ... ......... 32
3.4. Construction of Optimal Information and Precision Sequence . . . . 35
35.LowerBounds . . . ... ... ... ... .. 36
3.6. The Minimal Diameter CriterionCost . . . . . .. ... ... ... 38
3.7. The Diameter of Inaccurate Information . . . . ... ... ..... 40
References . . . . . . . . . . . . . e 42

CHAPTER 4. Review and Comparison of Ellipsoidal Bounding Algorithms

G. Favier and L.V. R. Arruda

Abstract . . . . . ... 43
4.1. Introduction . . . . ... ... ... . 43
4.2. The UBBE Approach and Membership Set Estimation . . . . . . . . 45
4.3. A Unified Presentation of EOB Algorithms . . . . . ... ... ... 47
4.4. Projection Algorithms withDeadZone . . . . . .. ... ...... 54
4.5. Interpretation of EOB Algorithms as Robust

Identification Algorithms with Dead Zone . . . . .. ... ... .. 58
4.6. SimulationResults . . . . .. .. ... oo oo 60
47. ConClusions . . . . . . . . ... 66
References . . . . . . . . . . . . . . e 67

CHAPTER 5. The Dead Zone in System Identification

K. Forsman and L. Ljung

ADbStract . . . . . . e e e 69
5.1. Introduction . . . . . . . .. ... 70
52. Consistency . . . . . .. ... 71
53.Variance . . . ... e e e e e 73
5.4. Deterministic Disturbances . . . ... ... ... .. ........ 77
5.5. Dead Zones and Set Membership Identification . . . ... ... .. 80

References . . . . . . . . . . . e 82



CONTENTS

xi
CHAPTER 6. Recursive Estimation Algorithms for Linear Models with Set
Membership Error
G. Belforte and T. T. Tay
Abstract . . . .. L e 83
6.1. Introduction . . . . .. ... 83
6.2. Generalities . . . . . ... . ... 84
6.3. Exact Description of the Admissible Parameter Set . . . . . . .. .. 88
6.4. Approximate Description of the Admissible Parameter Set. . . . . . 89
6.5. Time Varying Systems . . . . . . . . . . ... 94
6.6. Uncertainty inthe Regressors . . . . .. ... ... ......... 95
6.7. Numerical Example . . . .. ... .. .. ........ . ..... 95
References . . . . . . . . . .. . 98
CHAPTER 7. Transfer Function Parameter Interval Estimation
Using Recursive Least Squares in the Time and
Frequency Domains
P-0. Gutman
ADbStract . . . . . .. e 101
7.1. Introduction . . . .. . ... ... 102
7.2. Estimation of Parameter Intervals . . . . .. .. ... ... .. .. 103
73, Examples . . . ... 107
74. Conclusions . . . . . . . . ..o 116
References . . . . . . . . . . . ... . 117
CHAPTER 8. Volume-Optimal Inner and Outer Ellipsoids
L. Pronzato and E. Walter
8.1. Introduction and Problem Statement . . . . ... ... ... ... 119
8.2. Minimum-Volume Outer Ellipsoid . . . ... ... ........ 120
8.3. Duality Properties . . . . . ... ... ... . ..o 123
8.4. Maximum-Volume Inner Ellipsoid . . . ... ... ........ 127
85. Conclusions . . . . . .. ... 137

References . . . . . . . . . . . .



xii CONTENTS

CHAPTER 9. Linear Interpolation and Estimation Using Interval Analysis
S. M. Markov and E. D. Popova

Abstract . . . . .. L 139
9.1. Introduction: Formulation of the Problem . . . . . . . ... .. .. 139
9.2. Interval Arithmetic: BasicConcepts . . . . . . . ... .. ... .. 143
9.3. Linear Interpolation under Interval Measurements . . . . . . . . . 144
9.4. Linear Estimation under Interval Measurements . . . . . . .. .. 153
9.5. Conclusions . . . . . . . ... 156
References . . . . . . . . . . . . . e 157

CHAPTER 10. Adaptive Approximation of Uncertainty Sets for Linear
Regression Models

A. Vicino and G. Zappa

ADBSITaCt . . . . . 159
10.1. Introduction . . . . . . . . . .. ... 160
10.2. Notation and Problem Formulation . . .. .. ... ... .. .. 161
10.3. Optimal Adaptation of the Parallelotopic Approximation . . . . . 163
10.4. Recursive Uncertainty Set Estimation . . . . . . .. ... .. .. 165
10.5. Concluding Remarks . . . . . . ... ... ... ... .. .... 167
References . . . . . . . . o o i i 168

CHAPTER 11. Waorst-Case /1 Identification

M. Milanese
Abstract . . . . . . e 169
11.1. Introduction . . . . . . . . . . . ... 169
11.2. Problem Formulation . . . . . . ... ... ... ... .. .... 170
11.3. Identification Errors and Model Structure Selection . . . . . . . . 174
11.4. Optimal and Almost-Optimal Algorithms . . . . . .. .. .. .. 177
11.5. Convergence Properties . . . . .. ... ... .. ........ 179
References . . . . . . . . . e 180

CHAPTER 12. Recursive Robust Minimax Estimation

E. Walter and H. Piet-Lahanier
Abstract . . . . . .. e 183



CONTENTS

12.1. Introduction . . . . . . . . . . . .. ...
12.2. Problem Statement . . . . . . . . .. . ...
12.3. Exact Cone Updating Method . . . . ... ... ... ... ...

12.4. Extension to Output-Error Models
12.5. Detection of Outliers

CHAPTER 13. Robustness to Qutliers of Bounded-Error Estimators and

Consequences on Experiment Design

L. Pronzato and E. Walter

AbStract . . . .. e e

13.1. Introduction

13.2. Bounded-Error Estimation . . . . ... ... ...........
13.3. Robust Parameter Bounding . . . .. ... ... .........
13.4. Experimental Design toward Robustness . . . ... ... ...

13.5. Conclusions . . . . . . v v v v i e e e
References . . . . . . . . o i v e

CHAPTER 14. Ellipsoidal State Estimation for Uncertain Dynamical
Systems

T. F Filippova, A. B. Kurzhanski, K. Sugimoto, and 1. Valyi

AbStract . . . . ... e
14.1. Introduction . . . . . . . .. .. ..
14.2. The EstimationProblems . . . . . . ... .. ... ... .....
14.3. The Discrete-Time Scheme . . . . . .. ... ... ... ....
14.4. The Ellipsoidal Techniques . . . . . . . ... ... ... .....
14.5. Estimation through Parametrization . . . . . . . . .. ... ...
14.6. The Singular Perturbation Techniques . . . . . . . ... ... ..
14.7. Guaranteed State Estimation as a Tracking Problem . . . .. ..
14.8. The Deterministic and the Stochastic Filtering Approaches . . . .
14.9. Numerical Examples . . . . .. .. ... ... ... .......
14.10. Conclusions . . . . .. ... ... ...
References

12.6. ConclusionS . . . . . . v v v i e e e e e e e e
References . . . . . . . . . . . e

xiii



Xiv CONTENTS

CHAPTER 15. Set-Valued Estimation of State and Parameter Vectors
within Adaptive Control Systems

V. M. Kuntsevich

Abstract . . . . ... 239
I5.1. Introduction . . . . . ... ... ... 240
15.2. Set-Valued Parameter Estimation for Linear

Nonstationary Systems . . . . . .. ... ... ... ... ..., 240
15.3. Simultaneous Set-Valued Estimation of Guaranteed Estimates of

Parameter and State Vectors for Linear Stationary Systems . . . . 244
15.4. Obtaining Set-Valued Estimates of State and Parameter

Vectors for Linear Nonstationary Systems . . . . . ... ... .. 255
155. Conclusions . . . . . .. . . ... 257
References . . . . . . . . .. .. ... 257
Appendix . . . ... .. 258

CHAPTER 16. Limited-Complexity Polyhedric Tracking

H. Piet-Lahanier and E. Walter

Abstract . . .. ... 261
16.1. Introduction . . . . . .. .. .. ... 262
16.2. Polyhedric Description for Time-Invariant Systems . . . . . . . . 262
16.3. Approximate Description for Time-Invariant Systems . . . . . . 264
16.4. Polyhedric Tracking for Time-Varying Parameters . . . . . . . . 266
16.5. Example . . . . .. ... ... 268
16.6. Conclusions . . . . . . ... .. .. ... .. 272
References . . . . . ... .. . ... ... 272

CHAPTER 17. Parameter-Bounding Algorithms for Linear
Errors-in-Variables Models

S. M. Veres and J. P Norton

Abstract . . . . .. 275
17.1. Introduction . . . . .. ... ... ... L 275
17.2. Bounding in Dynamic EIVModels . . ... ... .. ... ... 277
17.3. Polytope Bounds on the Parameters of EIVModels . . . . . . . . 279
17.4. Fast Rejection of Parts of Parameter Space from FPS . . . . . . . 284

17.5. Exact-Polytope and Ellipsoidal Algorithms for
the EIVProblem . . .. ... ... ... ..... ... ..... 286



CONTENTS XV

17.6. Conclusions . . . . . . . o v i i e e e 287
References . . . . . . . . . . e e 287

CHAPTER 18. Errors-in-Variables Models in Parameter Bounding

V. Cerone
Abstract . . . . ... 289
18.1. Introduction. . . . . ... .. ... . L 290
18.2. Problem Formulation and Notation . . . ... ... ... .. .. 291
18.3. Description of the Feasible Parameter Region . . . . . . . .. .. 293
18.4. Topological Features of the Feasible Parameter Region . . . . . . 296
18.5. Parameter Bounding in ARMAX Models . . ... ........ 299
18.6. Conclusions . . . . . .. ... ... .o 305
References . . . . . . . . ... ... o o 305

CHAPTER 19. Identification of Linear Objects with Bounded Disturbances
in Both Input and Output Channels

Y. A. Merkuryev

19.1. Problem Formulation . . . . .. .. .. ... ........... 307
19.2. Identification when the Signs of the Coefficients Are Known . . . 308
19.3. Determination of the Signs of the Coefficients . ... ... ... 309
194. Conclusions . . . . . . .. . ... L 315
References . . . . . . . . . . . . . e 316

CHAPTER 20. Identification of Nonlinear State-Space Models by
Deterministic Search

J. P. Norton and S. M. Veres

Abstract . . . . . .. 317
20.1. Introduction . . . . . . . . . ... .. 317
20.2. Problem Formulation . . . . . . .. .. ... ... ... ..... 318
20.3. Computation of Two-Dimensional Cross-Sections . . . . . . . . 319
20.4. Extensionto More Dimensions . . .. .. ... ......... 324
20.5. Example . . . . .. ... 325
20.6. Conclusions . . . . . . . . . . . . e 330

References . . . . . . . . . . . . e 330



xvi CONTENTS

CHAPTER 21. Robust Identification and Prediction for Nonlinear
State-Space Models with Bounded Output Error

K. J. Keesman

21.1. Introduction . . . . . . . . . . .. ...
21.2. Robust Identification and Prediction . . . . . . ... .. ... ..
21.3. Examples . . . . . . ...
214. Conclusions . . . . . . . . . . ...
References . . . . . . . . . . . . . .

CHAPTER 22. Estimation Theory for Nonlinear Models and Set
Membership Uncertainty

M. Milanese and A. Vicino

Abstract . . . . . .
22.1. Introduction . . . . . ... ...
22.2. A General Framework for Estimation Problems . . . . . . .. ..
22.3. Nonlinear Estimation of Dynamic Models . . . . . ... ... ..
22.4. An Algorithm for the Exact Computation of Solution

Uncertainty Intervals . . . ... ... ... ... ... ....
22.5. Numerical Examples . . . . ... ... ... ... .. ......
22.6. Conclusions . . . . . . . .. ...
References . . . . . . . . . . . . . ..

CHAPTER 23. Guaranteed Nonlinear Set Estimation via Interval Analysis

L. Jaulin and E. Walter

23.1. Introduction . . . . . . . . . . ...
23.2. Bounded-Error Estimation as a Set-Inversion Problem . . . . . .
23.3. Interval Analysis . . . . .. . ... ...
23.4. Set Bracketing and Subpavings . . . . .. ... ... ...
23.5. SetInversion . . . . . ... e e e e
23.6. Examples . . . . . ... L
23.7. Conclusions . . . . . . . . . ...
References . . . . . . . . . . e



CONTENTS

CHAPTER 24. Adaptive Control of Systems Subjected to Bounded

Disturbances

L. S. Zhiteckij

24.1. Introduction . . . . . . ... ...
24.2. Problem Statement . . . . . . ... ... ... ... ...,
24.3. Preliminaries . . . . .. . . ... ... ...
24.4. Optimal Control of Systems in the Presence of Bounded
Disturbances with Known Parameters . . . . . .. ... ... ..
24.5. Suboptimal Adaptive Control of Systems in the Presence of
Bounded Disturbances with Unknown Parameters . . . . . . ..
24.6. SimulationResults . . . . . . ... ... ... ... ... ..
24.7. Conclusions. . . . . . . . . ...
References . . . . . . .. ... ... . . ... ...

Worst-Case Design

S. M. Veres and J. P Norton

Abstract . . . ...
25.1. Introduction . . . . .. .. ...
25.2. Parameter Bounding and Motivation for Its Use in
Adaptive Control . . . . . . ... oo L
25.3. Worst-Case Control by Parameter Bounding . . . .. ... ...
25.4. Predictive Bounding Controller . . . .. .. ... ........
25.5. On-Line Bounding of Time-Varying Parameters . . . ... ...
25.6. Simulations . . . . ... Lo
25.7. Conclusions . . . . . . .. ...
References . . . . . . . . ... .
Appendix A. Computation of Stabilizing Control Inputs . . . . . . ..
Appendix B. Influence of Regressor Vectors on Size and Existence of
Feasible-Parameter Set . . . . . .. ... ... ......
Appendix C. Example of Bound Turning . . . . ... ... ... ...

CHAPTER 26. System Identification for Hx-Robust Control Design

T. J. J. van den Boom and A. A. H. Damen

26.1. Introduction . . . . . . .. ...

xvii

CHAPTER 25. Predictive Self-Tuning Control by Parameter Bounding and



xviii CONTENTS

26.2. Assumptions and Problem Statement . . . . . . ... ... ... 444
26.3. Two-Step Identification Method . . . . . . . .. .. ... .. .. 446
26.4. One-Step Identification Method . . . . . . ... ... ... .. 452
26.5. Simulation Example . . . ... ... ... ... ... ... ... 455
26.6. Conclusions . . . . . .. ... ... 460
References . . . . . . . .. ... .. 460
Notation . . . . . . ... .. ... 461

CHAPTER 27. Estimation of Mobile Robot Localization: Geometric
Approaches

D. Meizel, A. Preciado-Ruiz, and E. Halbwachs

27.1. Practical Problem Position . . . . . . ... .. ... ... ... .. 463
27.2. Outlines of EKF Based Solutions . . . . . ... ... ...... 471
27.3. A Set Membership Approach to the Static Localization Problem . 472
274. Conclusion . . . . . . . . ... 485
References . . . . . . . . . . . .. 486
Appendix. A Static Localization Experience . . . . . .. .. .. .. .. 486

CHAPTER 28. Improved Image Compression Using Bounded-Error
Parameter Estimation Concepts

A. K. Rao
28.1. Introduction . . . . . . . . ... 491
28.2. Adaptive Parameter Estimation . . .. .. .. ... ... ... .. 493
28.3. ADPCMImageCoding . ... ... ... .. ... ....... 496
28.4. Quantization of DCT Coefficients . . . . . . ... .. ... ... 501
28.5. Conclusions . . . . . . . ... 504
References . . . . . . . . . o o i it e 504

CHAPTER 29. Applications of OBE Algorithms to Speech Processing

J. R. Deller, Jr.

29.1. Introduction. . . . . . . .. ... 505
29.2. Analysis of Stationary Speech Frames . . . . . ... ... .. .. 508
29.3. Enhancements of OBE Methods for Real-Time Speech Processing 519
29.4. Adaptive Analysis of Speech Signals . . . .. .. ... ... . 528
29.5. Conclusions . . . . . . . .. ... 538

References . . . . . . . . . . e e e e 539



CONTENTS Xix

CHAPTER 30. Robust Performances Control Design for a High Accuracy
Calibration Device

M. Milanese, G. Fiorio, and S. Malan

AbStract . . . . . . .. 541
30.1. Introduction. . . . . .. .. .. ... ... 542
30.2. The Nominal and the Perturbation Models . . . . ... ... .. 543
30.3. Identification Procedure . . . . .. .. ... ........ ... 546
30.4. Robust Regulator Design . . . . ... ... ............ 551
30.5. Conclusions . . . . . . . .. ... 556
References . . . . . . . . . . . . . ... ... 556
INDEX . . . e 559



1

Overview of the Volume

J. P Norton

The genesis of this volume was the feeling of its editors that bounding had become
an important enough topic, and was attracting enough attention, to require a
collection of papers as a broad introduction to the field and a review of current
progress. The basic idea of describing plant uncertainty by bounds is as old as
toleranced engineering design. State bounding was introduced to the control
engineering community in the late 1960s and parameter bounding in the early
1980s, but the subject became prominent only in the late 1980s and early 1990s,
through workshops in Turin in 1988, Santa Barbara® and Sopron® in 1992,
papers and special sessions at conferences such as the 1988 International Associa-
tion for Mathematics and Computers in Simulation (IMACS) World Congtress in
Paris, the International Federation of Automatic Control (IFAC) Budapest and
Copenhagen identification symposia in 1991 and 1994, the 1991 Institute of
Electrical and Electronics Engineers, Inc. Conference on Decision and Control
(IEEE CDC) and 1993 IEEE International Symposium on Circuits and Systems
(IEEE ISCAS), and increasing exposure in leading control engineering and signal
processing journals.*> The topic is now widespread over a large literature, so this
volume is timely.

Before looking at the contents of the volume, let’s see what bounding consists
of and why it is of interest.

First, what is “bounding™? It is the process of finding bounds on the parameters
or state of a given system model that confine within specified ranges the errors
between the model inputs and outputs and their observed values. In other words, it

J.P.NorTON e School of Electronic and Electrical Engineering, University of Birmingham, Edgbaston,
Birmingham B15 2TT, United Kingdom.

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York,
1996.



2 J.P. NORTON

answers the question “What parameter or state values in this model match the
input-output observations to within a given error?” A more mechanistic view of
bounding is that it maps the error bounds, through the model and observations, into
parameter or state bounds. The error bounds define a set of acceptable error values,
and the parameter or state bounds define a feasible set (sometimes tautologically
called the “membership set”), so the mapping is from one set to another.

Although state and parameter bounding have much in common as in more
traditional estimation approaches, this volume concentrates on the bounding of
model parameters. Most commonly, symmetrical bounds are specified on instanta-
neous discrete-time values of individual error variables, i.e., the [, norm is specified
for the vector of successive values of each error variable. In some cases, a bound
on power or energy, or some other norm of the error, may be more appropriate.
Often only a scalar model-output error is considered.

What use is bounding? It provides a way to relate uncertainty in the model to
uncertainty in its inputs and outputs, independent of any probabilistic assumptions
and referring only to a given data set. It splits parameter or state values into those
not excluded by the data and error specification, i.e., the values which must be taken
into account when applying the model, and those which are excluded and need not
be considered. Application of the model’s feasible set, for instance in robust control
design, gives results which can be relied on only as far as the error specification
and data set can. Conversely, the extremes of model behavior over the feasible set
give a “worst case” for design that may be conservative if the data set, error
specification and model structure allow too wide a range of behavior. The need to
impose realistic restrictions 1s why parametric models are considered in most of
the work described here, and why algorithms computing approximate bounds seek
the tightest possible.

The appeal of bounding lies in its directness, simplicity and need for few
assumptions compared with its probabilistic alternatives; its ability to make use of
prior knowledge expressed as bounds; and its status as the natural basis for worst
case design. The choice of what to bound and what norms to employ gives flexibility
not yet fully exploited. An important question in some applications 1s how to derive
point estimates from the feasible set. For example, the values minimizing the
maximum model-output error, or the maximum error in each individual parameter,
are related to feasible sets in a simple way.

These considerations lead to the first contribution in this volume, a review of
optimal estimation theory as a framework for bounding. The theory is able to
accommodate a variety of norms and a wide range of problems, including the
derivation of point estimates.

Chapters 3 to 16, like a large majority of the publications in the field, consider
models linear in their parameters. The feasible set for such a model with instanta-
neous bounds on its additive output error is a polytope. It is sometimes computable
exactly but is often approximated by an ellipsoidal, orthotopic (box) or parallelo-
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topic set, to economize on computing and to simplify its subsequent use. Chapter
4 is a review of ellipsoidal bounding techniques, followed by several chapters on
ellipsoidal bounding, which refer also to its connections with least-squares estima-
tion and estimators applying dead zones to the prediction error in the update.
Chapter 7 considers the important link between time and frequency domains,
reflecting the initial emphasis of robust control analysis and design on frequency-
domain bounds through the H,, formulation. In Chapters 9 to 13, a number of other
bounding techniques for linear models are described. The issue of robustness to
outliers, crucial in bounding because of the absence of any averaging, is raised.

The essential difference between state and parameter bounding is the presence
in the former of time evolution of the quantities being bounded. The distinction
disappears if the parameters are treated as time varying. The evolution requires
expansion of the parameter or state bounds to account for the unknown (but
bounded) increments from one sampling instant to the next. Computationally, this
extra feature is not negligible. It involves vector summing of the prior feasible set
and the feasible set of the increments, at every update, rapidly increasing the
complexity of the feasible set. Various heuristics have been suggested to lessen this
problem; Chapters 14 to 16 discuss how ellipsoids and simplified polyhedra may
be used to approximate the evolving set, and how joint bounding of state and
parameters may be performed in an adaptive controller.

Nonlinear models are the subject of Chapters 17 to 23. The “errors in variables”
regression-type model, linear both in its parameters and in its input and output
variables but with uncertainty in all input and output observations, is nonlinear by
virtue of containing products of uncertain quantities. If the observation uncertain-
ties are bounded, the parameter bounds due to the observations at any one instant
are linear in any orthant. This results from the model’s bilinearity: fixing the signs
of all parameters determines which bound on each observation error maximizes or
minimizes the contribution of that term in the model. The feasible set is therefore
composed of polytopes in each orthant, in the absence of any serial dependence
between observation errors. However, if the same observation appears in the model
at more than one sampling instant (a “dynamic” errors-in-variables model), serial
dependence is present and renders the parameter bounds nonlinear, even in one
orthant. Both dynamic and static errors-in-variables models are considered in
Chapters 17 to 19.

Chapters 20 to 23 offer bounding techniques for more general nonlinear
models. Not surprisingly, the central issue is the compromise between computing
load and resolution. The availability of performance guarantees also plays a large
part in selecting an algorithm, as does the ability to handle bounds which are not
well behaved locally.

Chapters 24 to 26 present various facets of bounding in robust/adaptive
control. An assumption of bounded disturbances is often realistic, and is considered
in the context of adaptive control. As previously noted, a model with parameter
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bounds allows worst-case control design. Worst-case-optimal control synthesis has
the potential to guarantee performance. It takes model uncertainty explicitly into
account, in contrast to ignoring it by applying certainty equivalence as is usual in
adaptive control. Another feature available in bound-based adaptive control is
compromise between short-term control performance and longer-term improve-
ment. This is due to reduction of model uncertainty, by optimization of the control
input for identification over the set of values giving adequate short-term control.
Both these aspects are examined in the setting of predictive control. Identification
for H,-robust control, a topic stimulating the recent convergence of bound-based
identification and control design techniques, is also discussed.

Applications of parameter bounding have had relatively little exposure in the
literature. In Chapters 27 to 30, applications in areas as diverse as robotics, image
compression, speech processing and high-accuracy calibration are described. The
speech processing case is particularly noteworthy as an example of the spread of
parametric bounding into signal processing, which has paralleled its growth in
control engineering over the past decade.

The technology of parameter bounding is beginning to mature to the point
where it should find an established place in the armory of a system modeller or
control designer. Important questions remain partly or completely unresolved,
though, such as how best to combine distributional information and bounds, or
probabilistic and bounding information; how to exploit both time-domain and
frequency-domain bounds; how to describe and utilize the complicated bounds
typical of nonlinear systems; and how to maximize the information about bounds
derived from limited experimentation. Our hope is that readers of this volume will
provide some of the answers.
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Optimal Estimation Theory for
Dynamic Systems with Set
Membership Uncertainty: An
Overview

M. Milanese and A. Vicino

ABSTRACT

In many problems, such as linear and nonlinear regressions, parameter and state
estimation of dynamic systems, state space and time series prediction, interpolation,
smoothing, and functions approximation, one has to evaluate some unknown
variable using available data. The data are always associated with some uncertainty
and it is necessary to evaluate how this uncertainty affects the estimated variables.
Typically, the problem is approached assuming a probabilistic description of
uncertainty and applying statistical estimation theory. An interesting alternative,
referred to as set membership or unknown but bounded (UBB) error description,
has been investigated since the late 60s. In this approach, uncertainty is described
by an additive noise which is known only to have given integral (typically /, or /)
or componentwise (/,,) bounds. In this chapter the main results of this theory are
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reviewed, with special attention to the most recent advances obtained in the case
of componentwise bounds.

2.1. INTRODUCTION

Estimation theory is concerned with the problem of evaluating some unknown
variables depending on given data (often obtained by measurements on a real
process). Available data are always known with some uncertainty and it is necessary
to evaluate how this uncertainty affects the estimated variables.

Obviously the solution of the problem depends on the type of assumptions
made about uncertainty. The cases most investigated so far are unquestionably
related to the assumption that uncertainty is given by an additive random noise with
a (partially) known probability density function (pdf).

However, in many situations the very random nature of uncertainty may be
questionable. For example, the real process generating the actual data may be very
complex (large scale, nonlinear, and time varying) so that only simplified models
can be practically used in the estimation process. The residuals of the estimated
model have a component due to deterministic structural errors. Treating them as
purely random variables may lead to unsatisfactory results.

An interesting alternative approach, set membership or unknown but bounded
UBB error description has been pioneered by the work of Witsenhausen and
Schweppe in the late 60s."**) In this approach, uncertainty is described by means
of an additive noise which is known only to have given bounds. The motivation for
this approach is that in many practical cases the UBB error description is more
realistic and less demanding than the statistical description. However, despite the
appeal of its features, the UBB approach is not widely used yet. Until the early 80s,
reasonable results and algorithms had been obtained only for uncertainty bounds
of integral type (mainly /,), while in practical applications componentwise bounds
(I,) are mainly of interest.

Real advances have been obtained in the last few years for the componentwise
bounds case, leading to theoretical results and algorithms which can be properly
applied to practical problems where the use of statistical techniques is questionable.

The purpose of this chapter is to review these results and to present them in a
unified framework, in order to contribute the present state of the art in the field and
simulate further basic and applied researches.

2.2. PROBLEM FORMULATION

In this section a general framework is formulated such that the main resuits in
the literature can be presented in a unifying view. Such formulation can be sketched
as follows. )
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We have a problem element A (for example a dynamic system or a time
function) and a function S(A) of this problem element (for example some parameter
of the dynamic system or particular value of the time function) is to be evaluated.
Suppose A is not known exactly, but there is some information on it. In particular
assume that it is an element of a set K of possible problem elements and that some
function F(A) is measured. Moreover, suppose that exact measurements are not
available and actual measurements y are corrupted by some error p.

The estimation problem is to find an estimator ¢ providing an approximation
¢(y) = S(A) using the available data y and evaluating some measure of such
approximation. A geometric sketch is shown in Fig 2.1.

FIGURE 2.1. Generalized estimation problem.
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2.2.1. Spaces and Operators

Let A be a linear normed n-dimensional space over the real field. Consider a
given operator S, called a solution operator, which maps A into Z

S:A>Z 2.1)

where Z is a linear normed /-dimensional space over the real field. The aim is to
estimate an element S(X) of the space Z, knowing approximate information about
the element A. Suppose that two kinds of information may be available. The first
one (often referred to as a priori information) is expressed by assuming that
A € K, where K is a subset of A. In most cases X is given as

K={he AR =A< 1} 2.2)

where R is a linear operator and A is a known problem element. The second kind
of information is usually provided by the knowledge of some function F(A), where
F, called an information operator, maps A into a linear normed m-dimensional space
Y

F:A—>Y. (2.3)

Spaces A, Z, Y are called problem element, solution and measurement spaces
respectively. In the following, unless otherwise specified, assume that A and Z are
equipped with /,, norms and Y is equipped with an /% norm.’

In general, due to the presence of noise, exact information F(A) about A is not
available and only perturbed information y is given. In this context, uncertainty is
assumed to be additive, i.e.,

y=FQA)+p (2.4)
where the error term p is unknown, but bounded by some given positive number &
llpll <& (2.5)

Note that if an /}; norm in measurement space Y is used, componentwise
bounds with different values on every measurement can be treated.
An algorithm ¢ is an operator (in general nonlinear) from Y into Z:

0:Y>Z (2.6)

i.e., it provides an approximation ¢(y) of S(A) using the available data y. Such an
algorithm is also called an estimator.

"The 2 norm is defined as |[y||"Y = max fwlyl, w,>0
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Some examples are now presented in order to show how specific estimation
problems fit into this general framework.

2.2.2. Example 1: Parameter Estimation of ARX Models
Consider the ARX model

P q
2.7
Y= z Ve T Z 024+ Py 7

i=1 i=1

where y, is a scalar output, u; is a known scalar input and py is an unknown but
bounded error such that

lpd<e, Vk (2.8)

Suppose that m values [yy,...,,,] are known and the aim is to estimate parame-
ters [v;,0;]. For the sake of simplicity suppose that p > g. A canbedefined asthe(p
+ g)-dimensional space with elements

A=1[V} s v, 0, .., 0,17 (2.9)

If no a priori knowledge on parameter A is available, then K = A.

Z is the (p + g)-dimensional space with elements z = A, so that S(A) is identity.
Y is the (m — p)-dimensional space with elements y = [y, --., v,,]7, and conse-
quently F()) is linear and is given by

yp S up up+l—q

Fo=| - -~ - . . A (2.10)

Ym—1 ™" ym—p Upy ™ um—q

2.2.3. Example 2: State Estimation of Linear Dynamic Systems

Consider the problem of estimating the state of the following discrete, linear,
time invariant dynamic system

Xy =Ax,+ Bu, (2.1D)
Ve =Cxtpy

where x;, y,, 4, and p, are the state, observation, process noise and observation noise
vectors respectively; 4, B and C are given matrices. For the sake of simplicity,
suppose that x is /-dimensional and y, u, and p are scalar variables.

Assume that the samples of process and observation noise are unknown but
bounded
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lu)<U, Yk (2.12)

lpd <g, Vi (2.13)

Suppose that m values [y, ..., y,,] are known and the aim is to estimate x,,. A can
be defined as the / + m — 1-dimensional space with elements

=[xl uy, ., ) (2.14)

> “m—1
If no a priori information on the initial state x; is available, K is defined by
K:{keA;|uj|sUj,j:1,.‘.,m—1} (2.15)

Zis the I-dimensional space with elements z = x,,. ¥ is the m-dimensional space
with elements y = [y, ..., ] . Standard computation of solutions of the set of
difference Eq. (2.11) shows that the solution and information operator are linear
and are given by

S(A) =[4™".4"B, ..., AB,B]A (2.16)
e 0 - 0 0]
cA CB -~ 0 0
CA2 CAB —~ 0 0 (2.17)
FM=| . e

CA™? CA™3B - CB 0
CA™' C4™?B - CAB CB

2.2.4. Example 3: Parameter Estimation of Multiexponential Models

Consider the multiexponential model

1/
W=D ne™ +p(r) (2.18)

1=1

where 1, and v; are unknown real parameters and p(¢) is unknown but bounded by
a given &(¥)

Ip()] < &(0). (2.19)

Suppose that m values [y(t,), - (t,)] are known and the aim is to estimate
parameters g, and v, i=1,..., 1
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By setting &;=¢™, i =1, ..., [ the space A is taken as the 2/-dimensional
space with elements

I (TTR IR S - L (2.20)

S(A) can be taken as the identity operator. In this way, estimation of variables
&, is considered instead of v;. Original variables can be obtained by logarithmic
transformation.

Y is defined as the m-dimensional space with elements y = [1(t,), . . . , ¥(t,)]".
Then, information operator F(A) becomes the polynomial function

!
Foy] | 2 M

F”('x) = ~ 2.21)

2.2.5. Example 4: Multistep Prediction with ARX Models

Consider the ARX model Eq. (2.7) and suppose that the aim is to estimate
Vmen When past values [y, ..., v,,] are measured (h-step ahead prediction problem).
For the sake of simplicity, consider the case 4 = 2.

The space A can be defined as the p + g + 2-dimensional space with elements

k:[vl,...,vp,el,...,Gq,pm+1,pm+2]7. (2.22)

If no a priori knowledge on parameter A is available, K is given by
K=1{h e APl S €t IPmsal € it (2.23)

Z is the 1-dimensional space with elements z = y,,,, and consequently S(A) is the
polynomial function given by

S(A) = (Vv + Vo ly, + (ViVa +V3)y,  + -+ Vo Vmepil

+0,u,,, +(v,0,+0 u, + -+ equm_qﬂ

T V1Pt ¥ P2 (224)
Yis an (m — p) dimensional space with elements y = [y,.,, ..., Yyl and F()) is
linear and given by
yp yl up e up+]—q 0 0
FOO=| = e e . (2.25)

ym_l s ym_p um_l e um_q O 0
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2.3. MAIN DEFINITIONS AND CONCEPTS

This section provides definitions of the main sets involved in the theory,
optimality concepts used to evaluate estimator’s performances, and types of esti-
mators investigated.

2.3.1. Relevant Sets

The following sets play key roles in set membership estimation theory:
measurement uncertainty set:

MUS,= {7 € Y: |7~ < e} (2.26)
estimate uncertainty set (for a given estimator ¢);
EUS, = §(MUS) (2.27)
feasible problem elements set;
FPS,={k e K:|ly=F; <&} (2.28)
and feasible solutions set
FSS, = S(FPS). (2.29)

Note the difference between EUS; and FSS,. The former depends on the
particular estimator ¢ used and gives all possible estimated values that could be
obtained for all possible measurements consistent with the actual measurement y
and the given error bounds. The latter depends only on the problem setting and
gives all possible values which are consistent with the available information on the
problem.

In the literature on parameter estimation, where problem element A represents
the parameters to be estimated and S(A) is identity (see Section 2.2.2), FPS,
coincides with FSS, and has been given also different names such as feasible
parameters set, membership-set estimate and likelihood set.

An exact description of F'SS, or EUS} is in general not simple, since they may
be very complex sets (e.g. non-convex, not simply connected). For this reason,
approximate descriptions are often looked for, using simply shaped sets like boxes
or ellipsoids containing (outer bounding) or contained in (inner bounding) the set
of interest (see Fig. 2.2). In particular minimum volume outer box (MOB) or
ellipsoid (MOE) and maximum volume inner box (MIB) or ellipsoid (MIE) are of
interest.

Information of great practical interest is also provided by the values uncer-
tainty intervals (VUI) and estimate uncertainty intervals (EUI), giving the maxi-
mum ranges of possible variations of the feasible and the estimated values,
respectively. The VUIs are defined as
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FIGURE 2.2. (a) Box and (b) ellipsoid
inner- and outer-bounding.

VurL=(zn2"i=1,..,1, (2.30)
where
z" :infzeFS%zgint;eFPSvSi(k) i=1,...,1
and
M= SUP.c pss7; = SUPye s, S(A) i=1,...,1L (2.31)

Note that the VUISs are the sizes (along coordinate axis) of the axis aligned box of
minimal volume containing FSS, (see Fig. 2.2).
The EUls are defined in the same way substituting EUS,, for FSS,.

2.3.2. Errors and Optimality Concepts
Algorithm performance is measured according to the following errors:
Y-local error E(¢), where

E5(6) = sup ISA) = oI (2.32)

eFPS,

A-local error E5(¢), where

E5(6)= sup [IS(V) - oMl (2.33)

yEMUSF(M
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and global error £%(¢)
E%(¢) = sup E(¢) = sup E5(¢). (2.34)

yeYt AeA

Dependence on ¢ is dropped out in subsequent notation, except when neces-
sary.

Algorithms minimizing these types of errors are indicated respectively as
Y-locally, A-locally and globally optimal.

Notice that Y-local optimality is of particular interest in system identification
problems, where a set of measurements y is available and one wants to determine
the best achievable estimate S(L) for each possible y using an algorithm ¢(y). Also
A-local optimality is a particularly meaningful property in estimation problems,
since it ensures the minimum uncertainty of the estimates for the worst measure-
ment y, for any possible element A € X.

Y- and A-local optimality are stronger properties than global optimality, as can
be seen from Eq. (2.34). For example, a Y-locally optimal algorithm minimizes the
local error E,(¢) for all data y, while a globally optimal algorithm minimizes the
global error E(¢) only for the worst data. In other words, a Y-locally optimal
algorithm is also globally optimal, while the converse is not necessarily true.

2.3.3. Classes of Estimators

Some classes of estimators whose properties have been investigated in the
literature are now introduced.

The first class is related to the idea of taking the Chebicheff center of F'SS, as
estimate of S(A). The center of FSS,, c(FSS,), and the corresponding radius,
rad(FSS ), are defined by

sup |lc(FSS,)—z|l = inf sup ||z - z|| = rad(FSS,). (2.35)
zeFSS, : zeZ z€FSS, !

A central estimator ¢¢ is defined as
¢°() = c(FSS)) (2.36)

The second class includes estimators analogous to unbiased estimators in
statistical theory, which give exact values if applied to exact data.
An estimator ¢ is correct if

O(F(L)=S) YheA. (2.37)

Such a class is meaningful only for [ < m, that is, when there are at least as many
measurements as variables to be estimated (the typical situation in estimation
practice). This class contains most of the commonly used estimators, such as
projection estimators.
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A projection estimator ¢” is defined as

$°0) = SO, (2.38)
where A, € A is such that
Iy = F I =;anW-F(K)II- (2:39)
€A

The most widely investigated and used estimators in this class are least square
estimators (¢"5), which are projection estimators when an J, norm is used in space
Y. Least-absolute values and least-maximum value estimators have been also
considered in the literature, which are projection estimators when /, and /,, norms
are respectively used in space Y.

In the next sections the results available in the literature regarding the follow-
ing aspects are reviewed: existence and characterization of estimators, optimal with
respect to some of the optimality concepts introduced previously; actual computa-
tion of the derived optimal estimators; evaluation of the errors of optimal and of
projection estimators; and exact or approximate description of feasible sets
FPS,, FSS, and estimate uncertainty set EUS,. Whenever possible, a statistical
counterpart of the presented results is indicated, based on the analogy:

Y-local optimality <> minimum variance optimality

F. SSy < minimum variance estimate pdf
EUS, < estimate pdf

EUI’s < estimate confidence intervals

VUIs < Cramer-Rao lower bound confidence intervals.

2.4. NONLINEAR PROBLEMS

A first important result is related to the existence of a Y-locally optimal
estimator. No general results are available for A-locally optimal estimators. This
result also shows that the minimum Y-local error is given by the radius of FSS,.

Result 1. “® A central estimator ¢¢ is Y-locally optimal

E$)<E(®) YyeY.¥¢ (2:40)
Its Y-local error is
Ey(¢c) = rad(FSSy) (2.41)

This result holds for any norm in A, Z, Y. O
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It can be considered as the counterpart of the conditional mean theorem in
statistics. As with conditional mean estimators, central estimators are in general
difficult to compute. The computation of ¢ involves the knowledge of F'SS,, which
may be a very complex set (nonconvex, not simply connected).

Several approaches have been proposed to describe FSS,, mainly in papers
related to dynamic system parameter estimation. In Ref. 7 a random sample of
parameters is generated by a Monte Carlo technique, and Egs. (2.4 and 2.5) are used
to check if they belong to FSS,. Global optimization methods based on random
search are used in Refs. 8 and 9 to construct the boundary of FSS,. In Ref. 8
projections of F'SS, onto coordinate one-dimensional or two-dimensional subspaces
are looked for. In Ref. 9 intersections of the boundary of FSS, with bundles of
straight lines centered at points inside FSS, are searched. The optimization methods
used in these papers converge in probability to the global maximum or minimum
of interest. However, this convergence property is not very useful in practice,
because no estimate is given of the distance of the achieved solution from the global
solution. Moreover, all these approaches suffer the curse of dimensionality. These
reasons motivate the interest in looking for less detailed but more easily computable
information on FSS,.

An important result in this direction is that the computation of ¢ and of its
Y-local error do not require the exact knowledge of FSS,, but only of the VUIs.

Result 2.°”) The center ¢(FSS,) can be computed as

c(FSS) = M+zm/2 i=1,..,1 (2.42)
The radius rad(F'SS,) can be computed as
rad(FSS,) = max(z)' - 2]")/2 (2.43)

where 2" and z¥ are given by Eq. (2.31). 1

Result 2 states that the computation of a central algorithm and of minimum
Y-local error is equivalent to the computation of the VUIs, requiring the solution
of only 2/ optimization problems of the type Eq. (2.31).

Equation (2.31) problems are in general not convex, exhibiting local extrema.
Any of the general global optimization algorithms available in the literature give
approximate solutions converging to the exact ones only in probability and, more
seriously, they do not provide any assessment on how far the approximate solution
is from the correct one.

If S(1.) and F(}) are polynomial functions, specific global algorithms exist, for
obtaining better results.

Result 3.9 If (1) and F(L) are polynomial, algorithms exist converging with
certainty to global extrema of Eq. (2.31).
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Under the assumptions of Result 3, Eq. (2.31) are polynomial optimization
problems, in the sense that both cost functions and constraints are polynomials in
M. Polynomial problems are in general nonconvex and may admit local extrema.!'"
Nevertheless, if all the variables are strictly positive (in which case the term
signomial problems is used), an algorithm is available to find a global maxi-
mum.'%'2!® The underlying idea of this algorithm is to construct a sequence of
convex problems approximating the original problem iteratively better. In this way,
the algorithm generates a sequence of lower and upper bounds of the global
extremun, converging monotonically to it. If the sign of some of the variables is
not known, it is possible to reduce a polynomial problem to a signomial problem
by setting these variables as the difference of strictly positive new variables.

The hypothesis of Result 2 covers large classes of problems, as shown in
examples (2.2.2-2.2.5). The implication is that an optimal estimator and its error
can be exactly computed for several nonlinear problems of practical interest. No
analogous result is available in the statistical context.

Most of the papers in the literature focus on studying FSS,, while very few
results are available on EUS,. For any correct estimator, F'SS, is an inner bounding
set ofEUS¢.(14)

Result 4.4 If ¢ is correct then

FSS,c EUS, VyeY (2-4[%

Hence, for correct estimators the VUIs are lower bounds of the EUISs, that is,
VULcEUI, i=1,...,!] (2.45)

Consider the properties of projection estimators. In general they are not
optimal with respect to any of the three considered type of errors.!'> However they
are almost Y-locally optimal (within a factor 2) as shown by the following result.

Result 5. A projection algorithm ¢” is such that

E(4")<2rad(FSS)<2E($) Vye Y, V¢ (2-4[6:)l

Projection estimators enjoy interesting properties of robustness with respect
to inexact knowledge of the uncertainty bound €. Central estimators are not robust
in such a sense: a central algorithm computed supposing that € = gy may not be
optimal if the actual € is different. A central estimate ¢“(y) may not even belong to
the actual F'SS), and its Y-local error E,(¢“) may be greater than 2 rad(FSS,).

On the contrary, projection estimators are robustly almost Y-locally optimal,
independent of the volume of €, as shown by the next result.

Result 6.'% Let ¢ be the projection estimator. Then

EY(®") <2 rad(FSS,) <2E3(¢) Vy € ¥, V¢, Ve (2-4&)I
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Projection estimators also have nice properties in a statistical context. For
example, an /,-projection estimator is the maximum likelihood estimator (MLE) if
noise p is supposed to be gaussian; an /,-projection estimator is the MLE if noise
is supposed to have a Laplace pdf; an /,-projection estimator is the MLE if noise
is uniformly distributed. Projection estimators /; and [, also have interesting
robustness properties with respect to uncertainty in the pdf’s knowledge.!!”-'%!)

2.5. LINEAR PROBLEMS

Consider the case in which S(A) and F()) are linear. In this case, Eq. (2.4) is
written as

y=ah+p (2.48)

where 4 is a matrix of dimension (m, n).

These assumptions are restrictive, but include cases of practical interest such
as parameter estimation of linear regressions, parameter estimation of ARMA
models with polynomial trends and harmonic components, state estimation of
dynamic systems, and time series forecasting. Moreover, if uncertainty bounds are
not too large, linear theory can be used for a first approximate analysis using some
linearization techniques.

From Result 1 a central estimator is Y-locally and globally optimal. In the linear
case it is also correct and A-locally optimal in the class of correct estimators, as
shown in the next result.

Result 7.%% ¢¢ is Y-locally optimal:

E(0)<E(9) V¢ (2.49)
¢° is a A-locally optimal (among correct estimators)

E,(0) < E,(§) VA € K,V ¢ correct (2.5[0:)!
In Ref. (15) it is proven that Result 7 holds for any norm in Y.

Under the present assumptions, FSS, and FPS, are polytopes. Then from
Result 2 it follows that ¢ and its Y-local error E,(¢“) can be obtained by solving
the 2/ linear programming problems of Eq. (2.31).

A linear estimator can be computed, which is correct, globally optimal, and
A-locally optimal within the class of correct estimators. This gives a complete
solution to the linear case, representing the counterpart of the Gauss-Markov theory
in statistical estimation.

Result 8.5'9 Let K = A and m > n. Then there exists a linear estimator A~ that
is correct and globally optimal
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E(H)Y<E@®) YV ¢ (2.51)

The linear estimator H~ is A-locally optimal (among correct estimators)

E,(H")<E,(¢) VX € A,V ¢ correct (2.52)
Its errors are
EH"Y=E,(H")=E4(H")=rad(FSS,) Y1 e A (2.5|3:)|

Estimator H can be computed from the knowledge of the active constraints
of the linear programming problems of Eq. (2.31) with y = 0.9

In case that an J,-norm is used in ¥, H' can be computed by least squares. Under
this assumption, the least squares estimator is linear and correct, robustly Y-locally
optimal and A-locally optimal within the class of correct estimators, as shown by
the next result.

Result9.'” Let K= A, m > n and Ybe a Hilbert space. Let ¢“5 be the projection
(least square) estimator. Then:
"5 is central, linear, correct and robustly Y-locally optimal

EXO™)<SEN$) Vye Y,V o,Ve (2.54)
o5 is A-locally optimal (among correct estimators)

E, (") <E;(¢) VA € A, V ¢ correct (2-55D)

The sets FPS,, FSS, and EUS,, (for linear ¢), are polytopes described by the
sets of linear inequalities appearing in Eqs. (2.27-2.29). This is not the simplest
way to describe them (for example, many linear inequalities may not concur to
defining the boundary of the polytope) and simpler descriptions could be of interest.
One way of characterizing a polytope P is through its vertices. Algorithms exist
which allow one to compute recursively the vertices of a polytope P, defined by
the first & measurements, from the knowledge of P,_; and the A-th measure-
ment.?!#22324) The number of vertices may be relatively smaller than the theoreti-
cal maximum. For example, Monte Carlo simulations on ARMA models parameter
estimation,®® have shown that the mean number of vertices of FSS, is approxi-
mately constant for m > 50. For /=4 and / = 5, for example, they are approximately
50 and 150, respectively.

Polytopes can be represented alternatively by describing their faces. This
representation is used to derive a recursive algorithm.® This approach seems more
involved than the previous one, but it also allows the recursive computation of an
outer bounding polytope with a fixed number of faces, leading to an approximating
description of the polytope of interest by means of a polytope of prescribed
complexity.
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The most investigated approaches to approximate description of polytopes are
through ellipsoids and boxes for the case of parameter estimation, where the
polytope of interest is the feasible parameter set.

A recursive algorithm for outer bounding ellipsoid computation has been
proposed in.®® The underlying idea is as follows.

Let OE,_, be the outer ellipsoid bounding P,_;. Let R, be the feasible parameter
set corresponding only to the A-th measurement

Ri={heA:y—g<ahr<y +e]l (2.56)

where 4] is the k-th row of 4.

Clearly P, c OE;_| N R,. OE; is computed as the minimal volume ellipsoid
containing OE,_; N R;, and then containing P, also.

If an ellipsoid OF, is defined by its centers A{ and positive definite matrix X,
according to

OE,={LeA: (-2 S A=A <1} (2.57)

the following recursive algorithm has been obtained.
Result 10.2% The ellipsoid O} can be computed by the recursion

e e o Vav,

M=+ 5 (2.58)
k
oV

= (1 + 0~ ———)¥, (2.59)

Ep T Oy

where
szk—laka[qu (2.60)
O S R

& T Oy
R (2.61)
w=a %, a (2.62)

and oy is the positive solution of the equation
(I - Dol + [(21 - Vel -, + vawo, + ell(ef - vi) —p,] =0 (2.63)

if a positive solution exists, otherwise o; = 0. O
Computational complexity of this algorithm and slight modifications for
implementation on a systolic architecture can be found.?” A modification of this
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algorithm with data-dependent updating and forgetting factor has been pro-
posed.®®

A similar approach can be used for the recursive computation of inner bound-
ing ellipsoids.®®>? Let IE,_, the inner bounding ellipsoid contained in P,_,. Then
IE, is chosen as the maximal volume ellipsoid such that

IE,cIE_ AR,CP, (2.64)

The resulting recursive algorithm is much as for the outer bounding ellipsoid
and is not reported here.

The main drawback of these recursive algorithms is that they do ror give the
minimal and maximal volume ellipsoids bounding the feasible parameter set.?*3)
This is true also for improved versions of the algorithm.®!#?) Since IE; has an
unfortunate tendency to shrink rapidly and vanish,®% the inclusion
IE, c P, c OE, in practice may not give any reasonable information on the loose-
ness of bound OF;.

A nonrecursive solution to the problem of finding the minimal volume outer
ellipsoid contained in FPS, (MOErpg and the maximal volume inner ellipsoid
contained in FPS, (MIErpg, has been proposed.®*** The solution for MIEps is
given by the following result.

Result 11.°¥) The MIEppg has center A" and matrix X* solution of

max det(X) (2.65)
subject to
(uiTXC+ c,.)2 - uiTZul. 20,i=1,...,2m

A ulk e +¢,20,i=1,...,2m
£,>0,i=1,...,n

where X, i=1, ..., n are the principal minors of £, and matrix U e R (with
rows denoted by ) and vector ¢ € R?™ are given by

U=[4"-4N c=[-Tp]" (2.66)
y= —ew,y, W, .., Y, ewm]T
y, = tew,yytew,, ..,y +ew, ]’ (2.67)

Equation (2.65) is a polynomial optimization problem and can be solved by
use of signomial programming.'? The solution of Eq. (2.65) may be computation-
ally cumbersome, even for a few parameters. Then less general but simpler
solutions may be of interest. For example, the maximum ellipsoid of given shape
may be sought. Consider that X is given except for a scale factor (for example the
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shape of the outer ellipsoid given by Result 10 can be used). In such a case, Eq.
(2.65) reduces to a linear programming problem with (n + 1) variables and (2m +
1) constraints.

The solution for MOE rpgalso can be obtained by solving a suitable polynomial
problem.®? Unfortunately, the computational complexity is high for the general
case, and does not reduce, as for MIErps, if restricted classes of ellipsoids are
considered.

For the computation of extremal volume inner and outer boxes definitions are
as follows.

A box is defined as:

B, LR ={h e A RO~ <1} (2.68)

where R is an orthonormal matrix. The box is described by its center A, axis lengths
[; and rotation R. If R = I the box is aligned with coordinate axis.

A solution to the problem of finding the minimal volume outer box contained
in FPS, (MOBgpy) is provided in Ref. 34 as solution of a suitable polynomial
problem. Its computational complexity is high, unless the rotation of the box is
given. In such a case the problem can be reduced to a linear programming problem.
In particular, if R = I the axis-aligned MOBp¢s can be computed directly from Eq.
(2.31). This requires the solution of 2/ linear programming problems with »
variables and 2m inequalities constraints.

The solution to the problem of finding the maximal volume inner box con-
tained in FPS, (MIBgps) is provided by the following result.

Result 12.%% The MIBppg has center A°*, axis length I" and rotation R” solution
of

max [/ (2.69)
i=1

subject to
[>0,i=1,...,n
AAR S @R +¢) =T Lu > 0,i=1,...,2m
RR=1 O]
Equation (2.69) is a polynomial optimization problem which can be solved by
use of signomial programming. If matrix rotation R is fixed, Eq. (2.69) reduces to
a convex problem with 2n variables and (2m + n) linear constraints, which can be
efficiently solved by means of normally available convex programming algorithms.
If axis length / is also fixed except for a scale factor (i.e., the maximum box of a

given shape is sought), Eq. (2.69) reduces to a linear programming problem with
(n + 1) variables and (2m + 1) constraints.
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2.6. OTHER TYPES OF RESULTS

This section briefly recalls papers on topics related to set membership estima-
tion theory, such as experiment design, estimation with reduced order models, and
uncertainty in the information operator. Almost all these papers consider linear
problems.

2.6.1. Experiment Design

In the previous sections information operator 4 is supposed to be given. In
some practical application it is possible to choose among different information
operators A4 (optimal information problem). For example it may be possible to
choose the sampling times at which measurements are taken of the input and the
output of the dynamic system to be identified. Then a natural choice is the one
minimizing the error £, (¢°). In Ref. 35 some results are given for the case in which
information is provided by sampling.®* In Ref. 20 similar results are derived for
more general classes of information. In this paper it is also shown that the optimal
sampling times can be chosen a priori, and no improvements can be obtained by
means of more sophisticated sampling schemes.'*” The optimal sampling problem
is approached through p-widths theory.®®

Another criterion is to minimize the volume of FPS,.?% In Ref. 29 a recursive
selection procedure is given based on heuristics to avoid poor choices without
guaranteeing the best. Characterization is given of the minimum number of sam-
pling times assuring minimum volume of the feasible parameter set FPS, for
y =4\ in Ref. 37. '

2.6.2. Reduced Order Models

In the previous sections, it is supposed that the structure of the problem is
known, for example the number of autoregressive and moving-average terms for
an ARMA model. In many cases, however, the structure of the problem and in
particular the dimension of space A is not known and must be evaluated from the
available information (order determination problems). Some methods are analo-
gous to methods widely used for order determination in statistical contexts,*83%)
such as the principal component analysis and singular value decomposition. A
method is also proposed, based on the expected behavior of FPS, for overparame-
terized and underparameterized structures.

A second important problem is how estimation algorithms can take into
account that only approximating structures are used. The usual approach in statis-
tical contexts is to ignore the deterministic nature of modeling errors, and eventually
discard badly approximating structures with residuals evidently not satisfying the
assumed statistical hypotheses. In the UBB approach, modeling errors can be taken
into account in a more natural way, since it is possible to evaluate bounds on such
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modeling errors.“%*!42) A deeper analysis considers explicitly that using approxi-
mating structures corresponds to restricting the analysis to a subset K < A not
containing the “true” problem element 2.3 In this paper, the concept of condition-
ally central estimator is introduced as an extension of a central estimator, and 1t is
shown to be Y-locally optimal. The same paper shows that there are two possible
ways of extending least squares estimators. The first one corresponds to what is
usually done (more or less explicitly) when dealing with reduced order models.
However, this estimator does not preserve any of the interesting optimality prop-
erties of least squares estimators. A second type of extension is introduced, which
is shown to have interesting A-locally and Y-locally optimality properties.

2.6.3. Uncertain Information Operator

In some papers the case in which information matrix 4 is not exactly known
is studied. In particular, perturbation of the type 4= 2, + A2 has been considered,
where 4, is given and A4 is not known but bounded. Amodification of the recursive
algorithm for outer ellipsoid bounding reported in Result 10 is proposed. “%) Two
different extensions of FPS, are considered in Refs. 45 and 46. FPS, is defined in
Ref. 45 by considering that Eq (2.28) holds for all AZ and is described by a set of

m2"! linear inequalities. In Ref. 46, FPSf‘, is defined by considering that Eq. (2.28)
holds for some A4, and the problem of finding the corresponding MOB by means
of suitable linear programming problems is also discussed.

2.7. APPLICATIONS

The UBB approach is now beginning to be used in various application fields.
Some papers report applications to real word problems arising in biology, "
pharmacokinetics,** time series filtering and prediction,**>" economics,?
chemistry,®> image processing,** ecology,**°® measurement,®>"*® tracking,*”
and speech processing.(27:6061:62)

Application of set membership estimation theory has also been investigated
in the context of identification for robust and adaptive control design,?8.63:64:41.42.63)

and in Chapters 27-30 of this volume.

2.8. CONCLUSIONS

In this chapter an outline of the main results in the area of estimation theory
for set membership uncertainty has been presented. The main emphasis of the paper
is on the following aspects: existence and characterization of worst-case optimal
estimators; actual computation of the derived optimal estimators; evaluation of the
errors of optimal and of other widely used estimators (least squares, least absolute
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values, least maximum values); exact or approximate description of feasible
parameter and solution sets. A quick reference to less assessed topics such as
experiment design, reduced-order modeling, and more general error models are also
made in the paper.

Some general considerations may be drawn from this overview.

Concerning linear problems, real advances have been done in the last decade.
As aresult, properties of estimators and exact or approximate description of feasible
parameter and solution sets can be considered subjects with reasonably well
understood and usable solutions. In fact, many of the available algorithms have
been used for several applications in different real world problems.

Concerning nonlinear problems, in spite of the work done in the last few years,
much more remains to be done. Some algorithms for computing exact parameter
or solution uncertainty intervals have been proposed. They work reasonably well
on problems with a limited number of measurements and parameters. However,
their behavior in more complex situations has not been deeply investigated yet.

Several basic problems remain open and need a thorough investigation, both
for linear and nonlinear problems, for example the topological properties of the
feasible parameter set as a function of the nonlinearity and uncertainty structures,
inner and outer bounding for the nonlinear case, the effects of model approxima-
tions, the interaction of set membership estimation theory and robust or adaptive
control.
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Solving Linear Problems in the
Presence of Bounded Data
Perturbations

B. Z. Kacewicz

3.1. INTRODUCTION

In most computational problems of engineering or numerical analysis available
input data (information) is not exact. Perturbations in data may arise for instance
from measurement or round-off errors, to mention only these two possible sources.
The problem of how inaccuracy in data influences results (for instance, how does
it affect a quality of system identification or signal recovery) attracts attention not
only for obvious practical reasons, but also motivates a number of theoretical
papers. For example, since a long time the case of stochastic errors in information
has been studied by statisticians, to mention only the monograph by Wahba,"
where extensive references to the subject can be found. On the other hand, an active
stream of research is based on deterministic assumptions about the noise. Such
assumptions are imposed when no appropriate statistical knowledge about the
behavior of data errors is available, or simply when statistical analysis is not of
interest. The assumption often made in this framework is that errors in information
are unknown but bounded. Among many other papers, the bounding approach is
discussed in Refs. 2—5.

B. Z. Kacewicz e Institute of Applied Mathematics, University of Warsaw, 02-097 Warsaw, Poland.

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York,
1996.
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This chapter presents some results obtained in unknown-but-bounded ap-
proach using the tools of Information Based Complexity (IBC), one of the fields
of theoretical numerical analysis. Our main objective is to study the minimal cost
of solving linear problems in the presence of errors in data. Although the framework
ofthe presentation is rather ‘theoretical,’ the results and tools of IBC may be useful
in the identification field, as shown by a growing interest in such methods.*®

In a general formulation, the problem is to approximate the solution S(f) for
elements f belonging to a certain ball K in a linear normed space, where Sis a linear
continuous operator. To find an approximation, we gather information by succes-
sively computing some numbers z;, z,, . . . dependent on f. Each z, is assumed to
be a noisy evaluation of a linear continuous functional at / (e.g., it may be an
inaccurate evaluation of a function /) and is available at a certain cost. For a given
£ > 0, the aim is to obtain an approximation with error at most €. That is, data is
gathered during »n successive steps, where # is the minimal number of evaluations
21,2, - Z, Which yield an e-approximation. Obviously, a good termination criterion
to stop a data collecting process is needed. A ‘good’ criterion is meant in the sense
that it minimizes (or nearly minimizes) the total cost of obtaining an e-approxima-
tion. A detailed formulation of the problem together with a model example of signal
transmission is given in Sections 3.2 and 3.3.

The termination criterion based on the diameter of information, a quantity
closely related to the minimal error of an algorithm and often used in IBC, is
discussed in Sections 3.4 and 3.5. The choice of this criterion is motivated by the
fact that the diameter of information is relatively well studied and ‘easy’ to compute
and manage which makes the criterion useful in further considerations. It turns out
that the cost yielded by the diameter termination criterion is (almost) minimal, i.e.,
the criterion is not only convenient, but also ‘optimal.’

Section 3.6 concentrates on results concerning the minimal cost for the
diameter termination criterion. Under some assumptions, the minimal cost turns
out to be proportional to the minimal number of functionals needed to compute an
g-approximation in the case of exact data, multiplied by the cost of obtaining one
current information value. The results are illustrated by an example.

Section 3.7 discusses the dependence of the diameter of information on data
perturbations for the problem of signal recovery. The problem of how errors in data
influence the result is interesting from a general point of view. In this context it is
also important when applying the results of the preceding section, where knowledge
about such an influence is needed. For the considered problem, the minimal error
of an algorithm is bounded from above by a linear function in data errors, with
constants dependent on parameters of the problem.

In summary, this chapter is devoted to the general problem of quality of
information contaminated by unknown but bounded noise. Results on the minimal
cost of computing an g-approximation are given, as well as on the dependence of
the minimal error on data perturbations.
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3.2. EXAMPLE: A SIGNAL RECOVERY PROBLEM

To illustrate a general problem formulation coming up in the next section,
consider an example motivated by a signal recovery problem which arises, e.g., in
speech or image reconstruction.* In this example we assume that a signal is first
sampled and its quantization is done to fit a certain number of bits. Next (e.g., after
data transmission), the signal is recovered from available (incomplete) information.
The reconstruction is to be done with possibly small error which obviously depends
on the number of samples and the size of memory used. Or, in an alternate
formulation, the size of memory needed to keep the reconstruction error on a
prescribed level is to be minimized.

This brief description can be formalized as follows. Let F be the space of real
functions in s variables with » (» > 1) continuous derivatives,

F=C1([0.,1T),

with the norm

of @)

(6x1)"t-~-(6x2)"s ’ f€ F,

Ifll= max  sup

0<kp+tk =i<r xe[0,17°

where x = [x', . . ., x']. We gather information by sampling the function f,

N =U@).f @), S, -], 3.1)

at some points ; € [0,1]°, i =2 1. Each value f{t;) is rounded using binary repre-
sentation with m; bits. That is, instead of f{¢;) we have at our disposal a number z;
such that

2, — )N <27, iz 1. (3-2)

A sequence [zy, . . ., 2, . . . } is called perturbed information about f.

The aim is to recover a function f'with || f|| < 1 within a given accuracy € >0
using the perturbed information. That is, to find » and a function g, = g,(zy, ..., z,)
in C([0,17°) such that

g, —fll.<e

The calculation of g, is connected with a cost which can be measured, e.g., by a
number of bits T, m; necessary to store information. This cost should be as small

*This example and the material from Section 3.6 have been extracted from Ref. (3.8) and are included
in this chapter courtesy of Marcel Dekker Inc.
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as possible. In addition, we want to determine the optimal sampling points #;, and
the optimal number of bits m; for which the cost is minimized.
We now describe a generalization of the above problem.

3.3. GENERAL PROBLEM FORMULATION

Let S, S = 0, be a linear continuous operator acting from a Banach space F to
a linear normed space G." Let K= {f e F: || f]| < 1}. We wish to approximate the
solution S( /) for all f € K, based on the knowledge about frestricted only to some
perturbed information about f. For fe K, information N(f) is gathered by a
successive calculation (or observation) of certain numbers,

N =Ly (), L f)s - - - ), (3.3)

where L; : F — Rare linear continuous functionals, ||L]| < 1, belonging to a certain
class A, i > 1. With no misunderstanding, the operator N : F —> R” given by Eq.
(3.3) will also be called information. Collecting information is continued until some

terminating condition is fulfilled.
Assume that instead of the exact values L, /) only perturbed values z; can be

evaluated (or observed) such that
e~ LUNI<A, (3.4)

where A;>0,i> 1. The sequence A=[AA,, ...} € R”is called a precision se-

quence.
The nth approximation g, to S(f) is obtained based on the values z; (not on /'
itself which is unknown) as g, = d,(z, . . . , 2,), where ¢, is a mapping from R” to

G. The sequence ¢ = {¢,}n- is called an (idealized) algorithm (¢ means a fixed
element of G).

In the example from the preceding section F = C([0,1]%), G = C([0,17), the
operator S is given by S(f)=f, information functionals are defined by
L{f)=/f()and A; =27

An algorithm usually produces some error. Results that can be obtained and
their interpretation strongly depend on how the error of an algorithm is measured.
In this chapter, the nth error of ¢ at fis defined as

e (0NAS) = sup{lIS() = 9,(z1, s 2l 1 I, — LANIS A, 1 <i<my. (3.5)

"The material from Sections 3.3, 3.4 and 3.5 has been extracted from Ref. (3.7) and reprinted here with
minor modifications by permission of the American Mathematical Society.



LINEAR PROBLEMS AND BOUNDED DATA PERTURBATIONS 33

That is, the error is measured for a fixed fas the maximal distance between the
solution and the approximation, where the maximum is taken with respect to all
possible data perturbations.

Given g > 0, we compute the values z,,z,, . . . until the error does not exceed
€. Once such an accuracy is achieved, it should be maintained, if for some reason
calculations happen to continue. Hence, the number of steps to terminate is equal
to

n(@.NA,f)(e)=min{n>0: e(@NA,f)<e, Vj2n} (3.6)

(with the convention min J = +0).

The above termination condition is only ‘theoretical.” It reflects demands
concerning the termination, but it is not ‘computable’ as it depends on the unknown
element f. The sequel shall define another criterion which is as effective as in Eq.
(3.6) but independent of f.

Assume that collecting information is connected with some cost, i.e., we are
charged for each evaluation (observation) of a functional. The cost of obtaining a
value z such that |z — L(f)] < A is assumed to be c¢(A), where ¢ : [0, +o0)— [0, +o0]
is a given nonincreasing function, positive for sufficiently small A > 0 and
independent of L, fand z. In the example of Section 3.2 c(A) = log,(1/A).

The information cost (or cost) of obtaining an e-approximation using the
algorithm ¢ with information N, the precision sequence A and the termination
criterion of Eq. (3.6) is defined by

CONASNe) =D c(A) 3.7)

i=1

for m < +o0, and C(¢,N,A, f)(e) = +oo for m = +o0, where m = n(¢,N,A, £ )€). (The
convention =, = 0 is used.) In Section 3.2 we have C(¢,N,Af)(€) = =7 m;.

In addition to the information cost, the actual cost of constructing an approxi-
mation also consists of the combinatory cost of calculating ¢,(zi, ..., z,), but the
latter neglected. It turns out that for many important problems there exists a ‘good’
algorithm with the combinatory cost relatively small.'?

The purpose of this chapter is to analyze the behavior of C(¢,N,Af)(€) as & —
0.

Now turn to defining a termination condition ‘equivalent’ to that given in Eq.
(3.6), but easier to compute. To this end, recall the concept of the nth diameter of
information, which is given by

d (NA) =2 -sup{|IS()| : k€ F, Al < 1, LA < A, 1 <i<n}.

It is equal (up to a factor of 1/2) to the minimal error of an algorithm for the worst
element £.(1%-1D
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We shall also need the concept of an interpolatory algorithm ¢* = {$;} 50 (see
[10]). For n = 1 and [z,,z,, . . . ] being perturbed information for some f € K, take
an interpolant 6, = 6,(z,, . . ., z,) € F such that

L{c)—z]<A, 1<i<n,
and define an approximation to be the true solution for ,,
ds=0, &,(z;,...,2)=S(c,), n>1.
Itisknownthat
e, (0" NA, ) <d (NA), VfeKk. (3.8)

Hence, if the algorithm ¢” is applied, it is enough to compute n“(N, A)(e) pieces of
information to obtain an e-approximation, where

n(N, A)(e) =min{n>0:d (N, A) <e}. (3.9)

Note that the termination criterion of Eq. (3.9) does not depend on an element
/, but only on the class of all elements K. For many problems the behavior of
d,(N, A) is known.!%!? The number n*(N, A)(g) can be computed, in contrast with
the quantify (¢, N, A, f)(e). However the criterion of Eq. (3.9) may be useful only
if the number n“(N, A)(¢) is not much greater than n(¢, N, A, f')(c). As we shall see,
this is indeed the case.

The information cost of obtaining an -approximation using N, A and 6" with
the stopping criterion of Eq. (3.9) is independent of f'and equal to

CUNA)(e) = Y c(B) (3.10)

=1

for m <+, and CUN, A)e) = +oo for m = +oo, where m = n(N, A)(g). We call
C%N, A)(e) the diameter criterion cost. Equation (3.8) yields that, for any £ > 0 and
f e K, one has

C(0*, N, A, f)(€) < CUN,A)e). (3.11)

A deeper relation between the costs of Eqs. (3.7) and (3.10) will be discussed
later. It will be shown that the upper bound (3.11) is essentially sharp, i.e., the
criterion (3.9) is not pessimistic.

Furthermore, it is interesting to determine information N, an algorithm ¢ and
a precision sequence A for which the cost C(9, N, A, f)(g) grows as slowly as
possible as ¢ — 0. To show what the slowest possible growth is, the next two
sections study a relation between C(¢, N, A, /)(¢) and the minimal diameter crite-
rion cost defined by
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MC%e) = inf CY(N, A)(e), (3.12)
N,A

the infimum taken with respect to information N consisting of functionals from A.
We start with a construction of information N and a precision sequence A*
which supply an (almost) e-approximation with cost no greater than MC(e).

3.4. CONSTRUCTION OF OPTIMAL INFORMATION AND
PRECISION SEQUENCE

We first consider problems which are solvable with respect to the criterion of
Eq. (3.9), i.e., such that MC“(e) < +0, Ve > 0. The case MC“(g) = +oo (for small &)
is considered in Theorem 3.4 (ii), which states that the problem is then practically
not solvable even if the theoretical criterion of Eq. (3.6) is used.

Assume that the problem is ‘hard’ in the following sense:

(A) There exist 0 <p <1 and a > 1 such that

MC4a-€)<p - MC%e),

for all sufficiently small € > 0.

Note that the inequality (A) always holds with p = 1. For p < 1 it states that
the minimal diameter criterion cost tends to infinity sufficiently fast as € decreases.
This holds, for example, for the problem described in Section 3.2, see Theprem 3.6.

To define N and A", take for ® > 1 and i > 0 inforrgation_N’ = [y, L, ... ]
consisting of functionals from A, a precision sequence A’ =[A}, Aj,...] and an
integer n; > 0 such that

C— 1
4N, M) < (3.13)
and

i
n

Y cd)<o-MC? {ﬂ (3.14)

J

This selection is possible for sufficiently large 7, i > /, where / > 0. Denoting by
N and Al the first #' components of N and A’, respectively, define

J=1

N =[N NIONTR (3.15)

and

- I i+l 2
A= [Anz’ AnM’ AnHZ, o)
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What are the properties of the information N and the precision sequence A* from
the point of view of the cost of obtaining an e-approximation? The following
theorem shows that the interpolatory algorithm ¢~ using N* and A* produces an
(almost) e-approximation with the cost proportional to MC“(g), if any of the criteria
of Egs. (3.6) or (3.9) is applied.”

THEOREM 3.1. Let MC(e) < +o for all £ > 0, and let the condition (A) hold.
Then, for all f € K and all sufficiently small € > 0 we have that

CO", N A" f) e - €) < CHN', A") (ot - €) < ——MC¥(e).
-p

]

The above theorem gives only an upper bound on the cost of computing an
g-approximation using N, A* and ¢". We now ask: What is the quality of the
obtained estimate? Can the upper bound from Theorem 3.1 be improved? In the
next section N” and A* are shown to be (almost) optimal, in the sense that the cost
of obtaining an g-approximation using arbitrary N and A cannot be much smaller
that MC“(¢), even if the theoretical condition of Eq. (3.6) is used.

3.5. LOWER BOUNDS

For arbitrary N, A and ¢, lower bounds on the cost C(9, N, A, f)(€) turn out,
roughly speaking, to be given by MC(e), which shows sharpness of the upper
bound from Theorem 3.1. The lower bounds on the cost hold on dense sets of
element f. (A set D in a normed space X is called dense if elements of D can be
found in any ball in X. That is, each element of X can be approached arbitrarily
closely by elements of D.)

Consider first fixed N and A. Start with the case C4(N, A)(e) < +, for all & >
0. We have”

THEOREM 3.2. Let C(N, A)(g) < +o, Ve > 0, and let ¢ be an arbitrary algo-
rithm.

(i) If d,(N, A) >0, Vn >0, then for any function 4 : (0, +o0) — (0, +o0) with
lim,_,¢*A(€) = O the set

A, ={feK:3C=C(f)=03g,=¢gy(f)>0such that forall 0 <e <g,
C(9, N, A, f)C - h(e) - €) < CUN, A)e)}

has a dense complement in X, i.e., the set K — 4, is a dense set in K.
(i1) If d,(N, A) =0 for some n, then the set
A, ={fe K:3C=C(f)=03ey==¢y(f)>0suchthat forall 0 <g<g,

C(¢, NA, f)(C - €) <CUN, A)e)}

has a dense complement in K, i.e., the set K — 4, is a dense set in K.
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Theorem 3.2 provides a lower bound on C(¢, N, A, )(e). To see this, note that
by (i) the inequality (3.11) is no more true (on a dense set of f3), if only ¢ in the left
hand side is replaced by a function A(g) - €. This holds no matter what algorithm ¢
is used. The function A(g) is arbitrary, i.e., it may tend to 0 arbitrarily slowly with
€, so that replacing € by A(g) - € corresponds to a possibly very slight increase in
accuracy requirements. Note also that, due to Eq. (3.11), the function /(e) cannot
be omitted in the formulation of the theorem. In the case (ii), the theorem states that
weak inequality (3.11) cannot be replaced by sharp one. Combined upper and lower
bounds from Theorems 3.1 and 3.2 imply that, given N and A, the interpolation
algorithm ¢ is almost optimal.

In terms of the termination criteria, the above result is somewhat surprising.
It states that the theoretical stopping condition of Eq. (3.6) yields larger cost than
the criterion of Eq. (3.9), if the accuracy required in Eq. (3.6) is only slightly
increased (by a function /(g)) with respect to the accuracy required in Eq. (3.9).

In the case when C¥N, A)(e) =+ for sufficiently small € > 0, i.e., for
problems which cannot be solved (due to the infinite cost) with respect to the
criterion of Eq. (3.9) it holds:”)

THEOREM 3.3. Let CYN, A)(e) = +oo for sufficiently small € > 0, and let ¢ be
an arbitrary algorithm.

(i) If lim, , .o d,(N, A)>0 and I, c(A;) =+, then for any function
H : (0, +00) —[0, +0) the set

Ay={fe K:3C=C(f)203g;=¢y(f)>0suchthat forall 0 <e<g,

C(¢, N, A, f)(C - &) < H(e)}

has a dense complement in K. _
(i) Iflim,_,., d,(N,A) > 0and 2, c(A,) < o oriflim,,_,, d,(N,A) = 0, then
the set

A, = {feK: CONALNE) <+ Ve>0}

has a dense complement in K.

Theorem 3.3 assures that if the problem cannot be approximated with finite
cost using the termination criterion of Eq. (3.9) then it also cannot be approximated
even if the ‘ideal’ criterion of Eq. (3.6) is applied. For any algorithm ¢, the cost is
then arbitrarily large (in the case (1)), or infinite (in the case (ii)), on a dense set of
elements f.

Theorem 3.2, 3.3 and the inequality MC%(e) < C4(N, A)(g), (for all N, A) yield
the final lower bound on C(¢, N, A, f)(g).

THEOREM 3.4. Let N, A and ¢ be arbitrary information, precision sequence, and
algorithm, respectively. We have
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(1) If MC4e) <+, Ve > 0, then for any function 4 : (0, +00) — (0, +o0) with
lim,_,4+ A(€) = O the set

B ={feK:3C=C(f)203g;=¢,(f)>0suchthat forall 0 <g <g,

CONANC - h(e) &) < MCU(e)}

has a dense complement in K.
(ii) If MC¥e) = +oo for sufficiently small € > 0, then for any function H : (0, +<0)
— [0, +o0) the set

B,={feK:3C=C(f)203de,=¢,(f)>0suchthat forall0 <e<g,

C(, N, A, /)(C - &) < H(e)}

has a dense complement in K.

In the case MC“(g) < +oo the cost C(d, N, A, f)(€) grows essentially (i.e., up to
a function A(g)) at least as fast as MC%(¢), as ¢ — 0", for f belonging to a dense
subset of K. If the problem satisfies the condition (A) then information N, the
precision sequence A* defined in Section 3.4 and the interpolation algorithm ¢~ are
almost optimal, i.e., C(¢*, N*, A, f)(¢) essentially behaves like MC%), for all
f e K. In the case MC¥(g) = +oo, the cost C(, N, A, f)(€) grows arbitrarily fast as
e — 0" for any ¢, N, and A, on a dense set of f.

Hence, the problem of finding the optimal N, A, and ¢ for the ‘theoretical’
stopping condition of Eq. (3.6) can be essentially reduced to the similar (but easier)
problem with the criterion of Eq. (3.9). In both cases, the minimal cost essentially
behaves like MC%e), which means that the diameter termination criterion is as
effective as the ‘theoretical’ one.

3.6. THE MINIMAL DIAMETER CRITERION COST

This section concentrates on results about the minimal diameter criterion
cost and shows tight bounds on MC¥e) for some class of problems. Let
do=2||S]] (0 < dy < +0), and

d =infd (N,0), n>1,
N

where the infimum is taken over all information operators N=[L,L,,...],
L; e A,and 0=10,0,...]. The number d,, is thus the nth minimal diameter of exact
information, well studied in the complexity literature.'?

Assume that the problem satisfies the following conditions: there exists a
constant D, 0 < D < +oo, such that for any L € A and 4 € F it holds

IL(AI < D - 1S(A)I|- (A1)
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One can easily check that the condition (A1), although restrictive in general, holds
with D = | for the reconstruction problem from Section 3.2.

The second condition deals with the behavior of the minimal diameter in the
case when the precision vector has equal components. Let

d (A)=infd (N[A, A, ... ]),

where the infimum is taken over all N consisting of functionals from A
(d, = d,(0)). Assume that there is a constant M, 0 < M < +oo, such that

d(A)<M-(d, +A) (A2)

forn>1and A>0.
Fore >0, let

n'(e)=min{n>1:d, <e}.

The following result gives bounds on MC%(e) in terms of the minimal number
of functionals necessary to solve the problem in the case of exact information
n*(¢) and the single evaluation cost c(A).

TueoreMm 3.5. Let the conditions (Al) and (A2) hold, and lim,,_,, d, = 0. Then
there are constants M| and M, such that for all 0 < g <||S]|

n*(Mye) - o(M,e) < MC(e) < n*(M,g) - (M)

If € > ||S]| then MC%e) = 0.
For many problems the asymptotic behavior of n*(¢) and c(g) is such that

n*(oe) = B(n*(e)) and c(ae) = O(c(e)), as € — 0,
for any o > 0. In this case it follows from Theorem 3.5 that
MC¥%e)=O(n*(e) - c(e)), ase—> 0.

To illustrate the above results recall the example from Section 3.2. Recall that the
question under consideration is to minimize the number of bits necessary to store
a signal and to recover it with given accuracy €. It is possible to prove the
following®

THEOREM 3.6. The minimal number of bits necessary to store information
which allows to recover all functions f € F, || f|| £ 1, with the error at most ¢ is
equal to

MC¥e) = G)[a‘”’ : log{lD , ase— 0"
£

Furthermore, to achieve MCd(a), it is sufficient to evaluate function values at »
uniformly distributed points, n = @(¢™'"), and store them using the same number
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of bits, m; = m, where m = ©(log,(1/€)), 1 <i < n. The e-approximation is provided
by a piecewise polynomial interpolation.

In the next section, the assumption (A2) of Theorem 3.5, which deals with the
dependence of the minimal diameter on data perturbations, is discussed. We show
how the diameter is influenced by inaccuracy in data for the problem of recovering
band- and energy-limited signals.

3.7. THE DIAMETER OF INACCURATE INFORMATION

This section briefly describes a problem of reconstructing signals from data
given by their nonexact samples. Next it presents a formulation of two results
concerning the diameter of information, the full proofs of which and other related
results can be found in Ref. [9].

Let L, = L,[-Q,Q] denote the Hilbert space of all square integrable complex
valued functions fon the interval [-2,Q)], and let B = B(L,) denote the unit ball in
L,. Any function fin B yields a band- and energy-limited signal

o
f(t) = I_f(w) exp(inf) do, te R, i=V-1.
-0
The bandwidth and the energy of f are 2Q and 27| f uz, respectively. Given

real distinct points fg, ¢}, £, ..., t, we wish to recover a value f'(¢,) for f € B, with the
sole knowledge of / being a vector z € C" such that

lllz = NCONE< A, (3.16)

where

N = LF ). f (), o f )Y

Here A is a given nonnegative number and ||| - ||| is a fixed norm in C". That is, the
data (information) consists of inaccurate samples of f . The error in data is measured
here by an arbitrary norm ||| - |||, which is a slight generalization with respect to the
situation from previous sections, where we have |||z||| = max, <;<, |z;-

In an alternate formulation this is the problem of reconstructing the functional

S given by
SCy={foup (3.17)

from data z € C” satisfying the inequality (3.16) with the samples vector reinter-
preted as

NCOY =L u) (ftg)s o Cfru ) (3.18)
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where (-,-) is the inner product in L,[-Q,Q] and u(-) = exp(-ity) for k = 0,
I,...,n.

Results on the diameter of information are formulated in terms of the radius
of information #(A), a quantity known to be (for the above problem) the minimal
error of an algorithm for the worst f,

HA) = r(ug, uy, Uy, . . ., u,; B) =sup{|S(h)|: h € B, [IN(h)I|| < A}

The diameter of information is equal in this case to 2r(A).'?
How is the radius of information 7(A) related to #(0) and the precision A? Let

d = [Cug, uy), (ug, ty), . . ., (g, un>]T (3.19)

and G = G(u, u,, . .., u,) be the Gram matrix of the system {u;}7, ,

G = (<uj5 uk>);{k=]7

where ¢ is a conjugate to a complex number c. We have®
THeEOREM 3.7. Forany A >0

r(8) = sup(d"G'al + (1 - [|G™'2ally)' > H(0)),

where the supremum is taken over all a € C" such that ||ja}]] <A and
G~ %all <1.

Although this theorem gives an exact formula for the radius of information
r(A), at first sight the dependence on A may be not clear. To see it better, note its
consequences: an upper bound and the asymptotic behavior of +(A).

CoroLLARY 3.1. For any A >0 we have

r(A) £ H0) + F(0MHA
and for sufficiently small A
r(4)=r(0) + (0MA +v(4),

where #'(0) = supy gt [d7G'a) and y(A) = O(A?).

The result above holds not only for the specific problem of recovering a signal
from its samples, but also in a general situation of approximating a linear functional
from information given by (nonexact) inner products.

In the case of signal recovery, the matrix G and the vector d take the form
G =202 and d = 2Qg, respectively, where

M= (sinc(Q,; — 1)) 4y

and g = [sinc(Q(t, — 15)), sinc(QUt, — o)), - . . , sinc(Q(¢, — £,))]”. Here sinc stands
for the sinus cardinalis function, i.e.,
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. JS‘“(X) if x50,
sinc(x) =< x
R ifx=0.
Assuming that ||| - || is the pth norm || - ||, in C”,

n

O lalp)! ' if 1 <p < +oo,
all, =< &=

max |a,| if p = +oo,
1<k<n

the asymptotic formula in Corollary 3.1 takes the form
r(A)=r(0) + ¢ 'gll, A+ O(A%), A— 0",

where 1/p+1/q=1.

In summation, for signal recovery the radius of information (the minimal error
of an algorithm) behaves like a linear function of data perturbations with coeffi-
cients dependent on g, i, ..., £,.

Signal recovery is an example of a problem for which the dependence on data
errors has been revealed. Results concerning this interesting question for other
problems and related topics can be found.!!#13:14)
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Review and Comparison of
Ellipsoidal Bounding Algorithms

G. Favier and L.V R. Arruda

ABSTRACT

This chapter is concerned with the problem of robust system identification when
no statistical information is available on the noise, but only a bound on its
instantaneous values is known. First, various ellipsoidal outer bounding (EOB)
algorithms are presented in a unified way. Then, two types of projection algorithms
are described, and their link with the EOB algorithms is established. After that, the
EOB algorithms are interpreted as robust identification algorithms with a dead
zone. The performance of these algorithms is compared through computer simula-
tions where the influence of the choice of the a priori error bound is more
particularly studied.

4.1. INTRODUCTION

In practice, the identification of a parametric model from measured signals
must include both the estimation of the model parameters and an evaluation of the
estimated parameter uncertainty. This parametric uncertainty is particularly useful
for robust controller design. With the probabilistic approach, the exact distribution
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of the estimated parameters can be determined if the statistical description of the
input signal and disturbances acting on the system to be identified is known. In real
applications, such knowledge is often difficult to formulate. An alternative and
certainly more realistic approach to the identification problem is the so-called
unknown but bounded error (UBBE) approach, which was introduced by Witsen-
hausen” and Schweppe® in the context of state estimation, and used by Fogel and
Huang® for system identification. With this approach, the error that includes the
measurement noise and the modeling error is assumed to be unknown but bounded,
and the error bounds are assumed to be known. This approach allows us to
determine a membership set for the model parameters, the elements of which are
compatible with the measurements, the assumed model structure and the a priori
error bounds.

In the case of regression models which are linear in their parameters, the exact
membership set is a polytope, the size of which decreases as the number of
measurements increases. Several methods have been recently proposed in the
literature for recursively determining the polytope which is characterized by means
of its vertices, its edges or its faces.® The main drawback of these methods is
their computational burden when the measurement number increases, implying
simultaneous increase of the number of vertices, and therefore of edges and faces,
of the polytope. To circumvent this problem, a solution consists in approximating
the exact polytope by a region in the parametric space, having a simpler shape such
as an ellipsoid or an orthotope (i.e., an hyperrectangle the edges of which are parallel
to the co-ordinate axes).

In the case of orthotopic bounding, most of the proposed algorithms”'? have
the drawback of being non-recursive and time-consuming when the number £ of
measurements is large, as they must solve 2» linear programming problems with n
variables and 2k constraints, where # is the dimension of the unknown parameter
vector. However, new algorithms have recently been provided for recursively
determining an orthotopic-outer-bounding approximation of the parameter mem-
bership set.(319

In the case of ellipsoidal bounding, various algorithms have been derived by
means of a geometrical approach combined with the minimization of a criterion
directly linked to the size of the ellipsoid,®'®!'” or by means of convergence
considerations.!*' With the UBBE approach, robust identification methods can
also be obtained from the constrained minimization of different quadratic crite-
ria.1*2) The resulting algorithms are called “projection algorithms with dead
zone,” which means that they are stopped when the prediction error becomes
smaller than the a priori error bound.*?) The main advantage of the ellipsoidal-
bounding algorithms is their simplicity due to their recursive formulation. How-
ever, they often provide a loose approximation to the exact polytopic region. An
improvement in terms of reduction of the ellipsoid size can be achieved by
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processing all the data several times. The reprocessing takes the final ellipsoid
delivered at the (i—/)th iteration as the initial ellipsoid of the ith iteration.®’

It is suggested that the data be preprocessed by using an ellipsoidal-bounding
algorithm to discard some of the constraints, before applying an orthotopic or
polytopic-bounding algorithm.!'23*) This data preprocessing reduces the compu-
tational load of the orthotopic or polytopic-bounding algorithms.

The purpose of the present chapter is first to give a unified presentation of the
main EOB algorithms, then to show the equivalence between these EOB algorithms
and the robust identification algorithms with dead zone, and finally to compare the
performance of these algorithms through computer simulations. This chapter is
organized as follows. Section 4.2 states the parameter estimation problem with the
UBBE formalism. Section 4.3 shows how various FOB algorithms can be derived
in a unified way.?>® In section 4.4, projection algorithms for robust estimation
are presented in the bounded noise case, and their link with the EOB algorithms is
established. Then, in section 4.5, EOB algorithms are interpreted as robust identi-
fication algorithms with a dead zone.?*>?%) In section 4.6, a comparison of the
performance of these algorithms is carried out through computer simulations where
the influence of the choice of the a priori error bound is more particularly studied.
Finally, section 4.7 concludes this chapter.

4.2. THE UBBE APPROACH AND MEMBERSHIP SET ESTIMATION
Consider the single-input/single-output linear regression model
V= (pfe* +o, 9, 6" ¢ R" 4.1)
with

o) <8, 820,120 4.2)

where @, and 0" are the regression and the true parameter vectors respectively, and
®, is the bounded noise term including the measurement noise, the modeling
inaccuracy and the computer round-off errors; the error bound 9, is assumed to be
known a priori.

All the parameters 0 that are consistent with the model structure (4.1), the a
priori error bounds (4.2) and the measurements {y, ¢ € [1,k]} belong to the
so-called parameter membership set,®) defined as:

S(ky=1{61y,-8,<9l0<y +5, te[LAl} 4.3)

S(k) is also called feasible parameter set,®) parameter uncertainty set,*” or
likelihood set.®® This set can be viewed as the region of the parametric space that
is delimited by & pairs of parallel hyperplanes H;(¢) and Hy(¢), t € [1,k], such that:
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H(=16]¢/0=y,+38} (4.4)

Hy(1)=1{0]¢[6=y,-3} (4.5)

Each hyperplane H(¥),i=1, 2, divides the parametric space into two halfspaces
H{(¢) and H;(¢) defined as:

Hi()={0]9/0<y,+8) (4.6)
H{(0)=1{819/0>y,+38} “.7)
Hy)=10]9/0>y, -3} (4.8)
Hy(H)=1{0]¢/0<y,~38} (4.9)

Then, the set S() is given by:

SR = A H (1) (4.10)

t=1

where: H(¢) = Hi(1) M Hj(?) (4.11)

The set S(k) is a monotone non-increasing sequence of sets having a polytopic
shape, as shown in Fig. 4.1 for » =2 and & = 4. Any parameter vector 6 belonging
to the set S(k) is a valid estimation of 0", In practice, the center of S(k) (in some
geometrical sense) is chosen as the estimate of 8.

Although its size is decreasing, this polytopic region generally becomes very
complicated to determine when the number of measurements increases, due to the

FIGURE 4.1. The parameter uncer-
tainty set S(k).
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augmentation of the number of its vertices. An easier solution consists in approxi-
mating the convex polytopes S(k) by simpler shaped regions like ellipsoids, ¢~
orthotopes,’™!% or parallelotopes.*” The corresponding algorithms are respec-
tively called ellipsoidal, orthotopic and parallelotopic outer bounding (EOB, OOB
and POB) algorithms. It is also possible to construct ellipsoidal inner bounds®®*"
or orthotopic inner bounds.'!

Let M(k) be such an outer bounding approximation of S(k):

M(k) > S(k) 4.12)
This region M(k) can be recursively constructed so that
M(k) > M(k— 1) N H*(k) (4.13)
or, in using (4.11):
M(k) > M(k - 1) ™ H;(k) ™ Hy(k) (4.14)

By induction and using Eqgs. (4.10, 4.11, and 4.14), it is easy to verify that, if
the initial region M(0) is chosen sufficiently large to contain S(ky), where &k = n is
the first value of k for which n vectors in {¢,, ¢ € [1,ko]} are linearly independent,
then the set M(k) satisfies the relation of inclusion (4.12) for all the values of £ >
ko.

In the next section, we show how various EOB algorithms can be derived in a
unified way.

4.3. AUNIFIED PRESENTATION OF EOB ALGORITHMS

In the EOB approach, as introduced by Fogel and Huang,® the solution
consists in recursively determining a sequence of ellipsoids E(k) which enclose
S(k). Let us define an initial ellipsoid £(0) by:

E(0) = {e e R"| (6 -0,)"P,'(0 -6, <, Pyos = é 1,,}

(4.15)
where ¢ is a sufficiently small number such that £(0) contains S(k) for all £ > 0,
o3 and P, represent the a priori knowledge about the system to be identified. The
ellipsoidal bound E(k) must be chosen in such a way that it contains as tightly as
possible the intersection of E(k—1) and H' (k). This ellipsoid E(k) can be defined by

means of the following inequality:>?®

E(k)= {0 (0 -6, )P (00, )+ B, — 970 <oyop , + B,S;} (4.16)

where o, € 10,1] is a forgetting factor which weights the old information, while
Bi € [0,1] is a selecting factor which weights the new information.
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TABLE 4.1. Basic EOB Equations

Ve=Yk— (p/{Gk»l

G = OrPr1k

P/(:L‘ Py Br Pr-1 @k ¢/’{Pk711.
o | ak+PGr |

O = O-1 + B Pk vk

ok Br vk

2 2 2
ok = 0k Ok-1 + Prdt —
o + Br Gk

The estimated parameters are taken as the coordinates of the center 6, of the
ellipsoid E(k). By simple algebra manipulations, Eq. (4.16) of E(k) can be rewritten
as:

E(ky=101(0-06)" P'(6-0)<o}} (4.17)

where the ellipsoid parameters 8, P and o7 are calculated through the equations
of Table 4.1.

In the following, two groups of £OB algorithms are derived in a unified way,
using the basic EOB equations given in Table 4.1 and making different choices for
the free parameters oy, and ;.

Methods minimizing the geometrical size of the ellipsoid E(k): the free parame-
ters . and By are calculated by minimizing a scalar measure of the size of the matrix

P, which reflects the geometrical size of the ellipsoid E(k).

Methods based on convergence arguments: the choice of o, and 3 results from
the minimization of a cost function under constraints. This choice is not optimal
with respect to the reduction of the geometrical size of the ellipsoid E(k), but this
reduction is ensured. We call these methods “degenerate” minimal-volume algo-
rithms.®

Before describing these two families of EOB algorithms, we give the condi-
tions for the existence of a solution, in terms of the intersection of E(k— 1) and
H'(k), and for the redundancy of a measurement. Moreover, we give the formulae
for calculating the parameter uncertainty intervals associated with the ellipsoid
E(k).

Existence condition: When the intersection E(k — 1) N H*(k) is empty, i.c., the
ellipsoid E(k — 1) is entirely located in one of the two halfspaces H;(k),i=1or 2,
respectively defined by (4.7) and (4.9), the following condition is satisfied:
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vl > 8, +06,,G,"? (4.18)

In this case, the corresponding measurement must be discarded if the trouble
is caused by an outlier (and therefore a bad choice of the a priori error bound §,),
or the algorithm must be reinitialized if the occurrence of (4.18) is due to a bad
choice of the initial ellipsoid £(0) or to time variation of the model parameters. This
last situation can be detected in incorporating a fault-detection test to the identifi-
cation algorithm,*? which leads to an adaptive OB algorithm.

Redundancy condition: Another important particular case occurs when the
ellipsoid E(k — 1) is entirely located in H'(k), which corresponds to the following
condition:®¥

v <8, — o, G, (4.19)

In this case, the measurement is redundant and can be discarded, so condition
(4.19) defines a dead zone for the EOB algorithms (see section 4.5 for an interpre-
tation of £EOB algorithms as robust identification algorithms with dead zone).

Parameter uncertainty intervals: With each coordinate 6,( ), € [1,#], of the
center of the ellipsoid E(k), we can associate the uncertainty interval [0y (/).
O max(/)], where 0y ,.;,(/) and 8y ,,,..( /) are the minimum and maximum values taken
by the coordinate 8( ) of any point of the ellipsoid E(k):

04 min(/)) =Min 8(;) and 6, . (j)=Max 6()) (4.20)
’ 0 € E(k) ’ 0 € E(k)

The bounds of these uncertainty intervals can be calculated by means of the
following formulae:*%

ek,min(j) = Bk(j) — Gy [Pk(j:j)]l/z 4.21)

ek,max(j) = ek(j) + O, [Pk(j:j)]] 2 (4.22)

where P(Jj,j) is the element (j,j) of the P, matrix which defines the ellipsoid
E(k), as in (4.17).
The two families of FOB algorithms are now described.

4.3.1. Methods Minimizing the Geometrical Size of the Ellipsoid E(k)

The methods of this group use the basic EOB equations in Table 4.1, with
oy = 1/0%_; and B = A/82. The variable A, is obtained from the minimization of a
measure that reflects the geometrical size of the ellipsoid E(k). A, is time varying
and data dependent. The choice A, = 0 is possible and it means that the information
contained in the new observation is redundant. In this case, the ellipsoid stays
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TABLE 4.2. Computation of Aj for Minimal
Volume Algorithm

Mk is the solution of
a17»/% +ahp+az =0
with a1 =~ 1)oh1GF
2 2 2N 2
ay = {(2n - 1)8k — ok-1Gk + Vi) ok-1Gk
a3 = (n(8% — Vi) — oF-1Gy)dt

The optimal value of A is then given by:

N 0 ifa3=0
k= AF  otherwise

with A= (~a2 + (@3 - da1a3)' D) /241

unchanged [E(k — 1) n H"(k) = E(k — 1)] and the parameter estimates are not up-

dated.

Two measures defined on R are considered by Fogel and Huang®® for this
minimization: p,(k) = determinant (c2P;) and ppk) = trace (ciP,) which are
proportional to the volume and to the sum of squares of the semi-axes of E(k)
respectively. The corresponding algorithms are called the minimal-volume algo-
rithm and minimal-trace algorithm respectively. The computation of the corre-

sponding optimal values of A, are summarized in Tables 4.2 and 4.3.

TABLE 4.3. Computation of Ak for Minimal Trace Algorithm

b1 = 381/(01-1Gy)

A is the solution of

M+ bIM+bhi+b3=0 (A)

by = {SRGilpr (k= 1)(8F — Vi) — of1vk] + 2888k G (k — 1) — -1y (8% — V) } / Pk
b3 = SH(8% — Vi) prtk — 1) — o1vi] /(0h-1'¥0)

i = QFPE-1px and Wy = o1 GA[Grur (k — 1) - of-174]

The optimal value of A is then given by:

ifb3 20

otherwise

where A; is the positive real root of equation (A).
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When only one of the two constraint hyperplanes H (k) defined in (4.4 and 4.5)
intersects E(k — 1), the minimal-volume algorithm does not give the minimal-vol-
ume ellipsoid containing E(k — 1) N H'(k). A smaller volume ellipsoid can be
obtained by replacing the non-intersecting hyperplane by a parallel one tangent to
E(k—1). The corresponding algorithm is called “Improved Minimal-Volume Al-

gorithm.”'®) For this algorithm, the variables &, and v, in Table 4.1 are replaced
by:(339)

1 o ,
S@ v+ G -0 G2 -8 <v <~ lo, Gi2-8,]

1 .
8, = ~2—(6k—vk+ck_lG}(/2) 1f]ck_1G}(/2—6k] <V <0 G4, (4.23)

d, otherwise

%(Vk +8=0,G%) if -0, G2 - <v,<- | 0, 1G? =8, |
v, = —é‘(vk— o, + Gk—1G}(/2) if [Gk—lGli/z _ Skl <v, < ck—lGllc/z +5, (4.24)

v, otherwise

and A, is calculated as in Table 4.2.
Applying (4.23) is equivalent to reducing the noise upper bound, as we have:

0<5] <35, (4.25)

4.3.2. “Degenerate” Minimal-Volume Algorithms

The methods belonging to this group result from a geometrical approach which
consists in ensuring that the ellipsoid size is reduced at each time instant k. The
ellipsoid E(k) is then determined so that o7 is minimized, or the sequence {c7} is
non-increasing, i.e., o7 < G7_;.

The first “degenerate” minimal-volume algorithm, proposed by Dasgupta and
Huang'® is obtained by choosing o, = 1 — A, and B, = A4, with A, the solution of
the following constrained minimization problem:

Min ci (4.26)

A

0<A,<v<l

where the design variable v € ]0,1 [ is introduced to ensure that the matrix P, will
be bounded. The corresponding computation of A is described in Table 4.4.
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TABLE 4.4. Computation of A for Dasgupta and Huang’s

Algorithm
0 ifyr>1
K10 otherwise
Ak = min(u,&) with 0 <v < 1
8 — ot
Yk = 2
Vi
v ifvi=0
I—_éﬂ ifGr=1
&=
v ify(Gr—-1)+1<0
1/2
! (17 G W 1 i Y(Gr— 1)+ 1>0
(I—Gk)\ y/‘»(Gk~l)+l/ )

A second “degenerate” minimal-volume algorithm can be derived by con-

sidering:®’

o,=A and PB,=}, (4.27)

where A is a constant forgetting factor and % is a positive weighting factor to be
determined so that it minimizes the criterion (4.26) without the constraint 0 < &, <

L.
Substituting o, and By by their values (4.27) in the equations of 6, P, and o7
given in Table 4.1, we get:

P10y
0,=0_, +—F— 4.
k =1t A+ )\,ka ( 28)

polp WP
k 9 k-1 A+ 1G] (4.29)
ol =Aos, + M8 — Avi/ (L + LG (4:30)

The value A} of A, that minimizes o is obtained from 6o}/ = 0, which
gives:

8 - WV (L + 0GP =0 (4.31)
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N 0 ifjv|<8,0orG,=0 (4.32)
k7 1% otherwise
N (4.33)
=
G| §,
Moreover, for this value of A, we have:
&*o; 21 Vi G, 0 (4.34)
= >
M| . +HGY

h=h
which implies that A; corresponds to minimization of the criterion (4.26).

Finally, a third “degenerate” minimal-volume algorithm can be obtained by
using the EOB equations in Table 4.1, combined with convergence arguments. This
algorithm, proposed in Ref. (19) corresponds to the choice a; =1 and B, =4, In
contrast to the two previous algorithms in this group, the value of &, is not obtained
from the minimization of o2. Indeed, A is determined so that the sequence {c3} is
non-increasing, i.e., o7 < 61, while satisfying the constraints 0 < A, <v < 1. Then
we get:

‘= (4.35)

0 iffv|< 3,
7‘: otherwise

with:

v ( & w * 12
= 1- where v € [0,1]and 6, = (1 +v) "“ J,. (4.36)
1+ Gkk |vk|)

&
The variable o7 can be considered as an upper limit for the following quadratic

non-negative function:
V,=(0,-09"P;'(6,- 6" (4.37)

From the analysis of this quadratic function, it is possible to demonstrate the
following convergence properties for the degenerate minimal-volume algo-
rithms,®>3% i e., for the different choices of o, and By

k (4.38)
@) Lim ([T o) B =0
-0 =

i) 116,02 < p 110,17 (4.39)
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where

Py) o+ B,Gy

mm(

- * lnaX( ) 2
9k=9 -0,p= s 01 f(Bk) Bk[ ﬂ”—]

and Pminl.] (Bmax[-] ) = smallest (largest) eigenvalue of [.].
Moreover, assuming that the following persistent excitation condition of the
input signal is satisfied:

kN
ml, > B 2Ml,  Vk<k, (4.40)
i=k

where m, M and N (N 2 n) are positive scalars and &, is the convergence time of the
algorithm, then there exists a positive scalar 1 such that

Plznl,>0 (4.41)

and the following properties hold for the degenerate minimal-volume algorithms:

(iii) Lim ||6,~6, ,J*=0 (4.42)
k—0
~ 2( K -

@) 10JP<—={TT e [IBJF VEh2N+1 (4.43)

~ 1
W) 118, < o o} (4.44)

From the properties (iii}~(iv), the degenerate EOB algorithms are exponen-
tially convergent. Further, property (v) provides an upper limit (1/m c3,) for the
steady-state estimation error.

4.4. PROJECTION ALGORITHMS WITH DEAD ZONE

The introduction of a dead zone into the estimator equations is a classical
procedure to face bounded perturbations. The idea is to stop updating the parameters
when the prediction error becomes smaller than some threshold. This threshold
defines what is called a dead zone for the estimator. In this section, we present two
robust projection algorithms with dead zone. They are obtained from the minimi-
zation of two different criteria with a constraint on the a posteriori prediction error.
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4.4.1. Robust Projection Algorithm Based on Constrained One-Step-
Ahead Criterion Minimization

The estimation problem is considered in terms of minimization of the follow-

ing cost function!?:
Jy (09 =5 116, ~ 0, ,IP (4:45)
under the constraint
() —%)i, =0 (4.46)
where € is the residual
&=y, - ¢/0, (4.47)
and
o fo ifvg<s, (4.48)
k= {1 otherwise "k sign(vi)

The constraint (4.46) means that the residual e} is forced to be equal to +5,
when the absolute value of the prediction error is greater than the noise upper bound
;. The constrained minimization problem (4.45) and (4.46) is solved by introduc-
ing a Lagrange multiplier A, for the constraint, so that the cost function to be
minimized becomes:

, 1 o os 4.49
' Opy) = 5 10, = Oy I+ 1 ef = 1887 (4.49)

Writing the necessary conditions for a minimum (8J{ /06, = 0; 0J| /0h, = 0),
we get the following equations:

0,=0,_; + A0, (4.50)
with
2\ = A, ifig=1and|gl#0 (4.51)
710  otherwise
where
Ao Vv, — 020, (4.52)
k (P/{(Pk

The introduction of the dead zone due to the presence of the factor i; in the
correction term (4.50) allows us to turn off the algorithm when the prediction error
becomes smaller than the noise bound §,. In Table 4.5, the robust projection
algorithm (4.50)—(4.52) is compared to the projection algorithm with dead zone
introduced by Goodwin and Sin.®”) In this last algorithm, the residual ¢ is forced
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TABLE 4.5. Projection Algorithms

Normalized Projection Algorithms

9/; = 9/\»4 + ay 7 Vi
¢+ OLQk
Algorithms Constraints ar
Projection Alg. with dead zone®®”
! £ [k - ofBuli =0
.0 if v £ 2suplox| ik
U= .
1 otherwise
Robust Projection Algorithm''® .
) & vk - (p[@k — Osign(vi))ix =0
L0 if v < O Wil — 8 .
k= : i
1 otherwise [vad
Orthogonalized Projection Algorithms
aiPi— 2
O = Bt + Pk- 1Pk Vi
+ Gk
p=L (Pt - PiaguolPi ]
o cr G
Orthogonalized Projection Tpo1:
Algorithm with dead zone (% = 1)¢7 Dk = @kOJii = 0
= 0 if |vi] < 2suplooy ik
1 otherwise
Robust Orthogonalized Projection . .
Algorithm(zg” : [v% = /8% — Bisign(vilic = 0
) v{o if v < 8k [vid — 8¢
= . LA
{1 otherwise vl

to zero, while in the first one this error is forced to be equal to +3,, depending on

the sign of the a priori prediction error v,.

4.4.2. Robust Orthogonalized Projection Algorithm Based on Constrained

Least-Squares Criterion Minimization

In this case, the criterion to be minimized is‘?®?"

k

JZ(ek) = Z xk,[(yz - (ptTel\)Z

=1

(4.53)
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with
M= ?J‘“’?», (4.54)

where A € 10,1] is a forgetting factor fixed by the user and A, > 0 is a data-dependent
weighting factor which is determined in such a way that the constraint (4.46) is
satisfied.

Minimization of (4.53) with respect to 6,, leads to the well known weighted
RLS equations:

L9 PR
0,=6 —_— 4.55
=P T ING, (453
P :l{P 3 kak—l(pk(pI{Pk—l-‘
k M_ k-1 A+ 4G, | (4.56)

where v, and G, are defined in Table 4.1.
Substituting (4.55) for 6; into the constraint (4.46), when iy =1 (Jvi| > &),
gives:

Av,
0 = =% (4.57)
TG, KK
which leads to the following optimal value of the weighting factor A;:
h = ki ifIG I #0andlv,|> 5, (4.58)
710 otherwise
where:
A |Vk|
7\‘*:'—‘ _‘—1 (4'59)
k Gk [ 6k

Replacing A by its expression (4.58) and (4.59) in (4.55) and (4.56) yields the
equations of the robust orthogonalized projection algorithm (also called modified
exponentially weighted recursive least squares (EWRLS) algorithm), which are
given in Table 4.5. This algorithm is compared to the orthogonalized projection
algorithm with dead zone.®” As for the projection algorithms described in section
4.4.1, the orthogonalized and robust orthogonalized projection algorithms are such that
the residual e, is forced to zero and 8, respectively when |v;| is greater than J;.

When o, and B, are chosen as in (4.27), equations of Table 4.1 for computing
P, and 0, and expression (4.33) of A; are identical to (4.55, 4.56 and 4.59). So, we
demonstrate the equivalence of the second degenerate minimal-volume algorithm



58 G. FAVIER AND L.V. R. ARRUDA

(section 4.3.2) and the robust orthogonalized projection algorithm, which at the
same time allows us to give a new geometrical interpretation of the modified
EWRLS algorithm proposed in Refs. 20 and 21. Moreover, comparing equations of
Tables 4.1 and 4.5, one can easily verify that the two families of robust estimation
algorithms (EOB algorithms and orthogonalized projection algorithms) can be
written with the same equations, so that it is possible to interpret the EOB algorithms
as robust identification algorithms with dead zone. The mathematical equivalence
between these two families of algorithms is shown in the next paragraph.

For the projection algorithms described in Table 4.5, division by zero (when
¢, =0 or G, =0) is avoided by adding a small positive constant ¢ to the denominator
of the equations which compute 8, and P;.

4.5. INTERPRETATION OF EOB ALGORITHMS AS ROBUST
IDENTIFICATION ALGORITHMS WITH DEAD ZONE

It is now well known that the robustness of classical estimation algorithms, in
the sense of a noise sensitivity reduction, can be enhanced by introducing a dead
zone in the parameter update equation. Such parameter update law modifications
are very useful in the context of adaptive control.***? In this case, the controller
adaptation is turned off when the prediction error is smaller than some threshold A.

The EWRLS algorithm with dead zone, resulting from the minimization of the

quadratic criterion (4.53), with:

k
Mee=h [ w (4.60)

1=t+1

is given in Table 4.6.

TABLE 4.6. EWRLS Algorithm with Dead Zone (f{vk) = vk)

V= Vi~ OFBk-1
T
G = @kPi-10x
r T 7
ML QRO Pret |
Pk:i Pioy— Mk QPR Pkt
Lk b + MG

Bk = Ot + MPrprf (Vi)ik

c_fo itvisa?
k= .
[ otherwise
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When the dead zone condition is satisfied (i, = 0), the estimator is then frozen
(6, =0,_1, P, =P,_,), which requires . =1 in the computation formula for the
matrix P;.

The most critical point in the application of such identification schemes is the
selection of the dead zone A. The equations of Table 4.6 look like those of Table
4.1. With the correspondence A, = B; and L = oy, it is possible to rewrite the EOB
algorithms like the EWRLS algorithm with dead zone. Indeed, the choice 3, =0 n
the equation for computing 6, in Table 4.1, is equivalent to using a dead zone. This
dead zone can be explicitly introduced into the basic EOB equations of Table 4.1
by rewriting the estimate equation as

8, =0, + BL OV,
where

[ = [0 if “the ellipsoid cannot be reduced”
k {1 otherwise

The condition “the ellipsoid cannot be reduced” defines the dead zone. For the
considered FOB algorithms, this dead zone is explicitly given by the conditions
a3 2 0 (Table 4.2), b; > 0 (Table 4.3), v, > 1 (Table 4.4), |v;| < §; (Eq. (4.32)) and
[vil < 8 (Eq. (4.35)).

TABLE 4.7. Interpretation of EOB Algorithms as Robust Identification Algorithms with

Dead Zone
Methods [e72 Bk fve) AZ
Minimal-volume algorithm | /cyf»_] 2L/8 Vi 62— oy Gu/n
Minimal-trace algorithm Vol AL/ Vi o ol -
YT Pr-1
Improved minimal p) e Vi’ 2 2
3 /5 : 2~ o1 G/
volume algorithm l/ok-1 i/ 8k g o Gi-t Ge/n
First degenerate-minimal 1-ap AL Vi Y
volume algorithm
Second degenergte minimal 2 Al v &2
volume algorithm
Third degenerate minimal 1 N 2
% :
volume algorithm M k (1+ 030k
RLS algorithm with dead zone 1 1

Vi 31 + G
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In Table 4.7, we give the dead zone, the forgetting factor o, the weighting
factor B, and the function f{v,) for each EOB algorithm rewritten with the equations
of Table 4.6.

In conclusion, the EWRLS and EOB algorithms can be written with the same
equations; only the dead zone definition and the forgetting and weighting factors
are different.

In Table 4.7, the expression of A, is respectively given in Tables 4.2, 4.3, and
4.4, or Egs. (4.33) and (4.36), depending on the algorithm which is considered.
Moreover, for the improved minimal-volume algorithm, the quantities v; and 6
are defined in (4.23 and 4.24).

We have to notice that the dead zone associated with the first family of EOB
algorithms,®'®) and with the first degenerate minimal-volume algorithm,'® results
from the computation of the quantities o7 and P, while it depends only on the a
priori error bound 8; and the design parameter v for the second and third degenerate
minimal-volume algorithms. As already mentioned, the second degenerate mini-
mal-volume algorithm is identical with the robust orthogonalized projection algo-
rithm described in Table 4.5.

It is easy to prove that the dead zones defined in Table 4.7 have a width larger
than the dead zone (4.19), i.e., are more conservative in terms of parameter update.
Indeed, the conditions for the existence of a solution to the different optimization
problems corresponding to the minimization of the criteria ,(k), k), or 7 are
more restrictive than the condition (4.19) for E(k—1) and H"(k) to intersect, which
means that the existence of such an intersection doesn’t always imply the existence
of a new ellipsoid containing this intersection and obtained by minimizing one of
the above criteria.

In the next section, the performances of the considered EOB algorithms are
compared on simulated examples.

4.6. SIMULATION RESULTS

In this section, simulation results show the influence of the a priori error bound
3, on the performance of the EOB algorithms; they compare the behavior of the
EORB algorithms in presence of sudden disturbances and time variations of the
model parameters.

First consider the following ARX model, with constant parameters:

y,=08y_+12u_, +o,

The input signal u, is a square wave with a period 7= 10 and an amplitude 4
= 1, and the unmeasurable disturbance , corresponds to an independent random
sequence with a uniform distribution in [—1, 1]. The initial conditions for the
algorithms are 8, = 0 and Py 63 = 100 I,.
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FIGURE 4.2. Estimated parameters 31 and 30 (minimal volume algorithm).

Two points are studied in these simulations: comparison of the six EOB
algorithms when the a priori error bound is correctly chosen (8, = 8} = 1), and when
this bound is underestimated (§; = 8} = 0.5) or overestimated (8§, = &} = 3); and
performance comparison for the EOB and EWRLS algorithms.

Figs. 4.2 through 4.7 show the estimated parameters corresponding to under-
estimated (plots 7), good (plots ) and overestimated (plots s) bounds. Fig. 4.8 shows
the results obtained with the EWRLS algorithm with dead zone.

Table 4.8 contains the update rate for each algorithm, and for the three values
of &, which allows comparison of the performance of the EOB algorithms, in terms
of ability to discard redundant measurements. The update rate is calculated as:

FIGURE 4.3. Estimated parameters ?11 and [/30 (minimal trace algorithm).
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FIGURE 4.4. Estimated parameters 31 and 30 (improved minimal volume algorithm).

_ number of effective updates
" total number of iterations

From these simulation results, we conclude that if the a priori error bound is
correctly chosen, all the FOB algorithms converge to the true parameters, the
smallest update rate being obtained with the algorithms belonging to the second
group.

By analyzing Figs. 4.2 to 4.4, one can conclude, for the first family of EOB
algorithms, that convergence is not too much affected by an overestimation of the
a priori error bound. An underestimation of this a priori error bound leads to biased
estimated parameters. In this case, Condition (4.18) for the non-existence of a
solution is rapidly satisfied. That results in a low update rate (see Table 4.8), which
is not indicative of a measurement redundancy but of an inconsistency between the
measurements and the assumed error bound &'. The convergence is faster, and

TABLE 4.8. Update Rate for EOB and EWRLS Algorithms

Algorithms 5=05(%) §=10(%) &=3.0(%)
Minimal volume 4 78.5 7
Minimal trace 3 79.5 35
Improved minimal volume 3 61.5 85
First degenerate minimal volume 68.5 78.5 1.5
Second degenerate minimal volume 78.5 44.5 1.5
Third degenerate minimal volume 98 18 35

EWRLS with dead zone 99.5 56.5 1
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FIGURE 4.5. Estimated parameters 3, and 30 (first degenerate minimal volume algorithm).

therefore the update rate is smaller, with the improved minimal volume algorithm
than with the minimal volume algorithm. When the noise upper bound is well
chosen (8, = 8}), the update rates obtained with the minimal volume, minimal trace,
and first degenerate minimal-volume algorithms are very similar. As is common,
the parameter connected to the input term is not as well estimated as the autore-
gressive parameter.

By analyzing Figs. 4.5 to 4.7, one can conclude, for the second family of EOB
algorithms, that the behavior of the degenerate minimal-volume algorithms is the
opposite of that of the other EOB algorithms. The estimated parameters are biased
when the error bound is overestimated, and they are fluctuating around the true
values of the parameters when an underestimated bound is used. Moreover, the bias
is all the larger as the error bound is more overestimated. This difference in the

FIGURE 4.6. Estimated parameters 3] and 30 (second degenerate minimal volume algorithm).
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FIGURE 4.7. Estimated parameters 31 and 1130 (third degenerate minimal volume algorithm).

behavior essentially results from the dead zone which is a function of the ellipsoid
size in the case of the EOB algorithms of the first family. It depends only on the
error bound for the second degenerate minimal-volume algorithm, and also the
design parameter v for the third degenerate algorithm. In the case of this last
algorithm, the introduction of the factor (1+ v) in the dead zone transforms the good
bound &” into an overestimated value, which explains the biased estimation of the
parameters with 8 = 8" (Fig. 4.7). In conclusion, these simulations show that the
convergence of the EOB algorithms is strongly dependent on the choice of the a
priori error bound J;.

A second simulated example illustrates the behavior of the EOB algorithms
faced with an abrupt parameter change and an additive sudden disturbance &,:

FIGURE 4.8. Estimated parameters 31 and 30 (EWRLS algorithm with dead zone).
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FIGURE 4.9. Estimated parameters a; and
20 (improved minimal value algorithm).

_ 1 0
Ye=a Ve +br U, +wr+8r

with:

1= |0-81[0.300] p0 = |121[0300]
©710.4¢€[301,500] * ]1.6¢e[301,500]

g, A(0,1), e [100,110]

The input signal u, and the non-measurable disturbance ®, are the same as for
the previous simulated example. The additive disturbance €, is a zero mean
Gaussian noise, with variance equal to one. The initial conditions for the identifi-
cation algorithms are 8, = 0 and Pyo3 = 1001,. The a priori error bound is chosen
equal to 3, = L.

From the previous simulations, the behavior is nearly the same for all the FOB
algorithms belonging to a same group, so that for this second simulated example,
only one algorithm of each family is compared: the improved minimal-volume
algorithm (Fig. 4.9) for the first group and the second degenerate minimal-volume

FIGURE 4.10. Estimated parameters 31 and
Bo (second degenerate minimal volume algo-
rithm).
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FIGURE 4.11. Estimated parameters a1 and
Bo (adaptive trace algorithm).

algorithm (Fig. 4.10) for the second group. These algorithms are also compared
with the adaptive trace algorithm (Fig. 4.11).6?

The performances of all the EOB algorithms are degraded in presence of a
sudden additive disturbance. For the degenerate minimal-volume algorithms, this
additive disturbance leads to strongly fluctuating estimated parameters.

By examining the plots shown on Fig. 4.9, the £EOB algorithms of the first
family haven’t a tracking capability. Indeed, after an abrupt parameter change, the
new model parameters generally don’t belong to the last ellipsoid which was
determined before the parameter change. Then Condition (4.18) is satisfied and the
algorithm is stopped, which explains the bias of the estimated parameters. In this
case, as suggested in section 4.3, a solution would consist in combining a fault
detection test with the FOB algorithm and arbitrarily increasing the ellipsoid size
when a parameter change is detected.

On the contrary the second family of EOB algorithms is naturally adaptive due
to the presence of the forgetting factor which permanently ensures a sufficient size
of the ellipsoid.

4.7. CONCLUSIONS

In this chapter, various EOB algorithms for identifying systems characterized
by bounded modeling errors have been presented in a unified way. These algorithms
have been reformulated as robust identification algorithms with dead zone, the main
differences between them consisting in the computation of the dead zone and the
choice of the weighting factors. EOB algorithms have thus been proved equivalent
to the EWRLS algorithm with dead zone.

A comparative analysis of the performances of these EOB algorithms have
been carried out by means of simulated examples. The influence of the choice of
the a priori noise upper bound and the tracking capability of these algorithms in
presence of an abrupt parameter change have been studied.
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The Dead Zone in System
Identification

K. Forsman and L. Ljung

ABSTRACT

A prediction error method for parameter estimation in a dynamical system is
studied.

N
A - 1
9 =arg min lim N Z El(e(2,9))
=1

3 Now

where ¢ are the prediction errors of a linear regression. A quadratic norm / is zero
within an interval [—c, c]. This kind of a dead zone (DZ) criterion is very common
in robust adaptive control. The following problems are treated in this chapter:

e When is the DZ estimate inconsistent, and what is the set of parameters
which minimizes the criterion in the case of inconsistency?
What happens to the variance of the estimate as the DZ is introduced?
Does the DZ give a better estimate than least squares (LS) when there are
unmodeled deterministic disturbances present?

e What are the relations between identification with a dead zone criterion and
so called set membership identification?
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5.1. INTRODUCTION

Consider a prediction error method for parameter estimation in a dynamical
system:

§ = arg min 1(9) (5.1)
9

Here V'is a DZ criterion:

Lo (5.2)

") :whin N D El[e(1,9)]

=

where ¢ are the prediction errors of a linear regression:
D)= 0" (18" + e(1) (5.3)
= £(1.9) = 1(0) ~ }(1,9) = 9"()9 + e(0) (54)

where

§i=9"—9 (5.5)

Furthermore, / is a quadratic norm which is zero within the interval [, c]:

%(x — c)z, x>c

l(x) =10, | <e (5.6)

%(x +0), x<-c

or, more compactly, /(x) = % [max(c,}x|) — c]*. A typical / is displayed in Fig. 5.1.

The use of such a DZ is widespread in adaptive control and system identifica-
tion. It appears in adaptive regulators used in the industry, but also have theoreti-
cally interesting properties, for example in the stability theory of robust adaptive
regulators. Still, many properties of the DZ estimate seem to have been neglected
to some degree. The following questions are addressed in this chapter:

e Under what circumstances will the DZ estimate be inconsistent?

o Ifthe estimate is inconsistent, how much can it deviate from the true value
of 97

o How does the DZ affect the variance of the estimate?

e What is the effect on the LS estimate when a DZ is introduced, supposing
there are unmodeled deterministic disturbances present?
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FIGURE 5.1. The norm of the criterion (¢ = 0.5).

e What are the relations between identification with a DZ criterion and so
called set membership identification?

Notational convention: the notation E is defined by:

N

= . 1
Ex=lim ) Ex() (5.7)

t=1

5.2. CONSISTENCY

In some cases the DZ estimate of the parameters will be inconsistent. For
instance, if the noise is bounded, the norm of the residuals may be zero at all time
instants for any parameter values within a set (non-singleton) in the parameter
space. Thus all members of this set are indistinguishable, and only the true
parameter is inside the set is known. The following two theorems say what is
intuitively clear, namely that the estimate will be inconsistent if and only if the noise
is bounded and the DZ is too wide.

THEOREM 5.1. Let f'be the PDF of the noise e in Eq. (5.3) and suppose that f
is even. If f'is not identically zero outside the interval [—, ¢] then V¥ has a global
minimum in 3. Shorter:
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supp(f) ¢ [, c] = §= 9

Proor. Define v(b) := El(e + b), i.e.,

v(b) = [ (b +x) f (x)dx

o0

It is sufficient to show that v"(b) > 0 and that v'(0) = 0. Straightforward computa-
tions show that v/(0) = 0. Furthermore

——b o
Vi(b) = _[ f(x)dx + j f()dx (5-8)
—0 c=b
which is nonzero for all & iff supp(f) & [, c].
In the case of a density that is not even we get a messy implicit expression for
the minimizing bias is obtained.
The residuals are defined by Eqgs. (5.4 and 5.5). Now, if |e(£,9)] < ¢ for all ¢,

[[£(2,9)] = 0, which means that a sufficient condition for the estimate to be incon-
sistent is

07(1)9] + B, <c (5.9)

where B, is a bound for the noise e. The following theorem explains exactly the
parameter estimates in this case:
THEOREM 5.2. Suppose that the noise and the input are bounded:

Ve le()| < B, <ec, [u(®)] < B,

and that the system is stable. Then
8 5 {Slc 2 a(9)B, + B(9)B, + B} # {9}

where B3 = [P0k, (3) = [|94]I; and B(9) = ||S 4|, are defined via Eq. (5.10).

Proor. Since it is assumed that the input is bounded we can obtain an estimate
of'the first term in Eq. (5.9) in the following way: Partition the § vector in elements
corresponding to y and elements corresponding to u:

a 1 Bl
5:[&},;@: N (5.10)
a, By

and the regression vector ¢ analogously. If the true system is asymptotically stable
the output will be bounded: |y(?)| < Bs. (Of course, B; can be expressed in By and
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B, if we know the true system parameters 9°.) Holder s inequality gives us an upper
bound for the first term of Eq. (5.9):

=1 n
lox 84 <ilf IS <By Y )
-t - k)J J=1

(5.11)

If the B-part of (pTg\ is estimated in the same way, then

n k
T3] < aBy + BBy, o= oy, B =D ||

J=1 J=1
Since

le(r, 9)| < aB; + BB, + B,

a DZ width which is strictly greater than B, will give an estimate that is inconsistent.
The set of parameter vectors in which the criterion is zero will be a superset of

{8lc > a(9)B, + B(9)B, + B} 6. %

It is easy to show that this is the best estimate that Holder’s inequality can
produce with the information available.

5.3. VARIANCE

What does the asymptotic covariance matrix of the estimation error look like
when we use a DZ, and how does it depend on the width of the DZ? The following
important fact can be found in Ref. 5.3:

Cov 8~ %K(l)[fwowgl'l, Yo = ~d%a(z,9)|9=90 (5.13)
where
_E[l@P
0= Erer (5.14)

This formula is valid if / is twice continuously differentiable, which is not true
for the squared DZ. The trouble caused by the discontinuity in /" does not appear
to be of that serious a kind, though. Assume that it is of no importance. If the time
averaging property of E is disregarded, which is the same as assuming that the PDF
of the noise does not vary in time, then



74 K. FORSMAN AND L. LIUNG

_ E[l'(e))? (5.15)

O Er e

Here / is the squared DZ of Eq. (5.6), so

e—¢c, €>c¢
I'e) =10, le| < ¢ (5.16)
i\8+c, eE<~¢

and
L lel>c
I'e)= {0, le| < e (5.17)
!a, le| = ¢

where a is a subdifferential, o = [0, 1]. If confined to even densities, then
E[/(e) =2 [ (x = o) f(x)ex (5.18)
B
and
El'(e)=2 [ f(x)dx (5.19)

Insert Egs. (5.19 and 5.18) in Eq. (5.14) to get

[ G- 0w
feven = k() = ———— (5.20)

2[] chf(x)dx)]

supposing the integral in the denominator does not vanish. As expected, k is
strongly dependent on f.

Proving that the variance tends to infinity as the width of the deadzone tends
to infinity, even if intuitively very clear, is not trivial.

Here is a theorem which covers many important cases. Different estimates of
the quotient Eq. (5.20) are made in the different cases.

DermNiTION 5.1. Let f'be a continuously differentiable function that fis asymp-
totically decreasing if

ANVx>N: f'(x) <0
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Tueorem 5.3 [f f'is asymptotically decreasing and either

lim 26D (5.21)
oo JX)
or
7 2
im £ 9| 5 0 and lim L%~ (5.22)
x—% f(x) X—00 f(x+ 1)
then
k() > wasc—> ®
in Eq. (5.20).

Proor. Given that k(/) = T| + T, where

[ 00

| " - 0 e [ -0
+1

C C [ffj

Iy= 2 27
o0
¢
it suffices to show that either 7 or 7, tends to be o since both are positive.
Introducing the notations

o+l

a(e)=[f, be)=]s

c+l

it is clear that ¢ and b tend to zero as ¢ — .
First, look at 7. Assume that Eq. (5.22) holds. Since

c+1 e+l
[=er r@ur2fe+ ) [ - ePds+ 3 f(e+ 1) (5.23)
T can be lower bounded:
T, > % Fle+ D)/(a+by (5.24)
But according to Eq. (5.22)

ac) __f0)
fle+l)y fle+1)

-0, c>® (5.25)

and
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a(e)b(e) _
M rern (526
since
i LD (et 1)| 0 (5.27)
C—>0 b(C) C—% f(C + 1)

according to I’Hospital’s rule. The same argument can be used to show that

2
lim 29 i LD o (5.28)
e fle+ 1) S flle+])

In conclusion, 7 — o« as ¢ — «.
Now study 7, under the assumption of Eq. (5.21). This gives

[ (= e = [ f(0dx (5.29)

c+l c+1
so that

o b 1 (5.30)
2T (a+ b} dP/b+2a+b

If it can be shown that a/b tends to zero as ¢ — co the proof is complete. This can
be achieved by applying 1’Hospital’s rule and using Eq. (5.21) to get

2
im 9O i Q€D i L9 -0 (531
s DO e flet D) e flct+1)

In conclusion, 7, — o0 as ¢ — . O
The theorem above covers many of the interesting cases, €.g., that of the normal
distribution:

|
f(x)=—-ce
V2no

For this special case straightforward computations show that

(02 + (1 = D)) ~ L™/

21 - D)

K(l) =

where



THE DEAD ZONE IN SYSTEM IDENTIFICATION 77

)= [ e

—oC

5.4. DETERMINISTIC DISTURBANCES

In this section the aim is to investigate what happens as a deterministic
disturbance is present in the model. One might believe that in this case an LS
estimate will always improve if a DZ is introduced. However, this is not true. Let
us call the deterministic disturbance d. Then

W) = 9T (H9° + e(r) + d(¥) (5.32)
and the residuals are
£(,9) = (0 — 07 ()9 = ¢T3 + d(1) + e(t) (5.33)

These formulas are the analogues of Eqgs. (5.3) and (5.4). Let g denote the
‘deterministic part’ of Eq. (5.33):

g(t) = 0"()8 +d()

5.4.1. Minimizing the Criterion

It is possible to derive an explicit expression for the criterion of Eq. (5.2) in
the case of Eq. (5.32). It turns out that this expression is extensive and non-sugges-
tive. Luckily, the derivative of the criterion is rather easy to compute, as long as f
(the PDF of the noise) is even. These computations result in the following equation.

THEOREM 5.4. Given

d . c+g(9)
~SV(9)=0= Eo[2g(9) - [ A=0 (5.34)
c-g(9)
Proor. Recall the following formula from elementary calculus:

wx) V)

o] rendy= | pendy+ fev@ve - 00 @  (5.39)

(x) o(x)
Now, for each sample

—c-g o
Ele)= | (x+g+ 0 @)dc+ [(x+g— /Y (0dx (5.36)

—c0 c—g
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where g is a function of 3. We want to compute the derivative of Eq. (5.36) w.r.t.
3. In order to do this use Eq. (5.35) on each of the terms on the right hand side:

-c-g(9) “E
A=gdg [ Gra®+ 0 dr=2glg + F—c—g)+ | xf(x)dx]

o

B [ g9+ (e =2¢1(g ~ 1 - Fle—g) + [ 2/ ()]

—g(® g

where ' denotes differentiation w.r.t. 9. So 4 + B =2g'I" where
o—g
I=(g+F(-c-g)+ &=l - Fle-g) — [ xftdx

~c-g

By partial integration,

c-g c—g
[ xf o= [xF(x)]:i — | Foax
—c-g —c-g
=(c-gF(c-g) +(c+QF(—c-g) - [ Flx)dx

From this

ct+g

c-g c-g
T=g-c+ | Fdr=g—-c+ | Fde+ | Fxydx

—€-g ctg —-g
ctg ctg c+g
—g—c— [ Fode+ [ (Foo+1-Fe)dx=2g— | Food
g 0 g
where F(—x) = 1 — F(x). Finally
ctg
L gie)-gg- | Frodn)
a9
c-g

To get Eq. (5.34) consider the following a mathematical truth:

(5.37)

(5.38)

(5.39)
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N

N

d .. 1 .1 d

d 1 e L d 5.40

s 1}:1; I > Ele) Al/l_r)r; N zl: dSEl(a) (5.40)
=

Whether there are (many) cases in which this is not so seems to be a difficult
question, so we accept that as it is.

5.4.2. Going from LS to DZ

The equation to solve in order to obtain the minimizing 3 for the criterion (2)
when there are deterministic disturbances present is now known, as in Eq. (5.32).
An interesting question is: Suppose we have an LS estimate of the parameters 9°
in Eq. (5.32) and introduce a DZ in the criterion, in what way will the estimate
change? Mathematically this question can be put like this: Consider the estimate 3
as a differentiable function of ¢, what is then 3 at the point ¢ = 0? This section uses
Eq. (5.34) of the preceding theorem to answer this question. First, redefine )
slightly and note that

250 =L3(0) - 9 =5 50

Differentiating both sides of Eq. (5.34) with respect to the parameter ¢ gives

cig
0= g; Eo[2g - I F(x)dx]

cg
=Ep[20'9 - Fle+g)(1 + ™8 + Flc - g)(1 - ¢78)]  (5.41)
At the point ¢ = 0:
EQ[2078'(0) - F(g)(1+ ¢"8'(0)) + (1 - F(g)(1 - 9" §(0))]
= E(p[(pTg’(O) +1- 2F(g)] =0 (542

where, as earlier assumed, f'is even. Recall that
g8l =8l +d
Hence
E[0@"(0) + ¢ - 2F(8 ]+ d)p] = 0 (5.43)
and

§(0) = (Eoo") "E[F(B] 0 + d) - 1)g] (5.44)
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§,5=—(Epp") (Egd) (5.45)
Substituting this in Eq. (5.44) renders
§(0) = (Boo") '[EQF(d - E(do")Epe") ) - 1)o]
or, with P = (Epe") ™,
§'(0) = PE(Q2F(d - (Ede)"Pg) — 1) (5.46)

Since Eq. (5.46) is rather difficult to analyze in a general setting, expanding F'
in a Taylor series may give some information. The following example chooses d so
that the first non-zero term of the Taylor expansion had the appropriate sign (to
make §'(0) > 0).

Example: Consider the system

Wt + 1) = —=0.79(0) + Su(t) + e() + d(r), 9°=1

where e is Gaussian white noise with unit variance. Choose u(f) = sin(0.3¢) as input
and d(f) = sin(0.1¢) as deterministic disturbance. Note that » and d are not correlated.
Simulations in MATLAB now indicate that the LS estimate of 3 is better than the
estimate obtained with a DZ of width ¢ = 1:

8,,=096, 8,,=09

These results were obtained with a data set consisting of 10,000 samples.

For any special case, the way to answer the opening question of this section is
to determine the sign of the scalar product g LS§'(O). If and only if it is negative, the
DZ has a positive effect on the LS estimate.

5.5. DEAD ZONES AND SET MEMBERSHIP IDENTIFICATION

The traditional description of noise and disturbances influencing a system is
to model them as stochastic processes. This leads to the conventional identification
methods of maximum likelihood/least squares type. However, there may be reasons
to reject this description of the disturbances; see also Ref. (5). If there are measure-
ment errors of quantization type they are bounded. This view has led to the so called
“unknown-but-bounded” approach to estimation.'® The idea is simply to accept all
model parameter values that are consistent with a bounded noise assumption:

le()| < ¢ (5.47)

without performing any averaging over the data. This could be described as
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N
§= arg min]\i[ Z I(e(5,9)) (5.48)
=
where
o= s (549
or, equivalently,
N

8 eDy= (8121 (et,8) =0} = {81V & |e(t®)] <} (5.50)

=1

The estimate is thus a set, Dy, and the approach is often also called “set
membership identification.” The set is in practice not found by minimization of Eq.
(5.48) but rather by linear programming techniquesm direct calculation® or
outer-bounding by ellipsoids.”’

Now if Eq. (5.47) indeed holds for all disturbances this method works well as
does the DZ criterion of Eq. (5.2) as found in section 5.1.

However even though there are several reasons to reject the traditional sto-
chastic process description of disturbances, there are also several reasons to reject
Eq. (5.47) as the sole description of the noise, i.e., that it possesses no averaging
properties whatsoever. It can be argued that a better picture is to describe the noise
as

e(t) = v(t) + w(t) (5.51)

where 1(?) is subject to Eq. (5.47) and w(¢) has conventional averaging properties,
i.e., in the linear regression case

N

Eo(w(0) = lim > Ep(m(n) =0 (5.52)
N—oo N =1

The conventional set-membership approach deals with Eq. (5.51) by extending

the value ¢ in Eq. (5.47) until Dy in Eq. (5.50) becomes non-empty. This is quite a

conservative approach. A seemingly more natural approach would be to use the DZ

criterion of Eq. (5.2), i.e., to “soften the infinitely steep walls” in Eq. (5.49).

However as shown in the preceding section’s example there is no guarantee that

the DZ criterion of Eq. (5.2) performs any better than the conventional quadratic

criterion in Eq. (5.51). The value of a DZ, although reasonable from an ad hoc point
of view, can thus be said to be questionable.
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Recursive Estimation
Algorithms for Linear Models
with Set Membership Error

G. Belforte and T. T. Tay

ABSTRACT

This chapter reviews some of the more recent algorithms for sequential
parameter identification in the context of unknown but bounded measurement
errors when the model output is linear in the parameters. The properties of the
different algorithms are analyzed and compared.

The possibility of evaluating the confidence of the obtained estimates is
discussed, particularly information required on the noise structure in order to assess
the confidence of the estimates is shown.

Finally, the possibility of using the algorithms for time-varying system iden-
tification is considered and the case of uncertain regressors is addressed.

6.1. INTRODUCTION

Data used in parameter estimation are associated with some uncertainty.
Traditionally such uncertainty receives a stochastic description, e.g., as an additive

G. BELFORTE e Dipartimento di Automatica e Informatica, Politecnico di Torino, 10129 Torino,
Italy. T.T. Tay e Department of Electrical Engineering, National University of Singapore, Singa-
pore 0511.

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York,
1996.
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random noise with a given probability density function. The estimation process is
then set in a statistical framework. Various techniques such as maximum likelihood
estimation are used to exploit the prior information on the noise. The quality of the
parameter estimates is then assessed through the use of indices such as the Fisher
information matrix. One problem is that the randomness assumption may in many
practical cases be rather unrealistic. Moreover, the amount of data available is often
not sufficient to check the validity of this assumption.

The unknown but bounded error (UBBE) description of the measurement noise
was pioneered by Schweppe!"’ about 20 years ago. It does not rely on a stochastic
framework. The errors are assumed to belong to error sets with some given shapes.
There is no easy and straightforward description for sets with arbitrary shapes, but
useful results can be obtained in some simple and nevertheless important special
cases. One such case is orthotopes, in which each component of the error vector is
constrained to belong to some finite interval. Such descriptions have been shown
to fit practical applications.*!

Since the introduction of the UBBE description, much work has been done to
develop algorithms that exploit this assumption.®*% The requirements for memory
and computing time may however become unrealistic. Hence the interest for
recursive algorithms which can update parameter estimates after each new meas-
urement while requiring a limited amount of memory and computing time.

This chapter describes major classes of recursive algorithms available for
models linear in their parameters and compare their performances. Particular
attention is devoted to algorithms with limited memory and computing time.

Section 6.2 presents the framework and notation of the study. Section 6.3
describes algorithms based on evaluating the exact polytope where the parameter
estimate can lie. Recursive fixed memory and computational time algorithms
(which are based on overbounding the exact polytopes) are presented in Section
6.4. In Section 6.5, modifications to the various algorithms to cater for time-varying
systems are discussed while uncertainties in the system model are addressed in
Section 6.6. Simulation results are presented in Section 6.7.

6.2. GENERALITIES

This chapter considers the parameter identification problem for models linear
in their parameters described by

yi=a0+e, i=1... .k (6.1)

where y; € R is the i-th measurement, a/ € RP is the corresponding regressor,
0 e R? is the parameter vector to be estimated and e; € R is the measurement error.
The measurement error is assumed to be unknown but bounded so that
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le|<Bw,=E, i=1,...,k (6.2)

where E; is the error bound for the i-th measurement with relative weight w;, p being
a scaling factor.

Two cases, differing by the assumption on the information content about the
errors have been addressed in the literature. They are stated as the following
conditions.

ConpiTioN 1. All the bounds E;i =1, .. ., k are known. In this case, without
any loss of generality, p = 1 and the weights w;i =1, . . ., k equal the known error
bounds; thatis, w;=E;i=1,... k.

ConpiTioN 2. The exact values of the bounds E; i =1, . . ., k are unknown.
However the weights w; i = 1, . . ., k are known. In this case the constant scaling
factor 3 can no longer be assumed equal to one. Here fw; = E;i=1, ..., k are not
known.

When a system is described by Eq. (6.1) and the measurement errors are given
by Eq. (6.2), the problem of parameter identification, when & measurements are
available, usually involves choosing, as parameter estimate, one element of the
admissible parameter set D(k),

Dk)=1{0 e RP:y,—~E <al0<y +E i=1,...,k} (6.3)

={0eR:y-Pw,<al0<y+Pw, i=1,....k. (6.4)

Here D(k) is the set of all the parameters consistent with the given model, the
available information on the error and the measurement vector. It is a polytope in
the R? parameter space described by a suitable subset of the planes P; and P; i =1,
..., k defined by

P:al®=y,—E, P:al0=y,+E,. (6.5)
To each plane are associated half-spaces S} and S} in R” defined by
Si={0eR;a0<y+E}
ST={0eR;a02y -E}. (6.6)

Let S; be the set of parameter vectors that are consistent with the i-th measurement.
Then

S,=Srns; (6.7)

and
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k (6.8)
D) = S,

=1

Subsequent sections of the chapter refer to the set of all P; and/or P planes
defining the boundary of D(k) as Bp(k).

Any point in D(k) can, in principle, be an estimate of the parameter vector
while the “size” of D(k) is a measure of the parameters’ reliability. Several choices
are possible according to different criteria. However, in the unknown but bounded
error (UBBE) context, the usual choices are either the Chebicev center 8°(k) of
D(k)* (referred to as the central estimate) or the projection estimate 6°(k)" that is a
minimax estimate.‘®” The central estimate is optimal with respect to the worst
case error, while the projection estimate minimizes the /,. norm of the prediction
error. A recent survey of the properties of these and other possible estimates can be
found in.*”)

The parameter reliability is usually evaluated by computing the parameter

uncertainty intervals PUI(k)i=1, ..., p defined as
PUL(K) = [0™(k), 0™™(k)] i=1,...,p (6.9)
where
0™"(k)=min®, O™*(k)=max0, (6.10)
8eD(k) 8eD(k)

In general 6]""(k) and 6™(k) are achieved on a vertex of D(k) where p suitable
P} and/or P; planes intersect. These sets of p planes will be denoted as Bpr(k)
and Bpm(k),i=1,...,p.

Note that for the computation of D(k) the values of the error bounds £; i = 1,
.. . k, must be known exactly. Since the knowledge of D(k) is essential to get the
central estimate 6°(k) as well as the parameters’ uncertainties, it turns out that both
the central estimate and the PUIs can be exactly computed only when Condition |
holds.

For the evaluation of the projection estimate 6°(k), less information about the
measurement error is needed. The problem can be reduced to finding the 6°(k)
vector and the smallest positive scalar (k) for which the constraints

*The Chebishev center 8° of a set D is

6°(): sup |IB°-6||=inf sup IS -0l
8eDk) 9eR” BeD(k)

"Let A € R¥7 be the matrix whose rows are . i =1, ..., k. Then

k) |y — AP E)|% = minjly — 40]J%
0
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y[—a(k)w,Sa,.TG”(k)Syl-+a(k)w,- i=1,...,k (6.11)

are satisfied. Here, only Condition 2 needs to hold. Whenever only the error weights
w;i=1,..., kareknown, the D(k) set defined in Eq. (6.4) is undetermined due to
the lack of information on 3. However, a new admissible parameter set D(k) can be
defined in the RP*! extended parameter space of 8 and B as

D)= {88 R y—Pw,<alo<y+Pw, i=1,...,k. (6.12)

1

Similar to D(k), the set D(k) is a polyhedron. However while D(k) is usually
bounded (whenever & > p uncorrelated measurements are available), D(k) is
unbounded as long as no prior information on P is available.

_ The polyhedron D(k) can also be described by a suitable subset of the planes
P7 and P obtained by rearranging the Eq. (6.12) in the following form

P;: y,=al,w] [g]

P [af,-w)] [g]:y, i=1,... .,k (6.13)

To each plane are associated half-spaces 3’,-* and 51-‘ in RP*! defined by

g;: y, <[al, w] [g]

St [al, -w] [SJSyi i=1,...,k (6.14)
Again if S ; is the extended parameter set consistent with the i-th measurement,
S,=S/NS; (6.15)
and
~ k ~
D)= S, (6.16)

i=1

Subsequent sections of this chapter refer to the set of all P; and/or P] planes
definingtheboundaryofD(k) as Bp(k).

Any point in D(k) can, in principle, be an estimate of the extended parameter
vector. However it is reasonable to choose the estimate that minimizes the predic-
tion error. This results in the projection estimate 67(k). In general 87(k) is achieved
on a vertex of D(k) where p + 1 planes intersect and
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o(k) = min B. (6.17)
0,8< (k)
This set of p + 1 planes will be referred to as Bpe(k).

Note that for many practical situations, only Conditions 2 can be shown to
hold and not Condition 1. Thus the projection estimate is usually more interesting
compared to the central estimate which requires Condition | to hold. When
Condition 1 holds then the D(k) set is the intersection of D(k) with the =1 plane.

To evaluate the central estimate 8°(k), the projection estimate 6°(k) and the
parameter uncertainty intervals PUI(k) i =1, ..., k, the exact knowledge of D(k)
and/or D(k) is required. The complexity of their exact description can of course
become too complicated to be handled.®!%!!}2) This fact suggested the search for
suboptimal algorithms with fixed amount of storage memory and reduced compu-
tation requirements. The most popular of these algorithms is the Fogel-Huang
algorithm,'¥ that computes an ellipsoidal outer bound to D(k). More recently some
other algorithms have been proposed. These include computing an orthotopic outer
bound™ to D(k) or selectively storing a small number of suitable past measure-
ments to be used for computing approximated central and projection estimates''>)
as well as their uncertainties.(!®

The need for dealing with time varying systems requires that some kind of
“aging” of past measurements be introduced so that D(k) and/or D(k) are not
constrained to shrink monotonically when the number & of available measurements
increases. This allows the parameters to change. The techniques used are similar to
the introduction of forgetting factors used in statistical estimation processes.!! "8
However other schemes could be proposed and more investigation should be
devoted to this topic.

A last point concerns those problems in which the reregresors a’ i=1, ...,k
are uncertain. This case has been considered in the UBBE context.?*?"?2) It must
be noted that when all the errors and uncertainties are uncorrelated the D(k) and/or
the D(k) sets can still be evaluated. However, if correlation is present only over-
bounds can be computed.®

6.3. EXACT DESCRIPTION OF THE ADMISSIBLE PARAMETER SET

Algorithms where the exact description of D(k) or B(k) is obtained will be
considered in this section.

6.3.1. Central Estimate and Parameter Uncertainty Evaluation

The central estimate 6°(k) and the parameter uncertainty intervals PUI(k) i =
1,...,p canbe evaluated whenever the exact description of D(k) is available. Three
algorithms for the recursive evaluation of D(k) have been proposed!'®!"'? and
compared.?” Their structure can be summarized in the following steps:



RECURSIVE ESTIMATION ALGORITHMS FOR LINEAR MODELS 89

Step 1: Initialize the procedure by processing the first p measurements to find
the D(p) set, the list of its vertices and the Bp(p) set of all the planes P; and/or P}
describing its boundary.

Step 2a: When the (k+1)-th measurement becomes available, check
whether D(k) = D(k) N Si,1. If yes: put D(k') = D(k) and go to Step 2b. In this case
Bp(k) = Bpck') so that the list of vertices is the same for D(k") and D(k). If no:
evaluate D(k') = D(k) N S, . Construct Bp(k') by adding the plane Py, to Bp(k)
and discarding those that no longer define D(%’). Then go to Step 2b.

Step 2b: Check whether D(k') = D(K') N Si,y. If yes: put D(k + 1) = D(k"). Go
to Step 2a and wait for a new measurement. In this case Bp(k + 1) = Bp(k’) so that
the list of vertices is the same for D(k') and D{k + 1). If no: evaluate D(k + 1) =
D(k') N Si,;. Construct Bp(k + 1) by adding the plane P}, to Bp(k') and discarding
those that no longer define D(k + 1). Then go to Step 2a and wait for a new
measurement.

From the vertices of D(k) it is then straightforward to derive the PUI(k)i=1,
..., p and consequently 6°(k).

It should be pointed out that updating the list of the planes that concur to the
description of the bound of D(k + 1) is, in general, time consuming, especially when
the number of dimension p increases.

6.3.2. Projection Estimate and Parameter Uncertainty Evaluation

_ The projection estimate 6”(k) can be evaluated whenever the exact description
of D(k) is available. This can be done when the information about the measurement
errors is given by Condition 1 or 2. In principle any algorithm suitable for
computing the D(k) set in the R” parameter space can be used for deriving the
D(k) set in the R”*! extended parameter space. Once the vertices of D(k) are
available the derivation of 67(k) is straightforward. The structure of such an
algorithm is similar to that described before for the central estimate and therefore is not
repeated here. An actual implementation of such an algorithm is presented in Ref. 6.

It is important to note that the projection estimate 67(k) is obtained via the
determination of D(k). When the measurement error description is given according
to Condition 1, the D(k) set can be obtained by intersecting the D(k) set with the
plane B = 1. The PUI (k) can then be derived from the knowledge of D(k). This step,
although possible, is time consuming.

6.4. APPROXIMATE DESCRIPTION OF THE ADMISSIBLE
PARAMETER SET

In the preceding section the algorithms for the recursive computation of central
and projection estimates through the exact determination of D(k) and D(k) have
been outlined. Those algorithms are, in general, time consuming and require
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potentially unbounded storage memory although some simulation study shows that
this event is unlikely to happen.!'?

The frequent need for fast, online recursive identification with fixed storage
memory has motivated the search for simpler recursive algorithms. These would
compute some kind of “approximated estimates” provided that their loss in per-
formances remains tolerable. This section presents some of these algorithms that
mainly evaluate different kind of outer bounds to D(k) or D(k) and use them to
derive suitable parameter estimates as well as to evaluate their reliability. Most of
these algorithms require that the error description is given according to Condition
1, and this poses a constraint on their practical use.

The interested reader should refer to the cited literature for an exact description
of the algorithms and their properties. Here only some of their common features
are listed before presenting them briefly.

e While the central and projection estimates 8°(k) and 6°(k) always belong to
the D(k) set, the approximate point estimates that can be constructed from
these outer bounds are not guaranteed to belong to the D(k) set.

e The parameters uncertainty bounds, if computable, are an outer bound to
the PUIs.

e When the number k of measurements goes to infinite, under fairly general
assumptions on the error that cannot however be overbounded, the obtained
estimates converge to the true parameter vector that generated the data.’ 15.25)
However the convergence is slower than that of the exact central and
projection estimates.

6.4.1. The Fogel-Huang Algorithm

The Fogel-Huang algorithm can be applied only when Condition 1 on the
measurement errors is satisfied. The key idea here is to overbound the D(k) set with
a suitably chosen ellipsoid ®(k). The original algorithm described in Ref. 13 was
later improved,® and the optimality of this version has been proved.?”)

This algorithm can be summarized in the following steps:

Step 1: Initialize the procedure by selecting an ellipsoid ®(0) that contains
D(0) (a priori information).

Step 2: When the (k+ 1)-th measurement becomes available, find the minimum
volume ellipsoid ®(k + 1) such that ®(k + 1) 2 O(k) N S,y

The center of the ellipsoid ®(k) may be used as a point estimate of the
parameter at step k& while some measure of the extent of the ellipsoid is used to
assess the reliability of this point estimate.

Note that this algorithm is sensitive to both the initializing ellipsoid ®(0) and
the order in which measurements are processed. A reprocessing of past measure-
ments often leads to a drastic reduction of the size of the obtained ellipsoid.*®
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6.4.2. The Pearson Algorithm

The Pearson algorithm!'¥ can be applied only when Condition 1 on the
measurement error is satisfied. The key idea is to overbound the D(k) set with a
suitably chosen orthotopic bound O(k).

To run the algorithm, the available measurements must be partitioned into L
submatrices of p measurements each. Each submatrix must be nonsingular other-
wise it is discarded. For this purpose, nonredundant partitioning is defined as any
collection {X;} of L p x p matrices formed from the regressor vectorsa i=1,. ..,k
such that any regressor does not appear more than once in any X; matrix.

If all the available data are used, then k/p < L < k!/[(k—p)!p!]. Since the case
L =kY[(k—p)'p'] is not tractable, the following two partitionings are suggested for
practical use.

¢ Disjoint partitioning where L = k/p and the /-th X; matrix consists of the p
regressorsal i=(I—p+1,...,Ip

. Sliding block partitioning obtained for L = k— p combining each regressor
al with its (p — 1) predecessors so that X; consists of the regressors a/ i =1

—j,j=0,...,p—1.

Both partitionings are suitable for recursive estimation. The algorithm de-
scribed as follows is for the sliding block partitioning. Changes to deal with the
disjoint partitioning are trivial. The algorithm can be summarized in the following
steps:

Step 1: Initialize the procedure by computing the tight outer bounding ortho-
tope O, of the set X, of the first p measurements.

Step 2: When the (k + 1)-th measurement becomes available, form the new
X1 set and compute its tight outer bounding orthotope Oy,.

Step 3: Compute the orthotope Oy, = Oy N Oy}, an outer bound to D(k).

The.center of O(k) may be used as the parameter estimate at step £ while the
orthotope O(k) itself accounts for the parameter reliability.

Note that this algorithm is similar to a technique used in Ref. 6.28. It is sensitive
to the order in which measurements are processed and a reprocessing of past
measurements without a change in their order, will not affect the obtained result.

6.4.3. The ARCE Algorithm

The approximate recursive central estimate (ARCE) algorithm!> can be
applied only when Condition 1 on the measurement error is satisfied. In this
algorithm 2p? suitably selected measurements are stored and used to derive an
approximated central estimate 6°(k) Here 1nstead of sto/{mg Bp(k), all the planes
that define D(k), 2p sets (of p planes each) BDmm(k) and Bpr~(k), 1 =1, , p that
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define éTi“(k) and 6}“""‘(/() are stored. é?‘i“(k) and é?“a"(k) are an outer bound to
0/""(k) and 6]"**(k) and they allow to derive 8°(k) whose components are

A A
O™ (k) + 8™ (k 6.18)
6?(k)=1*()“l—()* i=1,...,p (
2
When the (k + 1)-th measurement becomes available giving rise to the two
planes P, and Py, define D™ (k + 1), D™ (k + 1) as the admissible parameter
sets relative to

A A
BD:"'n(k) W PZH U P;H’ BD:“""‘(k) W PIL] Y F/\'Jrl
respectively. The ARCE is then updated computing
OmnGk+ )= min O, O™+ 1) = max O, (6.19)

1

eeD‘“‘"(A+1 ) “‘“(m )

and getting 6°(k + 1) according to Eq. (6.18).
The implementation of the ARCE algorithm can be summarized as follows:
Step 1: Initialize the procedure by processing the first p measurements and
find the corresponding central estimate 0°(p). Let

do(p) = 6°(p)

and store the 2p sets ﬁDm-n(p) Bpme(p) and ??D'm(p) Bpm=(p),i=1,....,p.

Step 2 When the (k + 1)-th measurement becomes available, test for i=1,
p whether Bm‘“(k) Om‘"(k +1) (thls test can be performe(/i\ without actually com-
puting 8mn(k + 1)1 ). I yes: put Bmin(k + 1) = BM(k) and Bk + 1) = Bpmo(k). If
no: Compute the O™ (k + 1) according to Eq. (6.19) and update B pm(k + 1). Whenall
the p 6" parameters have been processed go to Step 3.

Step 3: Update Gma"(k +1)and Bpm(k + 1)i=1,...,p withaprocedure similar
to that of step 2.

Step 4: Compute 9°(k + 1) according to Eq. (6.18). Go to Step 2 and wait for
a new measurement.

Note that an iterated reprocessing of all the past measurements would lead to
the determination of the central estimate.'>

6.4.4. The ARPE Algorithm

The approximate recursive projection estimate (4RPE) algorithm!'® can be
applied when the assumption on measurement errors satisfies Conditions 1 or 2.
Here only p + 1 suitably selected past measurements are stored and the projection
estimate relative to this subset of p + 1 measurements is computed. In the ARPE
algorithm, analogous to the set Bp#(k) that deﬁnes the projection estimate 6°(k),
we have a set BDep(k) that defines the ARPE Bp(k)
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The ARPE algorithm computes 6”(k)&(k) and ﬁ,}ep(k) according to the follow-
ing steps:

Step 1: Initialize the procedure by processing the first p + 1 measurements
ﬁndlng the corresponding pro)lectlon estimate 67(p + }\) and the associated a(p +
1). Let Bp(p+ D=0+ 1),ap+1)=a(p+1)and Bp¥(k + 1) = Bpe(p + 1).

Step /% When the (k+1)-th measurement becomes available, test whether
Bp(k) and au(k) are the proj ec;[\mn estimate 87 and the associated o relative to the set
whose bound is descnbed by Bpee(k) \ U Pre1 \U Pl If ves: put Gp(k +1)= Bp(k)
a(k +1)= a(k) and B ek + 1) = @”Op(k) Repeat Step 2 when a new measurement
becomes available. If no: go to Step 3.

Step 3: Compute the projection estimate 7 and the associated o corr/e\sponding
to the set whose bound }\s described by Bpe(k) \J Pji \U Prer- Put B2k + 1)=
07, a(k + 1) = a.. Update Bp»(k + 1). Go to Step 2 and wait for a new measurement.

Note that an iterated reprocessing of all the past measurements would lead to
the determination of the projection estimate.!'>)

6.4.5. Approximate PUI Evaluation with ARPE Algorithm

The ARPE algorithm does not provide any information about the parameter
reliability even when the information about the measurement error, being provided
by Condition 1, would allow to derive it. In such case it is convenient to derive
some procedure that can provide this information. An exact derivation of the PUIs
would be optimal, but its evaluation requires the knowledge of D(k) that can only
be achieved when exact algorithms are used. It is therefore interesting to investigate
the possibility of deriving, with little extra computation, some upper bound to the
PUIs when using the 4RPE algorithm.!'®

An approximate evaluation of the parameter uncertainties when the measure-
ment error is described according to Condition 1 and the ARPE algorithm is used,
consists of computing, at ea/gh step k, the parameter uncertainty intervals relative
to the set of p + 1 planes in Bp(k). Here, let /p(k) be the parameter admissible set
corresponding to the p + 1 measurements of B5%(k) with 3 = 1. Then define

6eminky = min 0, 62m(k) = max 6, . (6.20)
8ebip) 8ebi)

from which the Pﬁl,-(k) i=1,...,p,defined as
POIy = [Bemn ), D™k i=1....p, (621)

can be computed. These PUIs can be regarded as approximations to the true PUISs.
Note that their computation must be performed only when the projection estimate
07(k) has been updated according to Step 3 of the previous section.

It is easy to construct simple examples showing that the PUIs do not neces-
sarily shrink for increasing k, in contrast with the PUIs. This undesirable feature
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can however be corrected. In fact it is possible to compute, at each step k, the
quantities

M) = max[B™"(k — 1), &n()]
87(k) = min[87™(k — 1),67™ (k). (6.22)

initializing the procedure with oMin(p) = 6’,-’mi“(p) andO™*(p) = é?ax(p). By con-
struction, 0;""(k) and 6]"**(k) are monotonic functions of .
Ifthe PUI(k)i=1, ..., p are defined as

POI (k)= [8™"(k), 8"X(k)] i=1.....p (6.23)

it is trivial to show that

_ 2
POI() o PO > PULK) i=1,....p. (6.24)
so that the PUISs can be used as a better approximation to the PUIs. It is noted that
the computation of POl and PUI is simple and can be performed according to the
results of Lemmas 1 and 2 of Ref. 6.29 mainly requiring the inversion of p p x p
matrices.

6.5. TIME VARYING SYSTEMS

The need to deal with time varying systems has motivated the introduction of
forgetting techniques similar to those used in statistical estimation processes.!!"'®
The most popular ones are probably windowing over a fixed horizon, where those
measurements that are older than a given threshold are discarded, and the use of a
forgetting factor where the error bounds E; (or equivalently the weights w;) of past
measurements are multiplied by a constant y greater than one, at each new data
acquisition.

Both schemes require extensive computation at each step, where the central
estimate is concerned. Moreover the central estimate will change at each step £,
whenever a forgetting factor is present, since the admissible parameter set D(k) is
affected by the forgetting scheme even when it does not depend on the last measure
at step k. This feature is not specially convenient and contradicts the intuitive feeling
that forgetting scheme should affect the estimates’ reliability only and not the
estimates themselves. A different approach, that overcomes this defect was recently
proposed.('® It expands the admissible parameter set instead of the error bounds,
the expansion being symmetrical with respect to the central estimate.

Things are simpler for projection estimates. The computation required for data
updating with the windowing scheme is smaller and a forgetting factor influencing
the error weights w; induces changes on a(k) only. In fact if in Eq. (6.11) the weights
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w; are multiplied by some factor vy, then the minimum value olk) for which Eq.
(6.11) are satisfied must be multiplied by 1/y while 67(k) remains unaffected. This
kind of consideration holds also for the ARPE algorithm.

6.6. UNCERTAINTY IN THE REGRESSORS

There are cases in which the regressor vectors, a; € RFi=1, ..., kareuncertain.
In the bounded error context this uncertainty can be described assuming that

al=aT+8a] i=1,...,k (6.25)
where a;” represents the nominal value of the regressor vector while da! is its
uncertainty,, which is assumed to be componentwise bounded so that

|8a;1<Aay i=1,....,k j=1,...,p (6.26)

where Aa;i=1,...,kj=1,...,pare known quantities.

In such condition it can be shown that in each orthant of the R? parameter
space, the D(k) region is still a polytope, but the P; and P i=1,..., kplanes are
no longer pairwise parallel.?>??2 In fact the D(k) region is described by

D(k)= {0 € RP: (a] —Aa®)O <y, + E;

(@l +AaO 2y -E, i=1,...,k}, (6.27)
where

Aa = [Aa, sgn(®,) . . - Aa,sgn(8,)]. (6.28)

Since all the algorithms presented do not require the planes P; and P} i =
1, . . ., k to be pairwise parallel, suitable versions of the algorithms can be
implemented to deal with cases with bounded uncertainty on the components of the
regressors. It is however important to remark that the computational burden can
increase dramatically if there is no prior information on the orthant(s) in which the
D(k) region is located. Moreover, in the case in which there is correlation among
the regressors’ uncertainties, only upper bounds to the D(k) set can in general be
obtained.®® This last case occurs, for example, when AR, MA or ARMA models are
considered with bounded noise both on the input and on the output.

6.7. NUMERICAL EXAMPLE

To compare the performances of all the previously described algorithms, they
were used for identifying the parameter vector of a third order M4 system.
Data were obtained from the following simulated model
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(k) = 3.0u(k) + 1.5u(k = 1) + 0.7u(k - 2) + e(k), (6.29)

where the error e(k) is white, uniformly distributed so that e(k) € [-1,1], V&, and
the input vector u belongs to a normally distributed random sequence with mean
equal zero and standard deviation equal to one.

Fifty series of inputs and errors were generated. For each of them the six
previously presented estimates (Central 8°(k), Projection 6°(k), Fogel-Huang,
Pearson, ARCE 6°(k) and ARPE 6P(k)) were computed at each step k. For each
parameter and each estimate, the absolute value of the difference between the
estimated parameter value and the true one used for generating the data was
computed at each step £ and averaged over the 50 realizations. Theresulting average
absolute estimation errors are plotted in Figs. 6.1, 6.2 and 6.3.

The average amplitudes of the PUIs, as they can be evaluated when using the
various algorithms, were also computed at each step k. In this case note that only
five different PUIs evaluations are available since the central estimate and the
projection estimate have the same parameter bounds. For the ARPE, the parameter
bounds have been computed using the PUI(k) and not the Pl?l,(k) i=1,...,p.
Plots of these quantities are reported in Fig. 6.4.

From Figs. 6.1, 6.2 and 6.3, it can be noted that the average absolute error of
the ARCE and projection estimate are quite close and are just slightly worse than

FIGURE 6.1. Average absolute error of the first parameter.
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FIGURE 6.2. Average absolute error of the second parameter.

FIGURE 6.3. Average absolute error of the third parameter.

97
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FIGURE 6.4. Average amplitude of the PUIs of the three parameters.

the optimal central estimate. Also the ARPE performs satisfactorily while the
Pearson and Fogel-Huang estimates have larger errors.

From Fig. 6.4 it is even more evident that the parameter uncertainty derived
from Pearson’s and Fogel-Huang’s algorithms is far worse than that obtained with
the other algorithms.

Since the ARPE algorithm is one of those that requires less computational
effort and less information on the error structure, it is probably the most convenient
for many practical applications. Furthermore, it can easily deal with time varying
systems as outlined in the preceding section.
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Transfer Function Parameter
Interval Estimation Using
Recursive Least Squares in the
Time and Frequency Domains

P-0O. Gutman

ABSTRACT

A bank of recursive least squares (RLS) estimators is proposed for the estimation
of the uncertainty intervals of the parameters of an equation error model (or RLS
model), where the equation error is assumed to lie between a known upper and
lower bound. It is shown that the off-line least squares method gives the maximum
and minimum parameter values that could have produced the recorded input-output
sequence. By modifying the RLS estimator in two ways, it is possible to recursively
compute inner and outer bounds of the uncertainty intervals. It is shown that the
inner bound is asymptotically tight. It is demonstrated that transfer function
parameter intervals can also be estimated, by applying the method to measured
frequency function data.

P.-O. GUTMAN e Faculty of Agricultural Engineering, Technion—Israel Institute of Technology, Haifa
32000, Israel.

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York,
1996.
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7.1. INTRODUCTION

The motivation of this chapter is a desire to make the Horowitz robust control
design method") adaptive. In the Horowitz method it is suitable to describe the
plant uncertainty as transfer function value sets, or alternatively, as plant parameter
sets or intervals. The resulting controller consists of a linear time invariant feedback
compensator and prefilter. In Yaniv, Gutman, and Neumann'® a method is suggested
how to change, on-line, the parameters of such a robust controller, when it becomes
known that the plant parameters each belong to a smaller interval than the original
interval on which the design is based. Combined with a parameter interval estima-
tor, an adaptive robust controller is created, based on the principle of robust
certainty equivalence,m see Fig. 7.1. In Gutman® an example from Yaniv, Gutman,
and Neumann® is simulated with essentially the parameter interval estimator
presented here. Conventional adaptive controllers are, on the other hand, in general
designed according to the certainty equivalence® principle, whereby the adaptation
is based on a point estimate of the parameter vector.

The vast literature about the parameter set, or set-membership estimation
problem is covered in several informative surveys.>®” A most attractive method
is the one developed by Walter and Piet-Lahanier®2®) that gives an exact polyhedral
description of the feasible parameter set. One might surmise that for most linear
problems, it obviates the need for any other method. However, approximants have
been proposed, like for instance bounding ellipsoids.®:'” Therefore, the little idea
in this note, originally presented at an IFAC conference.*> might evoke some
interest.

Identifier of plant parameter

Adaptation mechanism Ml set, giving ﬁa
r r
, ,
Reference Prefilter Compensator | Plant
(it 6(T) P(p)

V4 /

FIGURE 7.1.  Block diagram of control system with adaptive feedback and prefilter control, p is the
plant parameter vector, ﬁ,- is the plant parameter uncertainty set estimate, [1; is the plant parameter set
on which the design is based, and I1; o I';.
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It is shown that a bank of modified RLS estimators, under weak assumptions,
gives asymptotically tight inner bounds of the feasible parameter intervals for linear
equation error (RLS) models. Another variation yields nontight outer bounds.
Hence, the method belongs to the class of inner-bounding and outer-bounding
orthotopic estimators.'®!) It is also shown that the method can be applied directly
on frequency function measurement data. The estimator of Kosut,''? where pa-
rameter sets of an output error model with unstructured uncertainty are estimated
via the discrete fourier transform (DFT) of the input-output sequences, bears some
resemblance to the one analyzed here.

Estimates of value sets in the frequency domain would also serve the initially
stated purpose.!'> Goodwin and Salgado'¥ estimate value sets directly via a
probabilistic RLS approach. LaMaire et al.,'> Wahlberg and Ljung!'® calculate
error bounding functions in the frequency domain. The chapter is organized as
follows: In section 7.2 the off-line and on-line algorithms are presented and
analyzed. Section 7.3 contains four simulated examples. In the last example, the
method is applied to frequency function data. In the Conclusions (section 7.4) the
proposed algorithm is related to other methods, and advantages and disadvantages
are discussed.

7.2. ESTIMATION OF PARAMETER INTERVALS

7.2.1. Off-line Parameter Interval Estimates

Among various algorithms for plant parameter estimation,(' '8 and for recur-
sive estimation,!*?? we find the popular least squares (LS), and the recursive least
squares (RLS) and its relatives. In the above references, conditions on the model,
input sequence, and noise sequence are stated for the RLS estimates to converge
asymptotically, with and without bias with respect to the true parameter values.

The LS and RLS algorithms will be the point of departure in this chapter. Let
the “true” process be

W) =6Tp(t) + (1) (7.1)

where © = (a, ... a, b ...b,)" is the parameter vector, and @(f) = [-y(t—1) ...
Wt —myu(t— 1) ... u(t — m)]" is the vector of measured lagged input-output data.
The measured input signal is {u(f)} and the measured output signal is {y(f)}. The
running sample index is =1, 2, 3, . . . The equation error {v(¢)} includes all effects
of measurements noises, mismodelling, disturbances %nd other uncertainties in the
given description of the data. Then the LS estimate, 8“S(V) at time ¢ = N is given

by:(”)
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N N
8500 =] X 00| 5 X 000 (2)

=1 =1

Introduce the matrix R(N)

L Y . (7.3)
RN = 3 9(09()
=1
The pure RLS estimate 8(z) is given by:("?
9(1‘) = G(l‘ = )+ PO)p(t)[(F) - 6([ - l)T(p(l)] (7.4)
-_— T J—
P(t) = P(t— 1) - P@ = Do@e() Pe—1) (7.5)

L+ o(0)"P(t - D)o(t)

For suitable initial conditions of the RLS algorithm,'® 8(r)=65(:) and
;\’(t) R(#)™'/t for all ¢; for any positive definite P(0), 6(¢) and P(t) converge to
6-3(¢) and R(z)™' /¢, respectively. For constant 6, the estimate 6(1) converges to 0
under ideal condmons.(”’ Also under ideal conditions,'” P(z) is the normalized
variance of the estimate:

MP() = E{B(0) - 0)B(0) - 0)1,

where A, is the variance of v(?).

Like the pure RLS estimator, most algorithms give point and variance esti-
mates only. Under ideal conditions, the variance matrix P(f) of the RLS estimator
could be used for estimating a likely parameter set. In practice, however, the
updating of P(¢) in Eq. (7.5) is modified. This would include a forgetting factor,
dead zone, or other devices to keep 1(P(f)) constant control of P(£),*!*? e.g., to
enhance the tracking ability of the estimator. Then P(f) does not represent the
variance of the estimate. It is assumed®>'2?* that the equation error in Eq. (7.1)
is bounded:

MOl V@O <V Vi (7.6)

with V(¢) or ¥ known. This assumption may be used to compute parameter interval
bounds. N A

It is easy to show(!? that the LS estimation error, O(N) = 8“S(N) - 0 is given
by

~ ¥ (7.7)
O =R 5 2. 9(ov®)

r=1
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Comparing with Eq. (7.2), notice that Eq. (7.7) can be implemented with {v(¢)}
given in t,l\le recursive form Egs. (7.4 and 7.5). With w(¢) replacing y(¢), and 8
replacing 6 in Eq. (7.4), P(¢) given by Eq. (7.5):

8(5) =8t — 1) + POo(t)[v(®) - 8t - 1)To(1)] (7.8)

The sequence {v()} is not known however. Hence the estimation error can not be
found. It is, however, easy to dream up the worst possible equation error sequence
{w(1)}, satisfying Eq. (7.6), that will yield a maximal upper bound for [§(N)|. For i
=1,2,...,(ntm),let

V() = V(o)sign {[RIN)]™" o(0)}; (7.9)
and
L N (7.10)
E(LN) = [R)]™ 5 X 00w (0.
-1
Then, for each component i,
B,V < E(i.N) (7.11)
or, equivalently,
OLS(V) - E(i.N) < 0, < 8-SV + E(i.N). (7.12)

Define
M, ={©: Q}S(r) —E(i,)<6,< S}S(t) +E(it) Vi, VI<N}  (7.13)

Clearly, M, defines the maximal parameter intervals, in which those parameter
components are to found that are able to produce the recorded input-output
sequence, assuming the model Egs. (7.1 and 7.6).

Assume!” that the input {u()} is quasi-stationary such that R(N) - R", as N
— . Assume further that all elements of ¢(¢) are bounded and quasi-stationary,
then H(1/N) =¥, o(f)v(r) — K}, Vias N — oo. Hence E(i, N) converges as N — .

Equations (7.9-7.11) are suitable for off-line implementation. For on-line use, P(f)
can be compute using Eq. (7.5), while the expanding matrix ©(f) = [¢(1)@(2) . . .0 (¥)]
has to be saved tn order to compute v,(¢). This may constitute an unacceptable memory
burden. The next subsection will treat on-line approximations of Egs. (7.9 and
7.10).

It may be noticed that 7 in Eq. (7.6) may be estimated from the residual:
Assume that a LS parameter estimate has been computed, @(N). Compute the
residual
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8(0) = yt) - " (OB(N) 1< N (7.14)

Then max, |¢(f)] may serve as an estimate of V. It is expected that this estimate will
be conservative since 8(N) is, in general, a biased estimate of 6.

7.2.2. On-Line Parameter Interval Estimates

In Algorithm 2 of Gutman® a bank of RLS estimators was suggested to
estimate parameter intervals in essentially the following way: Let, for each i,

v(t) = Ve)sign{ROT 9(0)}, (7.15a)

N
DEN) = ROV 3 X ol (7.15b)

=1

Comparing with Egs. (7.9) and (7.10), it is clear that D,(i,N) < E,(i,N) since {v(#)}
is chosen to maximize E,(i,N). However, Eq. (7.15) is suitable for recursive
implementation via (Eq. 7.8), with P(¢) given by Eq. (7.5):

D(i,t) = D(i,t — 1) + P(H()[v(t) — D(i,t - D) Vi (7.16)

The selection of v in Eq. (7.15a) simply means a “local in ” maximization of
Dyi,N) in Eq. (7.15b and 7.16). Contrast this to the “a posteriori at t = N”
maximization of £(i,N) in Eq. (7.10) via the section of v in Eq. (7.9).

Assume that R(N) — R" as N — . Then. for every i, v/(r) — v(¢), and hence
Dy(i,t) > E(it) as t — .

We conclude that D,(i,f) is a lower, progressively closer bound for the ith
parameter interval extension E;(,f). An upper bound for E;(i,f) can also be found.

Let M= {m;} be a matrix whose elements are m;;. Define abs(M) = {|m,]|}. Let
the definition also hold for vectors. Let

N

F(V) = abs(RM]™) 17 3 abs(e()) V1) (7.17)

=1

Comparing with Eq. (7.10) it is immediately clear that E(i,N) < Fy(N) since all
elements on the right hand side of Eq. (7.17) are non-negative. Moreover, assuming
that R(N) — R" as N — oo, then, of course, abs ([R(N)]™!) also converges. Assume
further that all elements of ¢(¢) are bounded and quasi-stationary, then (1/N) I,
abs(@())¥(¢) converges. Hence F(N) converges as N — oo,

The convergence limit of F(N) does not seem possible to find without addi-
tional specific assumptions, which have to be validated in each particular case.
Clearly, from Eqs. (7.10 and 7.17)
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O0<EGN)-E(N-1)<F(N)-F{(N-1).
Assume, for instance, that when N — o
E{E(i,N) - E(i,N = )} =xE{F(N) - F(N - 1)}
where E{-} means expected value, and x € [0,1]. Then, with Fy some constant vector
F(N) = E(iN}/x+ F,, asN —» o,
The computation of F(V) is easily made recursive

() = y(t — 1) + abs(e(®) M) (7.18a)

F(t) = abs(P())w(t) (7.18b)
with P(f) given by Eq. (7.5) and y(0) = 0.

7.2.3. Summary

From the recorded input-output data and an assumed RLS model of Eq. (7.1)
with bounded equation error of Eq. (7.6), the maximally possible parameter
intervals of Eq. (7.12) for each parameter 6;,

0, [6}S@V)-11(LA0,6}50V3-+1;(LA0] (7.19)

have been computed, with E(i,N) given by Egs. (7.9) and (7.10). Since E(i,N) is not
conveniently computed in a recursive way, recursively computable inner, D(i,¢)
Egs. (7.15a and 7.16), and outer, F(¢) Eq. (7.18), bounds were found:

D(i,N) < E(i,N) £ F{N). (7.20)
Under weak assumptions, D(i,N), E(i,N), and F(N) converge to their respective
limits as N — oo, with D(i,N) and E(i,N) sharing the same limit.
7.3. EXAMPLES

ExampLE 1: Let the “true” process model be given by
YO =apt-1)+bu(t-1)+v(t-1) (7.21)

where

0=(a, b)'=(0.5 1)

is the parameter vector, and
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o(ty= [t~ u(t—1]"

is the vector of measured lagged input-output data. The input signal {u(¢)} is chosen
to be a uniformly distributed random variable € [—1,1] independent for each . The
initial condition y(0) was set to 0. The equation error {v(f)} is chosen to be a
uniformly distributed random variable € [—1,1] independent for each ¢, and inde-
pendent of {u(f)}. It is assumed known that in Eq. (7.6), (1) =V = 1.

The system is simulated for 1 =1, 2, o 100. For one particular simulation,
the LS estimate, Eq. (7.2 or 7.4), becomes 6 (100) = (0.5341 0.9575)". Such a good
estimate is expected because of the nature of {w(f)} and {u(?)}.

From Eq. (7.10), £(1,¢) and E(2,f) are computed. The final values are £,(1,100)
=0.9317, and E5(2, 100) = 1.6259, signifying that a; € [0.5341 + 0.9341] and b,
€ [0.9575 + 1.6259]. From Eq. (7.16), D(1,f) and D(2,t) are computed. The final
values are D(1,100) = 0.9102, and D,(2,100) = 1.5974. From Eq. (7.18), F(¢) is
computed. The final values F(100) = 0.9369, and F»,(100) = 1.6360.

Fig. 7.2 displays a,(¢), ,(9) * E,(1.1), (1) = Dy(1,0), and @,(r) = F,(2). In Fig.
7.3.B,(t), b,(6) £ Ex(2,0), 5,(£) + Dy(2,1), and B,(r) £ F5(f) are displayed. From the
figures it is seen that Eq. (7.20) holds; D(i,f) seems to be a good approximation of
E(i,¢) at all times, while F(¢) is satisfactory at “steady state” for ¢ > 30.

Although the computed parameter intervals may seem exaggerated, worst case
parameter combinations, with either a; or b, at the endpoint of its respective
interval, may yield the observed data. In the simulated case, not both ¢, and », may

FIGURE 7.2. Example 1 results: ay(r) (0), @1(2) (), @(1) + E1(1,0) (&), @1(2) + Di(1,6) (¥), and a1(2)
(D (9).
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FIGURE 7.3. Example 1 results: b1(¢) (0), gl(t) ), gl(l) + Ex(2.0) (»), [I;I(t) + Da(2,t) (v), and 21(1)
+ F2(8) (9).

be at an interval endpoint. This is reflected by the low values of D,(1, 100) =
0.03072, and D,(2,100) = 0.0439. Sharper bounds might be obtained by a linear
transformation of the {3(z) u(t— 1)} space, yielding estimates of linear combina-
tions of @ and b;.

ExampLE 2: This example is extreme in the sense that w(¢) is highly dependent
on ¢(f). The process is the same as in Example 1, Eq. (7.21), with the exception
that {¥(f)} = {u(¢)}. One simulation is performed. The RLS estimate is very good
in the sense that the prediction error is zero: @(100) = (0.5 2.0)”. The knowledge of
the size of w(f) gives, however, the opportunity to find other parameter values that
could have generated the data.

The bounds E(1,7) and E(2,f) were computed, with the final values £,(1,100)
=0.6880, and £,(2,100) = 1.6257. Consequently, a; € [0.5+0.6880] and b, € [2.0
+ 1.6257). The large parameter intervals are justified; the “correct” 8 is found in
the estimated parameter set. The inner bounds D(1,7) and D(2,t) are computed. The
final values are D, (1,100) = 0.6815, and D, (2, 100) = 1.6089. The outer bound
F(f) was computed, with final values F;(100) = 0.6933, and F»(100) = 1.6384.

Fig. 7.4 displays a,(t), &,() + Ey(1,6), @,(z) £ Dy(1,¢), and a,(r) = Fy(2). Fig. 7.5
displays (1), B,(6) £ Ex(2.1), 5,(t) = D5(2.1), and B, (¢) + Fy(z). From Fig. 7.5 it is
seen that Eq. (7.20) holds, and that D(i,t) and F(¢) seem to be good approximations
of E(i,t).

ExampLE 3: In this example, the more “realistic” situation of a first order
continuous-time model with step-wise jumping parameters is investigated. The
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FIGURE 7.4. Example 2 results: a1(¢) (O), 81(7) (&), &1() £ E1(1,1) (&), 41(¢) £ Di(1.0) (7)., and &1(2)
= F1() (V).

example is adapted from Gutman® To represent the parameter intervals, the inner
bounds D(i,f) are computed with a bank of modified RLS estimators, based on
Canudas de Wit,®® of a type that could be used in practice. An aim of this example
is to illustrate how the parameter interval estimator fares together with a modified
RLS.

The equations of the modified RLS identifier are:

A .
8,=8,_, +1P_oe) - W)sign(e,) (7.22a)
A, =a,/y, (7.22b)
A
e,=0,—9.,9) (7.22¢)
_[oify,=00rleJ<W, (7.22d)
" |1 otherwise
Y,= 0 P, (7.22¢)

P=P, =~ \P_09P (1~ Wle))+(1-o)fP,_, (7.22f)
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FIGURE 7.5. Example 2 results: b1(2) ©), 51(5) (O), Bi(9) £ E22.6) (2), Bi(®) + D2(2,0) (%), and By (0)
() (V).

This algorithm disregards redundant data, and prevents P, — 0 when such data is
received.
Given the first order dynamic system as a function of time t:

z(t) = —pz(z) + ku(z) (7.23a)

¥(x) =z(t) + n(1) (7.23b)

where |n(1)| < 0.01 is a uniformly distributed measurement noise. The unknown
parameters k and p, which occasionally change stepwise, have to be estimated. 4
priori parameter bounds are k € [1,10], and p € [0.5,3]. By low-pass filtering>¥
y(t) and u(x), one gets an identification model of Eq. (7.1) with |v| bounded, whose
parameter vector 8 is invertibly related to £ and p. Let

u(v) = —(1/c)u,(v) + (1/c)u(z) (7.24a)

», (1) ==(1/c)y, () + (1/c)(7) (7.24b)
where the filter time constant is chosen ¢ = 0.1. The identification model is then

W) =—ay, () + bju () + v(x) (7.25)

with
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a =pc—1
b, = ke
v(@) = (1) + @y (1)
and
n(ty=—(1/c)n (1) + (1/c)n(t) .

Clearly, |n;(1)| < max(n(t)) since n,(t) equals n(t) transmitted through a first order
filter. Using the lower limit of p

max(la,|) =10.5-0.1 — 1] = 0.95
and
V(T)| € maxn(t)(1 + |a,|)| = 0.0195.

Notice that Eq. (7.25) is valid at all times t. Hence y(t), y1(t), and u;(t) may be
sampled at arbitrary times, for instance, with non-uniform sampling periods. Let

0=(a, b)’

FIGURE 7.6. Input signal «(t) and output signal y(t) for Example 3. (The noise is hardly noticeable.)
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and
@, = (,(0) u ()"

where the index ¢ is the running sample index as in Eq. (7.1).

The system is excited with a square wave input u(t) (see Fig. 7.6). According
to Figs.7.7 and 7.8, k and p are changing with random steps at random times.
Because of the parameter changes, the output y(t) varies wildly (see Fig. 7.6).

The modified RLS identifier of Eq. (7.22) is used as a conventional point
estimator to estimate (Q, ﬁ) in the following manner: W, is used as a tuning parameter
and set to 0.013. In Eq. (7.22d) “y, = 0” is replaced by “|y} < &” with e = 107, In
Eq. (7.226), “W,le/” is replaced by “W,/max(g,|e])”, and fis set to 0.05. A uniform
sampling period of 0.1 seconds is used.

To compute D(i,), i=1, 2 for the/\interval bounds @min, Qmax, ﬁmin, and }gmax,
twocopiesof Eq.(7.22a)areused with 8, replaced by D(i,f), i =1, 2, and ¢, replaced
by (v{#) — D(i,t — D)o(¢)), respectively (see Eq. (7.16)).

FIGURE 7.7. The true parameter k and its a priori bounds, the point estimate f%, and the estimates of
the interval bounds £min and fmax for Example 3.
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FIGURE 7.8. The true parameter p and its a priori bounds, the point estimate 2 and the estimates of
the interval bounds ﬁmin and Qmax for Example 3.

Using Eq. (7.152), v(t) is computed with [R(£)]™' replaced by ¢P(¢) and P(2)
taken from Eq. (7.22f). V() was set to W, + max|v(t)| = 0.0325 to account for both
the equation error V(1) in Eq. (7.25) and the dead zone W, in Eq. (7.22).

The identification results are shown in Fig. 7.7, where £, f%, ﬁmm, iémax, and the
a priori bounds are plotted, and in Fig. 7.8 where p, 3, ﬁmin, Pmax and the a priori
bounds are displayed. The estimates are not projected into the a priori given
parameter set. The estimates converge to their approximate steady state values after
steps in u(t), i.e., when u(t) excites the system. The point estimate (Q, 2) is of good
quality, but exhibits an occasional bias. In most cases, the parameter interval
estimates include the true parameters when steady state has been reached. There is
cross talk between the parameter estimates: a jump in p influences fé, fémin, ﬁmax,
and (less so) vice versa. The upper parameter interval estimate F from Eq.
(7.18), with P(¢) taken from Eq. (7.22) and W(#) as above, diverged since
P(t) 4 0inEq. (7.22).
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If the parameter interval estimates in this example are to be used for the
adaptation of a robust controller,””) then the robust controller should be based on
the full a priori parameter uncertainty whenever an abrupt parameter change is
sensed. Only when the estimator has reached steady state, could adaptation take
place using the interval estimates with appropriate safety margins.

ExampLE 4: Application of the method on measured frequency response data.
Consider the same process as in Example 1, Eq. (7.21), with the same y(0), {u(f)}
and {v(9)},r=1,2,...,N,and N=100. Let G(q) = B(q)/A(q) be the true input-output
transfer function of Eq. (7.21), with g denoting the forward shift operator;
@)=yt +1).

An empirical transfer function estimate (ETFE)!? G(e/“’*) with @, = 2nk/N
[rad/s], and k=0, 1,...,N—1, is obtained by dividing Y\(®), defined as the
discrete Fourier transform (DFT) of {y(5)}, with U(w), the DFT of {u(#)}, =1,
2, ..., N. Moreover, let V){®) be the DFT of {v(t)},¢=1,2,...,N. The ETFE,
@(ef‘”k) is considered as the measured data in this example.

Let © = (a, b,)" as in Eq. (7.21). Define ¢(g) = [6(g) 117 and w(q) = 4G (g).
Lilja®® (and references given therein, e.g., Levy*”’) shows that

w(e) = O d(e/s) + w(jo) (7.26)

constitutes a LS model in the frequency domain with the equation error w(jw,) (see
Eq. (7.1)).

In order to apply the parameter interval estimator on Eq. (7.26), it is necessary
to compute W(joy) such that [w(joy)| < W( joy). Using Ljung!!” [Eq. (6.28)], and
noting that w( jo,) is an equation error and not an output error,

w(jo,) = A(e’)R\(©,) /U, +Vi{w,)/ Uo,) (7.27)
where, according to Ljung,!? [Eq. (2.54)]
IR <2C,G;/NN (7.28)

with C, such that |u(?)] £ C,. Denoting the impulse response of G(gq) by g(?),

Co =Z, tg(0).
Clearly, from Eq. (7.27),

w(jo,)| < W(jo,) = |4(e’°IR \(w,)/ Udo)l + V(o) /Ulwyl  (7.29)

The first member of the right hand side of Eq. (7.29) is deterministic since u(¢) is
assumed to be known. It can be estimated via Eq. (7.28) and an estimate of
A(e’®). Assuming that Eq. (7.21) is the sampled version of a stable continuous
system, |4(e’)| Smaxaxe[o,l)(lef“’k—all). In Eq. (7.28), C,=1 and C5< for
a, € [0,1). Consequently #(jo,) is a very large number that makes the method
useless in this case.
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However, change the example such that u(f) is periodic with a period of N so
that Ry(w) = 0 according to Ljung!'” and the first member of the right hand side
of Eq. (7.29) equals zero. Choosing a sum of sinus signals at five frequencies such
that their range covers the expected bandwidth of Eq. (7.21):

4
u() =02y sin(wg,mn, t=1,...,N (7.30)

m=0

Then, the standard deviation of the second member of the right hand side of Eq.
(7.29) which is random with respect to w(¢) (Ljung,'” page 149) and whose mean
is zero, can be computed as follows: the power of u(¢) equals 0.2%/2, at each of the
five frequencies Wz, m =0, 1, .. ., 4, otherwise the power is zero. The power
spectral density of w(¢) ideally equals the variance of v(¢) (= 1/3) divided by N/2,
i.e., 1/150. Hence, it can be estimated (Ljung,"'” Eq. (6.34a)) that

o(V(0)/Uo)) = V173, fork=3-2", m=0,1,....4 (731)

Although not strictly correct but common in practice, let W(jw;) equal three
standard deviations, i.e., W(jo,) = V3. Applying the offline algorithm in Section
7.2.1 to Eq. (7.26) at the five frequencies defined in Eq. (7.31), with [w(jo,)| <
V3, the LS estimate é(S) =(0.5020 1.2702)" with, E,(1, 5) = 1.0161 and E,(2, 5)
= 1.8010, signifying that modulo the 3 assumption, a; € {0.5020 + 1.0161] and
by € [1.2702 + 1.8010]. This estimate is of roughly the same quality as the one in
Example 1.

We have demonstrated that if a frequency function estimate is given, generated
by a known periodic input sequence, then the proposed algorithm can be used to
bound the estimates of the coefficients of transfer function numerator and denomi-
nator polynomials.

7.4. CONCLUSIONS

From the recorded input-output data and an assumed RLS model with bounded
equation error, the feasible parameter intervals for each parameter 6,

0,  [BLS(V) — E(iN), BES(V) + E(1,M)]

have been computed. Since £(i,NV) is not conveniently computed in a recursive way,
a recursively computable inner, D(i,N), and outer, F(N), bounding is found:
D(i,N) £ E(i,N) < F(N). Under weak assumptions, D(i,N), E(i,N), and F(N)
converge to their respective limits as N — oo, with D(i,N) and E(i,N) sharing the
same limit.
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Note that £,(i,N) exactly describes the feasible parameter interval in the worst
case: there exists a feasible equation error sequence that could have produced the
input-output data with the parameter value belonging to the interval. Moreover,
D(i,N) is an asymptotically exact inner bound of E(i,N). Hence it is believed that
a contribution of this chapter is the development of orthotopic!®!! inner bounding.
It should however be remarked that the bounds in this chapter are inner and outer
bounds of the estimate uncertainty intervals due to the LS algorithm.”® Since the
LS algorithm is asymptotically correct, D,(i,N) tends to the inner bound, and
+FE,(i,N) tend to the inner and outer bounds, respectively, of the feasible parameter
intervals.+!D

The proposed algorithm is obviously not a special case of projecting ellipsoidal
inner and outer boundings®"*!?) along the parameter axes, since the covariance
matrix P(f) is not used for the interval estimate. Instead, a specially constructed,
worst-case equation error sequence is employed. Moreover, It has been demon-
strated that bounding ellipsoids are very crude;®” in particular the inner ellipsoid
tends to vanish. Our inner bound, D{(i,N), is asymptotically exact. The weak point
of the algorithm is the convergence limit of F,(N), which in general does not equal
the limit of E;(i,N). Under additional assumptions on the data, the distance between
the limits may be established. The simulations of Example 1 and 2 indicate,
however, that there are cases when the limits are close. The algorithm possesses the
same tracking ability as the RLS on which it is based, since the estimated intervals
are centered around their respective point estimates. However, the interval esti-
mates may be unreliable during transients (Example 3).

In most cases, methods giving an exact description® of the feasible parameter
set should be preferable. But for a practitioner who already has a well oiled RLS
or one of its cousins running in his system, only a marginal additional effort is
necessary to include the parameter set estimator proposed. The algorithm is a small
contribution to combining statistical and set-membership estimators.®

Finally, it was demonstrated in an example that the algorithm can be used in
the frequency domain, given a frequency function measurement with a periodic
input signal.
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Volume-Optimal Inner and Outer
Ellipsoids

L. Pronzato and E. Walter

8.1. INTRODUCTION AND PROBLEM STATEMENT

Approximating a complex set X by a simple geometrical form (such as a polytope,
an orthotope, a sphere or an ellipsoid) is often of practical interest. Consider for
instance the situation where a vector u has to be chosen so as to satisfy the property

pux)e T,VXx € S, (8.1)

where x and p(.,.) are vector-valued and where 7'and S are given sets. This can be
of interest for instance in robust control, where the controller characterized by u
must be designed in order to guarantee some given performances—at least stabil-
ity—corresponding to a target set 7 for the process under study, given the informa-
tion that the model parameters x lie in some specified feasible domain 5 . The
information about § can be derived using the parameter bounding methodology,
where one assumes that observations with bounded errors are performed on the
process.")

Two methods can be used to replace the initial problem by a simpler one. The
first one is to replace Eq. (8.1) by the sufficient condition p(u, x) € LVx €0>
S, with O an outer approximation of S, e.g. an ellipsoid Z,. The second one is to

L. PRONZATO e Laboratoire 13S, CNRS URA-1376, Sophia Antipolis, 06560 Valbonne, France.
E. WALTER ® Laboratoire des Signaux et Systémes, CNRS-Ecole Supérieure d’Electricité, 91192
Gif-sur-Yvette Cedex, France.

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York,
1996.
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replace it by the sufficient condition p(u, x) € /< 7, V x € S, where might be for
instance an ellipsoid Z,.

In Ref. 8.2, an algorithm from the field of experimental design is used to
construct the minimum-volume ellipsoid containing S. One may hope that, with
this optimal ellipsoidal approximation, robust control laws will be obtained that are
less conservative than those derived from coarser approximations.® Various sta-
tistical applications of volume-optimal outer ellipsoids are suggested in Ref. 8.4.
See especially the robust estimation of correlation coefficients.>67)

Ellipsoidal inner approximation is of interest in the context of tolerance design
(design centering).® It is a basic tool for efficient methods in convex program-
ming.®'9 In the context of parameter bounding, characterizing S by outer and inner
ellipsoidal approximations permits evaluation of the accuracy of these charac-
terizations.')

Let X be a bounded convex body of the Euclidian space R?. From the
Loewner-Behrend theorem,'? there exists a unique ellipsoid Z, of minimal
volume containing %; and, from Ref. 8.3, there also exists a unique ellipsoid Z of
maximal volume contained in %

We shall denote P,(X) (resp. P{ X)) the problem corresponding to the deter-
mination of E,(X) (resp. % (%)). Both problems are simpler when the center of the
ellipsoid to be determined is fixed a priori, and they will then be denoted by
P, (X) and P;(X). When X is a polytope, all these problems can be solved by
classical nonlinear programming approaches (constrained Newton, path-following
Newton methods...). Moreover, the solutions of P,(%X), P, (X)) and P, (X)) can be
obtained through the solution of a problem Py(.).'? We consider a more general
situation where X is not necessarily a polytope (and even not necessarily convex
for problems P (%), P, (X))

An algorithm for éolving P,(%X), with K not necessarily convex, is given in
Section 8.2. Some basic results about inner and outer ellipsoids are recalled in
Section 8.3, to be used for the solution of P X), with K a convex set. This problem
is considered in Section 8.4. When K is a polytope, % (%) is then obtained through
the solution of a series of problems P,(.) for polytopes. When X is a general convex
set, P{X) is solved via a relaxation procedure, i.e., it is decomposed into a series
of subproblems P,(.) for polytopes. Finally, P X) whenX is a polytope determined
recursively is considered. Various illustrative examples are presented.

8.2. MINIMUM-VOLUME OUTER ELLIPSOID

Problems P, and P, are known to be respectively duals of a D-optimal
experiment- d651gn problem(m and a D,-optimal design problem."> When% is a
polytope characterized by its vertices, we simply have to determine the minimal
ellipsoid containing a finite set of points. The equivalence between P, and P, is
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then shown in Ref. 8.10, and the case p = 2 can be solved with a finite exact
algorithm,*!® which is not considered here. Consider P,(X), with X a given
compact set of R? (not necessarily convex). Let Z be the set of all normalized
distributions of weights on %

fa@n =1,
X

and define M(&) and ¢(&) as
M(E): = [ xxTg(d), o): = [ xg(dx) . (8.2)
X X

The following theorem states the equivalence between P,( X) and the determination
of an optimal distribution £ on %
Tureorem 8.1, E,(X) corresponds to

E(c*A") = {x e R?|(x - c")A*(x - ¢) < p},
with
= o(8"), A= (M(E) - e(€)e (€M),
and £ obtained by

£*:= arg max In det[M(E) — e(£)e”(£)]. (8.3)
EeE
Proor: See Refs. 8.2 and 8.15. O

The solution of P,(X) thus amounts to the determination of £* in Eq. (8.3).
This optimal distribution satisfies the following properties.

THEOREM 8.2.

(i) A distribution £ supported by at most 2p+3) (and at least p + 1) points of
K always exists. These support points are locate(% on the boundary of the convex
closure of K. When there are only p + 1 support points, they are weighted uniformly
and the center ¢* of the ellipsoid corresponds to their center of gravity.

(ii) &£ is not necessarily unique (although Z (c*,A%*) is), but the set of all
optimal distributions satisfying Eq. (8.3) is convex.

(i) V x € K, d(x,£") <0, with

Ty s M @e®) - 17 8.4)
dx,&) =x"M (E)x + L M () @+1).

(iv) maxxe?(d(xa&*) = minieEmaxxe Kd(X,F;).

Proor: (i) follows from Caratheodory’s theorem;!? (ii-iv) result from the
concavity of the criterion
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®(8) = In det[M(E) - e(€)e(E)]- (8.5)

A detailed proof can be found in the experimental design literature.!!":!®) O]

From (1), in practice it is always possible to restrict attention to discrete
distributions of weights A; on support points x;, i = 1, ..., n, withn < @. The
integrals in Eq. (8.2) then reduce to discrete sums.

The main interest of Theorem 8.2 is perhaps the availability of efficient
algorithms developed in the context of experimental design. It can also be used to
prove the global convergence (whatever the choice of the initial distribution £°) of
the following vertex-direction algorithm,!*20:2)

AP, (Algorithm for problem P,)

Step (i) Choose € such that 0 < £ << 1, and a discrete distribution £° such that
M(£°) is invertible. Set k = 0.

Step (ii) Compute

x" = arg max d(x,£"). (8.6)

XeX

If d(x*, £F) < &, stop.

Step (iii) Compute &' as a distribution whose support points x; are x* and
those of £ and whose weights A, are the best in the sense (&) in Eq. (8.5). Remove
any support point with zero weight from ! .k < k+ 1, go to Step (ii).

Step (ii) involves the maximization of a convex quadratic function over %
Local methods may thus not converge to the global optimum. When X is a polytope,
from Theorem 8.2 (i), the only candidates for x* in Eq. (8.6) are the vertices of &
so that the global solution is obtained at a very low computational cost when these
vertices are known. Step (iii) corresponds to the maximization of ®(§) in Eq. (8.5),
which is a concave function of the weights A, , i =1, . . ., n, with the constraints
A 20, 2%, A;=1. A constrained Newton method (which amounts to solving a
sequence of convex quadratic programming problems) can thus be used. The
following expressions for the gradient and Hessian of ®(£) allow an easy imple-
mentation of the algorithm.

BDE) _ g IV - 17~ 1
5}\/,- =X M (Fv)xi + 1 — cT(a)M—l({;)c(é)
62(1)((:) B o ) 2X1-TM_1(§)xi %

aan, O OV T dgm e

(TEMIEX, +x) - XM ©)e(®)] XM ©)e(®)] - 1} +

[x'M'()e(®)][x/ M (E)e(8)] §
[1- /M E)e®)]
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2 EME) X+ x) - (M (©)e®Ix M (©)eE)] - 4}

The Newton method can be initialized with the distribution &' that would be
chosen by a Fedorov-like algorithm,!!”

E=(1-a)+ag,

where £+ gives a unit mass to the single support point x* of Eq. (8.6) and a. is given
by

o axtEy
(p + DA ED + p]

Note that, in this case, optimizing the weights is not necessary to insure global
monotone convergence. It is, however, highly recommended to obtain a satisfactory
transient. Applications of this algorithm to parameter bounding can be found in Ref.
8.22.

RemMARk 8.1. The construction of the minimum-volume sphere containing X
(not necessarily convex) coincides with the determination of the Chebychev center
of & for the Euclidian norm. One can easily show®® that the center c* and radius
r* of the minimum covering sphere satisfy ¢* = ¢(£") and r* = r(£"), where

r(8) = trace[M(E) - ¢(§)c’(8)],

and

£* = arg max? (&),
te=

with M(€) and ¢(&) given by Eq. (8.2). An algorithm similar to 4P, can be derived,
that converges globally to the optimal distribution &* for the criterion (.). When
K is a polytope, a finite algorithm for the determination of its Chebychev center
(of the same type as the simplex algorithm for linear programming) is described in
Ref. 24.

Duality properties between inner and outer ellipsoids will now be presented, to be
used in Section 8.4 for the solution of P;.

8.3. DUALITY PROPERTIES

Consider the set C,(R”) of convex compact subsets K of R” that contain the
origin O in their interior (O € int(%X)), and the transformation 7{(.) given by

C,(RP) > C(R?)

K—>T(K)={peR°|¢"x<p,Vx e K}. 8.7
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The following properties, illustrated by Fig. 8.1, then hold true.

Lemma 8.1.

(1) 7(.) defines a relation of duality in the following sense:

—V K e C,(R?), TIT(H)) = X,

—for any given polytope K in C,(IR?), 7{(.) defines a one-to-one relation
between the g-faces of K and the (p — g — 1)-faces of T(X ) (for a polytope in R,
a vertex is a 0-face, an edge is a 1-face, a hyperplane is a (p — 1)-face, a g-face is a
face of a (g + 1)-face).

(ii) When X is a polytope of C,(R”) defined by

K={xeRP|alx<bh,i=1,...,m},

the vertices of 7(X) belong to the set {pa;/b,,i=1,...,m}.
(iii) T{(.) satisfies

VY (K),%y) € C(RPY, &, € K, & T(K,) < T(K).
(iv) T[E(c,A)] = E(¢'A"), with

[ o___PAc_
J p—clAc’
T
|L p (A+ AccA)’

A/—] —
p—clAc p—clAc

where E(c,A) denotes the ellipsoid defined by
E(c,A) = {x € R?| (x — ¢)A(x - ¢) < p}, (8.8)

with O € int[E(c,A)] (i.e., ¢/ Ac <p).
Proor:
(1) The duality property is proved in Ref. 8.12.

3 . . 3 —
| £(c, A) R |
1+ 8 1+ g
or 1 ok i 1
1 . -1h E
oK | T ]
R 0 2 E— 0 2

FIGURE 1. Illustration of Lemma 8.1.
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(ii) O € int(X) implies b;>0,i=1, ..., m, and thus
?(:{xeRplfairxSp,izl,...,m}.

If the hyperplane defined by (p/b,)a’x = p is a (p — 1)-face of %; it is transformed
by 7(.) into the 0-face (vertex) (p/b;)a; of T(X).
(iii) Assume first that §; < %,. Then, V ¢ € T(X>), maxxexzdprx < p, so that

max d)Tx <p,
xe X,
and ¢ € T(X,), which implies T{X;) < 7(X). Assume now that 7(X;) < T(X)).
This implies T[7(X)] < T[T%,)] and thus from (i), K| < X.
(iv) TTE(c,A)] = {6 € R? | maxygca) ¢"x < p}, so we first have to compute
MaXy e e A,d)Tx. Elementary calculations (using the Lagrangian method) give

max ¢'x =¢7c + (poTAI$)! /2,
xe Ee,(A)

which implies
TIE(c,A)] = {¢ € R? | dTc + (pdTA'$)! 2 < p}
< {0 R Ipp'A o< (p -9y},
This last set is easily shown to correspond to E(c’,A"). Now,

max ¢7c=clc’ + (pe’A"le)! 2
deEC A"

=pf(w),
with f(u) := (u + u*)'/? — u,and u = cTAc/(p—c” Ac), which is strictly positive since
O e int(‘E(c,A)). One can then check that /(i) < 1, so that dle<p, Ve E(c,A.
One therefore has pd’A™'¢ < (p — d7c)” = ¢ c + (pd"A™'9)! 2 < p, which finally
gives T[E(¢c,A)] = E(c"A"). ]
COROLLARY 8.1. The volumes of £(¢,A) and T[ZE(c,A)] satisfy
e

T 2
c'Ac

p > ﬁZ(p), (89)

with B(p) the volume of the p-dimensional ball B(0, p'"). The inequality is strict
when ¢ # 0.
ProoF. One has

vol[£(c,A)] vol{ TTE(c,A)]} = BX(p) | 1 —

vol{T[£(c,A)]} = B(p)(det A2,

and
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vol[E(c,A)] = B(p)(det A2,

with

T _(p+1)
(det A')" = [1 - 353] det A. O

In what follows we shall also need to consider translations in R”. For any ¢ in
R? define t(.) by

R? » R”
Z—>Z—C.

Obviously, 7,(.) preserves volumes of sets, and T_.(.) = 72 '(.).

Consider first ellipsoids with a fixed center ¢ € % The following theorem,
where O denotes the composition of operators, relates P; and P, .

Tueorem 8.3. P; (X) is equivalent to P, (T'O rc(?())

Proor. We have from Eq. (8.9),

B’(p) _ B’(p)
vol[E(0,A)]  vol[E(c,A)]

From Lemma 8.1 (iii), E(c,A) is contained in X if and only if 701 [E(¢c,A)]
contains 70O t.(%). Maximizing vol[E(¢c,A)] is equivalent to minimizing
vol{T o t,[E(c,A)]}, which states the proof. O
Consider now ellipsoids whose centers are chosen optimally. The following
result permits increasing the volume of an inner ellipsoid for X through the solution
of a problem P,
TueEOREM 8.4. Let E(¢,A) be an inner ellipsoid for X, we have

vol{To 1 [E(c,A)]} = vol{T [£(0,A)]} =

O T{EJTOT (N} € K,
and
vol(t_. O T{E[TOo1(K)]}) 2 vol[E(c,A)].

Proor: From Lemma 8.1 (i, iii), T{X) > T{%,[T © t1(X)]}, and the first part
ofthe theorem is proved. Let f*g“[T 0 1.(%)] be the minimum-volume ellipsoid with
center O containing 7 O 1,(X). A smaller ellipsoid can be obtained if its center is
chosen optimally,

VOl{ EX[T 0 1 (K]} < vol{E} [TOo1(K)]} - (8.10)

From Eq. (8.9),



INNER AND OUTER ELLIPSOIDS 127

vol(t_ 0 T{E[TO T (K)]}) 2 Vol{ﬁf;(g)rcm]} : (8.11)
which together with Eq. (8.10) gives
vol(r_, 0 T{E[Tot(R]}) = vol{z;[f;(?rc(x)]} : (8.12)
Using Theorem 8.3 and Eq. (8.9),
B®) @) (&.13)

Vol (T o0l = e oony ~ vellz!(50]

where f,’»‘((?() is the maximum volume ellipsoid with center ¢ contained in & We
thus have vol[fEZ(?()] > vol[E(c,A)], which together with Egs. (8.12) and (8.13)
states the second part of the proof. OJ

We can thus increase the volume of an inner ellipsoid £(c,A) for X through
the construction of a minimum-volume outer ellipsoid for 70 7,(X). From Lemma
8.1 (ii), this set is known analytically when Xis a polytope characterized by linear
inequalities. Theorem 8.4 will be the cornerstone of the algorithms described in the
next section.

8.4. MAXIMUM-VOLUME INNER ELLIPSOID

Throughout this section, & is assumed to be convex and bounded, so that there
exists a unique ellipsoid £;(X) of maximal volume contained in X . First assume
that X is a polytope.

8.4.1. Polytopic Case
Consider a polytope defined by

X={xeRP|ax<b,i=1,...,m}. (8.14)

We suggest the following algorithm for solving P(X).
Algorithm for problem P; for polytopes (AP.P)
Step (i): Choose € such that 0 <& << 1, and ¢° € int(%). Set k= 0.
Step (ii): Compute the m vectors
; pa; .
i:=bi—_aiTc,\t,l=1,...,m, (8.15)
and the minimum-volume ellipsoid Z(c*,A*) containing them (using AP, of
Section 8.2).
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Step (ii1): Compute

sk xk
oo PAC (8.16)
p _ *A ‘A*/\ *k
= f ek (8.17)
If Jlef|| < &, compute
T ek wh
B = (A% ¢ AL FA (8.18)
p P '

take £(c**!, B*") as an approximation of *£(X); else k < k + 1. go to Step (ii).
When the vertices of X are not known, the choice of ¢ at Step (1) may be
nontrivial (because ¢” must not belong to the boundary of % ). However, ¢’ can be
obtained through the construction of a series of outer ellipsoids. For instance, the
following procedure, based on the shallow-cut ellipsoid method,* yields an
ellipsoid contained in X
Step (0-i): Choose ¢ , B” such that X< £[¢”(B%)™!], set k = 0. Compute

L Pe+d 2 Sp—
e+ @+ De-1" " pp+1)’7 0 2pip+ 1)

Step (0-ii): Compute

p:=

7y =min
i

b — aTc/\' _ [‘pal?-(Bk)~lai]l /21
fo p+1 J '

Letj be the argument of the minimum. If # > 0, stop; we have:

£k (p+ 1PBF ) e %

(and K< E[“BYH]).
Step (0iii): Compute

1/2B/\
(aTBA )1/2 ’

k < k+ 1, go to Step (0-ii).

This procedure terminates in a finite number of steps.*> Note that the
condition X £(c’ (B)O )of Step (0-i) is easily fulfilled by choosing BY = 1,, with
I, the p-dimensional identity matrix and vy large enough. Much faster elllpsoidal
procedures can also be considered, such as the deep-cut or central-cut algo-
rithms.?%?7) However, one must then check that ¢° thus obtained does not lie on the
boundary of %
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The algorithm AP;P has been independently suggested in Ref. 10, with no
proof of convergence. The following result provides such a proof.

TreoREM 8.5. For any choice of ¢ € int(%) AP,P generates a sequence of
inner ellipsoids E(c,B¥) (where ¢f,B* are respectively defined by Eq. (8.17) and
(8.18)) converging monotonically in the sense of the volume to E;(%).

Proor. We first prove that 4P;P generates a sequence of inner ellipsoids with
monotonically increasing volume. Assume that ¢! € int(%); we thus have O e

int[tA(K)], with
THK) = {x e RP[alx<b,—alct, i=1,...,m}.

From Lemma 8.1 (ii), the vectors v¥ . i=1, ..., m of Eq. (8.15) then correspond to
all possible vertices of T 0 1,4 %), and E(c*A™) = £(T 0 14X)). From Lemma
8.1 (iv) and the matrix inversion lemma, E(ef,B"') = T{£)[T 0t %)]}, and
E(c By = 140 T{ELT O 1 A(X)]}. Theorem 8.4 then yields the result.

The sequence of volumes vol[Z(c*,B¥)] is monotonously increasing and
bounded by vol( %), thus it converges. Let Z(c*,B) be such that

vol[E(c B)] = vol[E(c*! B )] (8.19)
The inequality (8.11) then becomes an equality, and

VOl{£}[T0 14 (K]} Vol(T{ £} TS 1A K)]})

= vol[E(c* A vol{T[Ee* A™)]} = BA(p),

which from Eq. (8.9) implies ¢** = 0 and thus ¢**! = ¢*, B! = (A*)™!. By construc-
tion, E(c**, A*) is the minimum-volume ellipsoid containing the vectors v¥,i=1,
., m. From the results given in Section 8.2 we thus have®

m
*k * k _
¢ —-Zkivi—
i=1

Zkv]‘v-*k*" 27;{‘& ,
Ar(VE A*"" -p)=0,i=1,...,m, (8.20)

A 20,i=1,...,m, (8.21)

and, moreover, X7, A’ = 1. Using the definition of v¥, see Eq. (8.15),
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(8.22)

Z}:xlb =0

m T

paa;

k+1 _2 : * 11
B =2 a’A*a (8.23)

=1

Lagrangian theory will now be used to show that £(c**! B¥"!) coincides with
E7(X), which completes the proof of convergence.

Determining ; (X) =£(c*,B*) corresponds to minimizing In det B with respect
to B and ¢, with the constraints

airxsbl.,i: I,....m YXe€ ZEcB),
or equivalently, to minimizing-In det A, with A = B! and the constraints
alc+(pal Aa) 2 <b i=1,...,m (8.24)

The function —In det A is convex in A, but unfortunately the feasible set for A 1s
not convex. However, A must belong to the set M- of all p x p symmetrlc positive
definite matrices. Elementary calculations then show that setting A = H'H yields
a convex feasible set for H. The constraints of Eq. (8.24) can then be written as

pln(paH'Ha) <2pIn(b,—alc), i=1,...,m,

which yields the Lagrangian
L(H,e,)) =~Indet(H'H) + )" 4, [p In (pa] H'Ha)) - 2pin(b, — a/c)].
i=l
From the Kuhn—Tucker theorem, we know that the solution of the problem is
obtained for H*, ¢*, A* such that

AL(H,e,)) o (8.25)
OoH |H PN ’

dL(He))
% — |y =0, and

A [In(pa’H'"H'a) - 2 In(b, — a/¢")] <0, i=1,...,m,

A0, i=1,....m.
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The first condition Eqg. (8.25) can also be written

OL(H,e,)) A
oA Wi o H T

One can then easily check that A%, AF = (B*1y! and ¢! = ¢! satisfying Egs.
(8.20-8.23) are solutions.

REMark 8.2.

(i) The stopping rule in Step (iii) of AP;P could also rely on the difference
between two consecutive volumes, on ||¢*¥, or on ¢ A*c™ © Further studies are
required to investigate whether the corresponding sequences decrease monotoni-
cally.

(ii) The proof assumed that E[7,4(%)] can be obtained without any approxi-
mation using AP, (Step (ii)). In practice, this algorithm contains an e-stopping rule
so that E(T.4(%X)) is not obtained exactly. Practical rules for choosing an €’ at Step
(ii1) of AP.P could be derived from the general ideas presented in Ref. 28.

(iii) The distribution £° used to initialize AP, can be taken equal to the optimal
distribution corresponding to previous ellipsoid £(c*~, A%,

(iv) The determination of £;( X) does not require the calculation of the vertices
of %.. The complexity is related to the dimension of the vector of weights A in
AP,. This dimension increases at most linearly with the number of constraints that
define X

(v) The complexity of the solution of P{ %) is considered in Ref. 8.10, where
another algorithm is suggested, also based on the solution of a sequence of
subproblems (see also Ref. 29).

(vi) The determination of the maximum-volume inner sphere for the polytope
K corresponds to a linear-programming problem:® let ¢ and r respectively denote
the center and the radius of the maximum inscribed sphere, one has to maximize r
with the constraints a/c + rlaj| < b, i =1, ..., m. Maximum-volume inner ellip-
soids for polytopes are considered in Ref. 8.30. A signomial algorithm is suggested
for the general case, and the situation where the shape of the ellipsoid is fixed is
shown to correspond to a linear programming problem.

Example 1:
Consider the AR-2 model

(k) = =0.4y(k — 1) — 0.850(k — 2) + e(k), k=3, . . ., 25,

1) = &(1), »(2) = &(2),

with (k) uniformly distributed in [-1,1], k=1, ..., 25. It corresponds to a linear
model structure, 1(6,k) = a0, a, = [y(k — 1),y(k — 2)], with bounded disturbances
g(k). The true value of the parameters, given by 6* = (—0.4,—0.85)7, is indicated by
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FIGURE 8.2. , recursive outer and volume-optimal inner and outer ellipsoids.

a star on Fig. 8.2. We are interested in characterizing the set § of all parameter
vectors consistent with the data, model structure and error bounds, given by

S={0e R¥|-1<yk)-al0<1 k=1,...,25}

The same example is considered in Ref. 22, where various approaches are used to
give an ellipsoidal outer bound for 5. The ellipsoid Z(V) obtained via the classical
recursive procedure of Fogel and Huang,®! even improved according to Ref. 32,
appears very pessimistic (see Figure 8.2). Recirculations of data®® yield smaller
outer ellipsoids. However, even when the number of recirculations gets very large,
the ellipsoid obtained is still significantly larger than the minimum-volume outer
ellipsoid E)(5) (see also Examples 2 and 3). The set § and the ellipsoid E5(S5),
obtained via AP, of Section 8.2, are given in Fig. 8.2. Figure 8.2 also presents the
maximum-volume inner ellipsoid % (.$) obtained after three iterations of 4P,P.
Example 2: Consider the AR-3 model described by

(k) ==0.5v(k—-1)=0.750(k = 2) + 0.1y(k = 3) + e(k), k=4, . .., 100,
wk)y=¢lk),k=1,2,3,

with (k) uniformly distributed in [-1, 1], k=1, ..., 100. For a typical simulation,
the foltowing results were obtained. The exact polytope S has 20 vertices. Table
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TABLE 8.1. Volumes and Centers of Outer and Inner
Ellipsoids, Example 2

Ellipsoid Center Volume

Z(N) (-0.328,-0.622, 0.219) 2.47x 107!
E(N,100) (=0.508,—0.776, 0.044) 4.45x% 107
E5(S) (=0.500.—0.772. 0.058) 1.09 % 107
1 () (-0.509,-0.778, 0.043) 1.60 x 107

8.1 gives the volumes and centers of the recursive ellipsoid Z(N) determined with
the algorithm described in Ref. 8.32, the recursive ellipsoid Z(N, 100) obtained
after 100 circulations of the data, and the ellipsoids E,(S) and E;(S) . For
comparison, the exact volume of § (calculated with the algorithm given in Ref.
8.34) is 3.63 x 107,

Example 3: Consider the AR-5 model described by

(k) = ~0.4y(k — 1) - 0.85p(k — 2) — 0.1y(k — 3) — 0.02(k — 4) — 0.05y(k — 5)
+e(k), k=6, ..., 100,
yky=ek), k=1,...,5,

with g(k) uniformly distributed in [-1,1], k=1, . . . ,100. For a typical simulation,
the following results were obtained. The exact polytope S has 132 vertices. Table
8.2 gives the volumes and centers of the recursive ellipsoid E(%) determined with
the algorithm described in Ref. 8.32, the recursive ellipsoid £(N, 100) obtained
after 100 circulations of the data, and the ellipsoids E,(S) and E;(S).

We consider now the more general case where X is any bounded convex set
of R”.

TABLE 8.2. Volumes and Centers of Outer and Inner Ellipsoids,

Example 3
Ellipsoid Center Volume
E(N) (-0.343,-0.874, 0.053,-0.029, 0.163) 1.39
E(N,100) (—0.387, —0.886, —0.064, 0.006, —0.009) 1.33x 107
E5(5) (-0.383,-0.848,—0.059, 0.014,—0.016) 493x 107

1 (S) (-0.389, -0.866, —0.066, 0.006, -0.010)  3.93x 107°
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8.4.2. Convex Sets: General Case

When some of the constraints defining X are nonlinear, it remains possible,
using a relaxation procedure, to derive a globally convergent algorithm. However,
the sequence of ellipsoids will no longer be contained in K.

K is the convex closure of its extreme points, the number of which may now
be infinite. Let X( %) denote the set of all extreme points of %, With any x € (%)
one can associate (at least) one supporting hyperplane #tangent to % Let a’x = b
be the equation of any one of these hyperplanes, with a and b such that a’x < 5
V x € & K is thus included in any polytope P(H), . ... #,,) defined by m such
hyperplanes, i.e., given by Eq. (8.14). The relaxation procedure consists in taking
only a finite number of hyperplanes into account at each iteration, thereby con-
structing a sequence of polytopes containing % and a sequence of inner ellipsoids
for these polytopes.

Algorithm for problem P; for bounded Convex Sets (AP;,CS)

Step (i) Choose m extreme points of &, m > p, such that the corresponding
supporting hyperplanes #; yield a closed and bounded polyhedron
P" = P(H,, ..., H,) (ie., such that the vectors a;= 1, . . ., m, span RF). Choose
gsuchthat 0 <eg<<1,setk=m.

Step (ii) Determine () = £(c*, B*) using AP,P.

Step (iii) Compute

X :=arg min (x - /) BA(x — ¢b). (8.26)
xeX(X)
If (x~ = ¢)"B(x~ — ¢¥) > p — &, stop: take E(c*,B) as an approximation of E;(%).
Otherwise determine the supporting hyperplane #,, passing through x, take
P = A, L, Hy, Hy), k< k+ 1, go to Step (ii).

The global convergence of AP,CS follows from the convexity of %X and the
convergence of AP;P. The main difficulty lies in the computation of x™ in Eq. (8.26),
which corresponds to a nonconvex minimization problem. Global optimization
methods®® (e.g., based upon interval analysis®') are advisable. It is sometimes
enough to consider a combination of local minimizations only (one minimization
per constraint defining %). Note that a precise determination of the global minimum
is not crucial (as it is enough to determine x~ such that (x™ - )Bx - b
<p-¢g).

REMARK 8.3.

(i) During the successive calls to 4 P;P, the center ¢* of the ellipsoid previously
determined can be taken as the initial vector ¢’. The number of vectors v¥ in Eq.
(8.15) increases by one at each iteration. When AP, P calls AP, for the first time (see
Remark 8.2 (iii)), the initial distribution £° can be chosen to give the same weights
to the new vector v& and the vectors that were support points for the previous
ellipsoid.
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FIGURE 8.3. Target set (solid line) and sequence of ellipsoids converging to the minimum-volume
inner ellipsoid.

(i) Remark 2 (ii) applies for this algorithm too.
(iii) The sequence of volumes {vol[E(c*,B)]}, is monotonically decreasing.
Example 4: Consider the target set

T={x e R2 P, ~2(x, - D(x, = 3) > 1, x, + (x, - 2)* <2}.

This set is presented on Figure 8.3 (solid line), together with the sequence of
ellipsoids [£](?*)], generated by AP;. The initial extreme points of Kare (2, —2), (3,
6 -9, 61
470\ 2/ \p2 g/t . . L . .

So far, we have considered the non-recursive determination of Z; (%), i.e., the
case where all constraints defining the target set X are taken into account at the
same time. However, in practice one may wish to take any new constraints into
account upon arrival. A recursive determination of Z; () is then of interest since it
will reduce the computational cost and may allow real-time processing.

8.4.3. Pseudo-Recursive Algorithm

We restrict our attention to the case of linear constraints, i.e., to convex
polyhedral sets. A recursive algorithm for the determination of an inner ellipsoid
has already been suggested'!) in the context of parameter bounding. However, it
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does not yield the maximum-volume inner ellipsoid. Moreover, the ellipsoid
obtained tends to vanish after a modest number of iterations (i.e., a small number
of new constraints defining X). The algorithm suggested here is not fully recursive,
in the sense that the information to be stored grows with the number of constraints
on X; However, a simple test indicates whether new constraints can be rejected or not.

The constraints a/x < b; defining K will be transformed into a’x < p (which
means that 0 € %). This can always be obtained by a suitable translation in R”
(which may have to be performed at any iteration when the problem occurs). Let
%* be the polyhedron defined by the first k constraints,

xF={xe RP|alx<p,i=1,... k},

and let £* be the set of extreme points of the convex closure of the vectors a;, i = I,
..., k(i.e., corresponding to active constraints). The algorithm can be summarized
as follows.

Recursive algorithm for problem P; for Polytopes (RAP,P)
Initialization: Consider the first k vectors a, that span R” (k> p + 1). Compute

£X(K*) = £(c*,B) (using AP,P) and £".

Iteration: Let a,{ﬂ x < p be the new constraint.
Ifa,,, € Z* (the convex closure of "), set

* gkt ly ky kel _ ok
E(K") = E (K, L = L%
Otherwise take £*! as the set of extreme points of £X U {ay,,}, if

ar, ¢+ [pag, (BY 'a,, 1" * <p, (8.27)

set £/(K*) = £7(x),

otherwise, compute E;(X*"') by applying 4P,P to the polytope defined by the
vectors a; in L.

AP;P is based on the construction of E,[T© T (KM)], with ¢ € K%,
‘EC(?(k)= {x e Rplairxﬁp—a?c,i: ...k},
and from Lemma 8.1 (ii), the possible vertices of 70 1.(%*) are thus given by
pa;
V.=

" p-ale’

i=1,...,k

The active constraints of % * correspond to the vectors a, associated with the vertices
of TO 1(K*). E[T 0 1.(%")] only depends on these vertices, i.e., the points lying
on the boundary of the convex closure of the vectors v;. One can easily check that
for any ¢ in int(%¥), these extreme v, in the dual space are associated with the extreme
a; in the primal space. Only the vectors in £F have thus to be stored. Now, if
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a,, € Z"E, then K*"! = &%, otherwise £ has to be updated. However, it remains to
be tested whether E;(%*) is cut by the new constraint. This corresponds to Eq.
8.27).

ReMARK 8.4. Ifthe set £F of active constraints is determined without computing
the vertices of X; see, e.g., Ref. 37, this algorithm gives a recursive construction of
E/ (%K) without requiring a recursive characterization of K through its vertices.

8.5. CONCLUSIONS

The determination of the minimum-volume ellipsoid containing a compact set
K R” (problem P,) is strongly connected to experimental design, and an efficient
algorithm has already been suggested.!>?? It can be used when Xis not convex
(one then has to solve a series of p-dimensional global-optimization problems),
while more traditional approaches based on convex programming seem to be
restricted to the case where Xis a polytope. This optimal ellipsoidal outer approxi-
mation might prove particularly useful in parameter bounding, where large uncer-
tainty sets lead to conservative robust control laws.®) When the model is linear in
the parameters Xis a polytope, the description of which might reveal very complex.
The algorithm presented permits reducing this complexity drastically, but still
requires the exact description to be obtained.

The determination of the maximum-volume ellipsoid contained in a polytope
%K can be performed through the solution of a series of problems P,. It does not
require the knowledge of the vertices of % Other algorithms can also be used for
that purpose.(1°’29’38) Further studies are required concerning the complexity of the
algorithm presented here, and its potential interest in nonlinear programming,®-*%)

When the polytope is constructed recursively, the recursive determination of
the volume-maximal inner ellipsoid requires storage of a possibly growing amount
of information (corresponding to the active constraints). The only approach sug-
gested so far to the best of our knowledge does not yield an ellipsoid with maximum
volume.!" Moreover, the inner ellipsoid obtained tends to quickly vanish when the
number of linear constraints increases. This is not the case with the maximum-
volume inner ellipsoid as obtained from the algorithm suggested here. Finally,
when % is only convex, the problem P; can be decomposed into a series of problems
involving polytopes, and global convergence to the maximum inscribed ellipsoid
can still be guaranteed.
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9

Linear Interpolation and
Estimation Using Interval
Analysis

S. M. Markov and E. D. Popova

ABSTRACT

This chapter considers interpolation and curve fitting using generalized polyno-
mials under bounded measurement uncertainties from the point of view of the
solution set (not the parameter set). It characterizes and presents the bounding
functions for the solution set using interval arithmetic. Numerical algorithms with
result verification and corresponding programs for the computation of the bounding
functions in given domain are reported. Some examples are presented.

9.1. INTRODUCTION: FORMULATION OF THE PROBLEM

We consider the problems of interpolation and curve fitting in the presence of
unknown but bounded errors in the output measurements. Let n(A;)) : D >R, D <
R*, be a model function depending on a real argument & € D, and on a parameter
vector A € A — R™. The following hypotheses are assumed:2>

S. M. Markov aND E. D. Porova e Division of Mathematical Modelling in Biology, Institute of
Biophysics, Bulgarian Academy of Sciences, BG-1113 Sofia, Bulgaria.

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York,
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Assumptions on the modeling function: The modeling function n(A;-) defined
on some domain D c R¥ is a generalized polynomial depending linearly on m
parameters:

m

N8 =2 10 (E) = 0(&) 1, & €D, -1
=1
where () = [@,(), . . ., (pm(~)]7 is a vector of m continuous on D functions and A
=(Ap, ..., A, €R"isa vector of m (unknown) parameters. For any (x|, . . .,
x,),x; € D,i=1,...,n,the vector ¢(-) generates a matrix defined by
(Pl(x{) (Pm(x{)
: B : 9.2)

01X) o Pux,)

We shall assume that (9.2) is not singular whenever (x/, . . ., x,,;) is such that
x; #x},i#j. Aset @ of functions satisfying the above assumption will be further
called a (Chebyshev) system of basic functions. The class of all modeling functions
of the form (9.1) where @ is a system of basic functions is denoted by £,,(D, ¢) or
L.

Assumptions on the type of errors in the data: The input data are error-free and
the output data errors are unknown but bounded (UBB).*) This means that there
are n distinct (input) datax; € D C RY,jeJ={1,...,n}, and there are n (output)
interval measurements Yj =0, y,-*],j e J, which contain the correct values of the
corresponding measured quantities.

Denote the system of input data by x = (x, xp, . . ., x,) € R"* and the system
of output measurements by Y = (Y}, . . ., Y)' € IR", where IR" is the set of all
n-dimensional interval vectors.”®* Geometrically, the pairs (x;, ¥;),j € J, can be
considered as n vertical segments in the (k + 1)-dimensional space Ox;x; . . . X

Throughout the chapter it is assumed that m < n. Section 9.3 considers the
problem of finding bounds for the set of modeling functions 1 € £,,(D) interpolat-
ing the vertical segments (x;,Y)), j € J. More precisely, for a fixed § € D, we look
for the set of values at £ of all modeling functions ) interpolating the segments
(x;,Y)),j € J, that is the set:

M) I nissuch that n(hix) e ¥,/ e Jy, &eD. 9.3)

The requirement that the values of 1 at x; range in the corresponding intervals Y,
leads to a system of inequalities for A

nx) =) heY, jel, 9.4)

which can be written in matrix form as
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D(x)\ € 7, 9.5

where O(x) is the following (n x m)-matrix of full rank ®(x) = m:

o) o 9,0 (o)’
D(x)=| R ) B
0x) .. @) o)

In (9.4) the data x and Y are known; the parameter A is unknown. We thus
have to solve a system of n algebraic inclusions for the m-dimensional parameter
A. Any A satisfying (9.4) is called a feasible parameter. Every feasible parameter A
generates a solution function n(A;-) € £,(D). Denote by A the set of all feasible
parameters, and by n(A;£) the set of values of all solution functions at & € D,
respectively

A={L € R"| D(x)\ €Y}, (9.6)

NAE) = {eE)' 1A e A}, E e D. 9.7

The set n(A;E) defined by Eq. (9.7) is an interval for any fixed £ € D. Thus
Eq. (9.7) defines an interval-valued function (briefly, interval function) on D, which
will be further denoted by m(x,Y;"). Note the difference between n(A;-) =
{o()'L | A € A} and n(x, Y;"): the former is a set of solution functions defined on
D (sometimes called feasible solution set), whereas the latter is an interval function
defined on D. Of course for a fixed & € D we have n(A;£) = n(x,Y;&). We shall be
particularly concerned with characterizing and computing the bounding lower and
upper functions n7(x,Y;), n'(x,Y;:) of the interval function n(x,Y;-), which are
called enveloping functions for the feasible solution set n(A;-).!%

We can compute n(x,Y;§) for § € D by solving two constrained linear optimi-
zation problems®

n(x,Y;é)=[min {0 (&1}, max {¢ (afx}] (9.8)
reA reA

Another approach® is to enclose A by an interval vector (box) A /, and then
find an enclosure for n(x,Y;&) by n(x,Y;&) < (&) AL

The problem of finding/enclosing the interval function n(x,Y;-) is different
from the problem of finding/enclosing the parameter set A defined by Eq.
(9.6).233%!N The set A is an m-dimensional polytope, whereas n(x,Y;&) is a closed
one-dimensional interval for a fixed & The presentation or computation of
n(x,¥;€) in a given domain for & can be of practical importance. In the case of
one-dimensional argument &, we characterize the interval function n(x,Y;:) and
propose methods for its presentation and computation. A computer program written
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in PASCAL-SC'? is reported, which efficiently computes the interval function
Nn(x,Y;€) in a given interval.

If the interpolation problem has no solution, then one often wants to solve it
by choosing another family of modeling functions (e.g., by changing either the
number of parameters or the system of basic functions). One may choose to
reformulate the interpolation problem as a curve fitting (estimation) problem.®®
Assume that the inclusions of Eq. (9.4) can be violated, which practically means
that the errors in the measurements are assumed to be of a stochastic nature.

Section 9.4 considers the problem of finding the set of parameters A, respec-
tively the set of modeling functions n(A;-), such that

in matrix form ®(x)\ ~ Y, where the symbol ~ means that the values n(A;x;) =
(p(xj)Tk are “close” to the measurement intervals ¥;. For the numerical (single-
valued) case Y =y e R" the curve fitting problem (9.9) is mathematically formu-
lated by choosing an operator (called estimator) ¢(y) producing from a data set (x,y)
a solution function n(},;-) from £,,(X). The operator ¢ is chosen in accordance with
the hypothesis on the statistical nature of the errors in the measurements (for
instance, a least-square estimator is chosen if the errors in y are assumed to have
normal distribution). Let us restrict ourselves to so-called projection estimators'!)
of the form ¢(y) = n(A,;-), with A, minimizing some functional of the form

Iy - @A || = inflly - DA, K< R, (9.10)
rek
where || - || is a norm in R". Assume as before that the measurement interval ¥

contains the true values of the measured quantities. As proposed!"*>® consider the
set of solution functions corresponding to the data (x,Y), defined by

M) 1y e ¥ =1{00) 2, |y e 1}, (9-11)

where 1, is given in Eq. (9.10).
Let A, be the set of all A,, produced by the estimator ¢(y), whenever the
numerical vector y ranges in the interval measurement vector Y= (Y}, .., 1),

Ay= {1, € K R", ), satisfies Eq. (9.10) | y € Y1 (9.12)

The set A, is called the estimate uncertainty set.*>® The set A, generates a
corresponding (estimate) solution set

NA) = {00 ML € Ayl (9.13)
Forafixed& e D
NAGE) = {0©) A1 € Ay}, &eD. (9.14)
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Equality (9.14) defines an interval-valued function; Section 9.4 is devoted to
its presentation and computation.

This chapter considers the interval-valued functions generated by the solution
sets both for the interpolation and for the curve fitting problems. In some special
cases the interval solution functions have simple presentation in subregions of D
and can be easily computed. The next subsection gives a brief introduction to the
necessary concepts of interval arithmetic.

9.2. INTERVAL ARITHMETIC: BASIC CONCEPTS

By IR denote the set of all intervals Y of the form Y = [y "] =
{1y <y<y'}, yy° € R. This chapter uses two simple interval arithmetic
operations:”’g) one for addition of two intervals X, Y € IR and one for multiplication
by a real number a € R defined as follows:

X+Y=[x+y,x"+y7,

[ox,0x"], a>0,

X = [ax—ﬁ(a),(xxc(a)] =
[oxT,ox7], a<O.

wherein (o) = {~, o< 0;+, 020}, x =x",x "=x".
The following is a simple application of interval arithmetic. Given a real valued
vector a = (o, . . . , o,) and an interval valued vector Y= (Y, , ..., Y,)" write

{faylye Yy ={oy +tay,+...+oy. iy, et,...,y, et}
=, Y +o,Y,+.. +0 Y, =al. 9.15)

A standard way to present the set {a | y € Y} via the end-points of Yis

n n

{ayply e ¥p =Y agi®@, > opf®|. (9.16)

=1 i=1

The interval expression (9.15) is much shorter than expression (9.16), which does
not make use of interval arithmetic.

Remark: A similar expression (9.16) can be obtained by using a presentation
of the intervals via centers and radii (see e.g., Ref. 6, Proposition 1). Denoting the
center of the interval Y; by yf and its radius by y} we obtain the expression

n n

{owlyel}= z ai(y? - G((X[)y;), Z (Xi()/f + G(a,‘)y;) s

i=1 i=1
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which is also clumsy, whereas the interval expression oY is brief and offers
convenience.
More generally, if 4 is a real valued (k x n)-matrix

a
ayps Ayps oo Ay (.‘
A= =

Q1o Gg> w0 Qg Lak
then Eq. (9.15) yields for the k-dimensional set {4y | y € Y} the following inclusion
{vlyeYi={apay, .. ..qp) |y eV,
c(aY,...,aq)=4Y. 9.17)

Inclusion (9.17) is often known as “wrapping effect.”® The set AY is the
smallest k-dimensional box (orthotope, interval vector) enclosing the set

{dyly e 1}.

9.3. LINEAR INTERPOLATION UNDER INTERVAL
MEASUREMENTS

9.3.1. The Multidimensional Case

First consider the general situation k> 1, D < R* and the problem of finding
the interpolation interval function of (9.8).

DeriNTION 9.1, For a fixed class £= £,,(D,¢) of modeling functions a system
of vertical segments (x,Y), x = (x, ... x)L Y=, ..., Y,) . is called £ -com-
patible (or just compatible), if for any i e J= {1, . ., n} and y; € Y, there is an
element n of £, with n(x;) = y;, such that n(A;x) € Y, forj=1.....n,j#1

In the situation when the data matrix x is fixed (as is the case in this chapter)
one shall sometimes say “Y is £-compatible”, instead of “(x.Y) 1s L-compatible.”

Denote Y=(Y}, Y5, . .. ,Z,,)T, Y;=nx.Yx,),i=1,...,n Then Y, = n(x,Y;x;).
that is, the interval vectors Y and Y generate same feasible solution sets. The
compatible segments (x;, ¥;), i € J, have the property of possessing no “‘excess
points,” that is, such points through which no individual solution function n
passes.!?) _

Two systems (x, Y), (x, ¥), generating same feasible solution sets are called
equivalent. The problem of finding a solution set corresponding to the data (x,1),
can be divided into two steps: 1) to find an L-compatible system (x,Y) which is
equivalent to (x,Y), and 2) to find the solution set generated by (x, Y).

Every feasible parameter A € A generates a vector y; = (yy, . . ., v,) € R"by

yi=nlkx), jeJ, (9.18)
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in matrix form y, = ®(x)A. The set of all vectors y defined by Eq. (9.18) for some
A € A will be denoted

Y'={p=mAsx), ..., (ax,)) | A e A}

= {Q(X)A |k € A} (9.19)

In other words Y’ is the subset of all y, y € Y, for which the system y = O(x)A is
consistent. For a compatible set of data (x, ¥) the interval Y; is the projection of the
set Y’ defined by Eq. (9.19) on the j-th coordinate axis.

First consider the case n = m when the number of data equals the number of
parameters. In this case Y’ = Y (since y = ®(x)A is consistent for all y € Y) and we
can express the solution set by means of the following proposition.

ProrosiTion 9.1. For m =n we have

nx,YE) = (@(€) @7 (x)Y. (9.20)

Proor: A modeling function n(A;-) = o()'A from £,,(X). which interpolates a
set of m data (x,Y), satisfies a system ®(x)A € Y of m algebraic inclusions for the
m unknown parameters, or ®(x)A =y, v € Y. For n = m we have Y' = Y. Since det
®(x) # 0, every y € Y generates a A = ®~'(x)y. For the set of values of the modeling
function interpolating (x, Y) ata fixed § € D

NEY:E) = (@E) A1 % € A} = {9®) (@' (x) |y € ¥}
= {(e© O Mylye 1}
= ((®) o' (X)Y.

The interval function (9.20) will be further called simple interval interpolation
function (S7/-function).

REMARK: Proposition 9.1 shows that the S//-function can be computed for
every £ in interval arithmetic using the simple interval-arithmetic expression (9.20).
In (9.20) the vector ¢(£)'®~'(x) is multiplied by the interval vector ¥ in the sense
of Eq. (9.15). Such an exact presentation cannot be given for the parameter set A
because of the wrapping effect.®® Indeed for the set A of feasible parameters

A={07'(xpy|ye Y} ={D ' x)y|ye ¥} cO 'Y

Using interval arithmetic gives the inclusion A < ®'(x)Y = A/, which may be
rough; A is a convex polytope, whereas Y, and hence A’, is an m-dimensional box.®
The above consideration also demonstrates the importance of the brackets in Eq.
(9.20) . A change of the place of the brackets leads to an inclusion

€)' P < 0®) (@' N)Y).
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Indeed A @7 (x)Y = A’ implies
nxYE) = {eE) A A e A}  {9@) | A e A

=p(§) (@'(X)Y).

Now consider the case m < n. In this case Y’ < Y and the inclusion A < A’ due
to

A={0'xplyeY}c{@'xylye Vi cd(xr=A

can be rough. The following proposition gives a characterization of the solution set
N(x,Y;:). See Lemma 9.2 from Ref. 6.

ProrosiTioN 9.2. There exists a subset O of the index set J = {1, ... ., n}
consisting of m elements (Q c J, card(Q) = m), such that for every / € Q at least
one of the two equalities n™(x,Y;x)) = Y7, n"(x,Y;x)) = ¥7 hold.

The proof of this Proposition is given in Ref. 6. Proposition 9.2 shows that the
solution set reaches the end-points of at least m input intervals ¥,/ € Q c J.

Let the index set O be a subset of the index set J with m elements: O c J,
card(Q) = m. Assume that Q is ordered in increasing order and let ¢(i) be the i-th
element of Q. Denote by xf = gy - - - ,xq(m))T the matrix x reduced to the index
set 0. Analogously ¥ 0= (Y;ay - - - » Ygom)' 1s the vector Y reduced to Q.

To find the set of functions from £,,(X) interpolating a reduced set of m data
(x2,Y9) consider the corresponding system ®(x2)% € Y, which is a system of m
algebraic inclusions for m unknown parameters and applying Eq. (9.20), obtain
N2, Y08 = (9(8) D' (x)) Y.

ProrosiTioN 9.3. The value of n(x,Y;-) at a point & is given by

nx,YiE) = L Y%E) = M (9(€) @7 (x9) YL, 9:21)
o</ o<t

The proof is obvious. Proposition 3 shows that the value of n(x,Y;-) at £ can
be determined by an intersection of (') S/I-functions. 5
The intervals Y; can be reduced to L-compatible intervals Y; using the

J
following
ProposiTION 9.4. For the £-compatible intervals we have

Y=rnn nelro).
o< jeQ

The following methods are suggested for the computation of n(x,Y;-) at a point
EeD:

A. Compute n(x,Y;) at & by means of Proposition 9.3, that is, by intersecting
the values of all simple interval interpolating functions at . The latter are computed
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by means of Proposition 9.1. If at some point & the interval values of two simple
interval interpolating functions are disjointed, their intersection is an empty set and
the set of solution functions is void.

B. For § € D compute n(x,Y;£) by solving two constrained linear optimization
problems of Eq. (9.8). ~

C. Compute first the L-compatible intervals ¥; by means of Proposition 9.4.
Then compute n(x,Y;:) = n(x,Y; ) at arbitrary & by using method A or B for the
compatible intervals.

Below we look for effective methods for the presentation and computation of
1) in the one-dimensional case k = 1.

9.3.2. The One-Dimensional Case

In the remaining part of this section assume & = 1, that is, the input data x is a
vector of real components and will be denoted by x = (x|, . . ., x,,). Assume that the
components of x belong to an interval X = [x x'] and that x, =
X <x;<x< ... <x,<x"=x,,,. Use the letter k to denote a fixed subinterval
[x4, X111 to be considered. The following theorem gives an additional charac-
terization of the boundary functions of the solution set.

We first give a definition which will be used in the proof of the next proposi-
tion.

DeriniTioN 9.2. For [ < m a I-face of A is a subset of A defined by

<o) A<y, jel,

where m — [ of the above linear independent inequalities transform into equali-
ties (1119

ProrosiTion 9.5. Let the set ny(A;-) of all functions from £,,(X) which interpo-
late (x,Y) be not empty and let the interval function n(x,Y;-) be the envelope of this

set. 131617 Then in every (x;, x11), k= 0,1, . . ., n, the upper and lower boundary
functions of n(x,Y;) are functions from £,(X) generated by some parameters
Ahi € A

Proor: Proposition 9.5 states that for every subinterval [x, x;,,] there exist
two parameters Az, Af € A < R™ generating the envelope in the whole subinterval,
that is,

N Y8 =n8) = 0®) A, & € (5 X,),

N'(LY8) =N = 0®) A, & € (6 Xg,):

Assuming the opposite, there exist a point &, € (x;, x.1) and two parameters
A A2 e R A} =2, such that 17 (x, V:E,) = 0(&) A} = @(£,) A% On the other hand
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n(x,Y;E,) = max @(&) . (9.22)

reA

Because the set of optimal points of the linear programming problem (9.22) is
convex all points of the segment [A' A?] are optimal. The set of all optimal points
of (9.22) is a [-face of A, where / > land the vector ©(&,) is perpendicular to this
[-face of A. The [-face is an intersection of (m — [} hyperplanes with linear
independent normal vectorsa', . .., @™ € { ®(&)),j € J} (the linear independence
follows from the assumption that the modeling function is from £,(X)). Thus the
vector ¢(&,) is a linear combination of @', . . ., @' This is a contradiction to the
assertion that @ is a system of basic functions. For the lower function n~ the
arguments are analogous.

Proposition 9.5 shows that under the given assumptions the upper and lower
boundary functions n(x,Y;€) for all £ € (x;, x;,) are themselves elements of £, (X).
Therefore, to find n(x,Y;&) for & € (x;, x;.1) we have to determine expressions for
these two functions. Such expressions can be found ether in terms of some subset
(x2,Y9) of the given data or in terms of A depending on the method used:
intersection of SZ/-functions (method A) or constrained optimization (method B).

In some cases it can be preferable to use method C which prescribes first the
computation of the compatible intervals. The next proposition shows that, if the set
of data (x,Y) is L~compatible, then n(x,Y;&) may be determined by an intersection
of a reduced number of simple interval interpolating functions.

ProrosiTion 9.6. If the set of data (x, Y) is L-compatible, then for every k=0,
..., n the following formula holds

nxY:E) = M ne@Y%e) for g e [x,, x,,1,
QeQk)

where Q(k) is the set of all subsets O of J consisting of m elements (notationally,
Q c J, card(Q) = m), such that

kk+1leQ, ifO<k<n,
lime Q, ifk=0ork=n.
If m = 2 the set O(k), for every k, 0 < k < n, consist of one single pair, namely

_[tkk+1y, if0<k<n,
o) {{1,'7}, ifk=0ork=n.

For the interval solution m(A;-) in this case (m = 2, compatible data) the
following simple formula holds in [x;, x,]:

N0, 18) = (0, re0:8) = (p(&) &7 (x?W)r®
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A X)) . A(x,8)
_ M) * A
AEx,) - A(x,8) v

Y., ifO<k<n,

: 5 ifk=0ork=n,
Ax,x,) Ax,x,)
wherein
0,(x")  0y(x")
A X’,X'”) = " " °
( 00" 00

Clearly, finding the compatible intervals in the case m = 2 solves the problem
of finding the S//-function. It is then obtained by connecting the upper, resp., lower
end-points of each two neighboring segments (x;,Y;), (x;.1,Y:1) via generalized
linear functions. Proposition 9.6 is proved (for the polynomial case) in Ref. 16.

Numerical algorithm (for £ = 1): Compute 1(x,Y;-) at some point &; from the
open interval (x;,x;;), e.g. & = (x;,1 +x;)/2, using method A or B. Proposition 5
states that there are two unique generalized polynomials n; =n(A;;8),
n/ = n(A);€) which are the boundary functions of n(x,Y;-) in the interval [x;, x;,,].
We can find expressions for the boundary functions n;,n; by any one of the methods
A or B. Using method A we obtain two m-dimensional subsets 07,0 of J and two
m-dimensional sets of binary variables A~ = (agq),...,0m), A~ =
(Og(1) > - - - » Qgum)s Ogqiy » Ogy € 4+~ 4, 1=1,...,n,suchthat for § € [x;, x;\]:

NG YiE) = [0E) @7 (x%] (Y9) o,

(@ Y:E) = [0(8) @7 ()] (Y20

(note that the pairs (Q7,4;), (07,27 ) may not be unique, and any pair can be used).
Alternatively, if method B is used then we can determine A;,A] as defined by
Proposition 9.5.
According to Proposition 9.5 the expressions for the functions n7, 1 can be
used for presentation or computation of n(x,Y;-) at any point in the subinterval

[xis xl+l]’

9.3.3. The Polynomial Case

If the basic functions are of the form ¢,(x) =x"!,i=1,...,m, then (9.2)is
the Vandermond’s determinant: det ®(x") =IT;,; (x; — x;), which does not vanish.
L,,(X) is the class of polynomial functions defined on X = R of (m — 1)-st degree of
the form 1, ((ME) = Ay + A& + ... + A5 L

In the case n = m Eq. (9.20) for the SI/-function obtains the form('%!?
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E;'“xk

X=X

Nt 6Y:8) =1x:8)Y, 1(x8)= []

k=l,...m k*i

This interval function has been studied (without using interval arithmetic).?"
Equation (9.21) for n > m in the polynomial case reads:!'*’

MY = 62DV, 60 = [ e

b
0cJ k=l ki Yoty ™ Xqth

wherein Q = {g(k)}i., .

The intervals Y; can be reduced to compatible intervals 3’, by!¥

Y=Yn A &) ¥ jel
oc/ jeQ

For m =2 and applying Proposition 9.6 gives for £ € [x, x4,1], 0 <k <n, the
following simple expression!!®’

&= X Y+ & =X

- . — Y, if0<k<n,
Xk ™ Xt Xt — %k
m(x,Y;@)=
g_xn g_x] .
Y, + Y., ifk=0ork=n,
Lxl—xn X, =X,

where the data (x,Y) are assumed compatible.
Next are two examples for polynomial functions. The computations are
performed by a program written in PASCAL-SC,'? based on the method A.
Example 1: Let the following set of data be given

1, 2, 4, 6
oY) = ([1,3], [1,2], [1.5,2.5], [2,3] J ’
and let the modeling functions be second order polynomials of the form
N,(LE) = Ay + L8 + A2

The graph of the interval function n,(x,Y;) is presented on Fig. 9.1. For
comparison the simple interval polynomial n;(x,Y;-) is also presented. In order to
recognize both interval interpolating functions on Fig. 9.1 keep in mind that
M2 & N3

According to Proposition 9.3 the bounding functions of 1,(x,Y;-) pass through
at least three end-points of the interval segments, which fully determine them. The
program gives results for n,(x,Y;-) presented in Table 9.1. Note that the computed
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FIGURE 9.1. Graphs of the interval polynomials from Example 1.

compatible intervals coincide with the input intervals, that is, the input data are
compatible.

Remark: To demonstrate the advantages of direct computation of the interval
function n,(x,Y;-) compute the solution set for this example through the parameter
set A. Assume that A is computed exactly. Then optimally enclose A to obtain an
interval vector A’. The best result for the upper function is

NH(ALE) = 4.5 + 1.258 + 0.25¢2,
and for the lower function
n;(A%E) =-0.1 - 1.75¢ — 0.1582.
The width of n,(AL;€) at £ =6 is
o[Nn(A';6)] = nj(A';6) —n3(A;6) = 37.

TABLE 9.1. Bounding Functions and Compatible Intervals
for the Problem of Example 1

Bounding Functions

Subinterval Lower Upper Compatible Intervals
[, x1] YiY3rs Y3Y3Y} n=[13]
[x1, x2] YiYaYs Y3Y3Y} Y2=[1,2]
[x2, x3] Y3Y3Y} Y3vira Y3=[15,2.5]
[x3, x4] Y3Y3Y3 Y1Y3Y} Y4=1[2,3]

[x4, xo0] YiYiva Y3Y3Yi
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FIGURE 9.2. Graphs of the interval polynomials related to Example 2.

The width of n,(A;6) = ny(x,Y:6) as computed by our method is
ng(xs Yv6) - n;(xﬂY’6) = 1

Example 2: For the same set of data and for the set of linear modeling functions
M1 (AE) = X + A€ we obtain the results presented in Table 9.2.

The interval function 1;(x,Y;-), comprising the set of linear modeling functions
is presented on Fig. 9.2. For comparison the function mn,(x.Y:) is given (the latter
also appears in Fig. 9.1). To recognize both functions on Fig. 9.2 recall that

m SN
Example 3: Next consider an example using 6 knots
0, [1, 1.02]
1, [0.99, 1.25]
12, [1.04, 1.06]
=13 11707, 1.09]
4, [1.16, 1.18]
5, [1.23, 1.25]
TABLE 9.2. Bounding Functions and Compatible Intervals
for the Problem of Example 2
Bounding Functions
Subinterval Lower Upper Compatible Intervals
[X 0, X1] Y1Y3 Yiva Y1 =[1,2]
[x1, x2] YiYa Y3iYs Y>=[1.2,2]
fx2, x3] YiYa Y3Yi Y3 =[1.6,2.5]
[x3, x4} Y1Y3 Yivi Ya=12,3]

[x4, xe0) Yivi Y1Y%
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FIGURE 9.3. Graphs of the interval polynomials related to Example 3.

Fig. 9.3 presents the corresponding polynomials ms(x,Y;:) and n4(x,Y;-). Of
course, Ng < Ns-

9.4. LINEAR ESTIMATION UNDER INTERVAL MEASUREMENTS

This section shall assume that the parameter A, defined by Eq. (9.10) depends
linearly on y, i.e., A, = Hy, where H € R™", and H = H(x) may depend on x but not
on y. Equation (9.12) can be written as

Ay= {KyngR’”,kyzHy[ye Y}

={Hylye Y} cHY, (9.23)

whereby the last inclusion relation Eq. (9.17) has been used.

Assume as before that £ is a class of linear on A functions of the form
N;) = ¢(-)'A defined on D. For a fixed & € D the estimate solution set can be
written in the form

N(ARE) = (N(E) | 1 € Ay}
={p(&) M A=Hy|y e Y}
= {0&) (Hy) |y € Y} = {(9(©)'H)y |y € 1}
= (9@ H)Y=T()Y. (9.24)

Note that the interval-valued function (9.24) gives the exact bounds for the solution
set. Next consider a special case of least-square estimator illustrating the above
approach.
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Multiple linear regression: In the case of multiple linear regression, denote
E=(,&,...,§&, ) and assume Q&) =¢&,i=0,...,m—1, so that

NGE) = &) A=Ay + A& + ...+ A, & =EN.
Denoting

1 RITEREE xlm—l\]
X= ,

Vx, o X

we obtain from (9.10) with an /, norm the matrix H in the form H = X' x'x "
Substituting in (9.23) and (9.24) gives

Ay HY = (X' X)Xy, (9.25)

N(A,E) =T(E)Y = EHY = EX )XY, (9.26)
where (&) = EX' X)X = (11(E), - - -, 1u(&))-
In the case of m = 2, the approximating function is linear of the form

f(A;E) = A + A&, For the components y4(&) of the n-dimensional vector T'(§) we
obtain

(&) = EX' X)X,
=0, —XNE—xVS, +1/n, i=1,...,n,

where

n n n
x= in/n, S.= lez —nx= Z(xl. -X)%

FIGURE 9.4. Graphs of the interval polynomials related to Example 4.
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The boundary functions of the interval function L(§) = I'(€)Y are lines in each
interval with end-points two neighboring &;,1 =1, . . ., n, where &, are defined by
‘Yi(éi) = 0’ that is’

E,=x+S_/[n(x—-x)].

The polynomial and multinomial cases produce similar results under the
corresponding choice of the matrix X.
Example 4: Consider the data

0, [1,1.02]
1, [0.99, 1.01]
|2, [1.04, 1.06]
&Y =13" 1107, 1.00] |
4, [1.16, 1.18]
5, [1.23, 1.25]

For the given data, the set of interpolating polynomials of degree m — 1 =2
consists of only one single-valued interpolation polynomial. The latter serves also
for an unique solution of the same problem with m—1=3 and m —1=4 (Fig. 9.4).
The solution set is empty for the same problem with m —1 <2. The envelope of the
set of least-square approximation polynomials of second degree for the given
interval data is also presented in Figure 9.4.

Example 5: For the set of data of Example 1 and for modeling functions which
are second order polynomials, the corresponding sets of solutions both for the

interpolation and the least-square approximation problems are presented on Fig.
9.5.

FIGURE 9.5. Graphs of the interval polynomials related to Example 5.
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9.5. CONCLUSION

Both interpolation and curve fitting problems involving generalized polyno-
mials and interval data have been studied. In certain special cases exact interval-
arithmetic expressions for the envelopes of the sets of solution functions are
obtained (see Eqgs. (9.20, 9.21, 9.24, and 9.26)). In the one-dimensional case when
the solutions are functions of one variable, the enveloping functions are charac-
terized to show that they are piece-wise generalized polynomials. These interval-
arithmetic expressions can be effectively computed in a software environment
which supports interval arithmetic like recently developed SC-language'® (or
computer algebra systems Maple and Mathematica). Such an environment provides
computer operations with directed roundings, so that the computed interval bounds
are automatically rounded toward outside and contain with guarantee the true
results. Thus, the computed bounds comprise all possible kinds of input and
computational errors. This fact opens a new way to the practical implementation
and interpretation of the computed results especially with respect to the interpola-
tion problem. For example, assume that one knows that the experimentally obtained
measurement intervals ¥ contain with guarantee the true values of the measured
quantities. Assume that n(x,Y;-) is the interval solution function computed from
these measurements and that the model function 1 belongs to £. Assume that an
experiment provides us with a new measurement (xy,Yy) such that
NG, Y;xy) N Yy=. The correct conclusion, then, is that the class £ of model
functions is inadequate for the description of the experimental data.

Therefore the approach and programming tools can be used by experimental
scientists for checking hypotheses with respect to the type of the modeling func-
tions. New data can be easily checked whether they intersect the available interval
solution sets. If some of these intersections are empty, then it follows that the type
of the modeling functions is wrong. Another type of modeling function (possibly
involving more parameters or other type of basic functions) should be taken in
consideration.

In the above arguments it is assumed that Y; are measurement intervals,
containing with guarantee the true values of the measured quantities. It seems that
experimental scientists can provide such intervals in most situations. Moreover, the
provision of guaranteed bounds seems to be a substantial part of the experiment.
At present, experimental scientists often do not care about obtaining such bounds,
which diminishes the value of the experiment. A possible explanation for such an
attitude is that few mathematical tools and methods dealing with interval problems
have been developed. Measurement tools and instruments also sometimes fail to
provide the necessary guaranteed bounds for the data to be read. The guaranteed
numerical “interval approaches” should be employed for guaranteed interval data,
possibly obtained using high quality “interval measurement™ tools.
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Adaptive Approximation of
Uncertainty Sets for Linear
Regression Models

A. Vicino and G. Zappa

ABSTRACT

This chapter deals with the problem of uncertainty evaluation in linear regression
models, representing either purely parametric models or mixed parametric/non-
parametric (restricted complexity) models. The hypothesis is that disturbance
information and prior knowledge on the unmodeled dynamics are available as
deterministic bounds. A procedure is proposed for constructing recursively an outer
bounding parallelotopic estimate of the parameter uncertainty set, which can be
considered as an alternative description to commonly used ellipsoidal approxima-
tions. This new type of approximation is motivated by recent developments in the
robust control field, where descriptions like hyperrectangular or polytopic domains
have led to appealing stability and performance robustness properties of uncertain
feedback systems.
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10.1. INTRODUCTION

Recent years have seen a renewed and stronger interest in system identifica-
tion."?) Research activity has been mainly stimulated by the growing need for
techniques providing the basic information required by advanced robust and
adaptive control schemes developed in the past decade.!” Both soft (stochastic) and
hard (deterministic) bound settings have been widely investigated® for soft-
bound, mixed parametric/nonparametric approaches, for H,, or /, nonparametric
techniques,> for hard-bound purely parametric approaches,'®”® and for hard-
bound mixed parametric/nonparametric approaches.®!%') Mixed parametric/non-
parametric approaches appear promising for providing the necessary information
for applicability of the techniques recently devised in the robust control field for
structured and unstructured uncertainties.!

This chapter is embedded in a hard-bound setting, where knowledge about
disturbances and a priori information is given in terms of deterministic bounds. A
fixed-order model and a possible block accounting for unmodeled dynamics are
allowed. The contribution of this chapter is in the spirit of Wahlberg and Ljung.!'"
The distinguishing feature is that instead of constructing adaptive ellipsoidal
approximations for the parameter uncertainty set, i.e., the set of parameters com-
patible with the disturbance bounds and the a priori knowledge on the unmodeled
dynamics, it proposes recursive approximations of orthotopic or parallelotopic
shape.

Beyond the intrinsic interest from a theoretical standpoint, the main practical
motivation for this different characterization of the parameter uncertainty set
estimates lies in the recent results found in the robust control field when the nominal
plant model is affected by parametric or mixed parametric/nonparametric pertur-
bations. Most of these contributions refer to uncertainty regions in plant parameter
space of hyperrectangular or polytopic shape.'*'® The main purpose of these
references is to characterize extremal subsets of the uncertainty region providing
worst-case properties of the uncertain system from the stability or performance
viewpoint. The interesting feature of polytopic regions is that it is possible to find
very ‘small’ subsets {(made of vertices or edges) providing the ‘worst-case’ infor-
mation contained in the whole uncertainty set.

This chapter provides an adaptive algorithm for constructing recursively an
outer bounding parallelotopic approximation of the parameter uncertainty set. The
procedure represents a counterpart of the algorithm originally proposed by Fogel
and Huang'!” and successively modified by Belforte e al.\"® It can be employed
both in a purely parametric or in a mixed parametric/nonparametric setting of the
identification problem. Though the computational burden of the algorithm is
comparable to that in,!”!¥ it is a good candidate to provide better approximations
of the parameter uncertainty set, on the grounds that the family of approximating
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parallelotopes is parameterized according to a larger number of degrees of freedom
than ellipsoids.

The chapter is structured as follows. Section 10.2 introduces notation and
problem formulation. Section 10.3 presents basic results for optimal approximation
of the uncertainty set, while the adaptive algorithm is discussed in Section 10.4.
Concluding remarks are reported in Section 10.5.

10.2. NOTATION AND PROBLEM FORMULATION

Consider the linear regression equation
wk)y=0¢'(k)0+eh), k=12,... (10.1)

where y(k) is the k-th scalar measurement on the system under investigation,
0=[6,,...,0,]' is the model parameter vector, ¢(k) = [01(k), . . . , $,(k)]" is the
regressor and e(k) represents an error term such that

le(0)| < r(k), k=1,2, ... (10.2)

where r(k) >0 is a known sequence of error bounds. Notice that, as is better
specified at the end of this section, 8 may include parameters of a fixed-order
nominal model and parameters describing the unmodelled dynamics possibly
associated with the nominal model.!!" Denote by ©(k) the uncertainty parameter
set at time £, i.e., the set of 8 consistent with the model Eq. (10.1) and the error
bound Eq. (10.2) up to the k-th measurement, i.e.,

K 10.3
ok = (N0}, (10-3)

=1

where (/) is the set of parameters consistent with the /-th measurement

(D =1{6 er™ (D) - ¢'(NBl < r(D)}.

A set in R" defined as (/) will be called a ‘strip’. It is easy to check that ©(k) is a
convex polytope. Assume that O(k) is nonempty for any £.

The next sections approximate ®(k) through simple-shaped regions like par-
allelotopes; a description of such regions is introduced. Denote by ®(6°) the unit
ball in the /, norm centered at 6,

R(O°) = {6 : max |6, - 0] < 1}.

i=1,..,n

A parallelotope can be defined through R(6°) and a nonsingular transformation
TeR"™ '
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P(TH)=1{0:0=T0,0c ROV} ={0:IPO-0)_ <1}  (10.4)

where P = T"!. Denote by ty=1,...,nandpj,i=1, ..., nthecolumns and rows
of matrices 7 and P, respectively. It is easy to verify that

i (10.5)
0ePs0=0+) af, o el-L1]

=1

Alternatively, the parallelotope P(7,0°) can be expressed as the intersection of n
strips in parameter space,

A (10.6)
P(T,6) = J s,
Ji=1
\
where
S5=1{0:|p®—c|<1}, ¢, =plec. (10.7)
Moreover, denote by o} and o7 the bounding hyperplanes of §, i.e.,
o, ={0:p0-c,=1}, 6, ={0:p0—c,=-1}. (10.8)

Since one looks for ‘optimal’, in the sense of minimal volume, outer approxima-
tions of ®(k), choose as ‘measure’ p of a parallelotope in R” its volume

H[P(T.69] = vol[P(T,0)].
Recall the relationship between the volumes of a unit ball ®(6) and P(7,0°)
u[P(T,6) = 2"|det (T)} = 2"/|det (P)|. (10.9)

Hence, the requirement of minimal volume for a parallelotopic domain is equivalent
to one of minimum (maximum) determinant magnitude for the matrix 7(P) defining
the parallelotope.

Now formulate the problem solved in the forthcoming section. Consider the
linear regression model Eq. (10.1) with error bounds given by Eq. (10.2). Let an
outer estimate of ®(k) be given at time £ in the form of a parallelotope P(T,0°).
Suppose that an additional measurement at time k£ + 1 becomes available. The
problem is to use the new information to update in an optimal way the parallelotopic
estimate. More precisely, denoting by %, the parallelotopic estimate of ®(k) at time
k, i.e., B = P(T(k),0°k)), find the minimal-volume parallelotope #,; consistent
with the preceding estimate #,, the new measurement y(k + 1) and the correspond-
ing error bound #(k + 1). Of course, a priori information on the system and on the
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data is assumed to be available in order to determine a suitable initial estimate ®,
and evaluate the error bounds (k).

The above problem formulation includes both purely parametric model esti-
mation, classical in the set membership uncertainty community,®® and mixed
parametric and nonparametric identification in a hard bound context.®~') The
major requirement is a linear parameterization of the model. Hence, ARMA models
can be dealt with in an equation-error approach. Output-error models where the
parametric part is an FIR model or a linear combination of orthogonal filters (like
Laguerre of Kautz filters),! ) can be tackled equally well. When dealing with purely
parametric models, the a priori information generally consists in an initial uncer-
tainty parallelotope for the parameters and a measurement error bound. When
mixed parametric/nonparametric models are of concern, a priori information on
the nonparametric part of the model becomes of crucial importance and it requires
suitable techniques to translate it into an initial parallelotopic estimate %,. A good
example models the nonparametric part via a FIR model cascaded with a suitable
shaping filter.!) The corresponding a priori information is mapped into an ellip-
soid in the FIR parameter space. The a priori information which can be assumed
in the context of parallelotopic approximations may be given in terms of

e ahard bound on the tail contribution of the nonparametric part of the model
(equivalent to assuming a certain rate of decay of the impulse response of
the nonparametric part);

¢ hard bounds on the errors between the first n samples of the ‘true’ impulse
response samples and the FIR model parameters;

o hard bounds on discrepancies between the frequency-response magnitude
of the nonparametric part and the truncated approximation.

10.3. OPTIMAL ADAPTATION OF THE PARALLELOTOPIC
APPROXIMATION

In this section, a solution is provided to the following problem: given the
parallelotope 7, and the new strip Z(k + 1) provided by the (k + 1)-th measurement,
find the minimal-volume parallelotope %, containing the polytope
V=B N Ek+1).

Notice that 9/ is the intersection of n + | strips in the parameter space, each
bounded by a pair of parallel hyperplanes. Clearly, some of these hyperplanes may
not be tangent to 9/; elementary geometrical considerations show that %is bounded
by m supporting hyperplanes, with m varying from n + 1 up to 2n + 2.

In order to compute the optimal outer-bounding parallelotope, it is necessary
to check whether the corresponding hyperplanes are tangent to 4/ for each strip. In
fact, if both the bounding hyperplanes are not tangent to ¥, then the strip does not
provide any new information and therefore can be discarded. In this case, the
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problem is trivially solved since V= 7, is the intersection of the remaining » strips.
Conversely, if for a given strip only one hyperplane is not tangent to 7, then the
strip must be ‘tightened’ by replacing the non-tangent hyperplane by a new parallel
tangent hyperplane. Iterating this tightening procedure for all the n + 1 strips leads
to the following description of %/

(10.10)

s

li:I
¢

where §; are defined as in Eq. (10.7) and all the strips are tight, i.e., all the
hyperplanes of,07,i=1,...,n+ 1 defined as in Eq. (10.8) are tangent to .
Notice that the result of the tightening procedure is independent of the order
according to which the strips are tightened. Implementation aspects will be dis-
cussed in the next section.

The next lemma provides a parameterization of a generic strip outer-bounding
a polytope described by the intersection of tight strips.

Lemma. Let ‘V:A{m}’:*,l S;bandlet S, j=1,...,n+1,be tight with respect
to V. Then any strip §; outer-bounding ¥can be expressed as

S;={0:p®-c|<1} (10.11)

where p; and ¢ are given by

n+l n+l

p;= Zaypj, ¢, = Zaijc/,
J=1 j=1

with
n+l ( 10. 12)
Zlai/.[ <.
o

In order to find the minimal-volume parallelotope, define, forj=1,..., n+ 1, the

n + 1 matrices and vectors
Pji[pl”"’p/'l’p/ol """ lel]'GR”'”
Cji[cl""’cf‘l’cjﬂ""’cml]ER” (1013)

The result of this section can be stated in the following theorem.
TueoreM. The minimal-volume parallelotope P(7,0°) outer-bounding

V=1 S, is given by

T=(Py", o =Pyt
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where

Proor. According to the Lemma, any parallelotope containing % can be
expressed as the intersection of » strips given by Eq. (10.11). Therefore, it is clear
from Eq. (10.9) that the problem of finding the minimum volume parallelotope
outer-bounding %’amounts to the following mathematical programming problem

n+l

n+l
maxy | det z a;ps - - . ,z a,.p;i|| (10.14)
=1

. =1
subject to the constraints of Eq. (10.12). In fact, the coefficients {a;;} for which the
maximum is attained in Eq. (10.14) provide the parametrization of the optimal
parallelotope. Exploiting the linear dependence of the determinant on the coeffi-
cients ay;, Eq. (10.14) can be rewritten as

]

n+1 n+1 n+l
max z a;;max det|p, Zaszj, R Z a,.p; .L’ (10.15)
y Jj=1 Dy J=1 j=1

which, taking into account the constraints (12) on the coefficients a;;, reduces to
n+1 ] ]
max; ¢ max det P Zazlpk, RN Z a,.b; } .

k=1

Dast ke, k=1

n+l

(10.16)

Notice that the constraint & #j in Eq. (10.16) allows one to rule out the possibility
that det[-] becomes null. Repeating the same argument for the other rows of the
matrix in Eq. (10.14), one finds out that the optimal parallelotope is determined by
the matrix 7 with maximal determinant. Hence the theorem is proved. ]

Remark 10.1. The preceding theorem implies that the minimal-volume paral-
lelotope is given by the intersection of n out of the n + | strips defining 7. Moreover,
as can be easily checked by the proof, the result can be generalized to the case when
1/is given by the intersection of an arbitrary number N > n of tight strips.

10.4. RECURSIVE UNCERTAINTY SET ESTIMATION

This section presents a recursive algorithm for outer-bounding the parameter
set via parallelotopes. The input of the algorithm at time £ + 1 is the estimate 7, and
the strip X(k + 1) representing the &£ + 1-th measurement.

In order to apply the Theorem proved in the preceding section, the tightening
procedure must be carried out for the n + 1 strips defining % Therefore, for each
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strip, one must check if the supporting hyperplanes are tangent to 7/, i.e., if they
intersect the parallelotope defined by the remaining # strips. Let us now illustrate
this tightening procedure by considering the strip £(k + 1). In this case, one has to
check if the hyperplanes

={0:9'(k)0 — ()} = r(k)
"= {0 ¢'(k)0 — y(k)} = —r(k) (10.17)

intersect the parallelotope 2= P(T(k),0°(k)). (Explicit dependence of ¢, y, ». ©, and
so forth, on £ will be dropped hereafter to simplify notation).
Since from Eq. (10.5)

1

maxg_p {00 -y} = ¢'0°— y+ Y 9's] =

i=]

(10.18)
ming_, {40~ y} = 06—y~ 3 [0t ) =
i=1
the hyperplane c* (c7) intersects Pif
rer@E <-n. (10.19)
Thus, if one of the two conditions of Eq. (10.19) does not hold. the strip
= {01100y <7}
must be modified. The tightened strip, denoted by S, 1, will be given by
S =40 1Py 0 — il <15 (10.20)
where
Do =20/(r—1), cpp=y+(r+r/2 (10.21)
and

r=min(rr"), r=max(—rr).

Clearly, if both conditions of Eq. (10.19) hold, then S,.,=ZX. Notice that the
procedure outlined above must be applied also to each of the # strips defining #,.
This is due to the fact that 7} is a polytope not necessarily preserving the parallelo-
topic structure of ;.

An algorithm for recursive parameter uncertainty estimation is based on the
results presented before.



APPROXIMATION OF UNCERTAINTY SETS 167

Step ! Compute a description of ¥}, = B, N Z(k + 1) in terms of n + 1 tight-
ened strips §; like in Eq. (10.10), following the procedure outlined
above.

Step2 Form the n + 1 matrices P/ and vectors ¢/ defined in Eq. (10.13).

Step3 Solve

j =arg{ max {|det P/|}}.

J=l.,n+l
Step4 Set

n+l
Py = n S;

i=1,i#j"
and compute

T+ 1) =P, 6k + 1) =@y o

ReMaRk 2. The present version of the algorithm, requiring several matrix
inversions, is computational heavy. However, it can be shown that exploiting the
close relationships among the matrices P’/ defined in Eq. (10.13), Steps 1-3 can be
carried out without any matrix inversion or determinant computation.!'”) Therefore,
only the matrix inversion of Step 4 is required.

ReMARK 3. As already noticed, if both the supporting hyperplanes of the i-th
strip are nontangent to ?, then the other strips are tight and j*=i. It can be also
shown that if only one hyperplane of the i-th strip is nontangent, then =1,
independently of the fact that the other strips are tight or not.'”) This has an
important implication for the parallelotope orientation. In fact, if the diameter of
P, is smaller than the width of the strip Z(k + 1) associated to the (£ + 1) measure-
ment, then, necessarily, at least one hyperplane of Z(k + 1) does not intersect ;. In
this case ®, and 7, will share the same orientation.

ReMARK 4. A simplified version of the recursive algorithm can be employed
for deriving orthotopic approximations of the parameter uncertainty set. For this
problem, only Step 1 of the algorithm needs be performed. In fact, orientations of
the hyperplanes bounding the approximating parallelotope are not free in this case;
they are fixed by the orthotopic shape assumption.

10.5. CONCLUDING REMARKS

In this chapter an algorithm has been proposed for recursive estimation of the
parameter uncertainty set in a linear regression model. A hard-bound setting of the
underlying identification problem has been considered. The procedure provides an
outer approximation of the uncertainty set alternative to commonly used ellipsoidal
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bounds. Several ramifications of the problem solved in this chapter may be the
object of further investigation. Numerical efficiency and robustness of different
techniques for implementing the algorithm; convergence of the algorithm to the
minimum-volume parallelotope bounding the true parameter uncertainty set; per-
formance evaluation of the parallelotopic approximation as compared to the ellip-
soid-based techniques; mapping different kinds of prior knowledge on
measurement noise and unmodelled dynamics into initial uncertainty estimates
represent but some of the interesting and widely open problems deserving attention
in future investigation.
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Worst-Case /1 Identification

M. Milanese

ABSTRACT

In this chapter recent results on nonparametric and mixed parametric-nonparametric /;
identification are reviewed. These results mainly concern the evaluation of the
identification errors, the design of experiment, the selection of the model structure,
the construction of optimal and almost optimal algorithms, and the convergence
properties of the identification algorithms.

11.1. INTRODUCTION

Most of the literature on set membership identification developed in the 70s
and 80s focused on parametric approaches of the problem.!™ A review of the
literature can also be found in Chapter 2 of this volume. In the parametric
approaches, the structure of the model to be estimated is supposed to be given,
typically a difference or differential equation of fixed order. The aim is to estimate
the vector of unknown parameters to represent the equation coefficients.

In the 90s, much attention has been devoted to nonparametric approaches. The
problem is to estimate the impulse response or the transfer function of time
invariant, linear, possibly infinite dimensional systems.®) In this way, weaker
assumptions on the system to be identified are used, rather than with a parametric
approach. However, as expected, very large estimation errors are obtained gener-
ally. To overcome these problems, mixed parametric-nonparametric approaches

M. MILANESE e Dipartimento di Automatica e Informatica, Politecnico di Torino, 10129 Torino, Italy.

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York,
1996.
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have been investigated recently, where it is considered that the system to be
identified can be described by a parametric model perturbed by a nonparametric
error system, which represents the unmodeled dynamics.®™

Most of literature on these topics can be classified, according to the norm
measuring the estimation errors, in two main categories, namely H,. and /; identi-
fication.

The aim of this chapter is to review recent results on nonparametric and mixed
parametric-nonparametric / identification of discrete time invariant linear systems.
The motivation for studying worst-case /; identification is twofold. First, the model
minimizing the /; norm of the impulse response error gives the minimal absolute
prediction error. Second, /; identification provides the information needed to apply
I, to modern robust control design techniques.!'”)

11.2. PROBLEM FORMULATION

The class of plants considered in this chapter consists of causal, single-input
single-output, linear, time-invariant, and discrete-time systems. This class is iden-
tified with the space H of one-sided, real sequences 4 = {hy, h,, . . . }, representing
the impulse response of the plants. The aim is to estimate the first # + 1 samples of
h, that is to estimate A" = T"h, where 7" is the truncation operator:

W=Th=lhy,....hJ (11.1)

Suppose that two kinds of information may be available. The first one, often
referred to as a priori information is expressed by assuming that # € K, where K is
a subset of H. From a modeling point of view, K is used to restrict the class of
models, which the system to be identified is supposed belonging to. An important
distinction among parametric and nonparametric identification methods can be
made according to the dimensionality of the set K. This classification has particular
relevance in connection with the achievable levels of the identification errors and
the “informational complexity” of the identification procedure, as discussed in
Section 11.3.

Nonparametric identification methods are characterized by large dimension-
ality of the set K. Typical sets considered in the nonparametric approaches are:

Kg=1{he H: T )|h| <oof:
set of BIBO stable systems.
Kp={heH:|h) <Lp7,p>1,j=r, ..., 0}

set of exponentially stable systems with a given degree of stability, if #» = 0. Unless
specified otherwise, r = 0 is assumed.
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Kp={heH: |hj|=0,j=r,...,00}:

set of FIR systems of order »

Parametric identification methods assume as K the set of the impulse responses
h(p) of a set of parametric models M p) depending on a (possibly) low dimensional
parameter vector p. In order to take explicitly into account that real systems cannot
be exactly represented by low order models, a mixed parametric-nonparametric
approach can be taken. This chapter considers a priori information of the type:

Ky ={h e H h;= Kp) + It,
pelcR, H<Lp7,p>1,j=0,1,...,00}:

set of mixed parametric-nonparametric models, with the parametric part M(p)
depending on an / dimensional parameter vector p and with exponentially stable
unmodeled dynamics.

Only classes of models M{p) linear in the parameters are considered, having
the impulse response samples linear functions of p:

!
Mo _ S 11.2
W(p)=2 mp;=(Mp), j=0,1,... (11.2)

=1

There are several ways of representing models linear in the parameters, e.g.,
the FIR, Laguerre, and Kautz models. Alternatively, models nonlinear in the
parameters, such as ARX models, may be linearized.*”)

The second kind of information is usually provided by a finite number of
measurements performed during some experiments on the system to be identified.
Consider experimental conditions consisting in the knowledge of the first N + 1
components of m output sequences y” related to m one-sided input sequences u®
by

J
W= bl +e?, j=0,1,...,N, i=1,2,....m (11.3)
k=0

Assume zero initial condition and |[u}|,, < 1, V i. The disturbance sequences
e are unknown but I bounded, i.e.,

M<we j=0,1,...,N, i=1,2,....m (11.4)
J J J

where w; are given positive weights. For the sake of simplicity, consider w; = 1, Vj,
though several of reported results extend to the general case.
Equation (11.3) can be rewritten in a more compact form as

y=Fh+e (11.5)
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where
1 1
y:[yz)),.. y(,v) ...,y(()m),...,y}(/")]
e=[eh, .. el e,y

and F is the linear operator

U,y

- UZTN
F= (11.6)

v,

where U; is the lower triangular Toeplitz matrix formed by input

ug) 0 w0
Q] (@)
u M e O
U= ~‘ f) . . (11.7)
u%) MA(AI/L ug‘)

An identification algorlthm is a (possibly nonlinear) operator ¢: ¥ — R™!
providing an estimate b = d(y) to T"h, using the corrupted information y.

Look for estimates minimizing the /, error. The interest in using this measure
of the identification error is twofold. First, interesting techniques exist for robust
control design techniques in the /; setting.!% Second, a model minimizing the /,
impulse response error gives minimal absolute/:\ prediction error. If )7 = Yo hgu; g
is the output ¢ of the “true” plant A° and » ¥; = Zleo hx w4 is the predicted output using
an estimate 4* of A°, the following tight bound holds:"'"

b0 - 1<l =l - el Vs Vo (11.8)

Since 4° is not known, a worst case approach is taken as usual in the set
membership identification, by defining the identification error as

E(¢.,e) =sup sup [|[T"h — d(Y)Il, (11.9)
Yy heFSs,

where FSS, is the feasible system set, i.e., the set of plants consistent with corrupted
information y,
J
FSS,={he K: "= ha|<e j=0,1,... N, i=1,2,...,m}(11.10)
k=0
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It is clear from Eq. (11.10) that if no a priori information is given (K = H),
measurements give no information on h; for k¥ > N. In most cases a priori
information is used to give information on the behavior of the impulse response
just for k£ > N, while information for k¥ < N can be derived directly from the
measurements. In order to make use of a priori information only when necessary,
only sets K giving limitations on /4, for k > N only may be considered. 4 priori
information of this type, will be denoted as residual. For example, a priori
information provided by Ky or Kg, with k = N, is residual.

Assuming that the reader is familiar with the main concepts and results in set
membership estimation theory, as briefly reported in Chapter 2 of this book, the
following few other concepts are needed.

The minimal worst case error is called radius of information R(g)

R(e) = inf E(.¢) (11.11)
[}

Useful bounds on R(g) are often found in terms of the diameter of information
D(g), expressed as

D(e)=2 sup ||IT"Al|,. (11.12)
heF'SS,

In fact, if K is balanced (i.e., symmetric with respect the origin) and convex,
then!?

0.5D(g) < R(€) < D(e) (11.13)

Note the sets K considered above are balanced and convex.

The overall estimation process is indicated as identification procedure and is
defined by specifying K, u, ¢, €, y, N, m, n. For example, two identification
procedures may only differ by a priori assumptions on K or because different inputs
are used. To put in evidence the dependence of E, R and D on N, m and n, the notation
ENm RN and DY™ are used when necessary.

An identification procedure is called convergent if

lim lim E($,e)=0. (11.14)

g0 N

Note that in the literature there is not yet a unified terminology for convergence
concepts. Some authors use the terms robust convergence or uniform convergence
for the above definition. Other authors use the term robust convergence for weaker
or stronger convergence concepts. For the sake of simplicity, only results related to
the above definition are reported.

Results related to the evaluation of the identification errors, the design of
experiment, the selection of the model structure, the construction of optimal and
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almost optimal algorithms, and the convergence properties of identification algo-
rithms are reviewed.

11.3. IDENTIFICATION ERRORS AND MODEL STRUCTURE
SELECTION

Most of the results are based on the analysis of the diameter of information,
which is easier to evaluate than the radius of information, and is related to the radius
through by Eq. (11.13). Moreover, the diameter of information provides a tight
bound of the identification errors of almost optimal algorithms, such as interpola-
tory or projection algorithms (see next section).

In view of Eq. (11.8) the case n = o is of particular interest. Most papers study
DY¥™(g). This diameter is bounded below by DY"(0), representing the inherent
uncertainty, due to the limited number of measurements used for the identification.
References 13 and 14 show that D¥''(0)/2 is related to the Kolmo gorov and Gelfand
N-widths of set K, well known concepts in approximation theory.!!>) Reference 14
shows that if K = Ky

2L DNl
— (0), Vu.
ARCE
This bound is tight in the sense that equality holds for some u, e.g., the unit

impulse sequence.
From Eq. (11.12) it follows that

(11.15)

© (11.16)
2sup D bl <DY(e) <DN"(e) + 2sup D Iyl

heK =N hek Yy

where the right inequality is an equality if K = K; or K = K. In particular, if
K = KE

DY) = DY) + N—I(L . (11.17)

From Eq. (11.16), it is clear that if no a priori information is assumed or if K
= K, the identification error E"™ (¢,¢) is not finite whatever algorithm ¢ is used.

Egs. (11.16) and (11.17) allow evaluation or bounding of D¥"(¢) in terms of
DY"() and the assumed a priori information. Now, some results related to
DY (¢) are reported.

In the case of residual a priori information, a simple lower bound has been
derived for m = 1:18!17)

2Ne<Dy'(e), V. (11.18)
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This bound is tight since, if u is the unit impulse sequence, then!®)
2Ne = DY'\(g) (11.19)

It follows that in order to go below 2Nk, it is necessary to have stronger
information than the residual one (which does not assume any a priori information
onh, k=0,1,...,N)or to use more than one input sequence (m > 1).

If K = K, the following lower and upper bounds on D¥'(¢) have been derived
- (18)
m:

k
max min{e Y. |v,_|,Lp™} <D}'(e)

0<k<N-1 o
N-1 k
<> min{2e D v, 1, 2Lp™} (11.20)
k=0 Jj=0
where vy, vy, . . ., vy are the elements of the first column of the matrix V'=U" !

Even if only residual a priori information is assumed, DY™(¢) can be reduced
down to 2¢, using suitable inputs and a sufficiently large number of experiments
m. 1t has been shown'® that if K = H and u is the sequence of all binary N-tuples
of +1 (Galois sequence), then

DY (6) = 2 (11.21)

In the same references it is also shown that if m < 2¥!, the diameter is strictly
greater than 2¢. Note that a diameter lower than 2¢ can be achieved only under very
strong (and implausible) a priori assumptions. Provided the system has |/| > € for
some k < N, then DY™(g) > 2¢.19

In the case of residual a priori information, a lower bound, function of m, has
been obtained:!”)

2(N+1)
1 +V2(N + DIn2m(N + DN +2)]

(11.22)

e< D%’m(s), Yu

This bound implies that the number of measurements needed to obtain a
diameter not exceeding a given threshold grows exponentially with the number
impulse response samples to be estimated. Denoting by m, the minimum number
of experiments such that DY™(g) < 2ce, ¢ > 1, gives!!®:

2N
m2 ] (11.23)

N+ DN + 2)22;] [N Z 1
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where v, = f(N + 1)(c - 1)/20—| and| |indicates the roundup function.

Similar lower bounds have been derived®*2") for the case m = 1. In particular,
denoting by N, the minimum number of measurements such that D! (¢) < 2cg, ¢
> 1, the following asymptotically tight lower bound has been derived for the case
K =Kpand n=r?"

N, 2200 g 2(nfc — 1) (11.24)
where

1- - 1 1
g(a):1+( 2a)log2( 2(1)+( ;a)logz( ;(x)'

Equations (11.23) and (11.24) indicate that nonparametric /; identification
suffers from large “informational complexity,” i.e., the number of measurements
needed to assure a given level of identification error grows exponentially with the
number of impulse response samples to be estimated. This fact has been sometimes
interpreted as a confirmation of the common belief that worst case estimation is too
pessimistic. However, one reason for this exponential growth is that the repre-
sentation of systems through impulse response samples is not “parsimonious,”
while it is well known that the use of parsimonious models is a key point for
obtaining reliable identification results. Mixed parametric and nonparametric mod-
els have been investigated® in order to overcome such complexity problems. If K
= K}y, it is shown that:

Dyt =2 sup [”*(p)il +&* (11.25)
PEFPS,
where
z Lp / £
€ =( 1)andFPSO:{peR:||FMNp||OO§8+8}.
o ]
and M), is the matrix formed by the first N rows of the seminfinite matrix M in Eq.
(11.2).
The quantity
D=2 sup |KMp)l, (11.26)
peFPS“

is the diameter of information for the parametric class of models M(p), and a method
for its computation can be found in the above reference. Suppose the parametric
part M(p) is refined by increasing the dimension /. The value of €% due to
unmodeled dynamics, decreases while D* increases, becoming unbounded for / >
N. Thus the total diameter is minimal for some value [* < N. Typically, if parsimo-
nious classes of models are used, such as linearized ARX models, /* may be very
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low, considerably reducing the dimensionality of the problem. The results confirm
that the informational complexity may be largely reduced with respect to the
nonparametric approach.’

The above considerations suggest also that Eq. (11.25) can be used to compare
the “goodness” of different classes of models. In particular, it can be used for the
selection of the order the parametric part. The diameter of information represents
a measure of the “predictive ability” of the considered class of models with respect
to absolute error, analogous to statistical criteria such as FPE, AIC, and so forth,
which give a measure of the predictive ability with respect to mean value er-
ror B9ILI3)

The identification error of the least squares algorithm ¢S, perhaps the most
popular and widely used algorithm in system identification, has been also investi-
gated. We report here some results related to the case m = 1, K = K. The results
for K = K, with / < N, can be obtained as particular cases, while ¢S is not a
meaningful algorithm for K = K or K = K.

If m = 1 and K = K, the least squares algorithm is the linear algorithm given
by:

055(y) = Ay = M (ML UTUM, ' MUy (11.27)

provided that the indicated inverse exist. M,, is the matrix formed with the first n
rows of the semiinfinite matrix M in Eq. (11.2).
The following expression of its identification error is obtained:®-*?

Lp (11.28)

ENT (9 ,e) = gl|4]| +
p—1

where [|4]| = supyy__ I4¥Il;.
The computation of ||4|| can be performed by means of convex optimization

programs, but it may become cumbersome for large N. In such a case, standard
lower and upper bound of norms can be used,®>** leading to

n N n N

min{max Y |a,}, max) " |a,]} <||4]| < n min{max " |a,|, max Y la,} (11.29)
J . i : J ; i .
! J i J

Note that error (11.28) can be arbitrarily larger than the radius of informa-
tion.*?

11.4. OPTIMAL AND ALMOST-OPTIMAL ALGORITHMS

Optimal algorithms, i.e., algorithms whose error equals the radius of informa-
tion, can be found as central algorithms.122*) A central algorithm is obtained by
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finding the Chebyshev center of the set FSS} = T"FSS,. This set is a polytope and
its center may be derived by finding its vertices [#V, . . ., /)] and computing the
point of minimum distance from all the vertices, i.e., solving the problem:

min max ||A" — AP, = rad(FSS") (11.30)
HeR' k=1..v !

Optimization Eq. (11.30) can be solved by linear programming.®> However,
in nonparametric approaches, the complexity of the computation of the vertices of
F'SS}, increases combinatorically with .29 Just for n = 20 + 30, the computation
complexity becomes quite large.

Complexity can be overcome by using mixed parametric-nonparametric
classes of models. If K = K4, Eq. (11.30) can be reduced to the computation of the
vertices of an /-dimensional polytope.”’ Recall that if “parsimonious” models are
used, the value of / may be quite small. Moreover, the number of vertices also is
typically low. In fact, if linearized ARX models are used for the parametric part
M(p), Monte Carlo simulations have shown that the mean number of vertices tends
to be constant as N increases. In the example reported in Ref. 27, the mean number
of vertices is 50 and 150, for / =4 and / = 5, respectively.

Almost optimal algorithms (i.e., optimal within a factor of 2), can be con-

structed more easily.
An interpolatory algorithm ¢/(y) is defined as

¢'(y)=T"h,, where h, e FSS, (11.31)

Interpolatory algorithms are almost optimal, since:1?

E(dLe) < D(g) < 2R(e) (11.32)

Interpolatory algorithms require finding a feasible point of the polytope
FSS}. This can be obtained, for example, through the solution of the linear program:

h;: arg min A" (11.33)
H'eFSS]

where L is any given linear functional.

In this way, however, the feasible point is obtained on the edges of FSSY, while
more “centered” points should be desirable, as suggested by optimality of central
algorithms. For example, the center of the maximal volume ball contained in
FSS} can be looked for. Reference 28 shows how to solve this problem by means
of one linear program.

An alternative solution is to use the projection algorithm ¢¥, given by:
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A A .
WP(y)=h", h; =arg ’11n1;11 Ity — Fh. (11.34)
helK

If n > N, Eq. (11.34) has to be solved by substituting N for n. Note that the
solution of Eq. (11.34) can be obtained by means of linear programming.?® The
projection algorithm is an almost optimal algorithm®® which does not require the
knowledge of €. Clearly, this is an appreciable property for all problems where it
is not possible or easy to have reliable information on the value of €.

Generally, the least squares algorithm ¢ is neither optimal nor almost optimal
in /; identification.®® However, ¢ is optimal if FIR models are considered (K =
Kp), and impulse or step sequences are used as inputs.? This result easily extends
to the case K = K.

11.5. CONVERGENCE PROPERTIES

Most of the convergence results are based on the analysis of the diameter of
information. As follows from Eq. (11.13), if lim,_,olimy_,.D(¢) = 0, an identifica-
tion procedure using optimal or almost-optimal algorithms is convergent. On the
contrary, if the diameter of information is not convergent, no identification proce-
dure can be convergent, whatever algorithm is used. In such a case, the only way
to obtain a convergent procedure is to modify the a priori information or the
experimental conditions.

The case of n = <o has been investigated mostly. In such a case, no convergent
identification procedure can be found, unless some suitable a priori information is
assumed. In fact, from Eq. (11.16) it follows that convergent identification proce-
dures exist only if

@0

lim sup > |bJ=0. (11.35)
N—ow heK k=N

Equation (11.35) does not hold for K, while it holds true for K and K, and
for K, if M(p) is stable Vp € FPS,,.

Reference 31 shows that if K = K, the input has length N> n +2™*!, containing
all possible Galois sequences, and the projection algorithm is used, then the
obtained identification procedure is convergent. Similar results have been derived
by using general results on the asymptotic behaviour of the diameter of informa-
tion.®? If K = K, any interpolatory algorithm using a nonzero input sequence is
convergent.('®)

Despite the previous results, it may still be possible in the absence of a priori
information to estimate an arbitrarily large number of impulse response samples as
accurately as desired. From the results of Refs. 16 and 17, it follows thatif n =N



180 M. MILANESE

and K = H, Eq. (11.21) holds. This implies that using m = 2"~ experiments, Galois
sequences as inputs and an interpolatory algorithm, the resulting identification
procedure gives an error in estimating N impulse response samples, which tends to
zero as € tends to zero without using any a priori information.

Convergence properties of the least squares algorithm, when K = K- or K =
Ky, have been investigated.*?) It is shown that EN(¢*° £) may be unbounded as
N — . However, ¢*5 is convergent if the system to be identified is stable, u and e
are quasi-stationary, uncorrelated, and u is persistently exciting. These assumptions
are the deterministic analogy of the typical conditions assuring consistency of the
least squares estimates in a stochastic setting.
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Recursive Robust Minimax
Estimation

E. Walter and H. Piet-Lahanier

ABSTRACT

An important problem arising when one wants to estimate the parameters of a model
in a bounded-error context is the specification of reliable bounds for this error. In
early phases of development, when no prior information is available, one may wish
to know the minimum upper bound for the amplitude of the error such that the
feasible parameter set is not empty. This corresponds to using a minimax estimator.
For models linear in their parameters, we describe a method that takes advantage
of a reparametrization in order to recursively obtain the minimax estimates and
associated bounds for the error. It also provides the set of parameters compatible
with any upper bound of the error. This procedure is extended to output-error
models, which are nonlinear in their parameters. Its robustness to outliers is
discussed and a technique is described to detect and discard them.

12.1. INTRODUCTION

The problem of estimating the parameters of a model together with their
uncertainty in the presence of noise has been widely discussed. The approach

E. WALTER o Laboratoire des Signaux et Systémes, CNRS Ecole Supérieure d’Electricité, 91192
Gif-sur-Yvette Cedex, France. H. PIET-LAHANIER e Direction des Etudes de Synthése/SM Office
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1996.
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known as set membership estimation assumes that a nonstatistical description of
the noise, under the form of bounds on its realizations, is available for each
measurement.! Set membership estimation aims at characterizing the region in the
parameter space that contains all parameter vaiues consistent with the data, model
structure, and bounds on the acceptable error between the data and model output.
Here this set will be referred to as the (posterior) feasible parameter set S. Several
techniques have been developed to either determine S exactly or characterize a
simple-shaped set containing it. For models linear in their parameters, S, if it exists,
is a convex polyhedron which, when bounded, i.e. when a polytope, can be
approximated by ellipsoids,*™ or orthotopes® containing it. This polyhedron can
also be described exactly by enumerating its vertices, unbounded edges and
supporting hyperplanes. Broman and Shensa,® and Mo and Norton'”) present
methods that are limited to the study of bounded polyhedra, whereas the technique
Walter and Piet-Lahanier® developed is not. For models nonlinear in their parame-
ters, various methods exist for determining an approximation of S. Linear tech-
niques have been extended to the nonlinear case using multiple linearization of the
model.”) For specific model structures, such as output-error models with a deter-
ministic recurrence equation, it is possible to obtain sets of linear inequalities that
must be satisfied for the parameters to belong to S.!%!") Signomial programming
has also been suggested to compute an orthotope containing S.'2 Random search
methods have been designed either to compute points belonging to SU3 or deter-
mine points on its boundary.!'¥

In the bounded-error context, each new measurement is associated with two
inequalities that the parameter vector must satisfy to belong to S. These inequalities
are functions of the bounds assumed for the acceptable error. Optimistic bounds
may lead to the conclusion that no parameter vector is consistent with all data and
that S is empty, whereas pessimistic bounds inflate the set and, therefore, overes-
timate the uncertainty on the parameters. In practice, the bounds on the error are
usually defined by taking into account the user’s knowledge of the system or the
technical specifications the manufacturers provide for the measuring devices.
However, during the early phases of the study of a new system, one may be at a
loss to define reliable bounds on the errors. A possible way to partly overcome this
difficulty consists in describing S as a function of the bound on the error. This
involves computing the minimum value of the bound that results in a non-empty S.

This chapter presents a method to determine such a bound for models linear
in their parameters. An algorithm is described that recursively updates the bound
whenever a new measurement is taken into account. As a by-product, it provides a
description of S for any bound larger than the minimum value. An extension of this
technique to the study of output-error models is considered. The robustness of the
method to outliers in the data is discussed and a technique is described to detect
and discard them.
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12.2. PROBLEM STATEMENT

The error g(k, 0) is defined as
e(k, 8) = y(k) — "), (12.1)

where y(k), k=1,...,N, are the data, 8 is the p-dimensional vector of the parameters
to be estimated and ¢(k) is the kth regressor. In the bounded-error context, the error
should satisfy

lek, 0)] <e__ (k). (12.2)

max(

To be consistent with the hypotheses,  must then belong to the solution set S of
the following set of inequalities

l6T(k)0 - y(k) | <e

max

®),k=1,...,N. (12.3)

Inmost papers,&m,{k) is assumed to be known a priori. However, it may happen
that the available information is too scarce to allow one to define reliable bounds
€mak). This chapter considers such a situation and assumes that all €,,,{k) are
equal to &m,, Which is unknown. Provided that €, is large enough, any 0 can be
considered as acceptable. One would then like

. . . A . .
(i) to estimate the minimum value €,, 0f £, associated with a non-empty
S; and R
(ii) to obtain a description of all sets S associated with €, > Emax.

The set S obtained as the solution of problem (i) is a minimax estimate of 0,
given by

A A
S,..= {0 | 8= Arg min max | 6"(k)8 - (k)| }. (12.4)
0 k

Laplace'® seems to have introduced this minimax (L) estimator and later
Fourier'® and Cauchy!” developed it. A very interesting account of the historical
development of L, estimation can be found in Farebrother.!!® It is well known that
the criterion associated with minimax estimation is not differentiable everywhere,
especially in aneighborhood of the optimum, so that specific algorithms are needed.
An important special case is polynomial approximation, where the regressor takes
the form

ohy=[1,t,2,...,t27 1 k=1,...,N. (12.5)

For this problem, the exchange algorithm of Remes!'® is especially appealing,
because of its extreme simplicity. It would be tempting to transpose it to the more
general problem of linear minimax estimation. This may lead to erroneous results,
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as illustrated in,*” because the regressor does not have the same properties as the
ones defined by Eq. (12.5).

The minimax estimation problem of Eq. (12.4) can be transformed into a
differentiable problem under constraints'***? by introducing an additional variable
x and determining 0 such that

A
0 = Arg min x, (12.6)
]
subject to the constraints
x—0' (k)0 +y(k)20,k=1,...,N, (12.7a)
x+0' (0 - pk)20,k=1,...,N. (12.7b)

ExampLE 1: Suppose that four measurements have been performed on a
system and that the results are those given in Table 12.1. These data are to be
described by

y(k) =0 d(k) + e(k). (12.8)

In Fig. 12.1, the constraints of types Egs. (12.7a) and (12.7b) associated with the
data of Table 12.1 are drawn in the (x, 6) plane. The shaded area corresponds to the
set of all pairs (x, 9)\ consistent w1th all constraints. The minimax estimate of 8 can
be read directly as 8 = 0.75 and smax 0.75.

Remarks:  The set of all (x, 6) consistent with all constraints is a polyhedral
cone, i.e., an unbounded polyhedron.

To obtain the feasible parameter set associated with any given value of €,,,,
one only has to add the inequality x > €, to Egs. (12.7(a) and (b)). For instance,
if gna = 1, one immediately obtains 6 e [0.5, 1]. The exact description of the
fea51ble polytope for (x,0) thus contains the exact description of S for any
€max = smax as a by-product.

The problem defined by egs. (12.6) and (12.7(a) and (b)) can be viewed as a
linear programming problem and thus could be solved by classical techniques such
as the simplex® or projection®? algorithms. In their basic form, these algorithms

TABLE 12.1. Data Set for Example 1

1 1.5
2 15

AW -
W
8]
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FIGURE 12.1. Geometrical inter-
pretation of Overton’s reformulation.

are not recursive and cannot be used for real-time minimax estimation, so that
recursive variants would have to be used.'*>?® They would not, however, provide
a description of the set of all solutions when this set is not a singleton, a situation
that may be encountered even for the minimax estimate. This is why we suggest
using a non-pivoting method® derived from the double-description method of
Motzkin et al.?” The next paragraph presents this algorithm in the context of
recursive minimax estimation.

12.3. EXACT CONE UPDATING METHOD

The parameter vector 8 and x must satisfy Egs. (12.6) and (12.7(a) and (b)). A
classical approach®®” to solve sets of inhomogeneous inequalities such as Egs.
(12.7a) and (12.7b) is to convert them into sets of homogeneous inequalities by
introducing a new variable v*. This modification amounts to transforming a convex
polyhedron in a (p + 1)-dimensional space into a polyhedral cone in a (p +
2)-dimensional space

X'~ 0" (k) 0" + y(kW* 2 0,k=1,...,N, (12.9a)

X"+ oT(k) 0" — (k" 2 0,k=1,... N. (12.9b)
where v > 0. This set of inequalities can be written in matrix form as

Aw >0, (12.10)



188 E. WALTER AND H. PIET-LAHANIER

where A is a (2N, p + 2) matrix and w = (", 0T, v")'. Here and in what follows,
vector inequalities are to be understood componentwise. The solution set is then
the intersection of 2V half-spaces of the form a] w > 0, where a] is the ith row of
the matrix A. The hyperplane a] w = 0 associated with each half-space is a support-
ing hyperplane of the set if it is associated with a non-redundant constraint. Each
d-face of the set is defined as the intersection of (p + 2 —d) supporting hyperplanes.
Edges are 1-faces and vertices are 0O-faces. The solution set of Eq. (12.10) is a
polyhedral cone which can be fully described by enumerating its edges and
supporting hyperplanes. When the set of all w solutions of Eq. (12.10) has been
determined, the solution set of Egs. (12.7(a) and (b)) is obtained as a set of vertices
and edges. The vertices are obtained by

xzwl/wmz:xh/vﬁ, (12.11a)

0= Wi /W, =0V, k=1, p, (12.11b)

for any wy,,, > 0.

Let ajT be the jth row of A, C; be the polyhedral cone associated with the first
J inequalities of Eq. (12.10), and S; be a matrix the columns of which are the
direction vectors of the edges of C;. The algorithm is as follows:

Initialization: The method requires that

w>0. (12.12)

From Eq. (12.11) and the meaning of x and V", this corresponds to 8 > 0. For the
presentation of the algorithm, we shall therefore assume that 8 > 0, but we shall see
later how this assumption can be avoided.

Equation (12.12) defines Cj, as the non-negative orthant. A description of this
cone consists of the matrix S, of the direction vectors of its edges, and for each
edge of the list of all hyperplanes to which it belongs and the list of all other edges
of the cone which are adjacent to it. In Cy, the ith edge admits as supporting
hyperplanes the (p + 1) hyperplanes of the form w; = 0, # i, and is adjacent with
any of the remaining (p + 1) edges of C,.

Iteration: Suppose that the first (j — 1) inequalities have been processed so
that S, and the associated lists of supporting hyperplanes and adjacent edges are
available.

The new inequality 3ij > 0 defines a hyperplane H, = {wlaij =0} and two
half-spaces H; = {w|aij 20} and H; = {w|aij <0}. The solution set of the j
inequalities is the intersection of C;_; and Hj (in a (p + 2)-dimensional space). If
z' =4S ), the sign of the ith component of z indicates whether or not the ith edge
of C;_; belongs to Hj. Three patterns have to be considered:
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1. 2<0. No edge of C;_; belongs to the intersection. The solution set for the
homogeneous system of Eq. (12.10) reduces to the singleton {0}. The
original system, Eq. (12.8), has no solution. This case should not take place
in the context of minimax estimation.

2. 220. C, isincluded within H;. No updating is necessary. The inequality
is redundant. Set C; = C;_; and introduce the next inequality.

3. The components of z are of different signs. H; separates the edges of C;_;.
The inequality is not redundant and the description of the cone must be
updated.

When Pattern 3 occurs, S; differs from S;_;. All columns of §;_, that correspond
to a non-negative component of z are kept. If any component of z is equal to zero,
the list of the supporting hyperplanes of the associated edge must be completed by
introducing H;. New edges must be determined, which are located on the faces of
C,-, intersected by H,. These faces are associated with two adjacent edges of C;_j,
one giving a positive component of z, denoted by s;, and the other one giving a
negative component of z, denoted by s . The new edge s/; is a linear combination
of these two edges and must belong to /. The suitable linear combination is then

(12.13)

The list of supporting hyperplanes associated with this new edge is determined by
keeping only the supporting hyperplanes common to s/ and s;, and by including
H;. When all new edges with their list of supporting hyperplanes have been
computed, the list of adjacent edges must be updated for all edges of C;. Two edges
are adjacent if and only if their lists of supporting hyperplanes have at least p
hyperplanes in common and no other edge admits these p hyperplanes as supporting
hyperplanes.

The polyhedral cone C; is then obtained in the form of its matrix of edges §;
and lists of adjacency and supporting hyperplanes.

Using Egs. (12.11(a) and (b)), vertices of the solution set of Eqs. (12.7(a) and
(b)) can be obtained. The solution of the problem defined by Eqs. (12.6) and (12.7(a)
and (b)) is determined by looking for the minimal value of x over the set of vertices
and finding the associated value(s) of 0.

RemaRrks: The initialization of the method requires that 6 > 0. If a lower
bound 0,,;, for 0 is known, 1t is possible to perform a transformation of the parameter
vector 0’ = 0 — 0,,;, so that 0 satisfies 8’ > 0. If no lower bound is available for 0,
the change of variable

0.=v-v'i=1...,p, (12.14)

where v; and v/ are both positive, allows the method to be used at the cost of
doubling the number of unknowns.
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The description obtained for the solution set of Eq. (12.8) contains as a
by-product the set S associated with any given value of &, > €,,. Obtaining S
only requires taking the additional constraint x 2 €,,, into account.

ExampLE2: Consider an ARX system described by

yk+ 1) ==ay(k) — aiy(k— 1) + biuk) + byu(k — 1) + ek + 1).  (12.15)

FIGURE 12.2. Evolution of the minimax estimates for Example 2 as a function of the number of
constraints taken into account.
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One hundred data points have been simulated according to Eq. (12.15), with
a}=1.2,a5 = 1.2 (so that the system is unstable), by =b;=1, p(0)=(1)=0,
u(k) = (1 + (-1)*Yy/2. Each g(k) was generated according to a uniform distribu-
tion in [-0.01, 0.01], so that the true value of g, i €ra = 0.01. The following
model was used to fit the data

0T (k+ 1)8 = —a,y(k) — ayy(k — 1) + bu(k) + byu(k — 1), (12.16)

. . . A A .
where 08 = (a), a5, by, b,)'. Fig. 12.2 illustrates the evolution of @ and &, with the
number of constraints taken into account.

12.4. EXTENSION TO OUTPUT-ERROR MODELS

The method described so far can only handle models linear in their parameters,
which is restrictive and is not in particular the case for output-error models. To
extend the approach to such models, we shall use the method proposed in Ref. 11,
which makes it possible to deduce affine inequalities from those defining the
feasible parameter set associated with an output-error model of the form

Vulks 0) == a;y,(k=j,8) + D bu(k—)), (12.17)
=l =1
with
k) =y,k 0)+ek0), k=1,...,N, (12.18)
where 8=(ay,...,a,,b1 ..., b,,b)T and where the initial conditions y,(k, 8)
(k=0,...,1-n,)are assumed to be known. One can write
y(k) = 0"(k)0 + &(k, 9), (12.19)

where g(k, 0) is the output error, assumed here to satisfy ] e(k, 0) | < €max- The first
n, terms of ¢(k) are unknown but bounded. This corresponds to an “errors-in-vari-
ables problem.”®® Each new observation y(k) yields a pair of piecewise-linear
bounds on O, because each change of sign of an autoregressive parameter
8;(j = 1. .., n,) changes the bound used to replace y,,(k — , 8) in the regressor.('>
Any @ belonging to S satisfies the following (necessary but not sufficient) inequali-
ties!!

n nb

> 8-k —j) = 3gn(8)emy ] + D 0, k=) S3R) + €y (12.20)
J=1 J=1

and
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n” I’lb
2 Ol=plk =) +sgn(®)en, 1+ D 0, utk =) 2 y(k) = gy (12:21)
= =1

for k=1, , N. Since €, i1s unknown, these inequalities are nonlinear in

(9, €man)- Therefore we suggest replacing Emnax in the left-hand side of Egs. (12.20)
and (12.21) by the most recently avallable €max- Lhe corresponding inequalities can
then be written as

n
a

D OLV(k =) + sgn(8)e,pu(k — 1]
=1

nh

= 2 0, ulk=))+y(k) 20, (12.22)

J=1

n
a

o+ 2 O30k =) + SEN(0) ek = D]
J=1

n b

+ 2,0, ulk=))-y(k)=0. (12.23)
J=t

If the signs of all autoregressive parameters 0{j =1, .. ., n,) are known a priori,
then Egs. (12.22 and 12.23) are linear in 0 and €,,,,. It is therefore possible with the
exact cone updating technique to recursively obtain fand €max- 1f the signs of some
of the autoregressive parameters are not known, all possible combinations of signs
have to be 1nvest1gated

REMARK: 6 and emax are no longer an exact minimax solution, and 0 may not
belong to S because of the approximation involved in the transformation of the
nonlinear inequalities into linear ones. 8 may nevertheless correspond to a good
point estimate of 0, as evidenced by the following example.

ExampLE 3: Consider an output-error system described by

v,k 8% = ~aly, (k= 1,8%) — @y, (k- 2,87) + blu(k - 1) + biu(k - 2),
Wk, 07) =y, (k) + &(k). (12.24)

One hundred data points have been simulated according to Eq. (12.24) with
ai=1,a=1,b1=1,05=1,5,(0) = y,(1) = 0, u(k) = (1 + (=1)*"Y)/2. Each e(k)
was generated according to a uniform distribution in [-0.02, 0.02]. Fig. 12.3
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illustrates the evolutlon of B and smax with the number of constraints taken into
account. Although E€max TEMAINS very optimistic, the estimated values of the parame-
ters are very close to the true values.

Remark: In Example 3, for (@ €max) = (9 €max)> 97% of the pairs of inequali-
ties associated with Eq. (12.20) and (12.21) but only 11% of the pairs of
inequalities associated with Egs. (12.17) and (12.18) are satisfied. This suggests
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FIGURE 12.3. Evolution of the minimax estimates for Example 3 as a function of the number of
constraints taken into account.
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a nonrecursive method for correcting gmax. Assume that | (k) l is uniformly
distributed between 0 and &}, The percentage a. of the inequalities associated with
Egs. (12.17 and 12.18) such that |y(k) — y,.(k, 0")I< €., then satisfies

A
smax
o —>—— when n— o0,

8ﬂ'laX

An estimate o, of o is thus given by the percentage of the inequalities associated
with Egs. (12.17 and 12.18) such that

A A
| 10) = 3,0k, ) | <&y
A A . A A A
For Example 3, o = 11%, and a corrected value for €., 1S €pax = Emax/ 0t = 0.03,
much %loser to the true value. Another possibility worth investigating would be to
adjust g, upward until the inequalities deriving from Eqgs. (12.17) and (12.18) are
all satisfied.

12.5. DETECTION OF OUTLIERS

Consider a situation where a large number of data points are associated with
an error satisfying |g| < &}, but where a few data points are associated with a very
much larger error, because of some failure in the procedure for data collection.
The value of €, can only increase or remain unchanged when a new data point is
;\aken into account. Therefore, if one uses the algorithm presented in Section 12.3,
€max 18 then much larger than what would have been obtained had the data been
correctly collected. One may then wish to identify the data points associated with
exceptionally large errors as outliers, to discard them. If the regressor does not
contain past output values, discarding an outlier merely requires ignoring the two
inequalities associated with it. On the other hand, if the regressor depends on past
values of the output, discarding an outlier requires ignoring not only the two
inequalities where it appears as a measurement value y, but also all other inequalities
in which it appears as a coefficient of the regressor.

The problem can be viewed as one of fault detection, for which a number of
methods have been proposed.*” The method currently implemented in the algo-
rithm is based on mean-value testing.*”) For each new constraint, the new value of
the minimax bound on the error is determined and compared to the mean value of
the minimax bounds obtained from the previous constraints. If the difference
between the mean and the new value is higher than a given threshold, the corre-
sponding data is considered as an outlier and rejected, so that the cone is not
modified.

ExampLE 4: One hundred data points have been simulated according to Eq.
(12.15) with @i = 1, a5 = 1, b1 = 1, b5 = 1, »(0) = (1) = 0, u(k) = (1 + (-1)&EDy /2.
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Each &(k) was generated according to a uniform distribution in [-0.01, 0.01]. For
three data points, corresponding to k£ = 25, 50 and 70, (constraints # 50, 100 and
140) the value of y(k) was replaced by an outlier, obtained by adding 25 to the value.
The resulting value of y(k) was recorded for the data points but not used in
computing y(k + 1) and y(k + 2) (this corresponds to an error in records, not a jump
in the system). The model Eq. (12.16) was used to fit the data. Fig. 12.4 illustrates
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FIGURE 12.4. Evolution of the minimax estimates for Example 4 as a function of the number of
constraints taken into account.
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the evolution of 6 and Qmax with the number of constraints taken into account. The
values indicated in Fig. 12.4 are those given by the algorithm, even when an outlier
has been detected. Hence the jumps in the estimates. In practice, of course, one
would then keep the previous estimates, so that these jumps would not occur.

The method is easy to implement and requires very little additional computa-
tion at each iteration. However, the determination of a suitable threshold may be
critical, as too small a value would lead to an underestimation of the minimax bound
by rejection of regular data, whereas too large a value would make the test totally
useless. When the number of data points taken into account increases, the prob-
ability of a large increase of e, decreases, so that adapting the threshold seems of
interest.

12.6. CONCLUSIONS

A method has been presented that provides the minimal value of the bound on
the error that ensures the nonemptiness of the feasible parameter set. By a suitable
reparametrization of the problem, this value can be obtained from the description
of the (unbounded) solution set of a system of linear inequalities. A method has
been described which recursively updates an exact description of this set whenever
a new datum is taken into account and provides a minimax estimate of the
parameters and bound for the error. This description contains the exact description
of any feasible set associated with a larger bound on the error as a by-product. The
method was initially designed for the study of models linear in their parameters but
can be extended to output-error models. In this case, the estimated value of the
minimax bound for the error is a lower bound for the true bound. However, the
resulting parameter estimates prove to remain very close to the true values. The
value of the minimax bound for the error can only increase or remain unchanged
when a new data point is taken into account. If the data set contains outliers, i.e.,
data associated with a very much larger error than the rest of the set because of
some failure in the procedure for data collection, the estimated minimax bound for
the error would be drastically increased because of these data. This is why a simple
procedure has been suggested to protect one against such occurrences.
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Robustness to Outliers of
Bounded-Error Estimators and
Consequences on Experiment
Design

L. Pronzato and E. Walter

ABSTRACT

If proper precautions are not taken, bounded-error estimators are not robust to
outliers, i.e., to data points where the actual error is larger than assumed when
specifying the error bounds. The outlier minimal number estimator (OMNE) has
been designed to overcome this difficulty and has proved on various examples to
be particularly insensitive to outliers. This chapter is devoted to a theoretical study
of its robustness. The notion of breakdown point, introduced to quantify the
robustness of point estimators, is extended to set-estimators. When the model output
is linear in the parameters, OMNE is shown to possess the highest achievable
breakdown point. A bound on the bias due to outliers is established and used to
define a new policy for optimal experimental design aimed at providing a higher
protection against outliers than conventional D-optimal design.
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13.1. INTRODUCTION

The purpose of robust estimation!!’ is to provide estimates that are not
dramatically affected if the hypotheses made on the measurement errors are not
entirely satisfied, either because of a misspecification of the distribution or because
of the presence of outliers. Least squares estimators are not robust to outliers, to the
point where a single erroneous datum can ruin the estimate obtained from a large
set of otherwise regular data. The notion of breakdown point, introduced in the
context of point estimation,® is usefull to quantify robustness and to compare the
performances of estimators. Loosely speaking, the breakdown point of an estimator
is the minimum percentage of outliers that must be introduced in a data set for the
estimator to produce a meaningless result. In this chapter, this notion is extended
to set estimators such as those encountered in the context of bounded-error
estimation,®*>® which is recalled in Section 13.2. The aim of bounded-error
estimation is to characterize the set of all parameter vectors such that the residuals
lie between some prior bounds. In this context, outliers are any data points for which
these bounds are too optimistic. Many bounded-error estimators are not robust, in
the sense that a single outlier may make the set of possible values for the parameters
empty. OMNE, however, has proved to be particularly insensitive to outliers.-%"
When the model output is linear in the parameters, OMNE is shown in Section 13.3
to reach the highest possible breakdown point. A bound is given to the bias due to
outliers, which suggests a new policy for optimal experiment design aimed at
providing a high protection against outliers. This policy is described in Section 13.4,
and compared on an illustrative example to conventional D-optimal design.

13.2. BOUNDED-ERROR ESTIMATION

Given a n-sample 2z of data points (x;,5,), i = 1, . . . , n, where y; denotes the
measurement obtained under the ith experimental conditions x;, and a model
structure n(0,X) with a p-dimensional parameter vector 8, bounded-error estimation
aims at characterizing the set of all vectors 8 such that all differences y; — n(8,x,)
lie between some known bounds —&]" and €. This posterior feasible parameter
set!? (or membership set!'?), denoted in what follows by S, is then given by

S(2)=10e R?|—g'<y,—nO,x)<e¥i=1,... n}. (13.1)

As in classical point estimation, the observations y; can be assumed to correspond
to the model response n(8”,x;) obtained at some unknown true value 0" of the
parameters, corrupted by some unknown errors b,

=m0 x)+b,i=1,...,n

If the errors b; are only known to satisfy
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—gn<h <gM

. i=1,...,n, (13.2)

any 0 in $(Z2) is a possible candidate to being the true value 6°. Note that if b; is
assumed to be a random variable with a probability density function equal to zero
when (and only when) Eq. (13.2) is not satisfied, then .§(2) corresponds to the set
of all parameter vectors with a non-zero likelihood. For that reason, $(Z) has also
been called posterior likelihood set. It must be emphasized that the definition of
S in Eq. (13.1) does not suppose the existence of a true parameter vector 8%. The
structure of the model used in the definition of § can be quite different from that
of the process generating the data, which allows simple model structures to be used
to describe the behaviour of complex processes. In such a situation, the errors b,
may be essentially deterministic, so that the underlying assumptions of classical
approaches for point-estimation such as maximum likelihood may no longer be
valid. Note that 5(2) can also be written as

n(o,x,)
&

1

S(z2)={6eR”|-1<z,- <1, i=1,...,n},

where g; = (¥ + £/")/2, and z; = y,/e; + (" — €})/(2¢,), so that we shall assume with
no loss of generality that the bounds & and &/ are symmetrical and identical for
all data points, i.e.,

_ M
m_ 8,-

fos

; =g, i=1,...,n

In what follows, the model output is assumed to be a linear function of 8, so that it
can be written as

n(6,x) =xl.T6, i=1,...,nm
or equivalently with a vector notation

n,(6) = X6,

where the ith row of X is equal to x| . The posterior feasible parameter set S(Z)
associated with the n measurements is then given by

S(2)={0eRP|-e<y -x0<e,i=1,...,n}. (13.3)

When rank(X) = p, 5(2) is a convex polyhedron that can be given an exact recursive
parametric description,'? and an experimental design policy aimed at minimizing
the volume of $(2) has already been described.!*'*) When the inequalities
ly;—x/0|<e,i=1,...,n, cannot be satisfied simultaneously, S(2) is empty. This
can be due to two different reasons: (i) the model structure is incorrect; and (ii) the
data are corrupted by outliers, which should be rejected. We shall assume in what



202 L. PRONZATO AND E. WALTER

follows that we are in the second situation. The rejection policy, motivated by
robustness regarding outliers, is described in the next section.

13.3. ROBUST PARAMETER BOUNDING

13.3.1. Outlier Minimal Number Estimator

Let 7 be a finite set of distinct indices, defined as follows
J={i; e Nli<ni=iifj=kj=1,.. hh<n.

Let S,(2) be the posterior feasible set associated with those data points (x;,y;) from
a n-sample 2 that are such that i € J. Define the set S*(2) as

s™Mz)= S(2), (13.4)
#(T)=h

where #(7) denotes the cardinal of 9. OMNE then corresponds to the set S#h‘(Z) ,
with

h*(2) = arg max{h | s*(z) = D}. (13.5)

S#h*(Z) is denoted by 5*(2) in what follows. The set S*Z) thus corresponds to all
values of the parameter vector 0 that are consistent with the largest possible number
of observations. Note that no attempt is made at pinpointing which bad items in
(»);» and/or (x;); have given rise to the outlier data points (x;,;) (2 non-trivial
problem if the same item appears at more than one j, as in AR models®).

When Z consists of regular data points, which means that § as defined in Eq.
(13.3) is not empty, #*(2) = n, and S (2) = 57" (2) = 5(2) . OMNE has proved on
various examples to be particularly insensitive to numerous and severe outliers.””
Its theoretical robustness properties will now be studied in more detail in terms of
its breakdown point.

13.3.2. Breakdown Point

Consider a n-sample Z of regular data points (5(2) # ), and a corrupted
sample z' obtained from Z by replacing m original points by arbitrary outliers. One
wishes the optimal set $™(2") to satisfy

$'(2)=8""Z) = 5,.(D),
where the set 7N corresponds to the regular data kept in Z’, i.e.

jﬁ:{ijeN](xi,y,.)eZmZ’,jzl,...,nwm}.
4
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This would correspond to the rejection of the m outliers and of no regular data. Note
that in this case, if a true value 0 can be defined for the model parameters, then
0" belongs to $*(2"). However, less favorable situations can be encountered where
S5*(2")# 8,~(2), which corresponds to nonrejected outliers. There is then no reason
for $*(z2') to contain 6. Practical experience indicates, however, that $*(2')
generally remains close to 0*.'®) Intuitively, a maximal value m* should exist for
m, such that the distance d[S*(2),5*(2")] between $*(Z) and S*(Z') remains
bounded when m <m". The ratio m/n corresponds to the notion of breakdown point
of an estimator,'” here extended to set estimators such as those encountered in
parameter bounding. We allow here contaminated experimental conditions, i.e., the
outliers may be due to errors in the x;s. The breakdown point of a point estimator
without contaminated experimental conditions is considered in Ref. 16, with special
attention to breakdown point maximizing experimental designs.

DeriniTiON 13.1. The breakdown point of a set estimator 8 associated with a
regular n-sample Z is given by

m'[$(2)]=min {7 |d[8(2).3(2)] = 0},

with the convention
A8 (2),2) ==,

where Z' is a corrupted n-sample obtained from Z by replacing m original points
by arbitrary outliers.

Remark 13.1. The breakdown point of the posterior feasible set $(2) as
defined in Eq. (13.3) is 1/n since a single outlier can make S empty. S(2) is therefore
not robust to outliers.

To investigate the robustness of OMNE to outliers, we shall need the following
definition.

DEFINITION 13.2. A set estimator § is regression equivariant if it satisfies

S(z) =T[5z,

for any p-dimensional vector v, where Z, and Z, are two data sets respectively
defined by

2, =AW, - - (X0 2y = 1K +XIV), L (X0, + X)),

and where T,(.) is the translation associated with v.
Lemma 13.1. The posterior feasible set S is regression equivariant.
Proor. We can write

5(Z2)={GeR"l—aﬁyi—xiT(G—v)Ss,i:1,...,n}

={0 e RP|0-ves(z))=T(5(2)). O



204 L. PRONZATO AND E. WALTER

CoroLLARY 13.1. OMNE is regression equivariant.
Proor: We use the same notation as in Lemma 1. OMNE for Z, can be written

as
SN2y = S(2)
HI)=h'(2,)
= T 15,(2)]
#HI)y=h'(z)
=T [5"(z)].
where /" is defined as in Eq. (13.5). ]

Remark 13.2. The notions of scale equivariance and affine equivariance”) can
also be extended to set estimators, and OMNE can be shown to be scale equivariant
(provided that the bounds are modified according to the same scale as the data) and
affine equivariant.

The following theorem then extends to parameter bounding the results ob-
tained by Rousseeuw and Leroy® in the context of robust point estimation.

THEOREM 1.

(i) The breakdown point of any regression-equivariant set estimator Ky
associated with a n-sample Z satisfies

224
m[3(2)] £ —

(13.6)

n
where |x] stands for the largest integer less than or equal to x.

(i) If the experimental conditions are chosen in such a way that any p xp
submatrix of X has full rank, the breakdown point of OMNE satisfies

LH_]‘F 1
(5" (2)] = 2n ’ (13.7)

Proor. (i): Suppose that m*[g(z)] >(L(n —p)/ZJ + 1)/n. Any corrupted sam-
ple z' deduced from Z by replacing L(n — p)/2] + 1 points is then such that
d[3(2).3(2)] < B, with B bounded. Such a sample 2’ contains g = n —|(n —p)/2]
— 1 data points of 2. If n —p is odd, then 2g —(p — 1) = n, otherwise 2¢ —(p—1) =
n— 1. Anyway, 2q — (p — 1) < n. We construct two corrupted #-samples Z'(v) and
Z'(—v) whose 2¢g — (p— 1) first points are respectively defined by

T, T
XppDs s (X0, )s (), - (X )A(X,.p, + X av), o (X, + X a),
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and
iy (0,0, (), - (X (X, — xpT(xv), ces (X, — x;ow),
witha € R, v#0and
xv=0,i=1,...,p- L. (13.8)

If n—p is even, the nth data points of Z'(v) and z'(—v) are still free. Let (x,,y,) be
the nth datum of 2'(v), the nth datum of Z'(-v) is chosen as (X,,y, — X2av). Z'(V)
and z'(—v) both contain ¢ points of Z, so that

A8 (2.81Z2W)]} <B’, (13.9)

d185(2.812v]} <B". (13.10)

Taking Eq. (13.8) into account, one can easily check that Z'(—v) can also be deduced
from Z'(v) (up to a reindexation of the elements, see Fig. 13.1) by replacing each
datum (x;,y;) by (X;y; — X/ av). The regression equivariance of % then implies that
3(Z’(—v)) = T‘av{g[z’(v)]}, which contradicts Egs. (13.9) and (13.10) for values
of a large enough.

(ii): From Corollary 13.1, the breakdown point of $” satisfies Eq. (13.6). Let
us prove that the bound is reached. Suppose that m = | (n — p)/2] points of z are
replaced to give a modified sample z'. §*(2") = 5**(2") , with h* defined as in Eq.
(13.5). One obviously has 4*(2') > n—m. Consider then one of the sets 5 ,(z"), with
#(7) = h"(2"), and denote it by E(Z'). Let G be the set of regular data points that
contribute to defining both $*(2) and $(2"). One has

Z,(v) (zlvyl) (zP—layP—l)
Z’(—v) (tlvyl) (zp-lvyp-l)
(®p,9p) -+ (Tqs¥g) (Tpoyp + 356"’) coo =gyt quav) (:!:,.‘, Yn)

1

i

!

T v T

(®p,9p) -+ (g¥0) (%p,yp — ‘c;{av) coo (B Yg— 7y av) (Zn,yn — T, 00)

(if n — p even)

FIGURE 13.1. The two corrupted samples in the proof of Theorem 13.1 (i).
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—p (13.11)

n
2

#(g)Zh*(Z')—m2n~2m=n—2|_ _|2p.
Let J; be the set of indices associated with data points in G, S .,G(Z’) =5(2)= Sy
The set S(2") is included in S0 and any p x p submatrix of X has full rank, so Sy,
is bounded. From Eq. (13.4), $*(2") is included in the union of such sets, so the
distance d[$*(2),5"(2")] is bounded.

Remark 13.3. Note that the bound in Eq. (13.6) only depends on Z through
the number of data points.

ReMARK 13.4. When the number of measurements tends to infinity, $* can
accommodate up to 50% outliers. This is obviously the largest possible percentage
if the outliers are allowed to be organized in such a way that they can be described
by the model. Note that in practice the outliers are seldom organized in this way,
so that OMNE can perform satisfactorily even on cases where there 1s a large
majority of outliers.

ReMARK 13.5. Other regression equivariant parameter bounding policies could
be defined, with a high breakdown point. A possible choice corresponds to sets
5 #(2) with fixed h. Suppose that m points of Z are replaced to give a corrupted
sample Z', and that the experimental conditions are such that any p x p submatrix
of X has full rank. One wants d[s *(2).$ #h(Z’)] to be bounded whatever the outliers
may be, so that # should satisfy n —m > A (one must have 2"y = D), and h—m
> p (any set S ,(2"), with #(J) = h, must contain at least p regular data points to be
bounded). The maximal value for m which allows these inequalities to be satisfied
is m=|(n—p)/2) . The value of h given by i =Ln/2] + L(p + 1)/2] then allows the
bound of Eq. (13.6) given in Theorem 13.1 (i) to be reached.

REMARK 13.6. The least median of squares (LMS) estimator® and the set
estimator S#ﬁ defined in Remark 13.5 both neglect up to 50% of the data when n
tends to infinity. This systematic rejection of a large part of the data leads to a loss
of information when there are fewer than 50% outliers. $* does not reject any data
a priori and therefore does not have such a drawback.

13.3.3. Bias Due to Outliers

The distance d[.$ *(2),S *(2")], where Z' is a corrupted n-sample obtained from
a regular n-sample Z by replacing m original points by arbitrary outliers, can be
seen as a bias due to these outliers. Provided that m < | (n — p)/2] and that any
p x p submatrix of X has full rank, this bias is known from Theorem 13.1 to be
bounded. We now derive an expression for such a bound, which is used in Section
13.4 to define an optimality criterion for experimental design.

Define E(Z’) as in the proof of Theorem 13.1 (ii). Equation (13.11) implies
that at least p regular data points of z contribute to the definition of $(2"). Let Tbe
a set of p indices associated with any subset (with cardinal p) of these regular data
points. One obviously has
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S'(2) < 55(2),

sz < s55(2),
so that

d[$*(2),5(2")] < max d(6,0").
9,9’557(2)

Finally, from Eq. (13.4) and the definition of E(Z'), we get

dl5*(2),s*(2)]< max max d(8,0").
Mp 00°es(2)

As d(0,8"), we shall use the Euclidean distance ||6 — 6'||. We first evaluate

AlS,(2)]= max [0 - 6.
0.0'<5,(2)

We assume, with no loss of generality, that $,(Z) is defined by the first p data.
S,(2) is a convex polyhedron with p pairs of parallel faces (parallelotope). The ith
pair of faces is defined by

0'x, =y, +¢, 0'x,=y,—¢, i€

Take one of the vertices of 5,(2) as the origin, and let s, i=1, ..., p be the vectors
of coordinates of the adjacent vertices. The maximum value of ||@ — 6’| is obtained
when 6 and 0’ are vertices of §,(Z), so that

A[S,(2)] = max ||Sul], (13.12)

ueCp
where
p:{ueRp|ui=i1,i:1,...,p},

and where the ith row of S is given by s/ . The ordering of the vertices can be chosen
such that any sy, k # i, belongs to the ith pair of faces of S ;(Z), which can be written
as

xs, =0, k=i, with i,k € J. (13.13)

The vertex s; does not belong to the ith face of $,(2). It satisfies x!'s; = #2¢, and the
origin can be chosen such that

x's; = 2¢. (13.14)
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Let X, be the p x p matrix the ith row of which is equal to x/ . This matrix has full
rank, and from Eqs. (13.13) and (13.14) S satisfies

S =2¢X)"
From Eq. (13.12), A[S,(2)] can therefore be written as

ALS (2)] = max 2¢ [[X; ul,

ue(C
P
or equivalently

A[S,(2)]= max 2e|lwl|.
X,weCP

Replacing w by v/p, with ||v|| = 1, one can write A[S,(Z)] as

A[‘SJ(Z)] = max 28 ,

ves,, P
where
Syp={ve RP|IMI=1,v/x;=+p,i e 7}.
The bound on d[$ *(2),S *(2')] is finally obtained by

2
d[s*(2).8"(2")]< max max £
M= ves, P

or equivalently

(13.15)

dls(2),s" (2N <
p (X)
with

p*(X)=min{p | Iv € R?, ||v| = 1,3p rows x/ of X, | xv | = p}. (13.16)

RemARk 13.7. If a true value 0 can be defined for the model parameters, it
belongs to $*(2), and from Eq. (13.15) any 6’ in 5*(2") then satisfies

10"~ 0% < ——— .
P (X)
The bound 2e/p*(X) can be used as a quantitative measure of the robustness

of the estimator. It depends on the experimental conditions through the value of
p*, hence the idea of designing the experiment so as to make p” as large as possible.
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13.4. EXPERIMENTAL DESIGN TOWARD ROBUSTNESS

A first qualitative condition to ensure robustness of OMNE with respect to
outliers is given in Theorem 13.1 (ii): any p x p submatrix of X must have full rank.
A quantitative criterion for designing experiments intended to yield a high protec-
tion against outliers can further be obtained from the expression of the bound on
the bias due to outliers given by Eq. (13.15) .

DermiTION 13.1. A 1 x p design matrix X is p-optimal if it maximizes the
criterion p*(.) given by (16).

Experimental design for robust estimation seems to have received little atten-
tion in the literature. The only study we are aware of !” concerns the minimization
of the discrepancy of the predicted outputs X(X’X) ' Xy obtained by standard least
squares (SLS) when outliers are present, where y is the vector of measurement
outputs. However, the SLS estimator has a breakdown point equal to 1/n, and this
policy should therefore be rejected when severe outliers are to be feared. Note that
the bound on the bias due to outliers obtained in Ref. 2, Chapter 8 for the least
median of squares (and other related) estimator(s), especially designed against
severe outliers, is also related to 1/p*. Maximizing p* can thus be of interest for
these estimators as well. Further studies are required to investigate the theoretical
properties of this new design policy, and to develop algorithmic procedures. (See
also Chapter 8, Ref. 16.) The importance of a proper choice of the design matrix X
for the robustness of OMNE is here simply stressed by an example.

ExaMpLE: Assume that p =2 and consider the following feasible region for the
regressors

X={x= () e RF|0<x,0<x,x +x5< 1},

When four measurements are to be performed, the maximal value of p* in Eq.
(13.16) is equal to sin(n/12) and is obtained for the design matrix

1 0

_|cos(n/6) sin(n/6)

“lcos(n/3) sin(rn/3) |
0 1

(13.17)

Note that no replications are involved, contrary to classical D-optimal design. The
p-optimal experiment defined by Eq. (13.17) is also I//\'-optimal.(”’m) It minimizes
the volume of the estimated feasible set defined by

$(X0,)={0eR”|-€<x[(0-6)<¢, i=1,...,n},

where 0, is any prior value for 6. The estimated feasible set corresponding to the
design matrix X given by Eq. (13.17) is presented in Fig. 13.2 (solid lines). The
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volume of $(X,0,) is always greater than or equal to the volume of $(Z). Assume
that there are no outliers and that the four measurements are given by

y=(5.1,9.5, 11, 10.3)7,

with bounds € = 0.5. Fig. 13.2 presents $"(Z) (dashed lines), which coincides here
with $(2).

The breakdown point of $* given by Eq. (13.7) is here equal to 50%, which
means (since n = 4) that up to one arbitrary outlier can be handled.

Suppose that a problem occurred in the registration of the last data point, so
that it is replaced by the outlier x4 = (0,1)7, y4 = 20.3. The corresponding set
S*(2) is presented in Fig. 13.3, together with the outlier minimal number estimate
associated with the measurements (5.1, 5.4,10.3, 20.3)” and the D-optimal design
matrix

FIGURE 13.2. Estimated feasible set $(X,0,) when 6, = (5, IO)T (solid lines), and posterior feasible
set $*(2) (dashed lines) for regular data points, with the design matrix given by Eq. (13.17).
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22 . . .
T !
20+ ] ! 4
18} ]
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14| R
12} )
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B 1 1 1
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FIGURE 13.3. OMNE for the p-optimal design matrix of Eq. (13.17) (solid lines), and for the
D-optimal design matrix of Eq. (13.18) (dashed lines) in the presence of one outlier.

(13.18)

—_—0 O

1
1
X,= 0
0

The presence of replications implies that p(Xp) = 0. The conditions for OMNE
to have a high breakdown point are therefore no longer fulfilled. Should y, tend to
infinity, the maximum distance between S*(2) and $*(2') would tend to infinity.
As a consequence, classical D-optimal design should be avoided if robustness to
outliers is an issue.

13.5. CONCLUSIONS

When outliers are to be expected and bounds are available on regular errors,
OMNE is a powerful alternative to classical robust point estimators. Its breakdown
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point has been evaluated, and it reaches the highest achievable value. The bias due
to the presence of outliers depends on the choice of the experimental conditions,
which permits the definition of a new criterion for experimental design. This
criterion may also be of interest for robust point estimators such as the least median
of squares. Further studies are required to investigate the properties of the corre-
sponding optimal design policy and to develop specific optimization procedures.
Contrary to this new design policy, classical D-optimal design usually leads to
replication of measurements. It may have disastrous consequences on robustness
to outliers, as has been illustrated by a simple example.
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Uncertain Dynamical Systems
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ABSTRACT

This chapter gives a concise description of effective solutions to the guaranteed
state estimation problems for dynamic systems with uncertain items being unknown
but bounded. It indicates a rigorous theory for these problems based on the notion
of evolution equations of the “funnel” type which could be further transformed,
through exact ellipsoidal representations, into algorithmic procedures that allow
effective simulation, particularly with computer graphics. The estimation problem
is also interpreted as a problem of tracking a partially known system under
incomplete measurements.

Mathematically, the technique described in this chapter is based on a theory
of set-valued evolution equations with the ellipsoidal-valued functions formulating
approximation of solutions in terms of set-valued calculus.
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14.1. INTRODUCTION

The topic of this paper is motivated by problems of state estimation of dynamic
processes described by ordinary differential equations with uncertain parameters
or differential inclusions.(!#>717:18.21.2) This topic already has a fairly large litera-
ture so that the published overviews are hardly able to give a full picture of the
available achievements and research history. The aim of the present paper is to
complement the available literature on the subject.

An uncertain system is said to be one of type

x(t) € AWOx(D) + u(t), ty<t<t, x(ty) =X, (14.1)

where A(f) € R7" andu(?) € R" is the unknown but bounded input (disturbance).
It is presumed that the initial state xy € R is also unknown but bounded, so that

u(t) € P(9), ty<t<ty, x5 € Xy (14.2)

where the set X, € convk®” and the continuous set-valued function
P(f) e convRk”, 1, < ¢, are given (conv X" denotes the family of all convex compact
subsets of R").

Equation (14.1) of the plant may be complemented by a state constraint

G()x(r) € K(1), ty<t<t, (14.3)

where G(f) € ™" and X(f) € conv R”, m < n. The constraint (1.3) may be par-
ticularly generated by a measurement equation

W= GOx(@) +v(1), t,<t<t, (14.4)
with an unknown but bounded error
vty € Q1), ta<t<y, (14.5)

where Q(1) € conv R™, 1y <1,. With the realization y(-) being known, restriction
Egs. (14.4 and 14.5) become

G(Ox(t) € () — QD), t,<t<t, (14.6)

so that y(f) — Q(¢) now substitutes for X(¥) (the whole function y(-) may however
not be known in advance, arriving on-line).
The objective will be to estimate the system output

wi)=Hx(), we R, r<n, {[<t<¢ (14.7)

with H € K", at a prescribed instant of time ¢, either for Eqgs. (14.1 to 14.3) for the
attainability problem under state constraints, or for Egs. (14.1, 14.2 and 14.6) for
the Guaranteed State Estimation Problem.
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The solution approaches to both problems are well known.*121) The aim,
however, is not to repeat this information but to rewrite the theoretical results
focusing on the main objective: a constructive algorithmic procedure based on
ellipsoidal techniques that allows a simulation with graphical representations.

14.2. THE ESTIMATION PROBLEMS

We start with the attainability problem. Let x[-] = x(-,%y,X,) stand for an isolated
solution of system Eq. (14.1) that starts at point xq = x(#). As is well known, the
attainability domain for Eqs. (14.1 to 14.3) at time ¢ € [fo,,] from point xy € X" is
the cross-section at ¢ € [fp,f;] of the tube X(.,f,x;) of all trajectories
x[-]1=x(-,tg,xo) that satisfy Eqgs. (14.1 to 14.3). Further, let X[f] = X(t,t.X,) be
defined by the relation

X[1] = U {X(ttp%0) | Xpe Xy} (14.8)

then X[¢] is the attainability domain at time ¢ from set X,.
The multivalued map X{-] generates a generalized dynamic system. Namely
the mapping

X:[t.t] % [t,.4] x convR” — convg”

possesses a semigroup property, that is whatever are the values t, <ty <t<=t
<0<t we have

X[8,,X[£]] = x{0,t,.X[1,t,x[£]]}.

Also, if m = nand G(t) = I(t; £ t < t;) in Eq. (14.3), the set-valued map, or in
other words, the tube X[f], (f, < t < 1) satisfies an evolution equation—a ‘funnel’

equation’® 2% —which is

lim o™ 'A(X[t + o], (I + A()o)X[{]

G40
+0P()) N K(t+06))=0, t,<t<1,
X[tg] = X, (14.9)
Here A(X',x"") stands for the Hausdorff distance between X',X" e conv K", namely
h(X', X"y =max {h (X".X"), h(X"X")},
(X', X")=min{o 20| X' < X" +as},

h (X', X")=h(x"X").
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with § being the unit ball in 8" and 4_, 4_ called Hausdorff semi-distances.
Equation (14.9) is correctly posed and under some assumptions''" has a unique

solution that defines the tube X[-] = X(-,,X,) for system Eqgs. (14.1 to 14.3). One

of the assumptions mentioned above is the Lipschitz continuity of the set-valued

map X(-):
KK, K@) < k|t —1"]

for some 4 > 0 and for any ¢, ¢’ € [t0,t,].

Using only one of the Hausdorff semi-distances in Eq. (14.9) leads to the loss
of uniqueness of the solutions, but complemented with an extremality condition,
alternative descriptions for the multivalued map X[-] are obtained. On one hand,
consider

lim oA (W[t + o), {[I + A@D)SIW[{] + cH1)} N K(t + 6)) =0, hSt<tey,

g—>+0
W] = X,

A set-valued map X_[-] will be defined as a minimal solution of Eq. (14.10) if it
satisfies Eq. (14.10) for almost all ¢ € [#,,?;] and if there exists no other solution
W[-] to Eq. (14.10) such that x_[¢] > W[¢] for all ¢ € [ty,¢] and X_[-]# W[-].
Equation (14.10) has a unique minimal solution under the conditions required for
the existence and uniqueness of the solutions to Eq. (14.9). In this case (using the
notation of Eq. (14.8), X[-] = X_[-]. On the other hand,"”

lim oA (4t + o). (I + A(0)c) V1) A K()

o—>+0
+0P(@)=0, t,<t<t,
Yty] = X, (14.11)

has a unique maximal solution X, [-] (defined analogously to the minimal solution
of Eq. (14.10)) if, for example, %(-) is upper semicontinuous.'" If so then, as
previously, xX[-] =X [].

The Guaranteed State Estimation Problem may now be formulated as follows.
Suppose that the measurement y*(-) due to system Egs. (14.1 to 14.4) is given. It is
generated by an unknown triplet

C'(0) = {xpu' (V) ty<t<t, (14.12)

which complies with the constraints of Eqs. (14.2 and 14.5). Then the tube of
attainability domains X"[-] generated by Eqgs. (14.1, 14.2 and 14.6); y[-] =[]
always contain the unknown actual trajectory of the system x*[-], that is generated
by £"(-). The tube X"[-], therefore, gives a guaranteed estimate of the state of system
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Eq. (14.1) on the basis of a measurement y*(-) of Eq. (14.4) under the constraints
Egs. (14.2 and 14.5). The solution of the problem is to specify the tube
X', o<t <.

The set X[t] = X(t,5,X,) 1s the domain of states x(¢) of system Eq. (14.1) at
time ¢ that, given y(t), t, < T < ¢, are consistent with the constraints Eqgs. (14.2 and
14.6) The attainability domain for system Eqs. (14.1, 14.2, and 14.6) is also known
as the ‘informational domain’,(s) the ‘domain of consistency’, or the ‘feasibility
domain’,“&”’m for the state estimation Egs. (14.1, 14.2, 14.4, and 14.5).

Presume that y(-) is Lipschitz-continuous, to conform with the assertions
above. The situation allows a generalization to the case when y(-) is a function
measurable on [#,¢;]. The respective mathematical details, however, are beyond the
scope of this chapter.

The solutions to the above estimation problems are given through the evolution
Egs. (14.9 and 14.10). An alternative approach to handle state constraints, based on
the singular perturbation technique is also be presented. Now continue by devising
an algorithmic scheme for solving the evolution equations.

14.3. THE DISCRETE-TIME SCHEME

Equations (14.9 and 14.10) yield a natural discrete-time scheme that can be
given in two versions reflecting Egs. (14.9 to 14.11). These two are first-order
schemes:

X[t + 6] = (( + SA@D)X[L] + 5P®) N K(t + ©) (14.13)

X[t + 6] = (I + SAW)X[{] A K(2)) + cP() (14.14)

that yield convergence to the continuous-time solutions. The main problem is that
the X[¢]s are arbitrary, convex, and compact sets mathematically described through
infinite-dimensional elements, e.g., their support functions p(/ | x [£]). The objective
is to give a constructive scheme for their description by approximating them
through finite-dimensional elements which, in this chapter, are taken as ellipsoids
and approximating the corresponding convex set-valued maps through ellipsoidal-
valued functions.

14.4. THE ELLIPSOIDAL TECHNIQUES
Denote a nondegenerate ellipsoid as

£@,9) = {x|(S'(x—a),x—a)< 1}
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where a € R is its center and the symmetric matrix S > 0 determines its configu-
ration. From here

p(l] £@a,9) = (La) + (SL)' 2

where the latter description also allows det S = 0.
Suppose the sets X, P(), Q(f), K(?) (fo < t < t) are ellipsoids, so that

X = E(xp, Xp), PO = B(p(0), P(1)), (14.15)

Q) = E(q(0),00), K1) = E(k(1),K(?)), (14.16)
and the conditions
X,20, P()20, Q(H>0, K()>0

hold.
The discrete-time schemes of Eqs. (14.13 and 14.14) then make it necessary
to handle the following operations:

[E(a),0)) + E(a,0,)] N E(a3,05)
[f(ale) m f(az,Qz)] + Z(‘13:Q3)

with E(a;,0;), Q; 2 0,i= 1,2, 3 given. This can be done through a combination of
the following relations:

The sum of ellipsoids: Given ellipsoids E(a,,0),i = 1, 2, their sum
E, = E(a;,Q)) + E(az,0,) which need not be an ellipsoid, could be approximated
from above as

fs - ‘Z(al + asz(n))a (1417)
where
oMy =1+ hHQ, +(1 +m)Q, n>0.

Lemma 14.1. The inclusion Eq. (14.17) is true whatever is the coefficient
7 > 0. The following relation holds:

£, =N {E(a, +a,0(n)) | n> 0}. (14.18)

The intersection of ellipsoids: The intersection E; = E(a;,0) N E(a;,0,) can
be approximated from above as

. E(B,a,,B,0B| ) + £(Bya,,B,0B;), (14.19)

B, +B,=1, (14.20)
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where B; € R"™", I € R™" is the identity and the prime stands for the transpose.
Lemma 14.2. The inclusion Eq. (14.19) is true for any matrices B; € R™", i =
1,2 that satisfy Eq. (14.20). The following equality is true

€. = {E(B,a,,B,0B!) + E(B,a,,B,0B}) | B, + B,=1.  (14.21)

The following result is used in Section 14.6 and may be considered as a special case
of Lemma 14.1.

The direct product of ellipsoids: Given ellipsoids E(p,P) c R*, £(¢,Q) c ®™,
their direct product £(p,P) x (¢,0) € R*"™ can be approximated from above
as

Z(p,P) x E(q,0) C E(z,Z(n)) = R¥™ (14.22)

where z = {p,q} € R*™ and

l+nhp 0
Z(ﬂ:):[( (’)‘) (1+n)QJ’ >0

Lemma 14.3. The Eq. (14.22) is true for any coefficient > 0. The following
relation holds:

Z(p,P) x £(¢,0) = N {E(z,Z(n)) | n > 0}. (14.23)

The combination of Egs. (14.18, 14.21 and 14.23) gives an exact external approxi-
mation of the sets in Egs. (14.13 and 14.14) by a family of ellipsoids that can be
simulated through parallelization. Among these one may also select an optimal
ellipsoid. A somewhat different scheme can be given along the lines of Refs.
(2,21,22).

Under the constraints of Egs. (14.15) the attainability problem for the system
is

x(2) € AOx(t) + Ep®),P(®), t,<t<t, (14.24)
x(t;) € E(xp.X,) (14.25)
x(t) € E(k(1).K(1), t,<t<t,. (14.26)

Ellipsoidal-valued functions may approximate the attainability tube X[-] both
internally and externally for Egs. (14.24 and 14.26). Further sections deal only with
the former case. (The schemes of internal ellipsoidal approximation for various
attainability problems can be found in Refs. 29 and 22).

Consider the evolution equation
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lim o™k, ({[I + AQ)S)E[1] N E (k(1),K(2))

g—>+0

+oE@P(0),P(1), E[t+0]} =0, st

(1] = E(xy Xy)- (14.27)

A function £_{-] is defined as a solution to Eq. (14.27) if it satisfies Eq. (14.27) for
almost all ¢ € [#y,;] and is ellipsoidal-valued. Obviously the solution Z.[-] is
nonunique and satisfies the inclusion

E > X[, t,<t<t, E.[t] = X[1L)

Moreover,asa consequenceof Lemmas 14.1,14.2,
Tueorem 14.1. For any ¢, <t < ¢, the equality

x[f] =~ {E[1]]| £,[-] is a solution to (14.27) }.

The ellipsoidal solutions £,[-] = E(x,(-),X.(-)) to Eq. (14.27) allow explicit repre-
sentations through appropriate systems Qf ODEs for the centers x,(-) and the
matrices X,(-) > 0 of these ellipsoids.>!41%:16-22)

14.5. ESTIMATION THROUGH PARAMETRIZATION

The point of interest of this Section is to study the set of all solutions
x[t] = x(¢,t,x0) to a nonlinear differential inclusion

x € F(tx), te T=[tt ], (14.28)
that are emitted by the initial compact subset Xy < R so that
x(ty) =xy X5 € Xy (14.29)

where #(¢,x) is a multivalued map (‘F: T'x R" — convk”).

A further problem that concerns the set of these solutions is to single out a
subset of those trajectories x[¢] = x(t,fo,xo) that satisfy both Eq. (14.28) and a
restriction on the state vector (the “viability” constraint). (See also Sections (14.1
and 14.2.)

G(xT] € () = y(0) ~ Q). (14.30)
In a more general form this equation may be written as
(@) € Gex1]), (14.31)

where G(¢,x) is a multivalued map (G: T x ®" — convR") or taking
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G'(tx) = G(tx) - (1)
and omitting the asterisk, as
0 e G(tx[1]). (14.32)

The requirements on ¥(¢,x), G(t,x) are given in Ref. 11.
DEFINITION. A trajectory x[f] = x(2,to,%0) (Xo € Xp, t € T) of the differential in-
clusion (14.28) is defined to be viable on [#,,7] if

0 € G(tx[f]) forallf e [1,1] (14.33)
The “guaranteed” estimation problem thus consists in describing the set
X[}1=v {x(ﬁt()rxo)\xo € Xo}

of solutions x(-,%y,xy) to the system Eqs. (14.28, 14.29 and 14.30) (viable trajecto-
ries). The crossection X[f] of this set will be the set-valued estimate itself (see
Section 14.2).

In this Section the description of trajectory tubes X[¢] is reduced to the
treatment of trajectory tubes for a variety of specially designed new differential
inclusions without state constraints. These new inclusions are designed depending
upon certain parameters and have a relatively simple structure. The overall solution
is then presented as an intersection over the parameters of the parallel solution tubes
to the new inclusions.

The restriction F5(z,x) of the map 7(z,x) to a multifunction G(z,x) (at time ¢) is
given by

F(tx), 0e G(t,x)

Fo(t%) :{ a,  0eG(tx)

The next property follows directly from the definition of viable trajectories.

LemmA 14.4. An absolutely continuous function x(¢) defined on the interval
[#9,t] with xq € X, is a viable trajectory to Eq. (14.28) for ¢ € [#,7] if and only if
the inclusion

x(1) € Flt:x)

is true for almost all ¢ € [#y,T].
Now represent 7(2,x) as an intersection of certain multifunctions. The first
step to achieve that objective is to indicate the following auxiliary assertion.
Lemma 14.5. Suppose A4 is a bounded set, B a convex closed set, 4 < R",
B c R™. Then

A, 0eB

m{A+LB|LeER”X”’}:{® 0B
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where R is the space of all n x m matrices.

From Lemmas 14.4 and 14.5 one obtains the following characterization of
viable trajectories.

THEOREM 14.2. An absolutely continuous function x(-) defined on an interval
[£0,¢1] With x(2,) is a viable trajectory to Eq. (14.28) for [#o,7] iff the inclusion

(1) € N {(F(tx) + LGtx)) | L € R,

is true for almost all ¢ € [#,1].
A variety of differential inclusions that depend on a matrix parameter
L e ™™ are given by

z € F(tz) + LG(t2),
2ty € Xy 1<t (14.34)

By z[-] = z(-,1,t0,29,L) denote the trajectory to Eq. (14.34) defined on the interval
[£o,t] With z[£y] = zy € X,. Also denote

Z(-TlyXopl) = U {Z(Totgzorl) | 2 € Xy}

where Z(-,1,t5,20,L) is the bundle of all the trajectories z[-] = z(-,T,t,2o,L) issued at
time #, from point zy and defined on [f,t]. The crossections of the set
Z(-,7,t0,X,L) at time ¢ are then denoted as Z(t,#y,X,L).

THEOREM 14.3. For each 1 € [#,,] one has

Xl Xy) = O A ZC g X ) | L € Ry,
Moreover, the following inclusion is true
X[1) = X(T,ip X)) © O {Z(Titg X L) | L € ™).

Proor. Theorem 14.3 is a direct consequence of Theorem 14.2. O
Now replace the constant matrix L in Eq. (14.34) by a continuous function
L() € R™™[1y,t,], coming thus to the differential inclusion

z € F(t2) + L(1)G(t2),
2(fy) € Xy 1 <t<Y (14.35)

and keeping the earlier notation for its trajectory bundle Z(-,t,t,Xy,L(-)) and
Z(1,t0,X0,L(+)) for the T-cross-section of the bundle.

What follows is a more precise version of Theorem 14.3.

THEOREM 14.4. For each 1 € [#,7/] one has

X1l Xy) = O AZ Tl Xpl) | L € R [10,1]}. (14.36)
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Moreover,
X[1] = X(t,1:Xg) € N {Z(t 1, X,L) | L € R [1,,11} (14.37)

where R™™[t,t] is the space of all continuous » x m-matrix functions

L(t)’t € [ZO’II]'
The main point is that the Eq. (14.37) actually turns to be an equality if
set-valued functions #z,x), G(¢,x) are linear in x,

Ftx) = A(x + 2(), G(1x) = GOx — y() + Q) (14.38)

see also Sections 14.1 and 14.2. The respective result is given by the following
theorem.

THEOREM 14.5. Assume that both mappings F{(z,x), G(z,x) are linear, (14.38).
Then for each © € [#y,¢;] one has

X[1] = X(t,,X) = N {Z(T, g X, L) | L € R™™[1,7]}.

14.6. THE SINGULAR PERTURBATION TECHNIQUES

We now briefly describe another technique for solving the state estimation
problem under state constraints, which may be useful particularly when X(:) is
discontinuous or only measurable in time ¢.

Taking the system Egs. (14.1 to 14.3), we substitute the last relation by a
singularly perturbed differential inclusion:

LEY(E) € - Gw(d) + (1), tp<t<t, (14.39)

W) € % (14.40)

where 9, € convR™ isa givenset, and L(-) € M™"[ty,t] and M™™{t,,f] denotes the
space of continuous m x m matrix-valued functions with invertible values defined
onthe interval [#y,t]. The above system has to be treated together with the differential
inclusion

(1) € A@x() + P(), 1y<t<t, (14.41)

x(ty) € X, (14.42)
that follows from Egs. (14.1 and 14.2). Equations (14.39 to 14.42) form a system

2(6) € Bz(d) + H(1), t,<t<t, (14.43)
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z(ty) € Z, (14.44)

with state space vector

_[x@ -
z(r)—[ym], () € R,

parameters

(40 o (20
B = (L*(r)cm 0]’ o= [L“(r)x(r)]’

and the initial set of Eq. (14.44) taking the form

X
Zy= (% =Xy X %
Denote I1,z € ®” to be the projection of vector z € R on the subspace corre-
sponding to the state vectors x(¢) of Eq. (14.41). Given set 2 R"™, define
I1.Zz={xeR" |x=l'IXz,z € Z}.

If we take Z;[f] = Z.(t,t0,2) to be the solution tube for system Eq. (14.43), then
the following theorem turns out to be true.('?)
THEOREM 14.6. For any ¢ € [#y,t,] and 9 € convR™

X (2,5, X) = TL{N {ZL(Z,ZO,ZO)|L(~) € M™"[t5t]}) (14.45)

where X(¢,2),X,) is the attainability set under state constraint for the system of Egs.
(14.1,14.2, 14.4 and 14.5).

A slight modification of this theorem is needed for the case when the initial
set Zy # Xo X 9, but the projection [T,z = X,

TueoreM 14.7. The following formula is true for any Z € convR™™, t € [1o,t)]

X(t1T1,20) = TL(M {Z,(t10,Z0) | L() € ™ [1,,113).

An ellipsoidal version of Theorems 14.6 and 14.7 is based on analogous schemes
to those in Section 14.4.
Assume, in addition to Egs. (14.15 and 14.16)

%= EQyYy), Yy=0. (14.46)
Introduce the system

x(t) € A(Ox(t) + E@(1),P@)), (14.47)

L) € — G(0)x(2) + E[k(@).K ()], (14.48)
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Dty (t)} € E({xgwe) 2y, (14.49)
~ (X, 0 14.50
ZO:(OO Yoj (14.50)

with L(-) € M™™[¢,,¢;], which actually is the system of Eqs. (14.43 and 14.44) for
the data

94() = £(p(0).P(0) x E(K(1).K(0),
2y = E(1xpohLo).

The attainability set Z;(z,45,2Zy) of Egs. (14.47 to 14.50) in general is not an
ellipsoid, but one can introduce external ellipsoidal approximations for
Zy(,ty,2o) following, for example, the techniques given in Refs. 2, 3 and 15.
This yields the inclusion

Z, (1t 2) © E{z[110,L()]Z[ 1,20, L(),7(-),0()]},

where
14.51
2Lt L) =(;Eg] (143D
_[Z,(® Z)0) (14.52)
Z[t,tO,L('),TE('),G(')] = [ZZ, (l) Z}(t)J
are the solutions to systems
x(0) = A(O)x(5) + p() (14.53)
x(ty) =X, (14.54)
W(t) = L (GO)x(t) + L (0)k(2) (14.55)
Y(t) =y, (14.56)

and

Z,(t) = ADZ,(t) + Z,(DA'(2)

+67'(0)Z,(t) + o[ + 7' (B)PQ) (14.57)
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Z(t) =X, (14.58)
Zz(t) =-Z,(0G'(OL' () + [A() + o~ (DI1Z,(2) (14.59)
Zz(t()) =0 (14.60)

Z,(0) =-L' OGO Z(t) - Z; )G (L) + 67 (H)Z,(2)

+o(O[1 + m()IL N OK(@E)L (1) (14.61)

Z(t) = Y, (14.62)

THEOREM 14.8. Forany ¢ € [ty,t;] and L(-) € M™™[#,t], the following equality
is true

ZL(Z’ZO’ZO) =N {'E(Z[tato’L(')]5Z(t’t0’L(')’n(')30('))) | TC('),G(') € C+[t07t]}

where C,[to,f] is the class of all positive scalar valued functions continuous on
[20.1]-

Theorems 14.6—14.8 together yield:

THEOREM 14.9. Given instant ¢ € [#,¢,] and 9 = E(y,Ys), the following equal-
ity is true

x(t’to’)(()) = Hx(ﬁ {‘E(Z[t’t(),L(')]’Z(t’t()vL(')’n(')50('))) ’
L() € M™ ™11, n(-),0() € C,lte]})- (14.63)

This allows one to present the attainability set under state constraint
X(t,t5,X) as the projection of an intersection of ellipsoids. The important question
of specifying the minimal class of functions L(-),n(-) over which it would suffice
to take Eq. (14.63) is not discussed in this chapter. There are examples, however,
when the variety of such functions is finite (see also Section 14.7 and Figs. 14.7
and 14.8). Further examples of the application of the singular perturbation tech-
niques to the problem of state estimation are given in Ref. 3.

For the technique of'this section to be applicable it is enough that the set-valued
map %{(-) (and, therefore, also the functions 4(-),K{(-)) are integrable. This allows a
robust simulation of the solution to the problem with irregular noise in Eq. (14.4).

What follows in Section 14.9 are the results of numerical simulations for the
estimation problems, including the tracking type representation of the solutions, as
well as for the singular perturbation techniques.
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14.7. GUARANTEED STATE ESTIMATION AS A TRACKING
PROBLEM

One of the conventional guaranteed estimates for the unknown states x(¢) is
the “Chebyshev center” x%(z) for X[f] which is given by the relation”

max {||x°(t) - x| | x e X[}
=min{max{|jz—x|| | x e X[1]} | z e X[]}

(this also allows one to mention the guaranteed estimation techniques as those of
“minimax estimation”). The calculation of these estimates is discussed in Ref. 7.

The difficult point is that the vector x°(¢) usually does not satisfy any “nice”
differential equation (except when the restrictions on the unknowns are symmetri-
cal in some sense). The respective applications may not require a precise calculation
of x%(#), however. On the other hand, the Chebyshev center for an ellipsoid
£(c,P) is precisely the point c. We shall therefore indicate a scheme where x°(z) is
substituted for x.(¢): the center of one of its external ellipsoidal estimates £, [¢].

According to the previous Sections 14.5 and 14.6, the center x_(¢) of each the
external tubes E.[1], t, < t < t;, allows a representation

x,(0) = A(0)x, (1) + LOGOx () + p(6) = L()g(1) = LIOW(D),  x, (o) =X,

where L(f) is a matrix parameter or L(¢) is substituted by a functional
L(t,)) = L[t,y(")] with memory y,(-) =Wt + G), tr—t <5 < 0.

The actual trajectory to be estimated is defined according to Eq. (14.12), by
x*(*). By the construction, the inclusion

E[2X[1], <1<y,

holds. Therefore, the result of the approximate estimation procedure is that the
center x,(f) tracks x*(f) on the basis of the measurement y*(t) with ¢, <t < 1. The
ellipsoid Z,[¢] around it plays the role of a guaranteed confidence region. According
to the terminology used in identification theory, the set X*[¢] is the error set of the
estimation process.

The matrix parameter L{f) may here act as a control to minimize or guarantee
a fixed value of the maximal error

max {J|x, (1) - Ol | u()v()x,  Egs. (14.1-14.5) )

either for a specified instant ¢ = 8 or for any z > ¢' > #,, or to ensure that the integral
cost

6
max{ | [lx,() - ()|

0
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+11x,(0) = X" O u()v().x,, Egs. (14.1-14.5) }

would be minimal.

This procedure is similar in nature to a differential game of observation.®) A
feedback duality theory for differential games of observation and control is indi-
cated in Ref. 6.

14.8. THE DETERMINISTIC AND THE STOCHASTIC FILTERING
APPROACHES

Suppose that the system of Egs. (14.1 to 14.4) is specified as follows

x € A(t)x + P(2), (14.64)
»o) € Gox + (1), (14.65)
x(ty) € X, (14.66)

where Eq. (14.65) is the measurement (observation) equation. The continuous
multifunction Qff) (Q; T'= [ty,t;] — convR") reflects the restriction on the un-
known but bounded noise w in the observations as indicated in Eq. (14.5).

Given the measurement y = y*(f), ¢ € [f,,7] the guaranteed state estimation
problem as indicated in the Introduction is to specify at a given time-instant t the
set X[t] of all states x[t] of Eq. (14.64) that are consistent with the Eqs. (14.64 to
14.66) when y(f) = y*(1).

In other words, one is to find the crossections at time ¢ =t of the “viability
tube” X[7] for Egs. (14.64 to 14.66), y(¢) = y*(¢). In the state estimation context the
set X[t] is known as the informational domain, or consistency domain (see Section
14.2). This set depends on the measurement y(c) =Wt +0), ) —1<0<0,
namely,

X[t] = X[ry ()]

For the linear system under consideration X[t,y.(-)] € convR".

The problem of finding X[t] is further propagated into one of describing the
evolution of X[t] = X[t,y.(-)] in time. The evolution Eq. (14.9) for X[t] would,
therefore, be the “guaranteed filtering” Egs. (14.64 to 14.66) for the system with
unknown but bounded uncertainties.

Needless to say that the evolution Eq. of type (14.9) serve to be the solution
to this problem (provided, of course, that () = y(¢) — Q(f) as indicated above, and
that %{7) satisfies the respective assumptions).
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It is well known, however, that a conventional stochastic filtering technique is
given by the equations of the “Kalman filter” which turn to solve the stochastic
filtering problem for linear systems with Gaussian noise. Can the equations of the
Kalman filter also be used to describe the informational domain X[t,y,(-)] for the
guaranteed estimation problem of the above?

On one hand, the tube X[¢] = X [¢,y.(-)] may be described through linear-quad-
ratic approximations.!'’ On the other hand, it may be described by the well
established connections between the Kalman filtering equations and the solutions
to the linear-quadratic problem of control.

Using the solutions of the previous Sections, fix a triplet

k) =K() = {vV(O).w ()xg}
with
K () e {2() x () = QU] x Xy}

and consider the stochastic differential equations

dz = [A(f)z + v'())dt + o()dE (14.67)
dgq = [G(t)z + w*(§)}dt + o,(H)dn (14.68)
2(0)=x;+¢, g(0)=0 (14.69)

where &,m are standard, normalized Brownian motions. They have continuous
diffusion matrices o(f), o,(¢) and

det (c()o'(f))=0forallt e T,

¢ is a Gaussian vector with zero mean and variance M* = G(G{.
Denoting

o()o'(0) = R'(1), oy(t)o| () = H' (1)

and treating g = ¢(¢) as the available measurement one may find the equations for
the minimum variance estimate

2() = E@(t) | q(s), 1,<s<1)

(the respective “Kalman filter”).
These are

dz*(f) = [A() - TOG' (OH" ()G (1)t +
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+ Z(G (W (Ddt + ()G (dg(1) + v'(D)dr, (1) = x;, (14.70)

2(1) = AE(E) + T()A'(2)
-G OH T OGO + R (1), XAty)=M" (14.71)
The estimate z*(¢) depends on the triplets
K(-)and A" = {M".R*().H'()} € 3.
Consider the set
Z(=Z" A = 27O [K() € {7)x K() x Xy} }

which, with a given realization g(¢), is the attainability domain for Eq. (14.70).
THEOREM 14.10. Assume the equalities

M*=M", R"=R'\(), H@O=H () (14.72)

to be true and X(¢) = ¥(¢) — Q(?), t € T. Also assume

f (14.73)
q(1) = I Wv)dr
l(J
Then the following equality is true
Xt =N {Z WA | A" e 3 (14.74)

The last results describe a clear connection between the solutions to the linear-quad-
ratic Gaussian filtering problem (the Kalman filter), and the solutions to the
deterministic guaranteed state estimation problems for uncertain systems with
unknown but bounded “noise” in the nonquadratic case of the instantaneous
constraints on the unknowns.

14.9. NUMERICAL EXAMPLES

Study a four-dimensional system of Eqs. (14.1) and (14.2) over the time
interval [0,5] to consider the Attainability Problem under State Constraints.

The initial state is bounded by the ellipsoid X = £ (x,X) at the initial moment
to =0 with

(14.75)
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Consider a case when the right hand side is constant:

(14.76)

A(f) =

s

1 00
0 00
0 01
0-40

SO 0O

describing the position and velocity of two independent oscillators. Inputs u(¢) are
also bounded by time independent constraints P(f) = E(p(¢),P(f)) with

0 10 00
_lo _[000100 (14.77)
p=|y|s and PO=|y o7 | o |
0 00 00.0l

This form of the bounding sets makes the system coupled. State Eq. (14.3) is defined

by the data
G(t)E(g (1) 8 ?] k(;)z[gj, K(I)E(l(f 205) (14.78)

FIGURE 14.1. Tube of external eilipsoidal estimates of attainability sets.
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FIGURE 14.2. Trajectories of the centers and final estimates in phase space.

Fig. 14.1 shows the graph of external ellipsoidal estimates of the system outputs
(with and without constraints), presenting them in four windows. Here, as well as
in Figs. 14.2 to 14.6, the matrix H of Eq. (14.7) is equal to four projections of the
phase space vector to the planes {x;,x,}, {x3,x4}, {x1,x3}, {x2,x4} in a clockwise
order starting from bottom left. The drawn segments of coordinate axes correspond-
ing to the output variables range from —30 to 30. The skew axis in Fig. ! is time,
ranging from 0 to 5.

Calculations are based on the discretized version of Egs. (14.24 to 14.26, and
14.13). Trajectories of the centers are also drawn. The thick line corresponds to
estimates of the nonconstrained outputs. Fig. 14.2 shows the trajectory of the
centers, initial sets, and the ellipsoidal estimates of the outputs in phase space with
the coordinate axes ranging from —10 to 10.

Turn now to the guaranteed state estimation problem interpreted as a tracking
problem, of Egs. (14.1, 14.6, and 14.7). [Keep the above parameter values of the
time interval, A(f), E(xq,Xo), Elp(1),P(1)],G(¢) and H. In Eq. (14.6) that now replaces
Eq. (14.3), take

qg()=k(¢) and O() =K(). (14.79)
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FIGURE 14.3. Time representation of ellipsoidal tracking (worst noise).

We model the trajectory x*(+) and the outputs z*(-), those to be tracked, by using
the following construction for the triplet

§O) = {ou' OV O}

The initial value xj, is a (randomly selected) element at the boundary of the initial
set Xy = E(xo,Xp). The input #*(-) is of the so called extremal bang—bang type: the
time interval is divided into subintervals of constant lengths. A value u is chosen
randomly at the boundary of the respective bounding set, that is, in case of the input

u' (1), of (1) = E(p(9),P(1))

and its value is then defined as u*(f) = u over all the first interval, and as
1" (f) = —u over the second. Then a new random value for  is selected and the above
procedure is repeated for the next pair of intervals, etc.

For modeling the measurement noise v*(-) (generating together with xj and
1" () the actual measurement y*(+)), use a similar procedure. As is well known, the
size of the error set of the estimation depends on the nature of v*(-). According to
Ref. 6, if one chooses it in such a way that it takes a constant value at the boundary
of E[q(2),0(?)] over all the time interval under study, then it corresponds to the worst
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FIGURE 14.4. Phase space representation of ellipsoidal tracking (worst noise).

case. In large confidence regions using, e.g., the extremal bang—bang construction,
‘good’ noises are created, which reduces the confidence region size.

Fig. 14.3 shows the process developing over time. The drawn segments of
coordinate axes correspond to the output variables range from —20 to 20. In Fig.
14.4, the initial sets of uncertainty (appearing as circles) are displayed in phase
space, as well as the confidence region at the final moment. Coordinate axes range
from —10 to 10. The trajectory drawn with the thick line is the actual output
Z"(-) = Hx"("). The thin line represents the trajectory of the centers Hx_(-) of the
projections of the tracking ellipsoids. Figs. 14.5 and 14.6 show how much the
estimation can improve if the noise changes from worst to better. Although, one
obtains only external ellipsoidal estimates of the true error sets. Opposed to the
above, where the noise was constant, one chooses its length to be 0.05. Again, the
range of coordinate axes is —20 to 20.

To illustrate the singular perturbation technique, we chose a system of two
dimensions, and a scalar measurement equation, by taking the first two state
variables, and the first coordinate of the measurement Equation (14.6) of the above
example over the same time period. This means taking the first two entries of the



FIGURE 14.5. Time representation of ellipsoidal tracking (better noise).

FIGURE 14.6. Phase space representation of ellipsoidal tracking (better noise).
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FIGURE 14.7. Ellipsoidal estimates developing over time: singular perturbation technique.

vectors and the upper left 2 by 2 block of the matrices in Eqgs. (14.75) to (14.77).
Further take

GH=0 1), g=1, O =().

The two estimates shown correspond to the following choices for the function L:

Linz{liﬂe[alﬂ [ 1 ifre[03.5] (14.80)

L=
0.3ifr € [3.5,5], -0 1—0.3 if t € [3.5,5].
Additionally, suppose the initial condition:
¥(0) e [-107°,107%).

Fig. 14.7 shows the two estimates developing over time with the range of
coordinate axes being —30 to 30. The left upper window shows the projections onto
the plane spanned by the two state variables. Here they coincide as expected. In the
right upper window note the projection of the two estimating tubes onto the plane
of the measurement variable and the first state variable, while in the lower window
onto the plane of the measurement variable and the second state variable. In Figure
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FIGURE 14.8. Ellipsoidal estimates and the projection of their intersection: singular perturbation
technique.

14.8 note the estimates (in the same arrangement of the windows and in the same
scale) at the moment ¢ = 4.25, indicated by thin lines, and the projection of their
intersection, indicated by a thicker line. In the space of the first two variables, the
projections of the two estimates coincide again, but the projection of their intersec-
tion is a proper subset.

14.10. CONCLUSIONS

This chapter indicates constructive approaches with algorithmic ellipsoidal
procedures for the state estimation problem for dynamic systems under unknown
errors bounded by given instantaneous constraints.

Specifically, the guaranteed estimator may be presented as a system that tracks
the unknown actual trajectory of the system. The procedures allow effective graphic
simulation that is demonstrated on second and fourth order systems.



238

T. F. FILIPPOVA ET AL.

The connections between “Kalman” stochastic end deterministic “guaranteed”

filtering problems with magnitude bounds on the unknowns are also specified.
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Set-Valued Estimation of State
and Parameter Vectors within
Adaptive Control Systems

V. M. Kuntsevich

ABSTRACT

The problem under consideration is that of obtaining simultaneously set-valued
estimates for state and parameter vectors of linear (in parameters and in phase
coordinates) discrete-time systems under uncontrollable bounded disturbances and
given bounded noise in measurements.

There is no other a priori information on disturbances and noise except for
they are bounded. It is shown that in the absence of noise in measurements and in
the presence only of uncontrollable additive disturbances having an effect on
stationary plants being investigated, the problem of obtaining set-valued parameter
estimates is equivalent to the problem of determining a set-valued solution of a set
of linear algebraic equations under uncertainty in their right-hand sides. With
additive measurement noise, set-valued estimation procedure should be changed
considerably since in this case one has to determine the whole set of solutions of a
set of algebraic equations under uncertainty in coefficients as well as in right-hand
sides. The problem of simultaneous estimation of state and parameter vectors can
be reduced in the long run to the last-mentioned algebraic one.

V. M. KUNTSEVICH ¢ V. M. Glushkov Institute of Cybemetics, Academy of Sciences of Ukraine,
252207 Kiev, Ukraine.

Bounding Approaches to System Identification, edited by M. Milanese ef al. Plenum Press, New York,
1996.
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The problem of set-valued estimation for nonstationary systems with restricted
parameter drift rate is also considered.

15.1. INTRODUCTION

Set-valued estimation has been widely used in solving identification problems
in the last decade. A number of publications!'* have been devoted to the range of
problems under consideration. The problem of simultaneous estimation of state and
parameter vectors holds a special place in this series. It is met in particular in
unstable plants control when the parameter identification process cannot be sepa-
rated from the control process itself as well as when both of the problems should be
carried out simultaneously within adaptive control system. The above-mentioned
problems are considered consecutively in the chapter.

15.2. SET-VALUED PARAMETER ESTIMATION FOR LINEAR
NONSTATIONARY SYSTEMS

Recall the main idea of set-valued estimation with the simplest example
namely with the parameter identification problem for plants without memory,
which is widely known. One of the earliest general schemes suggested for obtaining
a set-valued estimates of the parameters is considered below.

Let a class of plants under consideration be stated by the equation:

y,=Lu+f, n=12,..., (15.1)

where L is k-dimensional vector of unknown but constant parameters; f, is uncon-
trollable bounded disturbance (noise) with given a priori interval estimate

J,ef Vn>0, (15.2)

where
f=1f: If] <A=const}. (15.3)

No other information about disturbance f,, exists besides that it is bounded in
terms of Eq. (15.3).
Let the estimate for vector L be known at the nth instant:

Leg, (15.4)

where £, is a given convex set. Atn = 0, €, is given a priori. It is required to obtain
a posteriori estimate of L using measured values of u,, y, and estimate Eq. (15.4).
Using Equation (15.1) gives the estimate for L with known u,,,; and y,,,
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Le§n+]={L:u ur L=y, ~f.}. (15.5)
fef

Then a posteriori estimate can be obtained by intersecting two noncontradictory
set-valued estimates in Egs. (15.4 and 15.5):

Leg, =¢. ¢, (15.6)

n+l
Obviously one can claim that estimate £,, fulfills the relation £,,,; < £, and
no more in general. The case £,,, = &, corresponds to noninformative measurement
of Eq. (15.1). In some particular cases,'>*!>» procedure Eqgs. (15.5 and 15.6)
enable an identification process to be completed by obtaining a pointwise set
containing the only true value of vector L in a finite number of steps. The pointwise
set-valued estimate might be obtained for a particular class of uncontrollable
disturbances f,, which meet an additional constraint besides Eq. (15.3),

lim1/N |=¥ 7] =0,

n+l
N—w

if this feature of sequence {f,} is taken into account in a proper way modifying a
procedure.®2¥

Some necessary and (or) sufficient conditions of noninformativity of Egs.
(15.5) can be pointed out. Nevertheless, the complexity of checking them is
commensurable with that of carrying out an Eq. (15.6), which makes them useless.

Since £, is a hyperband in the parameter space, the result of intersection Eq.
(15.6) is a convex polyhedron if €, is given in the form of convex polyhedron. In
particular, when dealing with polyhedra described by their vertices, the algorithm
(and its program) of two convex polyhedra intersecting is suggested.®> Since the
number of vertices of polyhedron £, varies and cannot be determined in advance,
one has to operate with data array of a varied volume. This disadvantage of the
algorithms of precise set-valued estimation is why a line of investigations are
developed essentially for a class of polyhedra for estimation with approximating
ellipsoids.("->>67:10.122D However, considerably less computational complexity of
estimation with ellipsoids is achieved at the cost of the set-valued estimate’s quality.
The error of such approximation increases with the increase of parameter vector
dimension. That is why methods of set-valued estimation in both classes have been
developed in parallel. Areas of an application of polyhedral and ellipsoidal esti-
mates presumably can be determined as follows. For problems of comparatively
small dimension (k < 10), preference should be given to precise set-valued esti-
mates. For problems of a middle dimension (10 < k < 10%), ellipsoidal estimates are
preferable. For problems of a large dimension (k> 10?), an application of both
methods is connected with essential difficulties, since approximation error in-
creases sharply for ellipsoidal methods while memory and computational complex-
ity increase rapidly for polyhedron methods.
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A similar approach can be used for obtaining set-valued estimates of dynamic
system parameters. Indeed, let a class of discrete-time control systems be given by
the equation

X

n+l

=AX,+Bu, +Cf,, n=0,12,..., (15.7)

where X, is m-dimensional state vector, 4 is (m x m)-matrix, B and C are m-dimen-
sional vectors, u,, is scalar control (input), and f,, is uncontrollable disturbance as
shown above.

For simplicity assume that vector X, is available for measurement without
noise. Assume that matrix 4 and vectors B and C in Eq. (15.7) are of the canonic
structure, i.e.,

0;1,,,,1 0 0
A= . B=|| || c=|]- (15.8)

where [,,_; is a unit matrix (m — 1) x (m — 1).
Let an a priori estimate be given for the vector of unknown but constant
parameters L = (4,,b,,):

Leg, (15.9)

where £, is a given convex set (polyhedron).
It is needed to obtain an estimate of vector L using measured values of X, and
u, and an a priori estimate in Eq. (15.9). Making use of Egs. (15.7 and 15.8) gives

Xyt = ApXoy + b0, + 1, (15.10)
or
Xpurt =L'Z, 4, (15.11)
where
Zy=(X,u,), LT=(4),b,). (15.12)

Here x,,,.; is the mth component of vector X,,;. With measured values of
X,..1, X, and u,, and taking into account Eqgs. (15.3) and (15.11) one can obtain an
estimate

Le€,, ={L: v ZIL=X, /1 (15.13)
I ef

If the set-valued estimate of L is available at the nth step, that is
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Leg, (15.14)
then the result is an a posteriori estimate from Eqs. (15.13) and (15.14):

Le®, =8, Ng, (15.15)

n+l

Thus, the problem of set-valued estimation of the parameter vector of dynamic
system Eq. (15.7) has been reduced to a procedure identical to that for solving the
problem of parameter identification of a plant without memory (see Eq. (15.1)).

Obtaining estimates of vector L using procedure Egs. (15.13 and 15.15) is, in
effect, equivalent to determining a set-valued solutions of a set of linear algebraic
equations with uncertain right-hand sides.!!** Equation (15.11) can actually be
written in the form

ZL =8, -F,, (15.16)
where
Z 1| X || o 1517
Zy ZZIT : SN=’ nz\| | Fy = fl . (17
ZzT\‘/—l H X';LN A N.—l

Matrix Zy and vector Sy are known exactly in Eq. (15.16). For vector Fy, one
has only its a priori set-valued estimate

FyeFy=fxfx..xf (15.18)

As shown,'®?% the recurrent procedure of Eq. (15.15) is nothing else but for
obtaining the whole set of solutions of a set of linear equations with uncertain
right-hand sides projected onto a priori estimate £,

With additional noise in the measurement of vector X, considerable changes
to the process of finding the whole set of solutions of a set of linear equations should
be made. Indeed, let vector

-1
Xy = xi Iy = 11,1

and let X, be measured with noise v,,, i.e., let
V=X, v, (15.19)
where
v, €0 Vn20, v={w |v| <3 = const}. (15.20)

Then instead of Eq. (15.13), Egs. (15.7 and 15.8) give
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Vet =AY, + by, +fo =AYV, = v, (15.21)
where y,, ,.1 and v,, .., are respective mth components of vectors
Y =119l =1y, and V= 1v I =1y, 1
or
(Y, = V) A, b, =Y, +5, (15.22)
where
S, =y = Vet (15.23)
Only an a priori estimate
VeB=pxpx... XD, (15.24)
is given for vector ¥, by virtue of Eq. (15.20). An estimate
s,eB=f+v (15.25)

is given for variable s, on the strength of Egs. (15.3, 15.20, and 15.23), where a
sum of sets is taken as a Minkowski sum. Thus the presence of a multiplicative
member Z!4,, by means of a procedure like Eq. (15.15), with observation Eq.
(15.22), introduces valuable changes. In this case the whole procedure of Eq.
(15.15) proves to be equivalent to determining a set-valued solution of a set of linear
algebraic equations under uncertainty in their both sides.!'®?*) This procedure is
considered below in detail.

15.3. SIMULTANEOUS SET-VALUED ESTIMATION OF
GUARANTEED ESTIMATES OF PARAMETER AND
STATE VECTORS FOR LINEAR STATIONARY SYSTEMS

A designer of control systems often finds himself in a situation when rough a
priori estimates of parameters of a controlled plant are given. Hence they need more
exact definition. A state vector of a system is measured under noise which cannot
be neglected. Consider this situation as applied to the class of dynamic system Eqgs.
(15.7) analyzed above. Entering necessary changes and alterations into its descrip-
tion. Thus, assume that Eq. (15.7) describes as before the motion of the dynamic
system under consideration. Matrix 4 and vectors B and C of canonic structure and
an a priori estimates given for matrix 4 and vector B are

Ae, BeB, (15.26)
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where 9, and B, are given convex sets.

Construct a sequence of estimates of state vector X, and that of elements of
matrix 4 and vector B using the result of Eq. (15.19) and a priori Eqgs. (15.3, 15.20,
and 15.26). A number of publications are devoted to obtaining a solution of a more
simple problem, namely, to estimate states of a dynamic system with known
parameters,>%1012)

If vector X, is of the form
X = H x,, m m-l (15.27)

" i=1

then obtaining an estimate of vector X, is reduced to that of estimation of its first
component x,,. Thus, construct a sequence of set-valued estimates of vectors X, and
L. Make use of Egs. (15.21) and (15.19), i.e.,

Xy = A0 X, + by, + (15.28)

Yne1 = Xpiy +vn+]’ (1529)

with a priori estimates Egs. (15.3) and (15.20) and

A

Lol ce (15.30)
b, "

X eX, (15.31)

and known values u, and y,.,. Equation (15.28) determines prognostic estimate of
value x,,, in the form

T (15.32)
Xy €t =V AX, +bu, +1),
X €er,
Leg,
Syt
and Eq. (15.29) gives the estimate
xn+l € E;Hl :yn+1 -0 (1533)

Here, in the same manner as everywhere below, a sum of sets is taken as a
Minkowski sum.
Using two noncontradictory Egs. (15.32) and (15.33) gives

Xn+1 € In+1 = ErH—l N %n+1’ (1534)
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Estimate X,,,, is used further to obtain the estimates of vector L from Eq. (15.28),
that is,
~ T (15.35)
Leg, ={L: U (ZL+f-x,, =0}
XIHIe[nH
/ef

z,€3
Vector ZX, | = (XT,u,) introduced here is estimated with set 3 obviously of the form
Z ey=%xu, (15.36)

A posteriori estimate of vector L is determined with estimates Eqs. (15.30) and
(15.36), that is

Lef =2 NE. (15.37)

n+l n+l n

With calculations made by Eq. (15.37) the cycle of estimation of vectors L and
X, is completed.

Without dwelling on all the necessary details of application of general scheme
presented here are some general comments. Clearly, the following relations be-
tween sets I,,+1 and f,,H may take place in general:

1) i C £n+15
2) EHI ; and
3%, N EM £ Q.

Thus, only the first and the third ones involve prognostic estimate %,,, . This allows
one to obtain an estimate of vector X, better than X,,, obtained as a result of
measuring with noise. In the latter case, an estimate of parameters of a dynamic
system is rough. Using prognostic estimate %, one cannot refine estimate I,,+1
Thus, the quality of estimate £, has an immediate effect on the quality of estimate
%,..1 to be obtained.

To dwell more elaborately on some details of obtaining sets £,,; and %,,,,
determine interval set X,,,, defined by Eq. (15.32), and use the following designa-
tions:

Ely= U (X)), (15:3%)
4 ed™
Xnefn

£ = U (b, (15.39)

b e b[m)
m n
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where 2™ = P,(£,) is a projection of set £, onto a subspace of elements A,,; and
b0 = P,(£,) is a projection of the same set onto Ob,, axis.
Designate also

sup {ALX} =5, (1340
4,€ Q[:");
XeX,

inf {A’lr;an} = o—/m—l > (1541)
A€ Q[(n"”;
X”Ex"
To find values o', and &'_,,, state the following.(!¢>
Statement 15.1: If X; and Y; are vertices of arbitrary polyhedra ¥ and Q)
respectively then

sup {v=X"¥} = sup {7, = X' T} (15.42)
Xe¥ i€l N
ved jeTH
and
inf {v=X"Y} = inf {7, = XTY;} (15.43)
XeX iel N
Ye?) ]eL_AJ

where X; and Y; are vertices of convex hulls ¥ and 9 of sets X and and 9
respectively; N and M are the numbers of these vertices.

The proof of this statement is obvious enough and it is based on the properties
of linear functional.

Let sets £, and X, be convex polyhedra defined in spaces of respective
dimensions R™! and R™ defined by their vertices L., i € T,N, and X7, j € T,M,,
where N, and M, are the numbers of vertices of £, and %, respectively, with given
matrixes, their vertices

Gr=||LL, L2, ..., L}, and (15.44)
Gl=X, X2, ..., X0 (15.45)

The same set of vertices for 9, = P4(&,) has the form
Gy=1Uy, A% A (15.46)

Making use of Statement 15.1 gives
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O\t = sup_ {(4/)"X'}, and (15.47)
J=18,
i=1M,
g,n+1: lli {(A],,)TXL} (]5.48)
j:l’Sn
TN,

Hence set ¥',.; can be determined now in the form
¥, ={no, <x<o, ) (15.49)
Set b = P,(£,) is interval one, i.e.,
b = {b: B < b sgﬁ,'”’}

where b and b are numbers defined as aresult of projecting set £, onto the Ob,, axis.
In accordance with Eq. (15.39) set ¥, is obtained in the form

¥ ={Xub<x<ub}atu, >0,and (15.50)

¥ = {Xub<x<ub}atu, <0. (15.51)

On the strength of Egs. (15.32), (15.38), and (15.39), %,M can be finally
represented as

_ r "
£n+l - 1n+1 +%

n+l

+, (15.52)

where sets ¥',,,, and X", are determined by Egs. (15.49), (15.50), and (15.51),
respectively. -

Now dwell on obtaining set £,,, determined by Eq. (15.35). Parameter
identification has known values of state vector X, when set £,.., is represented by
a hyperband in the parameter space. The case of uncertain state coordinates, unlike
the case considered above, only when the inclusion X, € X, is to be used, is
essentially more complicated. In this connection, consider in greater detail the
problem of finding a set-valued solution of a set of linear algebraic equations under
uncertainty mentioned above. With this aim in view, consider a set of linear
algebraic equations in a standard notation

AX=B, (15.53)

where X is /-dimensional vector to be determined, 4 is a rectangular matrix of
!/ x N dimension in general, and B is n-dimensional vector. Assume that estimates
for matrix 4 and vector B are given by
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Aed, Be®B (15.54)

where 9 and B are convex sets (polyhedra). An a priori estimate is also given for
vector X

Xe¥, (15.55)

where X, is a convex set (polyhedron). Set-valued solution of Eq. (15.53) under
Egs. (15.54) and (15.55) is to be found.

Solving a set of linear algebraic equations is an ancient problem in mathemat-
ics. Existence of unavoidable errors in coefficients and in left-hand sides which are
caused either by inaccuracy in initial data or by a finite accuracy of a computer, or
by both the first and the second, leads to an uncertainty of a solution. Varying
coefficients of a set of equations within the accuracy of their assignments, one can
obtain different solutions and pretend that each one is equally true. But existing
methods for solving a set of linear equations, such as least squares techniques and
others, are oriented for obtaining the only (pointwise) solution. They might be
considered as a particular illustration of “subjective aversion for problems not
having a univalent answer.”?®

Awiderange of problems have been specified in the last few years, particularly
control, identification, and filtration under uncertainty of non-stochastic nature. For
solving them, one has to obtain the whole set of solutions of a set of linear equations
with uncertain values in both sides of each equation. Such problems are of interest
to adherents of a new scientific branch called “interval mathematics.””-*®

DEerFNITION 15.1. Set ¥ containing all the points X € R/ satisfying Eq. (15.53)
at each particular 4 and B from Eq. (15.55) is a set-valued solution of Egs. (15.53)
and 15.54).

Naturally, in the general case of having no additional conditions, all the points
of set X (if it is not empty) are equivalent in a sense that none of them can pretend
to the role of the only “right” solution.

Obtaining set ¥ in the form

¥=f2,B)= U U f(4B) (15.56)

Aed BeB

Let set B be of the form

B=uUB, relN, (15.57)

where B, is a subset of B, Ny is the number of subsets B, , and

A=0 A, and ke LN, (15.58)
k
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respectively, where 2, is a subset of & , and N, is a number of subsets %,.
Substituting Egs. (15.57 and 15.58) into Eq. (15.56) gives

¥=vui, kel,N, relN, (15.59)
kor

where

I,= v U f4B) (15.60)

Aed BedB
From Egs. (15.59) and (15.60), the set X to be found is a solution of a set of linear
Equations (15.53) under Eq. (15.54), and in terms of Definition 15.1. It has a
property called compositivity. Namely set X can be obtained from Eq. (15.60) as
a union of subsets. It means that determining set X makes use of Eq. (15.57) and

(15.58).
Consider solving Eq. (15.53) (in terms of Definition 15.1) for interval 4 and B:

FIGURE 15.1. Set of solutions of linear equation with a;; >0, a;; > 0.
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a . <a.<a neﬁ\’, jel_,l, (15.61)

n K "’

b,<b,<bh, (15.62)

Zn

where a,, a,;, b,,, and b, are given values.

It is easy to verify that in a general case set X is nonconvex. Indeed, consider
one row of Eq. (15.53) with two-dimensional vector X, i.e., at /=2, N=1 (the
two-dimensional case is suitable for geometric interpretation on a plane). Set X of
various forms is presented at Figs. 15.1, 15.2, and 15.3 for b, > 0, and different
values of a;; and a, as a crosshatched region. Figure 15.1 corresponds to the case
of a;; >0, a,,>0. Figure 15.2 corresponds to the case of a;; <0, a;; >0, and
ay,> 0. Figure 15.3 corresponds to the case of a a;; <0, a;; >0, a;,<0, and
a;>0.

Consider the sth orthant (s=1, ..., 2’) of space R/. Determine the set of
indices {ej} for this orthant at j=1,...,/ as follows: e; =0 if the value of a
component x; of vector Xis positive in this orthant, ¢; = 1 otherwise. Then, diagonal
matrix G, = diag{et, . . ., kej} is characterized by the equation

(1-2G)X>0. (15.63)

For each s, introduce matrices C(.) and E’S(.) with coefficients determined as
follows

_an(s)zaf’;, _C—'nj(s)=a"l;e;, nel,N, jell (15.64)

FIGURE 15.2. Set of solutions of linear
equation with a11 < 0, a11 >0, at2 > 0.
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FIGURE 15.3. Set of solutions of linear equation
with a1; <0, 211 >0, a12 <0, a12 > 0.

Introduce vectors

B'=(b,,....by., and B'=(b,,....by).

A set of linear equations

IA
o |

CX

>

C,X<B, (15.65)

=

combined with Eq. (15.33) separates out the set X°, which makes it a convex
polyhedron.

The following theorem is correct.

THEOREM 15.1. A set of solutions of Eq. (15.53) under Eq. (15.54) represented
by Egs. (15.61 and 15.62) should be the set

!

. 2 - (15.66)
=uv I

s=1
A proof of Theorem 15.1 can be found.***)

Naturally, any particular subset X* may turn to be empty, i.e., the set of Egs.
(15.63) and (15.65) is contradictory for the sth orthant. Comparing Egs. (15.53)
and (15.65) (taking Eq. (15.64) in view), it is clear that each row from Eq. (15.53)
produces two linear inequalities in the form of Eq. (15.65) in the respective orthant.
All these pairs of inequalities are independent with each other. Subset X° can be
reduced, subsequently adding respective pairs of inequalities and eliminating
non-informative ones. With this aim in view rewrite Eq. (15.53) in the form

ATX=b, ne LN, (15.67)
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where A is the nth row of the matrix 4. To each scalar equation from Eq. (15.69),
set X, corresponds as follows: X € X, such 4 € U, and b, € b exist that Eq. (15.69)
is true for the taken n. According to Theorem 15.1, the set X, for any n can be
presented in the form

~ M~ (15.68)
=V X, M=2,

s=1

where %, is a convex subset completely belonging to the sth orthant of space R, It
is separated out in this space by two scalar inequalities

EISX_ .b_n Z 0’
CTX~b,<0, (15.69)

where CL. and C are the nth rows of matrices C, and C, respectively.
On the other hand, taking into account that a priori estimates for matrix 4 and
vector B coefficients are independent of each other one can claim that

I=%,nEn .. Ny, (15.70)
Therefore, set evolution equation is represented with
¥.,=%.,n%, ¥=%, nelN, (15.71)
and
=%, (15.72)

From Egs. (15.68) and (15.71) a set of independent difference equations are
obtained:

¥ =% Nn¥, iellM, nelN

n+l
X=X, (15.73)

which describe the evolution of convex polyhedra in each orthant separately (except
for those orthants where these setg are empty). As this takes place, performing
intersection of convex sets ¥, and X’,,, remains similar to the methods described
above, since one must intersect a polyhedron with Eq. (15.69) and reject the cut-off
part only.

Given an a priori estimate X, of set X is represented as a union of convex
polyhedra Xj :

X,=UX, ielM, (15.74)
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so it is appropriate and can be used in the recurrent procedure described above.
With this aim in view, Eq. (15.73) should also be extended to the value n = 0.
Substitute Eq. (15.74) for the initial condition X} = i'l )

Examples illustrate the above method for constructing the set ¥ of solutions
of the set of Eq. (15.53) under the given conditions of Egs. (15.54) and (15.55).(11:2%

Now, extend the method suggested above to the case of state vector estimation
when vector X, is an arbitrary one. Equation (15.19) represents the measurements
that should be substituted by the equation

Y,=X+V, (15.75)
where V, is m-dimensional vector of noise with a priori set-valued estimate

V.eB Vn20. (15.76)

Here B is a given convex set (polyhedron).
The case under consideration differs from the one considered above from the

only viewpoint. Use the estimate
X, % =Y -B (15.77)

instead of Eq. (15.32) and the following one instead of Eq. (15.33), therefore, on
the strength of Eq. (15.28) it takes the form

‘Xnﬂ _ “n+l
X, =l - eX =|| -~ |, (15.78)
Im,n+1 tm,nJr]
X, = U (4X), and (15.79)
X eX
- 15.80
rm,rHrl = “ (AIan + bmun +/;,) ( )
Am e?l:m), X” € fn
bm Eb(m)’j; ef

A matrix 4 is obtained from the matrix 4 by deleting its last row, and X is a
vector obtained from the vector X by deleting its last element,

All the other steps of the identification procedure applied for vectors L and
X, to obtain set-valued estimates £,, X, remain with no change.

It is also easy to prove that if matrix 4 is not of a canonic form, nothing, in
principal, should be changed (considering the general scheme described above).
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15.4. OBTAINING SET-VALUED ESTIMATES OF STATE AND
PARAMETER VECTORS FOR LINEAR NONSTATIONARY
SYSTEMS

Let a class of linear nonstationary systems be stated by the difference equation

X, =AX, +Bu +Cf, (15.81)

n

where all the designations have the same sense as above; matrix 4, and vector B,
are unknown and vary arbitrarily in time elements, for which only certain a priori
estimates are given. Clearly, with general suggestions on 4, and B, one cannot
obtain valuable results in solving the identification problem, and must restrict a
subclass of plants for which a rate of change of the coefficients of 4, and B, are
bounded with known bounds.

Assume as above that 4, and B, have a canonic form

0:171,, 0

A,= s By=1 || s (15.82)
A by

mn
and a priori set-valued estimate € for vector L{ = (A,T,,’O,bm,o) is given by
Lye £ (15.83)

in the form of a convex set (polyhedron). In addition, assume the rate of change of

the parameter vector L] = (AL’,,,bm,,,) to be bounded, i.e.,

AL, =L,  ~LJI<3d=const. (15.84)
The vector norm is determined as

Xl = max |x}].

i=l,m
Equation (15.84) gives an a priori estimate for vector AL, = R,
AL, =R, e R={R:|IR|| <3}. (15.85)

Clearly, since Eq. (15.81) is nonstationary in L, the only alterations in the
suggested general scheme deal with estimation of vector L,,. In this connection, a
radically unremovable delay for stepwise operating discrete-time system exists in
identification process or a nonstationary plant. Indeed, as follows from Eq. (15.81)
with the value of vector X, measured at the (n+1)th instant, this equation determines
set €' as an a posteriori estimate of the parameter vector value at the previous
instant. Vector L, jointly with the previous a priori estimate for the sth instant of
time, is
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L,e¥, (15.86)
and determines a posteriori estimate of vector L
L egr =gt ngn (15.87)

Since solving particular problem at the (n+1)th instant estimate of vector
L, is required at the same time, solve an extrapolation problem using Eq. (15.87).
It is necessary in one way or another to obtain an estimate of vector L, at the
(n+1)th instant of time

+1
L. g (15.88)

n+l*

Clearly, Eq. (15.84) or (15.85) is the only source to obtain it. Since vectors
L, and AL, are given only in terms of their set-valued estimates, it is clear that vector
L, can be estimated in the form

L, c@l=gl iy (15.89)

Looking at Eq. (15.89) one can find increasing volume of a set-valued estimate
caused by the operation of summation of sets and decreasing volume caused by
their intersection. Due to this fact, Eqs. (15.87) and (15.89) at n — oo cannot be
divergent. Nevertheless, one can give a rigorous statement and prove it.

THEOREM 15.2. For parameter vector of discrete-time Eq. (15.81) satisfying the
difference equation

Ln = Ln~1 + ALn*]’

where vector AL,_| is bounded by Eq. (15.85). For vector L,_; with its estimate
277! given at the (n—1)th step with no disturbances and noise, i.e., at f = & and
B = &, the recursion

L,e¥= EZ"I + R,
where

L, e =2 Al and

n—1°

A +u_.b x =0)}

mn—=1" “mn

no_ . T
gnAl - {Ln—]' - (Xn—l
I e

n-1""n-1

mn—1 n—1

with linearly-independent vectors Z._, = (X} ,,u,_,) determines a sequence of
bounded sets £} , i.e., the diameter 8(£)) < oo at n — oo,

In addition, taking expressions Eqs. (15.87) and (15.89) into account one can
claim that sets £, are convex since the class of convex polyhedra is closed with
respect to taking a sum of sets and intersecting.
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15.5. CONCLUSIONS

The algorithms of simultaneous set-valued estimation of state and parameter
vectors for linear dynamic systems have been described above. Making an assump-
tion of a very general nature of the form of Egs. (15.3) and (15.20) put on
uncontrollable disturbances (noise), the procedures of parameter identification
described above generally should be terminated with obtaining unimprovable
estimates. The availability of such “residual” (unimprovable) uncertainty in pa-
rameter identification also provides the existence of generally unremovable uncer-
tainty in state estimation.

For the class of nonstationary dynamic systems, which are unremovable in
principle, uncertainty exists naturally. Nevertheless, this uncertainty remains
bounded even at arbitrary large time interval.

The algorithms of set-valued estimation of state and parameter vectors can be
applied to designing adaptive control systems of a wide class, particularly to
unstable plants.
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APPENDIX

The proof of Theorem 15.2: It was already shown above that Egs. (15.87 and

15.89) are equivalent to solving the respective set of linear algebraic equations
under uncertainty in right-hand sides. This statement is correct also for the case of
solving a set of linear equations under conditions of Theorem 15.2, based on the
successive elimination of unknown variables. Indeed, a set of equations at
n > (m+ 1) is of the form

_ 4T
xm,n+1 - Am,an + bm,nun

and, respectively,

k k
T
X1~k = Xn (Am,n - Z AAm,n—l—j)—F (bm,n - Z Abm,rz~1—j) u, at k<n.
=l =1

Assuming k= 1,2, ..., m+ 1, one obtains the following set of equations

T
xm,n - Xn—l Am,n—] + bm,n—lun—l’

T
xm,n-—l :Xn~l (Am,n—l - AAm,n—2)+ (bm,n—l - Abm,n—2) unA2’

- ZX;zr—m~l (Am,n—l -2 AAm,rx—l—j)-+_ (bm,n—l - 'Z Abm,n—]—j) Uym-1
J

J=1

With the designations

A

T _
Xn - (xm,n’ xm,n—]’ Tt xm,n—m-l)’

T T
Zn—l = (Xn—l’ un—l)’
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zl 9 0
;‘._l AAM,H—Z Abm,n—2
Nn—l = Zr;—Z Yn—l = m : m .
Zz—m—l Z AA;lr“t,n—l—j Z Abm,n—l—j
J=1 Jj=1

rewrite them in the form
i\/n = zn—l(Ln—l =¥, )
If det Z # 0 we obtain from above
L, = z;115\(,1 + z;ll Y

The exact values of vector AL, = (AA;,,,,Abm,,,) are unknown, i.e., it is known

only that ¥, € 9,-,. Hence only estimate L, ; € £, can be obtained. However,
since set 9),,_, is bounded, set £,,_; is bounded at det Z,_; # 0. Thus, estimates £/,
are bounded at Vr 2> 0.
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Limited-Complexity Polyhedric
Tracking

H. Piet-Lahanier and E. Walter

ABSTRACT

When the errors between the data and model outputs are affine in the parameter
vector 0, the set of all values of 0 such that these errors fall within known prior
bounds is a polytope (under some identifiability conditions, which can be described
exactly and recursively. However, this polytope may turn out to be too complicated
for its intended use. In this chapter, an algorithm is presented for recursively
computing a limited-complexity approximation guaranteed to contain the exact
polytope. Complexity is measured by the number of supporting hyperplanes. The
simplest polyhedric description that can thus be obtained is in the form of a simplex,
but polyhedra with more faces can be considered as well. A polyhedric algorithm
is also described for tracking time-varying parameters, which can accommodate
both smooth and infrequent abrupt variations of the parameters. Both algorithms
are combined to yield a limited-complexity polyhedric tracker.
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16.1. INTRODUCTION

Bounded-error estimation''  initially dealt with time-invariant models. When
the error to be bounded is affine in the parameters @ € R” to be estimated, the
(posterior) feasible set S for 0 is a convex polyhedron. Assume for the sake of
simplicity that this polyhedron is bounded (i.e., a polytope), which can be inter-
preted as an identifiability condition. This polytope can then be characterized
exactly as the convex hull of its vertices. Proper book-keeping of the relations of
adjacency between vertices (e.g., via lists of supporting hyperplanes) makes it
possible to characterize S recursively.® Section 16.2 recalls an algorithm for that
purpose, which forms the basis of the procedure to be used for limited-complexity
polyhedric tracking. This exact description is often much simpler than might be
feared (because a large number of inequalities do not contribute to the definition
of the boundary of S). It may nevertheless turn out to be too complicated for its
intended use. This is the main motivation for attempting to approximate S by
simpler sets guaranteed to contain it. Ellipsoids,’™ axis-aligned orthotopes'” or
generic parallelotopes''! have been considered for that purpose. In Section 16.3, a
modification of the exact polyhedric description is presented that allows a recursive
determination of a limited-complexity polyhedron guaranteed to contain S. The
complexity of the polyhedron will be characterized by the number of its supporting
hyperplanes. It is, for instance, possible to require the polyhedron to be a simplex.

In many practical applications, it is necessary to allow parameter variations to
account for the unmodeled behavior of the system. Various extensions of the
original techniques to time-varying parameters have been presented in the litera-
ture.!!21) Most are derived from ellipsoidal-bounding algorithms. In Section 16.4,
an algorithm for polyhedric tracking of time-varying parameters is described.
Although mostly designed to follow smooth parameter variations, it can also
accommodate infrequent abrupt changes of the parameter vector. It combines two
algorithms recently proposed ' and makes it possible to limit the complexity of
the polyhedra obtained. Illustrative examples are presented in Section 16.5.

16.2. POLYHEDRIC DESCRIPTION FOR TIME-INVARIANT
SYSTEMS

If the error e(z, 0) is affine in 8, it can be written as
e(t,8) = a’(1)8 — B(0), (16.1)

where a(f) and B(¢) are known. In bounded-error estimation, one is interested in
characterizing the posterior feasible set for the parameters, i.e., the set of all values
of @ such that the error satisfies
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O<et,@)<e_ (HO=1,2,...,N, (16.2)

€hin max

where the bounds e,;,(f) and e, (¢) are known a priori. (For a situation where the
bounds are not known, see Ref. 15.) From Egs. (16.1) and (16.2), 8 must satisfy

a’(10 > B(1) + e, (0), (16.3)

0" (10 < B(2) + €,,,(0), (16.4)

which define a feasible strip II, bounded by two parallel hyperplanes. It seems
worth noting that the algorithms to be presented do not require these two hyper-
planes to be parallel, so that they also apply to the type of pairs of linear inequalities
obtained by the errors-in-variables approach. When 0 is assumed to be time-invari-
ant, S is the intersection of N such feasible strips. If it is not empty, it is a convex
polyhedron, which can be described exactly by enumerating its vertices and/or
supporting hyperplanes. The determination of the solution set associated with
Egs. (16.3) and (16.4) can be performed recursively'* by processing one inequal-
ity of type (16.3) or (16.4) at each iteration. Taking a new datum into account thus
requires two iterations. The polyhedron P* of all values of @ consistent with the
first k inequalities is described by the set of its vertices {vk} completed for each of
them by a list of its adjacent vertices adj*(i) and a list of its supporting hyperplanes
hyp*(0).
The kth inequality to be taken into account can be written as

00>, (16.5)
At iteration k, the intersection P¥ of P¥"! with the new feasible half space
Hi={0]a0>5,} (16.6)

is computed. Initialization is performed by defining a prior feasible polyhedron
IP? described by its set of vertices {v? } and associated adj’(i) and hyp°(i) lists. If
no vertex of P! satisfies

alvi b, >0, (16.7)

then the intersection is empty and the algorithm stops. If all vertices of P =1 satisfy
Eq. (16.7),then P* = P*! and the constraint is redundant. Otherwise, it is necessary
to update P! to P¥ as follows. Let v,/ be any vertex of P*! satisfying Eq.
(16.6) and thus kept in P*. If a"v, ;_, = b, then H, = {0 | a0 = b;} must be added
to the list of supporting hyperplanes of v, ,_; which otherwise remains unchanged.

Consider now the set of all vertices of P*! that are adjacent to v, ;. Any of
these vertices that satisfies Eq. (16.5) also belongs to P* and remains adjacent to
Vi1 Any of these vertices that does not satisfy Eq. (16.5) is discarded and
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replaced by a new vertex located at the intersection of H; with the edge linking
Vi1 to the vertex discarded. This new vertex is obviously adjacent to v, ., and
to all other new vertices created from v, ,,_;, which makes the updating of the list
of adjacent vertices simple. The list of supporting hyperplanes for each vertex
created from v, /,_; is obtained by appending Hj, to those supporting both v, .,
and the vertex discarded. All vertices of P* are thus determined, together with their
lists of supporting hyperplanes. All vertices of P* that are in P*! also have a
complete list of adjacent vertices, but the lists of adjacent vertices associated with
the newly created vertices remain to be completed. This is performed by considering
all pairs of newly created vertices originating from different vertices of P*! and
comparing their list of supporting hyperplanes. Any pair of vertices that have at
least (n — 1) hyperplanes in common and are such that no other vertex has a list of
supporting hyperplanes containing these (n — 1) hyperplanes are adjacent. The
polyhedron P¥ is then obtained as a set of its vertices, with lists of adjacent vertices
and supporting hyperplanes.

16.3. APPROXIMATE DESCRIPTION FOR TIME-INVARIANT
SYSTEMS

Provided that the number » of the parameters to be estimated is not too large,
P2V is often surprisingly simple, even if the number of inequalities to be taken into
account is quite large. A large number of inequalities turn out to be redundant. It is
possible, however, that the complexity of the exact description obtained is too high
for its intended use. It is then necessary to look for a coarser characterization. So
far as the approximating set is guaranteed to contain the actual feasible set, it can
be considered as an expansion of the actual feasible set, and therefore already
confers on the algorithm some tracking ability. The method presented in this section
aims at determining a series of limited-complexity polyhedra guaranteed to contain
S. The parameters to be estimated are still assumed to be time-invariant. The
procedure is initialized by choosing as a prior feasible set some polyhedron P°
defined by at most n;, supporting hyperplanes. The simplest possible case is when
ny, =n + 1, which corresponds to a polyhedron with n + 1 vertices, or simplex. Since
any vertex of a simplex is adjacent to all others, the associated adj lists are trivial.
Since any vertex belongs to all supporting hyperplanes of the simplex but one, the
hyp list associated with any vertex can be replaced by the index of this supporting
hyperplane. This allows one to further simplify the algorithm.

Let L*! be the limited-complexity polyhedron obtained when & — 1 inequali-
ties have been taken into account. The algorithm of Section 16.2 can be used to
compute the intersection P> of L*"! and Hj . If the number of faces of P is lower
than or equal to n, then set ¥ = P. Else compute the n,, polyhedra defined by 7,
faces among the n, + 1 faces of PP and select the one with minimum volume as
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IL*. Note that this policy does not give the minimum-volume limited-complexity
polyhedron guaranteed to contain S. As for ellipsoidal approximation, a better
approximation can be obtained by recirculating the inequalities in the algorithm.
The computation of the optimal limited-complexity polyhedron guaranteed to
contain S remains an open problem, except for some very restricted classes of
polyhedra, such as axis-aligned boxes.

In the general case, the volume of polyhedra can be computed by the method
described in Ref. 16. When the polyhedron is a simplex in an #-dimensional space,
with vertices vg,vy, ..., V,, its volume V, is easily obtained by the recursive
formula!”

/ Hyperplane to be discarded

FIGURE 16.1. Suboptimal method for selecting
the face to be discarded.
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V. =hV,_/n, (16.8)

where # is the Euclidian distance between the vertex v, and the (# — 1)-dimensional
space containing the simplex with vertices vq,vy, . .. ,v,_|, and volume V,_;.

When n;, > n + 1, the computation of the volume of each of the polyhedra
candidates to become I.* may turn out to be too complex. An easier (but less
effective) way of selecting the face to be discarded is as indicated on Fig. 16.1. Let
¢ be the Chebyshev center of P for the L,-norm, with components given by

o | (16.9)
¢ = 2[mim V(i) + miax v(D)],

where v(i) is the ith vertex of P. Compute the distance to ¢ of each supporting
hyperplane H; of P, as

d(H) = |ale - b} /|la]|. (16.10)

If the nj, hyperplanes with the smallest values of the distance are linearly inde-
pendent, then set ¥ is equal to the nondegenerate polytope defined by these faces
by using the algorithm of Section 16.2. Otherwise, use the complete algorithm.
Note that L* is already partially obtained after P has been computed. From the lists
of supporting hyperplanes associated with all vertices, it is easy to find the vertices
of P belonging to L.

16.4. POLYHEDRIC TRACKING FOR TIME-VARYING PARAMETERS

When the parameters are allowed to vary, the parameter set obtained from past
observations should be modified to reflect the possible variations of 8 between past
and present observations, before being intersected with the feasible strip defined
by the two inequalities associated with the present observation. The method
presented here'® combines two algorithms proposed in Ref. 14. The polyhedron
obtained from the previous measurements is first expanded, and the result is then
intersected with IT,. This involves using the basic intersection algorithm of Section
16.2 twice. If the intersection turns out to be empty, the expanded polyhedron is
translated so as to move its Chebyshev center to the median hyperplane of the
feasible strip associated with the present observation, which ensures a nonempty
intersection even when some hypotheses of the method are not satisfied (e.g., when
the bounds on the error are too optimistic or when the parameter variation is too
abrupt for the expansion policy).

The algorithm is again initialized by choosing some prior feasible parameter
domain P® described by its set of vertices {v?} and associated adj®(i) and hyp®(i)
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lists. Contrary to Section 16.2, a pair of inequalities are considered at each iteration,
so that the current polyhedron at time ¢ will be denoted by P".

Let ¢'! be the Chebyshev center of P! for the L,-norm. When no specific
information is available on the possible speed of variation of each parameter,
expansion of P! may be performed by replacing each of its vertices vi"! by
eyi! defined by

r

evt_l - V;-l + (Vf»'l _ Ct_]), (1611)

where A > 0 is some scalar expansion factor (vaguely similar to the forgetting factor
of recursive least squares, although the analogy should not be pushed too far). The
resulting expanded polyhedron “P* is then intersected with the feasible strip IT"
associated with the measurement at time ¢. If the resulting intersection is empty,
then “P ‘! is translated orthogonally to the median hyperplane H of T’ so that its
Chebyshev center lies on H. Let H™ and H™ be the two (possibly non-parallel)
hyperplanes limiting IT".

H ={0:a'0=0_}, (16.12)

H™={6: (119:&}_ (16.13)
The median hyperplane is then given by

H=1{0: (" +a))0=B_+B,] (16.14)

1

Any vertex v of P! is translated according to

etv;—l - ev;—l + lJ'((17 + (1+), (1615)

with

B_+B,—(a_+a)c! (16.16)
p, =

(o_+a) (o +a)

which ensures that the Chebyshev center of the translated polyhedron “IP*"! belongs
to H. In the special case where H™ and H* are defined by Egs. (16.3) and (16.4)
and where e;, = —epnay, this policy simplifies into that proposed in Ref. 18.

This algorithm has several advantages over those described in Ref. 13. First,
it is recursive. Second, its expansion policy modifies neither the relationships of
adjacency between vertices nor the directions of supporting hyperplanes. The adj
and Ayp lists, therefore, need not be modified after the expansion phase. Moreover,
as the relative distance between two adjacent vertices of the polyhedron increases,
adjacent vertices can never merge, so that degeneration of faces can not occur.
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When more information is available on the dynamics of the components of 0,
it can be taken into account by replacing Eq. (16.11) by a similar expression, where
each component of the expanded vertices has its own expansion coefficient, i.e.,

VD=V DD =T DL =L (16.17)

The expansion factor along the jth axis A; > 0 must be chosen a priori. The larger
A, the faster the jth component of 8 can vary. If any component of 0 is assumed to
be time-invariant, one may choose the associated expansion factor equal to zero. If
the variation of the jth parameter between two measurements is assumed to be less
than vmax;, then a time-varying A; may be chosen as

2
max(v{"'(j)) = min({"' () |

Kj(t) = ymax; (16.18)

J

The relationships of adjacency are not altered after an expansion according to Eq.
(16.18)."9 The overall description of the polyhedron in terms of lists of supporting
hyperplanes, therefore, does not need to be modified, but the faces of the expanded
polyhedron are no longer parallel to the initial ones.

The expansion-translation algorithm used for polyhedric tracking is easily
combined with the approximate description of Section 16.3 to yield a limited-com-
plexity polyhedric tracker.

16.5. EXAMPLE

One thousand data points have been generated by simulating the ARX system

=01y _,+072y,,

-
1 .
ﬂ—o.s +5—06} w—~18u_ +e.0=1,... 300, (16.19)
and
y,==17y_,-072y_,
1
+|:—0.5 +§66} u—18u,_,+e,t=301,...,1000, (16.20)

with g, a sequence of independent random variables uniformly distributed between
—0.1and 0.1. The input u alternates sequences of fifty identical values +1. The initial
conditions are



LIMITED-COMPLEXITY POLYHEDRIC TRACKING 269

FIGURE 16.2. Data for the example.

FIGURE 16.3. Evolution of the true value and estimated parameter uncertainty interval for 6,.
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FIGURE 16.4. Evolution of the true vaiue and estimated parameter uncertainty interval for 6,.

Yo=y_1=0. (16.21)

Fig. 16.2 presents the data obtained, which are used to estimate the parameters of
the model

Vult, 0) =01y, +0,y,,+0u,+6,u, . (16.22)

From the equations used to generate the data, it can be seen that the true values of
0, and 0, jump at ¢ = 300, while the true value of 8, is slowly varying and that of
64 remains constant. The prior feasible set for the parameters is a simplex, large
enough to be guaranteed to contain the true value for the parameter vector. At each
iteration, the number of supporting hyperplanes is limited to n;, = 5. The limited-com-
plexity polyhedric tracker is used for that purpose, with the suboptimal procedure of
Figure 16.1 for selecting the face to be discarded in any polyhedron with more than
five supporting hyperplanes. The expansion coefficients are given by A = 0.1 for 6;
and A = 0.05 for all other parameters. To be considered as feasible, the
parameters must satisfy

ly =y, 0 <0.1. (16.23)

Figs. 16.3 to 16.6 give the evolution, with the number of data points taken into
account, of the four parameter uncertainty intervals obtained by projecting the
simplex on the axes of the parameter space. Before the jump at ¢ = 300 occurs, the
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FIGURE 16.5. Evolution of the true value and estimated parameter uncertainty interval for 6;.

FIGURE 16.6. Evolution of the true value and estimated parameter uncertainty interval for 6.
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expanded polyhedron is never translated. The translation is performed as soon as
the feasible simplex becomes empty. This policy makes it possible to recover
correct parameter uncertainty intervals in about 100 measurements and no further
translation is needed. The same example treated with an exact description instead
ofa simplex gives figures very similar to those presented here. Examples involving
10 parameters and 1000 data points have also been treated using a simplex
approximation. The corresponding exact polyhedron soon becomes intractable.

16.6. CONCLUSIONS

Ellipsoidal outer bounding of feasible parameter sets has long been thought of
as the only viable option when the number of parameters to be estimated was large.
The polyhedric approach can now also be considered for large-scale problems,
because of the availability of methods for limiting the complexity of the resulting
descriptions. The limited-complexity approach advocated here is only one among
many that can be considered, but corresponds to a large class of algorithms. It can
be combined with various expansion policies to allow the tracking of time-varying
parameters. The recursive expansion policy described in this chapter makes the
updating of the lists describing adjacency and supporting hyperplane relationships
trivial. It also ensures that no degeneration of faces can occur. By tuning individual
expansion factors along each axis, it is possible to take bounds on speeds of
variation of the parameters into account. Rare abrupt changes of parameters that
cannot be accounted for by the expansion policy chosen are taken care of by a
translation of the expanded polyhedron so that its Chebyshev center lies on the
median plane of the feasible strip associated with the new datum.
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17

Parameter-Bounding Algorithms
for Linear Errors-in-Variables
Models

S. M. Veres and J. P Norton

ABSTRACT

Computational techniques are considered for the errors-in-variables (EIV) problem
with bounds specified on the errors in all variables. The significant difference in
difficulty in bounding the parameters of a dynamic EIV model, compared with the
static case, is explained. Conditions for the feasible set of the parameters to be the
union of polytopes are discussed, and a search technique to find the nonlinear
bounds for the dynamic EIV problem is described. A simulation example compares
EIV and equation-error bounding. Techniques for shortening the computation of
EIV parameter bounds, and for finding polytope and ellipsoid approximations, are
given.

17.1. INTRODUCTION

The EIV problem is that of estimating parameters in a linear-in-parameters
model when some or all explanatory variables, as well as the output, are uncertain

S. M. VERES AND J. P. NORTON e School of Electronic and Electrical Engineering, University of
Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York,
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(noisy). It has been extensively discussed in the statistical literature.!* Recently
dynamic EIV models have had attention.>™ Most of this work assumes that the
errors are statistically specified. Following the appearance of deterministic parameter-
bounding algorithms,'*'® it is of interest to consider the EIV problem in a
deterministic parameter-bounding context. Statistical assumptions on the errors
(e.g., uncorrelatedness or restrictions on distribution) are replaced by the single
requirement that the errors should lie within specified bounds. The bounded-error
case can be considered as a special case of statistical modeling, with independent
and uniformly distributed errors. However, such a view is not necessary and may
complicate motivation, interpretation or analysis.

The EIV parameter-bounding problem can be formulated as computing bounds
on the p-vector 6 of parameters in the model

x,=f(¢.0)+e 1=12,...,N (17.1)

where fis a known function, scalar x, is known to be within g, of its observed value
x}. The error in x{ is bounded by |§, | E|x,—x‘,’| <eg,, the errors f’ﬁ,z ¢, —¢7 in
observations ¢? of the g-vector ¢,=[¢; ... ¢9]T of explanatory variables are
bounded by l&l < 83), i=1,2,...,q and equation error e, (structural error, due to
linearization, reduction of the model order or omission of a significant term) is
bounded by l e | < €. The EIV problem is called linear if fis linear in both 0 and
¢,, s0 that

x,=f(¢)0+e, t=12,...,N (17.2)
with f'a known vector function. More symmetrically,
S ==, t=12,...,N (17.3)
where
¥, =[x ¢/1, 0 =[-16"]
and f'is correspondingly augmented to /. One knows that f'(¢’,) is in the set
F=@)l 5] <o, [l <eli=1,... g} (17.4)
and the feasible parameter set (FPS) after processing all data up to time N is
D= {0 11700 | <e,fT@) e Fr=1,...,N} (17.5)

The problem is dynamic if consecutive vectors ¢ are related (deterministically), for
instance, by a sample of a variable appearing in successive ¢s; otherwise it is static.
If all errors are treated as part of e, the problem simplifies to the standard
equation-error problem but with complicated bounds on e,. In a statistical frame-
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work, lumping all the errors into e, makes it correlated with the observed explana-
tory variables, which causes bias in standard estimators such as least squares.”®)
Section 17.2 shows how identification of dynamic EIV models relates to
identification of equation-error and static models, and illustrates by an example that
the dynamic bounding problem is much less straightforward than the static problem.
In Section 17.3, conditions for the parameter bounds to be the union of a set of
polytopes are discussed. A search technique to find the nonlinear parameter bounds
for the dynamic EIV problem is described, and a simulation example compares EIV
and equation-error bounding. Section 17.4 presents techniques for shortening the
computation of EIV parameter bounds, and Section 17.5 describes algorithms for
computing polytope and ellipsoidal parameter bounds for the EIV problem.

17.2. BOUNDING IN DYNAMIC EIV MODELS

In dynamic models, the set = F; x %, x . . . Fydefining the uncertainty in the
variables is reduced in dimension by the relations between successive ¢'s. An
example is the ARX MISO model

Yi=ay, + ...+ aky[*k
m
+ Y Bty + .+ by ) +e, t=1,... N (17.6)
i=1

Each successive sample of y is known within bounds | Vij = Vi l <¢,. Eachsample
of ' is known within |u§_j— u?lj| <g,, and equation error e, is bounded by
le,| <e,. Although

"= 1 m i m 1T
¢ t= D)t yt—l"'yl—k u,_d_l...ut_d_l...ul_d_[...ut_d_l]
and
= 1 m 1 m1T
0'=[-1 a,..a, bl..b".bL. b

have k+ 1 + ml elements, the model embodies altogether only y, to yy and
Wiy to Uy gy, i=1,...,m,so Fis of dimension N(m + 1) + k —2m + ml, not
Nk + 1 + ml).

The exact parameter bounds in a linear, equation-error model are all hyper-
planes and form a polyhedron (a polytope so long as the normals span the space).
It is often readily computed in realistic cases, but may be inconveniently compli-
cated. If so, an outer bound such as an ellipsoid’? or a box"*) may be computed
cheaply. The bounds are more complicated in the EIV case, but in the linear static
case, which is how the problem has been treated so far,(%2% they remain piecewise
linear. The relations between successive ¢'s in the dyrnamic case make the exact
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parameter bounds deviate from piecewise linearity, greatly increasing the difficulty
of computing them, exactly or approximately. To illustrate, Example 1 considers
Jjust two successive sampling instants for a 1st-order ARX model:

Y=t buH +e
Vi = Ay, + bu + e, (17.7)

Here y, is common to both equations, appearing in both ¢’, and ¢',,,. Figure
17.1 shows bounds on 6 =[a b]" for £,=04,g,=04,¢,=0.1 and a=0.6,
b=-0.9, due to observations u7_; =1, u) =2,/ 1 =2,/ =0.3,)%,, =-1.62. The
FPS Dis the intersection of a family of quadrilaterals generated as y, varies over its
range[—0.1,0.7]; each is given by the four inequalities

-, <y - (@0 +)0< +e, (17.8)

_yto+l - & S;Hl - (d)?ﬂ + $t+l)T9 < _y;}H e, (17.9)

Fig. 17.1 shows 20 such quadrilaterals, and reveals that Dhas nonlinear boundaries.
The reason is the presence of 7, both in ay, within ¢, ,0 in Eq. (17.9) and on its own
in Eq. (17.8). In the space of (3, 0), Eq. (17.8) gives hyperplane bounds which
intersect hyperbolic-section bounds due to Eq. (17.9). The intersections are curves
projecting to curved bounds in (6,,8,)-space, even though any (6,,0,) cross section
of the bounds in (,, 0)-space is a quadrilateral. Other terms such as b%,_, have no
such effect, since the corresponding curved bounds intersect only hyperplane
bounds at the extreme values of the uncertain variable, and those intersections are
linear. Clearly, nonlinear bounds on 0 will occur whenever a sample of an uncertain
variable appears more than once in the model and at least once in a nonlinear
combination with a parameter. The dashed lines in Fig. 17.1 show the much larger

FIGURE 17.1. Example 1: nonlinear parameter bounds for the linear model (17.7) .
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D, a polytope, obtained if Eqs. (17.7) are treated as independent, i.e., if the dynamic
problem is treated as static.

17.3. POLYTOPE BOUNDS ON THE PARAMETERS OF EIV MODELS

The feasible parameter set Dy defined by Eq. (17.5) may be written as
Dy=E,/F= {0 |f'T(¢',)6’ e andf'(9)) e 7, t=12,...,N} (17.10)
where
£,={e, t=12,...,N| el <e, t=12,...,N} (17.11)
and 7, is defined by Eq. (17.4). Under some conditions on %, both Dy and
FrDu= @ )OI/ W) € 7,0 € Dy} (17.12)

are polytopes or sets of polytopes. (A polytope is defined as a connected region of
a Euclidean space with the union of linear faces as its boundary. Linear faces are
defined by induction from the zero-dimensional face, which is a point: a k&-dimen-
sional face (k > 0)is a connected subset on a k-dimensional manifold with boundary
the union of less-than-k-dimensional face.)

Lemma 17.1. If each #,t=1,2,..., N has an orthotope range and ¥ is the
Cartesian product of F; to %y, then for any orthotope Z, £/ ¥ is the union of a set
of polytopes. Lemma 17.1 follows from Lemma 17.2.

In static EIV parameter bounding, ¥ is indeed the Cartesian product of its
components: if /'], ..., f'} are, respectively, in #, ..., Fy, then [f] f3 T
€ ¥ By Lemma 17.1, £/ ¥ is linear, i.e., the union of a set of polytopes. However,
Example 1 shows that in the dynamic case the boundaries of ¥ may be linear and
convex, with £ an orthotope, without £/ Fhaving linear boundaries. In the dynamic
case, the uncertainties in f] , . . ., f'} are not independent.

The next lemma refers to the shape of the parameter bounds imposed by y;
and ¢ obtained at a single time instant. Denote by X a full set of binary p-vectors
K;,j=0,1,2,...,27 — 1 with elements k;;, i = 1,2, ..., p each 1 or—-1. To each x;
corresponds a parameter-space orthant

0,={0l0x,20,i=1,...,p}.

LemMA 17.2. The feasible parameter set due to a single ¢’ = [y? ¢°7]" can be

obtained as the union of its parts in the orthants 0, j = 0,1, ..., 2°~1:
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p
D)= U {0eok) Y 00 -KE) <y +e,  (17.13)
K/EX i=]

p
2 007 + e 23] — e}
i=1

In each orthant, D(¢;") is seen to be bounded by two hyperplanes with
97 + vec(k;€y) as normals. _ . .

Proor: If 0 € D(¢7") then there is a ¢, with ld); - ?’| <gpi=1,...,psuch
that

D
0 1 0
Vi —gyg z 0.0, <), + &,
=]

from which, with 6x;20,i=1,...,p for 6 € O(x)),

p 14 P
=g, < D 00)= D 007 +e) < D 0,07 +x,8h)
=1 =1 i=1
and

P P P
> 007 e < 2L 007 +eg)= D 0,0,<y] +e,

i=1 i=1 i=]

proving that D(¢;") is a subset of the union on the right hand side of Eq. (17.13).
To prove the reverse, that any 8 € O(x;) satisfying

14
D00 — ke <) e,

i=1
and

P
D007 + ke 2 ) — g, (17.14)

i=1
is in D(¢y7"),consider the strip
T
£,={0,1y -, <079, <y’ +e )

and box
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B,= {0,167 — e, <4< o +eli=1,...,p)

in ¢space. It need only be shown that for any 6 € O(k;) satistying Eq. (17.14),
L, intersects B, Now ¢, = vec(d;" — k;€5) and ¢, = vec(dy' + k&) are opposing
vertices of B,. By Eq. (17.14), each of the half spaces making up £, contains a
section of the line joining those vertices. The sections cannot be disjoint, as no point
of ¢,-space is in either half space. Hence the sections overlap; there exists at least
one point on both, which is in £, U 3,. UJ

Example 2 considers the feasible parameter set for an ARX model withg =1,
k=1and/=1.The first observations u{_,, y5 and y{ give

@1={9=[ab]T[3yo,u|_d,e1 Dy =ay,+bu_y+e,
'J~/0| <e, W—d‘ <g, |el‘ <g,}.

A little reflection shows that D, is as in Fig. 17.2, where

o . o 0 _ —-
Wte +s, Yo &, g, Yite,te, MN—E ¢,
al: > 5a2: > ’bl: > 2 2: > >
Vo &, Vot u’, -, u’,+e,
e} 0 o
Y te, +¢g, )’T—Se’%- Vite te, Y—g,—¢g
a3: > sa4— 5 ) 5b3: > ’b4: > N bl
Vo tE, Yo, u’,+¢g, u’, - €,

and

bin = min{b,,b,,b4,b,}, b = max{b,,b,,by,b,}, a,, = min{a,.a,,a,,a,} and

Aoy = MAX{A,,85,85,0,1 .

In Fig. 17.2 the slopes of the bounds depend on the selected orthant: in the orthant
with sign vector x;, the slopes are

O] +e,+ 8y)/(yg - Kljay) and 0]-¢,— ey)/(y‘; + Kljay) ‘
0f +e,+8)/ (- KE,) 07 —&,— &)/ (ul;+ K8,

The exact Dy due to a succession of observations is not simply the intersection of
sets as in Fig. 17.2 for t= 1,2, . . ., N, although this intersection does include Dy
The intersection can be computed readily by established polytope exact updating
procedures.!' 4% The exact Dy may be computed as follows, taking Example 2 for
illustration, i.e.,

y,=ay_,+bu,_y +e, t=12,...,N;
|yl| Sey, t=0,1,...,N, Iull <g, t=-d]l-d,...,
N-d-1;

el <e, t=12,...,N

(4
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FIGURE 17.2. Example 2: parameter bounds imposed by ¢{" .

The parameter bounds will be found only in two dimensions, but the method may
be extended to more dimensions.”!) Parameter b is set to equally spaced values
beB={b,+idb,i=0,1,...,K}. Ateach b, the extreme feasible values of a are
found by a halving-doubling search. A trial [a b]T € D iff the N-dimensional
parallelepiped

N
2= {4 Ve T —e, 00 +6])
=1

and the orthotope

N
Q=10 [b(u,_, , —sign(b)e,) — €, bu,_,_| + sign(b)e,) +¢,]

t=1

intersect, where

a O..
01 a
A= f and)/v:[)’NyN_l---yllT
0 0 1. a
0 1

Checking all the faces of Q,yand edges of P, for intersections would be a heavy
computation. Instead, the structure of matrix 4 can be exploited in a recursive
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FIGURE 17.3. FPS given by various methods for Example 2 with N = 30; (a) dynamic-case EIV
feasible parameter set (b) static-case EIV approximation to feasible parameter set (c) feasible parameter
set given by equation-error approach.
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procedure to decide if Py N Qu # &. Denote by [/, 1] the feasible range of y, on
the basis of observations y2, . .., %, u%, . .., u%,, and bounds €y, €y & Then

0

[V Y1 = [-a( + sign(a)e,) + b(u?, - sign(b) €,) ~ 5,

—a(y, — sign(a) e) + b(u?,; + sign(b) &) + £, ] N [ —&,, ] +&]
and thenceforth the feasible range of y is updated recursively by
W, ¥ = [y, + b, — sign(b) &) — &, —ayl_,
+ blul . — sign(b) e,) — g,]

N —e, 0+ gl ifa>0,

0

[V, =y, + b, - sign(b) 8,) ~ &, — @y + b(u? , | —sign(b) €,) - &,]
NDY e, +g]ifa<0.

If [y, ] = & for some ¢ < N then [a b]" ¢ Dy.

Fig. 17.3 illustrates the differences between Dys found from an equation-error
model, the static-EIV-case approximation and the exact dynamic-case FPS. Here
N is 30, and successive inputs are independent and uniformly distributed (IUD) in
[<1.1]. The structural error e, 1s IUD in [-0.01, 0.01], and the errors in y and u are
IUD in [-0.02, 0.02]. The records are given in the Appendix. Figure 17.3(a) shows
the dynamic-case Dy found by accurately assuming the error bounds to be £,=0.01,
g, = ¢, =0.02. Figure 17.3(b) shows Dy given by the static-case treatment, and Fig.
17.3(c) the results of exact polytope bounding with equation-error bounds
£€=0.01+1x0.02+2x0.02+0.02=0.09 obtained by assuming reasonable a
priori parameter bounds lal < 1, | | <2. Use of narrower (erroneous) equation-
error bounds can easily give mistaken results. For instance, € = 0.04 gives an empty
FPS from this data set. Dy, obtained by the equation-error approach is larger than
by either of the other methods.

17.4. FAST REJECTION OF PARTS OF PARAMETER SPACE FROM
FPS

Calculating the polytope comprising the FPS in each orthant and finding out
whether each is empty may take a great deal of time, so in this section we present
algorithms to exclude some orthants from the FPS rapidly.

LemMma 17.3. If fori=1, ..., p the numbers
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Vite, ¥-% yite Y-g

o7 + sfb’ o7 - sfb’ o - Sfb, o + aa)’
have the same signs as Ky, i =1, ..., p, then the orthant specified by parameter
signs {—K;, i =1, .., p} canbe excluded from the FPS.

Remark: If g, — 0 and a¢ — 0 then the condition of Lemma 17.3 is satisfied.
That s, for sufﬁc1ently small €, and s¢ at least one orthant can be excluded from
the parameter set if y7 # 0 and ¢§” # (.

ProoF: For the first and fourth expressions to have the same sign, 7 + ¢, and
y; — &, must have the same sign, denoted by «,,. Similarly o - 84, and ¢¢' + a¢ have
the same sign k,,/x;. Consequently ) has sign «,, and ¢ has sign «,,/x;. Hence
if each element 8, of © has sign —i, 1.e., 1f 0 is in the orthant specified by parameter

signs {—x;,i=1,...,p},

sign(0.07) = sign(—x,x,,/x,) = —K,, # sign(7), i=1.2,
which implies that 0,¢9" + ... 0,077 # y7. Thus there is no feasible parameter point
in the orthant.

This lemma provides an easily applied sign test. For narrow error bounds it is
often satisfied, allowing a high proportion of the orthants to be excluded quickly
from the feasible parameter set.

A second test excludes some orthants not excluded by the sign test. Recall that
by Lemma 17.2 the set of observations pertaining to time ¢ bounds the FPS in orthant
O(x) by a pair of hyperplanes: H,[x] and H*[x]. The halfspaces bounded by
H![x] and H?[x] are denoted by S![k] and S7[k], respectively. Note that these
halfspaces depend on the orthant selected, as well as on the sampling instant. The
calculations are made parsimonious by a series of tests, where each complicated
test is carried out only if no decision has been made in the previous tests.

The tests for

Skl N Sfl K] N S}Z[K] ) SfZ[K] N O(x) 2 D

are as follows:

1. 0 e S,II[K] and 0 € S,ZI[K] and 0 € S}Z[K] and 0 € S,ZZ[K] can be verified by
checking four inequalities y, +¢,20andy, —¢,<0 andy,+¢&,20 and
Y, —€<0.Ifno decision has been made by (1) then apply Test (2).

2. S, [K] N Sk[K] M O(x) =D can be checked by solving a simple set of
1nequa11tles If it is found to be true for any 1 <4, j.k,] < 2 with (i)) = (k,0)
then S} [] N S} [k] N S;[x] NS7[K] N O(x) = &. [f the orthant has still not
been rejected, apply Test (3).

3. For p23ifH[x] N H;[x] N H;[x] ﬁSz[K] N o) =D or H,[k]N
H[x]N S, [x] ('\HZ[K] AOK) % B or H' [K] N S;[K] N Hi[k] N SQ[K] A
O(K) #@ or S;[x] N Hi[x] N H{[x] N sﬂ[x] A O(k) = D (each of which



286 S.M. VERES AND J. P. NORTON

leads to a simple set of inequalities in (p—3) variables) then S! [xIn
S2 [x]n st Lkl s2 k] M O(k) # J is concluded. If Tests (1) to (3) have
not resolved the issue, Test (4) is applied.

4. Define a large simplex (M) fitted into the orthant O(x) with vertices

=[Mx,, 0...0]"

=[0 Mx,,0... 0]

V,=[0...0 M, J'

where

M = max znf{x|yt +e, >x(¢, _8¢)}
i=l...p

Alternatively, M can be chosen as the largest allowed absolute value of the
parameter components. A p-dimensional polytope-updating procedure is then ap-
plied to decide whether (M) N S! xIn Sz[ k] N S! K] N s2 (k] # &, which deter-
mines whether S; [k] N S7 [k] N S} [x]m S?[K] A O(x) % .

The relatlvely large amount of calculatlon in Test (4) is incurred only if Tests
(1) to (3) permit no decision.

17.5. EXACT-POLYTOPE AND ELLIPSOIDAL ALGORITHMS FOR
THE EIV PROBLEM

One can now describe algorithms to compute polytope and ellipsoidal parame-
ter bounds for the errors-in-variables problem. Both algorithms first discard ort-
hants as above (which restricts the sign combination of the parameters) then update
the polytope or ellipsoid in each remaining orthant O(x), k € X

For polytope updating, the procedure starts from a cube in O(x) having one
vertex at the origin, or from a simplex obtained by cutting the orthant O(k) with a
hyperplane. The simplex needs fewer vertices and faces. Polytope updating in-
volves intersecting the polytope with the halfspaces defined by hyperplanes
H} [«] and H/[x]. The updated D is the union of the updated polytopes over all
orthants O(k), k € X;

For ellipsoid updating, the procedure starts from a sphere £,(k) which must
contain a sufficiently large cube contained in O(k) and having a vertex at the origin.
The ellipsoid is intersected with the halfspaces defined by H il[K] and H {Z[K], using a
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simple modification of the basic ellipsoidal-bounding algorithm.'??? The updated
D is the union of the updated ellipsoids over all orthants O(x), k € &

Polytope updating may become complicated for high parameter dimensions,
but ellipsoid bounding remains practicable for large numbers of parameters and
observations. The ellipsoid bounds may, however, become much looser than the
polytope bounds. Walter and Piet-Lahanier' and Mo and Norton!!> describe
economical procedures for intersecting a polytope with a halfspace. The complexity
of the exact bounding polytope varies from case to case, so the computing load
cannot be predicted. The computing load for ellipsoidal bounding is calculable from
the number of parameters, an important point for on-line applications.

17.6. CONCLUSIONS

Parameter bounding of linear-in-the-parameters and errors-in-variables mod-
els has been considered. Such models meet the frequent practical need to distinguish
between modeling errors, input errors and output errors. Parameter bounding suits
the situation where statistical assumptions cannot be made about the modeling error
but error bounds can be specified. The significant difference in difficulty between
the static and dynamic parameter-bounding EIV problems has been shown. Two
algorithms are available for the static problem, yielding polytope or ellipsoid
bounds. Fast procedures for discarding empty orthants in parameter space have
been described. A bounding procedure based on two-dimensional boundary
searches has been presented for the dynamic problem.

ACKNOWLEDGMENTS. The Estimation and Control Group, School of Electronic and
Electrical Engineering, University of Birmingham produced the examples by a
software package for system identification. The package includes a wide range of
modeling techniques, including several parameter-bounding algorithms. The pa-
rameter-bounding features were written as part of an SERC project (under grant
GRVE 28536) to investigate the potential of bounding for applications. The work
continues and inquiries about possible applications of parameter or state bounding
are welcome.
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Errors-in-Variables Models in
Parameter Bounding

V. Cerone

ABSTRACT

When all observed variables of a model are affected by noise, parameter estimation
is known as the errors-in-variables problem. While parameter bounding methods
and algorithms have been extensively developed in the case of exactly known
regressor variables, little attention has been paid to the bounded errors-in-variables
problem. This chapter gives a formal proof of a previous result on the description
of the feasible parameter region for models linear in the parameters in the presence
of bounded errors in all variables. Topological features of the feasible parameter
region, such as convexity and connectedness, are also discussed. Finally, approxi-
mate parameter uncertainty intervals are derived for ARMAX models when all the
observed variables are affected by bounded noise. For an example involving
extensive simulations, central estimates obtained by means of the bounded errors-
in-variables approach and least squares estimates are computed and compared.

V. CERONE o Dipartmento di Automatica e Informatica, Politecnico di Torino, 10129 Torino, Italy.

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York,
1996.
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18.1. INTRODUCTION

Identification is carried out on the basis of input-output observations taken
from the system to be identified. Most identification methods rely on the assump-
tion that the input is exactly known and the so called equation-error approach is
used, where all noise is considered as additive equation error.'”) However, due to
measurement errors, the assumption of noise-free input might often be unrealistic.
The equation error is then correlated with the measured input, leading to bias both
in statistical parameter estimates and in parameter bounds.?’ Problems where all
observed variables are noisy are referred to as errors-in-variables problems. See
Soderstrom® for the case of stochastic errors.

Despite their popularity, statistical methods for parameter estimation suffer
from some drawbacks. It is well known that, due to cost constraints, there are
situations where the number of collected observations cannot be large, as in
biological systems, for example. In those cases, available measurement records are
not long enough to check a posteriori from the residuals whether the probability
density function assumed for the noise is appropriate or not; in other words, it might
be impossible to realize that a statistical hypothesis is not met. Moreover, there are
situations where the errors are better characterized in a deterministic way: systematic
and class errors in measurement equipment, rounding and truncation errors in A/D
converters are some.

An appealing alternative to the stochastic characterization of uncertainty in
measurements is the bounded-error description. In this approach, the uncertain
variables are no longer considered as random, but are assumed to belong to a given
set. In this context, the outcome of identification is a set of parameter values, each
a feasible solution of the estimation problem. In other words, all parameter vectors
belonging to the feasible parameter region (FPR) are consistent with the measure-
ments vector, the measurement error bounds and the assumed model structure.

When instantaneous constraints on the measurement error in a model linear in
its parameter are available, and deterministic regressors are considered, the FPR
turns out to be a polytope. Due to the possible complex shape of the FPR, some
classes of methods have been proposed which compute a simpler set containing it.
Milanese and Belforte™ suggest to bound the feasible parameter region by an
orthotope aligned with the parameter coordinate axes; the orthotope is computed
by linear programming. A recursive algorithm given by Fogel and Huang® pro-
vides an ellipsoidal set outer-bounding the FPR. A combined use of the two
algorithms, outer-bounding by linear programming and ellipsoidal outer-bounding,
has been tested by Mo and Norton® and Belforte, Bona and Cerone.”’ To approxi-
mate the FPR simplexes have also been used, as well as parallelotopes® and other
limited complexity polyhedra.®” Should the approximation turn out to be too crude,
then an exact description of the FPR is sometimes possible by means of recursive
algorithms.('®'? Inner approximation of the FPR is considered by Vicino and
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Milanese;"® they showed how to compute maximal balls in /,, norms (boxes), /
norms (ellipsoids) and /; norms (diamonds) when their shape is either known or
partially free. The problem of computing maximum-volume ellipsoid inner bounds
is also considered in Refs. 14-19.

Surprisingly, parameter bounding in the case of bounded errors-in-variables
has received much less attention so far. Norton® gave an insight on the identifica-
tion of ARMAX models in the bounding context, paving the way for the bounded
errors in variables approach. Belforte, Bona and Cerone®” give a result on how to
describe the FPR for such problems; that result has been formally proved in
Cerone®"?? and is reported in Section 18.3 of this chapter. Clement and Gentil?>*¥
address the problem of parameter bounding for output-error models when the
output is a noisy vector, while the input is exactly known. Merkuryev®® gives a
solution based on interval analysis methods,*® which deals with linear static
models when both input and output signals have interval nature. Veres and Nor-
ton®? discussed and pointed out the differences between static and dynamic
errors-in-variables models as far as parameter bounds are concerned.

The purpose of this chapter is to address the problem of parameter bounding
for linear models, when all the observed variables are affected by bounded noise.
The chapter is organized in the following way. Section 18.2 states the estimation
problem and introduces further notation and definitions. In Section 18.3, a formal
proof of a previous result on the description of the feasible parameter region for
linear models in the presence of bounded errors in all variables is given, together
with further results which give an insight into the shape and structure of the FPR.
Topological features of the FPR, such as convexity and connectedness, are dis-
cussed in Section 18.4. In Section 18.5 parameter bounds for ARMAX models by
means of the errors-in-variables approach are derived.

18.2. PROBLEM FORMULATION AND NOTATION
Suppose that a given system is described by the linear model
w,=x0, (18.1)

where w, € R is the hypothetical noise-free output, x, € R? is the hypothetical
noise-free regressor vector and @ € R? is the unknown parameter vector. Due to
measurement and model errors, the variables actually observed are

¢,=X,+ 009, (18.2)

y,=w,+8, t=1,...,N; (18.3)
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where N is the number of output samples, y, is the output measured at time ¢, 0y, is
the output measurement uncertainty, @, is the measured regressor and 8¢, is its
uncertainty. Reduction of Eqgs. (18.1), (18.2) and (18.3) leads to

y,= (@, 5¢,)70 + 5y, (18.4)

Given symmetric bounds Ay, on the output measurement uncertainty and Ag,; on
regressors uncertainty, i.e.,

&y, <Ay, (18.5)

50,1 <A, j=1.....p, (18.6)

the problem addressed in this chapter is that of finding the feasible parameter region,
defined as follows. Let 2, be the feasible parameter set associated with the
observation at time ¢

D,=1{0 e Ry =(p,—59) 0+

8y 18y, | <ay; |8<p,,\£A<p,,~; J=1....p (18.7)

The FPR corresponding to the whole set of observations is then D= ¥, D, It is
assumed that the components @,’s (j = 1,2, . . ., p) of the regressor vector ¢, are
permitted to vary independently. The difficulty of describing D arises from the
nonlinear relationship between the unknown uncertainties 6¢, and the unknown
parameters 6, in Eq. (18.4).

To simplify algebra, without loss of generality, the output measurement y, is
considered as a regressor variable and Jdy, as regressor uncertainty, by setting

0 7T= |:(p[T : —y,:|, 3¢ =807 i —8y], Ag; = [A@] i AV}, 0T =107} 1].
By this means Eq. (18.4) becomes
89, — )0 =0; (18.8)
while Eqgs. (18.5 and 18.6) can be written as
8071 <agp, j=1.....p. (18.9)
Any orthant in the parameter space @ can be defined as
O(a)=1{0 € R”: aj6j20, j=1...,p}

wherea is the vector of the signs of the components of 0 in this orthant.
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18.3. DESCRIPTION OF THE FEASIBLE PARAMETER REGION

To describe the feasible parameter region defined in the preceding section,
recall the following theorem, which is stated in Belforte, Bona and Cerone'?® and
receives a formal proof in Cerone.?!??)

Taeorem 18.1. A necessary and sufficient condition for 0 to belong to the set
Dy is

p
‘yt—(ptT9| < Z A(ptj|6j’ + Ay, (18.10)
Jj=1
or, equivalently

p+l

00"l < > agrlorl. (18.11)

Jj=1

Before the proof is given, it is useful to explain Eqgs. (18.8 and 18.9) geomet-
rically in the (p + 1)-dimensional space of uncertainties 8¢, . Equation (18.8)
represents a hyperplane passing through ¢; and normal to 8*. Equation (18.9),
which describes the feasible uncertainty region (FUR), is an axes-aligned orthotope
centered at the origin and with vertices in Agj; . The supporting hyperplanes of
the FUR normal to 07 satisty

ptl
39,70 =+ > Ap;l67]. (18.12)

=1

Proof of necessity: One has to prove that for all 3¢;; satisfying Eqs. (18.8 and
18.9), Eq. (18.11) is true. From Eq. (18.8) one gets

p+l
070 = 80,6} (18.13)
=
Taking absolute values in Eq. (18.13), using the triangle inequality and taking
account of Eq. (18.9), the proof of necessity is obtained

p+l p+l

;70| = | Ze‘xp,]e\_z 505 [67 I_ZAcp,,lel (18.14)
J=1

Proof of sufficiency: To prove sufficiency, one has to show that for all 8"
satisfying Eq. (18.11), there exists some 8¢j; satisfying both Egs. (18.8 and 18.9).
Using Eq. (18.8), Eq. (18.11) becomes
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FIGURE 18.1. A two-dimensional illustration of Theorem 18.1

p+l

[59;707| < > Ag;
=1

0. (18.15)

Hyperplane of Eq. (18.8) (normal to 6%) lies between the two supporting hyper-
planes of Eq. (18.12) (normal to 8%) of the feasible uncertainty region (Eq. (18.9)).
Hyperplane of Eq. (18.8) always either cuts the FUR or lies on one edge of it,
proving that there are 8¢y satisfying both Eq. (18.8 and 18.9). A two-dimensional
geometric illustration of Theorem 18.1 is given in Fig. 18.1.

Proposition 18.1 gives an insight into the shape and structure of the FPR D.

ProrosiTION 18.1. The feasible parameter region 9 is the union of at most 27
convex sets, each the intersection of D with a single orthant of parameter space, i.e.,
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DU D), (18.16)
acl
where
N
Ne) = M D), (18.17)
=1
and
P

D@)= {0 0(@):y,+Ay,2 Y (9, A0,)0,

J!

P
Y= 8y, < Y (0,+0,A0,)0). (18.18)
J=1

Proor. The feasible parameter region D can obviously be decomposed into at
most 2 subsets consisting of its intersections with each of the 2 orthants. It remains
to be proven that each such subset is a convex set. First note that Eq. (18.18), which
describes D, in a given orthant O(a), is a result of Theorem 18.1; it can be obtained
directly from Eq. (18.10), setting | 9; | = 0;sgn(0)) and a;=sgn(8)). In a given
orthant @ is fixed, which means that Eq. (18.18) gives a region bounded by two
hyperplanes. It is easy to see that the above hyperplanes are not, in general, parallel;
they lie symmetrically with respect to the hyperplane y, — ¢70 = 0 (as a consequence
of assuming symmetrical bounds in Egs. (18.5 and 18.6)) and cannot intersect in
the considered orthant. Hence, D,(@) is a convex region and D(a), which is given
by Eq. (18.17), can only be a convex set (if not empty).

Proposition 18.2. If

vl >ay, Lo, >80, j=1,....p, (18.19)

there is no intersection between 2, and the orthant characterized by syn(0;) =

—sgn(y,)sgn(@y).
Proor. (By contradiction) From Eq. (18.8)

|8(p:‘7'6*|:|¢:TB*|=|yt—(ptT0|:| |yt|sgn(yt)

: (18.20)
-2 loylsente,) 16l sgn@)l.

J=l

Now, if there are some 0, belonging to D, such that
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Sgn(ej)Sgn((P,/) = _Sgn(y[), (.] = 1,2, LR ] p)a

then one gets

p
39,70 [=1y, |+ X Lol 6], (1821)
J=1
and, finally, taking Eq. (18.19) into account one obtains
P Pl
15;70° | > > Ag, 16,1 +ay,= ag;le;], (18.22)
= =1

which contradicts Eq. (18.11) for 8 to be feasible.

From the geometrical point of view, it can be seen that, when Eq. (18.19) and
thus Eq. (18.21) are satisfied, the hyperplane of Eq. (18.8) (normal to 87) always
lies outside the region included between the two supporting hyperplanes (normal
to 0) of the feasible uncertainty region (Eq. (18.9)). This means that the hyperplane
of Eq. (18.8) never cuts the FUR, proving that there are no 8¢y, satisfying both Eq.
(18.8 and 18.9). More precisely, in any d¢; satisfying Eq. (18.8), there are some
components 3¢y; such that ’ S(p;ﬂ > Agy , which contradicts Eq. (18.19).

REMARK 1. Proposition 18.2 gives a sufficient condition for a whole orthant to
be unfeasible. Hypothesis Eq. (18.19) is equivalent to assuming that the relative
error on the output and each regressor is lower than 100%.

18.4. TOPOLOGICAL FEATURES OF THE FEASIBLE PARAMETER
REGION

Convexity and connectedness of the feasible parameter region P are now
discussed. Consider the following static model

Y, =9, —80,)0, + (¢, —89,,)0, + dy,. (18.23)

{6y,} and {6¢,;} are random sequences uniformly distributed in [-1,1]. Regressors
@, are generated randomly and uniformly distributed in [-10,10]. Numerical
simulations with a true value for the parameters given by 67 = 0.8 and 63 = 0.5 have
been carried out.

Figures 18.2 to 18.5 show some features of the feasible parameter region.
When regressors are exactly known, the FPR D, is bounded by two parallel
hyperplanes. When regressors are noisy as well, the FPR D, is not convex either
(see Fig. 18.2) and the final D will not generally be convex (see Fig. 18.3 and Fig.
18.4). This has already been noted®'? as resulting from uncertainty in the AR
variables of an ARMAX model. Moreover, the above result is in agreement with
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FIGURE 18.2. Feasible parameter region associated with a single measurement.

FIGURE 18.3. Parameter bounds from two observations.
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FIGURE 18.4. Nonconnected and unbounded FPR from two measurements.

FIGURE 18.5. Feasible parameter region whose Chebyshev center (6“) is not a feasible point.
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Barmish and Sankaran.®® They considered the dynamical system
ot + 1) = ¥(r)o(r) and showed that convexity of the feasible state set can be lost
because of independently varying uncertainties in the entries of ‘¥'(-).

Figure 18.4 shows that 2 may be a non-connected and unbounded set.

The Chebyshev center of D, 6 (central estimate), is an optimal estimate in the
sense that it minimizes the maximal distance from the unknown parameter vector
that generated tl}\e data.®® As far as linear models with exactly known regressors
are concerned, 6¢ always belongs to 9 and, for /,, normed parameter space, it
coincides with the geometrical center of the minimum-volume box B containing
D. However, as sho/yvn in Fig. 18.5, when regressors are noisy 9 may be a
non-convex set, and 8 may not belong to the feasible parameter region.

18.5. PARAMETER BOUNDING IN ARMAX MODELS

In this section, Theorem 18.1 is applied to the problem of parameter bounding
for ARMAX models when all the observed variables are affected by bounded
noise.®%3" Tempo, Barmish and Trujillo®* present an approach to robust estima-
tion and prediction of ARMA models when both the output errors and the noise are
bounded. Clement and Gentil®**** address the problem of parameter bounding for
output error models. Veres and Norton®” discuss and point out the differences
between static and dynamic errors-in-variables models as far as parameter bounds
are concerned.

Consider a single-input, single-output, linear and discrete-time system where
the true input signal, x,, and the noise-free output, w,, are related through the linear
difference equation

AlgYw, = B(g "), (18.24)

Polynomials A(-) and B(-) are polynomials in the backward shift operator
g (G we=we):

AgH=1+aq"+...+ anaq_"a,
and
B@)=by+byg " +...+b,q7" (18.25)
Let y, and u, be the noise-corrupted measurements of w, and x,, respectively,
Yi=w 1,
and

u=x+&, t=1,...,N (18.26)
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N is the number of output samples. Uncertainties are known to vary within given
bounds, i.e.,

in,| <an, (18.27)
and
e, <ag, (18.28)
The unknown parameter vector @ € R” is defined as
0"=[a,...a, byb,...b,]. (18.29)

where n, + n, + 1 = p. The feasible parameter region is defined as

D=1{0e R :Ag " Hy,-n,)

—Bg O, -&) In,| <an; gl <ag; (=1, Ny (1830)

It is well known that the feasible parameter region for linear static models is a
polytope. Due to serial dependence between output samples at different time, exact
parameter bounds for dynamic models are no longer linear.?” In this section,
polytopic outer approximations 9D’ of the exact FPR D is presented. Still, since
D' may become fairly complex for large N, orthotope-outer bounding algorithms
are considered, which compute orthotopic sets B containing D'. They provide
guaranteed parameter uncertainty intervals (PUIs), where

PUL=[87R07 ) j=1 o p; (18.31)

A
B={0ecR:0,=00+50,80] <A0/2 j=1.....p}. (1832)

with
min max
8?:9. + 0! (18.33)
J 2 >
0= Lo ape. (83
and
9/‘.“'“: min 6, 6;"“: max 6/ (18.35)

9/6@’ 0en’

18.5.1. Bounded Equation Error Model

Reducing Eqs. (18.24 and 18.26) yields the following noisy linear regression
model
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y,=0l0+r, (18.36)
where
re=A(G ', - Blg g =n,+ D an - D bE (18.37)
J=1 j=0
and
o =[y_ .- Vien Uy Uy oo Uy ) (18.38)

denote the equation error and the regressor vector respectively. If the equation error
bounds are available, i.e., Ar, such that |rt| < Ar,, a set over bounding the exact
feasible parameter region is known to be given by

D! ={0ecRr:|y-00| <Ar, t=1,...,N}. (18.39)

Unfortunately, the main difficulty arises in specifying noise bounds Ar; on the
equation error r, from those available on the input and output measurement errors.
The equation error r, depends on the measurement errors 1, and &,, and unknown
vector 0, according to Eq. (18.37). Hence, at least in principle, bounds on r, cannot
be computed.

18.5.2. Bounded Errors-in-Variables Model

Based on the result given in Section 18.3, one can give a different solution
which allows a direct use of bounds on measurement errors. Reduce Eqgs. (18.24
and 18.26) to the following form

n "y

== Z (yt»j - 1']t—j)aj + Z (“t~j - E-!t—j)bj +1n, (18.40)

J=1 J=0

Equations (18.27, 18.28 and 18.40) fit in the framework of the bounded-errors-in-
variables model outlined in Section 18.3. Thus, Eq. (18.18) implies that D, is
described by

(0,~ A@))'8 <y, +An, (18.41)
and
(0, +A¢) 8>y, - An, (18.42)

where

A(pr: [An,sgn(ay), . . ., Ant_nasgn(ana),
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AEsgn(b) AL, sgn(b)), . . ., AE,., sen(b, ). (18.43)

REMARk 2. InTheorem 18.1 itis assumed that the components s (j = 1,2,...,p)
of the regressor vector @, are permitted to vary independently. In the case of
ARMAX models, however, there is serial dependence among them; consequently,
the set 77, obtained by intersecting the sets described by Eqs. (18.41) and (18.42),
only includes the exact feasible parameter region, i.e., D,, > D.

REMARK 3. Suppose the input u= [ u, ... uy]” is assumed to be precisely
known and the measurement vector y = [y, y, ... yy]’ is corrupted by noise. Equa-
tion (18.43) reduces to

A(prz [An,_;sgn(a)), ... ,An,, sgn(a, ),0,0,...,0], (18.44)

which, together with conditions Eqs. (18.41 and 18.42), forms the result given by
Clement and Gentil.#*2%

REMARK 4. In the case of linear static models, conditions (41) and (42) reduce
to the result given by Merkuryev [25]; see inequalities (6) in that paper.

18.5.3. Numerical Results and Discussion

The system considered here is an ARMAX model, characterized by (24) and
(26) with

AlgH=(0-1.147"+028¢7?),

Blg")=(g" +0.5¢7%)
and wy = 0, w) = 0. Thus, the true parameter vector is
0°=[a, a,b, b,) =[-1.102810.5]".

The system has two real poles for z; =0.4 and z, = 0.7 and a zero at z; = —0.5.
Bounded relative errors have been used, i.e.,

n=ev, e <ael &, =cu, |e| < et

In simulation, bounds on the errors at the input and the output are set as equal, i.e.,
A€’ = Ag* = Ag; this is a realistic assumption since one may use the same measure-
ment equipment to collect samples of u, and y,. The input sequence {x,} is uniformly
distributed in [~10,10].

Two noise distributions have been chosen for comparison purposes. One is the
uniform distribution U[—Ag,A¢] and the other is the normal distribution with zero
mean and variance o2 = (Ae/3)” truncated at +3c,. With this choice, the two errors
distributions are bounded by the same quantity *Ae and, of course, have different
variances. Four different values of uncertainties bounds are chosen, namely Ag =
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2%, 5%, 10%, 20%. For a given Ac ten different values of N have been considered
(N =100,200, . . ., 1000) and for a fixed N, 100 independent sets of data are
generated.

Parameter bounding from these records has been carried out by the bounded
errors-in-variables approach, computing central estimates (CE) and orthotopic
approximations of the feasible parameter set according to the scheme outlined in
Section 18.5.2. Least squares estimates (LSE) have also been computed in order to
give a comparison solution by a classical method. To compare the accuracy of the
estimates 0, the following parameter error norm has been introduced

A
118 - 6°,
16°1l,

where ||||, is the Euclidean norm. Figure 18.6 shows the mean values for 100 runs
of the parameter error norms for central estimates and least squares estimates in the
case of uniformly distributed errors. The results against the number of observations
and for different values of noise level are grouped together in order to facilitate the
comparison. Figure 18.7 depicts the results obtained when the errors belong to the
truncated normal distribution. In order to clarify the results shown in Fig. 18.6 and
Fig. 18.7, piece-wise straight-line interpolations are used for the discrete values.

FIGURE 18.6. Mean values for 100 runs of parameter error norms for central estimates (CE), ©, and
least squares estimates (LSE), *, from records corrupted with uniformly distributed noise.
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FIGURE 18.7. Mean values for 100 runs of parameter error norms for central estimates (CE), 0, and
least squares estimates (LSE), *, from noisy records when the corrupting error sequence belongs to a
truncated normal distribution.

Both the CE and the LSE give satisfactory estimation of the true parameters
when the noise level is low (Ag < 5%), for both uniform and normal distributions
cases. Increasing the noise level (Ag > 10%), decreases the accuracy of both CE
and LSE. Central estimates are always more accurate than the least squares
estimates in the case of uniformly distributed corrupting errors and for large N when
the sequence of noise belongs to the truncated normal distribution. In the latter case,
LSE are slightly more accurate than CE for high noise level and small N. When
switching from uniform to normal distributions, CE exhibit about the same accu-
racy for Ag = 2%, 5%, 10% and become slightly less accurate for Ae = 20%. LSE
obtained in the case of truncated Gaussian noise are always more accurate than
those obtained by processing the data corrupted with uniformly distributed noise.

An informal explanation of the above performances is the following. It is well
known that, if the noise is equipped with an /,, norm, central estimates are optimal,
the optimality criterion being the maximum possible distance between the estimate
and the true value. Least squares estimates are optimal in this sense when the errors
are bounded by the /, norm.?” The disturbances of the simulation presented in
Section 18.5.3 are bounded by the /,, norm. This explains the good behavior of CE.
The fact that LSE give better results when used with the truncated normal distribu-
tion suggests that they take advantage of the information contained in that kind of
distribution.
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18.6. CONCLUSIONS

Parameter bounding in models from records with bounded errors in both input
and output data has been addressed. A formal proof of a previous result on the
description of the feasible parameter region (FPR) for linear models in the presence
of bounded errors in all variables is given, together with further results which give
an insight into the shape and structure of the FPR. Topological features of the FPR
have also been discussed. It may be not convex and not connected; moreover, its
Chebyshev center may not be a feasible point.

Parameter outer-bounding for ARMAX models with both input and output
bounded errors have also been presented. Central Estimates (CE) obtained with the
bounded errors-in-variables approach, and least square estimates (LSE) have been
computed for a hundred independent realizations of a simulated example, which
shows the superiority of CE to LSE in the case of uniformly distributed corrupting
errors. When the sequence of output noise belongs to a truncated normal distribu-
tion, both CE and LSE exhibit, approximatively, the same accuracy.
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Identification of Linear Objects
with Bounded Disturbances in
Both Input and Output Channels

Y. A. Merkuryev

19.1. PROBLEM FORMULATION

The problem under consideration is to identify an object that is described by a linear
equation

y=ax +..+ax, (19.1)

where x|, . . ., x,, are input scalar signals, y is an output scalar signal, and a, . . .,
a, are the model coefficients, which must be estimated.

The object has been investigated experimentally. The input and output signals
have been measured in m experiments: estimates )?,-j for x;; (i.e., the input x; in the
jth experiment) and)~/j- for y; (i.e., the output y in the jth experiment) are known for
all n inputs and m experiments. The measurements have been made with bounded
additive disturbances:

(19.2)

Y. A. MERKURYEV « Riga Technical University, LV-1658 Riga, Latvia.
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where ¢;; is the disturbance associated with x;, d; is the disturbance associated with
Y and Cp» c,“; dj’ and d;* are known. Note that in such a situation the bounds of the
experimental input and output signals are known:

(v <x <x
Xy =Xy =X (19.3)
T<y <yt
Vi SV S
where
- _ 5 — +_ +
Xy =Xyt Cpy Xy =X+ Gy
v_~ +_~
i =ytd yp =y dy,
and

i=1,...,n j=1,...,m

The identification problem may now be formulated as follows: to build the
region W for possible values of the parameters a, . . ., g, that is consistent with
Eq. (19.3). For each vector 4° € W there are xj; and )7 in Eq. (19.3) such that the
relation

_ 0’(
holds for eachj =1, ..., m. Here

A=[a). .. a), XT=[x), .. %)

An exact description of W is often problematic. It can be defined for up to six
or seven model coefficients, but then becomes numerically intractable. The identi-
fication problem is generally reformulated to seeking the enclosing set #". Two
different approaches are mainly used to describe . The first uses hypercubes as
enclosed sets,(? and the second uses ellipsoidal sets.” This chapter shall study the
first approach.

An exact description of /¥ is considered in Refs. 3 and 4. A number of papers
on parameter-bounding identification methods (for instance, Refs. 5 and 6) are
surveyed in Ref. 7.

To start to solve the identification problem, first we follow Merkuryev.(g) Then,
a method for situations when the signs of the model coefficients are not known a
priori, is discussed.

19.2. IDENTIFICATION WHEN THE SIGNS OF THE COEFFICIENTS
ARE KNOWN

It is possible to describe the region # by means of a system of linear
inequalities. The method that may be used to build this system depends on a priori
information about the signs of the coefficients a,, . . ., a,. First assume that these
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signs are known a priori (for instance from physical interpretation of the coeffi-
cients). Later, drop this assumption.

If the signs of the coefficients are known, then, using interval arithmetic, it is
possible to write expressions for the minimum and maximum values of the
right-hand side of Eq. (19.1) if the input signals belong to the intervals in Eq. (19.3).
For example, if all the coefficients are positive, the expressions for the minimum
and the maximum are

%(‘AXY: Xyt an, (19.4)
(AX) =axy;+ .+a,rxfy.,j:1,...,m.

These expressions allow construction of the inequalities describing the region
w:

7= (ax); (19.5)
Ly/fS(AX)j*,j:I,...,m

These inequalities arise because each experiment admits values of the coefficients
a,, . . ., a, such that the intervals for the left- and right-hand sides of Eq. (19.1),
which appear because of Eq (19.3), intersect. Each pair of inequalities describes
those values of the coefficients that give such an intersection in the corresponding
experiment; thus these values are consistent with both Egs. (19.1 and 19.3) in this
experiment. The region W consists of those points that are common to all the
experiments; these points are described by means of the full system of inequalities
in Eq. (19.5).

The enclosed hypercube " may be obtained as a set of parameter uncertainty
intervals:

W={AeR,ela,d/li=1,...,n},
where
a; =mina, a; =maxa,
AeW AeW

The bounds a; and 4] can be obtained by solving a corresponding linear
programming problem. This problem is based on the system of linear inequalities
(19.5) and uses a; as a cost function to be correspondingly minimized or maxi-
mized.”* 1t can be solved, for instance, by a simplex method.('”

19.3. DETERMINATION OF THE SIGNS OF THE COEFFICIENTS

The way to build the region W when the signs of the coefficients ay, . . ., a,
are not known a priori has been discussed. When these signs are not known, it is
necessary:
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(i) to find those sets of signs that are consistent with the experimental
information;
(i) to build a subregion Wj for each such set of signs; and
(iii) to consider the region W as the union of subregions

W=UWj. (19.6)

J

The main problem is to realize the first step. After it has been made, one can use
each set of signs, as has been done before.

The present aim is to survey one method of determination of the signs of the
coefficients to be found. (Two other methods are considered in Merkuryev.®’) The
method comprises the following stages.

1. Evaluate the vector 4 = [a, . . . a,] by means of some traditional method of
evaluation (e.g., the least-squares method), or by solving a system of n equations
which make use of Eq. (19.1) and first n experiments: further on signs of the
coefficients that have been found are used and refined;

2. Make an attempt to build up the region W, for the set of coefficients signs
from the preceding step. Due to the convex nature of the region W), Eq. (19.5)
should be solved by linear programming. First, if necessary, Eq. (19.5) should be
rewritten so that it may be investigated by linear programming. This demands the
left-hand sides y;7, y; and unknown coefficients @; in Eq. (19.5) not to be negative.
Therefore in case of the negative signs of the left-hand sides y;, y;, their inequalities
should be multiplied by —1; similarly ‘minus’ signs of the negative coefficients g;
to be found are to be referred to the muitipliers of these coefficients, thus reversing
their signs. For instance, if the coefficient a; in a product a;z; (where z; equals to
x; or x;;) is negative, this element should be rearranged to the form of «(-;)z;, \}\/here
—q; is already positive. This actually carries out a transition from coefficients a; to
non-negative auxiliary coefficients b;:

a;=sign(apb, b, =la|z0,i=1,....n
For example, an inequality
52a3+a4,
where a; 2 0 and a, < 0, should be rewritten in the following manner:
52b3-by4 or 523b,-4b,,

where by =a; >0 and b, =—-a, 2 0.

Minimization and maximization of the functions f;=b,i=1,...,n, if
b;2 0 and limitations Eq. (19.5) are accordingly recorded, give corresponding
minimum and maximum values of the model coefficients a; which correspond to
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the region ). In case of Eq. (19.5) incompatibility, this fact is ascertained during
the optimization process;

3. If the linear programming procedure results in the lack of solution of Eq.
(19.5) (i.e., if there is no W for the combination of the signs that have been found
at the first stage) it is necessary to extend the boundaries of output disturbances.
Instead of the values d; and d} in Eqs. (19.2 and 19.3) the values dj — g and
d; + g are to be used here accordingly, where g > 0. The value g needs to be
increased from 0 until system Eq. (19.5) remains compatible. Having achieved this
try to decrease the value g and to change the signs of the coefficients in such a way
that, when the value of g decreases, the corresponding Eq. (19.5) remains compat-
ible. This may be done by means of iterative change of the signs of those coefficients
that reach zero in the current situation (i.e., when the current value of g and the
current signs of the coefficients are used). As a result, this iterative procedure gives
the situation with g = 0 and the Eq. (19.5) being compatible. The corresponding
subregions #; may be used in the following way.

If some coefficients in #; reach zero, their opposite signs should be checked:
subregions W,, W3, . . . are then built. If some coefficients in this subregions reach
zero then they also should be checked for opposite signs, and so on. When all
subregions ; have been found, the region # may be taken as their union.

The method that has been described may be illustrated by the following
examples.

Suppose the results of five experiments for an object with two inputs are
represented in Table 19.1; the corresponding maximum errors of measurements
being:

c;=—0.1, c:.;: 0.1,

d;=-05, dj’.'=0.5, i=12, j=1,...,5.
Primarily describing the given object by the equation

y=ax, +ayo, (19.7)

TABLE 19.1. Experimental Data for

Example 1
J X1 % y
1 2.00 1.00 6.73
2 3.00 0.00 6.31
3 0.00 3.00 8.69
4 1.00 3.00 11.37
5 3.00 1.00 8.91
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FIGURE 19.1. Lack of the region #, in Example 1 whena; > 0,4, <0, g=0.

choose the following combination of the coefficients signs: a; > 0, a, <0 (such a
combination of signs is chosen in deliberately to demonstrate the algorithm).
Thereforethe Eq.(19.5)herelooksas follows:

[y;Zblij~b2x§j (19.8)
Ly;Sblej—bgcgj, j=1,...,5.

As stated above, investigating the system makes use of the linear programming
method. With this goal Eq. (19.8) is rewritten as follows:

(yr = by + by(—3) (19.9)

LijSblxD+b2(—x;j), j=1....,5,

which allows the specified method to be used. The solution of Eq. (19.9) is to be
searched in the first quadrant. Fig. 19.1 shows that there is no such solution: Eq.
(19.9) is incompatible in the first quadrant (here the regions, which correspond to
individual measurements, are marked with corresponding figures). Therefore the
value g has to be increased from 0 until the system becomes compatible in quadrant 1.

When g = 9.5, there is a region of solution W] touching the axis a; as shown
on Fig. 19.2. Search for the solution changing the sign of the coefficient a, and
decreasing the value of g. The final region W/ = W, has been found if a, > 0, a, >
0 and g =0 isrepresented in Fig. 19.3. By means of solving the corresponding linear
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FIGURE 19.2. The region W] in Example 1 when g; >0, a, <0, g=9.5.

FIGURE 19.3. The region W, in Example 1 whena; >0,a,>0, g=0.
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TABLE 19.2. Experimental Data for Example 2

j El X2 }3 ;4 y
1 0.00 2.00 4.00 6.00 -19.64
2 2.00 4.00 6.00 0.00 16.17
3 4.00 6.00 0.00 2.00 -19.82
4 6.00 0.00 2.00 4.00 0.89
5 6.00 4.00 2.00 0.00 8.24
6 4.00 2.00 0.00 6.00 —27.71
7 2.00 0.00 6.00 4.00 7.98
8 0.00 6.00 4.00 2.00 -11.77
9 0.00 4.00 2.00 6.00 -33.95
10 4.00 2.00 6.00 0.00 26.75

programming problem the boundaries of the rectangle which circumscribes the
region are

a; =177, a} =243,
a;=2.64, a;=325.

Consider a more complex example with four input signals and ten experiments
as it is represented in Table 19.2; maximum errors of measurements are the same
as in the first example.

The results of the first four experiments are used for preliminary estimation of
the signs of the coefficients a; . . . a4 to be found. This approach gives the following
system:

Oa, +2a, +4a + 6a, =—-19.64
2a, +4a, + 64, + 0a,= 16.17
4a, +6a, +0ay +2a, =-19.82
6a, +0a, +2a, +4a,= 0.89.

TABLE 19.3. Stage 1 for Example 2 (g = 33.4)

J 1 2 3 4
sign q; 1 1 1 I
a 0.50 0.00 0.00 0.00

a 1.59 0.03 0.06 0.02
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TABLE 19.4. Stage 2 for Example 2 (g = 18.1)

b 1 2 3 4
sign a; 1 -1 1 1
a 1.70 -7.95 mn 0.00
a 2.05 -7.32 4.01 0.03

TABLE 19.5. Stage 3 for Example 2 (g =0.0)

J 1 2 3 4
sign g, 1 -1 1 -1

ai 1.62 —3.47 353 —5.45

aj 2.55 —2.56 4.48 —4.49

The solution gives a; = 2.10, a, = -3.06, a3 = 4.03, a4 = —4.94. Thus the
primary combination of the signs is as follows: a; >0, a, <0, a; > 0, a4 < 0. But
further on it is demonstrated that these are the real signs of the coefficients to be
found. Thus if the specified combination of the signs is used as an initial one it
results in the failure to demonstrate the functioning of the identification algorithm
that has been described: the Eq. (19.5) becomes compatible at once with g = 0.
Therefore, choose a deliberately false combination of the signs as an initial one,
e.g,a>0,i=1,..., 4. Successive tables of intermediate results obtained by the
specified algorithm illustrate the major stages of solving the second example by
means of changing the signs of the coefficients a; and the value g.

Table 19.3 represents the first step: change the value of g from 0 to 33.4, when
the inequalities in Eq. (19.5) are compatible for the initial signs of the coefficients.
Here the lower meanings of a5, a; and a4 are equal to zero, so one can change the
sign of anyone from them. Invert the sign of a, and reduce g up to g = 18.1; the
compatible Eq. (19.5) is represented in Table 19.4. Then, invert the sign of a4 and
reduce g until g = 0, to obtain the final decision, which is reflected in Table 19.5.

19.4. CONCLUSIONS

A method to identify linear objects with unknown bounded disturbances in
both input and output channels has been presented. It includes construction and
investigation of possible values of model parameters that are consistent with both
the structure of the model and the experimental information.

The region W of possible values of the model parameters is described by a
system of linear inequalities. It is possible to investigate this region using linear



316 Y. A. MERKURYEV

programming. A method to construct # in situations where signs of the model
parameters are not known a priori has been described and illustrated using two
concrete situations: with (1) two input channels and five experiments, and (2) four
input channels and ten experiments.
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Identification of Nonlinear
State-Space Models by
Deterministic Search

J. P Norton and S. M. Veres

ABSTRACT

An economical technique for tracing the boundary of a two-dimensional cross
section of the feasible parameter set for a model with bounded output error is
described. It allows exploration of a boundary which is not piecewise linear and
may not be convex. First a point on the boundary is found, then a line search is
executed, adapting to local behavior of the boundary. Resolution may be traded
against computational speed by choice of the search parameters.

20.1. INTRODUCTION

A search method for computing an approximation to the active parameter
bounds of bounded-error nonlinear state-space models is presented. The method is
fast enough to allow exploration, using a PC, of complicated parameter bounds of
non-linear models. The bounds are those implied by bounds on the model-output
error, given a set of observations and a model structure. They represent a simple
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description of model uncertainty, based on minimal information about the discrep-
ancy between the model output and the observations. If the model-output error
bounds and model structure are well chosen, the parameter bounds forming the
boundary of the feasible parameter set (FPS) may be used to classify the output
record (as in the example given later), or for experiment design, worst-case control
design or robust prediction.

The simplest possible approach!) is to compute boundary points of one
parameter for a range of values of a second, with all other parameters fixed, thereby
generating a two-dimensional cross section of the FPS. The obvious drawback of
this method is the need to compute values over a fine grid of parameter values in
order to obtain a clear indication of the shape of the FPS; this limits its use to short
records and models with few parameters. Choice of grid spacing is a non-trivial
task.

A Monte Carlo technique has been used for non-linear parameter bounding
by Smit,”®) and Smit and van Vliet'¥ devise a technique for computing estimates of
lower-dimension projections of the FPS.*) Lahanier, Walter, and Gomeni®® give a
random-search algorithm which generates a cloud of points on the boundary of the
FPS. 1t is able to deal with complicated boundaries and with feasible sets which
consist of a number of separate subsets,® but is computationally expensive. It has
been applied to the identification of pharmacokinetic models.

Recently developed methods are based on signomial programming and sub-
division of parameter space into ever smaller orthotopes.” These methods are
guaranteed to determine the boundary of the feasible set to a specified resolution.
The line-searching method presented here, an early version of which is described
in Ref. 10 is deterministic, like those of Refs. 7-9, in that the computation of the
boundary is entirely determined by the behavior of the boundary, once a starting
point has been specified. The line searching adjusts directions and step sizes to
match the local surface shape. This improves efficiency of the computation; random
searching to identify independent points on the boundary is slow by comparison.
The adaptive features of the algorithm make precomputation of the resolution
complicated, although bounds on the errors in the boundary can be computed on
line from local step sizes and angles of direction changes.

(2)

20.2. PROBLEM FORMULATION
The discrete-time state-space model
x,=f(x_,0), y,=g(x)+e, t=12,...,N (20.1)

(which may result from discretization of a continuous-time model) is considered.
Here
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and fis a possibly non-linear analytic function, fully determined for a given feasible
parameter vector @ € D — R* and three times differentiable in @ on the open
connected parameter domain D c R¥. The model-output error e, has specified
bounds |e| <8 (the symmetry of which is achieved by trivial adjustment of y; if
necessary). The error term combines observation error and any structural error in
the state and observation equations. Separate state-equation error, although some-
times of interest, is not considered here.

The problem is to compute the initial state X, and all values of parameters 0
consistent with Eq. (19.1) and the model-output error bounds, i.e., the set

D= {(x,0) € IxD|x,=f(x,_0),ly,-gx)|<8,1=12,...,N}

where S © R*is the set of initial states known a priori to be possible. If X, is known,

D={0eD|x=f(x,_0)ly-gx)|<8t=12,...,N}.

20.3. COMPUTATION OF TWO-DIMENSIONAL CROSS-SECTIONS

Two-dimensional cross-sections of the FPS Dare computed by fixing k—2 of
the parameters and exploring in the plane of the remaining two. Extension to higher
dimensions is described in Section 20.4. The procedure presented has a number of
advantages. There is no need to know an initial feasible point; all that is required
is specification of a bounded, finite parameter/initial state set to be explored. The
ability of the procedure to follow the boundary of the feasible set is limited only
by the resolution implied by the minimum length and direction change specified
for the search steps. Stage I of the algorithm, described below, can be repeated to
detect disjoint parts of the FPS (which occur in quite simple practical situ-
ations(®'").

To simplify the notation, X, is included in the parameter vector 0, increasing
its dimension k. Assume that the cross-section to be explored is in the plane of the
first two parameters, and denote @ by [0,,0,,03]%, with 85 fixed. The algorithm
searches the (8,,0,)-plane for all points such that [6,,8,,011" € D. Let 4 denote the
prior feasible (0,,0,) set, usually much larger than the cross section of D to be
computed. The prior feasible set 4 may depend on 8;. At each step, the procedure
determines whether a trial 0 belongs to P and calculates the gradient of the largest
model-output error with respect to 0. The error sequence and its gradients  are
computed recursively by

x,=f(x,_,0), e,=y,—g(x,0), t=12,...,N (20.2)
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where [6,0,]" has been written as 8". Let the largest output error be

C(0) =max {le(0),r=1,..., N}

and let £,(8), . . ., 1,49(0) be the time instants where the errors take this maximal
value within a tolerance k, i.e.,

e, (0)=C(0),i=12,...,10) (20.4)
or

e,(0)=-C(0),i=12,...,r0) (20.5)

where approximate equality @ = b holds within tolerance « if [a — b| < . In the
algorithm below, all approximate equalities are understood to hold in this way. The
number +(0) of instants at which the largest model-output error occurs is in practice
usually one or two, but consider the general case for completeness. To simplify
notation, denote by y; € R2 i=1, ..., () the gradients

e, (8)/00" or —0e,(0)/00",
according as Eq. (20.4) or (20.5) holds, with y; =+ 66,'(9)/89;.
The algorithm starts from a finite set 7 of initial points 8}, = [0,, 8,,]T € A not

necessarily in the projection of D onto the 0" plane. Finite set ¥ may be chosen at
will, but is best spread uniformly around 4.

20.3.1. Stage I: Reach the Boundary of the FPS
Step (1) Calculate normalized gradient
y=y /llyjlatd andset@to 6
Step (2) Search for a point on the half-line
0 =0-+iy,A>0,

at which 7(8") > 2. The search successively halves and doubles A as necessary to
search for apoint with

C(0) <3 and £,(0) = 1,(0)
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close to another point
0"=0+N\y
(with A = A") such that
C(0") =3 or¢,(0") # £,(0).

If C(0") = 3, pass to Stage II.
If #(0") > 2 during the search there are three possible cases:
(a) If

C(0")>0dandat®',0 € Conviy,,...,y,} (theconvex hull of y,, ..., y),

then for any given small change 60 in @', some positive-weighted sum of the
resulting changes /80, i=1,2, ..., r in maximal errors is zero. Hence not all the
changes are of the same sign, so one cannot simultaneously reduce all e,|, which
is necessary to reduce C(0"). Restart, therefore, from another initial 8 € ¥

(b) If

C0)>dandat0,0 ¢ Conviwy,,...,y},
set 0 to 0’ then

1
0=0+r1— L A<,
¥ B)Zw’
in an attempt to get both #(0") > 2 and C(8') = 6, and return to the start of Step (2);
©If

0 € Convi{y,,...,y,}and C(0') =38

(at the boundary), check whether all y;, i =1, . . ., ¥ can be written as y; = A,y for
some . If so, every |e,| is unchanged by 80 orthogonal to , so in Stage II search
the boundary of D along the line orthogonal to y.

If one reaches the specified maximum number of iterations of this search
procedure, restart from another initial 8 € 7. If all® € Jhave been tried, exhaustive
checking of points on a uniform grid filling the whole of 4 can be used to find an
internal point of the feasible parameter set D. Alternatively, the (non-linear)
least-squares estimate may be an internal point. A search then starts for a boundary
point of D, using the Procedure B described later in place of the procedure of Stage I.

20.3.2. Stage II: Follow the Boundary of the FPR D

Stage I provides a point 8, on the boundary of 2, and the maximal-error
gradients g, i=1,...,7(0). If #0;)=1 then the initial search direction
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FIGURE 20.1. Direction of search from 0, for 7(8;) = 2.

d=[d, d,]" should turn at right angles to y, along the boundary, so
d=[y,> - w1 will do. If #(8,) = 2, 0, is at the intersection of two bounds and the
appropriate direction is d = [y, =y ;1" if Wi, < wpwy; and d = [y, —yy]" if
Wi2Wa1 2 Wy ;. Fig. 20.1 illustrates this situation. The dashed lines show the two
tangents to the FPS boundary at 0,; gradient y, is obtained by turning v, in a
clockwise direction by less than = rad, which gives v ;w5 < W,owy. Similarly, if
H(0;) > 2 one selects from yy, . . . , Wy, that y from which all the other y;s can be
obtained by turning y; in a positive direction by an angle less than or equal to .
The initial direction of search from 0 is then d = [y, — y4;]1". In the unlikely event
that no such w; exists, the two-dimensional cross section in the neighborhood of
0, consists of the singleton {0,}.

Starting from 0, the feasibility of three trial points A, A,, A, displaced from
0, by vectors of lengths A, , ; and angles o, , 3, is checked. The lowest acceptable
resolution fixes the initial values of A, ;3 and the spacing of a, ;3. The latter are
successive integer multiples of a specified angle o, not critical but typically
between 10° and 20°. In Fig. 20.2, “x” indicates a point in 2 and “O” a point not in
D. In Fig. 20.2(a), the boundary crosses the intervals [0,,A;] and [A;,A/] for some
iandi#j, i,j =1,2,3.InFig. 20.2(b), the step size 1 should be reduced by a specified
factor, e.g., 2. In Fig. 20.2(c), the direction of search should be turned in a positive
or negative direction by ag. The left picture in Fig. 20.2(a) shows that it is not
enough to look for a boundary point between 8, and a point outside 9, as the
boundary crossing may coincide with 8, in which case a boundary point must be
sought between the A;s. The right picture in Fig. 20.2(a) shows, however, that a
boundary point between 0, and A; should be sought first to turn at the right place.
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FIGURE 20.2. Examples of behavior during boundary search. (a) Trial points of differing feasibility;
(b) Trial points of same feasibility; and (c) At a nondifferentiable boundary point (+(61) > 1)

At this stage a procedure is needed to find a boundary point between an inside
and an outside point. Let 0, be the point inside D, 8, = 0, + Ad the next trial point
and a ¥ Boolean variable with initial value = {8, € D}. The following “halving-
doubling” procedure finds a boundary point. It uses ¥ to indicate whether the
previously considered point is inside or outside the FPS.

0.:=0,
start: 0, =0, + Ad;

if (Fis true and 0, € D) then . = 2),

if (Fis true and 0, ¢ D) then (8, =0, + Ad/2; & = A/4;

F = false; go to start);

if (Fis false and 8, € D) then (0, =0, A '=A/2);

if (Fis false and O, & D) then A = \/2;

if A < x then stop else go to start.

The algorithm has worked well in many examples with piecewise differenti-
able boundaries. Fig. 20.3 shows a low-resolution solution with large initial and
maximum search-step sizes, and a higher-resolution solution with smaller step
sizes. Noteworthy features are the complexity of the boundary formed by a modest
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FIGURE 20.3. Cross-sections obtained by two-dimensional boundary search (a) low resolution (b)
high resolution

number of simple bounds, and the ability of the algorithm to follow itapproximately
even when the search parameters are not well chosen.

20.4. EXTENSION TO MORE DIMENSIONS

The extension of the algorithm described above is an indexed set of two-
parameter searches. Starting from 0, € D, boundary points are found in a succes-
sion of uniformly distributed directions. The direction vectors d; are all of the form

BiBs--. Bk]T, where

B,=cosa,,B,=sina, cosa,, B;=sina, sina,cosa,,...
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ke~ k-1
cos By = H sin o Cos Oy, Be= H sin o
J=1 szl

Uniform distribution is arranged by setting
(xj:2nmj/m,j= 1,2,..., k1

with each integer m; indexed over 1,2, . . ., m, generating altogether m*! direction
vectors. The search is confined to two dimensions by fixing the values of all but
one m;. Each two-dimensional boundary exploration, as in Section 20.3, yields a
closed polygon of successful linear search steps. The end result is a set of two-
dimensional cross-sections of D at m*"' points of a (k — 1)-dimensional grid
covering the surface of the k-dimensional FPS.

The initial search for a boundary point along the line 0, + Ad;, A > 0 is carried
out by halving and doubling the search step in the procedure described in the
preceding section.

Asthe list of vertices or edges of the polygons approximating the two-dimensional
cross sections makes up a complicated description of D, there remains the non-triv-
ial problem of finding an economical and readily comprehensible way to charac-
terize D adequately for the intended application of the model. However,
considerable insight into the character of the FPS can be obtained by inspecting
two- or three-dimensional cross sections of its boundary, as in the example below.

20.5. EXAMPLE

Assessment of the uncertainty in the model parameters by bounds rather than
by a covariance matrix is attractive when the central-limit theorem is inapplicable,
e.g., with small samples and/or heavily structured errors. The example chosen
therefore involves a nonlinear model with only a small number of samples in the
input-output record. Fig. 20.4 shows the response of blood-plasma concentration
in a human subject to a rapid oral dose of methionine to test liver function. The
response suggests a two-exponential model

W) = alexp by(t —7) — exp by(t — 1)] + e(?) (20.6)

where ¢ denotes time and t an unknown pure delay. (Because the sampling is
nonuniform in time, one cannot rewrite the model as a difference equation linear
in its parameters as usual.) The model-output error bounds are provisionally
specified from knowledge of instrument and experimental accuracy to be
le(£) < 10. Bounds on the parameter vector 8 = [a b; b, T]" are to be computed.
The initial value 0,=[229 -0.94-3.4 0.15]" was found to be inside the
feasible parameter set. Figure 20.5 shows two-dimensional cross-sections through
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FIGURE 20.5. Two-dimensional cross sections of the feasible parameter set, all through 8,,.
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FIGURE 20.5. (Continued)

0,. The first parameter ¢ has been normalized by 100 to make its magnitude
comparable with those of the other parameters. There are as many two-dimensional
cross sections as the number of ways to chose two out of four parameters, i.e., six.
The 1-2 and 1-3 sections in Fig. 20.5 suggest that the FPS almost falls within a
linear subspace. At least one linear function of the parameters is near-redundant,
which implies that one or more parameters can be eliminated with little detriment
to the model. A clearer indication that this is so comes in Fig. 20.6, which shows
isometric views of the three-dimensional cross section of the FPS at a = 229. Fig.
20.6 shows that the FPS is thin in directions orthogonal to [0 1 0.7 -2]".

The nonlinear bounding facilities offered by the University of Birmingham
identification package also include projection of the FPS onto any specified
two-dimensional subspace. Fig. 20.7 shows the FPS of Fig. 20.6 projected onto the
b,:t plane. The package provides advice to the user in two forms: a HELP facility
and a file of information about the progress of the search, accumulated automat-
ically as the search proceeds and accessible at any stage. This file contains, for
instance, the number of search line segments so far and the worst-case parameter
precision achieved. The user may adjust the search parameters on the basis of this
information.

The results screens show the line search in progress, with the next few trial
points and search directions. The user may decide to intervene according to this
information. The package also provides for linear transformation of the parame-
ters, which is useful in cases of near-redundancy like that in Fig. 20.6. It helps
in optimizing the search-direction density. The package contains a parser to
interpret state and observation equations typed in algebraic form in a standard
notation.
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FIGURE 20.6. Isometric views of three-dimensional cross section of FPS at a = 229.
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FIGURE 20.7. Projection of FPS onto plane.

20.6. CONCLUSIONS

A method has been presented for computing the boundary, possibly nonconvex
and complicated, of the feasible parameter set of a nonlinear state-space model. It
performs line searches along the boundaries of two-dimensional cross sections of the
FPS. Higher-dimensional regions are explored by a succession of two-dimensional
searches. The computing load makes nonlinear bounding mainly an off-line iden-
tification technique. The fundamental difficulty of finding comprehensible and
economical characterizations of possibly complicated multidimensional surfaces
also has to be faced. Nevertheless, the algorithm enables the user to examine
two-dimensional cross sections and projections of the FPS boundary, which can
give valuable insight into the adequacy of the model parameterization and experi-
mental conditions. The nonlinear FPS boundary computation is embedded in the
University of Birmingham identification package, which has a number of features
to facilitate interactive exploration.
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Robust Identification and
Prediction for Nonlinear
State-Space Models with
Bounded Output Error

K. J. Keesman

21.1. INTRODUCTION

An important application of mathematical models is prediction of the future system
behavior. Due to incomplete system knowledge as well as errors in the observations
obtained from the “real” system, these models will always contain some uncer-
tainty. Hence, for the credibility of model predictions, it is desirable to quantify the
prediction uncertainty. From this point of view, a single future trajectory suggest
an unrealistic reliability.

In a large number of applications, prediction uncertainty is dominated by
uncertainty in uncontrolled future system inputs, which is always speculative. In
order to illustrate the contribution of other uncertainties, an appropriate model
structure is first presented. As a result of it, consider the following finite-dimen-
sional, continuous-discrete time, nonlinear, time-invariant state-space model struc-
ture without system noise,
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dx(t,0)/dt = f[x(1,0),u(t).t; 0]
x(t,0) =X,

y(t,) = g[x(t,.0)u(t,).t ;0] +et) t =t,...,ty (2L1)

where x(.), u(.) and 0 are the state, input and parameter vector. In the discrete-time
observation equation, y, e € R*® are the observation and output-error vector. Notice
that the output-error represents uncertainty due to both the measurement and the
modeling process. From Eq. (21.1) also note that, apart from the uncertainty in
future inputs, the prediction uncertainty is also been determined by uncertainty in
initial conditions (Xy), model structure (f, g) due to unmodelled phenomena, and
model parameter vector 0. Unlike the future input uncertainty, which is not
considered in what follows, these uncertainties are quantified on the basis of
available measurements which have been corrupted with noise.

The ultimate aim of this contribution is to provide a framework for identifica-
tion and prediction of grey box models, in the form of a nonlinear state space
representation, from data with bounded noise. The evaluation of the prediction
uncertainty from different uncertainty sources is herein emphasized.

Conventionally, the evaluation of the prediction uncertainty is performed
within a stochastic framework, that is, by employing random differential equations,
first-order variance propagation analysis, or Monte Carlo simulation analysis. In
the 1980s, however, a set-membership approach to prediction!” has been devel-
oped as well. Within this approach, the only assumption with respect to the
uncertainty is that it is pointwise bounded with known bounds, which implies that
for each t, the output-error in (21.1) belongs to a set. In mathematical notation:
e(ty) € Qty), where

Qt) = {e(t,) € R e(t) <e(t) <e(t)'} for t,=t,...,t, ((212)

and e(ty), e(t,)" are the lower and upper bound, respectively. Hence, the parameter
estimates and the instantaneous predictions also belong to a set. This approach is
very much appealing when no detailed statistical model of the uncertainty can be
found as, for instance, in situations with sparse data.

For a reliable assessment of the prediction uncertainty one needs to have a
valid description of the uncertainties at the beginning of the prediction stage.
Therefore, in Section 21.2 the identification of parametric and (nonparametric)
modeling uncertainty is evaluated in detail for the class of state-space models
represented by Eq. (21.1), and uncertainty model Eq. (21.2). Within this set-
theoretic framework, robust estimates of parameters and modeling uncertainty
result. In Section 21.3 two examples are presented which will illustrate the set-
membership approach to prediction. First, a simple hypothetical example is pre-
sented, which shows the effect of both uncertainty components on the prediction
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uncertainty. Secondly, a simple “real world” example of modeling dissolved oxygen
(DO) concentrations in a lake is used for the validation of the approach to one-step
and multiple-steps ahead predictions. In addition, long-term predictions are evalu-
ated and compared with available measurements. Finally, in Section 21.4, some
concluding remarks are presented.

21.2. ROBUST IDENTIFICATION AND PREDICTION

21.2.1. Parameter and Modeling Error Estimation

Within the set-membership context, the problem is to identify a set of feasible
parameter vectors (denoted by €g) consistent with the model Eq. (21.1), the error
characterization Eq. (21.2), and a predefined parameter set. From this formulation,
it is clear that the feasible parameter vectors as well as the predicted outputs are
robust with respect to all disturbances which satisfy Eq. (21.2). Apart from the
literature cited above with respect to prediction, there is a growing amount of
literature on the set-membership approach to identification; see Refs. 8-10 for an
overview. However, most algorithms are merely applicable to models that are linear
in the parameters. For models nonlinear in the parameter, in addition to successive
linearization,!"” OMNE developed by Lahanier, Walter, and Gomeni,'? and the
Monte Carlo Set-Membership (MCSM) algorithm,*!¥) identification methods
based on boundary search,!'> signomial programming'® and interval analysis!”)
have also been developed recently.

One of these, the widely applicable MCSM algorithm, is characterized by
global random scanning in a predefined parameter space, which is updated occa-
sionally by a parameter space rotation procedure based on principal component
analysis of the feasible realizations. Notice that this algorithm is clearly based on
a discrete (numerical) approximation of the nonlinear identification problem.
Hence, for the system represented by Eqgs. (21.1 and 21.2), the algorithm only
identifies )y exactly for an infinite number of realizations from a predefined
parameter set that contains the exact solution set.

From Eq. (21.1) notice that the uncertainty in model parameters, initial
conditions, and model structure is strongly related to the behavior of the output-error
vector sequences and the prior characterization Eq. (21.2). As for the initial
conditions, it is common practice to augment the parameter vector with the
unknown initial conditions. If the model is exact, the parametric uncertainty due to
measurement noise only is explicitly represented by the set of feasible parameter
vectors. Otherwise, 0y will also represent some or all uncertainty due to model
misspecifications. In what follows the uncompensated part of this is indicated as
modeling error. For the characterization of the jth element of the modeling error vector,
w;€Q,,(j), the following expression in terms of the output-error has been stated,©
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Q,0) = {w; € Rijw| <w)} (21.3)
WJM =max { min Q )} (21.4)
t i=1,...M

k
where Q.(j.ty) is a (finite) set of absolute residual output errors at time instant t,

and related to the jth observation element. Excluding residuals related to outliers,
Q.(,t) is defined as

Q.(.4) = {Sijk - ik
= |Yj(tk) - gj[x(tk,ﬂi), u(ty), t:;0]); vV 0,e Qpi=1,..., M}

where M 1s an appropriate number, which depends on the description of the feasible
parameter set. In the case of an exact polytopic solution, M is equal to the number
of vertices, while for a discrete approximation M is identical to card(Qg). Notice
that for a discrete solution obtained from MCSM, the modeling error also represents
the uncertainty introduced by an inner-bounding solution of the identification
problem. As an alternative to the upper bound description of the modeling error,
suitable for robust long range predictive controller design or guaranteed scenario
analysis, for short-term prediction the conservatism in the estimate may be reduced
by taking into account the time structure of {wJM(tk)}.“s)

21.2.2. Exact and Approximate Modeling

After having presented the key ideas behind the identification of both the
parametric and the (nonparametric) modeling uncertainty for a general class of
state-space models with output error, consider the following cases:

A. Consider an exact model and exact measurements. This situation occurs
when one formulates, for example, a (N-1)th order polynomial model on the basis
of a finite number (V) of accurate measurements. The set {4 reduces then to a
singleton which implies a single predicted output trajectory.

B. Consider an exact model and noisy measurements. Assume, furthermore,
that the noise is governed by a random mechanism which has been characterized
exactly in terms of upper bounds. For the linear case and N—oo the set (), converges
with probability one to a singleton,"'” denoted as the minimax or Chebyshev
estimate, or in terms of Tempo ez al.,”*) the maximally robust estimate. For the
nonlinear case, a nonlinear optimization problem remains which for N—co does not
necessarily result in a single maximally robust estimate. For output prediction one
of these “optimal” estimates is selected, which results in a single trajectory. On the
contrary, when N is finite, more than one feasible parameter vector is most likely
to be found. Hence, () is associated with a (finite) set of feasible model response
trajectories,

() = {¥ € R §(1,:0) = glx(5,.0), u(t), t:01; VO e Qp}  (21.5)
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fort, =1,...,ty,p, where P is the prediction horizon.

C. Consider an approximate model and exact measurements. A first step
towards the solution of this problem is to hypothesize that the model is exact, which
implies that is assumed that the measurements are corrupted with (colored) noise
(Case B). From these conditions note that for N—oo and an exact unknown-but-
bounded error characterization it suffices to solve a minimax estimation problem
in order to obtain the feasible parameter set. However, under the conditions
originally considered, the resulting minimax estimate alone does not represent the
uncertainty caused by the approximate model. In the second step, estimate an upper
bound on this modeling uncertainty from Eq. (21.4) which is exact for N—co.
Hence, for output prediction based on the model structure given in Eq. (21.1), the
interval vector [-w™, +wM), containing the estimated upper bounds on the modeling
uncertainty, must be added to the minimax output vectors at the time instants ty. 1,
.. - » tnyp- When N is finite or when the output-error bound is chosen too large, the
estimated bounds must be added to a set of output vectors at each time instant
instead of a single minimax output vector.

D. Consider an approximate model and noisy measurements. Notice that for
N—ao the set Qg is empty for an exact characterization of the noise originating from
the measuremernt process alone, because of the presence of modeling uncertainty
in addition to the measurement error. From the viewpoint of model selection, this
implies then that an empty parameter set indicates the presence of modeling
uncertainty. Thus, the model structure is an incorrect or incomplete representation
of the system under study. In practice, however, measurement error bounds can
seldom be specified exactly. In this situation, the specified error set Eq. (21.2), if
chosen sufficiently large, represents both measurement and modeling uncertainty,
which will also be reflected in Q. In a previous paper® various situations with
respect to ) and the choice of bounds on {e(t,)} have been evaluated. In those
cases where Qg does not represent the modeling uncertainty completely (see Case
C), an instantaneous estimate of the upper bound on this uncertainty is provided by
Eq. (21.4). Hence, for realistic output predictions, based on a state-space model
formulation with output-error, the vector sum of the modeling error set Q,(t,) and
the set Qy(t,) (Eq. (21.5)) must be determined for t, = tn,1, - . ., tNep-

Thus, from a system-theoretic point of view, robust estimates of both the model
parameters and the modeling uncertainty are provided, which contribute to robust
output predictions.

21.3. EXAMPLES

In this section two examples illustrate the application of the procedures previously
presented. A more complex “real world” example of predicting algal growth in a water
quality system under environmental change has been reported.->")
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21.3.1. Hypothetical Example

Consider the following measurements,

x(tk) ‘ 1 2 3 4 5

() ! 5.2 5.3 5.1 45 5.0

which originate from a random process with y(t,) € U[4.5,5.5].
If both model and measurements are assumed to be exact, it can easily be

verified that the model,
V(t,:0) = 6, + 0,x(t,) + 0,x3(t) + 0,5°(t,) + 0,x(t,) (21.6)

satisfies the assumed conditions for 6, = 6.4997, 0, =-2.9661, 6, = 2.2830, 65 =
—0.68325, and 6, = 0.06666. The output prediction, consisting of one single
trajectory, is presented in Fig. 21.1, Case A.

Alternatively, consider the case in which it is assumed that the noisy measure-
ments are obtained from a process that is exactly represented by the model,

y(t:0) = 6, (21.7)

and measurement uncertainty that is bounded on the interval [-0.5, 0.5] for all t,.
Then, the bounds on the model output can easily be calculated from the measured
minimum and maximum value plus or minus the noise bound, that is

Qu(t) = {3(t) € R: 4.8 <5(4,:0) <50} fort =t,,. ..ty

FIGURE 21.1. Prediction uncertainty evaluation for the hypothetical example.



NONLINEAR STATE-SPACE MODELS WITH BOUNDED OUTPUT ERROR 339

(see Fig. 21.1, Case B, where P = 5).

If, on the other hand, the measurements are assumed to be exact and the model
is an approximate representation of the process, a modeling error must be added to
the feasible model output set resulting from analysis with an exact model and noisy
measurements. The upper bound on the modeling uncertainty is equal to 0.3, that
is max{y(t,)} minus the upper bound on Q4, or jmin{y(t,)} — 4.8}. The set of
corresponding output predictions is presented in Fig. 21.1, Case C.

At last, consider the most realistic case in which both the model and measure-
ments are uncertain. Let [e(t,)| < n; then for 0.4 <n < 0.8, the ultimate set of output
predictions is equal to the previous one. Notice that the contribution of the additive
modeling error diminishes from 0.4 to zero. Hence, for n > 0.8, wM = 0 and
Qu(t) for =1y, . . ., txep contains the set of Case C. Clearly, by selecting the upper
error bound 1 one can weigh the trade-off between a parametric and a nonparamet-
ric uncertainty description. ‘!

21.3.2. “Real World” Example

For this example, measurements of dissolved oxygen concentrations in a lake
are used and have been presented in previous work.® The dynamic behavior of the
dissolved oxygen concentration (C) can be described by,

dC(tydt = K [C(t) - C(1)] + al(t) - R (21.8a)

FIGURE 21.2. Parameter estimation results.
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FIGURE 21.3. Prediction uncertainty evaluation for the “real world” dissolved oxygen example.

FIGURE 21.4. Long-term predictions for the “real world” dissolved oxygen example.
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y(t) = C(t) +e(ty) (21.8b)

where C(¢) is the saturated DO concentration and /() the radiation. The parameters
K., o, and R represent the reaeration coefficient, the photosynthetic production rate,
and the oxygen consumption rate, respectively. The posterior parameter set (24 has
been identified from 40 measurements (five days with sampling interval of three
hours) using the MCSM algorithm with 1 = 1.5 g/m? (see Fig. 21.2). The maximum

FIGURE 21.5. Prediction frequency distributions at k= 120 and & = 125.
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distance between individual measurements and associated model output set gener-
ated by Qg over all sampling instants t, offers, then, a bound on the modeling
uncertainty, that is, w™ = 0.17 g/m’.

Fort, e {117, 117.125,117.25, ..., 120}, the one-step and three-steps-ahead
predictions in terms of lower and upper bounds are presented in Fig. 21.3. Notice
the effect of the outlier at time instant t, = 118.875 on the predictions.

The long-term bounded predictions, as a result of this one-step procedure of
identification and prediction, can be seen in Fig. 21.4. Clearly, not all observations
are contained in the predicted model output set. Most likely this has been caused
mainly by unmodeled dynamics due to incomplete knowledge of processes related
to oxygen production by radiation and oxygen consumption.

In addition to the prediction uncertainty bounds, frequency distributions are
also available as a result of the sampled parameter space. From the positively
skewed frequency distributions for k£ = 120 and 125 it can be concluded that the
high prediction values are especially determined by only a few parameter combi-
nations. However, recall that this additional information is not essential for the
procedure; the primary interest is the prediction uncertainty bounds to be employed
in robust predictive controller design or guaranteed scenario analysis.

21.4. CONCLUSIONS

Robust identification of both the model parameters and the modeling uncer-
tainty within the context of a state-space model formulation on behalf of a realistic
evaluation of the prediction uncertainty have been the main themes of this chapter.
Within the set-membership approach, the MCSM algorithm, which is applicable to
a broad class of (nonlinear) estimation problems, provides a finite set of robust
parameter estimates Qg. The modeling error set Q3,,, including errors due to the
inner-bounding characteristics of MCSM, is obtained from analysis of the residual
output error set. Robust output predictions for the class of state-space models with
output-error result, then, from the vector sum of Q2,, and the set of model responses

QQ(tk) for t, = tn+1, - - - » tnep, Which is determined by Qy, the posterior parameter
set.
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Estimation Theory for Nonlinear
Models and Set Membership
Uncertainty

M. Milanese and A. Vicino

ABSTRACT

This chapter studies the problem of estimating a given function of a vector of
unknowns, called the problem element, by using measurements depending non-
linearly on the problem element and affected by unknown but bounded noise.
Assuming that both the solution sought and the measurements depend polynomially
on the unknown problem element, a method is given to compute the axis-aligned
box of minimal volume containing the feasible solution set, i.e., the set of all
unknowns consistent with the actual measurements and the given bound on the
noise. The center of this box is a point estimate of the solution, which enjoys useful
optimality properties. The sides of the box represent the intervals of possible
variation of the estimates. Important problems, like parameter estimation of expo-
nential models, time series prediction with ARMA models and parameter estimates
of discrete time state space models, can be formalized and solved by using the
developed theory.
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22.1. INTRODUCTION

In this chapter the following problem, referred to as the (generalized) estima-
tion problem,'") is addressed. Given a problem element A (for example the vector
of parameters of a dynamic system or a time function), evaluate a vector valued
function S(A) of this problem element (for example, some functions of parameters
of the dynamic system or particular values of the time function). The element A is
not exactly known and there is only partial information on it. In particular, assume
that it belongs to a set K of possible problem elements and that further information
on A is given by the knowledge of a function F(L), representing measurements
performed on variables depending on A. Suppose that exact measurements are not
available and actual measurements y are corrupted by some error p according to
the equation

y=FQ)+p. (22.1)

The estimation problem consists in finding an algorithm (estimator) ¢ that provides
an approximation ¢ (y) = S(1), as a function of the available data y and in evaluating
a measure of the approximation error.

Many different problems such as linear and nonlinear regressions, parameter
or state estimation of dynamic systems, state-space and ARMA models prediction,
filtering, smoothing, time series forecasting, interpolation, and function approxi-
mation can be formulated in a general unifying framework based on the above
concepts.

The solution of the estimation problem depends on the type of assumptions
made on p. Most of the cases investigated in the literature on estimation theory are
undoubtedly related to the assumption that the error vector p is statistically modeled
as an at least partially known probability distribution. Within this context the most
important and widely used results are related to the theory of maximum likelihood
estimators (MLE). Despite the large amount of theoretical results developed on
MLE, the application to real world problems may be not appropriate due to a
number of possible drawbacks. These include

1. Actual computation of MLE usually requires a search of the global
extremum of functions which are, in general, multimodal. Since general
optimization algorithms (including the so called global ones, based on
random search) are not guaranteed to achieve the global extremum, the
estimate obtained may be far from MLE;

2. Even though MLE are asymptotically efficient, it is difficult to evaluate
whether the available data are sufficient to ensure that the covariance matrix
estimate is “close” to the Cramer—Rao lower bound or not;

3. For small data sets, it is useful to have lower and upper bounds of the
estimate covariance matrix; indeed, tight upper bounds are difficult to
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evaluate. Moreover, in this condition even the evaluation of the Cramer—
Rao lower bound may be not significant;

4. Tt is difficult to evaluate the effect of non-exact matching of the assumed
statistical hypotheses on p. In particular, there is no theory for taking into
account the presence in p of modeling errors.

In more recent years a new approach, referred to as “set membership error
description” or “unknown but bounded error (UBBE)”, has been investigated.”) In
this case, the error vector p is assumed to be an element of an admissible error set
described by a norm operator as

lipll<e (22.2)

where ¢ is a known quantity. A case of great concern is when /,, norms are adopted;
in this case, each component of the error vector is known to be bounded by given
values. Motivation for this kind of error representation is the fact that in many
practical cases the UBBE information is more realistic than statistical assumptions
with respect to the measurement error.?* In this context, a possible approach to
the estimation problem consists in finding the feasible solution set, i.e., the set of
volus S(A) such that A is consistent with the measurements y and the error model
of Eq. (22.2). Any element of this set represents a possible estimate, although the
center or the minimum norm element of the set enjoy interesting optimality
properties.*™ The size of the set represents a measure of the estimate reliability.

Unfortunately, an exact representation of the feasible solution set is in general
not simple, since it may be not convex and not connected. It is therefore convenient
to look for simpler, although approximate, descriptions of this set. To this extent,
the use of simply shaped sets, like axis-aligned boxes (referred to as boxes for short)
or ellipsoids, has been proposed to approximate the feasible solution set.®®
Ellipsoids may approximate the shape of the feasible solution set better than boxes.
Unfortunately, algorithms for computing ellipsoidic approximations are known for
linear S(-) and F(-) only.®” Moreover, the obtained approximations may not be
tight.>!9 On the other hand, important information can be obtained by box
approximation. In particular, the minimal volume box containing the feasible
solution set, minimal outer box (MOB), has the following properties

¢ the length of each of its sides along the corresponding i-th coordinate axis
gives the maximum range of possible variation of (S(A)); (called Uncer-
tainty Interval Ul);

o the center of MOB is the (Chebyshev) center of the feasible solution set
and hence it is an estimate of S()) enjoying several optimality properties.®”)

For linear problems, the MOB can be computed easily by solving suitable
linear programming problems.®) Unfortunately, many practical estimation prob-
lems, even if related to linear dynamic models, lead to nonlinear S(-) and F(-) (see
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Section 22.3). Several approaches have been proposed to evaluate MOB when F(+)
1s nonlinear and S(-) is identity. In Ref. 11 a solution is found in the case in which
Eq. (22.1) represents model output-error equations. In Ref. 12 a method of succes-
sive linearization is proposed to construct a sequence of boxes contained in the
MOB, but no guarantee of convergence to the MOB is given. In Refs. 13 and 14
optimization methods are used to construct the boundary of the feasible solution
set. In particular, the random search algorithm used!'*) generates a sequence of
boxes contained in the MOB and converging monotonically to it with probability
one. However, this convergence property is not particularly useful in practice,
because no estimate is given of the distance of the achieved solution from the global
solution.

This chapter shows that if S(-) and F(:) are polynomial functions, a sequence
of boxes contained in the MOB can be constructed, converging to it. Moreover, an
estimate of the distance of the estimated box from the MOB is provided at each
iteration. It is also shown that the hypothesis of S(A) and F(X) polynomial covers
large classes of problems of practical interest such as, for example, the identification
of multiexponential, ARMA and state-space discrete time models.

The chapter is organized as follows. Section 22.2 introduces the spaces and
operators needed to build a general framework for estimation problems. Section
22.3 shows how some significant estimation problems lead to polynomial S(A) and
F(L). Section 22.4 presents an optimization algorithm which allows one to derive
a guaranteed global solution for the class of polynomial problems mentioned above.
The effectiveness of the proposed approach is demonstrated by some examples
reported in Section 22.5.

22.2. AGENERAL FRAMEWORK FOR ESTIMATION PROBLEMS

Let A be a linear normed n-dimensional space on the real field (called the
problem element space). Consider a given operator S, called the solution operator
mapping A into Z

S:A -7 (22.3)

where Z is a linear normed /-dimensional space on the real field. In estimation
theory, the aim is to estimate an element S(X) belonging to the solution space Z,
knowing approximate information about the element A.

The available information on the problem is contained in the space A and in
an additional linear space Y which is introduced below. The first kind of informa-
tion, which is referred to as a priori information, is generally provided by letting A
belong to a subset K of A. In the chapter problems are considered for which either
K = A (i.e., no a priori information is available), or K is given as
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K={he A: P2 <1} (22.4)

where P is a linear operator and A, is a known problem element. Despite the above
assumption, many of the results presented in the chapter hold also for more general
structures of the set K. As for the second kind of information, assume that some
function F(L) is given; called information operator, mapping A into a linear normed
m-dimensional space Y (called measurement space)

F: Y. (22.5)

Assume that Z and Y are equipped with (weighted) /,, norms.*

In general, due to the presence of noise, exact information F(A) about X is not
available and only perturbed information y is given. In this context, information
uncertainty p is assumed to be additive, i.e.,

y=F)+p (22.6)

where the error term p is unknown but bounded by a given positive value &
according to an [} norm

liplly, <e. (22.7)

Notice that the use of an [} norm in the measurement space Y allows one to consider
different error bounds on every measurement. An algorithm ¢ is an operator (in
general nonlinear) from Y into Z

hY>Z (22.8)

which provides an approximation ¢(y) = S(A) using the available data y. Such an
algorithm is also referred to as an estimator.

As a simple example of how a specific estimation problem fits into the general
framework outlined above, consider the problem of parameter estimation of a time
function belonging to a finite dimensional space, using data obtained by sampling
and measuring it at a number of instants. Roughly speaking, the problem element
space is the space of the considered class of functions, identified as the space of the
unknown function parameters; the space Y is the space of available samples
(possibly corrupted by noise); the solution operator is the identity operator and the
information operator is the sampling operator.

Now, introduce the following set, which plays a key role in the development
of the theory

*A weighted [, norm, denoted by /., is defined as

[I¥llz = max wiivl, w;>0
7
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Ty ={heK:|ly-FMIl; <&} (22.9)

The set 7(y) contains all A compatible with the information F, the data y and the
bound & on the noise; S[7(y)] represents the already mentioned feasible solution
set. Make some technical assumptions about this set. First, there exists a set ¥, <
Y such that for each y € Y, T(y) is nonempty, i.e., the model structure is able to
represent all the data y belonging to the set ¥;. Secondly, 7(y) does not contain
isolated (discrete) points. Third, 7(y) is bounded; if this was not true, F(A) would
be too poor to solve the problem with finite error, indicating the presence of
unidentifiability conditions in the problem formulation. Notice that the above
hypotheses are almost always implicitly assumed in the great majority of identifi-
cation problems.

Algorithm approximation will be measured according to the following local
and global errors:

1. Y-local error E(¢,y)

E(9,y) = sup [ISR) = ¢W)I- (22.10)
reT()
2. A-local error E(o,A)
E@A) = sup [ISGR) = oWl (22.11)
yilp=FO, < e

3. global error E(¢)
E($) =sup E(¢,y) = sup E($,A). (22.12)

vel; rek

Algorithms minimizing these types of errors are called Y-locally, A-locally and
globally optimal, respectively. Notice that the above errors, and related optimality
concepts, are relevant to estimation problems. In fact, the A-local error measures
the maximum uncertainty of the estimates induced by the perturbation affecting the
exact information F(A), for a given problem element A . On the other hand, the
Y-local error measures the uncertainty affecting an estimate of S(A), for a given set
of data y, A being unknown. The global error represents a worst case cost function,
in the sense that it measures the largest estimation uncertainty arising for the worst
data realization and the worst problem element in the set 7(y’) of admissible problem
elements.

As already mentioned, the set 7(y) plays a key role in the present theory. In
particular, if z¢ € Z is the Chebyshev center of S[7(y)],” the algorithm ¢ ¢, called
the central algorithm, defined by

* . . ~
2" is defined as sup. 57 ll° - 2ll = infie7 SUp.c 57 12 - 21
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¢y =2° (22.13)

is known to be Y-locally and globally optimal.“*) In addition, A-locally optimality
of ¢, has been proven under mild assumptions®? for the case where S(-) and F(-)
are linear.

Important information can be also derived from the knowledge of the quanti-
ties z" and z, solutions of the following optimization problems
z;' =infy 7 [SV)] i=1,...,1

2 =sup, ISV i=1, ..., L (22.14)

More precisely, observe that

¢ the intervals
UL=[z"z", i=1,...,1 (22.15)

represent the range of possible variations of the unknown solution compo-
nents;

o the MOE containing S[7(y)] is obtained as the cartesian product of the
Ul

MOB = [UI, x UL, x - x UI]. (22.16)
e the central algorithm ¢° can be computed componentwise as‘!)
WD), =2=E"+2z")/2; i=1,...,1 (22.17)

Unfortunately, finding global solutions of problems Eq. (22.14) is in general a
difficult task. If no further assumptions on S and F are made, the use of general
global optimization algorithms based on random search!!®!?) assure at most con-
vergence in probability to global extreme. More importantly, these methods do not
provide any measure of how far is the computed solution from the global minimum.
However, in many estimation problems S(X) and F(L) are polynomial functions of
A (as shown in next section). In these cases, it is possible to design algorithms (as
the one presented in Section 22.4) which ensure certain convergence to global
extrema, and give at each step a measure of how far is the actual solution from the
global one.

22.3. NONLINEAR ESTIMATION OF DYNAMIC MODELS

As already mentioned, the general framework presented in Section 22.2 can
be used to deal with several estimation problems such as dynamic model parameter
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estimation, prediction, filtering, and so forth. This section shows how to formulate
some of them, leading to polynomials S and F.

22.3.1. Parameter Estimation of Exponential Models

Consider the multiexponential model

! (22.18)
WO =D, e +e(t)
=1

where , and v, are unknown real parameters and e(¢) is unknown but bounded by
a given g(¢)

le(®)] < &(2). (22.19)

Suppose that m values [y(Z;), . .., (t,)] are known and the aim is to estimate
parameters p; and v;, i = 1, ..., I. Problems of this type arise in many applications,
e.g., in pharmacokinetics and biomedical problems. By setting &, =e™, i=1,...,]
the space A is the 2/-dimensional space of & = [y, . .., py, &1, ... ,§] and Z= A,
so that § is the identity operator. ¥ is an m-dimensional space whose elements

are given as [y1, . .., ¥yl = [V(1) - - -, ()]
The information operator F(-) is given by:

F] |2k ng

Pyl |5 e (22.20)

where it is apparent that each component of F(1) is a polynomial function of p; and

&

22.3.2. Parameter Estimation of ARMA Models

Consider the ARMA model
i 7 (22.21)
W= Z 8, Vi t Z e+ e
= i=1
where e, is an unknown but bounded sequence
le<e, VEk (22.22)

To keep notation as simple as possible, consider the case p = g. Suppose that m
values [y, ..., ¥,] are known and the aim is to estimate parameters §;, 8;. The
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problem element space A can be defined as the 2p + m — 1-dimensional space with
elements
A=[8,...,8,0,,...,0,¢e,..., e, ) (22.23)
and the subset X is defined by Eq. (22.22), where ¢, is replaced with its expression
obtained by Eq. (22.21). Space Z is 2p-dimensional with elements
z=[8,,...,8, 91,...,9p]’. (22.24)
The operator S().) is linear and is given by
S\ = L, D] & (22.25)

where [, is the identity matrix of dimension (2p,2p) and & is the null matrix of
dimension (2p, m—1). Space Y is an m—p dimension with elements y =
Dpets - -+ s ¥m)". The information operator F(-) is given by:

F,\) Slyp+ +8pyl + 91ep+ +9pe1

~ (22.26)

+0pe, .+ -~ 40

Fm_p(h) 8 Yt -+ Cmp

pYm—p

As it can be easily checked, S() is linear and F(A) is polynomial (actually linear
in 9, and bilinear in 0, and e,).

The same technique can be used to deal with more general models such as
ARMAX, bilinear, quadratic, and so forth.

23.3.3. Multistep Prediction with ARMA Models

Consider the ARMA Eq. (22.21) and suppose that the aim is to estimate y,,,;
when past values [y, . . . y,,] are known (h-step ahead prediction problem). This
problem can be embedded in the framework of Section 22.2 by defining all spaces
and functions as for the case of ARMA parameter estimation, except for A and S(L).
For the sake of notation simplicity, consider the case # = 2. The space A is a
(2p+m+2) dimensional space with elements

A=[8,...,8,6,..., Gp, e se,,) (22.27)
Zis the one dimensional space with elements, z=y,,,,. The operator S(-) is no longer
linear and is given by

» p (22.28)
SR =" (8,8, 8 Wi + Z (8,8, + 9, )€1 T 818, + e,
=] i=0

where



354 M. MILANESE AND A. VICINO

9,=0, 0,=0fori>pand6,=1.

Note that the evaluation of the expression of S(A) requires symbolic computations
which for large £ may become cumbersome. If necessary, such symbolic computa-
tions may be performed by symbolic manipulation codes like MACSYMA, RE-
DUCE, MAPLE, and so forth.

22.3.4. Parameter Estimation of Discrete Time State Space Models

Consider the A-th order linear discrete time dynamic model

X, =A@)x, + Bp)u, (22.29)
ye=Cp)x, + e,

where the system matrices entries are polynomial functions of physical unknown
parameters p € R, u; is a known sequence and, e, is an unknown but bounded
sequence. Suppose, for ease of presentation, that the system is single output and
that m values of the output [y, . . . , y,] are known. The aim is to estimate unknown
parameters p and system initial condition x, € R”. The problem can be embedded
in the framework of Section 22.2 as follows. The space A is identified as the (/ +
h) dimensional space of vectors A = [pxy]; K = A (if no a priori information is
available on physical parameters); Z = A and S is identity. Y is an m-dimensional
space and F(}) is the m-dimensional vector valued function given by

F\(A) Up)A(p)xy + Up)B(p)u,

‘ 22.30)
FLM) || Cp)A™(p)xy+ 25 C(p)A™ ' (p)B(p)y, (

Again, the operator F(-) is polynomial in the parameter vector p and linear in the
initial condition x,. Note that symbolic computation of the polynomial expressions
of Fi(A) in Eq. (22.30) is required. For large values of m, symbolic evaluation of
Eq. (22.30) may become cumbersome due to the fast increase of the number of
terms in each component of F(1).

22.4. AN ALGORITHM FOR THE EXACT COMPUTATION OF
SOLUTION UNCERTAINTY INTERVALS

If S(-) and F(-) are polynomial functions, Eq. (22.14) is of the form

min (max) fy(1) (22.31)

subject to
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M <e, i=1,...,m
where functions f(A) have the structure

¢ (22.32)
SA)= Z Oy AfmtAga2 o A,
k=1

For example, in parameter estimation of exponential models of section 22.3.1
one of the problems to be solved is

Z0'=pu]' = min y, (22.33)

subject to

i
W) - > ngil<e), j=1,...,m.
i=1
The above optimization problem can be transformed into a signomial program-
ming problem. Such problems are in general not convex and may exhibit local
extreme. An algorithm is presented due to Ref. 20, its original version, which
guarantees convergence to the global extremum. The iterative algorithm allows one
to evaluate upper and lower bounds on the absolute extremum at each iteration. The
sequences of upper and lower bounds converge monotonically to the global
solution.
A signomial optimization problem is defined as follows

min {h,(0) - gy(A)} (22.34)
subject to

kM) -gA) <1, k=1,...,2m
A>0,i=1,...,n

where hi(A) and gy(A) (k= 0, . . ., 2n) are posynomials, i.e., polynomials with
nonnegative coefficients such that

h(A) = 21’51[(/@ o, I"Ij’.’=1 7\.;-111
, k=0,...,2m

&M =Ty 0TI, A (22.35)

where exponents a;; are real numbers, o, are positive reals and /y(5(k), k=0, .. .,
2m are sets of integers that are disjointed for each k. Note that functions #,(A) and
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gi(\) are, in general, not convex. Nevertheless, one can introduce new variables
x; with the aim of transforming 4, and g, into convex functions of the variables x;

hM=ée, i=1,...,n (22.36)

Egs. (22.35) become

Hk(x) = [h/\'(k)]klzez = Z a e(al,x)

iel (k)
Gix) = gV, o = Y 0 (22.37)
’ ieL (k)
where (-,-) denotes inner product and a; = [a;;, . . - , a;,]". Equation (22.34) is
transformed into the equivalent problem
min {H,(x} - Gy(x)} (22.38)

subject to
HX) -G <1, k=1,...,2m.

The algorithm given below generates a tree whose node t are associated with
convex problems Q° which approximate the signomial Eq. (22.38) (called P).
Problems Q" are obtained by suitable linear overestimates of G,(x) as follows.

Suppose that an a priori upper and lower bounds x” and x of a global solution
x" of Eq. (22.38) are given

xm<xi<xM o j=1,...,n (22.39)
and that
ST =Hy(x") = Go(x")
is the global minimum of Eq. (22.38). Let $* be the set defined as
S'={x: 1 <(a,x) <R}, i € L(k)} (22.40)

Variables r; and R} are recursively computed using the rules of Steps 5 and 6 below,
starting from the initial values

r,-l = Z min{a, x? a..xM}, i€ Iy(k) (22.41)

gy T
!
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Zmax{ay X! agx!"y, i e Lk) (22.42)

Approximating problems Q" are of the form

min {Hy(x) - Li{(x)} (22.43)
subject to
{ Hx)-Lix) <1, k=1,...,2m
xj ijﬁij, —1,...,
where
L ) [(REE" - rieR) + (R = &)a, )] 2 Y L) (2249
iel (k) Ry =, 1el(k)

Note that since the terms Lj(x) are linear and functions H(x) are convex,
problems Q" are convex. Global solutions x* for these problems, with minimum
V' = Hy(x") — Lg(x"), can be found by any convex optimization algorithm. Also
notice that Li(x) = Gi(x) Vx € $°, and consequently if x* € S, then v' < f™.

The algorithm generates new approximating problems, by selecting an existing
node 1, according to Step 3 of the algorithm below, and refining the linear
approximation of the corresponding problem Q" according to rules of Steps 5 and
6. Only two problems are generated at each stage, so that after stage s has been
completed, problems Q', Q% ..., Q**! are generated.

Let J(s) be the set of all nodes t which have not been selected as branching
nodes at stages preceding stage s (see Step 3 of the algorithm below). Define V*
and U* as

V¥=min v* (22.45)
teJ(s)
U'=min {Hyx") - Gy(x")}. (22.46)
1=1,...,25-1

Note that approximations of functions G;(x) are performed by constructing linear
envelopes, so that the minima of the two approximating problems generated at each
stage s are larger than the minimum of the problem which generated them at stage
s— 1. This guarantees that the sequence of lower bounds ¥* to the global minimum
never decreases. Moreover, the way in which the upper bounds U* are generated
ensures that they form a non-increasing sequence. More importantly, using the
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results in Ref. 21, Ref. 20 shows that the sequence x* contains a subsequence
converging monotonically to the global solution x* and

lim V¥ =lim U =f". (22.47)

§—>0 §—xC

The algorithm consists of the following steps:
e Step I: Initialization.

Generate and solve Q', obtaining x! v', V1, U'. Set s= 1,1 =1, J(s) = {1}
o Step 2: Check for solution.

If V* = U? then a global solution of problem P is

xX'=x =V (22.48)

Otherwise go to Step 3.
e Step 3: Choose a branching node t.
Select T € J(s) such that v: = V*
o Step 4: Choose a term of Gy(x) to be approximated.
Select k" € {0,1,...,2m} maximizing Li(x") — H(x"). Select i* € L(k*)
maximizing £{(x%) — o),
e Step 5: Generate problem Q.
Set
=1 RE=R, Vie (K),i#i

!

R¥ =(asx"), r¥=ré (22.49)
e Step 6: Generate problem Q**'.
Set

25+1 T. 25+l _ pt . PN ok
ri = RV =R, Vie LK), i#i

rl_ziﬁl = (ai*rxt ), RI%HI = RICx (22.50)

e Step 7: Solve problems Q% and Q**'.
Solve problems Q% and 0**!, obtaining x*, x**!, v¥, v**!. Compute
vt U according to Eqgs. (22.45 and 22.46). Update the set J(s): add the
two nodes T = 25, T = 2s + 1 and delete the node 7 selected at Step 3. Set s
=s+ 1 and go to Step 2.

Some considerations on the estimation algorithm proposed above.

RemMARk 1. Computation of {® may be improved by using a local solution in
Eq. (22.46) to the true problem P, computed by an iterative algorithm starting from
x°, instead of using {Ho(x*) — Go(x")}.
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Remark 2. The condition A; > 0 in Eq. (22.34) is not a serious restriction. In
fact, it is possible to bring the set 7(y) in the first orthant of A by means of a suitable
translation of the origin of the problem element space. Another way of dealing with
this problem is to express unknown sign variables as differences of auxiliary strictly
positive variables.

Remark 3. The convergence speed of the algorithm is, in general, quite
sensitive to the sizes of intervals x* — x. In solving the 2/ optimization Eq. (22.14),
information gained by the solved ones can be used to shrink such intervals as much
as possible. This is particularly simple for parameter estimation problems where
z;=[S(A)); = A;. The following heuristic strategy can be used for handling this
problem. A certain number of runs of the 2/ optimization Eq. (22.14) are performed,
stopping the algorithm after few stages s (say s = 5), without waiting for conver-
gence of upper and lower bounds. When solving the first problem of Eq. (22.14),
i.e., finding 2" = ", x7* and x/ can be derived by a priori information provided by
the set K. When solving the second problem, i.e., computation in Eq. (22.14), set
(recall Eq. (22.36)) xT' = In V;, where V| is the lower bound of z{' obtained by the
preceding run of the algorithm stopped at stage s. In solving the third problem
(computation of z7'), set x}! = InU,, where U, is the upper bound of Z} provided by
the preceding run of the algorithm stopped at stage s, and so on. This procedure is
iterated until it is able to tighten the bounds x™ or x*. Successively, the limitation
on the number of stages is removed and each extremum problem is solved by letting
the algorithm reach convergence.

Such a shrinking procedure has been used in working out the numerical
examples reported in next section. It has proven to be very effective in leading to
considerable computing time reductions.

22.5. NUMERICAL EXAMPLES
22.5.1: Example 1: Parameter Estimation of a Multiexponential Model
The following model is considered
W)= pe " + pye™e + e(h). (22.51)

The data used are reported in TABLE 22.1. They have been generated from
(22.51) with the following nominal parameter values

u, =20.0, v, =0.4, p,=-8.0, v,=0.1. (22.52)
The bound on measurement errors is supposed to be:
le(z)] < 0.05p(2,)] +0.1. (22.53)

A priori information set X is defined by the following inequalities
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TABLE 22.1. Data for Example 1

k 1 2 3 4 5 6 7 8 9 10
43 0.75 1.5 2.25 3.0 6.0 9.0 13.0 17.0 21.0 25.0
W) 7.39 4.09 1.74  0.097 257 271 207 -144 -098 —0.66

20 << 600
00 <v,< 1.0
=300 <p,< ~1.0
00 <v,< 05

(22.54)

The estimation results obtained are reported in TABLE 22.2. They refer to
convergence within 2% of upper and lower bounds of the signomial algorithm for
each extremization problem of Eq. (22.14).

The total computing time of the algorithm, using the shrinking procedure
outlined in Remark 3 of Section 22.4, is about 10 minutes on a VAX 8800 computer.
Convergence within the mentioned tolerance, without using the shrinking proce-
dure, has not been reached after a computing time of about one order of magnitude
larger.

22.5.2. Example 2: Multistep Prediction with an AR Model
The following AR model is considered
V=0 T Oy, t e, (22.55)

The data used, which are reported in TABLE 22.3, have been generated from
Eq. (22.55) with the nominal parameter values

8,=03, 8,=-0.69 (22.56)

assuming e, uniformly distributed and such that

le,J < 0.5. (22.57)

TABLE 22.2. Uncertainty Intervals and Central Estimates for Example 1

Ui Vi u2 V2

Ul [17.2,26.9] [0.30,0.49] [-16.1,-5.4] [0.077,0.136]
Central estimates 22.05 0.395 -10.75 0.1065
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TABLE 22.3. Data for Example 2

k 1 2 3 4 5 6 7 8 9 10 1 12
Yk 019 072 -082 -022 088 0.80 -0.20 -0.88 031 032 -0.33 —0.63

Multistep predictions from 1 to 4 steps ahead have been computed by consid-
ering information the set K a priori defined by the following inequalities

0.19<8,< 04
{ ! (22.58)

1-0.8<35,<-051

The uncertainty intervals in Eq. (22.58) have been obtained by a preliminary
analysis of maximal and minimal feasible parameters of the linear Eq. (22.55) by
means of linear programming.

The results obtained are reported in TABLE 22.4. They refer to convergence
within 2% of upper and lower bounds of the signomial algorithm for each extremi-
zation problem of Eq. (22.14). The last line of TABLE 22.4 reports the predictions
(called nominal predictions) obtained by the minimum mean square predictor of
Eq. (22.55) with the nominal parameter values of Eq. (22.56).

The total computing time for obtaining these results is about 3 minutes on a
VAX 8800 computer.

22.6. CONCLUSIONS

A method has been proposed for parameter estimation and prediction in a set
membership uncertainty context, when measurements are nonlinear functions of
the variables to be estimated. A procedure has been presented which allows one to
compute exact uncertainty intervals of the estimated variables for the case when

TABLE 22.4. Uncertainty Intervals, Central Predictions and Nominal Predictions for

Example 2
i3 yia Y15 yi6
UL [-0.53,0.56] [0.33.1.21] [-0.875,1.19] [-1.75,0.87]
Central Prediction 0.01 0.44 0.16 -0.44

Nominal Prediction 0.04 0.45 0.11 —0.28
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asurements depend polynomially on model parameters. Some examples have

been worked out to show the performance of the proposed algorithm.
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Guaranteed Nonlinear Set
Estimation via Interval Analysis

L. Jaulin and E. Walter

23.1. INTRODUCTION

Many methods have been developed for solving problems arising in mathematics
and physics which are formulated in such a way as to require a point solution (e.g.,
a real number or vector). However, because of the uncertainty attached to the data
and numerical errors induced by the finite-word-length representation in the
computer, these methods are generally not appropriate to accurately characterize
the uncertainty with which the solution is obtained. It is then difficult to assess the
validity of the result.

Set formulation of problems replaces the search for a point solution by that of
a feasible solution set that may contain a non-denumerable set of vectors. It is then
possible to take uncertainty on the data as well as numerical errors into account and
to get a global and guaranteed result. Uncertainty on this result can be computed
rigorously, contrary to the classical point approaches. Interval analysis is one of the
main tools that can be used to characterize sets obtained as the results of computa-
tions on sets. It generalizes real and vector calculi to intervals and vector intervals
(or boxes). The manipulated subsets are approximated by sets consisting of unions
of boxes (or subpavings). In set-inversion problems, which constitute a large part
of set problems, the solution set is defined as the reciprocal image of a given set by

L. JAULIN AND E. WALTER e Laboratoire des Signaux et Systémes, CNRS Ecole Supérieure d’Elec-
tricité, 91192 Gif-sur-Yvette Cedex, France.

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York,
1996.
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a known function. The simple common structure of these problems makes it
possible to derive a single algorithm that can be used to approximate the solution
set for any set-inversion problem. This chapter applies this general approach to the
problem of bounded-error estimation in the nonlinear case.

Let M(.) be a set of models parameterized by a vector p € R™. To each value
of p corresponds a model M(p). Let y € R"™ be the vector of all available
experimental data, which may consist of measurements performed at various times.
The corresponding model output will be denoted by y,(p) € R™. The dependency
of'y and y,, in the experimental conditions (inputs, measurement times, and so forth)
is omitted to simplify notation. The output error is defined as

e(p) =y~ ¥Yn(P): (23.1)

Bounded-error estimation aims at characterizing the set S of all values of p such
that y,,(p) is feasible in the sense that e(p) belongs to some prior feasible set for the
errors . It is easy to deduce from S a point estimate p for the parameters, as well
as the uncertainty attached to it.

This chapter is organized as follows. Section 23.2 shows how bounded-error
estimation can be formulated as a set-inversion problem and gives some illustrative
test cases. The notions of interval analysis needed for the algorithm to be proposed
are then presented in Section 23.3. Section 23.4 explains how pavings and subpav-
ings can be used to approximate and bracket solution sets. Section 23.5 presents
the set-inversion algorithm applied in Section 23.6 to the test cases presented in
Section 23.2.

23.2. BOUNDED-ERROR ESTIMATION AS A SET-INVERSION
PROBLEM

A MATLAB-like notation is used for vector equations and inequalities. Vectors
and vector-valued functions are denoted by bold lower-case letters. Equalities and
inequalities are to be understood componentwise. Note that some precautions are
required in the manipulation of such operators. For instance, the contraposite of u <v
is not u > v since the two proposals may be false simultaneously. Usual real
functions such as sin, exp, and so forth, when their arguments are vectors, become
vector functions and are also written in bold. They are evaluated component by
component. For instance

u, sin(u,)

sin(u) = sin | ¥, |=|sin(u,) |.
Uy sin(u,)

(23.2)

Let £ R* — R be a continuous function and Y be a closed subset of RP. Solving
the associated set-inversion problem means characterizing
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X=f(YV)={x|f(x) € Y}. (23.3)

X is the solution set of the problem. The set function f™' is the reciprocal function
of f. The direct image of X by f is defined by

f(X) = {f(x) [ x eX}. (23.4)

The set f(R") is a differential manifold, called the image manifold. When p > n, it
is almost surely n-dimensional. Otherwise, it is almost surely p-dimensional. From
elementary set theory, f(X) < Y. In many practical problems, Y can be defined by
a finite set of inequalities

Y={ylgly) <0} (23.5)
The following equivalences then hold true
xeXofx)e Yeogof(x)<0. (23.6)
Ifh =g o f, X can be described by the finite set of inequalities
X={x|h(x)<0}. 23.7)

Solving a set-inversion problem thus often amounts to characterizing a set defined
by inequalities. When h is linear, X is a polyhedron, and its characteristics, such as
its volume, the smallest box or ellipsoid containing it, can be computed accurately.
When h is nonlinear, the techniques based on interval analysis presented in what
follows make it possible to bracket X between simpler sets consisting of unions of
boxes.

In the context of bounded-error estimation, the posterior feasible set for the
parameters can be written as

S={plep) e E} =e(E). (23.8)

Characterizing S is, therefore, a problem of set inversion. The parameter vector p,
the error function e and the prior feasible set for the errors E, respectively, stand
for x, f and Y. In what follows, assume that E can be defined by a finite set of
inequalities. Two test-cases are now introduced to illustrate the notions presented.

Testcase 1: (Parameter estimation) Consider a two-parameter problem®
where

y=(0.1,0.1)". (23.9)
These data correspond to two scalar measurements performed at times
t=(0.5, . (23.10)

The corresponding output for a model M(p) is given by
¥.(P) = (0.5 cos(p)) + 1.25) cos(p,t)

_ (0.5 cos(p,) + 1.25) cos(p,/2) (23.11)
(0.5 cos(p,) + 1.25) cos(p,) |’
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where the ith component of y,(p) is computed for the ith component of t. For p to
be feasible, the error must satisfy

e(p)=y—y,(p) € E={e|-0.75<e<0.75}, (23.12)

where 0.75 is a vector with all entries equal to 0.75. The set to be characterized is
given by S =¢'(E).
TEST-CASE 2: (State estimation) Consider the discrete-time state space model

x,(k+ 1) = cos(x, (k) x,(k) (23.13)

0
xk + 1) = 3x,(k) - sin(,(K)),  x(0) = [?EO;]: [il J .
Py = x3(k) = x,(k) 2 ’

In order to estimate the unknown initial conditions, ten measurements y(k) (k =0,
..., 9) have been generated by simulating the model with x(0) = (2, 1T, which
therefore correspond to the true value for the parameters. Adding a random error €
to each of these noise-free outputs, such that —0.5 < € < 0.5, the resulting data set
is then

y=(0), ...,y
=(3,-5,0.6,2.2,-3.8,—-1.4,0.4,-1.2,—1.8,2.6)". (23.14)
The set S to be characterized is that of all x(0) = p such that e(p) € E with
E=05[1,1], (23.15)

where [-1, 1] stands for an axis-aligned hypercube centered on the origin and with
width two. The error function e could be given a formal expression, but the result
would be very complex. On the other hand, e is easily obtained by an algorithm.
Using pseudo PASCAL, e(p) can be computed by
x1(0) := p1; x2(0) = py;
Fork:=0t09do
begin
Ym(K) 1= x1(K) — xa((k);
e(k) := y(k) = yu(k);
x1(k + 1) := cos(x (k) * x5(k));
x(k + 1) =3 xy(k) — sin(x,(k));
end; (23.16)
and

e(0)
e(9)

Again, the set to be characterized is S = e '(E).
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23.3. INTERVAL ANALYSIS

Interval calculus can be seen as a simple formalism for manipulating inequali-
ties. In the interval approach to numerical computations,>~ any uncertain number
is replaced by an interval guaranteed to contain it. Intervals are manipulated as a
new type of numbers represented by an ordered pair of real numbers associated
with the extremities of the interval. Intervals thus have a dual nature of numbers
and infinite sets. Many algorithms take advantage of this duality and combine
operations on sets, such as union and intersection, with arithmetical operations.
High level languages implementing interval calculus are readily available.5-9)

Aninterval [x] € R orreal interval is a closed, connected, and bounded subset
of R, such that

[x] =[x, x"] = {x|x <x<x}. (23.18)

The set of all real intervals will be denoted by IR. Interval arithmetic generalizes
addition, subtraction, multiplication, and division to intervals. If, for instance, x™ <
x<x",y <y<ytandz=x+y,thenx +y <z<x"+y" so that the addition of two
intervals is defined as

]+ D]={x+ylxexlandy e ]} =[x +y,x"+y'], (23.19)
Similarly,
~x]={=x|x e [x]} =[=", =], (23.20)

Xl-l={x—ylxexlandy e ]} =[x —y",x"—y],  (23.21)
If0 ¢ [x],then1/[x]={1/x|xe [x]}=[1/x", Ux], (23.22)
[x] * ] = [min(x~ y~, x y", x"y, x"y"), max(xy", xy", xy 7, xy")), (23.23)

x)? = {(x*|x € [x]}. (23.24)

Note that [x]* # [x] * [x]. For instance, if [x] = [-1, 1], then [x]? = [0, 1] whereas [x]
* [x] =[-1, 1]. It is easy to show that multiplication and addition are both associative
and commutative. In general, however, addition is not distributive with respect to
multiplication. The subdistributivity property guarantees that

[x] * (V] + [2D) < [x] * ] + [x] * [2]. (23.25)

RemaRrk: When implementing interval arithmetic on a computer, one must take
into account that not all intervals can be represented exactly and that approxima-
tions are committed at most arithmetical operations. It is necessary, therefore, to
perform outwards rounding so as to insure that the exact results are contained in
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the intervals computed. What follows does not consider these problems of imple-
mentation, which have little influence on the results for the problems treated.

The function f: TR — IR is an inclusion function of the continuous function
f: R — R if it satisfies

S ([x]) = K([x]) (23.26)

for any [x]. Computing the interval f([x]) would require solving two global
optimization problems, which is often exceedingly time consuming. On the other
hand, for most real functions £, it is easy to obtain an inclusion function, as will be
seen later. If the real x is known to belong to [x], then f(x) is guaranteed to belong
to ff([x]). For any given f, there are, of course, infinitely many inclusion functions.
One of them, denoted [f], is minimal in the inclusion sense and satisfies [ f]{[x]) =
f([x]) for any [x]. Call it the minimal inclusion function. For all elementary functions
such as sin, cos, exp, log, arcsin, arccos, and so forth, this minimal inclusion
function is easy to compute, as illustrated by the two following examples.

ExampLE 1: Since the exponential function is increasing, [exp] is given by

lexp]([x]) = [exp)([x", x']) = [exp(x"), exp(x")] = exp([x]). ~ (23.27)

To get the image interval, it therefore suffices to compute the image by exp of the
extremities of [x]. This holds true for any real monotonic function.

ExampLE 2: Since the sine function is not monotonic, the technique of Example
1 cannot be applied to compute [sin]. It is easy, however, to show that [sin]([x]) can
be computed as

If3keZ|2kn—7/2 € [x] then sin([x]) :==—1

else sin ([x]) := min(sin x7, sin x*);
If3ke Z|2kn+n/2 e [x] then sin([x]) := 1

else sin*([x]) := max(sin x~, sin x™);

[sin] ([x]) := [sin ([x]), sin*([x])]. (23.28)

If f results from the composition of real operators or elementary functions, it
is not possible to compute [f]. An inclusion function called natural interval
extension can instead be obtained by replacing, in the formal expression for £, its
argument x by the interval [x] and the elementary functions and operators by the
associated minimal inclusion functions. The natural interval extension is usually
far from minimal, and may be much improved by suitably rewriting the formal
expression of for by taking advantage of the fact that the intersection of inclusion
functions is an inclusion function.

ExampLE 3: Let £i(x) = x — ¥ and f4(x) = x(1 — x). Although f; = f5, the two
corresponding natural interval extensions f,([x]) = [x] — [x]* and f,([x]) = [x] * (1
— [x]) are different. The subdistributivity property of Eq. (23.25) implies f5([x])c
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f1([x]). For instance, if [x] = [0, 1], f,([x]) = [-1, 1] and f5([x]) = [0, 1], when {[x])
=10, 1/4].

Vector calculus can similarly be extended to intervals by replacing vectors of
R" by boxes. A box, or vector interval, [x] of R" consists of the Cartesian product
of n scalar intervals. Boxes are indifferently denoted by

[x75 x7]
x]= [, 6] % x [0, 0] =[x, ] x o x [k ] =[x, xT]=| ... |, (23.29)
[, %]
where X = (x]. X3, . . ., x;)' and x* = (x], x5, . . ., x})T. The scalar intervals [x;] =

[x7, x7] are the components of the box [x]. The set of all boxes of R" is denoted by
TIR"™. The width of [x] € TR" is given by

w([x]) = max {x] —x;}. (23.30)
i
When w([x]) = 0, [x] degenerates into the vector x, so that vectors can also be
considered as belonging to IR", with x” = x* = x. A principal plane of [x] is a
symmetry plane of this box that is orthogonal to an axis i associated with a side of
maximal length, i.e., i € {j | w([x]) = w([x;])}.
Fig. 23.1 presents a two-dimensional box with its principal plane, a straight

line here. The enveloping box [A] of a bounded set A — R" is the smallest box (in
the sense of inclusion) of IR" that contains A.

[A]=n {[x] € IR" | A c [x]}. (2331)
Vector addition and external multiplication can be extended to boxes:

X]+[yl={x+ylxe[x],yelyl} =[x +y,x +y], (23.32)

FIGURE 23.1. Box [x] with its principal plane.
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Alx] = {Ax|x e [x]}. (23.33)

The set function f: [R” — [R? is an inclusion function of f: R” — R” if and only
if for any [x]

f([x]) < f([x]). (23.34)
It will be said to be convergent if for any sequence of boxes [x]
w([x]) = 0= w(f([x])) - 0. (23.35)

Convergent inclusion functions exist if and only if f is continuous. Among all
possible inclusion functions f of f: R” — R”, one,

[f: TR" - IR?; [x] = [{f(x | x € [x]}], (23.36)

is minimal in the sense of inclusion. Therefore, [f]([x]) is the enveloping box of the
set f([x]). Fig. 23.2 illustrates the notion of inclusion function.
ExaMmpLE 4; Consider the function

£ RY= Ry x > x, exp(x,) + x; exp(x,).
From the monotonicity of the exponential function,
exp([x;]) = [exp] ([x;]) = [exp(x}), exp(x})].
Therefore
[f]: IR® — IR; [x] = [x,] * exp([x,]) + [x3] * exp([x,]).
Assume now that x; > 0 and x; > 0. Then

[/Ix, x]) = [x] exp(x3) + x5 exp (), x| exp(x;) + x5 exp(x})]-

FIGURE 23.2. Minimal inclusion function [f] and inclusion function f.
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ExampLE 5: Consider the function £ R? — R; x — x; sin x,. Since x; and x,
appear independently in the formal expression of f, it is trivial to show that

IR 5 TR x — [x,]*[sin}([x,]).

When f takes its values in R”, the coordinate functions of [f] are the minimal
inclusion functions [f] associated with the coordinate functions f;of f(i=1, ...,
p). As in the scalar case, a natural interval extension for f can be obtained by
replacing in its formal expression (or in the algorithm describing f):

— the coordinates x; of the argument x by the components [x;} of [x];
— all arithmetic operators by the corresponding operators for intervals; and
—all elementary functions by the corresponding minimal inclusion functions.

If each component of x appears at most once in the formal expression of a given
coordinate function, then the natural interval extension is a minimal inclusion
function.

Test-casE 1 (continued): The natural interval extension €([p]) for e(p) is given
by

e([p]) =y —(0.5 [cos([p,]) + 1.25) [cos]([p,] )

_ (0.1 — (0.5 [cos)([ p,]) + 1.25) [cos]([p,]/2) (23.37)
_\ 0.1~ (0.5 [cos]([p,]) + 1.25) [cos)([p,]) |

where [cos}([x]) = [sin](n/2 — [x]) and [sin] is as in Example 2. Note that this
inclusion function is minimal, so that e([p]) = [e]([p]) = [e([p])]-

TesT-caSE 2 (continued): The natural interval extension e([p]) for e(p) can be
computed by the following pseudo-PASCAL code, where the inputs are [p,] and

(p2]

[x1] = [p1]; [x2] = [p2];
Fork:=0to9do
begin
[ml = 112 = [x2;
[el(k) = (y(k) = [ym))s

[xi 1= cos([xJ*[x2]); (23.38)
[x3 ] =3 [x] - sin(lxa]);
Pl =[x 15
[x2] =[x1];
end;

The 10-dimensional box €([p]) whose kth component is given by [e](k— 1) is a
convergent inclusion function for the error function e(p).
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23.4. SET BRACKETING AND SUBPAVINGS

The solution set S to be characterized can usually be defined exactly, e.g., by
the nonlinear inequalities of Eq. (23.7). However, the resulting description is often
too complex to be of any use. It may, for instance, be difficult to know whether S
is empty, whether it is connected, and what its volume or shape is. Another approach
is to approximate S by more tractable sets, such as unions of boxes called
subpavings. It will then become possible to approximate some characteristics of
S by computing the corresponding characteristic of the approximating set.

A subpaving K of R” is a set of non-overlapping boxes of IIR” with non-zero
volume. If A is the subset of R” consisting of the union of all boxes of K, then
K is a paving of A. When there is no ambiguity, the set { K} consisting of the union
of all boxes of K will also be denoted by K. Subpavings are easily represented in
a computer and readily amenable to set manipulation with the help of interval
calculus. They are used to approximate, and more precisely bracket, the sets to be
characterized. For almost any X, it is possible to find two finite subpavings X~ and
X" such that X~ < X  X*. The subpavings to be considered here always satisfy
X~ c X" in the sense that each box of X is also a box of X*. The quantity AX =
X* - X, therefore, is a subpaving, the uncertainty layer, which comprises all
vectors for which it is not known whether they belong to the interior or exterior of
X. Fig. 23.3 illustrates the bracketing of a compact set between subpavings and the
associated uncertainty layer. Let ¥(X) be the set of all compacts X' such that
X"« X’ ¢ X*. In the Hausdorff distance sense, the diameter of ¥(X) can be
made as small as desired for almost any X. V(X), therefore, is a neighborhood
of X.

FIGURE 23.3. Bracketing a compact set between two subpavings.
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23.5 SET INVERSION

To characterize X = /'(Y), assume that a convergent inclusion function f is
known for f'and that Y is compact. The notions of set inversion and bracketing of
the solution set by subpavings are illustrated by Fig. 23.4. Note that

fX)=fof'(V)=Ynf(R" Y,

with f(X) = Y only if f is surjective, which is never true in the type of applications
considered here. The algorithm Set Inverter Via Interval Analysis (SIVIA) will now
be used to obtain the subpavings X~ and X". It can also be used to bracket any
quantity Z(X) monotonic over X with as much precision as desired.® For simplic-
ity, X is assumied to be bounded and included in a known prior box [x](0), which
is used as the initial search domain. Extension to unbounded sets would involve the
use of unbounded boxes (or generalized vector intervals).

A box [x] of IR" is feasible if [x] < X, unfeasible if [x] N X = J, and
ambiguous otherwise. Interval analysis provides two conditions, illustrated by Fig.
23.5, to test a box [x] for feasibility:

f((x]) = Y = [x] ¢ X ([x] is feasible), (23.39)

f((x]) NY = = [x] n X = ([x] is unfeasible). (23.40)

In all other cases, [x] is indeterminate. Note that indeterminate boxes may be
feasible, unfeasible or ambiguous, but that any ambiguous box is indeterminate.
Fig. 23.5 shows how an unfeasible box may be indeterminate, which explains why
the two previous conditions are only sufficient.

FIGURE 23.4. Bracketing the solution set of the set-inversion problem between two subpavings.
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FIGURE 23.5. Sufficient conditions for a box to be feasible or unfeasible.

SIVIA involves three basic steps:

e the definition of a box of interest [x]}(0), on which the search will be
performed;

o the choice of a paving K for [x](0); and

e the computation of f([x]) for each box of K.

Three cases are then possible for any given box [x]:

o iff([x]) = Y then [x] c X, ([x] is feasible);
o iff([x]) N Y =D then [x] » X = &, ([x] is unfeasible); and
e else, [x] is indeterminate.

The paving K is thus partitioned into three subpavings X, AX et X*, which
correspond respectively to the sets of all feasible, indeterminate and unfeasible
boxes. Since X' = X~ U AX,

X cXcX, (23.41)
X c AX, (23.42)
vol (X7) < vol (X) < vol (X, (23.43)

X7 < [X] e [XY]. (23.44)
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(a) Conventional representation. (b) Computer representation.

FIGURE 23.6. Representation of a stack.

SIVIA recursively implements the idea of bracketing by subpavings that has
Jjust been presented. A stack of boxes (think of a stack of plates) is used, in which
each element knows the location of the one located beneath it. Fig. 23.6 illustrates
the representation of a stack on a computer. On this figure, a stack of six elements,
numbered from 1 to 6, is presented under its traditional form (a) and as stored on
the computer (b). Element 1 is at the bottom of the stack and Element 6 on top. The
arrows represent the pointers, and the right-hand-side box of each element of the
stack stands for the memory cell containing the address of the element beneath.
Since it is at the bottom, Element 1 points to no other element. The topology of the
stack is independent of its representation on the computer. Such a representation
makes it possible to modify relationships without having to move the elements
involved, which drastically speeds up the management of the memory.

Only three operations are possible on a stack, namely stacking (i.e., putting an
element on top of the stack), unstacking (i.e., removing the element located on top
of the stack) and testing the stack for emptiness. The box considered at iteration &
is denoted by [x](k). The required accuracy for the subpavings X~ and AX will be
denoted by ¢,. After completion of the algorithm, all indeterminate boxes have a
width smaller than or equal to &,. The inputs of SIVIA are the inclusion function f,
the set to be inverted Y, the domain of interest [x](0) and the required accuracy
g,. The initialization is performed by setting

[x] = [x](0), stack .=, X~ =, AX =, (23.45)

and iteration is given by

Step 1 Iff(x)cY, then X~ := X~ U [x]. Go to Step 4.

Step 2 EixDNn Y=, then go to Step 4.
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Step 3 Ifw(x]) <e, then AX := AX U [x],
else bisect [x] along a principal plane and stack the two
resulting boxes.

Step 4 If the stack is not empty, then unstack into [x] and go to Step 1.
End. (23.46)

SIVIA thus generates two subpavings X~ and AX. The dependency of these
subpavings on &, is omitted to simplify notation. For almost any X, the resulting
bracketing ,

X cXceX=XuaX (23.47)

defines a neighborhood of X with a diameter that tends to zero with €. The
convergence conditions are studied in Ref. 7. The main limitation of SIVIA lies in
its computing time, which is proportional to the number of elements in K and
increases exponentially with the number of parameters.®

When one is only interested in computing a characteristic of the solution set
X such as its enveloping box [X] or its volume vol(X), only the stack takes a
significant place in memory. It is possible to avoid storing the subpavings X~ and
AX with the help of a recursive technique. Note, however, that the paving must be
explored, even if it needs not be stored, so that the computing time is not shortened. To
understand how one can avoid storing subpavings, let us modify SIVIA to recursively
bracket the volume of X. The program is initialized by setting stack := &, vol” := 0,
vol™ := 0, [x] := [x](0). The iteration is as follows

Step 1 If f([x]) = Y, then vol :=vol” + vol([x]),
vol™ := vol* + vol([x]), go to Step 4.
Step 2 If f([x]) » Y = &, then go to Step 4.
Step 3 If w([x]) < &,, then vol" := vol” + vol([x]),
else bisect [x] along a principal plane and stack the two resulting boxes.

Step 4 If the stack is not empty, then unstack into [x] and go to Step 1.

End. (23.48)
As the volume is a monotonously increasing characteristic, completion gives
vol™ < volume(X) < vol”, (23.49)

without having stored any subpaving. The transposition to the computation of the
enveloping box [X] is trivial. The number of elements in the stack satisfies:®

#stack < n int (log,(W([x](0))) — log,(g,) + 1), (23.50)
where int(r) stands for the integer part of a real ». Even for large #, the size of the

stack remains reasonable. For instance if n = 100, w([x](0)) = 104 and g, = 107'°,
then Eq. (23.50) implies that #stack < 4600.
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SIVIA can easily be parallelized, and the following version can be imple-
mented on » processors, which would similarly shorten the computing time. The
inputs and initialization are as in the previous version of SIVIA. Iteration is as
follows

Step 1 Split [x] into » boxes forming a subpaving Z.

Step 2 Store in X~ all boxes [z] of Z such that f([z]) = Y.

Step 3 Eliminate from Z all boxes [z] such that f([z])) N Y = .
Step 4 Store all boxes [z] such that w([z]) < g, in AX.

Step 5 Stack all remaining boxes of Z.

Step 6 If the stack is not empty, unstack into [x] and go to Step 1.

End. (23.51)

Steps 2 to 5 are shared by all processors.

Frequently the parameter space is not isotropic because the sensitivities of f
relative to the various components of x do not have the same order of magnitude.
Bisecting along a principal plane, as suggested in the above description of SIVIA,
may then turn out to be rather inefficient. The problem is to find a strategy for
bisection to speed up the convergence. One way is to weight each component of x
in such a way as to compensate for the anisotropy. It seems difficult, however, to
suggest a rational strategy for the choice of the weights since the anisotropy may
strongly depend on the position in the parameter space.

Another algorithm for set inversion was developed independently by Moore.®
The main difference is that Moore’s algorithm uses a queue when SIVIA uses a
stack. The required memory for the queue is larger than for the stack by several
orders of magnitude.

It may often be helpful to reformulate the problem of set inversion as that of
finding any set §§ such that

1Y) c R e iy,

given two sets Y~ apd Y™ such that Y~ < Y < Y*. The program is initialized by
setting stack := &J, X := &, [x] := [x](0). Iteration is as follows

Step 1 If f([x]) = Y, then R == R U [x], go to Step 4.

Step 2 If f([x]) n Y~ =, then go to Step 4.

Step 3 Bisect [x] along a principal plane and stack the two resulting boxes.

Step 4 If the stack is not empty, then unstack into [x] and go to Step 1.

End. (23.52)

Even if Y is not known accurately, one then gets a characterization of the
uncertainty attached to x. Moreover, this algorithm does not require the specifica-
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tion of €,. Provided that 0Y~ N dY* =, & can be obtained in finite time. Even
if Y is known exactly, such an approach remains of interest in the context of
bounded-error estimation. By setting Y~ =K and X = S, one gets S < S so thata
set guaranteed to contain the posterior feasible set for the parameters is obtained.
The set Y™ then plays the role of the stopping criterion. If the layer Y*— Y~ is thick
enough, this stopping criterion should make it pAossible to obtain a result comparable
to that of SIVIA much more quickly. The set S contains all the parameter vectors
that are consistent with the available information, and none of those that are
indisputably inconsistent (in the sense that their image is outside Y ).

23.6. EXAMPLES

Testcaske 1: For a required accuracy €, = 0.04 and a prior domain of interest
[p1(0) = [-10, 10] x [-10, 10}, SIVIA generates the paving presented on Fig. 23.7
in less than 160 seconds on a Compaq 386/33. It keeps less than 16 boxes in the
stack at any given time (Eq. (23.50) predicts a number lower than or equal to 18).

FIGURE 23.7. Paving generated by SIVIA for Test-case 1 in the (p1, p2) space. The frame corresponds
to the search domain [p](0) = [-10, 10] x [-10, 10].
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FIGURE 23.8. Paving generated by SIVIA for Test-case 2 in the (p1, p2) space. The frame corresponds
to the search domain [p}(0) = [-5, 10] x [-5, 10].

The subpavings S~ and S* are filled in with white and grey, respectively. The
volume of S M [p](0) is guaranteed to satisfy

35 < vol(S M [p](0)) < 43. (23.53)

The posterior feasible set S for the parameters turns out to be unconnected. One
may wonder about the meaning of point estimation in this context.

TesT-case 2: For g,=0.05 and [p](0) =[5, 10] x [-5, 10], the paving presented
in Fig. 23.8 is generated in less than 10 seconds. The stack never contains more
than 14 boxes ((Eq. 23.50) predicts a number lower than or equal to 18). The
subpavings S™ and AS are filled in with grey and white, respectively. No box has
been found in S°.

A random exploration of [p](0) with a uniform distribution for more than half
an hour does not produce any feasible value for p. To understand the difficulty of
the problem, zoom around the true value for p. For a required accuracy of €, =
0.0001, and [p](0) = [1.98, 2.02] x [0.98, 1.02], SIVIA generates_the paving
presented in Fig. 23.9 in less than ten minutes. The subpavings S™ and S* are filled
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FIGURE 23.9. Paving generated by SIVIA for Test-case 2 in the (p1, p2) space. The frame corresponds
to the search domain [p](0) = [1.98, 2.02] x [0.98, 1.02].

in with white and grey, respectively. The posterior feasible set S is so narrow that
it is almost impossible to reach it by random exploration.

23.7. CONCLUSIONS

Set inversion is particularly suitable to characterize the set of all values of
parameters that are feasible in the sense that they satisfy a finite number of (possibly
nonlinear) inequalities. The problem of estimating the parameters of a nonlinear
model from bounded-error data is easily cast into this framework, which makes it
possible to obtain approximate but guaranteed and global results in a finite number
of operations.

The tools of interval analysis and the concept of subpaving have been used to
derive efficient methods for the solution of the set-inversion problem. To the best
of our knowledge, the only approach capable of providing guaranteed global results
in nonlinear bounded-error estimation that is not based on interval analysis is the
signomial approach advocated by Milanese and Vicino!'” and also presented in this
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volume. Signomial analysis makes it possible to bracket the enveloping box [S] of
S between two boxes. It gives [S] faster than SIVIA, which characterizes S in a
much more detailed way and applies to a larger class of problems (e.g., problems
involving trigonometric functions).

SIVIA eliminates a large portion of the domain of interest quickly before
concentrating on the boundary of S. It cannot provide great precision when there
are more than a few parameters. However, it can still be useful provided that the
required accuracy is suitably decreased. It may be, therefore, a powerful tool for a
preliminary analysis before turning to local or random searches.

Among the many other problems that can be cast in the framework of set
inversion, one may mention the problem of analyzing the robust stability of an
uncertain time-invariant linear system.!'"
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Adaptive Control of Systems
Subjected to Bounded
Disturbances

L. S. Zhiteckij

24.1. INTRODUCTION

In practical adaptive control systems which use identification procedures, the effect
of disturbances on the system behavior is the important factor. The above effect is
investigated from statistical considerations.\" This approach requires some knowl-
edge of disturbance statistics. However, in various control applications, the assump-
tions regarding the disturbance statistics may be invalid. In these cases, the
statistical approach is unsuitable. Meanwhile, in most cases the available a priori
information about the disturbance is given not in statistical terms but as bounds on
its absolute value. In the cases mentioned, the bounding approaches are appropriate.
These approaches are developed in the identification and control theory.?®
Recently, the important results have been obtained in many works in which
are considered adaptive control systems in the presence of bounded disturbances.®'¥
One of the approaches to the solution of the adaptive control problem for bounded
disturbance case which has been proposed in several papers,®!1>!9 allows
reduction of the problem of the adaptive estimation to finding a single unknown
plant parameter vector. An alternative approach is to find an a posteriori member-

L. S. ZurteEcky o V. M. Glushkov Institute of Cybernetics, Ukrainian Academy of Sciences, 252207
Kiev, Ukraine.

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York,
1996.
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ship set of the unknown parameter vector in some parameter space.!'*'>) Based on
the second approach, the methods of an ellipsoidal estimation are explored in.7-!%1)

Within the general area of bounding approaches, an original direction was
formed in adaptive control theory.®) This direction reduces the derivation of the
adaptive control algorithms to solving some inequalities by using recursive projec-
tion procedures which must converge at finite time. Such algorithms ensure the
suboptimal adaptive control of system subjected to chaotic but bounded distur-
bances. These algorithms!'"?% can be modified to cope with various types of
bounding uncertainty, including the case when the disturbances have independent
bounded time increments.('”

The main assumption which is usually made in bounded disturbance case is
that bounds on the disturbances are known. It turns out that it is also possible to
design the adaptive control system in the presence of bounded disturbances with
unknown symmetric bounds if a membership set of plant parameters is known.!'®
The key idea proposed in Ref. 18 is to exploit one remarkable property of the
recursive projection type algorithms which converge at finite time.®® This property
allows adjustment of one additional parameter which is an estimate of an upper
bound on the size of disturbance. A different situation is when bounds on the
disturbance are unknown and, possibly, asymmetric. A worse situation arises when
not only bounds but also a class of the disturbances are unknown a priori. For
instance, it is unknown whether the disturbance itself is the so-called non-regular
bounded signal, as in Ref. 8, or this disturbance is a signal with the non-regular
bounded time increments as in Ref. 17. But it turns out''” that the technique of Ref.
18 can also be extended to these difficult cases.

This chapter is a broadened version of the paper Ref. 19 and is organized in
the following way. In Section 24.2, the assumptions regarding the parameters of a
plant and disturbances are made and the problem is formulated. Section 24.3
outlines the main features of the adaptive control algorithms which must be
convergent during finite time. In Section 24.4, the optimal control law are presented
for the known parameter cases. The main resuit is given in Section 24.5 which
synthesizes the adaptive identification algorithms for control of systems subjected
to bounded disturbances with unknown parameters. Section 24.6 presents a report
on the simulation. Section 24.7 concludes the chapter.

24.2. PROBLEM STATEMENT

24.2.1. Description of the Plant

Consider a plant as a discrete-time, linear, time-invariant, /th order system
which, for simplicity of exposition, has the unit delay and satisfies the difference
equation



ADAPTIVE CONTROL OF SYSTEMS 385

o) +ayt-1)+-+ap(t-1)
= byt — 1)+ -+ bu(t - 1) + () (24.1)
with
b #0 (24.2)

where y(¢) € R, u(f) € R! are measurable output and control input, respectively,
and §(¢) € R! is an unmeasurable disturbance at discrete time ¢ (¢ = 0,1,2, --). This
equation may be rewritten in an equivalent compact form as

A(az " (e) = B(bz " u(t) + ((2) (24.3)
with the polynomials
A@z)=1+az"++az” (24.4)
Bbz ) =bz" + - +bz" (24.5)
in which z™' denotes the unit delay operator and a' = [4y,..., ) and b’ =
[by, . - . , b} are the parameter vectors.
As in Ref. 1, Eq. (24.1) can also be represented in the form
WO =0lw(r - 1)+ &0 (24.6)
where
0, =[a",b"]
and

wT(t) = [_y(t)s ) _y(t_ I+ 1)5 u(t)s ) l/l(t— I+ 1)]
The following assumptions regarding the plant parameters are made.

o Assumption la: Sign b; is known.
o Assumption 1b: The parameter vectors a, b are unknown but it is known
that

aeQ cR beQ,cR (24.7)

in which Q, and Q, are known bounded, convex regions in the /-dimen-
sional Euclidean space R'.
e Assumption 2: The coefficients of B(b,z!) satisfy

zB(b,z7")#0 forall |z > 1. (24.8)
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That is, Eq. (24.3) describes a minimum phase plant. Moreover, it is
assumed that ZB(B, z)#0 forall |2/ > 1 and any be Q.

Before making the assumptions concerning the disturbance £(¢) first give the
following definition.

Definition 1:® The signal £(f) = &(t,0) which depends on ¢ and on an
abstract parameter » making the sense of a distinctive “event” parameter
is said to be non-regular (non-stochastic) in a bounded set = if for any
natural N and for any &, -, &y from = there is always an ® € {®} such
that

§(l.w)=¢§;, - &N,0) =&
Using this definition, distinguish between the following two cases.
Case 1: {(?) is a non-regular bounded signal, i.e.,
g, <L) <e (24.9)

where bounds ¢; and g, are finite. An interval = = [g;, &,] may here be both
asymmetric when g; # —, and symmetric when & = —; = €. In this
well-known latter case

K@) <e. (24.10)

Case 2: {(f) has non-regular bounded time increments £(¢). In this case
(¢) obeys the equation

GOy =L(r-1H+&@ (24.11)
where &(7) satisfies

B < gy (24.12)

Remark 1: Obviously, Case 1 and Case 2 are obtained as particular cases
from the equation

o +gLt-1)=80) (24.13)

in which &(7) is a non-regular signal. Indeed, Eq. (24.13) leads to Case 1 for
g=0and &(¢) € [g; &] and to Case 2 for g=—1 and &(¢) € [—€y, &v].
Remark 2: 1f 0 <|g| < 1 and Eq. (24.12) holds, then

Co=Ce-1)+&,0 (24.14)
which is similar to Eq. (24.11), is satisfied formally with

I, <2(1 +g) (e, — g) < .
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Although &,(¢) in Eq. (24.14) is also a bounded signal, it is not non-regular
(in contrast to £(¢) in Eq. (24.11)), and it is essential.
e Remark 3: It is not hard to see that if Eq. (24.9) holds then

[VE(@)| < 2¢ (24.15)
where

(24.16)
VLN 24O -4u-1)

and
e=(g,—¢g)/2. (24.17)
In this case, Eq. (24.11) is satisfied with |(?)| < 2e. Meanwhile, () is not
a non-regular signal.
Now, make the following assumptions about the disturbance {(¢).

o Assumption 3a: It is known that {(¥) satisfies either Eq. (24.9) or Eq. (24.11)
together with Eq. (24.12).

o Assumption 3b: The bounds ¢, €, in Eq. (24.9) and &y in Eq. (24.12) are
unknown.

o Assumption 3c: It is unknown which of the cases, namely Case 1 or Case
2, takes place (in addition to Assumption 3b).

24.2.2. Control Objective

Let y° = const be a desired plant output (a fixed set-point). Our problem is to
minimize

J= lim sup le(?)| (24.18)
t—o0

by choosing the control signal sequence {u(¢)} =u(1),u(2), --- where e(?) is an output
error defined by

A
el) = 3°0) = (o). (24.19)
o Definition 2: The control is said to be optimal if

(24.20)
J=J°2 min J.
o)}

o Definition 3: The control is said to be suboptimal if
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J<J%+ 8 (24.21)

for arbitrary pre-specified positive constant 3.

The control objective is to design an adaptive controller which ensures the
suboptimal control under Assumptions 1-3.

Note that if bounds on the disturbances are symmetric and known a priori then
the optimal adaptive control can be designed.!'” However, there is no solution of
the optimal adaptive control problem for the case of no a priori information about
the above bounds.

24.3. PRELIMINARIES

Adaptive control algorithms are derived on the basis of the following common
scheme.® First design the optimal control law assuming for a while that all
parameters of Eq. (24.3) and of Eq. (24.13) are known. To make the control law
adaptive replace the true parameters by estimated parameters. The recursive pro-
jection procedure for solving an infinite system of inequalities is chosen as an
estimation algorithm. It is essential that the above algorithm must converge at finite
time. The finite convergence is known to be achieved only if boundedness of system
variables is guaranteed.® To establish such a boundedness, one needs the following
key technical lemma which is the reformulation of Theorem 4.11.3 given in Ref. 8.

Lemma 1. Consider a plant described by equation

Aa,27(0) = B(b, 7 Yit) + () (24.22)

in which 4 (a,z"") is an arbitrary monic polynomial of degree I>1. Suppose that Eq.
(24.8) is satisfied, and (¢) is bounded in modulus. Let

le(#)] < const + 3, |lv(¢ — 1| (24.23)

be satisfied for some 8, > 0 where
VI = [0, (= 1+ D), 00, e = 1+ 1)]

and u(f) and {(¢) denote an equivalent control signal and an equivalent disturbance,
respectively. Then the closed-loop system, consisting of a plant described by Eq.
(24.22) and a controller which causes Eq. (24.23), is stable in the sense that for any
initial v(0) (irrespective of the chosen control law) there exists a bounded region
D,  R* and a finite ¢p, such that

V()| <D, <o forall > ¢, (24.24)

if 8, satisfies
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8,7+ I'max [A(a))B (b)) < 1 (24.25)
=1

where A is the complex variable and ||-|| denotes the Euclidean vector norm.
Proor. (See Section 4.I1.5° of Ref. 8.) O

24.4. OPTIMAL CONTROL OF SYSTEMS IN THE PRESENCE OF
BOUNDED DISTURBANCES WITH KNOWN PARAMETERS

24.4.1. Case 1l

For the time being suppose that {(¢) satisfies Eq. (24.9) with known g, €. Let
0, be known. To derive the feedback control law, rewrite Eq. (24.1) in the equivalent
form as

WO +a, We— 1)+ +at-T)+e
= bt — 1)+ + byt — 1) + () (24.26)
where
e=(g,+¢)/2 (24.27)
and E(t) is an equivalent disturbance satisfying
IE(t)I <g (24.28)

with € given by Eq. (24.17).
Equation (24.26) can be presented by

(6 =87 - Wit~ 1)+ &) (24.29)

where
o7 = 0], €] (24.30)
wi() = [w'().1]. (24.31)

The following results from the optimal control.

Lemma 2. Suppose that (a) Egs. (24.2 and 24.8) are satisfied, (b) {(¢) is a
non-regular signal described by Eq. (24.9), and (c) &, and ¢; are known.

Then Eq. (24.20) in which

Jo=¢ (24.32)

is achieved if the control law is chosen as
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¥ =0T W), (24.33)

Proor: This is a straightforward application of Theorem 3.2.1 of Ref. 8, Eq.
(24.29), Eq. (24.28), and the fact that (¢) is a non-regular signal in the symmetric
interval [—¢, €]. L]

24.4.2. Case2

As before, assume that 0, is known but {(¢) now satisfies Eq. (24.11) in which
&(?) is bounded in modulus by a constant ey. In view of Egs. (24.6 and 24.11), write

YO =yt 1) +00 - Vw(e— 1)+ &) (24.34)
where

Vw(t)éw(t)—w(t— 1). (24.35)
The following result regarding the optimal control can be shown to be valid.
Lemma 3.17 Suppose that ¢(7) is a disturbance of the form of Eq. (24.11) in

which §(r) is a non-regular time increment satisfying Eq. (24.12). Under assumption

(a) given in Lemma 2 the control law

¥ =31)+ 8] - Vw() (24.36)
achieves Eq. (24.20) with
JO =g (24.37)

Proor: Eq. (24.37) follows immediately from Theorem 3.2.1 of Ref. 8 applied
to Eq. (24.34) with £(¢) € [~ey, &v). O

RemMARK 4: Recalling Remark 3, one can show that under conditions of Lemma
2, Eq. (24.36) ensures that J = 2¢. This means that for Case 1, the performance of
the Eq. (24.33) is twice as good as that of the Eq. (24.36).

24.5. SUBOPTIMAL ADAPTIVE CONTROL OF SYSTEMS IN THE
PRESENCE OF BOUNDED DISTURBANCES WITH UNKNOWN
PARAMETERS

24.5.1. Basic Ideas

Now, assume that both the parameters of Eq. (24.3) and bounds on the signal
&(?) that causes the disturbance {(7) (Eq. (24.13)) are unknown. Clearly, if g =—1
and —ey < &(f) <&y (Case 2) then the problem can be solved!® to Eq. (24.34)
because &(¢) is a non-regular bounded signal with symmetric bounds and Eq. (24.7)
implies that 0, € Q),, where
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(24.38)
0,20, x0, c R¥

is the known and bounded set. It may seem at first sight that if g = 0 and &(¢)
€ [&;, &] (Case 1), then the above problem can also be reduced to the problem of
the suboptimal adaptive control of the equivalent Eq. (24.29) subjected to equiva-
lent disturbance {(f) with unknown but symmetric bound €. In this case, the equation

3= 07(1)W(1) (24.39)
can be chosen as a control law. One is obtained from Eq. (24.33). Replace unknown
0, by some 0(¢) defined as

0'(r) = [0] (1), &(1)] (24.40)
where
0/(5) = [a] (1), bl (1)] (24.41)

is an estimate of unknown 9, and £(?) is an estimate of unknown ¢ at time #. Next,
find O(¢) by solving the system of the inequalities

07w (t — 1)~ y(1) | < £2(0) (24.42)

(t: 1’ 2’ )

which can be obtained using Eqgs. (24.28 and 24.29), and replacing 8, by @ and ¢
by some £5(¢). B

However, this is far from being the case. When the upper bound on {(#) in Eq.
(24.29) is unknown, then some bounded membership set of 8, must be known a
priori.'® Nevertheless, from the Eq. (24.30), 8, € Q,, and Eq. (24.27) implying
that € € Z where

(24.43)

e

=
—

[e,e]c R!
one knows only that 60 € O where

(24.44)
020 xEc R™M,

Although the membership set © of 8, given by Eq. (24.44) is bounded, this set is
unknown, since bounds g, and &, of Z which is the membership set of unmeasurable
disturbance £(¢) are unknown. However, the solution to the problem is possible.

Although this problem seems hopeless at first, the author proposes an approach
based on two basic ideas. The first idea is to design an a posteriori membership set
Z(f) = R! of unmeasurable (7). Bounds on Z(¢) can be evaluated from Eq. (24.6)
which yields
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(<O <C() (24.45)
(r=1,2,-)
where
&) = y(f) — max 8 w(z - 1) (24.46)
Be
(1) =) —min 0Tw(z - 1). (24.47)
8eQ

It follows from Eqs. (24.46 and 24.47) that the set
t

E(n) =[min (), max C(1)] 2 [§(1), {(D)] (24.48)
1<ty I<t<t =l
contains unmeasurable {(¢) for every ¢ > 1. Since the a priori set €, is known, one
can always find the bounds on Z(¢) using the measurement data and Egs. (24.46 to
24.48).

Fig. 24.1 illustrates the Eq. (24.48) together with Eq. (24.45) for ¢ = 2. This
figure shows an example when the intervals [{(f), {(t)] and [{(~1), {(z—1)] have
a non-empty intersection (this condition is not necessary at all).

In order to make use of the first idea, a boundedness of Z=(¢) must be
guaranteed.!'® Meanwhile, such a boundedness is still not provided since there is
no guarantee that ||w(?)|| is not unbounded. Therefore Z(¢) defined by Eq. (24.48)
together with Eqs. (24.46 and 24.47) is unbounded as ¢ — « (see Fig. 24.1).
Nevertheless, it is almost obvious that the vector w() can successfully be kept
within a bounded region D° — R, if there is another controller, which comes into
operation whenever w(t) comes out from some subregion D° = D°. This controller
must return w(z) into D° at a finite time. But, again, to design such a controller it is

=(t-1)
{Ct) gs(t) ¢(t-1)

(l(t)}\ ¢, 0e-1) /l}gs("f)
|

Z(t) J
|
|
1

|
I d.
L =)

FIGURE 24.1. Construction of the a posteriori membership set Z(¢) given by Eq. (24.48).
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necessary to obtain suitable estimates of the unknown plant parameters. All this
leads to the second idea: use the second adaptive controller as a stabilizing
controller. It turns out that this controller can simultaneously be suboptimal if Case
2 takes place.

24.5.2. Stabilizing Controller

24.5.2.1. Adaptive Control Algorithm

To derive an adaptive law for the second controller, replace the true parameter
vector 8, in Eq. (24.36) by an estimate parameter vector 0(¢) defined as

07(1) = [a;(0), by (1)] (24.49)
where a} () & al(7) and b (r) # bl(z) in general. Then
3° = () + 07 (1)-Vw(), (24.50)

which is the second adaptive control law.
Determine 0(¢) using a recursive algorithm for solving the system of inequali-
ties!”)

0TVw(r - 1) — V(D) < e30) (t=1,2,-) (24.51)

where

V(O = (1) - (e - 1)

and €5(¢), which is specified later, is an estimate of an upper bound on |V{(f)|.
Equation (24.51) is obtained from Eq. (24.6). Use Egs. (24.16), (24.35), and the
fact that Egs. (24.12 and 24.15) imply that |V{(¢)| < E where

_ 2¢e %f & satisﬂes Eq. (24.9) (24.52)
gy if §(¢) satisfies Eq. (24.11)
is the upper bound on |V{(?)|.
The value of @(¢) is found by the following several subsequent steps.
Step 1: Calculate
g, =07 - H)Vw(t - 1) - Vy(9) (24.53)
by substituting 8 = 0(z— 1) in the left side of Eq. (24.51), and
e ) =¢€x(1) - 3/2. (24.54)

Step 2: Determine
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0'(1) =0(1 — 1) — f(g,(N.EXD.IVW( - DI - Vw(t = 1) (24.55)
where & is some constant and

g()-¢ if g()>¢
f(g(0).e°€) =10 if Jg()| <& (24.56)
g +e if g(r) < —¢°

is the dead zone function such that 0 <& <¢°.
Comments: Equation (24.55) is a known recursive projection procedure which
is investigated in Ref. 8 for the case of

()2 E+3/2, (24.57)

where the dead zone Eq. (24.56) differs from the one used in Refs. 1,2,6 and 12 to
14.

Note Eqs. (24.53, 24.55, and 24.56). Suppose tth Eq. (24.51) is satisfied by
substituting 6 = 8(z — 1). That is, 8( — 1) lies inside a band

S() = {0 e R¥:107Vw(t - 1) - Vi) | < 30)}.

Then set 0'(¢) = 6(t — 1). Otherwise, project 0(¢ — 1), which lies outside S(¢), onto
the closest of the hyperplanes

TE 2 {0 € R 0TVw(r— 1) - Vy(r) = $&,(0)}.

The last case is illustrated in Figs. 24.2 and 24.3, where

T% 2 {0 € R 0TVw(r - 1) — V(1) = +e3(0)}

are the hyperplanes.

The boundaries of S(¢) are also depicted (for simplicity, drop the argument ¢ in
the notations of all hyperplanes here).

Step 3: Find 0(z) as

0(¢) = arg min |6 — 0'(?)||. (24.58)
OeQO

Comments: Eq. (24.58) is defined as the orthogonal projection of @'(¢) onto the
known convex, closed and bounded set Q. This procedure is used to ensure 0(¢)
€ Q, for all «. When the result of Eq. (24.55) lies in €, as shown in Figure 24.2,
then 0(r) = 0'(¢) . Otherwise, updated 0(¢) is obtained via mapping 0’(¢) into the
closest point 0(¢), which lies on the surface of ), (see Fig. 24.3).
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FIGURE 24.2. Geometric interpretation of the
estimation Egs. (24.55 and 24.58) for the case
0, € S(¥). The result of Eq. (24.55) lies inside €.

REMARK 5: Assumption 1 implies that the hyperplane {S e R 31 =0} does
not intersect Q,. It can be proven that the first component of by(¢) in 8(¢) , is the

coefficient of u(?) in Eq. (24.50), is always nonzero.
Note Egs. (24.6), (24.16), and (24.35). Suppose £5(¢) = |VE(#)| so some ¢. Then
0,, which lies always on the hyperplane

T, (0= {8 € RY: 0TVw(i - 1) - Vy(9) = VE(0)},

also lies inside the band S(¢) (see Fig. 24.2). Otherwise 0, lies outside S(¥) as
depicted in Fig. 24.3.

FIGURE 24.3. Geometric interpretation of the estimation Egs. (24.55 and 24.58) for the case
0o ¢ S(¢). The result of Eq. (24.55) lies outside Q.



396 L. S. ZHITECKIJ

It can be proven that if there exists a finite 5 such that the condition
e3(1) > lim sup [VE(5)| +6/2 (24.59)

t—oc
is satisfied for all ¢ > £3, then there exists a finite 73 > £3 such that
10]Vw(r — 1) — V(1) | < &,(1) < €5() (24.60)

for all > 79 . In this case, the intersection

HE A Sk

_n
‘L'v[2

includes the true parameter vector 0, and its neighborhood. This guarantees that the
system of Eq. (24.51) is compatible for r =79 , 73 + 1, . However, if there is no
finite 5 such that Eq. (24.59) is satisfied for all £ > ¢3 | then it is not guaranteed that
there exists a ?‘2’ such that the intersection

S AV SES+1) -

is I}\(m-«/a\mpty. In last case, the system of Eq. (24.51) may be incompatible for
t=1t9,19 +1,-- For this reason, £5(f) should be large enough for all sufficiently
large ¢ in order to avoid an incompatibility of the above system. In the other hand,
£3(¥) should be small enough to ensure the control suboptimality for Case 2.

To obtain a suitable value of €5(¢), the author proposes a recursive procedure
in the form of two subsequent steps.

Step 1: Determine

o -1 if my-1<d (24.61)
&)= e(t—1)+3/2  otherwise

where
A (24.62)
d = max [0 —0"|]
0.07cQ
is the diameter of known €2,
Step 2: Determine
le(t -1 for l%(l)l < g(z)(t)
(24.63)

N8 = {My(8) + 1IVW(e = DI [Ig(0] = x0T
for |q2(t)| > sg(t)

ifn,(t - 1) <d?



ADAPTIVE CONTROL OF SYSTEMS 397

Na(f) = 0 otherwise.

Comments: Observe from Eq. (24.61) that the estimate £5(¢) changes as a
piecewise constant, monotonic nondecreasing function in ¢. Such a change arises
whenever the auxiliary inequality n,(¢ — 1) < d? is violated at some ¢ = #,(k) (k = I,
2, -). Then associated with Eq. (24.61), £5(¢) has a jump at ¢ = ¢,(k)+1. Suppose
there exists a finite & such that Eq. (24.60) is satisfied for all > t,(k) + 1. In this
case, the inequality (¢ — 1) < d? cannot be violated at ¢ e [t,(k) + 1, ) if the
initial estimates 0(0) and 1,(0) are chosen so that 8(0) € Q, and n,(0) = 0. Indeed,
assume that Eq. (24.51) is violated at ¢ = ¢4 for the jth time by substituting
0=0(45~-1)(j=12,-). Use the proof of Theorem 2.1.1a of Ref. 8 and Eq.
(24.62). Since 0(¢) € Q, for all ¢, we establish from Eq. (24.63) that the estimation
procedure represented by Eq. (24.55), together with Eq. (24.58), has the following
remarkable property:

(1) =Y ath) <18, - 8| < &* (24.64)
rz(E)+Zsr’ZSt
for all £,(k) + 2 <t < oo where
a(th) = IVw(th, = DI [g,(th) | - &t h)T. (24.65)

Since Eq. (24.63) yields y(£2(k) + 1) = 0, then from Eq. (24.64) ny(¢) < d? follows
all for ¢ > t,(k) + 1.

Furthermore, exploit the key property (Eq. 24.64)) together with Lemma 1 to
establish the finite convergence of {0(s)} in some stabilizing system S which
comprises the plant (Eq. (24.3)), the adaptive controller (Eq. 24.50)) and the
identifier (Eq. ( 24.53-24.56, 24.58, and 24.61-24.63)).

24.5.2.2. Properties of Stabilizing System

The following important preliminary results regarding the properties of the
system S with the second adaptive controller serve as a foundation for establishing
the conditions under which the first adaptive controlier (Eq. (24.39)) may come
into operation.

Lemma 4. Let Assumption 1 and 3, and Eq. (24.8) be valid. Consider the system
S . Suppose that the Eq. (24.50) starts with some ¢ = ; > 0. Choose an arbitrary
8 > 0. Then, for £5(0) = J, 5(0) = 0, and any 0(0) € Q,

(i) there exists a finite £ and €5 such that

e5(t) = &5 = const forall t > £
where

& <E+8 (24.66)
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(ii) there exists a finite #; > and 0" € Q_, 0" = const such that 0(¢) = 0" and
p° - ()| < ¢ forall £ > 5.

Proor: The proof proceeds by an argument analogous to that used in the proof
of Theorem 1 of Ref. 18 via applying Lemma 1 to Eq. (24.22) with

A@z =1 -z D@z

where () 2 u(t) - u(t— 1) and {() = ¢(f) - £t~ 1), and using Eq. (24.64) to-
gether with Eqgs. (24.65 and 24.60). (Details are omitted here.) ]

LemMa5. If Assumption 2 holds in addition to the conditions of Lemma 4, then
for any &' > 0 there exists finite 1° = t%(8') > #; such that

[Vu(n)| < kMg + &' for all £ > t° (24.67)
where

' (24.68)

M=3+2 max Z la,|

aeQ
a u=|
K :énax Z |BV(S)] <o (2469)
€ Qb v=(0

in which BV(G) are the coefficients of the series

ZBb =Y Bubi.

V=0

Proor: Eq. (24.67) together with Eq. (24.68) follows directly from Lemma 4
and Property D; of Ref. 20. The value of k defined by Eq. (24.69) is obtained in
the same way as the similar value given by Theorem 10 in Section 6 of Ref. 21 for
continuous-time case.

24.5.3. Adaptive Control Design
Now return to the derivation of the first estimation algorithm which is a
recursive procedure for solving the system of Eq. (24.42). Introducing a variable

0= p(t— 1) +g,() iflg,(H <e3(?) and p(r— 1) <2ey(r— 1) (24.70)
P = 0 otherwise

design this algorithm as the following several steps.
Step 1: Calculate
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(D) =¢g%()-3/2

4,0 =07(t - YW(t— 1) - ¥(0)

deyy = (d + d

1/2
E(t))

where dg, is the diameter of the set ©() 2 Q, x E(#) and

dz(,, = max (1) — min {(1)
I<t<t <ty

is the diameter of the set Z(¢) (see Fig. 24.1).
Step 2: Determine the first estimate £9(7) by
min {e3(t), €(¢ - 1) +8/2} ifn,(t-1)>d3,
orif p(t—1)>2&}(t-1)
) = e5(t)/2 if €9(r— 1) <ex(8)/2, ny(t—1) Sa’fa
and p(r— 1) < 2&j(¢ - 1)

()
()

g2(f) otherwise.

Step 3a: Choose 8(2) = [07(), £(1)]" with 0,(¢) and £(7) satisfying
0, eQ, and £(¢) are arbitrary

if €9(2) = €5(2) = €5(0).
Step 3b: Set

0(t) = B(z — 1) if £2(2) = £3(¢)  £3(0).
Step 4: Determine
/(1) = 0( — 1) — £ (q,().£20), &, (DIW( — DII2-W(e — 1)

ifef(ty <es(ry. _
Step 5: Find 8(¢) from the condition

6(7) = arg_min (|6 - 0'()].
0e O)

Step 6: Determine 1(¢) as follows:
n (=0
if £9(r) = €5(5) = €5(0), and
m@O=n-1)

399

(24.71)

(24.72)

(24.73)

(24.74)

(24.75)

(24.76)

4.77)

(24.78)

(24.79)
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if €9(¢) = €3(¢) # £3(0), and

-1 forlg, (Ol <)
N0 =4, + W = DI [lg, O - &,OF (24.80)
for g, () > &7(¢)

ifn (- ) <dp,,
n,(?) = 0 otherwise

if €9(2) < €3(0).

Now, it only remains to formulate a rule of the controllers switching as follows.
Set €7(0) = €5(0). The second controller (Eq. (24.50)) comes always into operation
at t = t, = 0. This controller continues to be active as long as €7(¢) = €5(¢). If €9(¢) <
£5(¢) (the case £9(¢) > €5(¢) is impossible due to Eq. (24.75)) at some ¢ = ¢,, then the
first controller (Eq. (24.39)) comes into operation and the controller (Eq. (24.50))
becomes inactive. Starting with ¢ = ¢, the controller (Eq. (24.39)) continues to be
active until either |e(2)] > 2€9(r) or £9(¢) = €5(¢) occur at some ¢ = ,. Then the controller
(Eq. (24.50)) starts at t = ¢, and the controller (Eq. (24.39)) becomes inactive, again.
The controller (Eq. (24.50)) continues to be active until all the conditions |e(t — )|
< g5(f) and

IVu(t — n)| < kMey() + 8 (n=1, -, 1)

and €7(¢) < €5(¢) are satisfied at some ¢ = £;. Then the controller (Eq. (24.39)) comes
into operation at ¢ = 3, and so forth.

To give this narrative description a compact mathematical form, introduce a
indicator function s(¢) defined as s(¢) = m, m € {1,2} if the mth controller is active
at time ¢. Use Eq. (24.81) to obtain the following decision rule:

s(f) =2 if 2(¢) = £3(2) (24.82)

1) if s(t—n)=2 and |e(t —n)| < €X(r) and

Vit — n) | < xMed()) + 8 forn=1, -, 1 (24.83)
2) ifs(t-1)=1 and [e(?)| > 2&%(z)
s(t—1) otherwise

s() =

Eqgs. (24.39, 24.70-24.80, 24.50, 24.53-24.56, 24.58, and 24.61-24.63) to-
gether with Eqs. (24.46-24.48) and Eqgs. (24.81-24.83) define the adaptive control
algorithm in full. To realize this algorithm, one needs the preliminary calculation
of the values of d, M and x by Eqs. (24.62, 24.68 and 24.69), on the basis of a priori
knowledge about the sets Q, and Q..
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24.5.4. Finite Convergence Properties

Let ¢; (i = 1,2, -~-) be moments of controller switchings. According to Egs.
(24. 82) and (24.83),s(t)= 1Vt € A;withodd i ands(f)=2V ¢ € A; witheveni where
A; = [t;, tis1 — 1]. Exploiting the properties of system S which are given by Lemmas
4 and 5 one can conclude that the chosen decision rule guarantees that Vw(t) is
uniformly bounded in the norm for all 7 € A;. From this fact and Lemma 4 it follows
that there exist finite ¢ , 05 , and &} satisfying Eq. (24.66) such that €5(¢) = €5 and
0,()=0>=const Ve>1¢; .

There are three different cases to be examined in order to establish the finite
convergence of sequences {e9(2)}, {8(2)}:

o (Case 1) (1) satisfies Eq. (24.9)
o (Case 2a) ((¢) satisfies Eq. (24.11) and {(¢) is bounded
e (Case 2b) £(¢) satisfies Eq. (24.11) and [{(¢)] =  as t —> .

From Lemmas 4 and 5 it follows that the boundedness of O() 2 Q, x Z(1) is
guaranteed for Case 1 and Case 2a. If Case 1 or Case 2a take place, then there exist
finite

4+ x4 *
1<t
and €7, 0" such that

el(ty=¢] =const V¢ € [¢], o)
and

6(z) =0"=constVse [t7, )

where £} <e+8<¢g; for Case 1 and e]=¢3 for Case 2a (this result can be
established in the same way as in the proof of Lemma 4).

It can be proven that if Case 2b takes place, then, due to Eq. (24.70), the number
of violations of the inequality p(z — 1) < 2&3(¢ — 1) increases indefinitely as ¢ — .
Then, it follows from Eq. (24.75) that there exist finite 1] > ¢5 such that

el =¢; Vte[t], o).
This yields
6(1) = 6* =const V1 € 1], ).
Clearly, if Case 2a or Case 2b take place then due to Eq. (24.82)

s(=2V1e€t], ).
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Setting ¢7 = ¢, and employing Lemma 4 obtain

le( <eg+8Vi21t5+ 1.

It follows from Eq. (24.83) that for Case 1
s(=1Ve>1¢].

Since

g O=—e(®Vr2t]+1
and €] < £ + 6, this leads to

le(l<e+8Vext]+1.

The results thus established are summarized in the following.

TueoreM 1. Consider the closed-loop system, consisting of the plant (Eq.
(24.1)), the controllers (Eqs. (24.39) and (24.50)), the identifiers (Eq. (24.70—
24.80)), Egs. (24.53-24.56,24.58,and 24.61-24.63) together with the decision rule
(Egs. (24.82) and (24.83)). Let Assumptions 1-3 be valid. Choose 6 >0 and
8’ > 0 arbitrarily. Then for £9(0) = €5(0) = 5 and any initial 6(0) € Q,, £0):

() {900}, {500}, {6(D)}, {B(1)} converge at a finite time ¢

(ii) the number of the controller switchings is finite

(iif) [e(5)] < £+d forCasel
gy + 0 for Case 2

forall £>1".
It follows from part (iii) of Theorem 1 and Lemmas 1 and 3 and Definition 3
that the designed adaptive control is suboptimal.

24.6. SIMULATION RESULTS

To illustrate the main features and the power of the designed adaptive control
algorithm, the results of three simulation experiments are presented here. To this
end, {(¢) was chosen as (¢) = y(¢) + £(¢) where %(f) =0 (run 1), x(¥) = 0.3 (tun 2),
(@) =@ - 1) (run 3) and &(¥) € [-0. 4, 0.4] is the pseudorandom variable.

The conditions of the experiments:!” I = 1, @, = —0.45 and b, = 4.0. The a
priori sets Q,, Q, were defined as Q, =[0.8,-0.2] and €, =[2.5, 5.0]. Then, Eqs.
(24.62,24.68, and 24.69), give d?=6.61, M=4.6 and x = 0.4. In all runs, the initial
estimates are chosen: a;(0) =—0.8 and 5,(0) =2.5.

The results of a 600-step long simulation for y°=4.0,3=0.2, and ' = 0.2 are
depicted in Figs. 24.4-24.9. 1t turns out that £7(¢) remains less than €5(¢) in Case 1
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FIGURE 24.4. Plant output and disturbance for the case when the bounds on {(¢) are symmetric: 0.4
<E(H<0.4(run ).

for £ > 12 (see Figs. 24.5 and 24.7) and equal to €5(¢) in Case 2 for ¢ > 520 (see Fig.
24.9); herein €9() £ 0.4 <g + 5 (= 0.6),

(1) <0.7<E+3(=1.0)(run 1)

and

FIGURE 24.5. Parameter estimation
and controller switchings for the run 1.
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FIGURE 24.6. Plant output and disturbance for the case when the bounds on {(r) are symmetric: —0.1
<{(H<0.7 (run 2).

e <045<e+3,
£%()<0.7 < E+8 (run 2)
and
£5(1), e5(£) £ 0.5 <&y + 8 (= 0.6) (run 3)

for all £ < 600. Figures 24.5, 24.7, and 24.9 show that in all runs, the variables

FIGURE 24.7. Parameter estimation
and controller switchings for the run 2.
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FIGURE 24.8. Plant output and disturbance for the case when {(f) = {(¢r — 1) + &(2), where 0.4 <
&)< 0.4 (run 3).

) =118, - 8P, V(0) = 118, - 0|

are not nonincreasing in ¢ (in contrast to ¥(¢)).®!? The indicator function s(¢), which
is depicted in Figs. 24.5, 24.7, and 24.9 demonstrates how the controllers switching
occurs. In the end, the controller which is suboptimal becomes active all along,

FIGURE 24.9. Parameter estimation
and controller switchings for the run 3.
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namely, the first controller in Case 1 (Figs. 24.5 and 24.7) and the second controller
in Case 2 (Fig. 24.9).

Although ¥(£) and 7(¢) do not go to zero as the parameter estimates converge
to their final values, except V(¢) for Case 2 (see Fig. 24.9) the proposed adaptive
control algorithm copes with different disturbances £(¢) both in Case 1 and in Case
2 (see Figs. 24.4, 24.6, and 24.8). A comparison of Figs. 24.4 and 24.6 with Fig.
24.8 shows that no appreciable difference is noticed in the behavior of the plant
output y(¢), while the disturbances £(¥) are different in all these cases.

24.7. CONCLUSIONS

This chapter shows that within one of the bounding approaches it is possible
to design the suboptimal adaptive system in the presence of bounded disturbances
with unknown parameters. The approach used here relies on the finite convergence
property of the recursive projection algorithms for solving of the inequalities. The
effectiveness of this approach is demonstrated by simulation runs.
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Predictive Self-Tuning Control
by Parameter Bounding and
Worst-Case Design

S. M. Veres and J. P Norton

ABSTRACT

The computation of bounds on the parameters of a plant model allows worst-case
control synthesis, taking account of the uncertainty in the model. This chapter
introduces such a control scheme: predictive bounding control. The scheme con-
trasts with existing self-tuning control methods which base control synthesis on a
nominal plant model. Parameter bounding also permits detection of abrupt plant
changes, and adaptive tracking of time-varying plant characteristics by suitable
choice of bounds on plant-model output error and plant-parameter increments.
Estimation and control are closely integrated, and the control computation can com-
promise between reducing the model uncertainty and reducing predicted output error.
Simulation examples show the excellent performance of predictive bounding control.

25.1. INTRODUCTION

The range of possible techniques for adaptive control has been broadened by
the algorithms now available for computing bounds on the parameters of a difference-
equation model of a dynamical system.!!™®

S. M. VERES AND J. P. NorTON ¢ School of Electronic and Electrical Engineering, University of
Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York,
1996.
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The bounds define the set of parameter values giving model-output errors
within prescribed bounds, and may be regarded as the result of mapping the
uncertainty in the observations directly into uncertainty in the model. Such
bounded-parameter models are a natural basis for designing a controller which must
meet performance requirements and control constraints expressed as inequalities.
Treating the control-design problem in this way reflects classical control-design
practice and allows worst-case design. It also makes possible control synthesis
without the assumption of certainty equivalence; this factor is important in achiev-
ing robust adaptive control based on imprecise parametric models. Moreover,
model uncertainty and control performance can be linked through the medium of
bounds to open up an approach to dual control.

The next section starts with a reminder of the basic ideas of parameter
bounding. Some limitations of traditional self-tuners are then reviewed briefly, to
motivate parameter-bound-based self-tuning control. Section 25.3 introduces
worst-case control based on parameter bounds. It is followed by a description of
predictive bounding control (PBC), which allows on-line bound adaptation and
input optimization to exploit any freedom left in the control sequence by the control
performance specification. Section 25.5 presents a technique for bounding the
parameters of a system undergoing both drift and abrupt changes. Simulation results
and conclusions follow.

25.2. PARAMETER BOUNDING AND MOTIVATION FOR ITS USE IN
ADAPTIVE CONTROL

Parameter bounding®** consists of using observations y, (assumed scalar) at
sampling instants £ = 1, 2, 3,... and specified bounds e, € Z, on the output error of
the model

Y, :f;(e)—y-e’ (251)
to infer bounds
v, ~f(®) €, (25.2)

on the unknown model parameters 8. For example, one observation together with
plain bounds /e,/ < ¢ on error from a model linear in 8 gives a pair of hyperplane
bounds on 0. Successive observations yield new bounds which may or may not
reduce the size of the feasible parameter set 9,. The essential features of bounding
are that there is no reference to an ensemble and there are no preferred values within
the feasible set (although a criterion to select a center of the set can be added). The
feasible parameter set D,, which describes all the parameter values consistent with
the observations, the model structure and the error bounds, can be the basis for a
control computation taking the worst-case plant behavior into account. Bounded-
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error inputs can be handled by a solution of the errors-in-variables problem.!'” The
parameter bounds can also deal with time variation of the plant; bounding of
time-varying parameters is discussed by Norton and Mo.®

This chapter examines the use of parameter bounding in on-line adaptive
control. Existing self-tuning controllers can often perform well with modest levels
of disturbance and slowly changing plant dynamics. Minimum-variance self-tuning
control!"'? and its generalizations!!>~'>) are relatively robust against errors in plant
order, but sensitive to some errors in dead-time. Another approach based on
closed-loop pole placement!'®!?) proves insensitive to dead-time variations but
sensitive to model overparametrization. Both approaches can be made to cope with
non-minimum-phase models. Robustness against high-frequency noise and un-
modeled dynamics is improved by the introduction of observer dynamics and
disturbance-rejection filtering, and by careful choice of plant model structure and
reference model.

Generalized predictive control (GPC)*#!?) is intended to improve robustness
by using a multi-step cost function. It also incorporates integral action (by using
controlled autoregressive integrated moving average—CARIMA—models) to pre-
vent steady-state error. GPC requires the specification of cost horizons, a control
horizon and input weighting as design parameters, as well as model orders. Special
or limiting cases of GPC are dead-beat, GMV and LQG self-tuners and the methods
of Peterka,?” Ydstie®" and De Keyser and Van Cauwenberghe.??*® A detailed
discussion of relations of GPC to other methods is given by Clarke and Mohtadi.!”)

A variant, generalized pole-placement control (GPP),*? is also designed to
improve transient response and overall control performance by employing a multi-
step cost function. Robust adaptive control has been studied by Middleton et
al.®>27 for mixed structured and unstructured uncertainties in models, using
relative dead zones for the unstructured uncertainties. They provide a quantitative
measure of the unmodeled errors that can be tolerated by the controller.

The well known self-tuning controllers determine the control input from
updated estimates of the model parameters. The control synthesis, however, does
not make use of estimates of model uncertainty, such as parameter error covariance.
There is no way, therefore, to balance short-term performance against longer-term
benefit by taking into account the effects of the next control input on model
accuracy as well as on short-term output accuracy. In practice, the input may be
near-constant for long periods of time, and poor parameter estimates may result
from the poor excitation. They may assume values which lead to temporary loss of
stability (“bursting”®®) or poor closed-loop behavior even if some functions of the
parameters, e.g., steady-state gain, remain well estimated. Sudden disturbances
after quiet periods may elicit insufficient or excessive response because the parameter-
estimate updating gain derives from parameter-error covariance estimates which
have become unrealistic.
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There are at least three ways to prevent such problems. One method is to add
an external, persistently exciting signal to the control input.*>~*?) On-line input
optimization with this aim in a bounding context is described in Section 25.4. A
second way is to improve the correction gain of the parameter estimator. This
amounts to proper tuning of the underlying model of the noise and plant changes,
as described for parametric bounding in Section 25.5. A final possibility is to
arrange for the control computation to be conditioned by the uncertainty in the
parameters, by making the performance criterion sensitive to the quality of the
model. This is done by the worst-case control design of Sections 25.3 and 25.4.

Statistical or least-squares counterparts of most of the techniques suggested
below are readily envisaged. Alternatives differing in detail but still based on
parameter bounds are also easily devised and may be better matched to particular
circumstances. Not all the features discussed are necessary in every application.
The point of the chapter is simply to demonstrate what deterministic parametric
bounding and worst-case control design offer: a conceptually simple framework
for self-tuning control to accommodate a range of practical features.

25.3. WORST-CASE CONTROL BY PARAMETER BOUNDING®373%

If we are to apply control inputs which take into account the uncertainty in the
model, the quality of the assessment of parameter uncertainty is crucial.#*> When
the noise and parameter changes can be modeled as the result of linear filtering of
white noise with known covariance, the parameters can be treated as state variables.
State estimation then provides parameter estimates and the estimated parameter-er-
ror covariance. However, if uncertainty is treated statistically, only average behav-
ior can be guaranteed and there remains a possibility of poor closed-loop
performance. The parameter-bounding techniques now available provide the means
to guarantee control performance deterministically (subject, of course, to validity
of the deterministic assumptions about the noise, disturbances and initial uncer-
tainty).

At each sampling instant ¢ the worst-case control (WCC) scheme updates a
feasibility (uncertainty) set D, for the plant-model parameters. All values within
this set give model-output errors within the specified bounds. The set 9, is the
intersection of the m pairs of half-spaces yielded by the upper and lower bounds on
model-output error at the most recent m input-output sampling instants. (In the
scheme described in Section 25.5, m varies according to the rate of variation of the
plant). At time ¢, a fixed-length control sequence is then computed that is optimal
in the worst case over all plant parameter values within 2;, and all future noise and
disturbance values within their specified bounds.

Consider the autoregressive moving average exogenous (ARMAX) model
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P q
Yok =~ Z A1 ik + Z biut4i+k + €k €k € 2 (25~3)

i=] i=l

where a; and b; are unknown parameters, possibly time varying but modeled as
constant over m sampling intervals, and £ = [-6,8] with § specified. The smallest
possible value d of the dead time is specified on physical considerations; d can be
taken as one by default, as it is here and henceforth for simplicity. An output-error
model might be proposed instead, on the grounds that realistic output-error bounds
are easier to specify than equation-error bounds. However, to retain linearity in the
parameters, model Eq. (25.3) is preferred. (Problems raised by the use of equation-
error bounds in parameter bounding by ellipsoids have been examined by Nor-
ton).?) If Eq. (25.3) is valid throughout 1 < k < n, then

p q p q
Y2 = _al('— Z GVt Z bz'ut—iH + et+1) - Z GVt z biut—i+2 teén
=1 i=] =2 i=1
p q
= z O"i(z)y,_,ﬂ + Z Bi(z)ut—Hl + blut+l tae,te,, (25.4)

i=1 i=1
and so on, to give prediction equations

14 k-1

q
Yk = 2: ai(k)yl‘Hl + Z Bz'(k)ut—iﬂ + Z B1(1.)1’ll+k—~i

i=1 i=1 =1
k-1

+ Y (et Cup k=1, nwithe, e £, 1<i<k (255)
i=1

The controller is required to minimize a performance index by computing

control inputs u}, u},,, ..., and u;,_; on the basis of the past inputs and outputs
U1, Uy s Yo Victs --v, TOT the worst case within an updated feasibility set D, for
the parameters 8 =1[a, a, ... a, by ... bq]T. Optimizing a sequence of inputs

accounts for the indirect influence of u, on later outputs via its effect on the predicted
optimal u},,, 47,2, ..., trn-1, @8 Well as its direct effect. The idea of optimizing over
a finite number of control samples at each update appears in several established
adaptive control schemes, e.g., GPC self-tuning, adaptive LQG control®®3? and
model-predictive control.®

Denote by {y;} the sequence of set points. The control cost function for time
t+k, computed at time ¢, is
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Ck(t) = s u p {max( Iy;:k - ,V,+k I 7| )\‘uH.k_] I)} (256)

OecD,e e€F 1=1..k
o

where A is a weight to penalize large inputs. The control sequence may also (or
alternatively) be confined to a set 1, e.g., /u,,/< v at each time #+i to incorporate
actuator constraints. The optimal control sequence computed at time ¢ is

{(@0), ... u ()= arg inf  max Cy(2) (25.7)

U U, u . k=d..»n

of which «; (¢) is applied to the plant and the rest of the control sequence is discarded.
Such a finite-horizon, worst-case-optimal controller is guaranteed to keep outputs
Yirk» d £ k < 1, within a bounded but unspecified region about the corresponding
set-points, as shown in the next section.

In the predictor equations, y;,, is linear in e,,;, 1 <i <k, and multinomial in the
parameters 0 of the original model. Since the es and 8 are within convex polytopes
Eand D, the calculation of Cy(¢) is the optimization of a multinomial over a convex
polytope. The total degree of the multinomial is equal to the time horizon N over
which the input is optimized.

The control law defined by Eq. (25.7) will be called explicit worst-case control.
In implicit WCC considered below, bounds are computed for the parameters in the
predictor equations rather than the parameters of the original model. There are
significant differences between the two identification problems. First, the implied
range of times over which & and the bounds making up 9, remain valid is larger for
the prediction model. If the model is identified over m steps, then used at time ¢, it
has to be valid for times ¢—m-+1 to t+n on the left-hand side; the corresponding input
and output samples on the right-hand side range over a longer period for the
prediction model. Second, since the predictor equations contain error samples
€.4; Which appear for more than one sample instant ¢+k, the bounds of the
(p+q+2k=2)-dimensional feasibility set 7,(¢) of the k-step predictor parameters a(k)
and P(k) are non-linear (reflecting the non-linear relationship between the predictor
coefficients and those of the original model), much as in the errors-in-variables
problem.1%*) Recursive updating of polytopes or ellipsoids in that situation is
discussed in the references cited.

The control law based on the predictor parameters is

@), ..., up (O = arginf max CU) (25.8)
Wy U ooy Uy k=d.n
where
* A
Ci(t) = s u p {max( |y1+k _yH]( I £l I }\‘uf+k—l l )}5
07e (0. €F i=1.k

and
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Dk = 0,107
with
07 =[o,(k) ... (k) By(1) ... By(k=1) ... By(h) ... B(R) oy (1) ... o, (k-D]T
confined to its feasibility set ®, and
Ok =LV Vet Mgy v Upgyy €y - el

If the parameters are confined to a polytope, calculation of the optimal input
sequence in Eq. (25.8) is reasonably tractable, as shown by the following lemma.
LeMma 25.1. With %/ the set of vertices of convex polytope F(f),

CII:(I) =max {maxwtk(l)T 911: —y;k’ y:+k Etk - (—I)Tf)i, I }"ut+k—1 | )}

vey,
where
_ - = 1T
S (D) =1y Vipey Mgy o Uygr € - €]
o,(-)=[ u u_..—e ...—e_ |’
1k YeoorVipet Upgmy o Yy — €1 - ~ €4
and
ei =5 Sign(e;;+q+k+i—l)'
Proor: From the definition,
* A
Cl]z(t) = Sup {max( |yt+k _yH.k | s | }\'uprk_l l )}
Gﬁe?k(t), e, €L i= 1.k
« A A -
= Ssup sup {max(y k™ Verto Yeuk ™ Vewio | }“ut+k—l l )}
Qtzefpk(t) e €L i=1l.k

and it is easy to see that

A * *
P k { Yerk ™ yt+k} = 6tk(1)T011: “Yew

e €, i=1...
1+

SUp  { Vi = P Vi~ B a1 10F
emeﬂ i=1..k

Within any one orthant O; in 0-space, $,(1) and 9,(—1) are fixed. The subset of

convex polytope , in 0; is itself a convex polytope, with vertex set 9);say. Alinear

form over a convex polytope can have generic extreme values only at the vertices

of the polytope, so
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sup {S(@k(s)Te'Z —y:+k)} = max {S(ﬁtk(S)Tﬂf _J’;J{)}, s=-1,1

P P
OkeO/ Oke'l/k/

Now the supremum over the union of two adjoining orthants cannot be at a point
of their common boundary unless that point is also a vertex of the union, since the
definition of 9,,(1) and 9,(—1) ensures monotonicity of all terms as the boundary is
crossed. The supremum over the union is therefore at a point in the union’s vertex
set, and by induction the supremum over the whole polytope Z(¢) is in ;. J

Since 8,4(1)702~y;, and yi,—8,(-1)102 are linear forms in
u,={u, Uy ... upn 1T, CE(¢) is piecewise linear over 7/ and its maximum over k =
d, ..., n can be represented as the maximum of a finite number of linear forms:

é‘ =max Cj(f)=max L(u) (25.9)
k=1,...n ieg
Consider the space of (u, é‘) in which each linear form L{u,) is a hyperplane.
Together with the bounds of U, C(u,) defines a polytope, unbounded upwards and
convex downwards in the C direction. The polytope may be computed by estab-
lished polytope-updating algorithms.*” The minimization with respect to u
amounts to finding the polytope vertex with smallest C.
The WCC scheme just described provides the rudiments of a controller. Next
some other aspects of the controller are considered.

25.4. PREDICTIVE BOUNDING CONTROLLER

This section extends the basic worst-case control scheme to provide for
time-varying plant and to allow short-term control performance to be balanced
against identification accuracy when finding the control sequence.

A scheme for tracking time-varying plant dynamics, described in detail in
Section 25.5, updates the equation-error bound 3 and a scalar p characterizing the
largest possible time variation of 0. The scheme yields a set of acceptable (feasible)
values of (8,p) at each update. The worst-case control performance depends on
(8,,p,) through the set ,(2,5,,p,) of feasible k-step predictor-parameter values. Thus
one can choose (9,p,) from its feasible set according to its effect on worst-case
setpoint-following error.

LeMma 25.2. A control law exists yielding setpoint-following error bounded by

L : * . Tap
Iyt+k yt+k | < mf{ sup lyt+k ¢tk9k l } + St’
Uty @ :E 4',‘,(1,5[,13,)
e,.€ E,0<i<k-2

k=1, .., N, where {y*} is the set-point sequence and (5,,p,) is within its feasible
set.
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The lemma follows directly from the definition of 2(#,5,,p;) and the assump-
tion that it contains at least one value of 8% satisfying the prediction equation with
the assumed bounds on equation error. Treating J, and p, as parameters for the
moment, the lemma suggests the control

4}(8,p,) =arg inf Lu,8,p,) (25.10)
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where
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L(u5,p)=inf  max sup |y, — 0,071
Upgpreotan k=12, Gie'l’k(t,ér,p[)
e, € E0i<h-2

The set U, of permissible control values is discussed later. For each 3, in the range
[8/min-Omax] Of feasible values, a minimum feasible p,;,(8,) gives the smallest
parameter variation. PBC uses that (3,,pimin(3,)) which gives the lowest worst-case
setpoint-following error L14,,9,,Pmin(0,)):

u; =arg inf L(u,8],p}0in)

ued
t 1
where

&= arg inf inf L (4,8 ,p,in(8))
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and Pyyin 1S Pmin(37). In practice, a finite number of pairs (3,pmin(3,)) is examined
instead of the entire set, and the definition of 8; correspondingly modified.

Next consider the determination of the permissible-control set U,. Procedures
for optimizing the excitation properties of the control sequence (on-line experiment
design), and to guarantee closed-loop stability will be described.

As so far defined, PBC recognizes the effects of future control inputs on the
output but not their effects on future feasible-parameter sets ®,(¢+i,5,p) and thence
on Ly, (u:9,p). A controller with more foresight can be obtained by relaxing the
requirement that {u, 4, . .., Uyn-1} should minimize L(u,0,p,) and using the
resulting freedom in u, to tighten future parameter bounds. In Section 25.3, the
worst-case-optimal control input was com/;puted by searching the vertices of a
polytope UN M, £; in the space of (u(?),C), where u(t) = [, Uy, ... upna]'s U
is the permlsslble -control set, £; is the half space defined by the linear form
L(u(?)), and ( is the worst-case qutput error. The best control sequence is at the
vertex giving the smallest value C" of C . For fixed 8 and p, the same procedure
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