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1 
Overview of the Volume 
J P. Norton 

The genesis of this volume was the feeling of its editors that bounding had become 
an important enough topic, and was attracting enough attention, to require a 
collection of papers as a broad introduction to the field and a review of current 
progress. The basic idea of describing plant uncertainty by bounds is as old as 
toleranced engineering design. State bounding was introduced to the control 
engineering community in the late 1960s and parameter bounding in the early 
1980s, but the subject became prominent only in the late 1980s and early 1990s, 
through workshops in Turin in 1988,0) Santa Barbara(2) and Sopron(3) in 1992, 
papers and special sessions at conferences such as the 1988 International Associa­
tion for Mathematics and Computers in Simulation (IMACS) World Congress in 
Paris, the International Federation of Automatic Control (IFAC) Budapest and 
Copenhagen identification symposia in 1991 and 1994, the 1991 Institute of 
Electrical and Electronics Engineers, Inc. Conference on Decision and Control 
(IEEE CDC) and 1993 IEEE International Symposium on Circuits and Systems 
(IEEE ISCAS), and increasing exposure in leading control engineering and signal 
processingjournals.(4,5) The topic is now widespread over a large literature, so this 
volume is timely. 

Before looking at the contents of the volume, let's see what bounding consists 
of and why it is of interest. 

First, what is "bounding"? It is the process of finding bounds on the parameters 
or state of a given system model that confine within specified ranges the errors 
between the model inputs and outputs and their observed values. In other words, it 

J.P. NORTON • School of Electronic and Electrical Engineering, University of Birmingham, Edgbaston, 
Birmingham B 15 2TT, United Kingdom. 
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2 lP NORTON 

answers the question "What parameter or state values in this model match the 
input-output observations to within a given error?" A more mechanistic view of 
bounding is that it maps the error bounds, through the model and observations, into 
parameter or state bounds. The error bounds define a set of acceptable error values, 
and the parameter or state bounds define afeasible set (sometimes tautologIcally 
called the "membership set"), so the mapping is from one set to another. 

Although state and parameter bounding have much in common as in more 
traditional estimation approaches, this volume concentrates on the bounding of 
model parameters. Most commonly, symmetrical bounds are specified on instanta­
neous discrete-time values of individual error variables, i.e., the 100 norm is specified 
for the vector of successive values of each error variable. In some cases, a bound 
on power or energy, or some other norm of the error, may be more appropriate. 
Often only a scalar model-output error is considered. 

What use is bounding? It provides a way to relate uncertainty in the model to 
uncertainty in its inputs and outputs, independent of any probabilistic assumptions 
and referring only to a given data set. It splits parameter or state values into those 
not excluded by the data and error specification, i.e., the values which must be taken 
into account when applying the model, and those which are excluded and need not 
be considered. Application of the model's feasible set, for instance in robust control 
design, gives results which can be relied on only as far as the error specification 
and data set can. Conversely, the extremes of model behavior over the feasible set 
give a "worst case" for design that may be conservative if the data set, error 
specification and model structure allow too wide a range of behavior. The need to 
impose realistic restrictions is why parametric models are considered in most of 
the work described here, and why algorithms computing approximate bounds seek 
the tightest possible. 

The appeal of bounding lies in its directness, simplicity and need for few 
assumptions compared with its probabilistic alternatives; its ability to make use of 
prior knowledge expressed as bounds; and its status as the natural basis for worst 
case design. The choice of what to bound and what norms to employ gives flexibility 
not yet fully exploited. An important question In some applications IS how to derive 
point estimates from the feasible set. For example, the values minimizing the 
maximum model-output error, or the maximum error in each individual parameter, 
are related to feasible sets in a simple way. 

These considerations lead to the first contribution in this volume, a review of 
optimal estimation theory as a framework for bounding. The theory is able to 
accommodate a variety of norms and a wide range of problems, including the 
derivation of point estimates. 

Chapters 3 to 16, like a large majority of the publications in the field, consider 
models linear in their parameters. The feasible set for such a model with instanta­
neous bounds on its additive output error is a polytope. It is sometimes computable 
exactly but is often approximated by an ellipsoidal, orthotopic (box) or parallelo-
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topic set, to economize on computing and to simplify its subsequent use. Chapter 
4 is a review of ellipsoidal bounding techniques, followed by several chapters on 
ellipsoidal bounding, which refer also to its connections with least-squares estima­
tion and estimators applying dead zones to the prediction error in the update. 
Chapter 7 considers the important link between time and frequency domains, 
reflecting the initial emphasis of robust control analysis and design on frequency­
domain bounds through the HOC) formulation. In Chapters 9 to 13, a number of other 
bounding techniques for linear models are described. The issue of robustness to 
outliers, crucial in bounding because of the absence of any averaging, is raised. 

The essential difference between state and parameter bounding is the presence 
in the former of time evolution of the quantities being bounded. The distinction 
disappears if the parameters are treated as time varying. The evolution requires 
expansion of the parameter or state bounds to account for the unknown (but 
bounded) increments from one sampling instant to the next. Computationally, this 
extra feature is not negligible. It involves vector summing of the prior feasible set 
and the feasible set of the increments, at every update, rapidly increasing the 
complexity of the feasible set. Various heuristics have been suggested to lessen this 
problem; Chapters 14 to 16 discuss how ellipsoids and simplified polyhedra may 
be used to approximate the evolving set, and how joint bounding of state and 
parameters may be performed in an adaptive controller. 

Nonlinear models are the subject of Chapters 17 to 23. The "errors in variables" 
regression-type model, linear both in its parameters and in its input and output 
variables but with uncertainty in all input and output observations, is nonlinear by 
virtue of containing products of uncertain quantities. If the observation uncertain­
ties are bounded, the parameter bounds due to the observations at anyone instant 
are linear in any orthant. This results from the model's bilinearity: fixing the signs 
of all parameters determines which bound on each observation error maximizes or 
minimizes the contribution of that term in the model. The feasible set is therefore 
composed of polytopes in each orthant, in the absence of any serial dependence 
between observation errors. However, ifthe same observation appears in the model 
at more than one sampling instant (a "dynamic" errors-in-variables model), serial 
dependence is present and renders the parameter bounds nonlinear, even in one 
orthant. Both dynamic and static errors-in-variables models are considered in 
Chapters 17 to 19. 

Chapters 20 to 23 offer bounding techniques for more general nonlinear 
models. Not surprisingly, the central issue is the compromise between computing 
load and resolution. The availability of performance guarantees also plays a large 
part in selecting an algorithm, as does the ability to handle bounds which are not 
well behaved locally. 

Chapters 24 to 26 present various facets of bounding in robust/adaptive 
control. An assumption of bounded disturbances is often realistic, and is considered 
in the context of adaptive control. As previously noted, a model with parameter 
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bounds allows worst-case control design. Worst-case-optimal control synthesis has 
the potential to guarantee performance. It takes model uncertainty explicitly into 
account, in contrast to ignoring it by applying certainty equivalence as is usual in 
adaptive control. Another feature available in bound-based adaptive control is 
compromise between short-term control performance and longer-term improve­
ment. This is due to reduction of model uncertainty, by optimization of the control 
input for identification over the set of values giving adequate short-term control. 
Both these aspects are examined in the setting of predictive control. Identification 
for Hoo-robust control, a topic stimulating the recent convergence of bound-based 
identification and control design techniques, is also discussed. 

Applications of parameter bounding have had relatively little exposure in the 
literature. In Chapters 27 to 30, applications in areas as diverse as robotics, image 
compression, speech processing and high-accuracy calibration are described. The 
speech processing case is particularly noteworthy as an example of the spread of 
parametric bounding into signal processing, which has paralleled its growth in 
control engineering over the past decade. 

The technology of parameter bounding is beginning to mature to the point 
where it should find an established place in the armory of a system modeller or 
control designer. Important questions remain partly or completely unresolved, 
though, such as how best to combine distributional information and bounds, or 
probabilistic and bounding information; how to exploit both time-domain and 
frequency-domain bounds; how to describe and utilize the complicated bounds 
typical of nonlinear systems; and how to maximize the information about bounds 
derived from limited experimentation. Our hope is that readers of this volume will 
provide some of the answers. 
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Optimal Estimation Theory for 
Dynamic Systems with Set 
Membership Uncertainty: An 
Overview 
M. Milanese and A. Vicino 

ABSTRACT 

In many problems, such as linear and nonlinear regressions, parameter and state 
estimation of dynamic systems, state space and time series prediction, interpolation, 
smoothing, and functions approximation, one has to evaluate some unknown 
variable using available data. The data are always associated with some uncertainty 
and it is necessary to evaluate how this uncertainty affects the estimated variables. 
Typically, the problem is approached assuming a probabilistic description of 
uncertainty and applying statistical estimation theory. An interesting alternative, 
referred to as set membership or unknown but bounded (UBB) error description, 
has been investigated since the late 60s. In this approach, uncertainty is described 
by an additive noise which is known only to have given integral (typically I) or 12) 

or componentwise (loo) bounds. In this chapter the main results of this theory are 
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reviewed, with special attention to the most recent advances obtained in the case 
of componentwise bounds. 

2.1. INTRODUCTION 

Estimation theory is concerned with the problem of evaluating some unknown 
variables depending on given data (often obtained by measurements on a real 
process). Available data are always known with some uncertainty and it is necessary 
to evaluate how this uncertainty affects the estimated variables. 

Obviously the solution of the problem depends on the type of assumptions 
made about uncertainty. The cases most investigated so far are unquestionably 
related to the assumption that uncertainty is given by an additive random noise with 
a (partially) known probability density function (pdf). 

However, in many situations the very random nature of uncertainty may be 
questionable. For example, the real process generating the actual data may be very 
complex (large scale, nonlinear, and time varying) so that only simplified models 
can be practically used in the estimation process. The residuals of the estimated 
model have a component due to deterministic structural errors. Treating them as 
purely random variables may lead to unsatisfactory results. 

An interesting alternative approach, set membership or unknown but bounded 
UBB error description has been pioneered by the work of Witsenhausen and 
Schweppe in the late 60S.(1,2,3) In this approach, uncertainty is described by means 
of an additive noise which is known only to have given bounds. The motivation for 
this approach is that in many practical cases the UBB error description is more 
realistic and less demanding than the statistical description. However, despite the 
appeal of its features, the UBB approach is not widely used yet. Until the early 80s, 
reasonable results and algorithms had been obtained only for uncertainty bounds 
of integral type (mainly 12), while in practical applications componentwise bounds 
(Zoo) are mainly of interest. 

Real advances have been obtained in the last few years for the componentwise 
bounds case, leading to theoretical results and algorithms which can be properly 
applied to practical problems where the use of statistical techniques is questionable. 

The purpose of this chapter is to review these results and to present them in a 
unified framework, in order to contribute the present state of the art in the field and 
simulate further basic and applied researches. 

2.2. PROBLEM FORMULATION 

In this section a general framework is formulated such that the main results in 
the literature can be presented in a unifying view. Such formulation can be sketched 
as follows.(4,5) 



DYNAMIC SYSTEMS WITH SET MEMBERSHIP UNCERTAINTY 7 

We have a problem element A (for example a dynamic system or a time 
function) and a function S(A) of this problem element (for example some parameter 
of the dynamic system or particular value of the time function) is to be evaluated. 
Suppose A is not known exactly, but there is some information on it. In particular 
assume that it is an element of a set K of possible problem elements and that some 
function F(A) is measured. Moreover, suppose that exact measurements are not 
available and actual measurements yare corrupted by some error p. 

The estimation problem is to find an estimator <l> providing an approximation 
<l>(Y) ". S(A) using the available data y and evaluating some measure of such 
approximation. A geometric sketch is shown in Fig 2.1. 

A problem element space Z solution space 

uncertainty p 

FIGURE 2.1. Generalized estimation problem. 



8 M. MILANESE AND A. VICINO 

2.2.1. Spaces and Operators 

Let A be a linear normed n-dimensional space over the real field. Consider a 
given operator S, called a solution operator, which maps A into Z 

(2.1 ) 

where Z is a linear normed I-dimensional space over the real field. The aim is to 
estimate an element S(A) of the space Z, knowing approximate information about 
the element A. Suppose that two kinds of information may be available. The first 
one (often referred to as a priori information) is expressed by assuming that 
A E K, where K is a subset of A. In most cases K is given as 

(2.2) 

where R is a linear operator and 11,0 is a known problem element. The second kind 
of information is usually provided by the knowledge of some function F(A), where 
F, called an information operator, maps A into a linear normed m-dimensional space 
Y 

F: J\ --'t Y. (2.3) 

Spaces A, Z, Yare called problem element, solution and measurement spaces 
respectively. In the following, unless otherwise specified, assume that J\ and Z are 
equipped with 100 norms and Y is equipped with an I~ norm. i 

In general, due to the presence of noise, exact information F(A) about A is not 
available and only perturbed information y is given. In this context, uncertainty is 
assumed to be additive, i.e., 

y=F(A)+p (2.4) 

where the error term p is unknown, but bounded by some given positive number I:: 

Ilpll:O; £ (2.5) 

Note that if an I';;, norm in measurement space Y is used, componentwise 
bounds with different values on every measurement can be treated. 

An algorithm ~ is an operator (in general nonlinear) from Y into Z: 

~: Y--'tZ (2.6) 

i.e., it provides an approximation ~(y) of S(A) using the available data y. Such an 
algorithm is also called an estimator. 

IThe I: nonn is defined as IlYlI: = max {w;lY;l, w, > 0 
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Some examples are now presented in order to show how specific estimation 
problems fit into this general framework. 

2.2.2. Example 1: Parameter Estimation of ARX Models 

Consider the ARX model 

p q 

Yk = L vlk-i + L eiuk- i + Pk 
i=l i=l 

(2.7) 

where Yk is a scalar output, Uk is a known scalar input and Pk is an unknown but 
bounded error such that 

(2.8) 

Suppose that m values [Yl , ... ,Ym] are known and the aim is to estimate parame­
ters [vj,8;]. For the sake of simplicity suppose that p ~ q. A can be defined as the (p 
+ q)-dimensional space with elements 

(2.9) 

Ifno a priori knowledge on parameter A is available, then K = A. 
Z is the (p + q)-dimensional space with elements z = A, so that SeA) is identity. 

Y is the (m - p)-dimensional space with elements Y = [Yp+], ""Ymf, and conse­
quently F(A) is linear and is given by 

r 
Yp 

F(A) = . 

Ym-l 

YJ up 
... U~,_; 
'" . A. 

Ym-p um- 1 u m_q 

(2.lO) 

2.2.3. Example 2: State Estimation of Linear Dynamic Systems 

Consider the problem of estimating the state of the following discrete, linear, 
time invariant dynamic system 

(2.11) 

wherexb Yk> Uk and Pk are the state, observation, process noise and observation noise 
vectors respectively; A, Band C are given matrices. For the sake of simplicity, 
suppose that x is I-dimensional and y, u, and P are scalar variables. 

Assume that the samples of process and observation noise are unknown but 
bounded 
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(2.12) 

(2.13) 

Suppose that m values [Yl, ... , Ym] are known and the aim is to estimate Xm. A can 
be defined as the 1 + m - I-dimensional space with elements 

(2.14) 

Ifno a priori information on the initial state Xl is available, K is defined by 

K = {A E A; lu·l:S; U,j = 1, ... , m - I} 
j .I 

(2.15) 

Z is the I-dimensional space with elements z = X m . Yis the m-dimensional space 
with elements y = [yj, ... , Ym( Standard computation of solutions of the set of 
difference Eq. (2.11) shows that the solution and information operator are linear 
and are given by 

SeA) = [Am-I ,Am-2B, ... , AB,B]A 

C 0 0 0 

CA CB 0 0 

CA 2 CAB 0 0 
F(A) = A. 

CA m-2 CA m-3B CB o I 
CAm- 1 CA m-2B CAB CBJ 

2.2.4. Example 3: Parameter Estimation of Multiexponential Models 

Consider the multi exponential model 

I 

yet) = I Ilie-V ,I + pet) 
1=1 

(2.16) 

(2.17) 

(2.18) 

where Ili and Vi are unknown real parameters and pet) is unknown but bounded by 
a given E(t) 

Ip(t)1 :s; E(t). (2.19) 

Suppose that m values [Yeti), .. ·,y(tm)] are known and the aim is to estimate 
parameters !li and Vi, i = 1, ... , I. 
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By setting Si = e-v" i = 1, ... , I, the space A is taken as the 2/-dimensional 
space with elements 

(2.20) 

SeA) can be taken as the identity operator. In this way, estimation of variables 
Si is considered instead of Vi' Original variables can be obtained by logarithmic 
transformation. 

Y is defined as the m-dimensional space with elements Y = [y(tl), ... , y(tm)]T. 
Then, information operator F(A) becomes the polynomial function 

! 

IF,(Alj ~ L ).liS;l 
i=1 

Fm(A) ! 

L Jli~(ll 

(2.21 ) 

i=1 

2.2.5. Example 4: Multistep Prediction with ARX Models 

Consider the ARX model Eq. (2.7) and suppose that the aim is to estimate 
Ym+h when past values [YI, ... , Ym] are measured (h-step ahead prediction problem). 
For the sake of simplicity, consider the case h = 2. 

The space A can be defined as the p + q + 2-dimensional space with elements 

(2.22) 

If no a priori knowledge on parameter A is available, K is given by 

(2.23) 

Z is the I-dimensional space with elements z = Ym+2 and consequently SeA) is the 
polynomial function given by 

SeA) = (viv i + V2)Ym + (V IV2 + V 3)Ym-1 + ... + VpYm_p+1 

(2.24) 

Yis an (m - p) dimensional space with elements Y = [Yp+b ... , Ymf and F(A) is 
linear and given by l Y, 

YI up up+l_q 0 

:1 A 
F(A) = ... . .. . .. (2.25) 

Ym-I 
... 

Y m- p u m_ 1 u m_q 0 
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2.3. MAIN DEFINITIONS AND CONCEPTS 

This section provides definitions of the main sets involved in the theory, 
optimality concepts used to evaluate estimator's performances, and types of esti­
mators investigated. 

2.3.1. Relevant Sets 

The following sets play key roles In set membership estimation theory: 
measurement uncertainty set: 

(2.26) 

estimate uncertainty set (for a given estimator ~); 

EUS~ = ~(MU~) (2.27) 

feasible problem elements set; 

FPSy = {Ie E K: IlY = F(Ie)II::O; 8} (2.28) 

and feasible solutions set 

FSS, = S(FPSJ. (2.29) 

Note the difference between EUS~ and FSSv' The former depends on the 
particular estimator ~ used and gives all possible estimated values that could be 
obtained for all possible measurements consistent with the actual measurement y 
and the given error bounds. The latter depends only on the problem setting and 
gives all possible values which are consistent with the available information on the 
problem. 

In the literature on parameter estimation, where problem element Ie represents 
the parameters to be estimated and SeA) is identity (see Section 2.2.2), FPSv 

coincides with FSSy and has been given also different names such as feasible 
parameters set, membership-set estimate and likelihood set. 

An exact description of FSSy or EUSIp is in general not simple, since they may 
be very complex sets (e.g. non-convex, not simply connected). For this reason, 
approximate descriptions are often looked for, using simply shaped sets like boxes 
or ellipsoids containing (outer bounding) or contained in (inner bounding) the set 
of interest (see Fig. 2.2). In particular minimum volume outer box (MOB) or 
ellipsoid (MOE) and maximum volume inner box (MIB) or ellipsoid (MIE) are of 
interest. 

Information of great practical interest is also provided by the values uncer­
tainty intervals (VUI) and estimate uncertainty intervals (EUI), giving the maxi­
mum ranges of possible variations of the feasible and the estimated values, 
respectively. The VUIs are defined as 
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a 

VUI. Z. 

b 

FIGURE 2.2. (a) Box and (b) ellipsoid 
inner- and outer-bounding. 

VUIi = [z;", Z;W] i = 1, ... , I , 

where 

z;" = in~EFSS Zi = in~EFPS SP,,) i = 1, ... , I 
y y 

and 

z. 

13 

MOB (axis aligned) 

MID (axis aligned) 

Outer Ellipsoid 

Inner Ellipsoid 

(2.30) 

(2.31) 

Note that the VUls are the sizes (along coordinate axis) of the axis aligned box of 
minimal volume containing FSSy (see Fig. 2.2). 

The EUIs are defined in the same way substituting EUS~ for FSSy 

2.3.2. Errors and Optimality Concepts 

Algorithm performance is measured according to the following errors: 
Y-local error E~( <!», where 

E;(<!» = sup IIS(A) - <!>(Y)II 
AEFPS 

(2.32) 
v 

A-Iocal error E~(<!», where 

E~(<!» = sup IIS(A) - <!>(Y)II (2.33) 
YEMUSF().) 
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and global error P( $) 

E&($) = sup E~($) = sup E~($). (2.34) 
YEY' AEA 

Dependence on s is dropped out in subsequent notation, except when neces­
sary. 

Algorithms minimizing these types of errors are indicated respectively as 
Y-locally, A-locally and globally optimal. 

Notice that Y-local optimality is of particular interest in system identification 
problems, where a set of measurements y is available and one wants to determine 
the best achievable estimate S(A) for each possible y using an algorithm $(Y). Also 
A-local optimality is a particularly meaningful property in estimation problems, 
since it ensures the minimum uncertainty of the estimates for the worst measure­
ment y, for any possible element A E K. 

Y- and A-local optimality are stronger properties than global optimality, as can 
be seen from Eq. (2.34). For example, a Y-locally optimal algorithm minimizes the 
local error Ey($) for all datay, while a globally optimal algorithm minimizes the 
global error E($) only for the worst data. In other words, a Y-locally optimal 
algorithm is also globally optimal, while the converse is not necessarily true. 

2.3.3. Classes of Estimators 

Some classes of estimators whose properties have been investigated in the 
literature are now introduced. 

The first class is related to the idea of taking the Chebicheff center of FSSy as 
estimate of S(A). The center of FSSy, c(FSSy), and the corresponding radius, 
rad(FSSy), are defined by 

sup Ilc(FSSy) - zll = ~nf sup lIZ - zll = rad(FSS). 
zEFSS,. ZEZ zEFSS, 

(2.35) 

A central estimator $C is defined as 

(2.36) 

The second class includes estimators analogous to unbiased estimators in 
statistical theory, which give exact values if applied to exact data. 

An estimator «I> is correct if 

«I>(F(A)) = S(A) V A E A. (2.37) 

Such a class is meaningful only for I ::; m, that is, when there are at least as many 
measurements as variables to be estimated (the typical situation in estimation 
practice). This class contains most of the commonly used estimators, such as 
projection estimators. 
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A projection estimator <j>P is defined as 

<j>P(y) = SeA ) y 
(2.38) 

where Ay E A is such that 

IlY - F(Av)11 = infllY - F(A)II· (2.39) 
. J.EI\. 

The most widely investigated and used estimators in this class are least square 
estimators (<j>LS), which are projection estimators when an 12 norm is used in space 
Y. Least-absolute values and least-maximum value estimators have been also 
considered in the literature, which are projection estimators when 11 and 100 norms 
are respectively used in space Y. 

In the next sections the results available in the literature regarding the follow­
ing aspects are reviewed: existence and characterization of estimators, optimal with 
respect to some of the optimality concepts introduced previously; actual computa­
tion of the derived optimal estimators; evaluation of the errors of optimal and of 
projection estimators; and exact or approximate description of feasible sets 
FPSv, FSSy and estimate uncertainty set EUS¢>. Whenever possible, a statistical 
counterpart of the presented results is indicated, based on the analogy: 

Y-local optimality ¢::> minimum variance optimality 

FSSy ¢::> minimum variance estimate pdf 

EUS¢> ¢::> estimate pdf 

EUI's ¢::> estimate confidence intervals 

VUIs ¢::> Cramer-Rao lower bound confidence intervals. 

2.4. NONLINEAR PROBLEMS 

A first important result is related to the existence of a Y-Iocally optimal 
estimator. No general results are available for A-locally optimal estimators. This 
result also shows that the minimum Y-Iocal error is given by the radius of FSSy­

Result 1. (4.6) A central estimator <j>c is Y-Iocallyoptimal 

Its Y-Iocal error is 

This result holds for any norm in A, Z, Y. 

(2.40) 

(2.41 ) 

D 
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It can be considered as the counterpart of the conditional mean theorem in 
statistics. As with conditional mean estimators, central estimators are in general 
difficult to compute. The computation of <l>c involves the knowledge of FSSV' which 
may be a very complex set (nonconvex, not simply connected). 

Several approaches have been proposed to describe FSSy, mainly in papers 
related to dynamic system parameter estimation. In Ref. 7 a random sample of 
parameters is generated by a Monte Carlo technique, and Eqs. (2.4 and 2.5) are used 
to check if they belong to FSS)". Global optimization methods based on random 
search are used in Refs. 8 and 9 to construct the boundary of FSSv' In Ref. 8 
projections of FSSv onto coordinate one-dimensional or two-dimensIOnal subspaces 
are looked for. In Ref. 9 intersections of the boundary of FSSv with bundles of 
straight lines centered at points inside FSSv are searched. The optimization methods 
used in these papers converge in probability to the global maximum or minimum 
of interest. However, this convergence property is not very useful in practice, 
because no estimate is given of the distance of the achieved solution from the global 
solution. Moreover, all these approaches suffer the curse of dimensionality. These 
reasons motivate the interest in looking for less detailed but more easily computable 
information on FSSv' 

An important result in this direction is that the computation of <l>c and of its 
Y-local error do not require the exact knowledge of FSSy, but only of the VUls. 

Result 2.(5) The center c(FSSy) can be computed as 

(2.42) 

The radius rad(FSS)") can be computed as 

rad(FSS) = max(~ - z'(')/2 (2.43) 

where z'f' and i(1 are given by Eq. (2.31). 0 
Result 2 states that the computation of a central algorithm and of minimum 

Y-local error is equivalent to the computation of the VUls, requiring the solution 
of only 21 optimization problems of the type Eq. (2.31). 

Equation (2.31) problems are in general not convex, exhibiting local extrema. 
Any of the general global optimization algorithms available in the literature give 
approximate solutions converging to the exact ones only in probability and, more 
seriously, they do not provide any assessment on how far the approximate solution 
is from the correct one. 

If SeA) and F(A) are polynomial functions, specific global algorithms exist, for 
obtaining better results. 

Result 3.( I 0) If S(A) and F(A) are polynomial, algorithms exist converging with 
certainty to global extrema of Eq. (2.31). 
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Under the assumptions of Result 3, Eq. (2.31) are polynomial optimization 
problems, in the sense that both cost functions and constraints are polynomials in 
A. Polynomial problems are in general nonconvex and may admit local extrema. tll ) 

Nevertheless, if all the variables are strictly positive (in which case the term 
signomial problems is used), an algorithm is available to find a global maxi­
mum.(10,12,13) The underlying idea of this algorithm is to construct a sequence of 

convex problems approximating the original problem iteratively better. In this way, 
the algorithm generates a sequence of lower and upper bounds of the global 
extremum, converging monotonically to it. If the sign of some of the variables is 
not known, it is possible to reduce a polynomial problem to a signomial problem 
by setting these variables as the difference of strictly positive new variables. 

The hypothesis of Result 2 covers large classes of problems, as shown in 
examples (2.2.2-2.2.5). The implication is that an optimal estimator and its error 
can be exactly computed for several nonlinear problems of practical interest. No 
analogous result is available in the statistical context. 

Most of the papers in the literature focus on studying FSSy, while very few 
results are available on EUS¢. For any correct estimator, FSSv is an inner bounding 
set of EUS~.o4) . 

Result 4.(14) If <I> is correct then 

FSSy <:;;:; EUS~ 'v' Y E Y (2.44) 
o 

Hence, for correct estimators the VUIs are lower bounds of the EUls, that is, 

VUIi <:;;:; EUI, i = 1, ... , I (2.45) 

Consider the properties of projection estimators. In general they are not 
optimal with respect to any ofthe three considered type of errors.(1S) However they 
are almost Y-locally optimal (within a factor 2) as shown by the following result. 

Result 5.(15) A projection algorithm <l>P is such that 

(2.46) 
o 

Projection estimators enjoy interesting properties of robustness with respect 
to inexact knowledge of the uncertainty bound f:. Central estimators are not robust 
in such a sense: a central algorithm computed supposing that f: = f:o may not be 
optimal if the actual f: is different. A central estimate <l>c(y) may not even belong to 
the actual FSSy and its Y-Iocal error EY(<I>C) may be greater than 2 rad(FSSy). 

On the contrary, projection estimators are robustly almost Y-Iocally optimal, 
independent of the volume of f:, as shown by the next result. 

Result 6.(16) Let <If be the projection estimator. Then 

(2.47) 
o 
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Projection estimators also have nice properties in a statistical context. For 
example, an 12-projection estimator is the maximum likelihood estimator (MLE) if 
noise p is supposed to be gaussian; an II-projection estimator is the MLE ifnoise 
is supposed to have a Laplace pdf; an leo-projection estimator is the MLE ifnoise 
is uniformly distributed. Projection estimators II and leo also have interesting 
robustness properties with respect to uncertainty in the pdf's knowledge.(I7,18,19) 

2.5. LINEAR PROBLEMS 

Consider the case in which SeA) and F(A) are linear. In this case, Eq. (2.4) is 
written as 

y=.91A+p (2.48) 

where .9l is a matrix of dimension (m. n). 
These assumptions are restrictive, but include cases of practical interest such 

as parameter estimation of linear regressions, parameter estimation of ARMA 
models with polynomial trends and harmonic components. state estimation of 
dynamic systems, and time series forecasting. Moreover. if uncertainty bounds are 
not too large, linear theory can be used for a first approximate analysis using some 
linearization techniques. 

From Result 1 a central estimator is Y-Iocally and globally optimal. In the linear 
case it is also correct and A-locally optimal in the class of correct estimators, as 
shown in the next result. 

Result 7.(20) <pc is Y-locallyoptimal: 

<pC is a A-locally optimal (among correct estimators) 

In Ref. (15) it is proven that Result 7 holds for any norm in Y. 

(2.49) 

(2.50) 
o 

Under the present assumptions, FSSy and FPSy are polytopes. Then from 
Result 2 it follows that <pc and its Y-Iocal error Ey( <PC) can be obtained by solving 
the 21 linear programming problems ofEq. (2.31). 

A linear estimator can be computed, which is correct, globally optimal, and 
A-locally optimal within the class of correct estimators. This gives a complete 
solution to the linear case, representing the counterpart of the Gauss-Markov theory 
in statistical estimation. 

Result 8. (5,14) Let K = A and m ~ n. Then there exists a linear estimator If that 
is correct and globally optimal 
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E(Jt) ~ E(~) 'd ~ 

The linear estimator II is A-locally optimal (among correct estimators) 

Its errors are 

19 

(2.51 ) 

(2.52) 

(2.53) 
D 

Estimator II can be computed from the knowledge of the active constraints 
of the linear programming problems ofEq. (2.31) withy = 0.(5,14) 

In case that an lz-norm is used in Y, II can be computed by least squares. Under 
this assumption, the least squares estimator is linear and correct, robustly Y-Iocally 
optimal and A-locally optimal within the class of correct estimators, as shown by 
the next result. 

ResuIt9.(l5) LetK= A, m? nand Ybe a Hilbert space. Let ~LSbetheprojection 
(least square) estimator. Then: 
~LS is central, linear, correct and robustly Y-Iocally optimal 

E;(~LS) ~ ~(~) 'd Y E Y, 'd~, 'd £ 

~LS is A-locally optimal (among correct estimators) 

E1c(~LS) ~ E1c(~) 'd A E A, 'd ~ correct 

(2.54) 

(2.55) 
D 

The sets FP Sy, FSS y and E US$' (for linear ~), are polytopes described by the 
sets of linear inequalities appearing in Eqs. (2.27-2.29). This is not the simplest 
way to describe them (for example, many linear inequalities may not concur to 
defining the boundary of the polytope) and simpler descriptions could be of interest. 
One way of characterizing a polytope P is through its vertices. Algorithms exist 
which allow one to compute recursively the vertices of a polytope Pk> defined by 
the first k measurements, from the knowledge of Pk-l and the k-th measure­
ment.(21,22,23,24) The number of vertices may be relatively smaller than the theoreti­
cal maximum. For example, Monte Carlo simulations on ARMAmodels parameter 
estimation,(23) have shown that the mean number of vertices of FSSy is approxi­
mately constant for m > 50. For 1=4 and I = 5, for example, they are approximately 
50 and 150, respectively. 

Polytopes can be represented alternatively by describing their faces. This 
representation is used to derive a recursive algorithm.(25) This approach seems more 
involved than the previous one, but it also allows the recursive computation of an 
outer bounding polytope with a fixed number off aces, leading to an approximating 
description of the polytope of interest by means of a polytope of prescribed 
complexity. 
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The most investigated approaches to approximate description of polytopes are 
through ellipsoids and boxes for the case of parameter estimation, where the 
polytope of interest is the feasible parameter set. 

A recursive algorithm for outer bounding ellipsoid computation has been 
proposed iny6) The underlying idea is as follows. 

Let OEH be the outer ellipsoid boundingPk_ 1• LetRk be the feasible parameter 
set corresponding only to the k-th measurement 

(2.56) 

where aT is the k-th row of JL 

Clearly Pk ~ OEk- 1 !l Rk• OEk is computed as the minimal volume ellipsoid 
containing OEk- 1 !l Rb and then containing Pk also. 

If an ellipsoid OEk is defined by its centers Ak and positive definite matrix Lk 
according to 

the following recursive algorithm has been obtained. 
Result 10.(26) The ellipsoid OEk can be computed by the recursion 

where 

° Va v ~('_~c kkkk 
fCk-fCk_l+ ? 

£~ 

k 

and 0k is the positive solution of the equation 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(1- 1)f.L~0~ + [(2/- l)£~ - Ilk + V~]IlPk + £~[l(d - vi) - f.ld = 0 (2.63) 

if a positive solution exists, otherwise 0k = O. 0 
Computational complexity of this algorithm and slight modifications for 

implementation on a systolic architecture can be found.(27) A modification of this 
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algorithm with data-dependent updating and forgetting factor has been pro­
posed.(28) 

A similar approach can be used for the recursive computation of inner bound­
ing ellipsoids.(29,30) Let IEk- 1 the inner bounding ellipsoid contained in Pk-J' Then 
IEk is chosen as the maximal volume ellipsoid such that 

(2.64) 

The resulting recursive algorithm is much as for the outer bounding ellipsoid 
and is not reported here. 

The main drawback of these recursive algorithms is that they do not give the 
minimal and maximal volume ellipsoids bounding the feasible parameter set.(29,31) 
This is true also for improved versions of the algorithm.(31,32) Since IEk has an 
unfortunate tendency to shrink rapidly and vanish,(30) the inclusion 
IEk c Pk C OEk in practice may not give any reasonable information on the loose­
ness of bound OEk. 

A nonrecursive solution to the problem of finding the minimal volume outer 
ellipsoid contained in FPSy (MOEFPi) and the maximal volume inner ellipsoid 
contained in FPSy (MIEFPi), has been proposed.(33,34) The solution for MIEFPs is 
given by the following result. 

Result 11.(33) The MIEFPS has center AC* and matrix 2:* solution of 

subject to 

max det(2:) 

{
(U;AC + cl- u;2:ui 2 0, i = 1, ... ,2m 

"c,I: U;Ac + ci 20, i = I, ... ,2m 

2: i > 0, i = 1, ... , n 

(2.65) 

where 2:;, i = 1, ... ,n are the principal minors of 2:, and matrix U E R(2m,n) (with 
rows denoted by uJ) and vector c E R2m are given by 

(2.66) 

(2.67) 
o 

Equation (2.65) is a polynomial optimization problem and can be solved by 
use of signomial programming.(JO) The solution ofEq. (2.65) may be computation­
ally cumbersome, even for a few parameters. Then less general but simpler 
solutions may be of interest. For example, the maximum ellipsoid of given shape 
may be sought. Consider that I is given except for a scale factor (for example the 
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shape of the outer ellipsoid given by Result 10 can be used). In such a case, Eq. 
(2.65) reduces to a linear programming problem with (n + 1) variables and (2m + 
1) constraints. 

The solution for MOEFPS also can be obtained by solving a suitable polynomial 
problem.(34) Unfortunately, the computational complexity is high for the general 
case, and does not reduce, as for MIEFPs, if restricted classes of ellipsoids are 
considered. 

For the computation of extremal volume inner and outer boxes definitions are 
as follows. 

A box is defined as: 

B(AC , I, R) = {A E A : IIR(A - AC)II~ ::; 1 } (2.68) 

whereR is an orthonormal matrix. The box is described by its center AC, axis lengths 
Ii and rotation R. If R = I the box is aligned with coordinate axis. 

A solution to the problem of finding the minimal volume outer box contained 
in FPSy (MOBFPs) is provided in Ref. 34 as solution of a suitable polynomial 
problem. Its computational complexity is high, unless the rotation of the box is 
given. In such a case the problem can be reduced to a linear programming problem. 
In particular, if R = I the axis-aligned MOBFSS can be computed directly from Eq. 
(2.31). This requires the solution of 21 linear programming problems with n 
variables and 2m inequalities constraints. 

The solution to the problem of finding the maximal volume inner box con­
tained in FPSy (MIBFPs) is provided by the following result. 

Result 12.<33) TheMIBFPshas center AC', axis length z* and rotationR* solution 
of 

subject to 

n 

max II Ii 
i=! 

(2.69) 

o 
Equation (2.69) is a polynomial optimization problem which can be solved by 

use of signomial programming. If matrix rotation R is fixed, Eq. (2.69) reduces to 
a convex problem with 2n variables and (2m + n) linear constraints, which can be 
efficiently solved by means of normally available convex programming algorithms. 
If axis length I is also fixed except for a scale factor (i.e., the maximum box of a 
given shape is sought), Eq. (2.69) reduces to a linear programming problem with 
(n + 1) variables and (2m + 1) constraints. 
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2.6. OTHER TYPES OF RESULTS 

This section briefly recalls papers on topics related to set membership estima­
tion theory, such as experiment design, estimation with reduced order models, and 
uncertainty in the information operator. Almost all these papers consider linear 
problems. 

2.6.1. Experiment Design 

In the previous sections information operator .9l is supposed to be given. In 
some practical application it is possible to choose among different information 
operators .9l (optimal information problem). For example it may be possible to 
choose the sampling times at which measurements are taken of the input and the 
output of the dynamic system to be identified. Then a natural choice is the one 
minimizing the error EA($C). In Ref. 35 some results are given for the case in which 
information is provided by sampling.(35) In Ref. 20 similar results are derived for 
more general classes of information. In this paper it is also shown that the optimal 
sampling times can be chosen a priori, and no improvements can be obtained by 
means of more sophisticated sampling schemes.(20) The optimal sampling problem 
is approached through p-widths theory.(36) 

Another criterion is to minimize the volume of FPSy-(29) In Ref. 29 a recursive 
selection procedure is given based on heuristics to avoid poor choices without 
guaranteeing the best. Characterization is given of the minimum number of sam­
pling times assuring minimum volume of the feasible parameter set FPSv for 
y = 5lA in Ref. 37. 

2.6.2. Reduced Order Models 

In the previous sections, it is supposed that the structure of the problem is 
known, for example the number of autoregressive and moving-average terms for 
an ARMA model. In many cases, however, the structure of the problem and in 
particular the dimension of space A is not known and must be evaluated from the 
available information (order determination problems). Some methods are analo­
gous to methods widely used for order determination in statistical contextsp8,39) 
such as the principal component analysis and singular value decomposition. A 
method is also proposed, based on the expected behavior of FPSy for overparame­
terized and underparameterized structures. 

A second important problem is how estimation algorithms can take into 
account that only approximating structures are used. The usual approach in statis­
tical contexts is to ignore the deterministic nature of modeling errors, and eventually 
discard badly approximating structures with residuals evidently not satisfying the 
assumed statistical hypotheses. In the UBB approach, modeling errors can be taken 
into account in a more natural way, since it is possible to evaluate bounds on such 
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modeling errors.(40,41,42) A deeper analysis considers explicitly that using approxi­
mating structures corresponds to restricting the analysis to a subset K c A not 
containing the "true" problem element A. (43) In this paper, the concept of condition­
ally central estimator is introduced as an extension of a central estimator, and it is 
shown to be Y-Iocally optimal. The same paper shows that there are two possible 
ways of extending least squares estimators. The first one corresponds to what is 
usually done (more or less explicitly) when dealing with reduced order models. 
However, this estimator does not preserve any of the interesting optimality prop­
erties ofleast squares estimators. A second type of extension is introduced, which 
is shown to have interesting A-locally and Y-Iocally optimality properties. 

2.6.3. Uncertain Information Operator 

In some papers the case in which information matrix Ji is not exactly known 
is studied. In particular, perturbation of the type Ji = Ji o + i1Ji has been considered, 
where Jio is given and i1Jiis not known but bounded. A modification of the recursive 
algorithm for outer ellipsoid bounding reported in Result 10 is proposed.(44) Two 
different extensions of FPSy are considered in Refs. 45 and 46. FPS~. is defined in 
Ref. 45 by considering that Eq. (2.28) holds for all i1Ji and is described by a set of 
m2n+l linear inequalities. In Ref. 46, FPS; is defined by considering that Eq. (2.28) 
holds for some i15I, and the problem of finding the corresponding MOB by means 
of suitable linear programming problems is also discussed. 

2.7. APPLICATIONS 

The UBB approach is now beginning to be used in various application fields. 
Some papers report applications to real word problems arising in biology,(47,48) 
pharmacokinetics,(14.49) time series filtering and prediction,(50.51) economics,(52) 
chemistry,(53) image processing,(54) ecology,(55.56) measurement,(8.57.58) tracking,(59) 
and speech processing. (27 .60,61.62) 

Application of set membership estimation theory has also been investigated 
in the context of identification for robust and adaptive contro I design, (n.63.64.41.42.65) 
and in Chapters 27-30 of this volume. 

2.8. CONCLUSIONS 

In this chapter an outline of the main results in the area of estimation theory 
for set membership uncertainty has been presented. The main emphasis of the paper 
is on the following aspects: existence and characterization of worst-case optimal 
estimators; actual computation ofthe derived optimal estimators; evaluation of the 
errors of optimal and of other widely used estimators (least squares, least absolute 
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values, least maximum values); exact or approximate description of feasible 
parameter and solution sets. A quick reference to less assessed topics such as 
experiment design, reduced-order modeling, and more general error models are also 
made in the paper. 

Some general considerations may be drawn from this overview. 
Concerning linear problems, real advances have been done in the last decade. 

As a result, properties of estimators and exact or approximate description of feasible 
parameter and solution sets can be considered subjects with reasonably well 
understood and usable solutions. In fact, many of the available algorithms have 
been used for several applications in different real world problems. 

Concerning nonlinear problems, in spite of the work done in the last few years, 
much more remains to be done. Some algorithms for computing exact parameter 
or solution uncertainty intervals have been proposed. They work reasonably well 
on problems with a limited number of measurements and parameters. However, 
their behavior in more complex situations has not been deeply investigated yet. 

Several basic problems remain open and need a thorough investigation, both 
for linear and nonlinear problems, for example the topological properties of the 
feasible parameter set as a function of the nonlinearity and uncertainty structures, 
inner and outer bounding for the nonlinear case, the effects of model approxima­
tions, the interaction of set membership estimation theory and robust or adaptive 
control. 
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3 
Solving Linear Problems in the 
Presence of Bounded Data 
Perturbations 
B. Z. Kacewicz 

3.1. INTRODUCTION 

In most computational problems of engineering or numerical analysis available 
input data (information) is not exact. Perturbations in data may arise for instance 
from measurement or round-off errors, to mention only these two possible sources. 
The problem of how inaccuracy in data influences results (for instance, how does 
it affect a quality of system identification or signal recovery) attracts attention not 
only for obvious practical reasons, but also motivates a number of theoretical 
papers. For example, since a long time the case of stochastic errors in information 
has been studied by statisticians, to mention only the monograph by Wahba,<l) 
where extensive references to the subject can be found. On the other hand, an active 
stream of research is based on deterministic assumptions about the noise. Such 
assumptions are imposed when no appropriate statistical knowledge about the 
behavior of data errors is available, or simply when statistical analysis is not of 
interest. The assumption often made in this framework is that errors in information 
are unknown but bounded. Among many other papers, the bounding approach is 
discussed in Refs. 2-5. 
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This chapter presents some results obtained in unknown-but-bounded ap­
proach using the tools of Information Based Complexity (lBC), one of the fields 
of theoretical numerical analysis. Our main objective is to study the minimal cost 
of solving linear problems in the presence of errors in data. Although the framework 
of the presentation is rather 'theoretical,' the results and tools oflBC may be useful 
in the identification field, as shown by a growing interest in such methodsY·6) 

In a general formulation, the problem is to approximate the solution S(j) for 
elements fbelonging to a certain ball K in a linear normed space, where S is a linear 
continuous operator. To find an approximation, we gather information by succes­
sively computing some numbers z], Z2, ... dependent onf Each Zn is assumed to 
be a noisy evaluation of a linear continuous functional at f (e.g., it may be an 
inaccurate evaluation of a functionj) and is available at a certain cost. For a given 
s > 0, the aim is to obtain an approximation with error at most s. That is, data is 
gathered during n successive steps, where n is the minimal number of evaluations 
ZI72, ... , Zn which yield an s-approximation. Obviously, a good termination criterion 
to stop a data collecting process is needed. A 'good' criterion is meant in the sense 
that it minimizes (or nearly minimizes) the total cost of obtaining an s-approxima­
tion. A detailed formulation ofthe problem together with a model example of signal 
transmission is given in Sections 3.2 and 3.3. 

The termination criterion based on the diameter of information, a quantity 
closely related to the minimal error of an algorithm and often used in IBC, is 
discussed in Sections 3.4 and 3.5. The choice of this criterion is motivated by the 
fact that the diameter of information is relatively well studied and 'easy' to compute 
and manage which makes the criterion useful in further considerations. It turns out 
that the cost yielded by the diameter termination criterion is (almost) minimal, i.e., 
the criterion is not only convenient, but also 'optimaL' 

Section 3.6 concentrates on results concerning the minimal cost for the 
diameter termination criterion. Under some assumptions, the minimal cost turns 
out to be proportional to the minimal number of functionals needed to compute an 
s-approximation in the case of exact data, multiplied by the cost of obtaining one 
current information value. The results are illustrated by an example. 

Section 3.7 discusses the dependence of the diameter of information on data 
perturbations for the problem of signal recovery. The problem of how errors in data 
influence the result is interesting from a general point of view. In this context it is 
also important when applying the results of the preceding section, where knowledge 
about such an influence is needed. For the considered problem, the minimal error 
of an algorithm is bounded from above by a linear function in data errors, with 
constants dependent on parameters of the problem. 

In summary, this chapter is devoted to the general problem of quality of 
information contaminated by unknown but bounded noise. Results on the minimal 
cost of computing an s-approximation are given, as well as on the dependence of 
the minimal error on data perturbations. 
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3.2. EXAMPLE: A SIGNAL RECOVERY PROBLEM 

To illustrate a general problem formulation coming up in the next section, 
consider an example motivated by a signal recovery problem which arises, e.g., in 
speech or image reconstruction. * In this example we assume that a signal is first 
sampled and its quantization is done to fit a certain number of bits. Next (e.g., after 
data transmission), the signal is recovered from available (incomplete) information. 
The reconstruction is to be done with possibly small error which obviously depends 
on the number of samples and the size of memory used. Or, in an alternate 
formulation, the size of memory needed to keep the reconstruction error on a 
prescribed level is to be minimized. 

This brief description can be formalized as follows. Let F be the space of real 
functions in s variables with r (r 2 I) continuous derivatives, 

F= Cr([O,I]'), 

with the norm 

I fif(x) I IIfll = max sup I k k ' f E F, 
o~kl+ ... +k,=j~r xE[o,l]' (aX) l···(a~) s 

where x = [Xl, ... ,x']. We gather information by sampling the function/, 

(3.1) 

at some points tj E [0,1)" i 2: l. Each value j{tJ is rounded using binary repre­
sentation with mj bits. That is, instead ofj{tj) we have at our disposal a number Zj 

such that 

(3.2) 

A sequence [z 1, ... ,Zm ... ] is called perturbed information about f 
The aim is to recover a functionfwith Ilfll ::; 1 within a given accuracy E > ° 

using the perturbed information. That is, to find n and a function gn = gn(ZI> ... , zn) 
in C([0,1 n such that 

The calculation of gn is connected with a cost which can be measured, e.g., by a 
number of bits ~7=1 mj necessary to store information. This cost should be as small 

*This example and the material from Section 3.6 have been extracted from Ref. (3.8) and are included 
in this chapter courtesy of Marcel Dekker Inc. 
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as possible. In addition, we want to determine the optimal sampling points t l , and 
the optimal number of bits m l for which the cost is minimized. 

We now describe a generalization of the above problem. 

3.3. GENERAL PROBLEM FORMULATION 

Let S, S *- 0, be a linear continuous operator acting from a Banach space F to 

a linear normed space G. t Let K = {f E F: Ilfll ::; 1 }. We wish to approximate the 

solution S(f) for alIf E K, based on the knowledge about( restricted only to some 

perturbed information about f For f E K, information N(f) is gathered by a 

successive calculation (or observation) of certain numbers, 

N(f) = [LI(f), Lin . .. ], (3.3 ) 

where Li : F ~ R are linear continuous functiona1s, IILili ::; 1, belonging to a certain 
class A, i ;::: 1. With no misunderstanding, the operator N : F ~ Roc given by Eq. 

(3.3) will also be called information. Collecting information is continued until some 

terminating condition is fulfilled. 
Assume that instead of the exact values L;(f) only perturbed values Zi can be 

evaluated (or observed) such that 

(3.4) 

where I'!.I;::: 0, i 21. The sequence I'!. = [1'!.J,1'!.2" .. ] E Rex) is called a precision se-

quence. 
The nth approximation gn to SCf) is obtained based on the values ZI (not onf 

itself which is unknown) as gn = <Pn(zJ, ... , zn), where <Pn is a mapping from Rn to 
G. The sequence <P = {<Pn}~O is called an (idealized) algorithm (<Po means a fixed 
element of G). 

In the example from the preceding section F = C"([O, 1 n, G = C([O, 1 Y), the 
operator S is given by S(f) =f, information functionals are defined by 

L;(f) =f(t;) and I'!.I = r m,. 

An algorithm usually produces some error. Results that can be obtained and 

their interpretation strongly depend on how the error of an algorithm is measured. 
In this chapter, the nth error of <P atfis defined as 

tThe material from Sections 3.3, 3.4 and 3.5 has been extracted from Ref. (3.7) and reprinted here with 
minor modifications by permission of the American Mathematical Society. 
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That is, the error is measured for a fixed f as the maximal distance between the 
solution and the approximation, where the maximum is taken with respect to all 
possible data perturbations. 

Given s > 0, we compute the values Zlh, ... until the error does not exceed 
L Once such an accuracy is achieved, it should be maintained, if for some reason 
calculations happen to continue. Hence, the number of steps to terminate is equal 
to 

n( <j>,N,L1,f)( s) = min {n ;:::: ° : ei <j>,N,L1,f) ::;; s, Vj;:::: n} (3.6) 

(with the convention min 0 = +00). 
The above termination condition is only 'theoretical.' It reflects demands 

concerning the termination, but it is not 'computable' as it depends on the unknown 
elementf. The sequel shall define another criterion which is as effective as in Eq. 
(3.6) but independent off 

Assume that collecting information is connected with some cost, i.e., we are 
charged for each evaluation (observation) of a functional. The cost of obtaining a 
value Z such that Iz - L(f)1 ::;; L1 is assumed to be c(L1), where c : [0, +oo)~ [0, +00] 
is a given nonincreasing function, positive for sufficiently small L1 > ° and 
independent of L, f and z. In the example of Section 3.2 c(L1) = logi 1/ L1). 

The information cost (or cost) of obtaining an s-approximation using the 
algorithm <j> with information N, the precision sequence ~ and the termination 
criterion of Eq. (3.6) is defined by 

m 

q<j>,N,Lif)(s) = LC(L1) (3.7) 

i=1 

for m < +00, and q<j>,N,L1,f)(s) = +00 for m = +00, where m = n(<j>,N,L1,f)(s). (The 
convention L~=I = ° is used.) In Section 3.2 we have q<j>,N,Lif)(s) = L7!lmi. 

In addition to the information cost, the actual cost of constructing an approxi­
mation also consists of the combinatory cost of calculating <j>nCZI' ... , zn), but the 
latter neglected. It turns out that for many important problems there exists a 'good' 
algorithm with the combinatory cost relatively small.(I0) 

The purpose ofthis chapter is to analyze the behavior of q <j>,N,~f)( s) as s ~ 

Now tum to defining a termination condition 'equivalent' to that given in Eq. 
(3.6), but easier to compute. To this end, recall the concept of the nth diameter of 
information, which is given by 

dn(N,L1) = 2· sup {IIS(h)11 : hE F, IIhll::;; 1, IL/h)l::;; L1i' 1 ::;; i::; n}. 

It is equal (up to a factor of 112) to the minimal error of an algorithm for the worst 
elementf(lo.ll) 
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We shall also need the concept of an interpolatory algorithm <j> * = {<j>~} n::>O (see 
[10]). For n ~ I and [z 1,zZ, ... ] being perturbed information for some / E K, take 
an interpolant an = an(zh ... ,zn) E F such that 

and define an approximation to be the true solution for am 

It isknown that 

(3.8) 

Hence, if the algorithm f is applied, it is enough to compute nd(N, ~)(£) pieces of 
information to obtain an £-approximation, where 

(3.9) 

Note that the termination criterion ofEq. (3.9) does not depend on an element 
J, but only on the class of all elements K. For many problems the behavior of 
dn(N,~) is known.(lO,12) The number nd(N, ~)(£) can be computed, in contrast with 
the quantify n(<j>, N, ~,f)(£). However the criterion ofEq. (3.9) may be useful only 
if the number nd(N, ~)(£) is not much greater than n(<j>, N, ~,f)(£). As we shall see, 
this is indeed the case. 

The information cost of obtaining an £-approximation using N, ~ and <j> * with 
the stopping criterion ofEq. (3.9) is independent of/and equal to 

m 

(3.10) 

for m < +00, and edeN, ~)(£) = +00 for m = +00, where m = nd(N, ~)(£). We call 
edeN, ~)(E) the diameter criterion cost. Equation (3.8) yields that, for any £ > 0 and 
/E K, one has 

q<j>*, N, ~J)(£):::; c'(N,~)(£). (3.11 ) 

A deeper relation between the costs of Eqs. (3.7) and (3.10) will be discussed 
later. It will be shown that the upper bound (3.11) is essentially sharp, i.e., the 
criterion (3.9) is not pessimistic. 

Furthermore, it is interesting to determine information N, an algorithm <j> and 
a precision sequence ~ for which the cost q<j>, N, ~,f)(£) grows as slowly as 
possible as £ ~ 0+. To show what the slowest possible growth is, the next two 
sections study a relation between C(<j>, N, ~,f)(£) and the minimal diameter crite­
rion cost defined by 
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MCd(E) = inf Cd(N, Li)(E), 
N,t; 
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(3.12) 

the infimum taken with respect to information N consisting of functionals from A. 
We start with a construction of information N' and a precision sequence Li* 

which supply an (almost) E-approximation with cost no greater than MCd(E). 

3.4. CONSTRUCTION OF OPTIMAL INFORMATION AND 
PRECISION SEQUENCE 

We first consider problems which are solvable with respect to the criterion of 
Eq. (3.9), i.e., such that MCd(E) < +00, 'v'E > O. The case MCd(E) = +00 (for small E) 
is considered in Theorem 3.4 (ii), which states that the problem is then practically 
not solvable even if the theoretical criterion ofEq. (3.6) is used. 

Assume that the problem is 'hard' in the following sense: 
(A) There exist 0 <p < 1 and a > 1 such that 

MCd(a· E) -:;,p. MCd(E), 

for all sufficiently small E > O. 
Note that the inequality (A) always holds with p = 1. For p < I it states that 

the minimal diameter criterion cost tends to infinity sufficiently fast as E decreases. 
This holds, for example, for the problem described in Section 3.2, see Theorem 3.6. 

To define N' and Li*, take for (J) > 1 and i ~ 0 information N' = [LL L'z, ... ] 
consisting of functionals from A, a precision sequence Lii = [~L ~~, ... ] and an 
integer ni > 0 such that 

(3.13) 

and 

(3.14) 

This selection is possible for sufficiently large i, i ~ I, where I ~ O. Denoting by 
N,,' and Li~' the first ni components of PI and Lii, respectively, define 

(3.15) 

and 
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What are the properties of the information N' and the precision sequence ~* from 
the point of view of the cost of obtaining an 8-approximation? The following 
theorem shows that the interpolatory algorithm <1>* using N' and ~* produces an 
(almost) 8-approximation with the cost proportional to MCd(8), ifany of the criteria 
ofEqs. (3.6) or (3.9) is apphed.(7) 

THEOREM 3.1. Let MC d(8) < +00 for all 8 > 0, and let the condition (A) hold. 
Then, for all! E K and all sufficiently small 8 > 0 we have that 

The above theorem gives only an upper bound on the cost of computing an 
8-approximation using N', ~* and f. We now ask: What is the quality of the 
obtained estimate? Can the upper bound from Theorem 3.1 be improved? In the 
next section N' and ~. are shown to be (almost) optimal, in the sense that the cost 
of obtaining an 8-approximation using arbitrary N and ~ cannot be much smaller 
that MC d(8), even if the theoretical condition of Eq. (3.6) is used. 

3.5. LOWER BOUNDS 

For arbitrary N, ~ and~, lower bounds on the cost c(~, N, ~,f)(8) tum out, 
roughly speaking, to be given by MCd(8), which shows sharpness of the upper 
bound from Theorem 3.1. The lower bounds on the cost hold on dense sets of 
element! (A set D in a normed space X is called dense if elements of D can be 
found in any ball in X. That is, each element of X can be approached arbitrarily 
closely by elements of D.) 

Consider first fixed N and ~. Start with the case Cd(N, ~)( 8) < +00, for all 8 > 
O. We have(7) 

THEOREM 3.2. Let Cd(N, ~)(£) < +00, \::1£ > 0, and let <I> be an arbitrary algo­
rithm. 

(i) If dn(N,~) > 0, \::In;::: 0, then for any function h : (0, +00) ~ (0, +00) with 
lime-->o+h( 8) = 0 the set 

A I = if E K : 3C = CU) ;::: 0 3£0 = £aU) > 0 such that for all 0 < £ ::; 80 

c(<I>, N, ~,f)(C· h(£)· 8)::; Cd(N, ~)(£)} 

has a dense complement in K, i.e., the set K - A I is a dense set in K. 
(ii) If dn(N, ~) = 0 for some n, then the set 
A2 = if E K: 3C = C(f) ;::: 03£0 = £o(f) > 0 such that for all 0 < £ ::; £0 

c(<I>, N~,f)(C· £) <Cd(N, ~)(£)} 

has a dense complement in K, i.e., the set K - A2 is a dense set in K. 
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Theorem 3.2 provides a lower bound on C(<j>, N, 11,1)(£). To see this, note that 
by (i) the inequality (3.11) is no more true (on a dense set of/s), if only £ in the left 
hand side is replaced by a function h(£) . £. This holds no matter what algorithm <j> 
is used. The function h(£) is arbitrary, i.e., it may tend to ° arbitrarily slowly with 
£, so that replacing £ by h(£) . £ corresponds to a possibly very slight increase in 
accuracy requirements. Note also that, due to Eq. (3.11), the function h(£) cannot 
be omitted in the formulation of the theorem. In the case (ii), the theorem states that 
weak inequality (3.11) cannot be replaced by sharp one. Combined upper and lower 
bounds from Theorems 3.1 and 3.2 imply that, given N and ~, the interpolation 
algorithm <j> * is almost optimal. 

In terms of the termination criteria, the above result is somewhat surprising. 
It states that the theoretical stopping condition of Eq. (3.6) yields larger cost than 
the criterion of Eq. (3.9), if the accuracy required in Eq. (3.6) is only slightly 
increased (by a function h(£)) with respect to the accuracy required in Eq. (3.9). 

In the case when Cd(N, ~)(£) = +00 for sufficiently small £ > 0, i.e., for 
problems which cannot be solved (due to the infinite cost) with respect to the 
criterion ofEq. (3.9) it holdsY) 

THEOREM 3.3. Let Cd(N, ~)(£) = +00 for sufficiently small £ > 0, and let <j> be 
an arbitrary algorithm. 

(i) If limn ---> +00 diN, 11) > ° and L~l c(l1;) = +00, then for any function 
H: (0, +00) ~[o, +00) the set 

A3 = {( E K: 3C = C(f) ~ ° 3£0 = £o(f) > ° such that for all ° < £:0; £0 

C(<j>, N, 11,j)(C· £):0; H(£)} 

has a dense complement in K. 
(ii) IfIimn--->+oo dn(N,I1) > ° and L~l C(l1i) < +00 or iflimn--->+oo dn(N,I1) = 0, then 

the set 

has a dense complement in K. 
Theorem 3.3 assures that if the problem cannot be approximated with finite 

cost using the termination criterion ofEq. (3.9) then it also cannot be approximated 
even if the 'ideal' criterion ofEq. (3.6) is applied. For any algorithm <j>, the cost is 
then arbitrarily large (in the case (i)), or infinite (in the case (ii)), on a dense set of 
elements! 

Theorem 3.2,3.3 and the inequality MC d(£) :0; Cd(N, ~)(£), (for all N,~) yield 
the final lower bound on C(<j>, N, 11,1)(£). 

THEOREM 3.4. LetN, ~ and <j> be arbitrary information, precision sequence, and 
algorithm, respectively. We have 
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(i) If MC d(£) < +00, V£ > 0, then for any function h : (0, +(0) ~ (0, +(0) with 
lime--;o+ h(£) = 0 the set 

B I = if E K: 3C = C(f) ~ 0 3£0 = £o(f) > 0 such that for all 0 < £ :::; £0 

CClj>,N,~,.n(C· h(£) .£) < MC d(£)} 

has a dense complement in K. 
(ii) If MC d( £) = +00 for sufficiently small £ > 0, then for any function H : (0, +(0) 

~ [0, +(0) the set 

B2 = if E K: 3C = C(f) ~ 0 3£0 = £o(f) > 0 such that for all 0 < £ :::; £0 

CClj>, N, 11,f)(C· £):::; H(£)} 

has a dense complement in K. 
In the case MC d(£) < +00 the cost CClj>, N, ~,f)(£) grows essentially (i.e., up to 

a function h(£» at least as fast as MC d(£), as £ ~ 0+, for/belonging to a dense 
subset of K. If the problem satisfies the condition (A) then information N", the 
precision sequence~' defined in Section 3.4 and the interpolation algorithm lj>' are 
almost optimal, i.e., CClj>*, N*, ~,f)(£) essentially behaves like MC d(£), for all 
/ E K. In the case MC d(£) = +00, the cost CClj>, N, ~,f)(£) grows arbitrarily fast as 
£ ~ 0+ for any lj>, N, and~, on a dense set off 

Hence, the problem of finding the optimal N, ~, and lj> for the 'theoretical' 
stopping condition ofEq. (3.6) can be essentially reduced to the similar (but easier) 
problem with the criterion ofEq. (3.9). In both cases, the minimal cost essentially 
behaves like MC d(£), which means that the diameter termination criterion is as 
effective as the 'theoretical' one. 

3.6. THE MINIMAL DIAMETER CRITERION COST 

This section concentrates on results about the minimal diameter criterion 
cost and shows tight bounds on MCd(£) for some class of problems. Let 
do = 211S11 (0 < do:::; +(0), and 

-
dn = inf dn(N, 0), n ~ I, 

N 

where the i!J.fimum is taken over all information operators N = [L), L2, ..• ], 

Li E A, and 0 = [0,0, ... ]. The number dn is thus the nth minimal diameter of exact 
information, well studied in the complexity literature.(lO) 

Assume that the problem satisfies the following conditions: there exists a 
constant D, 0 :::; D < +00, such that for any LEA and h E F it holds 

IL(h)1 :::; D . IIS(h)lI. (AI) 
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One can easily check that the condition (A I), although restrictive in general, holds 
with D = I for the reconstruction problem from Section 3.2. 

The second condition deals with the behavior of the minimal diameter in the 
case when the precision vector has equal components. Let 

where the infimum is taken over all N consisting of functionals from A 
(dn = dn(O)). Assume that there is a constant M, 0 < M < +00, such that 

(A2) 

for n z I and L1 z O. 
For s > 0, let 

nOes) = min{n z 1 : dn ::; s}. 

The following result gives bounds on MCd(s) in terms of the minimal number 
of functionals necessary to solve the problem in the case of exact information 
nOes) and the single evaluation cost e(L1). 

THEOREM 3.5. Let the conditions (AI) and (A2) hold, and limn-->oo dn = O. Then 
there are constants M, and M2 such that for all 0 < s < IISII 

n*(M2s) . e(M2s) ::; Med(s) ::; n*(M,s) . e(M,s). 

If s zliSIl then MCd(s) = O. 
For many problems the asymptotic behavior of nOes) and e(s) is such that 

n*(as) = 0(n*(s)) and e(as) = 0(e(s)), as s ~ O+, 

for any a > O. In this case it follows from Theorem 3.5 that 

MCd(s) = 0(n*(s) . e(s)), as s ~ OT. 

To illustrate the above results recall the example from Section 3.2. Recall that the 
question under consideration is to minimize the number of bits necessary to store 
a signal and to recover it with given accuracy s. It is possible to prove the 
following(8) 

THEOREM 3.6. The minimal number of bits necessary to store information 
which allows to recover all functions I E F, 11/11 ::; I, with the error at most s is 
equal to 

MCd(s) = 0(s-slr . 10g{~]} as s ~ 0+. 

Furthermore, to achieve MCd(s), it is sufficient to evaluate function values at n 
uniformly distributed points, n = 0(s-s/), and store them using the same number 
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of bits, m; = m, where m = E>(lOg2(l1E», 1 :s; i:S; n. The E-approximation is provided 
by a piecewise polynomial interpolation. 

In the next section, the assumption (A2) of Theorem 3.5, which deals with the 
dependence of the minimal diameter on data perturbations, is discussed. We show 
how the diameter is influenced by inaccuracy in data for the problem of recovering 
band- and energy-limited signals. 

3.7. THE DIAMETER OF INACCURATE INFORMATION 

This section briefly describes a problem of reconstructing signals from data 
given by their nonexact samples. Next it presents a formulation of two results 
concerning the diameter of information, the full proofs of which and other related 
results can be found in Ref. [9]. 

Let L2 = L2[ -0,0] denote the Hilbert space of all square integrable complex 
valued functions! on the interval [-0,0], and let B = B(L2) denote the unit ball in 
L2. Any functionfin B yields a band- and energy-limited signal 

n 

/(t) = ff{co) exp(icot) dco, t E R i =~. 
·-0 

The bandwidth and the energy of/ are 20 and 2rcllfll2, respectively. Given 
real distinct points to, tb t], ... , tn we wish to recover a value/(to) for! E B, with the 
sole knowledge of/ being a vector Z E Cn such that 

Illz - NU)III :s; 6, (3.16) 

where 

Here 6 is a given nonnegative number and III . III is a fixed norm in en. That is, the 
data (information) consists of inaccurate samples of/. The error in data is measured 
here by an arbitrary norm III . III, which is a slight generalization with respect to the 
situation from previous sections, where we have IIlzlll = maxl<;;<;" Iz;l, 

In an alternate formulation this is the problem of reconstructing the functional 
S given by 

SU) = U; uo> (3.17) 

from data z E en satisfying the inequality (3.16) with the samples vector reinter­
preted as 

(3.18) 
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where ( ',) is the inner product in L2[-0,0] and ui') = exp(-itd for k = 0, 
l, ... , n. 

Results on the diameter of information are formulated in terms of the radius 
of information r(8.), a quantity known to be (for the above problem) the minimal 
error of an algorithm for the worstJ, 

The diameter of information is equal in this case to 2r(8.).(1O) 
How is the radius of information r(8.) related to reO) and the precision 8.? Let 

and G = G(UI. u2,' .. , un) be the Gram matrix of the system {U)J=l , 

G = (up Uk»)},k=l' 

'Nhere c is a conjugate to a complex number c. We have(9) 
THEOREM 3.7. For any 8.;::0: 0 

(3.19) 

where the supremum is taken over all a E en such that IlIalil ~ 8. and 
IIG-1 12allz ~1. 

Although this theorem gives an exact formula for the radius of information 
r(8.), at first sight the dependence on 8. may be not clear. To see it better, note its 
consequences: an upper bound and the asymptotic behavior of r(8.). 

COROLLARY 3.1. For any 8.;::0: 0 we have 

r(8.) ~ reO) + r'(O+)8. 

and for sufficiently small 8. 

r(8.) = r(O) + r'(O+)8. + y(8.), 

where r'(O+) = sUPlllalll$l IcfiG-1aj and y(8.) = 0(8.2). 

The result above holds not only for the specific problem of recovering a signal 
from its samples, but also in a general situation of approximating a linear functional 
from information given by (nonexact) inner products. 

In the case of signal recovery, the matrix G and the vector d take the form 
G = 20M and d = 20g, respectively, where 

M = (sinc(O(tj - tkmJ,J..=l 

and g = [sinc(O(tl - to)), sinc(0(t2 - to)), ... , sinc(O(tn - to))f. Here sinc stands 
for the sinus cardinalis function, i.e., 
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r sin(x) 
sinc(x) = j x 

[I 

ifx *- 0, 

if x = O. 

Assuming that III . III is the pth nonn II· lip in en, 

leI laklP) lip if 1 :s; p < +00, 

lIalip = k~1 

max lakl ifp = +00, 
IO;k<;n 

the asymptotic formula in Corollary 3.1 takes the form 

r(~) = reO) + 119I11gllq ~ + O(~2), ~ ~ 0+, 

where lip + 1 /q = 1. 

B.Z. KACEWICZ 

In summation, for signal recovery the radius of information (the minimal error 
of an algorithm) behaves like a linear function of data perturbations with coeffi­
cients dependent on to, tl, ... , tno 

Signal recovery is an example of a problem for which the dependence on data 
errors has been revealed. Results concerning this interesting question for other 
problems and related topics can be found.(12,13,14) 
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4 
Review and Comparison of 
Ellipsoidal Bounding Algorithms 
G. F avier and L. V. R. Arruda 

ABSTRACT 

This chapter is concerned with the problem of robust system identification when 
no statistical information is available on the noise, but only a bound on its 
instantaneous values is known. First, various ellipsoidal outer bounding (EOB) 
algorithms are presented in a unified way. Then, two types of projection algorithms 
are described, and their link with the EOB algorithms is established. After that, the 
EOB algorithms are interpreted as robust identification algorithms with a dead 
zone. The performance of these algorithms is compared through computer simula­
tions where the influence of the choice of the a priori error bound is more 
particularly studied. 

4.1. INTRODUCTION 

In practice, the identification of a parametric model from measured signals 
must include both the estimation of the model parameters and an evaluation of the 
estimated parameter uncertainty. This parametric uncertainty is particularly useful 
for robust controller design. With the probabilistic approach, the exact distribution 
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of the estimated parameters can be determined if the statistical description of the 
input signal and disturbances acting on the system to be identified is known. In real 
applications, such knowledge is often difficult to formulate. An alternative and 
certainly more realistic approach to the identification problem is the so-called 
unknown but bounded error (UBB£) approach, which was introduced by Witsen­
hausen(l) and Schweppe(2) in the context of state estimation, and used by Fogel and 
Huang(3) for system identification. With this approach, the error that includes the 
measurement noise and the modeling error is assumed to be unknown but bounded, 
and the error bounds are assumed to be known. This approach allows us to 
determine a membership set for the model parameters, the elements of which are 
compatible with the measurements, the assumed model structure and the a priori 
error bounds. 

In the case of regression models which are linear in their parameters, the exact 
membership set is a polytope, the size of which decreases as the number of 
measurements increases. Several methods have been recently proposed in the 
literature for recursively determining the polytope which is characterized by means 
of its vertices, its edges or its faces.(4-6) The main drawback of these methods is 
their computational burden when the measurement number increases, implying 
simultaneous increase of the number of vertices, and therefore of edges and faces, 
of the polytope. To circumvent this problem, a solution consists in approximating 
the exact polytope by a region in the parametric space, having a simpler shape such 
as an ellipsoid or an orthotope (i.e., an hyperrectangle the edges of which are parallel 
to the co-ordinate axes). 

In the case of orthotopic bounding, most of the proposed algorithms(7-12) have 
the drawback of being non-recursive and time-consuming when the number k of 
measurements is large, as they must solve 2n linear programming problems with n 
variables and 2k constraints, where n is the dimension of the unknown parameter 
vector. However, new algorithms have recently been provided for recursively 
determining an orthotopic-outer-bounding approximation of the parameter mem­
bership set. (13-15) 

In the case of ellipsoidal bounding, various algorithms have been derived by 
means of a geometrical approach combined with the minimization of a criterion 
directly linked to the size of the ellipsoidY·16,17) or by means of convergence 
considerations,08-19) With the UBBE approach, robust identification methods can 
also be obtained from the constrained minimization of different quadratic crite­
ria.(19-21) The resulting algorithms are called "projection algorithms with dead 
zone," which means that they are stopped when the prediction error becomes 
smaller than the a priori error bound. (22) The main advantage of the ellipsoidal­
bounding algorithms is their simplicity due to their recursive formulation. How­
ever, they often provide a loose approximation to the exact poJytopic region. An 
improvement in terms of reduction of the ellipsoid size can be achieved by 
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processing all the data several times. The reprocessing takes the final ellipsoid 
delivered at the (i-l)th iteration as the initial ellipsoid of the ith iterationY6) 

It is suggested that the data be preprocessed by using an ellipsoidal-bounding 
algorithm to discard some of the constraints, before applying an orthotopic or 
poly topic-bounding algorithm. (16,23,24) This data preprocessing reduces the compu­
tationalload of the orthotopic or poly topic-bounding algorithms, 

The purpose of the present chapter is first to give a unified presentation of the 
main EOB algorithms, then to show the equivalence between these EOB algorithms 
and the robust identification algorithms with dead zone, and finally to compare the 
performance of these algorithms through computer simulations. This chapter is 
organized as follows. Section 4,2 states the parameter estimation problem with the 
UBBE formalism. Section 4.3 shows how various EOB algorithms can be derived 
in a unified way.(25,26) In section 4.4, projection algorithms for robust estimation 
are presented in the bounded noise case, and their link with the EOB algorithms is 
established, Then, in section 4.5, EOB algorithms are interpreted as robust identi­
fication algorithms with a dead zone. (22,25,26) In section 4.6, a comparison of the 
performance of these algorithms is carried out through computer simulations where 
the influence of the choice of the a priori error bound is more particularly studied. 
Finally, section 4.7 concludes this chapter. 

4.2. THE UBBE APPROACH AND MEMBERSHIP SET ESTIMATION 

Consider the single-input/single-output linear regression model 

(4.1) 

with 

(4.2) 

where <p( and e* are the regression and the true parameter vectors respectively, and 
0)( is the bounded noise term including the measurement noise, the modeling 
inaccuracy and the computer round-off errors; the error bound o( is assumed to be 
known a priori. 

All the parameters e that are consistent with the model structure (4.1), the a 
priori error bounds (4.2) and the measurements {y(, t E [I,k]} belong to the 
so-called parameter membership set,(3) defined as: 

(4.3) 

S(k) is also called feasible parameter set,(6) parameter uncertainty set,(27) or 
likelihood set.(28) This set can be viewed as the region of the parametric space that 
is delimited by k pairs of parallel hyperplanes HI (t) and H2(t), t E [I,k], such that: 



46 G. FAVIER AND L. V. R. ARRUDA 

(4.4) 

{4.S) 

Each hyperplane Hi(t), i = 1,2, divides the parametric space into two halfspaces 
fli(t) and Hj(t) defined as: 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Then, the set S(k) is given by: 

(4.10) 

(4.11 ) 

The set S(k) is a monotone non-increasing sequence of sets having a poly topic 
shape, as shown in Fig. 4.1 for n = 2 and k = 4. Any parameter vector e belonging 
to the set S(k) is a valid estimation of eO. In practice, the center of S(k) (in some 
geometrical sense) is chosen as the estimate of e *. 

Although its size is decreasing, this poly topic region generally becomes very 
complicated to determine when the number of measurements increases, due to the 

~(3) 

~ ______ -L~ ________________ ~,91 
FIGURE 4. \. The parameter uncer­
tainty set S(k). 
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augmentation of the number of its vertices. An easier solution consists in approxi­
mating the convex polytopes S(k) by simpler shaped regions like ellipsoids,i3,16--19) 
orthotopes,(7-15) or parallelotopes,t29) The corresponding algorithms are respec­
tively called ellipsoidal, orthotopic and parallelotopic outer bounding (EOB, OOB 
and POB) algorithms. It is also possible to construct ellipsoidal inner bounds(30,31) 
or orthotopic inner bounds.(ll) 

Let M(k) be such an outer bounding approximation of S(k): 

M(k) ~ S(k) ( 4.12) 

This region M(k) can be recursively constructed so that 

M(k) ~ M(k - 1) n Jr(k) (4.13) 

or, in using (4.11): 

M(k) ~ M(k - I) n If](k) n lfi(k) (4.14) 

By induction and using Eqs. (4.l0, 4.11, and 4.14), it is easy to verify that, if 
the initial region M(O) is chosen sufficiently large to contain S(ko), where ko ~ n is 
the first value of k for which n vectors in {<Pt, t E [1 ,kol} are linearly independent, 
then the set M(k) satisfies the relation of inclusion (4.12) for all the values of k ~ 
ko. 

In the next section, we show how various EOB algorithms can be derived in a 
unified way. 

4.3. A UNIFIED PRESENTATION OF EOB ALGORITHMS 

In the EOB approach, as introduced by Fogel and Huang,(3) the solution 
consists in recursively determining a sequence of ellipsoids E(k) which enclose 
S(k). Let us define an initial ellipsoid E(O) by: 

E(O) = {S E 9{n I (S - solPQ\s - So) ~ o'~, P oo'~ = ~ In} 
(4.15) 

where £ is a sufficiently small number such that E(O) contains S(k) for all k ~ 0, 
0'& and Po represent the a priori knowledge about the system to be identified. The 
ellipsoidal bound E(k) must be chosen in such a way that it contains as tightly as 
possible the intersection of E(k-I) and F(k). This ellipsoid E(k) can be defined by 
means of the following inequality:(25,26) 

E(k) = {SI uk(S - Sk-Ilpk~I(S - Sk-l) + l3iYk- <p[S)2 ~ ukO'L + I3ko~} (4.16) 

where Uk E ]0,1] is a forgetting factor which weights the old information, while 
13k E [0, I] is a selecting factor which weights the new information. 
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TABLE 4.1. Basic EOR Equations 

Vk = Yk - <p[Sk-1 

GF <P[Pk-l<Pk 

r T l 1 I Pk PH <pk <pk h-l 
Pk = - PH - '----'---'----

Uk L Uk+ PkGk J 
8k = 8k-1 + 13k Pk«lk Vk 

The estimated parameters are taken as the coordinates of the center 8k of the 
ellipsoid E(k). By simple algebra manipulations, Eq. (4.16) of E(k) can be rewritten 
as: 

(4.17) 

where the ellipsoid parameters 8b Pk and GI are calculated through the equations 
of Table 4.1. 

In the following, two groups of EOB algorithms are derived in a unified way, 
using the basic EOB equations given in Table 4.1 and making different choices for 
the free parameters Uk and 13k. 

Methods minimizing the geometrical size o[the ellipsoid E(k): the free parame­
ters Uk and 13k are calculated by minimizing a scalar measure of the size of the matrix 
Pb which reflects the geometrical size of the ellipsoid E(k). 

Methods based on convergence arguments: the choice of Uk and 13kresuits from 
the minimization of a cost function under constraints. This choice is not optimal 
with respect to the reduction of the geometrical size of the ellipsoid E(k), but this 
reduction is ensured. We call these methods "degenerate" minimal-volume algo­
rithms. (25) 

Before describing these two families of EOB algorithms, we give the condi­
tions for the existence of a solution, in terms of the intersection of E(k - I) and 
F(k), and for the redundancy of a measurement. Moreover, we give the formulae 
for calculating the parameter uncertainty intervals associated with the ellipsoid 
E(k). 

Existence condition: When the intersection E(k - I) n H+(k) is empty, i.e., the 
ellipsoid E(k - I) is entirely located in one of the two halfspaces Hi(k), i = I or 2, 
respectively defined by (4.7) and (4.9), the following condition is satisfied: 
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(4.18 ) 

In this case, the corresponding measurement must be discarded if the trouble 
is caused by an outlier (and therefore a bad choice of the a priori error bound Ok)' 
or the algorithm must be reinitialized if the occurrence of (4.18) is due to a bad 
choice of the initial ellipsoidE(O) or to time variation of the model parameters. This 
last situation can be detected in incorporating a fault-detection test to the identifi­
cation algorithm,(32) which leads to an adaptive EOB algorithm. 

Redundancy condition: Another important particular case occurs when the 
ellipsoid E(k - 1) is entirely located in F(k), which corresponds to the following 
condition:(33) 

(4.19) 

In this case, the measurement is redundant and can be discarded, so condition 
(4.19) defines a dead zone for the EOB algorithms (see section 4.5 for an interpre­
tation of EOB algorithms as robust identification algorithms with dead zone). 

Parameter uncertainty intervals: With each coordinate Sk(J),} E [l,n], of the 
center of the ellipsoid E(k), we can associate the uncertainty interval [Sk.min(J), 
8k.max(J)] , where 8k,min(J) and 8k,max(J) are the minimum and maximum values taken 
by the coordinate 8(J) of any point of the ellipsoid E(k): 

8k•min(J) = Min 8(J) and Sk,max(J) = Max 8(J) (4.20) 
8 E E(k) 8 E E(k) 

The bounds of these uncertainty intervals can be calculated by means of the 
following formulae:(34) 

(4.21 ) 

(4.22) 

where Pk(J,}) is the element (J,}) of the Pk matrix which defines the ellipsoid 
E(k), as in (4.17). 

The two families of EOB algorithms are now described. 

4.3.1. Methods Minimizing the Geometrical Size of the Ellipsoid E(k) 

The methods of this group use the basic EOB equations in Table 4.1, with 
Uk = 1/ aL and 13k = Ak/8r. The variable }'k is obtained from the minimization of a 
measure that reflects the geometrical size of the ellipsoid E(k). Ak is time varying 
and data dependent. The choice Ak = 0 is possible and it means that the information 
contained in the new observation is redundant. In this case, the ellipsoid stays 
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TABLE 4.2. Computation of Ak for Minimal 
Volume Algorithm 

Ak is the solution of 

a I AX + a2Ak + a3 = ° 
with al = (n - I )crtl Gr 

G2 = «2n - I )S~ - cr~-I Gk + vi) cr~-I Gk 

a3 = (n(Sr - vh - crLI Gk)Sk 

The optimal value ofAk is then given by: 

{o if a3 2 ° 
Ak = Ak otherwise 

with Ak = (-G2 + (a~ - 4alaJ)1 /2)l2al 
~~~.-~ .. --

unchanged [E(k - 1) n Jr(k) =- E(k - 1)] and the parameter estimates are not up­
dated. 

Two measures defined on 9i are considered by Fogel and Huang(3) for this 
minimization: /lvCk) =- determinant (cr~Pk) and /ly{k) =- trace (crrPd which are 
proportional to the volume and to the sum of squares of the semi-axes of E(k) 
respectively. The corresponding algorithms are called the minimal-volume algo­
rithm and minimal-trace algorithm respectively. The computation of the corre­
sponding optimal values OO"k are summarized in Tables 4.2 and 4.3. 

TABLE 4.3. Computation OfAk for Minimal Trace Algorithm 
------~ 

Ak is the solution of 

At + blA~ + b2Ak + b3 = ° 
with: 

bl = 3Sr;(crr-IGk) 

b2 = {SrGk[~T(k - 1)(St - vr) - crt-lYkl + 2Sr[SrGkJlT(k - 1) - crJ-1Yk (Sk - vrlll /'Pk 

bF 8k[(8r - vr) ~r(k - 1) - crLm]/(crr-1 'Pk) 

Yk= rp[?t-Irpk and 'l'F cr1-IG~[GkJlT(k- 1) - crl-lYk] 

The optimal value OfAk is then given by: 

Ak= • {o if b3 2 ° 
Ak otherwise 

where Ak is the positive real root of equation (A). 

(A) 
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When only one of the two constraint hyperplanes H;(k) defined in (4.4 and 4.5) 
intersects E(k - 1), the minimal-volume algorithm does not give the minimal-vol­
ume ellipsoid containing E(k - 1) n H'"(k). A smaller volume ellipsoid can be 
obtained by replacing the non-intersecting hyperplane by a parallel one tangent to 
E(k - 1). The corresponding algorithm is called "Improved Minimal-Volume AI­
gorithm.,,(16) For this algorithm, the variables Ok and Vk in Table 4.1 are replaced 
by:(33,35) 

r 1(Ok + vk + Gk_ l GI 12 ) if -Gk_ 1 GI 12 - Ok < vk < -I G k- l G1 12 - Ok I 

Ok' = j1(Ok - vk + Gk- l Gi 12) if I Gk_ 1 Gil2 - Ok 1 < vk < Gk- l Gil2 + Ok (4.23) 

Ok otherwise 

V'k= (4.24) 

V k otherwise 

and Ak is calculated as in Table 4.2. 
Applying (4.23) is equivalent to reducing the noise upper bound, as we have: 

(4.25) 

4.3.2. "Degenerate" Minimal-Volume Algorithms 

The methods belonging to this group result from a geometrical approach which 
consists in ensuring that the ellipsoid size is reduced at each time instant k. The 
ellipsoid E(k) is then determined so that G~ is minimized, or the sequence {Gk} is 
non-increasing, i.e., G~ ::; GLI' 

The first "degenerate" minimal-volume algorithm, proposed by Dasgupta and 
Huang(J8) is obtained by choosing Uk = 1 - Ak and 13k = Ab with Ak the solution of 
the following constrained minimization problem: 

(4.26) 

where the design variable U E ]0,1 [is introduced to ensure that the matrix Pk will 
be bounded. The corresponding computation ofAk is described in Table 4.4. 
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TABLE 4.4. Computation of Ak for Dasgupta and Huang's 
Algorithm 

At = min(u.9..) with 0 < u < I 

flX - O"~_I 
Yk=--2-

9-= 

Yk 

u 

I -Yk 
2 

A second "degenerate" minimal-volume algorithm can be derived by con­
sidering:(25) 

(4.27) 

where A is a constant forgetting factor and Ak is a positive weighting factor to be 
determined so that it minimizes the criterion (4.26) without the constraint ° :s; Ak:S; 
u. 

Substituting Uk and ~k by their values (4.27) in the equations of8k , Pk and cr~ 
given in Table 4.1, we get: 

(4.28) 

(4.29) 

(4.30) 

The value A; of Ak that minimizes cr~ is obtained from OcrUOAk = 0, which 
gives: 

(4.31 ) 
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(4.32) 

(4.33 ) 

Moreover, for this value of Ak we have: 

(4.34 ) 

which implies that Ak corresponds to minimization of the criterion (4.26). 
Finally, a third "degenerate" minimal-volume algorithm can be obtained by 

using the EOB equations in Table 4.1, combined with convergence arguments. This 
algorithm, proposed in Ref. (19) corresponds to the choice Uk = 1 and ~k = Ak' In 
contrast to the two previous algorithms in this group, the value OfAk is not obtained 
from the minimization of ai. Indeed, Ak is determined so that the sequence {ai} is 
non-increasing, i.e., aJ :::; aL, while satisfying the constraints 0:::; Ak:::; U :::; 1. Then 
we get: 

with: 

if IVkl :::; 8; 

otherwise 

A; =_u_ 11- 8; I where U E [0,1] and 8; = (1 + U)1/2 8k. 

1+ Gk l IVkl) 

(4.35) 

(4.36) 

The variable a~ can be considered as an upper limit for the following quadratic 
non-negative function: 

(4.37) 

From the analysis of this quadratic function, it is possible to demonstrate the 
following convergence properties for the degenerate minimal-volume algo­
rithms,C35,36) i.e., for the different choices of Uk and ~k: 

(i) Lim j(IT UTllft~k)l) = 0 
k-+oo 

i=1 

(4.38) 

(4.39) 
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where 

and )lmin[.] ()lmaJ.] ) = smallest (largest) eigenvalue of [.]. 
Moreover, assuming that the following persistent excitation condition of the 

input signal is satisfied: 

k+N 

mIn ~ I ~i<P/pJ ~ MIn Vk~k o (4.40) 
i~k 

where m, M and N (N~ n) are positive scalars and ko is the convergence time of the 
algorithm, then there exists a positive scalar 11 such that 

(4.41 ) 

and the following properties hold for the degenerate minimal-volume algorithms: 

(iii) Lim 118k - 8k_d12 = 0 (4.42) 
k->oo 

V k~N+ 1 ( 4.43) 

(4.44 ) 

From the properties (iii)--{iv), the degenerate EOB algorithms are exponen­
tially convergent. Further, property (v) provides an upper limit (1 /11 ()~) for the 
steady-state estimation error. 

4.4. PROJECTION ALGORITHMS WITH DEAD ZONE 

The introduction of a dead zone into the estimator equations is a classical 
procedure to face bounded perturbations. The idea is to stop updating the parameters 
when the prediction error becomes smaller than some threshold. This threshold 
defines what is called a dead zone for the estimator. In this section, we present two 
robust projection algorithms with dead zone. They are obtained from the minimi­
zation oftwo different criteria with a constraint on the a posteriori prediction error. 
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4.4.1. Robust Projection Algorithm Based on Constrained One-Step­
Ahead Criterion Minimization 

55 

The estimation problem is considered in terms of minimization of the follow­
ing cost function(l9): 

(4.45) 

under the constraint 

(4.46) 

where e~ is the residual 

(4.47) 

and 

(4.48) 

The constraint (4.46) means that the residual e~ is forced to be equal to ±Ok 
when the absolute value of the prediction error is greater than the noise upper bound 
8k • The constrained minimization problem (4.45) and (4.46) is solved by introduc­
ing a Lagrange multiplier Ak for the constraint, so that the cost function to be 
minimized becomes: 

J1'(9",Ak) = ~ 119k - 9k_d12 + Aie% - i%ok)ik 
(4.49) 

Writing the necessary conditions for a minimum (oJ{ /o8k = 0; oJ{ /OAk = 0), 
we get the following equations: 

8k = 9k- 1 + Ak<i>kik (4.50) 

with 

(4.51 ) 

where 

• Yk - i~ok 
Ak = T 

<i>k<i>k 

(4.52) 

The introduction of the dead zone due to the presence of the factor ik in the 
correction term (4.50) allows us to turn off the algorithm when the prediction error 
becomes smaller than the noise bound Ok' In Table 4.5, the robust projection 
algorithm (4.50}--{4.52) is compared to the projection algorithm with dead zone 
introduced by Goodwin and Sin.(37) In this last algorithm, the residual e~ is forced 
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TABLE 4.5. Projection Algorithms 

Nonnalized Projection Algorithms 

Algorithms 

Projection Alg. with dead zone(37) 

Robust Projection Algorithm(19 ) 

Constraints 

. _ {O if IVkl 0; 2suplwki 
Ik-

I otherwise 

. _ {O iflvkl 0; 8k 
Ik-

I otherwise 

Orthogonalized Projection Algorithms 

Orthogonalized Projection 
Algorithm with dead zone (Ie = 1)137) 

Robust Orthogonalized Projection 
Algorithm(21) 

ik = {O if IVkl 0; 2suplwkl 
I otherwise 

. {O I, ~ 1 
if IVkl CO; Ok 
otherwise 

Uk 

IVkl- Ok . 
---Ik 

IVkl 

IVkl- Ok . 
---I, 

IVkl 

to zero, while in the first one this error is forced to be equal to ±Ok, depending on 
the sign of the a priori prediction error Yk' 

4.4.2. Robust Orthogonalized Projection Algorithm Based on Constrained 
Least-Squares Criterion Minimization 

In this case, the criterion to be minimized is(2o.21) 

Ji8k) = I Ak/Yt - <p;8/ ( 4.53) 

I~I 
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with 

~ ~ k-h 
/\'k,t - /\, fCt 

57 

(4.54) 

where Ie E ]0, I] is a forgetting factor fixed by the user and At :2: 0 is a data-dependent 
weighting factor which is determined in such a way that the constraint (4.46) is 
satisfied. 

Minimization of (4.53) with respect to 8k, leads to the well known weighted 
RLS equations: 

(4.55) 

(4.56) 

where Vk and Gk are defined in Table 4.1. 
Substituting (4.55) for 8k into the constraint (4.46), when ik = 1 (IVkl > Dk), 

gives: 

which leads to the following optimal value of the weighting factor Ak: 

where: 

iflGkl * 0 andlvkl > Dk 
otherwise 

A* = ~ (IVkl - 1: kG>: 
k Uk 

(4.57) 

(4.58) 

(4.59) 

Replacing Ak by its expression (4.58) and (4.59) in (4.55) and (4.56) yields the 
equations of the robust orthogonalized projection algorithm (also called modified 
exponentially weighted recursive least squares (EWRLS) algorithm), which are 
given in Table 4.5. This algorithm is compared to the orthogonalized projection 
algorithm with dead zone.(37) As for the projection algorithms described in section 
4.4.1, the orthogonalized and robust orthogonalized projection algorithms are such that 
the residual eZ is forced to zero and ±Dk respectively when IVkl is greater than Dk' 

When Uk and 13k are chosen as in (4.27), equations of Table 4.1 for computing 
Pk and 8k and expression (4.33) oni: are identical to (4.55, 4.56 and 4.59). So, we 
demonstrate the equivalence of the second degenerate minimal-volume algorithm 
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(section 4.3.2) and the robust orthogonalized projection algorithm, which at the 
same time allows us to give a new geometrical interpretation of the modified 
EWRLS algorithm proposed in Refs. 20 and 21. Moreover, comparing equations of 

Tables 4.1 and 4.5, one can easily veritY that the two families of robust estimation 
algorithms (EOB algorithms and orthogonalized projection algorithms) can be 
written with the same equations, so that it is possible to interpret the EOB algorithms 
as robust identification algorithms with dead zone. The mathematical equivalence 
between these two families of algorithms is shown in the next paragraph. 

For the projection algorithms described in Table 4.5, division by zero (when 
<l'k = 0 or Gk = 0) is avoided by adding a small positive constant c to the denominator 
of the equations which compute 8k and Pk. 

4.5. INTERPRETATION OF BOB ALGORITHMS AS ROBUST 
IDENTIFICATION ALGORITHMS WITH DEAD ZONE 

It is now well known that the robustness of classical estimation algorithms, in 
the sense of a noise sensitivity reduction, can be enhanced by introducing a dead 
zone in the parameter update equation. Such parameter update law modifications 
are very useful in the context of adaptive contro1.(38--40) In this case, the controller 
adaptation is turned off when the prediction error is smaller than some threshold~. 

The EWRLS algorithm with dead zone, resulting from the minimization ofthe 
quadratic criterion (4.53), with: 

/=/+1 

is given in Table 4.6. 

TABLE 4.6. EWRLS Algorithm with Dead Zone (j{Vk) = Yk) 

VF Yk - <p[8k-1 

Gk = <p[Pk~J<Pk 

8k = 8k-1 + AkPk«Jk!(Vk)h 

. {o ifvk :s ;,:;2 
lk = 1 otherwise 

(4.60) 
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When the dead zone condition is satisfied Uk = 0), the estimator is then frozen 
(Ok = 0k-b Pk = Pk- 1), which requires f.lk = I in the computation formula for the 
matrixPk· 

The most critical point in the application of such identification schemes is the 
selection of the dead zone ~. The equations of Table 4.6 look like those of Table 
4.1. With the correspondence Ak = Pk and f.lk = Uk, it is possible to rewrite the EOB 
algorithms like the EWRLS algorithm with dead zone. Indeed, the choice ~k = 0 III 
the equation for computing Ok in Table 4.1, is equivalent to using a dead zone. ThIS 
dead zone can be explicitly introduced into the basic EOB equations of Table 4.1 
by rewriting the estimate equation as 

where 

. {O 
lk = I 

Ok = 8k_ 1 + P~k<Pkvkik 

if "the ellipsoid cannot be reduced" 
otherwise 

The condition "the ellipsoid cannot be reduced" defines the dead zone. For the 
considered EOB algorithms, this dead zone is explicitly given by the conditions 
a3 ?: 0 (Table 4.2), h3 ?: 0 (Table 4.3), Yk?: 1 (Table 4.4), IVkl ~ 8k (Eq. (4.32» and 
IVkl ~ 8;; (Eq. (4.35». 

TABLE 4.7. Interpretation of EOB Algorithms as Robust Identification Algorithms with 
Dead Zone 

Methods Uk Pk j(Vk) /').2 

Minimal-volume algorithm 
I/crX-l f..k!o~ Vk OX - cr~-l Gdn 

Minimal-trace algorithm 
I/crL f..jjo~ Vk 2 

8X _ crk-l Yk 
Tr Pk-l 

Improved minimal 
I/crX-l I.jjo'~ Vk' 8e - crr-l Gk/n 

volume algorithm 

First degenerate minimal 
1- f..k f..k Vk 8~ - crl-, 

volume algorithm 

Second degenerate minimal f.. f..k Vk 8r 
volume algorithm 

Third degenerate minimal 
f..k Vk (I + tl )8X 

volume algorithm 

RLS algorithm with dead zone 
Vk 8l(l + Gk) 
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In Table 4.7, we give the dead zone, the forgetting factor Uk, the weighting 
factor ~k and the functionj{vk) for each EOB algorithm rewritten with the equations 
of Table 4.6. 

In conclusion, the EWRLS and EOB algorithms can be written with the same 
equations; only the dead zone definition and the forgetting and weighting factors 
are different. 

In Table 4.7, the expression of A; is respectively given in Tables 4.2, 4.3, and 
4.4, or Eqs. (4.33) and (4.36), depending on the algorithm which is considered. 
Moreover, for the improved minimal-volume algorithm, the quantities vk and ok 
are defined in (4.23 and 4.24). 

We have to notice that the dead zone associated with the first family of EOB 
algorithmsy,16) and with the first degenerate minimal-volume algorithm,(18) results 
from the computation of the quantities ClI and Pk , while it depends only on the a 
priori error bound Ok and the design parameter u for the second and third degenerate 
minimal-volume algorithms. As already mentioned, the second degenerate mini­
mal-volume algorithm is identical with the robust orthogonalized projection algo­
rithm described in Table 4.5. 

It is easy to prove that the dead zones defined in Table 4.7 have a width larger 
than the dead zone (4.19), i.e., are more conservative in terms of parameter update. 
Indeed, the conditions for the existence of a solution to the different optimization 
problems corresponding to the minimization of the critena f..llk), f..ly{k), or ClI are 
more restrictive than the condition (4.19) for E(k-l) and Fr(k) to intersect, which 
means that the existence of such an intersection doesn't always imply the existence 
of a new ellipsoid containing this intersection and obtained by minimizing one of 
the above criteria. 

In the next section, the performances of the considered EOB algorithms are 
compared on simulated examples. 

4.6. SIMULATION RESULTS 

In this section, simulation results show the influence of the a priori error bound 
Ok on the performance of the EOB algorithms; they compare the behavior of the 
EOB algorithms in presence of sudden disturbances and time variations of the 
model parameters. 

First consider the following ARX model, with constant parameters: 

The input signal Ut is a square wave with a period T = 10 and an amplitude A 
= 1, and the unmeasurable disturbance WI corresponds to an independent random 
sequence with a uniform distribution in [-1, 1]. The initial conditions for the 
algorithms are 80 = 0 and Po Cl6 = 100 12, 
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FIGURE 4.2. Estimated parameters 8, and &0 (minimal volume algorithm). 

Two points are studied in these simulations: comparison of the six EOB 
algorithms when the a priori error bound is correctly chosen (Ok = Ok = 1), and when 
this bound is underestimated (Ok = o~ = 0.5) or overestimated (Ok = Ok = 3); and 
performance comparison for the EOB and EWRLS algorithms. 

Figs. 4.2 through 4.7 show the estimated parameters corresponding to under­
estimated (plots i), good (plots r) and overestimated (plots s) bounds. Fig. 4.8 shows 
the results obtained with the EWRLS algorithm with dead zone. 

Table 4.8 contains the update rate for each algorithm, and for the three values 
of Ok which allows comparison of the performance of the EOB algorithms, in terms 
of ability to discard redundant measurements. The update rate is calculated as: 

aft . ar • atr 1 . a te o . a au s . It art . r .. r 1 . ate o. atr 3 . 

0,0 -:: 2.S -= 

s 1 . 0 -:: 

0 . 2 ~ 

2',0 -= .a .= 
,····t· ···'····I'·· 'I····I'··'I'·· "··· ·,··· ·,·· ··, ,··· ·,··· ·,· ··· ,,···, ···· ,,··· '····1'··'1····1··· ·1 

FIGURE 4.3. Estimated parameters 81 and &0 (minimal trace algorithm). 
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FIGURE 4.4. Estimated parameters ~l and go (improved minimal volume algorithm). 

R = number of effective updates 
total number of iterations 

From these simulation results, we conclude that if the a priori error bound is 
correctly chosen, all the EOB algorithms converge to the true parameters, the 
smallest update rate being obtained with the algorithms belonging to the second 
group. 

By analyzing Figs. 4.2 to 4.4, one can conclude, for the first family of EOB 
algorithms, that convergence is not too much affected by an overestimation of the 
a priori error bound. An underestimation of this a priori error bound leads to biased 
estimated parameters. In this case, Condition (4.18) for the non-existence of a 
solution is rapidly satisfied. That results in a low update rate (see Table 4.8), which 
is not indicative of a measurement redundancy but of an inconsistency between the 
measurements and the assumed error bound 8'. The convergence is faster, and 

TABLE 4.8. Update Rate for EOB and EWRLS Algorithms 

Algorithms l3 i ", 0.5 (%) I3r ", 1.0 (%) I3s '" 3.0 (%) 

Minimal volume 4 78.5 7 

Minimal trace 3 79.5 35 

Improved minimal volume 3 61.5 8.5 

First degenerate minimal volume 68.5 78.5 1.5 

Second degenerate minimal volume 78.5 44.5 1.5 

Third degenerate minimal volume 98 18 3.5 

EWRLS with dead zone 99.5 56.5 
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FIGURE 4.5. Estimated parameters ~I and So (first degenerate minimal volume algorithm). 

therefore the update rate is smaller, with the improved minimal volume algorithm 
than with the minimal volume algorithm. When the noise upper bound is well 
chosen (8k = 8;;), the update rates obtained with the minimal volume, minimal trace, 
and first degenerate minimal-volume algorithms are very similar. As is common, 
the parameter connected to the input term is not as well estimated as the autore­
gressive parameter. 

By analyzing Figs. 4.5 to 4.7, one can conclude, for the second family of EOB 
algorithms, that the behavior of the degenerate minimal-volume algorithms is the 
opposite of that of the other EOR algorithms. The estimated parameters are biased 
when the error bound is overestimated, and they are fluctuating around the true 
values ofthe parameters when an underestimated bound is used. Moreover, the bias 
is all the larger as the error bound is more overestimated. This difference in the 

eenl . eo CM.t . cans , earn . eMr . cans . 

•• 2 -=1,-----+- --------

2.0 -= ,s -= 
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'" Effacer 

FIGURE 4.6. Estimated parameters ~I and So (second degenerate minimal volume algorithm). 
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FIGURE 4.7. Estimated parameters ~l and to (third degenerate minimal volume algorithm). 

behavior essentially results from the dead zone which is a function of the ellipsoid 
size in the case of the EOB algorithms of the first family. It depends only on the 
error bound for the second degenerate minimal-volume algorithm, and also the 
design parameter u for the third degenerate algorithm. In the case of this last 
algorithm, the introduction of the factor (I + u) in the dead zone transforms the good 
bound or into an overestimated value, which explains the biased estimation of the 
parameters with 0 = or (Fig. 4.7). In conclusion, these simulations show that the 
convergence of the EOB algorithms is strongly dependent on the choice of the a 
priori error bound Ok. 

A second simulated example illustrates the behavior of the EOB algorithms 
faced with an abrupt parameter change and an additive sudden disturbance Ct: 

art .u· alt_l , a ALaO . Art . r aza~ . a z; .. O. ala 3 . 

0,0 -= 2.5 -= 

1.1 -= 

1 ,0 --= r 

~-= ~~ 

2.0 ~ .5-= 
' •.•• 1 •.•• 1 •• ·. 1.· · . 1 •• ' . 1' • .• 1 •••• 1.·.·'.· ·.,···., , .... " .. '1.'. '1 •. • • ' • ..• ' •• . • 1 .•• '1. , •• ' • .•• ,., •• , 

FIGURE 4.8. Estimated parameters ~l and to (EWRLS algorithm with dead zone). 
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FIGURE 4.9. Estimated parameters ~l and 
So (improved minimal value algorithm). 

with: 

I {o.s t E [0,300] 
a l = 0.4 t E [301,500] 

£1 ~ :t{(0, 1), 
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2.& -:: 

1." -= I 
~~~----~-------

0.15 -: 

~'"~=-,~ __________ ~IL-______ _ 

1.5 --= 1 • ••• \ •••• 1.' •. 1 • . • '1 •••• 1. , . '1 ••• '1. , .'1.' •• [ •.•. 1 

o .. .00 '!!O ... ,... JOO ""'. '!I<!!OO 

bO = {1.2 t E [0,300] 
1 1.6 t E [301,500] 

t E [100,110] 

The input signal U t and the non-measurable disturbance 0)/ are the same as for 
the previous simulated example. The additive disturbance ef is a zero mean 
Gaussian noise, with variance equal to one. The initial conditions for the identifi­
cation algorithms are 80 = ° and Poa6 = 100h The a priori error bound is chosen 
equal to 8k = 1. 

From the previous simulations, the behavior is nearly the same for all the EOB 
algorithms belonging to a same group, so that for this second simulated example, 
only one algorithm of each family is compared: the improved minimal-volume 
algorithm (Fig. 4.9) for the first group and the second degenerate minimal-volume 

FIGURE 4.10. Estimated parameters ~l and 
So (second degenerate minimal volume algo­
rithm). 
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FIGURE 4.11. Estimated parameters ~I and 
go (adaptive trace algorithm). 

algorithm (Fig. 4.10) for the second group. These algorithms are also compared 
with the adaptive trace algorithm (Fig. 4.11).(32) 

The performances of all the EOB algorithms are degraded in presence of a 
sudden additive disturbance. For the degenerate minimal-volume algorithms, this 
additive disturbance leads to strongly fluctuating estimated parameters. 

By examining the plots shown on Fig. 4.9, the EOB algorithms of the first 
family haven't a tracking capability. Indeed, after an abrupt parameter change, the 
new model parameters generally don't belong to the last ellipsoid which was 
determined before the parameter change. Then Condition (4.18) is satisfied and the 
algorithm is stopped, which explains the bias of the estimated parameters. In this 
case, as suggested in section 4.3, a solution would consist in combining a fault 
detection test with the EOB algorithm and arbitrarily increasing the ellipsoid size 
when a parameter change is detected. 

On the contrary the second family of EOB algorithms is naturally adaptive due 
to the presence of the forgetting factor which permanently ensures a sufficient size 
of the ellipsoid. 

4.7. CONCLUSIONS 

In this chapter, various EOB algorithms for identifying systems characterized 
by bounded modeling errors have been presented in a unified way. These algorithms 
have been reformulated as robust identification algorithms with dead zone, the main 
differences between them consisting in the computation of the dead zone and the 
choice of the weighting factors. EOB algorithms have thus been proved equivalent 
to the EWRLS algorithm with dead zone. 

A comparative analysis of the performances of these EOB algorithms have 
been carried out by means of simulated examples. The influence of the choice of 
the a priori noise upper bound and the tracking capability of these algorithms in 
presence of an abrupt parameter change have been studied. 



ELLIPSOIDAL BOUNDING ALGORITHMS 67 

REFERENCES 

1. H. S. Witsenhausen, IEEE Trans. Autom. Control AC-13, 556 (1968). 
2. F. C. Schweppe, IEEE Trans. Autom. Control AC-13, 22 (1968). 
3. E. Fogel and Y. F. Huang, Automatica 18,229 (1982). 
4. E. Walter and H. Piet-Lahanier, in: Proceedings of the IEEE Conference on Decision and Control, 

Los Angeles, CA, pp. 1921-1922 (1987). 
5. V. Broman and M. J. Shensa, Math. Comput. Simul. 32, 469 (1990). 
6. S. H. Mo and J. P. Norton, Math. Comput. Simul. 32,481 (1990). 
7. G. Belforte and M. Milanese, Proceedings of the lFACIIFORS Symposium on Identification and 

System Parameter Estimation, Darmstadt, Germany, pp. 381-385 (1979). 
8. M. Milanese and G. Belforte, IEEE Trans. Autom. Control AC-27, 408 (1982). 
9. G. Belforte, B. Bona, and S. Frediani, Proceedings of the IEEE Conference on Decision and 

Control, Las Vegas, NV, pp. 1554---1559 (1984). 
10. T. Clement and S. Gentil, Math. Comput. Simul. 30,257 (1988). 
II. A. Vicino and M. Milanese, Proceedings of the IEEE Conference on Decision and Conrrol, Tampa, 

FL, pp. 2576--2580 (1989). 
12. M. Milanese and A. Vicino, in: Proceedings of the lFAClIFORS Symposium on Identification and 

System Parameter Estimation. Budapest, Hungary, pp. 859--867 (1991). 
13. G. Belforte and T. T. Tay, in: Proceedings of the IEEE Conference on Decision and Control, 

Honolulu, HI, pp. 3546--3551 (1990). 
14. H. Messaoud, G. Favier, and R. Santos Mendes, in: Proceedings of the IFAC Symposium on 

Adaptive Systems in Control and Signal Processing, Grenoble, France, pp. 41-46 (1991). 
15. H. Messaoud and G. Favier, in: Proceedings of the 14th GRETSI Symposium, Juan-Les-Pins, 

France, pp. 225--228 (1993). 
16. G. Belforte and B. Bona, in: Proceedings of the IFACIIFORS Symposium on Identification and 

System Parameter Estimation, York, UK, pp. 1507-1512 (1985). 
17. 1. Pronzato, E. Walter, and H. Piet-Lahanier, in: Proceedings of the IEEE Conference on Decision 

and Control, Tampa, FL, pp. 1952-1955 (1989). 
18. S. Dasgupta and Y. F. Huang, in: Proceedings of the IEEE Conference on Decision and Control, 

Ft. Lauderdale, FL, pp. 1067-1071 (1985); Also in IEEE Trans. In! Theory IT-33, 383 (1987). 
19. R. Lozano-Leal and R. Ortega, Automatica 23,247 (1987). 
20. C. Canudas de Wit and J. Carrillo, in: Proceedings of the IFAC Symposium on Identification and 

System Parameter Estimation, Beijing, China, pp. 1205--1210 (1988). 
21. C. Canudas de Wit and J. Carrillo, Automatica 26, 599 (1990). 
22. 1. V. R. Arruda, G. Favier, and W. Amaral, Proceedings of the IEEE Conference on Acoustics. 

Speech, and Signal Processing, Albuquerque, NM, USA, pp. 2967-2970 (\990). 
23. S. H. Mo and J. P. Norton, IEEE Proc. 135, 127 (1988). 
24. G. Belforte, B. Bona, and V. Cerone, Automatica 26,887 (1990). 
25. 1. V. R. Arruda and G. Favier, in: Proceedings of the IFACIIFORS Symposium on Identification 

and System Parameter Estimation, Budapest, Hungary, pp. \027-\032 (1991). 
26. 1. V. R. Arruda, G. Favier, and W. Amaral, Proceedings of the 1st European Control Conference, 

Grenoble, France, pp. 1194---1199 (\ 991). 
27. G. Belforte. B. Bona, and V. Cerone, Measurement 5,167 (1987). 
28. E. Walter and H. Piet-Lahanier, Math. Comput. Simul. 32,449 (1990). 
29. A. Vicino and G. Zappa, to appear in Proceedings of the Workshop on The Modelling of Uncertainty 

in Control Systems, Springer-Verlag (1993). 
30. J. P. Norton, Proceedings of the IFAC Symposium on Identification and System Parameter 

Estimation, York, UK, pp. 1197-1202 (1985); Automatica 23, 497 (1987). 



68 G. FAVIER AND L.v. R. ARRUDA 

31. L. Pronzato and E. Walter, Proceedings oj'the European Control Conj'erence, Groningen. The 
Netherlands, pp. 258-263 (1993). 

32. G. Favier, APIl22, 27 (1988). 
33. H. Messaoud, Identification et Commande Robusles.· Elude et Comparaison d'Algorilhmes, 

Doctoral Thesis, University of Tunis, Tunisie (1993). 
34. H. Obali, Etude Comparative d 'Algorithmes d 'Identification Robust!!, Doctoral Thesis, University 

of Marrakech, Morocco (1993). 
35. L. V. R. Arruda, Etude d'Algorithmes d'Estimation Robuste et Developpemenl d'un Systeme a 

Systemea Base de Connaissance pour I 'Identification, Doctoral Thesis, University of Nice-Sophia 
Antipolis, Nice, France (1992). 

36. L. V. R. Arruda and G. Favier, in: GRETSI Symposium, Juan les Pins, France (1991). 
37. G. C. Goodwin and K. S. Sin, Adaptive Filtering, Prediction and Control, Prentice-Hall Engle-

wood Cliffs, NJ (1984). 
38. B. B. Peterson and K. S. Narendra, IEEE Trans. Autom. Control, AC-27, 1161 (1982). 
39. C. Samson, Automatica 19, 81 (1983). 
40. L. Praly, Proceedings of the 3rd Yale Workshop on Applications ofAdaplive Svstems Theory, pp. 

224-226 (1983). 



5 
The Dead Zone in System 
Identification 
K. Forsman and L. Ljung 

ABSTRACT 

A prediction error method for parameter estimation in a dynamical system is 
studied. 

N 

1\ 1" S = arg min lim N L.. EI(£(t,S)) 
1} N-->oo 

l=l 

where £ are the prediction errors of a linear regression. A quadratic norm I is zero 
within an interval [-c, c]. This kind of a dead zone (DZ) criterion is very common 
in robust adaptive control. The following problems are treated in this chapter: 

• When is the DZ estimate inconsistent, and what is the set of parameters 
which minimizes the criterion in the case of inconsistency? 

• What happens to the variance of the estimate as the DZ is introduced? 
• Does the DZ give a better estimate than least squares (LS) when there are 

unmodeled deterministic disturbances present? 
• What are the relations between identification with a dead zone criterion and 

so called set membership identification? 

K. FORSMAN • ABB Corporate Research, Ideon, S-223 70 Lund, Sweden. L. LJUNG • Depart-
ment of Electrical Engineering, Linkoping University, S-581 83 Linkoping, Sweden. 
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5.1. INTRODUCTION 

Consider a prediction error method for parameter estimation in a dynamical 
system: 

" . S = arg mill V(S) (5.1 ) 
s 

Here V is a DZ criterion: 

:V 

V(S) = lim ~ L EI[£(l,S)] 
,\/-+1. 

(5.2) 

where £ are the prediction errors of a linear regression: 

y(t) = cp'(t)Su + e(t) (5.3 ) 

/\ -
=> £(t,S) = y(t) - yet,S) = <pT(t)S + eel) (5.4) 

where 

(5.5) 

Furthermore, I is a quadratic norm which is zero within the interval [-c, c]: 

I 7 

"2(x- ct, x>c 

lex) = 0, Ixl ~c (5.6) 

I 7 
"2(x + c)-, x<-c 

or, more compactly, lex) = ~ [max(c,lxl) - cf A typical I is displayed in Fig. 5.1. 
The use of such a DZ is widespread in adaptive control and system identifica­

tion. It appears in adaptive regulators used in the industry, but also have theoreti­
cally interesting properties, for example in the stability theory of robust adaptive 
regulators. Still, many properties of the DZ estimate seem to have been neglected 
to some degree. The following questions are addressed in this chapter: 

• Under what circumstances will the DZ estimate be inconsistent? 
• If the estimate is inconsistent, how much can it deviate from the true value 

ofS? 
• How does the DZ affect the variance of the estimate? 
• What is the effect on the LS estimate when a DZ is introduced, supposing 

there are unmodeled deterministic disturbances present? 
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• What are the relations between identification with a DZ criterion and so 
called set membership identification? 

Notational convention: the notation E is defined by: 

lV 

Ex = lim ~ L Ex(t) 
lV-we 

(5.7) 
1=1 

5.2. CONSISTENCY 

In some cases the DZ estimate of the parameters will be inconsistent. For 
instance, if the noise is bounded, the norm of the residuals may be zero at all time 
instants for any parameter values within a set (non-singleton) in the parameter 
space. Thus all members of this set are indistinguishable, and only the true 
parameter is inside the set is known. The following two theorems say what is 
intuitively clear, namely that the estimate will be inconsistent if and only if the noise 
is bounded and the DZ is too wide. 

THEOREM 5.1. Letfbe the PDF of the noise e in Eq. (5.3) and suppose thatf 
is even. Iff is not identically zero outside the interval [-c, c] then V has a global 
minimum in So. Shorter: 
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" SUpp(/) ct [-C, C] => 8- = 30 

PROOF. Define v(b) := E lee + b), i.e., 

v(b) = f l(b + x)f(x)dx 

It is sufficient to show that v"(b) > 0 and that v'(O) = O. Straightforward computa­
tions show that v'(O) = O. Furthermore 

-c-h ,X) 

v"(b) = f f(x)dx + f f(x)dx (5.8) 

c-h 

which is nonzero for all b iff supp(/) ct [--c, C]. 
In the case of a density that is not even we get a messy implicit expression for 

the minimizing bias is obtained. 
The residuals are defined by Eqs. (5.4 and 5.5). Now, ifIE(t,3)1:S; c for all t, 

I[E(t,3)] == 0, which means that a sufficient condition for the estimate to be incon­
sistent is 

(5.9) 

where B] is a bound for the noise e. The following theorem explains exactly the 
parameter estimates in this case: 

THEOREM 5.2. Suppose that the noise and the input are bounded: 

\j t: le(t)1 ~ B] < c, lu(t)I:S; B2 

and that the system is stable. Then 

" 3~ {3Ic;::a(3)B3 + j3(S)B2+B]} *- {30} 

where B3 = 1[y(t)lI(m a(3) = liS AlII and /3(3) = IISsl1i are defined via Eq. (5.10). 
PROOF. Since it is assumed that the input is bounded we can obtain an estimate 

of the first term in Eq. (5.9) in the following way: Partition the S vector in elements 
corresponding to y and elements corresponding to u: 

(5.10) 

and the regression vector q> analogously. If the true system is asymptotically stable 
the output will be bounded: [y(t) I :s; B3. (Of course, B3 can be expressed in B] and 
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B2 if we know the true system parameters So.) Holder's inequality gives us an upper 
bound for the first term ofEq. (5.9): 

(5.11) 

If the B-part of cp TS is estimated in the same way, then 

n k 

IcpT(t)SI::::: aB3 + ~B2' a:= ~)a), ~:= LI~) 
j=! j=! 

Since 

a DZ width which is strictly greater than B! will give an estimate that is inconsistent. 
The set of parameter vectors in which the criterion is zero will be a superset of 

(5.12) 
o 

It is easy to show that this is the best estimate that Holder's inequality can 
produce with the information available. 

5.3. VARIANCE 

What does the asymptotic covariance matrix of the estimation error look like 
when we use a DZ, and how does it depend on the width of the DZ? The following 
important fact can be found in Ref. 5.3: 

where 

E[l'(e)f 
K(f) = [El"(e)]2 

(5.13) 

(5.14) 

This formula is valid if I is twice continuously differentiable, which is not true 
for the squared DZ. The trouble caused by the discontinuity in l" does not appear 
to be of that serious a kind, though. Assume that it is of no importance. If the time 
averaging property ofE is disregarded, which is the same as assuming that the PDF 
of the noise does not vary in time, then 
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E[l'(e)]2 
K(l)=---o 

[El"(e )J2 

Here 1 is the squared DZ ofEq. (5.6), so 

and 

i£ - C 

/'(£) = 0, ' 

l£ + c, 

1, 

1"(£) = 0, 

£ <-c 

a, 1£1 = c 

where a is a subdifferential, a = [0, I]. If confined to even densities, then 

E[l'(e)J2 = 2 f (x - df(x)dx 
c 

and 

El"(e) = 2 ff(x)dx 

Insert Eqs. (5.19 and 5.18) in Eq. (5.14) to get 

( (x - c)2fix)dx 

feven => K(f) = c 2 

{( fiX)dX)] 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

supposing the integral in the denominator does not vanish. As expected, K is 
strongly dependent on! 

Proving that the variance tends to infinity as the width of the deadzone tends 
to infinity, even if intuitively very clear, is not trivial. 

Here is a theorem which covers many important cases. Different estimates of 
the quotient Eq. (5.20) are made in the different cases. 

DEFINITION 5.1. Letfbe a continuously differentiable function thatfis asymp­
totically decreasing if 

IN Vx > N: ('(x) < ° 
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THEOREM 5.3 Iffis asymptotically decreasing and either 

\. f(x+ I) 0 
1m > (5.21) 

x->oc f(x) 

or 

\. 1f'(X) I 0 d \. fZ(x) 0 1m -- > an 1m = 
x-->oo f (x) x-->oo f (x + 1) 

(5.22) 

then 

K(l) ~ 00 as e ~ 00 

in Eq. (5.20). 
PROOF. Given that K(f) = TI + Tz where 

(I (x _ e)2{(x)dx r (x - e)2f(x)dx 
TI = _c ___ --=-__ , Tz = -,c:..;..+,-I ---2--

[(I) ~/l 
it suffices to show that either T, or T2 tends to be 00 since both are positive. 
Introducing the notations 

c+! x 

a(c) = ff; b(c) = f f 
c+, 

it is clear that a and b tend to zero as e ~ 00. 

First, look at T,. Assume that Eq. (5.22) holds. Since 

c+l c+, 

f (x-c)2f(x)dx"?f(c+ l)f (x-c)2dx+tf(c+ 1) (5.23) 
c 

T, can be lower bounded: 

(5.24) 

But according to Eq. (5.22) 

a2ee) )f2(e) 0 
< ~ ,e~oo 

f(e+ 1) f(c+ 1) 
(5.25) 

and 
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smce 

lim a(e)b(e) = 0 
c--->x f(e + 1) 

1m . = 1m > 0 1· [(e+ 1) l' If'(e+ 1)1 
c--->:c bee) c--->oo f(e + 1) 

according to I'Hospital's rule. The same argument can be used to show that 

lim b(e)2 = lim f(e + I) . bee) = 0 
f(e+ 1) HX f'(e+ 1) 

In conclusion, TI ~ 00 as e ~ 00. 

Now study T2 under the assumption ofEg. (5.21). This gives 

Xl 

f (x - df(x)dx::c: ff(x)dx 
c+1 c+1 

so that 

T > b 
2 - (a + b)2 a21b + 2a + b 

(5.26) 

(5.27) 

(5.2S) 

(5.29) 

(5.30) 

If it can be shown that a2 I b tends to zero as e ~ 00 the proof is complete. This can 
be achieved by applying I 'Hospital's rule and using Eg. (5.21) to get 

lim a2(e) = limf(e) -fee + I) aCe) = lim fee) aCe) = 0 
c--->oo bee) c--->oo f(e + 1) c--+XJ f(e + J) 

(5.31) 

In conclusion, T2 ~ 00 as e ~ 00. 0 
The theorem above covers many of the interesting cases, e.g., that of the normal 

distribution: 

J .' ') , f(x) = __ e-x ,~Ci 

V2ITo 

For this special case straightforward computations show that 

where 
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x 

<D(x) := f . ~e-ll2 dt 
'I21t 

-00 

5.4. DETERMINISTIC DISTURBANCES 

77 

In this section the aim is to investigate what happens as a deterministic 
disturbance is present in the model. One might believe that in this case an LS 
estimate will always improve if a DZ is introduced. However, this is not true. Let 
us call the deterministic disturbance d. Then 

yet) = <pT(t)S0 + e(t) + d(t) (5.32) 

and the residuals are 

(5.33) 

These formulas are the analogues of Eqs. (5.3) and (5.4). Let g denote the 
'deterministic part' ofEq. (5.33): 

5.4.1. Minimizing the Criterion 

It is possible to derive an explicit expression for the criterion of Eq. (5.2) in 
the case ofEq. (5.32). It turns out that this expression is extensive and non-sugges­
tive. Luckily, the derivative of the criterion is rather easy to compute, as long asf 
(the PDF of the noise) is even. These computations result in the following equation. 

THEOREM 5.4. Given 

c+g(S) 

~V(3) = 0 ~ E<p[2g(3) - f FJ = 0 
d3 

c-g(9) 

PROOF. Recall the following formula from elementary calculus(4): 

IjI(X) IjI(X) 

(5.34) 

~ f f(x,y)dy = f fx(x,y)dy + f(x,'l'(x»'l"(x) - f(x,<p(x»<p'(x) (5.35) 
!p(x) <p(x) 

Now, for each sample 

-c-g 00 

Et(s) = f (x + g + c)Y(x)dx + f(x + g - c)2f(x)dx (5.36) 
-00 c-g 
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where g is a function of S. We want to compute the derivative of Eq. (5.36) w.r.t. 
S. In order to do this use Eq. (5.35) on each of the terms on the right hand side: 

-c-g( 1}) -c-g 

A=:S f (x+g(S) + c)2f(x)dx= 2g'[(g+ c)F(-c-g) + f xf(x)dx] 
-00 

B = ~ f (x + g(S) + c)2{(x)dx = 2g'[(g - c)(J - F(c - g)) + f xf(x)dx] 
dS 
~~ ~ 

where' denotes differentiation W.f.t. S. So A + B = 2gT where 

c-g 

r = (g + c)F(-c - g) + (g - c)(l - F(c - g)) - f x{(x)dx (5.37) 

-c-g 

By partial integration, 

c-g c-g 

f xf(x)dx = [xF(x)(~g - f F(x)dx 
-c-g -c-g 

c-g 

= (c-g)F(c-g) + (c+g)F(-c-g)- f F(x)dx 
-c-g 

From this 

c-g c-g c+g 

r =g- c + f F(x)dx =g- c + f F(x)dx+ f F(x)dx 
-c-g c+g -c-g 

c+g c+g c+g 

= g - c - f F(x)dx + f (F(x) + 1 - F(x))dx = 2g - f F(x)dx (5.38) 

c-g o 

where F( -x) == 1 - F(x). Finally 

c+g 

-.!LEI(e)=g'(2g- f F(x)dx) 
dS 

To get Eq. (5.34) consider the following a mathematical truth: 

c-g 

(5.39) 
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N N 

A.- lim ~ L El(£) = lim ~ L -.!LEI(£) 
dS N~oo N~oo dS 

t~l t~1 

(5.40) 

Whether there are (many) cases in which this is not so seems to be a difficult 
question, so we accept that as it is. D 

5.4.2. Going from LS to DZ 

The equation to solve in order to obtain the minimizing S for the criterion (2) 
when there are deterministic disturbances present is now known, as in Eq. (5.32). 
An interesting question is: Suppose we have an LS estimate of the parameters SO 
in Eq. (5.32) and introduce a DZ in the criterion, in what way will the estimate 
change? Mathematically this question can be put like this: Consider the estimate S 
as a differentiable function of e, what is then S' at the point e = o? This section uses 
Eq. (5.34) of the preceding theorem to answer this question. First, redefine S 
slightly and note that 

d - dod - S(e) = -(S(e) - S ) = - S(e) 
de de de 

Differentiating both sides ofEq. (5.34) with respect to the parameter e gives 

c+g 

d - f 0= de E<p[2g - F(x)dx] 
c-g 

(5.41) 

At the point e = 0: 

E<p[2<pTS'(0) - F(g)(l + <pTS'(O)) + (1 - F(g))(1 - <pTS'(O))] 

= E<r[ <pTS'(O) + 1 - 2F(g)] = 0 (5.42) 

where, as earlier assumed,fis even. Recall that 

g[S(e)] 1=0 = SIs<!> + d 

Hence 

(5.43) 

and 

(5.44) 
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- - T -I -
S LS = - (E<p<p) (E<pd) 

Substituting this in Eq. (5.44) renders 

S'(O) = (E<p<pTrl(E(2F(d - E(d<pT)(E<p<p Trl<p) - l)<p] 

or, with P = (E<p<pTrl, 

(5.45) 

(5.46) 

Since Eq. (5.46) is rather difficult to analyze in a general setting, expanding F 
in a Taylor series may give some information. The following example chooses d so 

that the first non-zero term of the Taylor expansion had the appropriate sign (to 

make S'(O) > 0). 
Example: Consider the system 

yet + 1) = -0.7y(t) + Suet) + e(t) + d(t), SO = 1 

where e is Gaussian white noise with unit variance. Choose u(t) = sin(O.3t) as input 

and d(t) = sin(O.1 t) as deterministic disturbance. Note that u and d are not correlated. 
Simulations in MATLAB now indicate that the LS estimate of S is better than the 

estimate obtained with a DZ of width c = 1: 

~LS = 0.96, ~DZ = 0.92 

These results were obtained with a data set consisting of 10,000 samples. 
For any special case, the way to answer the opening question of this section is 

to determine the sign ofthe scalar product 3LsS'(0). Ifand only if it is negative, the 
DZ has a positive effect on the LS estimate. 

5.5. DEAD ZONES AND SET MEMBERSHIP IDENTIFICATION 

The traditional description of noise and disturbances influencing a system is 
to model them as stochastic processes. This leads to the conventional identification 

methods of maximum likelihood/least squares type. However, there may be reasons 
to reject this description ofthe disturbances; see also Ref. (5). If there are measure­
ment errors of quantization type they are bounded. This view has led to the so called 
"unknown-but-bounded" approach to estimation.(6) The idea is simply to accept all 

model parameter values that are consistent with a bounded noise assumption: 

le(l)1 :::; c (5.47) 

without performing any averaging over the data. This could be described as 



THE DEAD ZONE IN SYSTEM IDENTIFICATION 81 

N 

A . 1 " S = arg mm N L.. le(s(t,S» (5.48) 

1=1 

where 

Vs) = {O, 
00, 

(5.49) 

or, equivalently, 

N 

~ E DN= {SI ~)e(S(t,S» = O} = {SI 'if t: I E(t,S) I :.,; c} (5.50) 
1=1 

The estimate is thus a set, DN, and the approach is often also called "set 
membership identification." The set is in practice not found by minimization ofEq. 
(5.48) but rather by linear programming techniques(7) direct calculation(8) or 
outer-bounding by ellipsoids.(9) 

Now ifEq. (5.47) indeed holds for all disturbances this method works well as 
does the DZ criterion ofEq. (5.2) as found in section 5.1. 

However even though there are several reasons to reject the traditional sto­
chastic process description of disturbances, there are also several reasons to reject 
Eq. (5.47) as the sole description of the noise, i.e., that it possesses no averaging 
properties whatsoever. It can be argued that a better picture is to describe the noise 
as 

e(t) = vet) + wet) (5.51) 

where vet) is subject to Eq. (5.47) and wet) has conventional averaging properties, 
i.e., in the linear regression case 

N 
1 

Eq>(t)w(t) = lim N L Eq>(t)w(t) = ° 
N-->oo 

(5.52) 
1=1 

The conventional set-membership approach deals with Eq. (5.51) by extending 
the value c in Eq. (5.47) until DN in Eq. (5.50) becomes non-empty. This is quite a 
conservative approach. A seemingly more natural approach would be to use the DZ 
criterion of Eq. (5.2), i.e., to "soften the infinitely steep walls" in Eq. (5.49). 
However as shown in the preceding section's example there is no guarantee that 
the DZ criterion of Eq. (5.2) performs any better than the conventional quadratic 
criterion in Eq. (5.51). The value of a DZ, although reasonable from an ad hoc point 
of view, can thus be said to be questionable. 
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6 
Recursive Estimation 
Algorithms for Linear Models 
with Set Membership Error 
G. Belforte and T. T. Tay 

ABSTRACT 

This chapter reviews some of the more recent algorithms for sequential 
parameter identification in the context of unknown but bounded measurement 
errors when the model output is linear in the parameters. The properties of the 
different algorithms are analyzed and compared. 

The possibility of evaluating the confidence of the obtained estimates is 
discussed, particularly information required on the noise structure in order to assess 
the confidence of the estimates is shown. 

Finally, the possibility of using the algorithms for time-varying system iden­
tification is considered and the case of uncertain regressors is addressed. 

6.1. INTRODUCTION 

Data used in parameter estimation are associated with some uncertainty. 
Traditionally such uncertainty receives a stochastic description, e.g., as an additive 

G. BELFORTE • Dipartimento di Automatica e Informatica, Politecnico di Torino, 10129 Torino, 
Italy. T. T. T AY • Department of Electrical Engineering, National University of Singapore, Singa­
pore 0511. 

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York, 
1996. 
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random noise with a given probability density function. The estimation process is 
then set in a statistical framework. Various techniques such as maximum likelihood 
estimation are used to exploit the prior information on the noise. The quality of the 
parameter estimates is then assessed through the use of indices such as the Fisher 
information matrix. One problem is that the randomness assumption may in many 
practical cases be rather unrealistic. Moreover, the amount of data available is often 
not sufficient to check the validity of this assumption. 

The unknown but bounded error (UBBE) description of the measurement noise 
was pioneered by Schweppe( I) about 20 years ago. It does not rely on a stochastic 
framework. The errors are assumed to belong to error sets with some gIven shapes. 
There is no easy and straightforward description for sets with arbitrary shapes, but 
useful results can be obtained in some simple and nevertheless important special 
cases. One such case is orthotopes, in which each component of the error vector is 
constrained to belong to some finite interval. Such descrIptions have been shown 
to fit practical applications. (2) 

Since the introduction of the UBBE description, much work has been done to 
develop algorithms that exploit this assumption,o,4.5) The requirements for memory 
and computing time may however become unrealistic. Hence the interest for 
recursive algorithms which can update parameter estimates after each new meas­
urement while requiring a limited amount of memory and computing time. 

This chapter describes major classes of recursive algorithms available for 
models linear in their parameters and compare their performances. Particular 
attention is devoted to algorithms with limited memory and computing time. 

Section 6.2 presents the framework and notation of the study. Section 6.3 
describes algorithms based on evaluating the exact polytope where the parameter 
estimate can lie. Recursive fixed memory and computational time algorithms 
(which are based on overbounding the exact polytopes) are presented in Section 
6.4. In Section 6.5, modifications to the various algorithms to cater for time-varying 
systems are discussed while uncertainties in the system model are addressed in 
Section 6.6. Simulation results are presented in Section 6.7. 

6.2. GENERALITIES 

This chapter considers the parameter identification problem for models linear 
in their parameters described by 

Yi = are + ei i = I, ... , k (6.1) 

where Yi E R is the i-th measurement, aT E R" is the corresponding regressor, 
e E RP is the parameter vector to be estimated and ei E R is the measurement error. 
The measurement error is assumed to be unknown but bounded so that 
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(6.2) 

where Ei is the error bound for the i-th measurement with relative weight Wi' ~ being 
a scaling factor. 

Two cases, differing by the assumption on the information content about the 
errors have been addressed in the literature. They are stated as the following 
conditions. 

CONDITION I. All the bounds Ei i = I, ... , k are known. In this case, without 
any loss of generality, ~ = 1 and the weights Wi i = 1, ... , k equal the known error 
bounds; that is, Wi = Ei i = I, ... , k. 

CONDITION 2. The exact values of the bounds Ei i = 1, ... , k are unknown. 
However the weights Wi i = 1, ... , k are known. In this case the constant scaling 
factor ~ can no longer be assumed equal to one. Here ~w; = E; i = 1, ... , k are not 
known. 

When a system is described by Eq. (6.1) and the measurement errors are given 
by Eq. (6.2), the problem of parameter identification, when k measurements are 
available, usually involves choosing, as parameter estimate, one element of the 
admissible parameter set D(k), 

D(k) = {8 E RP:Yi-Ei~aT8~Yi+Ei i= 1, ... ,k} (6.3) 

Here D(k) is the set of all the parameters consistent with the given model, the 
available information on the error and the measurement vector. It is a polytope in 
the RP parameter space described by a suitable subset of the planes Pi and PT i = 1, 
... , k defined by 

(6.5) 

To each plane are associated half-spaces s:- and Si in RP defined by 

(6.6) 

Let Si be the set of parameter vectors that are consistent with the i-th measurement. 
Then 

(6.7) 

and 
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k 
D(k) = nS, 

(6.8) 

Subsequent sections of the chapter refer to the set of all Pi and/or Pt planes 
defining the boundary of D(k) as BDCk). 

Any point in D(k) can, in principle, be an estimate of the parameter vector 
while the "size" of D(k) is a measure of the parameters' reliability. Several choices 
are possible according to different criteria. However, In the unknown but bounded 
error (UBBE) context, the usual choices are either the Chebicev center SOCk) of 
D(k)* (referred to as the central estimate) or the projection estimate ()lJ(k)t that is a 
minimax estimate.(6.7.8) The central estimate is optimal WIth respect to the worst 
case error, while the projection estimate minimizes the lx norm of the prediction 
error. A recent survey ofthe properties of these and other possible estimates can be 
found in. (9) 

The parameter reliability is usually evaluated by computing the parameter 
uncertainty intervals PUl,(k) i = I, ... ,p defined as 

where 

8rin(k) = min 8, 
8 ElJ(k) 

8raX(k) = max E\. 
8ED(k) 

(6.9) 

(6.10) 

In generaI8}"in(k) and s}"ax(k) are achieved on a vertex of D(k) where p suitable 
Pt and/or Pi planes intersect. These sets of p planes will be denoted as BD:mn(k) 
and BDmax(k), i = 1, ... ,p. 

N~te that for the computation of D(k) the values of the error bounds E, i = 1, 
... k, must be known exactly. Since the knowledge of DCk) is essential to get the 
central estimate SOCk) as well as the parameters' uncertainties, it turns out that both 
the central estimate and the PUIs can be exactly computed only when Condition 1 
holds. 

For the evaluation of the projection estimate 8P(k), less information about the 
measurement error is needed. The problem can be reduced to finding the 8P(k) 
vector and the smallest positive scalar a(k) for which the constraints 

*The Chebishev center 0° of a set D is 

OO(k): sup 1100 - 011 ~ inf sup liS - Oil 
OED(k) BcR" OED(k) 

t Let A E Rkxp be the matrix whose rows are aT i = I, .... k. Then 

if(k): Ilv - Aif(k)lI~ ~ minlLv - AOII~ 
o 
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Y; - a(k)w; ~ a;EJP(k) ~Yi + a(k)wi i = I, ... ,k (6.11 ) 

are satisfied. Here, only Condition 2 needs to hold. Whenever only the error weights 
Wi i = I, ... , k are known, the D(k) set defined in Eq. (6.4) is undetermined due to 
the lack of information on ~. However, a new admissible parameter set D(k) can be 
defined in the RP+I extended parameter space of8 and ~ as 

D(k) = {8,~ E RP+I: Yi - ~Wi ~ aT8 ~Yi + ~Wi i = I, ... , k}. (6.12) 

-
Similar to D(k), the set D(k) is a polyhedron. However while D(k) is l!sually 
bounded (whenever k 2 P uncorrelated measurements are available), D(k) is 
unbounded as long as EO prior information on ~ is available. 
_ Theyolyhedron D(k) can also be described by a suitable subset of the planes 
Pi and P7 obtained by rearranging the Eq. (6.12) in the following form 

p~: Yi= [aT, wJ [~l; 

pr [a;,-wJ[~l=Yi i=I, ... ,k. (6.13) 

To each plane are associated half-spaces S7 and Si in RP+ 1 defined by 

S~: Y; ~ [a;, wJ [~l 

M. [ T - ] [8J< . = I k J i . a;, Wi ~ - Y; 1 , ... , . (6.14) 

Again if S; is the extended parameter set consistent with the i-th measurement, 

- - -
Si=S; nS~ (6.15) 

and 

k - -
D(k) = n Si' (6.16) 

i=1 

- -
Subsequent sections ofth}s chapter refer to the set of all Pi and/or P7 planes 
definingtheboun<laryofD(k) as BiJ(k). 

Any point in D(k) can, in principle, be an estimate of the extended parameter 
vector. However it is reasonable to choose the estimate that minimizes the predic­
tion error. This Iesults in the projection estimate 8P(k). In general 8P(k) is achieved 
on a vertex of D(k) where p + I planes intersect and 
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a(k) = min fl. 
O,PED<k) 

(6.17) 

This set of p + I planes will be referred to as Bj}p(k). 
Note that for many practical situations, only Conditions 2 can be shown to 

hold and not Condition 1. Thus the projection estimate is usually more interesting 
compared to the central estimate which requires ConEition I to hold. When 
Condition I holds then the D(k) set is the intersection of D(k) with the fI = 1 plane. 

To evaluate the central estimate SOCk), the projection estimate 8P(k) and the 
parame~r uncertainty intervals PUIlk) i = I, ... , k, the exact knowledge of D(k) 
and/or D(k) is required. The complexity of their exact description can of course 
become too complicated to be handled.(6,1O,11,12) This fact suggested the search for 
suboptimal algorithms with fixed amount of storage memory and reduced compu­
tation requirements. The most popular of these algorithms is the Fogel-Huang 
algorithmY 3) that computes an ellipsoidal outer bound toD(k). More recently some 
other algorithms have been proposed. These include computing an orthotopic outer 
bound(14) to D(k) or selectively storing a small number of suitable past measure­
ments to be used for computing approximated central and projection estimates(15) 
as well as their uncertainties.(l6) 

The need for dealing with time varying systems requires that s,2me kind of 
"aging" of past measurements be introduced so that D(k) andlor D(k) are not 
constrained to shrink monotonically when the number k of available measurements 
increases, This allows the parameters to change, The techniques used are similar to 
the introduction of forgetting factors used in statistical estimation processes. (17,18,19) 
However other schemes could be proposed and more investigation should be 
devoted to this topic. 

A last point concerns those problems in which the reregresors aT i = 1, ... , k 
are uncertain. This case has been considered in the UBBE context.(20,21,22) It must 
be n,2ted that when all the errors and uncertainties are uncorrelated the D(k) andlor 
the D(k) sets can still be evaluated, However, if correlation is present only over­
bounds can be computed.(23) 

6.3. EXACT DESCRIPTION OF THE ADMISSIBLE PARAMETER SET 

Algorithms where the exact description of D(k) or D(k) is obtained will be 
considered in this section. 

6.3.1. Central Estimate and Parameter Uncertainty Evaluation 

The central estimate SOCk) and the parameter uncertainty intervals PUIi(k) i = 
I, ... ,p can be evaluated whenever the exact description of D(k) is available. Three 
algorithms for the recursive evaluation of D(k) have been proposed(1O,11,12) and 
compared.(24) Their structure can be summarized in the following steps: 



RECURSIVE ESTIMATION ALGORITHMS FOR LINEAR MODELS 89 

Step 1: Initialize the procedure by processing the first p measurements to find 
the D(P) set, the list of its vertices and the B D(P) set of all the planes Pi and! or 11 
describing its boundary. 

Step 2a: When the (k+ I )-th measurement becomes available, check 
whether D(k) = D(k) n Sk+I' If yes: put D(k') = D(k) and go to Step 2b. In this case 
B D(k) = B D(k') so that the list of vertices is the same for D(k') and D(k). If no: 
evaluate D(k') = D(k) n Sk+I' Construct BD(k') by adding the plane Pk+1 to BD(k) 
and discarding those that no longer define D(k'). Then go to Step 2b. 

Step 2b: Check whether D(k') = D(k') n Sk+ I. If yes: put D(k + 1) = D(k'). Go 
to Step 2a and wait for a new measurement. In this case BD(k + 1) = BD(k') so that 
the list of vertices is the same for D(k') and D(k + 1). If no: evaluate D(k + I) = 
D(k') n Sk+ I' Construct B D(k + I) by adding the plane Pk+1 to B D(k') and discarding 
those that no longer define D(k + I). Then go to Step 2a and wait for a new 
measurement. 

From the vertices of D(k) it is then straightforward to derive the PUIlk) i = 1, 
... ,p and consequently SOCk). 

It should be pointed out that updating the list of the planes that concur to the 
description of the bound of D(k + I) is, in general, time consuming, especially when 
the number of dimension p increases. 

6.3.2. Projection Estimate and Parameter Uncertainty Evaluation 

_ The projection estimate SP(k) can be evaluated whenever the exact description 
of D(k) is available. This can be done when the information about the measurement 
errors is given by Condition 1 or 2. In principle any algorithm suitable for 
somputing the D(k) set in the RP parameter space can be used for deri~ing the 
D(k) set in the RP+I extended parameter space. Once the vertices of D(k) are 
available the derivation of SP(k) is straightforward. The structure of such an 
algorithm is similar to that described before for the central estimate and therefore is not 
repeated here. An actual implementation of such an algorithm is presented in Ref. 6. 

It is importa,Dt to note that the projection estimate SP(k) is obtained via the 
determination of D(k). When the measurement error description is given according 
to Condition 1, the D(k) set can be obtained by intersecting the D(k) set with the 
plane ~ = 1. The PUI;(k) can then be derived from the knowledge of D(k). This step, 
although possible, is time consuming. 

6.4. APPROXIMATE DESCRIPTION OF THE ADMISSIBLE 
PARAMETER SET 

In the preceding section the algorithms for the recursive computation,.9f central 
and projection estimates through the exact determination of D(k) and D(k) have 
been outlined. Those algorithms are, in general, time consuming and require 
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potentially unbounded storage memory although some simulation study shows that 
this event is unlikely to happen. (II) 

The frequent need for fast, online recursive identification with fixed storage 
memory has motivated the search for simpler recursive algorithms. These would 
compute some kind of "approximated estimates" provided that their loss in per­
formances remains tolerable. This section presents some o(!hese algorithms that 
mainly evaluate different kind of outer bounds to D(k) or D(k) and use them to 
derive suitable parameter estimates as well as to evaluate their reliability. Most of 
these algorithms require that the error description is given according to Condition 
1, and this poses a constraint on their practical use. 

The interested reader should refer to the cited literature for an exact description 
of the algorithms and their properties. Here only some of their common features 
are listed before presenting them briefly. 

• While the central and projection estimates SOCk) and 8P(k) always belong to 
the D(k) set, the approximate point estimates that can be constructed from 
these outer bounds are not guaranteed to belong to the D(k) set. 

• The parameters uncertainty bounds, if computable, are an outer bound to 
the PUIs. 

• When the number k of measurements goes to infinite, under fairly general 
assumptions on the error that cannot however be overbounded, the obtained 
estimates converge to the true parameter vector that generated the data. (15,25) 
However the convergence is slower than that of the exact central and 
projection estimates. 

6.4.1. The Fogel-Huang Algorithm 

The Fogel-Huang algorithm can be applied only when Condition I on the 
measurement errors is satisfied. The key idea here is to overbound the D(k) set with 
a suitably chosen ellipsoid cI>(k). The original algorithm described in Ref. 13 was 
later improved,(26) and the optimality of this version has been proved.(27) 

This algorithm can be summarized in the following steps: 
Step 1: Initialize the procedure by selecting an ellipsoid cI>(O) that contains 

D(O) (a priori information). 
Step 2: When the (k+ l)-th measurement becomes available, find the minimum 

volume ellipsoid cI>(k+ 1) such that cI>(k+ 1);2 cI>(k) n Sk+I' 

The center of the ellipsoid cI>(k) may be used as a point estimate of the 
parameter at step k while some measure of the extent of the ellipsoid is used to 
assess the reliability of this point estimate. 

Note that this algorithm is sensitive to both the initializing ellipsoid cI>(O) and 
the order in which measurements are processed. A reprocessing of past measure­
ments often leads to a drastic reduction of the size of the obtained ellipsoid.(26) 
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6.4.2. The Pearson Algorithm 

The Pearson algorithm(l4) can be applied only when Condition 1 on the 
measurement error is satisfied. The key idea is to overbound the D(k) set with a 
suitably chosen orthotopic bound O(k). 

To run the algorithm, the available measurements must be partitioned into L 
submatrices of p measurements each. Each submatrix must be nonsingular other­
wise it is discarded. For this purpose, nonredundant partitioning is defined as any 
collection {Ai} of L p x p matrices formed from the regressor vectors aT i = 1, ... , k 
such that any regressor does not appear more than once in any XI matrix. 

If all the available data are used, then kip <:;.L <:;. k!/[(k-p)!p!]. Since the case 
L = k!/[(k-p)!p!] is not tractable, the following two partitionings are suggested for 
practical use. 

• Disjoint partitioning where L = kip and the l-th Ai matrix consists of the p 
regressors aT i = (1- l)p + 1, ... ,lp 

• Sliding block partitioning obtained for L = k - p combining each regressor 
aT with its (p - 1) predecessors so that Ai consists ofthe regressors aT i = I 
- j,j = 0, ... ,p - 1. 

Both partitionings are suitable for recursive estimation. The algorithm de­
scribed as follows is for the sliding block partitioning. Changes to deal with the 
disjoint partitioning are trivial. The algorithm can be summarized in the following 
steps: 

Step 1: Initialize the procedure by computing the tight outer bounding ortho­
tope Op of the set Xp of the first p measurements. 

Step 2: When the (k + 1)-th measurement become~available, form the new 
Xk+l set and compute its tight outer bounding ortl.!2tope Ok+l-

Step 3: Compute the orthotope Ok+l = Ok () Ok+" an outer bound to D(k). 
The. center of O(k) may be used as the parameter estimate at step k while the 

orthotope O(k) itself accounts for the parameter reliability. 
Note that this algorithm is similar to a technique used in Ref. 6.28. It is sensitive 

to the order in which measurements are processed and a reprocessing of past 
measurements without a change in their order, will not affect the obtained result. 

6.4.3. The ARCE Algorithm 

The approximate recursive central estimate (ARC E) algorithm(15) can be 
applied only when Condition 1 on the measurement error is satisfied. In this 
algorithm 2p2 suitably selected measurements are stored and used to derive an 

1\ 
approximated central estimate eO(k). Here instead of storing BD(k), all the planes 

1\ 1\ 
that define D(k), 2p sets (of p planes each) B rf;nin(k) and B rf;n.x(k) , i = 1, ... ,p that 
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A . A A . A 
define eyllll(k) and e:uax(k) are stored. e:um(k) and e:uax(k) are an outer bound to 

. A 
e:um(k) and e:uax(k) and they allow to derive eO(k) whose components are 

A . A 
A emm(k) + emaX(k) 
e7(k) = I 2 I i = I, ... ,p 

( 6.18) 

When the (k + 1 )-th measurement becomes available giving rise to the two 
planes 11+1 and P"+I define 15:uill (k + I), 15:uax(k + 1) as the admissible parameter 
sets relative to 

A A 

BD~m(k) U 11+1 U Pk+i' BD,;,,(k) U P~+I U Pk+1 

respectively. The ARCE is then updated computing 
A . 
e~m(k+ 1) = min ei' 

8EO~m(k+l) 
g~aX(k + 1) = max ei' 

8EO;nox(k+l) 

A 
and getting eO(k + 1) according to Eq. (6.18). 

(6.19) 

The implementation of the ARCE algorithm can be summarized as follows: 
Step 1: Initialize the procedure by processing the first p measurements and 

find the corresponding central estimate e°(p). Let 

g0(P) = e°(p) 
A 1\ 

and store the 2p sets BD:nm(p) = BD:run(p) and BD:n,,(p) = BD';"'x(P), i = I, ... ,po 
Step 2: When the (k + l)-th measurement becomes available, test for i = 1, ... , 

A . 1\ . 
P whether e:um(k) = e:um(k + 1) (this test can be performed without actually com-
puting g:uill(k+ 1)(15)). Jfyes: put g:uill(k+ I) = g:Uill(k) andBD:;:,(k + I) = BD:nm(k). If 
no: Compute the e:um(k + 1) according to Eq. (6.19) and update BDmm(k + I). When all 

A . , 
the p e:um parameters have been processed go to Step 3. 

1\ 1\ 
Step 3: Update e:nax(k + 1) andBDmox(k + I) i = 1, ... ,p with a procedure similar 

to that of step 2. ' 
1\ 

Step 4: Compute eO(k + 1) according to Eq. (6.18). Go to Step 2 and wait for 
a new measurement. 

Note that an iterated reprocessing of all the past measurements would lead to 
the determination of the central estimate.(15) 

6.4.4. The ARPE Algorithm 

The approximate recursive projection estimate (ARPE) algorithm(l5) can be 
applied when the assumption on measurement errors satisfies Conditions 1 or 2. 
Here only p + 1 suitably selected past measurements are stored and the projection 
estimate relative to this subset of p + 1 measurements is computed. In the ARPE 
algorithm, analogous to the set Bj}p(k) that defines the projection estimate oP(k), 

A 1\ 
we have a set Bj}p(k) that defines the ARPE 8 P(k). 
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1\ 1\ 1\ 
The ARPE algorithm computes 9P(k)a(k) and B'D9p(k) according to the follow-

ing steps: 
Step 1: Initialize the procedure by processing the first p + 1 measurements 

finding the corresponding projection estimate 9P(p + 1) and the associated a(p + 
1\ A 1\ 

1). Let f:JP(p + 1) = 8P(p + 1), a(p + 1) = a(p + 1) and B'D9p(k + 1) = B'D9p(p + 1). 
Step 2: When the (k+ I )-th measurement becomes available, test whether 

1\ 1\ 

8P(k) and a(k) are the projection estimate 8P and the associated a relative to the set 
whose bound is described by 'B'D9P(kbU P k+l U P"+l' lfyes: put@P(k+l)=@P(k), 
1\ 1\ 1\ 

a(k + 1) = a(k) and B'D9p(k + 1) = 'D9p(k). Repeat Step 2 when a new measurement 
becomes available. lfno: go to Step 3. 

Step 3: Compute the projection estimate 8P and the associated a corresponding 
to the set whose bound is described by 'B'D9P(k) U P k+l U P"+l' Put @P(k+ 1)= 

1\ 1\ 
8P, a(k + 1) = a. Update B'D9p(k + I). Go to Step 2 and wait for a new measurement. 

Note that an iterated reprocessing of all the past measurements would lead to 
the determination of the projection estimate.(lS) 

6.4.5. Approximate PUI Evaluation with ARPE Algorithm 

The ARPE algorithm does not provide any information about the parameter 
reliability even when the information about the measurement error, being provided 
by Condition I, would allow to derive it. In such case it is convenient to derive 
some procedure that can provide this information. An exact derivation of the PUIs 
would be optimal, but its evaluation requires the knowledge of D(k) that can only 
be achieved when exact algorithms are used. It is therefore interesting to investigate 
the possibility of deriving, with little extra computation, some upper bound to the 
PUIs when using the ARPE algorithm.(l6) 

An approximate evaluation of the parameter uncertainties when the measure­
ment error is described according to Condition 1 and the ARPE algorithm is used, 
consists of computing, at each step k, the parameter uncertainty intervals relative 

1\ 1\ 
to the set of p + 1 planes in Bi>9p(k). Here, let D(k) be the parameter admissible set 

1\ 

corresponding to the p + 1 measurements of Bi>9p(k) with 13 = I. Then define 
1\ ' 1\ 
8fmm(k) = min 8i • 8fmax(k) = max 8i . 

6 Eb(k) 6Eb(k) 

(6.20) 

from which the p()llk) i = 1, ... ,p, defined as 

p()llk) = [@fmiD(k), @fmax(k)] i = 1, ... ,p, (6.21 ) 

can be computed. These P()ls can be regarded as approximations to the true PUIs. 
Note that their computation must be performed only when the projection estimate 
@P(k) has been updated according to Step 3 of the previous section. 

It is easy to construct simple examples showing that the P()ls do not neces­
sarily shrink for increasing k, in contrast with the PUIs. This undesirable feature 
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can however be corrected. In fact it is possible to compute, at each step k, the 
quantities 

(6.22) 

initializing the procedure with e-jin(p) = ~fmin(p) and 8ja"(p) = ~jax(p). By con­
struction, ejiD(k) and 8jax(k) are monotonic functions of k. 

If the PUIlk) i = 1, ... ,p are defined as 

(6.23) 

it is trivial to show that 

(6.24) 

so that the pals can be used as a better approximation to the PUis. It is noted that 
the computation of POl and pal is simple and can be performed according to the 
results of Lemmas 1 and 2 of Ref. 6.29 mainly requiring the inversion of p p x p 
matrices. 

6.5. TIME VARYING SYSTEMS 

The need to deal with time varying systems has motivated the introduction of 
forgetting techniques similar to those used in statistical estimation processes.(l7,18) 
The most popular ones are probably windowing over a fixed horizon, where those 
measurements that are older than a given threshold are discarded, and the use of a 
forgetting factor where the error bounds Ei (or equivalently the weights Wi) of past 
measurements are multiplied by a constant y greater than one, at each new data 
acquisition. 

Both schemes require extensive computation at each step, where the central 
estimate is concerned. Moreover the central estimate will change at each step k, 
whenever a forgetting factor is present, since the admissible parameter set D(k) is 
affected by the forgetting scheme even when it does not depend on the last measure 
at step k. This feature is not specially convenient and contradicts the intuitive feeling 
that forgetting scheme should affect the estimates' reliability only and not the 
estimates themselves. A different approach, that overcomes this defect was recently 
proposed.(19) It expands the admissible parameter set instead of the error bounds, 
the expansion being symmetrical with respect to the central estimate. 

Things are simpler for projection estimates. The computation required for data 
updating with the windowing scheme is smaller and a forgetting factor influencing 
the error weights Wi induces changes on a(k) only. In fact if in Eq. (6.11) the weights 
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Wi are multiplied by some factor y, then the minimum value a(k) for which Eq. 
(6.11) are satisfied must be multiplied by lIy while 8P(k) remains unaffected. This 
kind of consideration holds also for the ARPE algorithm. 

6.6. UNCERTAINTY IN THE REGRESSORS 

There are cases in which the regressor vectors, aT E RP i = I, ... , k are uncertain. 
In the bounded error context this uncertainty can be described assuming that 

aT = aq + SaT ilk I I I =, ... , (6.25) 

where a? represents the nominal value of the regressor vector while oaT is its 
uncertainty" which is assumed to be componentwise bounded so that 

ISaijl~b.aij i=l, ... ,k j=l, ... ,p (6.26) 

where b.aij i = 1, ... , k j = 1, ... ,p are known quantities. 
In such condition it can be shown that in each orthant of the RP parameter 

space, the D(k) region is still a polytope, but the Pi and Pt i = 1, ... , k planes are 
no longer pairwise parallel.(20,21,22) In fact the D(k) region is described by 

D(k) = {e E RP: (a; - b.ane ~Yi + E;; 

(6.27) 

where 

(6.28) 

Since all the algorithms presented do not require the planes Pi and Pt i = 
1, ... , k to be pairwise parallel, suitable versions of the algorithms can be 
implemented to deal with cases with bounded uncertainty on the components of the 
regressors. It is however important to remark that the computational burden can 
increase dramatically if there is no prior information on the orthant(s) in which the 
D(k) region is located. Moreover, in the case in which there is correlation among 
the regressors' uncertainties, only upper bounds to the D(k) set can in general be 
obtained. (23) This last case occurs, for example, when AR, MA or ARMA models are 
considered with bounded noise both on the input and on the output. 

6.7. NUMERICAL EXAMPLE 

To compare the performances of all the previously described algorithms, they 
were used for identifying the parameter vector of a third order MA system. 

Data were obtained from the following simulated model 
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y(k) = 3.0u(k) + 1.5u(k - I) + 0.7u(k - 2) + e(k), (6.29) 

where the error e(k) is white, uniformly distributed so that e(k) E [-1,1], 'Ilk, and 
the input vector u belongs to a normally distributed random sequence with mean 
equal zero and standard deviation equal to one. 

Fifty series of inputs and errors were generated. For each of them the six 
previously presented estimates (Central SOCk), Projection 9P(k), Fogel-Huang, 

" " Pearson, ARCE SOCk) and ARPE 9P(k» were computed at each step k. For each 
parameter and each estimate, the absolute value of the difference between the 
estimated parameter value and the true one used for generating the data was 
computed at each step k and averaged over the 50 realizations. The resulting average 
absolute estimation errors are plotted in Figs. 6.1, 6.2 and 6.3. 

The average amplitudes of the PUIs, as they can be evaluated when using the 
various algorithms, were also computed at each step k. In this case note that only 
five different PUIs evaluations are available since the central estimate and the 
projection estimate have the same parameter bounds. For the ARPE, the parameter 

- " bounds have been computed using the PUIi(k) and not the PUI;(k) i = 1. ... ,p. 
Plots of these quantities are reported in Fig. 6.4. 

From Figs. 6.1, 6.2 and 6.3, it can be noted that the average absolute error of 
the ARCE and projection estimate are quite close and are just slightly worse than 
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FIGURE 6.1. Average absolute error of the first parameter. 
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FIGURE 6.4. Average amplitude of the PUIs of the three parameters. 

the optimal central estimate. Also the ARPE performs satisfactorily while the 
Pearson and Fogel-Huang estimates have larger errors. 

From Fig. 6.4 it is even more evident that the parameter uncertainty derived 
from Pearson's and Fogel-Huang's algorithms is far worse than that obtained with 
the other algorithms. 

Since the ARPE algorithm is one of those that requires less computational 
effort and less information on the error structure, it is probably the most convenient 
for many practical applications. Furthermore, it can easily deal with time varying 
systems as outlined in the preceding section. 
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Transfer Function Parameter 
Interval Estimation Using 
Recursive Least Squares in the 
Time and Frequency Domains 
p. -0. Gutman 

ABSTRACT 

A bank of recursive least squares (RLS) estimators is proposed for the estimation 
of the uncertainty intervals of the parameters of an equation error model (or RLS 
model), where the equation error is assumed to lie between a known upper and 
lower bound. It is shown that the off-line least squares method gives the maximum 
and minimum parameter values that could have produced the recorded input-output 
sequence. By modifying the RLS estimator in two ways, it is possible to recursively 
compute inner and outer bounds of the uncertainty intervals. It is shown that the 
inner bound is asymptotically tight. It is demonstrated that transfer function 
parameter intervals can also be estimated, by applying the method to measured 
frequency function data. 

P.-O. GUTMAN. Faculty of Agricultural Engineering, Technion-Israel Institute of Technology, Haifa 
32000, Israel. 
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7.1. INTRODUCTION 

The motivation of this chapter is a desire to make the Horowitz robust control 
design method(l) adaptive. In the Horowitz method it is suitable to describe the 
plant uncertainty as transfer function value sets, or alternatively, as plant parameter 
sets or intervals. The resulting controller consists of a linear time invariant feedback 
compensator and prefilter. In Yaniv, Gutman, and Neumann(2) a method is suggested 
how to change, on-line, the parameters of such a robust controller, when it becomes 
known that the plant parameters each belong to a smaller interval than the original 
interval on which the design is based. Combined with a parameter interval estima­
tor, an adaptive robust controller is created, based on the principle of robust 
certainty equivalence,(3) see Fig. 7.1. In Gutman(3) an example from Yaniv, Gutman, 
and Neumann(2) is simulated with essentially the parameter interval estimator 
presented here. Conventional adaptive controllers are, on the other hand, in general 
designed according to the certainty equivalence(4) principle, whereby the adaptation 
is based on a point estimate of the parameter vector. 

The vast literature about the parameter set, or set-membership estimation 
problem is covered in several informative surveys.(5,6,7) A most attractive method 
is the one developed by Walter and Piet-Lahanier(8,28) that gives an exact polyhedral 
description of the feasible parameter set. One might surmise that for most linear 
problems, it obviates the need for any other method. However, approximants have 
been proposed, like for instance bounding ellipsoids.(9.IO) Therefore, the little idea 
in this note, originally presented at an IFAC conference.(25) might evoke some 
interest. 

Identifier of plant parameter 
Adaptation mechanism ......-- "-

set. giving TT, 

~ /' /' 
Reference Prefilter 

~ 
Compensator Plant 

F(IT;) G(IT;! 
r--

PIp) 

/ / 

FIGURE 7.1. Block diagram of control system with adaptive feedback and prefilter control, p is the 
plant parameter vector, it is the plant parameter uncertainty set estimate, fL is the plant parameter set 
on which the design is based, and it :2 ft. 
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It is shown that a bank of modified RLS estimators, under weak assumptions, 

gives asymptotically tight inner bounds ofthe feasible parameter intervals for linear 
equation error (RLS) models. Another variation yields nontight outer bounds. 

Hence, the method belongs to the class of inner-bounding and outer-bounding 
orthotopic estimators. (6,11) It is also shown that the method can be applied directly 

on frequency function measurement data. The estimator of Kosut,(12) where pa­

rameter sets of an output error model with unstructured uncertainty are estimated 

via the discrete fourier transform (DFT) of the input-output sequences, bears some 

resemblance to the one analyzed here. 
Estimates of value sets in the frequency domain would also serve the initially 

stated purpose.(l3) Goodwin and Salgado(l4) estimate value sets directly via a 
probabilistic RLS approach. LaMaire et al.,(15) Wahlberg and Ljung(l6) calculate 

error bounding functions in the frequency domain. The chapter is organized as 
follows: In section 7.2 the off-line and on-line algorithms are presented and 

analyzed. Section 7.3 contains four simulated examples. In the last example, the 

method is applied to frequency function data. In the Conclusions (section 7.4) the 
proposed algorithm is related to other methods, and advantages and disadvantages 

are discussed. 

7.2. ESTIMATION OF PARAMETER INTERVALS 

7.2.1. Off-line Parameter Interval Estimates 

Among various algorithms for plant parameter estimation,(l7,18) and for recur­
sive estimation,(19,20) we find the popular least squares (LS), and the recursive least 

squares (RLS) and its relatives. In the above references, conditions on the model, 
input sequence, and noise sequence are stated for the RLS estimates to converge 

asymptotically, with and without bias with respect to the true parameter values. 
The LS and RLS algorithms will be the point of departure in this chapter. Let 

the "true" process be 

yet) = eT <pet) + vet) (7.1) 

where e = (al ... an h ... bm)T is the parameter vector, and <p(t) = [-yet - 1) ... 
-yet - n)u(t - 1) ... u(t - m))' is the vector of measured lagged input-output data. 

The measured input signal is {u(t)} and the measured output signal is {y(t)}. The 
running sample index is t = 1,2, 3, ... The equation error {v(t)} includes all effects 
of measurements noises, mismodelling, disturbances and other uncertainties in the 

f\ 
given description of the data. Then the LS estimate, eLS(N) at time t = N is given 
by:(!7) 
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@"CN)" [ ~ ~ <P(I).CI)T ~ ~ .CI)yC') 

Introduce the matrix R(N) 

N 
I 

R(N) = N L cp(t)cp(t)T 
t~l 

1\ 
The pure RLS estimate fl(t) is given by:(19) 

Set) = S(t - I) + p(t)cp(t)[y(t) - S(t - I)T cp(t)] 

p(t) = P(t _ I) _ pet - I )cp(t)cp(t)Tp(t - I) 
I + cpulp(t - I)cp(t) 

P.-O. GUTMAN 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

For suitable initial conditions of the RLS algorithm,09) Set) = SLS(t) and 
1\ 

pet) = R(tt1 It for all t; for any positive definite P(O), e(t) and P(t) converge to 
SLS(t) and R(tt1 It, respectively. For constant e, the estimate S(t) converges to e 
under ideal conditions.(I9) Also under ideal conditions,(l7) pet) is the normalized 
variance of the estimate: 

where "'0 is the variance of vet). 
Like the pure RLS estimator, most algorithms give point and variance esti­

mates only. Under ideal conditions, the variance matrix P(t) of the RLS estimator 
could be used for estimating a likely parameter set. In practice, however, the 
updating of pet) in Eq. (7.5) is modified. This would include a forgetting factor, 
dead zone, or other devices to keep tr(P(t)) constant control of p(t),(21,22) e.g., to 
enhance the tracking ability of the estimator. Then pet) does not represent the 
variance of the estimate. It is assumed(3,5-12,23) that the equation error in Eq. (7.1) 
is bounded: 

Iv(t)1 :<;; V(t) :<;; V tj t (7.6) 

with Vet) or Vknown. This assumption may be used to compute parameter interval 
bounds. 

It is easy to show(17) that the LS estimation error, e(N) = SLS(N) - e is given 
by 

N 

e(N) = [R (N)r I ~ L cp(t)v(t) 
(7.7) 

t~l 
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Comparing with Eq. (7.2), notice that Eq. (7.7) can be implemented with {vet)} 
given in the recursive form Eqs. (7.4 and 7.5). With vet) replacing yet), and 8 

1\ 
replacing 8 in Eq. (7.4), P(t) given by Eq. (7.5): 

8(t) = 8(t - 1) + P(t)<p(t)[ v(t) - e(t - l)T <pet)] (7.8) 

The sequence {v(t)} is not known however. Hence the estimation error can not be 
found. It is, however, easy to dream up the worst possible equation error sequence 
{v(t)} , satisfying Eq. (7.6), that will yield a maximal upper bound for 18;(N)1. For i 
= 1, 2, ... , (n + m), let 

v;Ct) = V(t)sign {[R(N)r1 <p(t)}j (7.9) 

and 

N 

E(i,N) = [R(N)r l ~ L <p(t)v;Ct). 
(7.10) 

1=01 

Then, for each component i, 

(7.11) 

or, equivalently, 

(7.12) 

Define 

(7.13) 

Clearly, MI defines the maximal parameter intervals, in which those parameter 
components are to found that are able to produce the recorded input-output 
sequence, assuming the model Eqs. (7.l and 7.6). 

Assume( 17) that the input {u( t)} is quasi-stationary such that R(N) ---+ R *, as N 
---+ 00. Assume further that all elements of <p(t) are bounded and quasi-stationary, 
then H(l IN) 2:;':1 <p(t)vlt) ---+ h7, 'IIi as N ---+ 00. Hence E(i, N) converges as N ---+ 00. 

Equations (7.9--7.11) are suitable for off-line implementation. For on-line use, pet) 
can be compute using Eq. (7.5), while the expanding matrix <D(t) = [<p(l )<p(2) ... <p (t)] 
has to be saved tn order to compute viet). This may constitute an unacceptable memory 
burden. The next subsection will treat on-line approximations of Eqs. (7.9 and 
7.10). 

It may be noticed that V in Eq. (7.6) may be estimated from the residual: 
. ~ 

Assume that a LS parameter estlmate has been computed, SeN). Compute the 
residual 
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e(t) == yet) - ql(t)@(N) t ~ N (7.14) 

Then maXt Je(t)J may serve as an estimate of V. It is expected that this estimate will 
f\. 

be conservative since 8(N) is, in general, a biased estimate of e. 

7.2.2. On-Line Parameter Interval Estimates 

In Algorithm 2 of Gutman(3) a bank of RLS estimators was suggested to 
estimate parameter intervals in essentially the following way: Let, for each i, 

(7.1Sa) 

N 

DU,N) == [R(N)r 1 ~ I <p(t)vm (7.15b) 
t~l 

Comparing with Eqs. (7.9) and (7.10), it is clear that Di(i,N) ::::; Ei(i,N) since {vi(t)} 
is chosen to maximize Ei(i,N). However, Eq. (7.1S) IS suitable for recursive 
implementation via (Eq. 7.8), with P{t) given by Eq. (7.S): 

D(i,t) == D(i,t - 1) + P( t)<p(t)[ v/t) - D(i,t - II <p(t)] Vi (7.16) 

The selection of v in Eq. (7.1Sa) simply means a "local in t" maximization of 
D/i,N) in Eq. (7.1Sb and 7.16). Contrast this to the "a posteriori at t = N' 
maximization of E/i,N) in Eq. (7.10) via the section ofv in Eq. (7.9). 

Assume that R(N) --+ R* as N --+ 00. Then. for every i, v/t) --+ vJt), and hence 
D/i,t) --+ Ei(i,t) as t --+ 00. 

We conclude that DiU,t) is a lower, progressively closer bound for the ith 
parameter interval extension E/i,t). An upper bound for E/i,!) can also be found. 

Let M = {my} be a matrix whose elements are mi}' Define abs(M) = {Jmijl}. Let 
the definition also hold for vectors. Let 

N 

F(N) == abs([R(N)r1) ~ L abs(<p(t»V(t) (7.17) 
t=l 

Comparing with Eq. (7.10) it is immediately clear that EiU,N) ::::; F;(N) since all 
elements on the right hand side ofEq. (7.17) are non-negative. Moreover, assuming 
that R(N) --+ R* as N --+ 00, then, of course, abs ([R(N)r1) also converges. Assume 
further that all elements of <pet) are bounded and quasi-stationary, then (liN) 2:~1 
abs(<p(t)V(t) converges. Hence F(N) converges as N --+ 00. 

The convergence limit of F(N) does not seem possible to find without addi­
tional specific assumptions, which have to be validated in each particular case. 
Clearly, from Eqs. (7.10 and 7.17) 
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Assume, for instance, that when N --* 00 

whereE {.} means expected value, andx E [0,1]. Then, withFo some constant vector 

The computation of F(N) is easily made recursive 

\)I(t) = \)I(t - 1) + abs( <pet) )V(t) 

F(t) = abs(P(t»\)I(t) 

with P(t) given by Eq. (7.5) and \)1(0) = O. 

7.2.3. Summary 

(7.l8a) 

(7.18b) 

From the recorded input-output data and an assumed RLS model of Eq. (7.1) 
with bounded equation error of Eq. (7.6), the maximally possible parameter 
intervals ofEq. (7.12) for each parameter 8i , 

(7.19) 

have been computed, with E(i,N) given by Eqs. (7.9) and (7.10). Since E(i,N) is not 
conveniently computed in a recursive way, recursively computable inner, D(i,t) 
Eqs. (7.1Sa and 7.16), and outer, F(t) Eq. (7.18), bounds were found: 

(7.20) 

Under weak assumptions, D(i,N), E(i,N), and F(N) converge to their respective 
limits as N --* 00, with D(i,N) and E(i,N) sharing the same limit. 

7.3. EXAMPLES 

EXAMPLE 1: Let the "true" process model be given by 

y(t)=aJy(t-l)+bJu(t-l)+v(t-l) (7.21 ) 

where 

is the parameter vector, and 
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<p(t) = [y(t - I) u(t-l)f 

is the vector of measured lagged input-output data. The input signal {u(t)} is chosen 
to be a uniformly distributed random variable E [-I, I] independent for each t. The 
initial condition yeO) was set to o. The equation error {v(t)} is chosen to be a 
uniformly distributed random variable E [- I, I] independent for each t, and inde­
pendent of {u(t)}. It is assumed known that in Eq. (7.6) , V(t) = V = I. 

The system is simulated for t = 1,2, . .. , 100. For one particular simulation, 
the LS estimate, Eq. (7.2 or 7.4), becomes@ (l00) = (0.5341 0.9575)r Such a good 
estimate is expected because of the nature of {v(t)} and {u(t)}. 

From Eq. (7.10), E( 1 ,t) and E(2,t) are computed. The final values are EI( I, I 00) 
=0.9317, andE2(2, 100)= l.6259,signifyingthatal E [0.5341 ±0.9341]andb l 

E [0.9575 ± l.6259]. From Eq. (7.16), D(I,t) and D(2,t) are computed. The final 
values are DI(l,IOO) = 0.9102, and D2(2,100) = l.5974. From Eq. (7.18), F(t) is 
computed. The final values FI (I 00) = 0.9369, and F2(lOO) = 1.6360. 

Fig. 7.2 displays ~I(t), ~I (t) ± E I(1 ,t), ~I(t) ± DI (1 ,t) , and ~ I(t) ± FI (t) . In Fig. 
7.3 . tl(t), tl(t) ± Ei2,t) , tl(t) ± Di2,t) , and tl(t) ± F2(t) are displayed. From the 
figures it is seen that Eq. (7.20) holds; DU,t) seems to be a good approximation of 
E(i,t) at all times, while F(t) is satisfactory at "steady state" for t > 30. 

Although the computed parameter intervals may seem exaggerated, worst case 
parameter combinations, with either al or bl at the endpoint of its respective 
interval, may yield the observed data. In the simulated case, not both a I and b I may 

o 
'I 

A 

- 1 

-2 

- 3 ~--~----~----~--~----~----~----~--~----~--~ 
o 1 0 20 30 40 5 0 60 70 80 90 JOO 

FIGURE 7.2. Example 1 results: al(t) (0 ), ~I(t) (0 ), ~I(t) ± £1(1,1) (6). ~I(I) ± DI( 1,1) ('7), and ~I(t) 
± FI(f) (C::;» . 
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FIGURE 7.3. Example I results: bJ(t) (0), gl(t) (0 ), gl(l) ± E2(2,1) (",), gl(t) ± D2(2,t) (\7), and gl(t) 
± F2(t) (\7 ). 

be at an interval endpoint. This is reflected by the low values of D 2( I, 100) = 
0.03072, and DI(2,100) = 0.0439. Sharper bounds might be obtained by a linear 

transformation of the {y(t) u(t - I)} space, yielding estimates of linear combina­

tions of al and hi' 
EXAMPLE 2: This example is extreme in the sense that vet) is highly dependent 

on <p(t). The process is the same as in Example 1, Eq. (7.21), with the exception 
that {v(t)} = {u(t)}. One simulation is performed. The RLS estimate is very good 
in the sense that the prediction error is zero: ~(l 00) = (0.5 2.ol. The knowledge of 
the size of v(t) gives, however, the opportunity to find other parameter values that 
could have generated the data. 

The bounds E(1,t) and E(2,t) were computed, with the final values EI(1,100) 
= 0.6880, and E2(2, 100) = 1.6257. Consequently, a, E [0.5 ± 0.6880] and h, E [2.0 
± 1.6257]. The large parameter intervals are justified; the "correct" e is found in 
the estimated parameter set. The inner bounds D( 1 ,t) and D(2,t) are computed. The 
final values are DI (1,100) = 0.6815, and D2 (2,100) = 1.6089. The outer bound 
F(t) was computed, with final values F,(100) = 0.6933, and ~(100) = 1.6384. 

Fig. 7.4 displays ~,(t) , ~,(t) ± EI(1 ,t), ~,(t) ± D, (1 ,t), and al(t) ± FI(t). Fig. 7.5 

displays tl(l), tl(l) ± E2(2 ,1), tl(t) ± D2(2,t) , and tl(t) ± F2(t) . From Fig. 7.5 it is 
seen that Eq. (7.20) holds, and that D(i,t) and F(t) seem to be good approximations 
of E(i,t). 

EXAMPLE 3: In this example, the more "realistic" situation of a first order 
continuous-time model with step-wise jumping parameters is investigated. The 
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- 0.5 
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FIGURE 7.4. Example 2 results: al(t) (0), ~l(t) (0 ), ~I(t) ± El(l ,t) (6 ), ~I(t) ± Dl(l,l) (v), and ~l(t) 
± Fl(t) (~). 

example is adapted from Gutman(3) To represent the parameter intervals, the inner 
bounds D(i,t) are computed with a bank of modified RLS estimators, based on 
Canudas de Wit,(23) of a type that could be used in practice. An aim of this example 
is to illustrate how the parameter interval estimator fares together with a modified 
RLS. 

The equations of the modified RLS identifier are: 

(7.22a) 

(7.22b) 

(7 .22c) 

a ={o ify/=OorleA:S; W, 
/ 1 otherwise 

(7.22d) 

(7.22e) 

(7 .22f) 
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FIGURE 7.5. Example 2 results: hl(t) (0), SI(t) (0 ), SI(t) ± £2(2,1) (t; ), SI(t) ± D2(2,t) ('7), and SICt) 
± F2(t) (\7). 

This algorithm disregards redundant data, and prevents Pt -+ 0 when such data is 
received. 

Given the first order dynamic system as a function of time T: 

i(T) = -pZ(T) + kU(T) (7.23a) 

yeT) = Z(T) + n(T) (7.23b) 

where In(T)1 $ 0.01 is a uniformly distributed measurement noise. The unknown 
parameters k and p, which occasionally change stepwise, have to be estimated. A 
priori parameter bounds are k E [1,10], and p E [0.5,3]. By low-pass filtering(24) 
yeT) and U(T), one gets an identification model ofEq. (7.1) with Ivtl bounded, whose 
parameter vector e is invertibly related to k and p. Let 

(7.24a) 

YI(T) = -(l/c)YI(T) + (l/c)Y(T) (7.24b) 

where the filter time constant is chosen C = 0.1. The identification model is then 

(7.25) 

with 
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a l = pc - I 

and 

it I ( t) = -( I / c )n I ( t) + (I / c )n( t) . 

Clearly, InI(t)l:S: max(n(t)) since nI(t) equals net) transmitted through a first order 
filter. Using the lower limit of p 

max(lad) = 10.5-0.1 - II = 0.95 

and 

Iv(t)l:S: maxln(t)(I + lad)1 = 0.0195. 

Notice that Eq. (7.25) is valid at all times t. Hence yet), YI(t), and UI(t) may be 
sampled at arbitrary times, for instance, with non-uniform sampling periods. Let 

e = (a l hI)T 

1 s · 

10 . 

s. 
y 

o. 

-s o 

-10 . 

-IS . ~ __ ~~ __ ~ ____ ~ __ ~~ ________ ~,-__ ~ ____ ~ 
D· 2S. 50 . 75. 100 · 

SEC 

FIGURE 7.6. Input signal u('r) and output signaIY(T) for Example 3. (The noise is hardly noticeable.) 
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and 

where the index t is the running sample index as in Eq. (7.1). 
The system is excited with a square wave input u(t) (see Fig. 7.6). According 

to Figs.7.7 and 7.8, k and p are changing with random steps at random times. 
Because of the parameter changes, the output yet) varies wildly (see Fig. 7.6). 

The modified RLS identifier of Eq. (7.22) is used as a conventional point 
estimator to estimate (~,p) in the following manner: Wt is used as a tuning parameter 
and set to 0.013. In Eq. (7.22d) "Yt == 0" is replaced by "IYA :5: E" with E == 10-0. In 
Eq. (7.22f), "Wtlerl" is replaced by "W/max(E,IEtl)", andfis set to 0.05. A uniform 
sampling period of 0.1 seconds is used. 

To compute D(i,t), i == 1, 2 for the interval bounds ~min' ~max' Pmin, and Pmax, 
1\ 

twocopiesofEq. (7.22a)areused with at replaced by D(i,t), i = 1,2, and et replaced 
by (viCt) - D(i,t -I)<p(t)), respectively (see Eq. (7.16)). 

IBr-------------______________________________________ ___ 

1\ 

Kmol 

-5t---------~--------~----------._--------_.--------__, 
B 2B 4B 6B BB 

Sec 
loeB 

1\ 

K 

FIGURE 7.7. The true parameter k and its a priori bounds, the point estimate t and the estimates of 
the interval bounds ~min and ~max for Example 3. 
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FIGURE 7.8. The true parameter p and its a priori bounds, the point estimate p, and the estimates of 
the interval bounds pmin and pmax for Example 3. 

Using Eq. (7.15a), viet) is computed with [R(tW I replaced by tP(t) and pet) 
taken from Eq. (7.22f). Vet) was set to WI + maxlv(r)1 = 0.0325 to account for both 
the equation error v(t) in Eq. (7.25) and the dead zone W, in Eq. (7.22). 

The identification results are shown in Fig. 7.7, where k, t ~min' ~max' and the 
a priori bounds are plotted, and in Fig. 7.8 where p, P, Pmim Pmax and the a priori 
bounds are displayed. The estimates are not projected into the a priori given 
parameter set. The estimates converge to their approximate steady state values after 
steps in u( T), i.e., when u( T) excites the system. The point estimate (t p) is of good 
quality, but exhibits an occasional bias. In most cases, the parameter interval 
estimates include the true parameters when steady state has been reached. There is 
cross talk between the parameter estimates: a jump in p influences ~, ~mim ~max' 
and (less so) vice versa. The upper parameter interval estimate F from Eq. 
(7.18), with pet) taken from Eq. (7.22) and V(t) as above, diverged since 
P(t) ---6 0 in Eq. (7.22). 
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If the parameter interval estimates in this example are to be used for the 
adaptation of a robust controller,(2) then the robust controller should be based on 
the full a priori parameter uncertainty whenever an abrupt parameter change is 
sensed. Only when the estimator has reached steady state, could adaptation take 
place using the interval estimates with appropriate safety margins. 

EXAMPLE 4: Application of the method on measured frequency response data. 
Consider the same process as in Example 1, Eq. (7.21), with the same yeO), {u(t)} 
and {v(t)}, t= 1,2, ... ,N, andN= 100. Let G(q)=B(q)1 A(q) be the true input-output 
transfer function of Eq. (7.21), with q denoting the forward shift operator; 
qy(t) = y(t + 1). 

An empirical transfer function estimate (ETFE)(l7) G(ejWk), with ffik = 21tk1N 
[radls], and k = 0, I, ... , N - 1, is obtained by dividing Y,v( ffi), defined as the 
discrete Fourier transform (DFT) of {y(t)}, with U,v(ffi), the DFT of {u(t)}, t = 1, 
2, ... , N. Moreover, let V,v(ffi) be the DFT of {vet)}, t = 1,2, ... ,N. The ETFE, 
b(ejWk), is considered as the measured data in this example. A 

Let e = (aJ bJ)T as in Eq. (7.21). Define Ij>(q) = [b(q) l]T and \If(q) = qG(q). 
Lilja(26) (and references given therein, e.g., Levy<27» shows that 

(7.26) 

constitutes a LS model in the frequency domain with the equation error WUffik) (see 
Eq.(7.1». 

In order to apply the parameter interval estimator on Eq. (7.26), it is necessary 
to compute W(jffik) such that IW(jffik)1 ~ W(jffik)' Using Ljung(l7) [Eq. (6.28)], and 
noting that W(jffik) is an equation error and not an output error, 

WUffik) = A(ejWk)RJ.,wk)IU J.,ffik) +V J.,ffik)IU J.,ffik) 

where, according to Ljung,07) [Eq. (2.54)] 

IRJ.,ffik)I ~ 2CPG1{N 

(7.27) 

(7.28) 

with Cu such that lu(t)1 ~ Cu' Denoting the impulse response of G(q) by g(t), 

CG = L:l tlg(t)l· 
Clearly, from Eq. (7.27), 

IW(jffik)1 :'S: WUffik) = lA(ejWk)RJ.,ffik)IU J.,ffik)1 + IV J.,ffik) I UJ.,ffik) I (7.29) 

The first member of the right hand side of Eq. (7.29) is deterministic since u(t) is 
assumed to be known. It can be estimated via Eq. (7.28) and an estimate of 
A (ejWk). Assuming that Eq. (7.21) is the sampled version of a stable continuous 
system, lA(ejWk)l:'S: maxalE[O,J)(leiWk - ad). In Eq. (7.28), Cu = 1 and CG < 00 for 
al E [0,1). Consequently WUffik) is a very large number that makes the method 
useless in this case. 
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However, change the example such that u(t) is periodic with a period ofN so 
that RJ/ffik) = 0 according to Ljung(17) and the first member of the right hand side 
of Eq. (7.29) equals zero. Choosing a sum of sinus signals at five frequencies such 
that their range covers the expected bandwidth of Eq. (7.21): 

4 

u(t) = 0.2 L sine ffi(3.l'''l), t = I, ... , N (7.30) 

Then, the standard deviation of the second member of the right hand side of Eq. 
(7.29) which is random with respect to v(t) (Ljung,(17) page 149) and whose mean 
is zero, can be computed as follows: the power ofu(t) equals 0.2212, at each of the 
five frequencies w(3.l'''), m = 0, I, ... , 4, otherwise the power is zero. The power 
spectral density of v(t) ideally equals the variance of vet) (= 113) divided by N12, 
i.e., 11150. Hence, it can be estimated (Ljung,(17) Eq. (6.34a)) that 

(7.31) 

Although not strictly correct but common in practice, let W(jffik) equal three 
standard deviations, i.e., W(jffik) = -{3. Applying the omine algorithm in Section 
7.2.1 to Eq. (7.26) at the five frequencies defined in Eq. (7.31), with I W(jffik) I ::;: 
-{3, the LS estimate 0(5) = (0.5020 1.2702)T with, EI (I, 5) = 1.0161 and E2(2, 5) 
= 1.8010, signifying that modulo the 30 assumption, al E [0.5020 ± 1.0161] and 
b l E [1.2702 ± 1.8010]. This estimate is of roughly the same quality as the one in 
Example I. 

We have demonstrated that if a frequency function estimate is given, generated 
by a known periodic input sequence, then the proposed algorithm can be used to 
bound the estimates of the coefficients of transfer function numerator and denomi­
nator polynomials. 

7.4. CONCLUSIONS 

From the recorded input-output data and an assumed RLS model with bounded 
equation error, the feasible parameter intervals for each parameter 8io 

ALS . ALS . 
8j E [8 j (N) - Ej(I,N), 8j (N) + ElI,N)] 

have been computed. Since E(i,N) is not conveniently computed in a recursive way, 
a recursively computable inner, D(i,N), and outer, F(N), bounding is found: 
Dj(i,N) ::;: Ej(i,N) ::;: Fj(N). Under weak assumptions, D(i,N), E(i,N), and F(N) 
converge to their respective limits as N ~ 00, with D(i,N) and E(i,N) sharing the 
same limit. 
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Note that E/i,N) exactly describes the feasible parameter interval in the worst 
case: there exists a feasible equation error sequence that could have produced the 
input-output data with the parameter value belonging to the interval. Moreover, 
D;(i,N) is an asymptotically exact inner bound of Ej(i,N). Hence it is believed that 
a contribution of this chapter is the development of orthotopic(6.11) inner bounding. 
It should however be remarked that the bounds in this chapter are inner and outer 
bounds of the estimate uncertainty intervals due to the LS algorithm. (5) Since the 
LS algorithm is asymptotically correct, D;(i,N) tends to the inner bound, and 
±Ej(i,N) tend to the inner and outer bounds, respectively, of the feasible parameter 
intervals.(5,11) 

The proposed algorithm is obviously not a special case ofprojecting ellipsoidal 
inner and outer boundings(5-7.9.10) along the parameter axes, since the covariance 
matrix pet) is not used for the interval estimate. Instead, a specially constructed, 
worst-case equation error sequence is employed. Moreover, It has been demon­
strated that bounding ellipsoids are very crude;(6.7) in particular the inner ellipsoid 
tends to vanish. Our inner bound, D;(i,ll/), is asymptotically exact. The weak point 
of the algorithm is the convergence limit of Fj(N) , which in general does not equal 
the limit of Ej(i,N). Under additional assumptions on the data, the distance between 
the limits may be established. The simulations of Example 1 and 2 indicate, 
however, that there are cases when the limits are close. The algorithm possesses the 
same tracking ability as the RLS on which it is based, since the estimated intervals 
are centered around their respective point estimates. However, the interval esti­
mates may be unreliable during transients (Example 3). 

In most cases, methods giving an exact description(8) of the feasible parameter 
set should be preferable. But for a practitioner who already has a well oiled RLS 
or one of its cousins running in his system, only a marginal additional effort is 
necessary to include the parameter set estimator proposed. The algorithm is a small 
contribution to combining statistical and set-membership estimators.(6) 

Finally, it was demonstrated in an example that the algorithm can be used in 
the frequency domain, given a frequency function measurement with a periodic 
input signal. 
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8 
Volume-Optimal Inner and Outer 
Ellipsoids 
L. Pronzato and E. Walter 

8.1. INTRODUCTION AND PROBLEM STATEMENT 

Approximating a complex set '7(by a simple geometrical form (such as a polytope, 
an orthotope, a sphere or an ellipsoid) is often of practical interest. Consider for 
instance the situation where a vector u has to be chosen so as to satisfy the property 

p(u,x) E 'T, V XES, (8.1 ) 

where x and p(.,.) are vector-valued and where 'Tand S are given sets. This can be 
of interest for instance in robust control, where the controller characterized by u 
must be designed in order to guarantee some given performances--at least stabil­
ity--corresponding to a target set 'T for the process under study, given the informa­
tion that the model parameters x lie in some specified feasible domain S . The 
information about S can be derived using the parameter bounding methodology, 
where one assumes that observations with bounded errors are performed on the 
process.(I) 

Two methods can be used to replace the initial problem by a simpler one. The 
first one is to replace Eq. (8.1) by the sufficient condition p(u, x) E q; V X EO::J 

S, with 0 an outer approximation of S, e.g. an ellipsoid 'Eo. The second one is to 

L. PRONZATO • Laboratoire 13S, CNRS URA-1376, Sophia Antipolis, 06560 Valbonne, France. 
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replace it by the sufficient condition p(u, x) E ] C 'T, \;:j XES, where] might be for 
instance an ellipsoid '£1. 

In Ref. 8.2, an algorithm from the field of experimental design is used to 
construct the minimum-volume ellipsoid containing S. One may hope that, with 
this optimal ellipsoidal approximation, robust control laws will be obtained that are 
less conservative than those derived from coarser approximations. (3) Various sta­
tistical applications of volume-optimal outer ellipsoids are suggested in Ref. 8.4. 
See especially the robust estimation of correlation coefficients.(s.6.7) 

Ellipsoidal inner approximation is of interest in the context of tolerance design 
(design centering).(8) It is a basic tool for efficient methods in convex program­
ming. (9,10) In the context of parameter bounding, characterizing S by outer and inner 
ellipsoidal approximations permits evaluation of the accuracy of these charac­
terizations. (11) 

Let 'l( be a bounded convex body of the Euclidian space W. From the 
Loewner-Behrend theorem,02) there exists a unique ellipsoid %, of minimal 
volume containing X and, from Ref. 8.3, there also exists a unique ellipsoid t£( of 
maximal volume contained in 'l(; 

We shall denote Po('l() (resp. Pi('l()) the problem corresponding to the deter­
mination of%,('l() (resp. t£('l()). Both problems are simpler when the center of the 
ellipsoid to be determined is fixed a priori, and they will then be denoted by 
Poc('l() and PiJ'l(). When 'l(is a polytope, all these problems can be solved by 
classical nonlinear programming approaches (constrained Newton, path-following 
Newton methods ... ). Moreover, the solutions of Pi'l(), Po ('l() and Pi ('l() can be 
obtained through the solution of a problem P;(.).(lO) We c~nsider a ~ore general 
situation where 'l(is not necessarily a polytope (and even not necessarily convex 
for problems PkK), Po ('l()). 

An algorithm for ~olving PiX), with 'l(not necessarily convex, is given in 
Section 8.2. Some basic results about inner and outer ellipsoids are recalled in 
Section 8.3, to be used for the solution of PiC 'l(), with 'l( a convex set. This problem 
is considered in Section 8.4. When 'l( is a polytope, t£( 'l() is then obtained through 
the solution of a series of problems Po(.) for polytopes. When 'l( is a general convex 
set, Pj('l() is solved via a relaxation procedure, i.e., it is decomposed into a series 
of subproblems P;(.) for polytopes. Finally, Pie 'l() when'l( is a polytope determined 
recursively is considered. Various illustrative examples are presented. 

8.2. MINIMUM-VOLUME OUTER ELLIPSOID 

Problems Po and Po are known to be respectively duals of aD-optimal 
experiment-desi~ problem(14) and a Ds-optimal design problem.(lS) When'l( is a 
polytope characterized by its vertices, we simply have to determine the minimal 
ellipsoid containing a finite set of points. The equivalence between POe and Po is 
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then shown in Ref. 8.10, and the case p = 2 can be solved with a finite exact 
algorithm,(4,16) which is not considered here. Consider PO<'l(), with 1( a given 
compact set of RP (not necessarily convex). Let 3 be the set of all normalized 
distributions of weights on ~ 

f c,(dx) = 1, 
?( 

and define M(c,) and c(c,) as 

M(c,): = f xxTc,(dx), c(c,): = f xc,(dx) . (8.2) 

The following theorem states the equivalence between P o( 'l() and the determination 
of an optimal distribution C, * on ~ 

THEOREM 8.1. 'E ~('l() corresponds to 

'E(c*,A*):= {x E RP I (x - c*)TA*(x - c) ~p}, 

with 

and C, * obtained by 

c,*:= arg max In det[M(c,) - c(c,)cT(c,)]. (8.3) 
SE3 

PROOF: See Refs. 8.2 and 8.15. 0 
The solution of Po('l() thus amounts to the determination of c,' in Eq. (8.3). 

This optimal distribution satisfies the following properties. 
THEOREM 8.2. 
(i) A distribution c,' supported by at most p(P+3) (and at least p + 1) points of 

1(always exists. These support points are located on the boundary of the convex 
closure of 1(. When there are only p + 1 support points, they are weighted uniformly 
and the center c* of the ellipsoid corresponds to their center of gravity. 

(ii) c,* is not necessarily unique (although 'E(c*,A*) is), but the set of all 
optimal distributions satisfying Eq. (8.3) is convex. 

(iii) V x E 1(, d(x,c,*) ~ 0, with 

(iv) maxxE?(d(x,c,') = minsE3maxxE?(d(x,c,). 
PROOF: (i) follows from Caratheodory's theorem;(l2) (ii-iv) result from the 

concavity of the criterion 
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<D(~) := In det[M(~) - C(~)CT(~)]. (8.5) 

A detailed proof can be found in the experimental design literature.(l7,18) D 
From (i), in practice it is always possible to restrict attention to discrete 

distributions of weights Ai on support points Xi> i = I, ... , n, with n S; P(P2+3). The 
integrals in Eq. (8.2) then reduce to discrete sums. 

The main interest of Theorem 8.2 is perhaps the availability of efficient 
algorithms developed in the context of experimental design. It can also be used to 
prove the global convergence (whatever the choice of the initial distribution ~o) of 
the following vertex-direction algorithm.(19,20,21) 

AP 0: (Algorithm for problem Po) 
Step (i) Choose E such that ° < E« I, and a discrete distribution ~o such that 

M(~o) is invertible, Set k = 0, 
Step (ii) Compute 

x+ := arg max d(x,~'J. (8.6) 
XE1( 

If d(x+, ~k) < E, stop. 
Step (iii) Compute ~k+l as a distribution whose support points Xi are x+ and 

those of~k and whose weights Ai are the best in the sense <D(~) in Eq. (8.5). Remove 
any support point with zero weight from ~k+l . k ~ k + I, go to Step (ii), 

Step (ii) involves the maximization of a convex quadratic function over 'l( 

Local methods may thus not converge to the global optimum. When 1(is a polytope, 
from Theorem 8.2 (i), the only candidates for x+ in Eq, (8.6) are the vertices of 1( 
so that the global solution is obtained at a very low computational cost when these 
vertices are known. Step (iii) corresponds to the maximization of<D(~) in Eq, (8,5), 
which is a concave function of the weights Ai , i = I, ... , n, with the constraints 
Ai;:O: 0, L~1 Ai = l. A constrained Newton method (which amounts to solving a 
sequence of convex quadratic programming problems) can thus be used, The 
following expressions for the gradient and Hessian of <D(~) allow an easy imple­
mentation of the algorithm. 

82<D(S) = (xTM-l(~)X)2 + 2xTM-l(~)Xi x 
8\8Aj J [1 - cT(S)M-l(S)C(~) 

{cT(~)M-l(~)(Xi + x) - [x;M-l(~)C(S)] [xJM-l(~)C(~)] - I} + 

[x;M-1 (~)c(~)] [xTM-1 (S)c(S)] 
x 

[1 - cT(~)M-l(S)C(S)]2 
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{2cT(S)M-1(S)(Xi + X) - [xTM-1(S)c(S)] [xJM-1(S)c(S)] - 4}. 

The Newton method can be initialized with the distribution Sk+! that would be 
chosen by a Fedorov-like algorithm,(19) 

S = (l - a)sk + asx" 

where Sx+ gives a unit mass to the single support point x+ ofEq. (8.6) and a is given 
by 

Note that, in this case, optimizing the weights is not necessary to insure global 
monotone convergence. It is, however, highly recommended to obtain a satisfactory 
transient. Applications of this algorithm to parameter bounding can be found in Ref. 
8.22. 

REMARK 8.1. The construction of the minimum-volume sphere containing 'l( 
(not necessarily convex) coincides with the determination of the Chebychev center 
of '1(for the Euclidian norm. One can easily show(23) that the center c* and radius 
r* of the minimum covering sphere satisfy c* = c(S') and r* = res'), where 

and 

s' = arg max? (S), 
SE:::: 

with M(S) and c(S) given by Eq. (8.2). An algorithm similar to APo can be derived, 
that converges globally to the optimal distribution S' for the criterion r(.). When 
'l( is a polytope, a finite algorithm for the determination of its Chebychev center 
(of the same type as the simplex algorithm for linear programming) is described in 
Ref. 24. 
Duality properties between inner and outer ellipsoids will now be presented, to be 
used in Section 8.4 for the solution of Pi' 

8.3. DUALITY PROPERTIES 

Consider the set CaCR.P) of convex compact subsets 'l(of W that contain the 
origin 0 in their interior (0 E int('l()), and the transformation T(.) given by 

Co(lIV) ~ Co(W) 

'l(t--7 T(X.):= {<l> E WI <l>T x ::;p, V x E 'l(}. (8.7) 
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The following properties, illustrated by Fig. 8.1, then hold true. 
LEMMA 8.1. 
(i) T(.) defines a relation of duality in the following sense: 
-\:f '1(E Co(lRF), l1T('1()] = '1(, 

-for any given polytope '1( in Co(JRl), T(.) defines a one-to-one relation 
between the q-faces of '1( and the (p - q - I)-faces of T( '1() (for a polytope in JRJ', 
a vertex is a 0-face, an edge is a I-face, a hyperplane is a (p - 1 )-face, a q-face is a 
face ofa (q + I)-face). 

(ii) When '1( is a polytope of CO<lRF) defined by 

'1( = {x E lRJ' I aT x ~ b i' i = 1, ... , m}, 

the vertices of T( '1() belong to the set {pa/ bi, i = 1, ... , m }. 
(iii) T(.) satisfies 

\:f ('1(1''1(2) E C,,(Wf , '1(, C '1(2 <=> T('1(2) c T('1(,). 

(iv) T['E(c,A)] = 'E(c',A'), with 

c' =_ pAc 
p - cTAc' 

A,-l = P (A + AccT A ) 
p-cTAc p-cTAc' 

where 'E( c,A) denotes the ellipsoid defined by 

'E(c,A):= {x E lRF I (x - c)TA(x - c) ~p}, 

with 0 E int['E(c,A)] (i.e., cT Ac <p). 
PROOF: 

(i) The duality property is proved in Ref. 8.12. 

2 
E(c,A) 

2 
T(E(e, A)) 

r5 
' , 

0 0 I 

-1 -1 
'- " 

-2 -2 ' - -- - ~ -
K T(K) 

-3 -3 
-2 0 2 -2 0 2 

FIGURE L Illustration of Lemma 8, L 

(8.8) 
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(ii) 0 E int('7() implies bi > 0, i = 1, .... m, and thus 

'7(- { 11]) PIE. T < . - 1 } - XElf"- baix-p,l- , ... ,m. 
I 

If the hyperplane defined by (p/b;)aT x = p is a (p - 1 )-face of ~ it is transformed 
by T(.) into the O-face (vertex) (p/b;)ai of T('7(). 

(iii) Assume first that '7(1 c 'l0.. Then, 'if <I> E T('l0.) , maxXel(2<1/x:o:: p. so that 

max <I/x :O::p, 
XE7(, 

and <I> E T('7(I), which implies T('l0.) c T('7(I)' Assume now that T('l0.) c T('7(d. 
This implies T[T('7(I)] c T[T'l\2)] and thus from (i), '7(1 c 'l0.. 

(iv) T[ 'E( e,A)] = {<I> E lRP I maxxE'E(c.A) <l>Tx :0:: p}, so we first have to compute 
maXxE'Ec,(A)<I>T x. Elementary calculations (using the Lagrangian method) give 

max <l>TX = <l>Te + (P<l>TA-1 <1» 1 12, 
XE ,[(c,(A) 

which implies 

T['E(e,A)] = {<I> E lRP I <l>Te + (p<l>T A-1<l»112 :0:: p} 

c {<I> E lR,Plp<l>TA-1 <1>:0:: (p_<I>Te)2}. 

This last set is easily shown to correspond to 'E(e',A'). Now, 

max <l>Te = eTc' + (peT A,-le)1 12 

<pE'[(c',A') 

= pf(u), 

withf(u) := (u + u2)1 12 - u, and u = eTAe/(p-eTAe), which is strictly positive since 
o E int('E(e,A)). One can then check thatf(u) < 1, so that <l>Te <p, 'if <I> E 'E(e',A'). 
One therefore has p<l>TA-I<I>:O:: (p - <l> Te)2 => <l>Te + (p<l>T A-I <1»I 12:0:: p, which finally 
gives T['E(e,A)] = 'E(e',A'). 0 

COROLLARY 8.1. The volumes of'E(e,A) and T['E(e,A)] satisfy 

vol['C(c,A)] voI{7j'C(c,A)]} 0 ~'(P) [1 -c~c r:' ~ ~'(P), (8.9) 

with 13(P) the volume of the p-dimensional ball 11(0, p1l2). The inequality is strict 
when e *" O. 

PROOF. One has 

vol {T['E(e,A)]} = 13(p)(det ATII2, 

and 
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vol['E(c,A)] = ~(p)(det Arl12 , 

with 

( 
T J- (p+l) 

(detATI = 1- c :c detA. o 
In what follows we shall also need to consider translations in lR,P. For any c in 

RP define t e(.) by 

Z~ z-c. 

Obviously, teO preserves volumes of sets, and Lc(.) = t~l(.). 
Consider first ellipsoids with a fixed center c E 'lG The following theorem, 

where 0 denotes the composition of operators, relates Pi. and Po . 
THEOREM 8.3. Pi ('!() is equivalent to PoCTo te('l(»: ' 
PROOF. We have' from Eq. (8.9), ' 

vol{To t ['E(c,A)]} = vol{T['E(O,A)]} = ~2(p) ~2(p) 
e vol['E(O,A)] vol['E(c,A)] 

From Lemma 8.1 (iii), 'E(c,A) is contained in 'l( if and only if To tc['E(c,A)] 
contains To tcC?(). Maximizing vol['E(c,A)] is equivalent to minimizing 
vol{To te['E(c,A)]}, which states the proof. 0 

Consider now ellipsoids whose centers are chosen optimally. The following 
result permits increasing the volume of an inner ellipsoid for '1( through the solution 
of a problem Po. 

THEOREM 8.4. Let 'E(c,A) be an inner ellipsoid for '1(, we have 

and 

vol(t_c 0 T{ ~[TO tC<?()J}) ;::: vol['E(c,A)]. 

PROOF: From Lemma 8.1 (i, iii), tcC'1()::::J T{~[To te('1()]}, and the first part 
of the theorem is proved. Let ~ [To tcC,!()] be the minimum-volume ellipsoid with 
center 0 containing To t e( '!(). °A smaller ellipsoid can be obtained if its center is 
chosen optimally, 

(8.10) 

From Eq. (8.9), 
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(8.11 ) 

which together with Eq. (8.10) gives 

vol('_coT{~[To,c(';\)]})~ .f32(p) , 
vol {'Eo)TO 'c(1()]} 

(8.12) 

Using Theorem 8.3 and Eq. (8.9), 

vol {'E: [T 0 'c( 1()]} = f32(p) f32(p) 
o vol{'E;)'c(1()]} vol['E~(1()] 

(8.13 ) 

where 'E7{1() is the maximum volume ellipsoid with center c contained in 'l(, We 
thus hav~ vol['E7(1()] ~ vol['E(c,A)], which together with Eqs. (8.12) and (8.13) 
states the seconct"part of the proof. D 

We can thus increase the volume of an inner ellipsoid 'E{ c,A) for '1( through 
the construction of a minimum-volume outer ellipsoid for To 'c{ '1(). From Lemma 
8.1 (ii), this set is known analytically when '1(is a polytope characterized by linear 
inequalities. Theorem 8.4 will be the cornerstone of the algorithms described in the 
next section. 

8.4. MAXIMUM-VOLUME INNER ELLIPSOID 

Throughout this section, '1( is assumed to be convex and bounded, so that there 
exists a unique ellipsoid 'E1('1() of maximal volume contained in '1(. First assume 
that '1( is a polytope. 

8.4.1. Poly topic Case 

Consider a polytope defined by 

'1( = {x E W I at x s b i' i = 1, ... , m}. 

We suggest the following algorithm for solving Pl,;\). 
Algorithm for problem PJor polytopes (AP;?) 

Step (i): Choose s such that 0 < S « 1, and CO E int(1(). Set k = O. 
Step (ii): Compute the m vectors 

pa 
~ := IT k ' i = 1, ... , m, 

bi-aic 

(8.14) 

(8.15) 

and the minimum-volume ellipsoid 'E(c'k,A*'j containing them (using APo of 
Section 8.2). 
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Step (iii): Compute 

k e 
A *k *k P c 
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(8.16) 

(8.17) 

If Ilekll < e, compute 

*k *kT *kT *k *k 
Bk+l :=(A*k-l_~) (p-c A c ) 

p p 
(8.18) 

take 'E(ck+! ,Bk+1) as an approximation of *'E7('l(); else k +-- k + 1, go to Step (ii). 
When the vertices of 'l(are not known, the choice of CO at Step (i) may be 

nontrivial (because CO must not belong to the boundary of 'l(). However, CO can be 
obtained through the construction of a series of outer ellipsoids. For instance, the 
following procedure, based on the shallow-cut ellipsoid method,(25) yields an 
ellipsoid contained in 'l( 

Step (O-i): Choose CO ,Bo such that 'l(c 'E[cO,(BOr1], set k = o. Compute 

I l~+~ 2 I 
p := (p + 1)2 ' a := (p + I )3(p _ 1) , 1" := p~ + 1) , t:;:= 1 + 2p2(p + 1)2 . 

Step (O-ii): Compute 

Let j be the argument of the minimum. If r ~ 0, stop: we have: 

'E( ck,(p + 1 )2Bk-l) C 'l( 

(and 'l(c 'E[ck(Bkrl]). 
Step (O-iii): Compute 

1l2Bka. 
k+1 k P J 

C - C - P - (TBk)II2' a a 
J J 

k +-- k + 1, go to Step (O-ii). 
This procedure terminates in a finite number of steps.(25) Note that the 

condition 'l(c 'E(co,(B)O-I) of Step (O-i) is easily fulfilled by choosing BO = yIp' with 
Ip the p-dimensional identity matrix and y large enough. Much faster ellipsoidal 
procedures can also be considered, such as the deep-cut or central-cut algo­
rithms.(26,27) However, one must then check that cO thus obtained does not lie on the 
boundary of 'l( 
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The algorithm APiP has been independently suggested in Ref. 10, with no 
proof of convergence. The following result provides such a proof. 

THEOREM 8.5. For any choice of CO E int(1() APP generates a sequence of 
inner ellipsoids T(ck,Bk) (where c\Bk are respectively defined by Eq. (8.17) and 
(8.18)) converging monotonically in the sense of the volume to £;'(J(). 

PROOF. We first prove that APiP generates a sequence of inner ellipsoids with 
monotonically increasing volume. Assume that ck E int(J(); we thus have 0 E 

int[t/('l()], with 

"(rv\ - { lTJ)P I T < b _ T k . - 1 } t/ 1\J - x E II'\. ai x - i ai c, 1- , ... , m . 

From Lemma 8.1 (ii), the vectors 0, i = 1, ... , m ofEq. (8.15) then correspond to 
all possible vertices of To t/(1(), and T(C'\A*k) = T;(To t/(J()). From Lemma 
8.1 (iv) and the matrix inversion lemma, T(ek,Bk+I) = T{T;[To t/(1()]} , and 
'E( Ck+1 ,Bk+l) = L/ 0 T{ T~[To t/(1()]}. Theorem 8.4 then yields the result. 

The sequence of volumes vol['E(ck,B,,)] is monotonously increasing and 
bounded by vol('l(), thus it converges. Let 'E(ck,B") be such that 

(8.19) 

The inequality (8.11) then becomes an equality, and 

which from Eq. (8.9) implies C*k = 0 and thus Ck+1 = ck, Bk+1 = (A *")-1. By construc­
tion, 'E(c*k,A*k) is the minimum-volume ellipsoid containing the vectors v7, i = 1 , 
... , m. From the results given in Section 8.2 we thus have(2) 

m 

C*k = " A*v" = 0, L... I I 

i=1 

T 

A~(v7 A*kv7 - p) = 0, i = 1, ... ,m, 

A~ ~ 0, i = 1, ... ,m, 

and, moreover, L~I A7 = 1. Using the definition ofv7, see Eq. (8.15), 

(8.20) 

(8.21 ) 
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m T 
P a.a. 

Bk+l = L A*-' -' . (8.23) 
, aTA*ka. 

i=! 1 I 

Lagrangian theory will now be used to show that 'E(ck+l,Bk+l) coincides with 
'E7( '1(), which completes the proof of convergence. 

Determining 'E7(1() ='E(c' ,B*) corresponds to minimizing In det B with respect 
to Band c, with the constraints 

aTx ~ b" i = 1, ... ,m V x E' 'E(c,B), 

or equivalently, to minimizing-In det A, with A = B-1 and the constraints 

T (p TA )1/2<b '-1 at c + ai a, _" I - , ... , m. (8.24) 

The function -In det A is convex in A, but unfortunately the feasible set for A is 
not convex. However, A must belong to the set Mp+ of all p x p symmetric positive 
definite matrices. Elementary calculations then show that setting A = UTU yields 
a convex feasible set for U. The constraints ofEq. (8.24) can then be written as 

P In(paTUTHa) ~ 2p In(b, - aTc), i = 1, ... ,m, 

which yields the Lagrangian 

m 

'=1 

From the Kuhn-Tucker theorem, we know that the solution of the problem is 
obtained for U*, c*, A * such that 

aL(U,C,A) I .•• = 0 
au H ,C.A ' 

(8.25) 

aL(U,C,A) I ••• = 0 and 
ac H.c). ' 

A; [In(paTU*TU*a) - 2 In(b, - aTc')] ~ 0, i = 1, ... , m, 

A; ~ 0, i = 1, ... ,m. 
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The first condition Eq. (8.25) can also be written 

aL(U,C,A) I ' , , aA I ,= o. 
aA H ,c ,A au H 

One can then easily check that A*, Ak' = (Bk+lr l 

(8.20-8.23) are solutions. 
REMARK 8.2. 

and chI = ck satisfying Eqs. 
o 

(i) The stopping rule in Step (iii) of APiP coulp also rely on the difference 
between two consecutive volumes, on IIC*kll, or on C*k A*kC*k.(9) Further studies are 
required to investigate whether the corresponding sequences decrease monotoni­
cally. 

(ii) The proof assumed that 'E~[T/(J()] can be obtained without any approxi­
mation using APo (Step (ii». In practice, this algorithm contains an E-stopping rule 
so that 'E;(T/(J(» is not obtained exactly. Practical rules for choosing an E' at Step 
(iii) of A PiP could be derived from the general ideas presented in Ref. 28. 

(iii) The distribution ~o used to initializeAPo can be taken equal to the optimal 
distribution corresponding to previous ellipsoid 'E( C·k- I ,A *k-l). 

(iv) The determination of 'E~( 'l() does not require the calculation of the vertices 
of '1(,. The complexity is related to the dimension of the vector of weights A in 
APo' This dimension increases at most linearly with the number of constraints that 
define '1(, 

(v) The complexity of the solution of P;(J() is considered in Ref. 8.10, where 
another algorithm is suggested, also based on the solution of a sequence of 
subproblems (see also Ref. 29). 

(vi) The determination of the maximum-volume inner sphere for the polytope 
J(corresponds to a linear-programming problem:(8) let c and r respectively denote 
the center and the radius of the maximum inscribed sphere, one has to maximize r 
with the constraints aTc + rllaill :0; hi, i = 1, ... ,m. Maximum-volume inner ellip­
soids for polytopes are considered in Ref. 8.30. A signomial algorithm is suggested 
for the general case, and the situation where the shape of the ellipsoid is fixed is 
shown to correspond to a linear programming problem. 

Example 1: 
Consider the AR-2 model 

y(k) = -O.4y(k - 1) - 0.85y(k - 2) + E(k), k = 3, ... ,25, 

y(l) = E(l),y(2) = E(2), 

with E(k) uniformly distributed in [-1,1], k = I, ... , 25. It corresponds to a linear 
model structure, l1(e,k) = are, ak = [y(k - 1 ),y(k - 2)f, with bounded disturbances 
E(k). The true value of the parameters, given by e* = (-D.4, -D.85l, is indicated by 
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FIGURE 8.2. S. recursive outer and volume-optimal inner and outer ellipsoids. 

a star on Fig. 8.2. We are interested in characterizing the set S of all parameter 
vectors consistent with the data, model structure and error bounds, given by 

s== {e E ]R21_1 :5'oy(k) - are:5'o I, k= I, ... , 25}. 

The same example is considered in Ref. 22, where various approaches are used to 
give an ellipsoidal outer bound for S . The ellipsoid 'E(N) obtained via the classical 
recursive procedure of Fogel and Huang,c' I 1 even improved according to Ref. 32, 
appears very pessimistic (see Figure 8.2). Recirculations of data(l3) yield smaller 
outer ellipsoids. However, even when the number ofrecirculations gets very large, 
the ellipsoid obtained is still significantly larger than the minimum-volume outer 
ellipsoid 'E~(S) (see also Examples 2 and 3). The set S and the ellipsoid 'E~(S), 
obtained via APo of Section 8.2, are given in Fig. 8.2. Figure 8.2 also presents the 
maximum-volume inner ellipsoid '£7(S) obtained after three iterations of APiP. 

Example 2: Consider the AR-3 model described by 

y(k) == -O.5y(k - 1) - O.75y(k - 2) + O.ly(k - 3) + £(k), k == 4, ... , 100, 

y(k) = £(k), k = 1,2,3, 

with £(k) uniformly distributed in [-1, I], k = I, ... , 100. For a typical simulation, 
the following results were obtained. The exact polytope S has 20 vertices. Table 
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TABLE 8.1. Volumes and Centers of Outer and Inner 
Ellipsoids, Example 2 

Ellipsoid Center Volume 

'E(N) (--0.328, --0.622,0.219) 2.47 x 10-1 

'E(N, 1 00) (--0.508, --0.776,0.044) 4.45 x 10-3 

'E; (5) (--0.500. --0.772, 0.058) 1.09 x 10-3 

'Ei (5) (--0.509, --0.778,0.043) 1.60 x 10-4 
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8.1 gives the volumes and centers of the recursive ellipsoid 'Ef...N) determined with 
the algorithm described in Ref. 8.32, the recursive ellipsoid '£(N, 100) obtained 
after 100 circulations of the data, and the ellipsoids ,£;(5) and '£;(5) . For 
comparison, the exact volume of 5 (calculated with the algorithm given in Ref. 
8.34) is 3.63 x 10-4. 

Example 3: Consider the AR-5 model described by 

y(k) = -OAy(k - 1) - 0.85y(k - 2) - O.ly(k - 3) - 0.02y(k - 4) - 0.05y(k - 5) 

+ £(k), k = 6, ... , 100, 

y(k) = £(k), k= 1, ... ,5, 

with £(k) uniformly distributed in [-1,1], k = 1, ... ,100. For a typical simulation, 
the following results were obtained. The exact polytope 5 has 132 vertices. Table 
8.2 gives the volumes and centers of the recursive ellipsoid '£(N) determined with 
the algorithm described in Ref. 8.32, the recursive ellipsoid '£(N, 100) obtained 
after 100 circulations of the data, and the ellipsoids ,£;(5) and '£;(5). 

We consider now the more general case where 'l( is any bounded convex set 
ofW. 

TABLE 8.2. Volumes and Centers of Outer and Inner Ellipsoids, 
Example 3 

Ellipsoid Center Volume 

'E(N) (-0.343, --0.874,0.053, --0.029,0.163) 1.39 

'E(N,IOO) (--0.387, --0.886, --0.064,0.006, --0.009) 1.33 x 10-3 

'E; (5) (--0.383, --0.848, --0.059,0.014, --0.016) 4.93 x 10-5 

'Ei (5) (--0.389, --0.866, --0.066,0.006, --0.010) 3.93 x 10-{; 
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8.4.2. Convex Sets: General Case 

When some of the constraints defining ~are nonlinear, it remains possible, 
using a relaxation procedure, to derive a globally convergent algorithm. However, 
the sequence of ellipsoids will no longer be contained in ~. 

~is the convex closure of its extreme points, the number of which may now 
be infinite. Let X( J() denote the set of all extreme points of 'J(, With any x E X( '7() 

one can associate (at least) one supporting hyperplane Jitangent to 'J(, Let aTx = b 
be the equation of anyone of these hyperplanes, with a and b such that a/x :S b 
V X E 'J(, ~is thus included in any polytope P(JiI , ••• ,Jim) defined by m such 
hyperplanes, i.e., given by Eq. (8.14). The relaxation procedure consists in taking 
only a finite number of hyperplanes into account at each iteration, thereby con­
structing a sequence of polytopes containing ~and a sequence of inner ellipsoids 
for these polytopes. 

Algorithm for problem PJor bounded Convex Sets (APiCS) 
Step (i) Choose m extreme points of 'J(, m Z p, such that the corresponding 

supporting hyperplanes J{ yield a closed and bounded polyhedron 
pm = P(~, . .. , Jf",) (i.e., such that the vectors ai = 1, ... ,m, span lPil). Choose 
8 such that 0 < 8 « I, set k = m. 

Step (ii) Determine 'E7(pi.) = 'E( ck, Bk) using APiP. 
Step (iii) Compute 

x- := arg min (x - cklB\x - ck). 
XEX(?() 

(8.26) 

If (x- - ckfBk(x- - ci.) > P - 8, stop: take 'E(C\Bk) as an approximation of 'E;(~). 
Otherwise determine the supporting hyperplane J-4+1 passing through x-, take 
ph! = P(~, ... ,J-4, J-4+!), k ~ k + I, go to Step (ii). 

The global convergence of APiCS follows from the convexity of ~ and the 
convergence of A PiP. The main difficulty lies in the computation ofx- in Eq. (8.26), 
which corresponds to a nonconvex minimization problem. Global optimization 
methods(35l (e.g., based upon interval analysis(36) are advisable. It is sometimes 
enough to consider a combination of local minimizations only (one minimization 
per constraint defining ~). Note that a precise determination ofthe global minimum 
is not crucial (as it is enough to determine x- such that (x- - Ck)TBk(X- - ck) 

:Sp - 8). 
REMARK 8.3. 
(i) During the successive calls to APiP, the center ck of the ellipsoid previously 

determined can be taken as the initial vector co. The number of vectors v7 in Eq. 
(8.15) increases by one at each iteration. When APiP callsAPo for the first time (see 
Remark 8.2 (iii»), the initial distribution ~o can be chosen to give the same weights 
to the new vector vt and the vectors that were support points for the previous 
ellipsoid. 
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FIGURE 8.3. Target set (solid line) and sequence of ellipsoids converging to the minimum-volume 
inner ellipsoid. 

(ii) Remark 2 (ii) applies for this algorithm too. 
(iii) The sequence of volumes {vol['E(ck,Bk)]}k is monotonically decreasing. 
Example 4: Consider the target set 

This set is presented on Figure 8.3 (solid line), together with the sequence of 
ellipsoids ['E;(P~h generated by APi' The initial extreme points of 'Kare (%' -t), (%, 
D, (%, - t), (%' ~). 

So far, we have considered the non-recursive determination of 'E;(JO, i.e., the 
case where all constraints defining the target set 'Kare taken into account at the 
same time. However, in practice one may wish to take any new constraints into 
account upon arrival. A recursive determination of 'E7( JO is then of interest since it 
will reduce the computational cost and may allow real-time processing. 

8.4.3. Pseudo-Recursive Algorithm 

We restrict our attention to the case of linear constraints, i.e., to convex 
polyhedral sets. A recursive algorithm for the determination of an inner ellipsoid 
has already been suggested(ll) in the context of parameter bounding. However, it 
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does not yield the maximum-volume inner ellipsoid. Moreover, the ellipsoid 
obtained tends to vanish after a modest number of iterations (i.e., a small number 
of new constraints defining 1(). The algorithm suggested here is not fully recursive, 
in the sense that the information to be stored grows with the number of constraints 
on 'l( However, a simple test indicates whether new constraints can be rejected or not. 

The constraints a;x ~ hi defining 1(will be transformed into a;x ~p (which 
means that 0 E 1(). This can always be obtained by a suitable translation in RP 
(which may have to be performed at any iteration when the problem occurs). Let 
X'. be the polyhedron defined by the first k constraints, 

1(k = {x E IRF I aT x ~ p, i = I, ... , k}, 

and let Lk be the set of extreme points of the convex closure of the vectors ai, i = I, 
... , k (i.e., corresponding to active constraints). The algorithm can be summarized 
as follows. 

Recursive algorithm for problem Pi for Polytopes (RAP;?) 
Initialization: Consider the first k vectors ai that span W (k::: p + I). Compute 

Iteration: Let ak+t x ~ p be the new constraint. 
If ak+l E Zk (the convex closure of Lk), set 

'E;(1(k+l) = ~(1(k), Lk+l = Lk. 

Otherwise take Lk+ I as the set of extreme points of L k u {ak+ 1}, if 

r k [p r (Bk)-1 ]112 < ak+1c + ak+1 ak+l -p, (8.27) 

set 'E;( 1(k+l) = 'E;( 1(k), 

otherwise, compute 'E~(1(k+l) by applying AP;? to the polytope defined by the 
vectors ai in L k+ 1 . 

APiP is based on the construction of '4;[TO Tc(1(A)], with c E 1(k, 

Tc(1(") = {x E WI aTx ~ p - aTc, i = I, ... , k}, 

and from Lemma 8.1 (ii), the possible vertices of To 'IcC 1(k) are thus given by 

pa 
vi=--'r-' i=l, ... ,k. 

p-a;c 

The active constraints of 1(k correspond to the vectors ai associated with the vertices 
of To Tc(1(~. '4;[TO Tc(1(~] only depends on these vertices, i.e., the points lying 
on the boundary of the convex closure of the vectors Vi' One can easily check that 
for any c in int( 1(~, these extreme Vi in the dual space are associated with the extreme 
ai in the primal space. Only the vectors in Lk have thus to be stored. Now, if 
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ak+ I E Z k', then '1(k+ I = '1(\ otherwise Lk has to be updated. However, it remains to 
be tested whether 'E 7 ('1(~ is cut by the new constraint. This corresponds to Eq. 
(8.27). 

REMARK 8.4. If the set Lk of active constraints is determined without computing 
the vertices of 'l(; see, e.g., Ref. 37, this algorithm gives a recursive construction of 
'E;('l() without requiring a recursive characterization of '1(through its vertices. 

8.5. CONCLUSIONS 

The determination of the minimum-volume ellipsoid containing a compact set 
'1(c ]RP (problem Po) is strongly connected to experimental design, and an efficient 
algorithm has already been suggested.(2.15,22) It can be used when '1(is not convex 
(one then has to solve a series of p-dimensional global-optimization problems), 
while more traditional approaches based on convex programming seem to be 
restricted to the case where '1(is a polytope. This optimal ellipsoidal outer approxi­
mation might prove particularly useful in parameter bounding, where large uncer­
tainty sets lead to conservative robust controllaws.(3) When the model is linear in 
the parameters '1(is a polytope, the description of which might reveal very complex. 
The algorithm presented permits reducing this complexity drastically, but still 
requires the exact description to be obtained. 

The determination of the maximum-volume ellipsoid contained in a polytope 
'1( can be performed through the solution of a series of problems Po. It does not 
require the knowledge of the vertices of 'l(; Other algorithms can also be used for 
that purpose.(lO,29,38) Further studies are required concerning the complexity of the 
algorithm presented here, and its potential interest in nonlinear programming,(9,38) 

When the polytope is constructed recursively, the recursive determination of 
the volume-maximal inner ellipsoid requires storage of a possibly growing amount 
of information (corresponding to the active constraints), The only approach sug­
gested so far to the best of our knowledge does not yield an ellipsoid with maximum 
volume,(ll) Moreover, the inner ellipsoid obtained tends to quickly vanish when the 
number of linear constraints increases. This is not the case with the maximum­
volume inner ellipsoid as obtained from the algorithm suggested here. Finally, 
when 'l(; is only convex, the problemP; can be decomposed into a series of problems 
involving polytopes, and global convergence to the maximum inscribed ellipsoid 
can still be guaranteed. 
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9 
Linear Interpolation and 
Estimation Using Interval 
Analysis 
S. M. Markov and E. D. Popova 

ABSTRACT 

This chapter considers interpolation and curve fitting using generalized polyno­
mials under bounded measurement uncertainties from the point of view of the 
solution set (not the parameter set). It characterizes and presents the bounding 
functions for the solution set using interval arithmetic. Numerical algorithms with 
result verification and corresponding programs for the computation of the bounding 
functions in given domain are reported. Some examples are presented. 

9.1. INTRODUCTION: FORMULATION OF THE PROBLEM 

We consider the problems of interpolation and curve fitting in the presence of 
unknown but bounded errors in the output measurements. Let TI(A;') : D ~ R, D ~ 
Rk, be a model function depending on a real argument ~ E D, and on a parameter 
vector A E A c Rm. The following hypotheses are assumed:(l,2,3,4) 
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Assumptions on the modeling function: The modeling function l1(A;') defined 
on some domain D ~ Rk is a generalized polynomial depending linearly on m 
parameters: 

m 

(9.1 ) 

1=1 

where <p(.) = [<PIO, ... , <PmO]T is a vector ofm continuous on D functions and A 
= (A], ... , Am)T E Rm is a vector ofm (unknown) parameters. For any (xi, ... , 
x";), xi E D, i = I, ... , n, the vector <pO generates a matrix defined by 

(9.2) 

We shall assume that (9.2) is not singular whenever (x{, ... , x";) is such that 
xi 7; x;, i 7; j. A set <P of functions satisfying the above assumption will be further 
called a (Chebyshev) system of basic functions. The class of all modeling functions 
of the form (9.1) where <P is a system of basic functions is denoted by Lm(D, <p) or 
L. 

Assumptions on the type of errors in the data: The input data are error-free and 
the output data errors are unknown but bounded (UBB).(5,6) This means that there 
are n distinct (input) data Xj E D ~ R\j E J = {I, ... , n}, and there are n (output) 
interval measurements lj = [yj,yJ],j E J, which contain the correct values of the 
corresponding measured quantities. 

Denote the system of input data by x = (x], X2, ... , xn) I E R"xk and the system 
of output measurements by Y = (Y], ... , Yn) T E IR", where IR" is the set of all 
n-dimensional interval vectors.(7,8,9) Geometrically, the pairs (Xj, lj),j E J, can be 
considered as n vertical segments in the (k + I )-dimensional space OXIX2 ... XkY. 

Throughout the chapter it is assumed that m ::;; n. Section 9.3 considers the 
problem of finding bounds for the set of modeling functions 11 E L",(D) interpolat­
ing the vertical segments (Xj,lj),j E J. More precisely, for a fixed ~ E D, we look 
for the set of values at ~ of all modeling functions 11 interpolating the segments 
(Xj,lj),j E J, that is the set: 

{l1(A;~) 111 is such that l1(A;x) E lj,j E J}, ~ ED. (9.3) 

The requirement that the values of 11 at Xj range in the corresponding intervals lj 
leads to a system of inequalities for A 

(9.4) 

which can be written in matrix form as 
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cD(X)A E Y, (9.5) 

where cD(x) is the following (n x m )-matrix offull rank cD(x) = m: 

In (9.4) the data x and Yare known; the parameter 'A is unknown. We thus 
have to solve a system of n algebraic inclusions for the m-dimensional parameter 
A. Any 'A satisfying (9.4) is called a feasible parameter. Every feasible parameter 'A 
generates a solution function Yj('A;.) E Lm(D). Denote by A the set of all feasible 
parameters, and by Yj(A;~) the set of values of all solution functions at ~ E D, 
respectively 

A = {'A E Rm I cI>(X)A E Y}, (9.6) 

(9.7) 

The set Yj(A;~) defined by Eq. (9.7) is an interval for any fixed ~ ED. Thus 
Eq. (9.7) defines an interval-valued function (briefly, interval function) on D, which 
will be further denoted by Yj(x,Y;·). Note the difference between Yj(A;·) = 
{cp(.)T'A I A E A} and Yj(x, y;.): the former is a set of solution functions defined on 
D (sometimes called feasible solution set), whereas the latter is an interval function 
defined on D. Of course for a fixed ~ ED we have Yj(A;~) = Yj(x,Y;~). We shall be 
particularly concerned with characterizing and computing the bounding lower and 
upper functions Yj-(x,Y;·), rt(x,Y;·) of the interval function Yj(x,Y;'), which are 
called enveloping functions for the feasible solution set Yj(A;·).(lO) 

We can compute Yj(x,Y;~) for ~ E D by solving two constrained linear optimi­
zation problems(4,6) 

Yj(X,Y;~) = [min {cp (I~l 'A}, max {cp (~)T 'A}], 
AEA AEA 

(9.8) 

Another approach(3) is to enclose A by an interval vector (box) A I, and then 
find an enclosure for l1(x,Y;~) by l1(x,Y;~) ~ cp(1;)T AI. 

The problem of finding/enclosing the interval function Yj(x,Y;·) is different 
from the problem of finding/enclosing the parameter set A defined by Eq. 
(9.6).(2,3,5,6,II)The set A is an m-dimensional polytope, whereas l1(x,Y;1;) is a closed 
one-dimensional interval for a fixed ~. The presentation or computation of 
Yj(x,Y;1;) in a given domain for ~ can be of practical importance. In the case of 
one-dimensional argument ~, we characterize the interval function l1(x,Y;·) and 
propose methods for its presentation and computation. A computer program written 
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in PASCAL-SC(J2) is reported, which efficiently computes the interval function 
ll(X,Y;~) in a given interval. 

If the interpolation problem has no solution, then one often wants to solve it 
by choosing another family of modeling functions (e.g., by changing either the 
number of parameters or the system of basic functions). One may choose to 
reformulate the interpolation problem as a curve fitting (estimation) problem.(S,6) 
Assume that the inclusions of Eq. (9.4) can be violated, which practically means 
that the errors in the measurements are assumed to be of a stochastic nature. 

Section 9.4 considers the problem of finding the set of parameters 'A, respec­
tively the set of modeling functions 1l('A;·}, such that 

(9.9) 

in matrix form <I>(x)'A "" Y, where the symbol"" means that the values ll(A;Xi) = 
<p(x) TA are "close" to the measurement intervals Yi . For the numerical (single­
valued) case Y = Y ERn the curve fitting problem (9.9) is mathematically formu­
lated by choosing an operator (called estimator) <I>(y) producing from a data set (x,y) 
a solution function ll(Ay;') from Lm(X). The operator <I> is chosen in accordance with 
the hypothesis on the statistical nature of the errors in the measurements (for 
instance, a least-square estimator is chosen if the errors in yare assumed to have 
normal distribution). Let us restrict ourselves to so-called projection estimators(I,S) 
of the form <I>(y) = ll(Ay ;'), with Av minimizing some functional of the form 

IlY - <I>(x)A)1 = infllY - <I>(x)'AII, K ~ Rm, (9.10) 
. AEK 

where II· II is a norm in Rn. Assume as before that the measurement interval Y 
contains the true values ofthe measured quantities. As proposed(I,S,6) consider the 
set of solution functions corresponding to the data (x,Y), defined by 

(9.11 ) 

where Ay is given in Eq. (9.10). 
Let A", be the set of all 'Ay , produced by the estimator <I>(Y), whenever the 

numerical vector y ranges in the interval measurement vector Y = (Y1, •• , Yn), 

(9.12) 

The set Aq, is called the estimate uncertainty set.(S,6) The set Aq, generates a 
corresponding (estimate) solution set 

(9.13) 

F or a fixed ~ E D 

ll(A",;~) = {<p(~)T'A I A E A",}' ~ E D. (9.14) 
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Equality (9.14) defines an interval-valued function; Section 9.4 is devoted to 
its presentation and computation. 

This chapter considers the interval-valued functions generated by the solution 

sets both for the interpolation and for the curve fitting problems. In some special 

cases the interval solution functions have simple presentation in subregions of D 
and can be easily computed. The next subsection gives a brief introduction to the 
necessary concepts of interval arithmetic. 

9.2. INTERVAL ARITHMETIC: BASIC CONCEPTS 

By IR denote the set of all intervals Y of the form Y = [y-,y"C] = 
{yIY-:::::Y:::::Y+}, y-,y+ E R. This chapter uses two simple interval arithmetic 
operationsy,8) one for addition oftwo intervals X, Y E IR and one for multiplication 

by a real number a E R defined as follows: 

wherein a(a) = {-, a < 0; +, a:2: O}, [- = x+, x-+ = [. 

The following is a simple application of interval arithmetic. Given a real valued 

vector a = (a J, •.. , an) and an interval valued vector Y = (Yj , ... , Yn ) T write 

(9.15) 

A standard way to present the set {ay lYE Y} via the end-points of Y is 

(ay lYE Y) ~ [~ aJ' ;",0,>, ~ aJ'7'U,,} (9.16) 

The interval expression (9.15) is much shorter than expression (9.16), which does 
not make use of interval arithmetic. 

Remark: A similar expression (9.16) can be obtained by using a presentation 
of the intervals via centers and radii (see e.g., Ref. 6, Proposition 1). Denoting the 
center of the interval Yi by yf and its radius by y~ we obtain the expression 
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which is also clumsy, whereas the interval expression aY is brief and offers 
convenience. 

More generally, if A is a real valued (k x n )-matrix 

_ [all' a 12 , ... , a1nj_ (~I 
A - ...-1 

akl' ak2 , ... , akn I ak 
\ 

then Eq. (9.15) yields for the k-dimensional set {Ay lYE Y} the following inclusion 

{Ay Iy E n= {(aly,aV', ... , atJl) Iy E Yl 

(9.17) 

Inclusion (9.l7) is often known as "wrapping effect.,,(8) The set AY is the 
smallest k-dimensional box (orthotope, interval vector) enclosing the set 

{Ay Iy E n· 

9.3. LINEAR INTERPOLATION UNDER INTERVAL 
MEASUREMENTS 

9.3.1. The Multidimensional Case 

First consider the general situation k:2 1, D ~ Rk and the problem of finding 
the interpolation interval function of (9.8). 

DEFINITION 9.1. Fora fixed class L = Lm(D ,cp) of modeling functions a system 
of vertical segments (x,f), x = (XI, ... ,xn ) T, Y = (YJ, ... , YI1)~' is called L -com­
patible (or just compatible), if for any i E J = { I, ''''; . , n} and Yi E Y; there is an 
element 11 of L, with l1(x,) = y;, such that l1(A;x) E Yj forj = L ... , n,j *" i. 

In the situation whenJ:he data matrix x is fixed (as is th~case in this chapter) 
one shall sometimes say 'Tis Ircompatible", instead of"(x,Y) IS Ircompatible." 

Denote Y= (YJ, Y2 , •.. ,Xn)T, Y; = l1(X,Y;x,), i = I, ... , n. Then Y; = l1(X,Y;X,), 
that is, the interval vectors Y and Y generate same feasible solution sets. The 
compatible segments (x;, Y;), i E J, have the property of possessing no "excess 
points," that is, such points through which no individual solution function 11 
passes. (13) 

Two systems (x, y), (x, y), generating same feasible solution sets are called 
equivalent. The problem of finding a solution set corresponding to the~data (x,y), 
can be divided into two steps: 1) to find an Ircompatible systemJx,Y) which is 
equivalent to (x,y), and 2) to find the solution set generated by (x, Y). 

Every feasible parameter A E A generates a vector YA = (Yl, ... ,Y n) I E Rn by 

Yj = l1(A;x), j E J, (9.18) 
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in matrix form YA = cI>(x)A. The set of all vectors Y defined by Eq. (9.18) for some 
A E A will be denoted 

= {cI>(x)A I A E A}. (9.19) 

In other words Y' is the subset of all y, y E Y, for which the system y = cI>(x)A is 
consistent. For a compatible set of data (x, Y) the interval 1) is the projection of the 
set Y' defined by Eq. (9.19) on thej-th coordinate axis. 

First consider the case n = m when the number of data equals the number of 
parameters. In this case Y' = Y (since y = cI>(x)A is consistent for all y E Y) and we 
can express the solution set by means of the following propOSition. 

PROPOSITION 9 .1. For m = n we have 

(9.20 ) 

PROOF: A modeling function fl(A;') = (jlOTA from Lm(X). which interpolates a 
set of m data (x,Y), satisfies a system cI>(X)A E Y of m algebraic inclUSIOns for the 
m unknown parameters, or cI>(X)A = y, y E Y. For n = m we have Y' = Y. Since det 
cI>(x) "* 0, everyy E Y generates a A = cI>-I(X)Y. Forthe set of values of the modeling 
function interpolating (x, Y) at a fixed ~ E D 

fl(X,Y;~) = «jl(~) Til, I A E A} = {(jl(~) \cI>-I(x)y) lYE Y} 

= {«jl(~)TcI>-I(x»y Iy E Y} 

= «jl(~) TcI>-1 (X» Y. 

The interval function (9.20) will be further called simple interval interpolation 
function (Sff-function). 

REMARK: Proposition 9.1 shows that the Sff-function can be computed for 
every ~ in interval arithmetic using the simple interval-arithmetic expression (9.20). 
In (9.20) the vector (jl(~)TcI>-I(X) is multiplied by the interval vector Yin the sense 
ofEq. (9.15). Such an exact presentation cannot be given for the parameter set A 
because of the wrapping effect. (8) Indeed for the set A of feasible parameters 

Using interval arithmetic gives the inclusion A ~ cI>-I(X)Y = AI, which may be 
rough; A is a convex polytope, whereas Y, and hence AI, is an m-dimensional box. (8) 

The above consideration also demonstrates the importance of the brackets in Eq. 
(9.20) . A change of the place of the brackets leads to an inclusion 
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Indeed A ~ <]:>-I(x)Y = AI implies 

Yj(x,Y,S) = {<p(S)TA I)... E A} ~ {<p(S)T)... I)... E AI} 

= <p(S)T(<]:>-I(x)Y). 

Now consider the case m < n. In this case Y' ~ Yand the inclusion A ~ AI due 

can be rough. The following proposition gives a characterization of the solution set 
Yj(x,Y;·). See Lemma 9.2 from Ref. 6. 

PROPOSITION 9.2. There exists a subset Q of the index set J = {I, .... , n} 
consisting of m elements (Q ~ J, card(Q) = mY, such that for every I E Q at least 
one of the two equalities Yj-(X,Y;XI) = YI, Yj+(X,Y;XI) = Y/ hold. 

The proof of this Proposition is given in Ref. 6. Proposition 9.2 shows that the 
solution set reaches the end-points of at least m input intervals YI, I E Q ~ J. 

Let the index set Q be a subset of the index set J with m elements: Q ~ J, 
card(Q) = m. Assume that Q is ordered in increasing order and let q(i) be the i-th 
element of Q. Denote by xQ = (Xq(I)' ... ,Xq(m) T the matrix x reduced to the index 
set Q. Analogously yQ = (Yq(I), ... , Yq(m»1 is the vector Y reduced to Q. 

To find the set of functions from Lm(X) interpolating a reduced set of m data 
(xQ,yQ) consider the corresponding system <]:>(xQ»)... E yQ, which is a system of m 
algebraic inclusions for m unknown parameters and applying Eq. (9.20), obtain 
Yj(xQ,yQ;S) = (<p(S)T<]:>-I(xQ»yQ. 

PROPOSITION 9.3. The value ofYj(x,Y;·) at a point S is given by 

(9.21) 

The proof is obvious. Proposition 3 shows that the value of Yj(x,Y;·) at scan 
be determined by an intersection of (~) SII-functions. _ 

The intervals Jj can be reduced to L-compatible intervals Jj using the 
following 

PROPOSITION 9.4. For the L-compatible intervals we have 

~ = 1j n n Yj(xQ,yQ;x). 

Qc:;) jeQ 

The following methods are suggested for the computation of Yj( x, y;.) at a point 
SED: 

A. Compute Yj(x,Y;·) at S by means of Proposition 9.3, that is, by intersecting 
the values of all simple interval interpolating functions at S. The latter are computed 
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by means of Proposition 9.1. If at some point ~ the interval values of two simple 
interval interpolating functions are disjointed, their intersection is an empty set and 
the set of solution functions is void. 

B. For ~ E D compute 1'](x,Y;~) by solving two constrained linear optimization 
problems ofEq. (9.8). _ 

C. Compute first the L-coEIpatible intervals Yi by means of Proposition 9.4. 
Then compute 1'](x,Y;·) = 1'](x,Y;·) at arbitrary ~ by using method A or B for the 
compatible intervals. 

Below we look for effective methods for the presentation and computation of 
1'] in the one-dimensional case k = I. 

9.3.2. The One-Dimensional Case 

In the remaining part of this section assume k = I, that is, the input data x is a 
vector of real components and will be denoted by x = (x 1, ... ,xn). Assume that the 
components of x belong to an interval X = [x-,x+] and that Xo = 
x - :S; X I < X2 < ... < Xn :S; X + = Xn+ I. Use the letter k to denote a fixed subinterval 
[Xb Xk+I] to be considered. The following theorem gives an additional charac­
terization of the boundary functions of the solution set. 

We first give a definition which will be used in the proof of the next proposi­
tion. 

DEFINITION 9.2. For I s; m a I-face of A is a subset of A defined by 

j EJ, 

where m - I of the above linear independent inequalities transform into equal i­
ties.(l1,14) 

PROPOSITION 9.5. Let the set 1'](A;') of all functions from L",(X) which interpo­
late (x,y) be not empty and let the interval function 1'](x,Y;·) be the envelope of this 
set.(I5,16,17) Then in every (Xh Xk+l), k = 0,1, ... ,n, the upper and lower boundary 

functions of 1'](x,Y;·) are functions from L",(X) generated by some parameters 

A"k.A"'" E A. 
PROOF: Proposition 9.5 states that for every subinterval [Xh Xk+l1 there exist 

two parameters A"k, At E A <;;;; Rm generating the envelope in the whole subinterval, 
that is, 

Assuming the opposite, there exist a point ~s E (Xb Xk+I) and two parameters 
A I ,A 2 E Rm, A I * A 2, such that 1'] +(x, Y;~s) = <p(~s) TA l = <p(~s) T A 2. On the other hand 
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1"] +(X, Y;;s) = max <p(;\.) Tie. (9.22) 
icE/\. 

Because the set of optimal points of the linear programming problem (9.22) is 
convex all points of the segment [Ie j ,Ie 2] are optimal. The set of all optimal points 
of (9.22) is a I-face of A, where I z land the vector <p(;J is perpendicular to this 
I-face of A. The I-face is an intersection of (m - l) hyperplanes with linear 
independent normal vectors a I, ... , am-I E {<p(;j ),j E J} (the linear independence 
follows from the assumption that the modeling function is from Lm(X). Thus the 
vector <p(;s) is a linear combination of ai, ... ,am-I. This is a contradiction to the 
assertion that <p is a system of basic functions. For the lower function 1"]- the 
arguments are analogous. 0 

Proposition 9.5 shows that under the given assumptions the upper and lower 
boundary functions 1"](x,Y;;) for all ; E (Xb Xk+ I) are themselves elements of Lm(X). 
Therefore, to find 1"](x,Y;;) for; E (XhXk+l) we have to determine expressions for 
these two functions. Such expressions can be found ether in terms of some subset 
(xQ'yQ) of the given data or in terms of Ie depending on the method used: 
intersection of SII-functions (method A) or constrained optimization (method B). 

In some cases it can be preferable to use method C which prescribes first the 
computation of the compatible intervals. The next proposition shows that, ifthe set 
of data (x, y) is ircompatible, then 1"] (x, Y;;) may be determined by an intersection 
of a reduced number of simple interval interpolating functions. 

PROPOSITION 9.6. If the set of data (x, y) is ircompatible, then for every k = 0, 
... , n the following formula holds 

1"](X,Y;;) = n 1"](xQ,yQ;;) for; E [xk' xk+ I]' 

QEQ(k) 

where Q(k) is the set of all subsets Q of J consisting of m elements (notationally, 
Q c;;;; J, card(Q) = m), such that 

k,k+ IE Q, ifO<k<n, 

I,n E Q, ifk=Oork=n. 

If m = 2 the set Q(k), for every k, 0 :<:; k:<:; n, consist of one single pair, namely 

Q(k)={{k,k+ I}, ifO<k<n, 
{l ,n}, if k = 0 or k = n. 

For the interval solution 1"](Ie;') in this case (m = 2, compatible data) the 
following simple formula holds in [Xk' Xk+I): 
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wherein 

Clearly, finding the compatible intervals in the case m = 2 solves the problem 
of finding the SJJ-function. It is then obtained by connecting the upper, resp., lower 

end-points of each two neighboring segments (x;,Y;), (X;+I,Y;+I) via generalized 
linear functions. Proposition 9.6 is proved (for the polynomial case) in Ref. 16. 

Numerical algorithm (for k = 1): Compute 11(x,Y;·) at some point S; from the 

open interval (Xi,xi+I), e.g. Si = (Xi+1 + x;)/2, using method A or B. Proposition 5 

states that there are two unique generalized polynomials 11i = 11(Ai;s), 
117 = 11(A7;s) which are the boundary functions of 11(x,Y;·) in the interval [x;, Xi+l]. 

We can find expressions for the boundary functions 11i,117 by anyone of the methods 
A or B. Using method A we obtain two m-dimensional subsets Qi,Q7 of J and two 

m-dimensional sets of binary variables 5I- = (a~(l), ... , a~(m))' 5I+ = 
(a;(l) , ... , a;(m»), a~(i)' a;(i) E {+,- }, i = 1, ... , n, such that for S E [Xi, Xi+ I]: 

(note that the pairs (Qi,5Ii), (Q7,5I7) may not be unique, and any pair can be used). 
Alternatively, if method B is used then we can determine Ai,Ai as defined by 

Proposition 9.5. 
According to Proposition 9.5 the expressions for the functions 11i, 117 can be 

used for presentation or computation of 11(x,Y;·) at any point in the subinterval 

[Xi' XI+I]. 

9.3.3. The Polynomial Case 

If the basic functions are of the form <p;(x) = X i-I, i = 1, ... , m, then (9.2) is 

the Vandermond's determinant: det <D(x') = ni>} (Xi - X), which does not vanish. 
L",(X) is the class of polynomial functions defined on X = R of (m - 1 )-st degree of 

the form 11m-I(A;S) = Al + A2S + ... + AmSm-l. 
In the case n = m Eq. (9.20) for the SII-function obtains the form(18,19) 
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This interval function has been studied (without using interval arithmetic).(20) 
Equation (9.21) for n > m in the polynomial case reads: (I 3) 

11m-l(X,Y;~) = n l(xQ;~)T yQ, IlxQ;~) = IT 
Qc;;;) k=l .. m k"i Xq(i) -xq(k) 

wherein Q = {q(k)}k=l . _ 
The intervals Yj can be reduced to compatible intervals Yj by(l3) 

Y. = Y II " l(xQ;x.); yQ J' E 1. 
) } I I /., 

Qc;;;) j~Q 

For m = 2 and applying Proposition 9.6 gives for S E [Xb Xk+l], 0 :0; k:o; n, the 
following simple expression(l3) 

if 0 <k< n, 

if k = 0 or k = n, 

where the data (x, Y) are assumed compatible. 
Next are two examples for polynomial functions. The computations are 

performed by a program written in PASCAL-SC,(12) based on the method A. 
Example 1: Let the following set of data be given 

I 

(y)=(l, 2, 4, 6) 
x, l[l,3], [1,2], [1.5,2.5], [2,3] , 

and let the modeling functions be second order polynomials of the form 

The graph of the interval function Y12(x,y;·) is presented on Fig. 9.1. For 
comparison the simple interval polynomial 113(x,y;·) is also presented. In order to 
recognize both interval interpolating functions on Fig. 9.1 keep in mind that 

112 ~ 113' 
According to Proposition 9.3 the bounding functions of112(x,Y;·) pass through 

at least three end-points of the interval segments, which fully determine them. The 
program gives results for 112(x, y;.) presented in Table 9.1. Note that the computed 
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FIGURE 9.1. Graphs of the interval polynomials from Example I. 
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8.00 

compatible intervals coincide with the input intervals, that is, the input data are 
compatible. 

Remark: To demonstrate the advantages of direct computation of the interval 
function 112(x,Y;·) compute the solution set for this example through the parameter 
set A. Assume that A is computed exactly. Then optimally enclose A to obtain an 
interval vector AI. The best result for the upper function is 

and for the lower function 

112(AI;~) = -0.1 - l.75~ - O.l5~2. 

The width of 112(AI;~) at ~ = 6 is 

co[ lliAI;6)] = 11;(AI;6) -112(AI;6) = 37. 

TABLE 9.1. Bounding Functions and Compatible Intervals 
for the Problem of Example 1 

Bounding Functions 

Subinterval Lower Upper Compatible Intervals 

[x-w,Xj] YiY!Y4 Y!Y3y:t Yj = [1,3] 

[Xl,X2] YiY2y:t Y!Y3y:t Y2 = [1,2] 

[X2,X3] Y2Y3Y! Y!Y!Y4 Y3 = [1.5,2.5] 

[X3, X4] Y!Y3 Y4 Yiy!y:t Y4= [2,3] 

[X4, xoo] YIY!Y4 Y!Y3y:t 
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1.00 2.00 4 .00 6 .00 

FIGURE 9.2. Graphs of the interval polynomials related to Example 2. 

The width of11iA;6) = 112(x,Y;6) as computed by our method is 

11~(x,Y;6) -11.z(x,Y;6) = 1. 

Example 2: For the same set of data and for the set oflinear modeling functions 
111 (A;~) = A I + A2~ we obtain the results presented in Table 9.2. 

The interval function 111 (x,Y;·), comprising the set oflinear modeling functions 
is presented on Fig. 9.2. For comparison the function 112(x'y;·) is given (the latter 
also appears in Fig. 9.1). To recognize both functions on Fig. 9.2 recall that 

111 ~ 112' 
Example 3: Next consider an example using 6 knots 

0, [I, 1.02] 
I, [0.99, 1.25] 

(x y) = 2, [1.04, 1.06] 
, 3, [1.07,1.09] 

4, [1.l6, 1.18] 
5, [1.23, 1.25] 

TABLE 9.2. Bounding Functions and Compatible Intervals 
for the Problem of Example 2 

Bounding Functions 

Subinterval Lower Upper Compatible Intervals 
--... -.. - ... ~ 

[Loo, Xl] Yi Y4 Y!Y4' Y\ = [1,2] 

[X\,X2] Yi Y4 Y2: Y4 Y2 = [1.2,2] 

[X2, X3] Yi Y4 Y!Y! YJ = [1.6,2.5] 

[X3, X4] Yi Y4 Y!Y~ Y4 = [2,3] 

[X4, xoo] Y2 Y4 Yi Y! 
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1.23 

l .le 

1. U 

1 .11 

1.07 

1 .03 

0 .99 

o .e~ 

0 .00 1.00 2 .00 3.00 4 .00 5 .00 

FIGURE 9.3. Graphs of the interval polynomials related to Example 3. 

Fig. 9.3 presents the corresponding polynomials 115(X,Y;·) and 114(X,Y;} Of 
course, 114 ~ 115' 

9.4. LINEAR ESTIMATION UNDER INTERVAL MEASUREMENTS 

This section shall assume that the parameter A.y defined by Eq. (9.10) depends 
linearly ony, i.e., A.y = Hy, whereH E Rmxn, andH= H(x) may depend on x but not 
ony. Equation (9.12) can be written as 

= {Hy Iy E y} ~HY, (9.23) 

whereby the last inclusion relation Eq. (9.17) has been used. 
Assume as before that .L is a class of linear on A. functions of the form 

11(A.;·) = q>(y A. defined on D. For a fixed SED the estimate solution set can be 
written in the form 

11(A~;S) = {11(A.;S) I A. E A<\l} 

= {q>(S)'A., A=Hyl y E Y} 

= {q>(S)T(Hy) Iy E Y} = {(q>(S)TH)YIY E Y} 

(9.24) 

Note that the interval-valued function (9.24) gives the exact bounds for the solution 
set. Next consider a special case of least-square estimator illustrating the above 
approach. 
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Multiple linear regression: In the case of multiple linear regression, denote 
~ = (1, ~b ' .. , ~m-l) and assume <Pies) = ~i' i = 0, ... , m- I, so that 

YJ(A;~) = <p(S) [" = "0 + "lSI + .,. + "m- ISm- 1 = ~A. 

Denoting 

_[I XII '" x 1m- 1 

x- ... , 
1 xnl ... x llm - 1 

we obtain from (9.10) with an 12 norm the matrix H in the form H = (X' XrIXr 
Substituting in (9.23) and (9.24) gives 

(9.25) 

(9.26) 

where res) = S(XTX)-IXT = (Yl(~)' ... , YIles))· 
In the case of m = 2, the approximating function is linear of the form 

f(";~) = Ao + "l~' For the components Yi(~) of the n-dimensional vector [(S) we 
obtain 

where 

n II n 

1.24 

1.21 

1.17 

1 .13 

1.10 

1.06 

1 .02 

0 .99 

0 .00 1.00 2 .00 3 .00 t .OO 5 .00 

FIGURE 9.4. Graphs of the interval polynomials related to Example 4. 
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The boundary functions of the interval function L(S) = r(S)Y are lines in each 
interval with end-points two neighboring Sb i = 1, ... , n, where Si are defined by 
Yi(Si) = 0, that is, 

The polynomial and multinomial cases produce similar results under the 
corresponding choice of the matrix X. 

Example 4: Consider the data 

0, [I, 1.02] 
1, [0.99,1.01] 

(x y) = 2, [1.04, 1.06] 
, 3, [1.07,1.09] 

4, [1.16, 1.18] 
5, [1.23, 1.25] 

For the given data, the set of interpolating polynomials of degree m - I = 2 
consists of only one single-valued interpolation polynomial. The latter serves also 
for an unique solution of the same problem with m - 1 = 3 and m - 1 = 4 (Fig. 9.4). 
The solution set is empty for the same problem with m - I < 2. The envelope of the 
set of least-square approximation polynomials of second degree for the given 
interval data is also presented in Figure 9.4. 

Example 5: For the set of data of Example 1 and for modeling functions which 
are second order polynomials, the corresponding sets of solutions both for the 
interpolation and the least-square approximation problems are presented on Fig. 
9.5. 

1.00 2 .00 4 .00 8 .00 

FIGURE 9.5. Graphs of the interval polynomials related to Example 5. 
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9.5. CONCLUSION 

Both interpolation and curve fitting problems involving generalized polyno­
mials and interval data have been studied. In certain special cases exact interval­
arithmetic expressions for the envelopes of the sets of solution functions are 
obtained (see Eqs. (9.20, 9.21, 9.24, and 9.26)). In the one-dimensional case when 
the solutions are functions of one variable, the enveloping functions are charac­
terized to show that they are piece-wise generalized polynomials. These interval­
arithmetic expressions can be effectively computed in a software environment 
which supports interval arithmetic like recently developed SC-Ianguage(12) (or 
computer algebra systems Maple and Mathematica). Such an environment provides 
computer operations with directed roundings, so that the computed interval bounds 
are automatically rounded toward outside and contain with guarantee the true 
results. Thus, the computed bounds comprise all possible kinds of input and 
computational errors. This fact opens a new way to the practical implementation 
and interpretation of the computed results especially with respect to the interpola­
tion problem. For example, assume that one knows that the experimentally obtained 
measurement intervals Y contain with guarantee the true values of the measured 
quantities. Assume that l1(x,Y;·) is the interval solution function computed from 
these measurements and that the model function 11 belongs to £. Assume that an 
experiment provides us with a new measurement (XN,Y:iV) such that 
l1(x,Y;XN) (1 YN= 0. The correct conclusion, then, is that the class .L of model 
functions is inadequate for the description of the experimental data. 

Therefore the approach and programming tools can be used by experimental 
scientists for checking hypotheses with respect to the type of the modeling func­
tions. New data can be easily checked whether they intersect the available interval 
solution sets. If some of these intersections are empty, then it follows that the type 
of the modeling functions is wrong. Another type of modeling function (possibly 
involving more parameters or other type of basic functions) should be taken in 
consideration. 

In the above arguments it is assumed that Y; are measurement intervals, 
containing with guarantee the true values of the measured quantities. It seems that 
experimental scientists can provide such intervals in most situations. Moreover, the 
provision of guaranteed bounds seems to be a substantial part of the experiment. 
At present, experimental scientists often do not care about obtaining such bounds, 
which diminishes the value of the experiment. A possible explanation for such an 
attitude is that few mathematical tools and methods dealing with interval problems 
have been developed. Measurement tools and instruments also sometimes fail to 
provide the necessary guaranteed bounds for the data to be read. The guaranteed 
numerical "interval approaches" should be employed for guaranteed interval data, 
possibly obtained using high quality "interval measurement" tools. 
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Adaptive Approximation of 
Uncertainty Sets for Linear 
Regression Models 
A. Vicino and G. Zappa 

ABSTRACT 

This chapter deals with the problem of uncertainty evaluation in linear regression 
models, representing either purely parametric models or mixed parametric/non­
parametric (restricted complexity) models. The hypothesis is that disturbance 
information and prior knowledge on the unmodeled dynamics are available as 
deterministic bounds. A procedure is proposed for constructing recursively an outer 
bounding parallelotopic estimate of the parameter uncertainty set, which can be 
considered as an alternative description to commonly used ellipsoidal approxima­
tions. This new type of approximation is motivated by recent developments in the 
robust control field, where descriptions like hyperrectangular or polytopic domains 
have led to appealing stability and performance robustness properties of uncertain 
feedback systems. 
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10.1. INTRODUCTION 

Recent years have seen a renewed and stronger interest in system identifica­
tion.(l,2) Research activity has been mainly stimulated by the growing need for 
techniques providing the basic information required by advanced robust and 
adaptive control schemes developed in the past decade.(2) Both soft (stochastic) and 
hard (deterministic) bound settings have been widely investigated(2,3) for soft­
bound, mixed parametric/non parametric approaches, for Hr or II nonparametric 
techniques,(4,5) for hard-bound purely parametric approaches,(o.7,g) and for hard­
bound mixed parametric/nonparametric approaches.(9,IO,II) Mixed parametric/non­
parametric approaches appear promising for providing the necessary information 
for applicability of the techniques recently devised in the robust control field for 
structured and unstructured uncertainties.(i2-15) 

This chapter is embedded in a hard-bound setting, where knowledge about 
disturbances and a priori information is given in terms of deterministic bounds. A 
fixed-order model and a possible block accounting for unmodeled dynamics are 
allowed. The contribution of this chapter is in the spirit of Wahlberg and Ljung.(II) 
The distinguishing feature is that instead of constructing adaptive ellipsoidal 
approximations for the parameter uncertainty set, i.e., the set of parameters com­
patible with the disturbance bounds and the a priori knowledge on the unmodeled 
dynamics, it proposes recursive approximations of orthotopic or parallelotopic 
shape. 

Beyond the intrinsic interest from a theoretical standpoint, the main practical 
motivation for this different characterization of the parameter uncertainty set 
estimates lies in the recent results found in the robust control field when the nominal 
plant model is affected by parametric or mixed parametric/nonparametric pertur­
bations. Most of these contributions refer to uncertainty regions in plant parameter 
space of hyperrectangular or polytopic shape,04--16) The main purpose of these 
references is to characterize extremal subsets of the uncertainty region providing 
worst-case properties of the uncertain system from the stability or performance 
viewpoint. The interesting feature of polytopic regions is that it is possible to find 
very 'small' subsets (made of vertices or edges) providing the 'worst-case' infor­
mation contained in the whole uncertainty set. 

This chapter provides an adaptive algorithm for constructing recursively an 
outer bounding parallelotopic approximation of the parameter uncertainty set. The 
procedure represents a counterpart of the algorithm originally proposed by Fogel 
and Huang(17) and successively modified by Belforte et al.(l8) It can be employed 
both in a purely parametric or in a mixed parametric/nonparametric setting of the 
identification problem. Though the computational burden of the algorithm is 
comparable to that in,(I7,18) it is a good candidate to provide better approximations 
of the parameter uncertainty set, on the grounds that the family of approximating 
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parallelotopes is parameterized according to a larger number of degrees of freedom 
than ellipsoids. 

The chapter is structured as follows. Section 10.2 introduces notation and 
problem formulation. Section 10.3 presents basic results for optimal approximation 
of the uncertainty set, while the adaptive algorithm is discussed in Section 10.4. 
Concluding remarks are reported in Section 10.5. 

10.2. NOTATION AND PROBLEM FORMULATION 

Consider the linear regression equation 

y(k) == <I>'(k)e + e(k), k == 1,2, ... (10.1) 

where y(k) is the k-th scalar measurement on the system under investigation, 
e == [e b ... , en]' is the model parameter vector, <I>(k) == [<I>I(k), ... , <l>nCk)]' is the 
regressor and e(k) represents an error term such that 

le(k)l:'5:r(k), k==1,2, ... (10.2) 

where r(k) > 0 is a known sequence of error bounds. Notice that, as is better 
specified at the end of this section, e may include parameters of a fixed-order 
nominal model and parameters describing the unmodelled dynamics possibly 
associated with the nominal model.(ll) Denote by 0(k) the uncertainty parameter 
set at time k, i.e., the set of 8 consistent with the model Eq. (10.1) and the error 
bound Eq. (10.2) up to the k-th measurement, i.e., 

k 

0(k) = {n ~(l)}, (10.3) 

1=1 

where ~(l) is the set of parameters consistent with the /-th measurement 

A set in Rn defined as ~(l) will be called a 'strip'. It is easy to check that 0(k) is a 
convex polytope. Assume that 0(k) is nonempty for any k. 

The next sections approximate 0(k) through simple-shaped regions like par­
allelotopes; a description of such regions is introduced. Denote by j(ec) the unit 
ball in the leX! norm centered at 8c 

1\(8C) == {8 : max 18i - 8fl :'5: I}. 
i=I, ... ,n 

A parallelotope can be defined through j(8C) and a nonsingular transformation 
T E Rn,n 
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P(T,fY) = {8 : 8 = ro, e E 2(8C)} = {8 : IIP(8 - SC)II", :::; I} (lOA) 

where P = rl. Denote by 0J = I, ... , n and pi, i = I, ... , n the columns and rows 
of matrices T and P, respectively. It is easy to verify that 

n (10.5) 

i=1 

Alternatively, the parallelotope P(T,SC) can be expressed as the intersection of n 
strips in parameter space, 

where 

(n 1 

P(T,S') = J n Sit' 
li=1 
l 

Moreover, denote by at and at the bounding hyperplanes of S;, i.e., 

(10.6) 

(l 0.7) 

(10.8) 

Since one looks for 'optimal', in the sense of minimal volume, outer approxima­
tions of 8(k), choose as 'measure' /-l of a parallelotope in RI1 its volume 

)l[P(T,SC)] = vol[ P(T,SC)]. 

Recall the relationship between the volumes of a unit ball 2(8C) and P(T,8e) 

/-l[P(T,SC» = 2nldet (T)I = 211 Iidet (P)I. (10.9) 

Hence, the requirement of minimal volume for a parallelotopic domain is equivalent 
to one of minimum ( maximum) determinant magni tude for the matrix T( P) defining 
the parallelotope. 

Now formulate the problem solved in the forthcoming section. Consider the 
linear regression model Eq. (10.1) with error bounds given by Eq. (10.2). Let an 
outer estimate of 8(k) be given at time k in the form of a parallelotope P(T,8C). 

Suppose that an additional measurement at time k + 1 becomes available. The 
problem is to use the new information to update in an optimal way the parallelotopic 
estimate. More precisely, denoting by Pk the parallelotopic estimate of 8(k) at time 
k, i.e., Pk = P(T(k),eC(k», find the minimal-volume parallelotope Phi consistent 
with the preceding estimate Pb the new measurement y(k + I) and the correspond­
ing error bound r(k + I). Of course, a priori information on the system and on the 
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data is assumed to be available in order to determine a suitable initial estimate Po 
and evaluate the error bounds r(k). 

The above problem formulation includes both purely parametric model esti­
mation, classical in the set membership uncertainty community,(6--8) and mixed 
parametric and nonparametric identification in a hard bound context.(9-II) The 
major requirement is a linear parameterization of the model. Hence, ARMAmodels 
can be dealt with in an equation-error approach. Output-error models where the 
parametric part is an FIR model or a linear combination of orthogonal filters (like 
Laguerre of Kautz filters),o I) can be tackled equally well. When dealing with purely 
parametric models, the a priori information generally consists in an initial uncer­
tainty parallelotope for the parameters and a measurement error bound. When 
mixed parametric/nonparametric models are of concern, a priori information on 
the nonparametric part of the model becomes of crucial importance and it requires 
suitable techniques to translate it into an initial parallelotopic estimate Po. A good 
example models the nonparametric part via a FIR model cascaded with a suitable 
shaping filter. (II) The corresponding a priori information is mapped into an ellip­
soid in the FIR parameter space. The a priori information which can be assumed 
in the context of parallelotopic approximations may be given in terms of 

• a hard bound on the tail contribution of the nonparametric part of the model 
(equivalent to assuming a certain rate of decay of the impulse response of 
the nonparametric part); 

• hard bounds on the errors between the first n samples of the 'true' impulse 
response samples and the FIR model parameters; 

• hard bounds on discrepancies between the frequency-response magnitude 
of the nonparametric part and the truncated approximation. 

10.3. OPTIMAL ADAPTATION OF THE PARALLELOTOPIC 
APPROXIMATION 

In this section, a solution is provided to the following problem: given the 
parallelotope Pk and the new strip L(k + I) provided by the (k + 1 )-th measurement, 
find the minimal-volume parallelotope PhI containing the polytope 
V= Pk n L(k+ 1). 

Notice that Vis the intersection of n + 1 strips in the parameter space, each 
bounded by a pair of parallel hyperplanes. Clearly, some of these hyperplanes may 
not be tangent to V; elementary geometrical considerations show that vis bounded 
by m supporting hyperplanes, with m varying from n + 1 up to 2n + 2. 

In order to compute the optimal outer-bounding parallelotope, it is necessary 
to check whether the corresponding hyperplanes are tangent to vfor each strip. In 
fact, if both the bounding hyperplanes are not tangent to 0/, then the strip does not 
provide any new information and therefore can be discarded. In this case, the 
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problem is trivially solved since 0/= Pk+ 1 is the intersection of the remaining n strips. 
Conversely, if for a given strip only one hyperplane is not tangent to '1/, then the 
strip must be 'tightened' by replacing the non-tangent hyperplane by a new parallel 
tangent hyperplane. Iterating this tightening procedure for all the n + I strips leads 
to the following description of '1/ 

(10.10) 

where Si are defined as in Eq. (10.7) and all the strips are tight, i.e., all the 
hyperplanes at, ai, i = I, ... , n + 1 defined as in Eq. (10.8) are tangent to (I/. 
Notice that the result of the tightening procedure is independent of the order 
according to which the strips are tightened. Implementation aspects will be dis­
cussed in the next section. 

The next lemma provides a parameterization of a generic strip outer-bounding 
a polytope described by the intersection of tight strips. 

LEMMA. Let 0/",,- {nj~i Sj} and let Sj,j = I, ... , n + 1, be tight with respect 
to rtJ. Then any strip S i outer-bounding 0/ can be expressed as 

S j == {G : lP;e - cjl ::; 1 } (10.11 ) 

where Pi and Ci are given by 

11+1 11+1 

Pi= LPijPj' ci = ~>ijCj' 
j=1 j=1 

with 

n+1 (l0.12) 

Ilaijl::; 1. 
j=1 

In order to find the minimal-volume parallelotope, define, for j = 1, ... , n + 1, the 
n + 1 matrices and vectors 

j..:.. [ ] R" C - c p "" cj _ p cj+l' ... ,cnTI E (10.l3) 

The result of this section can be stated in the following theorem. 
THEOREM. The minimal-volume parallelotope p(T,eC) outer-bounding 

nJ n+1 . . b 
v = n j=1 Sj IS gIven y 
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where 

j* = arg max {Idet pi!}. 
i=I, ... ,n+1 

PROOF. According to the Lemma, any parallelotope containing V can be 
expressed as the intersection of n strips given by Eq. (10.11). Therefore, it is clear 
from Eq. (10.9) that the problem of finding the minimum volume parallelotope 
outer-bounding Vamounts to the following mathematical programming problem 

1 [n+1 n+!]l 
~:x det E a ljPj' ... , E aniPj , (10.14) 

subject to the constraints ofEq. (10.12). In fact, the coefficients {aij} for which the 
maximum is attained in Eq. (10.14) provide the parametrization of the optimal 
parallelotope. Exploiting the linear dependence of the determinant on the coeffi­
cients a Ii' Eq. (10.14) can be rewritten as 

(10.15) 

which, taking into account the constraints (12) on the coefficients aIJ' reduces to 

(10.16) 

Notice that the constraint k *j in Eq. (10.16) allows one to rule out the possibility 
that det[·] becomes null. Repeating the same argument for the other rows of the 
matrix in Eq. (10.14), one finds out that the optimal parallelotope is determined by 
the matrix pi with maximal determinant. Hence the theorem is proved. 0 

REMARK 10.1. The preceding theorem implies that the minimal-volume paral­
lelotope is given by the intersection of n out of the n + 1 strips defining 0/. Moreover, 
as can be easily checked by the proof, the result can be generalized to the case when 
Vis given by the intersection of an arbitrary number N> n of tight strips. 

10.4. RECURSIVE UNCERTAINTY SET ESTIMATION 

This section presents a recursive algorithm for outer-bounding the parameter 
set via parallelotopes. The input ofthe algorithm at time k + 1 is the estimate Pk and 
the strip I.(k + I) representing the k + I-th measurement. 

In order to apply the Theorem proved in the preceding section, the tightening 
procedure must be carried out for the n + I strips defining 0/. Therefore, for each 
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strip, one must check if the supporting hyperplanes are tangent to 0/, i.e., if they 
intersect the parallelotope defined by the remaining n strips. Let us now illustrate 
this tightening procedure by considering the strip '2.(k + 1). In this case, one has to 
check if the hyperplanes 

()+ = {e : </>'(k)S - y(k)} = r(k) 

()- = {S : </>'(k)8 - y(k)} = -r(k) (10.17) 

intersect the parallelotope P= P(T(k),eC(k)). (Explicit dependence of </>, y, r, P, and 
so forth, on k will be dropped hereafter to simplify notation). 

Since from Eq. (10.5) 

11 

;=1 
(10.18) 

11 

;=1 

the hyperplane ()+ (()-) intersects P if 

(10.19) 

Thus, if one ofthe two conditions of Eq. (1 0.19) does not hold, the strip 

'2. = {e: we - yl:S; r} 

must be modified. The tightened strip, denoted by S,,+1> will be given by 

(10.20) 

where 

(10.21) 

and 

r == min(r/), ~ == max(-rf}. 

Clearly, if both conditions of Eq. (10.19) hold, then Sn+l '" '2.. Notice that the 
procedure outlined above must be applied also to each of the n strips defining Pk' 

This is due to the fact that 'l1 is a polytope not necessarily preserving the parallelo­
topic structure of Pk. 

An algorithm for recursive parameter uncertainty estimation is based on the 
results presented before. 
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Step 1 Compute a description of 'Ii == Pk n L(k + 1) in terms of n + 1 tight­
ened strips Si like in Eq. (10.10), following the procedure outlined 
above. 

Step 2 Form the n + 1 matrices pi and vectors d' defined in Eq. (10.13). 
Step 3 Solve 

Step 4 Set 

and compute 

}* = arg{ max {Idetpil}}. 
j=l, ...• n+l 

n+l 

Pk+ l = n Si 
i=l,i-t/ 

T(k+ 1) = (p/rl, eC(k+ 1)= (p/rl c/o 

REMARK 2, The present version of the algorithm, requiring several matrix 
inversions, is computational heavy. However, it can be shown that exploiting the 
close relationships among the matrices pi defined in Eq. (10.13), Steps 1-3 can be 
carried out without any matrix inversion or determinant computation.(19) Therefore, 
only the matrix inversion of Step 4 is required. 

REMARK 3. As already noticed, if both the supporting hyperplanes of the i-th 
strip are nontangent to 0/, then the other strips are tight and/ = i. It can be also 
shown that if only one hyperplane of the i-th strip is nontangent, then / = i, 
independently of the fact that the other strips are tight or not.(19) This has an 
important implication for the parallelotope orientation. In fact, if the diameter of 
Pk is smaller than the width of the strip L(k + 1) associated to the (k + 1) measure­
ment, then, necessarily, at least one hyperplane ofL(k + 1) does not intersect Pk' In 
this case Pk and Pk+l will share the same orientation. 

REMARK 4. A simplified version of the recursive algorithm can be employed 
for deriving orthotopic approximations of the parameter uncertainty set. For this 
problem, only Step 1 of the algorithm needs be performed. In fact, orientations of 
the hyperplanes bounding the approximating parallelotope are not free in this case; 
they are fixed by the orthotopic shape assumption. 

10.5. CONCLUDING REMARKS 

In this chapter an algorithm has been proposed for recursive estimation of the 
parameter uncertainty set in a linear regression model. A hard-bound setting of the 
underlying identification problem has been considered. The procedure provides an 
outer approximation ofthe uncertainty set alternative to commonly used ellipsoidal 
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bounds. Several ramifications of the problem solved in this chapter may be the 
object of further investigation. Numerical efficiency and robustness of different 
techniques for implementing the algorithm; convergence of the algorithm to the 
minimum-volume parallelotope bounding the true parameter uncertainty set; per­
formance evaluation of the parallelotopic approximation as compared to the ellip­
soid-based techniques; mapping different kinds of prior knowledge on 
measurement noise and unmodelled dynamics into initial uncertainty estimates 
represent but some of the interesting and widely open problems deserving attention 
in future investigation. 
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11 
Worst-Case II Identification 
M. Milanese 

ABSTRACT 

In this chapter recent results on nonparametric and mixed parametric-nonparametric 11 
identification are reviewed. These results mainly concern the evaluation of the 
identification errors, the design of experiment, the selection of the model structure, 
the construction of optimal and almost optimal algorithms, and the convergence 
properties of the identification algorithms. 

11.1. INTRODUCTION 

Most of the literature on set membership identification developed in the 70s 
and 80s focused on parametric approaches of the problem.(1-4) A review of the 
literature can also be found in Chapter 2 of this volume. In the parametric 
approaches, the structure of the model to be estimated is supposed to be given, 
typically a difference or differential equation of fixed order. The aim is to estimate 
the vector of unknown parameters to represent the equation coefficients. 

In the 90s, much attention has been devoted to nonparametric approaches. The 
problem is to estimate the impulse response or the transfer function of time 
invariant, linear, possibly infinite dimensional systems.(5) In this way, weaker 
assumptions on the system to be identified are used, rather than with a parametric 
approach. However, as expected, very large estimation errors are obtained gener­
ally. To overcome these problems, mixed parametric-nonparametric approaches 

M. MILANESE • Dipartimento di Automatica e infonnatica, Politecnico di Torino, 10129 Torino, Italy. 
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have been investigated recently, where it is considered that the system to be 
identified can be described by a parametric model perturbed by a nonparametric 
error system, which represents the unmodeled dynamics.(6-~) 

Most of literature on these topics can be classified, according to the norm 
measuring the estimation errors, in two main categories, namely Hr and II identi­
fication. 

The aim of this chapter is to review recent results on nonparametric and mixed 
parametric-nonparametric l) identification of discrete time invariant linear systems. 
The motivation for studying worst-case l I identification is twofold. First, the model 
minimizing the l) norm of the impulse response error gives the minimal absolute 
prediction error. Second, l) identification provides the information needed to apply 
l1 to modem robust control design techniques.(lll) 

11.2. PROBLEM FORMULATION 

The class of plants considered in this chapter consists of causal, single-input 
single-output, linear, time-invariant, and discrete-time systems. This class is iden­
tified with the space H of one-sided, real sequences h = {ho, hi, ... }, representing 
the impulse response of the plants. The aim is to estimate the first n + 1 samples of 
h, that is to estimate hn = rh, where r is the truncation operator: 

(11.1 ) 

Suppose that two kinds of information may be available. The first one, often 
referred to as a priori information is expressed by assuming that h E K, where K is 
a subset of H. From a modeling point of view, K is used to restrict the class of 
models, which the system to be identified is supposed belonging to. An important 
distinction among parametric and nonparametric identification methods can be 
made according to the dimensionality ofthe set K. This classification has particular 
relevance in connection with the achievable levels of the identification errors and 
the "informational complexity" of the identification procedure, as discussed in 
Section 11.3. 

Nonparametric identification methods are characterized by large dimension­
ality of the set K. Typical sets considered in the nonparametric approaches are: 

set ofBIBO stable systems. 

K£ = {h E H: Ih) <00 Lp-,J, P > l,j = r, ... , <Xl}: 

set of exponentially stable systems with a given degree of stability, if r = O. Unless 
specified otherwise, r = 0 is assumed. 
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KF = {h E H: Ih) = O,j= r, ... , oo}: 

set of FIR systems of order r. 
Parametric identification methods assume as K the set of the impulse responses 

h(p) of a set of parametric models :M(p) depending on a (possibly) low dimensional 
parameter vector p. In order to take explicitly into account that real systems cannot 
be exactly represented by low order models, a mixed parametric-nonparametric 
approach can be taken. This chapter considers a priori information of the type: 

K M = {h E H: hj = ht(p) + hj, 

pEn c;:;;R', Ihjl :::;Lp-j, p > l,j= 0,1, ... , oo}: 

set of mixed parametric-nonparametric models, with the parametric part :M(p) 
depending on an I dimensional parameter vector p and with exponentially stable 
unmodeled dynamics. 

Only classes of models :M(p) linear in the parameters are considered, having 
the impulse response samples linear functions of p: 

, 
ht(p) = L mjiPi = (Mp)j j = 0, 1, ... ,00 01.2) 

i=l 

There are several ways of representing models linear in the parameters, e.g., 
the FIR, Laguerre, and Kautz models. Alternatively, models nonlinear in the 
parameters, such as ARX models, may be linearized.(6,7,9) 

The second kind of information is usually provided by a finite number of 
measurements performed during some experiments on the system to be identified. 
Consider experimental conditions consisting in the knowledge of the first N + 1 
components of m output sequences y(i) related to m one-sided input sequences uri) 

by 

j 

(i)_ "h (i) (i) '-0 1 N' 1 2 Yj - L... kUj-k + ej ,} - , , ... , , I = , , ... , m (1l.3) 

k=O 

Assume zero initial condition and Ilu(i)lloo :::; 1, V i. The disturbance sequences 
e(i) are unknown but r: bounded, i.e., 

I (i) I < . - ° 1 N' - 1 2 ej _ Wj£ ) - , , ... , , 1- , , ... , m (11.4) 

where Wj are given positive weights. For the sake of simplicity, consider Wj = 1, Vj, 
though several of reported results extend to the general case. 

Equation (11.3) can be rewritten in a more compact form as 

y =Fh + e (1l.5) 
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where 

_ [y(I) (I) (m) (m)], 
y- O'···'YN'···'YO '···'YN ' 

_ [ (I) (I) (m) (m)], e - eo ' ... , eN ' ... ,eo , ... , eN 

and F is the linear operator 

( 11.6) 

where Ui is the lower triangular Toeplitz matrix formed by input uU): 

uU) 
0 0 0 

u(i) u(i) 0 
U- I 0 ( 11.7) 
i-

u(i) 
N 

u(i) 
N-I 

u(i) 
0 

An identification algorithm is a (possibly nonlinear) operator <1>: Y --+ R"+ I 
A 

providing an estimate hn = <I>(y) to rnh, using the corrupted information y. 
Look for estimates minimizing the II error. The interest in using this measure 

of the identification error is twofold. First, interesting techniques exist for robust 
control design techniques in the II setting.(IO) Second, a model minimizing the II 
impulse response error gives minimal absolute prediction error. If yj = Ii=o h'ku;_k 
is the output of the "true" plant hO and y; = Ii=o hI: Ui-k is the predicted output using 

A . 
an estimate hoo of hO, the following tight bound holds:( II) 

A A 
lY; - Y;I ::; IW - hOO11 1 • Ilull"" \:fj, \:f u ( 11.8) 

Since hO is not known, a worst case approach is taken as usual in the set 

membership identification, by defining the identification error as 

£(<1>,£) = sup sup IIT"h - <I>(y) II I (11.9) 
y hEFSS, 

where FSS y is the feasible system set, i.e., the set of plants consistent with corrupted 

information y, 

j 

FSS y = {h E K : lYji) - 2>0j~k I ::; £ j = 0, 1, ... ,N, i = I, 2, ... , m} (11.1 0) 

k=O 
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It is clear from Eq. (11.1 0) that if no a priori information is given (K = H), 
measurements give no information on hk for k > N. In most cases a priori 
information is used to give information on the behavior of the impulse response 
just for k > N, while information for k :s: N can be derived directly from the 
measurements. In order to make use of a priori information only when necessary, 
only sets K giving limitations on hk for k > N only may be considered. A priori 
information of this type, will be denoted as residual. For example, a priori 
information provided by KF or KE, with k = N, is residual. 

Assuming that the reader is familiar with the main concepts and results in set 
membership estimation theory, as briefly reported in Chapter 2 of this book, the 
following few other concepts are needed. 

The minimal worst case error is called radius of information R( f:) 

R(f:) = inf E(~,f:) 
<I> 

(ll.ll) 

Useful bounds on R(f:) are often found in terms of the diameter of information 
D(f:), expressed as 

D(f:) = 2 sup IITnhll,. (11.12) 
hEFSSo 

In fact, if K is balanced (i.e., symmetric with respect the origin) and convex, 
then(l2) 

0.5D(f:) :s: R(f:) :s: D(f:) (1\.13) 

Note the sets K considered above are balanced and convex. 
The overall estimation process is indicated as identification procedure and is 

defined by specifying K, u, ~, f:, y, N, m, n. For example, two identification 
procedures may only di ffer by a priori assumptions on K or because different inputs 
are used. To put in evidence the dependenceofE,R andDonN,m andn, the notation 
E~,m, R~,m and D~,m are used when necessary. 

An identification procedure is called convergent if 

lim lim E( ~,f:) = O. (1l.l4) 
£ .... 0 N->oo 

Note that in the literature there is not yet a unified terminology for convergence 
concepts. Some authors use the terms robust convergence or uniform convergence 
for the above definition. Other authors use the term robust convergence for weaker 
or stronger convergence concepts. For the sake of simplicity, only results related to 
the above definition are reported. 

Results related to the evaluation of the identification errors, the design of 
experiment, the selection of the model structure, the construction of optimal and 
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almost optimal algorithms, and the convergence properties of identification algo­
rithms are reviewed. 

11.3. IDENTIFICATION ERRORS AND MODEL STRUCTURE 
SELECTION 

Most of the results are based on the analysis of the diameter of information, 
which is easier to evaluate than the radius of information, and is related to the radius 
through by Eq. (11.13). Moreover, the diameter of information provides a tight 
bound of the identification errors of almost optimal algorithms, such as interpola­
tory or projection algorithms (see next section). 

In view ofEq. (11.8) the case n = 00 is of particular interest. Most papers study 
d;j"m(r.). This diameter is bounded below by d;f;m(o), representing the inherent 
uncertainty, due to the limited number of measurements used for the identification. 
References 13 and 14 show thatD~,I(O)12 is related to the Kolmogorov and Gelfand 
N-widths of set K, well known concepts in approximation theory.(15) Reference 14 
shows that if K = KE 

2L ~Nl 
N 1 :s; lJoc' (0), \::fu. 

p - (p - I) 

(Il.l5) 

This bound is tight in the sense that equality holds for some u, e.g., the unit 
impulse sequence. 

From Eq. (11.12) it follows that 

(11.16) 

where the right inequality is an equality if K = KE or K = KF. In particular, if 
K=KE 

(11.17) 

From Eq. (11.16), it is clear that ifno a priori information is assumed or if K 
= Ks, the identification error E~,m (<j>,f:) is not finite whatever algorithm <j> is used. 

Eqs. (l1.16) and (11.17) allow evaluation or bounding of D~,m( E) in terms of 
D~,m(f:) and the assumed a priori information. Now, some results related to 
D~,m(f:) are reported. 

In the case of residual a priori information, a simple lower bound has been 
derived for m = 1 :(16,17) 

(11.18) 
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This bound is tight since, if u is the unit impulse sequence, then(l6) 

(11.19) 

It follows that in order to go below 2NE, it is necessary to have stronger 
information than the residual one (which does not assume any a priori information 

on hb k = 0, I, ... , N) or to use more than one input sequence (m > I). 
If K= KE, the following lower and upper bounds onD'!;I(E) have been derived 

in:(l8) 

k 

max min{E L Ivk_),Lp-k} ~~I(E) 
Os;k:';N-l 

j=O 

N-l k 

~ L min{2E L Ivk-il, 2Lp-k} (11.20) 

k=0 ]=0 

where va, v" ... , VN-l are the elements of the first column of the matrix V = r..r1. 

Even if only residual a priori information is assumed. D%,m(E) can be reduced 

down to 2E, using suitable inputs and a sufficiently large number of experiments 
m. It has been shown(16) that if K = Hand u is the sequence of all binary N-tuples 

of ±I (Galois sequence), then 

(11.21) 

In the same references it is also shown that if m < 2N- 1, the diameter is strictly 
greater than 2E. Note that a diameter lower than 2E can be achieved only under very 

strong (and implausible) a priori assumptions. Provided the system has Ihkl > E for 
some k ~ N, then D%,m( E) ;::: 2E. (16) 

In the case of residual a priori information, a lower bound, function of m, has 
been obtained:(19) 

2(N + I) ~Nm() \-I 
-:---'::=;::=:===C:=~O:=~=~:=:===::'c:" E < U.? t v u 
1 + -V2(N + 1)ln[2m(N + l)(N + 2)] - N ' 

(11.22) 

This bound implies that the number of measurements needed to obtain a 
diameter not exceeding a given threshold grows exponentially with the number 
impulse response samples to be estimated. Denoting by me the minimum number 
of experiments such that D'!;m(E) ~ 2Ct, c> I, gives(l6): 

2N 
(11.23) 
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where v c == I (N + 1 )(c - 1 )/2c land Il indicates the roundup function. 
Similar lower bounds have been derived(20,21) for the case m == I. In particular, 

denoting by Nc the minimum number of measurements such that D~,j (e):<:; 2ce, c 
> 1, the following asymptotically tight lower bound has been derived for the case 
K == KF and n == r:(20) 

Nc :2: 2"g(lIc)-1 - n + 2(n/c - I) (11.24 ) 

where 

( ) _ (I-a)l (l-a)+(I+a)1 (I+a) 
g a-I + 2 og2 2 2 og2 2 . 

Equations (11.23) and (11.24) indicate that nonparametric II identification 
suffers from large "informational complexity," i.e., the number of measurements 
needed to assure a given level of identification error grows exponentially with the 
number of impulse response samples to be estimated. This fact has been sometimes 
interpreted as a confirmation of the common belief that worst case estimation is too 
pessimistic. However, one reason for this exponential growth is that the repre­
sentation of systems through impulse response samples is not "parsimonious," 
while it is well known that the use of parsimonious models is a key point for 
obtaining reliable identification results. Mixed parametric and nonparametric mod­
els have been investigated(9) in order to overcome such complexity problems. If K 
== KM, it is shown that: 

where 

D~,I == 2 sup IIhM(p)111 + e'L 

pEFP.,\, 

(1l.25) 

and MN is the matrix formed by the first N rows of the seminfinite matrix M in Eq. 
(1l.2). 

The quantity 

DM = 2 sup IIhM(p)111 ( 1l.26) 
pEFPS" 

is the diameter of information for the parametric class of models 'M(p), and a method 
for its computation can be found in the above reference. Suppose the parametric 
part 'M(P) is refined by increasing the dimension I. The value of f.'E, due to 
unmodeled dynamics, decreases while DM increases, becoming unbounded for I > 
N. Thus the total diameter is minimal for some value l* ::::; N. Typically, ifparsimo­
nious classes of models are used, such as linearized ARX models, l* may be very 
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low, considerably reducing the dimensionality of the problem. The results confirm 
that the informational complexity may be largely reduced with respect to the 
nonparametric approach. (9) 

The above considerations suggest also that Eq. (11.25) can be used to compare 
the "goodness" of different classes of models. In particular, it can be used for the 
selection of the order the parametric part. The diameter of information represents 
a measure of the "predictive ability" of the considered class of models with respect 
to absolute error, analogous to statistical criteria such as FPE, Ale, and so forth, 
which give a measure of the predictive ability with respect to mean value er­
ror.(8,9,11,13) 

The identification error of the least squares algorithm ~LS, perhaps the most 
popular and widely used algorithm in system identification, has been also investi­
gated. We report here some results related to the case m = I, K = KM . The results 
for K = KF, with I :s; N, can be obtained as particular cases, while ~LS is not a 
meaningful algorithm for K = Ks or K = KE. 

If m = I and K = KM , the least squares algorithm is the linear algorithm given 
by: 

(11.27) 

provided that the indicated inverse exist. Mn is the matrix formed with the first n 
rows of the semi infinite matrix Min Eq. (11.2). 

The following expression of its identification error is obtained:(9,22) 

(11.28) 

where 11A11 = SUPllylloo)IAYlh. 
The computation of IIAII can be performed by means of convex optimization 

programs, but it may become cumbersome for large N. In such a case, standard 
lower and upper bound of norms can be used,(22,23) leading to 

n N n N 

min{max I laul, maxI laul}:S; IIAII:S; n min{max I laijl, max I lay!} (11.29) 
} I j } I j 

Note that error (11.28) can be arbitrarily larger than the radius of informa­
tion.(22) 

11.4. OPTIMAL AND ALMOST-OPTIMAL ALGORITHMS 

Optimal algorithms, i.e., algorithms whose error equals the radius of inform a­
tion, can be found as central algorithms.(l2,24) A central algorithm is obtained by 
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finding the Chebyshev center of the set FSS; = rnFSSv' This set is a polytope and 
its center may be derived by finding its vertices [h(ll, ... , h(v)] and computing the 
point of minimum distance from all the vertices, i.e., solving the problem: 

min max Ilhn - h(k)ll] = rad(FSS~) (1l.30) 
h"ERn k~I .... ,v . 

Optimization Eq. (11.30) can be solved by linear programming.(25) However, 
in nonparametric approaches, the complexity of the computation of the vertices of 
FSs;, increases combinatorically with n.(26) Just for n = 20 7 30, the computation 
complexity becomes quite large. 

Complexity can be overcome by using mixed parametric-nonparametric 
classes of models. If K = KM, Eq. (11.30) can be reduced to the computation of the 
vertices of an I-dimensional polytope. (9) Recall that if "parsimonious" models are 
used, the value of I may be quite small. Moreover, the number of vertices also is 
typically low. In fact, if linearized ARX models are used for the parametric part 
9vf(P), Monte Carlo simulations have shown that the mean number of vertices tends 
to be constant as N increases. In the example reported in Ref. 27, the mean number 
of vertices is 50 and 150, for I = 4 and I = 5, respectively. 

Almost optimal algorithms (i.e., optimal within a factor of 2), can be con­
structed more easily. 

An interpolatory algorithm <I/(Y) is defined as 

(1l.31) 

Interpolatory algorithms are almost optimal, since:(I2) 

(1l.32) 

Interpolatory algorithms require finding a feasible point of the polytope 
FSs;,. This can be obtained, for example, through the solution of the linear program: 

h; = arg min £.hn 
h"EFSS; 

(11.33) 

where .L is any given linear functional. 
In this way, however, the feasible point is obtained on the edges of FSS~, while 

more "centered" points should be desirable, as suggested by optimality of central 
algorithms. For example, the center of the maximal volume ball contained in 
FSs;, can be looked for. Reference 28 shows how to solve this problem by means 
of one linear program. 

An alternative solution is to use the projection algorithm <If, given by: 
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<!fey) = h;, h; = arg min IlY - Fhnlloo ' 
h"ET"K 

(11.34) 

If n > N, Eq. (11.34) has to be solved by substituting N for n. Note that the 
solution of Eq. (1l.34) can be obtained by means of linear programming.(29) The 
projection algorithm is an almost optimal algorithm(30) which does not require the 
knowledge of s. Clearly, this is an appreciable property for all problems where it 
is not possible or easy to have reliable information on the value of s. 

Generally, the least squares algorithm qP is neither optimal nor almost optimal 
in II identification.(30) However, ~LS is optimal if FIR models are considered (K = 
KF), and impulse or step sequences are used as inputs.(22) This result easily extends 
to the case K = K£. 

11.5. CONVERGENCE PROPERTIES 

Most of the convergence results are based on the analysis of the diameter of 
information. As follows from Eq. (11.13), iflimo-->olimN-->ooD( s) = 0, an identifica­
tion procedure using optimal or almost-optimal algorithms is convergent. On the 
contrary, if the diameter of information is not convergent, no identification proce­
dure can be convergent, whatever algorithm is used. In such a case, the only way 
to obtain a convergent procedure is to modify the a priori information or the 
experimental conditions. 

The case of n = 00 has been investigated mostly. In such a case, no convergent 
identification procedure can be found, unless some suitable a priori information is 
assumed. In fact, from Eq. (11.16) it follows that convergent identification proce­
dures exist only if 

00 

lim sup L Ihkl = o. ( 11.35) 
N-->oo hEK k=N 

Equation (1l.35) does not hold for Ks, while it holds true for K£ and KF , and 
for KM if M(P) is stable 'v'p E FPSo. 

Reference 31 shows that if K=K£, the input has lengthN?:. n + 2n+!, containing 
all possible Galois sequences, and the projection algorithm is used, then the 
obtained identification procedure is convergent. Similar results have been derived 
by using general results on the asymptotic behaviour of the diameter of informa­
tion.(32) If K = K£, any interpolatory algorithm using a nonzero input sequence is 
convergent. (18) 

Despite the previous results, it may still be possible in the absence of a priori 
information to estimate an arbitrarily large number of impulse response samples as 
accurately as desired. From the results of Refs. 16 and 17, it follows that if n = N 
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and K = H, Eq. 01.21) holds. This implies that using m = 2N- 1 experiments, Galois 
sequences as inputs and an interpolatory algorithm, the resulting identification 
procedure gives an error in estimating N impulse response samples. which tends to 
zero as s tends to zero without using any a priori information. 

Convergence properties of the least squares algorithm, when K = K", or K = 
K M, have been investigated.(22) It is shown that EN(qP,S) may be unbounded as 
N ~ 00. However, <l>LS is convergent if the system to be identified is stable, u and e 
are quasi-stationary, uncorrelated, and u is persistently exciting. These assumptions 
are the deterministic analogy of the typical conditions assuring consistency of the 
least squares estimates in a stochastic setting. 
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Recursive Robust Minimax 
Estimation 
E. Walter and H. Piet-Lahanier 

ABSTRACT 

An important problem arising when one wants to estimate the parameters of a model 
in a bounded-error context is the specification of reliable bounds for this error. In 
early phases of development, when no prior information is available, one may wish 
to know the minimum upper bound for the amplitude of the error such that the 
feasible parameter set is not empty. This corresponds to using a minimax estimator. 
For models linear in their parameters, we describe a method that takes advantage 
of a reparametrization in order to recursively obtain the minimax estimates and 
associated bounds for the error. It also provides the set of parameters compatible 
with any upper bound of the error. This procedure is extended to output-error 
models, which are nonlinear in their parameters. Its robustness to outliers is 
discussed and a technique is described to detect and discard them. 

12.1. INTRODUCTION 

The problem of estimating the parameters of a model together with their 
uncertainty in the presence of noise has been widely discussed. The approach 

E. WALTER. Laboratoire des Signaux et Systemes, CNRS Ecole Superieure d'Electricite, 91192 
Gif-sur-Yvette Cedex, France. H. PIET-LAHANIER. Direction des Etudes de Synthese/SM Office 
National d'Etudes et de Recherches Aerospatiales F-92322, Chatillon Cedex, France. 

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York, 
1996. 

183 



184 E. WALTER AND H. PIET-LAHANIER 

known as set membership estimation assumes that a nonstatistical description of 
the noise, under the form of bounds on its realizations, is available for each 
measurement.(I) Set membership estimation aims at characterizing the region in the 
parameter space that contains all parameter values consistent with the data, model 
structure, and bounds on the acceptable error between the data and model output. 
Here this set will be referred to as the (posterior) feasible parameter set §. Several 
techniques have been developed to either determine § exactly or characterize a 
simple-shaped set containing it. For models linear in their parameters, S, ifit exists, 
is a convex polyhedron which, when bounded, i.e. when a polytope, can be 
approximated by ellipsoidsy-4) or orthotopes(5) containing it. This polyhedron can 
also be described exactly by enumerating its vertices, unbounded edges and 
supporting hyperplanes. Broman and Shensa,(6) and Mo and Norton(7) present 
methods that are limited to the study of bounded polyhedra, whereas the technique 
Walter and Piet-Lahanier(8) developed is not. For models nonlinear in their parame­
ters, various methods exist for determining an approximation of §. Linear tech­
niques have been extended to the nonlinear case using multiple linearization of the 
model.(9) For specific model structures, such as output-error models with a deter­
ministic recurrence equation, it is possible to obtain sets of linear inequalities that 
must be satisfied for the parameters to belong to §.(10,11) Signomial programming 
has also been suggested to compute an orthotope containing §.(12) Random search 
methods have been designed either to compute points belonging to §lI3) or deter­
mine points on its boundary.(14) 

In the bounded-error context, each new measurement is associated with two 
inequalities that the parameter vector must satisfy to belong to §. These inequalities 
are functions of the bounds assumed for the acceptable error. Optimistic bounds 
may lead to the conclusion that no parameter vector is consistent with all data and 
that § is empty, whereas pessimistic bounds inflate the set and, therefore, overes­
timate the uncertainty on the parameters. In practice, the bounds on the error are 
usually defined by taking into account the user's knowledge of the system or the 
technical specifications the manufacturers provide for the measuring devices. 
However, during the early phases of the study of a new system, one may be at a 
loss to define reliable bounds on the errors. A possible way to partly overcome this 
difficulty consists in describing § as a function of the bound on the error. This 
involves computing the minimum value of the bound that results in a non-empty §. 

This chapter presents a method to determine such a bound for models linear 
in their parameters. An algorithm is described that recursively updates the bound 
whenever a new measurement is taken into account. As a by-product, it provides a 
description of § for any bound larger than the minimum value. An extension ofthis 
technique to the study of output-error models is considered. The robustness of the 
method to outliers in the data is discussed and a technique is described to detect 
and discard them. 
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12.2. PROBLEM STATEMENT 

The error f.(k, 0) is defined as 

f.(k, 0) = y(k) - eT(k)O, (12.1) 

where y(k), k= 1, ... ,N, are the data, 0 is the p-dimensional vector of the parameters 
to be estimated and e(k) is the kth regressor. In the bounded-error context, the error 
should satisfy 

(12.2) 

To be consistent with the hypotheses, 0 must then belong to the solution set § of 
the following set of inequalities 

(12.3) 

Inmostpapers,f.ma£k) is assumed to be known a priori. However, it may happen 
that the available information is too scarce to allow one to define reliable bounds 
f:maJ..k). This chapter considers such a situation and assumes that all f:maJ..k) are 
equal to f:ma", which is unknown. Provided that f:max is large enough, any 0 can be 
considered as acceptable. One would then like 

(i) to estimate the minimum value ~max of f:max associated with a non-empty 
§; and 

A 
(ii) to obtain a description of all sets § associated with f:max ~ f:max. 

The set § obtained as the solution of problem (i) is a minimax estimate of 0, 
given by 

A I A I I §mm= {O 0 = Arg min max .T(k)O - y(k) }. 
o k 

(12.4) 

Laplace(15) seems to have introduced this minimax (Loo) estimator and later 
Fourier(16) and Cauchy(17) developed it. A very interesting account of the historical 
development of Loo estimation can be found in Farebrother.(18) It is well known that 
the criterion associated with minimax estimation is not differentiable everywhere, 
especially in a neighborhood of the optimum, so that specific algorithms are needed. 
An important special case is polynomial approximation, where the regressor takes 
the form 

e(k) = [1, tk, ~, ••• ,t[I]T, k = 1, ... ,N. (12.5) 

For this problem, the exchange algorithm of Remes(l9) is especially appealing, 
because of its extreme simplicity. It would be tempting to transpose it to the more 
general problem oflinear minimax estimation. This may lead to erroneous results, 
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as illustrated in,(20) because the regressor does not have the same properties as the 
ones defined by Eq. (12.5). 

The minimax estimation problem of Eq. (12.4) can be transformed into a 
differentiable problem under constraints(21.22) by introducing an additional variable 
x and determining 9 such that 

subject to the constraints 

1\ 

9 = Arg minx, 
6 

x-,T(k)9+y(k)~0,k= 1, ... ,N, 

x + ,T(k)9 - y(k) ~ 0, k = 1, ... ,N. 

(12.6) 

(12.7a) 

(12.7b) 

EXAMPLE 1: Suppose that four measurements have been performed on a 
system and that the results are those given in Table 12.1. These data are to be 
described by 

y(k) = e <jl(k) + E(k). (12.8) 

In Fig. 12.1, the constraints of types Eqs. (12.7a) and (12.7b) associated with the 
data of Table 12.1 are drawn in the (x, e) plane. The shaded area corresponds to the 
set of all pairs (x, e) consistent with all constraints. The minimax estimate ofe can 

• ~ 1\ 
be read dIrectly as e = 0.75 and Emax = 0.75. 

REMARKS: The set of all (x, e) consistent with all constraints is a polyhedral 
cone, i.e., an unbounded polyhedron. 

To obtain the feasible parameter set associated with any given value of Emax, 

one only has to add the inequality x ~ Emax to Eqs. (12.7(a) and (b)). For instance, 
if Emax = 1, one immediately obtains e E [0.5, I). The exact description of the 
feasible polytope for (x, 8) thus contains the exact description of § for any 

1\ 
Emax ~ Emax as a by-product. 

The problem defined by eqs. (12.6) and (12.7(a) and (b» can be viewed as a 
linear programming problem and thus could be solved by classical techniques such 
as the simplex(23) or projection(24) algorithms. In their basic form, these algorithms 

TABLE 12.1. Data Set for Example I 

k <P y 

1.5 
2 2 1.5 
3 3 2 
4 -\ 0 
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FIGURE 12.1. Geometrical inter­
pretation of Overton's reformulation. 

x 
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are not recursive and cannot be used for real-time minimax estimation, so that 
recursive variants would have to be used.(25,26) They would not, however, provide 
a description of the set of all solutions when this set is not a singleton, a situation 
that may be encountered even for the minimax estimate. This is why we suggest 
using a non-pivoting method(8) derived from the double-description method of 
Motzkin et at.(27) The next paragraph presents this algorithm in the context of 
recursive minimax estimation. 

12.3. EXACT CONE UPDATING METHOD 

The parameter vector 0 andx must satisfy Eqs. (12.6) and (12.7(a) and (b)). A 
classical approach(27) to solve sets of inhomogeneous inequalities such as Eqs. 
(12.7a) and (12.7b) is to convert them into sets of homogeneous inequalities by 
introducing a new variable v". This modification amounts to transforming a convex 
polyhedron in a (p + I )-dimensional space into a polyhedral cone in a (p + 
2)-dimensional space 

(12.9a) 

(12.9b) 

where vh > O. This set of inequalities can be written in matrix form as 

Aw~O, (12.10) 
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where A is a (2N, p + 2) matrix and w = (xh, OhT, J') T. Here and in what follows, 

vector inequalities are to be understood componentwise. The solution set is then 
the intersection of2Nhalf-spaces of the form aT w 2: 0, where aT is the ith row of 
the matrix A. The hyperplane aT w = 0 associated with each half-space is a support­
ing hyperplane of the set if it is associated with a non-redundant constraint. Each 
d-face of the set is defined as the intersection of(p + 2 -d) supporting hyperplanes. 
Edges are I-faces and vertices are O-faces. The solution set of Eq. (12.10) is a 
polyhedral cone which can be fully described by enumerating its edges and 
supporting hyperplanes. When the set of all w solutions of Eq. (12.10) has been 
determined, the solution set ofEqs. (12.7(a) and (b» is obtained as a set of vertices 
and edges. The vertices are obtained by 

x=W /w =x"/v" I p+2 ' (12.1Ia) 

(l2.llb) 

for any wl'+2 > O. 
Let ~T be thejth row of A, Cj be the polyhedral cone associated with the first 

j inequalities of Eq. (12.10), and Sj be a matrix the columns of which are the 
direction vectors of the edges of Cj . The algorithm is as follows: 

Initialization: The method requires that 

w 2: O. (12.12) 

From Eq. (12.11) and the meaning of x and v\ this corresponds to 0 2: O. For the 
presentation of the algorithm, we shall therefore assume that 02: 0, but we shall see 
later how this assumption can be avoided. 

Equation (12.12) defines Co as the non-negative orthant. A description of this 
cone consists of the matrix So of the direction vectors of its edges, and for each 
edge of the list of all hyperplanes to which it belongs and the list of all other edges 
of the cone which are adjacent to it. In Co, the ith edge admits as supporting 
hyperplanes the (p + 1) hyperplanes of the form Wj = O,j =t i, and is adjacent with 
any ofthe remaining (p + 1) edges of Co. 

Iteration: Suppose that the first (j - I) inequalities have been processed so 
that Sj-l and the associated lists of supporting hyperplanes and adjacent edges are 
available. 

The new inequality aTw 2: 0 defines a hyperplane ~ = {wla}w = O} and two 
half-spaces Hi = {wlaTw 2: O} and Hj = {wlaTw:o; O}. The solution set of the j 
inequalities is the intersection of C;-l and Hi (in a (p + 2)-dimensional space). If 
ZT = aJ~_], the sign of the ith component ofz indicates whether or not the ith edge 

of Cj - 1 belongs to Hi. Three patterns have to be considered: 
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1. z < O. No edge of Cj - 1 belongs to the intersection. The solution set for the 
homogeneous system of Eq. (12.10) reduces to the singleton {O}. The 
original system, Eq. (12.8), has no solution. This case should not take place 
in the context of minimax estimation. 

2. z;::: O. ~i-I is included within HJ. No updating is necessary. The inequality 
is redundant. Set Cj = Cj _ 1 and introduce the next inequality. 

3. The components ofz are of different signs. Hi separates the edges of Cj _ l • 

The inequality is not redundant and the description of the cone must be 
updated. 

When Pattern 3 occurs, Sj differs from Sj-l' All columns ofSj_1 that correspond 
to a non-negative component ofz are kept. If any component ofz is equal to zero, 
the list of the supporting hyperplanes of the associated edge must be completed by 
introducing Hi' New edges must be determined, which are located on the faces of 
Ci- 1 intersected by Hi' These faces are associated with two adjacent edges of Cj - b 

one giving a positive component of z, denoted by st, and the other one giving a 
negative component ofz, denoted by sIc . The new edge S{k is a linear combination 
of these two edges and must belong to Hi' The suitable linear combination is then 

(12.13) 

The list of supporting hyperplanes associated with this new edge is determined by 
keeping only the supporting hyperplanes common to st and sIc, and by including 
ft. When all new edges with their list of supporting hyperplanes have been 
computed, the list of adjacent edges must be updated for all edges of Cj- Two edges 
are adjacent if and only if their lists of supporting hyperplanes have at least p 
hyperplanes in common and no other edge admits these p hyperplanes as supporting 
hyperplanes. 

The polyhedral cone Ci is then obtained in the form of its matrix of edges Sj 
and lists of adjacency and supporting hyperplanes. 

Using Eqs. (12.11(a) and (b)), vertices of the solution set ofEqs. (12.7(a) and 
(b)) can be obtained. The solution of the problem defined by Eqs. (12.6) and (12.7(a) 
and (b)) is determined by looking for the minimal value ofx over the set of vertices 
and finding the associated value(s) of9. 

REMARKS: The initialization of the method requires that 9 ;::: O. If a lower 
bound 9min for 9 is known, It is possible to perform a transformation of the parameter 
vector 9' = 9 - 9min so that 9' satisfies 9' ;::: O. If no lower bound is available for 9, 
the change of variable 

8i =Vi -V/, i= 1, ... ,p, (12.14) 

where Vi and v/ are both positive, allows the method to be used at the cost of 
doubling the number of unknowns. 
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The description obtained for the solution set of Eq. (12.8) contains as a 
A 

by-product the set § associated with any given value of lOmax :2: lOmax' Obtaining § 
only requires taking the additional constraint x :2: lOmax into account. 

EXAMPLE 2: Consider an ARX system described by 

y(k+ 1)=-a~y(k)-a;Y(k-I)+b~u(k)+b;u(k-I)+lO(k+ I). (12.15) 

0.02,..-----------------------, 

~ om 
<OJ 

0.00 0 100 

r.=====================~ 
200 

100 200 

100 200 

100 200 

100 200 

FIGURE 12.2. Evolution of the minimax estimates for Example 2 as a function of the number of 
constraints taken into account. 
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One hundred data points have been simulated according to Eq. (12.15), with 
aj = 1.2, a2 = 1.2 (so that the system is unstable), bi = b~ = 1, yeO) = y(1) = 0, 
u(k) = (1 + (-1 )(k-I))I2. Each c(k) was generated according to a uniform distribu­
tion in [-D.O 1, 0.01], so that the true value of Cmax is c~ax = 0.01. The following 
model was used to fit the data 

(12.16) 

where 9 = (ab a2, bj, b2)T. Fig. 12.2 illustrates the evolution of9 and ~max with the 
number of constraints taken into account. 

12.4. EXTENSION TO OUTPUT-ERROR MODELS 

The method described so far can only handle models linear in their parameters, 
which is restrictive and is not in particular the case for output-error models. To 
extend the approach to such models, we shall use the method proposed in Ref. 11, 
which makes it possible to deduce affine inequalities from those defining the 
feasible parameter set associated with an output-error model of the form 

(12.17) 

j=1 j=1 

with 

y(k) = Ym(k, 9) + c(k, 9), k= 1, ... ,N, (12.18) 

where 9 = (aj, ... , an , bj, ... , bn)T and where the initial conditions Ym(k,9) 
a b 

(k = 0, ... , 1 - na) are assumed to be known. One can write 

y(k) = .T(k)9 + c(k, 9), (12.19) 

where c(k, 9) is the output error, assumed here to satisfy I c(k, 9) I ~ cmax. The first 
na terms of .(k) are unknown but bounded. This corresponds to an "errors-in-vari­
abies problem.,,(28) Each new observation y(k) yields a pair of piecewise-linear 
bounds on 9, because each change of sign of an autoregressive parameter 
8j (j = 1, ... , na) changes the bound used to replace Ym(k - j, 9) in the regressor. (10) 

Any 9 belonging to § satisfies the following (necessary but not sufficient) inequali­
ties(ll) 

j=1 j=1 

and 
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" 8;[-y(k- j) + sgn(8.,)En1aX] + " 8u(k- j) '2y(k) - E (12.21) ~ L.... l1a+} max' 

j=i ;=i 

for k = 1, ... , N. Since Emax is unknown, these inequalities are nonlinear in 
(9, EmaJ. Therefore we suggest replacing Emax in the left-hand side ofEqs. (12.20) 

f'( 

and (12.21) by the most recently available Emax. The corresponding inequalities can 
then be written as 

Emax + L 8j [y(k - j) + sgn(8)~max(k - I)] 

i=i 

- L 8n,,+p(k - j) + y(k) '2 0, 
j=i 

Emax + L 8)-y(k - j) + sgn(8)~max(k - 1)] 

j=i 

+ L 8n,,+p(k - j) - y(k) '2 0. 

j=i 

(12.22) 

(12.23) 

If the signs of all autoregressive parameters 8p = 1, ... , na) are known a priori, 
then Eqs. (12.22 and 12.23) are linear in 9 and Emax' It is therefore possible with the 
exact cone updating technique to recursively obtain 6 and ~max' If the signs of some 
of the autoregressive parameters are not known, all possible combinations of signs 
have to be investigated. 

1\ 1\ 1\ 
REMARK: 9 and Emax are no longer an exact minimax solution, and 9 may not 

belong to § because of the approximation involved in the transformation of the 
1\ 

nonlinear inequalities into linear ones. 9 may nevertheless correspond to a good 
point estimate of 9, as evidenced by the following example. 

EXAMPLE 3: Consider an output-error system described by 

y(k, 9*) = Ym(k) + E(k). (12.24) 

One hundred data points have been simulated according to Eq. (12.24) with 
af = 1, a~ = 1, br = 1, b; = I,Ym(O) = Ym(1) = 0, u(k) = (I + (-l)(k-1))I2. Each e(k) 
was generated according to a uniform distribution in [-0.02, 0.02]. Fig. 12.3 
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/\ /\ 
illustrates the evolution of 9 and Cmax with the number of constraints taken into 

/\ 
account. Although Cmax remains very optimistic, the estimated values ofthe parame-
ters are very close to the true values. 

REMARK: In Example 3, for (@, cmax) = (@, ~max)' 97% of the pairs of in equal i­
ties associated with Eq. (12.20) and (12.21) but only 11 % of the pairs of 
inequalities associated with Eqs. (12.17) and (12.18) are satisfied. This suggests 

om 
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FIGURE 12.3. Evolution of the minimax estimates for Example 3 as a function of the number of 

constraints taken into account. 
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a nonrecursive method for correcting ~max' Assume that I E(k) I is uniformly 
distributed between 0 and E~ax' The percentage a of the inequalities associated with 
Eqs. (12.17 and 12.18) such that [y(k) - Ym(k, O')I~ ~max then satisfies 

1\ 

1\ 

Emax 
a ~ -- when n ~ 00. 

* 
Emax 

An estimate a of a is thus given by the percentage of the inequalities associated 
with Eqs. (12.17 and 12.18) such that 

1 1\1 1\ 
y(k) - Ym(k, 0) ~ Emax' 

1\ 1\ • ~ 1\ 1\ 
For Example 3, a = II %, and a corrected value for Emax IS Emax = Emax/a "" 0.03, 
much closer to the true value. Another possibility worth investigating would be to 
adjust ~max upward until the inequalities denving from Eqs. (12.17) and (12.18) are 
all satisfied. 

12.5. DETECTION OF OUTLIERS 

Consider a situation where a large number of data points are associated with 
an error satisfying lEI ~ E~ax but where a few data points are associated with a very 
much larger error, because of some failure in the procedure for data collection. 

1\ 
The value of Smax can only increase or remain unchanged when a new data point is 
taken into account. Therefore, if one uses the algorithm presented in Section 12.3, 
~max is then much larger than what would have been obtained had the data been 
correctly collected. One may then wish to identify the data points associated with 
exceptionally large errors as outliers, to discard them. If the regressor does not 
contain past output values, discarding an outlier merely requires ignoring the two 
inequalities associated with it. On the other hand, if the regressor depends on past 
values of the output, discarding an outlier requires ignoring not only the two 
inequalities where it appears as a measurement value y, but also all other inequalities 
in which it appears as a coefficient of the regressor. 

The problem can be viewed as one of fault detection, for which a number of 
methods have been proposed.(29) The method currently implemented in the algo­
rithm is based on mean-value testing.(30) For each new constraint, the new value of 
the minimax bound on the error is determined and compared to the mean value of 
the minimax bounds obtained from the previous constraints. If the difference 
between the mean and the new value is higher than a given threshold, the corre­
sponding data is considered as an outlier and rejected, so that the cone is not 
modified. 

EXAMPLE 4: One hundred data points have been simulated according to Eq. 
(12.15) with ar = I, a~ = I, br = I, b; = 1,y(0) = y(l) = 0, u(k) = (I + (-lik- 1»/2. 
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Each E(k) was generated according to a uniform distribution in [-0.01, 0.01]. For 
three data points, corresponding to k = 25,50 and 70, (constraints # 50, 100 and 
140) the value ofy(k) was replaced by an outlier, obtained by adding 25 to the value. 
The resulting value of y(k) was recorded for the data points but not used in 
computingy(k+ 1) andy(k + 2) (this corresponds to an error in records, not a jump 
in the system). The model Eq. (12.16) was used to fit the data. Fig. 12.4 illustrates 
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2; 

r w w .. o 100 200 
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'" <<3> 2 

! yy y W 
00 100 200 

FIGURE 12.4. Evolution of the minimax estimates for Example 4 as a function of the number of 
constraints taken into account. 
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A A 
the evolution of9 and Emax with the number of constraints taken into account. The 
values indicated in Fig. 12.4 are those given by the algorithm, even when an outlier 
has been detected. Hence the jumps in the estimates. In practice, of course, one 
would then keep the previous estimates, so that these jumps would not occur. 

The method is easy to implement and requires very little additional computa­
tion at each iteration. However, the determination of a suitable threshold may be 
critical, as too small a value would lead to an underestimation ofthe minimax bound 
by rejection of regular data, whereas too large a value would make the test totally 
useless. When the number of data points taken into account increases, the prob­
ability of a large increase of Emax decreases, so that adapting the threshold seems of 
interest. 

12.6. CONCLUSIONS 

A method has been presented that provides the minimal value of the bound on 
the error that ensures the nonemptiness of the feasible parameter set. By a suitable 
reparametrization of the problem, this value can be obtained from the description 
of the (unbounded) solution set of a system of linear inequalities. A method has 
been described which recursively updates an exact description of this set whenever 
a new datum is taken into account and provides a minimax estimate of the 
parameters and bound for the error. This description contains the exact description 
of any feasible set associated with a larger bound on the error as a by-product. The 
method was initially designed for the study of models linear in their parameters but 
can be extended to output-error models. In this case, the estimated value of the 
minimax bound for the error is a lower bound for the true bound. However, the 
resulting parameter estimates prove to remain very close to the true values. The 
value of the minimax bound for the error can only increase or remain unchanged 
when a new data point is taken into account. If the data set contains outliers, i.e., 
data associated with a very much larger error than the rest of the set because of 
some failure in the procedure for data collection, the estimated minimax bound for 
the error would be drastically increased because of these data. This is why a simple 
procedure has been suggested to protect one against such occurrences. 
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Robustness to Outliers of 
Bounded-Error Estimators and 
Consequences on Experiment 
Design 
L. Pronzato and E. Walter 

ABSTRACT 

If proper precautions are not taken, bounded-error estimators are not robust to 
outliers, i.e., to data points where the actual error is larger than assumed when 
specifying the error bounds. The outlier minimal number estimator (OMNE) has 
been designed to overcome this difficulty and has proved on various examples to 
be particularly insensitive to outliers. This chapter is devoted to a theoretical study 
of its robustness. The notion of breakdown point, introduced to quantify the 
robustness of point estimators, is extended to set-estimators. When the model output 
is linear in the parameters, OMNE is shown to possess the highest achievable 
breakdown point. A bound on the bias due to outliers is established and used to 
define a new policy for optimal experimental design aimed at providing a higher 
protection against outliers than conventional D-optimal design. 
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13.1. INTRODUCTION 

The purpose of robust estimation(l) is to provide estimates that are not 
dramatically affected if the hypotheses made on the measurement errors are not 
entirely satisfied, either because of a misspecification of the distribution or because 
ofthe presence of outliers. Least squares estimators are not robust to outliers, to the 
point where a single erroneous datum can ruin the estimate obtained from a large 
set of otherwise regular data. The notion of breakdown point, introduced in the 
context of point estimation,(2) is useful to quantify robustness and to compare the 
performances of estimators. Loosely speaking, the breakdown point of an estimator 
is the minimum percentage of outliers that must be introduced in a data set for the 
estimator to produce a meaningless result. In this chapter, this notion is extended 
to set estimators such as those encountered in the context of bounded-error 
estimation,(3,4,5,6) which is recalled in Section 13.2. The aim of bounded-error 
estimation is to characterize the set of all parameter vectors such that the residuals 
lie between some prior bounds. In this context, outliers are any data points for which 
these bounds are too optimistic. Many bounded-error estimators are not robust, in 
the sense that a single outlier may make the set of possible values for the parameters 
empty. OMNE, however, has proved to be particularly insensitive to outliersy,8,9) 
When the model output is linear in the parameters, OMNE is shown in Section 13.3 
to reach the highest possible breakdown point. A bound is given to the bias due to 
outliers, which suggests a new policy for optimal experiment design aimed at 
providing a high protection against outliers. This policy is described in Section 13.4, 
and compared on an illustrative example to conventional D-optimal design. 

13.2. BOUNDED-ERROR ESTIMATION 

Given an-sample z of data points (Xj,yJ, i = 1, ... , n, where Yj denotes the 
measurement obtained under the ith experimental conditions Xj, and a model 
structure T](e,x) with a p-dimensional parameter vector e, bounded-error estimation 
aims at characterizing the set of all vectors e such that all differences Yj - T](8,x;) 
lie between some known bounds -<.f and <.r. This posterior feasible parameter 
set(lO) (or membership set(ll), denoted in what follows by S, is then given by 

S(Z) = {e E ]RP 1-<.7' :C::Yj - T](e, x):C:: <.;M, i = I, ... , n}. (13.1) 

As in classical point estimation, the observations Yj can be assumed to correspond 
to the model response T](e*,Xj) obtained at some unknown true value e* of the 
parameters, corrupted by some unknown errors hj, 

Yi = T](e*,x) + hi' i = 1, ... , n. 

If the errors hi are only known to satisfy 
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i= 1, ... , n, (13.2) 

any e in S(Z) is a possible candidate to being the true value eo. Note that if bi is 
assumed to be a random variable with a probability density function equal to zero 
when (and only when) Eq. (13.2) is not satisfied, then S(z) corresponds to the set 
of all parameter vectors with a non-zero likelihood. For that reason, S(Z) has also 
been called posterior likelihood set. It must be emphasized that the definition of 
S in Eq. (13.1) does not suppose the existence of a true parameter vector e*. The 
structure of the model used in the definition of S can be quite different from that 
ofthe process generating the data, which allows simple model structures to be used 
to describe the behaviour of complex processes. In such a Situation, the errors bl 

may be essentially deterministic, so that the underlying assumptions of classical 
approaches for point-estimation such as maximum likelihood may no longer be 
valid. Note that S(Z) can also be written as 

. 11(e,X) 
S(z)={eElRPI-I~zi---1 ~l, i=l, ... ,n}, 

Ei 

where Ei = (E~ + Enl2, and Zi = Y/ Ei + (E7' - E~)I(2E;), so that we shall assume with 
no loss of generality that the bounds E7' and E~ are symmetrical and identical for 
all data points, i.e., 

Er = Ef4 = E, i = 1, ... , n. 

In what follows, the model output is assumed to be a linear function ofe, so that it 
can be written as 

T](e,x) = xie, i = 1, ... ,n, 

or equivalently with a vector notation 

T]je) = xe, 

where the ith row of X is equal to xT. The posterior feasible parameter set S(Z) 
associated with the n measurements is then given by 

S(Z) = {e E RP I -E ~ Yi - xie ~ E, i = 1, ... , n}. (13.3) 

Whenrank(X) = p, S(Z) is a convex polyhedron that can be given an exact recursive 
parametric description,(12) and an experimental design policy aimed at minimizing 
the volume of S(Z) has already been described.(13,14) When the inequalities 
I Yi - xTe I ~ E, i = 1, ... ,n, cannot be satisfied simultaneously, S(Z) is empty. This 
can be due to two different reasons: (i) the model structure is incorrect; and (ii) the 
data are corrupted by outliers, which should be rejected. We shall assume in what 
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follows that we are in the second situation. The rejection policy, motivated by 
robustness regarding outliers, is described in the next section. 

13.3. ROBUST PARAMETER BOUNDING 

13.3.1. Outlier Minimal Number Estimator 

Let J be a finite set of distinct indices, defined as follows 

J= {ij E N I ij ~ n, ij "" ik ifj "" k,j = I, ... ,h, h ~ n}. 

Let 5 J(Z) be the posterior feasible set associated with those data points (Xi,yJ from 
an-sample Z that are such that i E J. Define the set S#\Z) as 

S#h(Z) = u SlZ), 

#(J)=h 

(13.4) 

where #(J) denotes the cardinal of J. OMNE then corresponds to the set S#h'(Z) , 

with 

h*(Z) = arg max{h I S#h(Z) "" 0}. (13.5) 

S#h'(Z) is denoted by S*(Z) in what follows. The set S*(Z) thus corresponds to all 
values ofthe parameter vector e that are consistent with the largest possible number 
of observations. Note that no attempt is made at pinpointing which bad items in 
(Y;)i' andior (Xi)i have given rise to the outlier data points (Xj'Y;) (a non-trivial 
problem if the same item appears at more than one j, as in AR models(3 ». 

When Z consists of regular data points, which means that 5 as defined in Eq. 
(13.3) is not empty, h*(Z) = n, and s* (Z) = S7n (z) = S(Z) . OMNE has proved on 
various examples to be particularly insensitive to numerous and severe outliers. (7.9) 

Its theoretical robustness properties will now be studied in more detail in terms of 
its breakdown point. 

13.3.2. Breakdown Point 

Consider an-sample Z of regular data points (S(Z) "" 0), and a corrupted 
sample Z' obtained from Z by replacing m original points by arbitrary outliers. One 
wishes the optimal set 5* (Z') to satisfy 

S*(Z') = s#n-m(Z') = 5 In (Z), 

where the set In corresponds to the regular data kept in Z', i.e. 

In= {ij EN I (Xi'Yi) E Z(1 Z',j= I, ... , n - m}. 
J J 
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This would correspond to the rejection of the m outliers and of no regular data. Note 
that in this case, if a true value e* can be defined for the model parameters, then 
e* belongs to S*(Z'). However, less favorable situations can be encountered where 
S*(Z') *- SJn (Z), which corresponds to nonrejected outliers. There is then no reason 
for S*(Z') to contain eo. Practical experience indicates, however, that S*(Z') 
generally remains close to 8*.(15) Intuitively, a maximal value m* should exist for 
m, such that the distance d[S*(Z),s*(Z')] between S*(Z) and S'(Z') remains 
bounded when m < m'. The ratio m * In corresponds to the notion of breakdown point 
of an estimator,(Z) here extended to set estimators such as those encountered in 
parameter bounding. We allow here contaminated experimental conditions, i.e., the 
outliers may be due to errors III the XiS. The breakdown point of a point estimator 
without contaminated experimental conditions is considered in Ref. 16, with special 
attention to breakdown point maximizing experimental designs. 

DEFINITION 13.1. The breakdown point of a set estimator :s associated with a 
regular n-sample Z is given by 

,II . mdll ~ m [5 (Z)] = mill {-I [5 (Z),.) (Z')] = oo}, 
z' n 

with the convention 

II des (z),0) = 00, 

where Z' is a corrupted n-sample obtained from Z by replacing m original points 
by arbitrary outliers. 

REMARK 13.1. The breakdown point of the posterior feasible set S(Z) as 
defined in Eq. (13.3) is lin since a single outlier can make 5 empty. S(Z) is therefore 
not robust to outliers. 

To investigate the robustness ofOMNE to outliers, we shall need the following 
definition. 

DEFINITION 13.2. A set estimator :s is regression equivariant if it satisfies 

:s (Z:z) = TJ:S (Zj)], 

for any p-dimensional vector v, where Zj and Zz are two data sets respectively 
defined by 

ZI = {(XpYI)" .. , (xn,Yn)}, Z:z = {(xPYI + xfv), ... ,(xn'Yn + x~v)}, 

and where TvC.) is the translation associated with v. 
LEMMA 13.1. The posterior feasible set 5 is regression equivariant. 
PROOF. We can write 

o 
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COROLLARY 13.1. OMNE is regression equivariant. 
PROOF: We use the same notation as in Lemma I. OMNE for Z2 can be written 

S* (Z2) = U S/Z) 

#(.7)=h'(Z2) 

= u TJSyCZl)] 

#(.1)=h'(Z2) 

= TJS*(Z)], 

where h* is defined as in Eq. (13.5). D 
REMARK 13.2. The notions of scale equivariance and affine equivariance(2) can 

also be extended to set estimators, and OMNE can be shown to be scale equivariant 
(provided that the bounds are modified according to the same scale as the data) and 
affine equivariant. 

The following theorem then extends to parameter bounding the results ob­
tained by Rousseeuw and Leroy(2) in the context of robust point estimation. 

THEOREM 1. 
(i) The breakdown point of any regression-equivariant set estimator J 

associated with an-sample Z satisfies 

L n-p J + 1 
m*[~(Z)]:O; _2 __ 

n 

where LxJ stands for the largest integer less than or equal to x. 

(13.6) 

(ii) If the experimental conditions are chosen in such a way that any p x p 

submatrix of X has full rank, the breakdown point ofOMNE satisfies 

L n;p J + 1 

m*[s* (Z)] = ---
n 

(13.7) 

PROOF. (i): Suppose that m*[~(Z)] > (L(n - p)I2J + 1)/n. Any corrupted sam­
ple Z' deduced from Z by replacing L(n - p)/2J + I points is then such that 
d[~(Z),~(Z')] < (j, with (j bounded. Such a sample Z' contains q = n -L(n - p)I2J 
- 1 data points of z. If n - p is odd, then 2q - (p - 1) = n, otherwise 2q - (p - 1) = 
n - 1. Anyway, 2q - (p - 1) :0; n. We construct two corrupted n-samples Z'(v) and 
Z'(-v) whose 2q - (p - 1) first points are respectively defined by 
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and 

with a E JR, v*-o and 

xiv = 0, i = 1, ... ,p - 1. (13.8) 

If n -pis even, the nth data points of Z'(v) and Z'(-v) are still free. Let (xmYn) be 
the nth datum of z'(v), the nth datum of z'( -v) is chosen as (xmYn - x~av). Z'(v) 
and Z'(-v) both contain q points of Z, so that 

(13.9) 

1\ 1\ 
d{S(Z),S [Z'(-v)]} < W'. (13.10) 

Taking Eq. (13.8) into account. one can easily check that Z'(-v) can also be deduced 
from Z'(v) (up to a reindexation of the elements, see Fig. 13.1) by replacing each 
datum (Xt,Y;) by (Xi,Yi - Xray). The regression equivariance of ~ then implies that 
~(Z'(-v)) = Lav{~[Z'(v)]}, which contradicts Eqs. (13.9) and (13.10) for values 
of a large enough. 

(ii): From Corollary 13.1. the breakdown point of S* satisfies Eq. (13.6). Let 
us prove that the bound is reached. Suppose that m = L(n - p)/2J points of Z are 
replaced to give a modified sample Z'. S*(Z') = S#h*(Z') , with h* defined as in Eq. 
(13.5). One obviously has h*(Z'):2: n-m. Consider then one of the sets S J(Z'}, with 
#(J) = h*(z'), and denote it by S(Z'). Let (j be the set of regular data points that 
contribute to defining both S*(z) and S(Z'). One has 

Z'(v) 

Z'( -v) 

(Zlo yJ) (zp-lo YP-l) 

1 1 
(Zloyd (ZP-lo YP-l) 

I 

'tf T 
(Zn,Yn - zn ov) 
(if n - p even) 

FIGURE 13. I. The two corrupted samples in the proof of Theorem 13.1 (i). 
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#( (j) ~ h*(Z') - m ~ n - 2m = n - 2L n ; p J ~ p. 
(13.11) 

Let Jq be the set of indices associated with data points in (j, S 1 (Z') = S1 (Z) = SJ . 
- (/ -(I q 

The set S(Z') is included in SJy' and any p x p submatrix of X has full rank, so SJ. 
is bounded. From Eq. (13.4), S*(Z') is included in the union of such sets, so th~ 
distance d[S*(Z),S*(Z')] is bounded. 0 

REMARK 13.3. Note that the bound in Eq. (13.6) only depends on Z through 
the number of data points. 

REMARK 13.4. When the number of measurements tends to infinity, S* can 
accommodate up to 50% outliers. This is obviously the largest possible percentage 
if the outliers are allowed to be organized in such a way that they can be described 
by the model. Note that in practice the outliers are seldom orgamzed III this way. 
so that OMNE can perform satisfactorily even on cases where there IS a large 
majority of outliers. 

REMARK l3.5. Other regression equivariant parameter bounding policies could 
be defined, with a high breakdown point. A possible choice corresponds to sets 
S#h(Z) with fixed h. Suppose that m points of Z are replaced to give a corrupted 
sample Z', and that the experimental conditions are such that any p x p submatnx 
of X has full rank. One wants d[S #\ Z)'s #\z')] to be bounded whatever the outliers 
may be, so that h should satisfy n - m ~ h (one must have S #\z') * 0), and h - m 
~ p (any set S ;CZ'), with #(5) = h, must contain at least p regular data points to be 
bounded). The maximal value for m which allows these inequalities to be satisfied 
is m = L(n - p )/2J . The value of h given by ~ = Lnl2J + L(p + I )/2J then allows the 
bound ofEq. (13.6) given in Theorem 13.1 (i) to be reached. 

REMARK 13.6. The least median of squares (LMS) estimator(2) and the set 
estimator S#~ defined in Remark 13.5 both neglect up to 50% of the data when n 
tends to infinity. This systematic rej ection of a large part of the data leads to a loss 
of information when there are fewer than 50% outliers. S* does not reject any data 
a priori and therefore does not have such a drawback. 

13.3.3. Bias Due to Outliers 

The distance d[S *(Z) ,S *(Z')], where Z' is a corrupted n-sample obtained from 
a regular n-sample Z by replacing m original points by arbitrary outliers, can be 
seen as a bias due to these outliers. Provided that m S; L(n - p)I2J and that any 
p x p submatrix of X has full rank, this bias is known from Theorem 13.1 to be 
bounded. We now derive an expression for such a bound, which is used in Section 
13.4 to define an optimality criterion for experimental design. 

Define S(Z') as in the proof of Theorem 13.1 (ii). Equation (13.11) implies 
that at least p regular data points of Z contribute to the definition of S(Z'). Let Jbe 
a set ofp indices associated with any subset (with cardinal p) of these regular data 
points. One obviously has 
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S*(Z) ~ SJ(Z), 

S(Z') ~ Sy(Z), 

so that 

d[S*(Z),S (Z')]:S:; max d(S,S'). 
6.8' ESJ(Z) 

Finally, from Eq. (13.4) and the definition ofS(Z'), we get 

d[S *(Z) ,So (Z')]:S:; max max d(S,S'). 
j,#(.7)=p 6,8' ES,(Z) 

As d(S,S'), we shall use the Euclidean distance liS - S'II. We first evaluate 

i1[S J(Z)] = max liS - S'II· 
8,8'ES.,(Z) 

207 

We assume, with no loss of generality, that S J(Z) is defined by the first p data. 
S J(Z) is a convex polyhedron withp pairs of parallel faces (parallelotope). The ith 
pair of faces is defined by 

ST ST . 
Xi = Yi + E, Xi = Yi - E, I E J. 

Take one ofthe vertices of S J( Z) as the origin, and let sj, i = I, ... , p be the vectors 
of coordinates of the adjacent vertices. The maximum value ofilS - S'II is obtained 
when Sand S' are vertices of S yCZ), so that 

where 

i1[S/Z)] = max IISull, 
DEC 

p 

Cp = {u E WI ui =±l, i= 1, ... ,p}, 

(13.12) 

and where the ith row ofS is given by s; . The ordering of the vertices can be chosen 
such that any Sb k,* i, belongs to the ith pair offaces of S yCZ), which can be written 
as 

X;Sk = 0, k,* i, with i, k E J. (13.13) 

The vertex Sj does not belong to the ith face of S y(Z). It satisfies X;Sj = ±2E, and the 
origin can be chosen such that 

(13.14) 
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Let XJ be the p x p matrix the ith row of which is equal to xT. This matrix has full 
rank, and from Eqs. (13.13) and (13.14) S satisfies 

S = 2~X;'. 

From Eq. (13.12), ~[S J(Z)] can therefore be written as 

MS iZ)] = max 2~ IIX;'ull, 

or equivalently 

DEC 
p 

~[SiZ)] = max 2~lIwll· 
XrECp 

Replacing w by vip, with IIvll = 1, one can write ~[S J(Z)] as 

2~ 
~[SiZ)] = max -, 

VE5".p P 

where 

S J,P = {v E W I II vII = 1, vT Xi = ±p, i E J } . 

The bound on d[S *(Z) ,S *(Z')] is finally obtained by 

or equivalently 

with 

2~ 
d[S*(Z),S*(Z')]:::; max max -, 

JI#(J)=p VE5"p P 

2~ 
d[S *(z),S *(Z')] ::s; --, 

p*(X) 

(13.15) 

p*(X) = min{p l::3v E W, IIvll = 1,::3p rows xJ of X, I xJv I = p}. (13.16) 

REMARK 13.7. If a true value S* can be defined for the model parameters, it 
belongs to S*(Z), and from Eq. (13.15) any S' in S*CZ') then satisfies 

IIS'-S*II::S;~. 
p*(X) 

The bound 2e/p*(X) can be used as a quantitative measure of the robustness 
of the estimator. It depends on the experimental conditions through the value of 
p *, hence the idea of designing the experiment so as to make p * as large as possible. 
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13.4. EXPERIMENTAL DESIGN TOWARD ROBUSTNESS 

A first qualitative condition to ensure robustness of OMNE with respect to 
outliers is given in Theorem 13.1 (ii): any p x p submatrix of X must have full rank. 
A quantitative criterion for designing experiments intended to yield a high protec­
tion against outliers can further be obtained from the expression of the bound on 
the bias due to outliers given by Eq. (13.15) . 

DEFINITION 13.1. A n x p design matrix X is p-optimal if it maximizes the 
criterion p'(.) given by (16). 

Experimental design for robust estimation seems to have received little atten­
tion in the literature. The only study we are aware of(l7) concerns the minimization 
of the discrepancy of the predicted outputs X(X TXrl XT y obtained by standard least 
squares (SLS) when outliers are present, where y is the vector of measurement 
outputs. However, the SLS estimator has a breakdown point equal to lin, and this 
policy should therefore be rejected when severe outliers are to be feared. Note that 
the bound on the bias due to outliers obtained in Ref. 2, Chapter 8 for the least 
median of squares (and other related) estimator(s), especially designed against 
severe outliers, is also related to lip'. Maximizing p' can thus be of interest for 
these estimators as well. Further studies are required to investigate the theoretical 
properties of this new design policy, and to develop algorithmic procedures. (See 
also Chapter 8, Ref. 16.) The importance ofa proper choice of the design matrix X 
for the robustness of OMNE is here simply stressed by an example. 

EXAMPLE: Assume that p = 2 and consider the following feasible region for the 
regressors 

When four measurements are to be performed, the maximal value of p' in Eq. 
(13.16) is equal to sin(n/12) and is obtained for the design matrix 

X = lCOS(~/6) s~n(~/6)j. 
cos(n/3) sm(n/3) 

o 1 

(13.17) 

Note that no replications are involved, contrary to classical D-optimal design. The 
p-optimal experiment defined by Eq. (13.17) is also P-optimal.(l3,14) It minimizes 
the volume of the estimated feasible set defined by 

where 9p is any prior value for 9. The estimated feasible set corresponding to the 
design matrix X given by Eq. (13.17) is presented in Fig. 13.2 (solid lines). The 
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volume of S(X,8p) is always greater than or equal to the volume of S(Z). Assume 
that there are no outliers and that the four measurements are given by 

y = (5.1, 9.5, 11, lO.3l, 

with bounds I: = 0.5. Fig. 13.2 presents S*(z) (dashed lines), which coincides here 
with S(Z). 

The breakdown point of S* given by Eq. (13.7) is here equal to 50%, which 
means (since n = 4) that up to one arbitrary outlier can be handled. 

Suppose that a problem occurred in the registration of the last data point, so 
that it is replaced by the outlier X4 = (O,ll, Y4 = 20.3. The corresponding set 
S*(Z') is presented in Fig. 13.3, together with the outlier minimal number estimate 
associated with the measurements (5.1, 5.4,10.3, 20.3)T and the D-optimal design 
matrix 

10.6,--.--..--- --.----.-- ---r _ _ -,-_--. 

10.6 

10. 4 

10.2 

10 

9. 8 

9 .6 

I 
I 
I 
I 
I 

: 
I 
I 

\ 1 
\\ i 

\_ ---------------------- -- ---- ---! 

g.4 ~--L-_~_~ __ ~_~ __ ~_~ 
4 .4 4.6 4.8 5 5.2 5.4 5.6 5.8 

FIGURE 13.2. Estimated feasible set S(X,8p ) when 8p = (5, IO{ (solid lines), and posterior feasible 
set S*(Z) (dashed lines) for regular data points, with the design matrix given by Eq. (13.17). 
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FIGURE 13.3. OMNE for the p-optimal design matrix of Eq. (13.17) (solid lines), and for the 
D-optimal design matrix ofEq. (13.18) (dashed lines) in the presence of one outlier. 

(13.18) 

The presence of replications implies that p(XD) = O. The conditions for OMNE 
to have a high breakdown point are therefore no longer fulfilled. Should Y 4 tend to 
infinity, the maximum distance between S· (Z) and S· (Z') would tend to infinity. 
As a consequence, classical D-optimal design should be avoided if robustness to 
outliers is an issue. 

13.5. CONCLUSIONS 

When outliers are to be expected and bounds are available on regular errors, 
OMNE is a powerful alternative to classical robust point estimators. Its breakdown 
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point has been evaluated, and it reaches the highest achievable value. The bias due 
to the presence of outliers depends on the choice of the experimental conditions, 
which permits the definition of a new criterion for experimental design. This 
criterion may also be of interest for robust point estimators such as the least median 
of squares. Further studies are required to investigate the properties of the corre­
sponding optimal design policy and to develop specific optimization procedures. 
Contrary to this new design policy, classical D-optimal design usually leads to 
replication of measurements. It may have disastrous consequences on robustness 
to outliers, as has been illustrated by a simple example. 
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Ellipsoidal State Estimation for 
Uncertain Dynamical Systems 
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ABSTRACT 

This chapter gives a concise description of effective solutions to the guaranteed 
state estimation problems for dynamic systems with uncertain items being unknown 
but bounded. It indicates a rigorous theory for these problems based on the notion 
of evolution equations of the "funnel" type which could be further transformed, 
through exact ellipsoidal representations, into algorithmic procedures that allow 
effective simulation, particularly with computer graphics. The estimation problem 
is also interpreted as a problem of tracking a partially known system under 
incomplete measurements. 

Mathematically, the technique described in this chapter is based on a theory 
of set-valued evolution equations with the ellipsoidal-valued functions formulating 
approximation of solutions in terms of set-valued calculus. 
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14.1. INTRODUCTION 

The topic of this paper is motivated by problems of state estimation of dynamic 
processes described by ordinary differential equations with uncertain parameters 
or differential inclusions.(1,2,3,7,17,18,21,23) This topic already has a fairly large litera-

ture so that the published overviews are hardly able to give a full picture of the 
available achievements and research history. The aim of the present paper is to 
complement the available literature on the subject. 

An uncertain system is said to be one of type 

x(t) E A(t)x(t) + u(t), to::; t::; t" x(to) = xo' (14.1 ) 

where A(t) E 'l(nxn andu(t) E 'l(n is the unknown but bounded input (disturbance). 
It is presumed that the initial state Xo E 'l(n is also unknown but bounded, so that 

u(t) E pet), to::; t ::; t" Xo E "'D, ( 14.2) 

where the set XO E conv'l(n and the continuous set-valued function 
pet) E conv'l(n, to ::; tl are given (conv 'l(n denotes the family of all convex compact 
subsets of 'l(n). 

Equation (14.1) of the plant may be complemented by a state constraint 

G(t)x(t) E 'l((t), to::; t ::; t, (14.3) 

where G(t) E 'l(rnxn and 'l((t) E conv 'l(m, m::; n. The constraint (1.3) may be par­
ticularly generated by a measurement equation 

yet) = G(t)x(t) + vet), to::; t::; t" (14.4) 

with an unknown but bounded error 

vet) E Q(t), to::; t::; ti' (14.5) 

where Q(t) E conv 'l(m, to::; tl. With the realization yO being known, restriction 
Eqs. (14.4 and 14.5) become 

G(t)x(t) E yet) - Q(t), to::; t ::; t" (14.6) 

so that yet) - Q(t) now substitutes for 'l(t) (the whole function y(.) may however 
not be known in advance, arriving on-line). 

The objective will be to estimate the system output 

wet) = Hx(t), W E '1(, r::; n, to::; t::; tl (14.7) 

with HE '1(xn, at a prescribed instant of time t, either for Eqs. (14.1 to 14.3) for the 
attainability problem under state constraints, or for Eqs. (14.1, 14.2 and 14.6) for 
the Guaranteed State Estimation Problem. 
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The solution approaches to both problems are well knowny,9,11,21) The aim, 
however, is not to repeat this information but to rewrite the theoretical results 
focusing on the main objective: a constructive algorithmic procedure based on 
ellipsoidal techniques that allows a simulation with graphical representations. 

14.2. THE ESTIMATION PROBLEMS 

We start with the attainability problem. Letx[·] = x(-,to,xo) stand for an isolated 
solution of system Eq. (14.1) that starts at point xo = x(to). As is well known, the 
attainability domain for Eqs. (14.1 to 14.3) at time t E [to,td from point Xo E 'l(n is 
the cross-section at t E [to,t l ] of the tube X(',to,xo) of all trajectories 
x[·] = x(-,to,xo) that satisfy Eqs. (14.1 to 14.3). Further, let X[t] = X(t,to,Xo) be 
defined by the relation 

(14.8) 

then X[t] is the attainability domain at time t from set AO. 
The multivalued map X[.] generates a generalized dynamic system. Namely 

the mapping 

possesses a semi group property, that is whatever are the values t.::; to ::; t ::; '! 
::; e::; tl we have 

x[e,t,X[t]] = X{ e, t,X[ '!,t,X[t]]}. 

Also, if m = nand G(t) == J(to ::; t::; t l ) in Eq. (14.3), the set-valued map, or in 
other words, the tube X[t], (to ::; t::; t l ) satisfies an evolution equation--a 'funnel' 
equation(9, It ,20)-which is 

lim a-t h(X[t + a], «(1 + A(t)a)X[t] 
cr-HO 

+aP(t»n ~(t+a»=O, to::;t::;t p 

Here heX' ,X") stands for the Hausdorff distance between X' ,X" E conv 'l(n, namely 

h(X',X") = max {h+(X',X"), hJx',x")}, 

h+(X',X") = min {a?: 0 I X' eX" + as}, 

hJx',X") = hiX",X'). 



216 T F. FILIPPOVAET AL. 

with S being the unit ball in 'l(n and h+, h_ called Hausdorff semi-distances. 
Equation (14.9) is correctly posed and under some assumptions\ll) has a unique 

solution that defines the tube X[·] = X(-,to,XO) for system Eqs. (14.1 to 14.3). One 
of the assumptions mentioned above is the Lipschitz continuity of the set-valued 
map 1(0: 

h( 1«(t') , 1«t"») ::; kit' - t" I 

for some k> 0 and for any t', t" E [to,!l]. 
Using only one of the Hausdorff semi-distances in Eq. (14.9) leads to the loss 

of uniqueness of the solutions, but complemented with an extremality condition, 
alternative descriptions for the multi valued map X[·] are obtained. On one hand, 
consider 

lim a-lhjW[t + a], {[I + A(t)a]W[t] + a~t)} (\ 1«t + a)) = 0, to::; t::; tp 
cr-HO 

A set-valued map x..[.] will be defined as a minimal solution of Eq. (14.1 0) if it 
satisfies Eq. (14.10) for almost all t E [to,t\] and if there exists no other solution 
w[·] to Eq. (14.10) such that X-[t]:::::> w[t] for all t E [to,!\] and x..[.] 7= w[-]. 
Equation (14.10) has a unique minimal solution under the conditions required for 
the existence and uniqueness of the solutions to Eq. (14.9). In this case (using the 
notation ofEq. (14.8), X[·] = X_[-]. On the other hand,(l2) 

lim a-lh+(o/[t + a], «(I + A(t)a)o/[t] (\ 1«t» 
cr-++O 

(14.11) 

has a unique maximal solution x+[·] (defined analogously to the minimal solution 
of Eq. (14.10) if, for example, 1«(-) is upper semicontinuous.\\) If so then, as 
previously, X[·] = X+[·]. 

The Guaranteed State Estimation Problem may now be formulated as follows. 
Suppose that the measurement y*(.) due to system Eqs. (14.1 to 14.4) is given. It is 
generated by an unknown triplet 

(14.12) 

which complies with the constraints of Eqs. (14.2 and 14.5). Then the tube of 
attainability domains x*[·] generated by Eqs. (14.1, 14.2 and 14.6); y[.] = y*[.] 
always contain the unknown actual trajectory of the system x*[·], that is generated 
by s'(·). The tube x*[·], therefore, gives a guaranteed estimate of the state of system 



ELLIPSOIDAL STATE ESTIMATION 217 

Eq. (14.l) on the basis of a measurement y*O ofEq. (14.4) under the constraints 
Eqs. (14.2 and 14.5). The solution of the problem is to specify the tube 
X*[t], to::S; t::S; t l • 

The set X[t] = X(t,to,Xo) is the domain of states x(t) of system Eq. (14.l) at 
time t that, given y( T), to ::s; T ::s; t, are consistent with the constraints Eqs. (14.2 and 
14.6) The attainability domain for system Eqs. (14.1, 14.2, and 14.6) is also known 
as the 'informational domain',<S) the 'domain of consistency', or the 'feasibility 
domain',oS.2I,23) for the state estimation Eqs. (14.l, 14.2, 14.4, and 14.5). 

Presume that yO is Lipschitz-continuous, to conform with the assertions 
above. The situation allows a generalization to the case when y(.) is a function 
measurable on [to,t I ]. The respective mathematical details, however, are beyond the 
scope of this chapter. 

The solutions to the above estimation problems are given through the evolution 
Eqs. (14.9 and 14.l0). An alternative approach to handle state constraints, based on 
the singular perturbation technique is also be presented. Now continue by devising 
an algorithmic scheme for solving the evolution equations. 

14.3. THE DISCRETE-TIME SCHEME 

Equations (14.9 and 14.10) yield a natural discrete-time scheme that can be 
given in two versions reflecting Eqs. (14.9 to 14.l1). These two are first-order 
schemes: 

X[t + a] = ((J + aA(t))X[t] + aP(t)) n :J((t + a) (14.13) 

X[t + a] = ((J + aA(t))X[t] n :J((t)) + aP(t) (14.14) 

that yield convergence to the continuous-time solutions. The main problem is that 
the X[t]s are arbitrary, convex, and compact sets mathematically described through 
infinite-dimensional elements, e.g., their support functions p(ll X[t]). The objective 
is to give a constructive scheme for their description by approximating them 
through finite-dimensional elements which, in this chapter, are taken as ellipsoids 
and approximating the corresponding convex set-valued maps through ellipsoidal­
valued functions. 

14.4. THE ELLIPSOIDAL TECHNIQUES 

Denote a nondegenerate ellipsoid as 

'E(a,S) = {x I (S-I(x - a), x - a) ::s; I} 
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where a E '1(n is its center and the symmetric matrix S> 0 determines its configu­
ration. From here 

p(ll 'E(a,S) = (l,a) + (Sf,!)] 12 

where the latter description also allows det S = O. 
Suppose the sets XO, P(t), Q{t), 'l(t) (to ::; t ::; t]) are ellipsoids, so that 

(14.15) 

Q{t) = 'E(q(t),Q(t», 'l(t) = 'E(k(t),K(t», (14.16) 

and the conditions 

Xo ~ 0, pet) ~ 0, Q(t) > 0, K(t) > 0 

hold. 
The discrete-time schemes of Eqs. (14.l3 and 14.14) then make it necessary 

to handle the following operations: 

['E(aI'Q]) + 'E(a2,Q2)] n 'E(a3,Q3) 

['E(aI'Q]) n 'E(a2,Q2)] + 'E(a3,Q3) 

with 'E(ai,Qi), Qi ~ 0, i = 1,2,3 given. This can be done through a combination of 
the following relations: 

The sum of ellipsoids: Given ellipsoids 'E(ai,Qi), i = 1, 2, their sum 
'Es = 'E(aj,Q]) + 'E(a2,Q2) which need not be an ellipsoid, could be approximated 
from above as 

(14.17) 

where 

LEMMA 14.1. The inclusion Eq. (14.17) is true whatever is the coefficient 
1t > O. The following relation holds: 

(14.18) 

The intersection of ellipsoids: The intersection 'E j = 'E(aj,Q]) n 'E(az,Q2) can 
be approximated from above as 

(14.19) 

(14.20) 
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where B; E 'R.'!xn, 1 E 'l(nxn is the identity and the prime stands for the transpose. 
LEMMA 14.2. The inclusion Eq. (14.19) is true for any matrices B; E 'l(nxn, i = 

1,2 that satisfy Eq. (14.20). The following equality is true 

(14.21) 

The following result is used in Section 14.6 and may be considered as a special case 
of Lemma 14.1. 

The direct product of ellipsoids: Given ellipsoids 'E(P,P) c 'l(k, 'E(q,Q) c 'l(rn, 
their direct product 'E(p,P) x 'E(q,Q) C 'l(k+rn can be approximated from above 
as 

'E(p,P) x 'E(q,Q) c 'E(z,Z(n» c 'l(k+m (14.22) 

where Z = {p,q} E 'l(k+m and 

Z(n) = ((1 + n-])P (1 0 )Ql' n> O. l 0 + n 

LEMMA 14.3. The Eq. (l4.22) is true for any coefficient n > O. The following 
relation holds: 

'E(p,P) x 'E(q,Q) = n {'E(z,Z(n» In > O}. (14.23) 

The combination ofEqs. (14.18, 14.21 and 14.23) gives an exact external approxi­
mation of the sets in Eqs. (14.13 and 14.14) by a family of ellipsoids that can be 
simulated through parallelization. Among these one may also select an optimal 
ellipsoid. A somewhat different scheme can be given along the lines of Refs. 
(2,21,22). 

Under the constraints ofEqs. (14.15) the attainability problem for the system 
is 

x(t) E A(t)x(t) + 'E(p(t),P(t», to:S; t:S; t] (14.24) 

(14.25) 

x(t) E 'E(k(t),K(t», to:S; t:S; t]. (14.26) 

Ellipsoidal-valued functions may approximate the attainability tube X[·] both 
internally and externally for Eqs. (14.24 and 14.26). Further sections deal only with 
the former case. (The schemes of internal ellipsoidal approximation for various 
attainability problems can be found in Refs. 29 and 22). 

Consider the evolution equation 
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lim a-1·h+({[J+A(t)a]'E[t] n 'E(k(t),K(t» 
(}-++O 

+ a'E(p(t),p(t», 'E[t + a]} = 0, to:::; t:::; tp 

A function 'E+['] is defined as a solution to Eq. (14.27) if it satisfies Eq. (14.27) for 
almost all t E [to,tIJ and is ellipsoidal-valued. Obviously the solution 'E+['] is 
nonunique and satisfies the inclusion 

Moreover, as a consequence of Lemmas 14.1,14.2, 
THEOREM 14.1. F or any to :::; t :::; tIthe equality 

x[t] = n {'EJt] I 'E+['] is a solution to (14.27) }. 

The ellipsoidal solutions 'E+[.] = 'E(x+O,x+(·» to Eq. (14.27) allow explicit repre­
sentations through appropriate systems of ODEs for the centers x+O and the 
matricesX+O> ° of these ellipsoids.(2,14,15,16,22) 

14.5. ESTIMATION THROUGH PARAMETRIZATION 

The point of interest of this Section is to study the set of all solutions 
x[t] = x(t,to,xo) to a nonlinear differential inclusion 

(14.28) 

that are emitted by the initial compact subset Xo c '1(n so that 

(14.29) 

where :J(t,x) is a multivalued map (:J: T x '1(' --* conv'1('). 
A further problem that concerns the set of these solutions is to single out a 

subset of those trajectories x[t] = x(t,to,xo) that satisfy both Eq. (14.28) and a 
restriction on the state vector (the "viability" constraint). (See also Sections (14.1 
and 14.2.) 

G(t)x[t] E 1(t) = yet) - Q(t). (14.30) 

In a more general form this equation may be written as 

y(t) E G(t,x[t]), (14.31) 

where G(t,x) is a multivalued map (G: T x '1(n --* conv'1(m) or taking 
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G*(t,x) = G(t,x) - yet) 

and omitting the asterisk, as 

o E G(t,x[t]). (14.32) 

The requirements on J"(t,x), G(t,x) are given in Ref. 11. 
DEFINITION. A trajectory x[t] = x(t,to,xo) (xo E ~, t E T) of the differential in­

clusion (14.28) is defined to be viable on [to,'] if 

o E G(t,x[t]) for all t E [to,,]. 

The "guaranteed" estimation problem thus consists in describing the set 

X[·] = u {x(-,to,xo) I Xo E .xv} 

(14.33) 

of solutions x(·,to,xo) to the system Eqs. (14.28, 14.29 and 14.30) (viable trajecto­
ries). The crossection X[t] of this set will be the set-valued estimate itself (see 
Section 14.2). 

In this Section the description of trajectory tubes X[t] is reduced to the 
treatment of trajectory tubes for a variety of specially designed new differential 
inclusions without state constraints. These new inclusions are designed depending 
upon certain parameters and have a relatively simple structure. The overall solution 
is then presented as an intersection over the parameters of the parallel solution tubes 
to the new inclusions. 

The restriction J"c(t,x) of the map J"(t,x) to a multifunction G(t,x) (at time t) is 
given by 

:r. (t,x) = {J"(t,x), 0 E G(t,x) 
c 0, 0 fl G(t,x) 

The next property follows directly from the definition of viable trajectories. 
LEMMA 14.4. An absolutely continuous function x(t) defined on the interval 

[to,'] with Xo E ~ is a viable trajectory to Eq. (14.28) for t E [to,'] if and only if 
the inclusion 

x(t) E J"c(t,x) 

is true for almost all t E [to,']. 
Now represent J"c(t,x) as an intersection of certain multifunctions. The first 

step to achieve that objective is to indicate the following auxiliary assertion. 
LEMMA 14.5. Suppose A is a bounded set, B a convex closed set, A c'l(n, 

Be 'l(m. Then 

{A + LB I L E ~nxm } = {A, 0 E B n 0, OflB 
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where 9{l1xm is the space of all n x m matrices. 
From Lemmas 14.4 and 14.5 one obtains the following characterization of 

viable trajectories. 
THEOREM 14.2. An absolutely continuous function xO defined on an interval 

[to,t!] with x(to) is a viable trajectory to Eq. (14.28) for [to,'l"] iff the inclusion 

x(t) E (\ {(:T(t7) + LG(t7)) I L E 9{ nxm} 

is true for almost all t E [to, 'l"]. 
A variety of differential inclusions that depend on a matrix parameter 

L E 9{l1xm are given by 

Z E :T(t,z) + LG(t,z), 

(14.34) 

By z[·] = ZL'l",to,zo,L) denote the trajectory to Eq. (14.34) defined on the interval 
[to, 'l"] with z[to] = Zo E XQ. Also denote 

Z(','l",to,XQ,L) = u {Ze'l",to,zo,L) I Zo E XQ} 

where Z(','l",to,zo,L) is the bundle of all the trajectories z[·] = z(','l",to,zo,L) issued at 
time to from point Zo and defined on [to,'l"]. The crossections of the set 
ZL'l",to,XQ,L) at time t are then denoted as Z('l",to,XQ,L). 

THEOREM 14.3. For each 'l" E [to,t!] one has 

Moreover, the following inclusion is true 

x[ 'l"] = X( 'l",to,XQ) <:;;; (\ {Z( 'l",to,XQ,L) I L E 9{l1xm}. 

PROOF. Theorem 14.3 is a direct consequence of Theorem 14.2. 0 
Now replace the constant matrix Lin Eq. (14.34) by a continuous function 

L(·) E 9{l1xm[to,td, coming thus to the differential inclusion 

Z E :T(t,z) + L(t)G(t,z), 

(14.35) 

and keeping the earlier notation for its trajectory bundle Z(·,'l",to,XQ,L(·» and 
Z('l",to,XQ,L(·» for the 'l"-cross-section of the bundle. 

What follows is a more precise version of Theorem 14.3. 
THEOREM 14.4. For each 'l" E [to,!!] one has 

(14.36) 
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Moreover, 

(14.37) 

where mnxm[to;r] is the space of all continuous n x m-matrix functions 
L(t), t E [to,t]]. 

The main point is that the Eq. (14.37) actually turns to be an equality if 
set-valued functions J(t,x), G(t,x) are linear in x, 

:J(t,x) = A(t)x + pet), G(t,x) = G(t)x - yet) + Q(t) (14.38) 

see also Sections 14.1 and 14.2. The respective result is given by the following 
theorem. 

THEOREM 14.5. Assume that both mappings F(t,x), G(t,x) are linear, (14.38). 
Then for each t E [to,tI1 one has 

14.6. THE SINGULAR PERTURBATION TECHNIQUES 

We now briefly describe another technique for solving the state estimation 
problem under state constraints, which may be useful particularly when J(O is 
discontinuous or only measurable in time t. 

Taking the system Eqs. (14.1 to 14.3), we substitute the last relation by a 
singularly perturbed differential inclusion: 

L(t)y(t) E - G(t)x(t) + J({t), to::; t::; t] (14.39) 

(14.40) 

where % E conv'l(.m is a given set, andL(·) E 5'l{"'xm[to,t] and 5'l{"'xm[to,t] denotes the 
space of continuous m x m matrix-valued functions with invertible values defined 
on the interval [to,t]. The above system has to be treated together with the differential 
inclusion 

x(t) E A(t)x(t) + pet), to::; t::; t] (14.41) 

(14.42) 

that follows from Eqs. (14.1 and 14.2). Equations (14.39 to 14.42) form a system 

z(t) E B(t)z(t) + :H(t), to::; t::; t] (14.43) 
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(14.44) 

with state space vector 

z(t) = ~~~~} Z(t) E 2(n+m, 

parameters 

B t - [AU) 0] J{ t - [ Pet) ] 
( ) - rl(t)G(t) 0' ( ) - rl(t)'l((t) , 

and the initial set ofEq. (14.44) taking the form 

Zo = [~ J= XO x Yo. 

Denote I1xZ E 2(n to be the projection of vector Z E 2(n+m on the subspace corre­
sponding to the state vectors x(t) ofEq. (14.41). Given set Z c 2(n+m, define 

I1xz= {x E 2(n Ix = I1xz, Z E Z}. 

Ifwe take ZL[t] = ZL(t,to,Zo) to be the solution tube for system Eg. (14.43), then 
the following theorem turns out to be true.(IO) 

THEOREM 14.6. For any t E [to,t l] and 9"'0 E conv2(m 

(14.45) 

where x(t,to,xo) is the attainability set under state constraint for the system ofEqs. 
(14.1,14.2,14.4 and 14.5). 

A slight modification of this theorem is needed for the case when the initial 
set Zo * Xo x Yo but the projection I1xZo = Xo.(3) 

THEOREM 14.7. The following formula is true for any Zo E conv2(n+m, t E [to,td 

X(t,to,I1xZo) = I1/n {ZL(t,to,Zo) I LO E :umxm[to,t]}). 

An ellipsoidal version of Theorems 14.6 and 14.7 is based on analogous schemes 
to those in Section 14.4. 

Assume, in addition to Eqs. (14.15 and 14.16) 

( 14.46) 

Introduce the system 

x(t) E A(t)x(t) + 'E(P(t),P(t)), (14.47) 

L(t)y(t) E - G(t)x(t) + 'E[k(t),K(t)], (14.48) 
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(14.49) 

(14.50) 

with LO E M"'xm[to,td, which actually is the system ofEqs. (14.43 and 14.44) for 
the data 

J-((t) = 'E(P(t)'p(t)) x 'E(k(t),K(t)), 

-
Zo = 'E( {xo,Yo},Zo)' 

The attainability set ZL(t,lo,Zu) of Eqs. (14.47 to 14.50) in general is not an 
ellipsoid, but one can introduce external ellipsoidal approximations for 
ZL(t,to,Zu) following, for example, the techniques given in Refs. 2, 3 and 15. 
This yields the inclusion 

where 

(X(t)) 
z[t,to,L(·)] = lY(t) 

(14.51) 

(14.52) 

are the solutions to systems 

x(t) = A(t)x(t) + pet) (14.53) 

(14.54) 

yet) = -c1(t)G(t)x(t) + C1(t)k(t) (14.55) 

y(to) = Yo (14.56) 

and 

Zl(t) =A(t)Zl(t) + Zl(t)A'(t) 

+ cr-1(t)Zl(t) + cr(t)[1 + rr-\t)]P(t) (14.57) 
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(14.58) 

(14.59) 

(14.60) 

(14.61) 

(14.62) 

THEOREM 14.8. For any t E [to,(I] and LO E M"'xm[to,t] , the following equality 
is true 

where C+[to,t] is the class of all positive scalar valued functions continuous on 
[ta,t]. 

Theorems 14.6-14.8 together yield: 
THEOREM 14.9. Given instant t E [to,t!] and 9'() = 'E(yo,Yo), the following equal­

ity is true 

(14.63) 

This allows one to present the attainability set under state constraint 
X(t,ta,Xa) as the projection of an intersection of ellipsoids. The important question 
of specifYing the minimal class of functions L(-),n(-) over which it would suffice 
to take Eq. (14.63) is not discussed in this chapter. There are examples, however, 
when the variety of such functions isfinite (see also Section 14.7 and Figs. 14.7 
and 14.8). Further examples of the application of the singular perturbation tech­
niques to the problem of state estimation are given in Ref. 3. 

For the technique of this section to be applicable it is enough that the set-valued 
map '7((.) (and, therefore, also the functions k(·),K(·)) are integrable. This allows a 
robust simulation of the solution to the problem with irregular noise in Eq. (14.4). 

What follows in Section 14.9 are the results of numerical simulations for the 
estimation problems, including the tracking type representation of the solutions, as 
well as for the singular perturbation techniques. 
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14.7. GUARANTEED STATE ESTIMATION AS A TRACKING 
PROBLEM 

227 

One of the conventional guaranteed estimates for the unknown states x(t) is 
the "Chebyshev center" x°(t) for X[t] which is given by the relation(7) 

max {llxo(t) - xII I x E X[t]} 

=min{max{llz-xlll x E X[t]} I z E X[t]} 

(this also allows one to mention the guaranteed estimation techniques as those of 
"minimax estimation"). The calculation of these estimates is discussed in Ref. 7. 

The difficult point is that the vector xO(t) usually does not satisfy any "nice" 
differential equation (except when the restrictions on the unknowns are symmetri­
cal in some sense). The respective applications may not require a precise calculation 
of xO(t), however. On the other hand, the Chebyshev center for an ellipsoid 
'E(e,P) is precisely the point e. We shall therefore indicate a scheme where x°(t) is 
substituted for x+(t): the center of one of its external ellipsoidal estimates 'E+[t]. 

According to the previous Sections 14.5 and 14.6, the center x+(t) of each the 
external tubes 'E+[t], to :<::; t:<::; t), allows a representation 

where L(t) is a matrix parameter or L(t) is substituted by a functional 
L(t,.) = L[t,yl')] with memory ytO = y(t+ cr), to - t:<::; cr:<::; O. 

The actual trajectory to be estimated is defined according to Eq. (14.12), by 
x·(·). By the construction, the inclusion 

holds. Therefore, the result of the approximate estimation procedure is that the 
center x+(t) tracks x'(t) on the basis of the measurement y*tl') with to :<::; 1" :<::; t. The 
ellipsoid 'E+[t] around it plays the role of a guaranteed confidence region. According 
to the terminology used in identification theory, the set x'[t] is the error set of the 
estimation process. 

The matrix parameter L(t) may here act as a control to minimize or guarantee 
a fixed value of the maximal error 

max {llx+(t) - x*(t)1I I u(,),vO,xo, Eqs. (14.1-14.5) } 

either for a specified instant t = e or for any t ~ t' > to, or to ensure that the integral 
cost 

e 
max {f Ilx+(t) - x*(t)112dt 

to 
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+ IIx+(8) - x*(8)1121 Uo,v(-),xO' Eqs. (14.1-14.5) l 

would be minimal. 
This procedure is similar in nature to a differential game of observation.(5) A 

feedback duality theory for differential games of observation and control is indi­
cated in Ref. 6. 

14.8. THE DETERMINISTIC AND THE STOCHASTIC FILTERING 
APPROACHES 

Suppose that the system ofEqs. (14.1 to 14.4) is specified as follows 

X E A(t)x + pet), (14.64) 

y(t) E G(t)x + Q{t), (14.65) 

(14.66) 

where Eq. (14.65) is the measurement (observation) equation. The continuous 
multifunction Q{t) (Q: T = [to,t,] ~ convRn) reflects the restriction on the un­
known but bounded noise w in the observations as indicated in Eq. (14.5). 

Given the measurement y = y*(t), t E [to,t] the guaranteed state estimation 
problem as indicated in the Introduction is to specify at a given time-instant t the 
set X[ t] of all states x[ t] of Eq. (14.64) that are consistent with the Eqs. (14.64 to 
14.66) wheny(t) == y*(t). 

In other words, one is to find the crossections at time t = t of the "viability 
tube" X[t] for Eqs. (14.64 to 14.66), yet) == y*(t). In the state estimation context the 
setX[ t] is known as the informational domain, or consistency domain (see Section 
14.2). This set depends on the measurement YT(a) = yet + a), to - t::; a::; 0, 
namely, 

For the linear system under consideration X[ t,yi')] E convRn. 
The problem of finding X[ t] is further propagated into one of describing the 

evolution of X[t] =X[t,yi')] in time. The evolution Eq. (14.9) for X[t] would, 
therefore, be the "guaranteed filtering" Eqs. (14.64 to 14.66) for the system with 
unknown but bounded uncertainties. 

Needless to say that the evolution Eq. of type (14.9) serve to be the solution 
to this problem (provided, of course, that 'l((t) = y(t) - Q(t) as indicated above, and 
that 'l((t) satisfies the respective assumptions). 
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It is well known, however, that a conventional stochastic filtering technique is 
given by the equations of the "Kalman filter" which turn to solve the stochastic 
filtering problem for linear systems with Gaussian noise. Can the equations of the 
Kalman filter also be used to describe the informational domain X[ T,y,{)] for the 
guaranteed estimation problem of the above? 

On one hand, the tube X[t] = X[t,Yk)] may be described through linear-quad­
ratic approximations.(ll) On the other hand, it may be described by the well 
established connections between the Kalman filtering equations and the solutions 
to the linear-quadratic problem of control. 

Using the solutions of the previous Sections, fix a triplet 

k(-) = k*(·) = {v*O,w*(·),x~} 

with 

k*(·) E {PO x [YO - QO] x XQ} 

and consider the stochastic differential equations 

dz = [A(t)z + v*(t)]dt + a(t)d~ (14.67) 

dq = [G(t)z + w*(t)]dt + al(t)dYj (14.68) 

z(O) = x~ + s, q(O) = 0 (14.69) 

where ~,Yj are standard, normalized Brownian motions. They have continuous 
diffusion matrices a(t), a I (t) and 

det (a(t)a'(t» *- 0 for all t E T, 

s is a Gaussian vector with zero mean and variance M* = aoao. 
Denoting 

a(t)a'(t) = R*(t), a I (t)a { (t) = J-f(t) 

and treating q = q(t) as the available measurement one may find the equations for 
the minimum variance estimate 

z*(t) = E(z(t) I q(s), to ~ s ~ t) 

(the respective "Kalman filter"). 
These are 

dz*(t) = [A(t) - ~(t)G'(t)J-f-I(t)G(t)]z*(t)dt + 
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+ 'L(t)G'(t)w*(t)dt + 'L(t)G'(t)dq(t) + v*(t)dt, z*(to) = x~, (14.70) 

'L(t) = A(t)'L(t) + 'L(t)A'(t) -

- 'L(t)G'(t)Jt'-lU)G(t)'L(t) + R*(t), 'L(to) = M' (14.71) 

The estimate z*(t) depends on the triplets 

k*O and A* = {M',R*(·),Jt'(·)} E ::I. 

Consider the set 

Z*(t) = Z*(t,A *) = u {z*(t) I k*(-) E {'I{) x 7(0 x Xo} } 

which, with a given realization q(t), is the attainability domain for Eq. (14.70). 
THEOREM 14.10. Assume the equalities 

(14.72) 

to be true and 7«(t) = y(t) - Q(t), t E T. Also assume 

t 

q(t) == f y(t)dt 
(14.73) 

Then the following equality is true 

(14.74) 

The last results describe a clear connection between the solutions to the linear-quad­
ratic Gaussian filtering problem (the Kalman filter), and the solutions to the 
deterministic guaranteed state estimation problems for uncertain systems with 
unknown but bounded "noise" in the nonquadratic case of the instantaneous 
constraints on the unknowns. 

14.9. NUMERICAL EXAMPLES 

Study a four-dimensional system of Eqs. (14.1) and (14.2) over the time 
interval [0,5] to consider the Attainability Problem under State Constraints. 

The initial state is bounded by the ellipsoid AD = 'E(xo,xo) at the initial moment 
to = 0 with 

[1] [1 0 0 0] o 0 1 0 0 
Xo = 1 and Xo = 0 0 1 0 . 

o 000 I 

(14.75) 
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Consider a case when the right hand side is constant: 

[ ° 1 ° 0] 
-8 ° ° ° A(t) == 0 ° ° 1 ' 

° ° -4 ° 

231 

(14.76) 

describing the position and velocity of two independent oscillators. Inputs u(t) are 
also bounded by time independent constraints p(t) = 'E(P(t),P(t)) with 

[0] [1 ° 0 ° ] ° ° 0.Ql ° ° pet) == ° ' and pet) == ° ° 1 ° . 
° ° ° 0 0.Ql 

(14.77) 

This form of the bounding sets makes the system coupled. State Eq. (14.3) is defined 
by the data 

G(t) == ° 0 ° 1 ' k(t) == ° ' K(t) == ° 25 . (0 1 0 0) (0) (16 0) (14.78) 

FIGURE 14.1. Tube of external ellipsoidal estimates of attainability sets. 
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FIGURE 14.2. Trajectories ofthe centers and final estimates in phase space. 

Fig. 14.1 shows the graph of external ellipsoidal estimates of the system outputs 
(with and without constraints), presenting them in four windows. Here, as well as 
in Figs. 14.2 to 14.6, the matrix H ofEq. (14.7) is equal to four projections of the 
phase space vector to the planes {Xj,X2}, {X3,X4}, {Xj,X3}, {X2,X4} in a clockwise 
order starting from bottom left. The drawn segments of coordinate axes correspond­
ing to the output variables range from -30 to 30. The skew axis in Fig. 1 is time, 
ranging from 0 to 5. 

Calculations are based on the discretized version ofEqs. (14.24 to 14.26, and 
14.l3). Trajectories of the centers are also drawn. The thick line corresponds to 
estimates of the nonconstrained outputs. Fig. J 4.2 shows the trajectory of the 
centers, initial sets, and the ellipsoidal estimates of the outputs in phase space with 
the coordinate axes ranging from -10 to 10. 

Tum now to the guaranteed state estimation problem interpreted as a tracking 
problem, of Eqs. (14.1, 14.6, and 14.7). [Keep the above parameter values of the 
time interval, A (t),'E(xo,xo), 'E[P(t),P(t)],G(t) and H. In Eq. (14.6) that now replaces 
Eq. (14.3), take 

q(t) == k(t) and Q(t) == K(t). (14.79) 
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FIGURE 14.3. Time representation of ellipsoidal tracking (worst noise). 

We model the trajectory x'O and the outputsz·(·), those to be tracked, by using 
the following construction for the triplet 

s*o = {x~,u*(·),v·(-)}. 

The initial value x; is a (randomly selected) element at the boundary of the initial 
set.;\{) = ~xo,xo). The input u'O is of the so called extremal bang-bang type: the 
time interval is divided into subintervals of constant lengths. A value u is chosen 
randomly at the boundary of the respective bounding set, that is, in case of the input 

u'(t), of pet) = 'E(P(t),P(t)) 

and its value is then defined as u'(t) = u over all the first interval, and as 
u' (t) = -u over the second. Then a new random value for u is selected and the above 
procedure is repeated for the next pair of intervals, etc. 

For modeling the measurement noise v'O (generating together with Xo and 
u'O the actual measurementy'O), use a similar procedure. As is well known, the 
size of the error set of the estimation depends on the nature ofv·(·). According to 
Ref. 6, if one chooses it in such a way that it takes a constant value at the boundary 
of 'E[ q(t),Q(t)] over all the time interval under study, then it corresponds to the worst 
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FIGURE 14.4. Phase space representation of ellipsoidal tracking (worst noise). 

case. In large confidence regions using, e.g., the extremal bang-bang construction, 
'good' noises are created, which reduces the confidence region size. 

Fig. 14.3 shows the process developing over time. The drawn segments of 
coordinate axes correspond to the output variables range from -20 to 20. In Fig. 
14.4, the initial sets of uncertainty (appearing as circles) are displayed in phase 
space, as well as the confidence region at the final moment. Coordinate axes range 
from -10 to 10. The trajectory drawn with the thick line is the actual output 
z·O = Hx·O. The thin line represents the trajectory of the centers Hx)·) of the 
projections of the tracking ellipsoids. Figs. 14.5 and 14.6 show how much the 
estimation can improve if the noise changes from worst to better. Although, one 
obtains only external ellipsoidal estimates of the true error sets. Opposed to the 
above, where the noise was constant, one chooses its length to be 0.05. Again, the 
range of coordinate axes is -20 to 20. 

To illustrate the singular perturbation technique, we chose a system of two 
dimensions, and a scalar measurement equation, by taking the first two state 
variables, and the first coordinate of the measurement Equation (14.6) of the above 
example over the same time period. This means taking the first two entries of the 



FIGURE 14.5. Time representation of ellipsoidal tracking (better noise). 

FIGURE 14.6. Phase space representation of ellipsoidal tracking (better noise). 
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FIGURE 14.7. Ellipsoidal estimates developing over time: singular perturbation technique. 

vectors and the upper left 2 by 2 block of the matrices in Eqs. (14.75) to (14.77). 
Further take 

G(t)=(O I), q(t)= I, Q(t)=(l). 

The two estimates shown correspond to the following choices for the function L: 

L (t) = { I ~ft E [0,3.5] L (t) = { I ~ft E [0,3.5] 
+ 0.3 1ft E [3.5,5], - -0.3 1ft E [3.5,5]. 

(14.80) 

Additionally, suppose the initial condition: 

Fig. 14.7 shows the two estimates developing over time with the range of 
coordinate axes being -30 to 30. The left upper window shows the projections onto 
the plane spanned by the two state variables. Here they coincide as expected. In the 
right upper window note the projection of the two estimating tubes onto the plane 
of the measurement variable and the first state variable, while in the lower window 
onto the plane of the measurement variable and the second state variable. In Figure 
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FIGURE 14.8. Ellipsoidal estimates and the projection of their intersection: singular perturbation 
technique. 

14.8 note the estimates (in the same arrangement of the windows and in the same 
scale) at the moment t = 4.25, indicated by thin lines, and the projection of their 
intersection, indicated by a thicker line. In the space of the first two variables, the 
projections ofthe two estimates coincide again, but the projection of their intersec­
tion is a proper subset. 

14.10. CONCLUSIONS 

This chapter indicates constructive approaches with algorithmic ellipsoidal 
procedures for the state estimation problem for dynamic systems under unknown 
errors bounded by given instantaneous constraints. 

Specifically, the guaranteed estimator may be presented as a system that tracks 
the unknown actual trajectory of the system. The procedures allow effective graphic 
simulation that is demonstrated on second and fourth order systems. 
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The connections between "Kalman" stochastic end deterministic "guaranteed" 
filtering problems with magnitude bounds on the unknowns are also specified. 

ACKNOWLEDGMENTS. The research of T.F. Filippova and A.B. Kurzhanski was 
supported by grants RFFR 94-01-00803 and RFFR-ISF NBV 300. 

REFERENCES 

I. J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley. New York (1984). 
2. F. L. Chernousko, Estimation of the Phase State of Dynamical Systems. Nauka, Moscow (1988). 
3. T. F. Filippova, A. B. Kurzhanski, K. Sugimoto, and I. Valyi, Ellipsoidal Calculus. Singular 

Perturbations and State Estimation Problems for Uncertain Systems.IIASA, WP-92-51 (1992). 
4. N. N. Krasovskii, The Control ofa Dynamic System, Nauka, Moscow, Russia (1968). 
5. A. B. Kurzhanski, Sov. Math. Dok. 3,207 (1972). 
6. A. B. Kurzhanski, Izvestia A. N. SSR. Techn. Kibernetika No.5 (1973). 
7. A. B. Kurzhanski, Control and Observation under Conditions C!f Uncertain~v. Nauka, Moscow 

(1977). 
8. A. 8. Kurzhanski, in: From Data to Model (J. Willems, ed.), Springer-Verlag. Berlin. Germany 

(1988). 
9. A. B. Kurzhanski and T. F. Filippova, in: Les Annales de l'lnstitut Henri Poincare. Analyse 

Non-lineaire, Paris, pp. 339-363 (1989). 
10. A. 8. Kurzhanski and T. F. Filippova, Sov. Math. Dok. 3.454 (1991). 
11. A. B. Kurzhanski and T. F. Filippova, On the Theory of Trajectory Tubes: A Mathematical 

Formalismfor Uncertain Dynamics. Viability and Control. The Fields Institute for Research in 
Mathematical Sciences, FI93-DS08, pp. 1-67 (1993); Advances in Nonlinear Dynamics and 
Control: A Reportfrom Russia, Birkhauser. Boston, MA (1993). 

12. A. B. Kurzhanski and O. I. Nikonov, in: Perspectives in Control Theory, Vol. 2 of Progress in 
Systems and Control Theory (8. Jakubczyk. K. Malanowski. and W. Respondek. eds.) Birkhauser. 
Boston, pp. 143-153 (1990). 

13. A. B. Kurzhanski and 0.1. Nikonov, Dok. Akad. Nauk SSSR 311, 788 (1990). 
14. A. 8. Kurzhanski and I. Valyi, in: Analvsis and Optimization C!fSystems. Vol. III of Lecture Notes 

in Control and Information Sciences (A. Bensoussan and 1. L. Lions. eds.) Springer-Verlag, Berlin. 
Germany, pp. 77:r-785 (1988). 

15. A. 8. Kurzhanski and I. Valyi, Dynamics and Control I, 357 (1991). 
16. A. 8. Kurzhanski and I. Valyi. Dynamics and Control 2, 87 (1992). 
17. M. Milanese and A. Vicino, Automatica 27. 997 (1991). 
18. J. P. Norton, Automatica 23, 4 (1987). 
19. A.1. Ovseevich and F. L. Chernousko, Prikl. Mat. Mech. 46,5 (1982). 
20. A. I. Panasyuk and V. I. Panasyuk, Asymptotic Magistral Optimization of Controlled Systems, 

Nauka i Technika, Minsk (1986). 
21. F. C. Schweppe, Uncertain Dynamic Systems, Prentice-Hall, Englewood Cliffs, NJ (1973). 
22. I. Valyi, in: Modelling and Adaptive Control. Vol. 105 of Lecture Notes in Control and Information 

Sciences (A. B. Kurzhanski and C. I. Byrnes, eds.) Springer-Verlag. Berlin, Germany, pp. 361-384 
(1986). 

23. E. Walter and H. Piet-Lahanier, in: Proceedings of the 12th IMACS World Congress (R. Vichnevet­
sky, P. Borne, and 1. Vignes, eds.) IMACS (1988). 



15 
Set-Valued Estimation of State 
and Parameter Vectors within 
Adaptive Control Systems 
V M Kuntsevich 

ABSTRACT 

The problem under consideration is that of obtaining simultaneously set-valued 
estimates for state and parameter vectors of linear (in parameters and in phase 
coordinates) discrete-time systems under uncontrollable bounded disturbances and 
given bounded noise in measurements. 

There is no other a priori information on disturbances and noise except for 
they are bounded. It is shown that in the absence of noise in measurements and in 
the presence only of uncontrollable additive disturbances having an effect on 
stationary plants being investigated, the problem of obtaining set-valued parameter 
estimates is equivalent to the problem of determining a set-valued solution of a set 
of linear algebraic equations under uncertainty in their right-hand sides. With 
additive measurement noise, set-valued estimation procedure should be changed 
considerably since in this case one has to determine the whole set of solutions of a 
set of algebraic equations under uncertainty in coefficients as well as in right-hand 
sides. The problem of simultaneous estimation of state and parameter vectors can 
be reduced in the long run to the last-mentioned algebraic one. 

V. M. KUNTSEVICH • V. M. Glushkov Institute of Cybernetics, Academy of Sciences of Ukraine, 
252207 Kiev, Ukraine. 
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The problem of set-valued estimation for nonstationary systems with restricted 
parameter drift rate is also considered. 

15.1. INTRODUCTION 

Set-valued estimation has been widely used in solving identification problems 
in the last decade. A number ofpublications(l-23) have been devoted to the range of 
problems under consideration. The problem of simultaneous estimation of state and 
parameter vectors holds a special place in this series. It is met in particular in 
unstable plants control when the parameter identification process cannot be sepa­
rated from the control process itself as well as when both of the problems should be 
carried out simultaneously within adaptive control system. The above-mentioned 
problems are considered consecutively in the chapter. 

15.2. SET-VALUED PARAMETER ESTIMATION FOR LINEAR 
NONSTATIONARY SYSTEMS 

Recall the main idea of set-valued estimation with the simplest example 
namely with the parameter identification problem for plants without memory, 
which is widely known. One of the earliest general schemes suggested for obtaining 
a set-valued estimates of the parameters is considered below.(4) 

Let a class of plants under consideration be stated by the equation: 

Yn=L~un+f", n=I,2, ... , (1S.1) 

where Lis k-dimensional vector of unknown but constant parameters;/" is uncon­
trollable bounded disturbance (noise) with given a priori interval estimate 

11/ E f V n > 0, (1S.2) 

where 

f= if: III :0; Ll=const}. (1S.3) 

No other information about disturbance /" exists besides that it is bounded in 
terms ofEg. (1S.3). 

Let the estimate for vector L be known at the nth instant: 

(1S.4) 

where £/1 is a given convex set. At n = 0, £0 is given a priori. It is required to obtain 
a posteriori estimate of L using measured values of Um Yn and estimate Eq. (1S.4). 

Using Equation (1S.1) gives the estimate for L with known Un+! andYn+! 



SET-VALUED ESTIMATION OF VECTORS 

L E £n+1 = {L: u u~ L = Yn - J,,}. 
t;,Ef 
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(15.5) 

Then a posteriori estimate can be obtained by intersecting two noncontradictory 
set-valued estimates in Eqs. (15.4 and 15.5): 

(15.6) 

Obviously one can claim that estimate 2n+1 fulfills the relation 2n+1 S;;;; 2n and 
no more in general. The case 2n+1 = 2n corresponds to noninformative measurement 
of Eq. (15.1). In some particular cases,(12,21.23) procedure Eqs. (15.5 and 15.6) 
enable an identification process to be completed by obtaining a pointwise set 
containing the only true value of vector L in a finite number of steps. The pointwise 
set-valued estimate might be obtained for a particular class of uncontrollable 
disturbancesfn which meet an additional constraint besides Eq. (15.3), 

lim liN I L~+IJ" I = 0, 
N->oo 

if this feature of sequence {fn} is taken into account in a proper way modifying a 
procedure. (8.23) 

Some necessary and (or) sufficient conditions of noninformativity of Eqs. 
(15.5) can be pointed out. Nevertheless, the complexity of checking them is 
commensurable with that of carrying out an Eq. (15.6), which makes them useless. 

Since 2n+1 is a hyperband in the parameter space, the result of intersection Eq. 
(15.6) is a convex polyhedron if20 is given in the form of convex polyhedron. In 
particular, when dealing with polyhedra described by their vertices, the algorithm 
(and its program) of two convex polyhedra intersecting is suggested.(8,23) Since the 
number of vertices of polyhedron 2n varies and cannot be determined in advance, 
one has to operate with data array of a varied volume. This disadvantage of the 
algorithms of precise set-valued estimation is why a line of investigations are 
developed essentially for a class of polyhedra for estimation with approximating 
ellipsoids.(l·2,5.6,7,lo,12,21) However, considerably less computational complexity of 
estimation with ellipsoids is achieved at the cost of the set-valued estimate's quality, 
The error of such approximation increases with the increase of parameter vector 
dimension, That is why methods of set-valued estimation in both classes have been 
developed in parallel. Areas of an application of polyhedral and ellipsoidal esti­
mates presumably can be determined as follows. For problems of comparatively 
small dimension (k ~ 10), preference should be given to precise set-valued esti­
mates. For problems ofa middle dimension (10 ~ k ~ 102), ellipsoidal estimates are 
preferable. For problems of a large dimension (k> 102), an application of both 
methods is connected with essential difficulties, since approximation error in­
creases sharply for ellipsoidal methods while memory and computational complex­
ity increase rapidly for polyhedron methods. 
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A similar approach can be used for obtaining set-valued estimates of dynamic 
system parameters. Indeed, let a class of discrete-time control systems be given by 
the equation 

Xn+1 =AXn + BUn + C/", n = 0,1,2, ... , (15.7) 

where Xn is m-dimensional state vector, A is (m x m )-matrix, Band Care m-dimen­
sional vectors, Un is scalar control (input), and!" is uncontrollable disturbance as 
shown above. 

For simplicity assume that vector Xn is available for measurement without 
noise. Assume that matrix A and vectors Band C in Eq. (15.7) are of the canonic 
structure, i.e., 

0; Im_1 0 0 
A= B= C= (15.8) 

AT m bm 

where Im-I is a unit matrix (m - 1) x (m - I). 
Let an a priori estimate be given for the vector of unknown but constant 

parameters LT = (A~,bm): 

(15.9) 

where 20 is a given convex set (polyhedron). 
It is needed to obtain an estimate of vector L using measured values of x" and 

Un and an a priori estimate in Eq. (15.9). Making use ofEqs. (15.7 and 15.8) gives 

(IS.! 0) 

or 

(15.11) 

where 

(15.12) 

Here Xm,n+1 is the mth component of vector Xn+I' With measured values of 
Xn+"Xn and Uno and taking into account Eqs. (15.3) and (15.11) one can obtain an 
estimate 

L E £n+1 = {L: u Z~L =Xm,Il+1 -In}' 
.t;,Ef 

If the set-valued estimate of L is available at the nth step, that is 

(15.13) 
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(15.14) 

then the result is an a posteriori estimate from Eqs. (15.13) and (15.14): 

-
L E 2n+l = 2n+l n 2n' (15.15) 

Thus, the problem of set-valued estimation ofthe parameter vector of dynamic 
system Eq. (15.7) has been reduced to a procedure identical to that for solving the 
problem of parameter identification ofa plant without memory (see Eq. (15.1)). 

Obtaining estimates of vector L using procedure Eqs. (15.13 and 15.15) is, in 
effect, equivalent to determining a set-valued solutions of a set of linear algebraic 
equations with uncertain right-hand sides.(l6,24) Equation (15.11) can actually be 
written in the form 

Z,j- = SN - FN, (15.16) 

where 

ZT II xm111 fo 0 

ZT 
SN= II X~:211, 1; 

ZN= I FN= 

Z~_l lix~NII fN- 1 

(15.17) 

Matrix ZN and vector SN are known exactly in Eq. (15.16). For vector FN, one 
has only its a priori set-valued estimate 

(15.18) 

As shown,(l6,24) the recurrent procedure of Eq. (15.15) is nothing else but for 
obtaining the whole set of solutions of a set of linear equations with uncertain 
right-hand sides projected onto a priori estimate 20, 

With additional noise in the measurement of vector Xm considerable changes 
to the process of finding the whole set of solutions of a set oflinear equations should 
be made. Indeed, let vector 

and let Xn be measured with noise Vm i.e., let 

(15.19) 

where 

VnEP \fn20, P={v: Ivi :S:8=const}. (15.20) 

Then instead ofEq. (15.13), Eqs. (15.7 and 15.8) give 
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where Yrn,n+i and vrn,n+i are respective mth components of vectors 

or 

(15.22) 

where 

Sn = J" - vm,n+j' (15.23) 

Only an a priori estimate 

V E Q) = 0 x 0 x ... x 0, (15.24) 

is given for vector Vn by virtue ofEq. (15.20). An estimate 

(15.25) 

is given for variable Sn on the strength of Eqs. (15.3, 15.20, and 15.23), where a 
sum of sets is taken as a Minkowski sum. Thus the presence of a mUltiplicative 
member Z~Am by means of a procedure like Eq. (15.15), with observation Eq. 
(15.22), introduces valuable changes. In this case the whole procedure of Eq. 
(15.15) proves to be equivalent to determining a set-valued solution ofa set oflinear 
algebraic equations under uncertainty in their both sides.(I6,24) This procedure is 
considered below in detail. 

15.3. SIMULTANEOUS SET-VALUED ESTIMATION OF 
GUARANTEED ESTIMATES OF PARAMETER AND 
STATE VECTORS FOR LINEAR STATIONARY SYSTEMS 

A designer of control systems often finds himself in a situation when rough a 
priori estimates of parameters of a controlled plant are given. Hence they need more 
exact definition. A state vector of a system is measured under noise which cannot 
be neglected. Consider this situation as applied to the class of dynamic system Eqs. 
(15.7) analyzed above. Entering necessary changes and alterations into its descrip­
tion. Thus, assume that Eq. (15.7) describes as before the motion of the dynamic 
system under consideration. Matrix A and vectors Band C of canonic structure and 
an a priori estimates given for matrix A and vector Bare 

(15.26) 
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where Qro and Q)o are given convex sets. 
Construct a sequence of estimates of state vector Xn and that of elements of 

matrix A and vector B using the result ofEq. (15.19) and a priori Eqs. (15.3, 15.20, 
and 15.26). A number of publications are devoted to obtaining a solution of a more 
simple problem, namely, to estimate states of a dynamic system with known 
parameters.(2.3.10.12) 

If vector Xn is of the form 

x = II x· 11 m = II X '1I m
-

1
, n l,n i=:l n-l i:=O 

(15.27) 

then obtaining an estimate of vector Xn is reduced to that of estimation of its first 
componentxn- Thus, construct a sequence of set-valued estimates of vectors Xn and 
L. Make use ofEqs. (15.21) and (15.19), i.e., 

(15.28) 

(15.29) 

with a priori estimates Eqs. (15.3) and (15.20) and 

(15.30) 

(15.31) 

and known values Un andYn+l' Equation (15.28) determines prognostic estimate of 
value Xn+l in the form 

and Eq. (15.29) gives the estimate 

XnErlJ' 

LEl!". 

1" Ef 

(15.32) 

(15.33) 

Here, in the same manner as everywhere below, a sum of sets is taken as a 
Minkowski sum. 

Using two noncontradictory Eqs. (15.32) and (15.33) gives 

(15.34) 
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Estimate Xn+1 is used further to obtain the estimates of vector L from Eq. (15.28), 
that is, 

L E 2n+1 = {L: u (Z~L+f,,-xn+1 =O)}. 
(15.35) 

x Et 
/1+1 11+1 

Vector ZJ+I = (XJ,u ll ) introduced here is estimated with set 3 obviously of the form 

(15.36) 

A posteriori estimate of vector L is determined with estimates Eqs. (15.30) and 
(15.36), that is 

(15.37) 

With calculations made by Eq. (15.37) the cycle of estimation of vectors Land 
Xn is completed. 

Without dwelling on all the necessary details of application of general scheme 
presented here are some general comments. Clearly, the following relations be­
tween sets 1n+1 and In+1 may take place in general: 

1) xc Xn+l; 

2) xn+l C xn; and 

Thus, only the first and the third ones involve prognostic estimate Xn+I' This allows 
one to obtain an estimate of vector X" better than 1n+1 obtained as a result of 
measuring with noise. In the latter case, an estimate of parameters of a dynamic 
system is rough. Using prognostic estimate In+1 one cannot refine estimate 1,,+1' 
Thus, the quality of estimate 2n has an immediate effect on the quality of estimate 
Xn+1 to be obtained. 

To dwell more el.£borately on some details of obtaining sets 2,,+1 and X"+,, 
determine interval set X,,+I defined by Eq. (15.32), and use the following designa­
tions: 

Xn~1 = u (A;;,xn) , 
Am E QJ.;;/l) 

xnE1n 

u (bmun), 
bmEb~l1) 

(15.38) 

(15.39) 
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where QI~m) = PA('in) is a projection of set 'in onto a subspace of elements Am; and 
b~m) = Pb('i n) is a projection of the same set onto Obm axis. 

Designate also 

T _-, 
{A~n} - an+1 ' 

A E '2(("')' 
m /J' 

sup 

To find values cr' n+l and cr' -n+b state the following.(16,25) 

(15.40) 

(15.41) 

STATEMENT 15.1: If Xi and 1) are vertices of arbitrary polyhedra I and 'Il 
respectively then 

'I' - -'1'-
sup {v=X Y} = sup {vij=X; lj} 
XEl iEl,N 

(15.42) 

YE'l) jEl,M 

and 

(15.43) 

- -
where Xi and 1) are vertices of convex hulls I and 'Il of sets I and and 'Il 
respectively; Nand M are the numbers of these vertices, 

The proof of this statement is obvious enough and it is based on the properties 
oflinear functional. 

Let sets 'in and In be convex polyhedra defined in spaces of respective 
dimensions Rm+l and Rm defined by their vertices L~, i E l,Nn andX~,j E 1,Mm 
where Nn andMn are the numbers of vertices of 'in and Im respectively, with given 
matrixes, their vertices 

(15.44) 

(15.45) 

The same set of vertices for QIn = PA('in) has the form 

G~ = 11A!, A~, ... ,A~nll, (15.46) 

Making use of Statement 15,1 gives 
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a'n+1 s~ {(A~)TX'n}, and (15.47) 

/=5.. 
i::::l,Mn 

a' = inf {(Ai )TXi }. -n+l _ 11 11 
(15.48) 

i= 1,5n 

i= 1/vl/1 

Hence set I'n+1 can be determined now in the form 

(15.49) 

Set b~m) = Ph(2n) is interval one, i.e., 

b~m) = {b: gm) ~ b ~ b~m)} 

where Q and b are numbers defined ~a result of projecting set 2n onto the Obm axis. 
In accordance with Eq. (15.39) set I"n+1 is obtained in the form 

-

I"n+l = {X: uJJ. ~x ~ unb} at un > 0, and (15.50) 

-

I"n+1 = {X: unb ~ x ~ un/Z} at un S; O. (15.51) 

On the strength of Eqs. (15.32), (15.38), and (15.39), In+l can be finally 
represented as 

(15.52) 

where sets I'n+1 and I"n+l are determined by Eqs. (15.49), (15.50), and (15.51), 
respectively. 

Now dwell on obtaining set 2n+' determined by ECL (15.35). Parameter 
identification has known values of state vector Xn when set 2n+ I is represented by 
a hyperband in the parameter space. The case of uncertain state coordinates, unlike 
the case considered above, only when the inclusion Xn E In is to be used, is 
essentially more complicated. In this connection, consider in greater detail the 
problem of finding a set-valued solution ofa set oflinear algebraic equations under 
uncertainty mentioned above. With this aim in view, consider a set of linear 
algebraic equations in a standard notation 

AX=B, (15.53) 

where X is I-dimensional vector to be determined, A is a rectangular matrix of 
I x N dimension in general, and B is n-dimensional vector. Assume that estimates 
for matrix A and vector B are given by 
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A E QI, BE Q) (15.54) 

where QI and Q) are convex sets (polyhedra). An a priori estimate is also given for 
vector X 

(15.55) 

where Io is a convex set (polyhedron). Set-valued solution of Eq. (15.53) under 
Eqs. (15.54) and (15.55) is to be found. 

Solving a set of linear algebraic equations is an ancient problem in mathemat­
ics. Existence of unavoidable errors in coefficients and in left-hand sides which are 
caused either by inaccuracy in initial data or by a finite accuracy of a computer, or 
by both the first and the second, leads to an uncertainty of a solution. Varying 
coefficients of a set of equations within the accuracy of their assignments, one can 
obtain different solutions and pretend that each one is equally true. But existing 
methods for solving a set oflinear equations, such as least squares techniques and 
others, are oriented for obtaining the only (pointwise) solution. They might be 
considered as a particular illustration of "subjective aversion for problems not 
having a univalent answer.,,(26) 

A wide range of problems have been specified in the last few years, particularly 
control, identification, and filtration under uncertainty of non-stochastic nature. For 
solving them, one has to obtain the whole set of solutions of a set oflinear equations 
with uncertain values in both sides of each equation. Such problems are of interest 
to adherents of a new scientific branch called "interval mathematics. ,,(27,28) 

DEFINITION 15.1. Set I containing all the points X E JR.! satisfying Eq. (15.53) 
at each particular A and B from Eq. (15.55) is a set-valued solution of Eqs. (15.53) 
and 15.54). 

Naturally, in the general case of having no additional conditions, all the points 
of set I (if it is not empty) are equivalent in a sense that none of them can pretend 
to the role of the only "right" solution. 

Obtaining set I in the form 

I = f(QI, Q)) = u u f(A,B). 

Let set Q) be of the form 

where Q),. is a subset ofQ), N8 is the number of subsets Q)r, and 

QI = U QIk and k E 1,NA, 
k 

(15.56) 

(15.57) 

(15.58) 
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respectively, where Q!k is a subset of Q! , and NA is a number of subsets Q!r' 

Substituting Eqs. (15.57 and 15.58) into Eq. (15.56) gives 

where 

I=uulkr, kE 1,NA, rE 1,NB' 
k r 

I kr = U U f(A,B). 
AEQIBECfI 

(15.59) 

(15.60) 

From Eqs. (15.59) and (15.60), the set I to be found is a solution ofa set oflinear 
Equations (15.53) under Eq. (15.54), and in terms of Definition 15.1. It has a 
property called compositivity. Namely set I can be obtained from Eq. (15.60) as 
a union of subsets. It means that determining set I makes use of Eq. (15.57) and 
(15.58). 

Consider solving Eq. (15.53) (in tenns of Definition 15.1) for interval A and B: 

Xl 

FIGURE 15.1. Set of solutions of linear equation with CIII > 0, CI12 > O. 
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(15.61) 

(15.62) 

where Qn}, an}' Qm and hI! are given values. 
It is easy to verify that in a general case set I is nonconvex. Indeed, consider 

one row of Eq. (15.53) with two-dimensional vector X, i.e., at 1= 2, N = I (the 
two-dimensional case is suitable for geometric interpretation on a plane). Set I of 
various forms is presented at Figs. 15.1, 15.2, and 15.3 for Ql > 0, and different 
values of a 11 and a 12 as a crosshatched region. Figure 15.1 corresponds to the case 
of QI 1 > 0, Q12 > 0. Figure 15.2 corresponds to the case of QI I < 0, a 11 > 0, and 
Q12 > 0. Figure 15.3 corresponds to the case of a Qll < 0, til I > 0, Q12 < 0, and 
al2 > O. 

Consider the sth orthant (s = 1, ... , i) of space ]RI. Determine the set of 
indices {ej} for this orthant at j = 1, ... , I as follows: ej = ° if the value of a 
component x} of vector Xis positive in this orthant, ej = 1 otherwise. Then, diagonal 
matrix Gs = diag{e" ... ,kef} is characterized by the equation 

(1 - 2G)X~ O. (15.63) 

For each s, introduce matrices ~(.) and CsC.) with coefficients determined as 
follows 

C () e' C (s) = a1- e; IN' 1 I _nj s = a,u' IlJ nj , n E , , ] E ,. 

FIGURE 15.2. Set of solutions of linear 
equation with ~ll < 0, all> 0, ~12 > 0. 

(15.64) 
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XI 

Introduce vectors 

A set of linear equations 
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FIGURE 15.3. Set of solutions oflinear equation 
with QII < 0, all> 0, QI2 < 0, aI2 > 0. 

(15,65) 

combined with Eq. (15.33) separates out the set I-', which makes it a convex 
polyhedron. 

The following theorem is correct. 
THEOREM 15.1. A set of solutions ofEq. (15.53) under Eq. (15.54) represented 

by Eqs. (15.61 and 15.62) should be the set 

2' 
I= u 1'. 

(15.66) 

s=l 

A proof of Theorem 15.1 can be found.(23.24) 
Naturally, any particular subset XS may tum to be empty, i.e., the set of Eqs. 

(15.63) and (15.65) is contradictory for the sth orthant. Comparing Eqs. (15.53) 
and (15.65) (taking Eq. (15.64) in view), it is clear that each row from Eq. (15.53) 
produces two linear inequalities in the form ofEq. (15.65) in the respective orthant. 
All these pairs of inequalities are independent with each other. Subset XS can be 
reduced, subsequently adding respective pairs of inequalities and eliminating 
non-informative ones. With this aim in view rewrite Eq. (15.53) in the form 

(15.67) 
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wh~e AJ is the nth row of the matrix A. To each scalar equation from Eq. (1S.69), 
set In corresponds as follows: X E In such A E Qln and bn E b el'ist that Eq. (1S.69) 
is true for the taken n. According to Theorem IS. 1, the set In for any n can be 
presented in the form 

M _ 

In = U I~, M = 2, 
(1S.68) 

5=1 

where In is a convex subset completely belonging to the sth orthant of space lR,l, It 
is separated out in this space by two scalar inequalities 

C~sX - Qn 2 0, 

(lS.69) 

where ~Js and CJs are the nth rows of matrices ~s and Cs respectively. 
On the other hand, taking into account that a priori estimates for matrix A and 

vector B coefficients are independent of each other one can claim that 

(1S.70) 

Therefore, set evolution equation is represented with 

(1S.7l) 

and 

(1S.72) 

From Eqs. (lS.68) and (1S.71) a set of independent difference equations are 
obtained: 

I~+I = I~+I (\ I~, i E I,M, n E 1.N 

(1S.73) 

which describe the evolution of convex polyhedra in each orthant separately (except 
for those orthants where these set~are empty). As this takes place, performing 
intersection of convex sets I:, and I~+ 1 remains similar to the methods described 
above, since one must intersect a polyhedron with Eq. (IS.69) and reject the cut-off 
part only. 

Given an a priori estimate 10 of set I is represented as a union of convex 
polyhedra 10 : 

(1S.74) 
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so it is appropriate and can be used in the recurrent procedure described above. 
With this aim in view, Eq. (15.73) should also be extended to the value n = O. 
Substitute Eq. (15.74) for the initial condition I\ = II . 

Examples illustrate the above method for constructing the set I of solutions 
ofthe set ofEq. (15.53) under the given conditions ofEqs. (15.54) and (15.55).(11,23) 

N ow, extend the method suggested above to the case of state vector estimation 
when vector Xn is an arbitrary one. Equation (15.19) represents the measurements 
that should be substituted by the equation 

(15.75) 

where Vn is m-dimensional vector of noise with a priori set-valued estimate 

(15.76) 

Here Q) is a given convex set (polyhedron). 
The case under consideration differs from the one considered above from the 

only viewpoint. Use the estimate 

(15.77) 

instead of Eq. (15.32) and the following one instead of Eq. (15.33), therefore, on 
the strength ofEq. (15.28) it takes the form 

E In+l = (15.78) 

Im,n+' rm.n+1 

~n+l= U (4Xn),and (15.79) 
xnE1n 

rm.n+1 = U (A~n + bmun + f,J 
Am EQ!~m), Xn E In 

bm Eb(m).f~ E f 

(15.80) 

A matrix 4. is obtained from the matrix A by deleting its last row, and K is a 
vector obtained from the vector Xby deleting its last element. 

All the other steps of the identification procedure applied for vectors Land 
Xn to obtain set-valued estimates £m In remain with no change. 

It is also easy to prove that if matrix A is not of a canonic form, nothing, in 
principal, should be changed (considering the general scheme described above). 
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15.4. OBTAINING SET-VALUED ESTIMATES OF STATE AND 
PARAMETER VECTORS FOR LINEAR NONSTATIONARY 
SYSTEMS 

255 

Let a class of linear nonstationary systems be stated by the difference equation 

(15.81) 

where all the designations have the same sense as above; matrix An and vector Bn 
are unknown and vary arbitrarily in time elements, for which only certain a priori 
estimates are given. Clearly, with general suggestions on An and Bn one cannot 
obtain valuable results in solving the identification problem, and must restrict a 
subclass of plants for which a rate of change of the coefficients of An and Bn are 
bounded with known bounds. 

Assume as above that An and Bn have a canonic form 

0: Im_1 0 
A = B = n n 

A bm,n m,n 
(15.82) 

and a priori set-valued estimate £8 for vector L& = (A~,o,bm,o) is given by 

(15.83) 

in the form of a convex set (polyhedron). In addition, assume the rate of change of 
the parameter vector LJ = (A~,mbm.n) to be bounded, i.e., 

(15.84) 

The vector norm is determined as 

IIXII = max ~;I. 
j;::;l,m 

Equation (15.84) gives an a priori estimate for vector Mn = Rn 

(15.85) 

Clearly, since Eq. (15.81) is nonstationary in L, the only alterations in the 
suggested general scheme deal with estimation of vector Ln- In this connection, a 
radically unremovable delay for stepwise operating discrete-time system exists in 
identification process or a nonstationary plant. Indeed, as follows from Eq. (15.81) 
with the value of vector Xn measured at the (n+ 1 )th instant, this equation determines 
set 2~+1 as an a posteriori estimate of the parameter vector value at the previous 
instant. Vector Lm jointly with the previous a priori estimate for the nth instant of 
time, is 
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(15.86) 

and determines a posteriori estimate of vector L 

-
L E 2 n+1 = 2n+l (\ 2n. 

11 n n 11 
(15.87) 

Since solving particular problem at the (n+l)th instant estimate of vector 
Ln+l is required at the same time, solve an extrapolation problem using Eq. (15.87). 
It is necessary in one way or another to obtain an estimate of vector L,,+1 at the 
(n+ l)th instant of time 

L on+l 
n+1 E ~n+J' 

(15.88) 

Clearly, Eq. (15.84) or (15.85) is the only source to obtain it. Since vectors 
Ln and ALn are given only in terms oftheir set-valued estimates, it is clearthat vector 
Ln+ 1 can be estimated in the form 

L E 2n+l = 2n+l + :R 
n+l n+l n . 

(15.89) 

Looking at Eq. (15.89) one can find increasing volume of a set-valued estimate 
caused by the operation of summation of sets and decreasing volume caused by 
their intersection. Due to this fact, Eqs. (15.87) and (15.89) at n ~ 00 cannot be 
divergent. Nevertheless, one can give a rigorous statement and prove it. 

THEOREM 15.2. For parameter vector of discrete-time Eq. (15.81) satisfying the 
difference equation 

where vector ALn- 1 is bounded by Eq. (15.85). For vector L n- 1 with its estimate 
2~=l given at the (n-l )th step with no disturbances and noise, i.e., at f = 0 and 
Q) = 0, the recursion 

L E 2" = 2n- 1 +:R 
11 11 11 ' 

where 

L on - on on-I d 
n-l E ~n-l - ~n-l (\ ~n-P an 

with linearly-independent vectors ZJ-I = (XLj,Un-l) determines a sequence of 
bounded sets 2~ , i.e., the diameter 8(2~) < 00 at n ~ 00. 

In addition, taking expressions Eqs. (15.87) and (15.89) into account one can 
claim that sets 2~ are convex since the class of convex polyhedra is closed with 
respect to taking a sum of sets and intersecting. 
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15.5. CONCLUSIONS 

The algorithms of simultaneous set-valued estimation of state and parameter 
vectors for linear dynamic systems have been described above. Making an assump­
tion of a very general nature of the form of Eqs. (15.3) and (15.20) put on 
uncontrollable disturbances (noise), the procedures of parameter identification 
described above generally should be terminated with obtaining unimprovable 
estimates. The availability of such "residual" (unimprovable) uncertainty in pa­
rameter identification also provides the existence of generally unremovable uncer­
tainty in state estimation. 

For the class of nonstationary dynamic systems, which are unremovable in 
principle, uncertainty exists naturally. Nevertheless, this uncertainty remains 
bounded even at arbitrary large time interval. 

The algorithms of set-valued estimation of state and parameter vectors can be 
applied to designing adaptive control systems of a wide class, particularly to 
unstable plants. 
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APPENDIX 

The proof of Theorem 15.2: It was already shown above that Eqs. (15.87 and 
15.89) are equivalent to solving the respective set of linear algebraic equations 
under uncertainty in right-hand sides. This statement is correct also for the case of 
solving a set of linear equations under conditions of Theorem 15.2, based on the 
successive elimination of unknown variables. Indeed, a set of equations at 
n ~ (m + 1) is of the form 

and, respectively, 

k k 

Xm,n+l_k=X~(Am,n- I Mm,n-l-:i ) + (bm,n- I f':..bm,n-l-J)Un atk<n, 
~l ~l 

Assuming k = 1,2, ... , m + 1, one obtains the following set of equations 

m m 

xm,n-m =X~_m_1 (Am,n-I - .1: Mm,n-I-J) + (bm,n-l -1: I1bm.n-H)Un-m-l' 
]=1 ]=1 

With the designations 
1\ 

X~ = (xm,n' xm,n-I' . , . ,xm,n-m-)' ZT = (XT U ) n-l n-l' n-\' 
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ZT 
n-I 

Z~_2 

ZT 
n-m-I 

rewrite them in the form 

~ 

m rn 

L M~,n_I_j L b.bm,n_l_j 

j=1 j=1 

If det Z *- 0 we obtain from above 
~ 1\ ~ 

Ln_1 = Z~~IXn + Z~~I Yn- I· 

259 

The exact values of vector Mn = (M~ mb.bm n) are unknown, i.e., it is known 
only that Yn- I E ~n-I' Hence only estimate Ln- I E 2n-;l can be obtained. However, 
since set ~n-I is bounded, set 2 n- 1 is bounded at det Zn-I *- O. Thus, estimates 2~ 
are bounded at 'lin;::: O. 
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ABSTRACT 

When the errors between the data and model outputs are affine in the parameter 
vector e, the set of all values of e such that these errors fall within known prior 
bounds is a polytope (under some identifiability conditions, which can be described 
exactly and recursively. However, this polytope may tum out to be too complicated 
for its intended use. In this chapter, an algorithm is presented for recursively 
computing a limited-complexity approximation guaranteed to contain the exact 
fJolytope. Complexity is measured by the number of supporting hyperplanes. The 
simplest polyhedric description that can thus be obtained is in the form of a simplex, 
but polyhedra with more faces can be considered as well. A polyhedric algorithm 
is also described for tracking time-varying parameters, which can accommodate 
both smooth and infrequent abrupt variations of the parameters. Both algorithms 
are combined to yield a limited-complexity polyhedric tracker. 
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16.1. INTRODUCTION 

Bounded-error estimation(l-3) initially dealt with time-invariant models. When 
the error to be bounded is affine in the parameters 9 E R" to be estimated, the 
(posterior) feasible set § for 9 is a convex polyhedron. Assume for the sake of 
simplicity that this polyhedron is bounded (i.e., a polytope), which can be inter­
preted as an identifiability condition. This polytope can then be characterized 
exactly as the convex hull of its vertices. Proper book-keeping of the relations of 
adjacency between vertices (e.g., via lists of supporting hyperplanes) makes it 
possible to characterize § recursively. (4-6) Section 16.2 recalls an algorithm for that 
purpose, which forms the basis of the procedure to be used for limited-complexity 
polyhedric tracking. This exact description is often much simpler than might be 
feared (because a large number of inequalities do not contribute to the definition 
of the boundary of §). It may nevertheless turn out to be too complicated for its 
intended use. This is the main motivation for attempting to approximate § by 
simpler sets guaranteed to contain it. Ellipsoids,<?-9) axis-aligned orthotopes(IO) or 
generic parallelotopes(l I) have been considered for that purpose. In Section 16.3, a 

modification of the exact polyhedric description is presented that allows a recursive 
determination of a limited-complexity polyhedron guaranteed to contain §. The 
complexity ofthe polyhedron will be characterized by the number of its supporting 
hyperplanes. It is, for instance, possible to require the polyhedron to be a simplex. 

In many practical applications, it is necessary to allow parameter variations to 
account for the unmodeled behavior of the system. Various extensions of the 
original techniques to time-varying parameters have been presented in the litera­
ture.(l2,13) Most are derived from ellipsoidal-bounding algorithms. In Section 16.4, 
an algorithm for polyhedric tracking of time-varying parameters is described. 
Although mostly designed to follow smooth parameter variations, it can also 
accommodate infrequent abrupt changes of the parameter vector. It combines two 
algorithms recently proposed (14) and makes it possible to limit the complexity of 
the polyhedra obtained. Illustrative examples are presented in Section 16.5. 

16.2. POLYHEDRIC DESCRIPTION FOR TIME-INVARIANT 
SYSTEMS 

If the error eel, 9) is affine in 9, it can be written as 

e(t, 9) = aT(t)9 - ~(t), (l6.l ) 

where aCt) and ~(t) are known. In bounded-error estimation, one is interested in 
characterizing the posterior feasible set for the parameters, i.e., the set of all values 
of 9 such that the error satisfies 
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emin(t)::; e(t, 0)::; emait) = 1,2, ... ,N, (16.2) 

where the bounds emin(t) and emax(t) are known a priori. (For a situation where the 
bounds are not known, see Ref. 15.) From Eqs. (16.1) and (16.2), 0 must satisfy 

aT(t)O ~ ~(t) + emin(t), (16.3) 

(16.4) 

which define a feasible strip lIlIt bounded by two parallel hyperplanes. It seems 
worth noting that the algorithms to be presented do not require these two hyper­
planes to be parallel, so that they also apply to the type of pairs oflinear inequalities 
obtained by the errors-in-variables approach. When 0 is assumed to be time-invari­
ant, § is the intersection of N such feasible strips. If it is not empty, it is a convex 
polyhedron, which can be described exactly by enumerating its vertices and/or 
supporting hyperplanes. The determination of the solution set associated with 
Eq s. (16.3) and (16.4 ) can be performed recursi ve1y( 4-{,) by processing one inequal­
ity of type (16.3) or (16.4) at each iteration. Taking a new datum into account thus 
requires two iterations. The polyhedron lP'k of all values of 0 consistent with the 
first k inequalities is described by the set of its vertices {vf} completed for each of 
them by a list of its adjacent vertices ad/(i) and a list of its supporting hyperplanes 
hypk(i). 

The kth inequality to be taken into account can be written as 

aIa ~ bk• ( 16.5) 

At iteration k, the intersection lP'k of lP'k-l with the new feasible half space 

Ht = {Ol aIO ~ bk } (16.6) 

is computed. Initialization is performed by defining a prior feasible polyhedron 
lp'o described by its set of vertices {v? } and associated ad/(i) and hypo(i) lists. If 
no vertex of lP'k-1 satisfies 

T k-I b > 0 akvi - k - , (16.7) 

then the intersection is empty and the algorithm stops. If all vertices of lp' k-I satisfy 
Eq. (16.7), then lP'k = lP'k-1 and the constraint is redundant. Otherwise, it is necessary 
to update lP'k-l to lP'k as follows. Let Vklk-I be any vertex of lP'k-l satisfying Eq. 
(16.6) and thus kept in lP'k. IfaTvkIk_1 = bk then Hk = {Ol aIo = bk} must be added 
to the list of supporting hyperplanes ofvklk_1 which otherwise remains unchanged. 

Consider now the set of all vertices oflP'k-1 that are adjacent to vklk-1- Any of 
these vertices that satisfies Eq. (16.5) also belongs to lP'k and remains adjacent to 
Vk/k-I' Any of these vertices that does not satisfy Eq. (16.5) is discarded and 
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replaced by a new vertex located at the intersection of Hk with the edge linking 
Vklk-l to the vertex discarded. This new vertex is obviously adjacent to VklH and 
to all other new vertices created from Vklk-b which makes the updating of the list 
of adjacent vertices simple. The list of supporting hyperplanes for each vertex 
created from Vklk-I is obtained by appending Hk to those supporting both Vklk-I 

and the vertex discarded. All vertices of pk are thus determined, together with their 
lists of supporting hyperplanes. All vertices of pk that are in pk-I also have a 
complete list of adjacent vertices, but the lists of adjacent vertices associated with 
the newly created vertices remain to be completed. This is performed by considering 
all pairs of newly created vertices originating from different vertices of pH and 
comparing their list of supporting hyperplanes. Any pair of vertices that have at 
least (n - 1) hyperplanes in common and are such that no other vertex has a list of 
supporting hyperplanes containing these (n - 1) hyperplanes are adjacent. The 
polyhedron pk is then obtained as a set of its vertices, with lists of adjacent vertices 
and supporting hyperplanes. 

16.3. APPROXIMATE DESCRIPTION FOR TIME-INVARIANT 
SYSTEMS 

Provided that the number n of the parameters to be estimated is not too large, 
p2N is often surprisingly simple, even if the number of inequalities to be taken into 
account is quite large. A large number of inequalities turn out to be redundant. It is 
possible, however, that the complexity of the exact description obtained is too high 
for its intended use. It is then necessary to look for a coarser characterization. So 
far as the approximating set is guaranteed to contain the actual feasible set, it can 
be considered as an expansion of the actual feasible set, and therefore already 
confers on the algorithm some tracking ability. The method presented in this section 
aims at determining a series oflimited-complexity polyhedra guaranteed to contain 
§. The parameters to be estimated are still assumed to be time-invariant. The 
procedure is initialized by choosing as a prior feasible set some polyhedron po 
defined by at most nh supporting hyperplanes. The simplest possible case is when 
nh = n + I, which corresponds to a polyhedron with n + I vertices, or simplex. Since 
any vertex of a simplex is adjacent to all others, the associated ad} lists are trivial. 
Since any vertex belongs to all supporting hyperplanes of the simplex but one, the 
hyp list associated with any vertex can be replaced by the index of this supporting 
hyperplane. This allows one to further simplify the algorithm. 

Let L k-I be the limited-complexity polyhedron obtained when k - I inequali­
ties have been taken into account. The algorithm of Section 16.2 can be used to 
compute the intersection P of L k- I and HI; . If the number of faces ofP is lower 
than or equal to n, then set Lk = P. Else compute the nh polyhedra defined by nh 

faces among the nh + 1 faces of P and select the one with minimum volume as 
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llf Note that this policy does not give the minimum-volume limited-complexity 
polyhedron guaranteed to contain §. As for ellipsoidal approximation, a better 
approximation can be obtained by recirculating the inequalities in the algorithm. 
The computation of the optimal limited-complexity polyhedron guaranteed to 
contain § remains an open problem, except for some very restricted classes of 
polyhedra, such as axis-aligned boxes. 

In the general case, the volume of polyhedra can be computed by the method 
described in Ref. 16. When the polyhedron is a simplex in an n-dimensional space, 
with vertices VO,vl> ... , vm its volume Vn is easily obtained by the recursive 
formula(17) 

FIGURE 16.1. Suboptimal method for selecting 
the face to be discarded. 

Hyperplane to be mscarded 
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where h is the Euclidian distance between the vertex v n and the (n - I)-dimensional 
space containing the simplex with vertices vo,v], ... ,Vn-], and volume Vn- I • 

When nh > n + I, the computation of the volume of each of the polyhedra 
candidates to become Lk may tum out to be too complex. An easier (but less 
effective) way of selecting the face to be discarded is as indicated on Fig. 16.1. Let 
c be the Chebyshev center of lP' for the L£norm, with components given by 

Ci = ~[min vP) + max vP)] , 
I I 

(16.9) 

where v(i) is the ith vertex of P. Compute the distance to c of each supporting 
hyperplane Hj of lP', as 

d(H) = laJc - bYlla;ll. (16.10) 

If the nh hyperplanes with the smallest values of the distance are linearly inde­
pendent, then set [} is equal to the nondegenerate polytope defined by these faces 
by using the algorithm of Section 16.2. Otherwise, use the complete algorithm. 
Note that [} is already partially obtained after lP' has been computed. From the lists 
of supporting hyperplanes associated with all vertices, it is easy to find the vertices 
of lP' belonging to [f 

16.4. POLYHEDRIC TRACKING FOR TIME-VARYING PARAMETERS 

When the parameters are allowed to vary, the parameter set obtained from past 
observations should be modified to reflect the possible variations of9 between past 
and present observations, before being intersected with the feasible strip defined 
by the two inequalities associated with the present observation. The method 
presented here(l8) combines two algorithms proposed in Ref. 14. The polyhedron 
obtained from the previous measurements is first expanded, and the result is then 
intersected with ]]]t. This involves using the basic intersection algorithm of Section 
16.2 twice. If the intersection turns out to be empty, the expanded polyhedron is 
translated so as to move its Chebyshev center to the median hyperplane of the 
feasible strip associated with the present observation, which ensures a nonempty 
intersection even when some hypotheses of the method are not satisfied (e.g., when 
the bounds on the error are too optimistic or when the parameter variation is too 
abrupt for the expansion policy). 

The algorithm is again initialized by choosing some prior feasible parameter 
domain lp'o described by its set of vertices {v?} and associated a4/\i) and hypo(i) 
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lists. Contrary to Section 16.2, a pair of inequalities are considered at each iteration, 
so that the current polyhedron at time t will be denoted by ]Pt. 

Let ct- 1 be the Chebyshev center of ]pH for the Loo-norm. When no specific 
information is available on the possible speed of variation of each parameter, 
expansion of ]pt-l may be performed by replacing each of its vertices vr1 by 
ev:-l , defined by 

evl-l = v t- 1 + A (vt- 1 _ ct- 1) 
t 1 1 ' 

(16.11) 

where A > 0 is some scalar expansion factor (vaguely similar to the forgetting factor 
of recursive least squares, although the analogy should not be pushed too far). The 
resulting expanded polyhedron e]p t-l is then intersected with the feasible strip lI1I' 
associated with the measurement at time t. If the resulting intersection is empty, 
then ejpt-l is translated orthogonally to the median hyperplane H ofIIlI( so that its 
Chebyshev center lies on H. Let H- and H+ be the two (possibly non-parallel) 
hyperplanes limiting [IF. 

The median hyperplane is then given by 

H = [0: (a~ + a!)O = ~_ + ~+]. 

Any vertex ev:-l Ofe]pt-l is translated according to 

elvt-l = evt-l + "(a + a ) 
l l r - + ' 

with 

~_ + 13+ - (a_ + a+?cl- 1 

f.l= 
(a_ + a+)T(a_ + a+) , 

(16.12) 

(16.13) 

(16.14) 

(16.15) 

(16.16) 

which ensures that the Chebyshev center of the translated polyhedron el]pl-l belongs 
to H. In the special case where H- and H+ are defined by Eqs. (16.3) and (16.4) 
and where emin = -emax , this policy simplifies into that proposed in Ref. 18. 

This algorithm has several advantages over those described in Ref. 13. First, 
it is recursive. Second, its expansion policy modifies neither the relationships of 
adjacency between vertices nor the directions of supporting hyperplanes. The ad} 
and hyp lists, therefore, need not be modified after the expansion phase. Moreover, 
as the relative distance between two adjacent vertices ofthe polyhedron increases, 
adjacent vertices can never merge, so that degeneration of faces can not occur. 
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When more information is available on the dynamics of the components of9, 
it can be taken into account by replacing Eq. (16.11) by a similar expression, where 
each component of the expanded vertices has its own expansion coefficient, i.e., 

(16.17) 

The expansion factor along the ith axis Ai?: 0 must be chosen a priori. The larger 
Aj, the faster the ith component of 9 can vary. If any component of 9 is assumed to 
be time-invariant, one may choose the associated expansion factor equal to zero. If 
the variation oftheith parameter between two measurements is assumed to be less 
than vmax}, then a time-varying Ai may be chosen as 

(16.18) 

The relationships of adjacency are not altered after an expansion according to Eq. 
(16.18).(14) The overall description of the polyhedron in terms oflists of supporting 
hyperplanes, therefore, does not need to be modified, but the faces of the expanded 
polyhedron are no longer parallel to the initial ones. 

The expansion-translation algorithm used for polyhedric tracking is easily 
combined with the approximate description of Section 16.3 to yield a limited-com­
plexity polyhedric tracker. 

16.5. EXAMPLE 

One thousand data points have been generated by simulating the ARX system 

[ t-I] + -0.5 + 500 ut - 1.8 uH + ct' 1= L ... ,300, 
(16.19) 

and 

Yt = -1.7 Yt-I - 0.72 Y t-2 

[ t-l] + -0.5 + 500 ut - 1.8 ut_ 1 + ct' t = 301, ... , 1000, 
( 16.20) 

with Ct a sequence of independent random variables uniformly distributed between 
-D. 1 and 0.1. The input u alternates sequences offifty identical values ± 1. The initial 
conditions are 
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FIGURE 16.2. Data for the example. 
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FIGURE 16.3. Evolution of the true value and estimated parameter uncertainty interval for St. 
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FIGURE 16.4, Evolution of the true value and estimated parameter uncertainty interval for 92, 

(16.21) 

Fig. 16.2 presents the data obtained, which are used to estimate the parameters of 
the model 

(16.22) 

From the equations used to generate the data, it can be seen that the true values of 
01 and O2 jump at t = 300, while the true value of 03 is slowly varying and that of 
04 remains constant. The prior feasible set for the parameters is a simplex, large 
enough to be guaranteed to contain the true value for the parameter vector. At each 
iteration, the number of supporting hyperplanes is limited to nh = 5. The limited-com­
plexity polyhedric tracker is used for that purpose, with the suboptimal procedure of 
Figure 16.1 for selecting the face to be discarded in any polyhedron with more than 
five supporting hyperplanes. The expansion coefficients are given by A, = 0.1 for 03 
and A = 0.05 for all other parameters. To be considered as feasible, the 
parameters must satisfy 

(16.23) 

Figs. 16.3 to 16.6 give the evolution, with the number of data points taken into 
account, of the four parameter uncertainty intervals obtained by projecting the 
simplex on the axes of the parameter space. Before the jump at t = 300 occurs, the 
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2.--------.--------,---------,--------.--------. 

FIGURE 16.5. Evolution of the true value and estimated parameter uncertainty interval for 93. 
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FIGURE 16.6. Evolution of the true value and estimated parameter uncertainty interval for 94. 
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expanded polyhedron is never translated. The translation is perfonned as soon as 
the feasible simplex becomes empty. This policy makes it possible to recover 
correct parameter uncertainty intervals in about 100 measurements and no further 
translation is needed. The same example treated with an exact description instead 
of a simplex gives figures very similar to those presented here. Examples involving 
10 parameters and 1000 data points have also been treated using a simplex 
approximation. The corresponding exact polyhedron soon becomes intractable. 

16.6. CONCLUSIONS 

Ellipsoidal outer bounding of feasible parameter sets has long been thought of 
as the only viable option when the number of parameters to be estimated was large. 
The polyhedric approach can now also be considered for large-scale problems, 
because of the availability of methods for limiting the complexity of the resulting 
descriptions. The limited-complexity approach advocated here is only one among 
many that can be considered, but corresponds to a large class of algorithms. It can 
be combined with various expansion policies to allow the tracking of time-varying 
parameters. The recursive expansion policy described in this chapter makes the 
updating of the lists describing adjacency and supporting hyperplane relationships 
trivial. It also ensures that no degeneration offaces can occur. By tuning individual 
expansion factors along each axis, it is possible to take bounds on speeds of 
variation of the parameters into account. Rare abrupt changes of parameters that 
cannot be accounted for by the expansion policy chosen are taken care of by a 
translation of the expanded polyhedron so that its Chebyshev center lies on the 
median plane of the feasible strip associated with the new datum. 
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17 
Parameter-Bounding Algorithms 
for Linear Errors-in-Variables 
Models 
S. M. Veres and J. P Norton 

ABSTRACT 

Computational techniques are considered for the errors-in-variables (EIV) problem 
with bounds specified on the errors in all variables. The significant difference in 
difficulty in bounding the parameters of a dynamic EIV model, compared with the 
static case, is explained. Conditions for the feasible set of the parameters to be the 
union of polytopes are discussed, and a search technique to find the nonlinear 
bounds for the dynamic EIV problem is described. A simulation example compares 
EIV and equation-error bounding. Techniques for shortening the computation of 
EIV parameter bounds, and for finding polytope and ellipsoid approximations, are 
gIven. 

17.1. INTRODUCTION 

The EIV problem is that of estimating parameters in a linear-in-parameters 
model when some or all explanatory variables, as well as the output, are uncertain 
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(noisy). It has been extensively discussed in the statisticalliterature.(I-4) Recently 
dynamic EIV models have had attention. l5--9) Most of this work assumes that the 
errors are statistically specified. Following the appearance of deterministic parameter­
bounding algorithms,(10-18) it is of interest to consider the ElV problem in a 
deterministic parameter-bounding context. Statistical assumptions on the errors 
(e.g., uncorrelatedness or restrictions on distribution) are replaced by the single 
requirement that the errors should lie within specified bounds. The bounded-error 
case can be considered as a special case of statistical modeling, with independent 
and uniformly distributed errors. However, such a view is not necessary and may 
complicate motivation, interpretation or analysis. 

The EIV parameter-bounding problem can be formulated as computing bounds 
on the p-vector e of parameters in the model 

(17.1) 

wherefis a known function, scalar Xt is known to be within lOx of its observed value 
x~. The error in x7 is bounded by I XI I == I Xt - x71 :S £." the errors ~t == Q>t - Q>7 in 
observations Q>~ of the q-vector Q>t == [Q>i ... Q>i]T of explanatory variables are 
bounded by I~: I :S £$' i = 1,2, ... ,q and equation error el (structural error, due to 
linearization, reduction of the model order or omission of a significant term) is 
bounded by I ell :S £e. The EIV problem is called linear iffis linear in both e and 
Q>I, so that 

(17.2) 

withfa known vector function. More symmetrically, 

(17.3) 

where 

andfis correspondingly augmented tof'. One knows thatf'W,) is in the set 

(17.4) 

and the feasible parameter set (FPS) after processing all data up to time N is 

(17.5) 

The problem is dynamic if consecutive vectors Q> are related (deterministically), for 
instance, by a sample of a variable appearing in successive Q>s; otherwise it is static. 
If all errors are treated as part of el , the problem simplifies to the standard 
equation-error problem but with complicated bounds on et. In a statistical frame-
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work, lumping all the errors into et makes it correlated with the observed explana­
tory variables, which causes bias in standard estimators such as least squares.(3) 

Section 17.2 shows how identification of dynamic EIV models relates to 
identification of equation-error and static models, and illustrates by an example that 
the dynamic bounding problem is much less straightforward than the static problem. 
In Section 17.3, conditions for the parameter bounds to be the union of a set of 
polytopes are discussed. A search technique to find the nonlinear parameter bounds 
for the dynamic EIV problem is described, and a simulation example compares EIV 
and equation-error bounding. Section 17.4 presents techniques for shortening the 
computation of EIV parameter bounds, and Section 17.5 describes algorithms for 
computing polytope and ellipsoidal parameter bounds for the EIV problem. 

17.2. BOUNDING IN DYNAMIC EIV MODELS 

In dynamic models, the set :F = :FI x :F2 x ... :FN defining the uncertainty in the 
variables is reduced in dimension by the relations between successive ~'s. An 
example is the ARX MISO model 

In 

+ L (b;u;_d_1 + ... + b!U:_d_l) + et t = 1, ... , N 
i=1 

(17.6) 

Each successive sample of Y is known within bounds I Yt-j - yf-j I :0::; cy- Each sample 
of ui is known within I U;_j - U~~j I :0::; c~, and equation error et is bounded by 
I et I :0::; Ceo Although 

,h' [y 1 m 1 In]T 
'l't= t Yt-I"'Yt-k Ut-d-I···Ut-d-I···Ut-d-I",Ut-d-1 

and 

8'=[-1 al ... ak bl ... b~ ... bJ ... br]T 

have k + 1 + ml elements, the model embodies altogether only YI-k to YN and 
UI-d-l to U:V-d-I, i = 1, ... , m, so :F is of dimension N(m + 1) + k - 2m + mI, not 
N(k+ 1 + mI). 

The exact parameter bounds in a linear, equation-error model are all hyper­
planes and form a polyhedron (a polytope so long as the normals span the space). 
It is often readily computed in realistic cases, but may be inconveniently compli­
cated. If so, an outer bound such as an ellipsoid(l2) or a box(l3) may be computed 
cheaply. The bounds are more complicated in the EIV case, but in the linear static 
case, which is how the problem has been treated so far,(I9,20) they remain piecewise 
linear. The relations between successive ~'s in the dynamic case make the exact 
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parameter bounds deviate from piecewise linearity, greatly increasing the difficulty 
of computing them, exactly or approximately. To illustrate, Example I considers 
just two successive sampling instants for a 1st-order ARX model: 

Yt == aYt-l + bUt_I + e, 

(17.7) 

Here Yt is common to both equations, appearing in both <I>'t and <I>'t+I' Figure 
17.1 shows bounds on 8=[ab]1 for Ey==OA,Eu==OA,Ee==O.1 and a==0.6, 

b == -0.9, due to observations U~_I == 1, u~ == 2, Y~-l == 2, y( == 0.3, Y~+l == -1.62. The 
FPS 'lJ is the intersection of a family of quadrilaterals generated as .Vt varies over its 
range[-{).1,0.7]; each is given by the four inequalities 

o < ~ (,1,0 + A: )18 < 0 + -Yt - Ee - Yt - 'Pr 'Pr - -Yt Ee (17.8) 

(17.9) 

Fig. 17.1 shows 20 such quadrilaterals, and reveals that 'lJ has nonlinear boundaries. 
The reason is the presence ofYr both in aYr within ~i:18 in Eq. (17.9) and on its own 
in Eq. (17.8). In the space ofGr, 8), Eq. (17.8) gives hyperplane bounds which 
intersect hyperbolic-section bounds due to Eq. (17.9). The intersections are curves 
projecting to curved bounds in (8j,82)-space, even though any (8j,82) cross section 
of the bounds in Gr, 8)-space is a quadrilateral. Other terms such as bUr_l have no 
such effect, since the corresponding curved bounds intersect only hyperplane 
bounds at the extreme values of the uncertain variable, and those intersections are 
linear. Clearly, nonlinear bounds on 8 will occur whenever a sample of an uncertain 
variable appears more than once in the model and at least once in a nonlinear 
combination with a parameter. The dashed lines in Fig. 17.1 show the much larger 

PARAMETER 1 

PARAMETER 2 

FIGURE 17.1. Example I: nonlinear parameter bounds for the linear model (\ 7.7) . 
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'lJ, a polytope, obtained ifEqs. (17.7) are treated as independent, i.e., if the dynamic 
problem is treated as static. 

17.3. POLYTOPE BOUNDS ON THE PARAMETERS OF EIV MODELS 

The feasible parameter set 'lJN defined by Eq. (17.5) may be written as 

where 

(17.11) 

and :Fr is defined by Eq. (17.4). Under some conditions on :Fr, both 'lJN and 

(17.12) 

are polytopes or sets of polytopes. (A polytope is defined as a connected region of 
a Euclidean space with the union of linear faces as its boundary. Linear faces are 
defined by induction from the zero-dimensional face, which is a point: a k-dimen­
sional face (k > 0) is a connected subset on a k-dimensional manifold with boundary 
the union of less-than-k-dimensional face.) 

LEMMA 17.1. If each :Fr, t = 1, 2, ... , N has an orthotope range and 1" is the 
Cartesian product of 1"1 to 1"N, then for any orthotope 'E, 'EI1" is the union of a set 
of polytopes. Lemma 17.1 follows from Lemma 17.2. 

In static ElV parameter bounding, 1" is indeed the Cartesian product of its 
'ff,T f,T . 1 . rr rr h if' f' f,]T components: 1 1, ... , N are, respectIve y, III J 1 ... , J N, t en 1 2' .. N 

E 1': By Lemma 17.1, 'EI1"is linear, i.e., the union ofa set of polytopes. However, 
Example 1 shows that in the dynamic case the boundaries of 1"may be linear and 
convex, with 'E an orthotope, without 'EI1"having linear boundaries. In the dynamic 
case, the uncertainties in/{ , ... ,f'~ are not independent. 

The next lemma refers to the shape of the parameter bounds imposed by y~ 
and <I>~ obtained at a single time instant. Denote by 1(a full set of binary p-vectors 
Kj,j = 0,1,2, ... , 2P - 1 with elements Kij, i = 1,2, ... , peach 1 or -l. To each Kj 

corresponds a parameter-space orthant 

LEMMA 17.2. The feasible parameter set due to a single <I>~' == [y~ <I>~T]T can be 
obtained as the union of its parts in the orthants 0,j = 0,1, ... , 2P -1: 
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p 

'lX<I>~') = u {8 E O(K) I I 8l<l>~; - Kij£$) :<;y7 + £Y' 
K E'l( 

I ;=1 
p 

" 8 (A-Oi + K .. £i) ;:::yO _ £. } L., I '1'/ 'I ~ I )" 

;=1 

(17.13) 

In each orthant, 'D(<I>~') is seen to be bounded by two hyperplanes with 
<I>~ ± vec(Kij£$) as normals. 

PROOF: If 8 E 'D( <l>n then there is a <1>1 with I <1>; - <I>~i I < £~, i = 1, ... ,p such 
that 

P 

y7-£y:<; I 8;<I>;:<;y~+£r 
1=1 

from which, with 8;Kij;::: 0, i =1, ... ,p for 8 E O(Kj), 

p p p 

Y o _ £ :<; " 8.A-i = " 8.(A-ui + £i):<; " 8 (A-ui + K . .£i) 
I Y L., 1'1'1 L., I '1'/ ~ L., I '1'1 'I ~ 

1=1 i=1 i=1 

and 

i=1 i=1 i=1 

proving that 'D(<I>71) is a subset of the union on the right hand side of Eq. (17.13). 
To prove the reverse, that any 8 E O(lS) satisfying 

p 

I 8i(<I>~i - Kij£$) :<;y~ + £y 

i=1 

and 

(17.14) 
i=1 

is in 'D(<I>7'),consider the strip 

L( = {<I>lly~ - E)":<; 8T <I>/ :<;y~ + E)"} 

and box 
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CD _ {,h I ,hoi _ i <,hi < ,hoi + i . - 1 } 
VI - '1'1 '1'1 G~ - '1'1 - '1'/ G~, I - , .•. , p 

in ~I-space. It need only be shown that for any 8 E O(1S) satisfying Eq. (17.14), 
L t intersects 'Bt. Now ~t = vec( <p~i - KijG~) and <Pt = vec( <p~i + KijG~) are opposing 
vertices of 'Bt . By Eq. (17.14), each of the half spaces making up L t contains a 
section of the line joining those vertices. The sections cannot be disjoint, as no point 
of <Prspace is in either half space. Hence the sections overlap; there exists at least 
one point on both, which is in L t U 'Bt . 0 

Example 2 considers the feasible parameter set for an ARX model with q = 1, 
k = 1 and I = 1 . The first observations u'l-d, y~ and y'l give 

1]1 = {8 = [a b]T 1:3 Yo' uJ- d' e l : YI = ayo + bU_d + e p 

A little reflection shows that 1]1 is as in Fig. 17.2, where 

and 

bmin = min{b1,b2,b3,b4 }, bmax = max{b 1,b2,b3,b4 }, amin = min{a l ,a2,a3,a4 } and 

In Fig. 17.2 the slopes of the bounds depend on the selected orthant: in the orthant 
with sign vector Kj' the slopes are 

(y~ + Ge + Gy)/(y~ - K1h) (y~ - Ge - ey)/ifo + K1jGy) 
--~~--L-~--~L-and . 
(y~ + Ge + G)/(u~d - K2/,u) (y~ - Ge - G)/(u~d + K2/,J 

The exact 1]N due to a succession of observations is not simply the intersection of 
sets as in Fig. 17.2 for t = 1,2, ... , N, although this intersection does include 1]N. 

The intersection can be computed readily by established polytope exact updating 
procedures.(14-16) The exact 1]Nmay be computed as follows, taking Example 2 for 
illustration, i.e., 

Yt = aYt_1 + bUI_d_1 + el , t = 1,2, ... , N; 

I Yt I S Gy, t = 0, I, ... ,N; I 'iit I S Gu' t = -d,l-d, ... , 

N-d-l; I et I S 8e, t = 1,2, ... , N 
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a 

b 

FIGURE 17.2. Example 2: parameter bounds imposed by ~Y'. 

The parameter bounds will be found only in two dimensions, but the method may 
be extended to more dimensions.(21) Parameter b is set to equally spaced values 

b E B == {bo + iob, i = 0,1, ... , K}. At each b, the extreme feasible values of a are 
found by a halving-doubling search. A trial [a b]T E 'D iff the N-dimensional 
parallelepiped 

N 

PN = {AVVI /' E n [y~ - Ey'Y~ + EyJ} 
1=1 

and the orthotope 

N 

~= n [b(Ut_d_l-sign(b)f.u)-f.e,b(ul_d_J +sign(b)f.J+ f.e] 
1=1 

intersect, where 

1 a 0... 0 

o a ... 0 

A = and/' = [YNYN-I .. ·y1f 
o 0 1... a 

o 0 

Checking all the faces of 0v and edges of P N for intersections would be a heavy 
computation. Instead, the structure of matrix A can be exploited in a recursive 
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a 
1 , 54 401=========='""_~ ______ 1 

...... ~ 
....... 

PARAMETER 2 

1.4707'----------------=...L.-----.J 
04730 

PARAMETER 1 05156 

b 

PARAMETER 2 

1.4431 '--------_______ ---':::.....L.. ____ -.J 

0.4635 0.5272 
PARAMETER 1 

c 
1.50821 _ _____ ======_-"""':----, 

PARAMETER 2 

1,4811 '-------------_________ ---.J 

0.4810 
PARAMETER 1 

0.4974 

FIGURE 17.3. FPS given by various methods for Example 2 with N = 30; (a) dynamic-case ElY 
feasible parameter set (b) static-case ElY approximation to feasible parameter set (c) feasible parameter 
set given by equation-error approach. 
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procedure to decide if PN n Q,v * 0. Denote by [y~, yn the feasible range of Yt on 
the basis of observations y~, ... ,y7, U~d' ... , U~-d-l and bounds Ey, E", Ee' Then 

[Y;, yn = [-a(y~ + sign( a )E) + b( u~d - sign( b) E) - Ee, 

-a(v~ - sign(a) E) + b(U~d + sign(b) E) + Ee] n [y'( - E", y~ + Ey] 

and thenceforth the feasible range of Y is updated recursively by 

n r"o - E ,,0 + E ] if a < O. 
LYi .l" J t Y 

If [Y;, y~] = 0 for some t :S; N then [a b] T 'l '1JN. 

Fig. 17.3 illustrates the differences between '1JtyS found from an equation-error 
model, the static-EIV-case approximation and the exact dynamic-case FPS. Here 
N is 30, and successive inputs are independent and uniformly distributed (IUD) in 
[-1,1]. The structural error e, is IUD in [-0.01, 0.0 I ], and the errors in y and U are 
IUD in [-0.02, 0.02]. The records are given in the Appendix. Figure 17.3(a) shows 
the dynamic-case '1JN found by accurately assuming the error bounds to be Ee = 0.0 I, 
Ey = Eu = 0.02. Figure 17.3(b) shows '1JN given by the static-case treatment, and Fig. 
17.3(c) the results of exact polytope bounding with equation-error bounds 
E = 0.01 + 1 x 0.02 + 2 x 0.02 + 0.02 = 0.09 obtained by assuming reasonable a 
priori parameter bounds I a I :S; 1, I b I :S; 2. Use of narrower (erroneous) equation­
error bounds can easily give mistaken results. For instance, E = 0.04 gives an empty 
FPS from this data set. '1JN obtained by the equation-error approach is larger than 
by either of the other methods. 

17.4. FAST REJECTION OF PARTS OF PARAMETER SPACE FROM 
FPS 

Calculating the polytope comprising the FPS in each orthant and finding out 
whether each is empty may take a great deal of time, so in this section we present 
algorithms to exclude some orthants from the FPS rapidly. 

LEMMA 17.3. If for i = I, ... ,p the numbers 
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yO+c yO_c yO+c yO-c 
__ I ___ Y ~ __ I ___ Y ~ 

~~i + c~' ~7i _ c~' ~~i - c~' ~7i + c~' 

have the same signs as K il, i = 1, ... ,p, then the orthant specified by parameter 
signs {-Kit' i = 1, .. ,p} can be excluded from the FPS. 

Remark: If cy ~ 0 and c~ ~ 0 then the condition of Lemma 17.3 is satisfied. 
That is, for sufficiently small cy and c~ at least one orthant can be excluded from 
the parameter set if y~ * 0 and ~~i * O. 

PROOF: For the first and fourth expressions to have the same sign, yr + cyand 
y7 - cy must have the same sign, denoted by K ot. Similarly ~~i - c~ and ~~i + c~ have 
the same sign Ko/Kit. Consequently y~ has sign Kot and ~~i has sign Ko/Kit. Hence 
if each element 8 i of8 has sign -Kit, i.e., if8 is in the orthant specified by parameter 
signs {-Kit, i = 1, ... ,p}, 

sign(8i~7i) = sign( -KiIKa/Kit) = -Kat * sign( y7), i = 1,2, ... ,p 

which implies that 81~71 + ... 8p~7P * y7. Thus there is no feasible parameter point 
in the orthant. D 

This lemma provides an easily applied sign test. For narrow error bounds it is 
often satisfied, allowing a high proportion of the orthants to be excluded quickly 
from the feasible parameter set. 

A second test excludes some orthants not excluded by the sign test. Recall that 
by Lemma 17.2 the set of observations pertaining to time t bounds the FPS in orthant 
O(K) by a pair of hyperplanes: H;[K] and H;[K]. The halfspaces bounded by 
H;[K] and H;[K] are denoted by S;[K] and S;[K], respectively. Note that these 
halfspaces depend on the orthant selected, as well as on the sampling instant. The 
calculations are made parsimonious by a series of tests, where each complicated 
test is carried out only if no decision has been made in the previous tests. 

The tests for 

Si [K] n S~[K] n Si [K] n S;[K] n O(K) * 0 
1 1 2 2 

are as follows: 

l. 0 E Sl[K] and 0 E S;[K] andO E S;[K] and 0 E S;[K] can be verified by 
I I 2 2 

checking four inequalities Yt, + cy ;:: 0 and Yt, - cy ~ 0 and Yt2 + cy ;:: 0 and 
Yt, - cy ~ o. Ifno decision has been made by (1) then apply Test (2). 

2. S;[K] n S~[K] n O(K) = 0 can be checked by solving a simple set of 
J I 

inequalities. If it is found to be true for any 1 ~ i,j,k,l ~ 2 with (i,j) * (k,l) 
then S;,[K] n S;,[K] n S;,[K] nSiJK] n O(K) = 0. If the orthant has still not 
been rejected, apply Test (3). 

3. For p:2:3ifH;[K]n H;[K]nH;[K]nS;[K]nO(K)*0 or Hl[K]n 
H;[K]n S; [K] ~ H;[K] n Cx:K) * d or Hi [~] n s; [K] n Hi [K] n si[K] n 

1 2 2 t I 2 2 

o (K) *0 or Sl,[K] n H;,[K] n HiJK] n SJ2[K] n O(K) * 0 (each of which 
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leads to a simple set of inequalities in (p-3) variables) then Sit [K] n 
S;[K] n S;[K] n S;[K] n O(K);to 0 is concluded. If Tests (1) to (3) have 

I 2 2 

not resolved the issue, Test (4) is applied. 
4. Define a large simplex L(M) fitted into the orthant CXK) with vertices 

Vo = [0 ... O]T 

where 

Alternatively, M can be chosen as the largest allowed absolute value of the 
parameter components. A p-dimensional polytope-updating procedure is then ap­
plied to decide whether L(M) n si [K] n S~[K] n S; [K] n S;[K]"# 0, which deter-

I I 2 2 

mines whether SfJK] n S~JK] n SUK] n S't,[K] n O(K)"# 0. 
The relatively large amount of calculation in Test (4) is incurred only if Tests 

(1) to (3) permit no decision. 

17.5. EXACT-POLYTOPE AND ELLIPSOIDAL ALGORITHMS FOR 
THE EIV PROBLEM 

One can now describe algorithms to compute polytope and ellipsoidal parame­
ter bounds for the errors-in-variables problem. Both algorithms first discard ort­
hants as above (which restricts the sign combination of the parameters) then update 
the polytope or ellipsoid in each remaining orthant O(K), K E 'l( 

For polytope updating, the procedure starts from a cube in O(K) having one 
vertex at the origin, or from a simplex obtained by cutting the orthant O(K) with a 
hyperplane. The simplex needs fewer vertices and faces. Polytope updating in­
volves intersecting the polytope with the halfspaces defined by hyperplanes 
H;][K] and H{JK]. The updated 'lJ is the union of the updated polytopes over all 
orthants O(K), K E 'l( 

For ellipsoid updating, the procedure starts from a sphere LiK) which must 
contain a sufficiently large cube contained in O(K) and having a vertex at the origin. 
The ellipsoid is intersected with the halfspaces defined by H:JK] and H{JK], using a 
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simple modification of the basic ellipsoidal-bounding algorithm.(12,22) The updated 
'1J is the union of the updated ellipsoids over all orthants O( K), K E 'l( 

Polytope updating may become complicated for high parameter dimensions, 
but ellipsoid bounding remains practicable for large numbers of parameters and 
observations. The ellipsoid bounds may, however, become much looser than the 
polytope bounds. Walter and Piet-Lahanier(l4) and Mo and Norton(l5) describe 
economical procedures for intersecting a polytope with a halfspace. The complexity 
of the exact bounding polytope varies from case to case, so the computing load 
cannot be predicted. The computing load for ellipsoidal bounding is calculable from 
the number of parameters, an important point for on-line applications. 

17.6. CONCLUSIONS 

Parameter bounding of linear-in-the-parameters and errors-in-variables mod­
els has been considered. Such models meet the frequent practical need to distinguish 
between modeling errors, input errors and output errors. Parameter bounding suits 
the situation where statistical assumptions cannot be made about the modeling error 
but error bounds can be specified. The significant difference in difficulty between 
the static and dynamic parameter-bounding ElY problems has been shown. Two 
algorithms are available for the static problem, yielding polytope or ellipsoid 
bounds. Fast procedures for discarding empty orthants in parameter space have 
been described. A bounding procedure based on two-dimensional boundary 
searches has been presented for the dynamic problem. 

ACKNOWLEDGMENTS. The Estimation and Control Group, School of Electronic and 
Electrical Engineering, University of Birmingham produced the examples by a 
software package for system identification. The package includes a wide range of 
modeling techniques, including several parameter-bounding algorithms. The pa­
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GRiE 28536) to investigate the potential of bounding for applications. The work 
continues and inquiries about possible applications of parameter or state bounding 
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18 
Errors-in-Variables Models in 
Parameter Bounding 
V Cerone 

ABSTRACT 

When all observed variables of a model are affected by noise, parameter estimation 
is known as the errors-in-variables problem. While parameter bounding methods 
and algorithms have been extensively developed in the case of exactly known 
regressor variables, little attention has been paid to the bounded errors-in-variables 
problem. This chapter gives a formal proof of a previous result on the description 
of the feasible parameter region for models linear in the parameters in the presence 
of bounded errors in all variables. Topological features of the feasible parameter 
region, such as convexity and connectedness, are also discussed. Finally, approxi­
mate parameter uncertainty intervals are derived for ARMAX models when all the 
observed variables are affected by bounded noise. For an example involving 
extensive simulations, central estimates obtained by means of the bounded errors­
in-variables approach and least squares estimates are computed and compared. 
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Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York, 

1996. 
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18.1. INTRODUCTION 

Identification is carried out on the basis of input-output observations taken 
from the system to be identified. Most identification methods rely on the assump­
tion that the input is exactly known and the so called equation-error approach is 
used, where all noise is considered as additive equation error.(lJ However, due to 
measurement errors, the assumption of noise-free input might often be unrealistic. 
The equation error is then correlated with the measured input, leading to bias both 
in statistical parameter estimates and in parameter boundsyJ Problems where all 
observed variables are noisy are referred to as errors-in-variables problems. See 
Soderstrom(3) for the case of stochastic errors. 

Despite their popularity, statistical methods for parameter estimation suffer 
from some drawbacks. It is well known that, due to cost constraints, there are 
situations where the number of collected observations cannot be large, as in 
biological systems, for example. In those cases, available measurement records are 
not long enough to check a posteriori from the residuals whether the probability 
density function assumed for the noise is appropriate or not; in other words, it might 
be impossible to realize that a statistical hypothesis is not met. Moreover, there are 
situations where the errors are better characterized in a deterministic way: systematic 
and class errors in measurement equipment, rounding and truncation errors in AID 
converters are some. 

An appealing alternative to the stochastic characterization of uncertainty in 
measurements is the bounded-error description. In this approach, the uncertain 
variables are no longer considered as random, but are assumed to belong to a given 
set. In this context, the outcome of identification is a set of parameter values, each 
a feasible solution of the estimation problem. In other words, all parameter vectors 
belonging to the feasible parameter region (FPR) are consistent with the measure­
ments vector, the measurement error bounds and the assumed model structure. 

When instantaneous constraints on the measurement error in a model linear in 
its parameter are available, and deterministic regressors are considered, the FPR 
turns out to be a polytope. Due to the possible complex shape of the FPR, some 
classes of methods have been proposed which compute a simpler set containing it. 
Milanese and Belforte(4) suggest to bound the feasible parameter region by an 
orthotope aligned with the parameter coordinate axes; the orthotope is computed 
by linear programming. A recursive algorithm given by Fogel and Huang(5) pro­
vides an ellipsoidal set outer-bounding the FPR. A combined use of the two 
algorithms, outer-bounding by linear programming and ellipsoidal outer-bounding, 
has been tested by Mo and Norton(6) and Belforte, Bona and Cerone.(7) To approxi­
mate the FPR simplexes have also been used, as well as parallelotopes(8) and other 
limited complexitypolyhedra.(9) Should the approximation tum out to be too crude, 
then an exact description of the FPR is sometimes possible by means of recursive 
algorithms.(IO-I2l Inner approximation of the FPR is considered by Vicino and 
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Milanese;(13) they showed how to compute maximal balls in 100 norms (boxes), 12 
norms (ellipsoids) and II norms (diamonds) when their shape is either known or 
partially free. The problem of computing maximum-volume ellipsoid inner bounds 
is also considered in Refs. 14-19. 

Surprisingly, parameter bounding in the case of bounded errors-in-variables 
has received much less attention so far. Norton(2) gave an insight on the identifica­
tion of ARMAX models in the bounding context, paving the way for the bounded 
errors in variables approach. Belforte, Bona and Cerone(20) give a result on how to 
describe the FPR for such problems; that result has been formally proved in 
Cerone(21 ,22) and is reported in Section 18.3 ofthis chapter. Clement and Gentil(23,24) 

address the problem of parameter bounding for output-error models when the 
output is a noisy vector, while the input is exactly known. Merkuryev(25) gives a 
solution based on interval analysis methods,(26) which deals with linear static 
models when both input and output signals have interval nature. Veres and Nor­
ton(27) discussed and pointed out the differences between static and dynamic 
errors-in-variables models as far as parameter bounds are concerned. 

The purpose of this chapter is to address the problem of parameter bounding 
for linear models, when all the observed variables are affected by bounded noise. 
The chapter is organized in the following way. Section 18.2 states the estimation 
problem and introduces further notation and definitions. In Section 18.3, a formal 
proof of a previous result on the description of the feasible parameter region for 
linear models in the presence of bounded errors in all variables is given, together 
with further results which give an insight into the shape and structure of the FPR. 
Topological features of the FPR, such as convexity and connectedness, are dis­
cussed in Section 18.4. In Section 18.5 parameter bounds for ARMAX models by 
means of the errors-in-variables approach are derived. 

18.2. PROBLEM FORMULATION AND NOTATION 

Suppose that a given system is described by the linear model 

(18.1) 

where WI E R is the hypothetical noise-free output, XI E RP is the hypothetical 
noise-free regressor vector and 0 E RP is the unknown parameter vector. Due to 
measurement and model errors, the variables actually observed are 

(18.2) 

(18.3) 
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where N is the number of output samples, Yt is the output measured at time t, OYI is 
the output measurement uncertainty, <PI is the measured regressor and b<Pt is its 
uncertainty. Reduction ofEqs. (18.1), (18.2) and (18.3) leads to 

( 18.4) 

Given symmetric bounds flYt on the output measurement uncertainty and fl<Pri on 
regressors uncertainty, i.e., 

(18.5) 

( 18.6) 

the problem addressed in this chapter is that of finding the feasible parameter region, 
defined as follows. Let 'Dr be the feasible parameter set associated with the 
observation at time t 

(18.7) 

The FPR corresponding to the whole set of observations is then 'D = n ;~l 'Dr. It is 
assumed that the components <Ptj's (j = 1,2, ... , p) of the regressor vector <Pr are 
permitted to vary independently. The difficulty of describing 'D arises from the 
nonlinear relationship between the unknown uncertainties 8<ptj and the unknown 
parameters 8j in Eq. (18.4). 

To simplify algebra, without loss of generality, the output measurement Yr is 
considered as a regressor variable and BYr as regressor uncertainty, by setting 

By this means Eq. (18.4) becomes 

(18.8) 

while Eqs. (18.5 and 18.6) can be written as 

1 s:*I<A* '=1 u<Pt; - u.<Pr-' J , ... , p. 
" J 

(18.9) 

Any orthant in the parameter space 0 can be defined as 

wherea is the vector of the signs of the components of 0 in this orthant. 



ElY MODELS IN PARAMETER BOUNDING 293 

18.3. DESCRIPTION OF THE FEASIBLE PARAMETER REGION 

To describe the feasible parameter region defined in the preceding section, 
recall the following theorem, which is stated in Belforte, Bona and Cerone(20) and 
receives a formal proof in Cerone.(2i,22) 

THEOREM 18.1. A necessary and sufficient condition for 0 to belong to the set 
'lJ1 is 

p 

lyl-<v;ol :s; L l'icptjle) +l'iYr (18.10) 

j=i 

or, equivalently 

p+l 

1 <v;TO* 1 :s; L l'iCP~ 1 e; I. (18.11) 

j=i 

Before the proof is given, it is useful to explain Eqs. (18.8 and 18.9) geomet­
rically in the (p + I )-dimensional space of uncertainties 8cplj . Equation (18.8) 
represents a hyperplane passing through <v~ and normal to 9*. Equation (18.9), 
which describes the feasible uncertainty regIOn (FUR), is an axes-aligned orthotope 
centered at the origin and with vertices m ±l'iCP;i . The supporting hyperplanes of 
the FUR normal to W satisfy 

p+1 

~ *Tn* = + ~ A *. I e: I u<v/ u - L." '-'CPo .I . (18.12) 

J=I 

Proof of necessity: One has to prove that for a1l8CPu satisfying Eqs. (18.8 and 
18.9), Eq. (18.11) is true. From Eq. (18.8) one gets 

p+l 

*7:0* ~ ~ *e' <VI = L." uCPtj j' (18.13) 

j=l 

Taking absolute values in Eq. (18.13), using the triangle inequality and taking 
account ofEq. (18.9), the proof of necessity is obtained 

p+i p+l p+l 

1 <v;r0* 1 = 1 L 8cplje;l:s; L 18cpljlle;l:s; L l'icp~le;l. (18.14) 
j=i j=l j=l 

Proof of sufficiency: To prove sufficiency, one has to show that for all e* 
satistying Eq. (18.11), there exists some 8cplj satisfying both Eqs. (18.8 and 18.9). 
Using Eq. (18.8), Eq. (18.11) becomes 
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FIGURE 18.1. A two-dimensional illustration of Theorem 18.1 

p+l 

I oq>;T9*1 ~ L f1<Pij Ie; I. (18.15) 

j=l 

Hyperplane of Eq. (18.8) (normal to 9*) lies between the two supporting hyper­
planes ofEq. (18.12) (normal to 9*) of the feasible uncertainty region (Eq. (18.9». 
Hyperplane of Eq. (18.8) always either cuts the FUR or lies on one edge of it, 
proving that there are 8<pij satisfying both Eq. (18.8 and 18.9). A two-dimensional 
geometric illustration of Theorem 18.1 is given in Fig. 18.I. 

Proposition 18.1 gives an insight into the shape and structure of the FPR 'D. 

PROPOSITION 18.1. The feasible parameter region 'D is the union of at most 2P 

convex sets, each the intersection of 'D with a single orthant of parameter space, i.e., 
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where 

and 

'D U 1Xa), 

N 

t=l 

p 

'DtCa) = {e E O(a) : Yt + ~Yt2:: L (<ptj - Uj~<Ptj)Elj' 
j=l 

p 

Yt - ~Yt::S: L (<ptj + O:i~<Ptj)8). 
j=l 
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(lS.16) 

(1S.17) 

(1S.1S) 

PROOF. The feasible parameter region 'Dean obviously be decomposed into at 
most 2P subsets consisting of its intersections with each of the 2P orthants. It remains 
to be proven that each such subset is a convex set. First note that Eq. (lS.lS), which 
describes 'Dt , in a given orthant ~ a), is a result of Theorem IS. 1; it can be obtained 
directly from Eq. (1S.10), setting 1 Elj 1 = Eljsgn(Elj ) and Uj = sgn(Elj). In a given 
orthant a is fixed, which means that Eq. (1S.1S) gives a region bounded by two 
hyperplanes. It is easy to see that the above hyperplanes are not, in general, parallel; 
they lie symmetrically with respect to the hyperplane Yt - <pTe = 0 (as a consequence 
of assuming symmetrical bounds in Eqs. (1S.5 and lS.6» and cannot intersect in 
the considered orthant. Hence, 'DtCa) is a convex region and 'D(a), which is given 
by Eq. (1S.17), can only be a convex set (if not empty). 

PROPOSITION lS.2. If 

(1S.19) 

there is no intersection between 'Dt and the orthant characterized by syn(El) = 
-sgn(yt)sgn( <Ptj). 

PROOF (By contradiction) From Eq. (18.8) 

1 ~<p;Te'l = I <p;Te*1 = I Yt - <p;e I = II Ytl sgn(Yt) 

P 

- L I <Ptj I sgn( <Ptj) I Elj I sgn(El) I. 
(1S.20) 

j=1 

Now, ifthere are some e, belonging to 'Dt, such that 
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sgn(e)sgn( <Ptj) = ---sgn(Yt)' (j = 1,2, ... ,p), 

then one gets 

p 

I b<p~T9* I = I ytl + L I <Ptj lie) , (18.21) 

j=! 

and, finally, taking Eq. (18.19) into account one obtains 

p p+! 

( 18.22) 

which contradicts Eq. (18.11) for 9 to be feasible. 
From the geometrical point of view, it can be seen that, when Eq. (18.19) and 

thus Eq. (18.21) are satisfied, the hyperplane ofEq. (18.8) (normal to 9") always 
lies outside the region included between the two supporting hyperplanes (normal 
to 9*) of the feasible uncertainty region (Eq. (18.9)). This means that the hyperplane 
ofEq. (18.8) never cuts the FUR, proving that there are no o<plj satisfying both Eq. 
(18.8 and 18.9). More precisely, in any b<p~ satisfying Eq. (18.8), there are some 
components 8<plj such that lo<pljl > £o.<plj , which contradicts Eq. (18.19). 

REMARK 1. Proposition 18.2 gives a sufficient condition for a whole orthant to 
be unfeasible. Hypothesis Eq. (18.19) is equivalent to assuming that the relative 
error on the output and each regressor is lower than 100%. 

18.4. TOPOLOGICAL FEATURES OF THE FEASIBLE PARAMETER 
REGION 

Convexity and connectedness of the feasible parameter region 'D are now 
discussed. Consider the following static model 

(18.23) 

{oYt} and {o<ptj} are random sequences uniformly distributed in [-1,1]. Regressors 
<Ptj are generated randomly and uniformly distributed in [-10,10]. Numerical 
simulations with a true value for the parameters given by ey = 0.8 and e3 = 0.5 have 
been carried out. 

Figures 18.2 to 18.5 show some features of the feasible parameter region. 
When regressors are exactly known, the FPR'Dt is bounded by two parallel 
hyperplanes. When regressors are noisy as well, the FPR 'Dt is not convex either 
(see Fig. 18.2) and the final 'D will not generally be convex (see Fig. 18.3 and Fig. 
18.4). This has already been noted(2,! 7) as resulting from uncertainty in the AR 
variables of an ARMAX model. Moreover, the above result is in agreement with 
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FIGURE 18.2. Feasible parameter region associated with a single measurement. 
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Barmish and Sankaran.(28) They considered the dynamical system 
ro(t + 1) = \f(t)ro(t) and showed that convexity of the feasible state set can be lost 
because of independently varying uncertainties in the entries of\f(·). 

Figure 18.4 shows that 'D m~ be a non-connected and unbounded set. 
The Chebyshev center of 'D, 9c (central estimate), is an optimal estimate in the 

sense that it minimizes the maximal distance from the unknown parameter vector 
that generated the data. (29) As far as linear models with exactly known regressors 

A 
are concerned, W always belongs to 'D and, for Zoo normed parameter space, it 
coincides with the geometrical center of the minimum-volume box B containing 
'D. However, as shown in Fig. 18.5, when regressors are noisy 'D may be a 

A 
non-convex set, and 9c may not belong to the feasible parameter region. 

18.5. PARAMETER BOUNDING IN ARMAX MODELS 

In this section, Theorem 18.1 is applied to the problem of parameter bounding 
for ARMAX models when all the observed variables are affected by bounded 
noiseYO,31) Tempo, Barmish and Trujillo(32) present an approach to robust estima­
tion and prediction of ARMAmodels when both the output errors and the noise are 
bounded. Clement and Gentil(23,24) address the problem of parameter bounding for 
output error models. Veres and Norton(27) discuss and point out the differences 
between static and dynamic errors-in-variables models as far as parameter bounds 
are concerned. 

Consider a single-input, single-output, linear and discrete-time system where 
the true input signal, Xt, and the noise-free output, Wt, are related through the linear 
difference equation 

(18.24) 

Polynomials A(·) and BO are polynomials in the backward shift operator 
q-l, (q-1wt = Wt-I): 

and 

(18.25) 

Let YI and Ut be the noise-corrupted measurements of Wt and Xt, respectively, 

and 

Ut = xt + ~t' t = 1, ... ,N; (18.26) 
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N is the number of output samples. Uncertainties are known to vary within given 
bounds, i.e .. 

and 

The unknown parameter vector a E RP is defined as 

aT == [a] ... all" bo b] ... b,,), 

where na + nb + I == p. The feasible parameter region is defined as 

'D == { 9 E RP : A(q~])[y{ -11/] 

==B(q~l)[U{_~I]; 11111 :<:;,'1111; I~II :<:;,'1~I; t== I. .. .. N}. 

(18.27) 

(18.28 ) 

(18.29) 

(18.30) 

It is well known that the feasible parameter region for linear static models is a 
polytope. Due to serial dependence between output samples at different time, exact 
parameter bounds for dynamic models are no longer linear.(27) In this section, 
poly topic outer approximations 'D' of the exact FPR 'D is presented. Still, since 
'D' may become fairly complex for large N, orthotope-outer bounding algorithms 
are considered, which compute orthotopic sets '13 containing 'D'. They provide 
guaranteed parameter uncertainty intervals (PUis), where 

PUI [8ruin emax] . 1 . 
j == .i 'i ,.I == , ... , p. (18.31) 

A 

'13== {9 E RP: 8i == 8; + oe) oei I :<:; ,'1e/2. j == 1, ... ,p}, (18.32) 

with 

A emin + emax 
8' == I I 

J 2' 

(18.33) 

,'1e == 1 emax _ emin 1 
J } )' 

(18.34) 

and 

emin == min e 8max == max e) .. 
I 8E'D' /~} 8E'D' 

(18.35) 

I 

18.5.1. Bounded Equation Error Model 

Reducing Eqs. (18.24 and 18.26) yields the following noisy linear regression 
model 
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(18.36) 

where 

rt=A(q-!)'tlt-B(q-!)~t=11t+ L aj 11t_j- L bAt-}' (18.37) 

j=! j=O 

and 

(18.38) 

denote the equation error and the regressor vector respectively. If the equation error 
bounds are available, i.e., £"'rt such that I rt I :0; £...rt, a set over bounding the exact 
feasible parameter region is known to be given by 

(18.39) 

Unfortunately, the main difficulty arises in specifying noise bounds £"'rt on the 
equation error r t from those available on the input and output measurement errors. 
The equation error rt depends on the measurement errors 11t and ~t' and unknown 
vector 9, according to Eq. (18.37). Hence, at least in principle, bounds on rt cannot 
be computed. 

18.5.2. Boullded Errors-ill-Variables Model 

Based on the result given in Section 18.3, one can give a different solution 
which allows a direct use of bounds on measurement errors. Reduce Eqs. (18.24 
and 18.26) to the following form 

( 18.40) 

Equations (18.27, 18.28 and 18.40) fit in the framework of the bounded-errors-in­
variables model outlined in Section 18.3. Thus, Eq. (18.18) implies that 'Dt is 
described by 

(18.41) 

and 

(18.42) 

where 
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(1S.43) 

REMARK 2. In Theorem IS.1 it is assumed that the components q>tjs (j= 1,2, ... ,p) 
of the regressor vector <Pt are permitted to vary independently. In the case of 
ARMAX models, however, there is serial dependence among them; consequently, 
the set 'If ev, obtained by intersecting the sets described by Eqs. (IS.41) and (IS.42), 
only includes the exact feasible parameter region, i.e., 'De:' ::::J 'D. 

REMARK 3. Suppose the input u = [UI U2 ... uNf is assumed to be precisely 
known and the measurement vector y = [YI Y2 ... YN]T is corrupted by noise. Equa-
tion (1S.43) reduces to 

A<p~T = [~T]t_lsgn(a), . .. ,~T]t_nasgn(an)'O,O, . .. ,0], (1S.44) 

which, together with conditions Eqs. (IS.41 and IS.42), forms the result given by 
Clement and Gentil.(23.24) 

REMARK 4. In the case of linear static models, conditions (41) and (42) reduce 
to the result given by Merkuryev [25]; see inequalities (6) in that paper. 

18.5.3. Numerical Results and Discussion 

The system considered here is an ARMAX model, characterized by (24) and 
(26) with 

A(q-I) = (I - 1.lq-1 + 0.2Sq-2), 

B(q-I) = (q-I + 0.5q-2) 

and Wo = 0, WI = O. Thus, the true parameter vector is 

The system has two real poles for ZI = 0.4 and Z2 = 0.7 and a zero at Z3 = -0.5. 
Bounded relative errors have been used, i.e., 

In simulation, bounds on the errors at the input and the output are set as equal, i.e., 
~eY = ~f.u = ~f.; this is a realistic assumption since one may use the same measure­
ment equipment to collect samples of Ut and Yt. The input sequence {XI} is uniformly 
distributed in [-10,10]. 

Two noise distributions have been chosen for comparison purposes. One is the 
uniform distribution U[ -~f.,~f.] and the other is the normal distribution with zero 
mean and variance cr~ = (~f./3)2 truncated at ±3crE• With this choice, the two errors 
distributions are bounded by the same quantity ±~f. and, of course, have different 
variances. Four different values of uncertainties bounds are chosen, namely ~f. = 



ElY MODELS IN PARAMETER BOUNDING 303 

2%,5%, 10%,20%. For a given ~£ ten different values of Nhave been considered 
(N = 100,200, ... , 1000) and for a fixed N, 100 independent sets of data are 
generated. 

Parameter bounding from these records has been carried out by the bounded 
errors-in-variables approach, computing central estimates (CE) and orthotopic 
approximations of the feasible parameter set according to the scheme outlined in 
Section 18.5.2. Least squares estimates (LSE) have also been computed in order to 
give a cotI).parison solution by a classical method. To compare the accuracy of the 
estimates 9, the following parameter error norm has been introduced 

1\ 

119 - 9°lb 
119°lb 

where 11·112 is the Euclidean norm. Figure 18.6 shows the mean values for 100 runs 
of the parameter error norms for central estimates and least squares estimates in the 
case of uniformly distributed errors. The results against the number of observations 
and for different values of noise level are grouped together in order to facilitate the 
comparison. Figure 18.7 depicts the results obtained when the errors belong to the 
truncated normal distribution. In order to clarify the results shown in Fig. 18.6 and 
Fig. 18.7, piece-wise straight-line interpolations are used for the discrete values. 
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FIGURE 18.6. Mean values for 100 runs of parameter error norms for central estimates (CE), 0, and 
least squares estimates (LSE), *, from records corrupted with uniformly distributed noise. 
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FIGURE 18.7. Mean values for 100 runs of parameter error norms for central estimates (CE), 0, and 
least squares estimates (LSE), *, from noisy records when the corrupting error sequence belongs to a 
truncated normal distribution. 

Both the CE and the LSE give satisfactory estimation of the true parameters 
when the noise level is low (L1E ::; 5%), for both uniform and normal distributions 
cases. Increasing the noise level (L1E ~ 10%), decreases the accuracy of both CE 
and LSE. Central estimates are always more accurate than the least squares 
estimates in the case of uniform I y distributed corrupting errors and for large N when 
the sequence of noise belongs to the truncated normal distribution. In the latter case, 
LSE are slightly more accurate than CE for high noise level and small N When 
switching from uniform to normal distributions, CE exhibit about the same accu­
racy for L1E = 2%, 5%, 10% and become slightly less accurate for L1E = 20%. LSE 
obtained in the case of truncated Gaussian noise are always more accurate than 
those obtained by processing the data corrupted with uniformly distributed noise. 

An informal explanation ofthe above performances is the following . It is well 
known that, if the noise is equipped with an 100 norm, central estimates are optimal, 
the optimality criterion being the maximum possible distance between the estimate 
and the true value. Least squares estimates are optimal in this sense when the errors 
are bounded by the 12 norm.(29) The disturbances of the simulation presented in 
Section 18.5.3 are bounded by the 100 norm. This explains the good behavior of CE. 
The fact that LSE give better results when used with the truncated normal distribu­
tion suggests that they take advantage of the information contained in that kind of 
distribution. 
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18.6. CONCLUSIONS 

Parameter bounding in models from records with bounded errors in both input 
and output data has been addressed. A formal proof of a previous result on the 
description of the feasible parameter region (FP R) for linear models in the presence 
of bounded errors in all variables is given, together with further results which give 
an insight into the shape and structure of the FPR. Topological features of the FPR 
have also been discussed. It may be not convex and not connected; moreover, its 
Chebyshev center may not be a feasible point. 

Parameter outer-bounding for ARMAX models with both input and output 
bounded errors have also been presented. Central Estimates (CE) obtained with the 
bounded errors-in-variables approach, and least square estimates (LSE) have been 
computed for a hundred independent realizations of a simulated example, which 
shows the superiority of CE to LSE in the case of uniformly distributed corrupting 
errors. When the sequence of output noise belongs to a truncated normal distribu­
tion, both CE and LSE exhibit, approximatively, the same accuracy. 
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19 
Identification of Linear Objects 
with Bounded Disturbances in 
Both Input and Output Channels 
Y. A. Merkuryev 

19.1. PROBl,EM FORMULATION 

The problem under consideration is to identify an object that is described by a linear 
equation 

(19.1) 

where x], ... ,Xn are input scalar signals, y is an output scalar signal, and a], ... , 

an are the model coefficients, which must be estimated. 
The object has been investigated experimentally. The input and output signals 

have been measured in m experiments: estimates xi} for xi} (i.e., the input Xi in the 
jth experiment) andjj for Yj (i.e., the outputy in thejth experiment) are known for 
all n inputs and m experiments. The measurements have been made with bounded 
additive disturbances: 

(19.2) 
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where ci} is the disturbance associated with xi}' dj is the disturbance associated with 
Y;, and cij, cij, dj and dJ are known. Note that in such a situation the bounds of the 
experimental input and output signals are known: 

(19.3) 

where 

and 

i = I, ... ,n, ) = 1, ... ,m. 

The identification problem may now be formulated as follows: to build the 
region W for possible values of the parameters aJ, ... , an that is consistent with 
Eq. (19.3). For each vector AD E W there are xij and yJ in Eq. (19.3) such that the 
relation 

holds for each) = I, ... , m. Here 

AD = [af ... a~], A7T = [x~j ... x~). 

An exact description of W is often problematic. It can be defined for up to six 
or seven model coefficients, but then becomes numerically intractable. The identi­
fication problem is generally reformulated to seeking the enclosing set W. Two 
different approaches are mainly used to describe W. The first uses hypercubes as 
enclosed sets,(l) and the second uses ellipsoidal sets.(2) This chapter shall study the 
first approach. 

An exact description of W is considered in Refs. 3 and 4. A number of papers 
on parameter-bounding identification methods (for instance, Refs. 5 and 6) are 
surveyed in Ref. 7. 

To start to solve the identification problem, first we follow Merkuryev. (8) Then, 
a method for situations when the signs of the model coefficients are not known a 
priori, is discussed. 

19.2. IDENTIFICATION WHEN THE SIGNS OF THE COEFFICIENTS 
ARE KNOWN 

It is possible to describe the region W by means of a system of linear 
inequalities. The method that may be used to build this system depends on a priori 
information about the signs of the coefficients aJ, ... , an- First assume that these 
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signs are known a priori (for instance from physical interpretation of the coeffi­
cients). Later, drop this assumption. 

If the signs of the coefficients are known, then, using interval arithmetic, it is 
possible to write expressions for the minimum and maximum values of the 
right-hand side ofEq. (19.1) ifthe input signals belong to the intervals in Eq. (19.3). 
For example, if all the coefficients are positive, the expressions for the minimum 
and the maximum are 

{(AX)j = a JXtj + ... + arl~j 
l (AX)7 = a1x1j + ... + arl~i' j = 1, ... , m. 

(19.4) 

These expressions allow construction ofthe inequalities describing the region 
W: 

ry7 ~ (AX)j 
~ J_ < (AX)+ . - I ly - i' ) - , ... , m. 

I j 

(19.5) 

These inequalities arise because each experiment admits values of the coefficients 
aJ, ... , an such that the intervals for the left- and right-hand sides of Eq. (19.\), 
which appear because of Eq (19.3), intersect. Each pair of inequalities describes 
those values of the coefficients that give such an intersection in the corresponding 
experiment; thus these values are consistent with both Eqs. (19.1 and 19.3) in this 
experiment. The region W consists of those points that are common to all the 
experiments; these points are described by means of the full system of inequalities 
in Eq. (19.5). 

The enclosed hypercube w" may be obtained as a set of parameter uncertainty 
intervals: 

W = {A E Rnlai E [ai, an, i= 1, ... , n}, 

where 

ai = min ai' a7 = max ai· 
AEW AEW 

The bounds aj and at can be obtained by solving a corresponding linear 
programming problem. This problem is based on the system oflinear inequalities 
(19.5) and uses ai as a cost function to be correspondingly minimized or maxi­
mizedy,9) It can be solved, for instance, by a simplex method.(IO) 

19.3. DETERMINATION OF THE SIGNS OF THE COEFFICIENTS 

The way to build the region W when the signs of the coefficients aj, ... , an 
are not known a priori has been discussed. When these signs are not known, it is 
necessary: 
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(i) to find those sets of signs that are consistent with the experimental 
information; 

(ii) to build a subregion Wj for each such set of signs; and 
(iii) to consider the region Was the union of subregions 

W= UW). 
j 

(19.6) 

The main problem is to realize the first step. After it has been made, one can use 
each set of signs, as has been done before. 

The present aim is to survey one method of determination of the signs of the 
coefficients to be found. (Two other methods are considered in Merkuryev.(8») The 
method comprises the following stages. 

I. Evaluate the vector A = [a I ... an] by means of some traditional method of 
evaluation (e.g., the least-squares method), or by solving a system of n equations 
which make use of Eq. (19.1) and first n experiments: further on signs of the 
coefficients that have been found are used and refined; 

2. Make an attempt to build up the region WI for the set of coefficients signs 
from the preceding step. Due to the convex nature of the region WI, Eq. (19.5) 
should be solved by linear programming. First, if necessary, Eq. (19.5) should be 
rewritten so that it may be investigated by linear programming. This demands the 
left-hand sides Yj, yJ and unknown coefficients aj in Eq. (19.5) not to be negative. 
Therefore in case of the negative signs of the left-hand sides Yj, yJ, their inequalities 
should be multiplied by -I; similarly 'minus' signs of the negative coefficients aj 
to be found are to be referred to the multipliers ofthese coefficients, thus reversing 
their signs. For instance, if the coefficient aj in a product ajZi (where Zj equrls to 
xij or xij) is negative, this element should be rearranged to the form of --{ --a;)z;, where 
-aj is already positive. This actually carries out a transition from coefficients aj to 
non-negative auxiliary coefficients bi: 

For example, an inequality 

where al :::: 0 and a2 :::;; 0, should be rewritten in the following manner: 

where b l = al :::: 0 and b2 = -a2:::: o. 
Minimization and maximization of the functions fi = bj, i = I, ... ,n, if 

bi ?:. 0 and limitations Eq. (19.5) are accordingly recorded, give corresponding 
minimum and maximum values of the model coefficients ai which correspond to 
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the region WI' In case ofEq. (19.5) incompatibility, this fact is ascertained during 
the optimization process; 

3. If the linear programming procedure results in the lack of solution of Eq. 
(19.5) (i.e., if there is no WI for the combination of the signs that have been found 
at the first stage) it is necessary to extend the boundaries of output disturbances. 
Instead of the values dj and d; in Eqs. (19.2 and 19.3) the values dj - g and 
d; + g are to be used here accordingly, where g ~ O. The value g needs to be 
increased from 0 until system Eq. (19.5) remains compatible. Having achieved this 
try to decrease the value g and to change the signs ofthe coefficients in such a way 
that, when the value of g decreases, the corresponding Eq. (19.5) remains compat­
ible. This may be done by means of iterative change ofthe signs ofthose coefficients 
that reach zero in the current situation (i.e., when the current value of g and the 
current signs ofthe coefficients are used). As a result, this iterative procedure gives 
the situation with g = 0 and the Eq. (19.5) being compatible. The corresponding 
subregions WI may be used in the following way. 

If some coefficients in WI reach zero, their opposite signs should be checked: 
subregions W2" W3, •.. are then built. If some coefficients in this subregions reach 
zero then they also should be checked for opposite signs, and so on. When all 
subregions ~ have been found, the region W may be taken as their union. 

The method that has been described may be illustrated by the following 
examples. 

Suppose the results of five experiments for an object with two inputs are 
represented in Table 19.1; the corresponding maximum errors of measurements 
being: 

cij = -0.1, cij = 0.1, 

d; = -0.5, d; = 0.5, i = 1,2, j = 1, ... ,5. 

Primarily describing the given object by the equation 

TABLE 19.1. Experimental Data for 
Example 1 

j Xl X2 Y 
1 2.00 1.00 6.73 
2 3.00 0.00 6.31 

3 0.00 3.00 8.69 
4 1.00 3.00 11.37 
5 3.00 1.00 8.91 

(19.7) 
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4 b, 

-, 

FIGURE 19.1. Lack of the region WI in Example I when al > 0, a2 < 0, g = 0. 

choose the following combination of the coefficients signs: a, :2: 0, a2 ~ 0 (such a 
combination of signs is chosen in deliberately to demonstrate the algorithm). 
Thereforethe Eq. (19.5) here looks as follows: 

fY~ :2: b,xy - b~~ 
lYj ~ b,x'j- bhp j= 1, ... ,5. 

(19.8) 

As stated above, investigating the system makes use of the linear programming 
method. With this goal Eq. (19.8) is rewritten as follows: 

ry+:2:b,x-, +b2(-x~.) 
~ J_ ; ~ 
lYj ~ b,x'j + b2(-x2), j = I, ... ,5, 

(19.9) 

which allows the specified method to be used. The solution of Eq. (19.9) is to be 
searched in the first quadrant. Fig. 19.1 shows that there is no such solution: Eq. 
(19.9) is incompatible in the first quadrant (here the regions, which correspond to 
individual measurements, are marked with corresponding figures). Therefore the 
value g has to be increased from ° until the system becomes compatible in quadrant 1. 

When g = 9.5, there is a region of solution WI touching the axis a, as shown 
on Fig. 19.2. Search for the solution changing the sign of the coefficient a2 and 

decreasing the value of g. The final region W{ = W, has been found if a, > 0, a2 > ° andg = ° is represented in Fig. 19.3. By means of solving the corresponding linear 
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FIGURE 19.2. The region WI in Example 1 when al > 0, a2 < 0, g = 9.5. 

b, 

FIGURE 19.3. The region WI in Example 1 when al > 0, a2 > 0, g = O. 
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TABLE 19.2. Experimental Data for Example 2 

j XI X2 X3 X4 Y 
I 0.00 2.00 4.00 6.00 -19.64 

2 2.00 4.00 6.00 0.00 16.17 

3 4.00 6.00 0.00 2.00 -19.82 

4 6.00 0.00 2.00 4.00 0.89 

5 6.00 4.00 2.00 0.00 8.24 

6 4.00 2.00 0.00 6.00 -27.71 

7 2.00 0.00 6.00 4.00 7.98 

8 0.00 6.00 4.00 2.00 -11.77 

9 0.00 4.00 2.00 6.00 -33.95 

10 4.00 2.00 6.00 0.00 26.75 
---"~------~ 

programming problem the boundaries of the rectangle which circumscribes the 
region are 

a,= 1.77, ar = 2.43, 

a"2 = 2.64, a; = 3.25. 

Consider a more complex example with four input signals and ten experiments 
as it is represented in Table 19.2; maximum errors of measurements are the same 
as in the first example. 

The results ofthe first four experiments are used for preliminary estimation of 
the signs ofthe coefficients a) ... a4 to be found. This approach gives the following 
system: 

lOa) + 2a2 + 4a3 + 6a4 = -19.64 

2a) + 4a2 + 6a3 + Oa4 = 16.17 

4a) + 6a2 + Oa3 + 2a4 = -19.82 

6a) + Oa2 + 2a3 + 4a4 = 0.89. 

TABLE 19.3. Stage I for Example 2 (g = 33.4) 
.. __ ._-

j 2 3 4 
--------

sign aj 1 I 1 1 

aj 0.50 0.00 0.00 0.00 

aJ 1.59 0.03 0.06 0.02 
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TABLE 19.4. Stage 2 for Example 2 (g = 18.1) 

j 2 3 4 

sign aj -1 1 

aj 1.70 -7.95 3.72 0.00 
+ 2.05 -7.32 4.01 0.03 aj 

TABLE 19.5. Stage 3 for Example 2 (g = 0.0) 

j 2 3 4 

sign aj -I I -I 

a, 1.62 -3.47 3.53 -5.45 
aj 2.55 -2.56 4.48 --4.49 

The solution gives al = 2.10, a2 = ~3.06, a3 = 4.03, a4 = --4.94. Thus the 
primary combination of the signs is as follows: al > 0, a2 < 0, a3 > 0, a4 < O. But 
further on it is demonstrated that these are the real signs of the coefficients to be 
found. Thus if the specified combination of the signs is used as an initial one it 
results in the failure to demonstrate the functioning of the identification algorithm 
that has been described: the Eq. (19.5) becomes compatible at once with g = O. 
Therefore, choose a deliberately false combination of the signs as an initial one, 
e.g., ai > 0, i = "I, ... , 4. Successive tables of intermediate results obtained by the 
specified algorithm illustrate the major stages of solving the second example by 
means of changing the signs of the coefficients ai and the value g. 

Table 19.3 represents the first step: change the value of g from 0 to 33.4, when 
the inequalities in Eq. (19.5) are compatible for the initial signs of the coefficients. 
Here the lower meanings of a20 a3 and a4 are equal to zero, so one can change the 
sign of anyone from them. Invert the sign of a2 and reduce g up to g = 18.1; the 
compatible Eq. (19.5) is represented in Table 19.4. Then, invert the sign of a4 and 
reduce g until g = 0, to obtain the final decision, which is reflected in Table 19.5. 

19.4. CONCLUSIONS 

A method to identify linear objects with unknown bounded disturbances in 
both input and output channels has been presented. It includes construction and 
investigation of possible values of model parameters that are consistent with both 
the structure of the model and the experimental information. 

The region W of possible values of the model parameters is described by a 
system of linear inequalities. It is possible to investigate this region using linear 
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programming. A method to construct W in situations where signs of the model 
parameters are not known a priori has been described and illustrated using two 
concrete situations: with (1) two input channels and five experiments, and (2) four 
input channels and ten experiments. 
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20 
Identification of Nonlinear 
State-Space Models by 
Deternlinistic Search 
J P. Norton and S. M Veres 

ABSTRACT 

An economical technique for tracing the boundary of a two-dimensional cross 
section of the feasible parameter set for a model with bounded output error is 
described. It allows exploration of a boundary which is not piecewise linear and 
may not be convex. First a point on the boundary is found, then a line search is 
executed, adapting to local behavior of the boundary. Resolution may be traded 
against computational speed by choice of the search parameters. 

20.1. INTRODUCTION 

A search method for computing an approximation to the active parameter 
bounds of bounded-error nonlinear state-space models is presented. The method is 
fast enough to allow exploration, using a PC, of complicated parameter bounds of 
non-linear models. The bounds are those implied by bounds on the model-output 
error, given a set of observations and a model structure. They represent a simple 
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description of model uncertainty, based on minimal information about the discrep­
ancy between the model output and the observations. If the model-output error 
bounds and model structure are well chosen, the parameter bounds forming the 
boundary of the feasible parameter set (FPS) may be used to classify the output 
record (as in the example given later), or for experiment design, worst-case control 
design or robust prediction. 

The simplest possible approach(I) is to compute boundary points of one 
parameter for a range of values of a second, with all other parameters fixed, thereby 
generating a two-dimensional cross section of the FPS. The obvious drawback of 
this method is the need to compute values over a fine grid of parameter values in 
order to obtain a clear indication of the shape of the FPS; this limits its use to short 
records and models with few parameters. Choice of grid spacing is a non-trivial 
task. 

A Monte Carlo technique has been used for non-linear parameter bounding(2) 
by Smit,(3) and Smit and van Vliet(4) devise a technique for computing estimates of 
lower-dimension projections of the FPS.(4) Lahanier, Walter, and Gomeni(5) give a 
random-search algorithm which generates a cloud of points on the boundary of the 
FPS. It is able to deal with complicated boundaries and with feasible sets which 
consist of a number of separate subsets,(6) but is computationally expensive. It has 
been applied to the identification of pharmacokinetic models. 

Recently developed methods are based on signomial programming and sub­
division of parameter space into ever smaller orthotopes.(7-9) These methods are 
guaranteed to determine the boundary of the feasible set to a specified resolution. 
The line-searching method presented here, an early version of which is described 
in Ref. lOis deterministic, like those of Refs. 7-9, in that the computation of the 
boundary is entirely determined by the behavior of the boundary, once a starting 
point has been specified. The line searching adjusts directions and step sizes to 
match the local surface shape. This improves efficiency ofthe computation; random 
searching to identify independent points on the boundary is slow by comparison. 
The adaptive features of the algorithm make precomputation of the resolution 
complicated, although bounds on the errors in the boundary can be computed on 
line from local step sizes and angles of direction changes. 

20.2. PROBLEM FORMULATION 

The discrete-time state-space model 

(20.1 ) 

(which may result from discretization of a continuous-time model) is considered. 
Here 
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and f is a possibly non-linear analytic function, fully determined for a given feasible 
parameter vector 0 E Dc Rk and three times differentiable in 0 on the open 
connected parameter domain Dc Rk. The model-output error et has specified 
bounds letl ::; 8 (the symmetry of which is achieved by trivial adjustment of Yt if 
necessary). The error term combines observation error and any structural error in 
the state and observation equations. Separate state-equation error, although some­
times of interest, is not considered here. 

The problem is to compute the initial state Xo and all values of parameters 0 
consistent with Eq. (19.1) and the model-output error bounds, i.e., the set 

'D= {(xo,O) E Ix D I xt = f(xt_pO), IYt - g(xt) I::; 8, t = 1,2, ... ,N} 

where S c Rk is the set of initial states known a priori to be possible. Ifxo is known, 

'D= {O ED I XI = f(xt-l,O), IYt - g(xt) I::; 8, t = 1,2, ... , N}. 

20.3. COMPUTATION OF TWO-DIMENSIONAL CROSS-SECTIONS 

Two-dimensional cross-sections of the FPS 'Dare computed by fixing k-2 of 
the parameters and exploring in the plane of the remaining two. Extension to higher 
dimensions is described in Section 2004. The procedure presented has a number of 
advantages. There is no need to know an initial feasible point; all that is required 
is specification of a bounded, finite parameter/initial state set to be explored. The 
ability of the procedure to follow the boundary of the feasible set is limited only 
by the resolution implied by the minimum length and direction change specified 
for the search steps. Stage I of the algorithm, described below, can be repeated to 
detect disjoint parts of the FPS (which occur in quite simple practical situ­
ations(6,11). 

To simplify the notation, Xo is included in the parameter vector 0, increasing 
its dimension k. Assume that the cross-section to be explored is in the plane of the 
first two parameters, and denote 0 by [8J,82,8J]T, with 03 fixed. The algorithm 
searches the (8J,82)-plane for all points such that [8J,82,8J]T E 'D. Let jl denote the 
prior feasible (8J,82) set, usually much larger than the cross section of 'D to be 
computed. The prior feasible set jl may depend on 03, At each step, the procedure 
determines whether a trial 0 belongs to 'D and calculates the gradient of the largest 
model-output error with respect to O. The error sequence and its gradients'll are 
computed recursively by 

(20.2) 
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a a a a 
- Xt = - f(xt_I,O) + -- f(Xt 1,0) - Xl I' and 
ao* ao* OX I_ 1 - 00*-

a 0 0 0 "'t == - et = - - g(xt,O) - - g(xt,O) -Xt' t = 1,2, ... ,N (20.3) 
ao* 00* OXt 00* 

where [8 182]T has been written as 0*. Let the largest output error be 

C(O) = max {leiO)I, t = 1, ... , N} 

and let t 1 (0), ... , tr(O)(O) be the time instants where the errors take this maximal 
value within a tolerance K, i.e., 

et,(O) = C(O), i = 1,2, ... , r(O) (20A) 

or 

et,(O) :::: -C(O), i = 1,2, ... , rCO) (20.5) 

where approximate equality a:::: b holds within tolerance K if la - bl < K. In the 
algorithm below, all approximate equalities are understood to hold in this way. The 
number r(O) of instants at which the largest model-output error occurs is in practice 
usually one or two, but consider the general case for completeness. To simplify 
notation, denote by "'i E R2, i = 1, ... , r(O) the gradients 

aet,(O)lo9* or -oel,(O)l~*, 

according as Eq. (20A) or (20.5) holds, with \!Iij == ± oet,(O)l08j. 
The algorithm starts from a finite set J of initial points O~ = [8 10 820 ]T E 5l not 

necessarily in the projection of 'lJ onto the 9* plane. Finite set J may be chosen at 
will, but is best spread uniformly around 5l. 

20.3.1. Stage I: Reach the Boundary ofthe FPS 

Step (1) Calculate normalized gradient 

'" = ",0111"'011 at 00 and set 0 to 00 . 

Step (2) Search for a point on the half-line 

9' = 0 + A"" A > 0, 

at which r(O') 2 2. The search successively halves and doubles A as necessary to 
search for a point with 

C(O') < 8 and t 1(9') = tl(O) 
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close to another point 

a" = a + A'\II 

(with A '" A') such that 

C(o") 2 8 or tJ(9") --:t tJ(o). 

If C(o") '" 8, pass to Stage II. 
If reO') 2 2 during the search there are three possible cases: 
(a) If 

C(O') > 8 and at 0', 0 E Conv{\IIp ... , \IIr } (the convex hull of \111' ... , \IIr)' 
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then for any given small change 09 in 0', some positive-weighted sum of the 
resulting changes \11;00, i = 1,2, ... , r in maximal errors is zero. Hence not all the 
changes are of the same sign, so one cannot simultaneously reduce all let\' which 
is necessary to reduce C(o'). Restart, therefore, from another initial a E ;;' 

(b) If 

set a to 0' then 

C(O') > 8 and at 0',0 " Conv{ \III' ... , \IIr }, 

0' = a + A_I-L\II, A < 0, 
r(o). I 

I 

in an attempt to get both reO') 2 2 and C(O') '" 8, and return to the start of Step (2); 
(c) If 

o E Conv{\IIJ' ... , "'r} and C(o') '" 8 

(at the boundary), check whether all \IIi, i = 1, ... ,r can be written as "'i = Ai\ll for 
some \II. If so, every let I is unchanged by bo orthogonal to \II, so in Stage II search 
the boundary of 'D alo~g the line orthogonal to \II. 

If one reaches the specified maximum number of iterations of this search 
procedure, restart from another initial a E J. If alIa E Jhave been tried, exhaustive 
checking of points on a uniform grid filling the whole of 5t can be used to find an 
internal point of the feasible parameter set 'D. Alternatively, the (non-linear) 
least-squares estimate may be an internal point. A search then starts for a boundary 
point of 'D, using the Procedure B described later in place of the procedure of Stage I. 

20.3.2. Stage II: Follow the Boundary of the FPR 'D 

Stage I provides a point OJ on the boundary of 'D, and the maximal-error 
gradients \II;, i = 1, ... ,r(ol). If r(oJ) = 1 then the initial search direction 
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FIGURE 20.1. Direction of search from 91 for r(91) = 2. 

d == [d, d2f should turn at right angles to \JI, along the boundary, so 
d = [\JI'2 - 'V II]T will do. If r(O,) = 2, 0 1 is at the intersection of two bounds and the 
appropriate direction is d= ['V'2 -'VII]T if 'V 12'V21 < 'V22'VII and d= ['V22 -'V21]T if 
'V'2'V2' ~ 'V22'V'" Fig. 20.1 illustrates this situation. The dashed lines show the two 
tangents to the FPS boundary at 0,; gradient \JI2 is obtained by turning \JI, in a 
clockwise direction by less than 11: rad, which gives 'V 12'V2' < 'V 22 'V II' Similarly, if 
r(O,) > 2 one selects from \JI" ... , \JIr(O,l that \JIk from which all the other \JIiS can be 
obtained by turning \JIk in a positive direction by an angle less than or equal to 11:. 

The initial direction of search from 0, is then d = ['V k2 - 'V kl f. In the unlikely event 
that no such \JIk exists, the two-dimensional cross section in the neighborhood of 
0, consists of the singleton {01}' 

Starting from 0, the feasibility of three trial points AI, A2, A 3, displaced from 
0, by vectors oflengths 11",2,3 and angles al,2,3, is checked. The lowest acceptable 
resolution fixes the initial values of 11",2,3 and the spacing of a'.2,3' The latter are 
successive integer multiples of a specified angle ao, not critical but typically 
between 10° and 20°. In Fig. 20.2, "x" indicates a point in 'D and "0" a point not in 
'D. In Fig. 20.2(a), the boundary crosses the intervals [O"AJ and [A;,AJ for some 
i and i '* j, ij = 1,2,3. In Fig. 20.2(b), the step size /l should be reduced by a specified 
factor, e.g., 2. In Fig. 20.2( c), the direction of search should be turned in a positive 
or negative direction by ao. The left picture in Fig. 20.2(a) shows that it is not 
enough to look for a boundary point between 0, and a point outside 'D, as the 
boundary crossing may coincide with 0" in which case a boundary point must be 
sought between the AiS. The right picture in Fig. 20.2(a) shows, however, that a 
boundary point between 0, and Ai should be sought first to tum at the right place. 
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FIGURE 20.2. Examples of behavior during boundary search. (a) Trial points of differing feasibility; 
(b) Trial points of same feasibility; and (cl At a nondifferentiable boundary point (r(9,) > 1) 

At this stage a procedure is needed to find a boundary point between an inside 
and an outside point. Let Ox be the point inside 'lJ, Oy = Ox + Ad the next trial point 
and a .1'Boolean variable with initial value .1'= {Oy E 'lJ}. The following "halving­
doubling" procedure finds a boundary point. It uses .1' to indicate whether the 
previously considered point is inside or outside the FPS. 

Oz:= Ox; 
start: Ox :"" O2 + Ad; 

if (.1' is true and Ox E 'lJ) then A := 2A; 
if(.1'is true and Ox 1£ 'lJ) then (Oz:= Oz + Adl2; A:= A/4; 

.1':= false; go to start); 
if (.1' is false and Ox E 'lJ) then (0= := Ox; A := A/2); 
if (.1' isfalse and Ox 1£ 'lJ) then A := AI2; 
if A < K then stop else go to start. 

The algorithm has worked well in many examples with piecewise differenti­
able boundaries. Fig. 20.3 shows a low-resolution solution with large initial and 
maximum search-step sizes, and a higher-resolution solution with smaller step 
sizes. NotewOlihy features are the complexity ofthe boundary formed by a modest 
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a 
0.857.------------------------, 

-1 .223 '----------------------' 
-1058 1 271 

b 
0.994...------ ----------------, 

-1 .315 '----------- -----------' 
-1 .058 1.299 

FIGURE 20.3. Cross-sections obtained by two-dimensional boundary search (a) low resolution (b) 
high resolution 

number of simple bounds, and the ability ofthe algorithm to follow it approximately 
even when the search parameters are not well chosen. 

20.4. EXTENSION TO MORE DIMENSIONS 

The extension of the algorithm described above is an indexed set of two­
parameter searches. Starting from 90 E '1), boundary points are found in a succes­
sion of uniformly distributed directions. The direction vectors di are all of the form 
[PI P2 ... Pk]T, where 
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k-2 k-I 

... , (}k-I = IT sin uj cos uk-i' (}k = IT sin u j . 

Uniform distribution is arranged by setting 

uj =2nm/m,)= 1,2, ... ,k-l 

with each integer mj indexed over 1,2, ... ,m, generating altogether mk- I direction 
vectors. The search is confined to two dimensions by fixing the values of all but 
one mj. Each two-dimensional boundary exploration, as in Section 20.3, yields a 
closed polygon of successful linear search steps. The end result is a set of two­
dimensional cross-sections of 'lJ at mk- I points of a (k - 1 )-dimensional grid 
covering the surface of the k-dimensional FPS. 

The illitial search for a boundary pomt along the line 90 + Ad;, A :2: 0 is carried 
out by halving and doubling the search step in the procedure described in the 
preceding section. 

As the list of vertices or edges ofthe polygons approximating the two-dimensional 
cross sections makes up a complicated description of 'lJ, there remains the non-triv­
ial problem of finding an economical and readily comprehensible way to charac­
terize 'lJ adequately for the intended application of the modeL However, 
considerable insight into the character of the FPS. can be obtained by inspecting 
two- or three-dimensional cross sections of its boundary, as in the example below. 

20.5. EXAMPLE 

Assessment of the uncertainty in the model parameters by bounds rather than 
by a covariance matrix is attractive when the central-limit theorem is inapplicable, 
e.g., with small samples and/or heavily structured errors. The example chosen 
therefore involves a nonlinear model with only a small number of samples in the 
input-output record. Fig. 20A shows the response of blood-plasma concentration 
in a human subject to a rapid oral dose of methionine to test liver function. The 
response suggests a two-exponential model 

y(t) = a[ exp bl(t - ,) - exp b2(t - c)] + e(t) (20.6) 

where t denotes time and, an unknown pure delay. (Because the sampling is 
nonuniform in time, one cannot rewrite the model as a difference equation linear 
in its parameters as usuaL) The model-output error bounds are provisionally 
specified from knowledge of instrument and experimental accuracy to be 
le(t)l:::; 10. Bounds on the parameter vector 9 = [a bl b2 -r]T are to be computed. 

The initial value 00 = [229 -0.94 -3 A 0.15]T was found to be inside the 
feasible parameter set. Figure 20.5 shows two-dimensional cross-sections through 
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FIGURE 20.4. Methionine toler­
ance test response: evolution of 
plasma concentration of methionine. 

0.182.----------------------, 

0.109L----------------------' 
2.089 2.212 2.334 2.457 

b -2.497.----------------------, 

-3.378 

-4.260 

-5.141 '-----------------------' 
1.762 2.079 2.396 2.713 

FIGURE 20.5. Two-dimensional cross sections of the feasible parameter set, ail through 90 , 
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0.157 . 

0.12E 

0.109L------~---------------' 
-3.855 -3.562 -3.270 -2.978 

d 0.17HI.--------:--------:---------, 

0136 

0.1·14L------~-------------:_0~.865 
-1.042 -0.983 -0.924 

-0.864 

-0.9178 

-1.092L-----~---------------I 
1.815 2.109 2.403 2.696 

FIGURE 20.5. (Continued) 
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f -2.976r------:----------__ ----. 

-3.301 

-3.626 

-3.951 L..-----_______ .:..-____ ---l 
-1.035 -0.979 -0.924 -0.869 

FIGURE 20.5. (Continued) 

90 • The first parameter a has been normalized by 100 to make its magnitude 
comparable with those of the other parameters. There are as many two-dimensional 
cross sections as the number of ways to chose two out of four parameters, i.e., six. 
The 1-2 and 1-3 sections in Fig. 20.5 suggest that the FPS almost falls within a 
linear subspace. At least one linear function of the parameters is near-redundant, 
which implies that one or more parameters can be eliminated with little detriment 
to the model. A clearer indication that this is so comes in Fig. 20.6, which shows 
isometric views of the three-dimensional cross section of the FPS at a = 229. Fig. 
20.6 shows that the FPS is thin in directions orthogonal to [0 1 -0.7 _2]T. 

The nonlinear bounding facilities offered by the University of Birmingham 
identification package also include projection of the FPS onto any specified 
two-dimensional subspace. Fig. 20.7 shows the FPS of Fig. 20.6 projected onto the 
b2:'t plane. The package provides advice to the user in two forms: a HELP facility 
and a file of information about the progress of the search, accumulated automat­
ically as the search proceeds and accessible at any stage. This file contains, for 
instance, the number of search line segments so far and the worst-case parameter 
precision achieved. The user may adjust the search parameters on the basis of this 
information. 

The results screens show the line search in progress, with the next few trial 
points and search directions. The user may decide to intervene according to this 
information. The package also provides for linear transformation of the parame­
ters, which is useful in cases of near-redundancy like that in Fig. 20.6. It helps 
in optimizing the search-direction density. The package contains a parser to 
interpret state and observation equations typed in algebraic form in a standard 
notation. 
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FIGURE 20,6. Isometric views of three-dimensional cross section of FPS at a = 229. 
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0200 r-------------------------~------------_, 
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t 

0100 
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·4500 ·3.833 ·3.167 ·2.500 

FIGURE 20.7. Projection ofFPS onto plane. 

20.6. CONCLUSIONS 

A method has been presented for computing the boundary, possibly nonconvex 
and complicated, ofthe feasible parameter set of a nonlinear state-space modeL It 
performs line searches along the boundaries of two-dimensional cross sections of the 
FPS. Higher-dimensional regions are explored by a succession of two-dimensional 
searches. The computing load makes nonlinear bounding mainly an off-line iden­
tification technique. The fundamental difficulty of finding comprehensible and 
economical characterizations of possibly complicated multidimensional surfaces 
also has to be faced. Nevertheless, the algorithm enables the user to examine 
two-dimensional cross sections and projections of the FPS boundary, which can 
give valuable insight into the adequacy of the model parameterization and experi­
mental conditions. The nonlinear FPS boundary computation is embedded in the 
University of Birmingham identification package, which has a number offeatures 
to facilitate interactive exploration. 
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21 
Robust Identification and 
Prediction for Nonlinear 
State-Space Models with 
Bounded Output Error 
K. J Keesman 

21.1. INTRO)[)UCTION 

An important application of mathematical models is prediction of the future system 
behavior. Due to incomplete system knowledge as well as errors in the observations 
obtained from the "real" system, these models will always contain some uncer­
tainty. Hence, £or the credibility of model predictions, it is desirable to quantify the 
prediction unc~:rtainty. From this point of view, a single future trajectory suggest 
an unrealistic reliability. 

In a large number of applications, prediction uncertainty is dominated by 
uncertainty in uncontrolled future system inputs, which is always speculative. In 
order to illustrate the contribution of other uncertainties, an appropriate model 
structure is first presented. As a result of it, consider the following finite-dimen­
sional, continuous-discrete time, nonlinear, time-invariant state-space model struc­
ture without system noise, 
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dx(t,O)/ dt = f[ x(t,O),u(t),t; 0] 

where x(.), u(.) and 0 are the state, input and parameter vector. In the discrete-time 
observation equation, y, e E R S are the observation and output-error vector. Notice 
that the output-error represents uncertainty due to both the measurement and the 
modeling process. From Eq. (21.1) also note that, apart from the uncertainty in 
future inputs, the prediction uncertainty is also been determined by uncertainty in 
initial conditions (xo), model structure (f, g) due to unmodelled phenomena, and 
model parameter vector 9. Unlike the future input uncertainty, which is not 
considered in what follows, these uncertainties are quantified on the basis of 
available measurements which have been corrupted with noise. 

The ultimate aim of this contribution is to provide a framework for identifica­
tion and prediction of grey box models, in the form of a nonlinear state space 
representation, from data with bounded noise. The evaluation of the prediction 
uncertainty from different uncertainty sources is herein emphasized. 

Conventionally, the evaluation of the prediction uncertainty is performed 
within a stochastic framework, that is, by employing random differential equations, 
first-order variance propagation analysis, or Monte Carlo simulation analysis. In 
the 1980s, however, a set-membership approach to prediction(l-7) has been devel­
oped as well. Within this approach, the only assumption with respect to the 
uncertainty is that it is pointwise bounded with known bounds, which implies that 
for each tk the output-error in (21.1) belongs to a set. In mathematical notation: 
e(tk) E Qe(tk), where 

Qe(tk) = {e(tk) E JR.s: e(tk)-:S; e(tk) :s; e(tkt} for tk = t l , ... , tN (21.2) 

and e(tkf, e(tkt are the lower and upper bound, respectively. Hence, the parameter 
estimates and the instantaneous predictions also belong to a set. This approach is 
very much appealing when no detailed statistical model of the uncertainty can be 
found as, for instance, in situations with sparse data. 

For a reliable assessment of the prediction uncertainty one needs to have a 
valid description of the uncertainties at the beginning of the prediction stage. 
Therefore, in Section 2l.2 the identification of parametric and (nonparametric) 
modeling uncertainty is evaluated in detail for the class of state-space models 
represented by Eq. (21.1), and uncertainty model Eq. (21.2). Within this set­
theoretic framework, robust estimates of parameters and modeling uncertainty 
result. In Section 21.3 two examples are presented which will illustrate the set­
membership approach to prediction. First, a simple hypothetical example is pre­
sented, which shows the effect of both uncertainty components on the prediction 
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uncertainty. Secondly, a simple "real world" example of modeling dissolved oxygen 
(DO) concentrations in a lake is used for the validation of the approach to one-step 
and mUltiple-steps ahead predictions. In addition, long-term predictions are evalu­
ated and compared with available measurements. Finally, in Section 21.4, some 
concluding remarks are presented. 

21.2. ROBUST IDENTIFICATION AND PREDICTION 

21.2.1. Param(~ter and Modeling Error Estimation 

Within the set-membership context, the problem is to identify a set of feasible 
parameter vectors (denoted by Os) consistent with the model Eq. (21.1), the error 
characterization Eq. (21.2), and a predefined parameter set. From this formulation, 
it is clear that the feasible parameter vectors as well as the predicted outputs are 
robust with respect to all disturbances which satisfy Eq. (21.2). Apart from the 
literature cited above with respect to prediction, there is a growing amount of 
literature on the set-membership approach to identification; see Refs. 8-10 for an 
overview. However, most algorithms are merely applicable to models that are linear 
in the parameters. For models nonlinear in the parameter, in addition to successive 
linearization,(ll) OMNE developed by Lahanier, Walter, and Gomeni,02) and the 
Monte Carlo Set-Membership (MCSM) algorithm,(13,14) identification methods 
based on boundary search,oS) signomial programming(16) and interval analysis(17) 
have also been developed recently. 

One of these, the widely applicable MCSM algorithm, is characterized by 
global random scanning in a predefined parameter space, which is updated occa­
sionally by a parameter space rotation procedure based on principal component 
analysis of the feasible realizations. Notice that this algorithm is clearly based on 
a discrete (numerical) approximation of the nonlinear identification problem. 
Hence, for the system represented by Eqs. (21.1 and 21.2), the algorithm only 
identifies Os exactly for an infinite number of realizations from a predefined 
parameter set that contains the exact solution set. 

From Eq. (21.1) notice that the uncertainty in model parameters, initial 
conditions, and model structure is strongly related to the behavior of the output-error 
vector sequences and the prior characterization Eq. (21.2). As for the initial 
conditions, it is common practice to augment the parameter vector with the 
unknown initial conditions. If the model is exact, the parametric uncertainty due to 
measurement noise only is explicitly represented by the set of feasible parameter 
vectors. Otherwise, Os will also represent some or all uncertainty due to model 
misspecifications. In what follows the uncompensated part of this is indicated as 
modeling error. For the characterization of the jth element of the modeling error vector, 
Wj EOwCi), the following expression in terms of the output-error has been stated,<6) 
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(21.3) 

(21.4) 

where Oe(j,tk) is a (finite) set of absolute residual output errors at time instant tk 
and related to the jth observation element. Excluding residuals related to outliers, 
Oe(j,tk) is defined as 

O£(j,tk) = {Cjjk : Cjjk 

= IY/!k) - gj[x(tk,O), u(tk), tk;O]I; V OJ E 0 0, i = 1, ... , M} 

where M is an appropriate number, which depends on the description of the feasible 
parameter set. In the case of an exact polytopic solution, M is equal to the number 
of vertices, while for a discrete approximation M is identical to card(08)' Notice 
that for a discrete solution obtained from MCSM, the modeling error also represents 
the uncertainty introduced by an inner-bounding solution of the identification 
problem. As an alternative to the upper bound description of the modeling error, 
suitable for robust long range predictive controller design or guaranteed scenario 
analysis, for short-term prediction the conservatism in the estimate may be reduced 
by taking into account the time structure of {WjM(tk)} .(18) 

21.2.2. Exact and Approximate Modeling 

After having presented the key ideas behind the identification of both the 
parametric and the (nonparametric) modeling uncertainty for a general class of 
state-space models with output error, consider the following cases: 

A. Consider an exact model and exact measurements. This situation occurs 
when one formulates, for example, a (N-l )th order polynomial model on the basis 
of a finite number (N) of accurate measurements. The set ne reduces then to a 
singleton which implies a single predicted output trajectory. 

B. Consider an exact model and noisy measurements. Assume, furthermore, 
that the noise is governed by a random mechanism which has been characterized 
exactly in terms of upper bounds. For the linear case and N-+oo the set Oa converges 
with probability one to a singleton,(l9) denoted as the minimax or Chebyshev 
estimate, or in terms of Tempo et al.Y) the maximally robust estimate. For the 
nonlinear case, a nonlinear optimization problem remains which for N-+oo does not 
necessarily result in a single maximally robust estimate. For output prediction one 
ofthese "optimal" estimates is selected, which results in a single trajectory. On the 
contrary, when N is finite, more than one feasible parameter vector is most likely 
to be found. Hence, Da is associated with a (finite) set of feasible model response 
trajectories, 

(21.5) 
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for tk = 1, ... , tN+P, where P is the prediction horizon. 
C. Consider an approximate model and exact measurements. A first step 

towards the solution ofthis problem is to hypothesize that the model is exact, which 
implies that is assumed that the measurements are corrupted with (colored) noise 
(Case B). From these conditions note that for N~OCJ and an exact unknown-but­
bounded error characterization it suffices to solve a minimax estimation problem 
in order to obtain the feasible parameter set. However, under the conditions 
originally considered, the resulting minimax estimate alone does not represent the 
uncertainty caused by the approximate model. In the second step, estimate an upper 
bound on this modeling uncertainty from Eq. (2104) which is exact for N~OCJ. 
Hence, for output prediction based on the model structure given in Eq. (21.1), the 
interval vector [ __ wM, +wM], containing the estimated upper bounds on the modeling 
uncertainty, mm.t be added to the minimax output vectors at the time instants tN+ 1, 

... , tN+P' When N is finite or when the output-error bound is chosen too large, the 
estimated bounds must be added to a set of output vectors at each time instant 
instead of a single minimax output vector. 

D. Consider an approximate model and noisy measurements. Notice that for 
N~OCJ the set De is empty for an exact characterization of the noise originating from 
the measurement process alone, because of the presence of modeling uncertainty 
in addition to the measurement error. From the viewpoint of model selection, this 
implies then that an empty parameter set indicates the presence of modeling 
uncertainty. Thus, the model structure is an incorrect or incomplete representation 
of the system under study. In practice, however, measurement error bounds can 
seldom be spec:tfied exactly. In this situation, the specified error set Eq. (21.2), if 
chosen sufficiently large, represents both measurement and modeling uncertainty, 
which will also be reflected in De. In a previous paper(6) various situations with 
respect to De and the choice of bounds on {e(tk)} have been evaluated. In those 
cases where De does not represent the modeling uncertainty completely (see Case 
C), an instantaneous estimate of the upper bound on this uncertainty is provided by 
Eq. (2104). Hence, for realistic output predictions, based on a state-space model 
formulation with output-error, the vector sum of the modeling error set Dw(tk) and 
the set D9(tk) (Eq. (21.5» must be determined for tk = tN+J, ... , tN+P' 

Thus, from a system-theoretic point of view, robust estimates of both the model 
parameters and the modeling uncertainty are provided, which contribute to robust 
output predictions. 

21.3. EXAMPLES 

In this section two examples illustrate the application ofthe procedures previously 
presented. Amore complex "real world" example of predicting algal growth in a water 
quality system under environmental change has been reported.(7,20) 
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21.3.1. Hypothetical Example 

Consider the following measurements, 

2 3 4 5 

5.3 5.1 4.5 5.0 

which originate from a random process with y(tk) E U[ 4.5,5.5]. 
If both model and measurements are assumed to be exact, it can easily be 

verified that the model, 

(21.6) 

satisfies the assumed conditions for 80 = 6.4997, 8, = -2.9661, 82 = 2.2830, 83 = 
-0.68325, and 84 = 0.06666. The output prediction, consisting of one single 
trajectory, is presented in Fig. 21.1, Case A. 

Alternatively, consider the case in which it is assumed that the noisy measure­
ments are obtained from a process that is exactly represented by the model, 

(21.7) 

and measurement uncertainty that is bounded on the interval [-0.5, 0.5] for all tk' 
Then, the bounds on the model output can easily be calculated from the measured 
minimum and maximum value plus or minus the noise bound, that is 

Prediction 
' O r-------------------+-------------------~ 

6 

6 

4 

2 

:·· .. ·· .. · .. ·::::~. : ::::: : :: : : : ::::::::::::::::::::::::: B:::: 

v 

o~------L-------~--+_--~------~------~ 
o 2 6 6 10 

FIGURE 21.1. Prediction uncertainty evaluation for the hypothetical example. 



NONLINEAR STATE-SPACE MODELS WITH BOUNDED OUTPUT ERROR 339 

(see Fig. 21.1, Case B, where P = 5). 
If, on the other hand, the measurements are assumed to be exact and the model 

is an approximate representation of the process, a modeling error must be added to 
the feasible model output set resulting from analysis with an exact model and noisy 
measurements. The upper bound on the modeling uncertainty is equal to 0.3, that 
is max{y(tk)} minus the upper bound on ny, or Imin{y(tk)} - 4.81. The set of 
corresponding output predictions is presented in Fig. 21.1, Case C. 

At last, consider the most realistic case in which both the model and measure­
ments are uncertain. Let le(tk)1 :0:; 11; then for 0.4 :0:; 11 :0:; 0.8, the ultimate set of output 
predictions is equal to the previous one. Notice that the contribution of the additive 
modeling error diminishes from 0.4 to zero. Hence, for 11 > 0.8, wM = 0 and 
ny( tk) for tk = t I, ... , tN+P contains the set of Case C. Clearly, by selecting the upper 
error bound 11 one can weigh the trade-off between a parametric and a nonparamet­
ric uncertainty description.(21) 

21.3.2. "Real World" Example 

For this example, measurements of dissolved oxygen concentrations in a lake 
are used and have been presented in previous work. (6) The dynamic behavior ofthe 
dissolved oxygen concentration (C) can be described by, 

dC(t)/dt = K,[C/t) - C(t)] + aI(t) - R (21.8a) 

2 

Kr 
1 

Ol 

5 r---~--~--~--~---. 

R R 

Ol Kr 

FIGURE 21.2. Parameter estimation results. 
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FIGURE 21.3. Prediction uncertainty evaluation for the "real world" dissolved oxygen example. 
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FIGURE 21.4. Long-term predictions for the "real world" dissolved oxygen example. 
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(21.8b) 

where es(t) is the saturated DO concentration and let) the radiation. The parameters 
Kr, u, and R represent the reaeration coefficient, the photosynthetic production rate, 
and the oxygen consumption rate, respectively. The posterior parameter set Os has 
been identified fi:om 40 measurements (five days with sampling interval of three 
hours) using the MCSM algorithm with T] = 1.5 g/m3 (see Fig. 21.2). The maximum 

a 
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FIGURE 21.5. Prediction frequency distributions at k = 120 and k = 125. 
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distance between individual measurements and associated model output set gener­
ated by ne over all sampling instants tk offers, then, a bound on the modeling 
uncertainty, that is, w M = 0.17 g/m3 

For tk E {117, 117.125, 117.25, ... , l20}, the one-step and three-steps-ahead 
predictions in terms oflower and upper bounds are presented in Fig. 21.3. Notice 
the effect of the outlier at time instant tk = 118.875 on the predictions. 

The long-term bounded predictions, as a result of this one-step procedure of 
identification and prediction, can be seen in Fig. 21.4. Clearly, not all observations 
are contained in the predicted model output set. Most likely this has been caused 
mainly by unrnodeled dynamics due to incomplete knowledge of processes related 
to oxygen production by radiation and oxygen consumption. 

In addition to the prediction uncertainty bounds, frequency distributions are 
also available as a result of the sampled parameter space. From the positively 
skewed frequency distributions for k = 120 and 125 it can be concluded that the 
high prediction values are especially determined by only a few parameter combi­
nations. However, recall that this additional information is not essential for the 
procedure; the primary interest is the prediction uncertainty bounds to be employed 
in robust predictive controller design or guaranteed scenario analysis. 

21.4. CONCLUSIONS 

Robust identification of both the model parameters and the modeling uncer­
tainty within the context of a state-space model formulation on behalf of a realistic 
evaluation of the prediction uncertainty have been the main themes of this chapter. 
Within the set-membership approach, the MCSM algorithm, which is applicable to 
a broad class of (nonlinear) estimation problems, provides a finite set of robust 
parameter estimates ne. The modeling error set n w, including errors due to the 
inner-bounding characteristics ofMCSM, is obtained from analysis ofthe residual 
output error set. Robust output predictions for the class of state-space models with 
output-error result, then, from the vector sum of nw and the set of model responses 
n9(tk) for tk = tN+b ... , tN+P, which is determined by ne, the posterior parameter 
set. 
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Estimation Theory for Nonlinear 
Models and Set Membership 
Uncertainty 
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ABSTRACT 

This chapter studies the problem of estimating a given function of a vector of 
unknowns, called the problem element, by using measurements depending non­
linearly on the problem element and affected by unknown but bounded noise. 
Assuming that both the solution sought and the measurements depend polynomially 
on the unknown problem element, a method is given to compute the axis-aligned 
box of minimal volume containing the feasible solution set, i.e., the set of all 
unknowns consistent with the actual measurements and the given bound on the 
noise. The center ofthis box is a point estimate ofthe solution, which enjoys useful 
optimality properties. The sides of the box represent the intervals of possible 
variation of the estimates. Important problems, like parameter estimation of expo­
nential models, time series prediction with ARMA models and parameter estimates 
of discrete time state space models, can be formalized and solved by using the 
developed theory. 
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22.1. INTRODUCTION 

In this chapter the following problem, referred to as the (generalized) estima­
tion problemY I) is addressed. Given a problem element A (for example the vector 
of parameters of a dynamic system or a time function), evaluate a vector valued 
function SeA) of this problem element (for example, some functions of parameters 
of the dynamic system or particular values of the time function). The element A is 
not exactly known and there is only partial information on it. In particular, assume 
that it belongs to a set K of possible problem elements and that further information 
on A is given by the knowledge of a function F(A), representing measurements 
performed on variables depending on A. Suppose that exact measurements are not 
available and actual measurements yare corrupted by some error p according to 
the equation 

y = F(A) + p. (22.1 ) 

The estimation problem consists in finding an algorithm ( estimator) <j> that provides 
an approximation <j> (y) "" SeA), as a function of the available datay and in evaluating 
a measure of the approximation error. 

Many different problems such as linear and nonlinear regresslOns, parameter 
or state estimation of dynamic systems, state-space and ARMA models prediction, 
filtering, smoothing, time series forecasting, interpoiatlOn, and function approxi­
mation can be formulated in a general unifying framework based on the above 
concepts. 

The solution of the estimation problem depends on the type of assumptions 
made on p. Most of the cases investigated in the literature on estimation theory are 
undoubtedly related to the assumption that the error vector p is statistically modeled 
as an at least partially known probability distribution. Within this context the most 
important and widely used results are related to the theory of maximum likelihood 
estimators (MLE). Despite the large amount of theoretical results developed on 
MLE, the application to real world problems may be not appropriate due to a 
number of possible drawbacks. These include 

1. Actual computation of MLE usually requires a search of the global 
extremum of functions which are, in general, multimodal. Since general 
optimization algorithms (including the so called global ones, based on 
random search) are not guaranteed to achieve the global extremum, the 
estimate obtained may be far from MLE; 

2. Even though MLE are asymptotically efficient, it is difficult to evaluate 
whether the available data are sufficient to ensure that the covariance matrix 
estimate is "close" to the Cramer-Rao lower bound or not; 

3. For small data sets, it is useful to have lower and upper bounds of the 
estimate covariance matrix; indeed, tight upper bounds are difficult to 



ESTIMATION THEORY FOR NONLINEAR MODELS 347 

evaluate. Moreover, in this condition even the evaluation of the Cramer­
Rao lower bound may be not significant; 

4. It is difficult to evaluate the effect of non-exact matching of the assumed 
statistical hypotheses on p. In particular, there is no theory for taking into 
account the presence in p of modeling errors. 

In more recent years a new approach, referred to as "set membership error 
description" or "unknown but bounded error (UBBE)", has been investigated.(l) In 
this case, the error vector p is assumed to be an element of an admissible error set 
described by a norm operator as 

IIpll:::; s (22.2) 

where s is a known quantity. A case of great concern is when 100 norms are adopted; 
in this case, each component of the error vector is known to be bounded by given 
values. Motivation for this kind of error representation is the fact that in many 
practical cases the UBBE information is more realistic than statistical assumptions 
with respect to the measurement error.(2,3) In this context, a possible approach to 
the estimation problem consists in finding the feasible solution set, i.e., the set of 
volus SeA) such that A is consistent with the measurements y and the error model 
ofEq. (22.2). Any element of this set represents a possible estimate, although the 
center or the minimum norm element of the set enjoy interesting optimality 
properties.(4--7) The size of the set represents a measure of the estimate reliability. 

Unfortunately, an exact representation of the feasible solution set is in general 
not simple, since it may be not convex and not connected. It is therefore convenient 
to look for simpler, although approximate, descriptions of this set. To this extent, 
the use of simply shaped sets, like axis-aligned boxes (referred to as boxes for short) 
or ellipsoids, has been proposed to approximate the feasible solution set.(3,8) 
Ellipsoids may approximate the shape of the feasible solution set better than boxes. 
Unfortunately, algorithms for computing ellipsoidic approximations are known for 
linear SO and F(·) only.(8,9) Moreover, the obtained approximations may not be 
tight.(9,IO) On the other hand, important information can be obtained by box 
approximation. In particular, the minimal volume box containing the feasible 
solution set, minimal outer box (MOB), has the following properties 

• the length of each of its sides along the corresponding i-th coordinate axis 
gives the maximum range of possible variation of (S(A))i (called Uncer­
tainty Interval UJ;); 

• the center of MOB is the (Chebyshev) center of the feasible solution set 
and hence it is an estimate of SeA) enjoying several optimality properties.(6,7) 

For linear problems, the MOB can be computed easily by solving suitable 
linear programming problemsY) Unfortunately, many practical estimation prob­
lems, even if related to linear dynamic models, lead to nonlinear SO and FO (see 
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Section 22.3). Several approaches have been proposed to evaluate MOB when F(-) 
is nonlinear and SO is identity. In Ref. II a solution is found in the case in which 
Eq. (22.1) represents model output-error equations. In Ref. 12 a method of succes­
sive linearization is proposed to construct a sequence of boxes contained in the 
MOB, but no guarantee of convergence to the MOB is given. In Refs. l3 and 14 
optimization methods are used to construct the boundary of the feasible solution 
set. In particular, the random search algorithm used(l4) generates a sequence of 
boxes contained in the MOB and converging monotonically to it with probability 
one. However, this convergence property is not particularly useful in practice, 
because no estimate is given of the distance of the achieved solution from the global 
solution. 

This chapter shows that if SO and FO are polynomial functions, a sequence 
of boxes contained in the MOB can be constructed, converging to it. Moreover, an 
estimate of the distance of the estimated box from the MOB is provided at each 
iteration. It is also shown that the hypothesis of SeA) and F(A) polynomial covers 
large classes of problems of practical interest such as, for example, the identification 
of multi exponential, ARMA and state-space discrete time models. 

The chapter is organized as follows. Section 22.2 introduces the spaces and 
operators needed to build a general framework for estimation problems. Section 
22.3 shows how some significant estimation problems lead to polynomial SeA) and 
F(A). Section 22.4 presents an optimization algorithm which allows one to derive 
a guaranteed global solution forthe class of polynomial problems mentioned above. 
The effectiveness of the proposed approach is demonstrated by some examples 
reported in Section 22.5. 

22.2. A GENERAL FRAMEWORK FOR ESTIMATION PROBLEMS 

Let A be a linear normed n-dimensional space on the real field (called the 
problem element space). Consider a given operator S, called the solution operator 
mapping A into Z 

S: A --" Z (22.3) 

where Z is a linear normed I-dimensional space on the real field. In estimation 
theory, the aim is to estimate an element SeA) belonging to the solution space Z, 
knowing approximate information about the element A. 

The available information on the problem is contained in the space A and in 
an additional linear space Y which is introduced below. The first kind of informa­
tion, which is referred to as a priori information, is generally provided by letting A 
belong to a subset K of A. In the chapter problems are considered for which either 
K = A (i.e., no a priori information is available), or K is given as 
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K = {A E A: IIP(A - Ao)1I ::; I} (22.4) 

where P is a linear operator and AO is a known problem element. Despite the above 
assumption, many of the results presented in the chapter hold also for more general 
structures of the set K. As for the second kind of information, assume that some 
function F(A) is given; called information operator, mapping A into a linear normed 
m-dimensional space Y (called measurement space) 

F: ~ y. (22.5) 

Assume that Z and Yare equipped with (weighted) 100 norms. * 
In general, due to the presence of noise, exact information F(A) about A is not 

available and only perturbed information y is given. In this context, information 
uncertainty p is assumed to be additive, i.e., 

y = F(A) + P (22.6) 

where the error term p is unknown but bounded by a given positive value E 

according to an l;~ norm 

(22.7) 

Notice that the use of an r:;, norm in the measurement space Yallows one to consider 
different error bounds on every measurement. An algorithm ~ is an operator (in 
general nonlinear) from Y into Z 

(22.8) 

which provides an approximation ~(y) =:: SeA) using the available data y. Such an 
algorithm is also referred to as an estimator. 

As a simple example of how a specific estimation problem fits into the general 
framework outlined above, consider the problem of parameter estimation ofa time 
function belonging to a finite dimensional space, using data obtained by sampling 
and measuring it at a number of instants. Roughly speaking, the problem element 
space is the space ofthe considered class offunctions, identified as the space of the 
unknown function parameters; the space Y is the space of available samples 
(possibly corrupted by noise); the solution operator is the identity operator and the 
information operator is the sampling operator. 

Now, introduce the following set, which plays a key role in the development 
of the theory 

* A weighted I", nonn, denoted by I:, is defined as 

IlYll: = max WilYil, wi> 0 
I 
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T(y) = {A E K: Ily - F(A)II: ~ f:}. (22.9) 

The set T(y) contains all A compatible with the information F, the data y and the 
bound f: on the noise; S[T(y)] represents the already mentioned feasible solution 
set. Make some technical assumptions about this set. First, there exists a set Yo <;;;; 

Y such that for each y E Yo, T(y) is nonempty, i.e., the model structure is able to 
represent all the data y belonging to the set Yo. Secondly, T(y) does not contain 
isolated (discrete) points. Third, T(y) is bounded; if this was not true, F(A) would 
be too poor to solve the problem with finite error, indicating the presence of 
unidentifiability conditions in the problem formulation. Notice that the above 
hypotheses are almost always implicitly assumed in the great majority of identifi­
cation problems. 

Algorithm approximation will be measured according to the following local 
and global errors: 

1. Y-Iocal error E( <I>,y) 

E(<I>,y) = sup IIS(A) - <I>(y)lI. (22.10) 
AET()!) 

2. A-local error E(<I>,A) 

E(<I>,A) = sup IIS(A) - <I>(y)lI. (22.11) 
y :IL}~F(A)II~ ,,£ 

3. global error E(<I» 

E(<I» = sup E(<I>,y) = sup E(<I>,A). (22.12) 
yE Yo ).~EK 

Algorithms minimizing these types of errors are called V-locally, A-locally and 
globally optimal, respectively. Notice that the above errors, and related optimality 
concepts, are relevant to estimation problems. In fact, the A-local error measures 
the maximum uncertainty of the estimates induced by the perturbation affecting the 
exact information F(A), for a given problem element A . On the other hand, the 
Y-Iocal error measures the uncertainty affecting an estimate of SeA), for a given set 
of data y, A being unknown. The global error represents a worst case cost function, 
in the sense that it measures the largest estimation uncertainty arising for the worst 
data realization and the worst problem element in the set T(y) of admissible problem 
elements. 

As already mentioned, the set T(y) plays a key role in the present theory. In 
particular, if z" E Z is the Chebyshev center of S[T(y)]: the algorithm <I> c, called 
the central algorithm, defined by 

'z" is defined as sUPzES(T(v)) liZ" - zll = inf?El sUPzES(T(I')) liz - zll 
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(22.13) 

is known to be Y-locally and globally optimal.(4,5) In addition, A-locally optimality 
of <Pc has been proven under mild assumptions(6,7) for the case where S(-) and F(-) 
are linear. 

Important information can be also derived from the knowledge of the quanti­
ties z,!, and z't , solutions of the following optimization problems 

z~ = infAET(y)[S(A)];; i = 1, ... ,I 

z~ = sUPAET(y)[S(A)l; i = 1, .. , ,I. 

More precisely, observe that 

• the intervals 

UJ; = [z~ ,zn, i = 1, ... ,I, 

(22.14) 

(22.15) 

represent the range of possible variations of the unknown solution compo­
nents; 

• the MOB containing S[T(y)] is obtained as the cartesian product of the 
UJ; 

• the central algorithm <pc can be computed componentwise as(ll) 

W(Y)]i = z~ = (z~ + z~)I2; i = 1, ... ,I 

(22.16) 

(22.17) 

Unfortunately, finding global solutions of problems Eq. (22.14) is in general a 
difficult task. If no further assumptions on Sand F are made, the use of general 
global optimization algorithms based on random search(16,17) assure at most con­
vergence in probability to global extreme. More importantly, these methods do not 
provide any measure of how far is the computed solution from the global minimum. 
However, in many estimation problems S(A) and F(A) are polynomial functions of 
A (as shown in next section). In these cases, it is possible to design algorithms (as 
the one presented in Section 22.4) which ensure certain convergence to global 
extrema, and give at each step a measure of how far is the actual solution from the 
global one. 

22.3. NONLINEAR ESTIMATION OF DYNAMIC MODELS 

As already mentioned, the general framework presented in Section 22.2 can 
be used to deal with several estimation problems such as dynamic model parameter 
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estimation, prediction, filtering, and so forth. This section shows how to formulate 
some of them, leading to polynomials Sand F. 

22.3.1. Parameter Estimation of Exponential Models 

Consider the multi exponential model 

I 

yet) = L /.\e-v/ + e(t) 

i=1 

(22.18) 

where Ili and Vi are unknown real parameters and e(t) is unknown but bounded by 
a given e(t) 

le(t)1 ::; e(t). (22.19) 

Suppose that m values [y(tJ, ... ,y(tm)] are known and the aim is to estimate 
parameters Ili and Vi' i = 1, ... , I. Problems of this type arise in many applications, 
e.g., in pharmacokinetics and biomedical problems. By setting Si = e-v" i = 1, ... , I, 
the space A is the 2/-dimensional space of A = [Ilj, ... , Ill, Sb ... ,SLY and Z = A, 
so that S is the identity operator. Y is an m-dimensional space whose elements 
are given as [y], ... ,Ym]t = [y(tl) ... ,y(tm)Y-

The information operator F(·) is given by: 

(22.20) 

where it is apparent that each component of F(A) is a polynomial function of 11; and 

S;· 

22.3.2. Parameter Estimation of ARMA Models 

Consider the ARMA model 

p q 

Yk = L 0i Yk-i + L 8h_i + ek 

;=1 ;=1 

where ek is an unknown but bounded sequence 

(22.21) 

(22.22) 

To keep notation as simple as possible, consider the case p = q. Suppose that m 
values [Yj, ... ,Ym] are known and the aim is to estimate parameters 0;, 8;. The 
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problem element space A can be defined as the 2p + m - I-dimensional space with 
elements 

(22.23) 

and the subset K is defined by Eq. (22.22), where ek is replaced with its expression 
obtained by Eq. (22.21). Space Z is 2p-dimensional with elements 

Z = [bl' ... , bp' 81' ... ,8pr. (22.24) 

The operator SO,) is linear and is given by 

SeA) = [Izp 0] A (22.25) 

where /zp is the identity matrix of dimension (2p,2p) and 0 is the null matrix of 
dimension (2p, m-l). Space Y is an m-p dimension with elements Y 
LVp+b' .. ,Ymt The information operator F(·) is given by: 

(22.26) 

As it can be easily checked, SeA) is linear and F(A) is polynomial (actually linear 
in b; and bilinear in 8; and eJ 

The same technique can be used to deal with more general models such as 
ARMAX, bilinear, quadratic, and so forth. 

23.3.3. Multistep Prediction with ARMA Models 

Consider the ARMA Eq. (22.21) and suppose that the aim is to estimate Ym+h 
when past values lvI, ... Ym] are known (h-step ahead prediction problem). This 
problem can be embedded in the framework of Section 22.2 by defining all spaces 
and functions as for the case of ARMA parameter estimation, except for A and S(A). 
For the sake of notation simplicity, consider the case h = 2. The space A is a 
(2p+m+2) dimensional space with elements 

(22.27) 

Z is the one dimensional space with elements, Z = Ym+Z' The operator SO is no longer 
linear and is given by 

P p (22.28) 
SeA) = L (bIb; - bi+1)Ym-i+l + L (b l 8 i + 8i+l)em-i+l + b1em+1 + em+2 

i=O 

where 
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Note that the evaluation of the expression of SeA) requires symbolic computations 
which for large h may become cumbersome. If necessary, such symbolic computa­
tions may be performed by symbolic manipulation codes like MACSYMA, RE­
DUCE, MAPLE, and so forth. 

22.3.4. Parameter Estimation of Discrete Time State Space Models 

Consider the h-th order linear discrete time dynamic model 

{
Xk+1 = A (P)Xk. + B(P)uk 

Yk = C(P)xk + ek 

(22.29) 

where the system matrices entries are polynomial functions of physical unknown 
parameters pERi, Uk is a known sequence and, ek is an unknown but bounded 
sequence. Suppose, for ease of presentation, that the system is single output and 
that m values of the output [Yl, ... ,Ym] are known. The aim is to estimate unknown 
parameters p and system initial condition Xo E Rh. The problem can be embedded 
in the framework of Section 22.2 as follows. The space A is identified as the (l + 
h) dimensional space of vectors A = [pxor; K = A (if no a priori information is 
available on physical parameters); Z = A and S is identity. Y is an m-dimensional 
space and F(A) is the m-dimensional vector valued function given by 

(22.30) 

Again, the operator F(·) is polynomial in the parameter vector p and linear in the 
initial conditionxo. Note that symbolic computation of the polynomial expressions 
of FiCA) in Eq. (22.30) is required. For large values of m, symbolic evaluation of 
Eq. (22.30) may become cumbersome due to the fast increase of the number of 
terms in each component of F(A). 

22.4. AN ALGORITHM FOR THE EXACT COMPUTATION OF 
SOLUTION UNCERTAINTY INTERVALS 

If SO and FO are polynomial functions, Eq. (22.14) is of the form 

min (max) fo(A) 

subject to 

(22.31 ) 
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where functions /;(1.,) have the structure 

q 

J;(A) = L U ik A~"lA~ki2 ... A~kin. 
(22.32) 

k=1 

For example, in parameter estimation of exponential models of section 22.3.1 
one of the problems to be solved is 

(22.33) 

subject to 

I 

Iy(t) - L lli~71:::; E(l), j = 1, ... , m. 
i=1 

The above optimization problem can be transformed into a signomiai program­
ming problem. Such problems are in general not convex and may exhibit local 
extreme. An algorithm is presented due to Ref. 20, its original version, which 
guarantees convergence to the global extremum. The iterative algorithm allows one 
to evaluate upper and lower bounds on the absolute extremum at each iteration. The 
sequences of upper and lower bounds converge monotonically to the global 
solution. 

A signomial optimization problem is defined as follows 

(22.34) 

subject to 

{
kiA) - ~~A):::; I, k= I, ... , 2m 

\ > 0, I - I, ... ,n 

where hk(A) and gk(A) (k = 0, ... , 2n) are posynomiais, i.e., polynomials with 
nonnegative coefficients such that 

, k= 0, ... , 2m 

(22.35) 

where exponents aij are real numbers, Ui are positive reals and II (2)(k), k = 0, ... , 
2m are sets of integers that are disjointed for each k. Note that functions hk(A) and 
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giA) are, in general, not convex. Nevertheless, one can introduce new variables 
Xi with the aim of transforming hk and gk into convex functions of the variables Xi 

Ai = ex" i = I, ... , n. (22.36) 

Eqs. (22.35) become 

HJx) = [hiA)h,=/' = LUi e(a"x) 

iEl](k) 

Gk(x) = [giA)h,=e", = LUie(Qj'X) (22.37) 

iEi2(k) 

where C·) denotes inner product and aj = [ail, ... , ajnr. Equation (22.34) is 
transformed into the equivalent problem 

min {Ho(x) - Go(x)} (22.38) 

subject to 

HJx) - Gk(x) ~ 1, k= I, ... , 2m. 

The algorithm given below generates a tree whose node T are associated with 
convex problems Q' which approximate the signomial Eq. (22.38) (called P). 

Problems Q' are obtained by suitable linear overestimates of Gk(x) as follows. 
Suppose that an a priori upper and lower bounds x'" and J'1 of a global solution 

x* ofEq. (22.38) are given 

X m <x' <xM. J' 1 n ;-;-;' =, ... , (22.39) 

and that 

is the global minimum ofEq. (22.38). Let S' be the set defined as 

S' = {x: r~ ~ (a,,x) ~ R~, i E lik)} (22.40) 

Variables rJ and RJ are recursively computed using the rules of Steps 5 and 6 below, 
starting from the initial values 

n 

rf = L min{aijx;n, aijxf}, i E 12(k) 
j=i 

(22.41 ) 
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n 

R~ = L max {aijxj, aijxr}, i E Iik) 
j=1 

Approximating problems Q' are of the form 

min {Ho(x) - LMx)} 

subject to 

{
Hk(X) - LI(x) ~ 1, k= 1, ... , 2m 

xj ~ Xj ~ 1, j = 1, ... , n 

where 

357 

(22.42) 

(22.43) 

(22.44) 

Note that since the terms Lk(x) are linear and functions Hk(x) are convex, 
problems Q' are convex. Global solutions XC for these problems, with minimum 
v' = Ho(x') - Lc(x'), can be found by any convex optimization algorithm. Also 
notice that L,,(x) ~ Gix) \;j XES" and consequently if XC E S', then v' ~j*. 

The algorithm generates new approximating problems, by selecting an existing 
node 't, according to Step 3 of the algorithm below, and refining the linear 
approximation of the corresponding problem Q' according to rules of Steps 5 and 
6. Only two problems are generated at each stage, so that after stage s has been 
completed, problems QI, Q2, .. . , Q2s+1 are generated. 

Let J(s) be the set of all nodes 't which have not been selected as branching 
nodes at stages preceding stage s (see Step 3 of the algorithm below). Define VS 

and Us as 

VS = min v' 
'EJ(S) 

US = min {Ho(x') - Go(x')}. 
,=I, ... ,2s-1 

(22.45) 

(22.46) 

Note that approximations of functions Gk(x) are performed by constructing linear 
envelopes, so that the minima ofthe two approximating problems generated at each 
stage s are larger than the minimum of the problem which generated them at stage 
s - 1. This guarantees that the sequence oflower bounds VS to the global minimum 
never decreases. Moreover, the way in which the upper bounds Us are generated 
ensures that they form a non-increasing sequence. More importantly, using the 
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results in Ref. 21, Ref. 20 shows that the sequence XI contains a subsequence 
converging monotonically to the global solution x* and 

lim VS = lim Us =f*. (22.47) 

The algorithm consists of the following steps: 
• Step 1: Initialization. 

Generate and solve QI, obtaining xl ,VI, VI ,vI. Set s = I, T = 1, J(s) = {I} 
• Step 2: Check for solution. 

If VS = Us then a global solution of problem P is 

(22.48) 

Otherwise go to Step 3. 
• Step 3: Choose a branching node T. 

Select T E J(s) such that vT = V' 
• Step 4: Choose a term of Gk(x) to be approximated. 

Select k* E {O, 1, ... , 2m} maximizing LI(xT ) - HixT ). Select i* E 12(k*) 
maximizing LJ(xT ) - uie(a,,.x'l. 

• Step 5: Generate problem Q2s. 

Set 

2s T R2s RT \-I. 1 (k*)' .* r; = ri ; i = i ' v I E 2 ' 1 oF 1 

(22.49) 

• Step 6: Generate problem Q2s+ I. 

Set 

(22.50) 

• Step 7: Solve problems Q2s and Q2s+ I. 

Solve problems Q2s and Q2s+1, obtaining x2s , x2s+ 1, v2., , v2s+ 1. Compute 
vs+1, U s+1 according to Eqs. (22.45 and 22.46). Update the setJ(s): add the 
two nodes T = 2s, T = 2s + I and delete the node T selected at Step 3. Set s 
= s + 1 and go to Step 2. 

Some considerations on the estimation algorithm proposed above. 
REMARK 1. Computation of if may be improved by using a local solution in 

Eq. (22.46) to the true problem P, computed by an iterative algorithm starting from 
XT, instead of using {Ho(xT ) - GO(xT)}. 
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REMARK 2. The condition Ai> 0 in Eq. (22.34) is not a serious restriction. In 
fact, it is possible to bring the set T(y) in the first orthant of A by means ofa suitable 
translation of the origin of the problem element space. Another way of dealing with 
this problem is to express unknown sign variables as differences of auxiliary strictly 
positive variables. 

REMARK 3. The convergence speed of the algorithm is, in general, quite 
sensitive to the sizes of intervals 4 - x'['. In solving the 21 optimization Eq. (22.14), 
information gained by the solved ones can be used to shrink such intervals as much 
as possible. This is particularly simple for parameter estimation problems where 
Zi = [SeA)]; = Ai. The following heuristic strategy can be used for handling this 
problem. A certain number of runs of the 21 optimization Eq. (22.14) are performed, 
stopping the algorithm after few stages s (say s = 5), without waiting for conver­
gence of upper and lower bounds. When solving the first problem of Eq. (22.14), 
i.e., finding z] =: J..l1, x'[' and 4 can be derived by a priori information provided by 
the set K. When solving the second problem, i.e., computation in Eq. (22.14), set 
(recall Eq. (22.36)) xl = In Vj, where VI is the lower bound of z] obtained by the 
preceding run of the algorithm stopped at stage s. In solving the third problem 
(computation of z2'), set xY = InUI , where UI is the upper bound of zr provided by 
the preceding nm of the algorithm stopped at stage s, and so on. This procedure is 
iterated until it is able to tighten the bounds xf or 4. Successively, the limitation 
on the number of stages is removed and each extremum problem is solved by letting 
the algorithm reach convergence. 

Such a shrinking procedure has been used in working out the numerical 
examples reported in next section. It has proven to be very effective in leading to 
considerable computing time reductions. 

22.5. NUMERICAL EXAMPLES 

22.5.1: Example 1: Parameter Estimation of a Multiexponential Model 

The following model is considered 

(22.51) 

The data used are reported in TABLE 22.1. They have been generated from 
(22.51) with the following nominal parameter values 

J..l1 =20.0, VI =0.4, J..lz=-8.0, vz=O.l. (22.52) 

The bound on measurement errors is supposed to be: 

(22.53) 

A priori information set K is defined by the following inequalities 
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TABLE 22.1. Data for Example I 

k 2 3 4 5 6 7 8 9 10 

tk 0.75 1.5 2.25 3.0 6.0 9.0 13.0 17.0 21.0 25.0 

y(tk) 7.39 4.09 1.74 0.097 -2.57 -2.71 -2.07 -1.44 -0.98 -0.66 
--~-,---~--

1
20 

:0; f!\ :0; 60.0 

0.0 <VI :0; 1.0 
K: (22.54) 

-30.0 :0; f!2 :0; -1.0 

0.0 < v2 :o; 0.5 

The estimation results obtained are reported in TABLE 22.2. They refer to 
convergence within 2% of upper and lower bounds of the signomial algorithm for 
each extremization problem ofEq. (22.14). 

The total computing time of the algorithm, using the shrinking procedure 
outlined in Remark 3 of Section 22.4, is about 10 minutes on a VAX 8800 computer. 
Convergence within the mentioned tolerance, without using the shrinking proce­
dure, has not been reached after a computing time of about one order of magnitude 
larger. 

22.5.2. Example 2: Multistep Prediction with an AR Model 

The following AR model is considered 

(22.55) 

The data used, which are reported in TABLE 22.3, have been generated from 
Eq. (22.55) with the nominal parameter values 

(22.56) 

assuming ek uniformly distributed and such that 

(22.57) 

TABLE 22.2. Uncertainty Intervals and Central Estimates for Example I 

UI 
Central estimates 

III 

[17 .2.26.9] 

22.05 

VI 

[0.30,0.49] 

0.395 

112 

[-16.1,-5.4] 

-10.75 

[0.077,0.136] 

0.1065 
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TABLE 22.3. Data for Example 2 

k 3 4 5 6 7 8 9 10 II 12 

Yk 0.19 -0.72 -0.82 -0.22 0.88 0.80 -0.20 -0.88 0.31 0.32 -0.33 -0.63 

Multistep predictions from 1 to 4 steps ahead have been computed by consid­
ering information the set K a priori defined by the following inequalities 

{
0.19:::;Oj:::; 0.4 

K: 
-0.8:::; 82 ~ -0.51 

(22.58) 

The uncertainty intervals in Eq. (22.58) have been obtained by a preliminary 
analysis of maximal and minimal feasible parameters of the linear Eq. (22.55) by 
means of linear programming. 

The results obtained are reported in TABLE 22.4. They refer to convergence 
within 2% of upper and lower bounds of the signomial algorithm for each extremi­
zation problem ofEq. (22.14). The last line of TABLE 22.4 reports the predictions 
(called nominal predictions) obtained by the minimum mean square predictor of 
Eq. (22.55) with the nominal parameter values ofEq. (22.56). 

The total computing time for obtaining these results is about 3 minutes on a 
VAX 8800 computer. 

22.6. CONCLUSIONS 

A method has been proposed for parameter estimation and prediction in a set 
membership uncertainty context, when measurements are nonlinear functions of 
the variables to be estimated. A procedure has been presented which allows one to 
compute exact uncertainty intervals of the estimated variables for the case when 

TABLE 22.4. Uncertainty Intervals, Central Predictions and Nominal Predictions for 
Example 2 

Yl3 

UI [-0.53,0.56) 
Central Prediction 0.01 
Nominal Prediction 0.04 

YI4 

[0.33.1.21) 
0.44 
0.45 

YI5 

[-0.875,1.19) 
0.16 
0.11 

YI6 

[-1.75,0.87) 
-0.44 
-0.28 
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measurements depend polynomially on model parameters. Some examples have 
been worked out to show the performance of the proposed algorithm. 
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23 
Guaranteed Nonlinear Set 
Estimation via Interval Analysis 
L. Jaulin and E. Walter 

23.1. INTRODUCTION 

Many methods have been developed for solving problems arising in mathematics 
and physics which are formulated in such a way as to require a point solution (e.g., 
a real number or vector). However, because of the uncertainty attached to the data 
and numerical errors induced by the finite-word-length representation in the 
computer, these methods are generally not appropriate to accurately characterize 
the uncertainty with which the solution is obtained. It is then difficult to assess the 
validity of the result. 

Set formulation of problems replaces the search for a point solution by that of 
a feasible solution set that may contain a non-denumerable set of vectors. It is then 
possible to take uncertainty on the data as well as numerical errors into account and 
to get a global and guaranteed result. Uncertainty on this result can be computed 
rigorously, contrary to the classical point approaches. Interval analysis is one of the 
main tools that can be used to characterize sets obtained as the results of computa­
tions on sets. It generalizes real and vector calculi to intervals and vector intervals 
(or boxes). The manipulated subsets are approximated by sets consisting of unions 
of boxes (or subpavings). In set-inversion problems, which constitute a large part 
of set problems, the solution set is defined as the reciprocal image of a given set by 

L. JAULlN AND E. WALTER • Laboratoire des Signaux et Systemes, CNRS Ecole Superieure d'Elec­
tricite. 91192 Gif-sur-Yvette Cedex, France. 

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York, 
1996. 
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a known function. The simple common structure of these problems makes it 
possible to derive a single algorithm that can be used to approximate the solution 
set for any set-inversion problem. This chapter applies this general approach to the 
problem of bounded-error estimation in the nonlinear case. 

Let M(.) be a set of models parameterized by a vector p E ]Rnp. To each value 
of p corresponds a model M(p). Let Y E Rny be the vector of all available 
experimental data, which may consist of measurements performed at various times. 
The corresponding model output will be denoted by Ym(P) E Rny. The dependency 
ofy andYm in the experimental conditions (inputs, measurement times, and so forth) 
is omitted to simplify notation. The output error is defined as 

e(p)==y-ym(p)· (23.1) 

Bounded-error estimation aims at characterizing the set § of all values of P such 
that Ym(P) is feasible in the sense that e(p) belongs to some prior feasible set for the 
errors E. It is easy to deduce from § a point estimate Ii for the parameters, as well 
as the uncertainty attached to it. 

This chapter is organized as follows. Section 23.2 shows how bounded-error 
estimation can be formulated as a set-inversion problem and gives some illustrative 
test cases. The notions of interval analysis needed for the algorithm to be proposed 
are then presented in Section 23.3. Section 23.4 explains how pavings and subpav­
ings can be used to approximate and bracket solution sets. Section 23.5 presents 
the set-inversion algorithm applied in Section 23.6 to the test cases presented in 
Section 23.2. 

23.2. BOUNDED-ERROR ESTIMATION AS A SET-INVERSION 
PROBLEM 

A MATLAB-like notation is used for vector equations and inequalities. Vectors 
and vector-valued functions are denoted by bold lower-case letters. Equalities and 
inequalities are to be understood componentwise. Note that some precautions are 
required in the manipulation of such operators. For instance, the contraposite of u S; v 
is not u > v since the two proposals may be false simultaneously. Usual real 
functions such as sin, exp, and so forth, when their arguments are vectors, become 
vector functions and are also written in bold. They are evaluated component by 
component. For instance 

sin(u) == sin (:~]= [:~:~:~~l. 
lU3 sm(u3) 

(23.2) 

Let f: R n ~ RP be a continuous function and Y be a closed subset of RP. Solving 
the associated set-inversion problem means characterizing 
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x = rl(y) = {X I f(x) E V}. (23.3) 

X is the solution set of the problem. The set function rl is the reciprocal function 
of f. The direct image of X by f is defined by 

f(X) = {f(x) I x EX}. (23.4) 

The set feRn) is a differential manifold, called the image manifold. When p > n, it 
is almost surely n-dimensional. Otherwise, it is almost surely p-dimensional. From 
elementary set theory, f(X) c Y. In many practical problems, Y can be defined by 
a finite set of inequalities 

y = {y I g(y):::; O}. (23.5) 

The following equivalences then hold true 

x EX<=:> f(x) E Y <=:> g 0 f(x) :::; O. (23.6) 

If h = g 0 f, X can be described by the finite set of inequalities 

X= {x I h(x):::;O}. (23.7) 

Solving a set-inversion problem thus often amounts to characterizing a set defined 
by inequalities. When h is linear, X is a polyhedron, and its characteristics, such as 
its volume, the smallest box or ellipsoid containing it, can be computed accurately. 
When h is nonlinear, the techniques based on interval analysis presented in what 
follows make it possible to bracket X between simpler sets consisting of unions of 
boxes. 

In the context of bounded-error estimation, the posterior feasible set for the 
parameters can be written as 

§ = {p I e(p) E lE} = e-1(lE). (23.8) 

Characterizing § is, therefore, a problem of set inversion. The parameter vector p, 
the error function e and the prior feasible set for the errors lE, respectively, stand 
for x, f and Y. In what follows, assume that lE can be defined by a finite set of 
inequalities. Two test-cases are now introduced to illustrate the notions presented. 

TEST-CASE I: (Parameter estimation) Consider a two-parameter problem(l) 
where 

y = (0.1, O.l)T. (23.9) 

These data correspond to two scalar measurements performed at times 

t = (0.5, I )T. (23.10) 

The corresponding output for a model M(p) is given by 

Ym(p) = (0.5 COS(Pl) + 1.25) COS(P2t) 

= [(0.5 COS(Pl) + 1.25) COS(P/2)] , 
(0.5 COS(Pl) + 1.25) coS(P2) 

(23.11 ) 
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where the ith component of Y m(P) is computed for the ith component of t. For P to 
be feasible, the error must satisfy 

e(P)=Y-Ym(P) E lE= {el-O.75:S:e:S:0.75}, (23.12) 

where 0.75 is a vector with all entries equal to 0.75. The set to be characterized is 
given by § = e-](lE). 

TEST-CASE 2: (State estimation) Consider the discrete-time state space model 

{
X](k+ 1) = cos(X](k)X2(k)) 

xik+ 1) = 3x](k)- sin(xik)) , 

Ym(k) = xT(k) - x2(k) 

(23.13) 

In order to estimate the unknown initial conditions, ten measurements y(k) (k = 0, 
... , 9) have been generated by simulating the model with x(O) = (2, l)T, which 
therefore correspond to the true value for the parameters. Adding a random error £ 

to each of these noise-free outputs, such that -0.5 :s: £ :s: 0.5, the resulting data set 
is then 

Y = (y(O), . .. ,y(9))T 

= (3,-5, 0.6, 2.2,-3.8,-1.4, 0.4,-1.2,-1.8, 2.6)T. (23.14 ) 

The set § to be characterized is that of all x(O) = P such that e(p) E lE with 

IE = 0.5 [-1, 1], (23.15) 

where [-1, 1] stands for an axis-aligned hypercube centered on the origin and with 
width two. The error function e could be given a formal expression, but the result 
would be very complex. On the other hand, e is easily obtained by an algorithm. 
Using pseudo PASCAL, e(p) can be computed by 

and 

x](O) := PI; X2(0) := P2; 
For k:= 0 to 9 do 

begin 
Ym(k) := xT(k) - x2(k); 
e(k) := y(k) - Ym(k); 
x] (k + 1) := cos(x](k) * xik)); 
xik + 1) := 3 Xl (k) - sin(x2(k)); 

end; 

e(p) := [e~.~)]. 
e(9) 

Again, the set to be characterized is § = e-l(lE). 

(23.16) 

(23.17) 
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23.3. INTERVAL ANALYSIS 

Interval calculus can be seen as a simple formalism for manipulating inequali­
ties. In the interval approach to numerical computations, (2-4) any uncertain number 
is replaced by an interval guaranteed to contain it. Intervals are manipulated as a 
new type of numbers represented by an ordered pair of real numbers associated 
with the extremities of the interval. Intervals thus have a dual nature of numbers 
and infinite sets. Many algorithms take advantage of this duality and combine 
operations on sets, such as union and intersection, with arithmetical operations. 
High level languages implementing interval calculus are readily available.(5,6) 

An interval [x] E JR or real interval is a closed, connected, and bounded subset 
of JR, such that 

(23.18) 

The set of all n:~al intervals will be denoted by KR Interval arithmetic generalizes 
addition, subtraction, multiplication, and division to intervals. If, for instance, [ $; 

x $; X +, y- $;y $;]/ and z = x + y, then x- + y- $; z $; x+ + y+ so that the addition of two 
intervals is defined as 

[x] + [y] = {x + Y I x E [x] andy E [y]} = [x- + y-, x+ + y+], (23.19) 

Similarly, 

-[x] = {-x I x E [x]} = [-x\ -[], (23.20) 

[x]-[y] = {x-y Ix E [x] andy E [y]} = [x- -y+,x+ -y-] , (23.21) 

IfO il [x], then 1 I [x] = { 1 I x I x E [x] } = [l/x+, l/x-], (23.22) 

[X]2 = {x2 1 x E [x]}. (23.24) 

Note that [x]2 * [x] * [x]. For instance, if [x] = [-1,1], then [xf = [0,1] whereas [x] 
* [x] = [-1, 1]. It is easy to show that multiplication and addition are both associative 
and commutative. In general, however, addition is not distributive with respect to 
multiplication. The subdistributivity property guarantees that 

[x] * ([y] + [z]) C [x] * [y] + [x] * [z]. (23.25) 

REMARK: When implementing interval arithmetic on a computer, one must take 
into account that not all intervals can be represented exactly and that approxima­
tions are committed at most arithmetical operations. It is necessary, therefore, to 
perform outwards rounding so as to insure that the exact results are contained in 
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the intervals computed. What follows does not consider these problems of imple­
mentation, which have little influence on the results for the problems treated. 

The function f KlR ~ KlR is an inclusion function of the continuous function 
f: R ~ R if it satisfies 

J([x]) C if([xD (23.26) 

for any [xl Computing the interval J([x]) would require solving two global 
optimization problems, which is often exceedingly time consuming. On the other 
hand, for most real functions!, it is easy to obtain an inclusion function, as will be 
seen later. If the real x is known to belong to [x], thenJ(x) is guaranteed to belong 
to [([x]). For any given!, there are, of course, infinitely many inclusion functions. 
One of them, denoted [1], is minimal in the inclusion sense and satisfies [f]([x]) = 
f([x]) for any [x]. Call it the minimal inclusion function. For all elementary functions 
such as sin, cos, exp, log, arcsin, arccos, and so forth, this minimal inclusion 
function is easy to compute, as illustrated by the two following examples. 

EXAMPLE I: Since the exponential function is increasing, [exp] is given by 

[exp]([x]) == [exp]([x-, x+]) = [exp(x-), exp(x+)] = exp([x]). (23.27) 

To get the image interval, it therefore suffices to compute the image by exp of the 
extremities of [xl This holds true for any real monotonic function. 

EXAMPLE 2: Since the sine function is not monotonic, the technique of Example 
I cannot be applied to compute [sin l It is easy, however, to show that [sin ]([x]) can 
be computed as 

In k E Z 12krr-rrl2 E [x] 

In k E Z 12krr + rrl2 E [x] 

then sin-([x]) :=-1 

else sin-([x]) := min(sin x--, sin x+); 

then sin+([x]) := I 

else sin\[x]) := max(sin [, sin x+); 

[sin] ([x]):== [sin-([x]), sin+([x])]. (23.28) 

If J results from the composition of real operators or elementary functions, it 
is not possible to compute [1]. An inclusion function called natural interval 
extension can instead be obtained by replacing, in the formal expression for f, its 
argument x by the interval [x] and the elementary functions and operators by the 
associated minimal inclusion functions. The natural interval extension is usually 
far from minimal, and may be much improved by suitably rewriting the formal 
expression ofJor by taking advantage of the fact that the intersection of inclusion 
functions is an inclusion function. 

EXAMPLE 3: Letjj(x) =x-r and./2(x) =x{l-x). Althoughfi =./2, the two 
corresponding natural interval extensions [j([x]) = [x] - [X]2 and [i[x]) = [x] * (1 
- [x]) are different. The subdistributivity property ofEq. (23.25) implies [2([X])C 
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Jf,([x]). For instance, if[x] = [0,1], Jf,([x]) = [-1,1] and Jf2([x]) = [0,1], whenJ{[x]) 
= [0, 114]. 

Vector calculus can similarly be extended to intervals by replacing vectors of 
lR n by boxes. A box, or vector interval, [x] of lR n consists of the Cartesian product 
of n scalar intervals. Boxes are indifferently denoted by 

where x- = (xl" Xl, ... , x~)T and x+ = (x" xt ... ,X~)T. The scalar intervals [x;] = 
[xi, xn are the components of the box [x]. The set of all boxes of lR n is denoted by 
B~n. The width of [x] E KlRn is given by 

w([x]) = max {x7 -x;}. (23.30) 

When w([x]) =: 0, [x] degenerates into the vector x, so that vectors can also be 
considered as belonging to KlR n, with x- = x + = x. A principal plane of [x] is a 
symmetry plane of this box that is orthogonal to an axis i associated with a side of 
maximal length, i.e., i E {j I w([x]) = w([Xj])}' 

Fig. 23.1 presents a two-dimensional box with its principal plane, a straight 
line here. The enveloping box [A] of a bounded set A c lR n is the smallest box (in 
the sense ofinc:1usion) oHlRn that contains A. 

[A ] = n {[x] E KlRn I A c [x]} . (23.31) 

Vector addition and external multiplication can be extended to boxes: 

(23.32) 

principal plane 

"'" [xl 

I" 

xi 
XI 

I 

XI x+ 
1 

FIGURE 23.1. Box [xl with its principal plane. 
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A[X] = {Ax I X E [X]}. (23.33) 

The set function jf: KRn ~ KRP is an inclusion function off: Rn ~ RP ifand only 
iffor any [x] 

f([ x]) c jf([ x]). (23.34) 

It will be said to be convergent if for any sequence of boxes [x] 

w([x]) ~ 0 => w(Jf([x])) ~ O. (23.35) 

Convergent inclusion functions exist if and only if f is continuous. Among all 
possible inclusion functions jf off: Rn ~ RP, one, 

[t]: KRn ~ KRP; [x] ~ [{f(x I x E [x]}], (23.36) 

is minimal in the sense of inclusion. Therefore, [t]([x]) is the enveloping box of the 
set f([x]). Fig. 23.2 illustrates the notion of inclusion function. 

EXAMPLE 4: Consider the function 

From the mono tonicity of the exponential function, 

exp([xa) = [exp] ([xa) = [exp(xi), exp(xt)]. 

Therefore 

Assume now that XI > 0 and X3 > O. Then 

Rn 

FIGURE 23.2. Minimal inclusion function [fJ and inclusion function f. 
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EXAMPLE 5: Consider the function! R2 ~ R; x ~ Xl sin Xl' Since Xl and Xl 

appear independently in the formal expression off, it is trivial to show that 

Lf]:K JR2 ~ K R; x ~ [xj]*[sin]([xl ]). 

When ftakes its values in W, the coordinate functions of [t] are the minimal 
inclusion functions [J;] associated with the coordinate functions fi of f (i = 1, ... , 
p). As in the scalar case, a natural interval extension for f can be obtained by 
replacing in its formal expression (or in the algorithm describing f): 

- the coordinates Xi of the argument x by the components [xJ of [x]; 
- all arithmetic operators by the corresponding operators for intervals; and 
- all elementary functions by the corresponding minimal inclusion functions. 

If each component of x appears at most once in the formal expression of a given 
coordinate function, then the natural interval extension is a minimal inclusion 
function. 

TEST-CASE 1 (continued): The natural interval extension e([p]) for e(p) is given 
by 

e([p]) = y - (0.5 [cos]([Pd) + l.25) [COS]([P2] t) 

_ (0.1 - (0.5 [cos]([pd) + 1.25) [COS]([Pl]/2)] 
-I 0.1- (0.5 [cos]([pd) + 1.25) [COS]([Pl]) , 

\ 

(23.37) 

where [cos]([x]) = [sin](rrl2 - [x]) and [sin] is as in Example 2. Note that this 
inclusion function is minimal, so that e([p]) = [e]([p]) = [e([p])]. 

TEST-CASE 2 (continued): The natural interval extension e([p]) for e(p) can be 
computed by the following pseudo-PASCAL code, where the inputs are [Pd and 
[Pz] 

[XJJ := [pd; [Xl] := [P2]; 
For k:= 0' to 9 do 

begin 
[Ym] := [xlf - [X2]; 
[e ](k) := (y(k) - [Ym])l; 
[xl] := COS([XI]*[X2]); 
[xi] := 3 [xd - sin([x2]); 
[XI] := [xl] ; 
[X2] := [xi] ; 

end; 

(23.38) 

The 10-dimensional box e([p]) whose kth component is given by [e ](k - 1) is a 
convergent inclusion function for the error function e(p). 
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23.4. SET BRACKETING AND SUBPAVINGS 

The solution set § to be characterized can usually be defined exactly, e.g., by 
the nonlinear inequalities ofEq. (23.7). However, the resulting description is often 
too complex to be of any use. It may, for instance, be difficult to know whether § 

is empty, whether it is connected, and what its volume or shape is. Another approach 
is to approximate § by more tractable sets, such as unions of boxes called 
subpavings. It will then become possible to approximate some characteristics of 
§ by computing the corresponding characteristic of the approximating set. 

A subpaving JK oflRn is a set of non-overlapping boxes ofITlRn with non-zero 
volume. If A is the subset of lRn consisting of the union of all boxes of JK, then 
JK is a paving of A. When there is no ambiguity, the set {JK} consisting of the union 
of all boxes of JK will also be denoted by lK. Subpavings are easily represented in 
a computer and readily amenable to set manipulation with the help of interval 
calculus. They are used to approximate, and more precisely bracket, the sets to be 
characterized. For almost any X, it is possible to find two finite subpavings X- and 
X+ such that X- eX c X+. The subpavings to be considered here always satisfy 
X- c X+ in the sense that each box of X- is also a box of X+. The quantity L'lX = 
X+ - X-, therefore, is a subpaving, the uncertainty layer, which comprises all 
vectors for which it is not known whether they belong to the interior or exterior of 
X. Fig. 23.3 illustrates the bracketing of a compact set between subpavings and the 
associated uncertainty layer. Let VeX) be the set of all compacts X' such that 
X- c X' c X+. In the Hausdorff distance sense, the diameter of VeX) can be 
made as small as desired for almost any X.(7) VeX), therefore, is a neighborhood 
ofX. 

x-

FIGURE 23.3. Bracketing a compact set between two subpavings. 
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23.5 SET INVERSION 

To characterize X = I-I (Y), assume that a convergent inclusion function jf is 
known for I and that Y is compact. The notions of set inversion and bracketing of 
the solution set by subpavings are illustrated by Fig. 23.4. Note that 

with f(X) = Y only iff is surjective, which is never true in the type of applications 
considered here. The algorithm Set Inverter Via Interval Analysis (SIVIA) will now 
be used to obtain the subpavings X- and X+. It can also be used to bracket any 
quantity Z(X) monotonic over X with as much precision as desired.(8) For simplic­
ity, X is assumed to be bounded and included in a known prior box [x](O), which 
is used as the initial search domain. Extension to unbounded sets would involve the 
use of unbounded boxes (or generalized vector intervals). 

A box [x] of KRn is feasible if [x] c X, unfeasible if [x] (\ X = 0, and 
ambiguous otherwise. Interval analysis provides two conditions, illustrated by Fig. 
23.5, to test a box [x] for feasibility: 

Jf([x]) c Y => [x] c X ([x] is feasible), (23.39) 

if([x]) (\ Y = 0 => [x] (\ X = 0 ([x] is unfeasible). (23.40) 

In all other cases, [x] is indeterminate. Note that indeterminate boxes may be 
feasible, unfeasible or ambiguous, but that any ambiguous box is indeterminate. 
Fig. 23.5 shows how an unfeasible box may be indeterminate, which explains why 
the two previous conditions are only sufficient. 

)'2 

)' 1 

FIGURE 23.4. Bracketing the solution set of the set-inversion problem between two subpavings. 
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Y2 RP 

D-rX) 
XI 

Feasible box and ils image. 

D Unfeasible box and ils image. 

!-:::/\.:\j Indetenminate box and ils image. 

~ Set Y 10 be invened and its reciprocal image X. 

FIGURE 23.5. Sufficient conditions for a box to be feasible or unfeasible. 

SIVIA involves three basic steps: 

• the definition of a box of interest [x](O), on which the search will be 
performed; 

• the choice of a paving lK for [x ](0); and 
• the computation oH([ x]) for each box of K 

Three cases are then possible for any given box [xl 

• if Jf([x]) c V then [x] c X, ([x] is feasible); 
• iH([x]) n Y = 0 then [x] n X = 0, ([x] is unfeasible); and 
• else, [x] is indeterminate. 

The paving lK is thus partitioned into three subpavings X-, ~X et X+, which 
correspond respectively to the sets of all feasible, indeterminate and unfeasible 
boxes. Since X+ = X- u ~X, 

(23.41) 

axc~x, (23.42) 

(23.43) 

(23.44) 
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stack 

I). J{ 
[1- [~5_~ 

(a) Conventional representation. (b) Computer representation. 

FIGURE 23.6. Representation of a stack. 

SIVIA recursively implements the idea of bracketing by subpavings that has 
just been presented. A stack of boxes (think of a stack of plates) is used, in which 
each element knows the location of the one located beneath it. Fig. 23.6 illustrates 
the representation of a stack on a computer. On this figure, a stack of six elements, 
numbered from I to 6, is presented under its traditional form (a) and as stored on 
the computer (b). Element 1 is at the bottom of the stack and Element 6 on top. The 
arrows represent the pointers, and the right-hand-side box of each element of the 
stack stands for the memory cell containing the address of the element beneath. 
Since it is at the bottom, Element I points to no other element. The topology of the 
stack is independent of its representation on the computer. Such a representation 
makes it possible to modify relationships without having to move the elements 
involved, which drastically speeds up the management of the memory. 

Only three operations are possible on a stack, namely stacking (i.e., putting an 
element on top of the stack), unstacking (i.e., removing the element located on top 
of the stack) and testing the stack for emptiness. The box considered at iteration k 
is denoted by [x](k). The required accuracy for the subpavings X- and ~X will be 
denoted by Sr' After completion of the algorithm, all indeterminate boxes have a 
width smaller than or equal to Sr. The inputs of SIVIA are the inclusion function f, 
the set to be inverted V, the domain of interest [x](O) and the required accuracy 
Sr' The initialization is performed by setting 

[x] = [x](O), stack:= 0, X-:= 0, ~X:= 0, (23.45) 

and iteration is given by 

Step I 

Step 2 

If1f([x]) c V, 

If1f([x]) n V = 0, 

then X-:= X- u [xl Go to Step 4. 

then go to Step 4. 
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Step 3 

Step 4 

End. 
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Ifw([x]) ::::; E,., then L1X:= L1X u [x], 

else bisect [x] along a principal plane and stack the two 
resulting boxes. 

If the stack is not empty, then unstack into [x] and go to Step 1. 

(23.46) 

SIVIA thus generates two subpavings X- and L1X- The dependency of these 
subpavings on Er is omitted to simplify notation. For almost any X, the resulting 
bracketing, 

(23.47) 

defines a neighborhood of X with a diameter that tends to zero with Er . The 
convergence conditions are studied in Ref. 7. The main limitation of SIVIA lies in 
its computing time, which is proportional to the number of elements in lK and 
increases exponentially with the number ofparameters.(8) 

When one is only interested in computing a characteristic of the solution set 
X such as its enveloping box [X] or its volume vol(X), only the stack takes a 
significant place in memory. It is possible to avoid storing the subpavings X-- and 
L1X with the help of a recursive technique. Note, however, that the paving must be 
explored, even if it needs not be stored, so that the computing time is not shortened. To 
understand how one can avoid storing subpavings, let us modifY SIVIA to recursively 
bracket the volume of X. The program is initialized by setting stack := 0, vol- := 0, 
vol+ := 0, [x] := [x](O). The iteration is as follows 

Step 1 If Jf([ x D c V, then vol-:= vol- + vol([ x D, 

vol+ := vol+ + vol([x]), go to Step 4. 

Step 2 IH([x]) n V = 0, then go to Step 4. 

Step 3 Ifw([xD::::; En then vot := vol+ + vol([x]), 
else bisect [x] along a principal plane and stack the two resulting boxes. 

Step 4 If the stack is not empty, then unstack into [x] and go to Step I. 

End. (23.48) 

As the volume is a monotonously increasing characteristic, completion gives 

vol-::::; volume(X) ::::; vol+, (23.49) 

without having stored any subpaving. The transposition to the computation of the 
enveloping box [X] is trivial. The number of elements in the stack satisfies:(8) 

(23.50) 

where inter) stands for the integer part of a real r. Even for large n, the size of the 
stack remains reasonable. For instance if n = 100, w([x](O)) = I 04, and Er = 10-1°, 
then Eq. (23.50) implies that #stack < 4600. 
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SIVIA can easily be parallelized, and the following version can be imple­
mented on r processors, which would similarly shorten the computing time. The 
inputs and initialization are as in the previous version of SIVIA. Iteration is as 
follows 

Step 1 Split [x] into r boxes forming a subpaving Z. 

Step 2 Store in X- all boxes [z] ofZ such that f([z]) c Y. 

Step 3 Eliminate from Z all boxes [z] such that f([z]) n Y = 0. 

Step 4 Store all boxes [z] such that w([z])::; er in LlX. 

Step 5 Stack all remaining boxes of Z. 

Step 6 If the stack is not empty, unstack into [x] and go to Step 1. 

End. (23.51) 

Steps 2 to 5 are shared by all processors. 
Frequently the parameter space is not isotropic because the sensitivities of f 

relative to the various components of x do not have the same order of magnitude. 
Bisecting along a principal plane, as suggested in the above description of SIVIA, 
may then tum out to be rather inefficient. The problem is to find a strategy for 
bisection to speed up the convergence. One way is to weight each component ofx 
in such a way as to compensate for the anisotropy. It seems difficult, however, to 
suggest a rational strategy for the choice of the weights since the anisotropy may 
strongly depend on the position in the parameter space. 

Another algorithm for set inversion was developed independently by Moore. (9) 

The main difference is that Moore's algorithm uses a queue when SIVIA uses a 
stack. The required memory for the queue is larger than for the stack by several 
orders of magnitude. 

It may often be helpful to reformulate the problem of set inversion as that of 
finding any set i such that 

rl(y-) c i c rl(y+), 

given two sets y- ~d y+ such that Y- eYe Y+. The program is initialized by 
setting stack := ~~, X := 0, [x] := [x](O).lteration is as follows 

Step 1 1f1f([x]) c Y+, then i := i u [x], go to Step 4. 

Step 2 1f1f([x]) n Y- = 0, then go to Step 4. 

Step 3 Bisect [x] along a principal plane and stack the two resulting boxes. 

Step 4 Ifthe stack is not empty, then unstack into [x] and go to Step 1. 

End. (23.52) 

Even if Y is not known accurately, one then gets a characterization of the 
uncertainty attached to x. Moreover, this algorithm does not require the specifica-
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tion of €r' Provided that 8Y- n 8Y+ = 0, i can be obtained in finite time. Even 
if Y is known exactly, such an approach remains of interest in the context of 

1\ 
bounded-error estimation. By setting Y- = lE and X = §, one gets § c §, so that a 
set guaranteed to contain the posterior feasible set for the parameters is obtained. 
The set Y+ then plays the role of the stopping criterion. If the layer Y+ - Y- is thick 
enough, this stopping criterion should make it possible to obtain a result comparable 

1\ 

to that of SIVIA much more quickly. The set § contains all the parameter vectors 
that are consistent with the available information, and none of those that are 
indisputably inconsistent (in the sense that their image is outside Y+ ). 

23.6. EXAMPLES 

TEST-CASE 1: For a required accuracy €r = 0.04 and a prior domain of interest 
[p](O) = [-10, 10] x [-10, 10], SIVIA generates the paving presented on Fig. 23.7 
in less than 160 seconds on a Compaq 386/33. It keeps less than 16 boxes in the 
stack at any given time (Eq. (23.50) predicts a number lower than or equal to 18). 

FIGURE 23.7. Paving generated by SIVIA for Test-case 1 in the (PI ,P2) space. The frame corresponds 
to the search domain [p](O) = [-10,10] x [-10,10]. 
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FIGURE 23 .8. Paving generated by SIVIA for Test-case 2 in the (Pl , p2) space. The frame corresponds 
to the search domain [p ](0) = [-5, 10] x [-5, 10]. 

The subpavings § - and §+ are filled in with white and grey, respectively. The 
volume of § n [p ](0) is guaranteed to satisfy 

35:S; vol(§ n [p](O)):S; 43. (23.53) 

The posterior feasible set § for the parameters turns out to be unconnected. One 
may wonder about the meaning of point estimation in this context. 

TEST-CASE 2: Forer = 0.05 and [p](O) = [-5, lO] x [-5,10], the paving presented 
in Fig. 23.8 is generated in less than 10 seconds. The stack never contains more 
than 14 boxes «Eq. 23.50) predicts a number lower than or equal to 18). The 
subpavings §+ and L'1§ are filled in with grey and white, respectively. No box has 
been found in § - . 

A random exploration of [p ](0) with a uniform distribution for more than half 
an hour does not produce any feasible value for p. To understand the difficulty of 
the problem, zoom around the true value for p. For a required accuracy of €r = 
0.0001, and [pliO) = [l.98, 2.02] x [0.98, 1.02], SIVIA generates~e paving 
presented in Fig. 23.9 in less than ten minutes. The subpavings §- and §+ are filled 
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FIGURE 23.9. Paving generated by SIVIA for Test-case 2 in the (PI ,p2) space. The frame corresponds 
to the search domain [p ](0) = [1.98, 2.02) x [0.98, 1.02]. 

in with white and grey, respectively. The posterior feasible set § is so narrow that 
it is almost impossible to reach it by random exploration. 

23.7. CONCLUSIONS 

Set inversion is particularly suitable to characterize the set of all values of 
parameters that are feasible in the sense that they satisfy a finite number of (possibly 
nonlinear) inequalities. The problem of estimating the parameters of a nonlinear 
model from bounded-error data is easily cast into this framework, which makes it 
possible to obtain approximate but guaranteed and global results in a finite number 
of operations. 

The tools of interval analysis and the concept of subpaving have been used to 
derive efficient methods for the solution of the set-inversion problem. To the best 
of our knowledge, the only approach capable of providing guaranteed global results 
in nonlinear bounded-error estimation that is not based on interval analysis is the 
signomial approach advocated by Milanese and Vicino(lO) and also presented in this 
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volume. Signomial analysis makes it possible to bracket the enveloping box [§] of 
§ between two boxes. It gives [§] faster than SIVIA, which characterizes § in a 
much more detailed way and applies to a larger class of problems (e.g., problems 
involving trigonometric functions). 

SIVIA eliminates a large portion of the domain of interest quickly before 
concentrating on the boundary of §. It cannot provide great precision when there 
are more than a few parameters. However, it can still be useful provided that the 
required accuracy is suitably decreased. It may be, therefore, a powerful tool for a 
preliminary analysis before turning to local or random searches. 

Among the many other problems that can be cast in the framework of set 
inversion, one may mention the problem of analyzing the robust stability of an 
uncertain time-invariant linear system.{J 1) 
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24 
Adaptive Control of Systems 
Subjected to Bounded 
Disturbances 
L. S. Zhiteckij 

24.1. INTRODUCTION 

In practical adaptive control systems which use identification procedures, the effect 
of disturbances on the system behavior is the important factor. The above effect is 
investigated from statistical considerations.(l) This approach requires some knowl­
edge of disturbance statistics. However, in various control applications, the assump­
tions regarding the disturbance statistics may be invalid. In these cases, the 
statistical approach is unsuitable. Meanwhile, in most cases the available a priori 
information about the disturbance is given not in statistical terms but as bounds on 
its absolute value. In the cases mentioned, the bounding approaches are appropriate. 
These approaches are developed in the identification and control theory.(2...{i) 

Recently, the important results have been obtained in many works in which 
are considered adaptive control systems in the presence of bounded disturbances.(fr-18) 
One of the approaches to the solution of the adaptive control problem for bounded 
disturbance case which has been proposed in several papers, (9,11,12,14) allows 
reduction of the problem of the adaptive estimation to finding a single unknown 
plant parameter vector. An alternative approach is to find an a posteriori member-

L. S. ZHITECKlJ • V. M. Glushkov Institute of Cybernetics, Ukrainian Academy of Sciences, 252207 
Kiev, Ukraine. 

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York, 
1996. 
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ship set of the unknown parameter vector in some parameter space.(13.15) Based on 
the second approach, the methods of an ellipsoidal estimation are explored in. (7,10,16) 

Within the general area of bounding approaches, an original direction was 
formed in adaptive control theory.(8) This direction reduces the derivation of the 
adaptive control algorithms to solving some inequalities by using recursive projec­
tion procedures which must converge at finite time. Such algorithms ensure the 
suboptimal adaptive control of system subjected to chaotic but bounded distur­
bances. These algorithms(17-20) can be modified to cope with various types of 
bounding uncertainty, including the case when the disturbances have independent 
bounded time increments. (17) 

The main assumption which is usually made in bounded disturbance case is 
that bounds on the disturbances are known. It turns out that it is also possible to 
design the adaptive control system in the presence of bounded disturbances with 
unknown symmetric bounds if a membership set of plant parameters is known.(lS) 
The key idea proposed in Ref. 18 is to exploit one remarkable property of the 
recursive projection type algorithms which converge at finite time.(8) This property 
allows adjustment of one additional parameter which is an estimate of an upper 
bound on the size of disturbance. A different situation is when bounds on the 
disturbance are unknown and, possibly, asymmetric. A worse situation arises when 
not only bounds but also a class of the disturbances are unknown a priori. For 
instance, it is unknown whether the disturbance itself is the so-called non-regular 
bounded signal, as in Ref. 8, or this disturbance is a signal with the non-regular 
bounded time increments as in Ref. 17. But it turns out(19) that the technique of Ref. 
18 can also be extended to these difficult cases. 

This chapter is a broadened version of the paper Ref. 19 and is organized in 
the following way. In Section 24.2, the assumptions regarding the parameters of a 
plant and disturbances are made and the problem is formulated. Section 24.3 
outlines the main features of the adaptive control algorithms which must be 
convergent during finite time. In Section 24.4, the optimal control law are presented 
for the known parameter cases. The main result is given in Section 24.5 which 
synthesizes the adaptive identification algorithms for control of systems subjected 
to bounded disturbances with unknown parameters. Section 24.6 presents a report 
on the simulation. Section 24.7 concludes the chapter. 

24.2. PROBLEM STATEMENT 

24.2.1. Description ofthe Plant 

Consider a plant as a discrete-time, linear, time-invariant, lth order system 
which, for simplicity of exposition, has the unit delay and satisfies the difference 
equation 
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with 

yet) + aly(t - 1) + ... + a/y(t-1) 

= blu(t - 1) + ... + blu(t -1) + set) (24.1 ) 

(24.2) 

where y(t) E lR 1, u(t) E lR 1 are measurable output and control input, respectively, 
and set) E lRI is an unmeasurable disturbance at discrete time t (t = 0,1,2, ... ). This 
equation may be rewritten in an equivalent compact form as 

(24.3) 

with the polynomials 

(24.4) 

(24.5) 

in which z-I d;~notes the unit delay operator and aT = [a], . .. ,al] and bT = 
[b], ... , biJ are the parameter vectors. 

As in Ref. 1, Eq. (24.1) can also be represented in the form 

yet) = El~w(t - 1) + set) (24.6) 

where 

and 

wT(t) = [-yet), "', -y(t-l + 1), u(t), "', u(t-l + 1)]. 

The following assumptions regarding the plant parameters are made. 

• Assumption 1a: Sign b I is known. 
• Assumption I b: The parameter vectors a, b are unknown but it is known 

that 

(24.7) 

in which Q a and Qb are known bounded, convex regions in the I-dimen­
sional Euclidean space R/. 

• Assumptlon 2: The coefficients of B(b,z-I) satisfy 

zB(b, z-I) * ° for all Izl2 1. (24.8) 
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That is, Eq. (24.3) describes a minimum phase plant. Moreover, it is 
assumed that zB(~, Z-I) *- 0 for all Izl:2: I and any ~ E Db' 

Before making the assumptions concerning the disturbance ~(t) first give the 
following definition. 

• Definition J :(8) The signal set) = s(t,(j) which depends on t and on an 
abstract parameter (j) making the sense of a distinctive "event" parameter 
is said to be non-regular (non-stochastic) in a bounded set:::: if for any 
natural N and for any S I, "', ~N from:::: there is always an (j) E {(j)} such 
that 

s(l,(j) = Sl' "', S(N,(j) = SN" 

Using this definition, distinguish between the following two cases. 

• Case I: ~(t) is a non-regular bounded signal, i.e., 

(24.9) 

where bounds C; and Cs are finite. An interval:::: = [c" csl may here be both 
asymmetric when Ci *- ~cs and symmetric when Cs = ~Ci = L In this 
well-known latter case 

1~(t)1 ::; c. (24.10) 

• Case 2: set) has non-regular bounded time increments S(t). In this case 
~(t) obeys the equation 

W) = ~(t - I) + set) (24.11) 

where set) satisfies 

(24.12) 

• Remark I: Obviously, Case 1 and Case 2 are obtained as particular cases 
from the equation 

~(t) + g-W - 1) = set) (24.13) 

in which set) is a non-regular signal. Indeed, Eq. (24.13) leads to Case I for 
g = 0 and set) E [c;, csJ and to Case 2 for g = ~1 and set) E [-cv, cv]. 

• Remark 2: If 0 < Igl < I and Eg. (24.12) holds, then 

which is similar to Eg. (24.11), is satisfied formally with 

IsI(t)1 ::; 2(1 + grl(Es - E) < 00. 

(24.14) 



ADAPTIVE CONTROL OF SYSTEMS 387 

Although ~l (t) in Eq. (24.14) is also a bounded signal, it is not non-regular 
(in contrast to ~(t) in Eq. (24.11 )), and it is essential. 

• Remark 3: It is not hard to see that ifEq. (24.9) holds then 

(24.15) 

where 

L\. 
V's(t) = set) - s(t - 1) 

(24.16) 

and 

(24.17) 

In this case, Eq. (24.11) is satisfied with 1~(t)1 ~ 2s. Meanwhile, ~(t) is not 
a non-rt:gular signal. 

Now, make the following assumptions about the disturbance set). 

• Assumption 3a: It is known that set) satisfies either Eq. (24.9) or Eq. (24.11) 
together with Eq. (24.12). 

• Assumption 3b: The bounds s;, Ss in Eq. (24.9) and s" in Eq. (24.12) are 
unknown. 

• Assumption 3c: It is unknown which of the cases, namely Case 1 or Case 
2, takes place (in addition to Assumption 3b). 

24.2.2. Control Objective 

Let yO == const be a desired plant output (a fixed set-point). Our problem is to 
minimize 

J g lim sup le(t)1 (24.18) 
1-->00 

by choosing the control signal sequence {u(t)} =u(l), u(2),'" where e(t) is an output 
error defined by 

L\. 
e(t) = yO(t) - y(t). 

• Definition 2: The control is said to be optimal if 

J=JO g min 1. 
{u(l)} 

• Definition 3: The control is said to be suboptimal if 

(24.19) 

(24.20) 
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(24.21) 

for arbitrary pre-specified positive constant o. 
The control objective is to design an adaptive controller which ensures the 

suboptimal control under Assumptions 1-3. 
Note that ifbounds on the disturbances are symmetric and known a priori then 

the optimal adaptive control can be designed.(l2) However, there is no solution of 
the optimal adaptive control problem for the case of no a priori infonnation about 
the above bounds. 

24.3. PRELIMINARIES 

Adaptive control algorithms are derived on the basis ofthe following common 
scheme.(8) First design the optimal control law assuming for a while that all 
parameters of Eq. (24.3) and of Eq. (24.13) are known. To make the control law 
adaptive replace the true parameters by estimated parameters. The recursive pro­
jection procedure for solving an infinite system of inequalities is chosen as an 
estimation algorithm. It is essential that the above algorithm must converge at finite 
time. The finite convergence is known to be achieved only ifboundedness of system 
variables is guaranteed.(8) To establish such a boundedness, one needs the following 
key technical lemma which is the reformulation of Theorem 4.n.3 given in Ref. 8. 

LEMMA 1. Consider a plant described by equation 

(24.22) 

in whichA(a,z-I) is an ~bitrary monic polynomial of degree I?: I. Suppose that Eq. 
(24.8) is satisfied, and s(t) is bounded in modulus. Let 

le(t)1 :s; const + b.llv(t - 1)11 (24.23) 

be satisfied for some O. > 0 where 

T ~ ~ ~ 

v (t) = [-yet), "', -y(t-I + I), u(t),'" ,u(t -I + I)] 

and U(f) and set) denote an equivalent control sih'l1al and an equivalent disturbance, 
respectively. Then the closed-loop system, consisting of a plant described by Eq. 
(24.22) and a controller which causes Eq. (24.23), is stable in the sense that for any 
initial yeO) (irrespective of the chosen control law) there exists a bounded region 
Dy c ]R2! and a finite to such that 

IIv(t)1I :s; D y < 00 for all t ?: tD (24.24) 

if b. satisfies 
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8.[1+ l·max IA(a,A)B-1(b,A)12] < 1 
A: IAI = 1 
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(24.25) 

where A is the complex variable and 11·11 denotes the Euclidean vector norm. 
PROOF. (See Section 4.I1.5° of Ref. 8.) 0 

24.4. OPTIMAL CONTROL OF SYSTEMS IN THE PRESENCE OF 
BOUNDED DISTURBANCES WITH KNOWN PARAMETERS 

24.4.1. Case 1 

For the time being suppose that i:;(t) satisfies Eq. (24.9) with known c;, cs. Let 
90 be known. To derive the feedback control law, rewrite Eq. (24.1) in the equivalent 
form as 

where 

e = (c; + cs)/2 

and i:;(t) is an equivalent disturbance satisfying 

I i:;(t) I :::; c 

with c given by Eq. (24.17). 
Equation (24.26) can be presented by 

yet) = 9~ . wT(t - 1) + ~(t) 

where 

The followlllg results from the optimal control. 

(24.26) 

(24.27) 

(24.28) 

(24.29) 

(24.30) 

(24.31) 

LEMMA 2. Suppose that (a) Eqs. (24.2 and 24.8) are satisfied, (b) i:;(t) is a 
non-regular signal described by Eq. (24.9), and (c) Cs and Ci are known. 

Then Eq. (24.20) in which 

(24.32) 

is achieved if the control law is chosen as 
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(24.33) 

PROOF: This is a straightforward !:pplication of Theorem 3.2.1 of Ref. 8, Eq. 
(24.29), Eq. (24.28), and the fact that set) is a non-regular signal in the symmetric 
interval [-e, e]. D 

24.4.2. Case 2 

As before, assume that 90 is known but W) now satisfies Eq. (24.11) in which 
~(t) is bounded in modulus by a constant ev. In view ofEqs. (24.6 and 24.11), write 

y(t) = y(t - 1) + 9~ . Vw(t - I) + W) (24.34) 

where 

L\. 
Vw(t) = wet) - w(t - I). (24.35) 

The following result regarding the optimal control can be shown to be valid. 
LEMMA 3.(17) Suppose that set) is a disturbance of the form ofEq. (24.11) in 

which ~(t) is a non-regular time increment satisfying Eq. (24.12). Under assumption 
(a) given in Lemma 2 the control law 

yO = yet) + 9~ . Vw(t) (24.36) 

achieves Eq. (24.20) with 

(24.37) 

PROOF: Eq. (24.37) follows immediately from Theorem 3.2.1 of Ref. 8 applied 
to Eq. (24.34) with ~(t) E [-ev, ev]. D 

REMARK 4: Recalling Remark 3, one can show that under conditions of Lemma 
2, Eq. (24.36) ensures thatJ= 210. This means that for Case 1, the performance of 
the Eq. (24.33) is twice as good as that of the Eq. (24.36). 

24.5. SUBOPTIMAL ADAPTIVE CONTROL OF SYSTEMS IN THE 
PRESENCE OF BOUNDED DISTURBANCES WITH UNKNOWN 
PARAMETERS 

24.5.1. Basic Ideas 

Now, assume that both the parameters ofEq. (24.3) and bounds on the signal 
~(t) that causes the disturbance sU) (Eq. (24.13» are unknown. Clearly, if g = -1 
and -ev::;; ~(t) ::;; ev (Case 2) then the problem can be solved(l8) to Eq. (24.34) 
because ~(t) is a non-regular bounded signal with symmetric bounds and Eq. (24.7) 
implies that 90 E Q o, where 
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n ~n xn C]R21 
o a b 

(24.38) 

is the known and bounded set. It may seem at first sight that if g = 0 and set) 
E [Ei, EsJ (Case 1), then the above problem can also be reduced to the problem of 
the suboptimal a»aptive control of the equivalent Eq. (24.29) subjected to equiva­
lent disturbance set) with unknown but symmetric bound E. In this case, the equation 

(24.39) 

£an be chos~ as a control law. One is obtained from Eq. (24.33). Replace unknown 
00 by some O(t) defined as 

(24.40) 

where 

(24.41 ) 

is an~stimate of unknown 00 and set) is an estimate of unknown E at time t. Next, 
find O(t) by solving the system of the inequalities 

10T·W(t - I) - yet) I ::; E~(t) (24.42) 

(t=I,2,···) 

which can be obtained using Eqs. (24.28 and 24.29), and replacing 00 by () and E 

by some EY(t). 
However, this is far from being the case. When the upper -E0und on ~(t) in Eq. 

(24.29) is unknown, then some bounded membership set of 00 must be known a 
priori.(18) Nevertheless, from the Eq. (24.30),00 E no, and Eq. (24.27) implying 
that s E 3 where 

(24.43) 

one knows only that 00 E 8 where 

(24.44) 

Although the membership set 8 of 00 given by Eq. (24.44) is bounded, this set is 
unknown, since bounds Ei and Es of3 which is the membership set of unmeasurable 
disturbance s(t) are unknown. However, the solution to the problem is possible. 

Although this problem seems hopeless at first, the author proposes an approach 
based on two basic ideas. The first idea is to design an a posteriori membership set 
3(t) C ]Rl of unmeasurable 1;(t). Bounds on 3(t) can be evaluated from Eq. (24.6) 
which yields 
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(24.45) 

(t= 1,2, ... ) 

where 

1;;Ct) = yet) - max OTW(t - 1) (24.46) 
OEQ 

o 

1;s(t) = yet) - min OTW(t - 1). (24.47) 
OEQ 

o 

It follows from Eqs. (24.46 and 24.47) that the set 

Set) = [min 1;;<,), max 1;,{,)];;:::> U [1;;<,), 1;/r)] (24.48) 

1:=1 

contains unmeasurable 1;(t) for every t;::: 1. Since the a priori set no is known, one 
can always find the bounds on Set) using the measurement data and Eqs. (24.46 to 
24.48). 

Fig. 24.1 illustrates the Eq. (24.48) together with Eq. (24.45) for t = 2. This 
figure shows an example when the intervals [1;;(t), 1;s(')] and [1;lt-1), 1;s(t-1)] have 
a non-empty intersection (this condition is not necessary at all). 

In order to make use of the first idea, a boundedness of Set) must be 
guaranteed.(l8) Meanwhile, such a boundedness is still not provided since there is 
no guarantee that Ilw(t)1I is not unbounded. Therefore S(t) defined by Eq. (24.48) 
together with Eqs. (24.46 and 24.47) is unbounded as t ~ OCJ (see Fig. 24.1). 
Nevertheless, it is almost obvious that the vector wet) can successfully be kept 
within a bounded region DO c R.21, ifthere is another controller, which comes into 
operation whenever wet) comes out from some subregion DO c IF This controller 
must return wet) into DO at a finite time. But, again, to design such a controller it is 

2U - j ) 

( ( t ) (t-I) 

( (t-1) 
I 5 

I 
I 

FIGURE 24.1. Construction of the a posteriori membership set ::=:(1) given by Eg. (24.48). 
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necessary to obtain suitable estimates of the unknown plant parameters. All this 
leads to the second idea: use the second adaptive controller as a stabilizing 
controller. It turns out that this controller can simultaneously be suboptimal if Case 
2 takes place. 

24.5.2. Stabilizing Controller 

24.5.2.1. Adaptive Control Algorithm 

To derive an adaptive law for the second controller, replace the true parameter 
vector 0o in Eq. (24.36) by an estimate parameter vector O(t) defined as 

OT(t) = [aI(t), bI(t)] 

where aT(t) =i aI(t) and bT(t) =i bI(t) in general. Then 

yO = y(t) + OT(t)-Vw(t), 

which is the second adaptive control law. 

(24.49) 

(24.50) 

Determine OCt) using a recursive algorithm for solving the system of in equal i­
ties(l7) 

(t = 1,2, ... ) (24.51 ) 

where 

~ 

Vy(t) = yet) - y(t - 1) 

and c~(t), which is specified later, is an estimate of an upper bound on IVi;(t)l. 
Equation (24.5Jl) is obtained from Eq. (24.6). Use Eqs. (24.16), (24.35), and the 
fact that Eqs. (24.12 and 24.15) imply that IVi;(t)1 ~ E where 

{
2c if i;(t) satisfies Eq. (24.9) 

E = Cv if i;(t) satisfies Eq. (24.11) 

is the upper bound on IVi;(t)l. 
The value ofO(t) is found by the following several subsequent steps. 
Step 1: Calculate 

by substituting 0 = O(t - 1) in the left side of Eq. (24.51), and 

cit) = c~(t) - 812. 

Step 2: Determine 

(24.52) 

(24.53) 

(24.54) 
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O'(t) = O(t - I) -f(q2(t),£~(t),£it))IIVw(t - 1)11-2 . VW(t - I) (24.55) 

where 8 is some constant and 

lq(t) - £ 

f(q(t),£O,£) = 0 
q(t) + £ 

is the dead zone function such that 0 < £ < £0. 

if q(t) > £0 

if Iq(t)1 :s; £0 

if q(t) < _£0 

(24.56) 

Comments: Equation (24.55) is a known recursive projection procedure which 
is investigated in Ref. 8 for the case of 

£~(t) ;::: E + 8/2, (24.57) 

where the dead zone Eq. (24.56) differs from the one used in Refs. 1,2,6 and 12 to 
14. 

Note Eqs. (24.53, 24.55, and 24.56). Suppose tth Eq. (24.51) is satisfied by 
substituting 0 = O(t - 1). That is, O(t - I) lies inside a band 

Set) ~ {O E ]R21: 10TVW(t - I) - Vy(t) I:S; £~(t)}, 

Then set Wet) = OCt - I). Otherwise, project O(t - I), which lies outside S(t), onto 
the closest of the hyperplanes 

The last case is illustrated in Figs. 24.2 and 24.3, where 

are the hyperplanes. 
The boundaries of S(t) are also depicted (for simplicity, drop the argument t in 

the notations of all hyperplanes here). 
Step 3: Find OCt) as 

OCt) = arg min 110 - W(t)ll. (24.58) 
!lEQo 

Comments: Eq. (24.58) is defined as the orthogonal projection ofO'(t) onto the 
known convex, closed and bounded set Qo' This procedure is used to ensure OCt) 
E Qo for all t. When the result of Eq. (24.55) lies in Qo as shown in Figure 24.2, 
then OCt) = O'(t) . Otherwise, updated O(t) is obtained via mapping O'(t) into the 
closest point OCt), which lies on the surface ofQo (see Fig. 24.3). 
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FIGURE 24.2. Geometric interpretation of the 
estimation Egs. (24.55 and 24.58) for the case 
90 E S(t). The result ofEg. (24.55) lies inside Qo. 
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REMARK 5: Assumption 1 implies that the hyperplane {~ E JR' : ~1 = O} does 
not intersect Do. It can be proven that the first component of ~(t) in 9(t) , is the 
coefficient of u(t) in Eq. (24.50), is always nonzero. 

Note Eqs. (24.6), (24.16), and (24.35). Suppose E~(t) ~ IV1;(t)1 so some t. Then 
90 , which lies always on the hyperplane 

also lies inside the band S(t) (see Fig. 24.2). Otherwise 90 lies outside S(t) as 
depicted in Fig. 24.3. 

T 
t;.0 

FIGURE 24.3. Geometric interpretation of the estimation Egs. (24.55 and 24.58) for the case 
90 II' Set). The result ofEg. (24.55) lies outside Qo. 
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It can be proven that if there exists a finite t'2 such that the condition 

c~(t) > lim sup 1'lC;(t)1 + 8/2 

is satisfied for all t;::: t'2, then there exists a finite t'2 ;::: 1'2 such that 

19~'lw(t - 1) - Vy(t) I :S c2(f) < c~(t) 

for all t ;::: t'2 . In this case, the intersection 

t.. 
H = n SeT) 

(24.59) 

(24.60) 

includes the true parameter vector 90 and its neighborhood. This guarantees that the 
system ofEq. (24.51) is compatible for 1 = t'2 ,t'2 + 1, .... However, if there is no 
finite t'2 such that Eq. (24.59) is satisfied for all t ;::: 1'2 ' then it is not guaranteed that 
there exists a ~'2 such that the intersection 

S(~~) n S(~~ + 1) n '" 
is non-empty. In last case, the system of Eq. (24.5 J) may be incompatible for 
t = ~'2 ,~'2 + I, .... For this reason, c'2(t) should be large enough for all sufficiently 
large t in order to avoid an incompatibility of the above system. In the other hand, 
c'2(t) should be small enough to ensure the control sub optimality for Case 2. 

To obtain a suitable value of c'2(t), the author proposes a recursive procedure 
in the form of two subsequent steps. 

Step I: Determine 

~(t)= - . 
o {c~(t-I) if 112(t-I):Sd2 

- c~(t - I) + (5/2 otherwIse 

where 

t.. 
d = max 119' - 9"11 

6',1\" E!\ 

is the diameter of known 0 0 , 

Step 2: Determine 

j11it - 1) for Iq2(t)1 :S c~(t) 
112(t) = 112(1) + II'lw(1 - 1)1I-2'[lqzCt)l- c2(t)f 

for Iqit)1 > c~(t) 

(24.61) 

(24.62) 

(24.63) 



ADAPTIVE CONTROL OF SYSTEMS 397 

11it) = 0 otherwise. 
Comments: Observe from Eq. (24.61) that the estimate C2(t) changes as a 

piecewise constant, monotonic nondecreasing function in t. Such a change arises 
whenever the auxiliary inequality 11it - 1) :S: d 2 is violated at some t = t2(k) (k = 1, 
2, ... ). Then associated with Eq. (24.61), C2(t) has a jump at t = tik)+ 1. Suppose 
there exists a finite k such that Eq. (24.60) is satisfied for all t;::: t2(k) + 1. In this 
case, the inequality 11it - I) :S: d2 cannot be violated at t E [t2(k) + I, IX) if the 
initial estimates 9(0) and 112(0) are chosen so that 9(0) E 0 0 and 112(0) = O. Indeed, 
assume that Eq. (24.51) is violated at t = t~ for the jth time by substituting 
9 = 9(t~ - I) (j = 1,2, ... ). Use the proof of Theorem 2.1.1a of Ref. 8 and Eq. 
(24.62). Since 9(t) E 0 0 for all t, we establish from Eq. (24.63) that the estimation 
procedure represented by Eq. (24.55), together with Eq. (24.58), has the following 
remarkable property: 

112(t) = L a(ti) :S: 1190 - 9(t)1I2 :S: d2 

,/k) + 2 <;, (2 <;, t 

for all tik) + 2: :S: t < IX) where 

(24.64) 

(24.65) 

Since Eq. (24.63) yields 112(t2(k) + 1) = 0, then from Eq. (24.64) 112(t) :S: d2 follows 
all for t ;::: t2(k) + I. 

Furthermore, exploit the key property (Eq. 24.64» together with Lemma 1 to 
establish the finite convergence of {9(t)} in some stabilizing system S which 
comprises the plant (Eq. (24.3», the adaptive controller (Eq. 24.50» and the 
identifier (Eq. ( 24.53-24.56, 24.58, and 24.61-24.63». 

24.5.2.2. Properties of Stabilizing System 

The following important preliminary results regarding the properties of the 
system S with the second adaptive controller serve as a foundation for establishing 
the conditions under which the first adaptive controller (Eq. (24.39» may come 
into operation. 

LEMMA 4. Let Assumption 1 and 3, and Eq. (24.8) be valid. Consider the system 
S . Suppose that the Eq. (24.50) starts with some t = ti ;::: O. Choose an arbitrary 
8 > O. Then, for C2(0) = 8, 11iO) = 0, and any 9(0) E 0 0 

(i) there exists a finite t2 and C2 such that 

C~(t) = c; '" const for all t;::: t; 
where 

C; < E + 8 (24.66) 
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(ii) there exists a finite t; ~ t2 and 0* E 00' 0* := const such that O(t) = 0* and 
[yo - y(t) I ::; E; for all t ~ t;. 

PROOF: The proof proceeds by an argument analogous to that used in the proof 
of Theorem 1 of Ref. 18 via applying Lemma 1 to Eq. (24.22) with 

A(a,z-l)=(1-z-I)A(a,z-l) 

where u(t) ~ u(t) - u(t - I) and ~(t) ~ s(t) - s(t - I), and using Eq. (24.64) to­
gether with Eqs. (24.65 and 24.60). (Details are omitted here.) D 

LEMMAS. If Assumption 2 holds in addition to the conditions of Lemma 4, then 
for any 8' > 0 there exists finite ,0 = ,°(8') ~ t; such that 

where 

IVu(t)1 ::; KME; + 8' for all t ~ ,0 

! 

M = 3 + 2 max " I~ I ~ L f1 
aEO, f1=1 

in which I3vC~) are the coefficients of the series 

(24.67) 

(24.68) 

(24.69) 

PROOF: Eq. (24.67) together with Eq. (24.68) follows directly from Lemma 4 
and Property Dl of Ref. 20. The value of K defined by Eq. (24.69) is obtained in 
the same way as the similar value given by Theorem lOin Section 6 of Ref. 21 for 
continuous-time case. D 

24.5.3. Adaptive Control Design 

Now return to the derivation of the first estimation algorithm which is a 
recursive procedure for solving the system of Eq. (24.42). Introducing a variable 

pet) = {pet - 1) + ~it) if Iqit)1 ::; E~(t) and pet - I) ::; 2E~(t - 1) (24.70) 
o otherwIse 

design this algorithm as the following several steps. 
Step I: Calculate 
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de(t) = (d2 + d~(tll2 

where de(1) is the diameter of the set G(t) ~ no x 3(t) and 

d='(/) = max 1:;sC't) - min 1:;/t) 
I :s; T :s; I I :s; T:S; I 

is the diameter of the set 3(t) (see Fig. 24.1). 
Step 2: Determine the first estimate EWt) by 

min {E~(t), E~(t-1)+812} ifrh(t-1»d~(t) 

or if p(t-1»2E~(t-1) 

E~(t) = E~(t)12 if E~(t - 1) < E~(t)l2, 'IlICt - 1) =:::; d~(t) 
and pet - 1) =:::; 2E~(t - 1) 

E~(t) otherwise. 

Step 3a: Choose OCt) = [OT(t), Z(t)]T with 0l(t) and z(t) satisfying 

0l(t) E no and z(t) are arbitrary 

if E?(t) = E~(t) =: E~(O). 
Step 3b: Set 

O(t) = O(t - 1) if E~(t) = E~(t) :f- E~(O). 

Step 4: Determine 

O'(t) = OCt - 1) - f(q) (t),E~(t), E) (t)) II w(t - 1)1I-2·w(t - 1) 

if E?(t) < E~(t) . _ 
Step 5: Find O(t) from the condition 

O(t) = arg min 110 - O'(t)ll· 
fiE e(/) 

Step 6: Determine 'Ill (t) as follows: 

if E?Ct) = E~(t) = E~(O), and 
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(24.71) 

(24.72) 

(24.73) 

(24.74) 

(24.75) 

(24.76) 

(24.77) 

(24.78) 

(24.79) 
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if EYet) = E~(t) "* E~(O), and 

if Ef(t) < E~(t). 

{
'IlI(t - 1) for Iql(t)1 ::;; E~(t) 

'IlI(t) = 'IlI{t) + "w(t - l),,-2'[jql(t)l- EI(t)f 

for Iq I (t)1 > E~(t) 

'Ill (t) = 0 otherwise 

L. S. ZHITECKIJ 

(24.80) 

Now, it only remains to formulate a rule of the controllers switching as follows. 
Set EWO) = E~(O). The second controller (Eq. (24.50» comes always into operation 
at t = to = O. This controller continues to be active as long as EYet) = E~(t). If EYet) < 
E~(t) (the case E?{t) > E~(t) is impossible due to Eq. (24.75)) at some t = tj, then the 
first controller (Eq. (24.39)) comes into operation and the controller (Eq. (24.50» 
becomes inactive. Starting with t = tj, the controller (Eq. (24.39)) continues to be 
active until either le(t)1 > 2EWt) or Ef(t) = E~(t) occur at some t = t2' Then the controller 
(Eq. (24.50)) starts at t = t2 and the controller (Eq. (24.39)) becomes inactive, again. 
The controller (Eq. (24.50)) continues to be active until all the conditions le(t - n)1 
::;; E~(t) and 

IVu(t- n)l::;; KME~(t) + 8' (n = 1, ... , I) 

and Ef(t) < E~(t) are satisfied at some t = t3' Then the controller (Eq. (24.39» comes 
into operation at t = t3, and so forth. 

To give this narrative description a compact mathematical form, introduce a 
indicator function set) defined as set) = m, m E {I ,2} if the mth controller is active 
at time t. Use Eq. (24.81) to obtain the following decision rule: 

set) = 2 if E~(t) = E~(t) (24.82) 

1
1) ifs(t-n)=2 and le(t-n)I::;;E~(t) and 

IVu(t - n) I ::;; XME~(t) + 8' for n = 1, "', I (24.83) 
set) = 

2) if set - 1) = 1 and le(t)1 > 2E~(t) 

set - 1) otherwise 

Eqs. (24.39, 24.70-24.80, 24.50, 24.53-24.56, 24.58, and 24.61-24.63) to­
gether with Eqs. (24.46-24.48) and Eqs. (24.81-24.83) define the adaptive control 
algorithm in full. To realize this algorithm, one needs the preliminary calculation 
of the values of d, M and K by Eqs. (24.62, 24.68 and 24.69), on the basis of a priori 
knowledge about the sets na and nb• 



ADAPTIVE CONTROL OF SYSTEMS 401 

24.5.4. Finitt~ Convergence Properties 

Let ti (i == 1,2, ... ) be moments of controller switchings. According to Eqs. 
(24.82) and (24.83),s(t) = 1 Vt E L1;withoddiands(t)=2Vt E L1;witheveniwhere 
L1i ~ [ti' ti+! - I]. Exploiting the properties of system Swhich are given by Lemmas 
4 and 5 one can conclude that the chosen decision rule guarantees that Vw(t) is 
uniformly bounded in the norm for all t E L1i . From this fact and Lemma 4 it follows 
that there exist finite t; , a; , and £; satisfying Eq. (24.66) such that £2(t) = £; and 
a2(t) = a; == const V t 2 t; . 

There are three different cases to be examined in order to establish the finite 
convergence of sequences {£~(t)}, {a(t)}: 

• (Case l) s(t) satisfies Eq. (24.9) 
• (Case 2a) set) satisfies Eq. (24.11) and set) is bounded 
• (Case 2b) set) satisfies Eq. (24.11) and !s(t)!---+ 00 as t ---+ 00. 

From Lemmas 4 and 5 it follows that the boundedness of e(t) ~ no x 3(t) is 
guaranteed for Case I and Case 2a. If Case I or Case 2a take place, then there exist 
finite 

and £ 7, 0* such that 

£Y(t) = £~ == const V t E [t~, 00) 

and 

OCt) = 0* == const V t E [t~, 00) 

where £ 7 < £ + (5 < £; for Case I and £ T = £ 2 for Case 2a (this result can be 
established in the same way as in the proof of Lemma 4). 

It can be proven that if Case 2b takes place, then, due to Eq. (24.70), the number 
of violations ofthe inequality p( t - I) ::;; 2£~(t - I) increases indefinitely as t ---+ 00. 

Then, it follows from Eq. (24.75) that there exist finite t1 2 t; such that 

£7(t) = £; V t E [tT, 00). 

This yields 

a(t) = a* == const V t E [t~, 00). 

Clearly, if Case 2a or Case 2b take place then due to Eq. (24.82) 

set) = 2 V t E [t~, 00). 
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Setting tT = t; and employing Lemma 4 obtain 

It follows from Eq. (24.83) that for Case 1 

set) = 1 I;j t 2 t ~. 

Since 

and Ei < E + 8, this leads to 

le(t)1 < E + 8 I;j t 2 t ~ + 1. 

The results thus established are summarized in the following. 
THEOREM 1. Consider the closed-loop system, consisting of the plant (Eq. 

(24.1 », the controllers (Eqs. (24.39) and (24.50», the identifiers (Eq. (24.70-
24.80», Eqs. (24.53-24.56,24.58, and 24.61-24.63) together with the decision rule 
(Eqs. (24.82) and (24.83». Let Assumptions 1-3 be valid. Choose 8> 0 and 
8' > 0 arbitrarily. Then for E ?(O) = E ~(O) = 8 and any initial 9(0) E Qo' e(O): 

(i) {El(t)}, {E?(t)}, {9(t)}, {9(t)} converge at a finite time t* 
(ii) the number of the controller switchings is finite 

(iii le(I)1 < {E + 8 for Case I 
) Ev + 8 for Case 2 

for all t 2 t. 
It follows from part (iii) of Theorem 1 and Lemmas I and 3 and Definition 3 

that the designed adaptive control is suboptimal. 

24.6. SIMULATION RESULTS 

To illustrate the main features and the power of the designed adaptive control 
algorithm, the results of three simulation experiments are presented here. To this 
end, set) was chosen as s(t) = X(t) + set) where X(t) == 0 (run 1), X(t) = 0.3 (run 2), 
X(t) = s(t- 1) (run 3) and set) E [-0.4,0.4] is the pseudorandom variable. 

The conditions of the experiments:(I7) I = 1, a] = -0.45 and b l = 4.0. The a 

priori sets Qa, Q b were defined as Q a = [-0.8, -0.2] and Q b = [2.5, 5.0]. Then, Eqs. 
(24.62,24.68, and 24.69), give d 2 = 6.61, M= 4.6 and K = 0.4. In all runs, the initial 
estimates are chosen: a](O) = -0.8 and bl(O) = 2.5. 

The results of a 600-step long simulation for yO = 4.0, 8 = 0.2, and 0' = 0.2 are 
depicted in Figs. 24.4-24.9. It turns out that EWt) remains less than E~(t) in Case 1 
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FIGURE 24.4. Plant output and disturbance for the case when the bounds on ~(t) are symmetric:~.4 
~ ~(t) ~ O. 4 (run 11. 

for t > 12 (see Figs. 24.5 and 24.7) and equal to £~(t) in Case 2 for t > 520 (see Fig. 
24.9); herein £Wt) ::;; 0.4 < £ + 8 (= 0.6), 

£~(t)::;; 0.7 < E + 8 (= 1.0) (run 1) 

and 

FIGURE 24.5. Parameter estimation 
and controller switchings for the run 1. 

~·~k~=.====~~~========~eI:I(~d;~(~t~)~ 
2.4 
2. 2 

2.0 
l.8 
1 . 6 

1.4 

1 . 2 Vet) 
1.0~~~~================= 
0 · 8 
0.6 

V( t) 
-
v ( t) 

0.4 ~~~~~~--~~~~~~ __ ~ 

7 ~~.-----------------------
0 0 100 200 300 400 500 600 



404 

7.0 
6.0 

5 5.0 yCt> 

0.. ~WRI!IWlI*I\I~I'IIffl~IHII\NIiJR;iT\W~~fWt-' yO C I ) 5 4.0 
o 3.0 

U.J 
U 
Z 
~ -1.0 
~ 

;::-2.0 
~ -3.0 
o-4.0 L-~~~~~~~~~~~~~~ o 100 200 300 400 500 600 

DISCRETE Tl ME 

L. S. ZHITECKlJ 

FIGURE 24.6. Plant output and disturbance for the case when the bounds on s(t) are symmetric: -0.1 
:s; s(t):S; 0.7 (run 2). 

c~(t) ::s; 0.45 < c + 8, 

c~(t) ::s; 0.7 < E + 8 (run 2) 

and 

c7(t), c~(t) ::s; 0.5 < Cv + 8 (= 0.6) (run 3) 

for all t::S; 600. Figures 24.5, 24.7, and 24.9 show that in all runs, the variables 
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FIGURE 24.S. Plant output and disturbance for the case when ~(t) = ~(t - 1) + ~(t), where -0.4 S 
W) s 0.4 (run 3). 

are not nonincreasing in t (in contrast to V(t)). (8,12) The indicator function s(t), which 
is depicted in Figs. 24.5, 24.7, and 24.9 demonstrates how the controllers switching 
occurs. In the end, the controller which is suboptimal becomes active all along, 

FIGURE 24.9. Parameter estimation 
and controller switchings for the run 3. 

~ &o(t) 0.6 , 
0.4 ______ r---------------~~ 

~: ~ . 

1.0 

0.5 
y (t) 

O.O~~~L-~~~=---------~-L 

~ ~(/ )r------, 

o ~ ,~L-, --, -------', ~, 
o 100 200 300 400 500 600 



406 L. S. ZHlTECKIJ 

namely, the first controller in Case I (Figs. 24.5 and 24.7) and the second controller 
in Case 2 (Fig. 24.9). 

Although Vet) and Vet) do not go to zero as the parameter estimates converge 
to their final values, except Vet) for Case 2 (see Fig. 24.9) the proposed adaptive 
control algorithm copes with different disturbances t.;;(t) both in Case 1 and in Case 
2 (see Figs. 24.4, 24.6, and 24.8). A comparison of Figs. 24.4 and 24.6 with Fig. 
24.8 shows that no appreciable difference is noticed in the behavior of the plant 
output yet), while the disturbances t.;;(t) are different in all these cases. 

24.7. CONCLUSIONS 

This chapter shows that within one of the bounding approaches it is possible 
to design the suboptimal adaptive system in the presence of bounded disturbances 
with unknown parameters. The approach used here relies on the finite convergence 
property of the recursive projection algorithms for solving of the inequalities. The 
effectiveness of this approach is demonstrated by simulation runs. 
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25 
Predictive Self-Tuning Control 
by Parameter Bounding and 
Worst-Case Design 
S. M Veres and J. P. Norton 

ABSTRACT 

The computation of bounds on the parameters of a plant model allows worst-case 
control synthesis, taking account of the uncertainty in the model. This chapter 
introduces such a control scheme: predictive bounding control. The scheme con­
trasts with existing self-tuning control methods which base control synthesis on a 
nominal plant model. Parameter bounding also permits detection of abrupt plant 
changes, and adaptive tracking of time-varying plant characteristics by suitable 
choice of bounds on plant-model output error and plant-parameter increments. 
Estimation and control are closely integrated, and the control computation can com­
promise between reducing the model uncertainty and reducing predicted output error. 
Simulation examples show the excellent performance of predictive bounding control. 

25.1. INTRODUCTION 

The range of possible techniques for adaptive control has been broadened by 
the algorithms now available for computing bounds on the parameters of a difference­
equation model of a dynamical system. (H) 

S. M. VERES AND J. P. NORTON. School of Electronic and Electrical Engineering, University of 
Binningham, Edgbaston, Binningham 815 2TT, United Kingdom. 

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York, 
1996. 
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The bounds define the set of parameter values giving model-output errors 
within prescribed bounds, and may be regarded as the result of mapping the 
uncertainty in the observations directly into uncertainty in the model. Such 
bounded-parameter models are a natural basis for designing a controller which must 
meet performance requirements and control constraints expressed as inequalities. 
Treating the control-design problem in this way reflects classical control-design 
practice and allows worst-case design. It also makes possible control synthesis 
without the assumption of certainty equivalence; this factor is important in achiev­
ing robust adaptive control based on imprecise parametric models. Moreover, 
model uncertainty and control performance can be linked through the medium of 
bounds to open up an approach to dual control. 

The next section starts with a reminder of the basic ideas of parameter 
bounding. Some limitations of traditional self-tuners are then reviewed briefly, to 
motivate parameter-bound-based self-tuning control. Section 25.3 introduces 
worst-case control based on parameter bounds. It is followed by a description of 
predictive bounding control (PBC), which allows on-line bound adaptation and 
input optimization to exploit any freedom left in the control sequence by the control 
performance specification. Section 25.5 presents a technique for bounding the 
parameters of a system undergoing both drift and abrupt changes. Simulation results 
and conclusions follow. 

25.2. PARAMETER BOUNDING AND MOTIVATION FOR ITS USE IN 
ADAPTIVE CONTROL 

Parameter bounding(3,4,9) consists of using observations Yr (assumed scalar) at 
sampling instants t = 1,2,3, ... and specified bounds er E 'Et on the output error of 
the model 

(25.1 ) 

to infer bounds 

(25.2) 

on the unknown model parameters 9. For example, one observation together with 
plain bounds let I ::; E on error from a model linear in 9 gives a pair of hyperplane 
bounds on 9. Successive observations yield new bounds which mayor may not 
reduce the size of the feasible parameter set 'Dr. The essential features of bounding 
are that there is no reference to an ensemble and there are no preferred values within 
the feasible set (although a criterion to select a center of the set can be added). The 
feasible parameter set 'D t, which describes all the parameter values consistent with 
the observations, the model structure and the error bounds, can be the basis for a 
control computation taking the worst-case plant behavior into account. Bounded-
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error inputs can be handled by a solution ofthe errors-in-variables problem.(IO) The 
parameter bounds can also deal with time variation of the plant; bounding of 
time-varying parameters is discussed by Norton and Mo.(6) 

This chapter examines the use of parameter bounding in on-line adaptive 
control. Existing self-tuning controllers can often perform well with modest levels 
of disturbance and slowly changing plant dynamics. Minimum-variance self-tuning 
control(l 1.12) and its generalizations(l3-15) are relatively robust against errors in plant 
order, but sensitive to some errors in dead-time. Another approach based on 
closed-loop pole placement(l6,17) proves insensitive to dead-time variations but 
sensitive to model overparametrization. Both approaches can be made to cope with 
non-mini mum-phase models. Robustness against high-frequency noise and un­
modeled dynamics is improved by the introduction of observer dynamics and 
disturbance-rejection filtering, and by careful choice of plant model structure and 
reference model. 

Generalized predictive control (GPC)(l8,19) is intended to improve robustness 
by using a multi-step cost function. It also incorporates integral action (by using 
controlled autoregressive integrated moving average-CARIMA-models) to pre­
vent steady-state error. GPC requires the specification of cost horizons, a control 
horizon and input weighting as design parameters, as well as model orders. Special 
or limiting cases ofGPC are dead-beat, GMV and LQG self-tuners and the methods 
of Peterka, (20) Y dstie(21) and De Keyser and Van Cauwenberghe. (22,23) A detailed 

discussion of relations ofGPC to other methods is given by Clarke and Mohtadi.(l9) 
A variant, generalized pole-placement control (GPp),(24) is also designed to 

improve transient response and overall control performance by employing a multi­
step cost function. Robust adaptive control has been studied by Middleton et 
al. (25 -27) for mixed structured and unstructured uncertainties in models, using 
relative dead zones for the unstructured uncertainties. They provide a quantitative 
measure of the unmodeled errors that can be tolerated by the controller. 

The well known self-tuning controllers determine the control input from 
updated estimates of the model parameters. The control synthesis, however, does 
not make use of estimates of model uncertainty, such as parameter error covariance. 
There is no way, therefore, to balance short-term performance against longer-term 
benefit by taking into account the effects of the next control input on model 
accuracy as well as on short-term output accuracy. In practice, the input may be 
near-constant for long periods of time, and poor parameter estimates may result 
from the poor excitation. They may assume values which lead to temporary loss of 
stability ("bursting,,(28») or poor closed-loop behavior even if some functions of the 
parameters, e.g., steady-state gain, remain well estimated. Sudden disturbances 
after quiet periods may elicit insufficient or excessive response because the parameter­
estimate updating gain derives from parameter-error covariance estimates which 
have become unrealistic. 
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There are at least three ways to prevent such problems. One method is to add 
an external, persistently exciting signal to the control input.(29-J2) On-line input 
optimization with this aim in a bounding context is described in Section 25.4. A 
second way is to improve the correction gain of the parameter estimator. This 
amounts to proper tuning of the underlying model ofthe noise and plant changes, 
as described for parametric bounding in Section 25.5. A final possibility is to 
arrange for the control computation to be conditioned by the uncertainty in the 
parameters, by making the performance criterion sensitive to the quality of the 
model. This is done by the worst-case control design of Sections 25.3 and 25.4. 

Statistical or least-squares counterparts of most of the techniques suggested 
below are readily envisaged. Alternatives differing in detail but still based on 
parameter bounds are also easily devised and may be better matched to particular 
circumstances. Not all the features discussed are necessary in every application. 
The point of the chapter is simply to demonstrate what deterministic parametric 
bounding and worst-case control design offer: a conceptually simple framework 
for self-tuning control to accommodate a range of practical features. 

25.3. WORST-CASE CONTROL BY PARAMETER BOUNDINd33--35) 

Ifwe are to apply control inputs which take into account the uncertainty in the 
model, the quality ofthe assessment of parameter uncertainty is crucial. (33-35) When 
the noise and parameter changes can be modeled as the result of linear filtering of 
white noise with known covariance, the parameters can be treated as state variables. 
State estimation then provides parameter estimates and the estimated parameter-er­
ror covariance. However, if uncertainty is treated statistically, only average behav­
ior can be guaranteed and there remains a possibility of poor closed-loop 
performance. The parameter-bounding techniques now available provide the means 
to guarantee control performance deterministically (subject, of course, to validity 
of the deterministic assumptions about the noise, disturbances and initial uncer­
tainty). 

At each sampling instant t the worst-case control (WCC) scheme updates a 
feasibility (uncertainty) set 'D t for the plant-model parameters. All values within 
this set give model-output errors within the specified bounds. The set 'Dt is the 
intersection ofthe m pairs of half-spaces yielded by the upper and lower bounds on 
model-output error at the most recent m input-output sampling instants. (In the 
scheme described in Section 25.5, m varies according to the rate of variation of the 
plant). At time t, a fixed-length control sequence is then computed that is optimal 
in the worst case over all plant parameter values within 'Dh and all future noise and 
disturbance values within their specified bounds. 

Consider the autoregressive moving average exogenous (ARMAX) model 
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p q 

Yt+k = - L alt- i+k + L biut- i+k + et+k' et+k E 'E (25.3) 
i=! i=1 

where ai and hi are unknown parameters, possibly time varying but modeled as 
constant over m sampling intervals, and 'E == [-8,8] with 8 specified. The smallest 
possible value d of the dead time is specified on physical considerations; d can be 
taken as one by default, as it is here and henceforth for simplicity. An output-error 
model might be proposed instead, on the grounds that realistic output-error bounds 
are easier to specify than equation-error bounds. However, to retain linearity in the 
parameters, model Eq. (25.3) is preferred. (Problems raised by the use of equation­
error bounds in parameter bounding by ellipsoids have been examined by Nor­
ton).(9) IfEq. (25.3) is valid throughout I :s; k:S; n, then 

p q p q 

i=! i=! i=2 i=1 

p q 

= L o.i(2)yt_i+! + L 13;(2)ut_i+! + blut+1 + a!et+! + et+2 , (25.4) 
i=! i=! 

and so on, to give prediction equations 

p q k-! 

Yt+k = ~: o./k)Yt_i+1 + L 13;(k)ut_i+1 + L f3 1(i)ut+k- i 

i=1 i=1 i=1 

k-I 

+ L 0. 1 (i)et+k_i + et+k, k = I, ... , n with et+i E 'E, 1:S; i :s; k. (25.5) 

i=1 

The controller is required to minimize a performance index by computing 
control inputs u;, u;+], ... , and U;+N-I on the basis of the past inputs and outputs 
Ut-], Ut-2, ... , Yt, Yt-], ... , for the worst case within an updated feasibility set 'Dt for 
the parameters () = [al a2 ... ap b l ... bqf. Optimizing a sequence of inputs 
accounts for the indirect influence of Ut on later outputs via its effect on the predicted 
optimal U;+I, U;+2, ... , U;+N-I, as well as its direct effect. The idea of optimizing over 
a finite number of control samples at each update appears in several established 
adaptive control schemes, e.g., GPC self-tuning, adaptive LQG control(36,37) and 
model-predictive control.(38) 

Denote by {y;} the sequence of set points. The control cost function for time 
t+k, computed at time t, is 
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Ck(t) = SUp {max(IY;+k-Y1+kl,IAUf+k_d)} (25.6) 
9E'.Dt,et+1E'E, 1= l,.,k 

where A is a weight to penalize large inputs. The control sequence may also (or 
alternatively) be confined to a set '£1, e.g., /U1+/'5. y at each time Hi to incorporate 
actuator constraints. The optimal control sequence computed at time t is 

{U;(t), ... ,u;+N_l(t)} = arg inf max CJt) (25.7) 
Ut Ut+!' ... , UI+/',,'_ I k:;;;:.d ... n 

of which u;(t) is applied to the plant and the rest of the control sequence is discarded. 
Such a finite-horizon, worst-ease-optimal controller is guaranteed to keep outputs 
Y1+k, d '5. k '5. n, within a bounded but unspecified region about the corresponding 
set-points, as shown in the next section. 

In the predictor equations, Yf+k is linear in ef+i, I '5. i'5. k, and multinomial in the 
parameters 9 of the original model. Since the es and 9 are within convex polytopes 
'E and '1J I, the calculation of Cit) is the optimization of a multinomial over a convex 
polytope. The total degree of the multinomial is equal to the time horizon N over 
which the input is optimized. 

The control law defined by Eq. (25.7) will be called explicit worst-case control. 
In implicit WCC considered below, bounds are computed for the parameters in the 
predictor equations rather than the parameters of the original model. There are 
significant differences between the two identification problems. First, the implied 
range of times over which <3 and the bounds making up 'DI remain valid is larger for 
the prediction model. If the model is identified over m steps, then used at time t, it 
has to be valid for times t-m+ I to Hn on the left-hand side; the corresponding input 
and output samples on the right-hand side range over a longer period for the 
prediction model. Second, since the predictor equations contain error samples 
el+k-i which appear for more than one sample instant t+k, the bounds of the 
(p+q+2k-2)-dimensional feasibility set Pit) of the k-step predictor parameters u(k) 
and P(k) are non-linear (reflecting the non-linear relationship between the predictor 
coefficients and those of the original model), much as in the errors-in-variables 
problemyo,39) Recursive updating of polytopes or ellipsoids in that situation is 
discussed in the references cited. 

The control law based on the predictor parameters is 

arg inf max q(t) (25.8) 

where 

q(t) = sup {max(IY;+k-Y1+kl,IAUf+k_II)}, 
0; EP /1), C,+,E'L, i ~ 1 .. k 

and 
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with 

confined to its feasibility set Pk and 

If the parameters are confined to a polytope, calculation of the optimal input 
sequence in Eq. (25.8) is reasonably tractable, as shown by the following lemma. 

LEMMA 25.1. With 'Vk the set of vertices of convex polytope Pk(t), 

q(t) = max {max(itk(l) T 9~ - Y;+k' Y;+k itk - (-1 f9~, I AUt+k_l I)} 
~Eo/k 

where 

and 

ei = 0 sign(~+q+k+i_l)' 

PROOF: From the definition, 

C~(t) = sup {max( I Y;+k - Yt+k I, I AUt+k_1 I)} 
0; E Pk(t). e/+, E 'E, i = l. .. k 

* A 1\ * 
sup {max(Yt+k - Yt+k'Yt+k - Yt+k' I AUt+k_l I)} 

et+1E'E, i = 1 .. k 

and it is easy to see that 

sup {Yt+k - Y;+k} = itk(l )T9~ - Y;+k' 
et+iE'E, i = I ... k 

Within anyone orthant (] in 9-space, itil) and itk(-l) are fixed. The subset of 
convex polytope Pk in (] is itself a convex polytope, with vertex set 'Vkj say. A linear 
form over a convex polytope can have generic extreme values only at the vertices 
of the polytope, so 
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Now the supremum over the union of two adjoining orthants cannot be at a point 
of their common boundary unless that point is also a vertex of the union, since the 
definition of$tk( I) and $tkC -I) ensures monotonicity of all terms as the boundary is 
crossed. The supremum over the union is therefore at a point in the union's vertex 
set, and by induction the supremum over the whole polytope Pit) is in '1{. D 

Since $tk(l)TOf-Y;+k and Y;+k-$tk(-I?Of are linear forms in 
ut == [ut Ut+1 ... ut+N_dT, Cf(t) is piecewise linear over 'U and its maximum over k = 
d, ... , n can be represented as the maximum of a finite number of linear forms: 

1\ 

C = max q(t) = max Li(U) (25.9) 
k=l, ...• n iEJ 

- 1\ _ 

Consider the space of (u(, C), in which each linear form LiCut) is a hyperplane. 
1\-

Together with the bounds of 'U, C(ut) defines a polytope, unbounded upwards and 
1\ 

convex downwards in the C direction. The polytope may be computed by estab-
lished polytope-updating algorithms.(6,7) The minimization with respect to ut 

1\ 
amounts to finding the polytope vertex with smallest C. 

The WCC scheme just described provides the rudiments of a controller. Next 
some other aspects of the controller are considered. 

25.4. PREDICTIVE BOUNDING CONTROLLER 

This section extends the basic worst-case control scheme to provide for 
time-varying plant and to allow short-term control performance to be balanced 
against identification accuracy when finding the control sequence. 

A scheme for tracking time-varying plant dynamics, described in detail in 
Section 25.5, updates the equation-error bound is and a scalar P characterizing the 
largest possible time variation ofO. The scheme yields a set of acceptable (feasible) 
values of (o,p) at each update. The worst-case control performance depends on 
(Ot,Pt) through the set Pk(t,Ot,Pt) of feasible k-step predictor-parameter values. Thus 
one can choose (Ot,Pt) from its feasible set according to its effect on worst-case 
setpoint-following error. 

LEMMA 25.2. A control law exists yielding setpoint-following error bounded by 

IY;+k-Yt+kl.:o:; inf{ sup IY;+k-.~Ofl}+(\, 
U"U'+I·· .. 'U'+k_1 9~EPk(t,o"p,) 

e,+i E 'E,05,i5,k-2 

k = 1, .", N, where {y*} is the set-point sequence and (o(,Pt) is within its feasible 
set. 
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The lemma follows directly from the definition of Pk(t,Ot,Pt) and the assump­
tion that it contains at least one value of Of satisfying the prediction equation with 
the assumed bounds on equation error. Treating Ot and Pt as parameters for the 
moment, the lemma suggests the control 

U;(Ot,pt) = arg inf Llut,Ot'Pt) (25.10) 
utEtzl, 

where 

LlUt,Ot'Pt) = inf max sup I Y;+k - 'l9~ I 
UI+1'···'U,+N_1 bl,2, ... , ~EP/t,0t'P,) 

e,+;E'E,O<;i<;k-2 

The set 'lit of permissible control values is discussed later. For each Ot in the range 
[0tmin,0tmax] of feasible values, a minimum feasible Pmin(Ot) gives the smallest 
parameter variation. PBC uses that (Ot,Pmin(Ot)) which gives the lowest worst-case 
setpoint-following error Lt(ut,Ot,Pmin(Ot)): 

U; = arg inf LlUt,O;'P~in) 
UtE'll, 

where 

0; == arg inf inf Llut,Ot'Pmin(Ot)) 
o,E[0tmin,0tmax1 U,E'U, 

and P;"'in is Pmin(O;). In practice, a finite number of pairs (Ot>Pmin(Ot)) is examined 
instead of the entire set, and the definition of 0; correspondingly modified. 

Next consider the determination of the permissible-control set 'lit. Procedures 
for optimizing the excitation properties of the control sequence (on-line experiment 
design), and to guarantee closed-loop stability will be described. 

As so far defined, PBC recognizes the effects of future control inputs on the 
output but not their effects on future feasible-parameter sets Pk(t+i,O,p) and thence 
on Lt+i(Ut+i'O,P). A controller with more foresight can be obtained by relaxing the 
requirement that {ut, Ut+i> ... ,ut+N-d should minimize Liut,otoPt) and using the 
resulting freedom in Ut to tighten future parameter bounds. In Section 25.3, the 
worst-case-optimal co~trol input was _com;uted by ~earching the vertices ~f a 
polytope 'l.Jn niEJ Li m the space of (u(t),C), where u(t) == rUt Ut+! ... ut+N-d , 'li 
is the permissible-control set, L; is the half space defined by the linear form 

- /, 
L;(u(t)), and C is the worst-case ~utputl\error. The best control sequence is at the 
vertex giving the smallest value C* of C . For fixed ° and p, the same procedure 
applies to PBC. 1\ 1\ 

If now the worst-case output error is allowed to be a little larger, say C < C* + 
E (with E fixed by the largest acceptable output error), a range of control-sequence 
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values meets this relaxed error requirement. The one with the best excitation 
properties is found by optimizing over the polytope 

_ A A A 

~E) = {(U(t), C)E 'l1 n n £i Ie < C* + E}. 

One possible excitation criterion is to make the predictor vectors .1,,, 01-1," .'" 

tl_p+I,1 as nearly orthogonal as possible. For instance, 

D == det[.I,1 .1-1,1 , ..• 1-p+I,I] 

determines the volume of the parallelepiped formed by the l-step-predictor­
parameter bounds found from the prediction errors at times t, t-1 . ... , t-p+ 1. As D 
depends linearly on Ut, 

_ A 
U/E) = arg max {D I (u(t), C) E ~E)} (25,1l) 

'lit 

requires only a search of the vertices of ~E). This minimization ofD is for fixed 
(8,p). By repeating it, the optimal (8,p) can be found. 

An alternative on-line experiment-design technique, again considering the 
parameter-bounding parallelepiped due to p successive predictor updates, is to 
make the angles between the vectors .t-i,1 larger than a lower bound a while keeping 
their norms above a lower bound 11. Denote by '11{ the set of values of input Ut such 
that 

mm {Ang(tl 1'0I-i I)} ~ a 
i;l...p-I " 

If UtE '11{ 'it t, no two out of p successive regressor vectors are ever separated by less 
than a and the distance 28 /11.11 between any two opposite faces of the parallelepiped 
is not more than 28/11. The first part of Appendix B briefly discusses the effect of the 
angles and norms of the vectors $t-i,1 on the maximum diameter of the feasible 
parameter set. 

The control input found in this way balances control performance with 
effective excitation, in partial dual control. (Dual control in a stochastic setting is 
discussed, e.g., by Astrom and Wittenmark).(40) Certainty equivalence is replaced 
by explicit consideration of present and future uncertainty in the model. In the 
on-line experiment design procedures described above, E, a and 11 provide design 
parameters to compromise between immediate control performance and the ulti­
mate effect of reduced model uncertainty. 

PBC measures performance by setpoint-tracking error, but the control input 
can also be bounded to guarantee closed-loop stability sample by sample, as 
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follows. In conventional pole-placement self-tuning control,07,40) any non-mini­
mum-phase factor in the numerator B(q-I) of the plant model must be retained in 
the numerator of the reference model specifying the desired closed-loop transfer 
function. This difficulty can be sidestepped in a bounding context. Compute ut such 
that B(q-I ;O)ut is close to y; for all feasible plant-parameter values 9 and restrict the 
control law to the form 

(25.12) 

If this is done, the closed-loop behavior is given by 

where the closed-loop characteristic polynomial 

Plq-I) = A(q-I;9)Rlq-l) + B(q-I;9)Slq-l) 

can be bounded to be close to (1 + Oq-I + Oq-2 ... ). With B(q-I;91) ut close to the 
setpoint y; for all feasible parameter values, the closed-loop transfer function is 
acceptable for any plant parameters within the feasible set. At time t, a sequence of 
us is obtained by minimax optimization: 

and ut is set to Ut,t. The stabilizing horizon Nb is specified a priori. (The choice of 
Nb is not crucial; simulations show that it is practical to choose Nb greater than the 
prediction horizon n). To simplify computation ofthe feasible set of the coefficients 
of RtCq-l) and StCq-I), ptCq-l) is confined to a simplex d within the stability region. 
Appendix A shows that if '.Dt is a polytope, the feasible set of these coefficients is a 
polytope. 

The set 'l1~ of stabilizing control inputs Ut is then obtained by applying control 
law Eq. (25.12) over all feasible values of RtCq-l) and StCq-I). Since the feasible set 
of Rlq-I) andSrCq-l) is a convex polytope, the stabilizing input set'll: is an interval 
on the real axis. Overall, the feasible-control set 'llt is W{'l 'll: . 

25.5. ON-LINE BOUNDING OF TIME-VARYING PARAMETERS 

A technique to allow for time variation of the system, based on computation 
of parameter bounds, tunes the model-output error characterization and plant­
variation model jointly. Changes can be detected straightforwardly from model­
parameter bounds, since a significant change causing the current plant model to 
become invalid shows as a clash between new and existing bounds (making the 
updated '.Dt empty). The criterion for tuning is the frequency of such changes; the 
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items tuned are scalars 8 defining the bounds on model-output error and p defining 
bounds on sample-to-sample variation in the model parameters. 

Good tracking relies on the estimator employing suitable prior assumptions 
on possible parameter changes. Ljung and Gunnarsson(41) survey identification 
methods for time-varying systems. The most common approach, recursive predic­
tion-error estimation with a scalar forgetting factor, can be far from optimal.(42) 
Better parameter tracking can be achieved in suitable circumstances by treating the 
parameters as state variables,(43-48) but only if a state-space model for parameter 
changes is appropriate and the covariances characterizing the parameter changes 
and observation errors (including systematic modeling error) are reliable. In prac­
tice the covariances usually have to be tuned empirically. Moreover, a simple 
statistical parameter-change model may be unable to represent abrupt or systematic 
changes of the plant adequately. This is particularly so when the model has to be 
simple and the "noise" covers plant dynamics omitted by the model, with significant 
but unknown structure. 

The bounded-error predictor Eq. (25.5) with constant equation-error bound 8 
gives adequate computed predictor-parameter bounds if the system is time-invari­
ant or varies little enough for a suitably inflated value of 8 to give usable parameter 
bounds. Otherwise, explicit provision for time variation is necessary in computing 
the predictor-parameter bounds. The worst-case control performance for given 
future control-input values depends on the predictor-parameter bounds and the 
prediction-equation error bounds. An adaptive worst-case controller, therefore, 
must take the time variation of both into account. 

One option is to lump the effects of parameter variation on the output into a 
time-varying equation error, varying 8 accordingly. Empirical adjustment of the 
equation-error bounds could then be based on either the behavior of the parameter 
bounds or the actual model-output error. (Similar comments can be made of 
conventional statistical estimators, substituting "covariance" for "bounds"). How­
ever, one would expect better performance if parameter variation were distin­
guished from equation-error variation by making realistic assumptions about how 
the parameters vary. Adoption of some parameter-variation model is then necessary. 
The remainder of this section discusses possibilities and describes a scheme which 
has been found workable in simulations. 

Denote by Lk(t,8) the k-step-predictor parameter set (bounded by two hyper­
planes) obtained by substituting into the prediction equation for Yr values of plant 
input and output known at time t, and using a prediction-equation error bound 8: 

Lk(t,8) = {Of I Yt - t"t-k,k(l) T Sf ~ 8, t"t-ki -I) T Of - Yr ~ 8} 

Possible ways of allowing for parameter variation,(49) all computing parameter 
bounds from a fixed number m of successive input-output values, include the 
following. 
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(i) Assuming that changes in the predictor parameters between times 
t-k-m+ 1 and t are negligible, and using the bounded set 

m-\ 

.=0 

for prediction from time t. This technique has the virtue of simplicity and may be 
satisfactory for slowly varying systems, but is unsuited to rapidly varying systems. 

(ii) Loosening past prediction-error bounds by inflating the equation-error 
bounds exponentially, yields the feasible predictor-parameter sets 

with p > 1. Information older than m steps is discarded for computational economy, 
incurring little loss if m is suitably chosen. The parameters 9~(t) of the k-step-ahead 
predictor for Yt+k from time t are then assumed to be in the bounded set 

m-\ 

The increase in the error bound by a factor pk, to account for the k-step extrapolation 
of the predictor parameters, can be achieved with no extra computation by using 0 
larger by that factor when computing Lk(t-i,opi). A procedure to find acceptable 
values of 0 and p is suggested below. 

(iii) Assuming that the parameter increments from one sample to the next are 
confined to a specified bounded convex set: 9~(t-k-i) - 9~(t-k-i-1) E ck(t-k-z). 
The predictor-parameter bounds are computed by alternate time updates, vector­
summing the existing bounds and ck(t-k-i), and observation updates imposing new 
bounds 

At time t, the result of applying this procedure over the preceding m steps is 

~(t,o) == Lit,o) n [Lk(t-1,o) + ck(t-k)] n [Lit-2,o) + ck(t-k-1) + ckCt-k)] ... 

... n [Lit-i,b) + ck(t-k-i+1) ... + ck(t-k)] ... 

... n [Lk(t-m,b) + C'(t-m-k+ 1) ... + ck(t-k)]. 
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Allowing for evolution of9~ over the k steps from time t-k to time t, the parameters 
9~(t) of the k-step predictor for Yt+k are then in the bounded set 
Pit,o) = ~(t,o) + Ck(t-k+ 1) ... + Ck(t). 

In the absence of background knowledge, the increment set may be taken as a 
constant polytope Ck• Physical insight may suggest a size and shape for Ck , or Ck 

may be tuned in a preliminary off-line parameter-bounding identification exercise. 
The advantage of such a bounded-parameter-increment model is that different 
proportional rates of change or correlated changes can be handled so long as Ck can 
be specified. However, for simplicity the parameter-increment bounds will hence­
forth be assumed to be constant, Ck=Ck(t), and represented as C k = pC, P > 0, where 
C is an axis-aligned box in parameter space containing the origin. Thus Ck is a 
function of the single scalar parameter p. 

(iv) Model the parameters as jump processes, either staying unchanged or 
jumping at time t. It is assumed that jumps are not separated by less than 
mo ;:::: dim(9P) sampling intervals, and that the sequence {it-i-k.k> 1 ::; i ::; m} is line­
arly independent, so that a severe enough change causes the feasible parameter set 
to be empty. An obvious alternative, probabilistic specification of the jump charac­
teristics, conflicts with the motivation of bounding. 

With these possibilities in mind, tuning of the equation-error bounds and the 
parameter time-variation model can be discussed. The dynamics of the parameters 
are taken to be a mixture of slow drift, which can be accommodated by the 
equation-error bounds, and abrupt but infrequent changes which cannot. Modeling 
is done by a combination of (iv) and either (ii) or (iii). The basic idea is to adjust 0 
and p according to their effects on the mean time span over which the model remains 
valid (i.e., P or Qis non-empty) in particular records. In other words, the adjustment 
mechanism examines the model's age. 

DEFINITION 25.1. A model with equation-error bound 0 > ° is said to have age 

m-J 

m(t,o,p) = max{m > ° I n Lkr(t-i,O,p') -:f. 0, 1::; k::; n} 

i=O 

for equation-bound inflating by a factor p, or 

m(t,o,p)=max{m>OI ~(t,o)-:f.0, 1 ::;k::;n} 

for parameter-increment bounding. 
Age measures how old the input-output data in the model can become without 

clashing with the latest data. A clash causes a reduction in age, not necessarily to 
zero. Typical age behavior over an input-output sequence for fixed 0 is shown in 
Fig. 25.1. A reduction in age ends a generation. Assume that every change in plant 
dynamics not attributable to drift ends a generation so long as the equation-error 
bound is within a known range 0min::; 0 ::; omax. Appendix B gives conditions under 
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FIGURE 25.2. Least feasible parameter-increment bound as function of equation-error bound for 
specified number of detected abrupt changes. 
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dim@ t---' 

FIGURE 25.3. Variation of age with 8. 

which these assumptions are satisfied. The details of such conditions are unimpor­
tant and alternative conditions can be developed; their significance is that they allow 
each abrupt change to be detected by a fall in age. 

Assume for the moment that in a given input-output sequence {Ut>Yt}r=I ... p, r 
such changes are known to occur. For a given model structure one can calculate, as 
a function of 8, the least value p(8) of p which makes the number of generations in 
the given record r. The function pCb) shows the tradeoff between equation-error 
bounds and parameter-change bounds, as indicated in Fig. 25.2. Clearly, if 
bj ::;; 82 then 

Fig. 25.3 illustrates a typical increase of m(t,b,p) with 8. 
The pair (8,p) is called feasible if the number r of generations of m(t,b,p) in 

the period considered equals the specified number of abrupt changes. The feasible 
set of (8,p) consists of all feasible pairs for a given r. The set has extremes 8m in and 
bmax, and has pCb) as its lower boundary for p. Having found the feasible set for 
(8,p) tuning ofthe time-variation model amounts to choosing 8 and p. The set can 
be computed offline or, with sufficient computing power, periodically on line, by 
determining the number of generations in a given input-output sequence for each 
of a grid of values of (8,p), as indicated in Appendix C. 

25.6. SIMULATIONS 

This section compares the performance of the PBC with GPC and pole-place­
ment control (certainty-equivalence controllers based on recursive least-squares 
estimation). General conclusions cannot be drawn from a few examples, but the 
simulations will show that PBC has promise. Two examples are considered: a 
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non-minimum-phase system for which it is difficult to obtain acceptable perform­
ance by GPC or pole placement, and a time-varying linear system. To measure 
average performance, long simulations are carried out and density plots for the 
plant-output elTors are examined. Such plots tend to reduce the apparent relative 
merit of the bounding controller, which considers worst-case rather than average 
output error. 

Example 1: The continuous-time system 

xl(t) = x2(t) + u1(t) 

xit) = -x1(t) - 2xit) - 4u 1(t) (25.14) 

y(t) = x/t) + 0.04ui t) 

is simulated, where u 1 (t) is the control input. The response to step changes in set 
point are shown in Figs. 25.4-25.6, with input U2(t) a noise-like disturbance. 
(Regulation performance was also tested, with uz(t) a random-step disturbance 
signal with amplitude N(O, 1 )-distributed; regulation was satisfactory for all the 
controllers.) The non-mini mum-phase transfer function from ul(t) to yet) is 
(s - 2)1 (S2 + 2s + I). With sampling interval 0.4 s, the zero-order-hold-equivalent 
discrete-time transfer function from U1(z-l) to Y(Z-I) is 

The discrete-time model is of the form 

(25.15) 

and may be identified by least-squares parameter estimation, as the asymptotic 
information matrix is non-singular. For GPC and pole-placement control, the model 
parameters are estimated by recursive least-squares with a forgetting factor. Control­
input constraints lu/ :'S: 100 are applied in all cases. 

The specifications ofthe controllers, with design parameters chosen carefully, 
are as follows. For GPC: 

• minimum, maximum prediction horizons Nl = I, N2 = 4, control horizon 
Nc=2. 

• integral action by introducing difference operator into model: 

where 

• control weight 0.01 
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• forgetting factor in RLS 1.0. 

For the pole-placement controller: 

• observer polynomial AoCq) = q2 - 0.02q 

S. M. VERES AND 1. P NORTON 

• closed-loop characteristic polynomial P(q) = q2 - O.OSq + I 
• numerator of model B(q) = blq + b2, denominator A(q) = q2 + alq + a2' 

A 
• estimate B used as described by Astrom and Wittenmark, (17) discriminating 

between minimum-phase and non-minimum-phase roots. 
• forgetting factor in RLS 1.0. 

ForPBC: 

• prediction horizon n = I 
• at each sampling instant t, a polytope feasible parameter set 'Df valid for a 

short time up to time t is obtained by intersecting the hyperplane parameter 
bounds for the six immediately preceding sampling instants with the large 
box 

'13= TI [-10,10]. 

• for robust stability the closed-loop poles are restricted by bounds(51) 

-d l + d2 + 3d3 :s; O.IS 

d] - d2 + d]:S; O.OS 

-dJ - d2 - 3d3 :s; O.OS 

on the coefficients of the characteristic polynomial 

l + d]l + d2q + d3 = (q2 + a1q + a2)(q + 'I) + (b]q + b2)(slq + S2)' 

defining a simplex L say. The control Uf is then constrained by 

ut E {ut-'IUt_J -SIYI -sV't-J I (d l ,d2,d3) E L} 

where Ui is defined as in Section 25.4. 
• stabilizing horizon ofPBC, Nb = 8. 

Figs. 2S.4 to 2S.6 show runs for GPC, pole placement and PBC, after initial 
transients have subsided. In the figures, the square-wave set-point sequence and 
output sequence are superimposed; the control input and disturbance sequences are 
shown separately. Anticipatory responses to set-point changes are shown by GPC 
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Out ut 1 

-4.071 

10~.~r--------------------'~mmr-------------------~~.oco 
In ut 1 

10~.vm--------------------~~vm--------------------~~.oco 
In t 2 

10~.mm~------------------~~mm--------------------~~.oco 

time (seconds) 

FIGURE 25.4. Set-point and controlled output, control input and disturbance signals for GPc. 

and PBC as knowledge of impending changes is exploited; if it is not, the 
comparison is little changed. Figure 25.7 gives sample means and densities of the 
output deviationy*(t) - yet) from the setpoint in 500-second runs with the U2 random 
step disturbance described earlier. The action of PBC, confining the closed-loop 
poles to acceptable locations then minimizing the worst-case output error with 
respect to the remaining control freedom, is seen to yield good set-point tracking. 

Example 2: A continuous-time system with transfer function 
1O/(S2 + a,s + 9) from u,(t) to y(t) is simulated, with controller sampling interval 1 
s. Parameter a, is varied as 6 + sin(2nt/16) (as in Fig. 25.8) and then with a step 
change (as in Fig. 25.9). For realism, a white disturbance is also added as process 
noise U2(t) in 

y(t) = xit), 

with D = 0.04 and U2{t) uniformly distributed in [-1, 1]. 
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Out ut .1 

7 . 0:56 

-7.004 

.lO~irnnrnp~u-t--l---------------------Y~~~----------------------~~·OOO 

24.4~ 

-24.28 

1D~.mmr-----------------------PrTmn-----------------------~.OOO 
In ut 2 

lime (seconds) 

FIGURE 25.5. Set-point and controlled output, control input, and disturbance signals for pole 
placement. 

Out_t 1 

3.4941-_--... 

- 3.::112 

lO~.~r---------------------~~nrr---------------------,~.ooo 

::~~:J.~ 
In ut :;:! 

lO~.mur---------------------~~~----------------------~.ooo 

time (seconds) 

FIGURE 25.6. Set-point and controlled output, control input, and disturbance signals for PBe. 
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Tracking Enol's (GPe) 
1000r-~~~~~~~~~---' 

1000 r-__ ·~rl~·a~c~ki~n~g~E,- ,~",~o~l·s~(P~B~C~} __ -. 

500 500 
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O L-~~ __ ~f~~~~~ __ ~ 
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1500 
Err .mean= 1.0763 

1000 

500 

O ~--~--~~~--~--~ 

-20 - 10 o 10 20 

Pole Placement 

FIGURE 25.7. Sample means and density functions of plant-output error in 500 s runs. 
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For conciseness, the following figures show responses to set-point changes, 
noise-like disturbances and the parameter variation; the transient responses are 
nonetheless readily distinguished. 

The model is ofthe same fonn as in Example 1 and the same control constraints 
are applied. The controller specifications are as follows. 

For OPC: 

• output prediction horizons N j = 1, N2 = 6, control horizon Nc = 2. 
• control weight 0.01 
• forgetting factor in RLS 0.95. 

For pole placement: 

• observer polynomial, characteristic polynomial, dead time as in example 1. 
1\ 

• factorization of B(q) into minimum- and non-minimum-phase parts as in 
Astrom and Wittenmark (1980), and calculations made accordingly. 

• forgetting factor in RLS 0.95. 

For PBC: 

• prediction horizon n = I 
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Par-... t.r 1 
18.000 
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12.000 

9.000 

".000 

3.000 
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FIGURE 25.8. Smooth variation of parameter a l' 
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FIGURE 25.9. Step change of parameter al' 
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Out t 1 

3 .0~~ __ ------------__ ~ __ -, 

- 3 .000 

w~.mu-------------------r.~rnr------------------~ 
InpUt .1 

3.461 

- 2 .881 

lime (seconds) 

FIGURE 25.10. Set-point and controlled output. control input, and disturbance signals for GPC in 
Example 2. 

Ou t J)ut l 
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1\ 
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.1O . uvv .l.:>.uuu ...:;,u.ooo 

,,=C' ~ 
-":c :: J~ 
-:": 

JO. . .000 

time (seconds) 

FIGURE 25.11. Set-point and controlled output, control input, and disturbance signals for pole 
placement in Example 2. 
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OutPUt 1 

3.251-1 _ _ - -------___.,-, 

-3.000 

w~~----------~~mr----------~.ooo 
°Jnnut 1 

-0.876 

1.0 L.,=~~----------...."., l.:.-.u""'uu.,------------,Zm'C.ooo 
Input 2 

1.0L.,.---------------~~~----------~~.000 

time (seconds) 

FIGURE 25.12. Set-point and controlled output, control input, and disturbance signals for PBC in 
Example 2. 

1000 r---~T~r~ac~I;{i~n~g~E~r~ro~I~·s~(G~P~C~)~~ 1000 r-__ ~T~r~ac~l~d~n~g~E~rl~·o~I~·s~(~P~B~C~)~-. 
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-20 -10 o 10 20 

Pole Placement 

FIGURE 25.13. Sample means and density functions for output errors over 500-sec runs with smooth 
sinusoidal parameter change in al. 
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Out t 1 

3.a:H 

-3.004 

10. 
In t 1 
~~------------------~~rr-------------------~.~ 

4.131 

-3.:!'n 

10. 
I t 2 
~~------------------~~rr-------------------~.~ 

ID~.~r---------------------~~~----------------------~.~ 

time (seconds) 

FIGURE 25.14. Set-point and controlled output, control input, and disturbance signals for GPC in 
Example 2. 
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FIGURE 25.15. Set-point and controlled output, control input, and disturbance signals for pole 
placement in Example 2. 
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time (seconds) 

FIGURE 25.16. Set-point and controlled output, control input, and disturbance signals for PBC in 
Example 2. 

• polytope 'lJ, found as for example 1. 
• bound inflation factor 0.95. 
• robust closed-loop stability bounds as for example I. 
• stabilizing horizon Nb = 8 

Figs. 25.10 to 25.12 show the results for the smooth parameter change shown in 
Fig. 25.8. The figures show similar performance by all three methods, demonstrat­
ing that although PBC copes well, it does not always result in significant improve­
ment. Figs. 25.14 to 25.16 show the results for the abrupt parameter change. 

25.7. CONCLUSIONS 

A new type of adaptive control scheme, predictive bounding control, has been 
presented. In contrast to existing self-tuning control methods, it accounts for the 
uncertainty in the plant model at every step. It does so by computing parameter 
bounds and employing a worst-case performance criterion. Identification and 
control are closely integrated in PBC. A trade-off can be made between immediate 
output performance and the longer-term effect of model accuracy on control. An 
adaptive scheme adjusts the specified bounds on model-output errors and plant-
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parameter changes according to how long the model parameter bounds remain 
valid. 

The price for the versatility and robustness thus achieved is a considerably 
higher computational demand than for traditional methods. Nevertheless, the 
scheme is practicable with present computing resources. 
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APPENDIXA. 

Computation of Stabilizing Control Inputs 

The aim is to find for all those U t inputs given by 

where 

is a stable polynomial for any 9P E PI (t,b,p). Here degR = degB = q ~ 1, degS = degA 
=p. 
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First, rewrite the polynomial multiplications in matrix form. With vector f == 
[rb .. .,rq,sO,Sb ... , sp]Tcomposed of the coefficients of R(q-l) == 1 + rlq-l + ... + rqq-r 

and S(q-I) == So + slq-l + ... + spq-P, the coefficients of P(q) can be expressed as 
M(9 P)f 

0 b l 0 r l 

b2 0 

rq 

1 br b l So 

a l 0 

sl 

o apO br 

Sp 

and f = [U Define a large region for the coefficients of (p + q + I)-degree stable 
polynomials, in the form 

L - rp+q+l 
p+q+l - U -'-'i 

iEJ(p+q+l) 

where 1f(+q+l, i{= J (p + q + 1), are polytopes in the space of coefficients of 
(p + q + 1 )-degree polynomials. The sets of vectors f which give stable closed­
loop behavior is 

where 'li denotes the finite set of vertices of polytope Pit,o,p). Relation 
M(9)! E 1f(+r+ I can, however, be rewritten in the form of a set oflinear inequalities 

aJM(9v)f:5: cp j = 1,2, ... , :H;, ByE ~ 

where Ji; denotes the number of supporting hyperplanes of 1f(+r+1 , which clearly 
shows that the set of "stabilizing" vectors f (associated with each 1f(+q+ I ) spans a 
polytope 'Ii for every iEJ(P + q + 1). The total set of "stabilizing" fvectors is the 
union of a finite set of polytopes. Finally, the set of stabilizing inputs is the union 
of intervals 

'l1: = U [min 0'; - f~<j>;), max 0'; - f~.;)], 
iEJ(P+q+l) fvE'H, fvEJ!, 

where Ji; is the set of vertices of the convex polytopes 'Ii' i EJ(P + q + I). 
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APPENDIXB 

Influence of Regressor Vectors on Size and Existence of Feasible-Parameter 
Set 

Simple geometry shows that, with equation-error bound 8 and bound inflation 
factor p, if the angles between all pairs of the regressor vectors 4IIt, .•. ,4IIt- p+l are 
larger than n, then the largest diameter of the parallelpiped 

P(t- p + l,t) = {OIIYt_i - OT4IIH I:::; 8pi, i = 0,1,2, ... ,p-l} 

is bounded by 

Diam(P(t-p+l,t»:::;48pp(p+l)12 cos(al2) I p 
sin(a) minll4lll-J11 == 

i=o .... ,p-l 

LEMMA B. Assume that a and 11 = mini=o,I, ... ,p-l 114IIt-AI are such that the abrupt 
parameter changes are all greater than 2P, and that p and 8 are large enough to cover 
all equation errors, including the effects of parameter drift, in the absence of abrupt 
changes. If after an abrupt parameter change at time t (or initially, after turning on 
the bounding controller), the control inputs are selected so that Ang( 4IIt+i ,4IIt+) ~ n, i 
= 1,2, ... ,[r'1; j = i + 1, ... ,p and Il4IIt+ill ~ 11, i = 1, ... ,p then every abrupt 
change, and only an abrupt change, causes the end of a generation. 

PROOF: A fall in age m(t,8,p) by time t + P follows straightforwardly from the 
fact that parallelepiped calculated in the first p steps after each abrupt change does 
not intersect the parallelepiped formed by the parameter bounds imposed in the last 
p steps before the change, and hence conflicts with the feasible-parameter set at t. 
The assumption about p and 8 ensures that slow parameter drift does not cause a 
clash of bounds during the time interval between two abrupt changes, so falls in 
age occur only as a result of abrupt parameter changes. 0 

APPENDIXC 

Example of Bound Tuning 

The tuning method for the equation-error bound 8 and the scale factor p for 
the parameter increments is demonstrated. Output samples are generated by 

For simplicity only parameter al varies, stepwise between 0.5 and --0.6, and et is 
randomly generated from [--0.2, 0.2]. For a single sequence the numbers of 
generations are as in Fig. C. There is a plateau in the number of generations from 
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6 
p 

FIGURE 25.C. Number of generations against equation-error bound 8 and parameter-increment scale 
factor p. 

which both the number of jump changes and the range of feasible bound pairs (8,p) 
can be inferred. 



26 
System Identification for 
Hoo-Robust Control Design 
T. J. J. van den Boom and A. A. H Damen 

26.1. INTRODUCTION 

In conventional identification techniques a model is proposed which is supposed 
to be capable of representing the process behavior under study. Parameters are then 
tuned such that the model outputs correspond according to some criterion for the 
dominant part of a measured data set. Deviations are thought to be concentrated in 
some error source in the model, such as output error, prediction error, equation error, 
and so forth. This artificial error source explains all disturbances acting on the 
process as well as for all model deviations from the real dynamic behavior of the 
process. Furthennore, stochastic assumptions have to be proposed concerning the 
errors leading to the criterion and as a result a "best" model is produced together 
with some stochastically based range for the parameters and/or dynamic behavior. 

For H",-robust control design, a best model is required in the sense that a known 
model error bound can be guaranteed.(l,2) The disturbances should preferably be 
characterized by filters with nonn bounded inputs. 

A lot of work has already been done in order to overcome the drawbacks of 
conventional identification, and to derive bounds for the model error. This has been 
done, either in a stochastical setting(3,4,5) or in a detenninistic setting, with bounded 

T. J. J. VAN DEN BOOM. Department of Electrical Engineering, Delft University of Technology, 2600 
GA Delft, The Netherlands. A. A. H. DAMEN • Department of Electrical Engineering, Eindhoven 
University of Technology, 5600 MB Eindhoven, The Netherlands. 

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York, 
1996. 
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FIGURE 26.1. Detailed set-up. 
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noise in the time domain,(6,7) or with bounded noise in the frequency domain.(8-14) 
It is our strong belief that any model identification method should provide explicit 
descriptions of the accuracy of the model. 

A clear and detailed distinction between modeling errors and various distur­
bances is indispensable. The disturbances should preferably be characterized by 
filters with norm bounded inputs. As a consequence, detailed information about the 
process should be acquired in order to arrive at acceptable error bounds. Mere 
input/output data is far from sufficient. 

Fig. 26.1 superficially indicates ideas about details. Extensive preliminary 
measurements and data processing should provide information about the actuator 
dynamics PaCz), bounds for the actuator modeling error L1aCz) (for example, 

where Wac(z) is an appropriate weighting filter). Furthermore, the disturbances 
acting on the process should be described as constraints in frequency domain. The 
filters Wm Wp' Wi and Wo are chosen such that the error sources ~a, SP' Si and So 
have discrete Fourier transforms bounded by one: 

In Fig. 26.1, the true process PtCz) is given in a non-structured additive model error 
configuration. The aim is to choose a model P(z) in a model set such that the model 
error L1(z) is as small as possible; the IIW",(z)L1(z)lIoo is minimized, with W",(z) is an 
appropriate weighting filter. 

Since all analysis is in the frequency domain write for the true process PI and 
the nominal model P to be selected from the model set P: 



SYSTEM IDENTIFICATION FOR CONTROL DESIGN 443 

minIlWL\L'llloo = minllWL\(Pt - P)lIoo = minIlWL\(Yt - P)lIoo 
hp hP hp ~ 

where 

Yt E 9""= {y - Wo;o - Wp;p 111;01100 :::; 1, II~plloo:::; I} 

ut E 'iL = {[(Pa + L'l)r + Wa~a IIIWaPalloo:::; 1, lI;aILXl:::; 1] 

This chapter considers a simplified version of above concept. Consider the situation 
of Fig. 26.2, where the sets of possible inputs and outputs are less complicated. 

True input and output signals Ut and Yt are measured in U and y, where noise 
signals d and e are involved such that Ut = U - dt and Yt = Y + et. The signal U can 
stand for either v or r; the other signal is supposed to be unknown. Suppose the 
control signal r is unknown so that d = -Wi~i and e = Wp~p + Wo~o to get from Fig. 
26.1 to Fig. 26.2. Alternatively, think of doing no measurements (r is known) and 
U = Par, d = l1ar + Wa;a and again e = Wp~p + Wo;o. Both cases arrive at the setup 
of Fig. 26.2 and give bounds in the frequency domain for the noise signals: 

I Wd1dl:::; 1 andl W~le I:::; 1 

For the filters Wd and We we get: 

{lWei = IWpl + IWol 

{
IWdl = IWil 

IWdl = IWacllrl + IWal 

foru = v 
for u = Par 

The proposed identification method is executed completely in the frequency­
domain. The given data set u(k), y(k) for k = 1, ... , 2N consists of samples in the 
time domain. In order to apply our identification method, the data set has to be 
transformed to the frequency domain. 

:i{--------------' 

u y 

FIGURE 26.2. Basic experimental set-up with additive model error. 
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26.2. ASSUMPTIONS AND PROBLEM STATEMENT 

This chapter is restricted to SISO-systems and only discusses an additive and 
a multiplicative model error structure. (For MIMO-systems and more general error 
structures see Ref. 13.) The following remarks concerning the objects of study can 
be stated: 

Plant: The true plant, denoted by PtCz) is assumed to be linear and time-invari­
ant and stable in the configuration of Fig. 26.2. The plant is excited by the unknown 
true input signal utCk), which results in the unknown true output signal y/k). Small 
non-linear perturbations are accounted for in the additive disturbance etCk). 

Data set: We do an experiment and measure the input and output in the signals 
u(k) and y(k) for k = 1, ... , 2N, which results in the data set {u(k), Y(k)}. A discrete 
Fourier transformation leads to the dataset in the frequency domain: 

:r 
{u(k),y(k)} ~ {u(z),y(z)} 

with 

for 

- jlIilN . - 0 N - I zi - e , I - , ... , . 

In the sequel, we will just consider the models for these frequencies. The model 
error bounds are computed on just this finite number of frequencies. However, 
assume that the true process Pt and the optimal model Popt have an impulse response 
much smaller than the observation interval and, therefore, much smaller than the 
number of observed frequencies. We can use a simple interpolation technique to 
find a bound over all z on the unit circle.(l3) 

Disturbances: The applied input signals are perturbed by additive actuator 
disturbance dt, and the true output signal is perturbed by additive output disturbance 
and measurement noise et• Assume the disturbances to belong to the disturbance 
sets 'iJ and 'i, respectively. 'iJ and 'i consist of all signals with discrete Fourier 
transforms that are bounded by known disturbance filters W,Iz) and WeCz): 

- - -
d/k) E 'J)= {d(k) II d(z) I < I Wjz) I , z E O} 

and 

Model set: The user has to define a model set Pc 2( with parametrized models 
P(8,z) and parameter vector 8 in a set 0. The true process PtCz) is not necessarily 
in this set. 
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Model error structure: To describe the uncertainty in the model, make use of 
either the additive or the multiplicative model error structure. The uncertainty Ll(z) 
is thought to be additive LlaCz) or multiplicative Llm(z) with respect to the nominal 
model P(z), so that the true process is described by 

(l) Additive: PtCz) = P(z) + LlaCz) 
(2) Multiplicative: PtCz) = P(z)(J + Llm(z» 

The corresponding configurations are given in Fig. 26.3. The additive and 
multiplicative model error structures are described in Refs. 1 and 15. Now concen­
trate on the following model error optimization problem (with either an additive or 
a multiplicative model error structure). 

Find a model P(z) in a given model set P such that the Hoo-norm of the weighted 
model error L1(z) is minimized, so: 

inf IIW",(z)Ll(z)lIoo 
PEP 

for some given weighting filter W",(z) and where Ll(z) is either the additive model 
error 

Ll/z) = Plz) - P(z) 

or the multiplicative model error 

To make sure that the model error is stable, assume that both the true process 
PtCz) and the model P(z) are stable. In the case of a multiplicative model error, the 
additional assumptions are that the true process PtCz) and the model P(z) are 
minimum-phase. Because of the disturbance signals d(z) and e(z), one cannot 
determine the true process PtCz) exactly and cannot compute the Hoo-norm of the 
model error. With the use of the noise sets 1> and 1:we are able to calculate an upper 
bound for the H",-norm of the model error. Instead of minimizing the Hoo-norm itself 
we will minimize the upper bound for the Hoo-norm of the model error. 

u y u 

Additive Multiplicative 

FIGURE 26.3. Model error structures. 



446 T. J. 1. VAN DEN BOOM AND A. A. H. DAMEN 

It is obvious that the only computational difference between the additive and 
multiplicative model error is an extra weighting by y! entering L1 and WIl . This 
difference, however, has a great influence on the minimization, as discussed in 
Section 26.3.2. 

This chapter presents two methods, a two-step and a one-step method. The 
first step in the two-step identification procedure is to derive uncertainty regions 
for the system dynamics in the complex frequency plane. The second step finds an 
approximate model that is optimal in the sense that the upper bound for the weighted 
model error is minimized. The two-step identification procedure consisting of the 
derivation of the uncertainty regions and the HOC! fitting is clear and comprehensible. 
The main problem is that it does not always lead to the optimal solution because of 
approximations that are made. 

Section 26.4 discusses a one-step identification method based on techniques 
that rise from robust control theory; it provides the optimal model, given the a priori 
knowledge. It makes use of the concepts of linear fractional transformations and 
the structured singular value fl. 

26.3. TWO-STEP IDENTIFICATION METHOD 

26.3.1. Derivation of Uncertainty Regions 

Fig. 26.2 shows that 

ulz) = u(z) + dlz) and yr(z) = y(z) - er(z). 

However, the signals drCz) and elz) are not available. They belong to 'iJ and 1;, 
respectively. Therefore, define the following sets: 

'i.J = {u(z) = u(z) + d(z), Id(z) I :s; W,/z), z E Q} 

and 

Y= {Y(z) = y(z) - e(z), le(z)l:S; We(z), z E Q} 
~ ~ 

Note that Ut E 'l1 and Yt E Y 
Consider all signals for one specific frequency, z, and use a simplified notation 

(i.e., u instead ofu(z),y instead ofY(z)). 'i.J and yfor one specific frequency are 

~ {~e IWdl} 'l1= u=u(l +u eJ ) 0<8<211: O<u <-u ,- ,- II - lui 

and 

~ {~." lWei} Y= Y = y(l + uye h ), O:S; <I> < 211:, O:S; uv:S; lYI 
Fig. 26.4 shows the sets 'i.J and Y in the complex plane for one frequency 

sample. For example, take d and e as white Gaussian noises and let the bound be 
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-I 
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Re --> 

FIGURE 26.4. Sets :U,Y, and Pin the complex plane. 

given by the 3cr-bound (see Section 26.2.4). One thousand realizations of these 
disturbances have been presented by points in Fig. 26.4. The point density indicates 
the probability of the expected signal values. 

Now an estimate for the true process PtCz) = ytCz)/ut(z) has to be obtained. 
Therefore, we define the set of unfalsified systems. This set consists of systems P 
E 1( that do not falsify the measured data and the noise bounds. So consider the 
functions P(z) = .Y(z)/u(z) for all u(z) E V. and y(z) E Y(assume that u(z) "* 0, for 
all z E Q). This means that we are dealing_with a persistently exciting input utCz) 
and a sufficiently sm~l input noise signal d(z). Note that the true process PtCz) is 
an element of the set P. 

For the example of Fig. 26.4 can derive a representation for the set P, with 
transfer functions Pby dividing all elements y E yby all elements y E v.. In Fig. 
26.4 the set P is given in the complex plane for one frequency sample. As before, 
the point density indicates the probability of the expected signal values. This results 
(for each frequency z) in(lO,13) 

IWI IWI 
0 <.1. 2 0< 2 0< <_e 0< <_tfl} 

- 'I' < re, - \If < re, - ay - lYl' - au - lui 
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This is a region which is typically shaped like a bean, as exemplified in Fig. 26.5. 
The next step is to calculate a boundarx function for the region. A simple circular 
bound (not the smallest)(13l for the set Pcan be derived easily. First define: 

P = yu' 
c uu' - WdW; 

and 

(I Wdl I Wei I WdWel] 
rc=!pcl TuI+lYI+~ . 

The following holds for all ~, \If, ay and au: 

IP - Pel = !pe(l + a~<V)(l + ayeN ) - Pel = 

= IP (a eA ) + a eN + a a ei(<I>+'I'l)1 :s: c y u y u 

< IP I (IWdl lWei IWdWel]= 
- c lui + lYl + lu;j rc 

An enclosing set Pc ~ PWith elements Pc can be given as 

P = {P = P + a ei<l> O:s: 0 < 211 0 < a :s: r } c c c C' ,-C(' 

- -The set Pc encloses the set Pvery tightly as long as 

Ifr ands come closer to one, then the enclosing is less tight. This 'simple' enclosing 
set is easy to calculate and satisfactory in most cases. Exact expressions for the 
boundary function of the set P for specific frequency and the smallest circular 
enclosing set can be found in Ref. 13. 

In Fig. 26.5 the region P is given for different values of r an~ s (where y = I 
and u = 1 are fixed), together with the computed enclosing circle Pc. 

26.3.2. Roo-Fitting 

So far we have only derived uncertainty regions for the true process. This 
section looks for an optimal nominal model in the predefined model set P and 
considers the optimization of this parametric model. It minimizes the upper bound 
of the R:o-norm of the weighted model error (considering the uncertainty regions). 

We define a model set Pwith the models P(O,z), where 0 E e is a vector with 
the model parameters. Of course one can choose many different types of models 
like ARMA, state space models, finite impulse response models, and so forth. 
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For additive model error and the multiplicative model error we define the sets 
of all candidate model errors as 

Lia = {Lia{z) E S 1 LiaCz) = F{z) - P{z), F E P, PEP} 

and 

~m = ~m(z) E S 1 ~m(z) = ,P E P, PEP - {- - P{z) - P(z) - - } 
P(z) 

Since Pb) E P, note that the true model errors belong to the defined model error 
sets: ~(z) E ~ and ~m{z) E Lim. In fact we would like to minimize the Hoo-norm of 
the true model error (1I~a{z)loo or lI~m{z)lIoo) over all admissible models in the model 
set P. However, this can only give an upper bound in the presence of input and 
output noise: 

-
inf 1I~a<z)lIoo ~ inf ~uE IlLia(z)lIoo = inf sup II P(z) - P(z)lIoo 
PEP PEP PEP PEP PEP 

and 

-
infll~m(z)lIoo ~ inf ~uE IlLim(z)lIoo = inf sup II P(z) - P(z) 1100 
PEP PEP PEP PEP PEP P(z) 

The McMillan degree of the model p(e,z) is usually fixed, whereas the set P 
contains high order systems. So, in a sense, a parametrized model approximation 
problem has to be solved. 

To emphasize specific frequency ranges, we can introduce a (stable and 
minimum phase) weighting filter W,.,{z) and minimize the Hoo-norm of the weighted 
model error: 

-
infIlW,.,{z)~a<z) 1100 ~ inf ~upIlW,.,{z){P{z) - P{z» 1100 
PEP PEP PEP 

or 

inf IIW,.,{z)~m{z) 1100 ~ inf ~UE II W,..{z){F(z)P-'{z) - 1) 1100 
hp hp hP 

N ow the problem of deducing upper bounds of the model error is reduced to 
a min-max problem. This problem is substantially simplified by the use of the 
approximate set Pc at the cost of a little conservatism. Write for the additive model 
error: 

inf ~up II W,.,(z)(P{z) - P{z» 1100 ~ 
PEP PEP 

inf .§UE IIW,..{z){Pc{z) - P(z»lIoo = 
PEP PEP c c 
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inf III W",Cz) I ( I ?Jz) - PCz) I + rc(z» 1100 
PEP 

For the multiplicative model error: 

inf ~ur II W",(z)(PCz)P-1Cz) - 1 )11 Xc :<:; inf sup II W",Cz)(P/z) p-l(z) - 1 »1100 = 
PEP PEP PEP PeEP, 

inf III W",(z)ICIP/z)P-1 (z) - 1 I + rc(z)lp-l(z)l)lloo 
P~'l' 

Consequently, we define the upper bound of the model error for a model with 
parameter vector 8 and for a frequency z E Q as 

Ya,maxC8,z) = IPcCz) - P(8,z) I + rcCz) 

Now the final problem to solve becomes: 

Additive: inf II W",(z)l\aCz)lloo:<:; infIlW",(z)Ya,max(8,z)IL" 
PEP BeS 

Multiplicative: inf II W",Cz)l\mCz)lloo :<:; infll W",(z)Ym,max(8,z)lloo 
PEP BeS 

The problem turns out to be the minimization of the Hco-norm of a function 
W",(z)Ya,max(8,z) or W"'(z)Ym,maxC8,z) over all admissible 8. Note the major drawback 
of using an Hoo-norm, namely that the cost-criteria W",(z)Ya,maxC8,z) and 
W",(z)y m,maxC8,z) are not differentiable with respect to 8. This means that one cannot 
directly use a gradient method to search for the minimum. We can solve the problem 
by using methods which do not need a gradient, e.g., simplex methods and random 
search based techniques. The problem with these methods, however, is that conver­
gence is not guaranteed ifthe initial value of8 is far from the optimal value. In that 
case, we can use estimations from preliminary identifications as initial values. 

26.4. ONE-STEP IDENTIFICATION METHOD 

The two step identification method, discussed in the preceding section, is based 
on a graphical approach. It is a straightforward method and transparent in the 
followed steps. Accuracy, however, is somewhat relaxed by the approximation of 
the uncertainty set P by Pc. This approximation can be circumvented by the 
following one-step method, which uses a more algebraic approach. Start with 
defining a matrix Q(z) with the true disturbances, scaled by the corresponding 
weighting filters, on the diagonal: 
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Z = [W;/<Z)dt(d) ° ] 
Q( ) 0 W~I(z)elz) . 

Since \dlz) \ ::; \ WJz) \ and \elz)\::; \We(z)\ a bound for the largest singular value of 
this scaled disturbance matrix is 

G max {Q(z)} ::; 1 for all\z\ = 1. 

Notice that (for each z E Q) 

Pt = YtU~1 = (y - et)(u + dtfl. 

The additive model error becomes 

~-[O We]Q[:]j(u+[Wd O]Q[:]f 
- Pce) = yu-1 - pee) 

( fU-l Wd 0l yl [U-1] 
+ [-yu- 1Wd - yWe] Q 1- -lw 0 Q I -1 

LU d J ) U 

= Ga,l + Ga,2QCI - Ga.3QflGaA 

where G a is defined as 

il.(z) = Ga l(z) + Gaiz)Q(z)(I - Gaiz)Q(z)tlGaiz) 
( " , , 

= jfCGa(z),Q(z)) 

where 1t stands for lower linear fractional transformation. 
For the multiplicative model error the matrix Gm can be derived in the same 

way: 

such that 
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~m(z) = Gm,I(Z) + Gm,2(Z)Q(Z)(I - Gm,4(Z)Q(Z)r1Gm ,3(Z) 

= ~(Gm(Z),Q(Z». 

Note that the matrices Ga(z) and Gm(z) are built up with known objects: the 
chosen model pee, z), the data set {u(z),y(z)} , and the noise bounds {W jz),We(z)}. 
Only the matrix Q(z), which is built up from the true disturbance signals dlz) and 
etCz), is unknown. However we do know that it is bounded and that it belongs to a 
scaled noise set Q with elements Q(z) as follows: 

~ ~ ~ 

Q= {Q(z) is diagonal and a{Q(z)} :s; I for all zED} 

Note that matrix Q(z) with the true scaled disturbance signals is in the set Q, 
Consider ~(z) to be either ~a(z) or ~m(z) and G(z) is the corresponding Ga or Gm . 

For every frequency one can bound the magnitude of the model error by 
~ 

1~(z)1 = IF/G(z) , Q(z» I :S;_sup _ IF/G(z),Q(Z»1 
Q(Z)EQ 

Now we will derive bounds f2,r the magnitude at one specific frequency z. For 
this specific frequ~ncy G(z) and Q(z) are constant complex matrices and will be 
denoted as G and Q. We are looking for the minimum bound y such that 

~ 

I~I:S; ~ul2lF/G,Q)1 = y 
QEQ 

The following result can be used: 

~ul2lFlG,Q)1 =y iff!l [y-1G ll y-1G12] = I 
QEQ G21 G22 

where !l is the structured singular value as defined by Balas et at. (16) This value !l 
is difficult to compute, but we can give an upper bound, which is usually very close 
to the real value, but somewhat greater, and can be calculated using a convergent 
algorithm. (16) We can adjust the y in an iterative way until the approximate !l equals 
one. This leads to a y which is very close to the wanted supremum and in any case 
greater than this supremum. In this way, an upper bound y for the matrix norm of 
the model error is derived for all frequencies zED, which results in a frequency­
dependent bound y(z) for a specific model P(z). 

By defining a model set with models pee, z) the bound becomes y(e, z). Now 
define the criterion 

This function is an upper bound for the weighted Hoo-norm of the true model error, 
so 
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Similar to the criterion in the preceding section, Joo(S) can be minimized using 
methods that do not need gradients. 

26.5. SIMULATION EXAMPLE 

This section presents a simulation example. A second order simulation model 

p = z2 - 1.lz + 0.24 = (z - 0.3)(z + 0.8) 
t z2 _ 1.6z + 0.68 (z - 0.8 + jO.2)(z + 0.8 - jO.2) 

is excited by an input signal u(k) in a configuration of Fig. 26.2 and output y(k) is 
measured. A Bode-plot of PtCeiW ) is given in Fig. 26.6(a). 

Input signal u(k) is generated for 1024 samples. Care has been taken that it is 
persistently exciting and that the errors due to the discrete Fourier transformation 
are negligible. The control input and measured output signal are corrupted by 
additive white Gaussian noise d(k) and e(k), respectively. The 3a-bounds in the 
frequency domain provide values for W Iz) and WeCz), and so Wd and We are 
constants. This results in the following values for the noise to signal ratios: 

We do a simulation experiment and obtain a data-set {u(k),y(k)}. The computations 
for the model elTor bounds are only done on a limited number of frequency points 
Zi in the frequency set Q = {Zlh, ... ,zsd with z = cirri/SI2, i = 1, .. 512. For all 
frequencies Zi we calculate Pc(z;) and r/z;), using the simple circular bounds, and 
we obtain the regions as in Fig. 26.6(b). 

First consider an additive model error structure and in which we must optimize 
the function 

where the weighting filter is chosen W~(z) = 1. 
In a first nm, choose the model set P consisting of all first order functions 

so PtCz) is not in the model set P. Use the two-step algorithm to find an optimal 
Sapt = [-0.275 0.895 0.757] where Yapt = 0.936. In Fig. 26. 11 (a) the plots of the true 
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FIGURE 26.6. (a) Bode plot of Plz). (b) Uncertainty regions. 
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process Pt(z), the optimal model P(z) and the region center points Pc(z) are given 
in the complex plane. 

Now define three functions: 

Ya,maxC9,z) = I PC<z) - P(9,z)1 + rc(z) 

Ya,mei9,z) = I Pc(z) - P(9,z)1 

Ya.min(9,z) = max (0, I Pc(z) - P(9,z)I- rc(z» 

The function Ya,max(9,z) gives an upper bound for the_model error, the function 
Ya,min(9,z) is the minimum distance between P(z) and P(z), and so gives a lower 
£ound. The function Ya,med(9,z) gives the distance of P(z) to the center of the region 
P(z) and is centered between the upper and lower bounds. In Fig. 26.7 the functions 
Ya,maxC9,z) , Ya ,med(9,z), Ya,min(9,z) and the true model error l~aCz)1 are plotted for the 
estimated model. In this example the lower bound Ya ,min(9,z) is larger than zero for 
nearly all frequencies, which indicates that the nominal model that is found cannot 
describe the system accurately. Note that these estimates Ya,max, Ya,med and Ya,min can 
always be calculated and be used for defining a weighting filter Wil in the next 
iteration. For a better model for higher frequencies choose a filter that emphasizes 
the error in the higher frequencies. So Wil(z) is large for higher frequencies, and 
small for the lower frequencies . Therefore, we define a highpass filter as a weighting 
filter 

W(z)=z+0.16 
il z+ 0.7 

For this choice of weighting filter find 90pt = [-0.402 1.2400.190] where Yopt = 
1.031. Figs. 26.8 and 26.11 (b) give the results for the estimated model. Compare 
the curves of the unweighted case in Fig. 26.7 with the weighted case in Fig. 26.8. 

o 0.5 1.5 2 2 .5 3 

frequency --> 

FIGURE 26 .7 . True additive model error with bounds (1st order, no weight) ; 
t.,(--), Ymax(- - -), Ymed("'), and Ymin(-' -). 
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FIGURE 26.8. True additive model error with bounds (I st order, high freg. weight); 
L1r(--), Ymax(- - -), Ymed(--'), and Ymll1(-' -). 

Note that the model error decreased very much for the higher frequencies, at the 
cost of a small increase at the lower frequencies. 

In a second run, choose the model set P consisting of all second order functions 

83z2 + 84z + 85 
P(z) = . 

; + 81z+ 82 

Now Pt~) is in the model set Pand, as a weighting filter, W,.,(z) = I. Find an optimal 
80pt = [-1.5890.679 1.021 -1.116 0.259] where Yopt = 0.536. Figures 26.9 and 
26.11 (c) give the results for the estimated model. The lower bound Ya.min(8,z) in this 
example is exactly zero, which indicates that the found nominal model might indeed 
describe the system exactly. 

In a third run, choose the model set P consisting of all third order functions 

84z3 + 85r + 86z + 87 
P(z) = ----cc3-~----

Z +8 1r+82z+83 

0.6 r-----..,-----r----..,-----r----..,----.,.--, 

t-----..~ . . 
0' V:----
o 0.5 1.5 

frcq uency - > 
2 2.5 3 

FIGURE 26.9. True additive model error with bounds (2nd order); 
M--), Ymax(- - -), and Ymed(-"). 
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FIGURE 26.10. True additive model error with bounds (3rd order); 
.1rt'-- ), Ymax(- - -I, and YmedC·)· 

so Plz) is in the model set and, as a weighting filter, W/l(z) = 1 . The result is 8apt 

= [-1.610 0.703 -0.0101 1.038 -1.157 0.261 0.0063] where Yapt = 0.535. 
Figs. 26.10 and 26.11 (d) give the results for the estimated model. Also, in this case 
the lower bound Ya,min(8, z) in this example is exactly zero. However, the upper 
bound for the model error is not decreased much, so it looks as if a second order 

0.4 
- Il(z) 

0.2 
--- P(z) 

Pc(Z) 

0 

-0.2 

~ -0.4 

.5 .... a 

-0.6 

-0.8 

-I 

-1.2 

o 0.5 1.5 2 2.5 

Re _.> 

FIGURE 26.11. P,(z),P(z) and various models Pc(z) in the complex plane: a, additive model error, 1st 
order model without weighting, b, additive model error; I st order model with weighting on higher 
frequencies, c, additive model error; 2nd order model without weighting; and d, additive model error, 
3rd order model without weighting. 
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model will satisfy in this case (as expected). The parameters 83 and 87 are both 
nearly zero, which results in a nearly pole-zero cancellation at z = O. 

26.6. CONCLUSIONS 

This chapter considered two methods for the identification of SISO-systems 
in terms of a minimum additive and multiplicative error bound. An inherent 
condition of the problem is that the signal-to-noise ratio is sufficiently small, 
otherwise the model error bounds become very large, and the proposed methods 
can possibly fail. 

Using the two-step identification method, we calculate uncertainty regions and 
fit the model in Hoo-norm sense. Minimum, maximum, and medium errors give an 
indication about the adaptation of the weighting filter W",(z) in the next iteration, 
and whether the model can represent the system. The two-step method is easy to 
understand and it yields a lot of insight. The model error bound for a specific model 
can be computed analytically. 

The one-step identification method uses the structured singular value f.l, which 
has to be computed in an iterative procedure. The one-step identification method, 
therefore, needs more computation time than the two-step method, but the one-step 
method generally leads to a smaller model error bound than the two-step method. 
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NOTATION 

'l( = Set of all real rational transfer functions 
S = Set of all stable real rational transfer functions 

Pt = 

ut,Yt= 
dt,et = 

Pc,rr;;= 
P= 

PC= 
P= -
'[1= 

Y= 
'lJ= 

1'£= 
Q= 

rue process transfer (Pt E S) 
rue input and output signal 
True input and output disturbance signal _ 
Centerpoint and radius of uncertainty ~t Pc 
Set with all possi~e process transf~rs P 
Enclosing set for P with elements Pc 
Model set with elements P (Pc S) 
Set with all possible input signals u 
Set with all possible output signals y 
Set with all possible input noise signals (J 
Set with all possible output noise signals e 
Set of unit circle samples Zi = einilN, i = 0, ... ,N - I 



27 
Estimation of Mobile Robot 
Localization: Geometric 
Approaches 
D. Meizel, A. Preciado-Ruiz, and E. Halbwachs 

27.1. PRACTICAL PROBLEM POSITION 

27.1.1. Introduction 

The real device is shown in Fig. 27 .1. It is a cart-like wheeled vehicle sketched 
on Fig. 27.2. It is capable to perform planar displacements and its configuration q 
(Eq. 27.1) is composed of the 2-D coordinates (xcYc) of a characteristic point 
together with the orientation 8 defined in a world coordinate W (Fig. 27.2). 

(27.1) 

The purpose of such a vehicle is typically to move from one initial configura­
tion to a goal configuration along a planned path while avoiding unexpected 
obstacles. The possibility to define displacement missions implies an a priori 
knowledge of the world. At least, it must be possible to designate where the robot 
should move in such a way that the mission completion can be recognized by the 

D. MEIZEL AND E. HALBWACHS • Heudiasyc, CNRS, Compiegne Technology University, 60206 
Compiegne, Franc(:. A. PRECIADO-RuIZ • ITESM--campus Toluca, Toluca, Edo. de Mexico, Mex­
ico. 

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York, 
1996. 
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FIGURE 27.1. The real robot. 

autonomous vehicle's own means of perception. Performing the localization of this 
vehicle consists in the evaluation of its configuration q (Eq. 27.1) in a map. 

This is realized by using a map where are listed the major obstacles, beacons 
and landmarks and where the goal and some major passing points can be referenced 
with respect to sensible elements. Given an initial configuration, and the ultimate 
and intermediate goals together with the map, a global planner computes a feasible, 
generally minimum length, and collision-free path along which the vehicle can 

y 

Yc ~ ~ 
~I' X 

0 Xc 

FIGURE 27.2. The configuration space. 
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move and reach its goal(s). At the execution level, several necessarily non-ideal 
features of the real world should be taken into account: 

• the world map is inaccurate: some elements are missing; some other have 
disappeared; and the relative positions of beacons and landmarks are not 
exactly described in the map; 

• the exact vehicle configuration is not exactly known and its precision 
should be increased by measurements performed by on-board sensors. 

These basic statements have the following consequences: 

I . The goal and more generally the reference path should be referenced with 
respect to sensible elements of the map. This implies that the configuration 
should be defined at any instant with respect to a local map composed of 
both the beacons and landmarks set that are expected to be sensed by the 
robot from its current localization and the a priori known obstacles set (that 
may not be detected as, for instance, a glass-wall not seen by a vision 
system).(1 ) 

2. Some obstacles are not a priori known. The consequence on the robot 
control architecture is that an obstacle avoidance control level should exist 

Cl Ofl3 ks 

motion la k 

de ired motion 

safe mOlion (gg 
FIGURE 27.3. Different control levels . 
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#1 y---- current estimation 

~ of the ob tacle localization 

n) 

FIGURE 27.4. Matching problem: Does the detected obstacle points match with segment # I or #2 or 
is it an outlier? 

between the motion control level and the actuators (Fig. 27.3). The obstacle 
avoidance level does not interpret the measurements in terms of elements 
of the local map. It just filters the desired motions in such a way as to 
prevent collision with sensed obstacles, whatever they can be. 

3. The existence of obstacles that are not a priori known in the map implies 
that the localization should be capable of discrimination between measure­
ments coming from elements of the map that are usable for the localization 
and unexpected obstacles that cannot be associated to any landmark or 
beacon. 

Summing up this introductory discussion, it appears that the robot motion should 
be defined at the planning level in closed loop form by using a configuration 
estimate defined inside a local map containing both the (intermediate or ultimate) 
goals, the landmarks, and beacons and the nondetectable obstacles. This closed loop 
motion is completed by an obstacle avoidance module whose reflexive actions do 
not imply any interpretation of the on-line measurements. Complementarily, the 
localization estimation algorithm is thus split in two aspects: 

• the former (matching module) consists to associate a measurement to a 
given landmark or to reject it as unusable for localization purpose (Fig. 
27.4), 

• the latter (estimation module) treats this matched measurement in order to 
improve the localization estimation accuracy (Figs. 27.5(a), (b), and (c)). 

27.1.2. Basic Localization Principle and Notations 

The sequel focuses on the treatment of asynchronous discrete-time telemetric 
measurements combined with a continuous odometric update of the configuration. 
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FIGURE 27.6. Two-dimensional line segment. 

D. MEIZEL ET AL. 

In addition, the vehicle moves in indoor environment where obstacles and land­
marks are modeled as polygonal objects. Maps are then composed of a straight 
segments primitives, each one defined (Fig. 27.6) by its descriptor 5: 

5 = {M,b,<p,p,s}. (27.2) 

This descriptor contains the following items: 

• center M(XM,YM); 
• halflength b; 
• line equation: x cos( <p) + Y sine <p) - p = 0; and 
• external normal vector direction: -;; = sk, s = ± I. 

A telemeter measures the presence of an obstacle in a given direction by 
reflection of an acoustic or electromagnetic wave. The configuration of such a 
sensor is given by (x; ,y; ,a') and the measurement result is (d,a') (see Fig. 27.7). 
The measurement precision is further analyzed in Section 27.3.1. 

The dead reckoning system is tied to the actuators. It integrates elementary 
translations 8s and elementary rotations 08 given by rotary encoders tied to the 
driving wheels. It updates the configuration ofEq. (27.3) along the motions of the 
vehicle: 

{

Xc := Xc + cos(8)os 

Yc := Yc + sin(8)8s 

8:= 8 + 88 

(27.3) 

1', denoting the sampling time, the translational (v), and rotational (co) speeds 
are estimated as follows: 
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'. 
X, 

X , C 

FIGURE 27.7. Telemeter measure. 

The integration of dead reckoning with the telemetric measurement based 
localization is schematically represented in Fig. 27 .8. 

From a qualitative point of view matching and estimation are done as follows: 

1. Get one (or more) telemetric measurementsP' in the mobile frame '.M(Fig. 
27.7). 

P' = [x' = x; + d cos( a'~ 
y'=y; +dsin(a')J 

~Of locaIiU~ 

c:;; elemem~1 odometry I 
\. mOvement Os, sa 

FIGURE 27.8. Exteroceptive localization and dead reckoning cooperation. 

(27.4) 
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2. Update the local map in the mobile frame Mby using the odometry. The 
result is a list of obstacle descriptors Eq. (27.2) 5/: 

5,' =: {(M,.', hi' <jl,', p,.', s,); i =: I .. . Il} 

3. Associate the measurement P' with the most appropriated obstacle descrip­
tor or reject it as an outlier. 

4. Update the estimation of the matched line segment (<jl/,p/) in the mobile 
frame 'Jvf. The error equation (27.5) states that the detected point (x',y') 

belongs to the ith obstacle: 

x' cos( <jl,') + y' sine <jl/) - p/ =: o. (27 .5) 

The result of parameter updating is 

/\ /\ 
{<jl/,p,'} . 

Knowing the obstacle equation in the world frame 

x cos( <p,) + y sine <Pi) - Pi =: 0 (27.6) 

/\ 
and the estimation of the obstacle orientation (<jl') in the mobile frame, 

(/\ . /\ 
x' cos <p/) + y' sm(<p/) - p/ =: 0 (27.7) 

gives the update the vehicle orientation 

(27.8) 

Update the vehicle position (xnyJ by use of the error Eq. (27.9) which 
represents the fact that the middle Mi of the segment Si satisfies the line 
segment Eq. (27.6) in the world frame. 

(27.9) 

In the next sections, the measurement uncertainties are taken into account. 
Extended Kalman filtering (EKF) is the more commonly used solution framework 
to attack this problem. The major points of this type of solution are first presented 
in Section 27.2. EKF implies, among other things, the assumption that the sources 
of error are Gaussian white-noises. This hypothesis is generally forgotten at the 
execution level and never checked. 

Modeling the measurement errors by simply stating the bounds of this error 
leads to set membership solutions. In this latter class, the use of elliptical algorithms 
are detailed and discussed in the Section 27.3. 
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27.2. OUTLINES OF EKF BASED SOLUTIONS 

EKF has been used in a sequence ofpapers(2,3) where the general framework 
of the solution, based upon a general framework(4) is the following. Consider the 
state equation (27.3) of the mobile. Assume that noise corrupts the motion. The 
following discrete time equation describes this by: 

(27.10) 

where 

• The state vector Xk = (Xc,k ; Yc,k ; 8kl is the localization at the kth sampling 
time tb 

• Uk = (bSbb8k)T is the considered control input, 
• Vk is a Gaussian zero-mean white noise (Vk - N(O, Qk))' 

Along with this definition, observations are noted in the usual form: 

(27.11 ) 

where Zk is the measurement signal, h(., .) is the sensor model, Si denotes the 
observed beacon or landmark, and Wk is a zero-mean Gaussian white noise (Wk -

N(O, Rk») too. 
The detemlinistic part of the model is clearly defined. The covariance matrix 

Rk of Wk states the sensor precision in a statistic framework but the definition of the 
covariance matrix Qk ofvk is not clear. Again, the assumption that noises are white 
is never checked a posteriori. 

The localization procedure is then classically the following: 
Suppose a matched measurement, for instance, the relative position of an 

obstacle point Zk = (xk ,yk l (Eq. (27.4)) is matched to a line segment Si' The 
estimation is performed by the following sequence 

• Estimation step: 
. 1\ 

- innovation: Vk = Zk - h(Si,xklk-l) 

- Kalman gain computation: 

- estimate actualization: 

- covariance actualization: 

• Prediction step: 
1\ 1\ 

- estimate prediction: Xk+llk = F(Xk1k,u) 

- covariance prediction: Pk+llk = 'IlF(.)Pk1k'llTF(.) + Qk' 
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This procedure is algorithmically complete provided the covariances matrices 
(Qk> Rk) and the initial dispersion matrix P_1 -I are given. Matching can be done in 
this context by defining a validation gate based upon a Mahalanobis distance (Eq. 
(27.12» defined as follows: 

(27.12) 

A measurement zk can be matched with a line segment Si if the following 
inequality is satisfied. In this expression, X6 can be interpreted under the assumption 
that the innovations are white, as a probability of association between the measure­
ment and its prediction: 

. 2 
d" < Xo' (27.13) 

From a "pictural" point of view, the choice of a specific value of the threshold 
X6 describes an ellipsoid of matchable measurements in the observation space 

A 
centered around the prediction h(Si,xk) of the measurement. If several primitives in 
the local map can be matched with a given measurement, a common rule consists 
of choosing one that minimizes the criterion: 

d" + In(det(Si». (27.14) 

As a conclusion, this procedure works in numerous cited examples. The 
tumbling stone of the method is, besides general comments upon the convergence 
ofEKF, a sort of gap existing between the modeling of the sensor and the definition 
ofvariance/covariance matrices (Qh Rk) (Eqs. (27.1 0 and 27.12» which are, in most 
cases, simple parameters to be tuned in the procedure rather than statistical 
attributes. Additionally, the Gaussian white noise assumption on the causes of error 
is only exceptionally addressed.(5) The following section proposes to reconsider 
this problem from the bounded error point of view. It gives, by using elliptical 
algorithms, some solutions that are in some ways similar to the one developed from 
EKF. Additional features are a dead-zone and a measurement consistency test. 

27.3. A SET MEMBERSHIP APPROACH TO THE STATIC 
LOCALIZATION PROBLEM 

After having stated the outlines of the classical way to attack the localization 
problem that consists, in a few words, to model any uncertainty as the realization 
of a Gaussian white noise, another way to state the lack of precision in the estimation 
process is presented here. 

In the set membership approach, uncertainty in the estimation of a quantity is 
described by a set of possible values rather than with an accuracy statement (a 
covariance matrix) of an estimate. Introducing the set membership approach in the 
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localization process has been proposed(6--8) and discussed in the wider context of 
task-directed sensor fusion .(9) 

Set membership solutions are linked with bounded error characterization of 
inaccuracy. One advantage of such an approach is that it is not necessary to invoke 
the law of the large numbers when only few measurements are available. Another 
nice feature consists in the "natural" definition of the error bounds as shown next. 

The presentation of the set membership solution is structured as follows: 
Section 27.3.1. analyzes the telemetric measurement process in order to 

characterize the basic measurement error which is found to be "naturally" bounded. 
This error statement is then used in the next section dealing with the static 
localization problem which itself is divided in two subsections: the former (Section 
27.3.2) is devoted to the localization estimation and the latter (Section 27.3.3) to 
the matching problem. Finally, the movement is taken into account in the last 
section (Section 27.3.4), where measurements and movement are mixed. 

27.3.1. Measurement Error Statement 

The error-free localization principle has been exposed in Section 27.1.1 (Eqs. 
(27.4-27.9) in the context of perfect telemetric measurements. Here, we take into 
account the conic dispersion of the wave emitted by a telemeter, which constitutes 
a major cause of error. The standard output of such a device is the position (x', Y') 
of a detected obstacle point (Eq. (27.4)) in the mobile robot frame 'M, whereas the 
rough measurement (d,a') is composed of both the measured distance d between 
the sensor and the detected obstacle (Fig. 27.9), and the scanning direction angle a'. 

The emission angle y that defines the aperture of the emitted beam is given by 
the manufacturer. This information can be used for localization by simply stating 
that the point (x' ,y') detected in the mobile frame belongs to the segment S whose 
line equation (27.2) is defined in the world frame (Fig. 27.7) as follows: 

X, X' , 

a ' 

. yl 

c 

FIGURE 27.9. Telemetric measurement characterization. 
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c 

FIGURE 27.10. Sensor model. 

Xc COS(<p) + Yc sin(<p) +x' cos(<p - 8) +Y' sin(<p - 8) - p' = 0 (27.15) 

The measurement error analysis stems from the fact that the beam emitted by 
the telemeter is conic. The detected distance is the distance of the nearest object in 

the cone whose normal is such that the reflected beam reaches the receiver/emitter 
sensor T' (Fig. 27.1 0). 

Without any further information, this distance d between the detected point 

D' and the sensor T' is interpreted to be the one between the receiver T' and a point 
P' = (x',y') on the cone axis. Such a point is considered as the standard measure­
ment. It is clear that any real detected point D' lies in the disk of center P' and of 
radius /3(d)(/3(d) = d tan(y))(Fig. 27.10). With this error assessment, it can be shown 
that the linear localization equation (27 .15) is replaced by the following inequality. 
It states an admissible strip for the point c: 

Ixc cos( <p) + Yc sine <p) + cos( <p - 8) x' 

+ sin(<p - 8) y'- p' I::;; /3(d) = d tan(y) (27.16) 

In conclusion, the two measurement equations (27.7) and (27.8) are converted 
into their respective bounded error Eqs. (27.l7 and 27.18) where the error bound 
/3(d) = d tan(y) is defined at each measurement: 

1\ 1\ 
Ix'c cos(<p/) + Y' sin(<p/) - p/I<::; /3(d) (27.17) 

and 

(27.18) 
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FIGURE 27.11. Multiple reflexion phenomenon. 

Another parasitic effect is the multiple reflection phenomenon stemming from 
specular reflection and represented in Fig. 27.11. This phenomenon is dealt with 
by the matching module (Section 27.3.3) which should remove data coming from 
multiple reflections. 

27.3.2. The Static Localization Procedure 

It simply consists in adapting a standard(IO,II) EPC' algorithm to the preceding 

localization problem (Section 27.1.1) and error Eq. (27.16) that states an admissible 
band for the point C: Recall the EPC algorithm: 

• 0 E 2?! is the parameter vector to be estimated; 
• Yk E '1(, 't>k E 2?! are measurements or known quantities; 
• Yk - <t>i0 = 0 is the measurement principle; 
• lYk - <t>i·(~1 :<:;; 13k states the measurement error bound; 
• 'Ek = {0 E 2?!;(0 - 0Dt Pkl(0 - 0k) :<:;; I }is the feasible parameter set esti­

mate; and 
• 'Eo defined by (0grol ) is sufficiently large to certainly contain the true 

parameter vector 0*. 

The kth feasible domain 'Ek is recursively obtained as follow: Iteration k: 
Measure Yko <t>k and compute the two indicators 

and 

*ElIiptical with Parallel Cuts 

_ <t>[0%_1 - Yk -13k 

ak = --Jct>{Pk_1ct>k 

+ Yk - ct>[0%_1 -13k 

ak = --J<t>lPk_1ct>k 
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Test 1: If a" > 1 or at > 1, then 'Ek is empty, else continue. Replace a" by 
max(a", -1) and at by max(a7;, -1). 

Test 2: If aka" ;::: 1 / p (p is the size of vector 8) then 'Ek = 'Ek-b else 

(27.19) 

and 

(27.20) 

where 

_~( _ (a;i + (aki-p/p: °k-/ _ 1 1 2 ' 

and 

(27.21) 

with 

When at = a" = ak, Gk as written in Eg. (27.21) is no longer defined. Eqs. (27.19-
27.20) then specialize into the centrally symmetric parallel-cut algorithm given by: 

p( 1 - a2) ( 1 - pa2 I 
p = k P _ k P <D <DTp . 

k P _ I k-l (1 _ 2)ihTp ... , k-l kkk-I l ak 'Vk k-1'Vk ) 

The adaptation of the error Eg. (27 .12) into a linear in parameter form 

lx' cos(<p/) + y' sin(<p;') - p/I:S; ~k 

can be written as 

with the constraints 

{
U.,2 + v.,2 = 1 

I 1 

p/;::: o. 
(27.22) 
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The algorithm can then be used to estimate the feasible domain of (<p/ ,p/) by 
the statement of 

• the parameter vector to be estimated e = [u/, vi;' ,p/f 
• the measurements and known quantities <1>k = [x/,Yk',-l]T; Yk = ° 

A kth measurement <1>k results in updating the feasible domain of the segment line 
equation. From (ek~j, Pk-l) comes (et;, Pk). As the admissible components of e 
are constrained by Eq. (27.22), ek will be modified to fulfill those constraints (this 
modification simply consists of multiplying all components of ek by the scalar 
Yk (Eq. (27.23» and the matrix Pk by YI : 

(27.23) 

The feasible domain for 0 k being determined, the initial estimation problem 
is treated by determining the feasible values of the detected obstacle line segment 
Si characteristics (<p/,p/) (see Eq. (27.17». Those feasible domains certainly exist 
since the center ek of 'Ek satisfies the constraints ofEq. (27.22). 

The possible values of Si are thus obtained by intersecting the ellipsoid (Eq. 
(27.24» with the cylinder (Eq. (27.25»: 

<p' E <1>' : {<p/ E [O,2rc[; 

e = [cos <p/ sin <p/ p/f; 

(27.24) 

(27.25) 

It yields 

, [,e ,e] 
<p E <Pi,k - c<p'.k' <Pi,k + E<p',k 

The possible values of pi is the "positive magnitude" ofthe ellipsoid (Eq (27.24». 
It becomes: 
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f3 ' = 11[(Pk)3,1 (Pk)3,2 (Pk)3,3fll 
P, -/(Pkh,3 

This ends the estimation of the relative localization of an obstacle in the mobile 
frame :M. The localization of the robot in the world frame 'W is obtained by a change 
of coordinates. 

Computing the position (xcYc) can thus be obtained by processing the follow­
ing error equation: 

The EPC algorithm can then be used with: 

<Pk = [cos <Pi sin <par 

It results in updating a feasible ellipse (Eq. (27 .26) parametrized by its center e~ 
and its matrix Pk: 

(27.26) 

The orientation is obtained by a simple difference (Eq. 27.8). It becomes then the 
following based upon the <Pi segment relative orientation: 

(27.27) 

and 

This orientation characterization ends the estimation part of the algorithm. It 
is illustrated by experimental results, where one sees the localization uncertainty 
decreasing when new significative measurements are added, and where this uncer­
tainty remains constant when almost redundant measurements are treated. Such 
results obtained from a real static localization experience are shown in the appendix, 
at the end of this chapter. 
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This section has dealt with estimation when a measurement, stated by the triple 
of a landmark segment Sj, a detected obstacle point P', and the precision 13, has been 
obtained. As mentioned in Section 27.1, an initial matching between a given 
measurement and a given landmark should be done initially. 

27.3.3. Matching 

Matching a rough telemetric measurement P' (defined in the mobile frame 
5\1) with a given line segment primitive (defined in the world frame 'Y0 consists in 
mapping each possible measurement associated to one segment, Sj, represented in 
the observation space :M. Due to localization uncertainty, the various candidate line 
segment primitives Sj constitute classes in the observation space in which a new 
measurement P' should be assigned to give a localization information. 

By mimetism to the EKF solution (Section 27.2), this classification is achieved 
by using a Mahalanobis style distance in such a way that a measurement is either 
rejected as an outlier or matched to the nearest class according to such a distance. 

The definition of such a Mahalanobis distance (Eq. 27.12) is performed by 
enclosing the possible measurements matchable to a line segment in an elliptic 
envelope whose characteristics (center and matrix) define the distance. The defini­
tion ofthe dispersion of possible measurements is conceptually represented in Figs. 
27.12-27.14. The uncertainty in the localization in 'Wresults in a dispersion of 
possible telemetric measurements. The possible measurement are centered around 
possible positions of the obstacle segments in the mobile frame. 

real localization 

possible 
localization 

FIGURE 27.12. The uncertainty in the localization in W results in a dispersion of possible telemetric 
measurements. 



480 

This uncertainty stems from 

D. MEIZEL ET AL. 

FIGURE 27.13. The possible measurements are 
centered around possible positions of the obstacle 
segments in the mobile frame. 

1. The telemetric measurement error analyzed in Section 27.31, which results 
in the true obstacle point inside a disc centered around the detected point 
(Fig. 27.14a); 

2. The orientation uncertainty (Fig. 27.14(b)); and 
3. The position error (Fig. 27.14(c)). 

The computation of an ellipse enclosing all this possible sets appears as a difficult 
operation and the search of a real time solution results in simplifications. A first one 
consists of replacing the sensor error caused uncertainty domain by its polygonal 
envelope and the elliptical possible positions set by its rectangular envelope. The 
problem results in the computation of an elliptical envelope of a set of polygonals 
which is known(12) to be exactly solvable in real time. 

Another rustic solution consists of heuristically selecting four characteristic 
points somehow representative of the possible measurements set and determining 
an ellipse containing those points (Fig. 27 .15): 

From the preceding discussion, the absolute localization uncertainty (Eqs. 
(27.28 and 27.29)), and a segment characterization (Eq. (27.30)), 

and 

.) sensor c.used 
uncenaint)' 

o E {(0_0C )T F;1(0-0C )< l' 0=(x y)T} k k k - , c' c ' 

b) orienlation error 
caused uncertainlY 

c) position error 
caused unccnainlY 

(27.28) 

(27.29) 

FIGURE 27.14. Orientation and position error caused uncertainty: (a) sensor-caused uncertainty; (b) 
orientation error-caused uncertainty; and (c) position error-caused uncertainty. 
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FIGURE 27 .15. Ellipse enclosing four heuristic points. 

(Mi,<Pi'P). (27.30) 

it is possible to define an ellipse Eq. (27.31) in the mobile frame, 

1\ 
[x' -xlt, 

1\ y' - ylt,J (27.31) 

that corresponds to the possible detected points which can be associated with Si' 
Define now Eq. (27.32) as a Mahalanobis type distance. 

di(P',s) = II [x' -x~,i y' - y~,i r II~" (27.32) 

it can be used for classification purpose in the same way that in the EKF solution: 

I. Find the primitive Siv that minimizes 

di(P',Si) + In(det(L;)) 

2. If dio(P',Si) < X~, then match P' to Sio else reject P' as an outlier. 
An additional matching feature is contained in the EPC algorithm (Section 27.3.2, 
Test 1) and is used to reject incoherent measurements. After having completed the 
matching and estimation part of a set membership localization algorithm, the next 
section deals with the vehicle movement and takes into account the fact that 
measurements are not obtained at the same time they are used for localization. 

27.3.4. The Moving Vehicle Localization 

27.3.4.1. Uncertainty a/the Dead-Reckoning System 

This section presents the adaptation of the previous static localization proce­
dure to the case when measurements are taken as the vehicle moves. There are two 
main differences between the dynamic and the static case: 
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1. The localization uncertainty drifts when it is only updated by odometry. 
2. The localization estimation at time tk is obtained from the previous one 

computed at time tk- I and from a sequence of measurements: 

each one is referenced in the sequence of mobile frame 'M(tk_1 + T;) bound 
to the robot configuration sequence 

{C(tk_1 + T) , O(tk_1 + T)} i=I ... , N . 

Both questions can be answered if it is possible to state how the localization 
uncertainty increase as the robot moves from one configuration (Co,8o) to another 
one (C,O). It is necessary, then, to analyze the dead-reckoning error causes. 

Consider a differentially driven vehicle (a cart-like vehicle). The characteristic 
point C is chosen in the middle of the driving wheel's axis. Let R be the common 
wheel radius and 2e the distance between their centers, an angular deviation D\If, 
(resp. D\lfr) of the left (resp. right) wheel. Arguing that each wheel rolls without 
slipping gives the following relation: 

and 

I 0, ~ }R (0"'" + 3",,) 

ho -2 (D\lf r - D\lfl) 
l e 

{
DXc = Ds cos 0 

DYe = Os sin O· 

Consider a deviation oR, = RI - R (resp. oRr = Rr - R) between the left (resp. right) 
wheel radius and it estimation, and a deviation 20e = 2~ - 2e between the points on 
the ground where there is rolling without slipping and the wheels center distance 
2~. Under the rolling without slipping hypothesis, it becomes: 

los = ~ (RrD\lfr + Rp\If,) 
I . 

00 = 2e (RrD\lfr - Rp\lf,) 

The dead-reckoning system interprets those angular movements as 

and 

Its = ~ (RD\If r + RD\If I) 

88 = -b (Ro\lfr - RO\lfI) 

(27.33) 
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{

A fI. fI. 
OX = OS COS e 

A fI. A • oy = OS sin e (27.34) 

The deviation between the real and the estimated motion increment is thus: 

This uncertainty can be overvalued by using a total displacement variable (ol'VwD: 

As the wheel radius deviations oR/, oRr and the inter-center distance error oe are 
naturally bounded, there exists positive constants (P]'P2) such that 

and 

Consider now a finite displacement from (Co,8o) to (C,8) = (Co + ~C,80 + ~8). 
During this motion, the total displacement is ~1'Vwl. The drift in the dead-reckoning 
estimation is overvalued by the following inequalities: 

(27.35) 

and 

(27.36) 

Those inequalities end the dead reckoning system error estimation analysis and 
provide an answer to the initial question. 

27.3.4.2. Drift of the Localization Uncertainty Due to Odometry 

The analyzed situation is represented on Fig. 27.16. The possible position 
domain is increased from 'E k-I to 'E k 

2 A T 1 A 
'E k_ 1 = {C E 9t ; (C - Ck_ l ) Ik-l(C - Ck_ 1)}, 

t such a variable is incremented each time a binary encoder tied to the wheels detects an angular motion 
in any direction 
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FIGURE 27.16. EllipsoidaJ uncertainty increase. 

and 
1\ 1\ 1\ 

Ck = Ck_1 + L'lc. 

Modify the (2 x 2) matrix Pk in such a way that the 'Ek ellipse principal axes are 
those of 'E k-! augmented by 

1\ 

(P2L'lI'l'wl + (£e,k-!) + (PlL'lI'l'wl)·~·L'lI'l'wl)), 
1\ 

which is a majoration of the position uncertainty drift IIL'lC - L'lCiI (Eq. (27 .36». The 
orientation estimation drift is even simpler since it is transformed from 

1\ 1\ 
Ok-! = {El E [Elk-! - £e,k-p Elk-! + £e,k-l] c] -rr, +rr] mod 2rr} 

to 

with 

The localization uncertainty drift caused by dead reckoning being stated, the next 
subsection analyzes the way a measurement taken at time to in the frame M(to) 
bound to the configuration (Co,Elo) can be used to determine the localization 
(Ck,Elk) at time tk• 

27.3.4.3. Localization by Use of Past Measurements 

There are two aspects in this problem: estimation by using a matched meas­
urement and matching a given measurement to a straight segment primitive. The 
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answer to both questions is found by adding to the uncertainty drift due to the dead 
reckoning with the one of the static localization procedure. 

1. Using a measurement P'(tk-l + t) matched to a segment Sj to evaluate the 
configuration (Ck,8k) at time tk is done by: 
(a) describing in the reference frame M(tk) the measurement P'(tk- l + t) 

obtained in M(tk_l + t) 
(b) adding the uncertainty P2 Lll\jlwl + (E(8k- l ) + PI LlI\jlwi)tsLlI\jlwi) to the 

initial measurement uncertainty on P' (Eq. (27.36)). 
2. Matching a measurement P'(tk-l + t) to a segment S i is performed by 

computing the position of S i in the reference frame M(tk-l + t) and by using 
the uncertainty characterization of (C(tk-l + t), 8(tk- 1 + t)) obtained from 
the one stated at time tk-l augmented with the dead reckoning uncertainty 
drift (Eq. (27.35 and 27.36)). The position of the segment Sj in the mobile 
frame M(tk-l + t) and the corresponding uncertainty being thus stated, 
matching can be performed by use of the static matching procedure of 
Section 27.3.3. 

27.4. CONCLUSION 

The essentially nice feature in the use of the set membership approach for 
mobile robots localization lies in the error modeling freedom. 

Using statistical EKF based solutions for this problem can be interpreted as a 
way to perform uncertainty computation, assuming small deviations and linearized 
progression and observation models around the current estimated localization. This 
theoretical simplification gives a closed form solution in which error causes are 
melted in the definition of a state, and measurement noise vector whose covariances 
become nothing else but a set of tuning parameters. 

From an opposite point of view, the geometric and physical description of the 
measurements error causes described in this chapter has "naturally" led to charac­
terizing error bounds in the measurement equations that constitute the principle of 
the localization technique. Of course, this problem based error characterization is 
less straightforward formally as a simple linearization. However, the error analysis 
is, in our opinion, closer to the basic problem. 

From the recursive computation point of view, the bounded error approach has 
two original features with respect to classical EKF or recursive least squares (RLS) 
algorithms. The former lies in a model consistency test and the latter in a dead-zone. 

Here, the model consistency test is used in the matching module and prevents 
the use of mismatched couples (measurement, landmark) in addition to a matching 
procedure that is a copy of the EKF solution matching procedure. 

The dead-zone feature of the algorithm has both positive and negative aspects. 
The negative one consists in the non-increasing accuracy obtained when a large 
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number of measurements are quasi-redundant, the positive one is the same argu­
ment considered from another viewpoint: a large number of quasi-redundant 
measurements result in a small number of localization updates, thus saving com­
putation time. 

In conclusion, the authors are now working on an ecumenical localization 
algorithm. It combines the advantages of the set membership solution and the ones 
of EKF based solutions to benefit from the law of large numbers when possible, 
and avoiding to invoke it when scarce measurements are available. 
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APPENDIX 

A Static Localization Experience 

This appendix sums up graphically the steps of the static localization procedure 
(Section 27.3.2). The initial situation is depicted in Fig. 27.A.1. In all figures, the 
line segments represent the walls, the real robot is drawn in grey, and the estimated 
one is represented by dotted lines. The position uncertainty is represented by an 
ellipse, whereas the orientation uncertainty is represented by an angular sector. 
Graduations are in mm. 

In Fig. 27.A.2, the result of the localization algorithm after processing one 
single measurement is represented (the point detected by the sonar in the estimated 
mobile frame is represented by a star). The strip associated with this measurement, 
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FIGURE 27.A.l. The initial situation. 

(which represents the feasible domain for the robot position) is shown. A new ellipse 
is computed by intersecting the old ellipse and the strip. Uncertainty is reduced in 
the normal din~ction to the obstacle. 

Note the exploitation of all measurements matched with the first-oblique­
segment. In Fig. 27.A.3 there is no real improvement after the first measurement. 
Indeed, the strips have slightly the same width and they recover nearly exactly the 

theta 

FIGURE 27.A.2. Exploitation of the first measurement. 
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FIGURE 27.AJ. Dead-zone of the localization. 

first ellipse. This exhibits the dead-zone characteristics of the bounded-error 
estimation based localization algorithm. 

After exploitation of all measurements matched with the second segment 
(parallel to the x -axis), (Fig. 27 .AA), uncertainty is reduced in the normal direction 
to the new obstacle. Here too, the final ellipse is only due to the first measurements. 
Strips caused by further measurements are wider than this ellipse, and bring no 
improvement. 
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FIGURE 27.A.4. X-axis segment processing. 



MOBILE ROBOT LOCALIZATION 489 

theta 

5000 

4000 

3000 

I 2000 '" 
>-

1000 
"'I 

o 

.1~ ·1000 o 1000 2000 3000 4000 5000 6000 
x (mm) 

FIGURE 27.A.S. After treatment of y-axis segments. 

The exploitation result of all measurements matched to the y-axis segments 
is represented in Fig. 27.A.S. In Fig. 27.A.6 the exploitation result of all measure­
ments is summed up. 
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FIGURE 27.A.6. Summary of the initial and final estimations. 



28 
Improved Image Compression 
Using Bounded-Error Parameter 
Estimation Concepts 
A. K. Rao 

28.1. INTRODUCTION 

Classical approaches to parameter estimation yield point estimates of parameters 
by optimizing some criterion of fit. In contrast, bounded error parameter estimation 
(BEPE) methods provide sets of parameters which are consistent with the model 
structure, observation record, and uncertainty constraints. In general, no knowledge 
of the statistics of the model or observation uncertainty is assumed. The uncertainty, 
however, is assumed to be constrained in some manner, e.g., with bounded energy 
or bounded magnitude.(l) BEPE methods seem more appropriate than classical 
techniques in several situations. If the actual system is only loosely modeled by the 
chosen model, it appears more reasonable to attempt to optimize the model so as 
to bound the model mismatch error, rather than to do classical parameter estimation 
with erroneous assumptions on the statistics of the model mismatch error. In other 
cases, the statistics of the observation uncertainty may not be known and BEPE 
techniques may be effective. 

In many signal processing applications, point estimates of parameters are 
required while BEPE actually yields a set of valid parameter estimates. In such 

A. K. RAO • COMSAT Labs, Clarksburg, MD 20871. 
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1996. 
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cases, the center of the BEPE set can be used as a point estimate for the model 
parameters. This point estimate is often more effective than the estimate obtained 
by classical estimation techniques. In other applications, the entire set of parameters 
is of interest. This chapter, shows how both BEPE based point estimates and 
parameters sets can be used effectively to enhance standard image compression 
techniques. Parameter bounding techniques have been used previously for several 
signal processing applications such as linear prediction of speech,(2) signal restora­
tion,(3) and filter design,(4) but do not appear to have been used for image coding. 

Since images are highly non-stationary and difficult to model, BEPE methods 
may be more effective for estimating time-varying models with possibly large 
model-mismatch errors. The first application discussed is the use of a specific 
bounded error estimation technique (the time-varying optimal bounding ellipsoid 
(OBE) method)(5.6) to improve the efficiency of two-dimensional adaptive differ­
ential pulse-coded modulation (ADPCM) coding of images. Conventional algo­
rithms such as least-mean-squares (LMS) or recursive least-squares (RLS) often 
cannot track the rapidly changing model parameters. Incorrect predictions and large 
prediction errors result, which require more bits for transmission. The parameter­
tracking-bounding ellipsoidal algorithm used here can automatically adapt to small 
and large changes in model parameters and, as shown later, outperforms conven­
tional slow-adaptation algorithms for some of the images tested. 

The other application discussed is in the quantization of discrete cosine 
transform (DCT) coefficients. The DCT method(7) is used widely for image com­
pression and is now part of the Joint Photographic Experts Group (JPEG), and 
Motion Pictures Expert Group (MPEG) image and video compression standards. 
In the DCT coding technique, image blocks are transformed using a two-dimen­
sional transform. The transform causes compaction of the energy in the block into 
only a few low order transform coefficients. Compression is achieved by coarse 
quantization of the higher order coefficients. The image block can then be recon­
structed by applying the inverse DCT. The unitary nature of the DCT implies that 
the P norm of the error in the transform domain is identical to the P norm of the 
error in the spatial domain. However, in several applications such as medical 
imaging and remote sensing, it is important to specify and control the maximum 
amount of distortion in the image samples (the r J norm) introduced by this DCT 
quantization process. This chapter uses bounded error parameter estimation con­
cepts to obtain necessary and sufficient conditions in the transform domain for the 
distortion in the spatial domain to be bounded. These conditions are easily tested 
on the DCT coefficients on a block-by-block basis. Unfortunately, the sufficient 
conditions derived using parameter bounding methods are excessively pessimistic 
and, therefore, not very useful. However, the necessary conditions can be used to 
validate the quantization table used for a block to constrain the spatial distortion 
without an excessive increase in the bit rate. Similar parameter bounding techniques 
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can be applied to other transforms or applications, such as the discrete Fourier 
transform, wavelet transform, and speech compression. 

28.2. ADAPTIVE PARAMETER ESTIMATION 

The specific BEPE algorithm considered here is an optimal bounding ellipsoid 
(OBE) algorithm(8) which is a variant of the original Fogel-Huang minimum 
volume boundtng ellipsoid estimator.(9) Like the Fogel-Huang algorithm, this OBE 
algorithm obtains a sequence of ellipsoids which upper-bound the feasible parame­
ter set. The difference is that the ellipsoids are not guaranteed to be of minimum 
volume. Instead a certain upper bound on the size is minimized. The algorithm is 
computationally simpler and the analysis of its properties for stationary(8) and 
time-varying(6) models is more tractable. The OBE algorithm estimates the parame­
ters of a linear model of the form: 

y(t) = e*T<j>(t) + wet), (28.1 ) 

where S* is the n-dimensional true parameter vector, <j>(t) is the regressor vector of 
observed data, and w(t) is the observation or modeling uncertainty which is assumed 
to be upper bounded, i.e., 

Iw(t)1 < y for all t. 

Let the bounding ellipsoid at time instant t-l be described by 

where the 8(t -- 1) is the center of the ellipsoid defined by the ellipsoidal matrix 
p-l(t - 1). A scalar ()2(t - 1), along with P(t - 1), controls the size of the ellipsoid. 
Then, the bounding ellipsoid at instant t is(6) 

(28.2) 

and recursively as 

8(t) = S(t - 1) + Af(t)<j>(t)8(t) (28.3) 

(28.4) 

and 

(28.5) 

The prediction error is 
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8(t) = yet) _eT (t - I )~(t) (28.6) 

and 

G(t) = ~T(t)p(t - 1 )~(t). (28.7) 

The factor At is a positive time-varying update gain which is chosen to minimize 
~(t) at every sample index t. This has the effect of usually decreasing the size of 
the bounding ellipsoid from one iteration to the next, though there is no guarantee 
that the size is minimized. This choice orAt has yielded good results experimentally 
and has simplified the convergence and tracking analysis of the algorithm. The 
minimization procedure yields the following updating criterion(8) 

If 

cr2(t - 1) + 82(t) ~ r, then At = 0 (i.e., no update) (28.8) 

Otherwise if ~(t - 1) + 82(t) > r, then the optimum value onl is non-zero. It can 
be calculated according to 

where 

V= t 

a 

1 - pet) 
2 

ifG(t) = 1, 

I _ ~(t) (1 - -..J 1 + P(t~~(t) _ 1/ if 1 + f3(t)(G(t) - 1) > o. 

(28.9(a» 

(28.9(b» 

(28.9(c» 

a if 1 + f3(t)(G(t) - 1) S; 0, (28.9(d» 

and a is a user chosen upper bound on At satisfYing 

0< a < 1, (28.10) 

and 

(28.11) 

The initial conditions are chosen to ensure that e* E Eo. A possible choice is 

P(O) = L e(t) = 0 andcr2(0) = 1182 where 8 < < I. 

As in other least-squares type algorithms, the update equation for [T1(t) can be 
manipulated using the matrix inversion lemma to yield a recursive relationship in 
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terms of pet). For autoregressive with external input (ARX) models, some conver­
gence type properties, such as convergence of the parameter estimates to a ball and 
boundedness of the prediction error have been derived.(8) The algorithm has been 
extended to autoregresive moving average (ARMA) models and similar conver­
gence properties have been shown to hold.(lO) 

Most of the existing parameter bounding algorithms have been developed for 
the fixed parameter case. As a result, changes in the true parameter may cause the 
feasible parameter set to vanish. In the case of the OBE, small changes in the 
parameter can be automatically tracked (in the sense that the center of the bounding 
ellipsoid moves towards the new parameter). Larger changes can cause the bound­
ing ellipsoid to vanish and the functional a\t) is then no longer positive. Thus, 
monitoring the sign of d(t) provides for easy parameter jump detection. In such 
situations, a rescue procedure can be activated that inflates the size ofthe previously 
obtained bounding ellipsoid by an appropriate amount to permit a new valid 
bounding ellipsoid to be constructed. The inflation is achieved by increasing 
d(t - 1) to an amount prescribed by the following algorithm.(5,6) 

If 

2 a2(t I) 
1 + Y - - (G(t)-l»O 

82(t) 

and 

then 

a2(t - 1) = 1 (82(t) + y2[ G(t) - 1] 
G(t) - 1 

- + OJJ set 1 t 7; 
[y( G(t) - 1) + 18(t) 1]2 ) ,/'I: 'f G( ) 1 

G(t) 

and 

a 2(t - 1) = 82(t) + Y 2 - 2yI8(t)1 + offset if G( t) = 1. 

Else 

a 2(t - 1) = a ( 82(t) - L) + offset. II - a + aG(t) 1 - a 

Offset is a user selectable constant (typical value 1.0) and a is the upper bound on 
A. This inflation of a2(t - 1) and, consequently, Et-I> ensures the existence of 
bounding ellipsoid Et• The center of Et gravitates towards the true parameter. 
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Simulation results with computer generated ARX model data have shown that the 
OBE algorithm is capable of tracking slow and abrupt parameter variations without 
activating the rescue procedure. In some runs, after a large parameter change, the 
bounding ellipsoid vanishes. In such cases the rescue procedure causes remarkably 
rapid tracking and accurate parameter estimation. Consequently, this time-varying 
estimator is ideal for model estimation of high resolution images that exhibit rapid 
spatial variations in intensity. 

28.3. ADPCM IMAGE CODING 

Most images have a significant amount of redundancy; the pixel intensities are 
highly correlated horizontally and vertically. Image compression involves the 
reduction or removal of this redundancy and the use of visual masking techniques 
to reduce the amount of data which is required to faithfully represent the image. 
Perhaps the oldest and best established lossy compression technique is differential 
pulse coded modulation (DPCM).(l1) In DPCM, a prediction of the pixel intensity 
is formed as a linear combination of the pixel intensities m a causal neighborhood 
of the pixel. The prediction is subtracted from the pixel mtenslty to obtain a 
prediction error which is quantized using lesser bits than the original pixel intensity. 
The quantized prediction error image can thus be transmitted or stored with a lower 
number of bits than the original image. Typically, compression ratios of 2: I to 4: I 
are obtained. In ADPCM (Adaptive DPCM), the prediction coefficients vary from 
pixel to pixel. However, to avoid sending the prediction coefficients to the decoder, 
the encoder and decoder each update the prediction coefficients using the same data 
(the quantized prediction error and the previously reconstructed image samples). 
Figure 28.1 shows possible predictor configuration with pixels to the left and top 
predicting by the current pixel. The prediction operation can be described by 

~(i,j) = a ]x(i,j - 1) + ar:(i - 1 ,j) + a3x(i - 1 ,j + I) + a4x(i - 1 ,j - 1 ),(28.12) 

where x(m,n) represents the reconstructed image sample at line m and column n. 
The ab k = 1, 2, ... , 4 are the prediction coefficients. Changes in image detail are 
accommodated by abrupt changes in the coefficients of the linear predictor. For 
example, in the above case, a coefficient set can model a vertical edge transition, 

c b d 
o 0 0 

o • 
a x 

FIGURE 28.1. Predictor configuration showing neighboring pixels a, h, c, and d predicting pixel x. 
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in which a2 is unity while the other coefficients are all zero. On the other hand, a 
horizontal edge is better modeled with al = 1 and with all other coefficients zero. 

The prediction coefficients can be adapted to changes in the image intensity 
in a number of ways. In some ADPCM methods, the prediction coefficients are 
updated using adaptive filtering algorithms such as the least-mean-squares (LMS) 
or recursive least-squares (RLS) algorithms. (12) Since the OBE algorithm, with the 
rescue procedure, is extremely effective in tracking slowly varying and abruptly 
changing parameters it seems particularly appropriate for tracking the prediction 
coefficients. Block diagrams of typical ADPCM encoder and decoder setups which 
would incorporate OBE parameter estimation are shown in Figs. 28.2 and 28.3 
respecti vely. 

The OBE based parameter adaptation is developed as follows. Assume that the 
pixel intensities y(i,}) can be modeled by a time-varying linear model of the form 

y(i,}) = eT(i,})<l>(i,}) + w(i,}) (28.13) 

where 

(28.14) 

and 

<l>(i,}) = [xci,} - 1), x(i - I,}), x(i - I,} + 1), xCi - I,} - 1), xci - 2,j)f (28.15) 

The uncertainty term w(i,}) represents the error in modeling the image intensity by 
this simple moving average model. The goal is to estimate e* so that the model 

y(t) 

~(t) 

x(t) 

I~"'---~-Q 
L.....:.."':'=::;=:':'--J 

FIGURE 28.2. ADPCM encoder with OBE parameter estimation. 
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e(t) x(t) 

x(t) 

--lOBE Estimation ~ 

FIGURE 28.3. ADPCM decoder with OBE parameter estimation. 

mismatch w(i,j) is kept at a minimum. The pixels in an image are processed from 
left to right and top to bottom. At the beginning of every new line, the parameter 
estimates are reset. The update equations for the ADPCM-OBE algorithm are 

b(i,j) = y(i,j) - ST(i,j - 1 )<I>(i,}) (28.16) 

3(i,j) = Q[8(i,}) (28.17) 

xU,}) = 3(i,}) + ST(i,} - 1 )<I>(i,}) (28.18) 

P(i .) = _1 _ [P(i . _ 1) _ Ie . P(i,} - 1 )<I>(i, j)<I> T(i,})P(i,j - I) l (28.19) 
,j 1 - Ie ,j I,j 1 - Ie + Ie G(i .) J 

IJ I., I.j ,j 

SU,}) = SU,} - 1) + le i,f(i,})<!>(i,})3(i,j) (28.20) 

The equations for calculation of Ie, and the rescue procedure are as described in 
Section 28.2. The algorithm is initialized as 

P(O,O) = MI,S(O,O) = (0.5, 0.25, 0.125, 0.125), and cr2(0,0) = y2, 

where M> > 1, and I is the Identity matrix. The choice of initialization conditions 
is not critical since the ellipsoid is reinitialized appropriately whenever (j2 becomes 
negative. A choice of upper bound a = 0,5 has yielded good results. 

The OBE based ADPCM scheme has been tested on a number of images and 
the performance has been compared with the LMS and exponentially weighted RLS 
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(EWRLS) based ADPCM algorithms.(I2) For the EWRLS algorithm, using a 
forgetting factor Ie < 0.95 can cause divergence due to the lack of persistence of 
excitation in smooth areas of the image. A possible solution is to perform the updates 
only if the quantized prediction error is non-zero, i.e., use a dead-zone. Since the 
input intensities are integer valued, the pixel prediction is rounded to the nearest 
integer, and consequently the prediction error is also integer valued. Thus a 
dead-zone of (-0.5,0.5) is appropriate. 

Simulations have been performed for a range of LMS step-sizes, EWLS 
weighting factors, and OBE bounds on three different images. The results are 
provided in Table 28.1. A uniform quantizer with a step size of four has been used 
in the simulations. The zone plate image (shown in Fig. 28.4) is a standard test 
signal used in the television industry and is considered particularly challenging. 
Lena is an image of a woman's face and is often used as a benchmark in image 
compression, while Football is one frame from a fast moving football sequence. An 
estimate of the compression achievable is obtained by calculating the first order 
entropy of the prediction error (expressed in bits/pel). The actual bit rates obtained 
by Huffman coding the prediction errors would be typically only 5-10 percent 
higher than the entropy estimate. Since the input pel intensities are 8 bit numbers, 
the compression ratio is given by 8/(Entropy). 

The simulation results show that the OBE algorithm is particularly effective 
for images with significant high frequency content like the zone plate. For this 
image, the LMS and EWLS algorithms do not perform well. The EWLS algorithm 
diverged for forgetting factors below 0.95. However, with the use of dead-zoning, 
smaller forgetting factors can be used and the performance improved significantly. 

FIGURE 28.4. Zone Plate test image. 
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The large variance in the parameter estimates due to the use of small forgetting 
factors is oflittle significance in ADPCM coding since the objective is to have small 
prediction errors. For the other images, the OBE algorithm, performs better than 
the LMS algorithm but does not do any better than the EWLS algorithm. For the 
Lena and Football images, the performance of the EWLS and the OBE algorithms 
is relatively insensitive to the variable settings (i.e., the forgetting factor and the 
noise bound). For the highly non-stationary zone plate image, the compression ratio 
is significantly affected by the settings used. 

28.4. QUANTIZATION OF nCT COEFFICIENTS 

The important problem of controlling quantization error in DCT based com­
pression sche:mes can be approached from a bounded-error parameter-estimation 
perspective. Specifically, given that a linear relationship exists between the block 
DCT coefficients and the block image samples, we wish to find the permissible 
extent of variation in the DCT coefficients (the extent of quantization error) under 
the constraint that the resulting error in the image sample domain is upper bounded. 
Suppose a simple description of the permissible set of DCT coefficients can be 
obtained. The quantization for that block can then be adjusted so that the quantized 
coefficients remain within the permissible set to ensure that all the errors in the 
image samples in the block satisfy the given upper bound. 

First, foGUs on the one-dimensional N-point DCT case. The forward DCT 
transform is defined as(7) 

N-J 

2c(u) " . C [ 2j + I] fi (28.22) F(u) == ----;:;- LJU) os TtU ----:u:I or u == 0,1, ... , N - 1 

r O 

while the inverse DCT transform is defined as 

. ~ [ 2j + 1] . 10) == ~ c(u)F(u)Cos TtU -m for] == 0,1, ... , N - I 

u=O 

(28.23) 

with c(O) = 1/...)2 and c(l) = c(2) = ... = c(N - 1) = 1. 
The inverse DCT can be recast into the now familiar linear parameter model. 

fU) == 8*T~U) forj == 0, 1, ... , N - 1 (28.24) 

where 8* is the vector of the NDCT coefficients F(O), F(I), . .. , F(N -1) and ~U) 
contains the cosine terms of the expansion off(j). Since e* is subject to quantiza­
tion error befi)fe the inverse transform, the requirement 

If(j) - eT~(j) I < y, j == 0,1, ... , N - 1 

is equivalent to determining the set 

(28.25) 
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s= {9 E 9{n: IfU)-eT~U)1 <y,j=O, 1, ... ,N-I} (28.26) 

The set S is thus the feasible parameter set which is actually the intersection of N 
half spaces in mN. Since the DCT is unitary, the ~U),j = 0, 1, ... ,N - 1 are mutually 
orthogonal. Thus S is a rotated cuboid in the parameter space with the coordinates 
of the center of the cuboid being the N unquantized DCT coefficients and the length 
of each side being equal to 2y. 

At this juncture, it is useful to examine a commonly used DCT coefficient 
quantization strategy. The quantization of each coefficient is performed by dividing 
the coefficient by an integer and rounding the result. A base-line quantization table 
which contains N different divisors for the N coefficients is used. The divisors for 
the higher order coefficients are usually larger than the others. Depending on the 
extent of quantization desired, each entry in the quantization table is multiplied by 
a scaling factor greater than one, and used as the divisor for the corresponding 
coefficient. The higher order DCT coefficients are thus reduced to zero in case the 
signal does not have significant high frequency content. If there are high frequen­
cies and a large scaling factor is used, however, then considerable error can occur 
in the reconstructed image samples. 

Given a particular quantization table and scaling factor, ensuring that the 
quantized DCT coefficients belong to S would essentially require taking the inverse 
DCT transform of the quantized coefficients and checking that each reconstructed 
sample in the block of N samples is within y of the original sample. Alternatively, 
to choose a scaling factor just small enough to satisfy the sample bound would 
require computing the inverse DCT for each scaling factor, and stopping when the 
bound is violated. It is desirable, therefore, to compute bounds on the quantization 
error in the DCT domain to ensure that the spatial domain constraint Eq. (28.25) is 
satisfied. The simplest bounds are parameter uncertainty intervals (PUIS)(l3) with 
each interval independently specifYing the uncertainty in that parameter. Other 
bounds, such as the ellipsoidal ones, could be used. However, ensuring that the 
quantized DCT coefficients are within the ellipsoid would require the same order 
of complexity as performing the inverse DCI. The PUI approach is equivalent to 
inscribing a parallelepiped with its faces parallel to the coordinate axes within the 
cuboid S. This problem can be solved in a variety of ways: solid geometry or convex 
programming.(l4) One method(15) finds the minimal outer-bounding parallelepiped 

first and then scales its dimensions uniformly to obtain the inner bounding paral­
lelepiped. The outer bounding parallelepiped can be obtained almost trivially by 
following this technique.(15) The PUI ~F(u) turns out to be proportional to the sum 
of the absolute values of the elements in the uth row ofthe forward transform matrix. 

N-I 

2c(u) " (2j + 1) M'(u)=y-;:;-~ I Cos nu-m I foru=O, 1, ... ,N-l 

]=0 

(28.27) 
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The inner PUIs can be obtained as 

/1Pnner(u) = hI'J.F(u) for u = 0, 1, ... ,N - 1 (28.28) 

where 

y 
h = N-l 

mjax E l'J.F(u)c(u) I COS [1tU 2J2~ 1 ) 

(28.29) 

As an example, the outer and inner PUIs for N = 4 are listed in Table 28.2. 
Unfortunately, for N > 2, it is observed that the inner PUIs are very small and 
excessively pessimistic. As a check, the inner PUIs for N = 4 are also obtained by 
brute force constrained minimization of the criterion described in Ref. 14 and are 
very close to the ones listed in Table 28.2. Thus, it appears that inner PUIs do not 
provide a good means of adjusting the quantization in the DCT domain to constrain 
the error in the spatial domain. Parameter bounding techniques, however, are still 
of some use in this application. The bounds provided by the outer PUIs can provide 
an estimate of the permissible amount of coefficient quantization error. Clearly, 
quantization settings which causes these outer bounds to be exceeded causes the 
quantization error bound in the spatial domain to be violated. Thus outer PUIs can 
be used as a check on the DCT quantization error to improve the fidelity of the 
reconstructed imagery in critical applications, such as medical imaging and remote 
sensmg. 

The outer-bounding technique is easily extended to the two-dimensional case 
by scanning the rows of the image and DCT coefficient blocks from left to right, 
and top to bottom and forming vectors. The DCT and inverse DCT equations are 
slightly different for the two-dimensional case and can be obtained from Ref. 7. In 
this case 

N-1N-l 

2c(u)c(v)"" [2J+l) (2k+l) l'J.F(u,v)=Y N L.L.ICos 1tu----v:t II COS 1tV~ I 
J=D k=O 

u = 0, 1, ... ,N -1, v = 0, 1, ... ,N - 1 

TABLE 28.2. Outer and Inner Bounds for the Four Point DCT 

Coefficient Index u Outer Bound M(u) Inner Bound t.F inner (u) 

0 1.41 0.38 

I 1.30 0.35 

2 1.41 0.38 

3 1.30 0.35 
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For the standard 8 x 8 DCT case, the calculated outer PUIs for each coefficient 
range from 6.5 y to 8.0 y 

28.5. CONCLUSIONS 

Two applications of bounded-error parameter-estimation in image compres­
sion have been discussed. A time-varying parameter bounding estimator has been 
used for ADPCM coding of images. The performance of this estimator with one 
commonly used test image is much better than the standard LMS or EWLS 
techniques. However, with the use of dead-zoning, much smaller forgetting factors 
can be used for the EWLS algorithm and its performance can be improved 
dramatically. For other images, the performance of the OBE estimator is better than 
the LMS and comparable to the EWLS schemes. Parameter bounding has also been 
applied to an important application: DCT coefficient quantization. Parameter 
uncertainty intervals for the DCT coefficients have been obtained to decide which 
quantizer scaling factor to use for a particular block. It is expected that these 
uncertainty intervals will be useful in scientific applications where it is important 
to keep the coding error within bounds. 
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29 
Applications of OBE Algorithms 
to Speech Processing 
John R. Deller, Jr. 

29.1. INTRODUCTION 

29.1.1. Applkation Areas 

Many algorithms for identification of speech models are directly or indirectly 
based on linear predictive coding (LPC) analysis. t LPC analysis is tantamount to 
identification of an autoregressive (AR) model using short-term batch processing 
of the observations.(l) The LPC model, therefore, is a special case of the discrete­
time linear-in-parameters models treated in foregoing chapters. Accordingly, many 
speech processing tasks represent natural domains for applying bounded-error 
methods. This chapter discusses the fundamental principles requisite to application 
of optimal-bounded-ellipsoid (OBE) processing to problems in speech analysis, 
recognition and coding. The focus is the general problem ofLPC identification of 
speech using OBE methods, including the significant issue of tracking the time­
varying parameters of this very dynamic signal. Potential applications of this work 
in specific speech-processing endeavors include: 

t The tenn linear predictive coding is often used whether or not coding is the issue. It would be more 
desirable to use simply "linear prediction" in this work, but this leads to the acronym "LP" which has 
been used extensively in this book to mean linear-in-parameters. 

JOHN R. DELLER, JR .• Department of Electrical Engineering, Michigan State University, East Lansing, 
MI48824. 

Bounding Approaches to System Identification, edited by M. Milanese et al. Plenum Press, New York, 
1996. 
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1. General modeling and analysis by predictive methods for spectral (for­
mant) estimation, pitch detection, glottal waveform deconvolution, and 
pathology detection.(l) 

2. Automated recognition of speech in which LPC parameters, or related 
parameters to which LPC coefficients are converted, are used as features 
in classifying phones, words, or complete messages in isolated utterances 
or continuous speech. 

3. Speaker recognition, or speaker verification, in which the speaker's iden­
tity is determined or verified, respectively, through parametric feature 
analysis. 

4. Compression and synthesis of speech in which LPC parameters are used 
in strategies which remove redundancy in the acoustic waveform as a 
means of bandwidth compression or improving storage requirements. 
Similarly, spectral compression based on LPC analysis can be used for 
translation of the spectrum for hearing aids. 

Whereas OBE, and, more generally, bounded-error, techniques, are usually 
presented as means for obtaining set estimates rather than point estimates of the 
system parameters, this application exploits the OBE processing principally as a 
means of reducing unnecessary computation for real-time processing. Other bene­
fits obtain from the OBE approach, such as enhanced adaptation and more accurate 
estimates. The resulting set estimate is not the focus of this work, although its 
existence may prove useful in some applications. 

Although several research groups have studied techniques for temporal selec­
tion of data points in LPC analysis, (2-11) the thrust of each of these efforts has been 
to remove effects of the glottal excitation from the parameter estimate. Such 
deconvolution measures are useful for some tasks, but LPC parameters obtained 
without them are adequate or necessary in many applications. This chapter consid­
ers temporal data selection of a very different sort in which the estimation goal is 
the ''usual'' LPC result obtained without selection. Data selection is not used to 
eliminate glottal, or any other, effects. Rather, data are chosen and weighted on the 
basis oftheir potential to improve upon the existing estimate as a temporal recursion 
proceeds. 

Speech is widely recognized to be a redundant process in terms of its temporal 
correlations. This redundancy is also manifest in the number of data which are 
uninformative in the sense of refining the OBE set estimate. OBE identification can 
reduce the adverse effects of this redundancy by discerning informative data, 
thereby avoiding the expense of updating at times containing no innovation. 

29.1.2. Relationship of OBE Algorithms to the LPC Covariance Method 

In speech processing, LPC estimates are ordinarily obtained through batch 
processing without data weights (called Uk and 13k in Chapter 4)51) OBE estimates 
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are computed recursively and a number of different weighting strategies are 
employed as discussed in Chapter 4 (also Refs. 12-14). Further, since this work is 
motivated by an interest in real-time signal processing, it may be useful to carry 
out the aBE recursions (see Chapter 4) using an alternative set of computations 
which are theoretically equivalent, but which can be implemented using contem­
porary parallel-processing technology. Such an approach is described below. Fi­
nally, real-time applications benefit from a more computationally efficient, but 
suboptimal, test for innovation at each instant. Such a test is also described below. 

For a given elemental speech sound (a phone), the speech production system 
is well modeled by a set of damped resonances, called formants by speech scientists. 
Accordingly, the AR model is often used to model the speech waveform. This 
system is excited by a discrete-time unit sample train of appropriate pitch period 
for "voiced" phones, and by discrete-time white noise for "unvoiced" phones. t Let 
the real, scalar speech sequence be denoted {St}. The "true" model is given by 

n 

St=IaiSt-i+ cot=s;a* + COt st,a' E Rn 
i=1 

where a pointwise bound is assumed known on the excitation, 

(29.l ) 

(29.2) 

for all t > O. Comparing with Chapter 4, this model is a special case of the regressor 
model to which aBE identification can be applied. 

The most widely-used algorithms for estimating the parameters a' of such an 
AR model employ the least square error (LSE) criterion as the measure of optimal­
ity. Given observations St, t = 1, ... , k, the estimate, say ab is sought such that 

k k 

S(k) = I wkA,t = I Wk,t (St - a[si (29.3) 

1=1 1=1 

is minimized, where {Wk t} is a set of generally k-dependent (time-varying) error 
weights. The sequence (o~ t) {ek,t} is the prediction error sequencet associated with 
parameter estimate ak' The so-called "covariance" method of LPC analysis seeks 
an unweighted (Wk t = 1, \;f k,t) solution to this problem through batch processing.O) 

No bounding intl)rmation on the sequence {COt} is employed, even if known. On 

t A voiced phone occurs when the larynx produces a periodic lowpass pulse train which excites the vocal 
tract. An unvoiced phone is excited by turbulence created by forcing air through a constriction in the 
vocal tract. The difference can be heard in the two sound in the word "is." More details about speech 
modeling can be found, for example, in Ref. I. 

tThe number ek-l,k is the residual associated with ak-l' In Chapter 4, this number is denoted ek' 
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the other hand, the OBE method recursively seeks a LSE solution with special 
weights {Wk,! = ~; / a;, V k} that are determined using the bounding information. 
Therefore, when an OBE algorithm is employed over the data range t E [I, k], the 
resulting estimate is theoretically equivalent to the covariance estimator on the same 
data if optimal weights {P; / a;} were used in the LSE minimization. OBE proc­
essing of speech, therefore, can be interpreted as a recursive covariance analysis 
with a special weighting strategy arising from the bounded-error information. 

29.2. ANALYSIS OF STATIONARY SPEECH FRAMES 

29.2.1. Introduction 

From a real-time speech processing point of view, the central feature of the 
OBE approach is that it avoids unnecessary updating when a datum is insufficiently 
informative. This section explores this behavior of the algorithm and reports 
additional experimental findings of practical importance. 

The main database analyzed for presentation in this section consists of three 
vowel sounds Ia! (as in the standard American pronunciation of "hot"), Iii ("heed"), 
and lui ("hoot"), spoken by each of three adult male speakers, and two unvoiced 
sounds lsi ("see") and If I ("fee"), spoken by two adult male speakers. The unvoiced 
utterances are clipped from renditions of the words "six" and "four." A phonetically 
diverse group of vowel sounds are included to capture the diversity in behavior of 
the method in the voiced case, while the unvoiced results are relatively phone-in­
dependent and two examples are sufficient. The general findings described here are 
distilled from several hundred experiments with various voiced and unvoiced 
sounds. 

The volume-minimization measure is used here to determine optimality. For 
volume and trace OBE algorithms, most weighting strategies are equivalent in the 
senses of estimates produced, data selected for updating, and ellipsoid volume (or 
trace) at each step.(13,14) For simplicity, therefore, we employ the algorithm with 
weights ak = I V k and optimize over ~k = Ak at each step. This OBE algorithm has 
been called set-membership-weighted recursive least squares (SM_WRLS),(13,15) 
and has been independently investigated.(l6) 

29.2.2. Estimation of {M and Related Issues 

Speech analysis involves the important task of estimating the error-bounding 
sequence {Ot}. This is a key issue in experimental usage ofOBE methods as an 
inappropriately small 0/ (in principle, even at one t) can cause the estimation process 
to diverge. The lack of a priori knowledge of {Ot} makes this real-world problem 
fundamentally different from simulation studies described in this volume and 
elsewhere in the literature. 
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To understand the importance of {btl estimation, we give a heuristic explana­
tion of how optimal weights are chosen. The level of importance (magnitude of 
AD ascribed an incoming data set at time t = k depends fundamentally upon two 
quantities. The first is the innovation or residual, ek-I,k, which can be expressed as 

(29.4) 

The second factor is the amount of credence placed in the existing estimate, 
measured in terms of the "size" of the covariance matrix, Ck- h as (inversely) 
reflected in the scalar Gk = S[Ck~ISk (see Chapter 4). A large value of ek-I k tends to 
increase Ak while a small value of Gk (which decreases as the process proceeds) 
tends to deemphasize the current point. For a fixed Gh ek-I,k determines the relative 
information content of the current point. This becomes clear when ek-I,k is inter­
preted as an estimate of the input Wk with an error term due to error in the parameter 
estimate. Since iWki:<:::; bk, large values of iek-l.ki (near or exceeding bk) are the 
consequence of an inaccurate set of parameters signaling "correction needed" in 
ak-I; that is, Sk carries "innovation." The data set at k is more heavily weighted and 
the confidence in the estimate (ellipsoid size and Gk) correspondingly decreases. 

An inappropriately small bk can cause the algorithm to diverge. This happens 
when at time k, iwki » bk and the data set is mistaken by the algorithm as 
"information laden" and heavily weighted. The large weight can cause the current 
point to have undue influence on the overall estimate, and the effect of anyone 
point is always potentially destructive (causing the estimate to move away from the 
true parameters). The assumed worth of the point, however, can cause a serious 
shrinking of the ellipsoid which might be centered on a bad estimate. This shrinking 
can, in turn, preclude "good" data from further influencing the estimate as the 
confidence in the estimate is now large. A sufficiently large bh therefore, is essential 
at each k. On the other hand, it is desirable to keep bk as small as possible for a given 
k, in order to maximize the use of informative points and speed up convergence. 
Deliberately choosing bk to be smaller than is justified, however, does not speed 
convergence, but instead wastes computation processing points, and worse, may 
cause the algorithm to diverge. Experimental trials have indeed borne out the need 
for extreme caution in choosing the sequence {btl. Particularly at an early time in 
the identification when the algorithm is eager to heavily weight informative data, 
the choice of an incorrect bk can doom the estimation. 

Deller and Luk( 15) explore a number of procedures for estimating {b t }. In every 
case, so that relative values are meaningful, the estimation begins by normalizing 
the speech sequence so that its maximum absolute amplitude is unity. One simple 
estimate of bk is the magnitude value of the speech itself at t = k. This method is 
justified in the deterministic case, where the model includes excitations only at 
points for which "initial conditions" are small, i.e., when Wk :;:. 0, Sk "" Wk' So it is 
approximately true that iSki ::; bk if iWki ::; bk' Of course, bk can be made a little larger 
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than "necessary" by using 8k = C\Sk\, where C is some, possibly time-varying, number 
greater than unity. As a variation on this idea, the short-term average magnitude of 
the speech on some small window around (or prior to, or following) k can be used 
in an attempt to track the envelope of the speech. Other estimates, which are 
theoretically appropriate in either the voiced or unvoiced case, include a short-term 
estimate of the standard deviation of the sequence (on t) {ek-I,t}. This estimator is 
appropriate because ek-I ,k 0:; (f)k for each k. The approximation becomes better as the 
identification proceeds, assuming that the estimate is correctly converging. When 
ek-I,k is significantly different from (f)b it is larger in average square, so that a 
conservative estimate results. This estimate is obtained by setting At to unity over 
some short initial window, of duration, say, r, and using the average magnitude of 
the residual as an estimator. The sequence {8/} can then be fixed at some constant, 
8, such that 

n+r 

8=c 1 I let-I) r 
(29.5) 

t=n+1 

where c is some constant, usually about six. The constant 8, so estimated, can also 
be made to fluctuate with the signal level so that more reasonable local bounds are 
achieved. Each of these techniques is variously successful. The result sometimes 
depends upon the particular waveform analyzed. In order to discuss the general 
applicability of the OBE method to speech analysis, the focus here is on one very 
simple method of estimating {8 t } which proves to be quite effective generally. 

The estimate used at time k is 

(29.6) 

where K is some constant, typically four, and y is some number slightly less than 
unity, The factor in front Oflek-I,kl is used to provide a "margin of error," especially 
at early ks, for the inaccuracy of the approximation ek-I,k 0:; (f)k' 

An estimate of {8/} must be bounded conservatively from below. Allowing 
{8/} to track the residual (or signal) into the low-level regions of a voiced cycle 
or at small values of an unvoiced frame, can lead to numerical instability of OBE 
algorithms with nondecreasing weights (like SM-WRLS), and to divergence gen­
erally. With SM-WRLS, such tracking leads to large optimal weights followed by 
plummeting ellipsoid volumes and spiraling upward weights, eventually leading to 
complete disintegration of the estimation process. It is therefore necessary to restrict 

(29.7) 

for all k, with Omin typically equal to 0.3 (recall normalization of the waveform). 
The 8min precaution prevents numerical instability due to overemphasis of the 
importance of small values. The small ellipsoid, large weight cycle leading to 
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numerical problems, can persist in general. It is prudent, and necessary therefore, 
to restrict the size of the weights Ai: to Amax, typically four. This means that the 
bounding considerations could deem a point at most twice (or four times in terms 
of the squared-error minimization) as informative as the nominal contributions of 
the initial n points more for which Ak is usually fixed at unity. Furthermore, it is 
useful to attenuate Amax as time progresses. Points in the long term are unlikely to 
bring large amounts of new information about a stationary process. Large weights 
are likely to be indicative of the pending numerical breakdown of the process. 
Therefore, at a time when the optimization computation occurs and Ai: > 0: 

(29.8) 

The optimal weight determined from the OBE optimization is replaced by the value 
on the right side of the arrow: p, like y in Eq. (29.6), is ~ I, but < 1. This 
"interference" with the optimization process has little effect empirically on the 
process. Examples and further discussion of these phenomena are given below. 

In the experiments below, for times k when optimization is carried out: Ok is 
set as in Eq. (29,6) with Y = 0.992 and K = 2.0, but is bounded below by Omin = 0.3; 
and Ai: is modified as in Eq. (29.8) with Amax = 4 and p = 0.997. 

29.2.3. Voiced-Case Experiments 

Since the development of OBE techniques has been implicitly based upon a 
model with stochastic excitation, it is difficult to predict a priori how the technique 
might perform in the voiced case. Indeed, nothing in the OBE developments 
precludes the algorithms' use on "deterministic" waveforms as long as the error­
bounding condition is satisfied. The uncertainty in predicting performance is based 
on the deviation of most voiced waveforms from the over-idealized pulse-driven 
LPC model.(l) If voiced speech can be modeled exactly as purely AR driven by a 
periodic pulse train, then the use of n data points (chosen to avoid the excitation 
time) is sufficient to exactly identify the n parameters. Sometimes n data points are 
used in identifying a voice frame due to the many nonideal effects, such as glottal 
coupling and nonminimum-phase effects,<l) The fact that the LPC model is effec­
tive, however, indicates that it is substantially correct and that there must be a 
significant amount of redundant information is a voiced frame oflength, say, 20n. 
How can a relatively small number of informative points could be selected while 
retaining enough points to smooth the effects of the model error? The experiments 
below show that OBE algorithms have the potential to accomplish this task. 

Three vowel sounds la!, Iii, and lui comprise the basis for this discussion. Other 
voiced phones have been analyzed with similar results. The pr~blem is to identify 
a 14-order LPC model on a 256-point (25.6-ms) frame of speech. In each case, the 
sound is assumed unknown a priori, so ad hoc algorithm-parameter settings must 
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be fixed at values general enough for any incoming phones. These are given at the 
end of Section 29.2.2. The general findings for the experiments are typical: 

I. The average number of data selected on a frame by OBE processing over 
all experiments is 28.4% of the total, the high being 34.4% and low 23.8%. 

2. In every case, the spectrum of the resulting OBE-based model is acceptable 
for most practical purposes (relative to the conventional covariance (COV) 
result(l) and in seven of nine cases, the spectral estimate is very good or 
excellent. 

3. In seven of nine cases the conventional COY method is unable to produce 
an acceptable spectrum using the same number of points as the OBE 
method selected on the same frame. This indicates that the bounded-error 
strategy is indeed making good use of informative data and weighing them 
to advantage. 

4. When a small number of points (equivalent to the OBE selected number) 
is used by COY, the problem with four of the unacceptable spectra is 
excessive resonance indication (narrow bandwidths) at one or more of the 
formants. This same problem occurs (to a lesser extent) in two of the OBE 
spectra. When OBE "fails," this excessively resonant spectrum is fre­
quently the manifestation. (Such a spectrum might be useful to obtain 
formant frequencies which seem to be highly accurate.) Ad hoc parameter 
settings which push the total number of selected points below the levels 
used here (- 30%) begin to cause this problem in general. 

5. OBE ellipsoid volumes are always terminally better than those of COY 
analysis. 

Figs. 29.I(a) through 29.1 (e) elaborate on these conclusions with results from 
specific experiments. They show five spectral plots for representative cases. In each 
case, the top curve is the speech spectrum based on a 512-point FFT with a 
Hamming window; the second is the SM -WRLS spectrum; the third is the standard 
COY spectrum using the entire frame of data; and the fourth and fifth show the 
results of applying COY (in two slightly different ways to be explained) to the same 
percentage of data used by SM-WRLS. Each identified spectrum is obtained by 
computing the 512-point FFT ofthe sequence {I, -Gj, -G2, ... ,-G14, 0, 0, 0, ... ,O}, 
then taking the inverse magnitude spectrum, where ai is the ith estimated LPC 
parameter. In each case, arbitrary offsets have been added to the curves to separate 
them into the indicated order. 

The two fa! spectra (Figs. 29.I(a) and 29.I(b» are typical of good SM-WRLS 
outcomes. In these two experiments SM-WRLS selected 23.8% and 28.9% of the 
data on the 256-point frames, respectively. The SM-WRLS spectra are nearly 
identical to that using COY on the entire frame. The two additional curves in each 
case represent inferior spectral estimates, especially for speaker J (Fig. 29.1 (b». In 
the first of these additional curves (COV C %» the reduced number of points is 
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FIGURE 29.1. Spectral results for seven representative experiments. In each case, the top curve is the 
original speech spectrum based on a 512-point FFT following Hamming windowing. The remaining 
curves from top to bottom are spectra based on SM-WRLS, COY (over the entire range), COY using 
the same number of data as SM-WRLS (percentage of data used is shown), and COY using the 
same-number as SM·WRLS plus point-skipping. (The fifth curve is not shown in all cases.) In the voiced 
case, the data range includes 256 points; unvoiced, 380; (a) Speaker B, vowel Ia!; (b) Speaker J, vowel 
Ia!; (c) Speaker J, vowel Iii; (d) Speaker G, vowel Iii; (e) Speaker J, vowel lui; (f) Speaker J, fricative 
lsi; and (g) Speaker .I, fricative If I. 
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FIGURE 29.2. A typical case of the speech wavefonn and the optimal weights, {A~} (corresponding 
to the experiment of Fig. 29.I(a); speaker B, vowel fall. 
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simply taken from the beginning of the frame. In the second curve (COV-S (-- %)) 
the reduced number of points is taken from the beginning of the frame, skipping 
every other point following the initial n + 1. The reason for this second test is as 
follows. Since SM-WRLS tends to select points in clusters, the algorithm is 
automatically required to discard every other point in order to force a more diverse 
view of the temporal dynamics. This procedure is of some benefit in a number of 
experiments, never increases the number of points selected, and never degrades the 
spectral estimate. The COV-S run is to be sure that the good spectrum in the 
SM-WRLS case with respect to COY (whole frame) is not an artifact of this 
"skipping" procedure. Indeed it is seen not to be. 

Fig. 29.2 illustrates a typical case of the speech waveform and {A;} weights 
(corresponding to the experiment of Fig. 29.1 (a): speaker B, vowel fa!) and Fig. 
29.3 shows the log ellipsoid volume plot from SM-WRLS and COY for the same 
experiment. A good estimate is obtained quickly and small residuals are produced; 
the optimization process shows little interest in the points on the frame. Evidence 
of this is seen in the log volume curve in which both SM-WRLS and COY achieve 
the same small volume in the first cycle. Some incremental improvements in the 
volume are seen in the second and third cycles for SM-WRLS. Note the increases 
in the ellipsoid in the COy case over the second and third cycles. SM-WRLS never 
accepts data sets which worsen the volume, whereas COY often does. 
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29.2.4. Unvoiced Cases 

Typical unvoiced case spectral results are shown in Fig. 29.1(f) and (g) for the 
phones lsi from an utterance of "six" and If/ from "four." SM-WRLS uses 35.2% 
and 30.0% of380-point data frames (see below), respectively. In experiments with 
many sounds, such as unvoiced phones extracted from the words "fuzzy," "church," 
"shoelace," "three," and "car," acceptable spectra are always produced by SM­
WRLS. Again, the COY approach with reduced data almost never produces 
acceptable results. 

The ease of use is much greater and number of nuances of algorithmic behavior 
much lower in the unvoiced case since the excitation sequence {w t } is nominally 
stationary white noise for which bounds are more easily estimated. Seldom does 
SM-WRIS converge to an acceptable spectral estimate on frames of 256 points. 
Since the optimization process typically discards two-thirds or more of the data, 
there are simply not enough points that SM-WRLS selects to produce a reasonable 
estimate, in spite of "optimal" weighting. In these unvoiced experiments, therefore, 
the frame size is extended to 380 points (38 ms). A second relatively minor factor 
emerging in the unvoiced case experiments is the effect of model size n. The 
ellipsoid volume is exponential in n.(17) When n is overestimated, this occa­
sionally adversely affects the selection of points (too many unfruitful points 
taken as the algorithm optimizes over unnecessary dimensions) and in­
creases the tendency toward numerical instability. For this reason, n is 
reduced to ten in the unvoiced case. This factor is not difficult to deal with 
in real applications. 

29.2.5. Further Discussion and Conclusions 

Analysis of stationary frames of speech indicates that many speech data carry 
redundant information in terms of their ability to refine the set of parameter vectors 
to which their LPC model must belong. OBE algorithms select only those points 
which can improve the LPC estimate in this sense, and optimally weigh the 
incoming data to use the innovation most effectively. The use of OBE analysis of 
speech presents a challenge: an error-bounding sequence {8 t } can only be estimated 
because only the output of the speech system can be measured. Furthermore, there 
is a need to protect the estimation from numerical instabilities and divergence 
arising from improper bounds. Some general guiding principles are discussed 
above for one OBE method, SM-WRLS. With proper care taken in estimating {8 t } 

SM-WRLS has shown strong potential for accurate parameter estimates using 
relatively small numbers of data, even with rather conservative procedures. Because 
all OBE algorithms are identical in certain important senses,03,14) one may infer 
similar optimism about the use of the general class of techniques. 
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We now tum our attention to some algorithmic enhancements which are 
necessary and beneficial to speech and other signal processing tasks. Two problems 
that arise in speech processing require such enhancements. First is the issue of 
tracking quickly time-varying signals which is not supported by the underlying 
OBE theory. Second, for OBE-based LPC algorithms to be computationally com­
petitive with existing batch methods, their computational load must be reduced to 
O(n) floating-point operations (flops) per sample time. Although other useful 
advantages of OBE over standard batch methods can be demonstrated, speech 
processing tasks often demand real-time operation. Solutions to the tracking and 
computational-load-reduction problems are discussed below before beginning the 
study of speech in earnest. The developments below are easily generalized to the 
broader regressor model discussed in Chapter 4. 

29.3.1. Alternative OBE Recursions 

The recursive formulation for OBE processing presented in Chapter 4 can be 
interpreted as the well-known weighted recursive least squares (WRLS) algorithm 
with a special set of weights {Wk,k = l3,Vai;}. Since conventional WRLS is based on 
the matrix inversion lemma (MIL)(l8) this underlying algorithm is referred to as 
MIL-WRLS. Several benefits accrue from the use of a different WRLS algorithm 
for computing the OBE estimates. This is derived by returning to the fundamental 
batch solution. The OBE solution is equivalent to the LSE solution of the following 
overdetermined system of equations( 19) 

Sl SI 

ST s2 
Qk 

2 
ak = Q, 

(29.9) 

ST 
k 

Sk 

denoted 

Skak = Sk' (29.lO) 

where Qk is a k x k diagonal matrix with tth diagonal element ,J13;/a;. The 
well-known solution is given by 

(29.11) 

The quantity in brackets is called the (weighted) covariance matrix in the signal 
processing literature. Denote this matrix by Cko the inverse of matrix Pk in the 
MIL-WRLS version of Chapter 4. 
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One family of techniques which serves as the basis for current systolic-array 
solutions of this problem is based on the orthogonal triangularization of the Sk 
matrix by coordinate rotation methodsY0-22) The procedure, in principle, involves 
the application of a sequence of orthonormal (Givens) operators to both sides of 
Eq. (29.9) that leaves the system in the form 

l Tk] ldlk] 
0kxn ak = d2~ , 

(29.12) 

where Tk is n x n upper triangular, d l k is an n-vector, and 0kxn denotes the k x n zero 
matrix. t This procedure amounts t~ the "QR" decomposition of the matrix Sk 
discussed in any book on the theory ofmatrices.o 9) The system Tkak = dl,k is easily 
solved using back substitution to obtain the LSE estimate, ak' By appropriate data 
handling, this procedure can be carried out sequentially using approximately 
(n + 1)/2 storage locations.(22) Briefly, an (n + 1) x (n+ 1) matrix, sayW, is initially 
filled with zeros. Then for each t = 1,2, ... ,k, only the bottom row ofW is replaced 
by the row -J~; / a; [sf I Sf]. This "new equation"::: is integrated into the upper n rows 
of W using an orthonormal operation to leave the result [Tk I dl,kJ in the upper n 
rows. Since the orthonormal operation consists of a sequence of coordinate rota­
tions, the new equation is "rotated" into the existing set of equations. What remains 
at the bottom ofW is a row of zeros except for location (n + 1, n + 1) which contains 
the total squared error ~(k) of Eq. (29.3). This lowest row is replaced at the next 
step. When k 2 n + 1, the system [Tk I d"kJ can be solved for ak for any k desired. 
A past equation can also be rotated out of the estimate if necessary with a simple 
modification to the algorithm. This feature is useful for adaptation to time-varying 
dynamics. Refer to this estimation process as "QR-WRLS." 

The OBE considerations are handled through the optimal data weights a~ and 
13;, which, in turn, implies a selection of informative data points for processing. The 
optimal Ab Ai:, is found using equations in Chapter 4 for the volume- and trace­
minimization algorithms, respectively. In turn, Ake implies optimal values of ak and 
13k' The specific choice of OBE weighting strategy and optimization criterion for 
this work is described in Section 29.2. 

29.3.2. Adaptation for Time-Varying Speech Signals 

Speech is a strongly time-varying signal. It is generally assumed that the 
speech model can remain stationary for short -term frames of 10-20 ms, but a more 

t For convenience, n equations of the form Oixn3k = 0 are appended to the top of system (29.9) prior to 

beginning the processing. This explains the differences in dimensions between (29.9) (or (29.10)) and 

(29.12). 
t8ecause of this formulation, the pair (s" s,) could appropriately be called an equation in many contexts 

in the following. This term is not always satisfactory, however. Whereas the term "datum" is 

inappropriate to describe (s,), and "data" can be misleading, we will frequently refer to this pair as the 

data set at time t. The expression "per t" should be interpreted to mean "per data set." 
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realistic model would include dynamics that are almost constantly changing. While 
"stationary" OBE algorithms have been observed to have inherent and fortuitous 
adaptive capabilities as a result of their optimal weighting strategies, these capa­
bilities are unpredictable. While little is understood about the behavior of OBE 
algorithms in the presence of time variance, some theoretical results appear in the 
literature. Rao and Huang(23) recently report the most "practical" of these results 
and Huang and Deller(24) generalize them. In these papers, the theoretical "toler­
ance" for time variance at time k is given in the following terms. Suppose the 
ellipsoid at time k - 1, E(k - 1), is given (see Chapter 4). In order for the true 
time-varying parameters, say ai: , to remain inside the next ellipsoid, E(k), under 
the usual optimization process, it must be true that that a;; is an element ofthe set 
E(k-l) with the ellipsoid scalar Kk-l (called crL in Chapter 4) replaced as 

(29.13) 

Generallyspeakingthisresult gives a modified ellipsoid towhich ai: must belong 
at time k- 1 if the new ellipsoid is to "capture" it properly in the next step. 

The theoretical work of Rao and others does not translate immediately into a 
practical algorithm, but it suggests several practical ideas. First note that the 
sequence of bounds {Ot} can apparently be increased beyond their true minimum 
values in order to improve the tracking ability of the algorithm. This is apparent 
from Eq. (29.13). More generally, this work suggests the intuitive notion that 
increasing the size of the ellipsoid at time k-l prior to analyzing the incoming data 
set provides some insurance against loss of tracking. The basis for this inflation is 
to contain the shifting true parameters. At the same time increasing some measure 
of size ofthe ellipsoid makes it more likely that incoming data will be selected. The 
principle of ellipsoid inflation to render explicit and controllable adaptation is 
discussed in the papers cited above. 

There is a limit to the allowable shift in parameters before tracking is lost. This 
is true regardless of whether the ellipsoid is artificially inflated prior to examining 
the incoming data, as theoretical results show.(23,24) Accordingly, it is important that 
a "rescue procedure" prevent disintegration of the OBE algorithm in time-varying 
environments. The {Kt } sequence is a good measure with which to monitor proper 
operation. An example algorithm employing such a technique is discussed below. 
Similar ideas are employed in more recent papers.(23,24) 

Exponential forgetting: A general OBE algorithm can be designed to be 
explicitly adaptive within the established framework, by judicious choice of 
weighting sequence {at}. One choice is to let the weighting effect a conventional 
forgetting factor, 

a t = a, 0 < a < 1 (29.14) 
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for all t. This method has not been found to be effective for adaptation unless the 
system dynamics are changing slowly. (25) Further, it is not computationally efficient 

so that it is not a good candidate for real-time processing. Since the focus is on 
speech processing, this mode of adaptation is not pursued further. 

Forgetting by back-rotation: The adaptive OBE algorithms which have been 
successfully applied to speech do not depend on a fixed scaling factor to expand 
the ellipsoid volume. These algorithms expand the ellipsoid by (selectively) remov­
ing previously accepted influential data sets from the system, either partially or 
completely. These data relinquish their influence on the ellipsoid to allow it to 
expand and adapt to the changes in the signal dynamics. 

Having obtained an estimate ak-l with associated covariance matrix Ck- b 

consider the data set at time k. Before doing so, however, adjust the existing system 
of equations in order to "downweight" the influence of some or all of the previous 
data sets. The existing data sets are modified by effectively introducing different 
minimization weights. Although the recursions are used to downweight the system, 
the process should be imagined to be "frozen in time" between k - I and k while 
this downweighting takes place. 

The sequences of weights {a;} and W;} for t = I, ... , k-l, imply some set 

of error minimization weights, say wk-l.b wk-l,2," ., wk-I.k-b extant in the system 
at the time k-l (see Eq. (29.3». Before proceeding to the optimization problem at 
time k, change (in general, all) weights used at time k - 1 to a new set, say 
wL,I' t = 1, ... ,k- 1, where the superscript "d" denotes "downdating." The 
downdated weights are of the form 

Wf-l,1 = [1 - <l'k-l,I]Wk-1.t' t = 1,2, ... , k - 1, (29.15) 

where 0 ::::; <l'k-l,l::::; 1 V k,t. In effect, this process removes a fraction <l'k-l,1 of the 
contribution of the data set at time t from the estimate. Not surprisingly, this can be 
accomplished by treating (SI' SI) as a new data set with "weight" --<Pk-l,IWk-I,( and 
incorporating it into the system of equations with the usual recursion.(13,27,28) 

The method by which a data set is completely removed (downweighted with 
factor <l'k-l,t = 1) from the existing system using QR-WRLS has been called back 
rotation in recent papers. Use this term to refer to either partial or complete removal 
through QR-WRLS. Now formalize this procedure. 

Sequentially modifY weights as described above, beginning at time t = n + 1. 
The following (and similar) quantities pertain to the downdated system of equations 

whose weights have been modified to time t: Ci-l,(, Ti-I,I, d1,k-I,I' ai-l,t, Ki-l,(, where 
each is similar to familiar quantities in the foregoing discussions. Henceforth omit 
the second subscripted argument if it is k - 1. For example, Ci-l,k-l ~f Ci-l . 
Following the modification ofthe tth data set, the downdated equation to be solved 
(if the solution were desired) is 
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T d d dd 
k-l,t ak-1,t = k-l,t· 

The downdated ellipsoid matrix is Cf-l.t IKf-l,t , where 

C~-l,t = [T~-lf T~-l,t' 

with 

- d def - 2 
Kk-1,t = Kk-1,t-l - <Pk-l.tWk-l.t[Ot - St). 
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(29.16) 

(29.17) 

(29.18) 

(29.19) 

The quantity Kk-l Od~fKk_l represents the value ofK updated to include (Sk-b Sk-l)' 

Equations (29.18) and (29.19) follow immediately from the definition of K t = cr~ 
found in Chapter 4 and a basic understanding of the back-rotation process.(l3) 
Following all necessary downdating just prior to time k, the algorithm uses the 
downdated system to compute the quantity 

(29.20) 

In tum, these downdated numbers are used in place of their "non-down dated" 
counterparts to check for the existence of, and to compute, the optimal weights for 
time k. Once the optimization problem is complete, define 

t = 1, 2, ... , k - 1 
(29.21) 

t = k 

for the next iteration.(lS) 
This process appears to be extraordinarily computationally expensive in 

general since each past weight is modified at each k - 1. However, "most" data sets 
are not included in the estimate (I3Z = 0) and, therefore, the system need not be 
downdated at these times. If the data set at time t, for example, is not included in 
the estimate, then formally Cf-l t+l = C k- 1 t, TL t+l = Tk- 1 t, and so forth, and no , . , , 

computation is required. A similar situation results if a data set, say at time t, is, at 
some previous time, completely removed by back-rotation so that Wk-l,t = O. In this 
case, no computational effort is required to downdate this data set at time k - 1. 
Further, in many cases the modification of a particular data set is not desired. If, for 
example, the data set at t is not to be altered, then <Pk-l,t == 0, and no computation is 
necessary. Finally, note that when the "new" data set at k is rejected (13;; == 0), then 
Tk == TL and 3k = aL, and, once again, no computation is actually required. 

A wide range of computationally inexpensive adaptation strategies is inherent 
in the formulation above. For example, L is a constant window length. For all k, 
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{ I, t=k-L 
<ilk-I,t = 0, other t . (29.22) 

The sequence {<ilk-IA can, of course, be modified to effect a number of different 
window shapes. In a generalized version of this strategy some past group of data 
sets "4-1 is to be "forgotten," and, 

(29.23) 

The first case above corresponds to the use of a sliding window of length L, 
outside of which all previous data sets are completely removed. Norton and Mo 
have called this case fixed memory bounding(26) while Deller and Odeh call it 
simply windowing and suggest an efficient algorithm for implementing it.(25,27,28) 
The estimate at time k covers the range t E [k - L + I, k]. The windowing technique 
is made possible by the ability to completely and systematically remove data sets 
at the trailing edge of the window. Only one back-rotation is required prior to 
optimizing at time k, and this is only necessary if wk-I,l-L = Pk-L '* 0. Case 2 is a 
different type of strategy which Deller and Odeh call selective forgetting. This 
technique selectively removes data sets from the system based on certain user-de­
fined criteria. The selection process can be, for example, to remove (or downweight) 
only the previously heavily weighted data sets, to remove the data sets that are 
accepted in regions of abrupt change in the signal dynamics, or to remove the data 
sets starting from the first data set and proceeding sequentially. Whatever the 
criteria, a fundamental issue is to detect when adaptation is needed to improve the 
parameter estimates. This issue is further investigated in the speech processing 
studies below. 

29.3.3. Suboptimal Testing for Innovation in the Data for O(n) Time 
Processing 

29.3.3.1. Complexity of the Basic aBE Algorithm 

The experiments below illustrate the excellent spectral estimation, and track­
ing and adaptation capabilities of the OBE algorithms. From a real-time signal 
processing and identification point of view, an OBE algorithm has an inherent 
ability to select only data points which are informative in the sense of refining the 
feasible set. The fact that typically 70'%-95% of the data are rejected by this 
criterion potentially implies a remarkable savings in computation. Note, however, 
that this is only true to the extent that the bounded-error preprocessing of an 
incoming data set is negligibly expensive compared with the inclusion of it in the 
estimate. This section examines some factors related to this complexity issue and 
shows how to exploit the selective updating for computational speed gain. Consid-
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eration is restricted to the cases in which the ellipsoid volume is minimized, but 
similar developments pertain to the trace criterion. 

The general OBE algorithm can be implemented in a number of different ways. 
In particular, one can use either MIL-WRLS or QR-WRLS for the basic recursions. 
It is also possible to add ad hoc strategies for adaptation, as discussed above. A 
careful breakdown of the computational complexity of the OBE algorithm by the 
tasks of data checking and adaptation by back-rotation is found in Ref. 13. 
Generally, tht: average operation count for an adaptive OBE algorithm implemented 
on a sequential machine is approximated by 

where s is unity if the algorithm involves a forgetting sequence {at} and is zero 
otherwise; p is the average number of data sets accepted per t; b is the average 
number of back-rotations performed per t; and Cj, C2 and C3 are small numbers (all 
in the range 0.5-2.5) which depend upon whether MIL-WRLS or QR-WRLS is 
used. The first term is due to the check for information in the incoming data set. 
The others are attributable to covariance scaling (forgetting), adaptation, and 
solution update, respectively. The subscript "opt" is used to indicate that the 
"proper" optimization described in Chapter 4 is employed. Apparently, the OBE 
algorithm, as presently formulated, is an "0 (n2)" process. The objective is to reduce 
the effective complexity to O(n) by reducing the checking cost. This renders the 
OBE algorithm a desirable alternative to standard RLS-based methods used in 
many signal processing problems, and in particular, batch LPC methods used in 
speech analysis. Also, a parallel processing approach achieves the O(n) goal. 

Before detailing the methods, some points about the use of the approximation 
"0(n2)" are necessary. The first concerns a practical matter. The objective is to 
reduce the computational complexity of the algorithms to an average of O(n) flops 
per t. Without data buffering, the data flow is still limited by the worst-case 0(n2) 
computation. However, if a buffer is included, the algorithm may easily be struc­
tured to operate in O(n) average time per t. Further, by using interrupt-driven 
processing of the checking procedure, it may be possible to reduce the average time 
even further. 

Other preliminary points concern algorithmic details. We see from Eq. (29.24), 
the use of at = 1 for all t is apparently required in order to avoid an invariant o (n2/2) 
flops per t. However, if it is important to include a non-unity {at}, the extra 
computation can theoretically be avoided by noting the following. A theoretically 
identical result can be obtained by replacing the sequences {a~} and {~n by, say, 
{a; = I} and {~; = ~~/a;}.(13) It is possible, therefore, to avoid the extra 0(n2!2) 
computation by combining the forgetting sequence with the data-weighting se­
quence in this manner. Henceforth, ignore the 0(n2!2) term, and beware the 
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consequences of including the scaling sequence directly. Accordingly, rewrite Eq. 
(29.24) as 

(29.25) 

Also note that the O(n) checking procedure to be developed does not depend on 
the weighting sequence used. Secondly, even if the checking procedure can be made 
O(n) , terms bO(n2) and po(n2) (typically b "" p) persist in Eq. (29.25). Therefore, 
to truly achieve ~n) complexity, band p must be O(lIn). For large n, this is not 
the case. In fact, some experimental evidence suggests, not unexpectedly, that p 
increases with increasing n. For "large" n (conservatively, say, n > 10), therefore, 
the complexity is reduced to O(pn2) by O(n) checking. Neither O(n) nor O(pn2) 

complexity can be achieved, however, if the checking procedure remains O(n2). 

Therefore pursue an O(n) test for innovation. 
With an OBE algorithm, the number of computations needed for each n 

depends on whether the corresponding data set is accepted for processing by the 
optimization criterion. OBE essentially reverts to WRLS when a data set is 
accepted. Since most of the time the data set is rejected, for significant complexity 
reduction, an OBE algorithm must require many fewer than O(3n2) flops for 
checking. 

Note some of the details of the checking procedure. In principle, the informa­
tion-checking procedure for the volume algorithms consists offorming a quadratic 
polynomial, then solving for a positive root. As Favier and Arruda state in Chapter 
4, however, it is sufficient to check the zero-order coefficient of the polynomial in 
either case for negativity to find out if a positive root exists. When the test is 
successful, then the root-solving and updating proceeds requiring the standard 
WRLS load, plus a few operations for finding the optimal weight. The most 
expensive aspect of this information test is the computation of the quantity G t. (For 
generality, assume downdating is used. Ifthis is not the case, it is merely necessary 
to drop the subscripts "d" on all quantities.) In the QR-WRLS case, a problem arises 
because G~ depends upon the inverse covariance matrix, [CLr l , which is not 
otherwise used in the process. The following method is suggested to sidestep this 
problem.(29) Recall the definition of G~ and note Eq. (29.17), and write 

(29.26) 

Since sk = [TLfg~ ,and the matrix [TLf is lower triangular, g~ is easily found 
from the available quantities at time k by forward substitution. The procedure can 
be repeated to compute the trace quantity ifneeded.(I3) The total computational load 

for computing G~ is O(n212) ifthis modification is used, which is far less than the 
effort required to invert C~_I . 
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29.3.3.2. Suboptimal Tests for Innovation in the Data and Complexity Reduction 

In spite of the simplifications suggested above, the computation of the quantity 
Gi remains of 0(n2) complexity. Clearly, the trick is to try to avoid the computation 
of these numbers in the information-checking procedure. A simple suboptimal 
updating ruleC3,28) is to include the data set at time k only if 

(29.27) 

This test is applicable to OBE algorithms with any weighting strategy, and may be 
used for either volume or trace minimization.t The rationale for this test is simple. 
The zero-order coefficients of the volume and trace polynomials are never positive 
if the test is met. In the volume case, for example, the suboptimal check tests 
whether the zero-order coefficient is negative even ifthe term -K ~-l at is neglected. 
This ignored term is always negative and becomes small as k increases if no 
forgetting is used. For a given set of preceding optimal weights, ur, ... , Uk-l and 
J3r, ... , J3k-l the suboptimal test never fails to accept a data set which would have 
been accepted by the optimal test if the same previous weights were present. 

Equation (29.27) requires only O(n) flops, so that the revised operation count 
is 

(29.28) 

where b' is the average number of back-rotations per t under the suboptimal 
checking policy, and p' represents the fraction of the data sets included in the update. 

In light ofEq. (29.28), briefly consider the computational loads imposed by 
the specific adaptation strategies described above. In each case, assume QR-WRLS 
underlies the process, but the discussion for MIL-WRLS is similar. Of the adapta­
tion methods described above, exponential forgetting is the most expensive com­
putationally. It requires 0(n2 12) flops per t, unless the scalar is combined with the 
J3t weight as described in Eq. (29.25). In the latter case, the cost of the forgetting 
factor is negligible, requiring only one real flop per t. Since back-rotation is 
essentially equivalent to a covariance (or Tk) updatet for an incoming data set, each 
of these rotations takes 0(2.5 n2) flops. If b back-rotations are performed on the 
average at each k, then, effectively, the adaptation requires 0 (2.5bn2) additional 
operations. Since p is usually small, whether a particular adaptation strategy is 
cost-effective depends on the number b. For windowing, for example, b ::: p and 
the adaptation adds negligibly to the computational load. The cost of selective 

tlnequality (27) is similar to the test used by Dasgupta and Huang in Ref. 30 to ascertain whether an 
optimal weight exists in the sense of minimizing 1C ~ • The implications of this similarity are discussed 
in detail in Ref. 14. 

t A parameter solution update is not required, just the covariance update. 
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forgetting depends entirely upon the criterion employed for deciding to back-rotate 
a previous data set, which, in turn, determines the value of b. An example is 
discussed below. 

29.3.3.3. Parallel Hardware Implementations 

One of the advantages of the QR-WRLS-based OBE formulation is that it 
immediately admits a solution by contemporary parallel architectures. This is 
critical because it reduces the complexity of the optimal algorithm from o(n2) to 
O(n). The significant reduction of computational complexity and parallel-hard­
ware implementation of OBE algorithms improve their potential for real-time 
applications. Odeh and Deller have developed systolic architectures for both 
nonadaptive(31) and adaptive(25.27) versions of the SM-WRLS algorithm. The com­
plexity of the parallel computation is 

f opt -O(3n)+pO(lln) flopspert (29.29) 
paralIc! 

if the optimal checking is implemented, where p, as above, is the fraction of the 
data accepted by the optimization. If suboptimal checking is employed, the average 
count is 

/;ubopt -O(n) + p'O(lln) flops per t, (29.30) 
parallel 

where p' likewise indicates the acceptance ratio. When adaptation by back-rotation 
is added to either strategy, an additional bO(l1 n ) (or b'o (II n)) flops per tare 
required on the average, where band b' , as above, indicate the average number of 
back-rotations computed per t in the optimal and suboptimal cases. Note that these 
tallies represent parallel complexities in the sense that they denote the effective 
number of operations per t, though many processors can be performing this number 
of operations simultaneously. Accordingly, the parallel complexity indicates the 
time it takes the parallel architecture to process the data regardless of the total 
number of operations performed by the individual cells. 

Distinct {at} and {Pt} sequences can be used in the parallel versions of the 
algorithms at virtually no computational cost, but at the negligible hardware cost 
of n multiplication units. 

29.4. ADAPTIVE ANALYSIS OF SPEECH SIGNALS 

29.4.1. Introduction 

This section retreats from the direct use of real speech sequences in order to 
avoid the nuances of {Ot} estimation. For simplicity, two "true" AR(2) models 
whose time-varying coefficients are derived using LPC analysis of order two on 
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utterances of the words "four" and "six" by an adult male speaker. While more 
realistic analysis of speech would involve model orders of 10-14 (e.g., Ref. 1, Ch. 
5), this small number of parameters is used here so that the results are easily 
illustrated. The original speech waveforms are shown in Fig. 29.4. 

The "true" models are of the form 

(29.31 ) 
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FIGURE 29.4. Digitized speech waveforms used in the adaptive identification experiments: (a) "Four" 
spoken by an adult male speaker. (b) "Six" spoken by an adult male speaker. 
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To derive the two sets of "true" parameters, the original speech data are sampled at 
10 kHz after 4.7 kHz lowpass filtering, and the algorithm described in Ref. 22 is 
employed with a forgetting factor 0.996 for adaptation. A 7000-point sequence, {St}, 
for each case ("four" and "six"), is generated by driving the appropriate set of 
parameters with an uncorrelated sequence {COt} which is uniformly distributed on 
[-1,1]. Adaptive OBE algorithms with optimal and suboptimal data checking are 
used to estimate the {a7,t} parameters. Again, SM-WRLS is the representative OBE 
method. The estimates are denoted {ai,t}. Several simulation results are presented. 
To conserve space, only the result for al,t is illustrated in each case. Each figure 
shows two curves, one for the true parameter, the other for the estimate obtained 
by the algorithm under study. 

29.4.2. RLS and OBE Algorithms in Adaptive Speech Processing 

In general, the power of the SM-WRLS algorithm is evident when compared 
with the conventional RLS algorithm.(lS) As a basis for further discussion, note 
Figs. 29.5 and 29.6. The simulation results for the word "four" using the RLS and 
the SM-WRLS algorithms, respectively, and Figs. 29.7 and 29.8 show the simula­
tion results for the word "six." It is evident that SM-WRLS performs better than 
RLS in terms of its tracking capability. Critically, this improved performance comes 
with greatly improved computational efficiency. In this case SM-WRLS uses only 
1.86% and 2.16% of the data for the words "four" and "six," respectively, yet yields 
better parameter estimates almost all the time. SM-WRLS tracks the time-varying 
parameters faster than RLS. This is manifest in both examples, especially the word 
"six" (see Figs. 29.7 and 29.8). 

The "unmodified" SM-WRLS algorithm (and other OBE algorithms) appar­
ently have adaptive capabilities in its own right. While SM-WRLS is developed 
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FIGURE 29.5. Result for the parameter al,! using RLS analysis of the word "four." 
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FIGURE 29.6. Result for the parameter al.I using SM-WRLS analysis of the word "four:" 1.86% of 
the data is used in the estimation. 

under the assumption of stationary system dynamics, it is capable of behaving in 
this manner because of the special weights used. However, it is not possible to 
depend upon an OBE algorithm to reliably behave in this adaptive manner, 
particularly in cases of quickly-varying system dynamics. Each time a new data set 
is accepted, the ellipsoid volume decreases and the "confidence" in the current 
estimate increases. In a situation in which the signal is varying rapidly and the 
parameters are moving away from their current locations, the algorithm accepts 
incoming data sets to incorporate the new information into the estimate. The 
ellipsoid volume decreases rapidly, eventually becoming very small. As the parame­
ters continue to move rapidly away from their current locations, they eventually 
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FIGURE 29.7. Result for the parameter al,t using RLS analysis of the word "six." 
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FIGURE 29.8. Result for the parameter al,l using SM-WRLS analysis of the word "six:" 2.16% of the 
data is used in the estimation. 

move outside the shrinking ellipsoid which becomes an invalid bounding ellipsoid. 
This condition indicates that a violation ofthe theory has taken place, and, therefore, 
the unmodified SM-WRLS algorithm is no longer guaranteed to work properly. 

Next, the simulation results of the several variations on the general SM-WRLS 
algorithm are shown. 

29.4.3. Adaptive Algorithms 

29.4.3.1. Windowing 

Figs. 29.9 and 29.10 show the simulation results ofthe windowed SM-WRLS 
algorithm for the words "four" and "six," respectively, using a window of length 

3 

QI 2 
~ 

'0 r ---.... . • r ........... > true I 
iii 
Gi 
E 

~ 
2 
c 0 "-

estimate 
-1 

0 2 3 4 5 6 7 

Sample time, t (X 1,000) 

FIGURE 29.9. Result of the windowed SM-WRLS algorithm with L = 1000 for the word "four:" 
5.69% of the data is used in the estimation. 
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FIGURE 29.10. Result of the windowed SM-WRLS algorithm with L = 1000 for the word "six:" 
5.44% of the data is used in the estimation. 

1000. This strategy uses only 5.69% and 5.44% of the data for the words "four" 
and "six," respectively. Effectively, however, it uses about twice this many if 
back-rotation computations are accounted. More data than those with the unmodi­
fied SM-WRLS algorithm are used, but more accurate estimates result and the 
time-varying parameters are tracked more quickly and accurately. This can easily 
be seen when the parameter dynamics change abruptly near the point 2100 in the 
word "four" (Fig. 29.9) and near the points 2000 and 4500 in the word "six" (Fig. 
29.1 0). 

As an example variation on the windowing procedure, let {<Pk-l,/} of Eq. 
(29.15) taper linearly from unity at time t = k - L to zero at time t = k. This effects 
a smoother window which gradually forgets the past data by rotating out 0.1 % of 
each of the data sets accepted in the past 1000 recursions. Figures 29.11 and 29.12 
show the results. This strategy uses only 6.19% and 4.89% of the data for the words 
"four" and "six," respectively. Note that this technique uses comparable percent­
ages of the data to those of the windowed strategy and yields smoother estimates. 
Although the algorithm uses very small percentages of the data, the fraction 
<Pk-l.k-L+l = 0.00 I may not be practical. It means that the algorithm will rotate out 
each data set that is initially accepted 1000 times, clearly a computational burden. 
Depending on the nature of the problem, practical values of <Pk-l,k-L+l may range 
from 0.002 to 0.01 with an effective window oflength 500 to 1000. 

29.4.3.2. Selective Forgetting 

Selective forgetting chooses data sets to be (partially) removed from the 
system based on user-defined criteria. The selection criterion is as follows: remove 
the accepted data sets included at times k - 1, k - 2, .. , at time k at which it is 
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FIGURE 29.11. Result of processing the word "four" using the windowed SM-WRLS algorithm with 
L = 1000 and linear tapering of the window: 6.19% of the data is used in the estimation. 

desired to "forget" some ofthe past; proceed sequentially until some other condition 
is satisfied. The determination of when to apply the forgetting procedure and when 
to stop removing data sets is discussed below. 

When inspecting the true parameters of the word "four," for example, note that 
they can be characterized as having slow time variations everywhere except in the 
region from t = 2000 to 2300 where they have fast time variations. The fact that the 
parameters are changing very slowly in the first 2000 points induces the algorithm 
to accept some points which, in turn, cause the ellipsoid volume to decrease. Near 
time t = 2000, the ellipsoid volume becomes very small. When the parameters move 
rapidly away from their current location, they eventually move outside the ellipsoid. 
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FIGURE 29.12. Result of processing the word "six" using the windowed SM-WRLS algorithm with 
L = 1000 and linear tapering of the window: 4.89% of the data is used in the estimation. 
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FIGURE' 29.13. Result of processing the word "four" using the selective forgetting SM-WRLS 
algorithm: 3.6% of the data is employed in the estimation process. Effectively, 4.27% of the data is used 
when the back-rotations are taken into account. 

This condition leads to a negative value ofK" a violation of the theory (in particular, 
the violation of the assumption of stationary dynamics): A negative Kk is an 
effective indicator of need for adaptation at time t = k. Use this criterion as the 
prompt to begin selective forgetting. The algorithm starts rotating out the incorpo­
rated past data sets beginning at time t = k- 1 until Kk becomes positive again. 

Figs. 29.13 and 29.14 show the simulation results of the selective forgetting 
strategy described here. When counting the total number of data sets rotated into 
and out of the system, this strategy effectively uses only 4.27% and 4.41 % of the 
data for the words "four" and "six," respectively. Compared to the windowed and 
"gradually windowed" adaptive strategies discussed above, the simulation results 
show that the selective forgetting strategy yields smoother estimates using fewer 
data,03) 

Carefully note that Kk > 0 is only a necessary condition for the true parameters 
to be inside the ellipsoid at time k. The fact that K goes negative at a particular time 
does not precisely determine the point at which system dynamics began to change. 
In fact, Kk < 0 indicates a severe breakdown of the process; the "true" parameters 
have moved well outside of the current ellipsoid. However, it is precisely in cases 
ofJast-changing dynamics that this "breakdown" occurs to rapidly result in "Kk < 
0" being a good locator of changing dynamics which require "immediate" adapta­
tion to preserve the integrity of the process. Figs. 29.6 and 29.8 illustrate cases of 
slowly-changing dynamics where the theory can be violated without the appear­
ance of negative K. OBE algorithms seem sufficiently robust to make their own 

• Kk < 0 indicates an ellipsoid of negative dimensions at time t = k. 
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FIGURE 29.14. Result of processing the word "six" using the selective forgetting SM-WRLS 
algorithm: 2.83% of the data is employed in the estimation process. Effectively, 4.41% of the data is 
used when the back-rotations are taken into account. 

adjustments in such cases. Strict theoretical criteria for the sequential containment 
of the true parameters in the presence of time-variance are given in papers by Rao 
and Huang(23) and Huang and Deller.(24) 

29.4.4. Suboptimal Checking 

Figs. 29.15 and 29.16 show the simulation results of the "nonadaptive" 
SM-WRLS algorithm with suboptimal data selection. In this case, only 1.19% and 
1.53% of the data are used or the words "four" and "six," respectively. Compared 
to the SM-WRLS algorithm (Figs. 29.6 and 29.8), the suboptimal technique uses 
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FIGURE 29.15. Result of processing the word "four" using the SM-WRLS algorithm with no 
adaptation and suboptimal checking: 1.19% of the data is employed in the estimation process. 
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FIGURE 29.16. Result of processing the word "six" using the SM-WRLS algorithm with no adaptation 
and suboptimal checking: 1.53% of the data is employed in the estimation process. 

slightly fewer data but produces comparable estimates. Note that most of the data 
sets (97.6% for the word "four" and 94.4% for the word "six" ) that are accepted 
by the suboptimal technique are also accepted by the SM-WRLS algorithm. 

29.4.5. Adaptive Algorithm with Suboptimal Checking 

The simulation results of the selective forgetting SM-WRLS technique with 
suboptimal data selection are shown in Figs. 29.17 and 29.18. This strategy 
effectively uses only 2.16% and 2.76% of the data for the words "four" and "six," 
respectively. 
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FIGURE 29.17. Result of processing the word "four" using the SM-WRLS algorithm with selective 
forgetting and suboptimal checking: 1.89% of the data is employed in the estimation process; effectively, 
2.16% if the back-rotations are included. 
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FIGURE 29.18. Result of processing the word "six" using the SM-WRLS algorithm with no adaptation 
and suboptimal checking: 1.53% of the data is employed in the estimation process; effectively, 2.76% 
if the back-rotations are included. 

Compared to optimal selective forgetting (Figs. 29.13 and 29.14), selective 
forgetting with suboptimal selection uses fewer data but produces comparable 
estimates. On the other hand, compared to unmodified SM-WRLS with suboptimal 
data selection (Figs. 29.15 and 29.16), suboptimal selective forgetting uses more 
data but produces better estimates. 

29.5. CONCLUSIONS 

OBE algorithms have strong potential for improving spectral accuracy, track­
ing ability, and computational load ofLPC analysis of speech signals. In tum, LPC 
identification is at the heart of many important problems in speech compression 
and coding, recognition and synthesis, as well as in speaker identification and 
verification. Autoregressive modeling is also central to many other important signal 
processing applications, for example, image processing and geophysical modeling. 
The results presented here are immediately applicable. Furthermore, the results are 
very easily generalized to cover any linear-in-parameters regressor model, includ­
ing those with complex and/or vector signals. Therefore, although the focus is on 
the speech-processing application here, the material is of much broader utility. 

Speech processing and other real-time signal processing tasks may benefit 
from the set estimate provided by the OBE method. However, the main focus here 
has been on the potential to discard uninformative data for speed and accuracy 
improvement, and for greatly enhanced tracking capability. In this endeavor, the 
technique has proven very effective in experimental studies. The fundamental issue 
of finding proper error bounds in real signal applications, however, is not trivial. 
The significant benefits observed are critically dependent upon these bounds. This 
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issue remains an open area for further theoretical and experimental research. 
Likewise, the theory ofOBE processing does not strictly support the identification 
of time-varying models, and further theoretical research in explaining the perform­
ance of adaptive methods significantly benefits real applications. 

Finally, although this work focuses on a simple OBE algorithm, SM-WRLS, 
certain important results are theoretically guaranteed to be similar with any reason­
able weighting strategy. These results include the data selected, and the pointwise 
ellipsoids and their central estimators. This is a consequence of the unified theory 
presented and in Chapter 4 and in Refs. 12, 13, and 14. OtherOBE algorithms might 
emerge as advantageous in certain applications, due to practical considerations such 
as roundoff errors. This issue is also open to further pursuit as these powerful 
techniques are increasingly applied to real problems. 
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Robust Performances Control 
Design for a High Accuracy 
Calibration Device 
M. Milanese, G. Fiorio, and S. Malan 

ABSTRACT 

This chapter presents a case study of robust performances control design. The 
physical plant under examination consists of a platform for calibration of high 
accuracy accelerometers. It has to assume the properties of an inertial body, despite 
the vibrations coming from the surrounding ground. Plant modeling and parameter 
estimation, control system design and robustness analysis of the designed control­
lers are described and discussed. Besides a simplified model of the plant (the 
nominal model) perturbations are also considered to take into account parametric 
and dynamic uncertainties. The procedure followed for estimating model parame­
ters, based on an unknown but bounded approach, is illustrated, and uncertainty 
intervals of parameter estimates are provided. Bounds of unstructured uncertainty 
are also derived from results of simulations to evaluate the main effects of the 
unrnodeled dynamics. 

The design has been carried on through iterative steps of "nominal" design and 
robustness analysis. The design has been performed through Hoo synthesis, based 
on the nominal model and taking into account the main performance specifications 
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required for the present case study, i.e. stability, disturbance attenuation and 
command power limitation. The robustness analysis has been performed using 
recent techniques able to deal with frequency domain specifications and with mixed 
non-linear parametric and dynamic perturbation, as required in the present case 
study. 

30.1. INTRODUCTION 

The problem originated from a national laboratory, in the realization of a 
calibration device for high accuracy acceleration transducers. This device requires 
to work over a platform, whose conditions should be close to those of an inertial 
body. Unfortunately, the laboratory is located in the neighborhoods of heavy 
mechanical factories, whose undesired effects is to generate vibrations in the 
surrounding ground. 

In these conditions, it is required to reduce the r.m.s. value of the platform 
perturbing acceleration in the ratio I: 100 approximately, in order to have suffi­
ciently negligible calibration errors with respect to the accuracy guaranteed for the 
most sensitive transducers. 

Preliminary analysis showed that it is not convenient to use simply passive 
mechanical elements, such as springs and dampers, to solve the problem of reducing 
platform perturbing acceleration. Unfeasible parameter values should be required. 
On the contrary, the use of active elements, such as electromagnetic actuators driven 
in feedback or in mixed feedback-feedforward control schemes, leads to much more 
effective disturbance attenuation. 

Fig. 30.1 gives a sketch of the plant. A concrete rectangular platform P is 
supported at each corner by a set of three elements lying on ground: a spring, a 
damper and an electromagnetic force generator. Another platform B, bearing the 
calibration device, leans on the first one through similar mechanical elements, but 
without active generators. 

FIGURE 30.1. The plant. 
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Accuracy is the main concern of the calibration device. The desired accuracy 
must be guaranteed for the controlled system, despite of the limited and uncertain 
information available on the plant. Then, a robust (worst-case) approach is taken, 
based on the typical two steps: 

• Identification of the approximate behavior of the system in terms of a 
nominal model and a perturbation model, able to capture the discrepancies 
between the nominal model and the actual system (described in Sections 
30.2 and 30.3). 

• Design of a control system which assures acceptable performances accord­
ing to some given specifications, not only for the nominal model, but for 
all considered perturbations (described in Section 30.4). 

It is well known that the type of perturbation model plays a key role. In the 
robust control literature, two main types of perturbations have been extensively 
studied: parametric (real) and dynamic (complex) perturbations. The former ac­
count for parametric variations, and the latter for unmodeled dynamics.(1,2) 

Recently, some work has been done on mixed types ofperturbation.(3,4) Mixed 
parametric-dynamic perturbations seem able to better capture the physical infor­
mation on the approximations introduced by the model. Ref. 5 performs a prelimi­
nary analysis of this case study and takes into account parametric perturbation only. 
The results clearly show that in this case the unmodeled dynamics playa key role 
in robust stability. This chapter performs a more complete study, using a mixed 
perturbation model. 

30.2. THE NO'\1INAL AND THE PERTURBATION MODELS 

The aim of this section is to illustrate the results of model building for a suitable 
representation of the plant. First, the nominal model is described. Furthermore, 
perturbations on this model are introduced to take into account its main approxi­
mations. 

The nominal model is based on the following simplifYing hypotheses: 1) The 
ground, as well as platforms P and B in Fig. 30.1, are considered as rigid bodies; 
2) The ground has only vertical motion, and the structure has perfect symmetry at 
the four corners. of the platforms; and 3) Only linear equations are included in the 
model. 

The four electromagnetic actuators at the corners of the lower platform of Fig. 
30.1 are driven by the same electric current i, according to the hypothesis that 
perfect symmetry gives rise to translation motion of the platforms along the vertical 
axis only. The simplified model is depicted in Fig. 30.2. In this figure, the four 
identical elements at each corner of the platforms are represented by only one 
equivalent parameter. 



544 M. MILANESE ET AL. 

ground G 

FIGURE 30.2. The simplified model. 

In the nominal model, the vertical component of the ground acceleration 2G is 
considered as the only disturbance, and is denoted by d. The forcefin Fig. 30.2 is 
considered as proportional to the current i, which is the only command variable of 
the systemf = KFi. The vertical component 22 of the upper platform acceleration is 
the controlled output, denoted by y. Thus, the system can be represented by the 
single input-single output (SISO) structure of Fig. 30.3, where yes), i(s) and des) 
represent system output, command variable and disturbance, respectively. 

M(s) and A(s) represent output sensor and actuator transfer functions, respec­
tively. The regulator transfer function to be designed is C(s). G(s) and H(s) are the 
command to output and disturbance to output transfer functions, respectively. Their 
expressions are: 

(30.1 ) 

(30.2) 

where 

(30.3) 

(30.4) 
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Output sensor is modeled by the transfer function 

M(s) = Kms(\ +sxyl. (30.6) 

Actuator transfer function A(s) is assumed as a constant Ka in the frequency 
range of interest: 

A(s) = Ka. (30.7) 

In order to take into account the approximations introduced by this simplified 
model, the three main assumptions are briefly discussed. 

Consider the linearity assumption. The behavior of the plant in normal oper­
ating conditions can actually be considered linear with good approximation, due to 
the very small displacements and accelerations present in these conditions, and to 
the fact that input current is controlled to stay within the linearity range of the 
relation force-current. 

On the contrary, while the rigid body assumption appears to be likely for 
platforms P and B, ground deformability gives parasitic effects which may cause 
stability problems in the closed loop. Then the deformability of the ground is taken 
into account by means of an uncertainty represented in term of a multiplicative 
perturbation A as indicated in Fig. 30.3, such that 

l l ^ a O A t c o ) ^ < 1, 0 < co < oo. (30.8) 

p e r t u r b e d nodel 

i (s ) 
« A ( s > — W G < s , p > 

jcKs) 

IHCS,P>| 

y<s) 

- C ( s ) N—H(s)k-

FIGURE 30.3. The control scheme. 
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The choice of the weighting function W( (f) is discussed in Section 30.3. 
The nonperfect symmetry of the structure gives rise to rotating motion com­

ponents of the platfonns, with the effect of adding two pole-zero couples for each 
pole of the transfer functions of the nominal model. The pole and the zero of each 
added couple are very close, and close to the corresponding pole of the nominal 
model. Simulation has verified that large diasymmetries (up to 10% on each 
parameter) give transfer functions, which can be recovered with very good approxi­
mation by suitable assessments of the parameters of the simplified model of Fig. 
30.2. 

In fact, it is assumed that parameter vector p is known only to belong to a 
parameter uncertainty set II. The identification procedure described in the next 
section provides parameter estimates with their ranges of variations able to recover 
this and other sources of parametric perturbations, for example, the ones due to 
errors in measurements. 

30.3. IDENTIFICATION PROCEDURE 

The model described in the preceding section contains several parameters 
whose values have to be known. 

Constants Km, T, KF and Ka are given the values from the data sheets of the 
corresponding components: 

(30.9) 

The remaining parameters of the model are masses m I and mZ, stiffness 
coefficients k[ and kz, and damping coefficients ~[ and ~2' 

It might be possible to disassemble the system and to measure these parameters 
separately. Apart from practical difficulties, this approach is not appropriate be­
cause the assumed model is a simplified model, and its parameters have the nature 
of equivalent parameters, with implicit reference to some physical phenomena 
neglected in the model, as discussed in the preceding section. For instance, stiffness 
parameter k[ is an equivalent parameter to take into account stiffness of the springs 
sustaining platform P, the ground elasticity, and asymmetry of the structure. It can 
then be argued, from physical considerations, that parameter m2 is less affected by 
neglected dynamics. Consequently, this parameter has been set to the value obtained 
by direct measurement: 

m2 =440 kg. (30.10) 

The remaining parameters are identifiable from the given experimental con­
ditions, and have been estimated from measurements on the overall system. 

The available experimental data are: 
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FIGURE 30.4. Samples of I GUm) I with corresponding uncertainty intervals. 

• samples offrequency response command to output (magnitude and phase) 
G(jm) with sinusoidal current generator supplying the actuator; input and 
output measurements have been performed in open loop at about 20 
frequencies in the range 0.5 to 40 Hz, and with some different command 
amplitudes: 0.5, 1, and 2 A r.m.s. values (Figs. 30.4 and 30.5); 

• samples of frequency response disturbance to output (only magnitude) 
I HUw) I deduced from spectral densities of vertical acceleration of both 
ground and upper platform B in open loop normal operating conditions; 
frequency range is 0.1 to 9 Hz, with frequency resolution 0.2 Hz; this range 
of frequency contains more than 95% of both disturbance and output power 
(Fig. 30.6). 

These data can be described by the equation 

y = F(p) + e, (30.11 ) 

where y is the vector containing the samples 

y = [\ G(jmj) \ , \ G(jw2) \ , .•• , arg G(jmj), arg G(jw2), ..• , 

I H(jmj) I , I H(jw2) I , ... ], (30.12) 
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FIGURE 30.5. Samples ofarg G(jm) with corresponding uncertainty intervals. 

p is the vector containing the unknown parameters 

(30.13) 

and e is an error term. 

Accuracy is the main concern of the calibration problem. Thus, particular 
attention has been paid to the computation of parameter estimate accuracy, which 
depends on the knowledge about the error term e and on the estimation algorithm. 

A statistical description of e does not appear appropriate, mainly due to the 
modeling errors discussed above. An unknown but bounded error approach has 
been adopted, which requires information on measurement error bounds only.(6.7) 

Uncertainty intervals Vi are evaluated for each data. They take into account the 
accuracy of the measurement devices and the effects of unmodeled dynamics, 
expressed by the bounding function shown in Fig. 30.7. The used values are 
reported in Figs. 30.4, 30.5, and 30.6. In such a way, the information on e is given 
as 

(30.14) 

where Ilell~ = maXi villeil, Vi> 0, and V is the vector of error bounds corresponding 
to the uncertainty intervals on data. 

A least square estimate pO of the unknown parameters is obtained as 
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pO:= arg min{llY - F(P)lIi}' 
p 
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(30.15) 

where 11'lIr denotes a weighted Euclidian norm, and V is a diagonal matrix with 
elements Vi' 

Uncertainty in data induces uncertainty on the parameter estimated values. The 
maximal range of variation of the i-th component p?, due to possible errors 
consistent with Eq. (30.14) is indicated as estimate uncertainty interval Ui' The UiS 

are evaluated by a method proposed in Ref. 8. The method is based on a quasi­
linearization technique and gives intervals certainly contained within the exact 
UiS. Indeed, it gi yes exact values if 8p? /8Yi has a constant sign for all Y E Y. The set 
Y is defined as 

1\ 
Y = {y : I~' - YII~ :0; I }, (30.16) 

1\ 
where Y denotes actual measurements. 

This condition is difficult to be checked with certainty. However, 8po 18y is 
evaluated at several grid points to provide good evidence that the condition is met. 
This has been accomplished by using the formula:(8) 

(30.17) 
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where 

3Fi A~ - 0 Op p(\')" 

(30.18) 

In tum, 8F is computed as a function of p by means of the symbolic manipu-
I · k 8p atlOn pac age DERIVE. 

The identification procedure described above gives the following results: 

kl =Pl =P~±Ul =(1.4±0.3)106 Nm- 1 

k2 = P2 = p~ ± u2 = (1.0 ± 0.3)106 Nm- 1 

~l = P3 = p~ ± U3 = (4.8 ± 1.0)104 Nsm- 1 

~2 = P4 = p~ ± u4 = (1.7 ± 0.3) 104 Nsm- I 

o 3 
m 1 = Ps = Ps ± Us = (4.2 ± 0.7)10 kg. 

(30.19) 

Note that other estimators could give smaller estimate uncertainty intervals. 
In particular, methods to compute minimal uncertainty intervals estimators are 
proposed in Refs. 9, 10, and 11. However, a least-square estimator has been adopted 
because it is computationally faster and has better robustness properties with respect 
to inexact knowledge of uncertainty error bounds v,.(7) 

In order to complete the perturbation model, the weighting function W( co) of 
Eq. (30.8) has to be evaluated. To this extent, effects of ground deformability has 
been simulated by space discretization of the ground. This discretization introduces 
several couples of zeros and poles in the transfer function G(s), which are close to 
the imaginary axis. These low damped zero-pole couples give rise to peaks in the 
transfer function at relatively high frequencies (co> 1000 rad/s, see Fig. 30.7). Now 
W(co) has to be chosen so that IGUco,pO)I(1 ± IW(co)!) envelopes these peaks. The 
methods used for the design and the robustness analysis require W(co) to be a 
rational stable function, whose order affects the complexity of the controller and 
the computational burden of the analysis. A first order, high pass (for co > 1000 
rad/s) function is then chosen: 

W( co) = 1.22 jco 
jco + 1000 

(30.20) 

In summary, the perturbed model, which is adopted for the purpose of robust 
performances regulator design, is the mixed parametric and dynamically perturbed 
model represented in Fig. 30.3. The forms of G(s,p) and H(s,p) are given by Eqs. 
(30.1-30.5). Symbols G(s,p) and H(s,p) denote explicitly the dependence of the 
plant transfer functions on the uncertain parameter vector p. 

Parametric uncertainty is represented by the fact that parameter vector p is 
known only to belong to the parameter uncertainty set fl, defined as 
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FIGURE 30.7. Bounds of perturbed transfer function G(s.l)[1 + tJ.]; transfer function of discretized 
ground model is in dotted lines. 

(30.21 ) 

Note that pO is the 'nominal' parameter vector, whose components are given by the 
p?s in Eqs. (30.19), and the vector u has components as the estimates uncertainty 
intervals Ui in the same equations. 

Unstructured uncertainty is represented by the multiplicative dynamic pertur­
bation ~, known only to belong to the modeling error set, ~E' defined as 

(30.22) 

where W(w) is given by Eq. (30.20). 

30.4. ROBUST REGULATOR DESIGN 

The feedback control configuration shown in Fig. 30.3 is considered for output 
regulation ofthe plant. 

The loop transfer function 

L(s,p,~) = A(s)G(s,p)[l + ~]M(s)C(s) (30.23) 
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is now considered. Symbol L(s,p,tl) denotes that both structured and unstructured 
perturbations affect the loop transfer function. 

Furthermore, the sensitivity function S(s,p,tJ.) and its complement T(s,p,tJ.) are 
considered: 

(30.24) 

The robust regulation problem requires to design a relatively low order controller 
C(s) such that the following specifications are met: 

1. Closed loop is robustly stable with respect to the allowed structured and 
unstructured uncertainties, i.e., 'lip E n and V tJ. E tJ.E. 

2. Closed loop control guarantees disturbance attenuation of 1: 100 in r.m.s. 
values with respect to open loop operation. This is obtained by imposing: 

I SUm,p,tJ.) I :::; U(m), 'lip E n, V tJ.EtJ.E, 0.63 :::; m :::; 57 rad/s, (30.25) 

where U(m) is the bounding function shown in Fig. 30.8, and [0.63, 57] 
rad/s is the frequency range where the spectral density function Sjm) of 
the disturbance has more than 95% of its power (see Fig. 30.9). 

U{ro) 

I SUm,po ,OJ I 

OJ (rad s·') 

FIGURE 30.8. Nominal sensitivity (C;.{s) = CIO(s)) and bounding function. 
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FIGURE 30.9. Spectral density of disturbance. 

3. Command amplitude is limited, in order to guarantee that the current in the 
electromagnetic actuators does not exceed lOA r.m.s. This is obtained by 
imposing: 

'tj pEn, 'tj;}. E ;}.E' 0.63 :::; (() :::; 57 rad/ s. (30.26) 

A systematic approach to a design problem of such a complexity is outside the 
possibilities offered by the present state of the robust control literature. Conse­
quently a design approach is used based on iterative phases of "nominal" design 
and robustness analysis, that, in case offailure, gives indications for the successive 
design phase. 

The design phase has been carried on, using the nominal parameters, in the 
following way: the robust stability requirement with respect to unmodeled dynam­
ics and the given performance specifications are used to suitably define the 
weighting functions entering in the Hoo design approach. Through Hoo synthesis 
algorithms it is, possible to find a controller that satisfies the specifications for the 
"nominal" parameters, or to understand if some of the specifications have to be 
relaxed. Note that the controller obtained by Hoo synthesis may be of higher order 
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than desirable. It is often possible, however, to find a simpler controller satisfying 
the nominal performance by order reduction techniques. This design phase uses an 
interactive design softwareY2) implemented with the Robust-Control Toolbox of 
MATLABTM. 

The robustness analysis phase has been carried on following the approach 
proposed in Ref. 4. 

First, performance specifications are represented in the frequency domain by 
functions Fk(w,p), k = 1,2,3. The k-th performance specification is satisfied for all 
unstructured perturbation L1 E L1£ if and only if Fk( w,p) > 0, W E Ok' For example, 
in the case of stability, the corresponding specification inequality can be obtained 
by the small gain theorem, giving: 

I W( w) T(jw,p,O)1 < I. (30.27) 

A given compensator is said to achieve robust k-performance if 

Note that in this way, robustness is guaranteed versus both parametric and unstruc­
tured uncertainty. 

A robustness measure for the k-th performance, called performance margin 
pr, is defined as the radius according to l~ norm in parameter space of the maximal 
ball. It is centered at the nominal parameter pO, such that the closed loop system 
preserves the given performance specification for every parameter vector belonging 
to the maximal ball and for all admissible unstructured perturbations. This measure 
is a generalization of the widely used concept of stability margin,03,14,15) 

Performance margin Pi: can be computed as 

subject to 

l ~j~-:~I :::; pU j i = 1, ... , 4 

Fk(w,p):::; O,w E Ok' 

(30.28) 

Note that the k-th performance is robustly achieved if and only if Pk ~ I . 
The optimization problem ofEq. (30.28) may have local minima and the global 

solution is needed for solving the problem. Global optimization methods based on 
random search algorithms are not appropriate, since these methods guarantee 
convergence to the global minimum only in probability. More importantly, they do 
not give any measure on how far the obtained solution is from the true global 
minimum. When F(w,p) is a polynomial function in wand p, algorithms able to 
produce a sequence of upper and lower bounds converging with certainty to global 
extrema have been proposed, and shown to be able to solve some nontrivial 
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robustness problems.(4,15,l6) Indeed, the given specifications can be represented by 
polynomial inequalities in p and co. The explicit functional expressions Fk( co,p), k 
= 1, 2, 3, corresponding to the considered performances, have been obtained by 
means of symbolic manipulation package DERIVETM on a personal computer. 

The results reported in this chapter are obtained by use of the algorithm 
reported in Ref. 17, an improvement over previously cited ones. 

Note that jin case the controller is found not robustly performing, (i.e., Pk < 1 
for some k), the above analysis gives useful indications for the design phase. In 
particular, if the robustness margin of one performance is less than one, a new 
controller may be designed by strengthening the corresponding specification and 
possibly relaxing the specifications with robustness margin greater than one. 

Following the described approach, a compensator has been found to satisfy 
performance specifications for nominal parameter pO: 

2'(s)=5(1 +s/0.5)(1 +s/l1)(1 +s/22)2(1 +s/67)(1 +s/405)(1 +s/103). 
s\1 +s/57)2(1 +s/58.8)(1 +s/1065)(1 +s/9· 1010) (30.29) 

This transfer function has been found to be reasonably well approximated by 
the fourth order transfer function: 

C (s)= 100 +s/0.5)(1 +S/50)2(1 +s/1000) 
10 s3(l + s/200) 

(30.30) 

This controller largely satisfies the given specifications in correspondence to 
the nominal model: the closed loop is stable with a damping factor of 0.4, the 
disturbance effect on the output is 1: 120 with respect to the open loop, the current 
in the electromagnetic actuators does not exceed 7 A. As shown in Table 30.1, 
however, it does not achieve robust disturbance attenuation. This suggests that the 
gain loop has to be raised. 

Indeed, compensator CI4(S) = I.4CIO(s) achieves all robust performances. Note 
that the stability margin for this compensator is near to one. Higher gain may cause 
stability problems as confirmed, for example, by the robustness analysis of C20(s) 
= 2ClO(S). 

TABLE 30.1. Specification Margins and Corresponding Computing Times 
on a VAX 9000 Computer 

ClO(S) CI4(S) C20(S) 

Specification CPU Time (sec) CPU Time (sec) * CPU Time (sec) p p P 

I 1.18 128 1.08 80 0.81 104 
2 0.63 15 1.46 23 2.16 89 
3 3.33 5 3.33 5 3.33 4 
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Note that the robustness analysis is carried out by an approach able to exploit 
the nonlinear structure induced by the considered perturbed parameters. It is known 
that this is a hard problem that requires computationally cumbersome algorithms. 
Computationally simpler techniques have also been tried, by considering an inter­
val plant formulation.(l8.19) This approach leads to conservative results, however. 
For the present case study, the resulting conservativeness is high enough to prevent 
the possibility of finding a controller guaranteed to perform robustly by such a 
simplified analysis. (20) On the other hand, the computational burden ofthe nonlinear 
analysis appears to be acceptable (see computing times in Table 30.1) and worth 
paying, considering the improved results obtained. 

30.5. CONCLUSIONS 

The presented case study illustrates how some robust identification and control 
techniques can be applied in dealing with real world problems. 

The modeling and identification step has been performed by using physical 
insight and set membership identification theory, able to account for parametric 
variations and modeling approximations. 

Robustness of the control system with respect to both types of uncertainty is 
considered, not for stability only, but for other performance specifications, such as 
disturbance attenuation and command power limitation. 

An iterative design strategy has been adopted, based on successive phases of 
"nominal" design and robustness analysis. 

The main conclusion drawn from this case study is that, in facing with real 
world problems, it is necessary to take approaches with the following features: 
ability to deal with nonlinear physical parametrizations; accounting for both 
parametric uncertainty and unmodeled dynamics; and designing and analyzing with 
respect to different performances. 

These requirements clearly lead to difficult problems, but it appears that 
techniques now exist to solve cases of such a complexity to be of some interest in 
practical applications. 
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Subpavings, 363, 372 
Sum of ellipsoids, 218 
Supporting hyperplane, 188, 261, 263, 293 
Systolic arrays, 520 

Termination condition, 33, 34, 378 
Time series prediction, 5 
Time-varying models, 492, 539 
Time-varying parameters, 261, 266, 419 
Time-varying signals, 519 
Time-varying systems, 94, 409, 519 
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Tracking, 117,227,261,409,492 

polyhedric, 261, 266 
See also Drifts; Jumps 

Transforms 
discrete cosine, 492 
discrete Fourier, 493 
wavelet, 493 

Triangle inequality, 293 

Uncertainty 
parametric, 45, 556 
parametric modeling of, 334 
prediction, 333 
in the regressors, 95 
set-membership, 5 
structured, 160, 
unstructured, 160 
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Uncertainty intervals, 12, 101,347,354,548 
parameter, 48, 49, 86, 88, 105, 289, 309, 502 

approximate, 93 
Uncertainty layer, 372 
Uncertainty set, 159 
Uncorrelation, 180 
Unfeasible box, 373 
Unified theory for ellipsoidal bounding, 43, 
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Uniform convergence, 173 
Uniform versus normal, 302 
University of Birmingham identification pack-

age,330 
Unknown-but-bounded-error approach, 44 
Unmodeled dynamics, 176, 543, 556 
Unstable plant, 240 
Unstructured uncertainties, 160 
Update rate, 62 
Upper bound on disturbance size, 384 

Variance, 302 
Variations: see Drifts; Jumps 
Vector interval: see Box 
Viability, 220, 228 

Windowing, 532 
Worst-case design, 2, 409, 412 
Worst possible equation error sequence, 105 
Wrapping effect, 144 

Zone plate, 499 
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