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PREFACE

Progress in the development of a theoretical subject is, to a great extent, predetermined
by the adequacy, variety and power of the mathematical models used.

Various mathematical tools have been utilised in circuit theory. They differ from one
another in their complexity, generality and area of application. Thus, the topological
properties of both linear and nonlinear electric circuits are best described by graph theory.
Steady-state analysis of large linear circuits is carried out in the most effective way by
using sparse matrix techniques. Qualitative properties of nonlinear circuits — existence,
uniqueness, boundedness of steady-states and other related topics — seem to be most
adequately analyzed in terms of the qualitative theory of nonlinear differential equations.

The overwhelming majority of the mathematical models now in use in circuit theory
is based on the concept of real number (complex numbers can always, at least
conceptually, be viewed as pairs of real numbers in a corresponding two-dimensional
space). This approach is quite natural and satisfactory if the initial data about the electric
circuit studied (parameters of passive elements, energy sources etc.) can be assumed to
be known exactly. Since this is rarely the case, such an idealization is acceptable only
when each item of the input data can be represented within resonable accuracy as a real
number. As each real number can be geometrically viewed as a point on the real line, all
the data relevant to the problem at hand can be visualized as a point in a space of
appropriate dimensionality. Therefore, for brevity of expression, a mathematical model
based on such an approach will be called a "point" model. Although intrinsically
inaccurate the point model is practically the best model for tackling problems in which
the input data can reasonably be assumed to be known exactly.

However, the input data are, theoretically always and practically most often, known
only with some degree of uncertainty. In circuit theory the basic approach to handling
such problems is to appeal to a probabilistic description of the problem and to apply a
certain statistical method for its solution. This approach is associated with the necessity
to introduce experimentally some distribution law describing the probability with which
the point representing the input data appears in each element of a corresponding
Pparameter space. Another possibility is to resort to some results from fuzzy sets theory.
ane again, some statistical information is needed to describe the "fuzziness" of the sets
mvolved.

An alternative approach to treating electric circuits with inaccurate data is to apply the
notions and methods of the so-called interval analysis.

Interval analysis is a new and intensively developing branch of computational
mathematics. It has been in existance for only three decades: the first monograph in the
field by R. Moore was published in 1966. Originating from the need to control
Propagation of errors in computations on digital computers, interval analysis presently
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covers a variety of problems in applied mathematics which are difficult to solve using
traditional (noninterval) approaches.

The basic concept in interval analysis is that of an interval. An interval is a bounded
segment of the real line. As arithmetic operations over intervals have been introduced,
intervals are also called interval numbers. Interval numbers are a generalization of real
numbers: in fact, an interval number is a set of (infinitely many) real numbers. Interval
numbers can be arguments of functions which are called interval functions. Broadly
speaking, one of the main objectives of interval analysis is to study the properties of
interval functions and to seek efficient methods for their evaluation. Based on these
investigations, various interval methods have been proposed for solving numerous
problems in linear and nonlinear analysis. In fact, there exists nowadays an interval
counterpart for practically every significant problem and method encountered in classical
mathematical analysis.

Since interval analysis deals with intervals rather than points, it is ideally suited for
handling electric circuit problems whose initial data are allowed to take on values from
some prescribed intervals. A mathematical model of such a problem which is based on
the interval representation of the input data will be called, for brevity and in contrast to
the point model mentioned earlier, an interval model. Furthermore, a method for solving
a particular problem which is based on an associated interval model and appeals to
appropriate interval analysis techniques will be referred to as an interval method.

It is the purpose of the present book to acquaint the reader with some applications of
interval analysis in electric circuit theory. More specifically interval models and ensuing
interval methods for circuit analysis are presented in detail for the following topics: linear
electric circuit tolerance analysis (steady-state as well as transient analysis), linear circuit
stability and nonlinear circuit analysis (including both resistive and dynamic circuits).

In order to make the book self-contained a comprehensive survey of all the necessary
interval analysis notions and techniques is provided in Chapter 1. Readers familiar with
interval analysis could ignore this introductory text.

Chapter 2 begins the discussion of one of the problems treated in this book by way
of interval techniques, namely the tolerance analysis of linear electric circuits. Both the
determenistic (worst-case) and the probabilistic statement of the tolerance analysis
problem are considered. Either tolerance problem is formulated in this chapter as an
associated equivalent global optimization problem. The latter problem is solved using
various interval methods: zero-order method (using no derivatives of the functions
involved), first-order method and second-order methods (using first- or second-order
derivatives, respectively). Several algorithms implementing the above interval methods
for tolerance analysis are presented and their numerical efficiency is studied.

Chapter 3 continues the discussion of the worst-case tolerance analysis of linear
electric circuits. Now the mathematical model used is in the form of a specific linear
system of equations with independent or dependent interval coefficients. This approach
proves to be more efficient than the global optimization approach from Chapter 2 for the
case of electric circuits of increased size. Exact solution to the d.c. tolerance problem and
approximate solutions to the a.c. tolerance problem are thus derived.
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In Chapter 4 the problem of stability analysis for linear electric circuits with interval
parameters is considered. Two approaches to treating this problem are presented.
According to the first one the stability of the circuit investigated is assessed by means of
an associated characteristic polynomial whose coefficients are functions of the circuit
interval parameters. The second approach reduces the original stability problem to
assessing the stability of a corresponding interval matrix (matrix whose elements are
intervals). Based on some known results on stability for circuits with exact data, necessary
and sufficient conditions as well as simple sufficient conditions are thus suggested for
checking the stability, instability or stability margin of linear circuits (systems) with
interval parameters.

Chapter 5 deals with transient analysis of linear circuits with uncertain (interval) data.
In fact, the problem herein considered is a dynamic generalisation of the static worst-case
tolerance analysis problem (in both forms presented in Chapters 2 and 3). Assuming the
linear circuit to be intervally stable, several methods for exact and approximate solution
of the transient analysis problem are proposed.

The last chapter covers some topics relative to the analysis of nonlinear circuits with
exact data. Firstly, the challenging problem of finding all operating points of nonlinear
resistive circuits is considered. Two groups of interval methods for solving this problem
are presented: general methods applicable for the case where the circuit is described by
a system of nonlinear algebraic equations of general form and specialized methods
designed for the special case where the circuit nonlinear equations are in the known
hybrid representation form. Secondly, an interval method for finding all the periodic
solutions (of a given period) existing in a dynamic nonlinear circuit is introduced. The
latter method is based on results obtained in Chapter 5. Finally, the fundamental problem
of uniqueness of the periodic solution is touched upon. A sufficient condition for
uniqueness is obtained which is implemented by means of some of the results on stability
of interval matrices presented in Chapter 4.

Most of the theoretical developements considered in the book are illustrated through
numerical examples.

Interval methods have a number of appealing features. One of their fundamental
advantages is that, unlike the point methods, they provide each output result in the form
of an interval which contains the result sought, thus guaranteeing infallible bounds on the
true value of the respective output variable. Using the so-called machine interval
arithmetic, they automatically account for roundoff errors when implemented on a
computer. Interval methods will always globally converge in a finite number of steps and
the numerical accuracy achieved is basically determined by the machine accuracy of the
computer used. On the other hand, programming and using interval methods may, in some
cases, present some difficulties. Indeed, all the interval operations involved in the method
used must be programmed individually for every problem being solved by the developer
or user of the method. However, there already exist special versions of high-level
algorithmic languages which permit intervals to be declared as a special data type: the
commonest computations with intervals are then written in as simple a manner as for real
nhumber computations. It is to be expected that shortly all the standard numerical methods
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will be available in interval form as reliable and efficient software packages, thus making
the use of interval methods as easy as that of the noninterval mathematical tools.

The present book is written by an electrical engineer and is intended primarily for
electrical and electronics engineers applying circuit theory in their work. Most of the
results presented are, however, applicable (directly or after minor modifications) to static
and dynamic systems of arbitrary nature. Therefore the book may be of interest to systems
analysts and control engineers as well. It will also be useful to graduate and postgraduate
students interested in circuit or system theory and their applications. Some of the results
herein obtained might also interest applied mathematicians who are concerned with
developing and using interval computation methods.

It is hoped that the monograph will help popularize the fruitful ideas of interval
analysis among electrical, electronics and control engineers and will stimulate further
research in the topics covered as well as in investigating possibilities for other interval
analysis applications in electrical engineering and other related disciplines.

The author has benefited from contacts (either personal or by correspondence) with
leading specialists in interval analysis. To mention the names of all who have, directly
or indirectly, stimulated my work would make a long list with the inevitable risk of
omitting someone’s important influence. However, I wish to express my thanks to my
compatriot, the bulgarian mathematician Svetoslav Markov who some ten years ago lent
me his library on interval analysis (a rarity in Bulgaria at that time) and thus made
possible my acquaintance with the realm of interval analysis methodology.

L. KOLEV
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CHAPTER 1

MATHEMATICAL BACKGROUND

The present chapter introduces some of the basic notions and techniques from interval
analysis needed in the sequel for presenting various uses of interval analysis in electric
circuit theory and its applications. It cannot be overemphasized that the reader who is not
familiar with interval analysis should master the material in this chapter before proceeding
to the following chapters.

1.1. INTERVAL ARITHMETIC
1.1.1. Interval numbers

In what follows we will be dealing primarily with sets. Although the reader is assumed
to be familiar with the rudiments of set theory, a definition of a set will be given here in
the form which will be used in the sequel, namely

S ={x: px)}

where S is the set considered, x is an arbitrary element of the set while p(x) denotes some
rules which specify whether x belongs to S or not.

A fundamental notion in interval analysis is the notion of an interval [1], [2]. Let R
be the set of all real numbers. By an interval X we mean a closed bounded compact
subset of R:

X={x:xeR, a<x<bh, abe R, -o<as<h <o) (1.1a)

The set of all intervals will be denoted by I(R). To distinguish intervals from real
numbers the elements of /(R) will be designated most often by capital letters while lower-
Case letter will be used for the elements of R (later on we will employ also lower-case
letters with superscript / to explicitly denote intervals where needed to avoid ambiguity).
Furthermore, if X is an interval, we will denote its lower (left) endpoint by x and its
upper (right) endpoint by X. Thus, alongside the full definition (1.1a) the equivalent
shorter notation

X =[x, X] (1.1b)
will also be used.
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In the next section we will introduce arithmetic operations over intervals, so the
elements of I(R) will be also called interval numbers.

It follows from (1.1a) and (1.1b) that an interval can be treated in two different
manners: we can regard it either as a set of real numbers or an ordered pair of two real
numbers, the first number being x and the second number being X, with x < X. However,
it will be shown later that from a computational point of view the latter representation
offers great advantages over the former since it permits operations with interval numbers
to be reduced to operations involving their endpoints only, thus avoiding the more
cumbersome operations with sets.

An interval X = [x, X] is called degenerate if x = X; otherwise (x # X) it is referred
to as nondegenerate.

The interval number is a generalisation of the real number. Indeed, in terms of interval
analysis any real number x can be considered as a degenerate interval x =[x, x]. From this
point of view the set of real numbers is contained in the set of interval numbers, i.e.
R cIRR).

We call two intervals X = [x, X] and ¥ = [y, ¥] equal if and only if (we shall employ
the abbreviation iff) their corresponding endpoints are equal, that is, X = Y iff x = y and
xX=7.

The elements of /(R) can be ordered in the following way: X <Y iff ¥ < y.

The intersection X N'Y of two intervals X and Y is empty, i.e. X NY = &, if either
X <Y or Y <X. Otherwise the intersection of X and Y is again an interval:

X NY = [max{x,y}, min{X,y}]

If two intervals X and ¥ have a nonempty intersection, their union X U Y is again an
interval:

X UY = [min{x,y}, max{X,y}]

If XNY =@, the union X UY is obviously not an interval since in this case the set
Z = X UY is not compact (in fact, Z is formed of two distinct intervals X and Y).
" A useful relation for intervals is the set inclusion:

XcVY iff y<x and X<y

We call width of an interval X = [ x, X} the real number

wX) =X -x 12
The midpoint (or centre) of X is the real number
mX) = (x + x)/2 (1.3)

We define the absolute value of an interval X by
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X| = max (|x], |X]) (1.4)

It is easily seen that [X]| < |Y|, w(X) < w(Y) when X C Y.
Finally, the distance p(X.Y) between X,Y € I(R) is defined as

pX.Y) = max{|x - y|,IX - Y|} (1.5)

A nondegenerate interval X is called symmetric if —x = X. Any (nonsymmetric)
interval X can be defined either by specifying its endpoints x and ¥, i.e. in the form (1.1a)

X =[x,x] (1.6)
or, equivalently, as the sum of its centre and a corresponding symmetric interval, i.e.
X =mX) + [-w(x)/2,w(x)/2] n

The quantity w(X)/2 is usually called the radius of the interval X. Both forms (1.6) and
(1.7) are used in interval analysis.

1.1.2. Interval arithmetic operations

In this subsection arithmetic operations with intervals will be introduced.
Let X,Y € I(R). The sum of X and Y, denoted by X + ¥, is defined by the set:

X+Y=U+y:xeX,ye Y} - (1.8)

It is seen that X +Y is again an interval, ie. X + Y € I(R). Indeed, from (1.8)
X+y Sx+y<X+Y. Thus, we have the equivalent relation

X+Y=[x,X]+[y,¥]=[x+y,x+Yl 1.9)

Although (1.8) and (1.9) are equivalent, formula (1.9) is by far more useful for practical
applications since it permits to find the whole set X + ¥ by computing its endpoints x + y
and X + ¥ using only the corresponding endpoint of X and Y.

We define the negative of an interval by the set

-X ={-x: x e X}
Similarly to the previous case we have
-X = -[x, %] = [-X, -x]
For the difference of two intervals we form the set
X-Y=X+[-Y]={x-y:xeX,ye ¥} (1.10)

or equivalently
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X-Y=[xx-[py=[x-5%-) (1.11)

Obviously, X — Y € I(R).
The product X - Y of two intervals X and Y is defined by the set

XY={xy:xe X,ye Y} (1.12)
It is not hard to see that X* Y is again an interval and
X-Y = [min{xy, xy, Xy, Xy},
max{xy, xy, Xy, Xy}l (1.13)

The endpoints of the product Z = XY = [z, Z] can be computed in a cheaper way if _the
signs of the endpoints of X and Y are taken into account. We have the following nine
cases:

1) z=xy.,z=Xxy |if x20,y20

2) z=xy,z=Xy |if x<0<Xx,y20

3) z=xy,z=Xxy |if X50,y20

4) z=xy,z=Xxy if x20,y<0<y

5) z=xy,z=xy if x<0,y<0<y (1.14)
6) z=Xy,z=xy if x20,y<0

7) z=Xy,z=xy if £<0<f,1$0

8) z=Xy,z=xy if x<s0,y<0

9) z = min{xy Xy},7 = max{xy, Xy} if x<0<¥,y<0<y

It is seen that with the exception of the ninth case formulae (1.14) are twice more
effective than (1.13). o .

If X is an interval not containing the number 0, then we can define its reciprocal as
follows:

1/X = {1/x: x € X} (1.15)
hence
1/X = [1/%, 1/x] (1.16)

and again 1/X € IR),if X>0o0r X <O.

In the general case where 0 € X the set (1.15) is no more an interval. In fact, it is not
hard to see that the set 1/X consists of two distinct (nonintersecting) unbounded subsets
of the real line. We shall postpone considering this general case for section 1.1.4.

For the quotient of two intervals, we define
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X/Y=X-(/Y) ={x/y: xe X,ye Y} (1.17)

If 0 ¢ Y, then X/Y is again an interval whose endpoints can be computed using (1.13) or
(1.14) by the formula

X/Y =[x, X}y, 31 = [z, XI'[1/y, 1/y] (1.18y

Similarly to the addition given by (1.9), the formulae (1.11), (1.13) and (1.18) for
subtraction, multiplication and division of two intervals X and Y permit to obtain the
whole resulting set using only the endpoints of X and Y.

For brevity, we shall often drop the dot notation for the product of two intervals and
simply write XY for the product of X and Y.

1.1.3. Properties of interval arithmetic

If X and Y are degenerate intervals, then equalities (1.9), (1.11), (1.13) and (1.18)
reduce to the ordinary arithmetic operations over real numbers. Thus, interval arithmetic
can be regarded as a generalization of real arithmetic. Therefore, it is normal to expect
that the properties of interval arithmetic will be similar to those of real arithmetic, which

is really the case. However, there are several striking dissimilarities that will be stressed
below.

It follows from the set-theoretical definitions (1.8), (1.12) that similarly to the

respective real operation, interval addition is associative and interval multiplication is
commutative, that is, if X,Y,Z € I(R) then

X+ Y +2Z)=(X+Y)+Z;, X+Y=Y+X

X(YzZ) = (XY)Z, XY =YX

Zero and unity in I(R) are the degenerate intervals [0, 0] and [1, 1] which will be denoted
by 0 and / respectively. In other words:

X+0=0+X, I'X =X-1

for any X € I(R).
It is important to underline that unlike real arithmetic

X-X=#0
and
XX #1
when w(X) > 0. Indeed,
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X - X = [x-%, 3-x] = wX)[-1, 1]
and
X/X =[x/% %/x] for X>0
or
X/X =[Xx xx if X<0.
Another interesting property of interval arithmetic is the fact that the distributive law

X(Y +2) =XY + XZ (1.19)

does not always hold. For example, we have [0, 111 = 1) = 0 whereas [0, 1] - [0, 1] =
{-1, 1]. We do, however, always have the following algebraic property

X(Y +Z)c XY + XZ (1.20)

Indeed, t € X(Y + Z) implies t € x(y + z) wherex€ X, ye ¥, z € X. On the other hand,
xy € XY, xz € XZ and hence ¢t = xy + xz € XY + XZ which proves (1.20).

The property (1.20) is called subdistributivity. It is to be stressed that, as is seen from
(1.20) and the above example w(X(¥Y + Z)) < w(XY + XZ). Therefore, it is always
advantageous to use the factored form X(Y + Z) rather than the expression XY + XZ since
the former form leads, in general, to a narrower resultant interval.

It is proven [1] that the distributivity law (1.19) remains true in the following special
cases:

1) if Y and Z are symmetric;

2) if YZ > 0;

3) if 0 € X and sign (¥) = sign (Z)
where

1, ifA>0
sign(A) =4 0, f0e A
-1, ifA<0

Another important property of interval arithmetic is inclusion monotonicity. It means
that if

XcZ, YcW (121
then

——**-f—_——w -
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X+YgZ+W
X-YgZ-W
XY g ZwW

X/Y < ZIW (if O¢ W) (1.22)

The inclusion monotonicity follows directly from the set-theoretical definitions of the
interval arithmetic operations.

1.1.4. Alternate interval arithmetics

In this subsection, some extensions of the "ordinary" interval arithmetic introduced in
the previous sections will be considered.

Interval arithmetic with nonstandard operations

' _T.his interval ar.ithmetic has been suggested in [3]. Nonstandard subtraction © and
division @ are defined for X = [a, b], Y = [c, d] € I(R) in the following way:

XOY = [min{a-c,b-d}, max{a~c,b-d}] (1.23a)

[min(a/c, b/d), max(a/c, b/d)] f X,Y >0
[min(a/d, b/c), max(a/d, b/c)] if X,Y <0
(/)X if 0e X, Y>0
(/)X if 0e X, Y<O

Xeyv (1.23b)

As is seen from (1.23b) nonstandard division is defined only when 0 ¢ Y.
The nonstandard summation € and multiplication © are defined as follows:

XBY = AO(-Y) (1.24a)
XOY = A®(1/Y) (1.24b)

Extended interval arithmetic [4]

In this arithmetic, intervals can be unbounded and interval division X/Y is defined even
when 0 € Y. If 0 ¢ ¥, the quotient X/Y is computed by (1.18). Otherwise
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[b/c, o] if b<0 and d=0
[-os,b/dUb/c,e0] i b<0 and c<0<d
[-oo,b/d if <0 and c=0

X/Y = {[-o0,00] if a<0<b (1.25)
[-e0,a/c] if a20 and d=0
[-e,a/cU[a/d,»] if a20 ad c<0<d
[a/d, ] if a20 and c¢c=0

In this case the result is not finite. However, in our applications X/Y will be intersected
with a finite interval Z. Now the result is a finite set but it can be a single interval, two
intervals, or the empty interval (the reader is urged to verify geometrically the above
assertion).

Machine interval arithmetic {2]

The arithmetic operations defined by (1.9), (1.11), (1.13) and (1.18) are called exact
interval arithmetic operations. However, when implementing these operations on a
computer we commit errors due to round-off. Therefore, we have to take special measures
so that the machine computed interval result always contains the exact interval result.

When computing with interval arithmetic if a left endpoint is not machine
representable, it is rounded to the nearest arithmetically smaller machine number. A right
endpoint is rounded to the nearest arithmetically larger machine number. This is termed
outward rounding.

It should be borne in mind that machine interval arithmetic is about five times slower
than ordinary arithmetic, if no special hardware is available and outward rounding is to
be implemented by high level algorithmetic languages. However, progress in computer
technology makes it realistic to believe that very soon machine interval arithmetic will
be comparable in speed to ordinary arithmetic.

Machine interval arithmetic (i.e. appropriate rounding) should also be used when
implementing the nonstandard and extended interval arithmetic on a computer.

In the following sections and chapters we shall develop various interval methods based
primarily on the ordinary and extended interval arithmetic. For simplicity of presentation,
only exact interval arithmetic will be used although the actual computer implementation
of these methods will, naturally, require machine interval arithmetic.
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1.2. INTERVAL EXTENSIONS
1.2.1. Interval functions

In this subsection the important notion of an interval function will be introduced. For
easier understanding, first an interval function of one variable will be considered; then,
the generalization to interval functions of several variables will be presented.

Recall that we write f: D < R — R to denote a real function y = f{x) of one variable x,
defined in the domain D, with values in R. Geometrically, to every point x € D the
function f sets in correspondence one point y (Fig. 1.1a).

Similarly, if X = [x, X] and Y = [y, 7] are intervals, we say that Y is an interval
function of X, Y = F(X), if to every X in a certain domain D c I(R) there corresponds one
interval Y. Symbolically F: D < I(R) — I(R).

Capital letters, e.g. F, will be used to denote interval functions, and lower-case letters,
e.g. f, to denote real functions. Geometrically, F transforms any interval X from D into
a new interval Y (Fig. 1.1b).

R R
o0 1+ x 1 R o7 1 "X | R
— i ———l
D ) &4
(a) (b)

Fig. 1.1. Geometrical illustration of: (a) a real function f(x), (b} an interval function F(X).

The notion of an interval function of one variable can be easily extended to interval
functions of several variables. To do this, we, however, need to introduce the notion of
an interval vector.

Let x = (x, X, . . . , x,) denote, as usual, an n-dimensional real vector, that is an
ordered n-tuple of real numbers. For the set of all n-dimensional vectors we use the
symbol R".

An n-dimensional interval vector is an ordered n-tuple of interval numbers X, X,, .
.., X,. Loosely speaking, an interval vector is a vector whose components are intervals.
We will use capital letters to denote interval vectors, i.e. we shall write X = (X, X,, . .
.»X") where X,, i = 1, ..., n, stands for the ith component of X. Since each component
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X, is an interval, i.e. X; € I(R), the interval vector X € I(R) x I(R) x . .. x I(R). We shall
use the symbol /(R") for the above Cartesian product of n times I(R). Thus, every n-
dimensional interval vector X belongs to I(R"), i.e X € I(R").

A two-dimensional interval vector X = (X;, X,), where X, =[x, %] and X, = [x,, %,]
are some intervals can be represented geometrically as a two-dimensional rectangle of
points (x;, x,) such that x; <x <X, and x, < x <X, (see Fig. 1.2).

Fig. 1.2. Geometrical representation of a 2-dimensional interval vector.

An n-dimensional vector represents geometrically an n-dimensional "rectangular”
region in R” . This region will be called an n-dimensional box.

The relations equality (=), inclusion (<) and ordering (< or >) introduced in the
previous section for interval numbers remain valid for interval vectors also if they are
extended to all vector components. Thus, for any X,Y € I(R" ) the notation

XgY
means that
X.cY,i=1n

where X; and Y; are the components of X and Y, respectively, and i = 1, n stands for i =
,2,...,n

Similarly, the midpoint vector (centre) m(X) of an interval vector X is defined by the
real vector

mX)=mXy,..... , mX,)) (1.26)
The width of X is, however, given by the real number
w(X) = max{w(X)), i =T, n} 127

Similarly to functions of one variable we write £ D < R* = R to denote a real
function in n real variables. The function maps each vector x = (x;, . . . , x,) belonging
to the domain D C R" into a point y on the real line R.
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By analogy with the definition of the real function, an interval function F: X" c I(R")
—» I(R) maps an arbitrary interval vector X C X°, i.e. an arbitrary box from X° into an
interval from I(R).

In interval analysis it is expedient to specify the class of "rational” functions.

By a real rational function, we mean a real function f whose values are defined by a
specific finite sequence of real arithmetic operations over real numbers. Similarly, an
interval function F is rational if its interval values are obtained by a specific finite
sequence of interval arithmetic operations over its interval arguments. For example,
consider the function F whose values are defined by

F(X,,X,) = (11,2]X, + [0,1])X, (1.28)

for any intervals X, and X,. Here, F is a finitely represented mapping from the set of all
pairs of intervals (X, X,) € I(R?) into the set of intervals.

Similarly to interval arithmetic, rational interval functions have the important property
of inclusion monotonicity. Let X,Y e I(R") be arbitrary interval vectors and F(X) be a
rational interval function. The inclusion monotonicity expresses the fact that

XgY implies FX)gF@®) (1.29)

(XcYifX cY fori= I,_;:). The implication (1.29) follows from the definition of the
relation < between vectors and the inclusion monotonicity property (1.21), (1.22) of
interval arithmetic. As an exercise the reader is advised to verify this property for the
function given by (1.28).

Interval functions that are not finitely representable as interval arithmetic operations
over interval numbers are not rational. (An example of such an interval function will be
considered later in section 1.2.4).

If an arbitrary (not rational) function F(X) satisfies (1.29) for any X,Y X° c I(R™) it
is said to be inclusion monotonic in X°.

It should be stressed that there is no connection between the notion of inclusion
monotonicity (applicable only for interval functions) and the classical notion of monotonic
(with respect to a variable or set of variables) real functions.

1.2.2. Natural interval extension

Let f be a real valued function of n real variables x;, . . . , X, By an interval
extension of f, we mean an interval valued function F(X,, . . . , X,) of n interval
variables X, . . . , X, with the property

F(X, 00X} = F(XseesX,) (1.30)

Thus, an interval extension of f is an interval function F: I(R") — I(R) which reduces to
the real function £ R* — R when all the interval arguments X; becorne real (degenerate
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intervals). (For that reason, the corresponding function fis sometimes called the
"real restriction" of F.)

Real rational functions of » variables have the so-called natural interval extensions.
Given a rational expression in n real variables we can replace the real variables by
corresponding interval variables and replace the real arithmetic operations by the
corresponding interval arithmetic operations to obtain a rational interval function which
is termed a natural extension of the rational function.

Example 11 Letflx,, x;) = (ax, + b)x,, where a and b are constant while X,
X, € R. The interval extension of this real rational function is the interval function

FX,, X,) = (aX, + b)X,

The value of the interval extension for some fixed constants (degenerate intervals) a and
b and any given intervals X;, X, € I(R) is, naturally, an interval. Thus, fora = 2, b = -1,
X, = [0, 1] and X, = [-1, 2] we have

F=F(0,1), [-1,2) = 2-[0, 1] - D [, 2] = [-1, 1] - [-1, 2] = [-2, 2]

R emark 11. For simplicity of notation we shall use one and the same symbol
F(X,, . .., X,) to denote both the interval extension (the corresponding interval function)
and the resultant interval value of the extension after computing it for the given intervals
X,..., X,

It should be stressed that rational expressions which are identical in real arithmetic
operations and, hence, represent one and the same function, may give rise to different
natural interval extensions. This will be made clear by the following example.

Example 12. Letfix) =x(1-x) =x — x - x, x € R. The natural extension for the
first expression is '

F\(X) =X(1 - X);
for the second expression, we have

FX)=X-X-X.
Now, if we compute F,(X) and F,(X) for X = [0, 1] we get

Fi[0,1]=00,1) - (1 - {0, 1) = [0, 1]
whereas
FJ0,11=1[0, 11 -0, 1] - [0, 1] = [-1, 11

Obviously, Fy(X) # F,(X); moreover F\(X) < F,(X).
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Example 1.2 shows that for polynomials the nested form (also called Horner’s scheme)
Ao+ X(A; + X(A,+ . .. XA,)) .. .) is never worse and is usually better than the sum of
powers Ag+ AX + AXX +...+A,XX-... X because of subdistributivity.

Henceforth, whenever we refer to the interval extension of a real function we shall
assume that an expression of the function considered has already been chosen.

AIll natural interval extensions, being rational interval functions, have the inclusion
monotonicity property (1.29).

In the general case of an arbitrary (nonrational) function of one variable f(x), its
interval extension is most often obtained in the following manner. First, fix) is
gpproxirgated by an appropriate rational function f{(x). Then, the natural interval extension
F(X) of fx) is found. Finally, the interval extension F(X) of the original function f(x) is
obtained by adding to F(X) of an additional interval E(X) which accounts for the
approximation error. The extension F(X) thus constructed is guaranteed to be inclusion
monotonic [1].

1.2.3. Range of a function

Another important notion closely related to the interval extension of a function which
will be needed in the sequel is the range of a function over a box.

Let f: X € R" — R where X is a box (an interval vector). By the range f{X) of f over
X we mean the interval

fX) ={f(x):x € X) (1.31)

Obviously, the range f(x) is the union of all function values f{x) for all x from X, that is,
SIX) is the image of the box X under f.

Finding the range of a multivariable function over a box is a fundamental problem
encountered in numerous applications (all the remaining chapters of the present book will
be an illustration of this assertion). The power of interval analysis approach in solving
application problems derives from the following theorem due to R. Moore [1].

Theorem L1 If F(X) is an inclusion monotonic interval extension of f{x), then
fX)  F(X) (1.32)

that is, the interval extension F(X,, . . . ,.X,) contains the range of flx,, . . . , x,) for all
xe X, i=1,n

Proof. By(1.30) fix) = F(x). Due to the inclusion monotonicity of F, fix) € F(X) for
each x € X. Hence fiX) = {fix): x e X} g F(X).

Example 1.3. For fix) =x* and X = [-1, 2] it is easily seen that
AX) =f[-1,2)) =0, 4]
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On the other hand

FX)=F(-1,2]) =X-X=[-1, 2} [-1, 2] = [-2, 4].
Hence

fX) cFX)

Example 14. Let fx) = x(1 - x). The range of f{x) over X = [0, 1] is easily
computed to be

R0, 1)) = [0, 1/4].
From Example 1.2
F(0, 1) = F, ([0, 11) = [0, 1]
Once again
X) c FX)

and the inclusion is proper, that is,

fX) # F(X).

The inclusion (1.32) is one of the basic results of interval analysis. Using (1.32) we
can find infallible bounds on the range of fix) over X by just computing the interval
extension F(X). However, the bounds thus found will, typically, be not very sharp, (as the
above two examples show) especially when the box X is fairly large. Thus, one of the
central problems in interval analysis is that of finding sharper bounds on JIX) with a
reasonable amount of computation. In section 1.2.5 we shall discuss some interval
methods for computing convergent sequences of upper and lower bounds to the exact
range of values.

In two special cases the range can be found in a straightforward way.

The first case refers to monotonic (in the classical sense) functions of one variable.
For monotonic increasing functions f{x), x € R, such as Vx, exp(x), log(x) etc. we have

f(X) = [f(0), ()] (1.33a)

For monotonic decreasing functions

fX) = [f(3), f0)] (1.33b)

If the function f{x) is monotonic decreasing up to a certain point x, and monotonic
increasing afterwards (or vice versa) and the interval X covers Xy, then the range is
determined in the following way. First, X = [x, ¥] is divided into two subintervals X, =
[x, x] and X; = [x,, ¥]. Then formula (1.33a) is applied to X, and formula (1.33b) to X,.
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Finally, f{X) is obtained by combining (forming the union of) the ranges f(X,) and f{X,),
i.e. fIX) = fiX)) UAX,). Using this approach inclusion monotonic interval extensions have
been constructed for all commonly used elementary functions [2]. We shall give here the
following example. For positive integer values of k, the powers of an interval are defined

by
[x%,%'1 if X>0 and kis odd
X' =4 [¥.x*] if X<0 and kis even (1.34)
[0, |x|*] if Oe X and kis even

The second special case where we can easily find the range refers to multivariable
functions f{x), x € R". In this case fiX) is found directly by computing the extension F(X)
only once.

Theorem 1.2, [2). If F(X) is any natural extension of a rational function in which
cach variable occurs not more than once and to the first power, then F(X) = f{X) provided
no division by an interval containing zero occurs.

We shall illustrated the theorem by way of the following example.

Example 15, Consider the function

X Xy Xy

fx) =

Xy =Xy

At first sight, Theorem 1.2 cannot be applied since the variables x, and X3 occur twice in
the function. However, we can modify the given function (by dividing the numerator and
the denominator by x, x,) to get

foy =1
S

X X

Now the latter expression is a candidate for applying the theorem since each variable
occurs only once. If, additionally, the intervals X, and X, are such that 1/X, - 1/X, does
not contain zero then the range can be evaluated directly by the interval extension, i.e.

. _ &
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(X) = F(X) = X
O =ro =5

X X

3 2

Remark 12. As we shall see later (sections 1.2.5, 2.3) finding the range of a
multivariable function over a box is, in the general case, a difficult problem requiring a
lot of computation, Therefore, it is expedient to try to apply Theorem 1.2 whenever
possible in an attempt to reduce the computational cost (further examples of such an
approach will be given in section 2.1.1).

1.2.4. Excess interval

In general, the interval extension F(X).is a wider interval than the range fX), as has
been demonstrated in the previous examples. In order to measure the closeness of F(X)
to f(X) we use the so-called excess interval E(X) introduced as follows [2]:

F(X) = f(X) + E(X) (1.35)
From (1.35)
w(F(X)) = w(f(X)) + w(E(X))

Now we are able to calculate the width of the excess interval
w(EX)) = w(F(X)) - w(f(X)) (1.36)

which is a measure of the discrepancy between F(X) and fiX). In the special case where
F(X) = fiX) it follows from (1.36) that the width of the excess and hence the excess itself
is zero. (Note that the excess cannot be defined as

EX) = FX) - fiX)
since for F(X) = fiX) the width of the excess would be

WERX)) = wIFX) - FX)] =w[Y - Y] 20

which is wrong.)
The excess interval E(X) always contains zero, 0 € E(X). This follows from the fact
that fiX) < F(X).

o ;‘;l
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E xample 16. Consider the function fix) = % x € R, the graph of which is shown
in Fig. 1.3.

f(x=)
¥ lf
1
T fix)
Fix) J
t *
F—{%—-‘
1

Fig. 1.3. Natural interval extension F(X) and range f(X) of the function Ax) = x* for X = [-1, 2].

For X = [-1, 2] the range f{X) is seen to be [0, 4]. The natural interval extension FX)
=X - X has been calculated before as the interval [-2, 4]. So from (1.36)

W(E) = w[-2, 4] - w[0, 4] =6 - 4 = 2
It is readily seen that now (1.35) is

-2,4]1 =10, 4 + [-2, 0];
hence the excess E(X) is the interval

E(-1,2]) =[-2,0]
which contains zero.

The following theorem [2] establishes the asymptotic behaviour of the excess for the
case of rational functions.

T h eore m 1.3. Let F(X) be a natural interval extension of a function of n variables
which is defined for X < A, where A is an interval vector. Then

w(E) = 0(w(X)) 1.37)

(where the symbol y = O(x) means that y becomes proportional to x as x tends to zero).
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Thus, the theorem essentially states that the excess width is on the same order as the
width of X for narrow enough boxes. :

Reduction of excess interval

Here we shall confine ourselves only to the case of functions of one variable (the

multivariate case will be considered later in Chapter 2).
One way of reducing the excess interval is to partition the interval X into subintervals.

Thus, if X is partitioned into two subintervals X, and X, such that
X=x,UX,
then clearly
fX) = fiX) UAX)
Since fiX,) < F(X,) and fiX,) € F(X,) we have

fX S FX)UFXy)
fix)
|
F(X,)
F(x,)I , R
Coalox, *

Fig. 1.4. Interval extensions F(X,) and F(X,) after halving X into X, and X,.

On the other hand, by the inclusion monotonicity property F(X;) < F(X) and
F(X,) c F(X) since X, c X and X, C X,
Thus, the union
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F(x,) UF(X,) ¢ F(X) (1.38)
and it is, generally, a better estimate of the range than F(X).

Example 17. We shall take up Example 1.6. Now divide the interval X = [-1, 2]
into two intervals, namely X, = [-1, 0.5] and X, = [0.5, 2] such that X = X, U X, (see Fig.
1.4). Interval computations lead to F(X,) = [-0.5, 1] and F(X,) = [0.25, 4]. It can be easily
verified that the ranges of x* for the smaller intervals X, and X, are, respectively,

f&x) =10,1]

AXy) =10.25, 4]
Recall that the width of the excess E for the initial interval X = {1, 2] is
w=wEX)) =wFX)) -wfiX)) =6 -4=2;

and

Similarly,
. wy = w(E (X)) = wlF X)) - w(fiX)))=15-1=0.5
an
w, = WEy(X,)) = w(F(X))) - w(fiX)) =3.75-3.75=0
Comparing w with w, and w, it is seen that the width of the excess interval has decreased
for the narrower intervals X, X,.
Moreover (as is seen from Fig. 1.4)

fX) c FX,) U F(Xy)
Thus the union
FX,) UFX,) = [-0.5, 11 U [0.25, 4] = [-0.5, 4]
is seen to be a narrower interval than the interval extension
FX) =1[-2, 4]

for the interval X. Therefore, the interval [-0.5, 4] can be taken as an improved estimate
of the range [0, 4], as compared to the interval estimate [~2, 4].

This Qevice of interval partitioning forms the basis of Moore’s approach to the
computation of ranges to be considered in section 1.2.5.

Monotonic functions

s c:;mt)ct)her way 9f reducing the excess interval (theoretically to zero) which does not

el partitioning and hence requires 1es§ computation is based on the nonstandard

Satisfyinc operations (1.2'3). and (1..2.4). It is, however, applicable only to functions
g certain monotonicity conditions [6].

Let D e I(R) and let fx) be defined for x € D. By M(D) we will denote the set of all

functi ; o
unctions which are monotonic (in the ordinary sense) on D. If two functions f, g € M(D)

l————
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are both increasing or decreasing, they will be said to satisfy monotonicity condition M,.
These functions will satisfy monotonicity condition M, if one of them is increasing while
the other is decreasing.

Theorem 14.[6]. Iff, g are such that 1 =f + g € M(D) then for all X € D

f(X) + g(X) if f.g satisfy M,

h(X) = _
o fX)®g(X) if f,g satisfy M,

Iff, g are such that h = f — g € M(D), then

fX)Og(X) if f.g satisfy M,

h(X) = ]
*0 fX) - g(X) if f,g satisfy M,

I |fl.1gl, h =f g € M(D), then

X fX)-gX) if  |f], |gl| satisfy M,
@ fX)OgX) if |f].|g] satsfy M,

If |f].|g] € M(D), g(x) # 0 for x € D and h = fig € M(D) then for any X € D

fX)/gX) if |f],|g| satisfy M,

h(X) = .
@ fX)®gx) if |fl,lg] satisfy M,

Example 18 We take up the function h(x) = x — 2 =flx) — g(x). It is seen that A(x)
is monotonic in (—ee, 0.5] and [0.5, =), g(x) is monotonic in (—eo, 0] and [0, o) while f(x)
is monotonic in (—oo, v°). Moreover, f and g satisfy monotonicity condition M, in [0, 0.5]
and [0.5, ) and monotonicity condition M, in (—ee, 0]. Hence, according to Theorem 1.4.
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Xex: if XgI[0,05] or X205
X -Xx? if X<0

h(X) =

Example 19. If X 20 then eX= { €% x € X } is obviously given by
eX = 1+ X/1+ X2 + X3 +. ..
Let X < 0. In this case write the Taylor series for ¢ in the form:
eX =X+ 1+XB + X2 + X5 + XY + XM + . ..

All partial sums of this series are monotonic increasing for x € (—es, 0]. Thus, according
to Theorem 1.4

X =XO1+XBOX2 +X 5 OXYM + XN D ...
for X <0.1f0 € X = [x7], then eX = %01y 10,5

Other examples can be found in [6].
At first glance, the range of a monotonic function could be found (without resorting
to Theorem 1.4) by just evaluating the function values f(x) and f(X) at the endpoints x and

X of the given interval X. Then, for (say) a monotonic increasing function (by formula
1.33a)

fX) = [f(x,.f®] (1.39)

However, the above formula ought not to be used if the computed range 7‘(X) must
guarantee the inclusion

X < F(X) (1.40)

where fIX) is the exact (ideal) range determined under the assumption that fx) and f(X)
are ev'aluated exactly. Indeed, in computing f(x) and f{X) on a computer we inevitably
commit errors due to:

a) x and/or ¥ may not be machine representable and their exact values have to be
Tounded off to the nearest machine representable numbers,

b) the real arithmetic operations involved in f(x) are carried out with finite precision.

:h‘tsl» ;fgthe actually computed values of f(x) and (%) are Ax) and f(}), respectively, then
y (1.39)
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FXO=f@.f® (141)

Now, if . .
fo) > fw and fx) < fx)

then, obviously, the interval ? (X) computed by (1.41) will be narrower than the exact
range f(X) and the requirement (1.40), important in many applications, will be violated.

One way to overcome this difficulty is to calculate fix) and f(X) not as points but as
intervals treating x and X as very narrow intervals (accounting for round off) and using
some interval extension F(X) of f{x). Thus, if x is replaced by an interval X, and X by
X, then we can compute

FX)=(f,f]
and
F(X;) =1f, f}]

Finally, the computed range can be found as the interval
Jx) =11, ) (142)

Now the range defined by (1.42) is guaranteed to contain the exact range f{X). However,
as is not difficult to see, the inclusion is always proper, i.e.

f@clf, 1,

Therefore, such an approach will lead always to a nonzero excess interval.

The advantage of the approach to computing the range of monotonic functions based
on Theorem 1.4 resides in the fact that it yields (whenever possible) the exact range f(X).
(Of course, an appropriate machine interval arithmetic must be used when implementing
the nonstandard interval arithmetic on a computer).

1.2.5. Alternate forms of interval extensions
Mean - value form

The mean-value form is a particular form of interval extension which is applicable to
arbitrary functions with continuous first derivatives (i.e. of class C*).

Let £ R"— R, fe C'. Furthermore, X € I(R") (X is an interval vector) and m = m(X)
is its centre (midpoint vector). For any y € X the mean value theorem states that
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10) = fom) + 3 LE)y, - m)., Ee X
j=1

f]

If F; denotes the interval extension of 3f/8x; = £ on X, then obviously

) € fim) + Y F/(X)(X; - m) (1.43)

i=1

for any y € X. Thus, according to (1.32) the right side of (1.43) defines an interval
extension of f which is called the mean value extension of f on X. It is denoted by Fy(X)
(11, [2]:

Fuy (X) = f(m) + ¥ F/ (GO(X, - m) (144)

i1

The mean value form is inclusion monotonic. More precisely we have the following
result.

TheoremlS5. [2). If the functions F,-’(X), j= rn, are inclusion monotonic, then
Fy(X) is also inclusion monotonic.

Theorem 1.6. [2]. If the partial derivatives £ satisfy on X the Lipschits condition
If(x) = £{»] < L|x = y| where L is a constant, then F,(X) approximates the range
SIX) apart from an excess interval E, i.e.

F,y(X) = f(X) + E(X)

where 0 € E and w(E) = 0w(X)?) (the symbol y = 0(x?) means that y is proportional to
x* as x tends to zero).

Thus, the mean—value form assures better interval extension as compared to the natural
ex.tensions (Theorem 1.3) for narrow enough intervals X. However, it should be borne in
mind t.hat the bound on E given in Theorem 1.6 is asymptotic and the natural interval
€xtension F(X) may provide sharper bounds than F,,(X) for larger boxes. For that reason,
the intersection F(X) N F mv(X) is sometimes used in practical computations.

(Other mean-value forms will be considered in section 22.2).

Centred form

In [1] the so-called centred form F(X) is introduced as a particular form of interval

eXter'lsion of a rational function f(x,, . . . , x,). To derive F, for a particular f, we first
reertef(xb c, n) as
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f(xlv-'sx,,) =f(m11~'°9mn) + g(yl""’)’n)

where m; are the components of the centre m = m(X) of the interval vector X while y, =
x; — m;. Thus, g is defined by

8Wyenny,) =f(yy + mysny, + m) - flmy,....m,)
and is, therefore, dependent on m;. We define F (X) by
F (X) = f(m) + G(m, X-m)

It has been proved by E. Hansen [7] that similarly to the mean value extension the excess
width of the centred form extension is on the order of w(X)2. However, the bounds on f{X)
obtained from the centred form tend to be slightly sharper in practical computations.

A serious drawback of the centred form is the amount of work involved in deriving
the function G in explicit form. For this reason, it is considerably more complicated to
obtain the centred form than the mean value form. Another shortcoming of F (X) is the
fact that this form is not always inclusion monotonic. For example, let fix) = x(1 — x). It
can be shown that

F.(X) = f(m) + (1 - 2m)(X - m) - (X - m)*

Let X; = [0, 1] and X, = [0, 0.9] so that X, c X;. However, F (X,) = [0, 0.02925] whereas
F.(X) =10, 0.25], i.e.

F.(X;) ¢ F.(X,)

1.2.6. Computation of the range

In the special cases where the real function considered satisfies the conditions of
Theorem 1.2 or Theorem 1.4, the range f(X) of fix) in X can be found exactly by
computing only once the corresponding interval extension F(X), using the ordinary or the
nonstandard interval arithmetic, respectively.

In this section it will be shown that arbitrarily sharp upper and lower bounds on the
range f(X) of any Lipschitz (with bounded slopes) real function can be computed.
However, as will be seen, this involves numerous evaluations of F(X") for different
subregions X of X and sometimes may be prohibitively expensive.

Moore’s approach
To make the basic idea behind Moore’s approach easier to understand first we shall

consider the case where £ X — R with X € I(R).
We partition the interval X into p subinterval of equal width, i.e.
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X = [x,x]1U[x,x,]U...U [x,_,,x,1,

X=X X, = X, w(x,x. ) = w(X)/p

Let the subinterval [x; x;,] be denoted by X, i.e. X? = [x;, x;,]. Then, obviously,

7 = Uy ¢ U rxoy

Jj=0

(recall Example 1.7 and Fig. 1.4 for geometrical illustration in the case where p = 2). Let

Fox) = U Fxo) (1.45)
Jj=0
and
F®(X) = f(X) + E, (1.46)

Thus, we can calculate the range fIX) of f in X within a preset accuracy provided we can
afford to evaluate F(X¥) as many times as needed. What is more, the approximation
F®(X) is guaranteed to contain the exact range fiX) for each p.

Now we shall consider the case where X is an interval vector (box), i.e. X € I(R").
Similarly to the previous case, we first partition the box X into subboxes X™ in the
following way. Each component X, i = 1, n, of X is divided into p subintervals X, of
equal width, i.e. w(X) = w(X))/p. Then, let X*’ be a subbox formed by a particular
combination of n subintervals X,%’. Obviously, the total number of subboxes is N = p". The
resulting partitioning of X

N
X = Uxwm (1.47)
v=l
is called uniform partitioning.
The union

N

F@(X) = U F(X™) (1.48)

v=]

is called a refinement of F(X) since F¥'(X) < F(X) and most often w(FP(X)) < w(F(X)).
This fgllows directly from the inclusion monotonicity property of F(X). We can use any
of the mte-rval extensions introduced so far (or any others) in computing the right side of
.(1.45). It is, however, preferable to make use of an extension which provides narrower
Intervals for F(X™),
< An interval extension F(X) is Lipschitz in X° if there is a constant L such that w(F(X))
S Lw(X) for every X c X° . We have the following important result [2].

Theorem L7. Let F(X) be an inclusion monotonic, Lipschitz interval extension for
X < X°. Then

d——
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FP(X) =f(X) +E,, 0CE

P
and there are constants K and K’ such that
w(E)) = Kw(X)/p -~ (1.49a)

if the natural interval extension is used in evaluating F®(X) or

w(E,) = K'w(X)/p* (1.49b)
if F¥(X) is evaluated by the mean value form (centred form).

From (1.49)
w(E)) >0 as p e (1.50)

Again, we can, theoretically, compute the range f(X) within arbitrarily sharp bounds if we
take p large enough. However, an evaluation of F¥(X) given by (1.48) requires N = p
evaluations of F(X™). If n is large, this would involve a prohibitive amount of
computation to achieve the result (1.49) for large p. Even for n = 2 we have, for p =
1000, 10° evaluations to carry out.

Skelboe’s approach

Skelboe [5] has introduced an algorithm which can vastly reduce the number of
evaluations required to bound f(X) within an accuracy as compared to Moore’s algorithm.
Unlike Moore’s approach, where F(X®) is evaluated for each subbox X"’ of the uniform
partitioning of X, Skelboe’s algorithm computes the extensions FX®) for a relatively
small number of subboxes X® of varying size. These subboxes are generated dynamically
in the process of sharpening the bounds on the range of the function considered. To
elucidate the mechanism of Skelboe’s algorithm, it will be sketched for the scalar case
where f: X° = R with X° € I(R).

Given an interval X° and an inclusion monotonic interval extension F(X), X ¢ X°, one
secks first a lower bound on the minimum value of f in X° by a procedure to be
described below. The same procedure is then applied to (-f) to obtain the upper bound
on the maximum value of f in X°.

To find a lower bound on f(X°) we create an ordered list of subintervals X in the
following way: a subinterval X comes before another subinterval Y in the list only if F(X)
< F(Y) where F(X) stands for the left endpoint of the interval F X) = [FX),FX)].

Procedure 11. (Procedure for bounding fAIX))
(1) Set X = x>
(2) To begin with, the list is empty
(3) Bisect X into two subintervals X’ and X” of equal width: X = xuUx”
(4) Evaluate F(X") and F(X").
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(5) Set b = min {FX), EX")}
(6) Enter the subintervals X’ and X” in proper order in the list (that is, if
F(X') < F(X”) enter X’ first and then X”; otherwise enter X” first).

(7) Retrieve the top subinterval X® (with the lowest F(X)) from the list. Set X = X®
and remove X® from the list.

(8) If w(X) > € where € is a prescribed accuracy, return to step (3). Otherwise proceed
to the next step.

9) Put b = F(X). Terminate.

Clearly on exit from Procedure 1.1 the real number b obtained is a lower bound on
AiX%). Indeed, each successive bisection tends to generate intervals of smaller width.
Therefore, as the number of intervals increases b grows monotonically, thus converging
to F(X°) from below.

If Procedure 1.1 is applied to (-f) then, upon termination, —b is an upper bound on
F(X°). To show this, it is necessary to first consider the range of —f(x) in X°, that is, the
interval

-f(X%) = [-fX"), ~-£(X9)]
Next, form the interval extension of —f{x) in each current box X:
-F(X) = [-F(X), -E(X)]

Now it is seen that the lower endpoint —F(X) of —F(X) tends monotonically to the lower
endpoint —(X) of —AX") from below as the bisection process proceeds. Hence (-b)
converges monotonically to f{X®) from above.

Procedure 1.1 can be easily generalized to encompass the case when X° is an interval
vector. The only difference lies in the way the current box X is partitioned into subboxes.
S}mllgrly to the scalar case, in [2] X is split only into two subboxes X’ and X” by
bisecting the largest side (component) of X. In [5] the current box is divided at once into
2" subboxes.

Skelboe‘s algorithm can be improved in various ways by the introduction of criteria
testing certain properties of the function considered such as monotonicity (in the ordinary

sense), convexity and others in X° [8]. These refinements will be postponed for section
2.3 of Chapter 2.

1.3. INTERVAL METHODS IN LINEAR ALGEBRA

L3.1. Linear equations with interval coefficients

the ?:t 1(;1fterl\l'al matrix %s a matrix whose elements are intervals. Let R™ denote as usual

matrices “:; L real (noninterval) n,. X n matrices. By analogy, the set of all n x n interval

pital 1 ill be denoted by I(R™). The elements of R™ will be denoted by boldface
etters, those of I(R™) by the same symbol with a superscript I.

Ca
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A real matrix A with elements g; is contained in an interval matrix A’ with elements
A;ifa; e A for all ij = 1, n. We write A € A, Similarly to the interval vectors the
relations =, (; and < (>) are valid in the case of interval matrices also if they hold for
all matrix components. Thus, if A’ and B’ are interval matrices with elements A and B,
respecuvely, then A’ < B'if A, < B, forall ij =1, n.

By m(A"), we denote a real matnx with elements m(4,). We call m(A") the centre of
A'. The norm JA’| of A may be defined in various ways. In this chapter, we shall use a
norm introduced as follows

IATl = maxY_ [A, )], i=Tn (1.51)

i j=1

where |A;f is given by (1.4). We shall also need the notation |A| (absolute value of a
real matrix). It denotes a real matrix whose elements are defined by |A
Consider the following system of linear algebraic equations

ul

Ax =b, Ae R™, be R" ’ (1.52)

In fact, we will be interested in the solutions of (1.52) when the elements of A and b are
not known exactly, i.c., when they are intervals. Thus, we will consider the family of
linear systems (1.52):

Ax=b, Ae A'e I[R"™), be Be I(R") (1.53)
For brevity, we will write (1.53) in the form

A'x =B (1.54)

B ==

00 O 100 X4

T -100

Fig. 1.5, The solution set S of A'x = B for A’ and B given by (1.56).
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The solution set of (1.53) is the set
S={x:x=A'", Ae A', be B} (1.55)

The set S may have a very complicated structure. For example, it has been shown in [9]

that if
o [[2, 3] [0, 1]] b [[0, 120]] (1.56)
{1, 2] [2, 3] [60, 140]
S is the nonconvex region given in Fig. 1.5.

In what follows we assume that the interval matrix A’ is regular. We call A’ regular,
if each A € A’ is nonsingular.

A number of properties of S are given in [13]. We only note here that:

i) S is in general a nonconvex bounded set
ii) the intersection of S with each orthant of R” is a convex polyhedron (see
Fig. 1.5 for a geometric illustration in the case of n = 2).

As § is extremely difficult to find, in practice we settle for an interval vector X which
contains S. However in some cases we would like to compute the smallest interval X still
containing S. The vector X is called interval solution of (1.54) while X is referred to as
the optimal interval solution of (1.54).

The methods for finding an interval solution to (1.54) are of two types:

i) iterative methods
ii) direct methods.

1.3.2. Iterative methods

There exists a variety of iterative methods for solving (1.54) (see e.g. [10]). In this
section we shall only consider three such methods.

Simple iteration
Let the system (1.52) be put in the equivalent form:
x=Tx +b 1.57)
Where T = E - A, E being the identity matrix. Then, (1.54) can be written as
x=Tx +B

Consider the interval equation

Z=T/'Z +B (1.58)
A vector X* which satisfies (1.58) is called the fixed interval vector of (1.58).
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Let p(|T|) denote the spectral radius of |T|. (Recall that the spectral radius of a
matrix is defined by the largest modulus of its eigenvalues). The inequality p(|T"]) < 1
means that p(|T|) < 1 holds for every T e T,

Theorem 1.8.[10]. The iteration
X =TIX® + B k>0 (1.59)

converges to the unique fixed interval X* of (1.59) for any initial vector X® if

p(IT'|) < 1.

Let X be an interval solution to (1.57) or, equivalently, to (1.54). If we start iteration
(1.59) with an arbitrary X, there is no guarantee that X < X'. On the other hand, X ¢
X" if X ¢ X, Indeed, the inclusion monotonicity implies that

X'=T'X"+BcT'X®+B=X"
By induction
X cX® and XcT'X®+B
hence
X'c(T'X® +BNX®, k=20
Thus, the modified iteration
X®D = (TIX® « BYN XD, k20 (1.60)

converges to X D X if X" 2 X© for p(|T'|) < 1. If the computations are carried out in
machine interval arithmetic, then the iteration (1.60) converges in a finite number of steps
since, due to outwards rounding, we will have, sooner or later, X**" = X® for some large
enough k.

Gauss—Seidel iteration

If an initial enclosure X® for S is known a nested sequence of enclosures can be
defined by the so-called Gauss—Seidel iteration with componentwise intersection [10]:

X*®D = G(A!, B, X®), k20 (1.61)
where the vector G® = G(4', B, X®) has components G defined by
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i-1 n
Y, = (B, - EAijG(k)j - Z Aijx(k)l) /A,

j=1 Jj=i+l

GP=x®Ny, i=Tn (1.62)

Clearly, the method applies only when O ¢ A,, i = 1, n, if we use ordinary interval
arithmetic. It can, however, be modified for the general case on the basis of the extended
interval arithmetic (see section 1.1.4). Indeed, although Y; can be an unbounded set (or
even consist of two unbounded sets), the resulting component G*), being the intersection
of X® and Y, is always a bounded interval (two intervals). Such a generalisation is
suggested in [4].

Preconditioning

To improve the performance of Gauss—Seidel iteration the following approach called
preconditioning can be used [8]. We first multiply both sides of (1.54) by a matrix ¥ (for
instance an approximate inverse of m(A"). Let C' = E - YA, If using (1.51) |C'| < 1,
define the sequence:

X®D = (YB + C'X®YNXD, k20 (1.63a)
with
X® = [-L1 J¥BI/Q - IC'D, i=Tn (1.63b)

Then the following theorem is valid [2].

Theorem 1.9. If |[E - YA'| < 1 for some matrix Y the solution vector X of the
interval system (1.54) is contained in the interval vector X® defined by (1.63) for every
k 2 0. Using machine interval arithmetic, the sequence {X*®} converges to X in a finite
number of steps.

1.3.3. Gauss elimination

Given the real (noninterval) system (1.52) the Gauss elimination method can be
described as a transformation of the original matrix A to an upper triangular matrix A™:
Al;-) A — AP | — A™ and a corresponding transformation of the right side: b —
b 6P | 5 ™, At the first step:
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_ - e

w ) ™

1 a, ... a, N

m m

0 ay ... a b,

A® = , bW =
() () W
0 a; . . . a, b,

where

a; =ayla, J= 2n
{) @ .
8 =8;~6ya;, k=Tn j=Zn

QA
=-s
"
&
S

R

b =b, -a,b" k=7ZTn

For 1 <i<n, A” and b have the form:

™ _m a)
1 a a5 . . . .. oa, b(')
0 1t 4.
; ; )
00 . .1 a, ..a |
A(') - (1824 i,n , b' -
i )
O 0 . . 0 a,',l',',l . . ai,l_,, b(‘)
i+]
W 9! (i)
_0 0 . .0 a,, .. a, | I

The transition from the ith step to the (i+1)th step, i < n-1, is carried out by the formulae:

-
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Gi+1)
Qi =1

i+ _ _T
kll"l 0 k-l+ »n

G+ _ O ® .
ai»l‘j = ul,,/au;l.iol ’ I = l+z,n

G+ _ 0 ® G+ P = —-2—
ak.j = ak,; -4 nlaulJ ’ k'] =i+a,n
G+ 0] ®
bA:l = bx:l/al:l i+l

po*D ¢ 1 - !
MU= p® - ad b5, k=T2n {1.55)

(The above formulae involve only those elements of A“" and 5" which change when
passing from one step to another). At the last step A is an upper triangle matrix and the
solution x is obtained by the formulae:

x, = bP

=n-1,n-2,...,2,1 (1.66) -

- p® _ Oy
x; = b E a;

Jmivl

Clearly, the formulae (1.64) to (1.66) are only valid if a;, # 0, a, # 0. This is always
possible by using some pivoting scheme.

Now consider the interval system (1.54). By analogy with the real case, we try to
transform A’ into an interval triangular matrix and B into a corresponding interval vector.
We can do this by replacing in (1.64) to (1.66) the real coefficients and the real arithmetic
operations by corresponding intervals and intervals arithmetic operations. If this
transformation is possible, i.e. if no division by an interval containing zero occurs, then
the interval solution X to (1.54) is obtained by extending (1.64) to (1.66) to interval form.
Thus, we have

A} =A/Ay, J=Tx

A=A, -AA;, kj=Tn

B =B,/A,, B =B, -A,B", k=Tn
A-(M) - G+ _ _

ieliel T l ’ Ak,ivl = 09 k = l+2,n (1.67)
Al(:;:l) = Au(?l_,/A.(?l i1 J=I+2.m

G+1) 0] ®  AG+D .
A = A Ak.iOIAlol.} ’ k’,l = l+2,n
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BED = B® jA®

+ iel,ivl

BV = BO A,f',).-uB.-(i'll), k=T73n (1.68)
X =B"
X, =B - Y APX, i=n-1,n-2,.2,1 (1.69)

J=i+l

for the interval version of the Gauss elimination method. Obviously, it is a direct interval
method for solving (1.54).

Based on the inclusion monotonicity of interval arithmetic the following theorem is
readily proven.

Theorem 1.10. Let the intervals X; be defined by formulae (1.67) to (1.69) (i.e. no

division by zero occurs). Then, for any A € A, b € B the solution x = (x,, . .., x)" to

system (1.52) does exist, it is unique and is contained in X = (X, . .., X,)T, that is,
xe ScX=(X,..X)

In other words, det A # 0, VA € A.

The inverse assertion is not always valid: the condition det A # 0, for VA & A’ does
not imply that the interval Gauss elimination can be carried out. A convincing example
is constructed in [11].

1.3.4. Computing the optimal interval solution

In many applications (see section 1.4) it is not very important to find the optimal
interval solutionX to (1.54); it is sufficient to compute an interval solution X

X=X+E

which approximate)? by a relatively small excess E. In other cases (see section 3.1 from
Chapter 3) what we seek is just the optimal solution X.

In this subsection we will survey some of the methods which guarantee the
computation of X (such methods will be called exact). (Other exact methods for solving
(1.54) will be discussed later in section 3.3). :

It is important to point out that the methods considered so far can provide very good
or very bad results (with small or large excess width) depending on the particular
properties of A’ and B (even breakdown of the computation process has been observed in
some instances). However, if A’ and B possess some "nice"” characteristics these methods
can be exact [12], giving the optimal solutionX. Several such cases are given below.
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If A' in (1.54) is degenerate, i.c. all A; = a; are real numbers and A’ = A then
X=A"B

A real matrix A = (a@;) is called an M-matrix, if a; < 0 for all i # j and one of the
following equivalent conditions holds:
1) det A #0and A™ 20 (A™ 2 0 denoting (A™); 2 0)
2) a; >0,i=1,n, and the spectral radius of the matrix E - DA is less than
unity (here D is a diagonal matrix with elements d;; = a;))
3) all eigenvalues of A have positive real parts
4) for any vector x, Ax = 0 implies x > 0.

Corollary.If Cis an M-matrix and C < A, that is, ¢; < a;;, then A is also a M-
matrix.

An interval matrix A’ is called an M-matrix if each real matrix A € A is an M-matrix.

If A in (1.54) is an M-matrix then Gauss—Seidel iteration (1.62) yields the optimal
solution X.

An interval matrix A’ is called inverse positive, if A = 0, VA € Al.

In cases where the righthand side B of (1.54) satisfy one of the conditions:

B>20, B<0 or 0OeB (1.70)

the optimal solution X can be computed for an inverse positive matrix A’ = [4,A] as

X =[A", A"B

For the more special case of M-matrices, Gauss elimination yields X if the right-hand side
B satisfies (1.70).

Several direct methods for computing the optimal solution of (1.54) in the general case
where the only assumption is the regularity of A’ have been suggested by J. Rohn in a
series of papers [13]-[15]. These methods are, unfortunately, very time-consuming for
large n since they have a worst case complexity exponential in n. However, there are a
few special cases where one of these methods is highly effective. We shall postpone the
discussion of this issue for section 3.3.

14. SOLVING NONLINEAR EQUATIONS
L4.1. Nonlinear equations in one variable
In this section we will consider a nonlinear function f(x) with fA >R where A e

IR). Assume that f has a continuous derivative f'(x) in A, ie. f € C'. We will be
Interested in solving the nonlinear equation
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fx) =0, Xe A (L.71)
From the mean value theorem:
fO) =) + OG- (1.72)

where € lies between x and y. Assume y is a zero of f (i.e. y is a solution to (1.71)). Then
f(¥) = 0 and from (1.72):

Yy =x - f®/f &)
Let X be an interval containing x and y. Then £ € X and hence f’(€) € F'(X). Denote
N(x,X) = x - f(x)/F'(X) (L.73)

Then the following theorem due to R. Moore [1] holds.

Theorem L11. fazero y of f exists in X, then, for any x € X, we have y €

N, X).

A popular method for solving (1.71) is the Newton method. Now we shall introduce
an interval generalization of this method and we shall briefly enumerate its important
properties.

The interval Newton algorithm is defined as follows. Given an interval X, we have

N X,) = x, - f@)/F (X)) (1.74)
X, =X, NN@E,X,) (1.75)

with x,€ X, (k 2 0). Usually, x, is taken to be the midpoint of X,. The purpose of (1.75)
is to discard points which are in N(x,, X,) but not in X, and thus produce convergence.

It has been proven that this algorithm (first proposed by Moore) is globally convergent
if 0 & F'(X,) and that its asymptotic rate of convergence is quadratic (in the sense that
W(Xer) < ew(X,)D).

The interval Newton method has been extended by E. Hansen to allow 0 € F'(X) and
global convergence for this general case was proved also.

If 0e F'(X) the quotient fix)/F'(X,) in (1.74) is computed using (1.25). Then X,,,,
as computed from (1.75), may consist of two intervals, If this is the case, one of them is
stored in a list and processed later. This algorithm is called extended interval Newton
algorithm. Thus, division by an interval containing zero leads to isolating all the zeros of
a function from one another.

Theorem 1.12. Ifazero y of f exists in X, theny € X,,, for all k 2 0.

Thus, no zero of fin X, is ever lost.
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We assume that both f and f’ have a finite number of zeros in X,. Then the
extended interval Newton algorithm will find every zero of f in X,. Inversely, we have,
as proved by Moore the following important result.

Theorem 1.13. If X,,, is empty, there is no zero of f in X,.

As a consequence, note that if the algorithm deletes all of X,, it thus proves that there
is no zero of f in X,

A useful property of the interval Newton algorithm is that it can prove the existence
of a solution [16].

Theorem 1.14. If N(x, X,) C X,, then there exists a zero of fin X.

The condition N(x,, X;) < X, can only occur if 0 ¢ F'(X); otherwise N(x;, X,) is not
finite. Thus, the algorithm can only prove the existence of simple zeros.
Uniqueness can also be proved.

Theorem 115 If 0 ¢ F'(X), then any zero of f in X is unique.

This follows because 0 ¢ F'(X) implies that f(x) is strictly monotonic for x € X.

As mentioned above, the rate of convergence to a simple zero is asymptotically
quadratic. The following theorem shows the convergence of the interval algorithm is
reasonably fast even for large intervals.

Theorem 1.16. [1]. Assume 0 ¢ F'(X) and that x, is the midpoint of X,. Then
WX, < wX)/2.

This result follows because either N(x,, X,) 2 x, or else N(x,, X;) < x,.

Stopping criteria are much simpler for the interval Newton method than for the
noninterval case. The following criterion is usually used. Let the user prescribe an error
tolerance e. Stop processing X,, (k = 1) if either w(X,) < & or X, = X,,,. In the former
case the zero is bounded as sharply as desired. The latter case occurs when rounding
errors are such that no further refinement of X, is possible without using higher precision
arithmetic,

The extended interval Newton algorithm is a powerful tool for solving (1.71). It will
find all the zeros of fin a given interval X, even in the presence of multiple zeros in a
finite number of steps.

1.4.2, Systems of nonlinear equations

We now change to vector notation. Let x = (x,, . . . , x,)" and fix) = F,(®), . . . , £,(x)).
We wish to solve the system of equations
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f) =0 (1.76)

There exist various interval Newton methods for tackling this problem. They all solve
iteratively a linearized version of (1.76). They differ in the choice of the linearization, and
how the linearized equations are solved.

We assume fi(x), i = 1, n has a continuous derivative with respect to each variable x;,
J=1,n ie. fe C. Denote

Jx) = if"-(J\f). ij=Tn
ox

From the mean value theorem

fO) =f0) + I, + tG-0),-x) ++o+ T (x+t@-2)¥,-x)  (1.77)
for some t € [0, 1]. Let X = X, . .., X,) be the interval vector
X=x+][0,11(p-x)

and let J(X) denote the interval matrix with components J{X). Then it follows from (1.77)
that

JO) e flo) + TX)(-x) (1.78)

From (1.78), we see that if x € X and there is a zero y of fin X, then y is in the solution
set of

f) +JX)0@ -x) =0 (1.79)

In fact, (1.79) is a system of linear interval equations with respect to y.

The existing interval methods for solving (1.76) differ from one another, basically, in
the manner the linear interval system (1.79) is solved.

Let B be a real (i.e. noninterval) matrix computed as the approximate inverse of some
matrix contained in J(X). In practice B is the inverse of the centre of J(X), i.e.

B = [Jm)]! (1.80)

As pointed out in sectionl.3.2, in solving linear equations such as (1.79), it is
advantageous to first premultiply (1.79) by B. Thus, we are led to consider the system

AX)(y - x) = b(x) (1.81)
where A(X) = BJ(X) and b = ~Bf{x). Let
S={y:A(y-x) = b(x), Ae A(X)} (1.82)

where A is any real matrix contained in A(X). Let N(x, X) denote an interval vector
containing the set S of solutions of (1.81).
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An interval Newton method for solving (1.76) has the following algorithm. Given X,
define '

X®D = XO A NE® X)) k20 (1.83)
where N(®, X®) is an interval solution of
AX®)(y - x®) = p(x®) (1.84)

and x¥ e X®. Usually, x® is chosen to be the centre of X®.

Since the linear interval system (1.84) is to be solved repeatedly (for different boxes
X®) approximate methods are used for its solution (the obtainment of the optimal solution
of (1.84) for each iteration using the existing exact methods would require an
unacceptable large volume of computation). In the first versions of the Newton method
(1.84) was solved using the interval Gaussian elimination (see section1.3.3). Since then
many other possibilities have been investigated.

A substantial improvement was made by Krawczyk [17]. He showed that it is was
possible to obtain a nonsharp but adequate bound on the solution set of (1.84) by a very
simple process which circumvents the necessity of solving the linear interval system
(1.84).

Adding x -y to both sides of (1.81), we get

[AX) -E]J¢y -x) =b(x) +x -y (1.85)
or equivalently
y=b@ +x+[E-AXIV - %) (1.86)
where E is the identity matrix. Assume y € X and denote
K(x,X) =b(x) +x +[E - AX)](X - x) (1.87)
From (1.86) and (1.87), we see that
y € K(x, X) (1.88)

that is, the set of solutions to (1.81) is contained in K(x, X). Thus, instead of (1.83)
Krawczyk’s version of the interval Newton method uses the iteration

XD = xR XB) k>0 (1.89)

The advantage of this method resides in the fact that it avoids solving (1.84).

An alternative to Krawczyk’s approach was suggested by Hansen [4], [8]. Again a
nonsharp solution to (1.84) is accepted. We solve the system (1.81) in a Gauss—Seidel
manner (see formulae (1.61), (1.62)), i.e. we solve the ith equation of (1.81) for the ith
yariable (i = 1, n). This is done in a "successive iteration” mode in that new information
18 used as soon as it is available. Given X©, we compute
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i-1
Y® = x® « 6P - ¥ APEEY - 1)
Jj=1
- Y AP - xNHa? (1.90)

J=ivl
Xi(m) = X‘_‘*) n Y,-(k) , i=T,n, k=20

where A, denotes [A(X®)],. Due to the inclusion monotonicity property such an
approach leads to narrower intervals ¥ * and thus speeds up the convergence rate of the
method.

This method is considered to be superior over Krawczyk’s method.

1.4.3. Properties of the multidimensional interval newton methods

The multidimensional interval Newton methods has many of the valuable properties
of the one-dimensional method described in section1.4.1. In what follows, N(x, X) is
either an interval solution to (1.79), (1.81) or K(x, X) defined by (1.87)). We assume that
xe X.

From the derivation of (1.79) we see that the following theorem holds.

Theorem 1.17. If a solution y of (1.76) exists in X® then
y € N0®, X®), k= 0.

Thus, no zero of f in X is ever lost. As a consequence, we have the following
important result.

Theorem L18. If X®* N NO®, X®) is empty, there is no zero of f in X©.

Similar to the one-dimensional case, the rate of convergence for multidimensional
interval methods producing a sequence of vectors X* is said to be p if

w(X®D) = 0 {[(XD)P) (1.91)

(where the symbol y = 0{x”} means, that y is proportional to x? for x tending to zero).
For some of the interval Newton methods proposed in the literature, it has been proven
that the rate of convergence is asymptotically quadratic for simple zeros. The only
question is how sharply a solution y to (1.76) is bounded in the particular method.
Interval Newton methods have reasonably good initial convergence behaviour. In the
one-dimensional case, the current interval X, is reduced to less than half its width by each
Newton step if 0 ¢ f’(X,). A similar behaviour can occur in the multidimensional case.
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At the kth step of an interval Newton method, we solve (see (1.84))
A(X®)z = b(x*) (1.92)

Assume that x® is the centre of X®. Let Z® denote an interval solution to (1.92). Suppose
that a component Z® is either nonnegative or nonpositive for some i € [1, n]. Then

wX*"y < %W(X"")

If this occurs for m, 1 < m < n, different values of i, the volume of X® is reduced by a
factor of 27"

If (1.66) has more than one solution in X® or the initial convergence rate is rather
slow, it is necessary to split the current box in half and apply the method used to each
half separately. Since this necessity may arise repeatedly, we have to form a list of boxes
to be processed. It should be noted that the same process of generating subboxes occurs
in using the method given by (1.90) if any of the intervals A, contains zero. In this
instance, extended interval arithmetic is used. A detailed discussion of an approach to
generating and storing such subboxes (suggested in [4]) will be made in Chapter 6.

Just as in section 1.4.1 the most commonly used stopping criterion for the
multidimensional case is to determine when either w(X®) < € for some prescribed € or
else when X**P = x®,

The former criterion yields a solution to within a desired tolerance. However, because
of round off, it may not be possible to satisfy this condition if € chosen is too small. The
latter condition will always be satisfied eventually because machine arithmetic provides
limited accuracy. It should be, however, pointed out that if X is large, we could have
X®Y = X® while X® is still large, i.e. for w(X®) > €. If this is the case, X should be
split.

1.5. GLOBAL OPTIMIZATION
In this section, interval analysis techniques will be applied to solving the problem of

global optimization. Both the unconstrained case (subsection 1.5.1) and the constrained
cases (subsections 1.5.2 and 1.5.3) will be considered.

1.5.1. Unconstrained minimization

Let f: R" — R be a twice continuously differentiable function (f € C?. Let g denote
the gradient and H denote the Hessian of f. We seek the global minimum f* of f, ie.
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f* = min fix), x€ R" (1.93)

We shall consider an interval method for solving (1.93) [8] which provides infallible
bounds both on f* and on the point(s) x" for which f{x") = f". Instead of (1.93) we actually
solve the following problem

f°=min f(x), xe X®, X®¢e I(R") (1.94)

We assume that x* is in the interior of X, so the constrained problem (1.94) is
equivalent to the original unconstrained one given by (1.93). In practice, the size of X©
is taken large enough (on the order of 10° for each component X in [8]). Thus, the
present method actually solves the unconstrained minimization problem provided the
global solution occurs in some finite region which is enclosed by the initial box X©. If
X® does not contain the global minimum, we often obtain proof of this fact.

The basic strategy of the present method is to delete subboxes of X*” which cannot
contain the global minimum. Eventually, only a small region remains which must contain
the solution.

The following techniques can be used to delete subboxes in which the global minimum
cannot occur.

Searching for stationary points of f

The global solution of the unconstrained problem considered occurs where

The most effective approach of deleting subboxes composed of nonoptfmal points is to
apply an interval Newton method to (1.95). Suppose we perform one interval Newton step
to find the solution(s) of (1.95) in some box X < X®. If we obtain a new box X’ c X, we
can actually delete that part of X which is not contained in X’. Indeed, from Theorem 1.17
any zero of g in X is also in X’. Thus, we are sure not to have deleted the global
minimum after discarding all points of X not contained in X’.

If X’ 2 X or the reduction of the particular box X is insignificant, we split X in half
and apply the Newton method to each part. In practice, we store one of the resulting
halves (say, the right-hand one) in a list L of subboxes [8] to be processed later. Thus,
we are always working on some subbox X of X,

The remaining three techniques are designed to prevent useless steps of Newton’s
method on stationary points that cannot be minima or on boxes that do not contain a
stationary point,

Test for nonconvexity
Obviously, it is waste of time to find all the stationary points of f{x), i.e. all the

solutions of g(x) = 0. More precisely, it is superfluous to find maxima or saddle points.
A necessary condition for f to have a minimum in a box X is that f be convex in X.
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This will be the case if the Hessian matrix H(x) is locally positive semidefinite. Thus, we
can delete the whole box X if we can show that H(x) is not positive definite for any x €
X.

There exists a simple test to verify this condition. Recall that the diagonal elements
of a positive semidefinite matrix must be nonnegative. So we first evaluate H (X) (where
H,(X) is the interval extension of the diagonal element 4,(x) of the Hessian) starting with
i = 1. If, for some i € 1, n we find H,(X) < 0, then, by Theorem 1.1, k;(x) < O for all x
€ X. Hence, H(x) is not positive semidefinite for any x € X and X can, therefore, be
deleted.

Test for monotonicity

This test provides a simple sufficient condition that the current box X does not contain
a stationary point of f.

We evaluate the interval extension G,(X) of the ith component of the gradient g(x) for
i=1, n If for some i, G,(X) > 0 or G(X) < 0, then f is a strictly monotonic function of
x; throughout X. Hence, X can be deleted and the Newton method need not be applied.

Bounding f*

Let x be the centre of a particular subbox X of X”. We evaluate f = f{x). Let f denote
the currently smallest value of f found so far (that is, using the centres of all the subboxes
generated so far). Obviously, we can delete any subbox X of X for which
F(X) > f (F(X) is the interval extension of f in X) since this implies fix) > f for all
xe X

The bound f can be used in a more sophisticated way. Expanding f about the centre
x, we have

fO) € ) + 0-07g@ + %(y - THXG - x)
The set of points y € X for which
FO) + -27g) + %(y - XE®G - x) >F (1.96)

can be deleted (see section 2.3.4 for details).

A detailed algorithm of the present method accounting for round off errors is given
in {8]. Experimental evidence shows its efficiency and robustness.

A simpler (and less efficient) method for solving (1.93) is discussed in [18].

L.5.2. Inequality constraints

In this section we consider the following constrained optimization problem:
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F* = min f(x) (1.97a)
px <0, i= T,m (1.97b)

We assume that f, p, € C%

In order to apply the efficient method from the previous section (1.97) is first
equivalently transformed into a system of nonlinear equations [19]. This transformation
is done on the basis of the Fritz John necessary conditions using normalized Lagrange
multipliers which yields:

ug(®) + Y ug () =0 (1.98)
i=l
(g(®) and g,(x) being the gradient column-vector of f and p; respectively, while Uy, Uy, .
. » U, are scalars)

upx)=0 i=Tm (1.99)
Yu-=1 - (1.100)
i=0
with -
w20, i=Tm (1.101)

Note that (1.98) is in fact a system of » equations

,8%0) + Y ug’x) =0, j =Tz

i=l

where

s O o,
W=, gV =
4 sy &; )

Thus, the set (1.98), (1.99) and (1.100) is a system of n+m+l equations in n+m+1
unknowns: x;, j=1,nand u, i =0, m.

Based on (1.98) to (1.100) an interval method for solving (1.97) has been suggested
in [19]. This method is essentially the same as for the unconstrained problem. We start
with a box X and delete subboxes which contain the global minimum.

Let Pi(X) be the interval extension of p,(x) in a box X. The box X is called certainly
feasible if P,(X) <O for all i =1, m, and certainly infeasible if P,(X) > 0 for at least one
index i € [1, m]. Obviously, if X is certainly feasible (infeasible), then every point x € X
is feasible (infeasible), i.e. satisfying (violating) (1.97b).
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If the current box X is certainly strictly feasible, i.e. if P(X) <0 forall i = i 7m. then

any solution part x of (1.98) to (1.100) in X is a stationary point of f. Hence we
proceed exactly as in the unconstrained case (section 5.1.1).

If the current box is certainly infeasible, we delete it.

If X is neither certainly strictly feasible nor certainly infeasible, we try to reduce or
delete X by the following techniques.

Newton’s method

Some interval Newton method is applied to the system of equations (1.98) to (1.100).
To do so, we need initial bounds on x; and ;. Clearly, the initial box X must be large
enough to contain the feasible region defined by (1.97a). The initial bounds on ¥; may be
obtained from (1.100) and (1.101) whence:

0<uc<l, i=0,m (1.102)

In [19] it is shown that sharper initial bound on u; may be provided by the Newton
method itself.

Bounding f°

Similar to the unconstrained case, we obtain and update an upper bound f on the
global minimum f*. As each subbox X of X is generated after reducing or splitting the
previous box, we examine the centre x of X. If x is certainly feasible, then fx) is a
candidate for f (the smallest upper bound on f* found so far). Thus, if fix) < f, we let

f=f. -
Any subsequent box X is deleted if F(X) > f.

Solving interval inequalities

Expanding f about the centre x of X, we obtain
f(y) € f(x) + & - ' G(X)

The points for which

O+ -G >} (1.103)
can be deleted.
Expanding in a similar way the constraint functions p; about x, we get
P+ -GX) <0, i=Tm (1.104)

where G(X) denotes the interval extension of the gradient g,(x) of p/(x).
The inequality (1.103) is rewritten as
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fF-fo-0-06Xx <0 (1.105)

The set of m + 1 inequalities (1.104) and (1.105) is used to determine a subbox of points
y € X which can be deleted. A procedure for doing this is presented in [19].

1.5.3. Equality constraints

In this case the constrained problem has the form
S = min f(x) (1.106a)

g® =0, i=T7 (1.106b)

The corresponding system of nonlinear equations using the normalized Lagrange
multipliers is now [19]:

v,8(x) + Y vg(x) =0 (1.107)

i=1

(g4x) being now the gradient of g,(x))

qx)=0, i=T7 : (1.108)

v, + Y vi=1 (1.109)
i=1 .
The normalization (1.109) yields the initial bounds on v;:

0<v,s1 (1.110)

-1sv,s1 (1.111)

It should be noted that the normalization (1.100) is not possible here because v, i = 1, r,
may be negative.

A method for solving (1.106) has been suggested in [19]. Since it involves the same
techniques as for the inequality constrained case, we shall only point out the slight
differences in the nature of these techniques.

The interval Newton method is applied to system (1.107) to (1.109).
The equality constraints (1.106b) are replaced by

g <0

4, <0 , i=Tr (1.112)

Based on (1.112) we form a set of (2r + 1) interval inequalities of the type (1.104),
(1.105) to determine a subbox of points y € X which can be deleted.
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The main difference is in finding an upper bound f on f*. Because of roundoff, we
cannot, in general, claim that g(x) = 0 exactly for a given x. Hence we cannot decide
whether x is feasible. To overcome this difficulty the authors of [19] prove that there
exists a feasible point in a small box X’. They then bound f over X’. This provides a
candidate for f (for details, see [19]).

A simple method for solving (1.106) is presented in [20]. It is based on the use of
Gauss elimination applied to system (1.107) to (1.109).

Remark 13. The case with both equality and inequality constraints can be treated
by combining the procedures of this section and section 5.1.2.

Comments

In view of the applications of interval analysis to be presented in the following
chapters we have confined ourselves to a restricted number of topics from interval
analysis. Moreover, these topics have been described in a rather succinct manner. For a
deeper acquaintance with the scope of interval analysis the reader is referred to [1], [2],
{10].

In what follows we shall briefly point out some generalizations of the subjects covered
in this chapter.

Section 1.1. The interval arithmetic considered in this section deals with real intervals,
that is, intervals which are closed bounded subsets of the real line R. Such an interval
arithmetic is called real interval arithmetic. In interval analysis, there exists a
generalization of this arithmetic which encompasses the case where the "intervals” are
bounded closed subsets of the complex plane C (e.g. see [10]). Such an arithmetic dealing
with complex intervals is called complex interval arithmetic. It has not been used for
circuit analysis as yet.

Referring to real interval arithmetic, some implementation considerations are now due.
It should be borne in mind that machine interval arithmetic is about five times slower
than ordinary (real) arithmetic if no special hardware is available. First, for each
arithmetic operation, we must compute two interval endpoints instead of a single number.
However, hardware implementation of interval arithmetic could produce endpoints using
paraliel computation, thus making it comparable in speed to ordinary arithmetic. Second,
and most important, to implement outward rounding by high level algorithmic languages
is actually time-consuming. However, one of the recent IEEE floating point arithmetic
standards specifies that the rounding direction be specifiable. Thus, directed rounding
should not continue to be slow.

Another difficulty in applying interval analysis methods is programming. A dedicated
compiler can simplify the programming by allowing intervals to be declared as a special
data type. This is already possible, for example, in the versions Pascal-SC, extended
Turbo-Pascal (TPX) and Fortran-SC. (With such a compiler, but without hardware
rounding options, interval arithmetic remains about five times slower that ordinary
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arithmetic). Languages allowing operator overloading for user defined variable types, such
as Ada and Fortran 88 eliminate the need for special compilers.

Section 1.2. Having in mind practical application of interval methods, the most
important subject in this section is undoubtedly subsection 1.2.6. where some means for
obtaining arbitrarily sharp bounds on the range f{X) of a function f(x,, . . . , x,) over a box
X are considered. This problem is central in interval analysis. Still it has to be underlined
that there are few methods (if any) which are capable of bounding the range sufficiently
sharply with a reasonable amount of computational effort when the number 7 of variables
x; is high enough. Obviously, the number of interval variables that can be handled
depends on the particular function and the size of the box X. Thus, for Skelboe’s method,
it is recommended in [21] that the number of intervals subject to partitioning should not
exceed ten. In section 2.3.2 this method will be improved by the introduction of interval
forms others than those considered in section 1.2.5.

If fe C? the range can be determined by the global optimization method from section
1.5.2. However, the numerical efficiency of such an approach depends heavily on how
easily the Hessian matrix is evaluated in interval form.

For functions fe C', a simple method is suggested in [18]. Its efficiency is, however,
limited to simpler problems of moderate dimensionality.

When implementing any of the above methods it is essential to compute the interval
extensions involved (for example, F /(X) in the mean-value form (1.44)) as sharply as
possible. In some (rather) simple cases the approach based on Theorem 1.4 can be useful
to find exactly the corresponding ranges of values. In [22] a more general approach is
suggested which is based on the so-called generalized interval arithmetic (making use of
the representation (1.7) of the intervals involved). The interval extensions thus obtained
are often much narrower as compared to ordinary arithmetic results. However, it should
be noted that, for wider initial intervals, it can result in wider extension than ordinary
arithmetic extensions.

Another approach which is based on the so-called interval slopes is suggested in [23].
It provides extensions which are never worse (and are usually better) than those obtained
by the mean-value form (1.44) where the derivatives are computed using ordinary
arithmetic.

In general, if the computational cost can be afforded, it is expedient to obtain several
extensions for one and the same function (applying different methods) and to use their
intersection.

Section 1.3. Linear interval equations have been intensively studied in the interval
analysis literature (see the survey paper [12] and the references therein cited).

Since most of the methods presently available are not exact there are cases in which
they may lead to prohibitively large overstimation. Therefore, it is essential to derive
bounds on the overestimation. In [24] the solution set S of (1.53) is enclosed in a "skew
interval” and several bounds on the distance (in Hausdorf’s sense) between S and the
skew enclosure are proposed. In [25], {26] two skew enclosures (upper and lower) are
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introduced. The boundary of the solution set is proven to lie between these extreme
enclosures.

It should be stressed that preconditioning can be applied only for full matrices of low
dimensionality: it is too time and/or space consuming for large sparse matrices. For a
discussion of the available methods for solving linear interval equations with sparse
matrices, see [24].

Sections 1.4 and 1.5. The interval methods sketched in these sections may seem
misleadingly simple. In fact, the elaboration of operable algorithms ensuring appropriate
dynamic partitioning of the initial region X into subboxes and accounting for the
outward rounding is quite a job. Detailed algorithms for such methods are given in [4],
{81, [19], [80].

Interval algorithms for a system of nonlinear equations and global optimization have
a number of appealing properties. Unlike their noninterval counterparts, they are capable
of locating all the solutions contained in the initial box X providing infallible bounds
on each solution. Termination for both types of problems is quite reliable and occurs in
a finite number of steps. At the same time, even the best noninterval algorithms can
terminate prematurely with a poor or totally incorrect answer. Convergence of the interval
methods is monotonic.

If the particular nonlinear system or constrained optimisation problem has no solution
in the initial box X, interval methods will establish the nonsolvability of the problem in
a finite number of iterations after deleting all of the generated subboxes. Making use of
noninterval methods, one can never tell when it is time to stop the computation process
resulting sometimes in long fruitless searches for a solution that does not exist.

On the other hand, an interval method is generally slower than the noninterval
counterpart when the latter solves the problem considered. Indeed, interval methods
cannot use certain shortcuts such as updating of the Jacobian or the Hessian matrix.
However, hardware for interval arithmetic will narrow the efficiency gap. Presumably
when the interval approach is more mature, this gap will narrow and, even disappear.

Interval methods are well suited for parallel computation. We need only separate the
initial region X' into subboxes. Different processors can be applied to each subregion.
This will also make interval methods more attractive as parallel computing capabilities
develop.



CHAPTER 2

TOLERANCE ANALYSIS OF LINEAR ELECTRIC CIRCUITS -
GLOBAL OPTIMIZATION APPROACH

In this chapter the tolerance analysis of steady-states in linear electrical circuits is
studied by interval analysis techniques. The original tolerance problems are formulated
as corresponding global optimization problems. These latter problems are then solved
using appropriate interval methods for global constraint optimization. The main emphasis
is placed on methods for solving the worst-case tolerance analysis problem.

2.1. GLOBAL OPTIMIZATION APPROACH TO SOLVING THE LINEAR
CIRCUIT TOLERANCE PROBLEM

2.1.1. Deterministic statement of the tolerance analysis problem

In this section the (steady-state) tolerance analysis problem for linear electric circuit
will be stated in a deterministic setting. A probabilistic approach to formulating the
tolerance problem will be presented in section 2.1.3.

Let N be a linear lumped time-invariant - electric circuit in some direct current (d.c.)
or sinusoidal (a.c.) steady-state. Let x,, i = 1, n denote some "input” parameter such as
resistance r, inductance L (mutual inductance M), capacitance C, voltage or current source
value, etc. Furthermore, let y be some "output" characteristic such as output voltage, total
impedance, etc. We assume that:

i) there is no interdependence between the input parameters x;

ii) the functional relationship y = f(x) between the output y and the parameter vector
X =(x,...,x,) is explicity known.

Example 21. Let N be the resistive circuit shown in Fig. 2.1 (a circuit of such
configuration is called a ladder circuit)

Fig. 2.1. A ladder circuit.
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We are interested in the equivalent resistance r, of the ladder circuit. It is readily seen
that

1
- +
r2

[

ro+ 1
3 1 1
—_—

r, rg+..

In this example the input parameters x; are the resistances r;, the output quantity y is
the equivalent resistance r, and the functional relationship between y and x = (x,, . . .,
x,) is given by formula (2.1).

Example 22. In this example we consider an arbitrary linear a.c. circuit. We are
interested in some output characteristic (e.g. voltage or current transfer function) which
can be written in the form

Hs.x) = N(s,x,....x) 22)
’ D(s,x,,...,x,) )

where s is the complex frequency. The function (2.2) is a real function in a complex
variable and is bilinear in each of the parameters x; (V¥ and D are linear function with
respect to x; if all the remaining arguments are treated as constants) when they
characterize network elements or controlled sources.

Most often in practice, we would like to find the modulus of .(2.2) for s = jo. If ois
fixed this leads to the following real function in real variables

IHG®,x)| = h(x,,....x;0) (2.3a)

Now |H(jo, x| is the output characteristic y related to the input parameters through

(2.3a). If ® is variable, then it can be treated as an additional (n+1)th variable and (2.3a)
becomes

IHG@,%)| = h(x,,... X, ,%,.,) (2.3b)

Let y = fx) be the function which relates the input parameter vector x = (x, ..., X,)
to thp output variable y for the particular circuit studied. In this section we assume that
the input parameter x, takes on values (owing to various causes: inperfect technology
Process, aging etc.) within a prescribed tolerance X,, each X, being an interval. Therefore,
the output y, being the image of x, will also vary within a corresponding tolerance Y.
Loosely speaking, the tolerance analysis problem herein considered consists in finding the

Output variable tolerance for the circuit investigated if the tolerances on the input
parameters are known,
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We shall now proceed to strictly formulating the tolerance analysis problem
considered. Let x; € X; € I(R) and X = (X,, . . ., X,) so that x € X. Thus, the function f:
X c R" — R is defined in the n-dimensional interval vector (the box) X with values in R.
Now, the tolerance problem investigated can be stated as follows.

Problem 2.1. Given the multivariate function f{x) defined in a given box X, find
the range f(X) of f over the box X.

The tolerance problem formulated is usually referred to as the worst-case tolerance
analysis problem. Whenever this will not lead to misinterpretation the shorter term of
tolerance problem will, however, be used (in section 2.1.3 another type of tolerance
analysis problem will be considered).

It follows from the above formulation that any interval method designed for range
evaluation (e.g. from section 1.2.5) could be used to solve the worst-case tolerance
analysis problem. As usual, the classical tradeoff between efficiency and cost of
computations will finally guide the choice of a particular method.

In some cases (most often for d.c. circuits) the tolerance analysis can be carried out
in a most effective way by applying Theorem 1.2. To illustrate this possibility consider
again Example 2.1 with n = 5 and r;€ R, i = 1,...,5, when R, (the tolerances on r;) are
some given intervals. The corresponding natural extension of (2.1) is then

R =F(R,,...R) =R, + !
Lot
R, R, + __L_
1L
R, R
It is seen that each interval variable R,i=1,...,5, appears only once to the first

power; moreover since R; > 0 all divisions are realizable. Therefore, the above interval
extension R, satisfies all the conditions of Theorem 1.2, so that F(R,, . . . , R;) provides
the range f(R,, . . . , Ry). Thus, a single computation of F solves the problem of
determining the tolerance on the equivalent resistance r..

Since application of Theorem 1.2 is a rather effective way of solving d.c. tolerance
analysis problems it is worthwhile trying to extend the scope of its applicability. Unlike
Example 2.1 where the function (2.1) is written in a form suitable for direct use of
Theorem 1.2, in some cases we have first to transform the original expression of f(x) to
be able to apply the theorem. The following simple example will make the idea behind
such an approach clear (see also Example 1.5.).

Example 2.3. Consider a resistive circuit made up of three resistors r,, r, and ry;
the resistors r, and r, connected in parallel are in series with r,. Given the tolerance R,
on each r, i = 1, 2, 3, find the tolerance on the equivalent resistor 7,:
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rr

np*h

r,=r +

At first glance, it seems that Theorem 1.2 cannot be applied since the resistances r,
and r, appear twice in the expression for r,. However, this expression can be written in
the following equivalent form

1

+

g

1
£
Now, the natural interval extension of r, is

1

-
-

o

(oY

+

R, R,
It is seen that by Theorem 1.2, R, = [r, 7] defined as above determines the tolerance on

the equivalent resistance r,. Applying the corresponding arithmetic operations involved,
we finally get

r=r+ !
= 1 1
— -
r r
2 .

T=T o+ 1
1 1
—
pLon

Based on example 2.3 the following more general result is easily obtained.

P_roppsition 2.1. Let N be a resistive one-port of series-parallel type (i.e. a one-port
circuit made up only of a finite combination of series and parallel connections). The
supply yoltage v and the branch resistances r,, i = 1, n are given as the intervals V and R,,
respectively. Then a natural interval extension I(V, R,, . . . , R,) for the input current | =
fv,r, ..., r,) can be written in such a form that Theorem 1.2 is satisfied.

Proof Foreach parallel connection, the equivalent resistance can be written as
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1
r =
E
a Ty
Hence r = fi(r;, . . ., r,) can always be written in such a way that each resistance

occurs only once in f;. But i = v/r so that the interval extension I of i = v/f, is seen to
satisfy all the conditions of Theorem 1.2. Thus, the tolerance on i can be determined
directly through a single computation of I.

In some cases Theorem 1.2 can be applied to the tolerance analysis of active circuits
also.

Example 24.[29]. Find the worst-case tolerance limits for the amplifier gain G =
Vo/V, of the circuit shown in Fig.2.2. if the resistor tolerances are 2% and the operational
amplifier gain tolerance is +50% and —10%.

Fig. 2.2. An amplifier circuit.

It is known [29] that

—
]

A R *R,

To apply Theorem 1.2 the expression for G is rewritten as
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1
G =
1. _1_R
A 1+ 2
R

From the nominal values and the given tolerances
R,' = [882, 918], R, =[98, 102], A' = [90, 150]

So the tolerance limits on G can be found as the endpoints of the interval
G' - 1
1 1
v
A R
1+ 2

R/

In most practical tolerance problems Theorem 1.2 is not applicable and a single
computation of the interval extension of f{x) only yields an interval F(X) which is wider
than the tolerance f(X) on the output variable y. However, by the inclusion property (1.32)
the interval F(X) is guaranteed to enclose f{X). Thus, F(X) may, in some cases, serve as
an initial, rough estimate of the output variable tolerance providing infallibly outward
bounds on it. ,

2.1.2. Equivalent formulation

Let X° denote the interval vector whose components are the given tolerance intervals
on the input variables (we shall have to distinguish between this initial box and the
current subboxes X generated in the process of solving Problem 2.1). In the general case
(when Theorem 1.2 cannot be applied) the problem of computing the range f{X°) of f over
X° may be formulated equivalently as two global optimization problems. Indeed,

fz = min f(x) 2.4
xeX?
and
fo = max f(x) 2.5)
xeX°

Thc solution f;" of (2.4) provides the lower endpoint of the range f{X°) while the
solution f,,* of (2.5) provides the upper endpoint of f(X°).
The problem (2.5) can be transformed into an equivalent minimization problem
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f5 = ~Imin (f(x))] @6)

xe X°

Thus, the tolerance analysis problem considered reduces to two global minimization
problems (2.4) and (2.6).
Problem (2.4) can be written in a detailed form as follows:

fz = min f(xlv-"x”) (273)

x<E, x4 sx°, i=Tha (2.7b)

where x° and x;” are the left and right endpoint, respectively, of the component X’ of the
interval vector X°. As is seen from (2.7) the lower endpoint f," of the output variable
tolerance can be determined by solving a global minimization problem with inequality
constraints (2.7b). Similarly, the upper endpoint f;,;” of the output tolerance can be found
by solving a corresponding minimization problem of the type (2.7), associated with (2.6).

In some tolerance problems the dimension of the arising minimization problems can
be reduced. In the case of d.c. circuits the dimension reduction is based on Theorem 1.2
which is applied to part of the input variables. In the case of a.c. circuits it is made
possible by using Thevenen’s theorem. The following two examples will illustrate this
possibility.

Example 2.5. For the bridge circuit shown in Fig. 2.3(a) the tolerance on the total
current i is sought if the tolerancesonvandr,,k=1,2,..., 6 are given.

Fig. 2.3(a). A bridge circuit.

In this example Theorem 1.2 cannot be applied directly since, as is easily seen, it is
impossible to find an expression for the input resistance r such that each individual
resistance #; occurs only once. Therefore, we are at first glance led to solve two
minimization problems of type (2.7) with n = 7. However, the dimension of the arising
minimization problem can be reduced to n’ = 3 if the following approach is used. First,
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the delta connection formed by resistors r,, r; and rg is transformed into an equivalent star
of TESIStOTS 73, T and 7y to obtain the equivalent circuit of Fig. 2.3(b).

M Ts
— 3 — 33—
Fy 23

23 ry

Y

Fig. 2.3(b). Equivalent circuit.

The latter circuit is of series-parallel type; hence it is expedient to write i as the
expression:

i = v
1
oty — , | @.38)
+
F3g *7s  Tpe ¥ 14

In (2.8) each resistance 7,s, 5 and ry is a function of the branch resistances r,, ry and
re. Now fix r,, r, and r, at arbitrary values within the corresponding intervals R,, R, and
R, and consider the following interval extension of (2.8).

I= A
Ry + 1y + — 1 29
+
r36 + RS r26 + R4

At this stage we can apply Theorem 1.2 to the expression (2.9) since V, Ry, R, and R
occur only once. It is easily seen that the lower endpoint / of I is given by the formula

I<

!=

AR (2.10)

Similarly, the upper endpoint of / is
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1= z
1
L+t i 1 2.11)
+
I * L Tt I,

On substituting the expressions for ry, ry and ry into (2.10) the quantity I is seen to be
a function of r,, r, and r, only, i.e.

I = fi(r,ryry)

Now the lower endpoint i,” of the tolerance on i can be determined by "freeing” the input
variables r,, r, and rg and solving the following global minimization problem

ii = min f,(r,,r,,ry)

r.srs r, o, i=2,3,6. 2.12)
In a similar way, writing (2.11) as
T = f,(r,.15.1)

the upper endpoint i, of the tolerance on i can be determined by solving the global
minimization problem

ig = —min (=f,(r,.r,r) (2.13)

rsr, <7, . i=236.

Thus, it has been shown that using Theorem 1.2 with respect to V, R,, R, and R; has
reduced the original minimization problems dimension from n = 7 to n = 3.

Example 2.6. Consider a complex a.c. circuit containing independent sources and
passive elements R, L, C for which the current I through a given branch can be
determined by Thevenen’s theorem, namely

where Z = R + jX is the impedance of the branch with current I. Now assume that R, X
as well as all the other elements and sources parameters belong to some prescribed
intervals. The problem is to determine the corresponding tolerance on the modulus
=1

We shall show that the dimension of this tolerance problem can always be reduced by
one and most often by two. Indeed,
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v,
I =f(p.RX) =
YR, + R? + (X, + X)?

where p = (p,, . - - , P,) is the vector of all input parameters other than R and X which are
treated as (n+1)th and (n+2)th parameters, respectively. Clearly, |V, | = fi(0), R, = /()
and X, = f,(p), that is, f,, f, and f; are functions only of the first n parameters because they
are determined when Z is removed from the original circuit. So

AR
JP) + RY + (f,(p) + X7

I=f(p,RX)=

Now letp e P,R e R = [R,R], X € X' = [X,X]. Since fi(P) 2 0, (,(p) = |Vq| 2 0 for
each p € P) and f5(P) 2 0 (f(p) = R, 2 0 for each p € P) it is easily seen from the above
formula that / reaches its global minimum with respect to R for any fixedpe P,X € X
if R =R similarly R = R secures the global maximum of / for any fixedp e P, X e X'
Thus, we have managed to reduce the dimension of the original global optimization
problem by one. Indeed, let I denote the lower endpoint of the resultant tolerance on /.
Then

I = min f(p,R.X)
pe P
Xe X'

similarly, if T denotes the upper endpoint of the resultant tolerance on I then

1 = min f(p,R,X)
peP
XeX!

Now consider the effect of X on 1. It is easily seen that if X, = f;(p) and X have the
same sign for any p € P and X e X' then the effect of X on / is identical to that of R;
that is, X is associated with the minimum of 7 while X leads to the maximum of /. So that
I = min f(p,R.X), peP

I

min f(p,R,X) , peP

Thus, the dimension of the original optimization problems associated with the

determination of the range of I = fip, R, X) whenp € P, R € R', X € X' is seen to have

been reduced by two since now R and X are fixed at their respective endpoint values.
The assumption

X,=fp)>0 , peP
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or
X, =fip)<0 , peP

can be checked by the following sufficient condition

F,P)>0
or
FyP) <0

where F.(P) is some interval extension of f(p).

If X, = fi(p) and X have opposite signs and X, + X20orX, +X <0 forallp € P and
X € X' then, as is easily seen, the effect of X on I is reversed: X leads to the minimum
of 7 while X leads to the maximum of /. Therefore,

I

1

min f(p.R.X), peP

min f(p,R.X) . peP

The corresponding assumptions related to this latter case can be easily checked by
using Fy(p).

Thus, the application of Thevenen’s theorem guarantees the reduction of the dimension
of the problem considered by one (with respect to R). If additionally certain easily
verifiable conditions on f;(p) are met, a second dimension reduction (with respect to X)
is also guaranteed.

Interval methods for solving minimization problems with inequality constraints have
been briefly considered in section 1.2.6 and section 1.5.2. In section 2.3 we will resume
discussing this topic in a more detailed manner taking into account the specific features
of problem (2.7).

2.1.3. Probabilistic statement of the tolerance problem

The deterministic problem we were considering in section 2.1.1 is termed (true) worst-
case tolerance analysis in electric circuit literature because the tolerance on the output
variable y accounts for the worst possible combinations of the admissible values of all
input variables x; (e.g. [21], [27], [28]).

In practice, each variable x; takes on a particular value on an element of the real line
R with certain probability. From this point of view the deterministic statement of the
tolerance problem from section 2.1.1. can be reformulated as follows. Each variable x; has
zero probability to occur if x; ¢ X; and a uniform probability P, = 1/w(X)) if x, € X,.
Given a function y = f{x), we want to find the set of values for the output variable y
which occur with nonzero probability.
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Very often each variable x; is, however, distributed according to some Probapility lax';v
which is different from the uniform probability law. If the circuit under mves.ugatlon. is
implemented by discrete elements, then the most common case encountered in practice
is the case where all variables x; are statistically independent (uncorrelated) and satisfy
the normal (Gauss) distribution law. However, if the circuit investigated is implemented
by the integrated circuit technology, then the variables x; , being. as a rule norm_ally
distributed, are not statistically independent. For the sake of generality we shall consider
the more complex situation when the random variables are correlated. Then, as is well
known, the probability density @(x) is given by the formula

o) = L expl-(x-E/Cx- D) @14
@27n)" detC

where C is the correlation matrix, £ is the mean vector and the symbol T stands for
transpose. Letting @(x) = a = const, the so-called hyperellipse of equal probability can be
formed. From (2.14) it is easily seen that the points pertaining to a particular hyperellipse
(for a fixed constant a,) are determined by the equation

x-E)yCc'(x-8 =7 (2.15)

where

¥* = -2Ina,y (2x)" detC (2.16)

To be more specific we shall consider the hyperellipse which is determined in the case
where each variable x, is allowed to belong to the interval &; + [-30,, 30] (here G/ is the
variance of the normally distributed component x;). Then, it follows directly from (2.15)
that in this instance ¥ = 3. Indeed, choosing x; = ; + 36, and x; = £, for all i # 1 we have

2
x - § = y?
cl
whence
30, 2
0'1
and y =3,

Let H denote the set of points x € R" enclosed by the hyperellipse (2.15) when 7y =
3. Clearly, H is determined by the inequality
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(x-&)C1(x-E) < ¥ 2.17)

Now we are in a position to formulate the probabilistic statement of the tolerance
problem.

Problem 2.2, Given the multivariate nonlinear function y = f{x), find the range of
y when x € H.

Similarly to the deterministic statement this problem resolves to two global
optimization problems:

fi = minf(x) @.18)
xe H
and
fi = maxfx) 2.19)
xe H

where f;" and f,," are the lower and upper endpoint, respectively, of the range for y. As
we already know, problem (2.19) can be transformed into an equivalent minimization
problem

fl.l = -min(—f(x)) 2.20
xe H

Since H is determined by (2.17) it is seen that the tolerance analysis problem
considered here reduces to solving twice the following inequality constraint minimization
problem:

ST = o min h(x) (2.21a)

(x-EYC'(x-E) -y*<0 (2.21b)

where firstly, o = 1, h(x) = fx), and secondly a = -1, A(x) = —f(x).

The above problem will be referred to as the basic tolerance analysis problem in
probabilistic setting. However, the following more complex situation arises sometimes in
practice when the parameters x; are independent (being normally distributed).

Consider the density distribution for an arbitrary x; shown in Fig. 2.4. There are cases
when part of the components satisfying the restrictions

Lo <x <o+, i=Thn (2.222)
wi .
—6_— = 'Yl =const. , | = m (2.22b)

i
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are chosen to be used in high-precision devices. The remaining components satisfying the
inequalities
§-30,<x, 5§ -0,

(2.23)
E+ao <xsE+30
are used scparately for lower precision applications. The tolerance analysis of the former
class of circuits can be once again treated using the basic problem formulation (2.21) in
which C is obviously a diagonal matrix (because of variables independence) while ¥
should be (as is easy to verify) replaced by 7y, from (2.22b).

$ Y, (x;)

}
T

E-35; bl

L
Fig. 24. Density distribution of a parameter x;.

The tolerance analysis of the latter class of circuits for which inequalities (2.23) must
hold can be carried out in the following manner. Conditions (2.23) may be replaced
equivalently by the following inequalities

€ -30,sx,<E + 30, (2.24)
E-osx <& +o (2.25)

It is seen that now the set H’ of admissible points is the set of points enclosed between
the hyperellipse defined by (2.15) and the hyperellipse defined by

(x -E)YC Y (x-8) =1, (2.26)

The tolerance analysis problem considered consists (similarly to the basic problem
Statement) in finding the range of the given nonlinear function y = f(x) when x € H'.
Based on the previous developement this problem may be reduced to solving twice the
following inequality constraint minimization problem:
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f* = o min A(x) (2.27a)

(x-EYC YW x-E)-9<0 (2.27b)

-(x-EYC Y (x-E) -y <0 2.27¢)

(C is a diagonal matrix while firstly & = 1, A = f and secondly o = =1, h = = f).

Problems (2.21), (2.27) can be solved (at least for tolerance problems of small size)
using the method from section 1.5.2 of Chapter 1. This topic will be dealt with in detail
in section 2.5 of the present chapter.

It should be stressed that the basic tolerance analysis problem in probabilistic setting
related to high-precision devices can be solved approximately in the deterministic
framework of the worst-case tolerance analysis formulated in section 2.1.1. In this case
inequalities (2.22a) hold and, as is seen from Fig. 2.4, the actual normal distribution @(x;)

for x; € [E; — w, & + @] can be reasonably well approximated by a uniform distribution
with

P(t-0, <sx SE+o) = f;‘:’ 9.(x)dx,/ (20)

Therefore, the approximate solution of the probabilistic tolerance problem considered can
be found as the exact solution of the following worst-case problem.

Problem 2.3. Determine the range of fx) over the box defined by x; € [E; — w,
E+ol,i=In

In the following two sections we shall be concerned with the exact solution of the
worst-case tolerance problem as formulated in subsection 2.1.1.

2.2. MODIFIED MEAN-VALUE INTERVAL FORMS

In this section we shall consider various recent forms of interval extensions that will
be used in implementing the interval methods for tolerance analysis to be described in
sections 2.3, 2.4.

2.2.1. Mean-value interval forms

Let f: X € R" — R be a multivariate function with continuous first-order derivatives
(f € C") defined in the inferval vector (box) X.

In section 1.2.5, the mean-value form (1.44) was introduced as a possible interval
extension of f{x) in X. We rewrite (1.44) as
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Fuy®) = fim) + Y. GO, -m,) @28)

i=1

where X is an n-dimensional interval vector with components X; =[x, x],i=1,n, mis
the centre of X and G,(X) is the interval extension of the derivative 8f/6x; of f. Recall that
the mean-value form (2.28) is inclusion monotonic if all the functions G,(X) are inclusion
monotonic, i.e. if X c ¥ then G(X) € Y:(X), i = 1, n implies Fy(X) < Fy 1)

Another mean-value interval extension called the monotonicity test form is suggested
in [2):

Fyr(X) = [f(w) .f(V)] + Z: G(X)(X;-m,) (229

where S is the set of integers i such that G(X) properly contains zero and

®.%) if GX)20 (2.30a)
(,v) =3 G.x) if GX)sO (2.30b)
(m, m) if ieS (2.30c)

This form provides a better interval extension of f{x) than (2.28). It has been used in [21]
in a method designed to solve the worst-case tolerance analysis problem for linear electric
circuits.

In the above mean-value forms (2.28) and (2.29) the interval extensions G4(X) are
defined as follows:

G.X) = G,(X,,....X,) (2.31)

that is, in the general case G, is dependent on all the intervals X, i = 1,n
Another way of improving the basic mean-value form (2.28) is introduced in [30]
where the interval extensions G(X) are computed in the following manner:

G.&.) = G,(X,vX,m, 0o, (2.32)
and

X, = (X,.X), m=(m,,...m)
Since in (2.32) part of the arguments m; (j = i+1, . . . , n) are real numbers rather than

intervals X; and G, are assumed mclusxon monotonic, the inclusion G, (X,,m,) < Gi(X) holds.
Therefore the interval extension
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Fy(X,m) = f(m) + ¥ G&,, ) (X, - m) @233

is, in general, narrower than that computed by formula (2.28). It should, however, be
stressed that (with the exception of the special case i = n where G,&,.m,) = G,(X,, . . .
» X,)) the monotonicity tests (2.30a) and (2.30b) are not applicable for the form (2.33).

In all of the above mean-value forms (2.28), (2.29) and (2.33) the midpoint vector m
of X is used to compute the corresponding interval extension.

In the following two sections, two modifications of the mean-value forms (2.29) and
(2.33) are suggested which generally result in narrower (but never wider) interval
extensions. In contrast to (2.29) and (2.33) the modifications suggested appeal to two new
points distinct from m to compute the interval extension.

2.2.2. Modified MT-form

Letfe C',f X cR"— R and X € I(R"). Assume that the interval extensions G,(X)
of &f/8x; are inclusion monotonic. By analogy with (2.28) we write the interval extension
of fin the form

F(X,x) = f(x) + E G(X)(X,-x) 234

where x = (x,, . . . , x,) € X is an arbitrarry fixed point. For simplicity of notation let the
left endpoint F(X) of the interval F(X) be denoted by inf F(X).

Definition 21, The expression

FXxb) = f1) + 3 GO (X, - x5) @35)

ix]
with x* = (x,', . . ., x,%) will be called an optimal minoring form of (2.34) if
inf F(X,x) < inf F(X,x%) (2.36)
for any x € X. The point x* will be called lower pole of the form (2.34).

As seen from Definition 2.1 the lower pole x* secures in X the global maximum of
the lower bound of the form (2.9).

Let G(X) = [a.b), i = T:—n We will prove the following theorem.

Theorem 2.1. The point x* is the lower pole of the form (2.34) if its components
are determined as follows:
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X if a20 (2.37a)

xl = {7, if b5,<0 (2.37b)

b:x, -ax)/(b,-a) if ieS (2.37¢)

where i € S if 0 € int G(X) (i.e. g; < 0 < b).Moreover,
x‘eintX, for ie S (2.38)
and

inf FXxY = f(x4) + ¥ b,0x,-xF)
€S T 2.39
=fab) + Y o - x5 @3

ies

P r o of. In order to prove that x given by (2.37) is the lower pole of the form (2.34)
it suffices to prove inequality (2.36).

Using the rules for interval multiplication and (2.37) it can be easily shown that for
amyxe X

inf [a,, )X, - x) < inf g, , BJX, -x) =0 , ie§
inf [a, , )X, - x) <inf [a,, bIX, - x}) =

ab. .
10, ies (2.40)
b.-a

a,'('?,' - xiL) = b,(f,_ - xiL) =

Furthermore, we introduce the subsets 7, and I, of the index set I = T, n for which x; > x*
and x; < x, respectively. Then based on (2.40) it is easy to verify that

inf [a,b,]J(X; - x) = b;(ﬁ -x) , i€l

inf [a,b]X, -x) =a(x, - x) , i€l
Thus

inf F(X,x) = f(x) + Y. b,(x, - x) + ¥ a,(%, - x) (2.41)
iel] T i€l

On the other hand, owing to the inclusion (1.32)
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f(x) € f(xL) + E [a;’ b,] (x,' - xiL) + E [a,'v b,] (x,' - xiL)

icl} iel2
hence
f) S Fah) + Y b - x) + Y ax, - x) 2.42)
el} el

On replacing (2.42) into (2.41) we get
inf F(X,x) S f(x1) + Y b(x, - x) + Y o - 1) 2.43)

iel} el
Taking into account (2.41) we obtain from (2.43)
inf F(X,x) < inf F(X,x%)

which completes the first assertion of the theorem.
Formula (2.39) follows from (2.43),(2.37) and (2.40).
To prove (2.38) we note that

L=ox+px , ieS

Hence
o+p=1, >0, B>0

since —a, > O for i € S. Therefore, x! being a strictly convex combination of x; and X;
belongs to the interior of X

Let sup F(X) denote the right endpoint of F(X).

Definition 2.2. The expression

F(X,xY%) = f(x%) + ¥ G,(X)X, - x) (2.44)
iw]
where x € X will be called optimal majoring form of (2.34) if for any x € X
sup F(X,x) 2 sup F(X,x")

The point x/ will be called upper pole of the form (2.34).

It is seen from Definition 2.2 that the upper pole secures in X the global minimum of
the upper bound of the form (2.34).
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Theorem 2.2. The point x” is the upper pole of the form (2.34) if its components
are determined as follows:

X, if 4,20 (2.452)
=g, if bSO (2.45b)
(b3, - ax)l(b, -a) if ie§ (2.450)

where i € S if @, <0 < b, . Furthermore, x.Y
x” eintX, for ie S
and

sup F(X,x%) = f(x¥) + Y b(X -x) = fx") + ¥ a,(x,-x)

ie$ S

The proof of this theorem repeats with obvious modifications the proof of Theorem 2.1.

Definition 2.3. The expression
Fo (X, x4, x%) = F(X,x*) N F(X,xY) = [inf F(X,x‘),sup F(X,x")] (2.46)
will be called improved MT-form.

The improved MT-form has the following important properties proven in [31].

Theorem 23, The width of the improved form (2.46) is, in general, smaller (not
larger) than the width of the original MT-form (2.29).

Theorem 24. LetY € X and G(Y) € G(X), i =1, n. Then
Fp (Y, 959" € Fpp (X, x4, 1Y)

The latter theorem states the inclusion monotonicity property of the form (2.46).

2.2.3. Modified MV-form

The approach adopted in modifying the MT-form will be now applied to the MV-form
defined by (2.33). First the formula (2.33) is written as
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w (XX) = f(x) + EG(X X)X, - x) 247

1-l
GX, %) = G(X,s e X X o0, (2.48)

whete x € X. As it has been done above, optimal minoring and majoring forms and their
corresponding poles might be introduced. On account of (2.47) these forms are:

F,, (X,x%) = fc} + zani(k',.,g)(x,. - xh (2.49)

i=1

Fuy (X, xU) = f(xV) + EG(X_,x)(X -xY) (2.50)

i=]

It is seen from (2.49), (2.50) and (2.48) that the interval extensions G; are now
dependent on the corresponding components of the poles x* and x” of the form (2.47). For
this reason, to find these poles, it is necessary to globally solve two complex optimization
problems with real (point) variables.

In this section, instead of exactly finding the poles x* and x” of the form (2.47), it is
suggested to make use of some approximations x” and x” of x* and xY, respectively, which
could be computed in a rather efficient way and at the same time would lead to an
improvement over the form (2.33). For brevity let G(X X) = [a,x), b; (%)]. To find the
components x; of the approximation x” the following procedure is suggested.

Procedure 2.1. The components of x* are determined as

4 if a(x)20 (2.51a)

o = X, if b(x')<0 (2.51b)
bi(szi')ﬁ- - ai(;i')ii

: if ieS (2.51c)

b; (-‘i‘,’) -a; (-'i,')

(1 € Sifa; <0 <b;)inthe followmg order. First, the component x; is computcd and
G, (X,,_,, x’ ,) is calculated. Then x’,, is determined and by using x’, and x’,_, the next
derivative G,_,&, 5, X", X',) is calculated This process continues untll i=1

Using the approximations x;” we choose for a quasi-optimal minoring form the
expression:
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Fuy(X.X) = f(X) + T GX, Z)(X, - %) 2.52)

i=]

Let J, and J, denote the subsets of the index set ] = 1, n for which m;, > x/ and m; <
x;, respectively, where m; is the corresponding component of the midpoint m from (2.33).
The following theorem proven in [31] shows that under certain conditions the use of the
form F,{X, x) can improve the lower bound of the form (2.47) in comparison with
(2.33).

Theorem 28, If for x; computed by Procedure 2.1 the following inequalities:

a(x))za(m), iel (2.53a)
b(x)ysb(m), iel, (2.53b)
are fulfilled, then the inequality
inf F,,, (X, m) S inf F,, (X, x") (2.54)
holds. Moreover, (2.38) and (2.39) (with x’ standing for x*) are again valid.
The following theorem [31] shows that the form
Fyy X,27) = f(2) + Y GXLEN)(X, - 57) 2.55)

can improve the upper bound of the form (2.47) in comparison with (2.33).

T h eorem 2.6. If for the point x” whose components are determined sequentially
In a simillar way as in Procedure 2.1 (using (2.45) rather than (2.51) with x,-" replaced by

- x) the following conditions:

a,G") 2 a(m), iel, (2.56)

b,(E") S b)), iel, (2.56b)

are fulfilled, then the inequality

sup Fo(X,m) 2 sup F,,,(X,x")
holds.
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Definition 24. The expression
F,,(X,x',x") = F,' (X, x) N F, (X, X") = (2.58)
linf F,(X,x"), sup F,,(X,x")]
will be called modified MV-form.
Similarly to Theorem 2.3 and 2.4 the following two theorems are easily proven.

Theorem 2.7, If the conditions (2.53) and (2.56) are fulfilled, the modified MV-
form (2.58) provides, in general, a narrower extension than the MV-form (2.33).

Theorem 28. Assume thatfor X 2 Y

inf G,(¥,,y,) 2 inf G,X,, %) (2.59)
and
sup G,(¥,,57) < inf G,X,,5"), (i =T,n) (2.60)
Then
Foo (Y5, Y") € Fppy (X, X, X7) (2.61)

Thus if the corresponding interval extensions G, are inclusion monotonic, the modified
form (2.58) is also inclusion monotonic.

The following theorem shows that the modified MV-form (2.62) may be expected to
provide the narrowest interval extension of f{x) in X as compared to the previous mean-
value forms.

Theorem 2.9. [31]. If the conditions (2.53) and (2.56) are fulfilled, the modified
MV-form (2.58) ensures the narrowest enclosure of f{X) among the forms (2.28), (2.29),
(2.33), (2.46) and (2.58).

If any of the conditions (2.53) and (2.56) is not fulfilled it may happen that the best
result is provided by the form (2.46).
2.3. INTERVAL METHODS FOR TOLERANCE ANALYSIS

In this section several methods for tolerance analysis of linear electrical circuits will
be presented which are based on the global optimization formulation of the problem.
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(Another class of interval tolerance analysis methods based on an alternative approach
will be introduced in Chapter 3.)

Depending on the available information about the derivatives of the function
describing the tolerance problem the interval methods to be considered herein can be
categorized into three groups:

a) zero-order methods;

b) first-order methods;

¢) second-order methods.

2.3.1. Zero-order methods

For these methods it is assumed that the function £ X° < R” — R involved in the
global minimization problems (2.4) and (2.6) is only continuous, i.e. f € C. Thus, no
derivatives can be used in the methods of this group. (In practice, f may be continuously
differentiable in X°, but the derivation and computation of the partial derivatives df/dx; is
assumed to be prohibitively costly).

We present here a zero-order method for solving the global minimization problem
(2.7a) with inequality constraints (2.7b) which appeals to Skelboe’s algorithm. The basic
idea of Skelboe’s approach was elucidated in section 1.2.5 for the scalar case where f: X°
C R — R. The reader is strongly urged to go over this material paying special attention
to Procedure 1.1.-In this section we generalize Procedure 1.1 for the multivariate case
where the initial region X° is an n-dimensional box. Since this generalized procedure will
serve as a basis for the more sophisticated methods from the next sections it will be
considered here in detail.

Procedure 2.2. The procedure is designed to solve within a prescribed accuracy
the global minimization problem (2.7)

fr (2.62a)

L<x <X, i=Tn (2.62b)

i

"
3
=)

\‘5
~~
o~
&
S
SN’

when f e C. It is based on the following ideas.

1. From the initial box X° with sides X;” =[x, x], we generate a list L of subboxes
whose union contains the global minimum. The elements in the list are generated in pairs:
each pair is the result of a bisection in a single coordinate direction of some previous
subbox.

2. We bisect a subbox X in the first direction in which X has maximum width. Let this
direction be along the coordinate with index i, and let m; denote the centre of the side
X, . Thus, we have generated two new subboxes: ’
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X! = [le“"xio-l’ [Ldml.o], Xl.ol,...,Xn] (2.63a)
and
X% = [Xl,...,X‘.m,[mia f_.a], X,.OI,...,X.‘] (2.63b)

whose union is equal to X, i.e, X = X' U X2
3. For every current pair X' and X, we compute F(X"), F(X?), im(X 1) and fim(X%).
4. Let f be the currently smallest value of f found so far among fim(X")) and fAm(X%).
5. We do not list a newly generated box X at all if F(X) > f since in that case X
cannot contain the global minimum. This is called the midpoint test.
6. Every admissible subbox (not deleted by the midpoint test) is entered into L in
order of increasing lower bounds F(X) so that the first (top) element in the list L always
corresponds to the least current lower bound on the global minimum f;.

The procedure for bounding f;" includes the following steps.

Step 1. Choose an accuracy € > 0.

Step 2. SetX =X°

Step 3. Initially, the list L is empty.

Step 4. Bisect X into X' and X* using (2.63).

Step 5 Letm' =mX") and m* = m(X*). Compute f' = f(m") and f*= fim*) and
update the upper bound f on the global minimum £, that is, if f' < for f2 <f, set f =
£ or f=f7 respectively.

Step 6. Compute F(X" and F(X?.

Step 7. Apply the midpoint test to X' and X*.

Step 8. Enter the admissible subboxes X' and X* into L in the proper order.

Step 9. Retrieve the top element X' from L (with the lowest F(X)). Rename X as
X and remove X' from L.

Step 10. Set b = F(X).

Step 11.If f— b > g, return to step 4. Otherwise go to the next step.

S tep 12. Terminate. The global minimum f." has been bounded by the interval
[b, f] that is,

fi € [b.F]

If the above procedure is applied to (=), then, upon termination, f,” is bounded by the
corresponding interval [—f, —b].

Clearly, when € > 0 Procedure 2.2 will converge to bounds on f;"(f;") in a finite
number of computational steps provided the list L is large enough to store all the
admissible subboxes generated. It should, however, be pointed out that the convergence
rate of this zero-order method is relatively slow and the list L may become prohibitively
long.
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To improve the numerical efficiency of the interval tolerance analysis methods, in the
next section we incorporate the interval forms from section 2.2 into Procedure 2.2 to
obtain first-order methods for tolerance analysis.

2.3.2. First-order methods

We now assume that f € C' (fis continuously differentiable in X°).

The methods of this group are, again, based on the ideas used in Procedure 2.2.
However, numerous additional possibilities arise owing to the fact that f € C'.

First, we can use one of the mean-value forms presented in section 2.2 in computing
F(X) for the current box X which would result in an improved convergence rate of
Procedure 2.2. Second, we can introduce some of the techniques mentioned in section 1.5
and designed to delete subboxes or parts of boxes in which the global minimum cannot
occur.

Monotonicity test

This test allows us to make use of the monotonicity of f with respect to some
variables.

Suppose, for example, that the ith component G,(X) of the interval extension of the
gradient g(x) of f{x) is positive, i.e.:

G(X)>0 (2.64)
Due to the basic property (1.32), it follows from (2.64) that
g(x) >0 for Vx e X

Hence, f{x) cannot have a stationary point in X. If X does not contain points of the
boundary of the initial box X° we can delete the whole current box X.

If G/(X) is only non-negative or X contains boundary points of X° the monotonicity test
is less effective. If

G(X)20

we cannot delete all of X. Indeed, the smallest value of fx) in X may occur, in this case,
for x; = x; and we have to retain all points with x;€ X; j#iand x; = x. Thus, we have
only managed to reduce the demensionality of X by one.

Also, we have to retain all the points x = (x,, . . . , X,) with x; = x; even when (2.64)
holds if x; belongs to the boundary of X° since the global minimum in X may occur on
some facet of X°.

Similar results occur if G(X) < 0.

_ To use the monotonicity test we evaluate G(X,, . . ., X,) for i = 1, n_and reduce the
dimensionality of X for any value of i for which G,(X) < 0 or G,X) > 0. Of course, we
delete all of X if possible.
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Sometimes, the monotonicity test may reduce X in every direction. If so, only a single
point, say X, remains. In this case, we evaluate f{x). If f{x) > f we can eliminate X too. If
fx) < f, we reset f equal to f{x) and store X for future reference.

Using the bound |

_Based on the midpoint test from Procedure 2.2 we can delete a whole box X if F(X)
> f. When the midpoint test is not applicable we still try to make the most of the current
bound fon f;".

Taking into account that f € C* the bound f can be used in an attempt to reduce the
size of the current subbox X. Indeed, since f is an upper bound on f,*, we can delete
points y* € X for which

o) >F (2.65)

Actually, we would like to retain the complementary set S of points y for which (2.65)

is not satisfied. However, S may have a very complex structure; therefore we will only
find an interval enclosure Y of S. To do this, we first expand f{y) about a point x € X in
the form (usually x = m(X))

f) = fX) + (y-x)"g(&)

Since & € X, g(x) can be replaced by its interval extension G(X). Thus, we can use the
interval inequality

f) + (y -xYGX)<F (2.66)

to find an interval enclosure Y of the set of points y for which f(y) <f
Denote e = f — fix) and ¥ = y — x. Then (2.66) becomes

We first try to reduce X in the x, direction. With this in mind, we first rewrite (2.67)
as

G,(X)y, + Y GX)(y-x) <e (2.68)
i=2
and replace y; by X, to obtain
G,X)y, + Y G(X, -x)<e (2.69)

i=2

Now we solve (2.69) for y, as described below. Denote
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A=Y GX)X, -x)-e=la.a,l

i=2

B =G(X) =1b,b], t=},

Then the solution set T of the inequality

A +Bt<0 2.70)
is determined as follows [8]:
[-a, / b,, ] if a0, b, <0
[-a, /b,, ] if ¢ >0, b,<0
[-oe, o] if a, <0, bs0<b,
T =4[, -a, /bl Ul-a, / b, ee] if a >0, b<0<b, (2.71)
[-eo, -a, / b} if ¢, <0, b >0
[-o0,-a, / b)) if >0, b 20
empty set if a >0, b=b,=0

Recall that y, = y, — x,. Now the set ¥, of points y that satisfy (2.68) is ¥, = x, + T. Since
we are only interested in points with y, € X, we compute Y, as

Y, =(x, + T)NX, @72

Thus, although T may be unbounded, the intersection is bounded. As seen from (2.71) and
(2.72) the resulting set ¥, may consist of one or two intervals.

For the sake of argument, suppose Y, is a single interval. We can then try to reduce
X, the same way we (hopefully) reduced X, to get Y,. We again rewrite (2.69) using Y,
rather than X

G,(X)F, + G,(X)(Y,-x,) + ¥ G(X)(X,x,) - e < 0 2.73)

in3

Based on (2.70) and (2.71) we solve (2.73) for y, to obtain ¥, as
Y, = (x, + T)NX,

The above computation process continues in a similar way until all n components ¥,
of Y are determined.

Now consider the case where Y, consists of two disjoint subintervals ¥*, and ¥”,. Let
the gap between Y7, and Y”, be denoted by ¥,£. The best policy would be to delete ¥,2 and
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to recompute (2.73) twice with ¥’, and Y”, separately when trying to reduce X,. Note that
this would involve reevaluating G,(X) for the new components ¥’, and Y”,. Since each
of the resulting intervals ¥’, and Y”, may again consist of two subintervals such an
optimal approach will, however, result after several steps (with { > 2) in too many
subintervals in each coordinate direction to be treated separately. Hence the number of
newly generated boxes to handle separately may grow very fast (up to 2" at each
iteration). In an attempt to keep the computational scheme as simple as possible the

following simpler strategy is usually applies in practice [8].

Procedure 23. Whenever we encounter a set Y; consisting of two disjoint
subintervals ¥*; and Y”; we first store the gap Y# for further inspection. Then we use the
whole interval

Y.=v,Urs Uy,

when attempting to reduce the subsequent components X, j > i, of the current box.
Moreover, we use the old component G(X) rather than the improved extensions G;
computed by means of the narrower component Y. At the end when i = n, we remove the
largest gap Y;# with coordinate index i,. Thus, only two new subboxes Y* and ¥” have
been generated: one whose ith component is ¥ and one whose ith component is Y’ (the

remaining components of the two subboxes are the same for all i # i).

It should be noted that the efficiency of the approach described to reduce X decreases
for problems with higher dimensionality n. This assertion follows from the fact that the
width of A from (2.70) tends to grow with n increasing.

2.3.3. Iterative algorithms

Based on the interval mean-value forms from section 2.2 and the techniques from
subsections 2.3.1 and 2.3.2 several algorithms will be considered here which solve
iteratively (2.4) (or equivalently (2.6)) when fe C'.

First, we present the following basic algorithm which is common to all interval mean-
values forms section 2.2.

Basic algorithm

The initial box X° is iteratively subdivided into subboxes which are entered into a list
L. At each iteration of the algorithm, the subbox X with the lowest F(X) is extracted from
L and the following steps are done.

). Let x € X (initially X = X®) be a fixed point in X. Compute f(x) and putf= fx)
at the first iteration. For the next iterations do not update funless ) < f

2). Compute F(X) using one of the forms (2.28), (2.29), (2.33), (2.35) or (2.52),
respectively. If F(X) > f the region X is deleted (not entered into the list L) since it only
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contains such points z € X where fiz) > £, go to Step 9. Otherwise, proceed to next step.
3). If £ - F(X) < € where € is a prescribed accuracy, the algorithm is terminated;
otherwise go to the next step.

Remark 2.1. In order to guarantee the accuracy € (accounting for the roundoff errors
in representing the point x and in evaluating f{x)) the value of f{x) should be computed
using machine interval arithmetic as a corresponding interval [f (x), fz(x)]. The left
endpoint f;(x) of that interval is then used for f{x) in computing F(X) from step 2; the
right endpoint fz(x) is, on the other hand, used to update the current upper bound f on the
global minimum f;*. This, however, was not implemented in the present version of the
algorithm since the accuracy used in the examples considered below was relatively low
and therefore the roundoff effect was negligible.

4). In this step an attempt is made to reduce the size of the current box X using the
inequality (2.66) and the subsequent formulae through (2.73) At the end of this step, a
new set ¥ C X with components Y; is obtained.

5). If Y, is a single interval for all i = T, n, then the set Y is also a single box.
Otherwise we apply Procedure 2.3 to generate only two new boxes Y’ and Y”.

As a result only one new box Y or two new boxes Y’ and Y” can be generated after
the attempt to reduce the size of the current box X.

Remark 2.2 Obviously, a more effective scheme for reducing X is possible when
several intervals Y# appear. For example, the second largest interval among Y# can also
be retained which will result in the creation of 4 subboxes.

6). If Y is not smaller than X (or the reduction is negligible (e.g. w(¥) 2 0.9 w(X)) the
current box X (¥ respectively) is split into two subboxes X and X” in the direction of its
widest component X, at its midpoint m,.

7). The new box Y (or boxes Y’ and Y”) generated in Step 5 is (are) renamed as X X’
and X”). Using X (or X" and X”) we compute f{x) and update f if f{x) < f.

8). Repeat Step 2 for the new box (boxes).

9). A current box X with the lowest F(X) is chosen from L and the algorithm continues
from Step 3.

To compare the relative numerical efficiency of the interval forms of section 2.2 the
following five versions of the basic algorithm will be considered [31].

Al). In this algorithm x = m = m(X) and inf F(X) is computed by the interval mean-
value form (2.28).

A2). In this algorithm, the monotonicity test form (2.29) is used as an interval
extension F(X). Now x is determined by (2.30) and inf F(X) is computed by (2.29).
Additionally, the following simple monotonicity test is applied: if G(X) > 0 or Gi(X) <

0 is valid at least once and X does not contain points belonging to the boundary of X°,
then X is deleted.
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A3). Here x = m and inf F(X) is computed by (2.33). Recall that the monotonicity test
is not applicable for the interval form (2.33).

A4). In this algorithm, use is made of the optimal minoring form (2.35). The point x
is now the optimal lower pole « calculated by (2.37) while inf F(X) is evaluated by
(2.39). The monotonicity test from A2 is also applied.

A5). Here inf F(X) is evaluated using modified MV-form (2.56) and is computed
according to Procedure 2.1.

The above algorithms have been tested on the following examples.

Example 2.7. The problem to be solved is (2.62) with the so-called "three-hump"”
function

f(xpx) = 2xF - 1.06x) + (1/6)x] - x,x, + x;

which has two local minimum at approximately (£1.75, 10.87), two saddle points at
approximately (£1.07, +0.535) and one global minimum at (0,0). The initial box X° with
components X,° = X,? = [-2, 4] contains all these points. The results are given in Table
2.1 where N, stands for the number of iterations needed to reach the global minimum f; *
within the desired accuracy € (each iteration comprising steps 3 to 9 from the respective
modified version of the basic algorithm).
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Table 2.2
Algorithm Al A2 A3 A4 AS
N, 289 49 216 25 37
1, 246 40 165 21 28
E' 23067.380 | 23067.370 | 23067.380 | 23067.370 | 23067.370

The results given in Table 2.2 are obtained for £ = 107 therein I, stands for the
maximum length of the list L reached during computation and F," denotes the lower
bound of f;.

It should be mentioned that for the some example the algorithm of [18] has yields
F;" =22110.018.

To find an upper bound F;;" of fiIX®) we solve problem (2.6) with € = 107 The data
corresponding to algorithms A4 and A5 are given in Table 2.3; the other algorithms are
not given in the table since their convergence was much slower.

_Ttis worthwhile nothing that for the same example the algorithm from [18] has given
Fy" =25426.918.

Thus, the range fIX°) of the function (2.74) in X° is bounded by the interval

[23067.370, 24416.040].

Table 2.3
Algorithm A4 AS
N, 1944 1745
L, 1143 555
Fy 24416.040 24416.040

Table 2.1
Algorithm Al A2 A3 Ad A5
€ 107 107 107 107 107 107 107°
N; 216 136 236 81 73 94 104
Example 28. For this example
Fx) = [0 (0)f (1 )fs(x5) 2.74)

where
filx) = 0.01x,(x; + 13)(x; — 15)
filxy) =0.01(x;, + 15)(x, + D(x, — 8)
filxg) = 0.01(x; + Dz = 2)x3 - 9)
filx) = 0.01(x, + 11)(x, + 5)(x, — 9)
f5(xs) = 0.01(xs + 9)xs — Nxs — 10)

and X is defined by X,° = [8, 9], X2 = [-10, -9), X* = [-5, —4], X = [3, 4], X" =
[-3, —2]. The problem is to bound the range AAX®) of Ax) in X°. First, we solved (2.4).

E Xample 2.9. We take up the example of a second-order bandpass active RC-filter
(Fig. 2.5) considered in [21].

.The nominal design has a center frequency ® = 1 and Q = 10. The corresponding
resistor values are shown in the diagram of Fig. 2.5, and the remaining components are:

C,=1pF, C, = IpF, p = 2.9.

The voltage transfer function is
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2pC,s

H(s) = >
2C,C,s*+(C, +5C,-2pC,)s +2

where the resistors have been assigned numerical values.

R L, T
10
C2

Fig. 2.5. Second-order bandpass active RC filter.

A tolerance analysis of the amplitude |H(jw)| was performed, and in addition to
tolerances on C;, C, and p, a temperature dependence was considered. A simple linear
model was used, but higher order temperature coefficients could have been used without
any complications. The models are as follows:

C,=C(1+1,C,=C(1 +T), p=p,(1 +rT).

Figure 2.6 shows the result of an analysis performed in [21] with the parameters
C,, = C,, =1[0.98, 1.02], p, =[2.871, 2.929]
T = [-0.0025, 0.0075}, r=2.

The range of the amplitude function is computed at the frequencies w, = 10*""', v = 0,
1,...,20.

In [31], the range of |H(jw)| for ® = 1 was determined using the algorithms Al to
AS. In actual computation, first the range of flx) = |H(jw)|[* was found in X° whose
components are given by C,,, Cy, B, and T. Then the range limits of |H(jw)| were
determined by taking the square root of the range limits of f{x). The corresponding results
for N, and , in obtaining lower and upper bounds on |H| with € = 107 are given in
Tables 2.4 and 2.5.
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01 1 ™ .

Fig. 2.6. Worst-case frequency response of a bandpass filter.

Table 2.4
Algorithm Al A2 A3 A4 A5
N, 33 3 33 2 1
l, 28 4 28 2 1
Table 2.5
lilgorithm Al A2 A3 Ad A5
N, 126 72 94 44 1
L 71 68 44 45 1

intelrtv;sl ;een from the data of Taples 2.1 t9 2.5 that the implementation of the modified

priit tgrms (2.35) and (2.52) in the b§s1c algorithm results in improved convergence

into gorithms A4 and AS as compared with that of algorithms A1, A2 and A3 using the
rval form (2.28), (2.29) and (2.33), respectively.

) It should also be mentioned that the first-order method for tolerance analysis as

lemy ; . G
SecI:ion ezn;efli by algorithms A4 and A5 is vastly superior over the zero-method from
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Example 210. We consider a problem related to the diagnosis of electrical
machines by analysing their mechanical vibrations. The functional relation between the
vibration velocity V of a particular machine and four basis "input" parameters x; is given
by [86}:

v= =%V
254
where
Vl - 21#}‘)"‘8,
f =a;, i=1,2,6,7,8

f =ab+x), =345
vl =a, (b, + x)x;

v, =a, (b, + x)x,

v' =c(d +xl)x4, 1—3 4, 5
Ve =V LV =V, vs = v

8 = VAL - fIR + 2.5 x 107(/f)2)"

(a. a;, b, c, d, and f. are constants related to the construction of the particular machine
studied).

The problem is to find the range of V(x,, x,, X3, x,) for x; € X,, where X are given
intervals. Using algorithm A5 three cases were solved with fixed intervals

X, =[0.63, 2.5], X, =[0.5, 1.25]

and variable intervals X, and X;:

a) X, =[-3, 3], X, =[04, 63]

b) X, =[-2.25, 2.25], X, =11, 2.5]

X, =[-2,2], X,=11.25,2]

The corresponding results for the tolerance interval on V are:

a) V=[1.779, 11.292]

b) V =[2.039, 7.205]

c) V=[2976, 6.794]

The intervals obtained were used for diagnosis of the machine investigated [86].
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2.3.4. Second-order methods

In this section it is assumed that the function f from (2.4), (2.6) is twice continuously
differentiable in X°, i.e. fe C.

As the minimization problem (2.62) to be solved involves inequality constraints we
could use the techniques of section 1.5.2 to elaborate various algorithms for solving the
tolerance analysis problem. The most complete algorithm would include the following
stages:

(a) test for nonconvexity of fin a current box X which does not contain points of the
boundary of X%

(b) test for monotonicity of fin X;

(c) transformation of the constrained problem (2.62) into an equivalent problem (1.98)
to (1.101);

(d) solution of (1.98) to (1.101) by some version of the Newton method for the
corresponding current box;

(e) reduction of X using the upper bound fonf'.

In this section we present a (relatively) simple algorithm for solving (2.62) which is
based on the algorithm A1 from the previous section and the technique (e) from the above
list. This second-order algorithm will be referred to as Algorithm 2.7. In fact, the only
difference of the present second-order algorithm A7 from the first-order algorithm Al
concerns Steps 1 and 4 of Al (as numbered in the basic algorithm).

Since now f € C’ the set of points y’ in a current box X for which fiy") > f can be
defined as follows [8]. First, we expand f as

fO) = f(x) + (y-x)gx) + —;-(y =) h(x,y.0)(y -x) .75

where g(x) is gradient of f{x) and quantity h(x.y,{) is the Hessian matrix to be defined
presently. For reasons related to the use of interval analysis A(x,y,{) will be expressed as
a lower triangular matrix instead of a symmetric one so that there are fewer terms in the
quadric form (2.75). Thus, the element h; of h is defined as [8):
3/} for i=j, i=T0n
hy =1 28/6x8x, for j<i, i=Tom, j=TIiT

0 otherwise

The arguments of h; depend on i and j. If we expand f sequentially in one of the its
variables at a time, we can obtain the following results illustrating the case n = 3.
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h“(E_,“,x2,x3) 0 0
h(x,yi) = hu(azl’xz’xa) hzz(yx’ézz’xa) 0
h31(§31,x2,x3) h32(}’1,§n,x3) haa(yvyz’ézs)

Assume x; € X; and y, € X, for i = T, n. Then from (2.75) {; € X; for each j =T, n. For
general n, the arguments of A; are

()’1, c e sy y,'-h if> xi+1’ AR xn)
Let x be a fixed point in X. Then for any point y € X
h(x, y, €) € H(x, X, X)

where H(x, X, X) is the interval extension of A(x, y, {) for y € X and { € X. In the sequel,
we shall shorten the notation and use A(E) to denote h(x, y, £) and H(X) to denote
H(@, X, X).

The purpose of the particular Taylor expression is to obtain real (noninterval)
quantities for as many arguments of the elements of H(X) as possible. The standard
Taylor expansion would have intervals for all elements of H(X) which would lead to
poorer results.

In a similar way as in section 2.3.2 we seek to find an interval enclosure Y of the set
S of points y € X for which

FOx) + (7 -x)g(x) + %(y ~xYHE)(y-x) < F

If
e=f-f(x)
and B
y x
then
yTgl) + %y" TH(E)y < e (2.76)

We shall use this relation to reduce X in one dimension at a time to yield a subbox (two
subboxes) Y resulting from deleting points y € X where Ay") > f. We shall illustrate the
process for n = 2. Now (2.76) becomes
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7,800 + 7,800 + %{ifh,,(&) CFF ) v T EN e Q7D

We first try to reduce X;. Thus, we solve (2.77) for acceptable values of y,. After
collecting terms in y,, we replace y, by X, (in the higher dimensional case we would
also replace y; by X; for i =3, n). Since § € X we also replace § by X to obtain

o1z 12, 1o
Filg + 5Ky (O] + S5, (X0 +X,8 7yfhn(X) -e<0  (278)

where)?2 = X, — x,. We solve this quadratic for the interval or intervals of points y, as
described below. Call the resulting set Z,. Since we are only interested in points y, € X,
we compute the desired set ¥, as ¥, = Z, N X,.

Next, we try to reduce X,. For simplicity, suppose Y, is a single interval. We again
rewrite (2.76). This time we replace y, by ¥, and, as before, & by X. (We could obtain
sharper results by replacing some elements of £ by Y, rather than X; but this would
require reevaluation of the elements of H.) We get

~ 1 ~
5,le, + _Ylh,_l(X)] _y2 hyX) + 7 g, + STih,® -e<0 @279

wheref, =Y, - x,.

If the solution set Y, is strictly contained in X, we could replace X, by Y, in (2.76) and
solve for a new Y,. This has not been done in practice. Instead, we start over with the
new box Y in place of X as soon as we have tried to reduce all X, i =1, n.

The quadratic equations (2.78) or (2.79) have the general form

A+Bt+Ctr<0 (2.80)

where A, B and C are intervals. We seek values of ¢ satisfying (2.80). Let A = [q,, a,],
B = b, b,] and C = [c,, ¢,]. Compute the discriminants

A = b? - 4ac,
A, = b} - dac, (2.81)
For i=1,2 calculate
= (=b, £ A)/(2c) (2.82)
St = 2a,/(-b, £ A®) (2.83)

The solution set of (2.80) is then determined as follows [8].



Interval methods for circuit analysis

For b, >0 and ¢, > 0:

J (emptyset)
T =4 [R;,$;]
[R,.S/]
For b, < and ¢, > 0:
%] if

T =118, R if
[S;. R(1  if

For b, <0 <b, and ¢, > 0:

%)

[R;,S;] if |b,] <b,

T = 1S/, R1 if |b,| > b,

[R;,S:1 USR] if a
R[R;. R

For b, > 0 and ¢, < 0:
[_°°, Sz-] U [Rl-, °°]
T = [-eo, Sl—] U [Rl—v°°]
[ oo, o°]
For b, <0 and ¢; < 0:
[-o0, R;1U LS/, o]
T =[-=, Ry U[S; ]
[_°°7 °°]

Forb, <0<bh, and ¢, < 0:

if A,<0
if a,>0, 4,20 (2.84)

if a <0

A <0
a>0,A 20 (2.85)

a <0

if max(A, A,) <0
and min(A,A,) £ 0 < max(A, A)

and min(A, A) €0 < max(A,A,)
> 0 and min(A,A) > 0
if ¢, <0 (2.86)
if ¢, >0
if a, S0<A (2.87)
if A, <0
if >0
if g, <0<A, (2.88)
if A4,<0
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. [eo, S; TUILS,, ] if @, 20 (2.89)

| e el if a <0

The modifications of algorithm A1 needed in the present section’s algorithm concemn
Steps 1 and 4.

Step 1 of the present algorithm includes additionally:

Compute the gradient g(m) and the interval extensions Hy(X,, . . . . X, m; ,...m,) of
the components #; of the Hessian A.

Step 4 is now implemented using formulae (2.76) to (2.89).

Remark 23.1tis seen from (2.76) to (2.89) that in some cases T and hence Y; may
consist of two disjoint subintervals. Whenever this occurs we proceed in exactly the same
way as explained in Step 5 of the basic algorithm from section 2.3.3.

To test the numerical efficiency of the algorithm A7 as compared to the first-order
algorithm A1 from the previous section the following simple example will be considered.

Example 2.10. The function to minimize is the function from Example 2.7. Since
the second-order algorithm is designed to handle problems with relatively large tolerances
on the input parameters the initial box X° was chosen to be defined as in Example 2.7
by X,"=X," = [-2, 4.

Using the same accuracy € = 107 the second-order algorithm yielded the interval

X; = ([-0.01366, 0.00480], [-0.02742, 0.02112])
for the global solution x," = 0 and the interval
LF 2,]'] = [-0.00095, 0.00003]

for the global minimum f,” in 101 iterations (an iteration comprises Steps 3 to 9 of
algorithm Al modified according to the present second-order method version).The
corresponding intervals

X, = ([-0.90771, 0.01563], [-0.03125, 0.01563])
and
[F;, F1 = [-0.00073, 0.00012]

here obtained by Al in 216 iterations as shown in Table 2.1.

) It is felt that the superiority of the second-order method over the first-order method
will be enhanced if more sophisticated techniques such as nonconvexity test, monotonicity
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test and interval Newton method are used. Some such techniques will be presented in
section 2.4.4.

2.4. IMPROVEMENT OF THE NUMERICAL EFFICIENCY

In this section, several devices that are designed to improve the numerical efficiency
of the interval methods considered in the previous section will be introduced.

2.4.1. Alternative problem statement

In section 2.1.1 the worst-case tolerance analysis problem was formulated as Problem
2.1, namely: find the range AX®) of a given multivariate function over X°. In this section,
we shall reformulate the tolerance problem considered as follows.

Problem 24. Given a multivariate function f: X° c IR"Y - R, check that the
range fiX°) = [f, f] of f over X, is contained in a prescribed interval ¥ = [Y, Y], that is,

X cvy (2.90)

Problem 2.4 is a more realistic formulation of the tolerance problem as compared to
Problem 2.1. Indeed, in practice we compute the range f(X°) in order to verify whether
the inclusion (2.90) holds (filter tolerance analysis — for a fixed frequency - provides
numerous examples of the above problem).

The inclusion (2.90) is equivalent to the following two inequalities:

f>y (291

fsY (2.92)

As in solving Problem 2.1 we shall consider here only the verification of inequality (2.91)
since the inequality (2.92) can be transformed (multiplying it by —1) to the type of (2.91).
Thus, we are led to consider the following equivalent problem.

Problem 2.5. Given a twice continuously differentiable function f{x): X* c R* —
R (fe C*) check whether

finyzY (2.93a)
xe X° (2.93b)

(The requirement f € C? is needed to permit the use of second-order interval methods in
solving Problem 2.5).
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Naturally, Problem 2.5 can be solved by appealing to the global minimization problem
(2.4) from section 2.1.2. For convenience the latter problem will be rewritten here (as
Problem 2.6).

Problem 2.6. Find the global minimum f* of f(x) in X°.

Indeed, if
frzY (2.94)

then, obviously, (2.93) is fulfilled.

Conceptually, Problems 2.5 and 2.6 are identical. However, from the point of view of
numerical efficiency the former problem can be, generally, solved in a much more
effective manner than the latter one. This possibility results from the fact that to check
(2.93) using a first- or second-order interval method one does not need to find the global
minimum f* (except for the cases where f* = Y). Indeed, both first- and second-order
interval methods generate series of bounds: a lower bound series

F<fls,,cfP<sf™<,.., =5 (2.95)

which converges monotonically to f* from below (here f? = F(X?) and XP is the current
subbox having the lowest F(X) among all subboxes X stored in the list L) and an upper
bound one

Pz, 22" >, =f (2.96)

which converges monotonically to f* from above (now f ° is the lowest function value,
found up to the current pth iteration). Obviously, the computation process can be
terminated before f* is reached (within the present accuracy) whenever

fey @97

for the first time even if

o (2.98)

Thus, the use of the stopping criterion (2.97) rather than the former one

f° - fr<e (2.99)

will, in general, lead to a reduced number of iterations as compared to that needed to
solve I.’roblem 2.6. Moreover, the fulfillment of (2.97) guarantees that Problem 2.5 has
a solution and hence, the tolerance analysis requirement (2.91) is satisfied.
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If at some current iteration p the following inequality

<y | (2.100)

is fulfilled, again there is no point in continuing the computation process since in this case
the upper bound series (2.96) tends to a global minimum f* < Y. Thus, the fulfillment of
condition (2.100) guarantees that Problem 2.5 has no solution or, equivalently, the
tolerance analysis requirement (2.91) is not satisfied.

Formulation of the tolerance analysis problem as Problem 2.5 offers yet another
computational advantage over Problem 2.6 when f{x) is the modulus of the frequency
response of an a.c. circuit. In this case

IN(jw)]|

= |H (i =
fx) = |H(jo)| DG

(2.101)

where N(jw) and D(jw) are the numerator and denominator of H(j®) while x is the input
parameter vector and may, in the general case, include the frequency ®. Thus,

[ 20 + a2
fo) = M (2.102)
‘/blz + b(x)

where a,, b, and q,, b, are the real and imaginary parts of N and D, respectively. If the
corresponding problem (2.7), (2.102) is now solved using first- or second-order method
we have to find the first and second derivatives of f{x) as defined by (2.102) with respect
to each component x; of x in explicit form. This alone is not an easy task, especially for
the second-order derivatives of f{x) for circuits of higher dimension. Furthermore, the
interval extension of each derivative must be evaluated for each of the emerging subboxes
X. Tt is not hard to see that when using (2.102) the first derivatives lead to expressions
more complex than (2.102); this remains true to much greater an extent, when comparing
the complexity of the second-order derivative expressions with that of their first-order
counterparts. Thus, as experimental evidence shows, application of second-order methods
to the original tolerance Problem 2.6 leads to execution times that are larger than those
of first-order methods. We shall now show that an appropriate modification of condition
(2.93a) will overcome the above difficulties.

Similarly to Example 2.9, either side of (2.93a) is squared to get, using (2.102), the
following problem.
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Problem 25a. Check whether
@(x) = a(x) + a(x) - P[bi(x) + b (x)] 20 (2.103a)
xe X° (2.103b)

Obviously, problem (2.103) is equivalent to problem (2.93). However, in contrast to
(2.102) the function @(x) has the merit that its derivative expressions become simpler and
simpler as the derivative order increses. This results from the fact that the functions a,,
a,, b, and b, are, in the overwhelming majority of cases, polynomials in the components
x; of x. Thus application of first- and second-order interval methods (or ¢ven higher order
methods) to Problem (2.103) should be expected to give better results than when the
equivalent problem formulation (2.93), (2.102) is used.

2.4.2. First-order method algorithmic improvements

In this section, several improvements of Algorithm A5 of the first-order interval
method for tolerance analysis from section 2.3.2 will be presented. They refer to the case
where the tolerance analysis problem considered has been formulated in the form (2.103).
For notation simplicity henceforth the symbol f{x) will be used to denote the function ¢(x)
from (2.103a).

A. Improved monotonicity test

The improved monotonicity test is applied sequentially to each component G(X) of
the interval extension for the gradient of f{x). It takes into account the fact that the ith
side X,” of the initial box X° may be subdivided dynamically (as the algorithm proceeds)
into several distinct subintervals X/, j = 0, J.. Indeed, whenever Procedure 2.3 happens to
be applied for the first time a side, say, X;” will be split into two disjoint intervals X,' and
X Subsequent use of the procedure may further split X;' or X;? (or both) into a pair of
disjoint intervals. The maximum number of such disjoint subintervals X/ along the ith
coordinate is denoted by J,. It should be realized that each subinterval X/ gives rise to
a subbox X' which does not touch any other subbox. The new monotonicity test accounts
for the presence of distinct subboxes X' when processing the current subbox X. More
specifically whenever

0 ¢ int G,(X) (2.104)

(where int stands for interior) we compute the lowerpole x;* by (2.37a) or (2.37b). Then
for each j € T, J; we check the following condition:
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a) if
x! e int X! (2.105)

for some j then, the whole current box X is deleted;
b) otherwise

xt=x/ or xt=% (2.106a)

if
G(X)z0 or G(X)=£0 (2.106b)

and the dimension of X has been reduced by one.
The explanation of the above monotonicity test is as follows. In both cases x/“ is either
X; or x; (one of the endpoints of the ith side X; of the current box X) because of (2.104).
First, consider case a). For the sake of argument, let x* = x; and x; = x/. Due to
(2.105)

¥ <x <x/’
bt =i 4

Thus, the lower endpoint x; of X, divides X/ into two adjacent subintervals X* (left) and
X, (right) such that

XtUx =X/
These subintervals determine two adjacent subboxes X“ and X such that
XtUX =X/

Since X* and X are adjacent they have a common facet X (an (n-1)th dimensional box)
defined as

X=X, .. X ,x.X

LEERE T S AN
1 i-1*=;

X)) (2.107a)

jepre

Therefore, if the global minimum f* is attained at a point X € X , then it will not be
missed after discarding the whole box X since x will remain in the adjacent box X~
Thus, unlike the monotonicity test from section 2.3.2 we are now able to delete the
whole current box even if:

) Gw=0 o GX=0
and
ii) X is not in the interior of X° .
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In Case b) x/ is one of the endpoints x/ or X/ of the interval X/. For instance, let x;*
= x/. Then the global minimum f* may be attained at a point x lying on the (n-1)-
dimensional facetX of X’ defined as follows:

X = (XXX X0 X,) (2.107b)

Since X' is not adjacent to any other box we cannot discard the current box X. Therefore,
in Case b) we have to retain for further processing the reduced box X. (Similar argument
is valid when x = X/, the ith component of the reduced dimension box X being now Xx/.)

B. Sequential evaluation of the derivatives

Since the monotonicity test is based on (2.104) and (2.106b) it is expedient to use
interval extensions of the derivatives g/(x) = df/dx,, that lead to as narrow intervals G(X)
as possible. One way to obtain this is to evaluate G,(X) in the following sequential order
(for simplicity of exposition we assume that (2.105) is not true for all i).

Procedure 24. The expressions for g,(x) are ordered in growing complexity
(which may entail reordering of the components x; of x). First, G,(X) is evaluated, X being
the current box to process. Now suppose, for the sake of argument, that the corresponding
component X, of X has been reduced to a point x,° by Condition b) of the above
monotonicity test — formula (2.106). Then the next component G, is calculated as

G, = G,(x,". X,.X,,....X,) (2.108)
Indeed, let
Y = (X,,...X,)

Since f(x) is monotonic with respect to x,, the global minimum of f(x) in X is attained
in a facet

X = (x*

1

X, X)) = (x,Y)
Now introduce the real vector
X = hx,...x,) = (xhy)
where
¥y = (X,....x,)

3 L . . .
Since x," is fixed the mean-value extension of f(x,", Y, y) can be written in the form
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F(x"Y,y4) = f(xly) + Y GO m V), -y (2.109)
i=2
which shows the validity of (2.108).
If G, = G,(x,%, ¥) does not contain zero properly, X, is now reduced to a point and G,
is computed as
= (xhat X, X)) (2.110)

n

If 0 e int G,(x,", Y) then the next components G, (i > 1) are calculated sequentially
with fixed x, = x,". As soon as for some index i = k < n Condition b) of the
monotonicity test is again fulfilled and the corresponding kth interval X, has been reduced
to a point x;%, all the remaining components G, i > k are now computed with x, = x,* and
X, =xt

This process of sequential reduction of some interval components X; to points x;* and
computing the corresponding G, using x! rather than X, as soon as the new information
is available continues until i = n. Obviously, due to the inclusion monotonicity of G, the
sequential procedure herein introduced will, in general, result in a narrower interval
extension of f{x} in X as compared with the case of simultaneous computation of all G(X)
in determining F(X, x*) by (2.35).

A better (but more expensive computationwise) version of Procedure 2.4 is possible.

Procedure 25, In this version, whenever the monotonicity test b) succeeds in
reducing an interval component X, to a point x*, all the remaining components G,j#i
are recomputed using all x! (available so far) instead of the corresponding X; and the
monotonicity test is applied once again to each updated G;. This process continues until
no further reduction of intervals to points is possible.

The above approach can be implemented in several different ways. One possibility is
to use Procedure 2.4. The resultant version will be referred to as Procedure 2.5a.

Procedure 2.5a. For simplicity of explanation, suppose Procedure 2.4 has reduced
only one interval, say X,, to a point x;". Afterwards we apply Procedure 2.4 for a second
time. Thus, we start recomputing all the components G; (using x,*) with i > 1 until
i = k - 1. If no new interval reduction is possible, the procedure is terminated. Otherwise,
if a new reduction of an interval to a point occurs before i = k, e.g. for k' < k, we
continue applying Procedure 2.4 (first with i > £” and then with ; > 1) until at some stage
no further interval reduction is possible.

A further improvement of Procedure 2.5a is possible. It will be referred to as
Procedure 2.5b.

Procedure 2.5b. (Optimal ordering). In this version, we start with Procedure 2.4
until i = n for the first time. For simplicity, suppose that only one component X, has been
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reduced to a point x,*. At this point all the remaining components G, i # k are ordered
in the following way. Introduce the real vector

€ = (6,6 1, s»€,)
whose components are defined as follows

e, = min[|G |, [C |l/w(G,) (2.111)

Then reorder the components of ¢ in increasing order to obtain the vector ¢’, keeping
track of the con‘espondance between the indices of the components e, of ¢ and the
indices of the components ¢,” of ¢’. Then start recomputing the components G, (using x.°)
in the order defined by the vector ¢’. Such an "optimal" ordering of G, has the following
advantage as compared to Procedure 2.5a: we start recomputing that component G; Wthh
stands the best chance to reduce the corresponding interval component X; to a pomt x
Indeed, according to (2.111) and the reordering rule we start with that component G, for
which the relative distance of |G;| or |G;| from zero (with respect to the width of G)
is minimum. If (hopefully) we have succeeded in rcducmg X; to a point x; we go over
to recomputing the second best candidate G, using xt and x . The above process
continues (as before) until no further interval reductlon is posslble

C. Use of the modified MV-form

On exit from Procedure 2.4 or Procedure 2.5 we have as many interval components
X, of X reduced to points as the respective version of the sequential evaluation of
derivatives can secure. Let the set of the remaining (interval) components X; of X be
denoted by X, and the set of their indices by S. Since we have already exhausted every
possibility of reducing interval components to points the best policy now in determining
the lower endpoint of the interval extension of f(x) in the current box X is to appeal to
the modified MV-form applying it only to_the reduced interval vector X. More
specifically, we apply Procedure 2.1 to the set X (making use of the optimal ordering of
its components if Procedure 2.5b has been used in technique B). Thus, the interval
extension of f{x) in the current box X will be defined by the following formula

FX) =fux) + LGX, ¥)X -x) (2.112)

ies

where u is the real vector whose components are defined by the monotonicity test b)
while ', x/ andX have the same meaning as in section 2.2.3 but refer to the reduced
vectorX. The lower endpoint of the interval extension of f{x) in X is then determined by
(2.112) as F(X).

Such an approach to computing F(X) based on the combined effect of the sequential
evaluation of G, and application of the modified MV-form is expected to give the best
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possible result (the highest F(X)) as compared to all other mean-value forms introduced
carlier in section 2.2.

D. Choice of bisection direction

In the implementation of the algorithms from section 2.3.2, the current box X is split
into two equal halves along that coordinate i, in which X has maximum width (see
(2.63)). Such a choice of the bisection direction is in practice most often inadequate.
Indeed, consider the tolerance analysis of an active RC filter. The resistors R; are usually
in kQ while the capacitors C are normally in nF. Since the tolerances on R, and C, are
generally on the same order (say 10% of their nominal values) the initial box X has sides
corresponding to the resistors R that are on the order of 10" larger than the sides
corresponding to the capacitors C. Obviously, (for reasonable accuracy €) the above
simple bisection rule will leave the narrow sides (corresponding to C;) unchanged unless
they are reduced to points by the monotonicity test.

Here the coordinate number i, for bisection is determined in the following manner
based on the mean-value form representation

F(X) =mX) + Y. G(X, - m) (2.113)
ie§
(§ is the set of indices corresponding to components of nonzero width). Now i, is the
coordinate direction for which the width of the product

G(X,-m), ie§

is maximum. Such a bisection direction choice is expected to give better results than the
former one since according to (2.113) it bisects that side X;_ of X which has the greatest
effect on the width of F(X).

E. Use of the inequality constraint

As explained in section 2.4.1, the use of conditions (2.97) or (2.100) helps to
diminish the computer time needed to establish whether the tolerance analysis problem
(2.93) has a solution or not for a given tolerance box X°. A better implementation of this
approach is to use (in the case of a.c. circuits) the equivalent formulation (2.103). Now,
conditions (2.97) and (2.100) take on the form

20, (2.114a)

<o (2.114b)

Here, f° and f* are associated with the function f{x) =p(x) given by (2.103a); £° = FX?)
is computed by (2.112).
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There exists yet another possibility to use the inequality constraint (2.103). Consider
again the inequality (2.66) which in the present context (see formula 2.112) takes on the
form

flux) + Y6,X, 5 ) -x)<F (2.115)

ie§

where f is the best available upper bound on f*. Based on the inequality (2.103a) it is
easily seen that now f from (2.115) should be set equal to zero right from the start.
Indeed, the procedure "using the bound f' from section 2.3.2 ensures that the interval
enclosure Y of all points y satisfying (2.115) will be retained for subsequent processing.
Thus, setting

F=0 (2.116)

when applying the above procedure in Step 4 of the algorithm AS5 from section 2.3.3 we
are sure to delete only such parts of the current box X within which f(x) > 0. But this is
exactly what we are striving to achieve (and in as fast a manner as possible) in solving
problem (2.103). Since usually f =0 is smaller that the currently available upper bound
f as determined by algorithm A5 the choice (2.116) leads to an improved convergence
rate as compared to the stopping criterion (2.114a).

2.4.3. Numerical examples

The techniques A to E from the previous section have been incorparated in algorithm
AS5. The resultant new version (using optimal ordering Procedure 2.5b) will be referred
to as algorithm A6. Several examples will be now considered which will demonstrate the
improved numerical efficiency of the new algorithm in comparison with algorithm A5
when solving Problem 2.4.

Example 2.11. We take up Example 2.8 from section 2.3.3. However, now we shall
check whether the inclusion (2.90) is satisfied for several intervals Y, the initial box X°
being the same as in Example 2.8.

Table 2.6 summarizes some results obtained by using algorithm A6.

The last row of the table gives in fact the best results (the smallest number of
iterations) when f;” and f,," are sought using the global optimization algorithm A4 and A5,
respectively (see Tables 2.2 and 2.3). It is seen that the introduction of a threshold Y or
Y decreases substantially the number of iterations N; and hence the computation time 7 (in
seconds), needed to solve Problem 2.4 in comparison to the former approach when the
tolerance problem is formulated as Problem 2.1 (determination of the range of f(x)). It
will be noted that the further away the threshold is from the range, the smaller is the
number of iterations required to solve Problem 2.4. Also, in reaching f,” (with € = 107),
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A5 required X° to be divided into 555 versus only 17 bisections for the present method
whenY = 24416 (for the remaining values of Y the number of bisections is still smaller).

Table 2.6.

Checking fi'zY Checking f,) <Y

Y N, 1(s) Y N, 1(s)
21000 0 0.10 24480 65 3.90
22000 1.5 0.94 24450 75 4.51
22500 35 1.93 24430 95 5.43
23060 12.5 2.69 24417 135 8.02

23067 12.5 2.70 24416 20.5 12.14
- 25 - - 1745 -

Remark 24. In Algorithms A4 and A5, an iteration comprises computation involved
in Steps 3 through 9 whereds in algorithm A6 an iteration corresponds (essentially) to
calculating F(X). To make the results comparable an effective number of iterations (the
actual number divided by two) has been introduced for algorithm A6 which explains the
presence of iterations and a half in the columns for N, in Table 2.6.

It should be also underlined that a similar reduction of N, occurs when the threshold
Y (or ¥) moves away from f;" (or f;") towards the centre of the range.

Example 2.12. In this example, the active RC filter shown in Fig. 2.7 is considered.

G,
A | m—

Ry R,
— 3 ,
G, ==
T

Fig. 2.7. A Sallon-Kev low-pass active filter.
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The nominal values for the parameters are:

o =1000s", R, =100kQ, R,=R, C,=10°F, C, = 107F

4

The voltage transfer function of the filter is

1

T{(jw) = -
1 - @R R,C.C, +joC,(R, +R,)

First, the range of |T(j, p)| with p = (R,, R,, C3, C,) was determined over several
boxes P = (R/, R/, C, C,)). For each box P, this was done by finding the range [@, 9]
of the function

®(p) = (1 ~ &p,p,p;p,)* + Wp;(p, + p,)
in P. Obviously, the range |T| = [T,T] of |T(jw, p)| in P is then given by

r-=1 7-1

[ )
The range was computed for several initial boxes P corresponding to various
tolerances (tol) in percentage with respect to the nominal parameter values. The results
for the lower endpoint T of the range |T| obtained by algorithm A6 are given in

Table 2.7.

Table 2.7
tol % N, t(s) I
5 13 2.80 3.243
10 15 3.19 1.911
20 15 3.19 0.900

where /,, (as before) denotes the maximum length of the list L.

It should be noted that the difficulty of the tolerance problem considered (values for
N; and 1,) is not affected considerably by the size of the initial box P’ (defined by tol).
The same conclusion is also valid in determining the upper endpoint T of the range.

Remark 2.5 In Table 2.7 N, stands for the number of iterations as defined in

algorithm A6, i.e. roughly for the number of evaluations of F(X) (and the associated
computation of the derivatives).
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After the ranges for |T| corresponding to different tolerances had been found it was
possible to assign various values for the thresholds (endpoints of the interval ¥ covering
the range). The corresponding conditions

1 -Y(p)=20, pe P
and
1 -Y’o(p)<0, pe P

were checked. Table 2.8 gives some results related to a 5% tolerance on the input
parameters.

Table 2.8
)4 2.0 2.5 3.0 3.2 3.243 1.0
t(s) 0.38 0.38 1.23 1.76 1.98 2.80

It is seen that the introduction of the thresholds reduces the computation time as
compared to the case (last column of the table corresponding to Y = 1) where the
tolerance analysis problem considered is tackled in the former format as a global
minimization problem.

2.4.4. Second-order method versions

As mentioned at the end of section 2.3.4, more sophisticated schemes than those used
in Algorithm A7 can be developed to improve the numerical efficiency of the interval
second-order methods for tolerance analysis. In this section, based on the results from
section 2.4.2 we shall present two new second-order algorithms designed to solve
tolerance analysis problems formulated in the form of Problem 2.4.

Algorithm AS8.

This algorithm is based on the first-order derivative algorithm A6. Additionally, it
incorporates a procedure that uses only the second derivatives &/3x>

Procedure 2.6. We assume that the problem to be dealt with is checking the
inequality (2.91), or equivalently problem (2.103) with f(x) = ¢,(x) € C%. The present
procedure is applied after Procedure 2.5b, i.e. only to those components X, i € S, that
have not been reduced to points. It is based on the following result.

Let h;(x) = 8%f/6x and H,(X) be the interval extension of h,(x) in X, where X denotes
the current box on exit from Procedure 2.5b. We shall prove the following theorem.
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Theorem 2.10. If for some i € §
HX)<0 2.117)

then the corresponding interval X; = [x, x;] can be reduced to two points, namely x; and
X, when solving Problem 2.5a.

P r o o f. For simplicity of notation assume thatS = 1, » and i = 1. The function flx,, .
.., X,) is then written in the form

fx.,2,,...,2,) = f(x,,2)
with

Z=(X,,...,X )

n

For a fixed ze€ Z = (X,, . . ., X,) and loose x, € X, the function y = flx;, z) can be
viewed geometrically as a curve in the plane (y, x,) (the location of the plane in R™" is
determined by the fixed vector z). The derivative

dy - af(xl’z) -

=7 (x,,2)
dx, ox B4

1

is also a curve in the (y, x,)-plane. The derivative

dg,(x,,2)

9 = hll(xl’z)

1

is once again a curve in the same plane.
Now let H,(X,, Z) = H,,(X) be the interval extension of h,;(x,, z) forx, € X,, z € Z.
If

AL X < 0

then g,(x,, 2) is strictly monotonically decreasing along x, for each z € Z. The global
minimum of g,(x) in X is, therefore, somewhere in the reduced box (x,, Z) =X while the
global maximum of g,(x) in X is in the reduced box (x,, Z) = X.

Let g,(x;, Z) denote the range of g,(x,, z) in (x;, Z) =X. If g,X) > O then X, can be
reduced to x,; similarly, if g,(X) < 0 then X, is contracted to X,. (In this case f(x,,z) is
monotonically increasing or decreasing, being in either case convex along x,.)

Now suppose that
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8,X) <0<z ®

In this case the equality
g8(x,,....x,) =0 (2.118)

must hold for some x € X. Eq.(2.118) defines an (n—1)-dimensional surface o in X. It
divides X into two regions R® and R™ such that

X = ROUaUR®

(R™ and R® do not include ). It is easily seen that R™ lies to the left of o (in the
direction of x,) and g,(x) > 0 for x € R® while R is to the right of & and g(x) < 0 for
x € R™. (Indeed, let x* = (x,% z) be a point belonging to the surface o, i.e. g,(x*) = 0.
Then, because of the strict monotonicity of g,(x) along the axis x,, the component x,* is
unique for each component z of x* which implies the properties of R and R™). Thus,
since g,(x) > 0 for any x € R™ the global minimum of f(x) may occur in the reduced box
(x;, Z): similarly, since g,(x) < 0 for any x € R the global minimum of f(x) may be in
the box (x,, Z). This completes the proof of Theorem 2.10.

We are now ready to present Procedure 2.6. We start computing H,(X), i € S until
Condition (2.117) is met for the first time for i = k. Now two boxes

X'=(x,.2)
and
X? = (%,,2)

are generated. At this stage we appeal to the modified monotonicity test, Condition a). It
is applied sequentially to X' and X* Let X = X'. Recall that X/ denotes the disjoint
intervals along the x; direction resulting from Procedure 2.3 (after the deleting of gaps).
If for some j, je 1, J,

x € intX; (2.119)
then the whole box X' is discarded; otherwise the box X' is processed as in Algorithm A6
and added to the list L. The same is repeated with box X%

Algorithm A9,

The basis of this algorithm is again algorithm A6, However, unlike Algorithm A8 now
all the second-order derivatives h,(x) = 8/*/8x8x; are used.

Comparative study of the techniques used in Algorithm A6 shows that reduction of
interval components X; of the current box X to points plays a major role in improving the
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efficiency of first-order tolerance analysis algorithms. That is why it is expedient to wry
to obtain as good bounds on the range g(X) of the derivatives as possible. In the present
algorithm this objective is achieved by computing the interval extensions G,(X) using the
interval extension H,(X) of the second-order derivatives. More precisely, the algorithm
has the following structure.

The computational process starts as in algorithm A6. However, on exit from Procedure
2.5b the following new procedure is introduced.

Procedure 2.7. Using (2.111) we order in an optimal manner all the components
X,, i € S, of the reduced current box X (that have not been reduced to points). However,
now additionally we keep track whether

G, =min[|Qp|,|Up|] (2.120)

p

is |G,]| or ﬁp| To do this, we may introduce a logical variable

true  if G, |_G_p|
K, = @.121)
false if G, = |G|

We start with the first component of the reordered setX. If the corresponding K, is
true then we start solving the following global minimization problem

& = min g,(¥), TeX (2.122)

otherwise (if K, is false) we start solving the global maximization problem

g =maxg(®),FeX (2.123)

Such a policy stands the best chance of reducing the corresponding interval X, to a point
X, or x, depending on whether g, > 0 or g, < 0.
After converting (2.123) into an equivalent minimization problem

%, = ~[(min - g, ()], FeX (2.124)

cither problem (2.122) or (2.124) is solved by Algorithm A6. In doing so, the following
points must be noted.

To be specific, consider problem (2.122) where the function to be minimized is 8,(%).
Now, we don’t need the global minimum g,": what we wish to establish is whether g’
is non-negative. Thus, instead of (2.202) Wwe solve the following problem of type 2.5:
verify whether
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g, 20,%eX (2.125)

To check (2.125) in a most efficient way using Algorithm A6 we set the upper bound g,
on gp to zero, i.e.

g, =0 (2.126)

(recall the technique E from section 2.4.2).
It is easily seen that the same condition (2.126) is to be used when we solve the
corresponding equivalent problem (2.125) associated with the original problem (2.124).
In solving (2.125) the interval extension G ,(X) is evaluated by an expression
involving the second-order derivatives

G,) = 8,1 + ¥ H, DX, - 51 @.127)

Since X may be subdivided we need a second list L’ (the first list L stores information
about F(X)).

If (2.125) has a solution then the corresponding interval X, is reduced to a point,
otherwise X, remains an interval. In both cases we go over to the next component of the
reduced boxX and the above computational process is repeated using points rather than
intervals whenever possible at the next iterations. The following example will illustrate
the applications of Algorithm A9.

Example 2.13. We shall solve once again the problem of finding the range of the
function (2.74) from Example 2.8 by means of the second-order algorithm A9. The results
obtained are given in the first row of the following table.

Table 2.9
£, =123067.376 f/ = 24416.031
N, 1 t(s) N, L, 1(s)
A9 18 9 2.59 52 1 15.98
A6 25 8 2.69 52 1 13.14

For the purpose of comparison the second row of the table lists data obtained by the
best first-order method A6 (used in this instance for global optimization). It is seen that
for the example considered the second-order test for reducing the size of the current box
cuts down the number of iterations only in the case of determining the global minimum
while leaving the number unchanged in the case of the global maximum (this is because
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the function f(x) is, generally, either convex or concave in all or almost all of its
coordinates). The computation time is however not reduced (taking into account both the
minimum and the maximum cases). Nevertheless, it is hoped that a better second-order
method incorporating more sophisticated techniques and algorithmic improvements might
lead to a faster convergence than that of the best first-order methods.

2.5. SOLVING THE PROBABILISTIC TOLERANCE ANALYSIS PROBLEM

In section 2.1.3 the tolerance analysis problem in probabilistic setting was formulated
as Problem 2.2, namely: given the multivariate nonlinear function y = f{(x), find the range
of y when x € H where H is the admissible hyperellipsoid. For reasons similar to the
worst-case tolerance case (section 2.4.1) Problem 2.2 can be reformulated as follows.

Problem 2.7. Given a multivariate function f: R” — R, check that the range flH) =
[f, A of f over H is contained in a prescribed interval Y = [Y, Y], i.e.

f(HYcY (2.128)

In this paragraph four methods for tackling the basic probabilistic tolerance analysis
Problem 2.7 will be considered. For convenience of presentation they will be divided into
two groups.

2.5.1. First group methods
The methods of this group are based on the following conjecture.

Conjecture 2.1. The endpoints of the solution of Problem 2.2 are attained at points on
the boundary dH of the hyperellipsoid H.

Thus, in determining the lower solution endpoint, problem (2.18)

fi =minf(x), xe H
can be replaced by the problem

fi = min f(x), x e oH (2.129)

(Problem (2.20) associated with the upper solution endpoint can be transformed in a
similar way).

LetY=[Y, Y] be the interval which must cover the range of solutions to Problem 2.2,
Then, in accordance with Problem 2.7 formulation (following exactly the same approach
as in the deterministic case from section 2.4.1), Problem (2.129) should be transformed
as follows
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fx)2Y, xe dH (2.130)

Finally, using (2.130) and (2.102) we arrive at a formulation similar to (2.103)
fi(x) = al(x) + al(x) - Y*[bi(x) + b}(x)] 2 0 (2.131a)
x € oH (2.131b)

Now we are ready to present the first method of this section. It is applicable only for
problems where the components x; of x are statistically independent (the matrix C from
(2.15) is diagonal). We shall show that in this case the probabilistic formulation (2.131)
can can be transformed equivalently to a worst-case tolerance analysis problem.

Indeed, for a diagonal C condition (2.131b) becomes

L eoyzog
21: G‘;(x‘ ) -y (2.132)

Now, one of the variables, say x;, can be expressed as a function of the remaining ones

x=t to |y -Y ;12. x, - £)* (2.133)
i=2 i

It can be verified that most often (for instance, when x; are passive elements and
dependent sources parameters) f from Eq. (2.131a) is a quadratic function in each x..
Therefore, it can be written in the form

fix,z) = o (2)x; + o, (2)x, + a,(z) (2.134)

where
z = (X,,X,,...,X,) (2.135)
Using (2.135) and substituting (2.133) into (2.134) we get

() = o (D)E toVe(2) P+a,(2)[E10/o(z) 1+0a,(2)
and after some manipulation
TA (2)Wo(2) +A,(z2) 20 (2.136)

where Q(2) is the function under the square root in Eq. (2.133). Now, assume that A,(z)
# 0 for all (x,, z) € 8H. Then, from (2.136)
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CSRRiE
Hence
Al(2)@(2) - Aj(z) 2 0 (2.137a)
ze Z° (2.137b)
where
Z° = (X5,....X)) (2.137¢)

The components X;° are defined by the value of . If ¥ = 3 then the width of X;° is 60;.
Thus, the original tolerance problem in probabilistic statement (2.131a), (2.132) has been
transformed into a deterministic problem (2.137) of a reduced (by one) dimension. The
latter problem can be solved by Algorithm A6.

The second method of this group is more general: it is applicable for statistically
dependent variables also (matrix C can be nondiagonal). Thus, the Condition (2.131b) is
now given by (2.15) as

L) = (-8 C(x-8) -y* =0 (2.138)

We are, therefore, led to check whether the system
L(x) 20 (2.139a)
LH(x) =0 (2.139b)

(with (2.139a) given by (2.131a)) has a solution. If we are to use an interval method to

do this, we have to introduce an initial box X° containing the solution(s) (if any) of

(2.139). It is reasonable to define X° as the smallest box (interval hull) containing H.
Rather than verify (2.139), we shall check whether the system of two equations

fix) =0 (2.140a)
f(x) =0 (2.140b)

has a solution for
xe X° (2.140c¢)

It turns out that checking the validity of (2.140) is numerically an easier task than
checking (2.219). Indeed, based on section 1.4.2 an interval method for verifying (2.140)
can be developed. We shall, however, postpone the discussion of this method to Chapter
6, section 6.1.4. At this stage, it is important to underline that if Problem (2.140) has not
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a solution then the corresponding tolerance analysis problem (2.131a), (2.138) has a
solution and vice versa.

Remark 2.6. If Conjecture 2.1 is proven to be valid then the above two methods will
guarantee the exact (within the accuracy €) solution of the tolerance problem considered.
Otherwise it will only provide an approximate solution. It is, however, expected that even
in this highly unlikely case the approximation will be rather accurate (it is difficult to
imagine a circuit for which the point x,” securing the global minimum f;” in (2.129) might
be far away from the boundary 8H of H).

2.5.2. Second group methods

The two methods from this section do not appeal to Conjecture 2.1. Therefore, they
are always guaranteed to provide the exact solution of the tolerance problem considered.
Both methods appeal to formulation (2.131a). Condition (2.131b) is, however, now
replaced by the general condition (2.17), i.e.

() = (x=-EYCl(x-E)-y*<0 (2.141)

The first method verifies directly the validity of the system of inequalities

f(x)z0 (2.142a)
Lx)=0 (2.142b)
xe X° (2.142¢)

It is based on a Skelboe type algorithm for seeking the global minimum of f,(x) in X°
combined with additional rules for discarding the current box X whenever it does not
satisfy (2.142a) or (2.142b). Thus, X is not entered the list L (of boxes to be processed
later) if

F <0 (2.143a)
or

£ >0 (2.143b)

The second method deals again with (2.142a), (2.142b) formulated as a global
optimization problem:

fi = min f,(x) (2.144a)

L(x)£0 (2.144b)
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Obviously, if f;” > 0 then the original probabilistic tolerance problem considered (f{x) =
Y, x € H) has a solution (and vice versa). The basic approach is to convert (2.144) into
a system of nonlinear algebraic equations as done in section 1.5.2. It is readily seen that
now the system of equations (1.98) to (1.100) associated with the minimization problem
2.144) is

ug(x) +ugd(x) =0, j=Tm (2.145a)
uf(x) =0 (2.145b)
u, +u =1 (2.145¢)
where
of.
0= i12:)=T
ox.
J .

20, u 20 (2.145d)

Eliminating u, through (2.145¢) we finally get

Up8"(X) + (1 - u)g(x) =0, j=Tm (2.146a)

Treating 1, as an additional (n+1)th variable we see that we have transformed the
minimization problem (2.144) into an equivalent system (2.146) of (r+1) nonlinear
algebraic equations in (n+1) unknowns. The latter system can be solved by some interval
Newton method from section 1.4.2.

The last point to make is to define the initial box X°= (X}, X,, . . . , X,, X,,;) within
which the solution of (2.146) will be sought. Obviously, the first n components of X° can
be chosen (as in the previous section) as the components of the interval hull containing
the hyperellipsoid H. The last component X,,, of X° is defined as the interval [0, 1]. This
follows directly from Eq. (2.145¢) and Condition (2.145d).

2.5.3. Numerical example
In this section we shall deal again with the filter considered in Example 2.12. This

time, we shall however solve the probabilistic tolerance analysis problem formulated as
Problem 2.7. More precisely, the Problem (2.131) associated with the lower endpoint ¥
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of the interval ¥ will be considered for various values of Y. The hyperellipsoid H will be
constant and will correspond to y = 3 with axes of 60, Each o, is defined as follows

o, = (x;-x9/6

where x”and x” are the endpoints of the interval X;° associated with the £5% worst-case
tolerance analysis problem from Example 2.12.

All four methods (referred to, for convenience, as methods M1 to M4) from the
preceding two subsections have been applied to solving the probabilistic tolerance
problem considered in this example. We shall confine ourselves to give some results
obtained by methods M2 and M3 since the remaining two methods were (at least for the
problem at hand and in their present implementation) less efficient.

E xample 2.14a. In this example, Problem (2.131) was solved by method M2. The
system (2.140) is now

1-Y[(l- m2x1x2x3x4)2 + (1)2x32(xl +x,)*]1 =0 (2.148a)
Yy iz(l;,- -x)}-9=0 (2.148b)
i1 @)

x e X° (2.148¢)

where X’ is the box corresponding to $5% tolerance on the input parameters.

Table 2.10
Y Alla Allb N,
N, I, 1 (s) N, I, 1(s)
3 9 5 0.60 9 5 0.39 0
35 27 13 1.64 23 12 1.43 0
4 209 76 12.46 133 49 8.57 1
4.5 23 12 1.42 43 22 2.64 1
5 21 11 1.30 21 11 1.32 1
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Method M2 is presented in detail in Chapter 6, section 6.1.4. It will be only noted
here that it has been implemented by two different algorithms referred to here as
algorithms Alla and Allb.

Table 2.10 gives some results regarding system (2.148) obtained by these algorithms.
The notation N, means number of solution of the system considered. Since system (2.148)
has no solution for the first two rows, the corresponding probabilistic tolerance problems
(2.130) associated with the lower endpoint Y of the interval ¥ from Problem 2.7 for the
first two values of Y have a solution. Conversely, since for the last three rows system
(2.148) has a solution, the corresponding tolerance problems (2.213) have no solution for
the last three values of Y.

Example 214b. Now Problem (2.131) was solved by method M3. In order to be
able to compare the efficiency of method M3 and M2 it was assumed that Conjecture 2.1
is valid for the example considered. Thus, the system to be checked for solutions in X°
was in fact system (2.139).

An algorithm (A12) for implementing method M3 in this special case has been
developed. Its structure is similar to algorithm A1l from section 2.3.3. However, A12
incorporates additionally the rules (2.143) for discarding the current box. Due to
Conjecture 2.1, (2.142 b) is now an equality, so the additional discarding rule

F(X)<0

was also used.
The results obtained by algorithm A12 are given in Table 2.11.

Table 2.11
Y A12 N,
N, I, t(s)
3 9 5 0.39 0
35 27 13 0.93 0
4 209 76 6.32 1
45 23 12 0.82 1
5 21 11 0.77 1

. Comparing the above result with those from Table 2.10 it is seen that algorithm A12
1s more efficient computationwise than algorithms Alla, Allb.

The same tolerance problem was solved by the traditional Monte-Carlo method. For
N =2000 where N is the number of tests the (approximate) lower endpoint f; = 3.854 of
the tolerance on the output variable was determined for ¢ = 17.30 sec. Comparing the
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latter run-time with the run-times from Tables 2.10 and 2.11 it is evident that the interval
methods M2 and M3 are considerably more efficient as regards execution time
requirements than the traditional statistical method, especially for thresholds Y that are not
quite close to the range endpoint.

Comments

Section 2.1. In the literature on tolerance analysis, it is more common to define the
tolerance interval X; on each input variable x; not in the form (1.6)

X; = [E‘.’-_x—,']

(i.e. by specifying the endpoints of the corresponding interval X)) but rather by the
equivalent expression (1.7):

X, = m(X) +[-w(X,)/2, w(X))/2]
In the latter formula m(X;) is the nominal value of x; while w(X)/2 is given in percentages
of m(X;). For example, a resistance r may have a nominal value of, say, 200 Q and — in
electrical engineering jargon — a "tolerance” of £5%; thus

R =200 + [-10, 10] = [190, 200]

Nonsymmetrical (with respect to the nominal value) tolerances are also encountered (as
in Example 2.4).

The idea of applying interval analysis techniques for tackling the worst-case tolerance
problem in its global optimization setting was first suggested in [32] (see also [21] and
[33]). The iterative method developed in [21] was based on the monotonicity test mean-
value form representation (2.29) for the interval extension F(X) of the associated function
fx) relating output variable to input parameters.

The usefulness of Theorem 1.2 in worst-case tolerance analysis is illustrated by
Proposition 2.1 and Examples 2.4, 2.5 and 2.6. It is felt that the scope of this theorem can
be broadened. Thus, it would be of practical utility to know all possible types of resistive
circuits for which the theorem is fully or partially applicable.

As shown in section 2.1.3 the basic probabilistic tolerance problem can be equated to
two inequality constraint minimization problems of type (2.21). To the best of the
author’s knowledge such an approach has not been considered in tolerance analysis
literature as yet.

Section 2.2. The idea of modifying the MT-form by choosing two distinct points x
and x" different from the center m in order to narrow the interval extension of the
function considered was first suggested in [34] for the case of a scalar function. Later, the
vector generalization of the modified MT-form was proposed in [31]. In the same paper
the modified MV-form was introduced. Theorem 2.9 establishes the important result that
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under appropriate conditions the modified MV-form ensures the narrowest interval
extension among all known mean-value forms.

The modified forms considered in section 2.2 can be further improved by making use
of the so-called interval slopes (introduced in {23]) in evaluating the interval extensions
of the partial derivatives involved provided the intervai slopes lead to narrower intervals
for derivatives than their natural extensions,

Section 2.3. Three interval methods for solving the worst-case tolerance analysis
problem have been presented in this section: zero-order method (using no derivatives),
first-order method and second-order method (resorting to first-order and second-order
derivatives, respectively). The zero-order method was exposed only as a means for better
understanding of the other two methods - its overall efficiency, as numerous examples
have shown, is by far lower than that of the methods using derivatives.

The first-order method has been implemented appealing to various mean-value forms
considered in section 2.2. In accordance with the theoretical predictions the numerical
evidence show that the best first-order methods are those based on the modified MT- and
MV-forms. It should, however, be borne in mind that their numerical efficiency might be
further improved by incorporating more involved techniques: using interval slopes when
evaluating the extensions of the first-order derivatives and introducing more effective
schemes for reducing the current box X when several components X; are divided into
subintervals. Some alternative techniques aiming at improving the first-order interval
methods for worst-case tolerance analysis are presented in section 2.4.1 and section 2.4.2.

The second-order interval method presented in section 2.3.4 has been based on a very
simple algorithm (Algorithm A1l from section 2.3.3 for implementating the first-order
interval method). Further improvements appealing to more sophisticated techniques such
as nonconvexity tests, monotonicity tests and interval Newton method may be
implemented resulting in a higher numerical efficiency. Several such approaches are
briefly considered in section 2.4.4.

Section 2.4. In this section certain improvements relative to the first- and second-order
methods for worst-case tolerance analysis have been presented. The first improvement
suggested in subsection 2.4.1 is related to a new formulation of the tolerance analysis
problem considered. Unlike section 2.1 where the tolerance analysis problem was solved
by finding the global solutions of two associated minimization problems, the new
formulation leads to two equivalent problems of the type 2.5a which circumvents the need
to determine the respective global minimums, thus saving most often a considerable
amount of computation. The second important advantage of the equivalent Problem 2.5a
over the original formulation stems from the fact that the derivatives have simpler
€xpressions as their order increases.

'I_‘hej equivalent Problem 2.5a checks the nonnegativeness of a function fx) in box X.
A similar problem verifying the positiveness of fix) in X will occur in Chapter 4.
Therc;fore, the efficient solution this problem is of great interest.

FIV‘C techniques for improving the numerical efficiency of the first-order tolerance
analysis methods addressed to the equivalent Problem 2.5a formulation are suggested in
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section 2.4.2. It seems that the most important improvement is due to the more elaborate
monotonicity test but further experements with a larger group of test examples are needed
to determine more precisely the relative weight of each individual technique.

The best first-order algorithms are by far superior as regards computation time and
accuracy over the statistical (Monte-Carlo) method in the case of circuits of moderate
size.

In subsection 2.4.4 two second-order methods for worst-case tolerance analysis are
suggested. Both these methods as well as the method from section 2.3.4 exploit a
particular technique out of a variety of choices. Many other possibilities remain
uninvestigated. For instance, rather than applying formula (2.127) involving the second-
order derivatives H,(X) use can be made of interval slopes [23] in evaluating the interval
extensions G,(X). Such an approach would usually yield narrower (but never wider)
intervals for G (X) and thus would improve the overall efficiency of algorithm A9.  The
comparative study of all the options open and the elaboration of an efficient second-order
method for tolerance analysis are only in their initial phase.

Section 2.5. The last section of this chapter deals with the tolerance analysis of linear
circuits in probabilistic setting. Similarly to subsection 2.4.1, first an equivalent
formulation of the problem considered is introduced in the form of Problem 2.7 which
offers similar computational advantages over the original formulation as in the
deterministic tolerance analysis case. Four interval methods for solving Problem 2.7 have
been suggested.

The first two methods are based on Conjecture 2.1. Until it is confirmed these methods
are theoretically only approximative although there are good reasons to believe that the
conjecture may prove correct (at least for the commonest cases encountered in practice).
The last two methods provide the exact solution of Problem 2.7.

The first method applicable for circuits with statistically independent parameters
reduces the probabilistic problem into an equivalent worst-case tolerance problem. Thus,
the whole arsenal of first- or second-order methods developed in section 2.3 and section
2.4 can be employed in solving the equivalent deterministic problem. The third method
is, in fact, based on the global minimization algorithm A1l modified to take into account
an additional functional constraint.

The remaining two methods appeal to solving a system of n nonlinear algebraic
equations (in the case of M2) or systems of two equations (in the case of M4). These
problems will be discussed in detail in Chapter 6.

It is difficult to compare the numerical efficiency of all the four methods. At the
present stage the experimental data available seems to indicate that algorithm A12 yields
the best results (provided that Conjecture 2.1 proves correct). Much more research is,
however, needed to substantiate the validity of such a conclusion.

CHAPTER 3

LINEAR CIRCUIT TOLERANCE ANALYSIS - LINEAR
INTERVAL SYSTEM APPROACH

In this chapter we continue considering the worst-case tolerance analysis of linear
electrical circuits. However, unlike Chapter 2 where the tolerance analysis problem was
equated to two global optimization problems here the tolerance analysis will be carried
out by means of specific linear systems of equations with interval coefficients. It will be
shown that such an approach results in methods for worst-case tolerance analysis which
may, in some cases, be more efficient than their counterparts from Chapter 2.

3.1. PROBLEM STATEMENT FOR D.C. CIRCUITS
3.1.1. Implicit form formulation

When stating the worst-case tolerance analysis problem in section 2.1.1 it was assumed
that there was only one output variable y and — what is even a more stringent stipulation
— that the function y = f{x,,. . . , x,) relating the input parameters x; to the output y is
known explicitly. These assumptions are, in many cases, far from being realistic. Indeed,
although theoretically always possible, the derivation of the function fin explicit form
may prove, especially for circuits of increased size, an intractable task. Moreover, first-
or second-order derivatives of f in x, are needed to implement the respective first- and
second-order interval methods. If all these functions are to be derived repeatedly for
several interval output variables y, = f(x;, . . . , x,) the amount of preliminary analytical
work needed just to formulate the problem may be prohibitively large.

In this section, it will be shown that for a large class of d.c. circuits the
multiparameter - multioutput tolerance problem can be formulated (and solved) in a very
efficient way as a system of linear interval equations

Aly =B G.1)

This approach circumventing the need for explicitly deriving the functions f, (and their

derivatives) will be later (section 3.3) extended for tolerance analysis of a.c. circuits.
The formulation of the tolerance problem as a system of linear interval equations will

be initially presented for a simple resistive circuit. More complex circuits will be

considered in sections 3.1.3 and 3.3.3.

. In this section, N will denote a linear resistive circuit made of uncoupled resistors and

independent voltage sources. Let m be the number of branches and (#+1) be the number
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of nodes; one of the nodes (say, the (n+1) node) is grounded. The worst-case tolerance
analysis problem herein considered for this class of circuits is formulated as follows.

Problem 3.1. Given the circuit N and the tolerances on the branch resistors and
source voltages, find the tolerances on the branch currents and/or the nodal voltages.

According to the approach adopted in this chapter we have to derive a linear interval
system of the form (3.1). Recall (section 1.3.1) that the elements of A' and B must be
independent intervals.

To derive (3.1) we first have to write down an appropriate system of equations in real
(noninterval) variables. To do this we make use of Kirchoff’s laws. By KVL we have

iy = (VS’ - VPP) =u, p=1Lm 3.2)

where 7, is the branch resistance, i, is the branch current, s, and p, are the nodes of the
pth branch, V and V, are the corresponding node voltages and u, is the branch
(independent) source voftage. By KCL we have

Yo =0, k=Tn 33
j=1

where oy; is either +1, —1 or 0. On introducing the (reduced) incidence matrix o = {-0;}
it is not hard to see that (3.2) and (3.3) can be written together as a system of N =m +
n linear equations in N unknowns

r i U
r, 0 i, U,
. o . .
0 . .
I i i, T ow, G4
141
a 0 . 0
vll

(the symbol o denotes the transpose. of o).
We write (3.4) in matrix form as
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Ay = b (3.5)

A =|:r aT], y=[i], b=lu] (3.6)
a 0 v 0

Let each resistance 7, and source voltage u, in the pth branch belong to the respective
interval R, or U, i.e.

with

r 7, 3.7

u,e U, =1 'tip] (3.8)

EP ,

We seek the intervals of the possible values of all currents and all ungrounded node
voltages. Thus we have N = m + n output variables and 2m input parameters.

When the components of r and u vary in the intervals (3.7) and (3.8), respectively, the
system (3.4) becomes an interval linear system of the type (3.1).

Indeed, let R be a diagonal interval matrix whose nonzero elements are given by (3.7)
while U is an interval vector with elements defined by (3.8). Then the resulting interval
linear system for tolerance analysis of the resistive circuit considered takes the form

[r ar}{i} {ujl
= , reR, uelU 3.9)
a O [v 0

which can be written symbolically-as

e

Obviously, (3.10) is a system of linear interval equations of the type (3.1) with

A= s s=|? @3.11)
ao,y—van "o '

It is most important to underline that in the linear interval system (3.10) all interval
coefficients are independent. This condition is crucial since most of the existing interval
methods are capable of exactly solving only such linear interval systems.

Thus, the approach herein adopted for solving the d.c. tolerance problem considered

consists in formulating and solving an associated system of linear equations with
independent interval coefficients.
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To contrast this approach with the global optimization approach from the previous
chapter, consider again system (3.5). Having (3.5) and (3.6) in mind, we can write the
vector solution y in the form

y=A"b = f(r,u)

where f is a vector function with component f;, k =1, N. So the kth component y, of y is
determined by the function

y, = f.(r.u) (3.12)

Now let r € R and u € U. Problem (3.1) might be solved by finding the range of each
function f(r,u) over the interval vector X = (RIU). Since the latter problem is equivalent
to two global optimization problems, we have to solve 2N global optimization problems
in order to determine the solution of Problem 3.1. Moreover, the functions (3.12)
(altogether N) must be given in explicit form. For this reason the formulation of Problem
3.1 using the global optimization approach will be referred to as explicit form
formulation.

Based on this section’s approach the solution of Problem 3.1 can be found as the
optima! interval solution of the linear system (3.9). In this case the functions f, relating
the input variables (the components of r and u) to the output variables y, are only. given
by (3.9) in implicit form. Therefore, the formulation of a tolerance analysis problem as
a system of linear equations with interval coefficients will be called implicit form
formulation.

3.1.2. Specific peculiarities

In this section some specific aspects associated with the implicit form formulation of
the d.c. tolerance analysis problem will be considered.

It should be pointed out that only the system (3.9) is suitable for handling Problem
3.1. We shall now show that other formulations based on loop analysis or nodal analysis
are not applicable since they result in a system of linear interval equations whose
coefficients are not independent as required in (3.1).

We shall first consider the loop current equations formulation. For any real values r,
€ R, and u,e U, we have

Erj.'=e, s=m (3.13)

where i are the loop cuments, g is the number of independent loops, r,; is the
corresponding proper or mutual loop resistance and e, is the equivalent loop voltage.

Now consider the resistance r,.. Each resistance r,; is the sum of a certain number of
branch resistances r,, i.e.
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m

r, =y e, (3.14)
p=1

where ¢,/ is either +1, —1 or 0. When r, becomes an interval R, (for simplicity we
assume that u, and the resulting loop voltages ¢, remain constant), system (3.13) takes on
the form

q

SR, =6, 5=Tg

j=1
whose coefficients R,; are given by

R, =Y 'R (3.15)

Obviously, R,; are, generally, not independent intervals. Indeed, if r,, belongs both to the
pth and #th loops, then R, and R, are dependent since according to (3.14) and (3.15) they
both depend on R,

Next, we consider the nodal voltage equations

y 8,V = y ¢, 8 U, s=1.n (3.16)
P =1

where g are the corresponding proper or mutual nodal conductances, g; are the branch
conductances and the constants c,; are either +1 or —1 or 0. If g, are allowed to vary in
the intervals G; (keeping, for simplicity, #; unchanged) we have on account of (3.16)

n
Estvj =1,s=1,n
i

Here again the interval coefficients G,; and I, are not independent since some of them may
depend on one or several identical conductances. If for example, some k.th branch is
incident on the pth and th node and contains a voltage source, then obviously G,,, G,
I, and 1, are all dependent on Gy,

Based on the above considerations we conclude that the only possibility of formulating
the d.c. circuit tolerance analysis problem considered in the form of a linear interval
system is the system (3.10)

Exactly solving (3.10) in one way or another, we are able to determine the tolerances
on all the branch currents and all the nodal voltages by the corresponding components /,,
V; of the optimal interval solution ¥ of (3.10).

We are, however often interested in determining the tolerances on branch voltages that
are not nodal voltages. For example, let the voltage whose tolerance we would like to
evaluate be across the two ungrounded nodes s and p. It should be stressed right away
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that in this case it is not possible to determine the tolerance V,, on the branch voltage v,,
by means of the corresponding solution components V, and V, of system (3.10). Indeed,
we shall show that

v, #V,-V, (3.17)

To do this we assume for simplicity that the source voltages u,, k = 1, m remain constant
so that

uw(rl,...,rm) =V (rn.e.nr) - vp(rl,...,rm)

3.18
r,€R,, i=1,m ( )

Since v, and v, are in general nonlinear functions of r,, it is obvious from (3.18) that the
range of the difference v, — v, is not equal to the differences of the ranges of v, and v,
which leads to (3.17).
For a similar reason V,, cannot be determined either by using Ohm’s law for the
corresponding interval quantities since generally
Vo #R 1, -U (3.19)

sp_sp sp

On the bases of formulae (3.17) and (3.19) the following general results are easily seen
to be valid.

Proposition 3.1. The principle of superposition is not valid in the case of linear
electric circuits with interval data if it is applied to equations in interval form.

The proof of this proposition is straightforward if we take into consideration the
nonlinear character of the tolerance problem which is best seen from the explicit form
formulation (3.12).

The next result is a corollary of Proposition 3.1.

Proposition 3.2. Itisin general impossible to find first (in some way or other)
the tolerances on part of the output variables and then to determine the tolerances on the
remaining output variables using some linear formulae relating the output variables and
the input parameters.

The following example will help clarify the implication of the last proposition.

Example 3.1. Let N be a complex circuit of the class herein considered. Suppose
(for simplicity) that only one resistor r in a given branch is allowed to take on values
from a preset interval R. Find:

a) the tolerance I on the current i through r;

b) the tolerance V on the voltage v across r.

The only correct way to deal with the above problem (if we are to obtain the exact
solution rematining in the framework of this chapter’s approach) is to set up and solve an
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associated linear system with interval coefficients . We shall show that it is not possible
to use the solution of a) to solve b).
Using Thevenen’s theorem

1%
I=—_
r, +R
On the other hand
v =ri
or in interval form
V = RI

Using this formula we might be tempted to write
V=RI

This result is, however, incorrect. Indeed,

v
r—— = f(r)
+r

V=ori=
r¢
Obviously
Y = min £(r)
reR

and V is attained for some unique r € R .Therefore, the formula

VD
V=RI=R_—=
r +

€

B

cannot be correct since it yields ¥ as a function of two different values of r, namely R
fmd R. (The error is, of course, due to the fact that R and I have been treated as
independent intervals whereas they are, in fact, dependent through r.)

Finally it should be stressed that the equivalent transformation of a current source into
a voltage source is not possible in the interval case. Indeed, for a current source made of
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the parallel connection of i and r, the corresponding equivalent voltage source is the series
connection of u = ri and r, all quantities i, r and u being real numbers. Now leti € I and
r€ R. Then u € U where U = RI. In the interval case the equivalent voltage source is
formed of the series connection of R and U = RI. It is seen that while the current source
is made of two independent interval quantities, the equivalent voltage source involves two
dependent intervals: R and R/. That is why Problem 3.1 cannot cover circuits containing
interval current sources.

3.1.3. Alternate implicit form formulations

In this section, we shall consider the implicit form formulation for several more
general d.c. tolerance problems than Problem 3.1 from section 3.1.1

Problem 3.2. Given the resistive circuit N as defined in section 3.1.1 and the
tolerances on the branch resistors and source voltages, find the tolerances on the branch
currents and/or the branch voltages.

It will now be shown that an appropriate linear interval system with independent
coefficients of the general form (3.1) can be found for solving Problem 3.2 Indeed, (3.2)
can be rewritten as

p=1m (3.20)
where v,  is the branch voltage of the pth branch. Choosing m — » independent loops we
have additionally by KVL

E Bkjvb =0, k=T, m-n 3.21)
J=1 '

Now let B = {B,;} be the corresponding loop matrix of the circuit considered. Using
the matrices @, r (as defined before), B and the vectors i, and v, for the branch currents
and branch voltages, respectively, Eqs.(3.20), (3.3) and (3.21) can be put in vector form:

ri + Ev, =u (3.22a)
ai =0 (3.22b)
Bv, =0 (3.22¢)

(where E is the identity matrix).
If in (3.22) r and u are replaced by their interval counterparts R and U then we arrive
at a system of linear interval equations with independent coefficients:
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(3.23)

o
[}

Now the tolerances on all currents and all branch voltages can be found by solving the
interval system (3.23).

We shall now consider a d.c. circuit containing additionally independent current
sources. First, we shall assume that all current sources isk, k =1, n are known exactly. In
this case the implicit form formulations of Problems 3.1 and 3.2 are not affected since the
vector i, = (iS1’ . is,.) appearing in the right-hand side of (3.10) or (3.23) is constant.
However, if the vector i, is allowed to vary within some interval vector /, then Problems
3.1 and 3.2 might not be formulated as a linear interval system with independent
coefficients. Indeed, suppose that some current source i, is connected between two
ungrounded nodes p and g. Then two equations of (3.3) will be of the form
3 ol = Iso (3.24a)

J

m

Y o= -1 (3.24b)
j=l
where I, is the interval containing ;. Obviously, we have two dependent interval
variables on the RHS of (3.10) or (3.25). In order to obtain linear interval systems with
independent coefficients we have to restrict the class of circuits having current sources.

Problem 33. Let N be a resistive circuit as defined in Problem 3.1 containing
additionally current sources only in parallel branches incident on the grounded node of
the circuit. The tolerance problem is: given the tolerances on the branch resistors, and
voltage and current sources find the tolerances on

i) all the branch currents and/or nodal voltages;

ii) all the branch currents and/or branch voltages.

Obviously, Problem 3.3 can be formulated as a linear interval system (3.1) with
independent coefficients since each current tolerance /, , p = 1, n will appear either in
(3.24a) or 3.24b) (but not in both) and, hence only once in the RHS of (3.10) or (3.23).
Thus, the linear interval system for Problem 3.3 (i) will be

o OA

while Problem 3.3(ii) will be formulated as
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(3.26)

<
=
o

The preceding tolerance problems deal with circuits having only independent sources.
Now we shall generalize the previous results to circuits including dependent sources. Let
N be a resistive circuit containing additionally all four types of dependent sources:

a) voltage-controlled voltage source (VCVS)

v, = kv, (3.27a)

where v, is the independent (branch) voltage and v, is the controlled voltage
b) current-controlled voltage source (CCVS)

v, = ki (3.27b)

P

¢) voltage-controlled current source (VCCS)

i = k3vp (3.27¢)
d) current-controlled current source (CCCS)
i = k4ip (3.27d)

For simplicity of analysis we shall assume that v, is a branch voltage also (if this is not
the case we can always insert an artificial node between the voltage source and the series
connected resistor to obtain v, as a branch voltage).

If k; to k, are fixed constants then (as is easily seen from the previous results and
(3.27)) it is always possible to derive a linear interval system of the (3.1) type with
independent coefficients for each of the above tolerance problems. However, the situation
becomes more complicated if k, to k, are allowed to change within some prescribed
intervals K, to K,. In the case of systems (3.23) or (3.26), presence of any type of
controlled sources leads always to interval systems with dependent coefficients. This is
clear from (3.22) (the branch current vector i and the branch voltage vector v, occur
twice) and (3.27). For a similar reason system (3.10) becomes a system with dependent
coefficients if current sources of both types are included in the circuit. Indeed, (3.10) can
be written as

Ri+dv=U (3.10a)
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ai =0 (3.10b)

and it is seen that the current vector i occurs twice which together with (3.27¢), (3.27d)
leads to coefficient dependence).

In a special case involving only dependent voltage sources it is possible to arrive at
a linear system with independent interval coefficients.

Problem 34. Let the resistive circuit N as defined in Problem 3.3 contain
additionally CCVS’s (in any branch) and VCVS’s only in branches incident on the
grounded node with interval coefficients K, and K. Given the interval coefficients of the
dependent voltage sources and the tolerances on the branch resistors and the independent
sources determine the tolerances on the branch currents and/or nodal voltages.

Problem 3.4 can be formulated as a corresponding system (3.1). Indeed, the nodal
voltage vector v occurs only once in (3.9) which, on account of (3.27a) and (3.27b), leads
to a linear system with independent interval coefficients.

In the next section the exact solution of the d.c. tolerance Problems 3.1 to 3.4 will be
obtained. A method will also be presented (subsection 2.3.4) which, under certain
conditions, provides the exact solution of d.c. tolerance problems even when they are
formulated as linear interval equations with dependent coefficients.

3.2. EXACT SOLUTION OF THE D.C. TOLERANCE ANALYSIS PROBLEM
3.2.1. Basic results for circuit equations with independent coefficients

In this section we shall be dealing with the interval linear system (3.1)
Aly =B, A'e IR™), Be IR") (3.28a)

Recall that (3.28a) is short notation for the following family of linear algebraic systems

Ay=b, Aec A", be B (3.28b)
Throughout this section, we shall be using the following symbols and notations:
a; — element of the real matrix A
|A] - matrix with elements | A | ;= la;| (the same notation will be used for
vectors)
A 2 0 (and similar relations) are meant componentwise (i.e. a;20)
A; - element of the interval matrix A’

P(A)  — special radius of A
By analogy with the scalar case (1.7) A’ and B will be written as
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Al
B

[A-A, A+A], A20
(b-8, b +8], 820

where A, or b, are the center (midpoint) matrix or vector of A’ or B, respectively. The
real matrix A whose elements are

A; = w(A)/2
is called radius of A’. Similarly, the real vector 8 with elements
3, = w(B)/2

is called radius of B.
Furthermore, let

e =(1,1,...,1)T e RV, f=-¢

(3.29)
W={w:weR"Y |w=¢)

It is seen that W is the set of all N-dimensional vectors whose components are either +1
or —1. Clearly, W contains 2" distinct vectors of such form.
For each w € W, T, denotes a diagonal matrix whose diagonal is w. Thus,

T,=E, T, =-E

where E is the identity matrix.
For each y € RY we assign the vector sgny whose components are defined as

1 if y, 20
(sgny), = ] (3.30)
-1 if y, <0
Hence sgn y € W. Furthermore, if
Z =8gny (3.31)
then, as is easily seen,
lyl =Ty (3.32)

In (3.31) and (3.32) (as well as in similar formulae encountered later) the equality is
meant componentwise.

Let S be a compact bounded set in R¥. We introduce two N-dimensional vectors min S
and max S such that
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(min §), = min {y,: y € S}
(max §), = max {y;: y € S}
i=1,N

Thus [min S, max S] is the narrowest interval vector containing S. This interval is called
the interval hull of S.
An extreme point y® of S is such a point that cannot be represented in the form

1
y* = 7(y1 +y%)

for two arbitrary but distinct points y*, y* € S.
The notation Conv S will be used for convex enclosure of S.
We now return to system (3.28). We assume A’ is regular. As before the set

S={y:Ay=b,Ae A', b € B} (3.33)

denotes the solution set of system (3.28). The interval hull ¥ = [y, y] of S where y =
min S, y = max S is the optimal interval solution of (3.28).

The extreme points, the convex enclosure Conv S and the interval hull Y of § are
shown in Fig 3.1 for N =2

Fig. 3.1. Geometrical representation of the solution set S, its extreme points y', y, ¥’ and »*,
the convex hull Conv § and the interval hullY for N = 2.

The solution set S has a number of properties studied in [13]-{15]. It has been shown
in [13] that S can be described as
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S ={y: |A,y-b,] <Aly]| + 8} (3.34)

Two basic properties that follow from (3.34) will be given here.
Property 3.1. The set S may, in the general case, be not convex.

Property 3.2. The intersection of S and each orthant of R" is a convex bounded
polyhedron (see Fig 3.1 for geometrical illustration in the two-dimensional case).

It has been proven in [13] that each extreme point of Conv § satisfies the equation

lAy-b.| = Aly| + 8 (3.35)
Let
w=sgn(Ay - b,) (3.36)
and
z = sgny

On account of (3.31), (3.32) and (3.36)

Ay -b.| =T,(Ay - b,)
lyl =Ty
whence
T,(Ay-b)=ATy + 3 (3.37)

On multiplying (3.37) from the left by 7,, (having in mind that T,? = E) we get
Ay-b =TATy+TS3§

or
(A -T AT)y = b +T 8
Finally
A,y =b, (3.38)
where
A, =A -T AT, (3.39)
b,=b +T)0 (3.40)

Since z = sgn y, the inequality
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Ty20 (3.41)

holds for any w € W. Thus, we have shown that (3.35) is equivalent to the following
system

A,y =b, (3.42)
Ty=z0
It is proven in [13] that for any w € W system (3.42) has a unique solution y, which,

owing to the equivalence between (3.35) and (3.42), is an extreme point of Conv S.
Therefore,

(y) = min {(y,);: y,, we W)
() = max {(y,);: y,, w € W} (3.43)
iel,N

where the set W contains, in general, 2¥ vectors w. Thus the number of extreme points
of Conv § is 2. Hence, we have to solve (3.42) 2" times to find the optimal interval
solution to (3.28).

3.2.2. General method

In this section a general method for solving the d.c. tolerance problems 3.1 to 3.4 is
suggested. It consists in finding the optimal interval solution to the corresponding linear
system with independent interval coefficients (3.10), (3.23), (3.25) or (3.26). The method
will be presented for the case of Problem 3.1. It is based on the basic results from section
3.2.1 taking into consideration some specific features of the problem considered. On
account of (3.4) to (3.8) and (3.10), in this case N = m + n and

c T
A =[’ “} (3.442)
o 0
A= [Ar 0} (3.44b)
0 0
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uc Au
be=1o 1 37, (44c)

where r¢ is the center of the interval diagonal matrix R of the branch resistances, Ar is
the radius of R; u and Au are the center and the radius of the interval vector U of branch
source voltages, respectively (recall that m is the number of branches and # is the number
of ungrounded nodes of the circuit studied).

Due to the specific form of A and 9, it is seen from (3.44) and (3.38) to (3.40) that
in this case the number of the extreme points of Conv S is equal to m. Indeed, the last
n components of each w € W are not relevant to the solution of the tolerance problem
considered since they are canceled by the last n zero components of A and 8. Thus, the
set W from section 3.2.2 containing 2" vectors w in the general case is reduced for the
tolerance problem 3.1 to the set W’ containing 2™ vectors w. Each vector w € W’ has
variable (+1 or —1) values for its first m components; its last # components are arbitrary
and may be fixed, say, to +1.

Based on the foregoing, the d.c. tolerance problem 3.1 can be solved exactly in the
following way. For each w € W’ we solve system (3.42) to find the corresponding
extreme point y,. Then

min{y : we W’}
max{y,: we W’} (3.45)

Y
y

In [13] the following algorithm (called sign-accord algorithm) for solving (3.42) is
suggested (see also [37]).

Sign-accord algorithm

Step 0. Fora given w (now w e W’) find z=sgn (A.'b,)
Step L. Solve the system of linear equations.

A y=b, (3.46)
Step 2. If
Ty=0

terminate. In this case y,, : = y is an extreme point (the symbol : = has the usual meaning
of assignment). Otherwise go to the next step.

Step 3. Find the index k& = min {J: zy; < 0}

Step 4 Letz: =-z and return to Step 1.

It is proven that the sign-accord algorithm terminates in a finite number of iterations.
Very often, if A' is narrow enough, it actually converges in only one iteration. Indeed, z
will not change if y" = A['b,, and y, lic in the one and the same orthant.
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After all 2" extreme points y, have been found, the exact solution of the d.c. tolerance
problem 3.1 is determined by means of (3.45).

It is clear from the foregoing that the general method is applicable, with minor
modifications, to Problems 3.2 to 3.4 also. For example, N = 2m for Problem 3.2; in
Problem 3.3 the set W’ contains 2™ vectors.

Based on the structure of the general method we have the following result.

Proposition 3.3. Forany d.c. tolerance problem that can be formulated as a
linear system of equations with independent interval coefficients each endpoint of the
tolerance on any of the output variables is provided by a vertex of the box X of the
interval input parameters (that is, by a specific combination of their endpoints).

Proof Itis seen from (3.45) that each endpoint of the tolerance on any output
variable is determined by means of a corresponding extreme point y,. On the other hand
each extreme point is the image of some vertex of box X.

On account of Proposition 3.3 a "brute force” combination method for solving any of
the d.c. tolerance analysis problems 3.1 to 3.4 would consist in solving 2" real systems
of linear equations corresponding to 2" possible combinations of lower or upper endpoints
for each input parameter with n, being the total number of input parameters. Under the
assumption that the sign-accord method terminates in one iteration (which seems to be
always the case for tolerance problems) the general method requires the solution of 2"
real linear systems where n, is the number of elements in the set W’ for the corresponding
interval linear system. It is easily seen that for all problems 3.1 to 3.4 the brute-force
method results in a greater amount of computation as compared to the general method
since n, > n, always. For example, for Problem 3.3 (ii) n, = m + n as is seen from (3.26)
while n, = 2m + n. Thus, for this problem the former method is 2™ times more expensive
than the latter method. Nevertheless, the general method herein suggested is rather time
consuming. Thus, in the case of Problem 3.1 (assuming that the sign-accord algorithm
terminates in just one iteration) it requires the ordinary (noninterval) system (3.46) of
size N x N (N =m + n) to be solved 2™ times. Obviously, it can only be applied for
tolerance analysis of circuits of moderate size.

The efficiency of the general method for dc tolerance analysis may be improved if the
circuit studied permits application of Theorem 1.2 to part of the independent input
parameters. To illustrate this possibility we shall take up Example 2.3 from Chapter 2. It
was shown there that using the explicit formulation for the tolerance problem therein

~ considered the lower endpoint i, of the tolerance on the input current i for the bridge

circuit studied can be found as the global minimum of the function (2.10) where the
variables v = v, r, = 7, r, = 7, and rs = 7 are fixed while r,, r; and r, are allowed to
vary within thelr tolerances. Based on this result and the implicit formulation for the
circuit at hand I;” can be determined as the lower endpoint of the corresponding solution
Component of an associated linear interval system in which only R,, R, and R, are
intervals. In a similar way, ;" can be found by solving another linear interval system in
Wwhich the variables v, r,, r, and r; are fixed at v, r I, 1, and rg
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Several other cases where the general method can be substantially improved will be
considered in the next section.

3.2.3. Improved efficiency method

In some special cases when the interval matrix 4’ has certain specific properties the
general method from the previous section can be modified resulting in a substantial
improvement of its numerical efficiency.

Case A

In this case the matrix A’ must first satisfy the condition
p(AH <1 (3.47)
A sufficient condition for (3.47) to hold is the validity of the following inequality [13]

p(D) < 1 (3.48)
where
D = |A}|A
Let
C = D(E-D)™

Now the following matrices are computed

B=4A]-C|A]|

B=al+cClal|

and for each i € N the set of vectors W, is introduced

L (3.492)
w, = 1 if B;>0

Wo={ wi owo=-l if B,>0 (3.49b)

w| = 1 otherwise (3.49¢)

It is proven in [14] that in this instance
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¥, =max {(y,);: we W} (3.50a)
Yo = min {(y,);: w e (-W)) (3.50b)

where

-W,={-w.we W}, i=1,N
As seen from (3.49) the set

- N N
W=Uw)uw -w)
i=1

i=1

may be smaller that the set W’ from (3.45) if (3.49a) and (3.49b) are valid for several
indices i (only the components w; corresponding to (3.49c) are not fixed and can be either
+1 or —1). In the extreme case if (3.49a) and (3.49b) hold for each i then W, consists of
one single vector. Therefore, the exact solution of the d.c. tolerance problem considered
can be obtained rather efficiently since now W consists of 2N vectors. Thus, on account
of(3.50)), we need to solve problem (3.42) only 2N times.

Case B

In this case the matrix A’ is inverse-stable [13], i.e.
[A7] >0 for VAeA'

An interval matrix A’ is inverse-stable if (3.47) holds and

ClAl] < 1A (3.51)

Here again the optimal solution is determined by (3.50) but now the set W is
guaranteed to consist of only 2N vectors. Indeed, it is proven that if A’ is inverse-stable
then

W, = sgn(4."), (3.52)

where (A”"), is the ith row of A]". Thus, the exact solution Y of the d.c. tolerance problem
is, in this case, guaranteed to be obtained by solving problem (3.42) only 2N times.

If additionally A’ is narrow enough (which is generally the case in practice) the sign-
accord algorithm converges in only one iteration. (A sufficient condition for this is the
condition D|y,| < |y,| [15]). Thus, the exact tolerances on all N variables (branch
currents and node or branch voltages) are found in this case by solving only 2N ordinary
linear systems (3.46).
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Example 3.2. The circuit studied is given in Fig. 3.2. It has m = 11 branches and
n +1 =6 nodes. Every resistor has a nominal resistance r{ = 100 Q, k =1, m, and an
equal tolerance radius A, = w(R,)/2 =2 Q. The source voltages are ¢, = ¢, = 100 V,
e’ = ¢, = 10V and are assumed to have zero tolerances. The problem is to find the
intervals of all branch currents i, k = 1, m and the intervals of all node voltages V,,
k=m+ 1, N (the last (n+1)th node is grounded, i.e. V; = 0).

Fig. 3.2. Illustrative example.

The problem considered was solved using the simplified method based on formulae
(3.48) to (3.52). The condition (3.48) was tested in a simple manner (which circumvents
the need for determining the eigenvalues of D) to be presented later in Chapter 4, section
4.2.1. A numerical program implementing the present method has been developed. For
the example considered, the following results have been obtained.

-

i, €[ 0379369, 040071514, i, e[ 0.421617, 0.440620] A
i, €[ 0034411, 0.052416]A, i, e[ 0.179552, 0.197247]A
i, € 0278983, 029785514, i, e[ 0337637, 0.355695] A
i, € [-0.105624,-0.090322] A, i, e [-0.389692,-0.367897] A
i, € [-0.089821,-0.0760921A, i, e[ 0.172867, 0.188959]A
i,y € [-0.272800,-0.25474314,  v,, € [60.023969, 61.999363] V
v, € [55.671529,57.6909111V, v, e [36.918763,38.814119] V
v,s€ [17.316638, 18.8518871V, v, e [25.517193,27.226597] V

~

~

-~
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Since the sign-accord algorithm converged every time in one iteration the above results
were found by solving 2N = 32 linear system of type (3.46).

Several other examples have been solved using the numerical program developed. It
has turned out that in each example the associated interval matrix A’ was inverse-stable
and the sign-accord algorithm terminated in just one iteration. Thus, for all the set of
circuits studied the d.c. tolerance analysis problems were solved in a rather efficient way
by solving 2N systems of N ordinary linear equations for each circuit.

Case C

In this case A’ must be inverse-positive, that is,
A1l1>0 for VA e A! (3.53)
Then {13]

Y=Y, Y=, (3.54)

where y; and y, are the solutions of (3.42) for w = f and w = e respectively, where e ?nd
f are given by (2.29). In this case the solution Y is found by solving (3.46) only twice.
However, the requirement A’ to be inverse-positive seems to be rather restrictive for
arbitrary circuits of the class studied. Moreover, nowadays there exists no simple
condition for verifying (3.53)

Case D

Now the set S of solutions to (3.1) lies in one single orthant RY = {y e RY: T, y > 0},
that is,
ScR? (3.55)

z

Let

D=|A|A, d=|A]|8, y =A]b,
The following sufficient condition for (3.55) to hold is given in [15]. If

p(D)<1 (3.56)
and

(E-D)'(Iy,| +d) <2}y, (3.57)
then S < RY for
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z=sgny, (3.58)

If the condition (3.55) is fulfilled, then by Property 3.2 the set S is a convex bounded
polyhedron. Therefore, y, (and ¥, respectively) can be found as the solution of an
associated problem from linear programming. Indeed, since in this case the signature
(sgn y) of y is known the set S can be represented in the form [14]

S={y:A,y<bh,Ay>2b,Ty=>0) (3.59)

Based on (3.59) it is readily seen that y, can be found by solving the following linear
programming (LP) problem

y; = min (z,y,) (3.60a)
A,y<h, -A <b,
(3.60b)
-zy; <0, j=1,N
Obviously, ¥, is the solution of the LP problem
y, = -min (~zy,) 3.61)

with constraints (3.60b).

To find the intervals of all branch currents and node or branch voltages it is necessary
to solve a total of 2N LP problems of the type (3.60) and (3.61).

The LP formulation of the tolerance problem is attractive since it permits one to use
directly available software packages designed to solve general LP problems. Several d.c.
tolerance analysis problem (associated with circuits comparable in complexity with that
of Fig. 3.2) were easily solved using the linear programming formulation of the problems.

3.2.4. Exact solution for circuits equations with dependent coefficients

The methods considered so far are only capable of providing the exact solution to such
d.c. tolerance problems that can be formulated in the form of a corresponding system of
linear equations with independent coefficients. However, as was shown in section 3.1.3,
there exists a large class of resistive circuits (in fact, all circuits that are not covered by
the conditions related to Problems 3.1 to 3.4) for which the implicit form formulation of
various tolerance problems leads to a system of linear equations with dependent
coefficients. In this section a method for exact solution of such d.c. tolerance problems
will be presented. The method (based on a paper of J. Rohn [35]) is applicable if certain
verifiable (and seemingly not very restricting) conditions are fulfilled.

To account for the interdependence between some circuit parameters we will treat part
of them as independent and the rest as dependent parameters.
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Example 3.3. Consider Problem 3.3.(ii). The system (3.26) will be written in real
(noninterval) form as

ri + Ev, =u (3.62a)
oi =i (3.62b)
Bv, =0 (3.62¢)

Now assume that the particular circuit considered has two independent current sources and
n = 3. Then (3.62b) may be

(X.“ll"'...*'(l P =1

Im™m 5,
Oy dy + o ¥ 00 = i (3.63)
O i + .o v 0 0 = I

(if the second source i, is in a branch incident on the grounded (# + 1)th node). Assume
additionally that there is one dependent VCVS, e.g. v,, = kv, . Then the first equation of
(3.62a) and (3.62c) will be

ri v kv, = u,

By kv, + X;BIjvbj =0 (3.64)
=

It is seen from (3.64) that the circuit considered leads to a system of equations with
dependent coefficients. Indeed, if the RHS of (3.62) is the column vector b, then from
(3.63)

b.=-b

m+l

(3.65)

m+2

Similarly, if the coefficients in the LHS of (3.62) form the matrix A, then from (3.64)
am¢l,m+n = B]]ax,mm (366)

Now we may consider b,,, and g, ,,,, as independent coefficients and b,,,, and d,,,, ., a$
dependent coefficients (or vice versa).
At this stage we will introduce the concept of feasibility of a vector b € R" and a
matrix A € R"*". Starting with b we will distinguish two sets of indices:
Jy - set of indices of the independent components b; of b,
_J, - set of indices of the dependent components b; of b such that J, NJ, = @, J,UJ,
=1, N. We call b feasible if
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by =Y ¢b, iel, (.67)

where ¢/ are fixed prescribed real numbers. For Example 33 J, =1, mU m + 2, 2m,
J2=m + 1 and from (3.65) all ¢/ = 0 except for ¢, = -1.

Let the independent components b, je J,, lie in some prescribed intervals B, We
now introduce the set of feasible vectors

bF = {b: beB,jel,b =Y cjibj, ieJ)

JjeJ,
We also form an associated interval vector &' in the following way
b' =[bc-8,b+ 3]

where

b'=3 ¢b/, 8,=Y |18, i€,

jel, jel;

Obviously (because of feasibility), b is not an interval vector (a box) and b c .
In a similar way, for a matrix A we distinguish two sets of indices:
1, ~ set of indices (i, j) for the independent coefficients a;
I, - set of indices (i, j) for the dependent coefficients a;; such that 1, N [, = @,
LWunL={Gp:1< i, j £ N} We call A! feasible if

a, = E C.!,-h a;, (h el (3.68)

Ghed,

with ¢;f fixed numbers. For Example 3.3 I, = m+1, m+n, I, comprises all the other pairs
of indices and from (3.66) c,,.,™" = 8,,, while all the remaining c}* = 0.
We now introduce the set of feasible matrices

AT ={Ara; € A, el a,=Y cfa;, (Lh) el
(Ljel,

where A, are prescribed intervals and the associated interval matrix
Al =[A° - A, A+ A)
with

a; =m(4), A,

7

wA)/2,  (.)) e,

=% el A= X ldHA, U,

G.el el

Obviously the set A” is not an interval matrix and A” ¢ A’.
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Now we are in a position to formulate the following d.c. tolerance analysis problem
for circuits with dependent parameters.

Problem 35. Given the tolerances on the independent input parameters and the
feasibility conditions (3.67) and (3.68) find the tolerances on the output variables.

In a rigorous formulation we have the following problem.

Problem 3.5. Given the set of feasible vectors b" and the set of feasible matrices
AF as defined above, find

,=min {y: y € S}

1=

max {y;:y € S}

~I
]

where Sy is the set

SF={y:y=A"b,A€AF,be bT}

Now consider the solution set

S ={y:y=A"b,Ae A, b e b}

of the interval system
Aly = bI

where A’ and b’ are defined as above. Since b* < b’ and A" c A/, clearly S < S.

We now proceed to presenting a method for solving Problem 3.5. . o

As y = A™'b is a function of a;, (iy) € I, and b,, i € J,, taking partial derivatives we
obtain

9 —
2t @Ay, Gpel, k=TN
aaij /

N . —
W Y (ANb, jed, k=TN
ab} i=1

where the matrices C;; are given by
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1 if (Lh) = (i.))
- lh .
(CU) = Cij if (l,h) € 12
0 otherwise
and
1 if i=j
b =1¢ if ieJ,
0 otherwise
We now assume that:
N . —
(A1) Y (ANb #0, A€ AT, k=TN, je
i=1
(A2) (A“Cl.jy)k = (A“Ci].A‘lb)k #0

Ae Af, be b k=TN, ((i.jpel

These assumptions ensure that the corresponding partial derivatives are either positive or
negative for feasible variations of A and B. Their verification may be performed by using
"crude" enclosures of A™ and y (without feasibility). Thus, y can be enclosed by Y where
Y is the optimal interval solution of

A ly - bl
Similarly, each column of A™ can be enclosed be the vector f;k which is the optimal
interval solution of

A Iy = ek

where ¢' = {e;} is a diagonal matrix with ¢, =1 ifi =k and ¢,; = 0 if i # k.
On the basis of (A1) and (A2) we define
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s
|

s = sgn (A7Cy), = sgn (A;'Cy),, (i) € ],

12
1

N
o= sen YA b | je . k=TN
i=1

and introduce matrices D* and vectors d *

Sy (Lh) € I,
‘ =
(DY, y ciljh(D’f)ij, Umyel, k=TN
(el
siks," l € 'll
(d*) =

Y cdhy,iet, k=TN

jed,

The exact solution of the tolerance problem considered can be found using the
following theorem [35].

Theorem 3.1. Let (Al) and (A2) hold. Then for k = 1, n we have:
(1) y, is equal to the kth component of the solution of

(A, + D"y = b, -d* (3.69a)
(2) ¥, is equal to the kth component of the solution of
(A,-D")y = b +d* (3.69b)

On the basis of the foregoing we have the following method for tolerance analysis of
d.c. circuits with dependent parameters. First, assumptions (AI) and (A2) are verified
using crude enclosures of A" and y (neglecting the feasibility conditions and treating all
elements of A and b as independent). If they hold, then the corresponding systems (3.69)
are set up and solved.

Thus the output tolerances for Problem 3.5 can be determined exactly by solving 2N
systems of real linear equations (3.69).

It should be stressed that the formulation of this section does not cover all possible
d.c. tolerance problems related to circuits with dependent sources. It is easy to verify that
the following problem cannot be formulated as Problem 3.5".
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Problem 3.6, The circuit to be analyzed contains dependent current sources with
interval coefficients (along with all the other possible types of independent and dependent
sources). Given the tolerance on all the input parameters find the tolerances on the branch
currents and node or branch voltages.

Indeed, consider first the case of voltage-controlled current sources. From (3.62) it
follows that at least one equation from (3.62a) and one equation from (3.62b) will have
the form

rvkvpvb .= U, (3.70a)

kv, + .. =i (3.70b)

It is seen from (3.70) that the corresponding coefficients a,, = r.k,, and g; = k,, are
dependent since
a, =r.a,. 3.1

v i

Obviously, similar coefficient dependence will occur if the circuit studied contains
current-controlled current sources. Unlike the feasibility condition (3.68) where each
coefficient c,i-" is a fixed number now the coefficient r, from (3.71) is not a constant since
r, € R,. Therefore, the above method cannot be applied to Problem 3.6. It is, however,
readily seen that Problem 3.6 is the only d.c. tolerance problem which leads to
dependence between the equations coefficients other than the feasibility conditions (3.68)
considered above.

3.3. TOLERANCE ANALYSIS OF A.C. CIRCUITS
3.3.1. Problems statement

Similarly to the tolerance analysis of d.c. circuits, various tolerance problems
(analogous to problems 3.1 to 3.5) can be formulated in the case of a.c. circuits depending
on the structure of the circuit studied and the output variables specified. However, for
simplicity of presentation we shall confine ourselves to a single, relatively most simple
class of a.c. circuits.

Throughout this section N will denote a linear circuit made of ideal resistors,
inductors, capacitors and independent voltage sources. We shall consider sinusoidal steady
states in this class of linear circuits.

Let the parameters R,, L,, C; of the branch elements of N lie within some prescribed
tolerances R,/ L, and C/, respectively. Moreover, if the complex branch source voltage
Uok=1,m,is
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Uk =U,+JjUu,

let the active part U,, and the reactive part U,, belong to some preset intervals U,,’ and
U, . For simplicity of exposition it is assumed that we are interested in one single output
gomplcx variable: a specified branch current/, or, alternatively, a specified node voltage
V,. To be more specific, let the output variable chosen be the branch current I,. Given
the intervals R/, L', C,./, U,, and U,,, k =1, m, we will formulate the following tolerance
analysis problems.

Problem 3.7. Find the interval of the active part /,, of I,.
Problem 38. Find the interval of the reactive part I, of /.
Problem 3.9. Find the interval of the modulus /, of the current [,.
Problem 3.10. Find the interval of the initial phase v, of I,.

It should be stressed right away that the above problems are independent of each other
(in the sense that the solution of a problem cannot be obtained by the solutions of the
other problems). To illustrate this assertion we shall consider the following situation.
Assume we have solved Problems 3.7 and 3.8. Let/,, and I, denote the right endpoints
of the corresponding interval solutions. Now, let ], be the right endpoint of the interval
solution to Problem 3.9. It is not difficult to see that, in general, the relation

I,=\I: +T? (3.72)

does not hold. In fact, (3.72) is valid only in the case where all the three maximal,,, I—v,
and /1, occur for one and the same values of R,, L,, C, and U,, and U,,.

It should be noted that in a special case Problems 3.7 and 3.8 may be related to
finding the ranges of the active power or reactive power respectively, flowing into a one-
port network. Indeed, let the input voltage U,, = U,, have zero initial phase y,. Then

Pln = UinIVa
an = UinIvr

If, additionally, U, is kept constant, the solutions of Problems 3.7 and 3.8 are solutions

([>]f lt)he following two problems, respectively (with given intervals R/, L/, C/, U,/ and
kr /¢

Problem 3.11. Find the range of values for the active power P,

Problem 3.12. Find the range of values for the reactive power Q,,.
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To solve the basic Problems 3.7 to 3.10 first we have to write the circuit equations as
a system of interval linear equations. Proceeding in just the same way as in section 3.2.1.
we can bring the circuit equations to the following form (similar to (3.10)).

24 (3.73)
a 0jv] (o
Here Z' is a diagonal matrix Z' = diag(Z/, . . . , I,/) whose kth element is given by the
complex interval

z) =R/ + jloL - — | =R/ +jX;
4

with

X/, = o)ék—-_l , oL, - !

oC, oC,

(clearly, a complex interval can be viewed geometrically as a rectangular region in the
complex plane) while U’ is column vector

v =, U
whose kth element is given by
U, = Us, + jUs,

where U,/ and U, are intervals within which the active and reactive part of U, vary;

finally
i
Y= 3.74)
|4

is a noninterval complex vector whose first m components are
Y=I =1 +jl, k=1m
and its last # components are

=Vione Y iV, k=m+1N

=V

k-m

Y

k

The linear complex interval system (3.73) will serve as a basis for solving the above
formulated tolerance analysis problems 3.7 to 3.10.
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3.3.2. Method for approximate solution

In this section, a unified method for approximate solution of all the four a.c. tolerance
problems formulated in section 3.3.1 will be suggested. The present method is based on
a linearization of the original nonlinear tolerance problem considered.

First, the system (3.73) will be written as

ZY=U, Z eZ, U e U (3.75)

Zl:zlal UI=UT
ol ot 0

and Y is given by (3.74). Let

where

Z, =2 +AZ, (3.76a)
U, = U + AU, (3.76b)
Y=Y+ AY (3.76¢)

and

zZ) =z +AZ!, U =U + AU!

€

(where the superscript ¢ denotes as usual the center of the corresponding interval

variables). Substituting (3.76) into (3.75) and neglecting the second-order product Z, AY
we get

ZIAY = AU, - Y°AZ, (3.77a)
with
AZ, e AZ!, AU, e AU (3.77b)
Yo =(Z5)U; (3.77¢)
From (3.77a)
AY = (Z))'AU, - (Z))'Y°AZ, (3.78)

Now we will introduce the notation
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C=[Z)'N-(Z))'Y ]
AP = [AU,IAZ,]

AP! = [AU1AZ]YT
Thus, (3.78) can be put in the equivalent form
AY = CAP 3.79)

The approximate solution of the a.c. tolerance problems can be obtained if we construct
the set S of solutions AY of (3.79) when AP € AP’

The complex interval vector AP’ has 2m nonzero complex interval components AP,
Clearly, AP’ can be represented geometrically as a hyper-rectangle in a complex space
C*" with 2m complex coordinates. Since C is a constant complex (N x N) matrix with
N =m + n, the solution set S is obviously the image of AP’ under C. Thus, we have
shown that S is, in fact, a hyper-parallelopiped in the complex space C".

Now, let the output variable in which we are interested be the vth component Y, of
Y. From (3,79) it is seen that Y, can be written in the form

2m
AY, = E ¢, AP, (3.80)
o1

Let S, denote the set of all AY, obtained by (3.80) when AP € AP/, j =1, 2m. From
geometrical considerations it is clear that S, is the projection of S onto the complex plane
spanned over the vth pair of (real and imaginary) coordinates. Therefore, S, is a convex
polygon with 4m vertices. An illustrative example is given in Fig. 3.3 for m = 2.
Clearly, to construct the set S, it is sufficient to determine its vertices. The following
procedure is designed to find all these vertices in as simple a way as possible.

Procedure 3.1

1. Let AP; = AP, + jAP,, j = 1, 2m. Let r(AP')) = r,, and r(AP";) = r,, denote the radii

mn
of the corresponding intervals. First we normalize the variables as follows:

AP, AP, . ,
AP, =r, : +Jr,. — =r,AP/ +jr AP,
Jja ir

Thus
APj’e [-1,1], APJ.:Zme [-1,1]
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b +i

ST
|

Fig. 3.3. Convex polygon S, with 4 m vertices for m = 2.

+v

2. Calculate the complex coefficients

v _ .
cv,j+2m - ]CVj’:ir

and order them in decreasing moduli. Rename (for simplicity of notation) the

corresponding coefficients and normalized variables again as c;and AP, j=1,4m. Then
(3.80) takes the equivalent form

4m
AY, = Y ¢, AP,
=1

3. At this stage, set AP; = 0 for j = 2, dm.

p+i

(N1}

+Y

Cn
Fig. 3.4. Geometrical représentation of the set AY,",

Now let
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AY® = ¢, AP,
with
AP e [-1,1]

The corresponding set AY,™ is given in Fig. 3.4.
4. We now consider the set of points

AY? = ¢, AP, + c AP,
with
AP e [-1,1], AP, e [-1,1]

which is given in Fig. 3.5. It is seen that AY,® has 4 vertices: (¢,;.+C,p), (1 = C\2),
(_Cvl + Cvl) and (_Cvl - cv2)-

3
+Cy2 ~Cy1

_Cvz

Fig. 3.5. Geometrical representation of the set AY, 2.

5. Next we consider the set of points
AYY = ¢, AP, + ¢, ,AP, + ¢, AP,
with
APJ. e [-1,1], j=1,3

which is given in Fig. 3.6. It is seen that now AY ¥ has 6 vertices: (c,; + €y, + Cy3),
(Cvl + ¢y — Cv.‘()? (Cvl —Cpnt CVS) etc.
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A+

-Cy3 *Cy3

7

+Y

Fig. 3.6. Geometrical representation of the set AY,™,

It should be stressed that some of the possible combinations, namely (c,; — ¢,; — ¢,3)
and (-¢,, + c,, + c,3) in this instance, do not represent vertices since they correspond to
points imbedded in the interior of AY®,

6. We continue constructing AY®, AYY and so on in the same manner as above.
Assume we have constructed the set

YA) = 12; ¢, AP, AP e [-1,1]
It is clear from Fig. 3.4 to Fig. 3.6 that AYY has 2i vertices. If i < 4m, we go on to the
set AY,“*" which has two more vertices as compared to AY . (In determining the new
vertices corresponding to AY,**” we have to avoid combinations of the vectors t ¢,,, +
€y 1 €,;,, which lead to points imbedded in AY,**". The technical implementation of this
problem is (though tedious to present) not difficult and therefore will not be discussed

here.) Finally, we will reach the set AY,“” which is, obviously, the set S, we set out to
determine.

Up to now (using Procedure 3.1) we have found the set S* defined by means of (3.80).
Based on (3.76¢), what we actually seek is the set

§ = yvc + S (381)

v v

yvherc ¥, is the vth component of ¥° given by (3.77¢). From (3.81) it follows thati is,
In fact, the set S, translated by the vector y,° (see Fig. 3.7).
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b+

Fig. 3.7. Geometrical representation of the set S’:.

Now using the set §\, we are in a position to approximately solve all the four problems
3.7 to 3.10. Indeed, from Fig. 3.7 it is seen that the solution of Problem 3.7 is the interval
Y,, while the interval Y,, is the solution of Problem 3.8. Similarly, the solution of
Problem 3.9 is given by the interval [ |y, |, |y, | ]. Finally the solution to Problem 3.10
is found on the basis of the vectors y,* and y,* as the interval

[©) @

" y:;>’ tan”! ::)
Yva Yva

In actual computation, we have chosen to proceed as follows. We pass successively
through all vertices of S,. At each vertex v*> we compute all the data related to the
solution of the problems considered, namely the real part, the imaginary part, the length
and the argument of the vector y,* connecting the origin of the complex plane with the
vertex V). We store the minimum and the maximum for the corresponding value, thus
obtaining the solution of the respective problem.

With the exception of the lower endpoint of the solution interval of Problem 3.9, the
endpoints of the solution intervals of all the problems always occur at some vertices of
S, (for a geometrical justification see Fig. 3.7). Indeed, in the general case, the lower
endpoint of |y, |, y,€ 3S,, may happen to take place at a point on an edge between two
adjacent vertices (Fig.3.8). In this case the vector y,” is normal to the vector (y, ~ y,®)
and can be easily found.

Based on Procedure 3.1 a computer program has been elaborated for an approximate
solution of the a.c. tolerance problems considered. The program does not account for the
situation in Fig. 3.8 and the lower endpoint of the solution interval of problem 3.9 is
found using only the vertices of the polygonS,.
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A+

1 4

Fig. 3.8. General case of location for the lower endpoint of Y,.

The applicability of the program developed has been tested using several examples.

It should be pointed out that if we are interested only in problems 3.7 and 3.8, their
solutions can be found in a more efficient way without appealing to Procedure 3.1. To
show this possibility, we first rewrite (3.80) in the form

2Zm
AY, = 21: (¢, *+Jjc, ) (AP, + jAP,)

Then we separate the real and imaginary terms to get

2m
AY,, = Y (c,AP; - AP)) (3.82a)
P=1
and
2m
AY,, = ¥ (c,AP;, + ¢, AP;) (3.82b)

1

It is seen that AY,; and AY,/ being linear expressions of the intervals AP,/ and AP, can
be computed directly by (3.82). It can be easily seen that we finally have

2m
r(AY)) = Y [lc, [F(APL) + |c, |r(APD)]

i=1

2m
r(AY)) + Y [lc, |r(APL) + |e, r(APD)]
J=1

where r(X’) = w(X')/2 is the radius of the interval X'. Having found the radii 7(AY’,,) and
r(AY',) the tolerances sought are determined approximately as



154 Interval methods for circuit analysis
Y,, = Y, + [-r(AY,,), r(AY)))]
Y., = Y + r(AY,))[-1,1]

where Y. and Y, are the respective center (nominal) values of the output variables.
The approach adopted in this section is based on a linearization of the original
(nonlinear) tolerance problem. It is, therefore, applicable for relatively small widths of
the input variable intervals. A better approximate solution to the a.c. tolerance problems
considered, accurate enough (under certain conditions) for much wider input variable
intervals will be proposed in subsection 3.3.4. It is based on an appropriate real variable
representation of the circuit equations to be presented in the next subsection.

3.3.3. Equivalent real variable representation

Consider again system (3.73) which can be written as a family of noninterval systems

Z ol ||i U
l a:|l']=l], ZEZI’ Ue UI (3.83)
o 0|V 0

Without any loss of generality we assume that each branch contains either R, or jX,. (If
the above assumption is not fulfilled for the original circuit, we can always introduce
artificial quasinodes between R, and L, or C, of the kth branch to satisfy it). We suppose
that the first m,; branches (m, < m) include only R elements while the remaining m — m,
branches contain only X elements. With this in mind, we rewrite (3.83) in the form

Rl Ila +jIlr Ula +ler
0 . .
le . a‘T 1m1a+ jImlr Um1a+ij1r
ij+l .
0
_ (3.84)
X, La + JL, Una + Uy,
Vla + jVar
o 0 . 0
v’ld + jvnr
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Separating real and imaginary parts in (3.84) and regrouping the resulting real equations
we can bring the (N x N) complex system (3.84) in the form of the following system of
2N equations in 2N real variables

T =-=T" n
RO P " r v
m bt | b
lTotoi® 1 | x !
P s Bttt EEEE s T
o 1 0 1 v 0
N f——-- i dnnk St L Ebe . = -] (3.85)
' R J. : r U
N4m fm—tm—mdmm oo S e I e N
P a0 1% 0
2N - b m—m—mdemmead haaad Lol
where R is a diagonal matrix diag[R,, . . ., R,;), X is a diagonal matrix diag[X,, . . .,
X, L r=[0..., LA r=1,..., L7, v=vs...,.Vv=[,...,V,T,
U,=[04....U09 and U ={U/, ..., U,T. Each vector I, I', U* and U" can be

further separated into two parts. We shall illustrate this with I°. The first m, entries of I
will form the vector /' and the remaining m ~ m, entries will form the vector I*%, i.e.

Ila
Joo|o-- (3.86)
12a
Similarly
Ilr Ula i Ulr
IT=|---|, Us=|---|, U =|--- (3.87)
Ilr U2a U2r

Finally, we will split the matrix o into two submatrices ¢! and &> regrouping the first
my columns and the last m — m, columns of o, respectively

o=[a'ia?] (3.88)

Based on (3.84) to (3.88) we can rearrange the equations of (3.85) to get the following
€quivalent system
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Sinbahs Ehuhaiet phabebebby shabadedededed etttk SR adadabedede F====9
R_i_ 4' i I v
BENS [
F-—-+----+----+4 - | pe---q] -~
ol 11 e vl o
e R IR S et MR Sees = t--=-1 (3.89)
i ) i R o " uv
| | b ok IER B EEDL BN SRS
] i VX r v*
F-—--d e sl B DEDDE I LIl
oo Vool 1% 0]
YT Ty NI IRy SN B SYNUNONEoN B SR

Now we first multiply the rows of the system corresponding to the diagonal matrix
— X by —1. Then we rewrite the modified system (3.89) as

Ay =b, Ac A, be B (3.90)

Thus, we have managed to transform the original family (3.83) of systems with N
complex variabies into an equivalent family (3.90) of systems with 2N real variables.

At first glance the family of systems (3.90) is similar to the family of systems (3.10)
from section 3.1.1 describing the d.c. tolerance analysis problem. However, the
resemblance of (3.90) with (3.10) is purely formal. Indeed, all the interval variables from
(3.10) are independent intervals; at the same time some of the variables in (3.90) are
interdependent. From the matrix in (3.90) it is seen that actually

a , i=1,m 391

N+i, N+i = aii

Therefore, (3.90) cannot be treated as a linear interval system since such a treatment
presupposes independence of all the interval coefficients involved. In fact, (3.90)
represents a system of linear equations with dependent coefficients whose feasibility
conditions are given by (3.91). Therefore, the methods from sections 3.2.1 to 3.2.3 are not
directly applicable. In the next section we shall, however, show that under certain
conditions problems 3.1 to 3.4 can be solved rather accurately (although theoretically not
always exactly) by adopting the general method from section 3.2.2.

R emark 3.1 If we are interested only in problems 3.1 and 3.2 their exact solutions
may be found using the method from section 3.2.4 (provided the corresponding
assumptions Al and A2 are fulfilled).

3.3.4. Improved accuracy method

In this section a method [36] will be presented for handling problems 3.7 to 3.10
which constitutes an improvement over the approximate method of section 3.3.2. The new
method is based on the equivalent real variable representation (3.90), (3.91) introduced
in the previous section, on one hand, and on the theoretical considerations of section 3.2.2
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on the other. It is applicable in the case where the set S of solutions to the unconstrained
problem (3.90) (when the relations (3.91) are ignored) belongs to an orthant of the
parameter space.

In order to account for the constraints (3.91) we first reconsider formula (3.39)

A,, = A - T,AT,

w:

which can be written as
(4,); = A), -whz , ij=TN (3.92)

It follows from (3.89) and (3.90) that A;#0onlyfori=jie ﬁn U N + m. Now write
(3.92) for the nonzero elements of A;

(A, = (A), - wA,z

i i
(A Ninei = CAywinei = WaaiByii i Znsi

Subtracting one equation from the other we get

wlA.z =w, A z (3.93)

Tut N+i™N+i N+t “N+i

(due to the feasibility condition (3.91) (A); = Ay yei a0d (A, = Ay dnsi, wei)-
From (3.91) it is clear that A; = A, »,,. Using (3.93) we thus obtain the following
relationship

wN+i = : Wi N i = l,m (394)

Now recall the assumption that S belongs to a given orthant, that is,

S c R (3.95)

To verify (3.95) the sufficient condition (3.57) is again applicable to the matrix in (3.90)
Provided we ignore the feasibility relations (3.91) and let all the diagonal elements vary
in an independent way. If (3.57) holds for the associated "freed" interval matrix, then the
parameters z,, i = 1, 2N, are all known. From (3.94) it is seen that in this case all the
elements w,,; are determined once we have fixed the first 7 elements w; of an arbitrary
V_ector w containing 2N entries. Thus, it is sufficient to solve a real element 2N x 2N
linear system of the type (3.46) 2" times to find those extreme points of S which
Correspond to the constrained problem when the relations (3.94) are taken into account.

g'lf;:)ing determined these points it is straightforward to solve any of the Problems 3.7 to
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The amount of computation can be reduced if the following iterative procedures are
used.

Procedure 3.2 (for approximating the upper endpoint of the output variable
tolerance).

Step 0. Compute the vector
zZ=sgny,

where y_ is the center (nominal) solution of the problem corresponding to A, and b,.
Step 1. Choose the first m components w;, e.g. set w; = 1, i =1, m. Using (3.94)
find wy,,, i = 1, m. Fix the remaining components w,, i e m+1,N U N+ m +1, 2N at +1
(these components can be arbitrary since the corresponding A;; = 0).
Step 2. Form the corresponding system

A,y =b, (3.96)

and denote its solution by y’. Let f be the corresponding value of the output variable for
the problem considered (e.g. if we solve problem 3.9 with respect to I, then f* =
VO, + yy.i) as is seen from (3.89)).

Step 3. Leti;=1.

Step 4. Permute the component w,, from, say, +1 to —1 (or vice versa) and the
corresponding component Whiig:

Step 5. Form and solve the corresponding new system (3.96) for a new solution
y” and compute the corresponding value f”.

Step 6. If f” < f restore the previous value of w,, and wy,,. Go to the next step.

Step 7. Letiy,=i,+ 1 if iy < m; otherwise set iy = 1.

S tep 8. If the following termination criterion is not fulfilled go back to Step 4

(with f7: = f7if 7 > f).

Termination criterion: if f” < f* successively m times then stop (indeed, in this case
there is no better combination of the parameter lower and upper endpoints which would
improve the value of f ).

Procedure 3.3 (for approximating the lower endpoints of the output variable
tolerance).

This procedure is, essentially, the same as Procedure 3.2. The only difference occurs
in Step 6 and the termination criterion where the condition f” < f” is replaced by f” > f".

R emark 32 It should be noted that unlike the d.c. problems solved exactly in the
previous section, the a.c. tolerance problem considered here may, in general, not be solved
exactly by the present method. Indeed, the present solution has each of its components
fixed at lower or upper interval endpoint while the exact solution may have a component
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whose value lies in-between these endpoints. Indeed, Example 2.7 (solved by the first-
order (optimization) method from Chapter 2) shows that the exact solution for the
tolerance problem therein considered (Problem 3.9 in terms of this section’s terminology)
is obtained as the image of a corresponding vertex of the input parameter box X for all
frequencies but one (the resonance frequency). Since the disagreement (if it exists)
between the exact and approximate solution is obviously very small, the present method
can be recommended in practice for solving a.c. tolerance problems of increased size. It
has been successfully applied in illustrative examples containing up to six complex
variables.

Comments

Section 3.1. As was shown in this section each of the d.c. tolerance problems 3.1 to
3.4 can be formulated in implicit form as a corresponding linear interval system. This
approach permits the original d.c. tolerance problem considered to be handled by solving
(exactly or approximately) the resulting linear interval system.

The idea to formulate the worst-case d.c. tolerance analysis problem as a system of
linear equations with independent interval coefficients was apparently proposed for the
first time in [25], [26]. However, only approximate solutions were obtained along these
lines at the time. In fact, each endpoint of the output variable tolerances is bracketed by
an outward and inward bound.

In some cases (e.g. in circuits comprising controlled sources with interval coefficients)
the implicit tolerance problem formulation may lead to a system of linear equations with
dependent coefficients. Since the exact solution of such systems is considerably more
difficult to obtain as compared with the case of linear systems with independent
coefficients it is natural to try to reduce the former kind of systems to the latter one
whenever possible. If the cause for coefficient interdependence is the presence of
independent current sources, then the only dependent coefficients appear in the RHS of
(3.25) or (3.26) as illustrated in (3.24) and the reduction to an equivalent system with
independent coefficients is in this instance quite straightforward. Indeed, if equation
(3.24a) is added to equation (3.24b) the RHS of the transformed equation (3.24b) will be
zero which leads to an equivalent linear system with no coefficient dependence.

Section 3.2. The exact method for solving tolerance problems 3.1 to 3.5 are based on
the works of the Czech mathematician J. Rohn. It seems that presently his results are best
suited for treating the d.c. tolerance analysis problems considered. However, it should be
noted that only direct methods for solving the resulted linear interval system have been
presented in this section. Nowadays, there exist iterative methods for exact solution of
(3.1) [37] which may, in some cases, prove more efficient for solving some of the
tolerance problems 3.1 to 3.4 (for example whenever the special methods from section
3.2.3 are not applicable).

The general method from section 3.2.2 is quite universal — the only assumption that
the interval matrix A’ involved in the circuit equations is regular is always satisfied in
practice. Its numerical efficiency can be improved by a factor of N if the set of real linear
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systems (3.46) is solved in the following manner. First, the vectors w belonging to W’ are
ordered in such a way that any adjacent vectors w' and w” differ only in one component
(this is always possible). Then it is readily seen that the corresponding two linear systems
(3.46) will have matrices A,, and A,;, differing only in one column. That is why the
inverse of the second matrix can be calculated in a most economical way using the
inverse of the first. Such an approach is, of course, recommendabile if N is not very large
since the inverted matrices are almost always full although the matrices A,, may be
rather sparse. If the circuit studied is of increased size (N is large) it might prove a better
policy to use some sparse matrix method for solvirg (3.46) in implementing the general
method of section 3.2.2, the special methods of section 3.2.3 or the method of section
3.24.

The special methods from section 3.2.3 are more efficient than the general method but
are applicable only when some sufficient conditions are met. If these conditions do not
hold for some particular circuits (e.g. having large tolerances on the input parameters)
then the general method has to be applied. If, however, N is rather large and at the same
time the accuracy on the output variable tolerances needs not be very high (as is the case
at the early stages of design) it is expedient to resort to some approximate methods for
solving the tolerance problems considered.

Various methods for obtaining approximate solutions to the tolerance problems 3.1 to
3.4 can be suggested. The most direct approach is to use some of the existing methods
for nonoptimal solution of (3.1). For instance, an approximate solution was obtained for
the tolerance problem from Example 3.2 by means of the Gauss elimination method
applied to the associated linear interval system of type (3.10). As expected it yielded an
approximation Y with larger intervals than those obtained by the corresponding exact
method.

If the tolerance problem investigated leads to a system of equations with dependent
coefficients the method from section 3.2.4 may provide the exact solution. If, however,
any of the assumptions Al or A2 adopted is not fulfilled, one is led once again to resort
to some approximate solution. The simplest approach is to neglect the interdependence
among the coefficients and to solve (better exactly) a corresponding interval system of
the type (3.1) (with independent coefficients). A better approach would be to apply some
recent results on the approximate solution of linear systems with dependent coefficients
suggested in [38] which is expected to ensure narrower solution intervals than the former
approach. This is, however, a matter of future research.

It should be noted that in contrast to the traditional (noninterval) approximate solutions
(based, for example, on sensitivity analysis) the approximations obtained by the interval
analysis techniques mentioned above are guaranteed to enclose the exact output variable
tolerances.

Finally, it is worth pointing out that whenever the interval methods from section 3.2.3
and 3.2.4 are applicable they provide the exact solutions of the d.c. tolerance problem
considered with infallible accuracy and require by far less computer time than the
statistical methods now in use for "exact” tolerance analysis of linear electrical circuits.
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Section 3.3. In this section the implicit tolerance problem formulation is generalized
to tolerance analysis of a.c. circuits by writing down the corresponding linear system in
complex form. It should, however, be stressed that nowadays no suitable interval methods
seem to exist for exactly solving linear interval systems with complex coefficients. (The
situation may, hopefully, change for the better in the near future.) Therefore, an
appropriate real variable representation was devised in the form of a system of linear
equations (3.90) with dependent coefficients — feasibility conditions (3.91).

Due to the special (diagonal) form of the feasibility conditions (3.91) a method for
solving all the a.c. tolerance analysis problems 3.1 to 3.6 was suggested in section 3.3.4.
In its present form this method is only applicable if the interval solution of the problem
considered is known to lie in an orthant of R? — assumption (3.95). It is, however, hoped
that it can be generalized to the case where (3.95) is not needed (by using the sign-accord
algorithm of section 3.2.2). Such a generalization would be useful since the method of
section 3.3.4 is more accurate than the method of 3.3.2 — in fact, most often it provides
the optimal solution of the a.c. tolerance problems considered.

General Remark Al the methods presented in this chapter are designed to
solve worst-case tolerance analysis problems. However, the exact (or approximate)
solution to the worst-case tolerance problem can be used to find an approximate solution
to the basic tolerance problem in probabilistic setting (section 2.1.3). The approximate
solution can then be improved using some (possibly statistical) method for local
optimization. Such a combined approach to solving the probabilistic tolerance problem
is believed to be more efficient than the traditionally used methods [27]-[29], [39]-(41]
since the latter ones are applied to the whole box X while the search by the local
optimization method for the exact solution would be confined to a small subregion of X'



CHAPTER 4

STABILITY OF LINEAR CIRCUITS WITH INTERVAL
PARAMETERS

In this chapter some aspects of the problem of stability of linear electric circuits with
interval parameters are considered for both the continuous time and discrete time case.
Sufficient or necessary and sufficient conditions for checking the circuit stability are
presenied. Most of them are obtained by generalizing certain known stability criteria to
interval form. These results can be useful in stability analysis of robust circuits and sys-
tems.

4.1. PROBLEM STATEMENT

In this chapter we shall be studying the stability of linear lumped electric circuits
when their elements values are not known exactly. More precisely, let N(p) denote such
a circuit whose constitutive element parameters (passive element values R, C, L, M or
controlled source coefficients k) form the vector p = (p,, . . . , p,). Furthermore let p €
P where P is an interval vector (P € I(R")). The basic problem to be investigated here can
be formulated as follows.

Problem 4.1. Check that each individual circuit N(p) is stable when p € P.

Alternate stability problem formulations (assessing certain margins of stability) will
be considered in the sequel.

4.1.1. Interval polynomial stability

In this section the stability of the electric circuit studied N(p) with p € P will be
assessed by checking the stability of an associated interval polynomial (polynomial with
interval coefficients). To highlight the basic features of such an approach we shall
consider the following example.

Example 4.1. The circuit whose stability we are interested in is shown in Fig. 4.1.
Assuming that the resistances R;, i = 1, 2, 3, may be negative let R, € R/, L € L' and
C € C' where R', L' and C' are specified intervals. In this example p = (R,, R, R, L, C)
and P=(R/,...,CH.
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Fig. 4.1. Stability analysis of an electric circuit with interval parameters.

It is readily seen that the characteristic equation for any of the circuit branch currents
i, oriy is

L R, + R,

LR, + R,)s* + (RIRZ + R,R, + RR, + E)s L1250 @D

Consider the polynomial
q(s) = a,s* + as + a, 4.2)

where

a, = L(R, + R,) (4.32)
a, =RR, +RR, +RR, +L/C (4.3b)
a, = (R, +R)/C 4.3¢)

Each individual circuit is stable iff the zeros of the corresponding polynomial (4.2) lie in
the open left-hand half of the complex plane. For the sake of brevity such a polynomial
will also be called stable. (To simplify the terminology the terms "stable” or "stability"
will be used in the sequel rather than the exact terms "asymptotically stable” or
"asymptotical stability” when referring to the circuit property or "strictly Hurwitz", "strict
Hurwitzness" when referring to the polynomial property.) Note, however, that the
polynomial coefficients a,, a, and a, are according to (4.3) nonlinear functions of the
circuit parameters p; :
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a, = f(p,p,P,) (4.4a)

a, = f(p,sP;:P5.P,:Ps) (4.4b)

a, = f,(p,.p;:p;5) (4.4¢)

Now we shall introduce the vector a = (a,, a,, a,) and the vector function f = ( f;, L)
so that (4.4) may be written in vector form as

a = f(p) 4.5)
where £ R® — R®. We need two more notations. Let
S ={a:a = f(p), p € P} (4.6)

Obviously, S is the set of the images of p (when p € P) under f. Moreover, let
A, =f(P), i=0,12 CX))

( X, is the range of f; over the box P). Now form the interval vector

A-AA4) “8)

0

It should be stressed that due to the nonlinearity of the functions (4.4) S is properly
contained in A, i.e.

Sci 4.9)

In fact, A is the interval hull of S.
Now we shall consider the stability of the circuit at hand. Let (4.2) be written as

q(s,a) = a,s* + a;s + a, (4.10)

to express explicitly the dependence of ¢ on the vector a. Obviously, each individual
circuit (for a fixed p € P) is stable iff each real polynomial (4.10) is stable when the
corresponding g € §.

Since the set S is practically impossible to determine we shall resort to a simplified
approach which is based on the notion of an interval polynomial (e.g. [1]). An interval
polynomial is a family of real polynomials whose coefficients a; may take on values
independently one of another from some intervals A, Thus, (4.10) defines an interval
polynomial if a, € Ay, a; € A, and a, € A,. Let these intervals be determined as follows

A, = F(P) 4.11)

i.e. as some interval extension of £ in P, i = 0, 1, 2. Thus, if we form the interval vector

Stability of linear circuits 165

A = (ALALA,) (4.12)
the interval polynomial associated with (4.10) will be denoted as
q(s,A) = {g(s,a):a € A} (4.13)
We shall also introduce the set of polynomials
q(s.8) = {g(s,a):a € S} (4.14)

Any of the above two sets (4.13) and (4.14) will be called stable if all its elements are
stable polynomials. It should be realized that because of (4.9) and the inclusionA € A we
have

q(s,8) c q(s,A) (4.15)

We are now in a position to state an important result: if g(s, A) is a stable interval
polynomial then the circuit studied is stable for all p € P. (The proof of this assertion
follows directly from the inclusion (4.15).)

Thus, the stability of all circuits N(p) from Fig. 4.1 (with p € P) can be guaranteed
if the corresponding interval polynomial g(s, A) is proven to be stable.

Based on the example considered we can state the following general result. Let N(P)
denote the set of circuits when the parameter vectorp = (p,, .. ., p,) € P € I(R"). We
assume that the characteristic polynomial

q(s.a) = i as™ (4.16)
i=0
has been determined in explicit form with
a, = f(p)i=0m (4.17)
Similarly to the above example introduce the vector function
a = f(p), ffR">SR"

and the corresponding set S using (4.6). Then the set of polynomials g(s, S) is defined by
(4.16) when a € S.

Let A = (4, A, . .., A,) be an interval vector whose components are some interval
extensions of (4.17). Furthermore, let (s, A) be the set of polynomials (4.16) when a
A, that is, g(s, A) is an interval polynomial. We have the following sufficient condition
for the stability of N(P).

Theorem 4.1. If g(s, A) is a stable interval polynomial, then N(P) is also stable.
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Clearly, the inverse assertion is not true: the stability of N(p) does not entail the
stability of q(s, A). Indeed, if N(P) is stable then g(s, S) is stable and vice versa.
However, since

q(s,S) c q(s,A) “4.18)

g(s, A) may happen to contain unstable polynomials.

A set of circuits (or polynomials) will be called unstable if at least one element of the
set is unstable. It should be pointed out straight away that the instability of g(s, A) does
not entail the instability of N(P). This assertion follows directly from the inclusion (4.18).

The following result due to Kharitonov [42], [43] permits the assessment of the
stability (or instability) of the interval polynomial to be carried out in a most efficient
way.

Define the four polynomials

=0 g, s a,
4() = Bys™ + 45" 4 @5+ T 4 T e
q,(s) Eos”' + als'"-l + stm_z + 28sm 3, Es""“ . 4.19)
q,(s) = g_os"‘ +a, s+ as™? o+ (_133"'_3 +as™t o+

where a; and a,, i =0, m, are the lower and upper endpoints, respectively, of the interval
A; with A; being some interval extension of the corresponding function (4.17).

Theorem 4.2, Thepo_gomlal (4.16) is stable for all g, € A, = {a, al, i =0, m, iff
the polynomials g(s), j =1, 4 are stable.

Thus, the stability of the whole set N(P) of infinitely many linear circuits N(p) can be
guaranteed if only the four particular polynomials defined by (4.18) are proved to be
stable.

The stability of each of the above four polynomials can be assessed in a very effective
way. Let

q(s) =a,s" +as™" + ... +a_s5+a

m-1 m

be one of these polynomials ( with a, > 0). Now form the polynomials a(s) and B(s) by
taking alternate terms from g(s), starting with a,s™ and a,5"', respectively. Thus,
a(s) = a,s™ + a,s™* + g™

B(s) =a;s™" +as™? + as™ + ...

+ L

Next form the ratio a(s)/B(s) and express it as a continued fraction as follows:
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als) _ .o, 1
o

TS+

S+

Then the following theorem (presented e.g. in [44]) is valid.

Theorem 4.3. The polynomial ¢(s) is stable iff v, > O for alli =1, m.

The above approach to assessing the stability of the set of circuits N(P) is very
attractive since it reduces the original problem to that of checking the stability of four real
polynomials. Its application may, however, be difficult in some cases: the derivation of
the functions (4.17) usually presents serious difficulties for large size circuits. Another
shortcoming of this approach is that the stability criterion based on Theorem 4.1 is usually
rather conservative: due to the inclusion (4.18) the circuit may be stable although the
associated interval polynomial turns out to be unstable.

An alternate approach to assessing the stability of linear electric circuits with interval
parameters will be proposed in the next subsection. This approach being based directly
on the matrix formulation of the circuit equations in transient analysis circumvents the
need for the derivation of the characteristic polynomial in explicit form.

4.1.2. Interval matrix stability

In this subsection the stability of the set of circuits N(P) will be assessed through the
stability of a related interval matrix. The approach herein adopted will be initially
introduced by means of the circuit from Fig, 4.1.

Using the inductor current i; and the capacitor voltage v, as state variables it is
readily seen that the state variable equations for the circuit considered are given in matrix
form as

Et = Ax + Bf(t) (4.20a)

where
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JB LR R
L L|RL T
A = k 3ty , k=1+R/R, (4.20b)
1 1
Ck R3Ck
and
x = (v )

As is'well known the particular circuit studied is stable iff all the eigenvalues of A have
negative real parts.

. Bfisec! on the example considered it is clear that in the general case of an arbitrary
c1rcu1.t with [ state variables the matrix A = {a;} will have elements a;; that are nonlinear
functions of the parameter vector p, i.e.

a; =a,p), ij=T] @.21)

T.hus, we shall be interested in studying the stability of the following family of normal
differential equations

dx. 1
- - IZ; a(p)x, i =T, (4.22a)

peP (4.22b)

Since the elements a,(p) are all dependent on the parameter vector p the stability analysis
of (4.22) is a very difficult problem. That is why the original stability problem (4.22) will
be imbedded (similarly to the development from the previous section) in the following
simpler stability problem:

—d—t' = Ea,‘jxj’ i = 1;’ (4233)
a,€ A, (4.23b)

Here A;; are independent intervals defined as some interval extensions A;(P) of a,(p) over
P. Now form the interval matrix A’ with elements 4, The matrix A’ will be called stable
i.f each real matrix A € A’ is stable, that is, if Re [AA)] <0, i=1, 1, where A(A) is the
ith eigenvalue of A. Using exactly the same argument as for the interval polynomial
formulation from the previous section the following theorem is easily seen to be valid.
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Theorem 4.4. If the interval matrix A’ is stable, then the set of circuits N(P) is also
stable.

We shall postpone the assessment of the stability of the interval matrix A" for
paragraph 4.2.

Theorem 4.4 provides only a sufficient condition for the stability of N(P): if matrix
A’ happens to be unstable that does not necessarily mean that N(P) is unstable. It is clear
that the assessment of the circuit stability will be less conservative if the elements A;; of
A’ are defined from (4.21) as the ranges a,(P) of a,(p) over P since, in general, g,(P) C
A(P). However, determination of all the ranges a;(P) requires the global solution of 2F
optimization problems which for larger I may prove too difficult a task.

Here we shall discuss an alternative way of reducing the stability problem of the
circuit studied to the stability of an associated matrix which might, in some cases, be
preferable to the approach based on the state variable description of the circuit.

For notational simplicity we shall confine ourselves to considering circuits made of
resistors, capacitors, independent voltage sources and voltage-controlled voltage sources,
the latter ones being only in branches incident on the grounded node of the circuit (as in
section 3.1.1 each circuit is assumed to have m branches, n + 1 nodes one of which is
grounded). Then using matrix notation as in sections 3.1.1 and 3.1.3 we have

ri(e) + dﬁi(t)dt +ov(t) = u (4.242)
wi(f) = 0 (4.24b)

where r is the (m x m) diagonal matrix of branch resistances, d is a (m x m) diagonal
matrix whose ith diagonal element is 1/C; (C; being the ith branch capacitance),a is the
(reduced) incidence matrix, o, is some modification of a due to the presence of
controlled sources, i(2) is the branch current vector and v(¢) is the node voltage vector.
Assuming the vector u of independent sources to be constant and differentiating (4.24)
we get

P i @ 2 (4253)
dt dt
di

0z =0 (4.25b)

Equation (4.25) can be put in vector form

[r a,} [di/dt} _ _[d 0} H 4.26)
a 0 1|dv/dr 0 0]|v

Now introduce the notation



170 Interval methods for circuit analysis

g=| ™ (4.27a)
a 0
~ |do
5. _[ ] (4.27b)
00
F.F
F =pBt= { o (4.27¢)
FZI F22
Y= [i (4.27d)
id

(where F |, is a (m x m) matrix). Then (4.26) can be rewritten as

didt - [Fy FLl -F d 0][;
dv/dt dt F, Fuilo o -F,d 0|lv

2t C 2]
Hence |
di .
v = -F, di (4.28a)
dv .
o = -F,di (4.28b)

We shall now assume that the elements of matrices r and d and some of the elements
of matrix o, (corresponding to coefficients of the controlled sources) lie in some
prescribed intervals. Then, obviously B, d and F from (4.27a), (4.27b) and (4.27¢) become
interval matrices B’, d’, F'. We shall be interested in the stability of system (4.28a) when
B e B'and d € d'. Obviously, the partition F,, of F is an interval matrix F,,/ when B €
B'. The columns of F,, can be determined by means of the first m columns of (B')™.
Hence from (4.28a)

di .
— = Ai
7 (4.29a)
with

Ae A, A= -F] of (4.29b)
Thus, the problem of the stability of the given class of circuits has been reduced to
determining the stability of the interval matrix A’ defined by (4.29b).
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As compared with the approach to deriving A’ by means of the state variable
description of the circuit studied formula (4.29b) has the merit that the elements of Al are
defined in an automatic way by solving m systems of linear interval equations (in order
to determine the first m columns of the matrix (B')Y™), thus circumventing the need for
explicitly deriving and evaluating the ranges a,(P). Moreover, the matrix F . does not
depend on the elements of d / which may prove advantageous in assessing the stability
of A’. It should however be borne in mind that the dimension of A’ obtained by the state
variable description is smaller than that of A’ obtained by (4.29b).

Regardless of the way A’ is derived it is seen from the foregoing that the stability of
the linear continuous circuits with interval parameters can be determined by considering
the normal differential system

dx

=~ A (4.30a)
with

Ae Al (4.30b)

where A’ is some associated interval matrix.

Finally, we shall consider the case where the circuit studied is a discrete linear circuit.
We shall confine ourselves to discrete circuits obtained from the continuous circuits (4.25)
by means of the implicit Euler integration method. Thus

r(ivt=i%) + hai®t + o0 (W - V) =0
a(i* - i) =0

(v is the number of the integration step and # is the step size) or equivalently
€q
(r + hd)i™' + o v = riv + oV (431a)
i =aiv, v20 (4.31b)

Using matrix notation (4.31) becomes

B x"*' = Bx" (4.32)
where B is given by (4.27a),
r+hd o
B, = YW B - had (4.33)
«a 0

with d defined by (4.27b) and

From (4.32) and (4.33)
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x*' = B'Bx" = (B - hd)'Bx", v20 (4.342)

If Be B'and d € d’, the stability of the discrete system (4.34a) can be assessed by
studying the properties of the associated interval matrix
AI - (Bl - hal)leI (4.34b)

The matrix obtained has dimensions N x N where N = m + n.
Another discrete circuit of reduced dimensions may be obtained if the implicit Euler
method is applied directly to (4.28a). It is readily seen that the discrete circuit is then

i = (E + hRE,d)'i*, v20 (4.35a)

If the circuit parameters are intervals, i.e. B € B’ and d € d' then the matrix from (4.35a)
becomes an interval matrix

Al = (E + hF] d"y? (4.35b)

of dimensions m x m.

Based on the concrete examples (4.34) and (4.35) it is clear that the description of any
discrete circuit with interval parameters can be put in the form

x = AxY (4.36a)
with
Ae AT (4.36b)

where A’ is some (/ x /) interval matrix associated with the stability problem. The interval
matrix A’ will be called stable if each real matrix A € A’ is stable, that is, if |A(4)] <
1, i =1, I, where A(A) is the ith eigenvalue of A.

Similarly to the continuous-time case (Theorem 4.4) the following result is valid.

Theorem 4.5, If the interval matrix A’ from (4.36b) is stable, then the set of
discrete circuits with interval parameters N(P) is also stable.

Based on Theorems 4.4 and 4.5 the stability of N(P) can be checked by way of the
stability of the corresponding interval matrices.
4.2. SUFFICIENT CONDITIONS FOR INTERVAL MATRIX STABILITY

As was shown in section 4.1.2 the stability of the original set of linear continuous

circuits N(P) can be assessed by means of the family of the normal differential systems
(4.30):
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x(t) = Ax(t), Ae A’ (4.37)

(where i(t) stands for dx(2)/dt). Recall that the original stability analysis problem 4.22)
with dependent coefficients a;;(p) was imbedded in the simpler stability problem (4.37)
where A’ is an interval matrix with independent coefficients. To distinguish the two
stability problems (and by analogy with the terminology from Chapter 3) the family of
systems (4.37) will be called an interval linear dynamic system with continuous time and

for simplicity of notation will be written in the sequel as
x=Ax (4.38)

If the set of circuits with interval parameters N(P) is made up of discrete circuits the
corresponding family of finite difference systems is given by (4.36):

= Ax¥, Ae A, v20 (4.39)

Similarly to the continuous-time case the family (4.39) will referred to as an interval
linear dynamic system with discrete time and will be denoted by the symbolic notation

X = Al (4.40)

In view of its practical applications (especially in robust stability of control systems)
the problem of assessing the stability of the interval dynamic systems (4.38) and (4.40)
has been intensively investigated over the last years (e.g. [45]-[49]).

In this section simple sufficient conditions for testing the stability of interval dynamic
systems will be presented. By Theorems 4.4 and 4.5 these conditions guarantee the
stability of the original set of linear circuits with interval parameters.

4.2.1. Stability of discrete circuits

In this subsection the stability of discrete linear circuits with interval parameters will
be assessed by introducing simple sufficient conditions for checking the stability of the
interval discrete system (4.40).

First, we shall consider the discrete system (4.36a):

xtt = Axt k20 (4.41)

where A is a fixed real (/ x /) matrix. As was mentioned in section 4.1.2 the system (4.41)
is stable iff the spectral radius p(A) of A satisfies the inequality

p(A) < 1 (4.42)

Consider the sequence A, A% A*, ..., A" ..., v =2", m20 and suppose that (4.42)
is valid. Then it follows that JA] ¥ — 0 as v — o where |.} is some matrix norm. It
is clear that in this case there exists a finite v such that
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[|AY] < 1 (4.43)

It is known [50] that in fact (4.43) is a necessary and sufficient condition for the system
(4.41) to be stable. In practice the following norms have been used

i
IAl, = m:\xl_ﬂ ;] (4.44a)
!
141, = max3_ fa,| (4.44b)
j o=
. 172
141, = | ¥ a (4.44¢)
ig=1

The criterion (4.43) has the merit that it does not necessitate the computation of p(A).
It is known [50] that if

[rA*| > 1 (4.45)

then p(A) > 1 and (4.41) is unstable (here tr A* denotes the trace of the matrix A").
Now we turn back to the linear interval system (4.40)

xkt = Alxk (4.46)
Obviously, (4.46) is stable iff
p(AlYy < 1 (4.47a)
that is, iff
p(A) <1 for VA e A/ (4.47b)

Unfortunately, there does not exist, for the time being, efficient methods for testing
(4.47). Therefore, we appeal to the equivalent condition (4.43) which, generalized to
encompass the interval case, leads to the following result.

Theorem 4.6. If for some v = 2", m > 0, the condition
A <1 (4.48)

holds (|I. | is some interval matrix norm), then (4.46) is stable.
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On the basis of (4.44) the norms of the interval matrix which can be used are

1
1A', = maxy |a;| (4.492)
i
! 1
§A'), = maxy |a;] (4.49b)
j i=1
. 12
1 4.4
JA'l, = [ |a l’] (4.49¢)
ij=1
where
1aijl‘| = max ( Iﬂu ls !E.'j|) (4.49d)

It should be stressed that unlike (4.43) the criterion (4.48) is only a sufficient
condition for the stability of (4.46). Indeed, the map F = A" is a nonlinear map F: R'*' —
R'™*' as regards the element a;; of A. Therefore, its interval extension

FI = (Al)v

contains properly the image of A' under F with A € A, Thus, (4.48) is only a sufficient
condition.
Let ¢ = [c, c] be an interval and define (the so-called mignitude)

() = min(|c|, |T|) (4.50)

Based on condition (4.45) the following interval matrix result is straightforward.

Corollary 4.1. If for some v

i

!

(&F!) =< F! > > 4.51)
=1

then (4.46) is unstable.

Based on the preceding results the following procedure for testing the stability or
instability of (4.46) is suggested.
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Procedure 4.1.

Step 0. LetB'=A' and m = 0.

Step 1. Compute |B'|. defined by (4.49a). If B’} < 1 go to Step 7; otherwise
proceed to the next step.

Step 2 Compute |B'l, defined by (4.49b). If §B'], < 1 go to Step 7; otherwise
proceed to the next step.

Step 3. Compute |Bl, defined by (4.49b). If |Bl, < 1 go to Step 7; otherwise
proceed to the next step.

Step 4. Using (4.50) calculate

d=<§j B)

If d > | go to Step 8; otherwise proceed to the next step.

Step 5 Inm< m where m is a prefixed integer proceed to the next step;
otherwise go to Step 9.

Step 6. Evaluate C' = (B)? with elements

n
1 _ I
Cj = z:bu by

=1

if i # j and

n
1 12 I 1
¢ = (by) + 2: byby;
141
ki

ifi=j Let B'=C".Putm=m+ 1 and go back to Step 1.

Step 7. Stop. The discrete interval system (4.46) is stable.

Step 8. Stop. The system (4.46) is unstable.

Step 9. Stop. No decision concerning the stability or the instability of (4.46) can
be made.

R emark 41 If the procedure terminates in Step 8 no decision concerning the
instability of the set of discrete linear circuits with interval parameters N(P) can be made.
This follows from the fact that the original stability problem concerning N(P) has been
imbedded in the broader stability problem (4.46). Therefore, the instability of (4.46) does
not necessarily entail instability of N(P).

Remark 4.2, As is seen from the above procedure, Steps 1 to 6 form a loop. In order
to prevent occurrence of too many iterations m when the procedure converges rather
slowly to either Step 7 or Step 8 or to the inconclusive result (Step 9) the number 7, must
be bounded by a limit m as this is done in Step 5. Experimental evidence shows
(Example 4.6 from 4.2.3) that good results (with a fairly low percentage of cases where
the procedure becomes inconclusive) are obtained if m equals 10 to 15.
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Remark 43. In Step 6, when computing the diagonal elements ¢,/ the square (5',)?
is used since

(bl)z c blbl
ifOe b.

Now we proceed to considering the so-called M-margin stability of system (4.46). The
discrete interval system is said to be stable with stability margin M if p(4) < 1- M for
every Ae Awhere 0 <M< 1. Letr=1-M and

B! = Al/r (4.52)

It easily seen that the new matrix B’ is stable if the original matrix A’ is M-margin
stable. Thus, in order to guarantee the M-margin stability of (4.46) it suffices to introduce
the following condition.

Theorem 4.7. Ifforsomev=2"m=>0
1B <1 (4.53)
where B' is defined by (4.52), then the system (4.46) is stable with stability margin M.

Corollary 42, If for some v
{c(BY) > 1 (4.54)

then (4.46) is not M-margin stable. (The fulfilment of (4.54) does not, of course, imply
that (4.46) is unstable.)

To implement (4.53) Procedure 4.1 is again used with the following obvious
modifications.

In Step 0, B’ is defined by (4.52).

In Steps 7, 8 and 9 the corresponding conclusions refer to the M-margin stability of
(4.46).

Remark 4.4. If the above (modified) procedure terminates in Step 8 then (for reasons
similar to those mentioned in Remark 4.1) no decision concerning the M-margin stability
of the set N(P) of discrete circuits with interval parameters can be made.

4.2.2, Stability of continuous circuits

In this section, the stability of the set N(P) of continuous linear circuits with interval
parameters will be assessed by means of simple sufficient conditions for checking the
stability of the corresponding interval dynamic system (4.38).
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First we shall consider the continuous system
x=Ax (4.55)
where A is a fixed real (/ x /) matrix. The system (4.55) will be called D-stable if
rMAye D, i=T]1 (4.56)

where D is the interior of a disk of radius R centred on the point (=R, jO) in the complex
plane (Fig. 4.2a). The system will be called D,-stable if again (4.56) is fulfilled but now
the above disk is displaced by 1 (1 > 0) to the left, i.e. its centre is the point (-R — 1, jO)
(Fig.4.2b).

ﬂ\ +j 41+j

+1 A +1

(a) (b)

Fig. 4.2. Stability region for continuous systems:
a) D-stability b) D,-stability

Let
B =E + A/R 4.57)

(E is the identity matrix). It is known [50] that system (4.55) is D-stable iff p(B) < 1 or,
equivalently, iff there exist a finite v = 2", m 2 0, such that

Bl <1 (4.58)

where B is defined by (4.57) and |.| is any of the norms (4.44). Conversely, system
(4.55) is not D-stable if for some v

[ttBY| > I (4.59)

Similarly, let
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B = (1 +n/R)E + A/R (4.60)

Then (4.55) is D,-stable [50] iff there exists a v = 2", m 2 0, such that (4.58) is fulfilled
with B defined by (4.60). The system (4.55) is not D,-stable if for some v the condition
(4.59) occurs with B defined by (4.60).

Now we turn back to the continuous interval system

x=A'x (4.61)

The interval system (4.61) will be called D-stable or D,-stable if every real system
(4.55) is D-stable or D, -stable when A e Al.

On the basis of the above results concerning the stability of the real system (4.55) it
is readily seen that the following results about the stability of the interval system (4.61)
are valid. Let

B! =E + A'R (4.62)

Theoremd.7. If for some v
(B <1 (4.63)

where B is defined by (4.62) and |.| is any of the norms (4.49), then the interval system
(4.61) is D-stable.

Corollary 4.3. If for some v
(we(B)) > 1 (4.64)
then (4.61) is not D-stable.
Now let
B'=(1 +M/R)E + A'/R (4.65)

Theorem 4.8. The interval system (4.61) is D,-stable if for some v the condition
(4.63) holds with B’ defined by (4.65).
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Corollary 44. The system (4.61) is not D, -stable if for some v the condition
(4.64) becomes valid with B’ defined by (4.65).

Next we shall consider the "classical” stability problem concerning the interval system
(4.61) when D is the open left half of the complex plane. It is well known that for the
noninterval case the system (4.55) is stable iff [50]

p(B) < 1 (4.66)
where
B = E-2(E-A)? 4.67)

The stability of (4.55) is not affected if we consider the stability of the matrix €A
rather than that of the original matrix A whenever 0 < € < 1. Indeed, if all A,(A) lie in the
open left half of the complex plane, so do the eigenvalues A(€A), i = 1, . Thus, instead
of (4.67) we can use the equivalent relation

B =E - 2(E - eA)!
The constant € can be always chosen small enough so that €A} < 1. Then the series
(E -€eA)Y!' = E +eA + €A% + ... + e*A* + ...

is convergent. Therefore, the system (4.55) is stable iff (4.66) is valid with

B = -E - 2Y" (eA)
i=1

Based on these results we proceed to the stability of the interval system (4.61). First
we have to compute the matrix

Bl = -E - 2% (A" (4.68)
i=1

In practice we evaluate B, by truncating the series, i.e.

7
B! =B! = -E - 2Y (eA')
i=1

On account of the subdistributivity property (1.20) sharper bounds are in general obtained
if B is evaluated by Horner’s scheme:
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B' = -E - 2[eA'(E + eAY(E + eA’(...))] (4.69)

The value of the constant € can be determined in the following manner. The series (4.68)
is convergent if

leA) = elAll < 1
where

A= A" = |ag]

(!

Hence

e < 1/]A] (4.70)

If (4.70) holds, the truncation error & is bounded from above and can be evaluated as
follows

F<e At =38 (4.71)

Then using (4.69) and (4.71), the elements of B' are finally computed as

B! =B .+ [-3,5] (4.72)

Thus we have the following result.

Theorem 4.9. If for some v the condition (4.63) holds with B defined by (4.72)
then the system (4.81) is stable.

Corollary 4.5 The interval system (4.61) is unstable if for some v the condition
(4.64) is fulfitled with B’ defined by (4.72).

Finally we shall consider the M-margin stability of (4.61). The interval system is said
to have an M-margin stability if

Re[A(A)] < -M, i=T,i, Ae A’ (4.73)
Similarly to the previous results we have the following theorem.
Theorem 4.10. If for some v the condition (4.63) holds with
B' = E -2[(1 + M)E - AT 4.74)
then (4.61) is stable with an M stability margin.
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The interval matrix C' = (1 + M) E — A involved in (4.74) can be inverted in the
following manner. First, C ' is written in the form

I
<

C'= o(E - 14Ny, o =
o
But
cht = LE - Lanyr = L)y
o (44 [0

and the matrix (C,) can now be computed (after multiplying, if necessary, A’ by a small
€ > 0) by a truncated series as this was shown for Theorem 4.9.

Corollary 4.6. The interval system (4.61) is not M-margin stable if for some v the
condition (4.64) is fulfilled using (4.74).

It is evident that all the sufficient conditions of interval form suggested above can be
tested by means of Procedure 4.1 from section 4.2.1 (on introduction of corresponding
obvious modifications in Steps 0, 7, 8, 9).

Remark 4.5. The assertion of Remarks 4.1 and 4.4 from 4.2.1 concerning Step 8
of Procedure 4.1 remain (after obvious modifications) also valid in the case of continuous
linear circuits with interval parameters.

4.2.3. Illustrative examples
Example 42.[48]. We consider the interval discrete system (4.46) with

[ 0.2 0.6 .1 0.4
i:[ I 1o ]] (4.75)

[-0.4 0.2] [0.0 0.5]

Using formulae (4.49a) and (4.49b) we have [A'|. = 1, JA'l, = 1. However,
calculating (4.49b) yields JA'|, = 0.9644 < 1. Thus the sufficient condition (4.48) is
fulfilled already with v = 1, so the interval discrete system (4.46) with A’ given by (4.75)
is stable.

Example 43.[49]. The system under consideration is again an interval discrete
system with

~0.20 0.16] [-031 0.02
A’=[[ 61 [-0.31 0.0 ]} @76

[-0.24 0.12] [-0.16 0.20]

Now JA’|.. = |1A’), = 0.54 < 1 and according to (4.48) the system is stable.
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Let us consider the M-margin stability of (4.76). From (4.52) and (4.53) |B') =
1A'l /R < 1; hence R < 0.54 for this example. On the other hand R <1 — M, thus M >
1 - R =0.46. It is worth nothing that using the sufficient condition from [49] a smaller
stability margin M = 0.11 has been obtained.

Example 44.[49]. In this example we consider the continuous time system (4.61)
with the following interval matrix

l[-4.1 -35] [13 1.91]} @77

[ 0.3 09] [-45 -3.9]

The centre matrix A, of (4.77) has two real eigenvalues A, = —3 and A, = —5. Using the
corresponding (rather complicated) sufficient condition it has been shown in {49] that the
dynamic system with A’ given by (4.68) is stable with stability margin M = 1.78 (defined
by (4.73)).

Now we shall apply the simple criterion (4.52), (4.53) to (4.77) to verify the D-
stability of the associated dynamic system. We have chosen R = 5 for the radius of the
disc D with centre (~R, j0O). The modified matrix B’ is

[0.13 0.30] [0.26 0.38]
[0.06 0.18] [0.10 0.22]

B’=E+A’/R=l

Computation yields |B'f., = 0.68 and |B'], = 0.6 and by the criterion (4.63) the
dynamic interval system considered is D-stable. Since the region D covers (for this
example) all possible displacement of A,(A) when A € A, the dynamic system is, in fact,
stable.

Finally, we shall consider the D,-stability of (4.68). We have chosenn =2 and R =
5, so the corresponding disc D has its centre at the point (-7, j0). With these data the
modified matrix B’ evaluated by (4.65) is

. |10.58 0.70] [0.26 0.30]
“[0.06 0.18] [0.50 0.62]

We have |B'|, = 1.08, |B’], = 1 and |B'|, = 1.025, so we have to calculate |(B")?]. To
do this, first B is put in the form

B =B, + A =
0.64 032| {[-0.06 0.06] [-0.06 0.06]
0.12 0.56 | * [[-0.06 0.06] [-0.06 0.06]

Using the formula (B, + A’ = B? + AB, + BA' + (A)2 we find
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[0.3832 0.52001] [0.2736 0.5016]

(B')? =
[0.0960 0.1992] [0.2584 0.4528]
Now |(B'Y),, = 1.2016 but |(BY?|, = 0.9544 and I(B")*l, = 0.8756 < 1 and according
to Theorem 4.8 the system considered is D, -stable with n = 2. Since I(B"*l, = 0.8756
it is obvious that in fact 1| can be taken greater then 2. Moreover, for this example the
D, -stability is actually M-margin stability (since A,(A) remain real for all A e A”). Thus,
we have shown that M = 2 by the new test while M = 1.78 by the criterion from [49] and
at the same time the less conservative estimate M = 2 is obtained in a very simple way.

Example 45. In this example we are interested in testing the D-stability of a
continuous-time system with the following 5 x 5 interval matrix
- -

ai 1. 0 0

A'=10 0 -15 1
0 0 0 -05

0

0 gy, 1 0 0
0 (4.78)
1

I 1
a5 ds; dg ay, dg ]

where

‘11,1 =[-2, 1.8], 0212 = [-1.5, -1]
a5, = [-0.085924, -0.002524], al, = [-0.057426, 0.736574]
ag, = -0.112133, a,, = -0.633343, a; = -1.505552

First, we took R = 1 and applied the (modified) Procedure 4.1. It turned out that the
matrix studied is not D-stable in the disc of radius R = 1 (the computation process ended
up in Step 8). However, for R = 2 the procedure stopped in Step 7, thus guaranteeing that
A’ given by (4.78) is D-stable. To study the relationship between the radius R of the disk
D and the number of iterations m needed to establish the corresponding D-stability of A/,
the present example has been solved several times with increasing value for R. The results
are given in the following table.

Table 4.1.
2 5 10 100 1000
m 2 4 5 8 11
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These results are in accordance with the theoretical prediction: as the radius R grows
the number of iterations m increases. Indeed, it is seen from (4.62) that B’ approaches the
identity matrix E as R grows which explains the decreasing rate of convergence of the
method used.

Example 4.6. This example has been designed to show that the inconclusive results
possible in applying Procedure 4.1 or its modifications occur in practice very seldom. To
this end, a large set of tests has been carried out with randomly generated interval
matrices A’.

Each individual matrix A’ was formed in the following manner. First, a real (n x n)
matrix A° (centre matrix) is generated by assigning different random numbers from a
preset range [r, 7] of values to the elements a; of A°. Then, for a chosen value of a
parameter T (which determines the tolerance of each @,/ in percentage with respect to the
centre value g;°) the elements a,-j’ of the corresponding interval matrix A’ are formed

!
a; = a; + [-1q;,

j ‘Caij‘]

The tests were performed by means of Procedure 4.1 (for checking the stability of
discrete interval systems) or its first modification from Section 4.2.2 (for checking the D-
stability of continuous interval systems). The bulk of the tests was, however, carried out
using Procedure 4.1 since the results concerning its modification were practically the same
as for the basic Procedure 4.1.

Each test consisted in applying the chosen procedure to a large number N of randomly
generated interval matrices for fixed values of the following input parameters:

n - size of the matrix;

{r, 7} - range of random value for generating the elements of the real matrix A° ;
T - tolerance parameter determining the width of the interval matrix A ;
m — maximum number of iterations in the inner loop formed by Steps 1 to 6 of
Procedure 4.1 (or its modification).
The output parameters for a test are the numbers p, : number of occurrences of exit in
Step 7 (stable or D-stable), p, : number of occurrences of exit in Step 8 (unstable or not
D-stable) and p, : number of occurrences of exit in Step 9 (inconclusive results).

A great deal of different tests has been performed. Typically N (number of different
interval matrices generated in a test) was 100 (although at the beginning of the numerical
experiment 200 or even greater values for N were used). The size n of A’ was 3, 4 and
5. The smallest range [r, 7] was [0.5, 0.5] and the largest one [-2, 2]. The parameter T
varied from 0.05 to 0.8 through 0.1, 0.2, 0.4 and 0.6. Most often m = 10 or m = 15
(higher values were used at the beginning of the experiment).

The results from the numerical experiment can be summarized as follows. The number
B; of inconclusive outcomes in each test never exceeded 5. The average of p, over the
whole set of tests is about 2% of the sum of p; + p, + p,. Quite often, especially when
the set of the randomly generated matrices A in a test is such that most of the matrices
are stable (or unstable) p, = 0. Therefore, changing the range [r, 7] and the parameter T
more balanced tests were achieved for which p, = p, (number of stable matrices is
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approximately equal to the number of unstable ones on a test). The average of p, over
this subset of tests is around 3%.

In accordance with the theoretical consideration it has been observed that keeping all
the remaining parameters unchanged while increasing m the number of inconclusive
cases 1, decreases. For instance, in a test using Procedure 4.1 and the parameters: n = 3,
N =100, [r, 7] = [-1, 1], T=0.05 and m = 10 the number p, in this test was uy =2
(with p, = 45 and y, = 55). However, increasing m to 15 the next test yielded p=1
(with p, = 48 and p,= 51). Likewise changing N to N = 200, a test with 7 = 10 (and the
same remaining parameters as before) led to p; = 2 (with p, = 77 and p, = 21) while B
became p, = 1 when m was increased to 15.

The experimental evidence of this example seems to show that Procedure 4.1 and its
modifications can effectively be applied for checking all types of stability considered in
sections 4.2.1 and 4.2.2, the number of inconclusive results being relatively rather low (on
the order of 3%).

4.2.4. A less conservative criterion

In this section a less conservative (but computationally much more involved) M-
margin stability criterion for continuous interval systems will be presented. It is based on
a theorem due to A. Neumeier [51].

Consider the interval matrix A’ from (4.61). The centre matrix of A, is represented in
the form

A, = QAQ™ 4.79)
Here A is a block-diagonal matrix whose (2 x 2) blocks (if any) are of the form

Rek, Im),
-Im}, Re},

where 1, is the ith complex eigenvalue of A ; Q is a matrix whose columns are made of
the real and imaginary parts of the eigenvectors v of A, . Now the following matrices are
formed:

B' = Q"A'Q (4.80)

B, = %[B’ + B (4.81)

and the so-called companion matrix of the interval matrix B ',y,,,

i

C =(B,,) ={c} (4.82)

The elements ¢; of the companion matrix are defined as follows:
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c;= ~|Bau),l, %) (4.83a)

sym

¢, = {(Bo);) (4.83b)

here the magnitude |.| is calculated by (4.49d) and the mignitude is evaluated by (4.50).
Thus, C is a real symmetrical matrix.

It is seen from (4.79) and (4.80) that B, = A. Therefore, it follows from (4.81), that
if the diagonal entries of B, are negative, then A, is stable and vice versa. Based on
these considerations and the properties of the companion matrix (4.82) the following
theorem has been proven in [51].

Theorem 4.11. If
(BN, <0, i=T] (4.84a)
and there exists a vector u > 0 (u; >0, i = 1,_1) such that

(B! YuzMu (4.84b)

sym

then
Re[p(AD)] £ -M.

The theorem provides a sufficient and "almost necessary" condition [51] for M-margin
stability of continuous interval systems (provided the width of the matrix A’ is not very
large). Therefore, the estimate for M seems to be less conservative than that obtained by
the method from section 4.2.2.

We shall first consider the case where M is given. When (4.84a) is fulfilled the
condition (4.84b) is verified in the simplest way if u is chosen to be

w=(L1,.,1) (4.85)

Hf the condition (4.84b) is fulfilled, then the interval system (4.61) is stable. Very often
the choice (4.85) will work. If not we have to verify that the set of linear inequalities

Yy (c;~M)u; 2 0 (4.86a)
=

u>0, j=Tn (4.86b)

is compatible. This can be done quite easily by any linear programming method if (4.86b)
is approximated by

u -e20, j=1,n (4.86¢)

where € > 0 is a small constant.
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Next we shall consider the case where the original problem is to determine the
maximum possible value M of the stability margin M for a given interval system. Using
Theorem 4.11 a very good approximation M of M can be found in the following manner.
First (since we are interested in M), the inequality (4.84b) is replaced by the equality

Cu = Mu 4.87)

Problem (4.87) is obviously an eigenvalue problem with a symmetrical matrix. We next
solve (4.87) and the maximum eigenvalue M for which the corresponding eigenvector &
satisfies the condition # > 0 yields the sought approximation of M. It should be noted that
M <M because of the fact that Theorem 4.11 provides only a sufficient condition for
stability. Thus, the approximation introduced can never lead to wrong conclusions about
the M-margin stability of (4.61) (which would be the case if M could be greater than M).

As is seen from the foregoing the present criterion for checking the M-margin stability
requires a much greater computational effort than the corresponding condition from
section 4.2.2. Indeed, the representation (4.79) is obtained by solving the complete
eigenvalue problem

Ay =dv (4.88)

where A, s, in general, not symmetrical. If M is given the compatibility of the linear
inequalities (4.86a), (4.86¢) must be checked. One more eigenvalue problem (4.87) (with
symmetrical matrix) must be solved if M is sought. These problems can be, however,
handled by standard subroutines. Thus, the present M-margin stability criterion can be
easily implemented and should be applied in cases where the criterion from section 4.2.2
fails to assess the stability of the interval system studied.

4.3. NECESSARY AND SUFFICIENT CONDITIONS FOR ROBUST STABILITY

In the previous section various sufficient conditions for assessing the stability (D-
stability, D, -stability or M-margin stability) of electric circuits with interval parameters
were considered. With the exception of the condition from section 4.2.4 the stability
criteria presented so far are very simple to implement numerically. However, they all
share the common drawback that they provide a conservative estimate of the stability
properties of the circuit studied whether the original stability problem be formulated
equivalently as an interval polynomial stability problem or as an interval matrix stability
problem. This is due to the fact that the coefficients of the corresponding interval
polynomial or interval matrix are assumed to be independent intervals whereas the
examples considered (formulae (4.3) and (4.20b)) clearly indicate that they are
interdependent through the parameter vector p. Ignoring this interdependence leads to
conservativeness of the stability tests. Thus, no assertion concerning the stability or
instability of the circuit studied can be made whenever the sufficient stability condition
is not fulfilled.
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In this section necessary and sufficient conditions for checking the stability (or
instability) of linear circuits with interval parameters will be considered for the case
where the original stability Problem 4.1 is equated to that of assessing the stability of an
associated set of polynomials. In Section 4.3.1 a stability test is presented which checks
the positiveness of only three functions over the parameter box. It requires the charac-
teristic polynomial of the circuit studied (open- or closed-loop configuration) in explicit
form. Based on an interval generalization of the Nyquist criterion a stability test for the
case of closed-loop circuit configuration is proposed in section 4.3.2. Several sufficient
stability conditions are also derived in this manner.

4.3.1. Frazer — Duncan criterion
We take up the stability problem for linear circuits with interval parameters in its

polynomial formulation. More specifically the class of linear circuits to be considered is
defined as follows:

u dmx
(P~ = 4.89
§ 4GP —s = 0 (4.892)
pe P (4.89b)
where p = (p,, . . ., p,) is the parameter vector, P is a given interval vector and a,(p) are

arbitrary nonlinear functions g; : P  R" — R which are at least continuous (i.e. aj € C*,
h 2 0). The set of all circuits (4.89) when p € P will be denoted (as in section 4.1.1) by
the symbol N(P). Recall that N(P) is stable iff (if and only if) each circuit (4.89a) is
stable forp € P.

According to the approach adopted in section 4.1.1 the stability analysis of (4.89) will
be effected by studying the associated family of polynomials

q(s,p) = Y a(p)s™? (4.90a)
=0
peP (4.90b)

where q(s, p) is stable iff all its roots lie in the open left half-plane of the complex plane.
Let g(s, P) denote the set of all polynomials (4.90). Then g(s, P) is stable iff each g(s,p)
is stable with p € P.

In this section a necessary and sufficient condition for determining the stability of
(4.89) is presented. Consider the Hurwitz matrix associated with (4.90)
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a, a, a, a, 0 ¢
a, a, a, ag 0 0
0 a a, a 0 O
Hp)=|0 a,a,a, ... 0 0 4.91)
0 0 a_ 0
0
L am-Z amJ

Let A,(p) denote the determinant of H(p); furthermore, let A, ,(p) denote the determinant
derived from H(p) by deleting the last row and column of H(p) (these determinants are
called Hurwitz determinants of order m and m — 1, respectively). We have the following
theorem [57].

Theorem 4.12. The set g(s, P) given by (4.90) is stable iff:

i) there exists a p = p° € P such that ¢(s, p°) is stable and

ii) the coefficients a,, a,, and the Hurwitz determinant of order m — 1 are different
from zero over the parameter box , that is,

a@) # 0
a,p) # 0
Am—l (p) # O

forallp e P.

Based on the above theorem and some well-known facts related to the stability of
polynomials — positiveness of the polynomial coefficients (necessary condition, e.g. [44]),
positiveness of all Hurwitz determinants (necessary and sufficient condition, e.g. [58]) -
the following result is straightforward.

Theorem 4.13. (Necessary and sufficient condition). The set N(P) of circuits (4.89)
is stable iff;

i) the nominal circuit N(p°) (with p° being the centre of P) is stable and

i) the coefficients a,, a,, and the Hurwitz determinant of order m — 1 are all positive
in P, ie.

ap) >0
a,p) >0
Am-l(p) > 0
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for all p € P.

Since the verification of Condition i) of Theorem 4.13 presents no difficulties we Sh?ll
henceforth assume that it is fulfilled and we shall concentrate on checking Condition it).

Let f{p) denote any of the functions involved in Condition ii) of the theorem. Thus,
we are led to solve three times the following problem.

Problem 4.2. Check that
fpy>0, peP (4.92)

There are various ways to verify (4.92). The simplest approach is to use some interval
extension F(P) = [F,F} of f{p) in P. By Theorem 1.1 from Chapter 1

F(P) 2 f(P) = [f*]] 4.93)

where f{P) is range of p over P. Hence, (4.92) is satisfied if F > 0.

Now let F(P) = [F,, I*:,»] be some interval extensions of f(p) in P, with f,(p) = a,(p).
L) = a,(p) and f;(p) = A,_,(p). Based on Theorem 4.13 and inclusion (4.93) the fol-
lowing results are obvious.

Corollary 4.7. (Sufficient condition for stability). Let the nominal circuit N(p°) be
stable. If

F>0, i=1273,
then the set N(P) of circuits (4.89) is stable.

Corollary 4.8. (Sufficient condition for instability). If at least one of the
endpoints

F <0
i =1, 2,3, then the set N(P) is not stable.

Various interval extensions can be used in implementing Corollaries 4.7 and 4.8:
natural extensions, mean-value form extensions etc. (section 1.2). For the case where f(p)
€ C¥ F(P) can be evaluated in a most efficient way by means of the modified MT-form
and MV-form of the mean-value extension (section 2.2) since they provide very narrow
intervals F(P) and thus lead to sharp bounds on the range f(P).

If the condition of Corollary 4.7 is not satisfied then one must resort to solving
Problem 2.4 three times as needed in Theorem 4.13.

One way to do this is to find the lower endpoint f of the range of fin P. If



192 Interval methods for circuit analysis

720 (4.94)

then obviously Problem 4.2 has a solution.
The lower endpoint f* of f(P) can be determined as the global solution of the
minimization problem:

f e Jw) (4.95)
Thus, the problem of determining the stability of the set (4.89) has been transformed to
globally solving 3 constraint minimization problems of the type (4.95). It will be noted
that the minimization problem of type (4.95) (with constraints in the form of an interval
vector) arises in tolerance analysis of linear circuits. Loosely speaking, using the approach
herein adopted the stability problem considered has been equated to 3/2 tolerance
problems which can be tackled by the tolerance analysis methods presented in Chapter
2, section 2.3.

There exists a better way to solve Problem 4.2 which circumvents the need to find f.
It is based on the following considerations (section 2.4). Recall that the interval tolerance
methods are iterative and have the appealing feature that at each iteration they provide
infallible bounds on f*; more precisely

frelf. 7] T (4.96)

where f is obtained as the lower endpoint of F(P") where P" is the current subregion of
P while /¥ is the current upper bound on the global minimum f*. Moreover, [ are
nondecreasing and f ¥ are nonincreasing, i.e.

ffrefr,ovzo (4.97a)

FUCF, vz (4.97b)

with fV tending to f from below and f approaching f* from above when v — oo, Thus,
there is no point in finding f when solving Problem 4.2. Instead, on account of (4.97a)
and condition (4.94) the iterative process can be terminated whenever the inequality

/:“>0

is fulfilled for the first time, since by virtue of (4.96) f is guaranteed to satisfy the
inequality (4.94). Therefore, the condition of Problem 4.2 is satisfied.
If at some iteration v

fi<o
then obviously f* < 0 and hence f(p) is not positive in P.
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Let £ be the current upper bound on the global minimum f,* of f(p) in P at some
iteration v. In conjunction with Theorm 4.13 we have the following sufficient condition
for instability.

Corollary 4.9. If at least one of the elements Z", i = 1, 2, 3 is nonpositive, then
the set N(P) is not stable.

The above sufficient condition for instability is, of course, less consenvative than that
of Corollary 4.8.

The bounds f* andj_rv on f* for each of the arising problems (4.92) can be determined
by using some interval method for worst-case tolerance analysis. If the coefficients a,(p)
are only continuous functions (a;(p) € c© _in P or the evaluation of the derivatives of
a(p) is rather costly), then the interval [f*, "] can be found by the method from section
2.3.1. If a(p) € C” then [f", f"] is recommended to be determined by the methods from
sections 2.3.2, 2.3.3 or 2.4.2; if a(p) € C® the methods from sections 2.3.4 or 2.4.4 may
be the best choice.

Based on the foregoing the following procedure for assessment of the stability or
instability of (4.89) is suggested.

Procedure 42,

Step 1. Choose a suitable interval method for global optimization and set v = 0
(v is the number of the current iteration) and P" = P.

Step 2. Apply the method (its vth iteration) sequentially (or parallelly) to all
functions f; (p), i = 1, 3, with f,(p) being either a,(p), a,,(p) or A, ,(p) and p € P'. At the
end of this step the corresponding values £ and " are obtained.

Step 3. Check the condition of Corollary 4.7 substituting f* for F,. If it is
satisfied, go to Step 5; otherwise go to the next step. B

Step 4. Check the condition of Corollary 4.9. If it is satisfied go to Step 6;
otherwise put v = v+1 and go back to Step 2 with a new (smaller) subregion P’ (each
subsequent subregion P" is automatically generated by the interval minimization method
used).

Step 5. Termination 1: the set N(P) of circuits (4.89) is stable.

Step 6. Termination 2: the set N(P) of circuits (4.89) is not stable.

It should be stressed that in most cases Procedure 4.2 will terminate either in Step 5
or Step 6 long before the global minimum f of the corresponding function f(p) in P is
reached. Indeed, the only case where f needs be determined with good accuracy by
rather a narrow interval [£, /] (and hence for larger v ) occurs when a circuit (4.89a) for
some p € P has a very small margin of stability. But even in this instance the interval
global minimization methods from sections 2.3 and 2.4 using first- or second-order
derivatives may provide f* in a fairly small number of iterations.

Remark 4.6. When Procedure 4.2 is implemented by means of a method from
section 2.4.2 or section 2.4.4 use must be made of the upper bound f* set to zero right
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from the beginning, i.e. f* = 0 (formula (2.116)) as explained in section 2.4.2.
We shall illustrate the application of Procedure 4.2 through the following example.
Example 4.7. The characteristic polynomial of a closed-loop control system is
q(s.p) = s* + pip,s® + pipip,s® + p,p;pis + p;
The parameter interval vector P has components
P =[1.15, 1.65], P,=[1.3, 1.7], P,=[0.6, 1.0]

The problem is to check whether the system remains stable when p = (p,, p,. p,) € P.
It can be verified that the nominal system with p = p° is stable. Thus, by Theorem
4.13, Condition ii) we have to check the positiveness in P of the following functions

3
a4=p3

A, = pip;p3pip; - Pt - P3P,
It is easily seen by inspection that the first function as well as the factor before the
bracket in A, are positive when p € P. Thus, it suffices to only check the positiveness of

A/ =pl(p; - 1) - p;p,

by Procedure 4.2. It was implemented by means of the improved Algorithm 2.6. The
following results were obtained on a PC IBM AT (6 MHz clock frequency).

Table 4.2

N; L, 1(s)
1 0 0.38

The approach herein suggested can be also applied for assessing whether the set N(P)
of circuits (4.89) has a certain prescribed margin of stability M. The following example
illustrates this possibility.

Example 48. Consider the electric circuit shown in Fig.4.1. The problem is to
determine whether the circuit has a desired stability margin M when R, € R/, i =1, 2, 3,
Le L' and C e C' with R/, L' and C' being specified intervals.

From (4.10) the characteristic equation for any branch current i,,i, or i, is

LR, + R3)7L2 +(RR, +RR, +RR, +L/C) + R, +RJ/C)=0

The corresponding polynomial is
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q.p)=a,N+a'A+a, (4.98)
where

a,=L(R,+R,)
a=R.R,+RR, +RR,+L/C (4.99)
a, =(R, +R)/C

To introduce the stability margin M, the variable A is put in the form
A=s+M (4.100)
Substituting (4.100) into (4.98) the following polynomial is obtained

q(s,p) = a/s* + (2a/M + a’)s + aO’M2+a1'M+az’

Thus
a, = a/
a, =2a'M +a’
a, = a/M*+a’M + a,
or taking (4.99) into account
a, = L(R, +R)) (4.101a)
a, = 2L(R, + R)M + RR, + R,R, + RR, + LD (4.101b)

a, = L(R, + R)M* + (RR, + R,R, + RR, + LD)M + (R, + R)D (4.101c)

where D = {/C.
Assume that M = ~10 and the circuit parameters have the following tolerances

R, e [R,R] =[9,110]1Q, i=1,23
L e [L]]=[09,1.1]mH (4.102)
D e [D,D] = [0.2,0.22] 10/uF

The problem is to check whether the set of circuits has the desired stability margin within
the box defined by (4.102).

The exact solution of this problem can be obtained in just the same way as in the
previous examples (using in fact the necessary and sufficient condition for positiveness
of the functions involved) by applying Procedure 4.2 to the corresponding functions
associated with (4.101) and (4.102). Here we shall present a much simpler approach for
an approximate solution which is based on the sufficient condition for stability given by
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Corollary 4.7. For the example considered the circuit set will have the given margin of
stability M if

A>0; A >0 (4.103)

where A, and A, denote the lower endpoint of some interval extension of (4.101b) and
(4.101c), respectively.

To evaluate A, and A, natural interval extensions of (4.101b) and (4.101c) have been
used. Thus, the following expressions for A, and A, are easily obtained:

é1 = _ZOZ(RZ * R3) * 51—@2 * 5253 * 5153 +LD (4.104a)
A, = 100LRR, +R) - IORR, +R,R, +RR, +LD) + R, + R)D (4.104b)

Computation shows that the conditions (4.103) are fulfilled for the given tolerances on
the circuit parameters. Thus, according to Corollary 4.7 the set N(P) of circuits considered
is guaranteed to have the desired stability margin M = ~10.

In the case where Corollary 4.7 is valid for some initial interval vector P® we may
wish to determining the largest possible region (around P°) in the parameter space within
which the set N(P) is still stable. More precisely, let

P°=p°+[-A,A]

where p° and A are the centre and radius of P°, respectively. Now we can formulate the
following problem.

Problem 4.3. Given an interval box P° for which the set NP of circuits (systems)
studied is stable, find the largest box

P* =p° + k°[-A,A]
for which the set N(P) becomes critically stable for the first time.

The parameter k* is an alternate measure of the stability margin (alongside the margin
M) of the set N(P°).

The solution P” of Problem 4.3 can be found (within a desired accuracy) solving the
basis Problem 4.1 for different boxes P* o P° . The simplest approach is to use the
following dichotomy process (e.g. [77]).

Procedure 4.3. We start with an initial parameter &, form the box
P =p® + k[-A,A]

and solve the corresponding Problem 4.1 (associated with the current box P). If N(P) is
stable the parameter £ is given an increment Ak, a new box P’ with k” = k + Ak is formed
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and the stability of the set N(P’) is again checked. This continues until the current box
P’ leads for the first time to an unstable set N(P*). Now the last interval [£}, k'] is
halved to give a new value k™' for the parameter £" and a corresponding box P**'. The
stability of the set N(P**') is again checked and depending on whether it is stable or not
the corresponding interval [£", K**'] or [k**, k"] is again halved. This process of halving
(dichotomy) continues until the solution k* (and hence P" ) of Problem 4.3 is obtained
within a preset accuracy.

Problem 4.3 can be easily generalized to include the case when we wish to find the
largest box P* within which the set N(P) has a desired margin of stability M. To illustrate
this more general stability problem the following example will be considered.

Example 4.9. We take up the circuit from Example 4.7. Now we wish to determine
approximately the largest possible interval region P* (around the centre of the initial
interval vector P° given by (4.102)) in the parameter space within which N(P) has still
the desired stability margin M = —10.

Let each component of the parameter vector P° be represented in the equivalent form

PO = p‘_C + [_Ap,wAP,-]

i

Then, the corresponding component of a new enlarged parameter vector P’ can be written
as

P/ =pS +t[-Ap,,Ap,] (4.105a)

£

where ¢ > 1 and

pS -tAp,>0, i =T,3 (4.105b)

(the latter condition ensures that the interval [P/, P’} is positive which is required by the
positiveness of the circuit parameters). The maximum possible value t,, of t ensuring the
largest vector P, within which the circuit is guaranteed to have the desired stability
margin can be determined approximately by means of (4.104) and (4. 105) in the following
manner. Starting from (4.105a) the endpoints of P, are obviously given by

Ea’ =p’ - tAp, (4.106a)

F; = p/ + tAp, (4.106b)
Substituting (4.106) for the corresponding circuit parameters into (4.104a) yields
A = -20(LC + tAL)(R, + R + t(AR, + AR,))

+ (RS - 1AR) (RS - 1AR) + (Rf - tAR)(RS - 1AR)) (4107)
+ (R - tAR)(RY - tAR)) + (L€ - tAL)(D€ - tAD)

Setting A, as defined by (4.107) to zero the following quadratic is obtained
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ot +at+a, =0 (4.108)

Proceeding in exactly the same way with A, and letting A, = O a second quadratic will
be derived

B,t* + Bt +PB,=0 (4.109)

Now let ¢, and ¢, be the smallest (positive) solution of (4.108) and (4.109), respectively.
The approximate value 7 of ¢,, can obviously be estimated as the smallest of the solutions
t, and ¢,. For the example considered ¢, = 9.79 and ¢, = 6.66; hence

f=6.66 (4.110)

It can be verified that f satisfies condition (4.105b) for each circuit component. Finally,
the new parameter vector P’ can be determined by formula (4.105a) where ¢ is replaced
by t from (4.110). It should be noted that ¢ is always less or equal to ¢,. Thus, the
approximation P’ is never larger than the exact largest vector P" ensuring the desired
stability margin.

4.3.2. Nyquist criterion

In this section we shall consider circuits whose flow-graph representation can be
reduced to an equivalent graph of the form depicted in Fig. 4.3.

Al
Els) —dt— 4 —W(s)
-B(s)

Fig. 43. Equivalent feedback flow-graph

The transfer function associated with this feedback flow-graph is

A(s,p)
H * = .
“P) = T A BG @1t
where p is the parameter vector. The problem herein studied is to establish whether the
set of circuits N(p) having (4.111a) as their transfer function is stable when

Stability of linear circuits 199

pe P (4.111b)

where P is prespecified interval vector.
Let

T(s,p) = A(s,p)B(s,p) (4.112)

For simplicity and ease of explanation it will be assumed that:

Al) T(s, p) has no poles in the right half-plane for any p € P

A2) A(s, p) has left-half-plane zeros only for any p € P.
Assumptions Al and A2 can be verified by the method of the previous section.
Throughout this section it will be assumed that they are fulfilled. Then the following
theorem is valid.

Theorem 4.14. The set N(P) of circuits whose transfer function is given by (4.111)
is stable iff the Nyquist diagram of T(s, p) defined by (4.112) does not encircle or
intersect the point (-1, jO) for all p € P.

This theorem is obvious interval generalization of the well-known Nyquist stability
criterion.

Recall that the Nyquist diagram (for fixed p) is the locus of T(jw, p) in the complex
plane when © increases from ® = 0 to @ = co. Therefore, Theorem 4.14 is impractical
since it deals with all possible Nyquist diagrams generated by all p € P. However, it
serves as the basis for derivation of the following result which is computationally
amenable.

Let

T\ (w,p) = Re[T(jw,p)], (4.113a)

T,(w,p) = Im[T(jw,p)]. (4.113b)

Consider the following global minimization problem

T, = min T (®,p) (4.114a)
T,(w,p) = 0 (4.114b)
peP (4.114c)
®>0 (4.114d)

We have the following theorem (which, of course, presupposes that assumptions Al and
A2 about T(s, p) and A(s, p) are fulfilled).

tl' heorem 4.15. The set N(P) of circuits whose transfer function is given by (4.111)
is stable iff T," > -1.
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The proof of this theorem (which is in fact a corollary of the basic Theorem 4.14) is
straightforward and is therefore omitted.

By analogy with classical (point) stability analysis (when p is fixed) the so-called gain
margin (GM) can be introduced for the whole set N(P) of circuits with interval
parameters. Clearly, GM is defined by the formula

GM =1+T/ (4.115)

In some circuits the gain margin alone does not adequately describe the margin of
stability. Therefore, a second stability characteristic, namely the so-called phase margin
(PM) is also used. In the case considered of circuits with interval parameters PM can be
defined and evaluated (once again by analogy with the case of circuits with constant
parameters) in the following way. Consider the global minimization problem

T, = minT,(®,p) (4.116a)
ITGw,p)| =1 (4.116b)
pe P (4.116¢)
®>0 (4.116d)

Now the angle 0 (8 < 0) is introduced as follows

,/1 - (T})?
6 = tan-'___(_i 4.117a)

T,
Finally, PM is defined by the formula
PM = 180° +~ 6 (4.117b)

It is evident from the above that the following corollary is valid.

Corollary 4.10. The set N(P) considered is stable iff PM defined by (4.117) is
greater than zero.

Similarly with the case of circuits (systems) with exact (noninterval) parameters the
true margin of stability of the set of circuits N(P) can be best characterized by using both
GM and PM or, equivalently, T," and T,".

Now we shall consider some computational aspects associated with the resolution of
problems (4.114) and (4.116). These are complex global minimization problems in n + 1
variables with constraints of the general type including equality and inequality restrictions.
Moreover, the interval for the variable o is not explicity known except that it contains
the point g where wy, is the so-called phase crossover frequency for p = p° (when p is
fixed the phase crossover frequency is the frequency at which Im [T(jw, p)] = 0).
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Therefore, the solution of (4.114) or (4.116) seems at first approach to be rather a difficult
task. We shall, however, show that these problems can be solved in a most efficient
manner by fixing ® at several appropriately chosen discrete values. Thus, each
minimization problem is reduced to a small number of a.c. tolerance problems of type P1
(cf. section 3.3.1). We shall demonstrate this possibility by way of problem (4.114).

Procedure 44.

To begin with, we set p = p° (p° is the centre of the interval vector P) and find the
phase crossover frequency m,. We let ® = w, and solve the following a.c. tolerance
problem

¢V}

1y = minT, (0, p) (4.118)

peP

Let p“ be the corresponding parameter vector providing the global minimum ¢ . At this
stage the imaginary part T,(®, p) is calculated for ® = ®® and p = p™. Generally, T,(®",
p") # 0. Now keeping p = p'” we seek a new frequency w® at which

T,(0,p®) = 0 4.119)

Obviously, the solution ©® of (4.119) is the phase crossover frequency when p = p™.
Next, a new a.c. tolerance problem is solved, namely
¢ = minT, (@, p) (4.120)

pe P

and the corresponding solution vector p® is found. If p@ = p® (which will be most often
the case) the pair (w®, p) is the solution of the original problem (4.114). Indeed, by
(4.120) (w®, p'”) minimizes the real part of T(jw, p) and at the same time by (4.119) it
equates the imaginary part of T(jw, p) to zero.

If p? # p® we set 0 = ©® and start the computation process over again from
problem (4.118) until the newly labelled vector p® obtained by (4.120) becomes equal
to the preceding vector p (in practice, of course, until some norm of the difference
p® - p® becomes smaller than a specified accuracy €).

Problem (4.116) needed to determine the phase margin PM can be solved in much the
same way as the above problem (4.114) by slightly modifying Procedure 4.4. The only
difference occurs after the determination of p'” from (4.118) when @® is found as the
solution of

[T(w,p™)| = T,(w,p®) =1 4.121)

Equation (4.119) and (4.121) are nonlinear equations in one single variable and can
be solved by any classical or interval method (e.g. by the interval version of the Newton
method from section 1.4.1 which guarantees global convergence).
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Each of the arising a.c. tolerance problems (4.118) can be solved by some of the
interval methods from sections 2.3.2 to 2.3.4 (if the derivation of the function T\(w, p)
and its derivatives with respect to p; in explicit form is not too strenuous a task).

M(p)

VZ(Z)

<
“——"P
<
A———
=
=
e
=<

-2,
N
'

{2) )
VZ N; (p) l\/fz

Fig. 4.4(a). Negative feedback configuration circuit.

An alternative possibility is to reformulate problem (4.118) as a corresponding a.c.
tolerance problem P1 (cf. section 3.1.1) in implicit form. We shall illustrate this approach
by way of the following example. Consider the circuit shown in Fig. 4.4(a). We shall first
assume that p is fixed. The voltage transfer function of this negative feedback
configuration circuit is

V,(5.p) Als.p)
—_=H s =
Vo TSP TG 0BG

(4.122)

where A(s, p) and B(s, p) are the corresponding voltage transfer functions of networks
N,(p) and N,(p), respectively. So T(s, p) = A(s, p) B(s, p) and obviously T(jw, p) is the
output voltage V; of the circuit shown in Fig. 4.4(b) when V| is a unit voltage (i.e. when
V, is sinusoidal with v, = V2sinor and hence V) = 1). Thus, (for any fixed w) T,(w, p)
can be found as the real part of the output voltage V,. Now let p € P; then the initial

problem (4.118) is clearly equivalent to the following a.c. tolerance problem of the type
P1 from section 3.1.1:
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(TP1) Find the lower endpoint of the real part of the output voltage V, from Fig.
4.4(b) when p € P.

— X (m)
Vi TS A V,
——t {(ma1)

Fig. 44(b) Resultant open-loop congiguration circuit.

Problem (TP1) can be formulated in the form (3.10) if the grounded node in the circuit
from Fig.4.4(b) is the node (n + 1). The resultant systems of linear equations with
dependent coefficients (3.90) may be solved exactly (if the corresponding assumptions A1
and A2 are fulfilled) by the method from section 3.2.4. These systems can always be
solved rather accurately and most often exactly by the method from section 3.3.4
(Procedure 3.3). However, it should be borne in mind that theoretically Procedure 3.3
provides only an upper bound f;, on the lower endpoint f* of the output interval variable
f where f stands for the real part of the output voltage V,. A lower bound f; on f* is
therefore needed at the last iteration of the solution of problem (4.114) (when
lp® - p™ll < €). Such a bound f; can be easily found by solving the (associated with the
last iteration) complex linear interval system (3.73) using some method for solution of
interval linear systems with complex coefficients (e.g. [2], [10]). For instance, system
(3.73) can be solved (after obvious modifications to account for the complex quantities
involved) by the iterative procedure defined by formula (1.59). By Theorem 1.9 the
complex solution X * obtained by (1.59) contains the exact solution X of (3.73). Therefore,
the lower endpoint of the real part of the corresponding component X,” of X* provides a
lower bound f; on " guaranteeing that f; < f°. Thus, at the last iteration problem (TR1)
has been solved twice: once by Procedure 3.3 to obtain f; and secondly by Procedure
(1.59) to evaluate f;. In general f; < f; and in practice € = f;, — f; has rather a small
value. Most often f; = f;; thus guaranteeing that the interval global minimization problem
(4.114) has been solved exactly.

The application of Theorem 4.15 will be illustrated by the following example.

Example 4.10. To show the applicability of the present approach to control
engineering problems we shall consider the stability robustness of the feedback system
shown in Fig. 4.5.
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Cls) P(s)
Lot € S+ 7, P, cC_
= S’Pc S(Se Pz)(s‘ P,)

Fig. 4.5. Feedback control system with uncertain plant.

The parameters z, and p, of the controller are assumed to have exactly known values. The
value of the gain p, and the location of the poles p, and p, of the plant are not known
exactly, i.e. p; are allowed to lie in some intervals P, with midpoints (nominal values) p.°,
i =1, 2, 3. The problem considered is Problem 4.2: find the largest possible box P°
(centred at the point p° = (p,°, p,’, p,") in the parameter space) within which the closed-
loop system is still stable (it is assumed that the closed-loop system with the nominal
parameter plant is stable) This problem will be solved using an approach based on
problem (4.114).
From Fig. 4.5 the open-loop transfer function T(s, p) is

(s +z)p,
T(s,p) = :
(5,p) T ATCETNCETN (4.123a)
SO
. pyo, + 2!
ITjo,p)| = W2 TR (4.123b)

oo + p? Jo? + pIJo? + p?

Let P, = [1_9,-, p1>0, i=1,2,3 be some initial parameter intervals centred at p’°. It is
obvious from (4.123b) that for any o the modulus |T(jo, p)| is maximum in the region
P = (P}, P, Py) if p, = p; with p, = p,, p, = p, and p, = p,.

Let - -

P =p] +[-A,Al, i=1,2,3
Now, we shall form a new interval vector P whose components are defined as follows

P! =p] +k[-A,A]1>0, I=1,2,3. (4.124a)

so that
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p,=pl + kK, & =A, &, =-A, K =-A, (4.124b)

2 2

The solution P* can be found in the following manner. First, (4.114) will be modified into
the equivalent form

T* = max |[T(jo,p)|
T (w,p) =0 (4.125)

peP,w>0

We next observe that the maximum of (4.123b) when p € P’ is again obtained (at any )
for p, = p; defined by (4.124b). Based on formulae (4.125) and (4.124b) it is easily seen
that P" is determined uniquely by the values of k& and ® for which the following two
equalities hold:

ITGo, p!+k&)| =1 (4.126a)

T,(®, p/ +k&) =0 (4.126b)

where the LHS of (4.126a) is defined by means of (4.123b) and (4.124) and the LHS of
(4.126b) is the corresponding imaginary part of (4.123a) (when s = jw). Let £* and o” be
the solutions of the system (4.126). Finally the largest parameter box P* within which the
closed-loop system remains stable is determined by the formula (1.124a) with k = k.

Comments

Section 4.1. The problem treated in the present chapter is of considerable practical
significance. Indeed, the circuit considered may be an amplifier or a control system (or
part of it) and it is of paramount importance to know that the stability of the circuit
(whatever its function) is guaranteed even in the presence of some uncertainties about the
values of various component parameters. This problem (usually referred to as robust
stability) has been intensively studied over the last years in the control literature (e.g.
[42], [43], [45]-[49], [52]-[59] both in the framework of subsection 4.1.1 (as stability of
interval polynomials) and in that of subsection 4.1.2 (as stability of interval matrices).

Theorem 4.1 provides only a sufficient condition for the set N(P) of circuits with
interval parameters to be stable. However, due to the computational simplicity of
Kharitonov’s result (Theorem 4.2 on which it is based) this approach to testing the
stability of N(P) should be tried out first before the more complex necessary and
sufficient condition from subsection 4.3.1.

Several attempts to extend Kharitonov’s approach to more general stability problems
have been made in the recent years. In [52] Kharitonov’s theorem is generalized to
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polynomials which have all its zeros only in a sector in the complex plane. A second
extension guaranteeing that the corresponding dynamic system has only aperiodic
behaviour is obtained in the same paper. An attempt to extend Kharitonov’s stability test
to polynomials with dependent coefficients has been made in [53]; the applicability of the
latter generalization seems, however, to be limited to rather simple cases.

If the derivation of the characteristic polynomial is impractical (as in the case of
circuits of larger size) it may prove computationally more advantageous to assess the
stability of N(P) by testing the stability of an associated interval matrix. Two approaches
to deriving such a matrix have been considered in subsection 4.1.2.

Section 4.2. The problem of determining the stability of interval matrices has received
much attention over the last few years (e.g. [45]-[49]). In [45] and [46] rather _simple
conditions were proposed, limited however, to the special case where a; <0, i = 1, n for
every A e A" For the general case of arbitrary matrices a complex criterion requiring the
solution of two Lyapunov matrix equations was suggested in [47]. By means of similarity
transformation and Gershgorin’s theorem, new criteria applicable to the M-margin stability
of both continuous and discrete dynamic systems were developed in [49]; however, these
require the computation of all the eigenvalues of a real matrix.

A necessary and sufficient condition for the stability of two special subclasses of
discrete systems (the so-called D* and D~ type systems imposing rather restrictive
requirements on the signs of the system coefficients) were derived in [48].

The stability criteria (including D-stability, D, -stability and M-margin stability cases)
suggested in subsections 4.2.1 and 4.2.2 are extremely easy to implement on a computer.
The only precaution concerns the realization of the mignitude operation defined by
formula (1.50). Indeed, while the magnitude operation (defined by (4.49¢)) requires the
usual outward rounding of the quantities involved the mignitude operation must be
implemented using inward rounding to ensure correct results. The portion of inconclusive
outcomes (termination in Step 9 of Procedure 4.1 and its modifications) can be reduced
if corresponding matrix measures [62] are used instead of the norms (4.49a) to (4.49¢)
in implementing the above criteria.

The most crucial moment in applying this section’s approach for assessment of the
stability of the set N(P) of continuous-time or discrete-time circuits is the obtainment of
the associated interval matrix A. In subsection 4.1.2 two possible ways of deriving A’ are
exposed. The first one is based on the state-variable description for transient analysis of
the circuit studied. While the real matrix A with elements a,(p) thus obtained is of
relatively small size / this method presents the drawback that each element A; of A
should be evaluated (in order to reduce the conservativeness of the stability test) as the
range a,(P) of a,(p) over P. Therefore, 2/ global optimization problems are to be solved
to obtain the narrowest possible interval matrix A’ . The second method for computing A’
is based on a dynamic generalization of the implicit form formulation of the d.c.
tolerance problem from section 3.1.1. It is presented for the case where the circuit
studied includes only resistors and capacitors but can be also applied for analyzing
arbitrary R, L, C circuits; indeed, it is known [28] that a R, L, C circuit can be modelled
equivalently by a R, C circuit. Although this method for obtaining A’ results in larger

Stability of linear circuits 207

matrices (as compared to the state-variable method) it has the advantage that no
optimization problems are to be solved. It would be of interest to assess the computational
efficiency of both methods for certain classes of circuits (for instance, for filters of a
particular type). o

The criterion of subsection 4.2.4 is apparently less conservative than the criteria
considered in the previous sections. This is achieved at the cost of greater computational
effort. However, using this criterion one is able to determine the maximum possible value
M of the stability margin M for the interval system studied.

Section 4.3. The idea to solve the robust stability problem by finding the global minima
of certain (approximately chosen) multivariable functions has been pursued by several
authors ( see, e.g. [55], [58], [77] and references cited therein). The basic approach used
is to transform the original problem to an equivalent problem which is then solved
globally by a special method applicable only to the transformed problem introduced.
Thus, in {S5] all the uncertain parameters (gain, phase, pole and zero locations, etc.) must
be rearranged into a diagonal feedback structure (and this preliminary stage may be rather
time-consuming). Then the closed-loop characteristic polynomial is found and the
corresponding Hurwitz matrix (4.91) is formed. By the Routh-Hurwitz criterion the
closed-loop system is stable iff all the principle minors of (4.91) are positive. Most of the
corresponding m global minimization problems are, however, much more complex than
the minimization problems associated with Theorem 4.13 where only the coefficients a,,
a, and the determinant A, _, are to be evaluated and minimized. Similarly, in [58] the
original problem is transformed to a generalized geometrical programming problem which
is then solved by a signomial algorithm. Moreover, some restrictions on the nonlinear
functions are imposed: e.g. they are multilinear in [55] or at most multivariable
polynomials in [58]} .

The interval approach adopted in section 4.3.1 addresses directly the original problem
of checking the positiveness of the functions involved. It can be solved by the highly
efficient methods from section 2.4 for any nonlinear functional relationships a; = @;(p).

It is important to stress that Theorem 4.13 can be extended by appropriate
modification of the characteristic polynomial to encompass more complex cases such as
M-margin stability (cf. example 4.8) and the two problem statements from [52] mentioned
in the comments to section 4.1.

Whenever Corollary 4.7 is valid the problem of determining the largest possible
interval region P* within which the set of circuits N(P) is still stable — Problem 4.3 — or
still has the requisite stability margin can be solved in a most simple manner as a finite
series of the usual stability check problems by Procedure 4.3. A significant reduction of
the amount of computation is possible if Problem 4.3 is to be only solved approximately
{e.g. at an early stage of the design). As can be easily seen from Example 4.8 this
problem is reduced to finding the smallest zeros #, > 1 and #, > 1 of two real polynomials
of degree m (polynomials (4.108) and (4.109) for m = 2).

The interval extension of the Nyquist criterion from section 4.3.2 seems to be a most
effective tool for robust stability analysis of feedback circuits or systems. Indeed,
according to Procedure 4.4 — formulae (4.118) to (4.120) or the modified Procedure
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(4.118), (4.119) and (4.121) — the assessment of the gain GM or phase PM margin of the
closed-loop circuit (system) is reduced to several a.c. tolerance analysis problems related
to the open-loop transfer function. The latter problems can be solved by the methods from
section 2.3 or section 3.2.4.

Procedure 4.4. has been tested on the open-loop transfer functions from Example 4.10
and Example 5 of [77]. Each problem (4.118), (4.120) was solved by means of the global
minimization algorithm A4 from section 2.3.3. The results obtained so far are quite
encouraging.

General remark In the present chapter the problem of stability robustness of
circuits (systems) with interval parameters has been considered. A closely related problem
is that of performance robustness. More precisely, loop performance robustness requires
that some specified values of the closed-loop systems response are achieved regardless
of given plant and sensor performance variations. According to the performance
robustness theorem of Doyle, Wall and Stain [59] robust performance is assured iff
stability robustness is achieved with a fictitious complex-disc-bounded uncertainty. The
latter can be modified by two bilinear transformations into a two-dimensional real vector
[54]. Thus, it seems that the robust performance problem can be also handled by the
methods of this chapter.

CHAPTER S

TRANSIENT ANALYSIS OF LINEAR CIRCUITS WITH
INTERVAL DATA

In Chapters 2 and 3, tolerance analysis problems dealing with d.c. or sinusoidal
steady-states in linear lumped electric circuits have been considered. In this chapter,
tolerance analysis is extended to cover problems related to transient analysis of circuits
of the same class. More specifically, several dynamic worst-case tolerance problems will
be formulated in which some or all of the input data are given as intervals. Methods for
obtaining approximate and, in some cases, exact solutions to the dynamic tolerance
problems formulated will be presented.

5.1. PROBLEM STATEMENT

Similarly to the static tolerance analysis from Chapters 2 and 3 we shall distinguish
between input parameters and output variables in formulating dynamic tolerance problems.

Transient tolerance analysis of linear electric circuits gives rise to a great variety of
problems depending on the mathematical description of the transients, on one hand, and
the number and nature of the interval input parameters as well as the number of output
variables, on the other. In this section three basic approaches to formulating (and solving)
transient tolerance analysis problems will be presented.

5.1.1. Explicit form formulation

In the case of transient analysis problems in explicit form formulation there is only
one output variable which may be some transient current or voltage in the circuit studied.
The input parameters may be component values, amplitudes of d.c. or sinusoidal
excitations and initial conditions values. The relationship between the input parameters
and the output variable must be given in a closed explicit form. Obviously, this is
possible only for circuits whose order of complexity [ (as defined, e.g. in [44]) does not
exceed the number 2 or 3. To introduce this simplest form of dynamic tolerance analysis
we shall consider the following example.

Example 5.1. The circuit studied is shown in Fig 5.1. (the supply v is constant and
vc(0) = 0). The dynamic tolerance analysis problem herein considered is to find for a
fixed (but arbitrary) time ¢ the interval I(r) of all possible values of the branch current
i5(t) when L, C, R and v belong to some prescribed intervals L', C', R’ and v'.

We shall assume that the quantity
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R
"®Bc IC (5.1)

is positive for all R € R, L € L' and C € C'. Then the point solution i,(¢) (for fixed R,
L, C and v) is given by the formula

. v 1 kt k,
Lty = [1 + — (e - e*)] (5.2
’ R 2CRYS
where 8 is defined by (5.1) and k,, k, are
1
k,=-_—_1,6 53
2% " e EVB (53)

It should be stressed that the assumption about the positiveness of 8 is essential since only
then is formula (5.2) valid forall Re R, Le L',Ce ' andv e v’

L
§°__‘>__fw\ »>
l3

? &
v of
T

Fig. 5.1. Tolerance analysis of the transient iy(¢).

S

C

Letp=(R,L C,v)and P = (R, L!, C', v'). To underline the dependence of the point
solution i;(f) on the parameter vector p the notation

i,(t) = f(t.p) (54

will be used with f{t, p) given by the RHS of (5.2), (5.1) and (5.3). Thus, the sought
interval I,(f) can be determined by the range f(¢, P) of ft, p) over P, i.e

L = {(f@p:pe P) (5.5)

For fixed ¢ problem (5.5) is a static tolerance problem in explicit form and can be solved
exactly using one of the methods from section 2.3.
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Based on this example it is now straightforward to present the explicit formulation of
the transient analysis of circuits with interval data. Let N(p) denote a linear circuit with
p =, ....p,) being a real parameter vector which influences the (scalar) transient x(¢).
In the general case p may include component values, initial conditions values and
amplitudes of d.c. or sinusoidal excitations. Letp € P = (P,, ..., P,) where P is an
interval vector. Each individual transient corresponding to some fixed p will be denoted
as

x(t) = f(t.p) (5.6)

We shall assume that the set N(P) of circuits N(p) is stable when p € P. Then the set of
time functions

X(t) ={f(t,p): p e P, t € [0, o)} &N

will be referred to as the interval transient since for each fixed ¢, X(¢) is an interval.
Thus the dynamic tolerance problem considered can be formulated in explicit form as
follows.

Problem 5.1. Given the linear circuit N(p), p € P and the function f{t,p) in explicit
form, find the interval transient X(¢).

In practice Problem 5.1 is solved for a series of discrete time moments.

It should be noted that approximate enclosing solutions are, of course, readily obtained
if for fixed ¢ one uses one interval extension or another of (5.6) in P.

As is seen from the example considered above the explicit form formulation of the
dynamic tolerance analysis problem is possible only when an analytical expression for the
relationship between input parameters and output variable can be derived. Its application
is, therefore, limited to tolerance analysis of circuits of low complexity excited by d.c. or
sinusoidal sources. It should be, however, mentioned that nonzero initial conditions are
no obstacle for the present section’s formulation since they are naturally accounted for
in deriving the expression for the output variable (note that for the example considered
(L (0) =v/R #0).

5.1.2 Frequency-domain formulation

An alternate explicit form formulation of a special dynamic tolerance analysis problem
}vhen there is only one single step excitation and one output variable will be introduced
in this section. It is based on an equivalent representation of the output signal using
frequency-domain analysis and is therefore applicable only if the initial conditions are
zero. Unlike the explicit formulation introduced in the previous section, the new approach
(f:alled frequency-domain formulation) may, however, be used for tolerance analysis of
linear circuits having (theoretically) an arbitrarily high order of complexity.
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Now x(2) is the step response of the circuit studied and the vector p includes only the
component values and the step excitation magnitude (all the initial conditions are zero).
In this case the set of functions X(¢) generated by p € P will be called the interval step
response of the circuit. It is well known that there exists a relationship between the step
response x(t) and the real part r(w) of the frequency response F(jw) of the circuit
investigated, namely (c.g. [44])

. 2 (=ro) .
x(1) 'EL 22 sinordo (5.8)

The basic approach adopted here to estimate the interval step response X(f) is the interval
generalization of (5.8) when r(®w) and hence x(f) depends on the parameter vector p
defined above. To underline the dependence of r(®w) on p the notation r{®, p) will be
used. Thus, (5.8) can be rewritten as

x(t) = Ef‘”l(_‘”ﬁ sinwrdw 59
/o (O]

The dynamic tolerance analysis problem considered can be formulated as follows.

Problem 5.2. Given the linear circuit N(p) with zero initial conditions, p € P and
the real part r(w, p) of the frequency circuit response F(jo) (as an analytical expression),
find the interval step response X(f).

Comparison of (5.6) and (5.9) reveals that now
f(tp) = Zf”M sinwt do (5.10)
e [O)

Thus, it is seen from (5.10) that the solution X(#) of Problem 5.2 for fixed t can be found
as the range of f{t, p) defined by (5.10) over P. The discussion of this problem requiring
an interval analysis technique for evaluating integrals will be postponed for section 5.2.

The two transient analysis formulations introduced so far are explicit form
formulations since both functions f{¢, p) from (5.6) and r(w, p) from (5.10) are assumed
to be known analytically. In the next subsection a third approach will be presented
whereby the dynamic tolerance problem will be stated in an implicit form formulation.
The latter formulation permits the study of a considerably larger class of circuits as
compared with the former (explicit) formulations.

5.1.3. Time-domain formulation

In this section we shall consider linear circuits whose transients are described in the
time interval [0,T] by the system of differential equations (written in vector form)
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X =Ax +b(t), te [0,7], T<oo (5.11)
with initial conditions
x(0) = ¢ (5.12)
The excitation vector b(¢) is most often of the form
b(t) = ¢(t)b (5.13)

where @(?) is a diagonal matrix and b is a column. Each component @(f) of @) is
bounded (also in the case where T — o).

In the most general case the elements a;; of A, b; of b and c; of ¢ may all depend on
the input parameter vector p. Indeed, for the example from section 4.1.2, Fig. 4.1 where
x = (i.ve) T we have

-1 5_2. +r| L R, 1
a=| L k Y LI Rk (5.14a)
1 1
Ck R3Ck
k=1~ fﬁ
R3
b =|L . by=—, b,=0 (5.14b)
L
0
If e(t) = e = const., then
- - e
¢ =i 0) = R, + K, (5.14¢c)
¢, = VA0) =V, (5.14d)

Let p=(R, R, Ry, L, C, v, e ). It is seen that for the example considered

a“ = a”(pp p2’ p:p p4); a12 = alz(pz’ p}‘ p4)’
u = Dy Py Ps) Ay = Ay (Py Py Ds),s
b, =b,(p,), ¢ =c,(pp Py ;) € =D
showing that in this instance the elements a; of A, b; of b and ¢, of ¢ all depend on one
or other components of the parameter vector p and hence are not independent.

(S}
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On account of (5.13) the system (5.12) may be written as

X = Ax + o(t)b (5.15a)

x0) = ¢ (5.15b)
Having the above example in mind (5.15) will be rewritten in the form

X =Ap)x + 9()b(p), te [0, 1] (3.16a)

x(0) = c(p) (5.16b)

where a;(p), b(p) and c(p), i, j =1, are, in general, nonlinear functions of p.
Let

x(2) = f(tp) (5.17)

denote the solution of (5.16) for some fixed p € P where P is a given interval vector.
The set

500, t) ={f(t.p): te [0, 1], pe P) (5.18)
will be called the solution set of (5.16) for the time interval [0, t] The set of values
S(t) ={f(e,p): p € P} (5.19)

of S(0, ) for a fixed time ¢ will be referred to as the reachability set at time £.
To encompass the case where T — e the following assumption is needed.

Assumption 5.1. The set of matrices A(p) with p € P is either stable or D-stable in some
large enough domain D.

It follows from Assumption 5.1 that S(¢) is a bounded region of R' for each t € [0, o).
Let X(¢) denote the interval hull of S(¢), i.e. X(¢) is the smallest interval vector still
containing the reachability set S(¢#). The symbol Th will be used for the interval hull; thus

X(t) =1hS(z) (5.20)

The set of interval vectors (5.20) for ¢ € [0, T] will be called the interval solution of
problem (5.16) (and for notational simplicity will be denoted by the same symbol X(¢)).
On account of Assumption 5.1 the interval solution always exists even in the case where
te [0, o).

Now we are in a position to state the following (rather general) dynamic tolerance
problem.

Problem 53. Given the linear circuit N(p) with the dynamic description (5.16),
find the interval solution (5.20) when p € P.

Transient analysis of linear circuits 215

The above problem is extremely difficult to solve. Therefore (by analogy with
section 4.1.2) it is reasonable to simplify it by assuming that a;, b; and c; are independent
and lie in some intervals @/, b/ and ¢/ (these intervals being in fact some extensions or
the ranges of a,(p), b(p) and c{(p), respectively, in P). Thus, we arrive at the following
simpler problem.

Problem 5.4. Given the circuit N(p) whose transients are described by (5.15) with
Ae A, be b and c € ¢, find the corresponding interval solution X(f) assuming A’ to be
stable (or D-stable).

Even Problem 5.4 is no easy task. In trying to (approximately) solve it we shall be led
to consider the following auxiliary problems.

Problem 5.5. Only the components ¢; of the initial conditions vector ¢ are given as
intervals, i.e. c;e ¢/, i =1, [ or in vector form ¢ € ¢/ (A and b are known exactly).

Problem 5.6. Only the components b; of the vector b are given as intervals b; or
in vector notation b € ¥

Problem §.7. Only the elements g, of A are intervals, i.e. a; € aij’, or equivalently
A € A". Furthermore, the natural assumption is made that the interval matrix A is stable
or D-stable.

Obviously, besides the last three problems there exist alternate formulations of the
transient analysis of circuits with independent interval data which are in fact various
combinations of the auxiliary problems 5.5 to 5.7. Several such "mixed" cases will be
considered later on (in section 5.3).

§.2. SOLVING FREQUENCY - DOMAIN FORMULATION PROBLEMS

In this section, we proceed to solving the dynamic tolerance analysis Problem 5.2
(i.e. the worst-case tolerance analysis of the step response of linear circuits with zero
initial conditions) [60]. Two approximate solutions are presented in subsection 5.2.1.
These solutions (called outer solutions) have the property that they enclose the exact
interval response X(#) of the circuit studied. In subsection 5.2.2 two alternate approximate
solutions are suggested which, not guaranteed to have the enclosing property, prove to be
a good approximation to the exact interval solution of Problem 5.2. Finally, several
examples illustrating the frequency-domain formulation approach are given also.
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5.2.1. Outer solutions

As was mentioned in section 5.1.2 the interval step response (or simply the interval
solution) X(¢) of the circuit investigated is defined by the set of time functions

X ={ft,p):pe P, te [0,0)} (5.21)

where f(¢, p) is given by (5.10):
fitp) = 2 L“M sinor do (5.22)
T [0)

The lower endpoint X(#) and the upper endpoint)—(-(t) of X(#) can be determined (for
fixed 1) as the global solutions of the following optimization problems:

X(¢) = min f(,p)

be P (5.23)
X(t) = max f(t,p) (5.24)
peP

Since problems (5.23) and (5.24) are very difficult to solve exactly the exact interval
response X(¢#) will be replaced by some approximate interval solutions Y(f). If the
approximation Y(#) satisfies the condition

X(t)cY(),te {0,7] (5.25)

then Y(s) will be called an outer (or enclosing) solution to the tolerance problem
considered. The enclosing property (5.25) may be useful in some applications. Thus, if
the outer solution Y(f) does not exceed a threshold x,,,,, then all the individual responses
x(z, p) for all p € P will obviously satisfy the inequality x(z, p) < x,,, t € [0, T].

On account of (5.22)

X(t) = min[if”’_(“l’i’l sinor do]
T 0 ®

(5.26)
peP
A similar formula is valid for X(¢):
F(r = 2 (=r(o,p) .
X(@ max [EL __m_smmtdw] 6.27)

pe P

_ Thus, it is seen from (5.22) to (5.27) that the exact tolerance solution X(¢) = {X(9),
X(#)] is defined as the range of (5.22) over the interval vector (box) P. Note that in (5.26)
and (5.27) the minimizing or maximizing vector p should be constant over the whole
frequency interval [0, o<].
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The determination of X(#) and X(r) by (5.26) and (5.27), respectively, is no easy task.
This is why an outer approximation Y(#) to the exact interval tolerance solution X () will
be introduced using an interval analysis technique for evaluating integrals [2].

Let a(®), ® € [0,0] = £, be a real continuous function whose interval extension A(€)
for any interval Q < € is Lipschitz, i.e. w(A(€2)) € Iw(2) where w(.) is the width of the
corresponding interval and / > 0 is some constant. By the mean-value theorem

[T a@do = [ a@do = a®)@-0) = aE)w@)

[2)

where £ € Q. Therefore a(€) € A(€), and

[ a@do e 4@)w@) (5.28)

Now let €, be divided into n subintervals Q,, Q,,....Q,, Q = [®, ®],i= 1, n such that

W= <O =0,<0=...<0,=0 According to the additivity property of the
integral

N -y 5.29

[T a@do ) fn‘a(m)dm (529

From (5.28), (5:29) and the Lipschitz condition on A(®) the following theorem is valid
[2].

Theorem 5.1. For any partitioning of €, the inclusion

[ atwdo € T AQ)w(@) (5.30)
o i=1
and the estimate
w E AQ)wW(Q) | < lij W@ (531)
i=1 i=1

are valid.

If the partitioning is uniform, then w(£2) = (® — @)/n = h. Let

S, = E AQ)@-@)/n

izl

From (5.31)

w(S) < l(@-w)*/n (5.32)

Hence
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[ at)do = 1im s,

0

n—yo0

Furthermore it is seen that the series { Y, }, Y, =S, ¥,,,;= S,,, N Y, is a series of narrower
and narrower nested intervals converging to the exact value of the integral.
Now consider again formula (5.22). In practice, most often

r(w,p)

=0 forwm > e (5.33)
w .

for any p € P so the infinite frequency interval [0, ] can be replaced with reasonable
accuracy by a finite interval [0, ®] (in actual computation ® can be determined by
truncating r(®, p°)/o where p° is the centre of the parameter vector P). Thus, if p is
fixed, the integral

I(tp®) = 2 [ 9P sinept do (5.34)
nJ o
can be evaluated for any ¢ by formula (5.30) from Theorem 5.1, i.e.

1(t,p,®) € Y A(t,p,Q)w(Q,) (5.35)

i=1
where A(t, p; Q) is some interval (most often, natural) extension of

a(t,p,w) = 3:_(_0)_17) sinwt, e £, (5.36)
T

Let the lower endpoint and upper endpoint of A(#, p; Q,) be denoted by A (z, p; Q) and
A*(t, p; Q,), respectively. It can be easily seen that A~ and A* are known functions of both
©; and ®,

At this stage, consider (5.35). Obviously

I(tp,w) < )"_, At Q)IW(Q) = S, (1,p) (5.37a)

i=1

and

I(tp,®) 2 Y A (L.p:Q)w(Q,) = S, (1,p) (5.37b)
i=1
for any p € P. LetS,"(t, P) and S, (¢, P) denote the upper endpoint and lower endpoint of

some interval extension of S,(t, p) and S, (¢, p), respectively, in P. From (5.37) it follows
that
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S (1,p) < Ef“__’(‘”’l’)sinmmm <STP), peP
TJo [(})

Thus an outer solution Y,(¢) = [Y, (1), —YE] to the dynamic tolerance problem considered
can be determined by letting

r =5.0P) - &0 (5.38a)
Y,(n) = S,(tP) + E(D) (5.38b)

where the errors £(f), €() are due to the finite value of w. Clearly, the errors are given
by

€(#) = min J: a(t,o,p)do, pe P (5.39a)
€W = max [ atw.p)do. pe P (5.390)

A simple way of bounding £(#) and “g(#) will be presented in the next section. i
For a given n and ® the most accurate results will be obtained if S,,*gt,P) and S, (t.P)
are determined by the ranges of the corresponding functions in P. In this case

S,(t,P) = min S, (t,p), pe P (5.40a)

S:(t,P) = -min (-S,(¢t,p)), p€ P (5.40b)

Thus, roughly speaking (neglecting the error €(#)) the problem of determining (fqr a
fixed 1) the outer solution Y,(¢) defined by (5.38) has been reduced to a corresponding
static tolerance problem defined by (5.40). The global minimization problems (5.40) can
be solved by some of the interval methods for static tolerance analysis from Chapter 2.

It is important to stress that theoretically the outer approximation Y,(¢) introduced b.y
(5.38) and (5.40) converges for a fixed ¢ to the exact interval solution X(¢) of the dynamic
worst-case tolerance problem considered when ® and » tend to infinity.

In practice, the solution X(¥) is sought for a finite number N of discrete moments .
Thus, the computation of the approximate solution Y (#) introduced above necessitates N
times the global solution of the minimization problem (5.40) with ¢t =1, 1 =1, N,
respectively.  Of course, less sharp approximations are possible if some interval
extensions of S, (¢, p) and S,*(¢, p) in P are used instead of the corresponding ranges.

An alternative approach for constructing an outer solutions to Problem 5.2 will next
be presented which circumvents the need for solving optimization problems of the type
(5.40).
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Let R(®, p) denote some interval extension of r(w, p) with respect to p in P. Now
an alternate outer solution Y,(¢) = [Y,(9), Yz(t)] of the dynamic tolerance Problem 5.2 will
be defined by the formula

Y (1) = Ef”ﬁ(i":ﬂsinmzdm (5.41)
/0 (0]

In other words Y,(¥) is defined as the interval extension of (5.22). Therefore, the outer
solution (5.41) is guaranteed to have the inclusion property (5.25) since X(¢) is the range
of (5.22) over P.

Using formula (5.41) the endpoints Y,(#) and ¥,(¢) can be determined in the following
way. Consider (for fixed f) the intervals (with respect to @) where sin ¢ is either
positive or negative. Let

Ao = w/t (5.42)

It is readily seen that sin t changes sign at the frequencies

®, = VAo (5.43)
where v =0, 1,2 .... Thus, sin wt is positive within the intervals 0,,-0,v=0,2
4,...(vis even); it is negative within the intervals w,,, —®,, v=1,3,5,...(vis odd).

Let the set of even v be denoted by N, and the set of odd v by N,. Then (5.41) can be
put in the form

Y, = —E f R(co P) sinordo + 2 R((o P) snordo  (5.44)

VEN o TC VEN

Let (for fixed ) the interval R(w, P) be denoted as IR(w.p), E(u) ). Now it is
readily seen from (5.44) that the lower endpoint Y,(2) of Y,(#) can be determined by the
formula:

Yo = E f _sm(otda) + 2 f _sm(otd(n (5.45)

ve N, T veN,
In a similar way

y(t) = E f “‘5 sinf dw + EE f‘:“‘ésin(otdm (5.46)

veN T ve N, b w

Writing R asR =R + R - R and substituting it into (5.45) we get after some manipulation

_ 2 (-~ Ro,p) .
Y0 = ;L — = sinorde + S(1) (5.47)

where
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o, [R(®,P) -R(®,p)]

S == sinwt do < 0 (5.48)
( ) chg w
In the same way (5.46) can be recast in the form
Yo = Ef“’ R@.P) Gnawrdo - S(1) (5.49)
z T

where S(f) is defined by (5.48). Thus, the new outer solution Y,(#) to the dynamic
tolerance analysis problem considered can be determined using formulae (5.47) tc? (5.49).

It should be stressed that unlike Y,(¢) introduced previously the enclosing solution Y,(?)
defined by (4.41) can never be equal to the exact solution X(z). Indeed, it is seen from
(5.26) and (5.27) that

2 (=r(w,p") .
X)) = = | —ZZsinotdw
J. o
— _ 2 (=r(o,pY) .
= 2| 227 ‘sinmtdo
®) n-fo [0

where p' and p? are the parameter vectors providing the minimum and maximum of (5.?:6)
and (5.27), respectively. Using (5.47) and (5.49) we can introduce the "systematic
€erTors:

sinc)tdm - S()

2 (e
8= X0 - 10 = Z[[1r(@p) - Rw.p)]

5=X0 - 70 - %fo”[ﬁ(m,i) - r(o,p))] Si‘(‘;"’dm - S)

It is seen from the above formulae that always § > 0 and_g > 0; the smallest value § =
J3= S(f) is obtained when r(®,p') = R(w,p) and r(w, p*) =R(®, p) which is only possible
if the interval [R(w.p), R(®, —E)] is in fact the range of r(w, p) over P. Thus, the
obtainment of the narrowest possible interval solution Y,(f) is associated with the
calculation of the range r(w,P) of r(w,p) for the whole frequency interval [0,e°).

$.2.2. Alternate approximate solutions

Sometimes the requirement of Y(f) to have the enclosing property (5.25) may not be
essential. In such cases it is reasonable to introduce two new approximate solutions Y;(f)
and Y,(r) by modifying and simplifying the approaches adopted to define the outer
solutions Y,(r) and Y,(2).

The first approximate solution Y,(f) is suggested as an attempt to simplify the global
optimization problems (5.40). Indeed, from a computational point of view it should be
emphasized that the functions S,*(¢, p) and S,7(¢, p) in (5.37) are rather complex due to
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the fact that they are sums of terms, each term A*(z, p; W, ®)and A(t, p; W, @) being
a function of both @, and @, A reduction in the amount of computation is possible if the
integral defined by (5.34) is solved approximately (for fixed f and p) by some numerical
method. Then

1(tp,®@) = Y oa(t,p,®) + &(t,p) = S,(1,p) + e(t,p) (5.50)
i=1

If the integration is done using Simpson’s rule, n from (5.50) must be even, the
partitioning of the interval {0, @] is uniform and o have the values A/3, 44/3, 2h/3,...
2h{3, 4h/3, kf3. Since (5.50) is valid for each p € P it follows that

I(t,p,®) T (1,P) + (1, P) (5.51a)
and
I(t,p,®) 2 S (1,P) + £(¢,P) (5.51b)

for each p € P where RHS of (5.51a) and (5.51b) is the upper endpoint and lower
endpoint of some interval extension of S,(t, p) + (t, p) in P.

An approximate solution Y,(#) = [Yy(), Y,()] to the dynamic tolerance problem
considered can be introduced by defining

Y,(1) = 5,(1,P) (5.52a)

Y,(0 =51, P) (5.52b)

where S, (£.P) and S,(1,P) denote the lower endpoint and upper endpoint of some interval

extension of §,(t,p) in P. For a given n and ® the most accurate result will be obtained
if

S, (¢t,P) =min S (t,p), pe P (5.53a)
S{f.P) = -min (-S(t,p),pe P (5.53b)

that is, if S,(¢, P) is the range of S,(¢, p) over P.

It should be noted right away that the approximation Y,(#) defined as above is not an
outer solution to the tolerance problem considered since the numerical integration S,(¢,p)
does not guarantee the inclusion property (5.25). However, the approximate solution Y,(¢)
is easier to find than Y,(#). Indeed, comparison of (5.53) and (5.40) reveals that problems
(5.53) require less computation than problems (5.40) since S,(¢, p) is a simpler function
than S,7(¢, p) and S,*(¢, p).

Similarly to the outer solution Y,(#) the approximation Y,(9) has the property to
converge to the exact solution X(r) with n and  tending to infinity.
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The second approximate solution Y,(#) = [Y,(f), Y,(#)] which does not guarantee the
enclosing property (5.25) is introduced in a similar way as Y,(#). On account of (5.47)
and (5.49) its endpoints are defined as follows:

Y, (1) = 2 [ RO-2) Gnord (5.542)
v w
- 2(~R(w,p)
Y (1) = 'Efo ___.a)____smmtdw (5.54b)

Comparing (5.47) to (5.54) it is seen that the approximate solution Y,(f) is not guarar}teed
to enclose the exact solution X(#). On the other hand, detailed (elementary but tedious)
analysis shows that Y,(¢) is closer to X(f) than Y,(?) is to X(¢). Indeed, let

e, = L‘”nxg) - Y, (0)ldt

and

¢, = [IXW - V0l

with |z|] being either 2% or |z|.
Similarly, let

e, = [ - ,(0)lds

¢, = [ - Tl

It turns out that ey, < ey, and ey, < ey,

Remark 5.1. It should be noted that the vectors p and p involvcd _in formulae (5.54)
are in general dependent on the frequency ® i.e. p = p(®) and p = p(w). If this is the
case, comparison of (5.26), (5.27) amd (5.54) shows that Y,(f) # X(¢) even if R((‘l’ P) _is
the range r(w,P). However, in the special case where the endpoints r(®, p) and 7(w, p)
are obtained for some constant vectors p and p, respectively, then Y,(#) may coincide with
the exact solution X(¢#) for some times . This conclusion follows directly from (5.26),
(5.54a) and (2.27), (5.54b).

Remark 5.2. Depending on the accuracy sought various methods for determining the
interval extension R(w, P) can be used. The simplest approach would be to use the
natural interval extension obtained by replacing the real operations in r(®, p) by their
interval counterparts. More sophisticated methods determine the interval extension by
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means of appropriate interval mean-value forms. Efficient algorithms for computing the
range r(w, P) of r(w, p) over P have been presented in section 2.3.

R emark 53. Assuming (5.33) to hold the errors £(f) and £(f) from (5.38) can be
estimated on the basis of (5.39) by the quantities

2 (= inoxr
e () = EL |1_e(m,g)|_‘%°_|dm

and
5)sinor | | sino | do

RO

In determining the outer solution Y,(f) or the approximate solution Y,(f) we are first led
to evaluate the endpoints of the interval R(w, P) using one of the available methods for
determining interval extensions or ranges (Chapter 2). Secondly, we have to determine
the bounds Y,(r) and Y(?) or Y*(r) and Y,(t) by computing the integrals (5.47) to (5.49)
or (5.54).

An approximate but rather simple method for evaluating integrals of the above type
will be presented now. Unlike the traditional numerical methods this method can (if need
be) retain the enclosing property (5.25) for the approximate outer solution Y,(¢). It is
based on an appropriate piecewise-linear approximation of the interval extension R(w).
More specifically, in the context of determining the outer solution Y,(f), R(w) is
approximated by a piecewise-linear function (PLF) @ (w) such that

¢,(w) < R(w) (5.55a)
Similarly, R(®) is bounded from above by a PLF @, (w), i.c.
¢,(®) > R(w) (5.55b)

Thus, the approximate outer solution to the tolerance problem considered is given by

Y, (1) = _?‘.Lw P (@) sinorde + S(1) (5.56a)
- @
A I <P2;w) sinwrdo - 3(1) (5.56b)

where

Sy = Zf o,(0) - <p,(w)1s""‘” (5.56¢)

VEN
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It is seen from (5.55) to (5.56) that the approximate outer solution is guaranteed to
enclose the exact solution X(f). Since @, and @, are LPFs the integrals (5.56? can be
evaluated in a rather simple manner. To simplify notations let us consider the integral

y=2 f = 2D Gnorde (5.57)
o

It is assumed that @(®) = 0 for ® = ® where @ is some final frequency. Now the
frequency interval [0, ®] is divided into N subintervals [0, ®,], [0, @], . . . [@y,, O
Within an arbitrary subinterval [w;, 0,;] @(w) is linear.

o(w) = ¢, + ko
with
- D — @

. -0

i+l [

o(w), ¢, =9¢(w,)

S
"

So (5.57) becomes (with @, = 0)

(1) = —E[ f ‘S“(:)“”

(5.58)
- k,(cos(w, 1) - cos(wzr))]
The integrals in (5.58) can be put in the form
[ 309 gy = 18 (@,,0) - 1S(0p)
©
where
_ (o sinwt
1S = | do
is the so-called integral sinus; its values are tabulated. Finally
N 1
y(t) = —}: [9,(I5(w,,1) - IS(w1)
L 5.59)

- k. (cos(w,,,t) ~ cos(wt))]

Thus, Y,(£) and Y,(?) from (5.56) can be found by means of formula (5.59) in which ¢,
and k; must correspond to @,, @, and @, — @,, respectively. (Note that in evaluating
(5.56¢) the intervals [®, ®,;] must cover exactly the intervals [®,, ®,,,] with v € N, and
o, defined by (5.42), (5.43).
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The approximate solution Y,(f) can be determined in exactly the same way; the
piecewise-linear functions ¢, and ¢, need not, however, be outer approximations to R(t)
and R(w), respectively.

The approach of the present section based on the frequency-domain formulation will
be illustrated below by way of several examples.

E xample 5.2. Consider the circuit shown in Fig. 5.2. It is desired to find an outer
solution Y(#) to the step response tolerance problem associated with the output voltage v(¢)
if R and C belong to certain intervals R' and C'.

R

1(t) C T V(t)

Fig. 5.2. Finding an outer interval solution ¥(¢) for the output voltage v({).

For the circuit at hand the frequency response F(jw) is

Flo) = o
where b = 1/RC. Hence, its real part is
b2
r(o,b) = TR (5.60)

Since R € R'and C € C’, b € B where B is an interval equal to the reciprocal of the
product R'C’. Thus, from (5.60) the natural interval extension of r(®,b) over B is

2
R(,B) = B
B* + o?
or equivalently
1
R(wB) =
oY (5.61)
1+ (=
B

It is seen from (5.61) that this natural extension yields in fact the range of (5.60) over B
with endpoints
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r(®,B) = — —___, 7(w,B) =
o (5.62)

Furthermore, these endpoints are obtained for constant values of the varying parameter
b over the whole frequency interval [0,e0). Now the outer solution ¥,(¢) can be determined
by using (5.47) to (5.49) and (5.62). In this example the exact tolerance solution V(f)
could be found directly by the formula

V(t) =1 - e'B’ = [1 [l— 1 - -——] (563)

Thus, it is easily seen from (5.47) to (5.62), on one hand, and (5.63) on the other, that
V() c Y, (1) and V(¥) = Y,(2).

This example is instructive also in that it shows the possibility that in some cases when
the endpoints of the range of r(w,p) correspond to two fixed parameter vectors the
approximate solution Y,(f) may provide (within the computation accuracy) the exact
solution X(#) to the tolerance problem considered. Indeed, it is easily seen that the
approximate solution Y,(f) obtained by (5.54) and (5.62) yields in fact the exact solution
X(¢#) given by (5.63).

Example 53. Consider a two-port network made up of a capacitor C, a resistor R

and an inductor L with C being in series with the parallel connection of R and L. It is

desired to find an approximate (not necessarily outer) solution Y(f) associated with the

output voltage v(#) (across the parallel connection of R and L) when the input voltage is

a unit step function and R, L and C belong to some intervals R, L' and C’, respectively.
The corresponding voltage transfer function is

S2

s2 + (1/RO)s + 1/LC

V(s) =

The real part r(w) of V(jw) is

-0*(l/LC - o)
o’
R*C?

r(w) = (5.64)

(1/LC - &*) +

Using (5.64) an approximate solution Y,(f) as defined by (5.62) has been determined. The
sum S.(¢, p) was obtained applying Simpson’s integration rule. The natural interval
extension of S,(¢, p) in P was used.

Now let the resistance R, the inductance L and the capacitance C take on values from
corresponding intervals given by their nominal (centre) values C, = 25 pF, R, = 200 Q and
L,=2 H and £ 5% tolerance for C and R and + 1% tolerance for L. Thus,
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C' = (2375, 26.25]pF, R’ =[190, 210]1Q, L' = [1.98, 202]1H

We shall evaluate the approximation Y,(f) of the output voltage interval V(f) only for a
single time moment ¢ = ¢, = 0.015s (approximately at this moment the largest width of the
interval V(¢) is observed).
From the relation
W = n2x

where 7 is the number of cycles in the interval [0, @] the final frequency ® for 7 = 3
was obtained to be @ = 1256 rad/s. The total number £ of integration steps was chosen
to be n = 24 so that h = o/n = 52.33 and

®W=0, W, =w;+h, 0<i<na-1

On the basis of (5.36) and (5.64), after some manipulation

2 - @;sin®,
a(t.p, @) = — - (5.65)
Lt @ - o
ClL rL - w'C
L
Now let A(t,P,,) be the natural extension of (5.65), i.e.
AP ) 2 - ,sin®,
P,0) =2
T 11 . ] & (5.66)
¢t "
(RI)Z 1 - Cl
L'}

On account of (5.50) and (5.52) the approximate solution Y,(f) is given by the sum

n-1

Y, (¢) = E o A(t,Pw) (5.67)
i=1
where o; = 4h/3 for odd i and 2k/3 for even i. Computation of (5.66), (5.67) yields:
Y. (t) = [-0.28679, -0.19264]

Example 54. For two-port network shown in Fig 5.3 find the approximate solution
Y(2) associated with the worst-case tolerance analysis of the output voltage v(¢) when L,
L,, R, and R, belong to some intervals L, L,!, R,/ and R,..
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1t) R, R, Vit)

Fig. 5.3. Finding an approximate interval solution Z(z) for the output voltage w(1).

The voltage transfer function is

c
F(§) = ———
as? + bs + ¢
where
a=LL,, b=®R +R)+RL,, ¢ = RR,

The frequency response is

F(jo) ¢

-aw’ + jowb + ¢
so its real part is

c{c - aw?)
(¢ - aw?? + w’b?

r(m,p) (5.68)

where p = (R}, R,, L, L,). Let R(w) denote some interval extension or the range of (5.68)
when R,, R,, L, and L, become intervals (as was shown in the previous example R(®) can
be evaluated using some appropriate interval analysis method). In practice, R(w) will be
evaluated for some finite number of discrete frequencies. Suppose (for computational
convenience) that for the given intervals R/, R, L,/ and L, the upper endpoint R(®w) of
R(w) is given by the function

- 10000 - 100*
R(w) = 5.69
(@) 1000 + 700? + o (5.69)
This function was approximated by five linear functions (LF). Each LF was determined
by the corresponding points (@, R;) and (o, R,,;, with @,=0, o, =4, @,= 7.5, 0, =
13.5, o, = 22.5 and ® = 50. Using this approximation the upper endpoint Y,(f) was
evaluated by means of (5.54b). The graph of Y,(¥) is plotted in Fig. 5.4.
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AV(t)
1.0

-
—>

1
0 1 2 t
Fig. 5.4. Graph of the upper endpoint of the approximate solution V(z) = Y,(f) from Example 5.4.

The exact step response V(t) corresponding to (5.69) is given (in volts) by
V(i) = 1-1.1725e73% + (.1725¢°%18 (5.70)

It is worth nothing that the graph of the exact solution (5.70) practically coincides with
the graph of the approximate solution Y,(z).

5.3. SOLVING TIME-DOMAIN FORMULATION PROBLEMS

In this section we consider the solution of some transient tolerance analysis problems
formulated in implicit form in the time-domain. First, two exact methods for solving the
auxiliary rather idealized Problems 5.5 and 5.6 (defined in section 5.1.3) are presented in
subsection 5.3.1. Using the above solutions, a method for approximate solution of
Problems 5.7 and 5.4 is then suggested in section 5.3.2. Finally, outer (enclosing X(7))
and inner (enclosed by X(#)) solutions for the most general dynamic tolerance Problem
5.3 as well as for the simpler problem 5.4 are presented in section 5.3.3.

5.3.1. Exact method

We shall first solve exactly Problem 5.5. Later on, it will be shown that the solution
of Problem 5.6 can be obtained in a similar way.
It is well-known that the solution of the noninterval differential systems (5.11), (5.12)

X =Ax + b(®, x0) =¢

can be determined by formula
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x(t,¢) = W(t)e + W(t)L‘Wl(t)b(t)dt (5.71a)

where W(t) = ¢ and W (1) = ¢™" are (I x [) matrices (in view of solving Problem 5.5 the
notation x(t,c) is used to reflect explicitly the dependence of the solution x(¢) on the initial
conditions vector ¢). The above expression can be written in an equivalent form as

x(t,c) = W(Hc + f(1) (5.71b)

where the elements of W(¢) and f{f) are known functions of time since, according to the
formulation of Problem 5.5 the matrix A and the vector b(f) are known exactly.

For fixed 1, the relationship (5.71b) defines an affine transformation of the vector ¢ to
a corresponding vector x(f,c). Geometrically, the affine transformation involves the
following two transformations of c. First, as a result of the multiplication of W(¢) and c,
the vector c is rotated and lengthened (or shortened). Afterwards, the resultant vector is
added to the vector f{t) to obtain the solution vector x(z, ¢). If now c is allowed to vary
within the interval vector C, then (similarly to (5.19) with p being c) the set of vectors
x(t, ¢) defines the reachability set S(¢) for Problem 5.5 at time ¢, i.e.

S(1) = {x(t,0): x(t,¢c) = W(t)e + f(1), c € C}

It is easily seen from the above definition that for the problem considered S(f) is a
hyperparallelopiped: indeed, S(#) is the image of an affine transformation of the hyperbox
C. The geometrical transformation of the domain C into the image S(?) is illustrated in
Fig. 5.5 for the case of [ = 2. In the same figure, the corresponding interval vector X(r)
defined as the interval hull of S(¢) is also shown.

ct s?

///c// . 74 4-X(t

c3 s?

c?

g3

Fig. 5.5. Transformation of the domain C into the image S(¢) for the case of | = 2.

Since geometrically C is a box in R', C can be uniquely determined by fixing (arbitrary)
I+1 of its vertices ¢', v =1, [+1. Thus, for example of Fig. 5.5 the shaded region
representing C is determined uniquely by (say) its vertices ¢, ¢* and ¢*. The remaining
2'—(l+1) vertices can be easily located by means of the basis /+1 vertices, the components
C; of the interval vector C and elementary geometrical construction,

In a similar way the hyperparallelopiped S(r) can be uniquely determined if the location
of I+1 of its vertices s*(f), v = 1, I+1 is known; the location of the remaining 2/ — (I+1)
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vertices can be readily found using the basis vertices s'(f). It is natural to assume as basis
vertices s"(t) those vertices of S(f) which are the images of the (chosen) basis vertices ¢’
of the box C under the affine transformation (5.71b). In this case, the vertices s°(¢) are
determined by means of the vertices ¢’ as follows

s'(t) = W(t)eY + f(1), v =T,I+1 (5.72)

The above correspondence between ¢, and s'(f) is illustrated by the two-dimensional
example of Fig. 5.5

After the basis vertices s*(f) are determined by (5.72) the remaining vertices of S(f) can
be found by way of elementary geometrical considerations. Finally, the interval solution
X(#) of the dynamic tolerance analysis problem considered can be easily determined as
the interval hull of S(r).

Based on the aforegoing the exact solution of Problem 5.5 can be found by the

following method. First, /+1 basis vertices ¢, of the box C are chosen. Afterwards /+1
transient analyses

x = Ax + b(®, x(0) = ¢, v =T,I+1

(with one and the same circuit and different initial conditions ¢” are carried out whereby
the basis vertices s*(f) of S(¢) are determined. Using s*(¢) the hyperparallelopiped S(7) is
constructed. Finally, the interval solution X(¢#) of Problem 5.5 is determined as the
interval hill of S(#). For example, the upper endpoint)?*(t) of the kth component X, (¢) of
X(¢) is found by means of all the vertices of S(¢) as the maximum

X.(t) = max {s5,®, v =121

In a similar way, the lower endpoint X,(f) will be computed as the minimum among all
the vertices components s,"().

We now proceed to solving Problem 5.6. First, (for ease of exposition) the input
perturbations b,(f) will be assumed constant, i.e. b{r) = b, i =1, /. Formula (5.71a) can
then be recast in the form

x(16) = W(nye + (W) ['W,@dob;

hence
x(t,b)y = W(t)b + f'(1)

where the notation x(t, b) is used to underline the dependence of x(f) on b. Obviously,
the latter expression defines an affine transformation of the vector b to the solution vector
x(t, b). Therefore similarly to the previous Problem 5.5 if b varies in the box B, the set
of all solutions x(¢, b) defining the reachability set S(#) is again a hyperparallelopiped.
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It is easily verified that S(?) retains this property for input perturbations of the ge.:neral
form b(t) = ¢,()b,, i = 1, I. Therefore, by analogy with Problem 5.5 the exact solution of
Problem 5.6 can be obtained by the following method. First, / + 1 basis vertices b" of the
interval box B are chosen Afterwards / + 1 transient analysis

x = Ax + Ob", x(0) =c, v =T+

are carried out (using some of the methods for linear transient analysis) to determin.e 'the
basis vertices s°(¢) of the corresponding hyperparallelopiped S(#). Using s"(¢) the remaining
vertices of S(#) are then found. Finally, the interval solution X(#) is determined by means
of all the vertices of S(z).

5.3.2. Approximate solution

In this section, we shall first solve approximately Problem 5.7. The solution is ba§ed
on the approach used for approximate solution of a.c. tolerance problems from secpon
3.3.2, on one hand, and on the exact method for solving Problem 5.6 from the previous
section, on the other.

We start by writing the matrix A and the solution of system (5.15) in the form

A=A +E (5.73a)

x=x°+1 (5.73b)
Substituting (5.7) into (5.15) we have

B4 =@, +Bacem +b
Now taking into account that

b c
X, =Ax +b

and neglecting the product En we obtain a linearized system of equations in the incre-
ment 1

n=An+Ex(»,n0) =0 (5.74)

According to the statement of Problem 5.7 A € A' so that the matrix E belongs to the
symmetrical matrix A’ = [-A, A] where A is the radius of the interval matrix A’ Thus, the
interval equivalent of (5.74) takes on the form

n=An+Ex@®, nO =0 EeA (53.75)

To simplify the exposition it is assumed that we are interested in (approximately)
determining only one component X,(f) of the interval solution X(#) of Problem 57 In
order to apply the approach from section 3.3.2 we introduce the following notations:
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E, - the ith column of E,
A - the ith column of A,
D{r) - diagonal (! x /) matrix, whose nonzero elements are equal to x/(2).

Now, by analogy with section 3.3.2 we solve (5.75) in the following successive manner.
First, we set E; = 0 for i > 1. Thus (5.75) is reduced to the form

M =An+D(E, nO) =0, E e A (5.76)

which is obviously a Problem 5.6. Solving (5.76) by the exact method from the previous
section with respect to 1, we get two solutions: the lower endpoint 1,(¢) and the upper
endpoint M,"(r) obtained for some for some vertices E, and E, of the box A/,
respectively. Now, we solve two new Problems 5.6 of the form

N =An +D,(E +DME, M0 =0, E e A (5.77a)

M =An + D()E, + D(E,, mn©) =0, E e Al (5.77b)

Solving (5.77a) we find an updated estimate 1,(s) and the corresponding vertex E;
similarly, from (5.77b) we get an updated estimate T,%(7) and the corresponding vertex
E,. Next, the following two Problems 5.6 are solved

Ul

AN + D(NE + D(NE, + D(NE,, M) =0, E e A,

M =An + D(DE, + D(OE, + D(E,, n©) =0, E, e A,

to obtain the corresponding vertices E; and E,. We continue the above process until the
corresponding vertices E, and E, of the last A, are determined. Thus, we have found the
lower endpoint 1,(r) and the upper endpoint T,(f) of the interval related to the kth
component 1,(¢) of the increment 7. Finally, the approximate solution of Problem 5.7 for
X, (9) is given by the formula

X® =x0 + 1,0

X0 = x 0 + N0
Now we shall show that the method outlined above for approximate solution of
Problem 5.7 is also applicable for approximate solution of Problem 5.4. First, we shall

consider the following "mixed" problem which is a combination of Problem 5.6 and 5.7.

Problem 58 Find an estimate for X,(?) in the case of the circuit N described by
(5.15) with A € A', b e b and exactly known vector c.

To solve Problem 5.8 we first observe that if b is written in the form
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b=bc+38, 8ed
then (5.75) takes on the form
N =An + Ex® + ¢, n(0) =0, Ec A, 3¢ ¥ (5.78)

Obviously, (5.78) can be solved by the above method (indeed, (5.78) differs froml (5.75)
only in that the system (5.78) contains one more box & along w1th the boxes A). Let
1,() from (5.78) be obtained for some vertex (E, d) of Al &), 51mlmly let €, ) be the
vertex leading to T,(f). Now we are in a position to solve approximately Problf:m 5.4.
(when additionally to Problem 5.8 ¢ € C). To do this, we consider the following two
Problems 5.5:

x=Ax +Ex(t) + o3, ce C (5.79a)

x=Ax +Ex() + 003, ce C (5.79b)

Now solving exactly (5.79a) for x,(f) we obtain the lower endpoint of the approxirEate
solution for Problem 5.4 (for its kth component). Similarly, solving exactly (5.79) for x,(r)
we find the upper endpoint of the desired approximate solution.

To illustrate the above approach we shall consider the following examples.

Example 5.5. We take up the circuit from Example 5.3. The input voltage V =
200V = constant and the inductance L = 2H are given exactly. The interval parameters
are R and C and are given by the same nominal values and tolerances as in Exan}ple 5.3.
It is desired to find the interval of the output voltage v(¢) (the voltage across the inductor
L) for zero initial conditions i;(0) = O and v(0) = 0.

Since v = L di;/dt and L is noninterval the state vector was chosen to be ma@e up of
the variables x, = i, and x, = di,/t. The corresponding system for transient analysis of the
circuit is then

X, = X, x(0) =0

X, = —Lx - Lxl_, x,0) =

: = 100
2 LC™" RC

<

When C € C' and R € R’ the dynamic tolerance problem considered is seen to be a
Problem 5.3. As mentioned in section 5.1.3 it can however be imbedded (at the cost of
obtaining slightly larger interval solution) in the following problem of type 5.7



236

Interval methods for circuit analysis

X, =x,, x(0) =0 (5.80a)
X, = ayx, + ay,x,, x,(0) = 100 (5.80b)
a, € A,, a, € A, (5.80c¢)
with
1 1
A = - = -
2 o Ay Yok (5.80d)

the intervals A, and A,, being treated as independent.
Problem (5.80) was §olved on a computer using the approximate method presented
above. After determining the interval X,(2) related to x,(¢) the desired output voltage

inte.rval V() is fgund multiplying X,(#) by L. For ¢ = t, = 0.015s the approximate solution
is given by the interval [-47.901, -35.276].

Example 56. Again we solve Problem 5.7 for a set of circuits described by the
system

X =Ax, x(0) =x° Ae A

where x° is a given initial condition vector while A’ is the interval matrix given in
Example 4.5.

It was shown there that A’ is D-stable, so Assumption 5.1 holds.

10 t(s]

Fig. 5.6. Approximate interval solution for the first component x,(¢) of the dynamic tolerance problem in
Example 5.6.
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The problem was solved by the approximate method for 2 = (1, 1, 1, 1, 1) The
approximate interval solution related to the first coordinate x, is shown in Fig. 5.6.

5.3.3. Outer and inner solution

Two alternate approximate solutions are presented in this section. The first one, Y(7)
is an outer solution since it is guaranteed to satisfy condition (5.25):

X cY@), tel0,1] (581

The second solution, Z(f), is called an inner solution since Z(¢) is enclosed by the exact
interval solution X(), i.e.

Z()yc X)), te [0,1] (5.82)

An approach for determining an outer solution for the most general Problem 5.3 will
be presented now. But first we need to introduce the following auxiliary dynamic
tolerance problem.

Problem 5.9. Find the interval solution of the set of systems

y =y, y0) =ceC (5.83)

where ¥ : R™' — R™ and C is an m-dimensional vector.

It is seen that in (5.83) only the components of the vector ¢ (the initial conditions
y{0)) are given as intervals, W(y,f) being an arbitrary nonlinear function. Problem 5.9 is
a standard problem in interval analysis. It has been intensively investigated over the last
years; nowadays there exists a general method which yields an outer solution for this
problem [61].

Now recall that Problem 5.3 seeks the interval solution of the following set of systems

x = AQ)x + o(H)bP) (5.84a)
x(0) = c(p) (5.84b)
peP (5.84¢)

The approach adopted here to finding an outer solution to (5.84) is to reduce problem
(5.84) to the standard problem (5.83). With this in mind we first replace the set {c(p): p
€ P} by an interval vector C each component of which may be some interval extension
or the range of ¢,(p) over P. We next introduce p;, i = 1, n as new state variables so that
(5.84) takes on the form
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X = A(p)x + ()b(p), x©0) e ¢ (5.85a)

p=0, pO) e P (5.85b)

Obviously, problem (5.85) is of the form of the standard problem (5.83). Moreover, due
to the fact that C contains the set { c(p): p € P } the original Problem 5.3 given by
(5.84) is clearly imbedded in the auxiliary standard problem (5.85). Therefore, if Y() is
an outer solution to (5.85) then it is an outer solution to Problem 5.3 as well.

It is obvious that the above approach is applicable to treating the simpler Problem 5.4.
In this case the equivalent standard problem has the form

X =Ax + @b, x(0)e !

a; =0, a,0) e a;, ij=T]1 (5.86)

if»
b =0, b(0) e b/, i=T1

Now we shall introduce an inner solution, Z(?), to Problem 5.3 (and 5.4). Let each
component X,(¢) of the interval solution X(7) be written as X(t) = [zg(t),f,-(t)]._ Similarly,
the notation X(t) = Q(_(t),X(T)] will be used where X(1) = (X,(0), .. ., X0 andX(®) = X, (1),
- o+, X(B). From (5.17), (5.19) and (5.20) it is clear that for a fixed ¢ each component

X.(1) can theoretically be determined by finding the global solution to the following
problem

X (1) = min f(1,p)

5.87a
peP ( )

Similarly

X, (1) = max f(1,p)

5.87b
peP ( )

Since the global optimization problems (5.87) are in practice intractable it is expedient
to seek for some approximate solutions to (5.87). With this in mind, some additional
concepts will be introduced.

As has already been mentioned an n-dimensional vector P,=(P,,..,P,) is geometrically
represented as some "rectangular box" in R” defined by the inequalities p,< p,<p, i = 1,n.
A vertex of P is a real vector p = (@, . . ., p,) whose components forma a combination
of the lower and upper endpoints p, and P Let the set of all vertices of the n-

dimensional interval vector P be denoted by V(P). Clearly, V(P) consists of 2" vertices
(vectors).
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Let the interval vector Z(¢) = [Z(t,Z(r)] with Z(t) = Z,(®). . . . » Z,®) and Z(t) = (Z,(1),
.. ,Z_,(t)) be an approximation to the interval solutiqn X( of the tolerancle pr(_)bler:l
;:onsidcred. In this section each component Z,(f) of Z(¢) is defined as the global minimu
of the following optimization problem (for fixed #)

Z (1) = min f(1,p) (5.88a)
pe V(P)
Similarly
Z, (1) = max f(t,p) (5.88b)
pe V(P)

The interval vector Z(f) whose components are defined by' (5.88a) and (5.§8b) wi'}!h be
called the inner solution of the worst-case tolerance analysis problem considered. Then
the inclusion (5.82) is valid, i.e.

= 89
Zm=2X,@, tel0, k=TI (5.89a)

and .
Z,() <X, (1), tel0r], k=1,1 (5.89b)

Indeed, clearly V(P) < P, so comparison of (5.87) and (5.88) l.eads to (5.89).

Property (5.89) may be useful in some applications. For instance, X,(¢) should not
exceed a prescribed threshold value Xy, (typically Xy, is the tolerated overshoot of the
dynamic system considered) i.e.

X,(1) € X (5.90)

Now if Z,(f) > X; map it follows from (5.89b) that the system investigated does not meet

requirement (5.90). .
eqNow reconsider the solution set $(0,t) for the tolerance problem considered. Let us

introduce the following subset of S(0,7):
V(S(0,1) = {f(s,p):te [0,7], pe V(P)) (5.91)

Obviously, V(S(0, 1)) consists of 2" real solutions. Each element of V(§(0,t)) will be
called a vertex solution.The set of values

V(S(n) = {f(s,p):pe V(P)} (5.92)

of V(5(0, ©)) for fixed time t will also be needed. _ .
Let Th V(S(2)) denote the interval hull of V(S(#)). The following theorem states that in
fact Ih V(S(¥)) represents the inner solution Z(¢).

Theorem 52. The inner solution Z(t) = (Zl(t)., ..., Z(5) whose interyal
components Z,(?) are defined by (5.88) coincides with the interval hull Ih V(S(5)), that is,



240 Interval methods for circuit analysis

Z(t) = 1hV(S(1)) (5.93)
for each time moment ¢t € [0, T).

The proof is obvious and is based on simple geometrical considerations. It is
illustrated in Fig. 5.7(a) for the case where ! = 2. It is assumed for simplicity that only
two parameters are allowed to take on values from corresponding intervals giving rise to
four vertex solutions x'(£), XX(t), X*(¢) and x*(1).

As is seen in Fig. 5.7(a), generally Z(t) c X(¢). However, experimental evidence
shows that Z(¢) is a very close approximation to the exact interval solution X(¢). Thus, it
is important to know when the inner solution Z(¢) represents the interval solution X(#), that
is when the inequality in (5.89a) and (5.89b) is replaced by strict equality. The following
theorem provides some insight into the issue.

Fig. 5.7(a). Geometrical illustration of Theorem 5.2 for [ = 2.

Theorem 53. The inner solution Z(¢) coincides with the interval solution X(¢) to
the dynamic tolerance problem 5.3 iff

S(t) c ThV(S(2)) (5.94)

The proof is straightforward. It can be visualised using Fig 5.7(b). Indeed, X(r) =
Th S(¢). On the other hand if (5.94) is valid then Ih S§(#) = Ih V(S(¢)); hence X(¢) = Z(1)
which proves the if part of the theorem. The only if part is obvious since X(¢) = Z(t)
implies (5.94).

An interesting property of the inner solution is the fact that Z(¢) is close to X(f) even
when (5.94) is violated. Indeed, for reasons of continuity and smoothness of the tolerance
problem considered it is not to be expected that Ih S(¢) containing Ih V(S(¢)) should be
much larger than Z(). This is a heuristic explanation of the experimentally confirmed fact
that the inner solution Z(¢) is a very good approximation to X(2).
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Ih VISi)=Z =Xt
x4t

Fig. 5.7(b). Geometrical illustration of Theorem 5.3 for [ = 2.

It is clear that definition (5.88) of the inner solution remains also valid in the case of
Problem 5.4 if the parameter vector p includes the elements of A, b and c.

Based on Theorem 5.2 the inner solution Z(f) can be determined by the following
straightforward method.

Method 5.1

The transient analysis (5.84a), (5.84b) is carried out 2" times for all vertices p € V(P).
Let x7(£) = (x,7(9), . . ., x7(¢)) denote a vertex solution related to a given gth vertex from
V(P). All solutions x%(r) are stored. Then obviously Z,(?) is obtained by the formula

Z,(1) = mi(rll(x:(t), g=12")} (5.952)

Similarly

Z () = max{xi(), ¢=T1,27) (5.95b)
q

When implementing the method on a computer it should be borne in mind that each
vertex solution x7(f) is computed with some error. Therefore, if a traditional numerical
integration method is used, the validity of the inclusion (5.82) may be violated. In order
to ensure (5.82) notwithstanding all possible computation errors it is recommended to use
the interval integration method from [61]. Using this method each component x,%(t) of
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a vertex solution x(¢) is obtained as an interval x,%(¢) = [x%(f), X(")]. Thus, in practice,
Z,(1) is finally found by the formula

Z (= min {Xj), ¢ =T,2"}
q

similarly

Z,(1) = max {x(n), ¢ =T,2")
q

Although very simple as an algorithm the present method has a computational complexity
of exponential type. Thus, its efficient application to higher dimension problems is
questionable.

Now we shall focus on Problem 5.8. For ease of exposition we shall assume
additionally that

b(t) =b, =T, (5.96)

The inner solution Z(f) for this problem could be found by the combination method
(5.95). We shall however show that for this particular problem an alternate approximate
solution W(#) can be determined in a much easier manner. The new solution W(#) being
very close to Z(#) is also a fairly good approximation to the exact interval solution X(¢)
of Problem 5.8.

The approximation W(f) is based on Method 5.1 and the implicit Euler method for
integrating ordinary differential equations and can be determined by the following method.

Method 5.2
Let b’ and A’ from Problem 5.8 be written in the form
bl =[bc-98, b°+8] (5.97a)
Al = [Ac-A, A°+A] (5.97b)

where b° and A° are the centres and & and A are the radii of &’ and A/, respectively. Using
(5.97a) each real vector b € b’ can be written as

b=>b+u (5.98a)

where
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ue u' =[-8, 8]
thus
b' = bc+u!
In a similar way the real matrix A can be written as
A=A+U (5.98b)
where
Ue U’ =[-A, A]
Hence
Al = A+ U’
Consider (5.15a) written in the form (with @(f) = E, E being the identity matrix)
X=(A°+U)x +b° +u (5.99)

where U € U' and u € . Using the implicit Euler integration method the discrete
approximation of (5.99) is

X o x¥ = h(AC+ DX + h(bC +uw), v20 (5.100)
where 4 is the integration step size and v is the current step number. From (5.100)
(E - hA° - hU)x"' = x¥ + hb° + hu

or equivalently

(B +B)yx"'=¢"+v, v20 (5.101a)

with
B° =E - hA¢, ¢ =x" + hb° (5.101b)
B=-hU, v =hu (5.101¢)

Bearing in mind that U € U’ and u € o' it is seen from (5.101c) that B € B andv e v
with

B' = -hU!, v = hu' (5.102)

Consider again (5.101) and (5.102). If B and v are some vertices of B’ and V, then the
sequence x*, v 2 0 resulting from the recursive solution of (5.101a), is a discrete
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approximation of the corresponding vertex solution x(f). Neglecting the inaccuracy of
Euler integration method we see that x* = x(z,) _

Suppose that we are interested in determining the upper endpoint W(f) of an
approximate solution W(f) having the property that it remains close to the inner solution
Z(?). 1t will be shown below that W,(f) can be found using the following procedure.

Procedure 51. Solve iteratively the interval systems
(B + Blyw' = ¢" + v/ (5.103)
where B’ and v/ are given by (5.102). Initially, for v = 0,
¢® =x"+ hb°

where x” is the initial condition x(0). Afterwards (v > 0) ¢’ is obtained as follows. Solve
the interval system

(Bo + Bl)wl = co + vl

for the interval solution W'. We get 2/ I-dimensional vectors whose ith components
determine the lower endpoint W,' and the upper endpoint W' of the ith component W;' of
the interval solution W. _

Let the vector which represents the vertex corresponding to W,! be denoted as w'. Put

¢! =W + hb°
and proceed to solve the interval system
(B® + Bhyw? = ¢! + v/ (5.104)

Now (5.104) is solved for W? and the new vector w, (corresponding to W,2) is found. We
put

¢? =W + hb°
and the iterative process continues according to (5.103).

The lower endpoint W,(f) of the component W,(#) for the discrete time t, can be
determined by a similar way.

Procedure 5.2 Solve iteratively the linear interval system
(B + BHwt =¢* + v, v20 (5.105)

with
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cO=x"+hb°, c'=w'+hb*

where w' represents the vertex corresponding to the lower endpoint W,” of the kth
component of the current interval solution W* of (5.105).

Now we shall show that for the simplified Problem 5.8 W(¢) is close to Z(¢) and,
hence, to X(¢). First, the following result will be proven.

Theorem 5.4. The inner solution Z(f) and the exact solution X(#) to the dynamic
tolerance problem 5.8 (with the specific condition (5.96) coincide over some time interval
[, o), 1, 20.

P roof Owing to Assumptions 5.1 and (5.96) X(e<) = 0 and (5.15a) (with A € A’ and
b € b) reduces at infinity to the following linear interval system

Alx = -b! (5.106)

where x,, stands for x(e<). Thus, the reachability set at infinity S_ = S(ee) of the problem
considered is in fact the solution set S of (5.106). From the properties of S (cf. section
3.2.1) it follows that S_ is always contained in the interval hull of its vertices, i.e.

S_cIhVv(S) (5.107)
Thus, on account of Theorem 5.3
Z_=X_

Puc to the continuity and smoothness of the tolerance problem considered it is clear that
its reachability set S(¢) is varying continuously and smoothly as ¢ changes. Therefore, it
follows from (5.107) that

S(1) < IhV(S(2) = Z(2)

for some time interval [t,, ) which completes the proof of the theorem.
Now suppose that

W(ee) = X() (5.108)

On account of Theorem 5.4 and (5.108) the approximation W(z) can be different from the
exact solution X(¢) only over a bounded time interval. Therefore, using the same argument
of continuity and smoothness as in the case of the inner solution Z(z) it could be expected
that W(t) should be a good approximation to X(r) provided (5.108) is fulfilled.
Experimental evidence show that this is the case for all the numerical examples
considered so far.

The methods for solving the linear interval system (5.103), (5.105) were given in
section 3.2,
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In order to compare the computational efficiency of the above two methods assume
the first method is implemented by the implicit Euler integration method using the same
integration step / as in Method 5.2. The computation efforts needed in each method can
be estimated by the number N of multiplications per step. Let N, denote this quantity for
Method 5.2. It is easily seen that if all the components of A’ and b are intervals then

N, = 122" (5.109)

Let N, denote the amount of multiplications per step for the second transient tolerance
analysis method when it uses the general Rohn’s method from section 3.2. Then

N, = 242 (5.110)

It is seen from (5.109) and (5.110) that Method 5.2 is vastly superior over Method 5.1
for large L

The computational superiority of the second method is further enhanced whenever C’'
= B"+ B' from (5.103) is an inverse-stable matrix (section 3.2). In this case

N, = 4P

and Method 5.2 is preferable computationwise to Method 5.1 even for moderate L

We shall now consider several numerical examples. They were solved on an 1IBM
personal computer by both methods. In implementing Method 5.1 each vertex solution
was obtained as an interval by means of the general interval integration method from [61].

Example 5.7. In this example the dynamic tolerance problem is that of Example
5.5. The corresponding system of differential equations is

x(0) = 0

1 1 (5.111)

%t et TR

~<

x0) = — = 100

with C € C' and R € R'. As underlined in Example 5.5 this is a problem of type 5.3. It
was first solved approximately determining the corresponding inner solution Z(t) by
means of Method 5.1. The interval for the output variable v(?) at ¢ = t, = 0.015 obtained
by this method is

V(r) = [-47.33, -35.754] (5.112)

To apply Method 5.2, Problem (5.111) was embedded in the problem (5.80) of type
5.4. Application of Procedures 5.1 and 5.2 yielded the following interval for the same
output variable v(f) at the same time ? = £
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V(t) = [-47.5820, - 35.1332] (5.113)

As expected interval (5.113) is wider than (5.112) because the solution set of problem
(5.111) is contained in the solution set of problem (5.80) (in the latter problem the
interval A, and Ay, from (5.80d) are assumed to be independent which is not the case).

Example 58 Consider the worst-case tolerance problem associated with system
x=Ax +b, x(0) =x° (5.114)
where
b=(2,20, x*=(0, 07, A’ =[A°-A, A°+A]

(the symbol T denotes transpose) with

| -2 0 010
- 1-3’A'0.10

We seek the approximate tolerance solutions within the interval {0, z.]; here ¢, is some
large enough time at which the steady-state solution of (5.114) has already been attained.
It was found that for the problem considered ¢, can be estimated to be f,= 6s. An
integration step k = 0.1s was assumed when using Method 5.2.

Since each component of the approximate solutions Z(t) and W(¢) is monotonously
increasing with t we only give data for the solutions at the time ¢ = t, where they have
its largest width. The following results have been obtained by both methods used:

Z(1) = Z,(t) = W (t)) = W) = [0.952381, 1.052632]

To show the improved accuracy of the present methods as compared with that of the

method from section 5.3.2 we also give the values of Y,(z,) and Y,(¢.) obtained through
the latter method:

Y (¢) = Y,(¢) = [0.950000, 1.050000]

It‘is seen from (5.115) that both methods lead to the same intervals at ¢, that is, Z(¢,))
obtained by Method 5.1 is equal to W(t.) obtained by Method 5.2. Furthermore, since
W(t.) = Z(¢.) the condition (5.108), W(z,) = X(t.), is also fulfilled on account of Theorem
5.4. Thus, W(f) can be expected to be reasonably close to X(#). In fact, it was found that
both methods yield the exact interval solution X(2).
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Example 59. Again we consider a system of the form (5.114) with
b =(2,2,2,2,2)", x*=(1,1,1,1,1)7

while the interval matrix A’ is the matrix from Example 4.5 and is stable, so the interval
solution to the tolerance problem considered is guaranteed to be bounded for the whole
time interval [0, o).

We provide data about the 5th component W(#) of W(¢) for two time moments: ¢ = t,
= 4.256s (W,(f) has minimum value at ¢;) and ¢ = ¢, (when the steady-state solution of the
tolerance problem is reached). The following results have been obtained:

Z(t) = [-0.57063, 1.50094]

by Method 5.1,
W, (1) = [-0.60077, 1.49906]

by Method 5.2 (with A = 0.04256s),
W, (t) = [-0.557924, 1.765511]

by Method 5.2 (with the above h).

It is interesting to note that the same result (5.116) was obtained (as well as for all the
remaining components of W(z._)) by solving the corresponding static problem Alx= - b.
Thus, by Theorem 5.4 the approximations Z(f) and W() are expected to be reasonably
close to the exact solution X(7). Moreover, the interval matrix B°+ B’ associated with
this example turned out to be inverse-stable, thus enabling the more efficient version of
Method 5.2 to be used.

Comments

Section 5.1 Tolerance analysis is an important stage in the design of linear electrical
circuits and systems. However, the overwhelming majority of known results is confined
to the case of steady-state tolerance analysis.

On the other hand, there are numerous situations where the prime concern is whether
the circuit (system) studied will meet some specified dynamic performance requirements
for all possible variations in a set of parameters. This dynamic extension of tolerance
analysis is usually referred to (especially in control engineering literature) as the
performance robustness problem (e.g. [54]). A well-known example of performance
robustness is the problem where a state variable x,(r) should not exceed some prescribed
threshold value x,,,. under all admissible parameter variations (typically, Xum, is the
tolerated overshoot of the dynamic system considered). A similar problem arises in the
setting of relay protections: the relay should not react to all responses of the circuit
protected due to normal parameter variations but should operate under abnormal
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conditions. Once again determination of the maximum value of the corresponding circuit
response under all possible parameter changes is of paramount importance.

Transient tolerance analysis of linear electric circuits gives rise to a greater variety of
problems as compared with the steady-state tolerance analysis studied in Chapters 2 and
3. In section 5.1 of this chapter an attempt is made to introduce a classification scheme
for the dynamic tolerance analysis problems and the methods for their solution. Three
basic approaches to formulating transient tolerance problems are presented: explicit form
formulation, frequency-domain formulation and time-domain formulation.

The explicit formulation (subsection 5.1.1) is a rather general form of stating dynamic
tolerance problems since it allows for arbitrary input parameters and nonzero initial
conditions depending on the input parameters. Using this approach the dynamic tolerance
problem is, in fact, reduced to an explicit static tolerance problem and can be solved
approximately or exactly by means of the methods developed in Chapter 2. However,
since the relationship between the output variable and the input parameters must be
known explicitly, the explicit form formulation is possible only for circuits of low order
of complexity.

The frequency-domain formulation (subsection 5.1.2) is an alternative explicitly form
formulation. This formulation applicable only for tolerance analysis of step responses of
linear circuits with zero initial conditions is based on the relationship between the time
step response and the real part r(®, p) of the frequency response of the circuit
investigated. Unlike the explicit formulation it can be used for tolerance analysis of
circuits of higher complexity order.

The time-domain formulation (subsection 5.1.3) is an implicit form of stating dynamic
tolerance problems. To prepare the ground for introduction of tolerance analysis methods
based on this approach five problems of different complexity are therein stated.

It should be noted that only a small part of the problems formulated in section 5.1 has
been treated in tolerance analysis literature. Thus, for a special case where the varying
parameters p; are elements of the matrix A a method for enclosing ¢, A € A, is
suggested in [63]. This method could be used for tolerance analysis of the natural
responses of linear circuits (when there is no excitation). For the same case again, under
the additional rather restrictive assumption that the elements of A depend on a single
(determining) parameter a method for enclosing ¢, A € A’ arbitrarily sharply is proposed
in [64]. The special problem 5.5 is considered in [65].

Section 5.2. In this section approximate solutions for the dynamic tolerance Problem
§.2 (i.e. the worst-case analysis of the step response of circuits with zero initial conditions
in its frequency-domain formulation) are suggested in [60].

Two outer solutions Y,(f) and Y,(f) (having the property to enclose the exact interval
step response X(z)) are presented in subsection 5.2.1. They are based on two different
approaches from interval analysis to evaluating integrals. For fixed ¢, the former solution
Y,(?) is obtained as the solution of an associated static tolerance problem which can be
solv§d by some of the methods from Chapter 2. It should be stressed that this outer
solution can be made rather close to the exact solution X(f) at the cost of greater
computational effort by increasing the limit frequency ® and the number of integration
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steps n. The latter solutions Y,(#) is easier to compute (especially if the range of r(m, p)
over P is already known) but leads to relatively larger intervals than X(z).

Two alternate approximate solutions Y;(#) and Y,(¢) are introduced in subsection 5.2.2.
Although they do not guarantee the enclosing property of the outer solutions Y,(r) and
Y,(f) they prove to be rather good approximation to the exact solution X(¢). At the same
time they require less computational effort than their counterparts Y,(f) and Y,(r).
Therefore, they should be preferred to the outer solutions if the enclosing property is not
essential for the dynamic tolerance problem at hand (for example, at an early stage of the
systern (circuit) design).

Section 5.3. The last section of Chapter 5 deals with approximate solutions of
tolerance problems formulated in implicit time-domain form.

In subsection 5.3.1 the two auxiliary Problems 5.5 and 5.6 (formulated in subsection
5.1.3) are solved exactly (of course, the term "exactly” does not account for computationai
errors). The method for solving Problem 5.5 was first suggested in [66].

In subsection 5.3.2 the exact solutions of Problems 5.5 and 5.6 are used to solve
approximately Problems 5.7 and 5.4. Based on an appropriate linearization of the original
nonlinear problem, first an approximate solution for Problem 5.7 is obtained. This
approach is then extended to the "mixed” Problem 5.8 (a combination of Problems 5.6
and 5.7). Finally, an approximate solution for the general Problem 5.4 (in the class of
linear differential equations with independent interval coefficients and interval initial
conditions) is suggested. It should be noted that similarly to the approximate solutions
Y.(t) and Y,(r) from section 5.2.2 the approximate solutions of this section do not possess
the enclosing property of the outer solutions Y,(f) and Y,(r) from subsection 5.2.1.
Furthermore, (being only a linearization of the respective original problem) they provide
good approximation to the exact interval solution X(¢) only for relatively narrow input
parameter intervals.

The outer solution Y(¢) suggested in subsection 5.3.3 is obtained by first transforming
the original tolerance Problems 5.3 or 5.4 into an equivalent nonlinear initial value
problem for which only the initial conditions are intervals (Problem 5.9). The solution
Y(¢) is then found by solving Problem 5.9 using general interval integration methods (e.g.
the method developed in [61]). However, apart from the computational difficulties arising
from the increased dimension of the equivalent Problem 5.9 this approach suffers from
the drawback that the enclosing bounds on X(f) may be rather conservative for larger ¢
(especially in the case of the general Problem 5.3) if the input parameter intervals are
relatively wider. This is due to the fact that the equivalent differential systems (5.85) and
(5.86) are nonlinear (bilinear in the case of (5.86)) and that their integration by interval
methods is associated with the so-called "wrapping effect” [2], [66]. Nevertheless, the
outer solution Y{(#) seems to be the only available enclosing solution for the general
transient tolerance Problem 5.3.

In order to assess the closeness of the outer solution Y(#) to the exact solution X(t) an
inner solution Z(#) for Problems 5.3 and 5.4 is also suggested in the same section.
Indeed, if Y{(#) and Z(¢) do not differ very much they provide a good approximation to X(?)
since
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Zyc XY

The inner solution turns out to be a very good approximation to the exact solution and
in some cases Z(¢) may coincide with X(f) (Theorems 5.3 and 5.4). The solution Z(®) may
be computed exactly (not accounting for the computational errors) by a combinational
method (Method 5.1) or approximated (by W(#)) in a rather efficient manner (Method 5.2)
even in the case of circuits of increased size. Experimental evidence shows that the
approximate solutions Z(f) and W(z) are a very good approximation to X(f). At the same
time they require (especially W(f)) considerably less computation time (by an order) than
the statistical methods (if the accuracy of the latter methods is to be comparable with the
above interval methods).



CHAPTER 6

ANALYSIS OF NONLINEAR ELECTRIC CIRCUITS

6.1. DETERMINATION OF ALL OPERATING POINTS OF RESISTIVE
CIRCUITS

The problem of finding the set of all d.c. operating points of nonlinear electric circuits
has received a great deal of attention among circuit theoreticians in view of its numerous
applications. This problem has two versions depending on whether the nonlinear resistors
are modelled by piecewise-linear functions (PLF problem) or by continuously
differentiable functions (CDF problem). In the class of traditional (noninterval) methods
only the former problem has been solved in the case where the resistive circuit equations
are written in the known hybrid-representation form [71]. The traditional methods are not
capable of solving the CDF problem since they do not guarantee that all the operating
points will be located.

In contrast, the existing interval methods [67] to [70] for solving the CDF problem are
capable of finding infallibly all operating points within prescribed accuracy in a finite
number of steps. Such methods suggested for the general case where the nonlinear
resistive circuit is described by a system of nonlinear equations of general form are
presented in section 6.1.1. The case where the circuit equations are in the hybrid-form
representation is exposed in section 6.1.2.

6.1.1. General form description

In this case the nonlinear resistive circuit is described by the vector equation
fx) =0 6.1)

where f: R* — R is a C' (continuously differentiable) function. The components x; of x
(branch currents, branch or nodal voltages) are in practice bounded within some
admissible intervals, i.e.

x,eX,i=Tn 6.2)
or in vector notation
xe X° 6.3)

where X" is a vector with components X° .
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The d.c. analysis problem herein considered may be formulated as follows: given the
C' vector function f find all the real solutions of (6.1) within the prescribed box X°

This problem can be efficiently solved by some of the interval Newton method
exposed in section 1.4. (The reader is strongly advised to go over subsections 1.4.1 and
1.4.2). Recall that the Newton method is associated with repeatedly solving the linear
interval system (1.79)

JX@ - » = -fx) 6.4)

with respect to y for different subboxes X < X° (J(X) is the interval extension of the
Jacobian matrix J(x) of f(x) with element J,; = df; /ox; and x is the centre of X). The
existing interval methods for solving problem (6.1), (6.3) differ essentially in the way the
interval linear system (6.4) is solved.

In this section we shall present three versions of the Interval Newton method suitable
for nonlinear d.c. circuit analysis. The first version appeals to Hansen’s method and the
second one implements Krawczyk’s method (cf. section 1.4.2). The last version is based
on a method suggested by Allefeld and Herzberger in [10].

First method

Recall that according to Hansen’s method system (6.4) is first premultiplied by the
matrix B = [J(x)]' to give the equivalent linear interval system (1.81)

AX)y - x) = b(x) (6.5a)
where
A(X) = BJ(X), b(x) = -Bf(x) (6.5b)

As the computation process proceeds the initial box X° is dynamically subdivided into
subboxes X. For each X, system (6.5) is solved in a "succesive iteration” mode by formula
(1.90). The interval element J,(X) is defined as follows [4]

J (X)) = L(X,so o Xy X neenX,) (6.6a)

where X, (k = 1, j) is the kth component of X, and x,, ;m =j + 1, n) is the corresponding
element of x. If the circuit considered contains only uncoupled two-terminal resistors, then
(6.6a) is simplified to

I, (%) = J,X) (6.6b)

The real vector b and the interval matrix A are now computed by (6.5b). According to
(1.90) a new set X’ with components X’; is obtained as follows:
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i-1

Y, =x - (b + 3 AX/ —x)+EA(X -x)1/A, = x,-C/A, (67a)

13
=1 j=isl

X' =Y NX, (6.7b)

As each new component Y,, i = 1, n, is computed, it is immediately intersected with X, so
that the newest result X;” is used in finding Y., ..., Y,.

Since the interval A; may contain zero for one or more values of i, extended interval
arithmetic is used to compute Y, from (6.7a). If 0 € A,, first the quotient C/A;; from
(6.7a) is obtained by formula (1.25); then its negative is formed and finally Y, is
computed by adding x;. As is seen from (1.25) Y, may consist of one or two infinite
segments of R. However, since Y, is intersected with the finite interval X, the resultant set
X, is always finite and may consist of:

(1) one single interval

(i) two dispoint intervals X and X7, the subscripts L and R meaning left and

right,

(iii) empty set

In the first case the new interval X;'(renamed X”) is directly used in (6.7a).

In case (ii) there are two disjoint interval X* and X and a gap G, between them.
One possible approach to tackle this case is to use X/ and X* (renamed X" and X[)
separately in (6.7a). However, since case (ii) may occur for all components X/, i = 1, n,
such an approach would lead to a rather complicated algorithm. For simplicity (following
the recommendation from [8]) we have adopted the following approach. As can be easily
seen

xUG Uxf =

Thus, whenever case (ii) occurs the whole interval X; (renamed as X; ’) is used in (6.7a)
rather than X} and X*. However, we store all the gaps G, i € 1, n, and the corresponding
mtcrvals X and X*. Finally, we only retain the index i, and the corresponding intervals
X, ! and X with the largest gap between them. Thus the new set X’ will be composed
of only two boxes: one whose ijth component is X and one whose ijth component is
X. ®. The other components of the two boxes are the same as those of X for all i # i,
When each X, is a single interval (i = 1, n) then the new set X’ represents one single box.
If X’ is smaller than X the above procedure is applied to X’(renamed X). If X < X’ then
no reduction of the size of X takes place and the current box X is divided in half (along
its largest component) and each subbox is processed separately.

If the intersection X;” is empty (case (iii)) for at least one i, the current box X cannot
contain a solution, so X is deleted.

Whenever a current box is divided into two boxes we put one of these new boxes in
a list L to be processed later on and work on the other. Subsequent boxes may also have
to be subdivided, thus adding to the list L of boxes yet to be processed. So the number
of boxes in L tends to grow initially. Eventually, the number of boxes in the list L finally
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decreases to the number of all real solutions of (6.1) contained in the initial box X7 if
(6.1) has no solution in X° the list L becomes finally empty.

According to [4], [8] it is guaranteed that if the width w of a box from L at the final
stage of the algorithm is small enough, it contains a solution of (6.1). The width w of a
box with components X; = [X, X/] is defined to be (1.27):

w = max (X, - X), i-= Tn) (6.8)
i

The computation process is terminated when the width w of each box in L becomes
less than a prescribed accuracy €. Then each solution is assumed to be midpoint of the
corresponding box.

The method outlined above has the following algorithm [67].

Algorithm 6.l

Initially the list L of boxes to be processed consists of a single box X°. The subsequent
steps are to be done in the following order except as indicated by branching.

Step 1. LetX=X"1=1and v =0 (is the current length of the list L, and v
denotes the number of solutions found so far).

Step 2. Compute the centre x, J(x), J(X), B, b and A corresponding to X. If J(x)
happens to be singular and hence B does not exist, go to Step 8.

Step 3. Puti=1.

Step 4. Calculate the interval X;” using (6.7). If X;” is empty, eliminate X from the
list L and reset { = [ — 1. If the new value / = 0 go to Step 12; otherwise choose the most
recent box from L, rename it X and go to Step 11.

Step 5 If X/ consists of a single interval puti =i + 1. If i < n go to Step 4;
otherwise go to Step 7.

Step 6. If X/ consists of two subintervals X and X7, find the width of the gap
G .

i

gap; = )_(f - )_(L

i

where X* is the lower end of the right-hand subinterval X} and X/* is the upper end of
the left hand subinterval X%, Store the index i as i, and the corresponding intervals X L
and X if gap, > gap; _; put X' =X Seti=i+1and gotostepdifi<n otherwise
skip to Step 9.

Step 7. If X € X’ (no reduction of the size of X occurs), go to Step 8. Otherwise
put X = X’ and skip to Step 11.

Step 8 Find the index j of the largest component X; of X. Divide X; into two
subintervals X = [X,, (X; +X)/2] and X = [(_J +X)/2 X] Form the boxes X" =X, .

JXE LX) and X¥= (XL XA LX), Go to Step 10,

J
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Step 9. Form the boxes X = (X, . .., X;\, ... X,) and X*= (X, ..., X% ..
LX)

Step 10. Add X®to the list L. Put / = + 1 and X = X".

Step 11. Compute w for the current X using (6.8). f w > €& goto Step 2. f w <
g, set v =v + 1. Print v, X and its midpoint. Delete X from L and put /=1 - 1.

If = 0 the algorithm is terminated and v is the number of solutions contained in X0,
if I > 0 choose the most recent box from L, rename it X and go to Step 2.

S te p 12. In this case v = 0 and hence there is no d.c. solution of the nonlinear
circuit considered in the initial region X°.

Remark 6.1. According to Step 7 of the algorithm we go to Step 11 whenever X” is
smaller than X. However, if the reduction of the size of X” with regard to X is negligible
this would result in slow convergence so that it is better, in this case, to go to Step 8.

Remark 6.2 Inorder to ensure that the initial box X° contains all the d.c. solutions
of the circuit considered one can choose X° as large as possible. However, this approach
will result in greater computer time. Therefore it is expedient to find limits on each
variable with the help of the no-gain property {72] or any other techniques.

Second method

This method for d.c. nonlinear analysis is based on Krawctyk’s version of the Newton
method (cf. section 1.4.2)). According to (1.87) and (1.89) the iterative procedure of the
method is

K(x(k),X(k)) = b(x(k)) + x® 4 {1 - A(X(k))] (X(k) - x(k)) (6.9a)

X&) = XO A KEO X®), k20 (6.9b)

(k is the iteration number).

This procedure is based on vector operations. However, better results can be obtained
if componentwise operations are used. Similarly to (6.7) whenever a reduction of a
component X**" of the current box X* occurs, the reduced component is immediately
used in trying to reduce the remaining components X**V, j =i + 1, n. Thus, the
componentwise procedure is based on the following formulae

i-1
0 _ [0} (k+1) _(k+D)
Y = b (x®) +x{ +lec,,j(x<*>)(x, -x{)
£

\ (6.10a)
+ Y C(X®) (X" - %)
Jj=i
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Xi(lul): Xf”ﬂY,-(k), >0 (6.10b)

where C,(X") is the corresponding element of the interval matrix / — AX"). Based on
the componentwise procedure (6.10) an algorithm for the second method has been
developed.

Algorithm 6.2.

It has essentially the same structure as Algorithm 6.1. Some obvious simplifications
occur due to the fact that now there is no division by an interval containing zero. Hence,
the new set X’ is always a single box and Steps 6 to 9 of Algorithm 6.1 must be skipped.
Of course, the elements X = X**Y of X" are now calculated by (6.10).

Third method

Now we shall sketch an alternate version of the interval Newton method suggested in
[10] and applied for d.c. analysis in [68]. It is based on the following approach. The
interval Jacobian matrix J(X) from (6.4) is represented as the sum of two matrices as
follows

J(X) = D(X) - B(X) 6.11)

where D(X) is formed by the diagonal elements of J and B(X) includes the remaining
elements of J (with changed sign). Then (6.4) can be written as

[D(X) - B(X)](x -y) = f(x) (6.12)
or equivalently as
y =x -DIX)[BX)x-y) + f(x)] (6.13)

Based on (6.13) and the consideration that the zero(s) y of (6.1) in X must be in X the
following iterative procedure has been proposed in [10]

Y® = x® - DIX®)[BE®(x* - XP) + f(x*)] (6.14a)
X®D = xONY®  p > (6.14b)

The above procedure is based on vector operations. Similarly to the second method better
results are obtained if componentwise operations are used. Thus, by analogy with (6.10)
the componentwise procedure is now based on the following formulae
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i-1
Y.'(k) - x._(k) _ Di:'l(X(k{z BU(X(k))(x;"*l) "X;hl))
= (6.15a)
+ Y B (X®) (P -X) + ﬁ(x"‘)]

=i+l

X* = xPNy® k20 (6.15b)

Based on the componentwise procedure (6.15) an algorithm has been developed for the
third version of the Newton method.

Algoritm 6.3.

It has the same structure as Algorithm 6.1. Again, extended interval arithmetic is used
because D,(X") may contain zero. Thus, the only difference between the two algorithms
refer to the following steps:

Step 2 is changed to read: compute x, f(x) and J(X) corresponding to X;

In Step 4 the interval X,/ = X**" is computed using (6.15).

Unlike other known (traditional) methods for solving the CDF problem of nonlinear
resistive circuit analysis the three versions presented of the interval Newton method
guarantee that all solutions contained in an initial bounded hyper-rectangular region will
be found within a prescribed accuracy. At the same time this method requires
comparatively lesser computational efforts for low- and medium-size problems. For high-
dimensional problem, however, the memory requirements of the methods in its present
form may be excessive.

Two more efficient interval methods for nonlinear resistive circuit analysis will be
presented in the next section. The improved efficiency of the methods is, however,
achieved at the cost of narrowing the class of circuits to that described by the known
hybrid form represenation [71].

6.1.2. Hybrid form representation
In this section we are concerned with the same d.c. nonlinear circuit analysis problem

as that studied in section 6.1.1. However, it is now assumed that the circuit investigated
allows the so-called hybrid representation [71]:
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H_H
(pa(va) - aa ab va . sn (6.16)
(pb(ib) Hba be ib sb

where v, = (v, . .., V), iy = (iup . . . » i,)" are the hybrid variables. If we introduce the
column-vector x = (v,li,)" and the vector function @) = (@,(x,). . . ., ¢,(x,))" Eq.(6.16)
can be recast in the form
o(x) = Hx + s (6.17a)
where
9,(x) = @fx), i=T,n (6.17b)

The problem is to find all the operating points of the circuit studied, that is, to find all
the real solutions of (6.17) contained in some (large enough) interval box X°.

The problem formulated could be solved by the general methods from the previous
section. Its computational efficiency, however, seems to be limited to circuits of low
dimensionality since it involves recursive splitting of the initial region X° into subregions
X", and the number of X* and hence the computational effort needed to locate all the real
solutions of (6.1) in X* tend to grow exponentially with the dimensionality n of the
problem. On the other hand, the specific form of the hybrid representation (6.17) permits
the elaboration of two specialized, more efficient interval methods for analysis of
nonlinear circuits of larger size [69], [70]. They will be referred to as Method 4 and
Method 5, respectively.

Fourth method

In order to expose the new method some additional notions from interval analysis are
needed.

So far, we have considered the notion of interval extension of a scalar function in
several variables, i.e. f: R — R. If f{x) is a map f: R® = R", then the interval extension
F(X) of fix) in X 1s an interval vector whose components are the interval extensions F(X)
of the corresponding components fi(x) of f(x).

Let /: R” — R” be a linear (affine) map, i.e.

Ix) =Ax +b (6.18)

where A is a constant (noninterval) matrix. Let x € X where X is an interval vector. The
image of X under / will be denoted by Z. It can be easily seen that the interval extension
L(X) of I(x) is the interval hull of Z (i.e. the smallest interval vector which contains the
set Z). The geometrical interpretation of X, Z and L(X) for n = 2 is given in Fig. 6.1
Let f: R” - R" be a continuous map with an interval extension F(X). Then F(X) is
called inclusion monotonic in X° if Y < X entails F(Y) < F(X) for any X, ¥ < X°.
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t L(x)

v
v

Fig. 6.1. A geometrical interpretation of the domain X, the image Z and the interval extension L(X).

Finally, consider the equation
x = f(x) (6.19)

If there exists an x” such that (6.19) holds, then x" is called a fixed point of the map f.
Now consider the equation

X =FX) (6.20)

where X is an interval vector and F(X) is the interval extension of f{x). By analogy to the
fixed point of f(x), X' is called a fixed interval of the map f if X" satisfies (6.20).

To make the new method easier to understand it will be initially assumed that the
functions @(x,), i = 1, n, describing the nonlinear resistors are strictly monotone. Later on,
this restriction will be removed.

A. Monotonic caracteristics

Al. Basic results .
Assume that Eq.(6.17) has N solutions X’, s =1, N, in a box X ¢ X°. Rewrite (6.10)
in the form

o(x) = I(x) (6.21)
First we shall prove the following lemma.

Lemma 6.1. The images of all N solutions to (6.21) are contained in the intersection
of &(X) and L(X), i.e.

o(x®) = I(x*) € ®X)NLX) (6.22)

where ®(X) is the interval extension of @(x) and L(X) is the interval extension of /(x).
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Proof. Sincex’'e X,s= 1, N then ¢(’) € O(X) and I(x’) € L(X). But x’ is a solution,
s0 @(x°) = I(x"). Thus @(x’) € ®(X) and at the same time 9(x) € L(X); hence (6.22) holds.

Corollary 6.1. Let A =®X), B=LX) and C = (A UB)\ (4 1 B). Then
o(x7) =Ilx)e C, s =1,N (6.23)
or, in other words, the solutions x° cannot be outside of ®(X) N L(X).

P r o o f. Assume that @(x") € C. Then @(x) ¢ ®(X) N L(X). But according to Lemma
6.2 this is a contradiction since x* is a solution.

Coroliary 62 If
OX)NLX) =O (6.24)

then equation (6.21) has no solutions in X.

P r o of The proof of this corollary follows immedietly from Lemma 6.1 and
Corollary 6.2.

Let for brevity A = ®(X) and B = L(X). We shall assume that
A#B

Let X° denote the smallest box containing all solutions x* to (6.10) in X. It will be shown
that under appropriate conditions X can be reduced to a smaller box X' containing X°.
First we shall consider the case where

(ANB)c A (6.25)

We shall show that whenever (6.25) holds we are able to reduce X. Indeed, according to
Corollary 6.1, ¢(x) ¢ C = AVA N B) for each solution ¥’ € X and we can remove C.
Thus, we retain only the intersection A M B for further inspection. Since each component
®.(x,) of ¢(x) is strictly monotonic, the inverse map ¢ exists. Therefore we are now able
to find a new box X' by the formula

X' = ¢(ANB) (6.26)

The box X' is reduced in size as compared to X. Indeed, we first note that ¢~'(Y) is
inclusion monotonic in A. Besides,

X = ¢ @ (6.27)
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Now it follows from (6.25) to (6.27) and the inclusion monotonicity property of
¢ '(Y) that X' < X. Furthermore, all the solutions X' to (6.10) are still in X! since X' is the
inverse image of A N B under ¢, while on the other hand, according to Lemma 6.1
AN B contains all the images @(x*). Thus we have proved the following theorem.

Theorem 6.1. If the condition (6.25) is fulfilled (with A = ®(X) and B = L(X)) and
the box X* C X, then the box X' obtained by (6.26) contains X* and X' C X.

Consider the interval equation
Y = o7 (p(Y) N L(Y)) (6.28)

and let the fixed interval of (6.28) be denoted by X*. Consider the following iterative
procedure:

X* = (p—l((p(X(k)) ﬂ L(x(k)) , k>0 (6.29)

On the basis of Theorem 6.1 it is easily seen that the iterative procedure (6.29) converges
to the fixed interval X" of (6.28) whenever X° > X" with X® = X. It should be noted that
generally X" # X* and X* c X'.

Now we shall consider the case where

(ANB)cB (6.30)

Here again it is possible to reduce the size of X. With this in mind we first rewrite (6.17a)
in the equivalent form

Hx = () - s (6.31)

Let H'(X) be the interval extension of H'(x) when x € X (H is assumed invertible).
Using the same arguments as in case (6.25), the following results are readily obtained
[70].

Lemma 6.2. All N solutions of (6.17) are also in the intersection

XNHYW (X)) NLX))-s)

Corollary 6.3. No solution of (6.17) is outside of
X NH'(®X) NLX))-s)

Corollary 64.1If
XNH'(®X)NLX))-5) =D (6.32)

Eq.(6.17) has no solution in X.

TR
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On the basis of Lemma 6.2 and Corollary 6.3 and using the same arguments as in case
(6.25) the following theorem is easily seen to be valid.

Theorem 6.2 If the condition (6.30) is fulfilled and X* < X, then the box X'
obtained by the formula

X'=XNMHWNANB) -3 (6.33)

contains X* and X' ¢ X.

It should be stressed that unlike Theorem 6.1, Theorem 6.2 does not guarantee that X !
is always smaller in size than X. However, if X D X" where X" is the fixed interval of the
interval equation

X =XNH@X) NLX)) -9) (6.34)

then X' c X.
Similarly to (6.29), consider the iterative procedure

X® = X®O N (HN(X®) NLXP) -5), k 20 (6.35)

On the basis of Theorem 6.2 it is readily seen that the procedure (6.35) converges to the
fixed interval X" of (6.34) whenever X° > X* with X® = X. Here again X’ # X’ in general
and X* c X',

Finally, we shall consider a third case where both (6.25) and (6.30) hold, i.e.

(ANB)c A and ANB) cB (6.36)

In this general case it is reasonable to exploit the capability of both (6.29) and (6.35) in
trying to reduce X. This gives rise to the following iterative procedure:

Y® = (p-l((p(x(k)) N L(X(k))

X®0 = YO N H Y QYP) NLYP) -s), k20 6.37)

Now we are in a position to expose the basic ideas behind the current method.

A2. Outline of the method
In order to find all the solutions to (6.17) we shall start with a large enough initial

region (box) X, Then the iterative procedure (6.37) is applied and a fixed interval X" c
X@ is obtained. (Actually, the iterative process is stopped whenever the reduction of the
size of the current box X**V as compared to that of the peceding box X® is smaller than
a constant €,.)

. At this stage the resulting box X" is split along its widest side into two boxes X* and
X" (left and right). Let the widest side of X" have the coordinate number i, Clearly
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XE = (X, X mXDNX g XD
X* = (X, ImX). X 1.X, - X))

i

(6.38)

The right box X* is put into a list L for further processing.

The left box X is now renamed X and the iterative procedure (6.37) is again applied.
If X* contains more than one solution, a new fixed interval X* with nonzero width will
be found. The new box X" will be again split into two subboxes and the resulting right
box X* stored in the list L.

If the left box X" generated at some stage contains only one solution, the fixed interval
X' obtained by (6.37) will eventually reduce to a point. (Actually, the iterative process is
stopped whenever the width of X**” becomes smaller than a constant €,.) Owing to
Theorems 6.1 and 6.2, this point is a solution x* to (6.17).

Whenever a solution x* is found, the last box stored in the list L is retrieved from L
and renamed X®. The iterative procedure (6.37) is again applied to X.

The process of splitting the fixed interval vectors may result in a generation of boxes
which do not contain a solution. Each of these boxes will be deleted in a finite number
of iterations on account of rule (6.24) or (6.32). Whenever this occurs, the last box stored
in L is retrieved and processed by the procedure (6.37).

The described process of generating, storing and retrieving boxes will terminate when
list L becomes empty. Owing to the theoretical results obtained and the fact that €, > 0
and €, > 0, the termination of the iterative process will occur in a finite number of steps.

A3. A componentwise procedure

The iterative procedure suggested by (6.37) for reducing the size of the current box
is based on vector operations. Its convergence rate can be improved if componentwise
operations are introduced. Thus whenever a reduction of a component X**" of the
current box X*® occurs, this will be used immediately for reducing the remaining
components Xj‘“”, j =i+ 1, n. The new componentwise procedure has the following
structure.

Procedure 6.1.

Step L Letk=0,X;,=X® and compute 4; = ¢X),j=1, n.
Step 2. Leti=1.
Step 3. Compute

B, =L(X)=Y hX +s5 (6.39)
F
and C; = A, N B, If C, = A, go to Step 5; othewise (C; C A;) proceed to next step.
Step 4. Evaluate X; = ¢, '(C;) and recompute A; = ¢,(X)).
Step 5. Forv =1 to n calculate
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B, = Zl:hvfxf +s, and C, = A NB,
i

Step 6.Let R = H' with R =(ry). Compute

Y, =X N [E r,(C, - sj)]
j=1

If Y, = X, go to Step 7; otherwise (¥; € X)) put X, = ¥; and recompute A, = @,(X)).
Step 7.Puti=i+1and go back to Step 3 until i < n.
Step 8 Putk=4k+1 Let X* =X, i=1, nand go back to Step 2 untill the
reduction of the current box size become smaller than a preset constant €; that is, until
the condition

w(X)w(X™) < 1 -¢, (6.40)
is fulfilled for each i.

A4. Algorithm for monotonic characteristics

On the basis of the aforegoing, the following algorithm of the present method is
suggested for the case when the nonlinear elements are described by monotonic
characteristics.

Algorithm 64a.

Stage L. Chooseeg, ¢, and X?. Let X = X©. Put k = 0 (k is the iteration number
from Procedure 6.1), m = 0 (m is the current length of the list L) and s = 0 (s is the
number of the solutions so far found).

_ Stage 2. Call Procedure 6.1. If at some step an intersection A, NB, =0 (ve
{1, n]) go to Stage 5; otherwise proceed to the next stage.

Stage 3.If the width of the box X obtained on exit from Procedure 6.1 is smaller
than €, go to Stage 6; othewise proceed to the next stage.

Stage 4. Split X along its widest side into X* and X® according to (6.38). Put X*
into the list L and let m = m + 1. Rename X* as X and go to Stage 2.

Stage 5 Remove X and putm=m - 1. If m = 0 go to Stage 8; othewise go to
Stage 7.

Stage 6. Puts=s+ 1 and print the current solution found in interval form X =
(X,, ..., X,). As an approximation to the exact solution the midpoint of X is taken. Put
m=m—1.1f m = 0 go to Stage 9; othewise proceed to the next stage.

Stage 7. Retrieve the last box X® from the list L, rename it X and go back to
Stage 2.

Stage 8 Termination 1: in this case Eq.(6.17) has no solution in X,

Stage 9. Termination 2: all the solutions to (6.17) in X® have already been found.
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B. Nonmonotonic characteristics

Here the method suggested above will be generalized to encompass the case where the
functions @,(x;) are not monotonic. Only the distinctions from the previous section will
be stressed. To highlight the underlying ideas we shall restrict ourselves to a simple
example.

Consider the function @(x;) whose plot is given in Fig. 6.2. (Similarly to the
monotonic characteristics case, here the subscript i denotes the coordinate number of the
widest side of the current box X). Let A = @(X,) and B; = L,(X) (computed by (6.39)).
Assume that A, O B,

From the preceding theoretical results and the obvious geometrical considerations (see
Fig. 6.2) it is clear that the subintervals X;” and X,” do not contain a solution to (6.17).
Thus we can reduce the initial interval X; by deleting X;”. Then we can remove the
subinterval X/ (referred to as a gap) to obtain two new intervals X} and XX Using X! and
X? while keeping the remaining intervals X; (j # i) unchanged, two new boxes X* and X*,
respectively, are now produced. Similarly to the monotonic characteristics case, the box
X® is stored in the list L for subsequent treatment. We rename the box X* as X and try
to reduce or split it in just the same way as above by the use of ¢,(X,) corresponding to
the widest side of X.

Fig. 6.2. Nonmonotonic characteristic of the ith nonlinear element.
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Consider again Fig. 6.2. In order to find X, and X;” we have to solve the following
two equations:

o.(x) = (6.41a)

v

Q(x,) = (6.41b)

These are nonlinear equations of a single variable and can easily be solved by various
iterative techniques. Care should be taken, however, to ensure that the corresponding
approximate solutions for x;' and x on one hand and for x” on the other are obtained
from the right and from the left, respectively. This will guarantee that the remaining
intervals X and X} are computed with some excess, so that there is no risk of omitting
a solution to (6.17) when removing X;” and X,”.

In order to find A; we have to compute the range ¢,(X,) of @,(x;) over X,. Since this is
a one-dimensional problem it can be solved by various noninterval or interval methods
[2]. Similarly to X and X, the approximation to A, should be outward.

If the functions @,(x;) are complex enough, several gaps may occur simultaneously
along each X,. If we remove all the gaps this will result in an increased number of newly
generated boxes (especially for higher n). In an attempt to keep the number of stored
boxes as low as possible, we have preferred to adopt the following simpler scheme: only
the widest gap is removed from the current interval X; (just as we did in implementing
the general method from section 6.1.1). This approach has enabled us to adopt readily
Algorithm 6.4a to the general case of nonmonotonic characteristics. This modified
algorithm will be referred to as Algorithm 6.4b. The technical detailes involved in the
modification are straightforward and are therefore omitted.

It is seen that in the general case the present method reduces essentially to finding
repeatedly the range and solutions of nonlinear functions in a single variable over an
interval. This fact accounts for the relative computational simplicity of the method.

Fifth method

This method is, in fact, an improvement of the third method from the previous section
related to the case where the circuit studied is described by system (6.17).
The nonlinear system (6.1) to be solved is now of the form

f) =ox) ~-Hx -5 =0 (6.42)
The corresponding Jacobian is
JX) =o' X) - H (6.43)
Hence D(X) from (6.11) is the diagonal matrix
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D(X) = diag{6,X) - h,, i=T,7} (6.44)

while the remaining part B(X) is now a constant matrix

B ={h.i=j ij=Tn} (6.45)

where h; are the elements of H.
On account of (6.42) to (6.45) the iterative procedure (6.15) takes on the form

Yi(k) = xi(k) - Di:l(Xi(k))[(pi(x,‘) = h,‘,'-x,' —S‘.

i-1 n (6463)
(k+1) (k)
- E hijxj - E hijxf ]
j=1 jmitl
Xi(ku) - Xlgk) N Y.'(k)’ k=20 (6.46b)

In the previous methods x is the centre m of the current box X. The present method
(similarly to the modified mean-value forms from section 2.2.1) appeals to two new
vectors x” and x” distinct from m when computing the next box X’ in an attempt to reduce
the size of X”. It should be underlined straight away that this modification is applied only
at those iterations and for those components Y* for which the following condition holds

0e D,(X") (6.47)

(if (6.47) is not fulfilled the present method makes use of the extended division as in
methods M1 and M3 from section 6.1.1).

To explain the basic idea behind this section’s method, we need formula (6.46a)
rewritten for convenience as

Y, =x - Alt(x) - Cl (6.48)
where x; is now treated as an unknown from the interval X,
t(x) = @(x,) - hx (6.49)

while A; and C; are independent intervals of obvious expressions.

From (6.48) the lower endpoint Y; and the upper endpointY; of ¥, are clearly functions
of x,. Now we shall introduce two points x;* and x,” such that the former moves ¥ as high
as possible while the latter shiftsY; as low as possible. These poles will be referred to as
the lower pole and upper pole of Y.

First, we shall give a rigorous definition of the poles. With this in mind, note that
(6.48) is in fact short notation of the following equality
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[\

¥, =x -alt(x) - ¢l (6.50a)
with
ae A, ceC, (6.50b)

Indeed, a; and c; appear only once to the first power in (6.50a) and no division by an
interval containing zero occurs in (6.48) because of

A, = 1/D,(X®) (6.51)

and condition (6.47). Therefore, by Theorem 1.4 Y; for fixed x; is in fact the lower

’ endpoint of the range y(x;, A;, C). Similarly, ¥; for fixed x; is the upper endpoint of the
range. Now, if we free x; within X;, y; becomes a function of all three variables x;, a; and

¢; belonging to their respective intervals. Thus, x* can be defined as the solution of the
following minmax problem:

x} = min max {x, - a[t,(x) -c]}
agA, xeX, (6.52)
ceC,

In a similar way, x;" is the solution of the following maxmin problem

x! = max min {x,-g,[t(x)-c])
agh, xeX, (6.53)
ceC,

Based on Theorem 1.4, it is easily seen that an alternative way to define the poles of
Y, is to solve the problems

x! = min max {y"(), v =T,4)

v xeX, 6.54)
x! = max min{y’(x), v =T,4)}
v rxeX (6.55)
where
% ¥y = x - altx) -cl (6.56a)

2)

yi (x) = x -altx) -¢c] (6.56b)
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y) = x, - a1 x) - ¢ (6.56¢)
y,'(A)(xi) =x -altx) -c] (6.56d)

R emark 6.1. It should be stressed that the operations min and ma x in (6.54)
and (6.55) are to be carried out in the order (from left to right) given in the respective
problem since (as is easily verified) these operations are not commutative.

The exact determination of the poles x* and x,” from (6.52), (6.53) or (6.54) to (6.56)
in, in general, a very difficult, time-consuming task. That is why it is reasonable to try
and find some approximations x;” and x;” to x;* and x;”, respectively, that are simple to
compute and are at the same time accurate enough. One way to do this is to calculate
Y(x,) from (6.48) for three points, namely x;, m; and X; (m; being the centre of X). Then
the lower endpoint of the (hopefully) reduced interval Y, corresponding to x; is
determined as follows

Y, = max{¥ @), ¥ (m), Y )} (6.57)

In a similar way, the upper endpoint of the narrowed interval ¥; corresponding to x,” is
chosen as follows

Y, = min{¥,(x).7,(m).7 (%)) (6.58)

This simple approach turns out to be rather efficient in the case of diode-transistor
circuits all transistors of which have been represented by the Ebers—Moll model. Indeed,
now

@,(x) = a(e™ - 1) (6.59)

o/ (x,) = oB.e™ (6.60)
We need to calculate the derivative
t/(x) =0/(x) - h, (6.61)

of t(x) for x; = x, and x; = X, in order to calculate A, Thus, as is readily seen from (6.59)
to (6.60) it is sufficient to calculate only ¢ and €% to be able to compute Y,(x;) and
Y,(x,) in a most economical way. Thus, the new approach (6.57), (6.58) requires roughly
speaking, the same amount of computation as the traditional approach when only Y,(m,)
is calculated, providing however most often a narrower interval Y,

i e -
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6.1.3. Numerical examples

To illustrate the applicability of the above methods we shall consider several
examples.

Example 6.1. The circuit to be analysed contains two tunnel diodes, a linear
resistor and a voltage source connected in series. The voltage-current characteristics of
the tunnel diodes are

i, = (2.5v; - 10.5v] + 11.8v)x107
i, = (043v, - 2.69v; + 4.56v)x107

while the source voltage e is constant with e = 30V and r = 13.3 kQ. If the voltage across
the first and second diode are denoted as x,; and x,, the circuit equations are

filx,x) =30 - 13‘3(2.5x13 - 1().5x12 + 11.8x, - x; - x,=0
f,(¢,x) = 2.5x; - 10.5x] + 11.8x, - 0.43x, + 2.69x; - 4.5x, = 0

We have to find all the operating points of the circuit studied. This problem was solved
by methods M1 and M2.

To apply the above methods we need the interval Jacobian matrix J(X) where X is a
two-dimensional interval vector. The real Jacobian matrix J(X) has the following elements
J

i
J,(x,) = =13.3(7.5x] -21x, +11.8) - 1
J,x,x,) = -1
I, (px,) = 7.5x -21x,+11.8
J,(x,x,) = -1.29x) +5.38x,-4.56
It is seen that J; are functions of the variable x; only (if at all), i.e.

I (%) = J,(x)

since the circuit studied contains only two-terminal uncoupled resistors. Now, if x; is
replaced by X; we shall have the corresponding natural interval extension J,(X)). Thus, we
have shown the validity of formula (6.6b). For example, the natural interval extension for
Jy i

I, (X,) = -1:29X; + 538X, - 4.56

It is expedient to use the nested form of the above polynomial (section 1.2.2)
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J,X,) = X,(-1.29X, + 5.38) - 4.56

since according to the subdistributivity property J,,(X,) is, in general, a narrower interval
than J,,"(X,). For this reason the remaining elements of J(X) are determined as follows:

J,,X) = -133[X,(7.5X,-21) + 11.8] -1, J,(X) = -1
J,(X) = X,(7.5X,-21) +118

We chose X,° = X,° = [0, 4] for the components of X° and € = 107 for the accuracy.

Computer programs implementing algorithms A1l and A2 were developed ([67], [78)).
Using these programs all nine operating points of the circuit were found infallibly within
the prescribed accuracy. The following table shows the results obtained by Al (the
components x; and x, of the corresponding operating point OP; are given as the centres
of the components X, and X, of the respective interval solution).

Table 6.1

op, | op, | oP, | OP, | OP, | oP, | OP, | OP, | OP,
x, [0.221 | 0.215 | 0.198 | 1.661 | 1.701 | 1.819 | 2.303 | 2.289 | 2.189
x, | 0.817 | 1.715 | 3.746 | 0.723 | 1.842 | 3.667 | 0.678 | 1.856 | 3.666

To assess the computational efficiency of the present algorithms, the switching-
parameter algorithm {73] was also programmed. It was applied to the example considered
using the same four starting points as in [73]. It was observed that the present algorithms
requires far less computer time as compared to the method from [73].

As regards the computer memory requirements of the present algorithms the bulk of
the needed memory volume is determined by a two-dimensional array V = /,, x 2n where
I,, is the maximum length of the list L and n is the number of nonlinear equations. It
should be borne in mind that /, may be a very large number for high-dimensional
problems.

Example 6.2. The circuit investigated is shown in Fig.6.3.
Using the Ebers—-Moll model for the transistor the following description of the circuit
in the form (6.17) was obtained (with x; being the corresponding voltage v,)

9, (x,) = 10°(e™-1)

9,(x) = 1.98x107(e**- 1)
P, (x) = 10°(™™-1)
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-0.6689 1.6722 -0.6689

H =|-0.6622 -1.3445 -0.6622
-1 1 -4
s = (8.0267, -4.0535, 6)

Fig. 6.3. Nonlinear circuit investigated in Example 6.2.

The problem is to find all the solutions of the circuit in the initial region
X® = (0,11, [-5,0], [0,1])

with € = 0.01. It has been solved by methods M2, M3, M4 and M5 [78]. There is only
one solution in X' located with the desired accuracy within the interval X

X* = ([0.555,0.556], [-3.519, -3.517], [0.468,0.469])

The number of iterations N, needed to obtain X* by the different methods is given in
Table 6.2.

Table 6.2

Method M2 M3 M4 M5
N, 92 18 43 18

Example 6.3. The circuit to be analyzed is described by system (6.17) with n = 4.
The nonlinear elements are zener diodes while the active multiport corresponding to the
RHS of (6.17a) may have arbitrary structure. It is assumed that the circuit equations are:
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2(e™-1) = 3.86548x, ~0.38126x, -0.14836x, -0.17986x,
3(e™-1) = 14.9484x,+0.00764.x,-0.97901 x,+11.568 x,-9
2(e™-1) = 13.3092x,-4.99094x,-4.25872x,+9.76315x,-8
5(e™-1) -8.91431x,+3.34286x,+4.17818x,+2.61661 x, +5

(6.62a)

where x; denotes the diode voltage v, i = 1, 4.

We want to find the set of all real solutions to (6.62a) in the "rectangular” region
defined by the inequalities

-1<x52, i=T14 (6.62b)

The problem (6.62), was solved using the following algorithms:

Al: Algorithm 6.1 from section 6.1.1.

A3: Algorithm 6.3 from section 6.1.1.

Ada: Algorithm 6.4a from section 6.1.2 (for monotonic characteristics).
AA4b: The algorithm for nonmonotonic characteristics based on A4a.

In order to apply algorithm Adb the original system (6.62a) was transformed into the
equivalent form

2(e"~1)~3.86548x, = -0.3812.x,-0.14836x,-0.179861x,
3(e"*-1)-0.00764x,+9 = 149484 x, -0.97901 x,+11.568x,
2(e™-1)-4.25872x, +8=13.3092x,-4.99094x,+9.76315x,
5(e"-1)-2.61661x,-5=-8.91431x,+3.34286x,+4.17818x,

(6.63)

The following values were chosen for the parameters involved in the algorithms: €,
= 0.01 (equation (6.40)), €, = 0.001 (width of the interval solution).

The nonlinear equations of the type (6.41) involved in algorithm A4b were solved as
foliows. First, the point x corresponding to A;: is found (see Fig.6.2). Thus the interval
X, is divided into two subintervals: ¥, = [X;, x’] and ¥, = [x°, X]. Then the appropriate
approximation (from the right or left side) to each of the solutions x?2, x? and x is
evaluated using the bisection method for the corresponding subinterval ¥, or ¥, until it
is reduced 100 times. This accuracy will be denoted as €,. It should be mentioned that in
the present version of algorithm A4b the accuracy €, remains constant at each step.
Obviously a lot of iterations could be saved if &, is coarsened each time a solution to
(6.55) is approached (since Y, and Y, are then on the order of €,).

The problem (6.62) has six solutions:
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x'=(02 0.2 0.5 1.0 )
x2=(10 0.5 1.0 0.5 )
x*=(05 1.0 0.5 1.0 )
xt=(10 1.0 0.2 0.1 )
x5 = (-0.1966 -0.82741 -0.82176 0.19116)
x® = ( 0.8457 0.8596 0.9193 0.8184 )

All these solutions were found approximately (as the midpoint of the corresponding
interval solutions) by each of the interval algorithms A1, A3 to A4b implemented on a
personal computer. However, the algorithms A4a and A4b have better convergence rates
as compared to Al and A3. Indeed, the computer time needed by Ada and A4b to find
the set of all solutions to the example considered was 10% and 50% respectively less than
that of Al while A3 was superior to Al by only 8%.

Example 6.4. We take up the circuit investigated in [73]. It contains four transistors
and is described by the following system of equations

To(x) +Gx +b =0
where

- T
X = (v, vy ¥y, V)

is the vector of the unknown voltages across the diodes in the Ebers—Moll model of the
transistors. The components @,(x,) of ¢(x) are

Qx) = 100%™ -1, k=T34

while
6103.168  2863.168 0 9
3580 6620 700 500
) 0 0 6103.168  2863.168
700 500 3580 6620
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0 436634 0 0 -12
54 0 1 0 -22
G = , b=
0 0 0 4.36634 -12
1 0 54 0 -20

The description (6.17) is now easily obtained with
H=-T'G, s=-T%

We seek all solutions in the region X° defined by

X, = [-11,04], X =[-5, 04]

X, =[-16, 04], X! =[-4, 0.4]

with € = 0.01. The solutions have been found by the methods M2, M4 and M5 [78]. The
corresponding numbers of iterations N, are given in Table 6.3.

Table 6.3

Method M2 M4 M5

N, 207 143 79

Remark 63. The data for N, referring to column M5 from Table 6.2 and 6.3 are
obtained using a somewhat different implementation of the fifth method [78].

Example 65. In this example it will be shown that the general interval method
from section 6.1.1 can be successfully used for solving problems related to electric circuit
synthesis. The problem to be solved herein is to realize the following voltage transfer
function

0.18652 + 2.474
0.327s% + 2.640s% + 4.9455 + 4.949

by means of the circuit shown in Fig. 6.4. It is desired to determine the component values
G, C,Cp,CyGand T, = I/L,.

Vis) =
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Fig. 64. Electric circuit considered in Example 6.5.

The parameters C, and G, must satisfy the inequalities

C, =21

3 = ’

G, 21 (6.64)

It is shown in [74] that the following equations (the so-called component equations) are
valid:

G-1/L, = 2.474

G,C, = 0.186

(G, + G)/L, = 4.949

(€, + CYL, + GG, = 4945

G,(C, +C) +G,(C, +C)=2640

C(C, +Cy) + C,C, =0327

After manipulation this system of six equations is transformed equivalently into a system
of only 3 nonlinear equations

ax, + aX,+x,) =0
x lax,+(a, +xx)x] +a, =0
afx,+xy) + x,(x,x,~a,) = 0

(6.65a)

where
X =G, x,=C and x, =C,

Taking into account (6.64) the following restrictions on X; were chosen:
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01<x,52, 00l £x, €1, 01 <X, £5 (6.65b)

1 2

The system (6.65) was solved by Hansen’s method. Two solutions for x;, x, and x, and
hence two solutions for the component values Ty, G,, C,, C,, C, and G, were obtained.
They are given (as centres of corresponding intervals) in the columns S, and S, of Table
6.4.

Table 6.4
S, S,
G, 1.7829 1.3824 X,
(oN 0.1775 0.0532 X,
C, 1.0945 1.6541 X3
C, 0.1043 0.1400 -
G, 1.7836 1.8624 -
I, 1.3876 1.8624 -

It is worthwhile nothing that using a traditional (noninterval) method only S, was obtained
in [74].

Example 6.6. This example serves to show that the general methods for circuit
analysis can be used for solving nonlinear problems arising in areas other than circuit
theory.

The problem herein considered stems from field theory [78]. It is desired to identify
(locate) an impurity in a conductive medium. The problem is two-dimensional and the
impurity is approximated by a rectangular region. Given the conductivity and the size of
the medium, the unknown parameters are the centre and the widths of the rectangular
impurity. Based on experimental design the problem is equated to that of solving a
system of four equations in four variables (two for the coordinates of the centre and two
for the sides of the impurity region). Each equation is of the form

n n

2

bo + Zbixi + Ebiixi * bllexz + b13x1x3
i=1 i=1

+ b14x1x4+b23x2x3+b24x2x4+b34x1x4 =0

The system has been solved by Krawctyk’s method. All the solutions contained in the
interval box

X =([-2,2) [-2, 2], [-2 2],[-22])

have been infallibly located with an accuracy € = 107,
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6.1.4. Underdetermined systems

In this section, we shall touch upon the problem of solving underdetermined systems,
that is, systems that have more unknowns that equations.

.In the context of nonlinear d.c. circuit analysis, systems of n equations in (n + 1)
variables [73] or (n — 1) equations in # variables [79] arise when homotopy methods are
used for circuit analysis, n being the number of unknowns from the general form
description (6.1) or the hybrid form representation (6.16).

- Here we shall consider systems of two nonlinear algebraic equations in » variables
with n > 2. As was shown in sections 2.5.1 such systems arise in connection with
tolerance analysis in probabilistic formulation.

Let the system under consideration be

fim =0 (6.66a)
L =0 ' (6.66b)
where x = (x,, . .., x,) and f, and f, are assumed of class C'. The problem is to verify

w::ether the above system has at least one solution or no solution in a given box X", i.e.
when

xe X° (6.66¢)

An ir'lterval method for solving this problem will be now presented. With this in mind we
first introduce extensions of fix) and f,(x) in X

FXO = £, + 3 G0 [X,-x,] (6.67a)
=t

F,X = £ + Y G,XIX,-x] (6.67b)
j=1

where X i§ any subbox of X° (i.e. X < X%, x is a fixed point in X (usually x is the centre
gf Xiwh.xle G(X) are the interval extensions of the derivatives g =dffox; (i=1,2;
J =1, n) in X. Next we form the two-dimensional interval vector

FOO = (F,0,F,() = (F, F,1.[F,.F,])"

A necessary condition for (6.66) to have a solution is the inclusion

0 e F(X) (6.68)

A sufficient condition for (6.66) not to have a solution is the exclusion
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0¢ F(X) (6.69a)

or

0¢ FX (6.69b)

The present method for checking the compatibility of (6.66) is based on a procedure for
verifying (6.69) or (6.68). It has, essentially the same algorithm as the interval methods
from section 6.1.1.

Initially we set X = X° and evaluate (6.67) (using natural interval extension for GX)).
If (6.69) is fulfilled Problem (6.66) has no solution and the computation process is
terminated.

If (6.69) is not fulfilled (i.c. (6.68) holds) then we try to reduce the size of the current
box X by deleting parts of X that are guaranteed not to contain a solution of (6.66a),
(6.66b). If we fail to reduce X we then split it into two halves X* and X? along the largest
side of X. One of the halves (say X?) is stored in a list L of subboxes to be processed
later. The other half X' is renamed as X and is processed as before: F(X) is evaluated
again and the exclusion (6.69) is checked for the new box X. This process of reducing the
size of the current box or generating (by splitting) new subboxes and deleting part or all
of them may end in only two possible outcomes:

a) the list L becomes empty after a finite number of steps;

b) the list L contains at least one box whose size tends to decrease until some accuracy
condition g, > 0 is met.

In the former case we have established that (6.66) has no solution. In the latter case
we have enclosed at least one solution of (6.66).

Now we shall describe a procedure for reducing (if possible) the size of the current
box X.

Procedure 6.2.
We first try to delete points from the intervals X, and X, that are not solutions of

(6.66a), (6.66b). With this in mind (6.67) is written as a system of equations in the
following form

G, X0, -x) + G,X)(y,-x,) = B, (6.70a)

G, X)(,-x) *+ G,(X)(y,-x,) = B, (6.70b)

where
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n+l

B, = fi(x) + EGU(X)(X/. -x), i=12 (6.71)
=3

are known intervals. Since GyX), i = 1, 2 are also known intervals, (6.70) is in fact a
system of linear interval equations (cf. section 3.2.1). Based on their theory it will be
shown that the sets of points along X, and X, which should be retained (because some of
them might be solutions of (6.66a), (6.66b) in X) can be found in the following way.

Case 1.
In this case

0¢ G,G, - G,G, =D (6.72)

where, for simplicity, the argument X from G, is omitted. In this case the interval solution
W = (W, W)) of the interval system
Gllwl * GIZWZ = Bl
6.
Guw, + G,w, = B, ©73

with

N _ 0
Wi Eh—h W =y,

can be found by Rohn’s method (section 3.2.2). First the following four real (noninterval)
linear systems are solved:

+ =
Gw+G,w =8
G + =
Za™ -G-22w2 -
Ullwl + UIZWI = El
G + =
LM -szw7- -Qz
G + =
Gwm+G,w =8B
Gow, + Gw, = B,

Ullwl * UIZWZ = B,
G,w, +G,w, =B

2272 2
Let the components w, and w, of the corresponding solutions be denoted as

*) Q]
Wy, Wy, k=1,z

Then the endpoints W,, W, of W, and W,, W, of W, are determined as follows
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=
i

min(w,.(k), k=14, i=12
W = max(w,(k), k=T,3, i=1,2

Now, from (6.74) the interval vector Y = (¥}, ¥,) is formed
Y =x, +W, Y, =x,+W,
Finally, the new intervals X,” and X, are determined:
X =x,NY, X;,=X,NY, (6.75)

If X’ < X, and/or X,” c X, then some parts of X, and/or X, not containing solutions of
(6.66a), (6.66b) in X have actually been deleted. If

XNY =@, i=1 or i=2

then the current box X cannot have solutions of (6.66a), (6.66b) (this assertion is based
on Theorem 1.18).

Case 2,

Now (6.72) is not fulfilled. Nevertheless, the components X,” and X,” can be
determined in the following way. First, from (6.73) the components W, and W, can be
expressed as

W, = (B,G,,-B,G))/D = A/D
W, = (B,G,,-B,G,))/D = A,/D

Since in this case 0 € D one is led to use extended interval arithmetic (formula (1.25))
to find W, and W,. Tt follows from (1.25) that the components W, and W, and hence Y,
and Y, are now infinite. However, after intersecting with the finite intervals X, and X, in
(6.75) the new components X,” and X,” will always be finite. As has been explained in
section 6.1.1 the sets X,” and/or X,” may be:

i) empty set (no solution in X)

it) one single interval

iii) two disjoint subintervals
If the last case occurs we proceed in exactly the same manner as in algorithm Al from
section 6.1.1.

Next, we try to reduce the size of X, and X, using the same approach as for X, and
X,. (An alternative possibility is to try to reduce once again X, and X;. This is to be done
at least once if n is odd.) Now, system (6.70) will have the form
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/

Gu(ya_x;)) + Gn4(y4_x3) = B,
ng(yg ‘X;)) + Gz4(y4 _x;)) = B;

However, here
B/ = f,(x") + G, (X{ - x{) + G,(X] - x3)

+EGij(Xj _xjo)7 i = 1:2
=5

The above procedure continues until the last pair X, ;, X, has been tried for possible
reduction.

If no (or negligible) reduction has been achieved the current box X is split into two
subboxes, one of them is stored in the list L while the other one (renamed as X) is
processed anew.

R emark 64. The above method for checking whether (6.66) has a solution or not
differs from the general methods of section 6.1.1 since the latter methods have been
developed to solve n systems of nonlinear equations in # unknown while (6.66a), (6.66b)
is a system of 2 equations in n unknowns (n > 2). However, most of the steps involved
in the present method: generating and entering boxes in the list L, retrieving and deleting
boxes from L, etc. are the same (or slightly altered) as in the previous methods from
section 6.1.1.

Experimental results about the applications of the present method for tolerance
analysis have been given in section 2.5.3, Example 2.14a. Some technical details
concerning the two algorithms Alla and A11b used there will be briefly considered here.

In checking condition (6.69a) the mean-value form (1.44) was used for the interval
extension of (2.148a) while the natural extension was used for (2.148b). Furthemore, only
Case 1 of Procedure 6.2 has been incorporated in the present version (whenever Case 2
of the procedure occurs the current box is split into two subboxes). Lastly, Procedure 6.2
for reducing the current box X was implemented in two versions:

a) after the attempt to reduce the size of the pair X, and X, we try to reduce the pair
X, and X,;

b) after the attempts to reduce the size of X, and X, we try to reduce consecutively the
pair X,, X, and X;, X,.

Thus, algorithms Alla and Allb are essentially the same except that Alla uses
Procedure 6.2a while A11b implements Procedure 6.2b.

Finally, the following remark is pertinent. When system (2.148) from Example 2.14a
has a solution it is to be located with a given accuracy. Since the order of the nominal
parameters values x, to x, differ enormously (x, = x, = 10°, x, = 10~®, while x, = 107 the
usual bisection criterion to split the current box X along its widest side and the stopping
criterion
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max (w(X)) = €

are not adequate. Indeed, even for & = 107 the above criteria will leave x, and x, totally
unchanged. That is why, the following approach was introduced. The intervals X,° to X,°
were scaled to one and the same (unit) width only for the purposes of bisecting and
stopping. Then the former bisection and stopping rules were applied with € = 1072, This
approach ensures that the solution of system (2.148) will be located in a small volume
VV* which, for the example considered and the accuracy chosen, is 107 times smaller
than the volume of the initial box X°, each side X of X° having been reduced at least
hundredfold.

6.2. ANALYSIS OF DYNAMIC CIRCUITS

6.2.1. Finding all the periodic steady-states

In this section we consider the problem of finding all the periodic steady-states of a
given period that are established in a nonlinear electric circuit exited by periodic sources
of the same period. More exactly, given the system of nonlinear ordinary differential
equations (ODE’s):

x = y(x,1) (6.76)

where y: R” x R - R” is asumed to be a T-periodic function in ¢ ensuring the existence
of x(¢) for ¢ € [0,e0) and the continuous dependance of x(¢) on the initial condition point
x(0) = x,, we seek all the T-periodic solutions of (6.46) contained in a bounded region D
< R. The problem considered here numerous important applications in various fields of
science and engineering.

An interval method {75] for solving the problem formulated will be now presented.

Let an arbitrary solution of (6.76) starting from the initial point x, at the time ¢, be
denoted as:

x(@0) = f(x,18)
Assuming ¢, = 0 we have equivalently

x(t) = f(x,) (6.77)
Hence for t =T

x(T) = f(x,) (6.78)

When x(¢) is a T-periodic solution to (6.76), then

|
¥
5
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x(T) = x(0) = x, (6.79)
In this case, from (6.78) and (6.79) we get
x, = fx,) (6.80)

Thus, it is seen that the original problem of determining the T-periodic solutions of (6.76)
is equated to that of finding the fixed points of the map f: R" — R from (6.80). It is
worth noting that f is not known explicitly. However, every image of x, under f can be
found as x(T") by solving (6.76) with x(0) = x, for ¢ varying from ¢t =0 to t = T.

Let X° be a given interval vector (an n-dimensional box). What we seek is the
determination of all the fixed points of the map f and, hence, the determination of all the
T-periodic solutions of (6.76) when x, € X°. Indeed, if a fixed point x, to (6.80) is known,
then the corresponding periodic solution can be found by integrating (6.76) for the period
[0,T] using the fixed point as a starting point for integration.

In this section, an interval method is suggested for solving the problem of finding all
T-periodic solutions of (6.76) contained in a bounded region of R”. The method suggested
is based on the equivalent transformation of the original problem into the fixed point
problem (6.80), from one hand, and on a well-known interval scheme [10] for finding all
the solutions of (6.80), on the other. It involves dynamically dividing the initial box X°
into subboxes X some of which are entered into a list L of subboxes to be processed
subsequently. For each of the arising X, the following steps are carried out.

Step 1. Find an outer solution Y(#) of the interval transient analysis problem
X = y(x,1), x, € X (6.81)

for ¢ € [0,T] using some interval methods from Chapter 5. (As is seen from (6.81) the
arising transient analysis problem is in fact the standard problem 5.9 since only the
components of the initial conditions vector x, are given as intervals.) Let Y* denote the
outer interval solution of (6.81) for t =T (i.e. " is an interval enclosure of the set of all
"point” solutions x(f) of (6.76) at t =T when x, € X").

Step 2. If

YYNX'=0 (6.82)

the subbox X does not contain a solution of (6.80) and is, therefore, deleted (not entered
into the list L).
Step 3. If

rnNxycx (6.83)
(the inclusion is strict), then put

X" =Y NX (6.84)
and replace X* by X**' in L,
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Step 4. If
YYox (6.85)

(no reduction of the size of X takes place), then X" is split along its widest size into two
boxes that are entered into the list L for further processing.

Remark 6.3. The relations of intersection and inclusion in (6.82) to (6.85) are meant
componentwise.

Remark 64. It is seen from Steps 1 to 4 that the fixed points problem (6.80) is
infallably solved by means of a zero-order interval method (not using derivatives of the
function fi(x,) with respect to the components x,; of x,).

The above process continues until all the fixed points of f are located within a
prescribed accuracy €, that is, until

YW XV (6.86)
and
w(X") <e 6.87)

where w(X") is the width of the box X" .

As regards the computational efficiency of the method suggested the most crucial is
Step 1. In our implementation we have used the interval method due to R. Lonher [61]
to solve repeatedly the nonlinear interval transient problem (6.81).

A computer program implementing the method suggested has been developed. To test
its applicability (at least for low-dimensional problems) the following example was
solved.

Example 6.7. The system of differential equations is

:_x2

-0.04448x, - x; + 2cos(2.3451) (6.88)

X
X,

For T = 2.6793967s it has three T-periodic solutions. The corresponding fixed points to
the associated equation (6.80) are:

X, =2904; x,=-0371; x
Xy, = 14925 x,, 0.017; «x

20

-2.519
1.023

10

(6.89)

The initial box X° was first chosen to be:
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X} =[-26, 30]; X, =[00, 15] (6.90a)

It contains all the fixed points (6.89). Having chosen € = 0.05 all three T-periodic
solutions were found in 72 iterations (integrations of system (6.81)). The maximum length
1,, of the list L needed to solve the problem considered was /,, = 9.

Next, a smaller initial box X°

X? = [-26, 00]; X{ =[00, 15] (6.90b)

containing the second and the third fixed point from (6.89) was chosen. Using the same
accuracy € the two T-periodic solutions starting from the corresponding fixed points were
found in 39 iterations requiring a maximum list length /,,= 8.

Example 6.8.[78]. A parametric current source is considered in this example. Its
behaviour is modelled by the following system of three nonlinear differential equations:

do, .

—7 SN W) - AL+ ), - 0,0,]

d * »

—% = A2vc * Aa[a3(pl - (az + aS)(pZ] (6913)
dv,

—th- = A4[a3(pl - ((1.2 A a3)(P2]

where ¢,, ¢, (flux-linkages) and v, (capacitor voltage) are normalized values of the state
variables and T = 314 t is the normalized time. Furthermore,

A, = 0.835x107, 4, = L.11

A, = 097x10%, A, = 0.128

while

o, = o (p,) = 7.4x10™* + 2.9x105¢,
o, = o, (@) = 7.4x10™ + 2.9x105¢;° (6.91b)

o, = 0,(9,,9,) = 1 + 1.4x107° + 0.78x107(p, - @,)

and the nonlinear functions (6.91b) are obtained if the curve H = f{B) of the material used
is approximated by a polynomial

H = 376B + 0.244B"

of eleventh degree. The system (6.91) has been solved for various values of the initial
phase y. For y = 1.5 a unique periodic solution with initial conditions (computed as the
centres of respective interval solutions)
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¢} = -0.0613, @} = 00113, v = -0.1503

c

in the box
X® = ([-0.1, 0.1], [-0.1, 0.11, [-0.2, 0.2])
has been found.

6.2.2. Uniqueness of the periodic steady-state

In this subsection we shall touch upon the challenging problem of establishing the
uniqueness of periodic steady-states in nonlinear electric circuits. One possible approach
to handling this problem may be to appeal to the method presented in the previous
subsection; if the fixed point solution of (6.80) is unique in a very large box X°
(theoretically for an infinitely large X°) then obviously so is the corresponding periodic
steady-state. This approach is, however, limited (at least in its present numerical
implementation) to problem of low size (with n not exceeding 2 or 3).

Here an alternate approach will be presented which is based on a sufficient condition
for uniqueness of the periodic solution of a class of nonlinear differential equation system
[76], namely the so-called separable systems. A system of nonlinear differential equations
is called separable if it is of the form:

X =f(x) +b(1) 6.92)

Unlike the general form equation (6.76)

X = yx,n)

now the function y(x,?) (the right-hand side) of (6.92) is a sum of two functions each one
depending only on x or f, respectively (the argument x and ¢ are separated, hence the term
"separable system").

A large class of nonlinear electric circuits can be described by the separable form
system (6.92). For simplicity we shall only consider circuits whose nonlinear (two-
terminal) elements are the inductors and capacitors, the resistors being linear. Introduce
the column-vectors

v = e i = g, ) 6.93)

Assuming that the resultant active linear multiport obtained after extracting the nonlinear
elements has a hybrid form representation we can write
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il [p
{VL} ) H |:IL:| ' [ | (t)} (6‘94)
i v.| [b,(0)

where H is constant (n x n) matrix. Now suppose the nonlinear characteristics of the
inductors and capacitors are given as the continuously differentiable functions

i, =i(0), k=T] (6.95a)

v,
Cp

=v,(q,), p=1n-l (6.95b)

where @, is the flux linkage of the kth inductor and g, is the charge on the pth capacitor.
On introducing the vector ¢ with components ¢,, the vector g with components g, and
the vector functions i(¢) and v(g) with components (6.95) we have the following relations
in vector form

T (6.95¢)
=d(p=. ‘=dq=' 2
A

Hence, (6.94) can be written as

Oyl @|. [ (6.96)
q vig) | (b, ()

Finally, if the vectors

and the vector nonlinear function

i(p)
y(x) = L(q)] (6.97)
are introduced, system (6.96) takes on the separable form

X =Hyx) + b(r) {6.98a)

It should be noted that the function y(x) from (6.98a) has the special form
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v, (x) =y, (x) (6.98b)

which follows from (6.95) and (6.97). It is assumed that all the sources of the circuit
described by (6.98) are periodic with one and the same period T. Hence the vector b(r)
is also T-periodic.

Now we shall present the following sufficient condition for the periodic solution of
(6.92) to be unique (in the large, i.e. for any initial conditions vector X, € R") [76].

Theorem 63. Letfix) be a C' function and b(t) a T-periodic function.
Furthermore, let J(x) denote the Jacobian matrix of Jix) with components Jfx) = of, /ax}-.
If all the eigenvalues of the matrix

Clx) = %mx) + IT(x)] (6.99)

(T denoting transpose) have negative real parts for any x € R" then the system of
nonlinear differential equation (6.92) has a unique T-periodic solution.

Since y(x) and b(?) from (6.98) are a C' function and a T-periodic function,
respectively, Theorem 6.3 can be obviously applied to system (6.98). Let d(x) be a
diagonal matrix whose nonzero element dj = d,,(x,) = 99, /ox,. So the matrix C(x) defined
by (6.99) will, in the present case, be

C(x) = %[Hd(x) v d()HT] (6.100)

Recall that a matrix is stable iff all its eigenvalues have negative real parts (section 4.2.2),
Thus, we have the following corollary.

Corollary 6.5 If the matrix C(x) defined by (6.100) is stable for any x € R", the
nonlinear circuit described by (6.98) has a unique T-periodic steady-state.

Finding all the eigenvalues of C(x) even in the case (6.100) for all x € R” is
computationnaly an intractable problem.

To be able to use Corollary 6.5 we shall assume (which is most often the case in
practice) that each characteristic of the nonlinear elements given by (6.95) has a finite
slope. Then each diagonal element d, of the matrix d(x) will belong to some interval D,,
that is,

d =d,(x)e D, k=T,n (6.101)

for any x, € R. Now we shall introduce the notations:
d - a real diagonal matrix whose nonzero elements are defined by (6.101)
D - an interval diagonal matrix whose nonzero elements are the intervals D, from
(6.101).
It follows from (6.101) and (6.100) that C(x) will be stable for all x € R" iff the following
set of matrices
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o %[Hd « dHT] (6.102a)

de D (6.102b)

is stable. Thus we have the following theorem.

Theorem 64. The nonlinear circuit described by (6.98) has a unique T-periodic
steady-state if the set of matrices C defined by (6.102) is stable.

The advantage of Theorem 6.4 over (the equivalent) Corollary 6.5 lies in the fact that
the assertion of Theorem 6.4 can be verified by some of the methods from section 4.2 for
checking the stability of matrices with interval data. It should however be stressed that
the matrix C defined by (6.102a) is a matrix whose elements C,; are not independent since
C is a symmetric matrix which follows from

CT = %[Hd + dHTYT = %[dTHT « (HTYdT] =

- _;_[dHT +Hd] =C

Moreover, the elements Cy; are all functions of the elements d, and d; of the diagonal
matrix d. Indeed, it is seen from (6.102a) that

1 ’, ” 1
@ = loy’ + "1 = 5 [hyd; + diky,] = ¢,

Since Theorem 6.4 provides only a sufficient condition for uniqueness of the periodic
steady-state of the nonlinear circuit studied it is preferable to use a necessary and
sufficient condition test for checking the stability of the set of matrices (6. 102). Therefore,
it is recommended to first transform the matrix stability problem associated with (6.102)
into an equivalent polynomical formulation stability problem. The resultant (characteristic)
polynomial is a polynomial with dependent coefficients. Its stability or instability can be
established by the criteria from sections 4.3.1.

The above approach to proving the uniqueness of T-periodic steady-states in nonlinear
circuits of the separable class considered will be illustrated by the following examples.

Example 6.9. The circuit studied is shown in Fig. 6.5. The only nonlinear element
is the inductor with a given nonlinear characteristic

i=i() (6.103)

To obtain the circuit equations in the separable form (6.92) we first write down a system
of equations in the "usual” form
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Ri, +v.+v, =v()
Rji,=v, =¢ (6.104)
=i +i
c .
l1 R1 h {'~>
[ .
L2
Vit) R, }uv)
Fig. 6.5. Circuit studied in Example 6.9.
Using (6.103) and the relations
ve=9, i =g (6.105)
c
system (6.104) is then transformed equivalently into the system
. R, 1 1
9= -—‘t((p)-—cq + —v(1)
T ‘1" * (6.106a)
=_i -——q + v(t
Q= GO+ g
where
o = (R +R)/R, (6.106b)
The system (6.106) is of the separable form (6.98):
¢ = hy,i(@) +h,q+b,®)
6.107)

q = hy, i@ +hy,q+b,(1)

where
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R\R, R,
S I v AT
12 Lz (6.108)
R, 1
h21 = = hzz s T
R, +R, R, +R)C
Let d = d(@) denote the derivative of i in ¢. Then
hlld h12
J =
h21d h22
and hence
) h,,d 0.5h,,+0.5h,,d ) ¢, (d) c,(d) (6.109)
0.5h,,+0.5h,,d h,, ¢, (d) c,,(d)

where the notation c,(d) is used to underline the dependence of the corresponding
elements on d. Now suppose that d = d() is bounded for all ¢ € (—oo, ). Then d
belongs to some interval D, i.e.

de D (6.110)

Therefore, according to Theorem 6.4 the circuit considered has a unique periodic steady-
state (when the supply voltage v(¢) is periodic) if the set of matrices (6.109), (6.110) is
stable.

To verify the stability of (6.109), (6.110), first the associated characteristic polynomial
is formed

{cu(d) -A clz(d):l
det =

€a(d) -2 6.111)
= A - [e,,(d) + c,]A + ¢, (d)cy, - ciy(d) = 0
By Theorem 4.13 the set of polynomials (6.111), (6.110) is stable iff
-¢, (d) - ¢,, >0 (6.112a)
and
¢, (d)c,, - chp(d) > 0 (6.112b)

with d € D. To get simpler conditions (6.112) system (6.106a) will be modified as follow.
First the variable g is replaced by a new variable u:
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where k is an unknown constant. Using (6.113) the system (6.107) takes on the form

¢ = h i(@) + h ku + b (1)

o h, 1 (6.114)
i = %1((p) + hu + bz(t)I
The matrix C related to (6.114) is then
1 h
h,,d 5(h12k+%d)
C = (6.115)
1 h
'5(h12k+%d) h12
SO
S N P (6.116)
12 21 2 12 k
Now let interval D be put in the centered form
D =d, + [-AA] (6.117)
Then d can be written as
d=d,+8 (6.118a)
where
de [-A, Al = A (6.118b)
Using (6.118a) the expression (6.116) for ¢, can be rewritten as
1 h 1h
€ = lhgk + %do) + E_;ia] (6.119)

In order to obtain simpler (and less conservative) conditions (6.112) the constant & is
chosen such that the first term in (6.119) be zero, i.e.

h
hk + ._;ldo =0 (6.120)

It is seen from (6.108) and (6.120) that

k =./Cd (6.121)

0
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Now on the basis of (6.119) and (6.120) the conditions (6.112) corresponding to the
modified matrix (6.115) are

~h,d, +8) - h,>0, e A (6.122a)

82

h
hy (d, + 8)hy, - :;{2 >0, e A (6.122b)

It is easily seen that on account of (6.108) and (6.121) conditions (6.122) reduce to
RR,C(d, +8) +1>0, de A (6.123a)

R
Rd, + R - 4_d?_82 >0, e A (6.123b)

0

We shall check conditions (6.123) for the following data:
R, = 16kQ, C = 169pF, d, = 0.40563 H"! (6.124a)

A = [-0.37562, 0.37562] H! (6.124b)

The problem is to find (approximately) the smallest value of R,, for which the circuit
investigated is still guaranteed to have a unique periodic steady-state.
Since for the above data

d=d,+8>0, 3e A

(the characteristic (6.103) of the nonlinear inductor is strictly increasing) and R,, R, and
C are positive numbers, the first condition (6.123a) is always satisfied (for any R,). Thus,
we need only to check the second condition (6.123b). To do so we have to find the global
minimum y of the function

R
y=y®) =Rd, + RS - ﬁﬁz (6.125a)

0

when
e A (6.125b)

Using a very simple technique based on testing the sign of the derivative
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R
R -_%28>0, 6e A 6.126
' 2d ( )

0

of (6.125a) it has been found that y > 0 for
R, 2 464k Q (6.127)

Thus, the circuit investigated is guaranteed to have a unique periodic steady-state if
(6.127) is fulfilled since for such values of R, the conditions (6.123) are satisfied.

Example 610. This example serves to show that the present sufficient condition
for uniqueness can be applied (unlike other known criteria) even in the case of nonlinear
elements with nonmonotonic characteristics. We shall consider the circuit shown in
Fig. 6.6. As compared with the previous example (Fig. 6.5.) now the circuit contains
additionally a nonlinear current-controlled resistor R, with volt-ampere characteristic

v, = v, (i) (6.128)

Vit) R, i(e)

Fig. 6.6. Circuit considered in Example 6.10.

It can be easily verified that choosing the magnetic flux and the capacitor charge g as
state variables the circuit equations are

do _ _Rl i v - _4 1 129
dr 71(@ %) oc Ev(t) 6.125)
dq 1. v,(0) q 1

= - - t
dt al((p) R, aCR, * aR, V(0 (6.129)

with o given by (6.106b). Substituting (6.103) into (6.128) and (6.129) we finally get
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de

a1 a,,(9) + a,q + b (6.130a)
%—‘f = a,,(@) + a,q + b(1) (6.130b)
where
R
a,,(p) = -F'i((p) AU (6.131a)
1. 1.
a,, () = Ez((p) - sz3(1(<p)) (6.131b)

Now system (6.130) is of separable form and the uniqueness of its T-periodic solution
may be checked by Theorem 6.3. It will be shown that this is possible even if the
function (6.128) is nonmonotonic. Indeed, let d,,(¢) and d,,(¢) denote the derivative of
a, () and a,(@), tespectively, in ¢. Combining (6.130) and (6.131) the Jacobian matrix

related to (6.130) is seen to be
J - dll((p) a12
le ((p) a22

d,(®) 0.5[d,,(9) +a,,] (9 ¢,,(9)
C - - (6.132)

0.5 [dzl((p) + 012] aZZ cl 2((P) 022

so that the matrix C is

The stability of matrix C from (6.132) when (¢ € (—oo, o) can be checked in a similar
way as this was done in the previous example. The sufficient conditions (6.112) are now
replaced by the inequalities

7@ = -¢, (@) -a,>0 (6.133a)
yz((p) = c”((p)azz = Clz((P) >0 (6.133b)

with
¢ € (-0, ) (6.133¢)

or equivalently
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y,(@) >0 (6.134a)
%@ >0 (6.134b)

where the symbol y(@) denotes the lower endpoint of y(¢) when ¢ belongs to the
corresponding domain. Thus, the problem of assessing the uniqueness of the periodic
steady-state of the circuit considered has been reduced to that of finding the global
minimum of two functions in one variable. The latter problem can be solved infallibly by
some of the available interval methods for global optimization (e.g. [80]). Obviously,
conditions (6.134) may be satisfied even in the case where the characteristic (6.128) of
the nonlinear resistor R, is nonmonotonic.

Comments

Section 1. In this section, the problem of determining all operating points of resistive
circuits whose nonlinear two-terminal resistors are modelled by continuously differentiable
functions (CDF problem) has been considered in the framework of the interval analysis
approach. Such an approach was, seemingly for the first time, suggested in [67]. It differs
favorably from the traditional noninterval approach in that all the operating points are
infallibly located within a prescribed accuracy in a finite number of iterations.

In the case (subsection 6.1.1) where the nonlinear equations describing the circuit are
of the general form (6.1) three interval methods for solving the d.c. nonlinear analysis
problem have been presented: Hansen’s method, Krawctyk’s method and
Alefeld-Herzberger’s method. Detailed componentwise algorithms implementing these
methods have been developed.

It should be borne in mind that nowadays there exist two improved versions of
Hansen’s method. The first one is referred to as the Hansen—Greenberg realization. It has
been applied in [81] to find the solution to a model of a bipolar transistor having nine
equations in nine variables. The second one (due to Kearfott [82]) is based on a special
(optimal) preconditioning of (6.4) (premultiplying it by a matrix different from the matrix
B used in subsection 6.1.1) and has been reported to yield (in some cases) substantially
better results than the original Hansen’s method.

Subsection 6.1.2 covers the case where the nonlinear circuit permits the hybrid form
representation (6.16). Two methods for solving the associated d.c. analysis problem have
been presented. The former method (M4) is, in fact, a modification of the known interval
zero-order fixed-point method for solving a system of nonlinear algebraic equations which
takes into account the specific diagonal form (6.17b) of the nonlinearities involved. The
latter one (M5) is an improvement of Alefeld—Herzberger method and is based on the
introduction of two (suboptimal) points x;” and x;” in an attempt to reduce the interval Y
from (6.48). It should be noted that the idea of using two vectors x” and x” different from
the centre m has been suggested in [83] in the context of Krawctyk’'s method for the
general case of system (6.1) and in [69] for the special case of the hybrid representation
(6.17). In the latter case it is possible to find the optimal points x* and x, at a reasonable
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computational cost provided the nonlinear functions (6.49) are monotonic in the current
intervals X,.

Numerical examples illustrating the applicability of the above methods are given in
section 6.1.3. It is very difficult (at this stage even impossible) to draw any conclusion
regarding the relative numerical efficiency of a particular method — so much depends on
technical details in the algorithmic implementation of the method considered. For
instance, the nonlinear equations (6.41) from method M4 can be solved in a far more
efficient way than it was done in the present algorithm A4b. The experimental evidence
available so far seems to show that for the hybrid form representation case, Algorithms
Adb and A5 (at least in their present implementation) are more efficient than the
remaining interval methods considered in sections 6.1.1, 6.1.2. It will be interesting to
apply Kearfott’s method for solving the hybrid system (6.17) and to compare its
efficiency with the above two algorithms.

Examples 6.5 and 6.6 show that the general methods from section 6.1.1 can be applied
successfully for solving problems other than d.c. circuit analysis.

In the last section 6.1.4 a method for solving underdetermined systems of two-
equations of n variables (n > 2) has been presented. Such systems occur in method M2
for tolerance analysis in probabilistic formulation from section 2.5.1. Its present
algorithmic implementation allows for certain improvements (incorporation of Case 2
from Procedure 6.2 and more efficient transition from a pair X,, X,,, to the next pair X,,,,
Xi.2 in solving the linear interval systems of type (6.70)). It should be noted that the
tolerance method based on the above method for solving underdetermined systems (even
in the present imperfect form) shows a rather high convergence rate.

Section 6.2. In the first subsection of this section, the problem of finding all the
periodic steady-states of a given period arising in a nonlinear electric circuit has been
considered. An interval method for solving this problem has been suggested. It reduces
the original problem of determining the T-periodic solutions of system (6.76) to that of
finding the fixed points of Eq. (6.80). The latter problem is then solved using a zero-order
interval method.

It should be stressed that the method in its present implementation is very time-
consuming because of the need to find (in Step 1 of the method) an outer solution Y(7)
of the interval transient analysis problem (6.81) at each iteration. The latter problem has
been solved using Lohner’s integration method. Depending on the integration step size,
the number of Taylor’s terms used in the expansion of the right-hand side of (6.81) the
size of the initial region X° and the accuracy € chosen the solution of Example 6.7 took
from 1 to 10 minutes on a VAX 9000 computer. Therefore, the present method can be
applied to circuits of low dimension (n < 3). Improving the numerical efficiency of the
interval methods for integrating nonlinear ODE’s, and more specifically overcoming the
wrapping effect might lead in the near future to better methods for solving the global 7-
periodic solution considered in section 6.2.1.

In the last subsection of the chapter the challenging problem of establishing the
uniqueness of a T-periodic steady-state in nonlinear electric circuits has been touched
upon. A new result has been obtained for the special case of circuits for which the system
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of ODE’s is of the separable form (6.92). Theorem 6.4 provides a sufficient condition for
uniqueness in this class of circuits. It reduces the original uniqueness problem to that of
checking whether an associated set of matrices is stable. The latter problem can be
handled by some of the methods from section 4.2.

Two numerical examples illustrate the application of Theorem 6.4.

The problem of determining the uniqueness of a T-periodic solution for a system of
nonlinear ODE’s in the general case (6.76) is extremely difficult. Sufficient conditions (in
noninterval form) for some special cases can be found in, among others, [84] and [85].
It should be noted that the approach from {84] can be implemented using interval global
optimization techniques from sections 2.3 to 2.4, thus reducing the conservativeness of
the known results.

CONCLUSIONS

In conclusion, a few brief remarks of general character will be made here.

The present book is the first monograph to deal with interval analysis applications in
circuit theory. It covers a limited number of topics that have been mainly in the author’s
areas of research. Many other applications are conceivable in the domain of circuit
analysis, both in the case of linear and nonlinear circuits. Indeed, so far only real interval
arithmetic has been used for the purposes of circuit analysis. It is expected that the use
of complex interval arithmetic [10] will lead to new interesting interval methods for
analyzing a.c. circuits. Further application of the interval analysis approach seems especi-
ally promising in the domain of nonlinear circuits. It suffices to note here that already
interval methods have been designed to rigorously verify the existance of chaos in
dynamic systemns [86]. Finally, it should be noted that the interval methods available to
date treat circuit analysis problems only: the area of developing interval methods for
solving electric circuit (or control system) synthesis problems has not been investigated
as yet.

The interval methods for circuit analysis presented in the book cover essentially two
major topics: robust analysis of linear circuits (static and dynamic tolerance analysis,
robust stability) and some aspects of the global analysis of nonlinear circuits (finding all
d.c. or periodic steady-states, uniqueness of the periodic steady-state). They are essentially
based on the present state of the art of those interval analysis techniques that are related
to the topics considered. It should, however, be bomne in mind that interval analysis is
presently undergoing a period of rapid development and it is to be expected that new
improved mathematical tools (methods for obtaining narrower interval extensions for
solving more efficiently linear and nonlinear equations, global optimization problems as
well as more efficient hardware and software realizations) will be soon available.
Therefore, it is belived that the numerical efficiency of the interval methods for circuit
analysis may be substantially improved. However, even in their present (far from being
perfect) implementation these methods are superior to the existing traditional (point)
methods in many respects: guaranteed global convergence and required accuracy, reliable
stopping criteria (unlike the noninterval methods based on global optimization or global
nonlinear analysis for which one always faces the risk of terminating the computation
process prematurely before the global solution(s) is (are) reached or continuing it
uselessly in the hope to find new solutions), lesser computation times in most of the cases
studied so far.

The interval methods suggested in the book have been designed to solve primarily
electric circuit analysis problems. Indeed, some of them exploit advantageously the
specific structure of the electric circuit class considered in an effort to devise algorithms
of improved numerical efficiency. On the other hand many of the electric circuit analysis
problems herein considered — tolerance analysis via global optimization, robust stability
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and performance analysis, global nonlinear analysis in the case of equations of arbitrary
form — are of more general nature. The methods proposed for solving these latter
problems can, therefore, be applied (directly or after minor modifications) to tackling
similar problems arising in systems of arbitrary physical constituency. For this reason, it
is hoped that these more general interval methods will be useful not only to electrical or
electronics engineers but also to systems analysts, control engineers and other specialists
striving to use modern computer methods in their respective research or application areas.
Finally, some of the specific electric circuit analysis problems formulated in the book
constitute challenging mathematical problems and might draw the attention of applied
mathematicians and, more specifically, of interval analysis specialists.

If the present monograph arouses interest among all those who develop or apply
modern computer methods in their speciat fields and encourage them to consider the
possibility of including interval analysis methods in their work, the author’s main
objective would be largely fulfilled.
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