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Foreword

First a bit of history. Probably, the first application of soft computing in
finance was the use of fuzzy sets theory in budgeting. After pioneer works
by Ward (1985) and Buckley (1987), some other authors contributed to the
development of fuzzy capital budgeting theory. Now the mathematical tools
of fuzzy set theory and fuzzy logic are successfully used for risk analysis
in: e-commerce development, portfolio selection, Black-Scholes option pricing
models, corporate acquisition systems, evaluating investments in advanced
manufacturing technology, interactive fuzzy interval reasoning for smart web
shopping, fuzzy scheduling and in logistic. The great achievements were made
in the field of linear and nonlinear fuzzy regression models. This seems to be
very important as the regression analysis is one of the most powerful methods
used in economic and financial applications.

An essential feature of economic and financial problems it that there are
always at least two criteria to be taking into account: profit maximization
and risk minimization. Therefore, the economic and financial problems are
multiple criteria ones. In Prof. Dymova’s book, an interesting systematization
of the problems of multiple criteria decision making is proposed which allows
the author to reveal unsolved problems. The solutions of them are presented
as well and implemented to deal with some important real-world problems
such as investment project’s evaluation, tool steel material selection problem,
stock screening and fuzzy logistic.

It is well known that the best results in real -world applications can be
obtained using the synthesis of modern methods of soft computing. Therefore,
the developed by Prof. Dymova new approach to building effective stock
trading systems, based on the synthesis of fuzzy logic and the Dempster-
Shafer theory, seems to be a considerable contribution to the application of
soft computing method in economics and finance.

It is a common believe that almost all problems of the fuzzy evaluation
of financial parameters in the capital budgeting are solved. Nevertheless, an
unresolved problem is the fuzzy evaluation of the Internal Rate of Return
(IRR), although this parameter plays an important role in the investments
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profitability assessment. In the case of real valued parameters, IRR is calcu-
lated as the solution of a nonlinear equation. So in the fuzzy environment, a
fuzzy extension of this equation should be solved. Previous authors considered
this equation and stated that it cannot be applied to the fuzzy case because
its left hand side is fuzzy, 0 in the right hand side is a crisp value and an
equality is impossible. In Prof. Dymova’s book, this problem is solved using
a new method which makes it possible to solve linear and nonlinear interval
and fuzzy equations and systems of them. The developed new method al-
lows the author to obtain an effective solution of the Leontjev’, input-output
problem in the interval setting.

Soft Computing in Economics and Finance makes a major contribution to
a better understanding of how fuzzy logic can be applied to solve important
problems in economic and financial applications. The author deserves our
thanks and congratulations for presenting an interesting book.

Czestochowa, June, 2010 Leszek Rutkowski
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Chapter 1
Introduction

The initial idea behind writing this book was to present new applications of soft
computing in the solution of economic and financial problems developed during the
last ten years as the result of research project supervised by the author of this book
in the Institute of Theoretical and Applied Informatics, Czestochowa University of
Technology, Poland. Some results have been published in the papers contributed by
the author, as well as Prof. Pavel Sevastjanov, Dr. Pawel Figat, Pawel Bartosiewicz,
M.Ph (he is the author’s Ph.D. student), and the author’s former Ph.D. students Dr.
Krzysztof Kaczmarek and Dr. Marek Dolata.

However, it became clear that the scope of this book should go far beyond the
initial idea of its contents. It is obvious that the book ought to provide much more
information, not only concentrate on the subject of the research into economic and
financial applications of soft computing, but also exhibit a wider view within the
general framework of soft computing methods.

In addition to the first idea, concerning the above mentioned research, the inten-
tion was to incorporate some results from the author’s other papers and book on
applications of soft computing methods in industry and economy. The main reason
for this was that some of these papers and the book were published in Russian and
Polish, and are not accessible to many interested readers.

The review of recent achievements in the field of implementation of the soft com-
puting methods in the solution of economic and financial problems is presented in
Chapter 2, where the problems which were revealed in the process of these methods
implementation are performed as well.

In Chapter 3, an overview of modern methods based on fuzzy sets, including
type 2 and level 2 fuzzy sets, intuitionistic fuzzy sets, interval analysis, and the
Dempster-Shafer theory of evidence (DST ) is presented. The interrelations between
these methods are shown and some problems that impede their applications are em-
phasized as well. The author has no intention to make in this chapter a comprehen-
sive overview of all modern methods as now they are well presented in numerous
books and handbooks. Therefore, in this chapter the modern methods for uncertainty
modeling are presented only on the extent needed for understanding the applications
performed in the following chapters.

L. Dymowa: Soft Computing in Economics and Finance, ISRL 6, pp. 1–5.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

It is shown that one of the most undesirable negative features of interval arith-
metic is the fast increasing of width of intervals obtained as the results of interval
calculations (excess width effect). Another important problem of interval analysis is
the so-called natural interval extension. If we have to make interval extension of real
valued function, all argument of this function should be replaced with correspond-
ing intervals and all operations should be replaced with corresponding operations
on intervals. Such approach to interval extension seems to be justified enough and
intuitively clear. Nevertheless, the so-called dependency problem is a major obsta-
cle to the application of extension principle in interval arithmetic. Although interval
methods can determine the range of elementary arithmetic operations and functions
very accurately, this is not always true with more complicated functions. If an inter-
val occurs several times in a calculation, and each occurrence is taken independently
then this can lead to an unwanted expansion of the resulting intervals.

An important problem of interval extension is also that the accuracy of resulting
interval strongly depends on the algebraic form of function chosen for extension. It
is worthy no note that as the fuzzy arithmetic operations are usually based on the
α -cut representation of fuzzy numbers, the above mentioned problems of interval
analysis are the problems of fuzzy arithmetic as well. It is noted in this chapter
that one of the most important applications of Atanassov’s intuitionistic fuzzy sets
(A-IFS) are the multiple criteria decision making problems (MCDM).

It is shown that there exist two important problems in MCDM in the intuitionis-
tic fuzzy setting: aggregation of local criteria without intermediate defuzzification
in the case when criteria and their weights are intuitionistic fuzzy values (IFVs);
comparison of IF valued scores of alternatives basing on the degree to which one
IFV is grater/smaller than the other. In this chapter, it is shown that there exist a
strong link between DST and A-IFS which makes it possible to reformulate the ba-
sic definitions of A-IFS in terms of DST . We show that using the DST semantics, it
is possible to enhance the performance of A-IFS when dealing with MCDM prob-
lems. Particularly, this approach allows us to use directly the Dempster’s rule of
combination to aggregate local criteria presented by IFVs and develop a method for
MCDM without intermediate defuzzification when local criteria and their weights
are IFVs. As the result we get final alternative’s evaluations in the form of belief
intervals. Hence, an appropriate method for such intervals comparison is needed.
Therefore, a method for interval and fuzzy numbers comparison based on DST ,
which provides the result of comparison in the form of belief interval is presented.

It is noted that now besides the classical Dempster’s rule of combination a num-
ber of other methods for the combination of evidence are proposed in the literature.
All of them have own merits and drawbacks and the problem of choosing the best
method is now open.

In Chapter 4, the problems typical for MCDM are analyzed and new solutions
of them are proposed as well. The problem of appropriate common scale for repre-
sentation of objective and subjective criteria is solved using the simple subsethood
measure based on the α-cut representation of fuzzy values. To develop an appro-
priate method for aggregation of aggregating modes, the synthesis of tools of type-
2 and level-2 fuzzy sets is used. As the result the final assessments of compared
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alternatives are presented in the form of fuzzy valued membership function defined
on the support composed of considered alternatives. To compare the obtained fuzzy
assessments, the probabilistic approach to fuzzy values comparison is used. In is
shown that the investment evaluation problem is frequently a hierarchical one and a
new method for solving such problems, different from commonly used fuzzy ana-
lytic hierarchy process (AHP) method, is proposed. The developed methods are used
for the solution of the stock ranking problem based on MCDM and optimization in
the fuzzy setting, and for the multiple criteria fuzzy evaluation and optimization in
budgeting.

Chapter 5 deals with the so-called distribution problem, which belong to the wide
class of the logistic problems. It is known that distribution transportation and trans-
portation problems have similar mathematical structures and are usually treated as
particular cases of the general linear programming problem. There are many effec-
tive algorithms for the solution of transportation and distribution problems proposed
in the scientific literature and in the textbooks. So we can say that these problems in
the case of real valued parameters are, generally, solved. Nevertheless, in practice,
we often meet different kinds of uncertainty when the parameters of these optimiza-
tion problems are presented by intervals or fuzzy values. The known approaches to
the solution of fuzzy transportation and distribution problems are usually based on
some restrictions imposed on the form of membership functions. These restrictions
make it possible, using analytical procedures, to transform the initial fuzzy prob-
lem to the set of usual linear programming problems with real valued parameters.
Nevertheless, in practice, membership functions representing the parameters of the
problem may have substantially complicated forms and analytical procedures can
not be used. Therefore, in this chapter a new approach to the solution of fuzzy dis-
tribution problem is developed. In the framework of this approach, all parameters
and variables may be fuzzy values without any additional restrictions. It is important
that real-world distribution problems are usually multiple criteria ones. In this chap-
ter, the results obtained as the solution of fuzzy single criterion distribution problem
are used as the base for the formalization and solution of multiple criteria fuzzy
distribution problem.

Chapter 6 is devoted to the synthesis of fuzzy logic and DST in stock trading de-
cision support systems. Modern computerized stock trading systems (the so-called
mechanical trading systems) are based on the simulation of the decision making
process and generate advices for the traders to buy or sell stocks or other financial
tools by taking into account the price history, technical analysis indicators, accepted
rules of trading and so on. There are many approaches to building stock trading sys-
tems proposed in the literature. The applications of the methods of soft computing
in this field of researches are analyzed in Chapter 2. It is noted that the source of
many failures when building really profitable stock trading systems is the ignoring
of human factor. It was recognized in [7], after obtaining a negative result that “The
trading system loses money and gets a negative Sharpe Ratio. We believe that if
expert’s experience is available, it will generate more promising results”.

We can say that the last statement was the pivotal idea on which the methods
presented in this chapter are based. We believe that the wisdom accumulated by
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generations of traders in the form of well-known trading rules of technical analysis
are an adequate base on which it is possible to build optimal fuzzy expert systems
for stock trading. Our starting point was the paper [1], where the authors presented
an expert system based on a fuzzy logic representation of technical analysis trad-
ing rules which are usually used by investors for decision making. Since technical
analysis provides indicators used by experts to predict stock price movements, the
method proposed in [1] maps these indicators into new inputs that can be used in a
fuzzy logic system. This chapter generalizes our experience in building stock trad-
ing systems. Some results we have obtained are partially presented in [2, 6].

Here we present and compare three different expert systems for stock trading
based on the synthesis of fuzzy logic and technical analysis. The first one is a special
adaptation of classical Mamdani approach. Another method is based on the so-called
“logic-motivated fuzzy logic operators” [3]. The third system that will be presented
is based on the synthesis of fuzzy logic and DST .

In Chapter 7, the application of interval and fuzzy analysis in economical model-
ing is presented. In this chapter, a new concept of the solution of interval and fuzzy
equations based on the generalized procedure of interval extension called “interval
extended zero” method is proposed. The central for the proposed approach is the
treatment of “interval zero” as an interval symmetrical with respect to 0. It is shown
that such proposition is not of heuristic nature, but is a direct consequence of the
interval subtraction operation. Some methodological problems concerned with this
definition of interval zero are discussed. It is shown that the resulting solution of
interval linear equations based on the developed method may be naturally treated
as a fuzzy number. An important advantage of a new method is that it substantially
decreases the excess width effect. On the other hand, we show that it can be used
as the reliable practical tool for solving the linear interval and fuzzy equations and
the systems of them. The fundamentals of the proposed approach were presented
in [5, 4]. In this chapter, we present the generalization of these obtained and some
new results. The applications of a new approach are performed by the solution of
well known Leontief’s input-output problem in the interval setting and the solution
of the problem of fuzzy Internal Rate of Return in budgeting.

Many researchers contributed to these results in the fields related to the contents
of this book. The long list of reference includes their names associated with the pub-
lications cited in the book. Professor L.A. Zadeh, who is known as the “Father of
Fuzzy Logic”, and the pioneers who initiated research into soft computing applica-
tions, are mentioned with regard to their publications. The outstanding contributions
of Prof. J.J Buckley and Prof. C. Kahraman to application of soft computing meth-
ods in the solution of economic and financial problems should also be emphasized.
However, a number of researchers who made significant contributions to the solu-
tion of these problems are not cited in this book, since it is impossible to refer to
all of them. The interested reader can find the related papers and books in other
bibliography lists.

The author would like to especially acknowledge the contribution of Prof. C.
Kahraman to fuzzy modeling in finance and economics. His papers and the edited
by him recent book entitled “Fuzzy Engineering Economics with Applications” is
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to Prof. Cengiz Kahraman. There are more persons whose important contributions
to the contents of this book should be acknowledged. There are many people whom
the author would like to thank for their help, encouragement, and understanding.
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Chapter 2
Applications of Modern Mathematics in
Economics and Finance

Nowadays the dominating paradigms of economic theories are based on the clas-
sical mathematics and presented in terms of probabilistic and statistical methods.
These methods may be treated as the traditional ones. As the applications of them in
finance and economics are well presented in numerous papers, books and textbooks,
the detailed description of these applications is out of scope of this book. It should
be emphasized that in applications, the probabilistic and statistical methods are of-
ten and successfully used in the synthesis with modern methods of soft computing.
Now it is understood that in applications we often deal with different types of un-
certainty (not only of probabilistic nature). Therefore, this chapter presents a brief
overview of the applications of modern methods of soft computing in economics
and finance and the problems which were revealed in the process of these methods
implementation.

2.1 Fuzzy Set Theory and Applied Interval Analysis in
Economical and Financial Applications

This section presents an analysis of applications of the theory of fuzzy sets and its
generalizations such as Atannassov’s intutionistic fuzzy sets in the different fields
of economics and finance. The economical and financial applications of interval
analysis are presented as well. The main problems concerned with the use of fuzzy
set theory and interval analysis methods in economical and financial applications
are discussed.

The most salient feature of the late 20th century was the scale of changes af-
fecting social, economic and corporate life. Our environment is changing at a rate
which would once have been unthinkable, and the speed of events has now become
astonishing. The problems posed by these new situations are increasingly complex
and changeable and traditional models based on determinism and chance are no
longer able to cope with this reality. Therefore, in the last four decades the group
of new methods (the methods of soft computing) which make it possible to operate
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with non-probabilistic uncertainty was developed. Among them the tools of fuzzy
set theory [199] are most frequently used in economic and financial applications.

Zadeh’s main motivation for the invention of fuzzy sets was the imprecision in
human decision-making. Fuzzy sets emerged from the need to bridge the gap be-
tween mathematical models and their empirical interpretations. The capability of
fuzzy sets to express gradual transitions from membership to non-membership and
vice versa has a wide utility.

One of the major thrusts of economic science is to describe the behavior of in-
dividual units such as consumers, households, firms, government agencies and their
interactions. But a large number of concepts, which we use in everyday life, are
vague. Fuzziness can be found in many areas.

In the literature, almost all the economic theories are explained in the classical
mathematics frame. In this perspective, fuzzy mathematics seems to be more suited
in explaining the concepts of economics than the classic one.

Therefore, the international association for fuzzy-set management and economy
(SIGEF) has been set up to encourage research and study relating to all aspects
of the economy in general, and corporate management in particular. The interna-
tional journal of this association “Fuzzy economic review” plays an important role
by bringing together the most important projects devised by specialist and offer-
ing them a fundamentally practical opening into the business world, in pursuit of
university-business cooperation which is both necessary and beneficial to both sides.
Different applications of fuzzy sets theory and fuzzy logic in economics and finance
are presented in the books [21, 26, 59, 82, 83, 117] and in the thousands of scientific
papers.

It is worthy to note that the best results can be obtained in the cases when dealing
with direct fuzzy extension of considered economical of financial concept presented
by some mathematical expressions.

Therefore, the tools of fuzzy set theory were most successfully used in budgeting.
There are a lot of financial parameters proposed in literature [15, 23, 35, 106] for
budgeting. The main ones being: Net Present Value (NPV ), Internal Rate of Return
(IRR), Payback period (PB), Profitability Index (PI). It is shown in [20] that the most
important parameters are NPV and IRR. A good review of other useful financial
parameters may be found in [9].

Net Present Value is usually calculated as follows:

NPV =
T

∑
t=1

Pt

(1 + d)t −KV, (2.1)

where d is a discount rate, KV is a starting capital investment, Pt is a total income
(cash flow) in a year t, T is a duration of an investment project in years. Usually the
discount rate is equal to the average bank interest rate in a country of an investment
or other value corresponding to a profit rate of alternative capital investments.

The value of IRR is a solution of the following non-linear equation with respect
to d:
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T

∑
t=1

Pt

(1 +d)t −KV = 0. (2.2)

If Pt , KV (or at least one of them) are fuzzy numbers then with the use of fuzzy
extension of Eq. (2.2), i.e., by replacement of its parameters and variables with
fuzzy ones and all arithmetic operations with relevant fuzzy operations, Eq. (2.2)
can be transformed to a fuzzy equation. The problem is to find a fuzzy solution of
such fuzzy equation, i.e., to obtain a fuzzy IRR.

The economic nature of IRR can be explained as follows. If an actual bank dis-
count rate or return of any other alternative investment under consideration is less
than IRR of considered project, then investment in this project is more preferable.
An estimation of IRR is frequently used as a first step of the financial analysis. Only
projects with IRR above some accepted threshold value (usually 15–20%) can be
chosen for further consideration.

Nowadays traditional approaches to the evaluation of NPV , IRR and other finan-
cial parameters is subjected to quite deserved criticism, since the future incomes
Pt and rates d are rather uncertain parameters. Uncertainties which one meets in
capital budgeting cannot be adequately described in terms of probability. Really, in
budgeting we usually deal with a business-plan that takes a long time — as a rule
some years — for its realization. In such cases, the description of uncertainty via
probability representation of Pt , KV and d usually is impossible due to a lack of
information about probabilities of future events. Thus, what we really have in such
cases are some subjective expert’s judgments. In real-world situations, investors or
experts involved are able to estimate only intervals of possible values Pt and d and
the expected (more probable) values inside these intervals.

That is why during the last two decades the growing interest to applications of
the interval arithmetic [122] and fuzzy set theory methods [199] in budgeting has
being observed. After pioneer works by Ward [188] and Buckley [24], some other
authors contributed to the development of fuzzy capital budgeting theory [30, 41,
44, 45, 51, 77, 78, 79, 80, 81, 94, 135, 151].

It is safe to say now that almost all problems of the fuzzy NPV estimation are
solved. An unresolved problem is the fuzzy estimation of the IRR. Ward [188] con-
sidered Eq. (2.2) and stated that such an expression cannot be applied to the fuzzy
case because the left hand side of Eq. (2.2) is fuzzy, whereas 0 in the right hand
side is a crisp value and an equality is impossible. Hence, the Eq. (2.2) is senseless
from the fuzzy viewpoint. Kuchta [94] proposed a method for fuzzy IRR estimation
where α-cut representation of fuzzy numbers [86] was used. The method is based
on an assumption (see [94, p. 380]) that a set of equations for IRR determination on
each α-cut may be presented (in our notation) as follows:

(KVV α)1 +
T

∑
t=1

(Pα
t )1

(1 + IRRα
1 )t = 0, (KVV α)2 +

T

∑
t=1

(Pα
t )2

(1 + IRRα
2 )t = 0, (2.3)

where KVV = −KV , indexes “1”, “2” stand for the left and right bounds of
corresponding intervals respectively, Pα

t = [(Pα
t )1,(Pα

t )2] are crisp interval
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representations of fuzzy cash flows at time t on α -cuts. Of course, from the equa-
tions (2.3) all crisp intervals dα = [dα

1 ,dα
2 ], expressing the fuzzy valued IRR may be

obtained. On the other hand, Eqs.(2.3) are not a direct consequence of conventional
fuzzy and interval arithmetic rules. Eqs.(2.3) were obtained in [94] using fuzzy ex-
tension of (2.2) assuming that Pt , KV (or at least one of them) are fuzzy numbers
and representing them by the sets of α-levels. Since Eqs.(2.3) should be verified
on each α -cut, it is quite enough to consider only crisp interval extension of (2.2),
which is the particular case of more general equation

F(d)−B = 0, (2.4)

where B is an interval (B = KV in our case ) and F(d) is an interval valued function
of interval argument d (in our case F(d) = ∑T

t=1
Pt

(1+d)t ).
Using regular interval arithmetic [75], this equation can be transformed to

[F1(d)− B2,F2(d)− B1] = 0, and finally we get two equations F1(d)− B2 = 0,
F2(d)−B1 = 0. Of course, if we deal with a linear interval function F(d) = A ·d (A
is an interval) , then F1(d) = A1 · d1 and F2(d) = A2 · d2 , but if F(d) = A

d we have

F1(d) = A1
d2

, F2(d) = A2
d1

since F1 is the left bound (minimal value in interval) and
F2 is the right bound (maximal value in interval) of interval value F(d). Hence, the
use of the regular interval arithmetic rules leads to the following equations:

(KVV α)1 +
T

∑
t=1

(Pα
t )1

(1 + IRRα
2 )t = 0, (KVV α)2 +

T

∑
t=1

(Pα
t )2

(1 + IRRα
1 )t = 0. (2.5)

There is no way to get a correct not inverted interval solution of (2.5). Only inverted
intervals IRR, i.e., such that IRRα

1 > IRRα
2 can be obtained from (2.5). Since it is

hard or even impossible to interpret reasonable such results, they can not be used in
practice. It is shown in [51] that only approximate real valued IRR (represented by
usual non interval numbers) may be obtained from (2.5).

In Chapter 7, we show that the main problem is that the conventional interval
extension (and the fuzzy as well) of usual equations, which leads to the interval
or fuzzy equations such as (2.5) is not a correct procedure. A new approach to
the solution of fuzzy IRR problem is proposed in [152], but rather as a heuristic
method. In Chapter 7, this method is presented as a part of more general problem of
the solution of nonlinear fuzzy equations.

Now the mathematical tools of fuzzy set theory and fuzzy logic are successfully
used for the risk analysis in e-commerce development [128], in portfolio selection
[19, 40, 71, 180], in Black-Scholes option pricing models [98, 192], in corporate ac-
quisition systems [118], in evaluating investments in advanced manufacturing tech-
nology [1], in interactive fuzzy interval reasoning for smart web shopping [105], in
fuzzy scheduling [113], in logistic [32, 55].

The great achievements were made in the field of linear and nonlinear fuzzy
regression models [27, 69, 76, 170]. This seems to be very important as the regres-
sion analysis is one of the most powerful methods used in economic and financial
applications.
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Nowadays it is rather impossible to make a comprehensive review and analysis
of applications of fuzzy set theory and fuzzy logic in economics and finance as the
methods of soft computing are used almost in all fields of economics. Nevertheless,
in some branches of modern economics and finance these methods still are wait-
ing for their application. For example, in insurance only first steps were made and
adoption of tools of fuzzy sets theory is now on the stage of problem formulation
[153, 154].

There are some problems in implementation of fuzzy set theory tools in logis-
tic [32, 55]. Basing on the literature analysis, we can say that now there are no
such general approaches that make it possible to obtain the solution of fuzzy linear
programming problem, fuzzy transportation or fuzzy distribution problems without
additional restrictions on the form of fuzzy parameters and variables. Obviously,
such restrictions substantially limit the ability of known methods to solve practi-
cally important problems when additional restrictions disturb the initial structure of
the problem.

Therefore, in Chapter 5, we propose a new numerical approach to the solution
of fuzzy distribution problem based on the direct fuzzy extension of the simplex
method.

Another important challenge for fuzzy set theory is input-output analysis de-
veloped by V. Leontief [99]. Input-output analysis is an extremely effective tool
used in more than 70 countries over the world for manufacturing processes opti-
mization, economy condition improvement and intersectors costs allocation analy-
sis. The fuzzy extension of Leontief’s model in a spirit of L. Zadeh was proposed
by J. Buckley in [25], but now only a few papers are devoted to this problem. The
fuzzy extension of Leontief’s model in practice needs a solution of a system of thou-
sands linear fuzzy equations. Therefore, we are faced with the problems of compu-
tational and methodological nature which complicate the successful solution of such
systems.

In Chapter 7, the solution of interval Leontiev’s input-output problem with the
use on a new approach to interval extension is proposed.

Intuitionistic fuzzy sets (A-IFS) proposed by Atanassov [6] is one of the possible
generalizations of fuzzy set theory and appears to be relevant and useful in some
applications. The concept of A-IFS is based on the simultaneous consideration of
membership μ and non-membership ν of an element of a set to the set itself such
that 0 ≤ μ + ν ≤ 1.

The similar approach, the so-called vague sets, proposed by Gau and Buehrer
in [58] is proved to be equivalent to the A-IFS (see [28]). Since vague sets were
proposed later than A-IFS, here we shell always speak of A-IFS. There are many
papers devoted to the theoretical problems of A-IFS in the scientific literature (see
[130] for an overview).

Nevertheless, only a few papers presenting applications of A-IFS in economics
and finance can be cited. In all cases A-IFS are not used solely, but in synthesis with
other methods including the methods of soft computing.

In [31], the authors propose a new approach for fuzzy inference in intuitionis-
tic fuzzy systems, which combines the outputs of two traditional fuzzy systems to
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obtain the final conclusion of the intuitionistic fuzzy system. A new method is illus-
trated using the example of monitoring a nonlinear dynamic plant. Guo and Zhang
[64] proposed a new approach to project risk evaluation based on intuitionistic fuzzy
sets and the so-called TOPSIS method. In [182], the authors investigate the multi-
ple attribute decision making problems to deal with the supplier selection in supply
chain management with intuitionistic fuzzy information, in which the information
about attribute weights is completely known, and the attribute values take the form
of intuitionistic fuzzy numbers.The use of TOPSIS method with intuitionistic fuzzy
information is proposed. Then, based on the traditional TOPSIS method, calculation
steps for solving intuitionistic fuzzy multiple attribute decision-making problems
with known weight information are given. Finally, an illustrative example about
supplier selection is given to verify the developed approach and to demonstrate its
practicality and effectiveness. In [138], an intuitionistic fuzzy goal programming
approach for a quality control problem is proposed. The method for multi-objective
intuitionistic fuzzy linear programming and its application to the solution of trans-
portation problem is proposed in [73]. In [74], a multi-objective transportation prob-
lem under intuitionistic fuzziness is considered. In [138], the intuitionistic fuzzy
goal programming and its application for solving the multi-objective transportation
problem are presented.

It is worth noting that, unfortunately, in all papers cited above, the applications
seem to by rather numerical examples than real-world applications.

Let as consider the applications of interval analysis in economics and finance.
Interval mathematics was developed by M. Warmus in his paper [189] where the

basic rules of interval arithmetic were formulated. But the birth of modern interval
arithmetic was marked by the appearance of the book “Interval Analysis” by Ramon
E. Moore in 1966 [122]. He had the idea in Spring 1958, and a year later he had
published a report [121] on how interval arithmetic could be implemented on a
computer. Now the modern interval analysis is well presented in the book [123] and
some important applications of interval analysis can be found in the book [75].

The journal “Reliable Computing” (originally Interval Computations) has been
published since the 1990s, dedicated to the reliability of computer-aided computa-
tions. We can say that most of papers devoted to internal mathematical problems of
interval analysis are now published in this journal. Moreover, the literature analysis
makes it possible to conclude that “interval community” is now focused mainly on
theoretical researches. Probably, a relatively low number of applications of inter-
val analysis can be explained by the great popularity of fuzzy set theory. Really, an
interval may be naturally treated as a particular case of a fuzzy value.

Although Lodwick in his book [115] makes an effort to eliminate the gap between
interval and fuzzy analysis, we can say that now interval analysis and fuzzy set
theory are developing almost independently, whereas theoretical results obtained by
“interval community” may be successfully exploited in the framework of fuzzy set
theory.

A relatively low number of papers was devoted to the solution of linear program-
ming problems in the interval setting with application to the transportation and other
problems of logistic. Steuer [165], Tong [173], Chanas and Kuchta [33] proposed the
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solutions of the linear programming problem with the interval target function. The
generalization of these solution was presented by Kuchta in [95]. Similarly, in [48]
the authors proposed the procedure for the solution of transportation problem with
interval parameters of the objective function and constraints. The generalized linear
fractional programming under interval uncertainty is developed in [68]. The pro-
posed method reduces the problem to solving from two to four real-valued general-
ized linear fractional programs. The method is illustrated by a simple von Neumann
economic growth model. It should be noted that in all above papers, the developed
methods are based on analytical procedures that makes it possible to transform the
initial interval problem to the set of usual linear programming problems with real
valued parameters. In such a way, the authors avoid the direct use of methods of
applied interval analysis based on the rules of interval arithmetic. Therefore, such
approaches can be only formally treated as applications of interval analysis.

Liu [114] developed a method to derive the iinterval profit of the inventory model
when the demand quantity and unit cost are intervals. A pair of two-level math-
ematical programming model to derive the upper bound and lower bound of the
profit is formulated. It is shown that the interval profit contains more information
for determining inventory policy. In [43, 49], a method for evaluating interval fore-
casts with applications to the financial risk management was developed. In [4], this
method is used for the comparison of a number of alternative autoregressive condi-
tional duration models using a sample of data for three major companies traded
on the Australian Stock Exchange. Li et al. [104] proposed a dual-interval ver-
tex analysis method through incorporating the vertex method within an interval-
parameter programming framework. A management problem in terms of regional
air pollution control is studied to illustrate applicability of the proposed approach.
The results indicate that useful solutions for planning the air quality management
practice have been generated. They can help decision makers to identify desired
pollution-abatement strategies with minimized costs and maximized environmental
efficiencies.

Summarizing we can say that using the α-cut presentation of fuzzy numbers, the
problems of fuzzy arithmetic can be reduced to the problems of interval analysis.
Hence, the methods of interval analysis can be successfully used in applications of
fuzzy set theory. Therefore, in Chapter 3 we present the basics and some important
problems of interval analysis, in the following chapters (especially in Chapter 7) we
present some new methods of interval analysis and show how they can be used in
the economic and financial applications in the interval and fuzzy environments.

2.2 Economic and Financial Applications of Rough Sets Theory

Rough sets (RS) theory was introduced more than 20 ago by Pawlak [133] and has
emerged as a powerful technique for the automatic classification of objects [177].

The popularity of RS theory stems primarily from its operational processes,
which adhere closely to the notions of knowledge discovery and data mining [110].
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Most RS applications are designed to deal with classification problems of one
form or another. In constructing such applications, RS theory is generally integrated
with other theories such as fuzzy set theory, grey systems theory and so on.

Based on the notion of the existence of indiscernibility relation between objects,
RS deal with the approximation of sets or concepts by means of binary relations.
Compared to other methods used in financial area, such as discriminant analysis,
univariate statistical method and linear probability model, this new method has the
following advantages [50, 62]: it is based on the original data only and does not
need any external information; it is a tool suitable for analyzing not only quantitative
attributes, but also qualitative ones; it discovers important facts hidden in data and
expresses them in the natural language of decision rules; the set of derived decision
rules gives a generalized description of the knowledge contained in the database,
eliminating any redundancy typical of the original data; the obtained decision rules
are based on facts, because each decision rule is supported by a set of real examples;
the results of RS are easy to understand, while the results from other methods (credit
scoring, utility function and outranking relation) usually require an interpretation of
the technical parameters, with which the user may not be familiar.

The applications of RS in economic and financial prediction can be divided into
three main areas [155]: business failure prediction [2, 50, 62, 67, 161, 162, 163,
164], database marketing [92, 93, 120, 125, 136, 137] and financial investment in-
cluding stock market analysis algorithms and portfolio selection [10, 11, 12, 60, 61,
70, 108, 146, 155, 160, 167, 185, 201].

The detailed review of applications of RS in financial domains can be found in
[172]. The methods of RS theory were used in the solution of scheduling problem
[109], in the model for extracting payment rules of vehicle license tax [196] and for
the solutions of other problems of economic and financial analysis.

It is worthy to note that the best and useful in practical applications results have
been obtained when the tools of RS theory were used in the synthesis with other
methods of soft computing.

2.3 Artificial Neural Network-Based Applications in Economics
and Finance

In this section, the economical and financial applications of artificial neural net-
works are presented and discussed. Nowadays the tools of artificial neural networks
(ANN) are successfully used in almost all branches of economic and financial anal-
ysis. Therefore, it seems to be impossible to make a comprehensive review of all
applications of ANN in these fields. Therefore, here we present only the most im-
portant and successful applications especially concerned with the research issues we
deal with in the following chapters of this book.

Basing on the bibliography of neural network business applications research
[191] we can see that in 1994-1998 years production/operations had the largest
number of ANN applications, followed by finance, marketing/distribution,
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information systems, accounting/auditing, and human resources. In production/
operations, the most popular research areas were the part family/machine grouping,
job shop scheduling, cellular manufacturing system design, and equipment/machine
fault diagnosis/detection. Bankruptcy prediction of banks/firms was the most com-
mon application in the area of finance. In particular, the neural network model
trained by the back-propagation learning algorithm is the most popular tool used
for the solution of financial decision-making problems, whose prediction accuracy
outperforms that of other models, such as logistic regression (LR), linear discrim-
inant analysis (LDA), multiple discriminant analysis (MDA), k-nearest neighbor
(k-NN), decision trees, etc. This indicates that choosing an appropriate learning
model/classifier is a major factor affecting the classification or prediction result.

The analysis of the modern scientific literature make it possible to say that these
basic tendencies are still actual.

The state of the art in application of ANN for bankruptcy forecasting is pre-
sented in [134], where the author noted that the first studies on the use of ANNs
were carried out in the early 1940s, but the financial applications are much more re-
cent. As for experiments within the scope of the forecast of bankruptcy, they did not
come out until 1990. The ANNs can be compared with the traditional statistical tools
of forecast: “The neural networks make it possible to approximate both linear and
nonlinear functions and achieve outstanding performances within the applications
concerning classification, the prediction of future values as well as the modeling
and the control of processes” [134]. They have three main features that allowing
them to adapt the issue of bankruptcy forecast. On the one hand, the failure of a
company is a somewhat complex field which is still not the subject of a complete
theory. It is important that the large availability of the companies accountancy on
the data-processing data bases meets the need for the neural networks. Addition-
ally, bankruptcy forecast is not a problem that can be separated linearly, however,
an artificial neural network does not require a linear assumption of separation of the
classes. Therefore, their capacities can only be expressed efficiently within the scope
of both a significant base of examples and a non-linear complex problem since it has
not yet been the subject of mathematical modeling. The bankruptcy of companies
shows these three characteristics. In [29], ANNs are used for auditing and risk as-
sessment. The paper focuses on the use of ANNs as an enabler of the new business
risk auditing framework and provides insight into future research opportunities. In
general, ANNs, which are classifiers by nature, offer the capacity to consider multi-
ple types of evidence simultaneously and can assist auditors in assessing risks and
making judgments.

The important applications of ANNs are credit scoring, prediction of bankruptcy
of banks and firms, country investment risk estimation and financial crisis prediction.

The neural network ensembles were used for bankruptcy prediction and credit
scoring in [174]. A bank failure early warning system based on a novel localized
pattern learning and semantically associative fuzzy neural network is presented in
[127]. In [13], three different ANN models serve as a cross validation of the effi-
cacy of using and consequent performance of neural network models that categorize
country investment risk. Two main ANN models named RBF and MLP were applied
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in [171] to model the risky economical projects and performance results were com-
pared. Analysis of the neural network outputs proved that more predictive capability
can be achieved by MLP. The proposed network can be applied to any risky econom-
ical project analysis if the project inputs are normalized with a Gaussian distribution
function. The application of ANN models for predicting US recessions is presented
in [139]. This paper examines the relevance of various financial and economic indi-
cators in predicting US recessions via neural network models. The author shares the
view that business cycles are asymmetric and cannot be adequately accommodated
by linear constant-parameter single-index models. Therefore the author uses a novel
neural network to recursively model the relationship between the leading indicators
and the probability of a future recession.

The usefulness of ANNs for early prediction of economic crisis is analyzed in
[90]. The authors noted that during the 1990s, the economic crises in many parts
of the world have sparked a need in building early warning system (EWS) which
produces signal for possible crisis, and accordingly various EWSs have been estab-
lished. In this paper, the authors focus on an interesting issue: “How to train EWS?”
To study this, various aspects of the training data (i.e., the past crisis related data)
were discussed and then several data mining classifiers including artificial neural
networks were probed as a training tool for EWS. In [197], a multiscale neural net-
work learning paradigm for financial crisis forecasting is proposed. For illustration
purpose, the proposed multiscale neural network learning paradigm is applied to
exchange rate data of two Asian countries to evaluate the state of financial crisis.
Experimental results reveal that the proposed multiscale neural network learning
paradigm can significantly improve the generalization performance relative to con-
ventional neural networks.

The methods based on ANNs are successfully used in production prediction. In
[129], the authors describe a decision support system that incorporates both curve
fitting and ANN approaches, and present a range of possible solutions for oil pro-
duction prediction. The synthesis of seasonal time series ARIMA method and neural
networks with genetic algorithms for predicting the production value of the mechan-
ical industry in Taiwan is presented in [107]. The paper [7] presents an approach
based on an integrated genetic algorithm and artificial neural network to estimate
and predict the electricity demand using stochastic procedures. The economic indi-
cators used in this paper are price, value added, number of customers and consump-
tion in the previous periods. This model can be used to estimate the energy demand
in the future by optimizing the values of parameters. Modified neo-fuzzy neuron-
based approach for economic and environmental optimal power dispatch is devel-
oped in [36]. It is shown that the proposed model is capable of achieving accurate
results and the training is observed to be faster than other popular neural networks.
In [142], the synthesis of ANNs and multiple criteria analysis is used for sustainable
irrigation planning. In the paper [57], the authors provide a microeconomic appli-
cation of ANNs by input-output mapping for 82 US major investor-owned electric
utilities using fossil-fuel fired steam electric power generation for the year 1996.
They construct a multilayer feed-forward neural network with back-propagation to
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represent the relationship between a set of inputs and an electricity production as an
output.

One of the classical tools for characterizing an economic system is input-output
analysis, invented by Leontief. The original input-output analysis is a static model
[100], and it has been extended to a dynamic input-output model [101].

In [184], an alternative method of input- output analysis is proposed. This method
is based on the layered neural network model. It shows that neural networks method
can be useful for input-output analysis for a dynamic economic system.

The problem of scheduling is a traditional application of ANNs. In [156], the au-
thors first propose an attribute selection algorithm based on the weights of neural
networks to measure the importance of system attributes in a neural network-based
adaptive scheduling (NNAS) system. Next, the NNAS system is combined with the
attribute selection algorithm to build scheduling knowledge bases. In [157], a real-
time scheduling algorithm is proposed. This algorithm first makes a fuzzy classifi-
cation for the operations of jobs in real-time and then schedules using the heuristic.
The heuristic is obtained by training a neural network off line with the use of ge-
netic algorithm. Based on these ideas a real-time scheduler is built with neuro-fuzzy
network.

The job-shop scheduling problem is one of the most difficult problems in schedul-
ing. It aims to allocate a number of machines over time to perform a set of jobs with
certain constraint conditions in order to optimize a certain criterion. To solve this
problem, in [194] the neural network is constructed based on the constraint condi-
tions of a job-shop scheduling problem. Its structure and neuron connections can
change adaptively according to the real-time constraint satisfaction situations that
arise during the solving process. In [3], the authors give a comprehensive overview
on ANNs approaches for solution of production scheduling problems, discuss both
theoretical developments and practical experiences, and identify research trends.
More than 50 major production and operations management journals published in
years 1988-2005 have been reviewed. Existing approaches are classified into four
groups, and additionally a historical progression in this field was emphasized. An
application of ANNs for the solution of flowshop problem is presented in [54]. This
paper considers the n-job, m-machine permutation flowshop with the objective of
minimizing the mean flowtime. Initial sequences that are structured to enhance the
performance of local search techniques are constructed from job rankings delivered
by a trained neural network. The network’s training is done by using data collected
from optimal sequences obtained from solved examples of flowshop problems.

ANNs are successfully used for the solution of different financial problems.
The paper [91] introduces a resource allocation neural network model to optimize

investment weight of portfolio. This model can dynamically adjust the investment
weight as a basis of 100 percent of summing all of asset weights in the portfolio. A
model based on the combining neural networks and decision trees for earnings man-
agement prediction is presented in [175]. This paper is a preliminary study focusing
on the development of neural network and decision trees models to predict the level
of earnings management. It is believed that the predictive models can help users
of financial statements who make decisions depending on the earnings amounts.
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Besides, building a prediction model to indicate the level of earnings management
in advance is a new application for neural networks.

One of the most important and fruitful applications of ANNs is the forecasting in
different branches of finance.

The distribution forecasting of high frequency financial time series is presented
in [132]. The availability of high frequency data sets in finance has allowed the
use of very data intensive techniques using large data sets in forecasting. In this
study, an algorithm requiring fast k-NN type search has been implemented using a
binary neural network based upon correlation matrix memories. This work has also
constructed probability distribution forecasts. In assistance to standard statistical
error measures, the implementation of simulations has allowed actual measures of
profit to be calculated.

One of the major difficulties in investment strategy is to integrate a supply chain
with finance for controlling the marketing timing. In [42], a hybrid forecast market-
ing timing model based on the probabilistic neural network, rough set and decision
tree is developed. The authors use not only the different indexes of fundamental
and technical analysis, but also the rough set theory and artificial neural networks
inference system to construct three investment market timing classification mod-
els. This includes the probabilistic neural network classification model, rough set
classification model and hybrid classification model combining probabilistic neural
networks, rough sets and decision tree. An approach for the financial performance
prediction based on the ANNs and the data of fundamental and technical analysis is
proposed in [97]. This research project investigates the ability of neural networks,
specifically, the back propagation algorithm, to integrate fundamental and technical
analysis for the financial performance prediction. The predictor attributes include 16
financial statement variables and 11 macroeconomic variables. A hybrid approach to
the Japanese candlestick method for financial forecasting is developed in [84]. This
paper discusses an experimental study of the Japanese candlestick method used in
hybrid stock market forecasting models. Two models are presented in this paper.
The first of them is a committee machine with simple generalized regression neural
networks experts. This model also has a simple gating network. The second model
has a similar committee machine along with a hybrid type gating network that con-
tains fuzzy logic. A method for forecasting stock market returns with the use of data
mining and neural networks is presented in [56]. This paper introduces an informa-
tion gain technique used in machine learning for data mining to evaluate the pre-
dictive relationships of numerous financial and economic variables. Neural network
models for level estimation and classification are then examined for their ability to
provide an effective forecast of future values. A cross-validation technique is also
employed to improve the generalization ability of several models. The forecasting
model of global stock index based on the stochastic time effective neural network
is proposed in [111]. This paper introduces a new stochastic time effective function
to model a stochastic time effective neural network model. The effectiveness of the
model has been analyzed by performing a numerical experiment on the data of SAI,
SBI, HSI, DJI, IXIC and S&P500, and the validity of the volatility parameters of
the Brownian motion is tested. Further, the paper shows some predictive results on
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the global stock indices using the stochastic time effective neural network model.
In [143], the forecasting the volatility of stock price index is analyzed. This paper
proposes a hybrid model with neural network and time series analysis for forecast-
ing the volatility of stock price index in two view points: deviation and direction.
This model demonstrates the utility of the neural network combined with time series
analysis for the forecasting financial goods. A regression neural network for error
correction in foreign exchange forecasting and trading is used in [39]. The authors
propose an adaptive forecasting approach which combines the strengths of neural
networks and multivariate econometric models. This hybrid approach contains two
forecasting stages. In the first stage, a time series model generates estimates of the
exchange rates. In the second stage, general regression neural network is used to
correct the errors of the estimates. In [89], the stock market prediction using ANNs
with optimal feature transformation is considered. This paper compares a feature
transformation method using a genetic algorithm (GA) with two conventional meth-
ods for building ANNs. In this study, the GA is incorporated to improve the learn-
ing and generalizability of ANNs for stock market prediction. Daily predictions are
conducted and prediction accuracy is measured. In this study, three feature transfor-
mation methods for ANNs are compared. A new method for stock market prediction
of S&P 500 based on ANNs is presented in [198]. The authors propose an improved
bacterial chemotaxis optimization, which is then integrated into the back propaga-
tion artificial neural network to develop an efficient forecasting model for prediction
of various stock indices. Experiments show its better performance than other meth-
ods in learning ability and generalization. The use of multiple classifiers for stock
market prediction is proposed in [140]. In this paper, the authors investigated the
predictability of the Dow Jones Industrial Average index to show that not all peri-
ods are equally random. They used the Hurst exponent to select a period with great
predictability. Parameters for generating training patterns were determined heuristi-
cally by auto-mutual information and false nearest neighbor methods. Some induc-
tive machine-learning classifiers-ANN, decision tree, and k-nearest neighbor were
then trained with these generated patterns. Through appropriate collaboration of
these models, the authors achieved prediction accuracy up to 65 percent.

The paper [124] is devoted to the important methodological problem “Is the pre-
dictability of emerging and developed stock markets really exploitable?”. The au-
thors have analyzed the daily and weekly forecastability of stock returns of a large
number of markets during several years. They employed different information sets
as well as model specifications; they also considered linear and nonlinear forecasts
to assess the validity of the results. They use a variety of linear and nonlinear artifi-
cial neural networks models and perform a computationally demanding forecasting
experiment to assess the predictability of returns. The results suggest that nonlinear
models do not provide superior predictions than the linear ones and that emerging
and developed stock markets are generally nonpredictable when total transaction
cost are considered. It is very important that according to obtained results, ANNs do
not provide superior performance than the linear models.

An important application of ANNs is the development of intelligent stock trad-
ing decision support systems. Modern computerized stock trading systems (or the
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so-called mechanical trading systems) are based on the simulation of the decision
making process and generate advices for the trader to buy or sell some stocks or
other financial tool he/she deals with taking into account the price history, technical
analysis indicators, accepted rules of trading and so on.

An intelligent stock trading decision support system based on fuzzy neural net-
work and artificial neural network is developed in [96]. The authors proposed a
genetic algorithm based fuzzy neural network to formulate the knowledge base of
fuzzy inference rules which can measure the qualitative effect on the stock mar-
ket. Next, the effect is integrated with the technical indexes through the ANN. An
example based on the Taiwan stock market is utilized to assess the proposed intelli-
gent system. Evaluation results indicate that the neural network considering both the
quantitative and qualitative factors excels the neural network considering only the
quantitative factors both in the clarity of buying-selling points and buying-selling
performance.

The trading system based on ANNs, forecasting and trading strategy is proposed
in [47]. It is noted that previous researches in learning methods has focused on pre-
dictability based on comparative evaluation and these techniques may be employed
to forecast financial markets as a prelude to intelligent trading systems. This paper
explores the effect of a number of possible scenarios in this context. The alternative
combinations of parameters include the selection of a learning method, whether a
neural net or case based reasoning; the choice of markets, whether in one country or
two; and the deployment of a passive or active trading strategy. When coupled with
a forecasting system, however, a trading strategy offers the possibility for returns in
excess of a passive buy-and-hold approach. In this study, the authors investigated the
implications for portfolio management using an implicit learning technique (neural
nets) and an explicit approach. In [141], a novel recurrent neural network-based pre-
diction system for option trading and hedging is developed. The authors propose a
novel non-parametric method using an ad-hoc recurrent neural network for estimat-
ing the future prices of war commodities such as gold and crude oil as well as curren-
cies, which are increasingly gaining importance in the financial markets. The price
predictions from the network shown to be accurate and computationally efficient,
are used in a hedging system to avoid unnecessary risks. Experiments with actual
gold and currency trading data show that the developed system using the proposed
network and strategy can construct portfolios yielding a great return on investment.

The decision-making model for stock markets based on ANNs is proposed in
[126]. The paper introduces an intelligent decision-making model which is based on
the application of ANNs and swarm intelligence technologies. The proposed model
is used to generate one-step forward investment decisions for stock markets. The
ANNs are used to make the analysis of daily stock returns and to calculate one
day forward decision for purchase of the stocks. Subsequently the particle swarm
optimization algorithm is applied in order to select the “the best” ANN for the future
investment decisions and to adapt the weights of other networks toward the weights
of the best network.

A novel fuzzy neural network intelligent stock trading system is developed in
[169]. It combines the superior predictive capability of ANNs and the use of widely
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accepted moving average and relative strength indicator trading rules. The system
is demonstrated empirically using real live stock data to achieve significantly higher
multiplicative returns than a conventional technical analysis rule-based trading
system.

The fuzzy adaptive decision-making for rational traders in speculative stock mar-
kets is developed in [14]. This paper introduces a hybrid neurofuzzy system for
decision-making and trading under uncertainty. The efficiency of a technical trad-
ing strategy based on the neurofuzzy model is investigated in order to predict the
direction of the market for 10 of the most prominent stock indices of USA, Europe
and Southeast Asia. It is demonstrated via an extensive empirical analysis that the
neurofuzzy model allows technical analysts to earn significantly higher returns by
providing valid information for a potential turning point on the next trading day.

The system developed in [34] is a first attempt in the literature to predict the
sell/buy decision points instead of stock price itself. In this study, an integrated
system based on the combining dynamic time windows, CBR, and neural network
for stock trading prediction is developed and there are three stages in this system:
(1) screening out the potential stocks and the important influential factors; (2) us-
ing a back propagation network to predict the buy/sell points (wave peak and wave
trough) of stock price; (3) adopting case based dynamic windows to further improve
the forecasting results. The empirical results show that the proposed model can re-
duce the false alarm of buying or selling decisions.

In [37], intelligent technical analysis based equivolume charting for stock trading
using neural networks is presented. Two technical indicators, namely the volume
adjusted moving average (VAMA) and the easy of movement (EMV ) indicator, are
developed from equivolume charting. This paper explores the profitability of stock
trading by using a neural network model developed to assist the trading decisions
based on VAMA and EMV . The generalized regression neural network is chosen
and utilized on past S&P 500 index data. The results show that the stock trading
using the neural network with the VAMA and EMV outperforms the results of stock
trading generated from the VAMA and EMV without neural network assistance, the
simple moving averages (MA) in isolation, and the buy-and-hold trading strategy.

A hybrid stock trading system for intelligent technical analysis-based equivol-
ume charting is proposed in [38]. The authors present the use of an intelligent hy-
brid stock trading system that integrates neural networks, fuzzy logic, and genetic
algorithms techniques to increase the efficiency of stock trading when using a vol-
ume adjusted moving average (VAMA), a technical indicator developed from equiv-
olume charting. For this research, a neuro-fuzzy-based genetic algorithm utilizing
a VAMA membership function is introduced. The results show that the intelligent
hybrid system takes advantage of the synergy among these different techniques to
intelligently generate more optimal trading decisions based on VAMA, allowing in-
vestors to make better stock trading decisions.

An empirical methodology for developing stock market trading systems using ar-
tificial neural networks is presented in [179]. It is noted that a great deal of work has
been published over the past decade on the application of neural networks to stock
market trading. Individual researchers have developed their own techniques for
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designing and testing these neural networks, and this presents a difficulty when try-
ing to learn lessons and compare results. This paper aims to present a methodology
for designing robust mechanical trading systems using soft computing technologies
such as artificial neural networks. The paper describes the key steps involved in
creating a neural network for the use in stock market trading, and places particu-
lar emphasis on designing these steps to suit the real-world constraints the neural
network will eventually operate in. Such a common methodology brings with it a
transparency and clarity that should ensure that previously published results are both
reliable and reusable.

Summarizing we can say that during the last two decades powerful mathematical
methods have been used to find a way to predict stock prices accurately, but they
have produced less than successful results in practice [66]. In [96], it is shown that
numerous studies addressing stock price prediction have generally employed the
time series analysis techniques [87] and multiple regression models. Recently, arti-
ficial intelligence techniques like ANNs and genetic algorithms have been applied
in this area. However, the above-mentioned concern still exists [8, 116, 119].

In [88], the use of ANNs had some limitations in learning the patterns because
stock price data have tremendous noise and complex dimensionality. In [96], it is
pointed out that numerous factors such as macro-economical and political events
may have a major influence on stock prices. As it was noted in [185] “in recent
times interest has turned to the use of neural networks for this task, but had less than
successful results”. That is why, a growing interest of researchers to the application
of RS theory for trading rules extraction is observed [155, 185]. The synthesis of
fuzzy logic and Dempster-Shafer theory of evidence (DST ) also seems to be chal-
lenging enough in the building stock trading systems. Chapter 6 of this book is
devoted to this issue.

2.4 Applications of Multiple Criteria Decision Making in
Economics and Finance

It is safe to say that almost all real-world economic and financial problems are mul-
tiple criteria ones since usually at least two controversial criteria should be taken
into account: the profit maximization and risk minimization. In reality, these prob-
lems can be solved taking into account a great number of conflicting local criteria of
different importance, often ill defined and organized into the complex hierarchical
structures. Therefore, a large number of applications of multiple criteria decision
making (MCDM) in economics and finance can be found in the literature.
In this section, the more important applications are presented with the classification
of them.

The authors of [166] presented the widest review of this problem based on more
than 250 literature indices. They have showed that MCDM is now actively used
in such areas as portfolio analysis, capital budgeting, general financial planning,
working capital and commercial bank management, auditing, accounting, insur-
ance and pension fund management, interest rate and risk analysis, prediction and
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classification, government and nonprofit organizations, strategic planning, mergers,
and acquisitions.

The first mathematically formalized decision theory was developed by John von
Neumann and Oskar Morgenstern. In 1944, they published their book “Theory of
Games and Economic Behavior”. In this book, they moved on from Bernoulli’s for-
mulation of an utility function over wealth, and defined an expected utility function
over lotteries or gambles.

The classical utility theory deals with the probabilistic type of uncertainty and was
used in many economical and financial applications. It makes it possible to aggregate
local criteria presented by utility functions to rank the competing alternatives.

There are different approaches to formulation of MCDM proposed in the liter-
ature. The first attempt of classification of these approaches was made in [144].
The author separates tree main classes of MCDM problems, but more scientifically
grounded seems to be the classification presented ten years later in [131], where the
following classes of MCDM were distinguished: multiobjective mathematical pro-
gramming, multiattribute utility theory, outranking relations approach, preference
disaggregation approach.

Multiattribute utility theory is the generalization of classical utility theory and is
based on the aggregated utility functions. The problems concerned with formulation
of aggregated multiple criteria utility functions under probabilistic uncertainty are
described in [200].

An approach based on the preference relations was implemented in the ELECT RE
method. This method is flexible enough to analyze alternatives when it is hard to
discriminate them. The methods based on the preference relations are presented in
[145, 148, 181].

The methods of preference disaggregation are based on the ordinal regression
analysis. The broad bibliography about these methods is presented in [72, 131].

The methods described above were used for the solution of different economic
and financial problems. The comprehensive review of such applications may be
found in [202].

The main limitations of the described above methods are the use of classical
utility theory with strongly monotone utility functions representing local criteria, the
weighted sum used for aggregation of local criteria and the probabilistic approach
to modeling uncertainty.

Nevertheless, the nature of economic and financial MCDM problems usually
needs more flexible methods for modeling different kinds of uncertainties.

For example, let us consider an investment evaluation problem. It is well known
that evaluation of important investment projects usually can not be successfully car-
ried out using only financial parameters since the possible ecological, social and
even political factors of project’s implementation should be evaluated as well. The
role of these factors rises along with the project’s importance. Obviously, such fac-
tors, as a rule, can not be predicted with a high accuracy, moreover their estima-
tions are usually based on the expert’s opinions expressed in a verbal form. So the
proper mathematical tools are needed to incorporate such ill defined estimations into
the general evaluation of investment project. Since the applicability of traditional
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probabilistic methods is often limited by absence of objective probabilistic informa-
tion about future events, during last two decades the growing interest to the appli-
cation of the methods of soft computing such as interval analysis, fuzzy sets theory
methods, rough sets and the tools of DST to the solution of MCDM problems in
economics and finance has been observing. As a rule, in applications the different
combinations of these methods are used.

Nowadays the most popular in the applications MCDM method is the analytic
hierarchy process (AHP) developed by T. Saaty [147].

Vaidya and Kumar [178] presented a broad overview of applications of AHP. A
total of 150 application papers are referred to in this paper, 27 of them are criti-
cally analyzed. It is shown that the main applications of AHP and fuzzy AHP are
concerned with the following problems: selection, evaluation, benefit-cost analy-
sis, allocations, planning and development, priority and ranking, decision making,
forecasting, medicine and related fields, quality function deployment.

In [52], a fuzzy AHP approach is used for computer-aided machine-tool selec-
tion. Both economic evaluation criterion and strategic criteria such as flexibility,
quality improvement, which are not quantitative in nature, are considered for eval-
uation. Much has been written about the deficiencies of traditional models for jus-
tifying advanced manufacturing systems. It is emphasised that the use of fuzzy set
theory allows us for incorporating unquantifiable, incomplete and partially known
information into the decision model. In this paper, a fuzzy AHP is used for the eval-
uation and justification of an advanced manufacturing system. Finally, an example
of machine tool selection is used to illustrate and validate the proposed approach.
In [65], an AHP based approach was used for the solution of personnel selection
problem. Due to the increasing competition in the process of globalization and fast
technological improvements, world markets demand companies to have quality and
professional human resources. This can only be achieved by employing potentially
adequate personnel. In this paper, the authors proposed a personnel selection system
based on fuzzy analytic hierarchy process (FAHP). The FAHP is applied to evaluate
the best adequate personnel dealing with the rating of both qualitative and quanti-
tative criteria. The result obtained using FAHP is compared with results produced
by Yager’s weighted goals method. In addition, a practical computer-based decision
support system is introduced to provide more information and help manager to make
better decisions under fuzzy circumstances.

The hierarchical structure of the problem of evaluating alternative production
cycles is considered in [190] and AHP method is used for its building. Nevertheless,
the drawback of this work is that the simple normalization of financial parameters
(dividing them by their maximal values) is applied instead of natural local criteria.

An interesting example of practical application of the multiple criteria hierarchi-
cal analysis is presented in [103]. The generalized AHP method has been used for
estimation of 103 mutually dependent investment projects proposed for the Tumen
river region (China) industrial development.

In the last decade, the grooving interest to the application of DST is observed.
It should be noted that DST usually is not used solely, but with combination with
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some other methods. As now only a few papers devoted to the applications of DST
in economics and finance are published, we analyze them with pertinent details.

Beynon et al. [16] developed a new method based on the synthesis of DST as a
promising improvement on “traditional” approaches to decision analysis and AHP.
The method is illustrated by simple example. In this example, the decision involves
buying a new car, from a choice of 3 known types of car (decision alternatives), say
A, B and C. In the DST terminology A, B, C is then the frame of discernment. The
criteria to help us judge each of these cars are: price, fuel, comfort and style. The
overall objective (focus) is to decide which is the best car to buy.

The paper [17] outlines a new software system that utilizes the newly developed
method (DS/AHP) which combines aspects of the AHP with DDST for the purpose
of multi-criteria decision making. The method allows a decision maker considerably
greater level of control (compared with conventional AHPmethods) on the judgments
made in identifying levels of favouritism toward groups of decision alternatives. More
specifically, the DS/AHP analysis allows decision makers for additional analysis, in-
cluding levels of uncertainty and conflict in the decisions made, for example. In this
paper, an expert system is introduced which enables the application of DS/AHP to
MCDM. The expert system illustrates further the usability of DS/AHP, also includ-
ing new aspects of analysis and representation offered through using this method. In
[18], the author exposits a novel technique for the ranking and classification of ob-
jects to a particular state. Each object is described by measurements from a number
of variables which may offer different levels of support for the individual objects to
be associated with the two states: a given hypothesis and not the hypothesis. The DST
is a central component of this technique. This makes it possible to estimate the mea-
sure of concomitant ignorance, which may encompass the precision of the individual
measurements as well as the possible ambiguity of their influence on the subsequent
classification of objects. The level of ignorance influences the utilization of the tech-
nique as a tool for the ranking or classification of objects. A simplex plot method
for representing data provides a clear visual representation (interpretation) to the de-
gree of interaction of the support from the variables to the ranking or classification
of the objects. To illustrate the proposed technique, the application considered in the
paper is the elucidation of the risk of corporate failure of a number of companies.
Subsequently, each variable (financial and non-financial) may offer support for the
ranking and classification of companies between the extreme states of being a failed
or non-failed company. A comparison on the ranking and classification of companies
is made with a traditional multivariate discriminant analysis.

Wang et al. [186] have used the so-called evidential reasoning (ER) approach
(based on the DST ) for environmental impact assessment (EIA) problems. These
problems are often characterized by a large number of identified environmental fac-
tors that are qualitative in nature and can only be assessed on the basis of human
judgments, which inevitably involve various types of uncertainties such as ignorance
and fuzziness. All assessment information, quantitative or qualitative, complete or
incomplete, and precise or imprecise, is modelled using a unified framework of a
belief structure. The ER approach is used to aggregate multiple environmental fac-
tors, resulting in an aggregated distributed assessment for each alternative policy. A
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numerical example and its modified version are studied to illustrate the detailed im-
plementation process of the ER approach and demonstrate its potential applications
in EIA.

In [159], the authors have developed a rough set and DST based formalism to
objectively represent uncertainty inherent in the process of service discovery, char-
acterization, and classification. Rough set theory is ideally suited for dealing with
limited resolution, vague and incomplete information, while DST provides a consis-
tent approach to model an expert’s belief and ignorance in the classification decision
process. Integrating these two formal approaches in spatial domain provides a way
to model an expert’s belief and ignorance in service classification. In an application
scenario of the model, the authors have used a cognitive map of retail site assess-
ment, which reflects the partially subjective assessment process. Thus, the authors
provide a naturalistic means of incorporating both qualitative aspects of intuitive
knowledge as well as hard empirical information for service management within a
formal uncertainty framework.

In [193], the evidential reasoning approach (ER) is used in combination with mul-
tiple attribute decision analysis (MADA). In this paper, the ER approach is further
developed to deal with MADA problems with both probabilistic and fuzzy uncer-
tainties. In this newly developed ER approach, precise data, ignorance and fuzziness
are all modelled under the unified framework of a distributed fuzzy belief structure,
leading to a fuzzy belief decision matrix. In contrast to the existing ER algorithm
that is of a recursive nature, a new fuzzy ER algorithm provides an analytical means
for combining all attributes without iteration, thus providing scope and flexibility
for sensitivity analysis and optimization. A numerical example (ranking the cars) is
provided to illustrate the detailed implementation process of the new ER approach
and its validity and wide applicability.

XXX
Nowadays, a new ranking method called technique for order preference by sim-

ilarity to ideal solution (TOPSIS) becomes very popular in economic and financial
application. It is a typical MCDM method and seems to be flexible enough for its
exploiting in applications in the synthesis with other methods. Since TOPSIS is a
relatively new method, here we analyze its applications with some details.

In [46], a fuzzy TOPSIS approach for selecting plant location is proposed, where
the ratings of various alternative locations under various criteria and the weights
of various criteria are assessed in linguistic terms represented by fuzzy numbers.
In the proposed method, the ratings and weights assigned by decision makers are
averaged and normalized into a comparable scale. The membership function of each
normalized weighted rating can be presented using arithmetic of fuzzy numbers.
Using the suggested method, the decision maker’s fuzzy assessments with different
rating viewpoints and the trade-off among different criteria are considered in the
aggregation procedure to assure more convincing decision making. A numerical
example demonstrates the feasibility of the proposed method.

Yong [195] developed a new fuzzy TOPSIS method. Compared with existing
fuzzy TOPSIS methods, the proposed method can deal with group decision-making
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problems in a more efficient manner. A numerical example of plant location selec-
tion is used to illustrate the efficiency of the proposed method.

Shyur [158] models the commercial-off-the-self (COTS) evaluation problem as
an MCDM problem and proposes a five-phase COTS selection model combining the
technique of ANP (analytic network process) and modified TOPSIS method. Given
the high interest in motivation to the use of commercially available software, the
evaluation and selection of (COTS) products is an important activity in the software
development projects. Selecting an appropriate COT S product is often a non-trivial
task in which multiple criteria need to be careful considered. The case study demon-
strates the effectiveness and feasibility of the proposed evaluation procedure.

A new approach to multi-objective inventory planning using multi-objective par-
ticle swarm optimization (MOPSO) and TOPSIS is presented in [176]. This paper
first employs the (MOPSO) algorithm to generate the non-dominated solutions of
a reorder point and order size system. The TOPSIS method is then used to sort
the non-dominated solutions by the preference of decision makers. That is, a two-
stage multi-criteria decision framework which consists of MOPSO and TOPSIS is
presented to find out a compromise solution for decision makers. By varying the
weights of various criteria, including minimization of the annual expected total rel-
evant cost, minimization of the annual expected frequency of stock-out occasions,
and minimization of the annual expected number of stock-outs, managers can de-
termine the order size and safety stock simultaneously which fits their preference
under different situations.

In [85], the interpretive structural modeling and fuzzy TOPSIS are used for the
selection of reverse logistics provider. It is worthy to note that this paper is devoted
to the solution of the real-world problem. For industries, the management of return
flow usually requires a specialized infrastructure with special information systems
for tracking and dedicated equipment for the processing of returns. Therefore, in-
dustries are turning to third-party reverse logistics providers (3PRLPs). In this paper,
a multi-criteria group decision making (MCGDM) model in fuzzy environment is
developed to guide the process of selection of the best 3PRLP. The interactions
among the criteria are also analyzed before arriving at a decision for the selection
of the best 3PRLP among 15 alternatives. The analysis is done through interpretive
structural modeling (ISM) and fuzzy TOPSIS. Finally the effectiveness of the model
is illustrated using the case study of battery manufacturing industry in India.

A two step fuzzy AHP and TOPSIS methodology is developed in [63] for the
evaluation of hazardous waste transportation firms. Hazardous wastes are likely the
source of danger to human health and/or environment. The safe transportation of
them is then a very important problem. Consequently, the selection of the right and
most appropriate transportation firm is an important problem for hazardous waste
generators. In this paper, a two step methodology is structured to evaluate hazardous
waste transportation firms using the methods of fuzzy AHP and TOPSIS. A numer-
ical example is presented to clarify the methodology.

An interesting real-world application of TOPSIS in combination with fuzzy
AHP is presented in [149]. The aim of this study is to propose a fuzzy multi-
criteria decision model to evaluate the performances of banks. The largest five
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commercial banks of Turkish banking sector are examined and these banks are eval-
uated in terms of several financial and non-financial indicators. Fuzzy analytic hier-
archy process (FAHP) and TOPSIS methods are integrated in the proposed model.
After the weights of local criteria are determined based on the opinions of experts
using the FAHP method, these weights are input to the TOPSIS method to rank the
banks. The results show that not only financial performance, but also non-financial
performance should be taken into account in a competitive environment.

In [183], the fuzzy hierarchical TOPSIS is used for the solution of supplier selec-
tion problem. This study proposes a new fuzzy hierarchical TOPSIS method, which
not only is well suited for evaluating fuzziness and uncertainty problems, but also
can provide more objective and accurate criterion weights, while simultaneously
avoiding the problem of Chen’s fuzzy TOPSIS. For application and verification, this
study presents a numerical example and build a practical supplier selection problem
to verify the proposed method and compare it with other methods.

Ashtiani et al. [5] developed an extension of fuzzy TOPSIS method based on
interval-valued fuzzy sets. In this paper, the interval-valued fuzzy TOPSIS method
is presented aiming at solving MCDM problems in which the weights of criteria
are unequal, using interval-valued fuzzy sets concepts. The method is illustrated
by the example of choosing a manager for R&D department of telecommunication
company.

The solution of the real-world problem of choice of location for direct foreign
investment in new hospitals in China using ANP and TOPSIS is presented in [112].
This study models location choices for foreign direct investments in new hospitals
in China as the MCDM problem and develops a multidirectional relationship de-
cision model which combines the techniques of analytic network process (ANP)
and TOPSIS. This study discusses applying ANP to the relative weighting of mul-
tiple assessment criteria. The TOPSIS approach is employed to rank 15 counties of
China’s Yangtze River Delta region (without the Zhoushan) in terms of their overall
performance under the decision model. To illustrate how the proposed approach is
applied to the problem of selecting locations for new hospitals in China the empiri-
cal study of the real case is performed.

There are only a few papers devoted to the application of intuitionistic fuzzy sets
A-IFS to the solution of MCDM economic and finance problems in the literature,
whereas as it is stated in [168], A-IFS provide a richer apparatus to grasp impre-
cision than the conventional fuzzy sets and they seem to be a promising tool for
extended decision making models.

In [102], the methods of intuitionistic fuzzy sets are used for the solution of an
air-condition system selection problem which is a multiattribute decision making
problem. Unfortunately, the application seems to be only a numerical example.

Boran et al. [22] combined the method of multi-criteria intuitionistic fuzzy group
decision making with TOPSIS method to select an appropriate supplier in group
decision making environment. Intuitionistic fuzzy weighted averaging operator is
utilized to aggregate individual opinions of decision makers for rating the impor-
tance of criteria and alternatives. Finally, a numerical example for supplier selection
is given to illustrate application of intuitionistic fuzzy TOPSIS method.
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In [187], the authors proposed an approach to multiattribute decision making
with interval-valued intuitionistic fuzzy assessments and incomplete weights. By
employing a series of optimization models, the proposed approach derives a linear
program for determining attribute weights. An illustrative investment decision prob-
lem is employed to demonstrate how to apply the proposed procedure and compara-
tive studies are conducted to show its overall consistency with existing approaches.

2.5 Summary and Discussion

In this chapter, we have shown that almost all modern soft computing methods can
be successfully applied to the solution of economic and financial problems in dif-
ferent fields. In applications (especially in MCDM), the modern methods usually
are not used solely, but in different combinations. Nevertheless, in many cases the
applications seem to be rather numerical examples, not the solutions of real-world
problems. Especially, the applications of intuitionistic fuzzy sets and the Dempster-
Shafer theory are performed in the literature by such numerical and sometimes arti-
ficial examples.

There is a problem of interconnection of applied interval analysis and fuzzy set
theory. Basing on the literature analysis, we can say that now interval analysis and
fuzzy set theory are developing almost independently, whereas theoretical results
obtained by “interval community” may be successfully exploited in the framework
of fuzzy set theory. Moreover, the literature analysis makes it possible to conclude
that “interval community” is now focused mainly on the theoretical researches.
Probably, the relatively low number of applications of interval analysis can be ex-
plained by the great popularity of fuzzy set theory. Really, an interval may be natu-
rally treated as a particular case of a fuzzy number.

Nevertheless, we can say that using α-cut presentation of fuzzy values, the prob-
lems of fuzzy arithmetic can be reduced to the problems of interval analysis. Hence,
the methods of interval analysis can be successfully used in applications of fuzzy set
theory. Therefore, in Chapter 3 we present the basic definitions and some important
problems of interval analysis, and in the following chapters (especially in Chapter 7)
we present some new methods of interval analysis and show how they can be used
in the economic and financial applications in the interval and fuzzy environments.

Recently, a new approach called belief-rule-based systems has been developed.
A belief-rule-base inference methodology combines evidential reasoning based on
the tools of DST and traditional IF-THEN rules which can be presented using fuzzy
logic. This approach requires the use of some system parameters including rule
weights, attribute weights, and belief degrees. These parameters need to be deter-
mined with care for reliable system simulation and prediction. Some off-line op-
timization models have been proposed in the literature. In our opinion, this new
approach does not match yet to the traditional classification of soft computing meth-
ods. Therefore, we desist from its presentation in this chapter. We shall describe this
approach with new results and application to building stock trading decision support
systems in Chapter 6. Nevertheless, we can say that this approach may be success-
fully used in financial applications [53, 150].
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Chapter 3
The Methods for Uncertainty Modeling

There are many modern methods for uncertainty modeling developed in last decades.
Generally, they are not in conflict with the traditional probabilistic approach since
they deal with another (non-probabilistic) types of uncertainties. Moreover, in the
solution of real-world problems, the probabilistic and the other types of uncertain-
ties often become apparent simultaneously. Therefore, the synthesis of traditional
and modern methods for uncertainty modeling usually provides best results in ap-
plications. In this chapter, we present an overview of modern methods based on
the fuzzy sets theory (including type-2 fuzzy sets and intuitionistic fuzzy sets), in-
terval analysis, and the Dempster-Shafer theory of evidence (DST ). We show the
interrelations between these methods and emphasize some problems that impede
their applications. We do not intend to present here a comprehensive overview of
all modern methods as now they are well presented in numerous books and hand-
books. Therefore, in this chapter we present the modern methods for uncertainty
modeling only to the extent needed for understanding the applications presented in
the following chapters.

3.1 Fuzzy Set Theory

In this section, we present the fundamentals of fuzzy set theory introduced by Zadeh
[154] in 1965 and the generalizations of fuzzy set theory such as type 2 fuzzy sets
and intuitionistic fuzzy sets which seem to be the most useful in applications.

3.1.1 Basic Definitions

Classical sets are also called “crisp” sets so as to distinguish them from fuzzy sets.
In fact, the crisp sets can be treated as a special case of fuzzy sets. Let A be a crisp
set defined in the universe X . Then for any element x in X , either x is a member of A

L. Dymowa: Soft Computing in Economics and Finance, ISRL 6, pp. 41–105.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 3.1 The characteristic function ηX of a crisp set and the membership function μ(x) of a
fuzzy set

or not. In the fuzzy set theory, this property is generalized. Therefore, in a fuzzy set,
it is not necessary that x is a full member of a set or not a member. It can be a partial
member of a set. The generalization is performed as follows: for any crisp set A, it is
possible to define a characteristic function ηX = 0,1, i.e., the characteristic function
takes either the values 0 or 1 in a classical set. For a fuzzy set, the characteristic
function can take any value between zero and one as it is shown in Fig. 3.1.

Definition 3.1. The membership function μA(x) of a fuzzy set A is μA: X → [0,1].
So every element x in X has a membership degree μA(x) ∈ [0,1]. A fuzzy set A is
completely determined in the universe X by the set of tuples:

A = {(x,μA(x)),x ∈ X},∀x ∈ X . (3.1)

The maximal value of μA(x) is equal to 1 for x which completely belongs to A, and
the minimal value of μA(x) is equal to 0 when x does not belong to A.

Example 3.1. Suppose one wants to describe the class of cars having the property
of being expensive by considering BMW, Rolls Royce, Mercedes, Ferrari, Fiat,
Honda and Renault. Some cars like Ferrari and Rolls Royce are definitely expen-
sive and some like Fiat and Renault are not so expensive and do not belong to the
set. Then, the fuzzy set of expensive cars can be described as: (Ferrari, 1),(Rolls
Royce, 1),(Mercedes, 0.8),( BMW, 0.7), (Honda, 0.4). Obviously, Ferrari and Rolls
Royce have the membership value of 1, whereas BMW, which is less expensive, has
a membership value of 0.7 and Honda 0.4.

Example 3.2. A set of natural numbers “close to 6” can be defined as a fuzzy set.
This can be done, say, buy including all numbers from 3 to 9 as follows: 6̃={(3, 0.1),
(4, 0.2), (5, 0.5), (6, 1), (7, 0.5), (8, 0.2), (9, 0.1)}.

Zadeh proposed an alternate representation for fuzzy sets, which is more convenient.
Suppose the universe of discourse is a finite set with n elements, that is X={x1,x2,
...,xn}, then an alternative representation for A can be presented as follows:

A =
n

∑
i=1

μA(xi)/xi = μA(x1)/x1 + ...+ μA(xn)/xn (3.2)
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or equivalently

A =
n

∑
i=1

μA(xi)
xi

=
μA(x1)

x1
+ ...+

μA(xn)
xn

. (3.3)

Here the symbol “+” denotes an enumeration, listing or union rather than addition,
the line between the top and bottom entries in the above formulas is just a delimiter
or separator.

The fuzzy set of expensive cars (see Example 3.1) can be now written using this

notation as:
{

1
Ferrari + 1

RollsRoyce, +
0.8

Mercedes + 0.7
BMW + 0.4

Honda

}
.

In the case of not finite universe of discourse, a fuzzy set A can be expressed as

A =
∫

X
μA(x)/x (3.4)

or

A =
∫

X

μA(x)
x

, (3.5)

respectively. Symbol
∫

in the above expressions refers to union rather than to inte-
gration. This symbolic notation is used to connect an element and its membership
value.

Some other important definitions are presented below.

Definition 3.2. The support of a fuzzy set A, denoted by supp(A), is the set of points
in X at which the membership function μA(x) is positive

supp(A) = {x ∈ X ; μA(x) > 0} (3.6)

Definition 3.3. A singleton is a fuzzy set A whose support is a single point x in the
universe of discourse X .

Definition 3.4. The core of a fuzzy set A defined in the universe of discourse X ,
denoted by core(A), also referred to as kernel, is the set of points in X at which the
membership function μA(x) equals to 1, that is

core(A) = {x ∈ X ; μA(x) = 1} (3.7)

Definition 3.5. The height of a fuzzy set A defined in the universe of discourse X ,
denoted by hgt(A), is the maximal value of its membership function μA(x), that is

hgt(A) = sup
x∈X

μA(x) (3.8)

Definition 3.6. A fuzzy set A is empty if for each x ∈ X the value of membership
function μA(x) is equal to zero, that is

A = /0 ⇔∀x ∈ X ; μA(x) = 0 (3.9)
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Definition 3.7. A fuzzy set A ⊆ X is included in a fuzzy set B ⊆ X , if for any x ∈ X
the value of membership function μA(x) is not greater than the value of membership
function μB(x), that is

A ⊂ B ⇔∀x ∈ X ; μA(x) ≤ μB(x) (3.10)

Definition 3.8. A fuzzy set A ⊆ X is equal to a fuzzy set B ⊆ X , if for any x ∈ X the
value of membership function μA(x) is equal to the value of membership function
μB(x), that is

A = B ⇔∀x ∈ X ; μA(x) = μB(x) (3.11)

Definition 3.9. A fuzzy set A defined on X is said to be normalized, if

sup
x∈X

(μA (x)) = 1 (3.12)

Definition 3.10. A fuzzy set A is convex if its membership function is such that:

μA (λx1 +(1−λ)x2) ≥ min{μA (x1) ,μA (x2)} (3.13)

for any x1,x2 ∈ X and λ ∈ [0,1]. Otherwise A is a non-convex fuzzy set.

Definition 3.11. The cardinality of a fuzzy set A is defined as

|A| =
∫

x

μA(x)dx. (3.14)

3.1.2 Operations on Fuzzy Sets

The fuzzy sets may be treated as the generalization of usual (crisp) sets. Therefore,
the complement, union and intersection operators on fuzzy sets have been defined
by Zadeh in his early works.

Definition 3.12. The complement of a fuzzy set A, denoted by A, is defined by its
membership function as follows

μA (x) = 1− μA (x) (3.15)

for all x ∈ X .

The value of μA (x) corresponds to negation of the concept represented by A. For
example, if A is a fuzzy set of big houses, the complement of this fuzzy set is the
fuzzy set of houses which are not big ones. Fig. 3.2 illustrates the complement of a
fuzzy set A.
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Fig. 3.2 Complement of a fuzzy set

Fig. 3.3 Union of fuzzy sets

Definition 3.13. The union of two fuzzy sets A and B with respective membership
functions μA(x) and μB(x) is a fuzzy set denoted by A∪B whose membership func-
tion is defined by

μA∪B (x) = max(μA (x) ,μB (x)) (3.16)

for all x ∈ X .

The graphical illustration of the union of fuzzy sets is presented in Fig. 3.3.

Definition 3.14. The intersection of two fuzzy sets A and B with respective member-
ship functions μA(x) and μB(x) is a fuzzy set denoted by A∩B whose membership
function is defined by

μA∩B (x) = min(μA (x) ,μB (x)) (3.17)

for all x ∈ X .

The illustration is presented in Fig. 3.4.
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Fig. 3.4 Intersection of fuzzy sets

The union operation of fuzzy sets A1,A2, ...,An ⊂ X is denoted by
⋃n

i=1 Ai and is
given as the extension of Definition 3.16:

μA1∪A2∪...∪An (x) = max(μA1 (x) ,μA2 (x) , ...,μAn (x)) (3.18)

for all x ∈ X .
Similarly, the intersection of fuzzy sets A1,A2, ...,An ⊂ X is denoted by

⋂n
i=1 Ai

and is given as the extension of Definition 3.17:

μA1∩A2∩...∩An (x) = min(μA1 (x) ,μA2 (x) , ...,μAn (x)) (3.19)

for all x ∈ X .
The definitions presented above, constitute the basis for the theory of fuzzy sets

formulated by Zadeh [154] and the formulas (3.15), (3.16) and (3.17) are called
standard operations. However, these operations are not only possible way to extent
classical theory consistently to the fuzzy set theory. Zadeh and other authors have
suggested alternative or additional definitions concerning with operations on fuzzy
sets.

For example, Yager [145] proposed the more general definitions of union and
intersection of fuzzy sets:

μA∪B (x)p = 1−min[1, [(μ p
A(x)+ μ p

B(x)]1/p], (3.20)

μA∩B (x)p = 1−min[1, [(1−μA(x))p +(1− μB(x))p]1/p], p ≥ 1. (3.21)

For p → ∞ these operations transform to the Zadeh’s operations (3.16) and (3.17),
respectively.

It is worth noting that operations (3.20) and (3.21) are idempotent ones only in
the case of p = ∞. Bellman and Zadeh [12] introduced the more “soft” operations
of union and intersection of fuzzy sets:
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μA∪B (x) = μA(x)+ μB(x)−μA(x)μB(x), (3.22)

μA∩B (x) = μA(x)μB(x). (3.23)

It is noted in [12] that from practical and theoretical points of view the “hard” op-
erations (3.16) and (3.17) are more preferable than the “soft” operations, but in
applications there may be such situations when the “hard” operations do not reflect
the sense of union and intersection.

All the definitions presented above are only particular cases of a more wide class
of operations of union and intersection.

A general class of intersection operators for fuzzy sets is defined by so-called
triangular norms or t-norms, and a general class of union operators is defined, anal-
ogously, by s-norms (t-conorms). These operators are extensively applied in fuzzy
set theory as logical connective AND, which represents the intersection and as logi-
cal connective OR, which represents the union.

The triangular norms and t-conorms can be defined as follows
[38, 42, 99, 138, 158]:

Definition 3.15. A triangular norm t is a function of two arguments:

t : [0,1]× [0,1]→ [0,1], (3.24)

which satisfies the following conditions for a,b,c,d ∈ [0,1]

Monotonicity : t(a,b) ≤ t(c,d); a ≤ c; b ≤ d (3.25)

Commutativity : t(a,b) = t(b,a) (3.26)

Associativity : t(t(a,b),c) = t(a,t(b,c)) (3.27)

Boundary conditions : t(a,0) = 0; t(a,1) = a (3.28)

The most frequently used in applications are Zadeh’s t-norm: t(a,b) = min(a,b),
Algebraic t-norm: t(a,b) = a ·b and Bounded t-norm: max(a + b−1,0).

Definition 3.16. An s-norm is a function of two arguments:

s : [0,1]× [0,1]→ [0,1], (3.29)

which satisfies the following conditions for a,b,c,d ∈ [0,1]

Monotonicity : s(a,b) ≤ s(c,d); a ≤ c; b ≤ d (3.30)

Commutativity : s(a,b) = s(b,a) (3.31)

Associativity : s(s(a,b),c) = s(a,s(b,c)) (3.32)

Boundary conditions : s(a,0) = a; s(a,1) = 1 (3.33)
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The most frequently used in applications are Zadeh’s s-norm: s(a,b) = max(a,b),
Algebraic s-norm: s(a,b) = a +b− a ·b and Bounded s-norm: min(a +b,1).

The t-norms and s-norms are related in sense of logical duality. Any s-norm can
be derived from a t-norm through the following formula [2]:

t(a,b) = 1− s(1−a,1−b) (3.34)

Many other examples of t-norms and s-norms can be found in the literature (see,
e.g., [42, 63, 64, 99, 103, 104, 158]).

It is worth noting that there are no good or bad t-norms and s-norms among those
proposed in the literature as the choice of appropriate norm for a specific application
is a context dependent problem.

3.1.3 Operations on Fuzzy Numbers

There are many definitions of fuzzy number proposed in the literature. One of them,
introduced by Dubois and Prade [37], seems to be general and suitable enough for
different applications of fuzzy set theory. According to [37], a fuzzy number is a
fuzzy subset of the real line whose highest membership values are clustered around
a given real number called the mean value; the membership function is monotonic
on both sides of this mean value.

The operations on fuzzy numbers are generally based on extension principle in-
troduced by Zadeh [156]. This principle plays an important role in fuzzy set the-
ory, especially in fuzzy arithmetic. It provides a general method for extending crisp
mathematical concepts to the fuzzy framework.

Suppose that f is a function that maps points in space X to points in space Y , that
is

f : X → Y (3.35)

and A is a fuzzy subset of X expressed by Equation (3.3). Then the extension prin-
ciple asserts that

f (A) =
{

μA(x1)
f (x1)

+ ...+
μA(xn)
f (xn)

}
(3.36)

If more than one element of X is mapped by f to the same element of y ∈Y , then the
maximum of the membership grades of these elements in the fuzzy set A is chosen
as the membership grade for y in Y . If no element x ∈ X is mapped to y, then the
membership grade of y in f (A) is zero.

Fuzzy arithmetic seems to be a highly developed and well-formalized branch of
fuzzy sets theory. Nevertheless, there are some problems of the practical implemen-
tation of fuzzy arithmetic rules. They are based on the extension principle intro-
duced by Zadeh [154] for arithmetical operations on fuzzy numbers. The general
formulation of this principle uses an arbitrary t -norm.

Let A, B, Z be fuzzy values and @ ∈ {+,−,∗,/} be an arithmetical operation.
Then
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Z = A@B = {z = x@y,μ(z) = max
z

t(μ(x),μ(y)),x ∈ A,y ∈ B}. (3.37)

As emphasized by Zimmermann and Zysno [159], the choosing of the concrete
realization of t-norm is rather an application dependent problem, but three main
t-norms are usually used in practice:

t(μ(x),μ(y)) = min(μ(x),μ(y)), (3.38)

t(μ(x),μ(y)) = 0.5(μ(x)+ μ(y)), (3.39)

t(μ(x),μ(y)) = μ(x)μ(y). (3.40)

It is worth noting that there are many other t-norms used in fuzzy logic, but ex-
pressions (3.38)-(3.40) are most suitable for fuzzy arithmetic applications, although
expression (3.39) is not a t-norm at all.

An alternative approach to implementation of fuzzy arithmetic is based on the
α-cuts presentation of fuzzy numbers [155, 156].

So, if A is a fuzzy number, then A =
⋃
α

αAα , where αAα is the fuzzy subset:

x ∈ X , μA(x) ≥ α , Aα is the support set of fuzzy subset αAα and X is the universe
of discourse.

To illustrate the representation of fuzzy number with the use α-cuts, consider the
following example.

Let X = 1,2, ...,10 and
A = 0.1/2 + 0.3/3 +0.6/4+0.8/5 +1/6+0.7/7+0.4/8+0.2/9.
Then A = ∑

α∈(0,1]
αAα =

0.1(1/2 + 1/3 +1/4+ 1/5+1/6+1/7+1/8+1/9)+
+ 0.2(1/3 + 1/4+1/5 +1/6+1/7+1/8+1/9)+
+ 0.3(1/3 + 1/4+1/5 +1/6+1/7+1/8)+
+ 0.4(1/4 + 1/5+1/6 +1/7+1/8)+
+ 0.6(1/4 + 1/5+1/6 +1/7)+
+ 0.7(1/5 + 1/6+1/7)+
+ 0.8(1/5 + 1/6)+
+ 1(1/6) = 0.1/2 + 0.3/3 +0.6/4+0.8/5+1/6+0.7/7+0.4/8+0.2/9.

The graphical interpretation of α-cuts is presented in Fig. 3.5.
It was proved that if A and B are fuzzy numbers, then all the operations on them

may be presented as operations on the set of crisp intervals corresponding to their
α-cuts:

(A@B)α = Aα @Bα . (3.41)

Of course, the direct α-cut representation of operations on fuzzy numbers seems
to be a rough one in comparison with the generalized expression (3.37). But for
the practical numerical realization of (3.37) we have to use the discretization of the
supports of considered fuzzy numbers A, B and Z if we deal with non-trivial forms
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Fig. 3.5 Illustration of α-cuts

of μ(x) and μ(y). It is well known for the practicians that any direct discretization
of (3.37) leads to unacceptable results [100, 109].

To illustrate, let us consider the example adopted from [100]. Let A = ”near 5”
and B = ”near 7” be fuzzy values represented by corresponding finite fuzzy sets (see
Table 3.1).

Table 3.1 Discrete representation of the test fuzzy values A and B

μA(xi) 0 0.33 0.66 1 0.5 0
xi 2 3 4 5 6 7

μB(yi) 0 0.5 1 0.66 0.33 0
yi 5 6 7 8 9 10

Then for multiplication (A ·B) in the case of t(μ(x),μ(y)) = μ(x) · μ(y) we get
the result shown in Fig. 3.6. We can see that the use of the general definition (3.37)
does not provide the convex resulting fuzzy number in the case of multiplied fuzzy
numbers, whereas we have no problems when using an approach based on the α-
cuts representation of fuzzy numbers. It seems natural that the results obtained with
the use of the general definition (3.37) may be improved using a more detailed
discretization, but in practice usually it is hard to do this. It should be emphasized
here that similar unacceptable results were obtained using all the definitions (3.38)-
(3.40) for all arithmetical operations, but there is no problem if we use the α-cut
presentation of operations on fuzzy numbers. More details, examples and analysis
may be found in [100, 109]. However, for our purposes it is quite enough to treat
the result presented above as only the empirical fact, which indicates that there are
some difficult problems when using the discretization of general expression (3.37)
and that these problems can be easily eliminated using the α-cut representation
of fuzzy arithmetic rules. Hence, the α-cut representation of fuzzy numbers and
operations on them can be accepted as the basic concept for fuzzy modeling of the
real-world processes.
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Fig. 3.6 Multiplication of two fuzzy numbers (see, Table 3.1) (I-using the definitions (3.37)
and (3.40), II-using α-cuts (3.41)

Since in the case of α-cut presentation, fuzzy arithmetic is based on crisp in-
terval arithmetic rules, the basic definitions of applied interval analysis should be
presented too.

There are some definitions of interval arithmetic [57, 89], but in practical ap-
plications the so-called “naive” form proved to be the best one. According to it, if
A = [a1,a2] and B = [b1,b2] are crisp intervals and @ ∈ {+,−,∗,/}, then

Z = A@B = {z = x@y,x ∈ A,y ∈ B}. (3.42)

As the direct consequence of the basic definition (3.42) the following expressions
were obtained:

A + B = [a1 + b1,a2 + b2],A−B = [a1 −b2,a2 −b1],

AB = [min(a1b1,a2b2,a1b2,a2b1),max(a1b1,a2b2,a1b2,a2b1)],

A/B = [a1,a2][1/b2,1/b1], 0 /∈ B.

Of course, there are many internal problems within applied interval analysis, e.g.,
the division by zero-containing interval, but in general, it can be considered as a
reliable mathematical tool for modeling under conditions of uncertainty.

The methods of interval analysis will be presented in the following section in
more detail.



52 3 The Methods for Uncertainty Modeling

3.1.4 Generalizations of Fuzzy Set Theory

The fuzzy set theory is now in the state of continuous development. Therefore, some
its generalization or extensions have been proposed in the literature. Some of them,
e.g., relativistic fuzzy sets [59] and quantum fuzzy sets [79] deserve to be stud-
ied especially for seeking their application, but a number of such generalizations
perform only abstract mathematical concepts. For example, in the paper [137], the
author honestly write that his generalization of fuzzy set theory can not be used in
applications. Therefore, here we present only the foundations of type-2 fuzzy sets
and intuitionistic fuzzy sets as they are the most applicable generalizations of fuzzy
set theory, although in Chapter 4 we shell use the level-2 fuzzy sets too.

3.1.4.1 Type-2 Fuzzy Sets

The type-2 fuzzy sets were introduced by Zadeh [156] to deal with the situations
when uncertainty can exist about the membership grades. Prof. Zadeh didn’t stop
with type-2 fuzzy sets, because in [156] he also generalized all of this to type-n
fuzzy sets. A classical fuzzy set (type- 1 fuzzy set) is a special case of a type 2 fuzzy
set.

Work on type-2 fuzzy sets languished during the 1980’s and early-to-mid 1990’s,
although a small number of papers were published about them. This changed in the
latter part of the 1990’s as a result of Prof. Jerry Mendel and his student’s works
on type-2 fuzzy sets and systems (see, e.g., [83]). Since then, more and more re-
searchers around the world are writing papers about type-2 fuzzy sets and systems.

According to [84], there are (at least) four sources of uncertainties in type-1 fuzzy
sets: (1) The meanings of the words that are used to define membership grades
can be uncertain (words mean different things to different people). (2) The knowl-
edge can be extracted from a group of experts who do not all agree. (3) Measure-
ments that activate a type-1 fuzzy sets may be noisy and therefore uncertain. (4) The
data that are used to tune the parameters of a type-1 fuzzy sets may also be noisy.
All of these uncertainties translate into uncertainties about fuzzy set membership
functions. Type-1 fuzzy sets are not able to directly model such uncertainties be-
cause their membership functions are totally crisp. On the other hand, type-2 fuzzy
sets are able to model such uncertainties because their membership functions are
themselves fuzzy. Membership functions of type-1 fuzzy sets are two-dimensional,
whereas membership functions of type-2 fuzzy sets are three-dimensional. It is the
new third-dimension of type-2 fuzzy sets that provides additional degrees of free-
dom that make it possible to directly model uncertainties. Type-2 fuzzy sets have
already been used in decision making [146], in economic and financial application
such as forecasting of time-series [61, 82] and transport scheduling [58].

To make the formal definition of type-2 fuzzy set more transparent, consider its
graphical representation [84].

Imagine blurring the type-1 membership function depicted in Fig. 3.7(a) by shift-
ing the points on the triangle either to the left or to the right and not necessarily by
the same amounts, as in Fig. 3.7(b). Then, at a specific value of x, say x′, there is
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no longer a single value for the membership function (u′); instead, the membership
function takes on values wherever the vertical line intersects the blur. Those values
need not all be weighted the same; hence, we can assign an amplitude distribution
to all of those points. Doing this for all x ∈ X , we create a three-dimensional mem-
bership function-a type-2 membership function- that characterizes a type-2 fuzzy
set.

Fig. 3.7 (a) Type-1 membership function and (b) blurred type-1 membership function, in-
cluding discretization at x = x′

Below we present the definitions from [84].

Definition 3.17. A type-2 fuzzy set, denoted Ã, is characterized by a type-2 mem-
bership function μÃ (x,u), where x ∈ X and u ∈ Jx ⊆ [0,1], i.e.,

Ã = {((x,u) ,μÃ (x,u)) |∀x ∈ X ,∀u ∈ Jx ⊆ [0,1]} (3.43)

in which 0 ≤ μÃ (x,u) ≤ 1.
Ã can also be expressed as

Ã =
∫

x∈X

∫

u∈Jx

μÃ (x,u)/(x,u) , Jx ⊆ [0,1] , (3.44)

where
∫ ∫

denotes the union over all admissible x and u. For discrete universes of
discourse

∫
is replaced by ∑.

In Definition 3.17, the first restriction that ∀u∈ Jx ⊆ [0,1] is consistent with the type-
1 constraint 0 ≤ μA (x) ≤ 1, i.e., when uncertainties disappear a type-2 membership
function must reduce to a type- 1 membership function, in which case the variable
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u equals to μA (x) and 0 ≤ μA (x) ≤ 1. The second restriction 0 ≤ μÃ (x,u) ≤ 1 is
consistent with the fact that the amplitudes of a membership function should lie
between or be equal to 0 and 1.

Definition 3.18. At each value of x, say x = x′, the 2-D plane whose axes are u and
μÃ (x′,u) is called a vertical slice of μÃ (x,u). A secondary membership function is a
vertical slice of μÃ (x,u). It is μÃ (x = x′,u)=μÃ (x′,u) for x ∈ X and ∀u∈ Jx′ ⊆ [0,1],
i.e.,

μÃ

(
x = x′,u

)≡ μÃ

(
x′
)

=
∫

u∈Jx′
fx′ (u)/u, Jx′ ⊆ [0,1] (3.45)

in which 0 ≤ fx′ (u) ≤ 1.

Because ∀x′ ∈ X , we drop the prime notation on μÃ (x′), and refer to μÃ (x) as a
secondary membership function; it is a type-1 fuzzy set, which we also refer to as a
secondary set.

Based on the concept of secondary sets, we can reinterpret a type-2 fuzzy set as
the union of all secondary sets, i.e., using (3.45) we can re-express Ã in a vertical-
slice manner, as

Ã = {(x,μÃ (x)) |∀x ∈ X} (3.46)

or, as

Ã =
∫

x∈X
μÃ (x)/x =

∫

x∈X

[∫
u∈Jx

fx (u)/u

]
/x, Jx ⊆ [0,1] . (3.47)

Definition 3.19. The domain of a secondary membership function is called the
primary membership of x. In (3.47), Jx is the primary membership of x, where
Jx ⊆ [0,1] for ∀x ∈ X .

Definition 3.20. The amplitude of a secondary membership function is called a sec-
ondary grade. In (3.47), fx(u) is a secondary grade; in (3.45), μÃ (x′,u′) is a sec-
ondary grade.

If X and Jx are both discrete, then the right hand side of (3.47) can be expressed as
follows:

Ã = ∑
x∈X

[
∑

u∈Jx

fx (u)/u

]/
x =

N
∑

i=1

[
∑

u∈Jxi

fxi (u)/u

]/
xi =

=
[

M1

∑
k=1

fx1 (u1k)/u1k

]/
x1 + ...+

[
MN

∑
k=1

fxN (uNk)/uNk

]/
xN .

(3.48)

In this equation, “+” also denotes union. Observe that x has been discretized into
N values and at each of these values u has been discretized into Mi values. The
discretization along each uik does not have to be the same, which is why we have
shown a different upper sum for each of the bracketed terms. The operations on
type-2 fuzzy sets are defined in [84].

One of the useful simplification (type reduction) of a type-2 fuzzy set is an in-
terval type-2 fuzzy set. Interval type-2 fuzzy sets have received the most attention
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because the mathematics that is needed for such sets-primarily interval arithmetic-is
much simpler than the mathematics that is needed for general type-2 fuzzy sets. So,
the literature about interval type-2 fuzzy sets is large, whereas the literature about
general type-2 fuzzy sets is much smaller. Both kinds of fuzzy sets are being actively
researched by an ever-growing number of researchers around the world.

More information about type-2 fuzzy sets, interval type-2 fuzzy sets and their
applications can be found in [73, 76, 77, 81, 85, 86, 87].

3.1.4.2 Intuitionistic Fuzzy Sets

Intuitionistic fuzzy set proposed by Atanassov [3], is one of the possible generaliza-
tions of fuzzy sets theory and appears to be relevant and useful in some applications.
As the so-called “intuitionistic fuzzy set theory” was independently introduced by
Takeuti and Titani [129], there are some terminological difficulties in fuzzy set the-
ory. Dubois et al. [36] noted that “Takeuti-Titani’s intuitionitic fuzzy logic is simply
an extension of intuitionistic logic [27], i.e., all formulas provable in the intuition-
istic logic are provable in their logic. Intuitionistic fuzzy set theory by Takeuti and
Titani is an absolutely legitimate approach, in the scope of intuitionistic logic, but
it has nothing to do with Atanassov’s intuitionistic fuzzy sets.” Therefore, to avoid
a misunderstanding, in this book, the Atanassov’s intuitionistic fuzzy sets is ab-
breviated as A-IFS. Generally, the Atanassov’s model (A-IFS) may be treated as
a classification model subject to a valuation space with three classes and defining
certain structure [88].

The concept of A-IFS is based on the simultaneous consideration of membership
μ and non-membership ν of an element of a set in the set itself [3]. It is postulated
that 0≤ μ +ν ≤ 1. The similar approach, the so-called vague sets, proposed by Gau
and Buehrer in [44] is proved to be equivalent to the A-IFS (see [19]). Since vague
sets were proposed later than A-IFS, in this book, we shall always speak of A-IFS.

To make the basic definition of A-IFS more clear and transparent, consider an
example from [5].

Let E be the set of all countries with elective governments. Assume that we know
for every country x ∈ E the percentage of the electorate that have voted for the cor-
responding government. Denote it by M(x) and let μ (x) = M(x)

100 (degree of mem-
bership, validity, etc.). Let ν (x) = 1− μ (x). This number corresponds to the part
of electorate who have not voted for the government. By fuzzy set theory alone we
cannot consider this value in more detail. However, if we define ν(x) (degree of
non-membership, non-validity, etc.) as the number of votes given to parties or per-
sons outside the government, then we can show the part of electorate who have not
voted at all or who have given bad voting-paper and the corresponding number will
be π (x) = 1− μ (x)− ν (x) (degree of indeterminacy, uncertainty, etc.). Thus we
can construct the set {〈x,μ (x) ,ν (x)〉 |x ∈ E} and obviously, 0 ≤ μ (x)+ ν (x) ≤ 1.

Obviously, for every ordinary fuzzy set πA (x) = 0 for each x ∈ E and these sets
have the form {〈x,μA (x) ,1− μA (x)〉 |x ∈ E}.



56 3 The Methods for Uncertainty Modeling

In [3], Atanassov defined A-IFS as follows.

Definition 3.21. Let X = {x1,x2, ...,xn} be a finite universal set. An intuitionistic
fuzzy set A in X is an object having the following form: A = {< x j,μA(x j),νA(x j) >
|x j ∈ X}, where the functions μA : X → [0,1], x j ∈ X → μA(x j)∈ [0,1] and νA : X →
[0,1], x j ∈ X → νA(x j) ∈ [0,1] define the degree of membership and degree of non-
membership of the element x j ∈ X to the set A ⊆ X , respectively, and for every
x j ∈ X , 0 ≤ μA(x j)+ νA(x j) ≤ 1.

Following to [3], we call πA(x j) = 1− μA(x j)−νA(x j) the intuitionistic index (or
the hesitation degree) of the element x j in the set A. It is obvious that for every
x j ∈ X we have 0 ≤ πA(x j) ≤ 1.

As we noted above, A-IFS is an extension of the standard fuzzy set. All results
which are typical for ordinary fuzzy sets theory can be transformed here, too. Also,
any research based on fuzzy sets can be described in terms of A-IFS. On the other
hand, there have been denned over A-IFS not only operations similar to the ordinary
fuzzy set ones, but also operators that cannot be denned in case of fuzzy sets. A-IFS
have geometrical interpretations (see Fig. 3.8 and Fig. 3.9).

Fig. 3.8 Illustration of μA and νA

Similarly to the fuzzy set theory, a large number of relations and operations over
A-IFS are denned, but more interesting are the modal operators that can be defined
over the A-IFS. They do not have analogues in the ordinary fuzzy set theory.

Let A be an A-IFS and t α,β ∈ [0,1]. The simplest operators are

ΩA = {〈x,μA (x) ,1− μA (x)〉 |x ∈ E} , (3.49)
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Fig. 3.9 Illustration of μA and 1−νA

ΔA = {〈x,1−νA (x) ,νA (x)〉 |x ∈ E} . (3.50)

They are analogous of the modal logic operators “necessity” and “possibility”. In
the frameworks of the A-IFS theory, we can extend these operators, defining the
following ones [7]:

Dα (A) = {〈x,μA (x)+ α ·πA (x) ,νA (x)+ (1−α) ·πA (x)〉 |x ∈ E} , (3.51)

Fα ,β (A) = {〈x,μA (x)+ α ·πA (x) ,νA (x)+ β ·πA (x)〉 |x ∈ E} , (3.52)

where α +β ≤ 1,

Gα ,β (A) = {〈x,α ·μA (x) ,β ·νA (x)〉 |x ∈ E} , (3.53)

Hα ,β (A) = {〈x,α · μA (x) ,νA (x)+ β ·πA (x)〉 |x ∈ E} , (3.54)

H∗
α,β

(A) = {〈x,α ·μA (x) ,νA (x)+ β · (1−α ·μA (x)−νA (x))〉 |x ∈ E} , (3.55)

Jα ,β (A) = {〈x,μA (x)+ α ·πA (x) ,β ·νA (x)〉 |x ∈ E} , (3.56)

J∗
α,β

(A) = {〈x,μA (x)+ α · (1− μA (x)−β ·νA (x)) ,β ·νA (x)〉 |x ∈ E} . (3.57)

If we have an ordinary fuzzy set A, then ΩA = A = ΔA, while for a proper A-IFS
A: ΩA ⊂ A ⊂ ΔA and ΩA �= A �= ΔA.

Also the following equalities are valid for each A-IFS A: Ω Ā = ΔA, Δ Ā = ΩA.
In modal logic, both operators Ω and Δ are related to the last two connections,

but no other connection between them is observed. In the A-IFS, we can see that
operators Dα and Fα ,β (α,β ∈ [0,1]) and α + β ≤ 1) are their direct extensions,
because ΩA = D0 (A) = F0,1 (A), ΔA = D1 (A) = F0,1 (A).
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These equalities show a deeper interconnection between the two ordinary modal
logic operators.

There were many papers devoted to the theoretical problems of A-IFS in the
scientific literature (see [95] for an overview).

The most important applications of A-IFS are the decision making problem
[25, 53, 70, 71, 72, 74, 75] and group decision making problem [6, 8, 97, 98, 123,
124, 125, 126]. In the framework of A-IFS, the decision making problem may be
formulated as follows.

Let X = {x1,x2, ...,xm} be a set of alternatives, A = {a1,a2, ...,an} be a set of
local criteria, W = {w1,w2, ...,wn} be the weights of local criteria.

If μi j is the degree to which xi satisfies the criterion a j and νi j is the degree
to which xi does not satisfy the criterion a j and 0 ≤ μi j + νi j ≤ 1 then alterna-
tive xi may be presented by its characteristics as follows: xi = {(w1,< μi1,νi1 >),
(w2,< μi2,νi2 >), ...,(wn,< μin,νin >)}, i = 1, ...,m.

It seems quite natural that if alternative’s attributes are intuitionistic fuzzy values
(IFVs) then the resulting alternative’s evaluation should be an IFV too. To avoid
this problem, the different real valued score functions based on μi j and νi j are usu-
ally used. Chen and Tan [25] proposed the score function S(xi) = μ(xi)− ν(xi),
where μ(xi) = min(μi1,μi2, ...,μin), ν(xi) = max(νi1,νi2, ...,νin). To take into ac-
count the weights of local criteria, Chen and Tan [25] proposed the weighted score

function: WS(xi) =
n
∑
j=1

wj(μi j −νi j). Hong and Choi [53] in addition introduced the

so-called accuracy function H(xi) = μ(xi)+ ν(xi) and the weighted accuracy func-

tion T (xi) =
n
∑
j=1

wj(μi j + νi j). Two similar real valued score functions that jointly

serve as a degree to which an alternative satisfies the decision-maker’s requirements
have been introduced in [70, 71]. Liu and Wang [75] proposed score functions based
on the intuitionistic fuzzy point operators originating from IF triangular norm and
conorm [18, 34]. Xu [141] proposed a method for ranking alternatives based on
the Hamming distances dH(α,β ) = 1

2(
∣∣μα −μβ

∣∣+ ∣∣να −νβ
∣∣) and normalized Eu-

clidean distances dE(α,β ) =
√

1
2 (
∣∣μα −μβ

∣∣2 +
∣∣να −νβ

∣∣2) introduced by Burillo
and Bustince [17]. In [127], a new similarity measure for intuitionistic fuzzy sets is
proposed. This measure is based on the normalized Hamming distance lIFS(A,B) =
1
2n

n
∑

i=1
(|μA(xi)− μB(xi)|+ |νA(xi)−νB(xi)|+ |πA(xi)−πB(xi)|).

The measures obtained in [127] were used in [128] to rank alternatives expressed
via A-IFS.

Different aggregation operators are usually used to obtain a final real valued eval-
uation of an alternative on the base of score functions.

Li [72] proposed the most complicated formulation of A-IFS decision making
problem for the case when the weights of local criteria are IFV too. To avoid the
above mentioned problem of final alternative’s evaluation in the form of IFV , Li
[72] proposed its reduction to the linear programming task with real valued param-
eters. Lin et al. [74] developed a method based on the aggregation of the weighted
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score and accuracy functions. Using this more simple method the same final results
as in [72] were obtained.

It is well known [3] that the couple < μ(x),ν(x) > can be mapped bijectively
onto regular interval [μ(x),1− ν(x)]. This interval can be presented in the equiva-
lent form [μ(x),μ(x)+ π(x)], where π(x) = 1− μ(x)− ν(x) is the so-called intu-
itionistic fuzzy index or hesitation degree. In [53], the evaluation of the alternative
x j ∈ X with respect to the criterion ai ∈ A is represented by interval [μi j,1− νi j],
where μi j denotes the degree to which x j satisfies the criterion ai, νi j denotes the
degree to which x j does not satisfy ai. For this purpose, Li [72] proposed to use in-
tervals [μ l

i j,μu
i j] = [μi j,μi j +πi j]. These intervals were considered in [72] only as the

constraints in the linear programming task. It is important to note that in [53, 72],
the semantics of the right bound μu

i j is not clarified.
It is very important for us that A-IFS is not isolated theory. There are different links

between A-IFS and some other theories modeling uncertainty and imprecision. For
example, Deschrijver and Kerre [35] established some interrelations between A-IFS
and such theories as interval valued fuzzy sets, type 2 fuzzy sets and soft sets. Grze-
gorzewski and Mrowka [46] analyzed the semantic aspects of such interrelations.

In this book, we show that there exists also a strong link between A-IFS and the
Dempster-Shafer theory of evidence (DST ). We use this link to provide a transparent
and fruitful semantics for interval [μ l

i j,μu
i j] in terms of DST .

Another link between A-IFS and DST was shown in [51, 52] where the authors
developed a theory of mass assignment as a variant of DST linked with A-IFS in-
cluding inconsistent and contradictory evidence.

In our opinion, the main problem of IF decision making is that, generally, the
resulting alternative’s evaluation should be presented in the form of IFV , whereas
usually different real valued score functions are used. Of course, such approaches
provide useful, but only approximate results since any intermediate defuzzifica-
tion in the solution procedure leads inevitably to information losses. Therefore,
in the papers [140, 143, 144] proposed a set of MCDM models in A-IFS setting
based on some operations on IFVs defined in [4, 29]. In [143], the intuitionistic
fuzzy weighted averaging (IFWAw) operator has been constructed as follows (simi-
larly, the intuitionistic fuzzy ordered weighted averaging (IFOWA) and intuitionistic
fuzzy hybrid averaging (IFHA) operators were introduced too).

Let αi =< μi,1−νi >, i=1 to n, be a set of IFVs and w = (wi,w2, ...,wn), be the
weight vector. Then IFWAw = w1α1 ⊕w2α2 ⊕ ...⊕wnαn is defined as

IFWAw =

[
1−

n

∏
i=1

(1− μi)wi ,1−
n

∏
i=1

νwi
i

]
. (3.58)

This operator is not idempotent. For example, if α1 = α2 =< 0.5,0.7 > and
w1 = w2 = 0.5 then IFWAw =< 0.5,0.3 >. Among basic properties of aggregation
operations (boundary conditions, monotonicity, continuity, idempotency, symme-
try, associativity and some others) defined in [20], idempotence seems to be espe-
cially important in the decision making. In the framework of MCDM problems, the
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idempotency of an aggregation operator means that if all criteria are satisfied in the
same degree x, then the global score should also be equal to x. Although this prop-
erty sometimes is supposed to be a genuine one in MCDM [43], we prefer to treat
it as a desirable, but not obligatory property, as in practice, it is not always possible
to construct an idempotency aggregation operator which reflects well the decision
maker’s reasoning.

Xu and Yager [144] proposed also (in context of dynamic intuitionistic fuzzy
multi-attribute decision making and interval valued A-IFS) the other IFWAw oper-
ator based on the modified operations on IFVs:

IFWAw =

[
1−

n

∏
i=1

(1− μi)wi ,
n

∏
i=1

νwi
i

]
(3.59)

Unlike the operator (3.58), this operator is idempotent. It has been proved in
[143, 144] that introduced IFWAw operator provides IFVs. On the other hand, the
problem with these operators (3.58) and (3.59) is that contrary to the initial inten-
tions they do not seem like weighted averaging operators (look at the weighting
procedure), but rather as specific forms of a geometric aggregation operator.

Xu and Yager [140] developed some geometric aggregation operators using the
modified operations on IFVs.

The intuitionistic fuzzy weighted geometric operator IFW Gw = αw1
1 ⊗αw2

2 ⊗
...⊗αwn

n is defined in [140] as follows:

IFWGw =

[
n

∏
i=1

μwi
i ,

n

∏
i=1

(1−νi)wi

]
. (3.60)

This operator results in IFV , but it is not idempotent: if α1 = α2 =< 0.5,0.7 >
and w1 = w2 = 0.5 then IFWAw =< 0.5,0.3 >. The merit of this operator is that
it remains the structure of usual weighted geometric aggregation operator, whereas
the initial weighted averaging structure is violated in (3.58) and (3.59). The com-
mon limitation of the aggregation operators proposed in [140, 143, 144], is that the
weights wi, i=1 to n, are supposed to be real values, although, in general, they may
be presented by IFVs too.

In Subsection 3.3.4, we present a new approach based on DST , which makes it
possible to aggregate local criteria without this limitation.

If the final scores of alternatives are presented by IFVs, the problem of com-
parison of such values arises. Therefore, the specific methods were developed to
compare IFVs. For this purpose, Chen and Tan [25] proposed to use the score func-
tion S(x j) = μ(x j)− ν(x j). It is intuitively obvious that if S(xk) > S(xl) then xk

should be greater (better) than xl , but if S(xk) = S(xl) this does not always mean that
xk is equal to xl . Therefore, Hong and Choi [53] in addition to the above score func-
tion introduced the so-called accuracy function H(x j) = μ(x j)+ ν(x j) and showed
that the relation between functions S and H is similar to the relation between mean
and variance in statistics. Xu [142] used the functions S and H to construct order
relations between any pair of intuitionistic fuzzy values as follows:
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If S(xl) > S(xk) , then xk is smaller than xl ;
If S(xl) = S(xk) , then
(1) If H(xl) = H(xk) , then xl = xk;
(2) If H(xl) < H(xk) , then xl is smaller than xk.

Basing on these relations, Xu [142] introduced the concepts of intuitionistic prefer-
ence relation, consistent intuitionistic preference relation, incomplete intuitionistic
preference relation and acceptable intuitionistic preference relation.

The method for IFVs comparison based on the functions S and H seems to be
intuitively obvious and this is its undeniable merit. On the other hand, as two differ-
ent functions S and H are needed to compare IFVs, this method generally does not
provide an appropriate technique for the estimation of an extent to which one IFV
is grater/smaller than the other, whereas such information is usually important for
a decision maker. This problem was discussed in [53], where a heuristic method to
the aggregation of functions S and H has been developed. In this book, we show that
it is possible to get over this difficulty using the DST semantics for A-IFS. In this
DST/IFS approach, the problem of IFVs comparison reduces to the comparison of
belief intervals and is solved using the methods of interval analysis. Hence, there is
no need for the methods proposed in [25, 53, 142] in the framework of this approach.

Summarizing, we note that there exist two important problems in MCDM in the
intuitionistic fuzzy setting: aggregation of local criteria without intermediate de-
fuzzification in the case when criteria and their weights are IFVs; comparison of IF
valued scores of alternatives basing on the degree to which one IFV is grater/smaller
than the other. In Subsection 3.3.4, we propose an approach to the solution of these
problems based on the interpretation of A-IFS in the framework of DST .

3.2 Interval Arithmetic

This section presents the basics of interval arithmetic, operations on intervals and
some important problems concerned with the interval extension of real valued func-
tions and equations.

Interval arithmetic is not a completely new phenomenon in mathematics; it has
appeared several times under different names in the course of history. For exam-
ple, Archimedes calculated lower and upper bounds 223/71 < π < 22/7 in the 3rd
century BC. Actual calculation with intervals has neither been as popular as other
numerical techniques, nor been completely forgotten. Rules for calculating with in-
tervals and other subsets of the real numbers were published in a 1931 work by
Rosalind Cicely Young, a doctoral candidate at the University of Cambridge.

The birth of modern interval arithmetic was marked by the appearance of the
book Interval Analysis by Ramon E. Moore in 1966 [89]. He had the idea in Spring
1958, and a year later he published a report [90] on how interval arithmetic could be
implemented on a computer. Independently in 1956, Mieczyslaw Warmus suggested
formulae for calculations with intervals [136].

Now the modern interval analysis is well presented in the book [91] and some
important applications of interval analysis can be found in [57]. During the 1990s,
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interval analysis has recruited a large community. It now has its own journal Inter-
val Computations, created in 1991 and renamed Reliable Computing in 1995, and
several regular international conferences.

The main focus in the interval arithmetic is on the simplest way to calculate upper
and lower endpoints for the range of values of a function of one or more variables.
These barriers need not be necessarily the supremum or infimum, since the precise
calculation of those values are often too difficult; it can be shown that this task is, in
general, NP-hard.

An interval [x] = [x,x], where x and x are its lover and upper bounds respectively,
is a subset of a real line ℜ.

The treatment is typically limited to real intervals, so quantities of form

[a,b] = {x ∈ ℜ |a ≤ x ≤ b} ,

where a = −∞ and b = ∞ are allowed; with one of them infinite we would have an
unbounded interval, while with both infinite we would have the whole real number
line.

One of the most undesirable negative features of interval arithmetic is the fast
increasing of width of intervals obtained as the results of interval calculations (ex-
cess width effect). To reduce this undesirable effect, several different modifications
of interval arithmetic were proposed. The most known are: Non- standard interval
arithmetic [80] based on the special form of interval subtraction and division, Gener-
alized interval arithmetic [48], Segment interval analysis [105], MV-form [21]. All
of these approaches provide good results only in specific conditions. On the other
hand, in practice the so-called “naive” form proposed by Moore [90], is proved to
be the best one.

Definition 3.22. If @ ∈ {+,−,∗,/} and X , Y , Z are intervals, then

Z = X@Y = {z = x@y,x ∈ X ∧ y ∈Y} . (3.61)

The rule (3.61) was first presented in the context of bounded and closed intervals by
Moore [90] and then extended to open-ended unbounded intervals [28, 49, 60]. The
operations (3.61) can be redefined in the context of closed intervals as operations
on their bounds: the bounds of the result of an interval operation are expressed as
functions of the bounds of its interval arguments.

Definition 3.23

Z = X@Y =
[
min
{

x@y,x@ȳ, x̄@y, x̄@ȳ
}

,max
{

x@y,x@ȳ, x̄@y, x̄@ȳ
}]

. (3.62)

This definition makes it possible to provide the following operation on intervals:

X +Y =
[
x+ y, x̄ + ȳ

]
, (3.63)

X −Y =
[
x− ȳ, x̄− y

]
, (3.64)
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X ·Y =
[
min
{

x · y,x · ȳ, x̄ · y, x̄ · ȳ} ,max
{

x · y,x · ȳ, x̄ · y, x̄ · ȳ}] , (3.65)

X/Y = X · ([1/y,1/y], (0 /∈ Y). (3.66)

if Y is zero containing interval (0 ∈Y ), then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
x
/

y,∞
]

if x ≤ 0 and y = 0[−∞,x
/

y
]∪ [x/y,∞

]
if x ≤ 0 and y < 0 < y[−∞,x

/
y
]

if x ≤ 0 and y = 0
[−∞,∞] if x < 0 < x[−∞,x

/
y
]

if x ≥ 0 and y = 0[−∞,x
/

y
]∪ [x/y,∞

]
if x ≥ 0 and y < 0 < y[

x
/

y,∞
]

if x ≥ 0 and y = 0

(3.67)

The properties of the basic operators for intervals generally differ from operations
in ℜ. If A, B and C are intervals then:

A + (B +C) = (A + B) +C, A + B = B + A, A · (B ·C) = (A · B) ·C, A · B = B ·A,
A +0 = 0 +A = A, A ·1 = 1 ·A = A.

If at least one of operands of operation is an interval, then the result is an interval
too. An exclusion is multiplication by 0 = [0,0]. If A + B = 0, B ·C = 1, then A, B
and C are degenerated intervals (real numbers).

Addition is not operation opposite to subtraction and multiplication is not op-
eration opposite to division. Therefore, A − A �= 0, A/A �= 1, when ω(A) > 0
(ω(A) = a− a is the width of interval), but 0 ∈ A−A and 1 ∈ A/A.

We can see that addition and multiplication remain associative and commutative,
but multiplication is no longer distributive with respect to addition.

Instead, A(B +C) ⊂ A · B + A ·C, a property known as subdistributivity takes
place, which is a direct consequence of the dependency effect, as A appears only
once on the left-hand side, but twice on the right-hand side.

There exists another explanation. If d ∈ A · (B +C), then d = a · (b + c), where
a ∈ A, b ∈ B, c ∈C. Since a ·b ∈ A ·B and a · c ∈ A ·C, we obtain d = a ·b +a · c ∈
A ·B + A ·C. It is important to show the situations when distributivity takes place.
We shall call interval A zero containing if a < 0 < a.

Let us introduce the function

sign(A) =

⎧⎨
⎩

1, A > 0,
0, 0 ∈ A,
−1, A < 0.

(3.68)

It is easy to show that
if A = [0,0] or B = [0,0] or C = [0,0], then A · (B +C) = A ·B +A ·C;
if A is zero containing interval, then A·(B+C) = A ·B + A·C when sign(B)= sign(C);
if d ≥ 0 for D = [d,d] = B ·C, then A · (B +C) = A ·B+ A ·C,
if B and C are symmetrical intervals, then A · (B +C) = A ·B +A ·C.
Interval arithmetic is monotonic with respect to inclusion.
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Therefore, if A ∈ C, B ∈ D, then A + B ∈ C + D, A − B ∈ C − D, A · B ∈ C · D,
A/B ∈C/D ( if 0 /∈ B and 0 /∈ D).

Using the above properties, the following theorem was proved by Moore [89].

Theorem 3.1. If F(X1,X2, ,Xn) is a function of interval arguments X1,X2, ,Xn, which
is a finite combination of X1,X2, ,Xn and a finite set of operations on intervals, then

inclusions X (1)
i ⊂ X (2)

i , i = 1,2, ...,n, lead to

F
(

X (1)
1 ,X (1)

2 , ...,X (1)
n

)
⊂
(

X (2)
1 ,X (2)

2 , ...,X (2)
n

)
. (3.69)

This theorem is usually called the main theorem of interval arithmetic and a
function F(X1,X2, ,Xn) is called natural interval extension of real valued function
f (x1,x2, ,xn).

Let f is a usual or interval function of real valued arguments x1,x2, ,xn. An in-
terval extension of function f is then the interval function F of interval arguments
X1,X2, ,Xn, such that for real valued arguments f (x1,x2, ,xn) = F(x1,x2, ,xn).

The following theorem was proved in [89].

Theorem 3.2. If F is an interval extension of function f , then

f (X1,X2, ,Xn) ⊂ F(X1,X2, ,Xn). (3.70)

Thus, if we have to make interval extension of real valued function, all argument
of this function should be replaced with corresponding intervals and all operations
should be replaced with corresponding operations on intervals. Such approach to the
interval extension seems to be justified enough and intuitively clear. Nevertheless,
the so-called dependency problem is a major obstacle to the application of exten-
sion principle in interval arithmetic. Although interval methods can determine the
range of elementary arithmetic operations and functions very accurately, this is not
always true with more complicated functions. If an interval occurs several times in
a calculation, and each occurrence is taken independently then this can lead to an
unwanted expansion of the resulting intervals.

The accuracy of resulting interval strongly depends on the expression of f , as
illustrated by the following example [57].

Example 3.3. Consider the following four formal expressions of the same function
f (x):

f1(x) = x · (x + 1), (3.71)

f2(x) = x · x + x, (3.72)

f3(x) = x2 + x, (3.73)

f4(x) = (x+
1
2
)2 − 1

4
. (3.74)
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Evaluate their natural extensions for [x] = [−1,1]:

[ f1]([x]) = [x] · ([x]+1) = [−2,2], (3.75)

[ f2]([x]) = [x] · [x]+ [x] = [−2,2], (3.76)

[ f3]([x]) = [x]2 +[x] = [−1,2], (3.77)

[ f4]([x]) = ([x]+
1
2
)2 − 1

4
= [−1

2
,2]. (3.78)

We can see that the accuracy of interval result depends on the formal expression of
f . Since [x] occurs only ones in f4 and f4 is continuous, f4 produces the narrower
resulting interval. We can see that the difference between results providing by f1,
f2, f3 and f4 is great enough to be taken into account. Obviously, such results do
not promote the popularity of interval methods especially in applications. The use of
natural interval extensions of functions is not always to be recommended, however.
Their efficiency depends strongly on the number of occurrences of each variable,
which is often difficult to reduce. An important field of investigation in interval
analysis is then the seeking for the other types of extension that would provide less
pessimistic results [57, 101].

One of the important problems of interval analysis and fuzzy set theory is the com-
parison of interval and fuzzy numbers. There are many different methods for interval
and fuzzy number comparison proposed in the literature which provide the results
of comparison in the form of a real or Boolean value. Nevertheless, there is one im-
portant problem of rather methodological nature. It is well known that all arithmetic
operations on intervals or fuzzy numbers result in intervals or fuzzy numbers as well.
From this point of view, it seems intriguing enough that interval and fuzzy number
relations have resulted in real numbers or Boolean values only. So the aspiration to
express the results of interval and fuzzy number comparison in terms of intervals and
fuzzy numbers looks as quite natural. Of course, this assertion may be considered as
disputable. Nevertheless, whatever the case, it is interesting and useful to embody
this idea in some mathematical form. In [108], using the Dempster-Shafer theory of
evidence (DST ) with its probabilistic interpretation, a new method which provides
the result of comparison in the form of an interval or a fuzzy number is developed.
The complete and consistent set of expressions for inequality and equality relations
between intervals obtained in the framework of probabilistic approach is presented
in [108]. These relations make it possible to compare intervals with real values as
well. It is shown that these relations may be considered as an asymptotic limit of
the results obtained using DST . A natural fuzzy extension of proposed approach is
considered and discussed using some illustrative examples.

Since the general approach to interval and fuzzy nubmers comparison proposed
in [108] is based on the DST , we present it with the review of other methods for
interval and fuzzy number comparison in the following section after the presentation
of the basics of DST .
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3.3 Dempster-Shafer Theory of Evidence

In this section, we present the basics of Dempster-Shafer theory of evidence (DST ),
its application to the solution of the problem of interval and fuzzy numbers compari-
son and the link between DST and intuitionistic fuzzy sets with its useful application
to the solution of the multiple criteria decision making problems.

3.3.1 Basic Definitions

The origins of DST go back to the work by A.P. Dempster [30, 31] who developed a
system of upper and lower probabilities. Following this work his student G. Shafer
[117] included in his 1976 book “A Mathematical Theory of Evidence” a more
thorough explanation of belief functions. In [153], the authors provide a collection
of articles by some of the leading researchers in this field. The close connection
between DS structure and random sets is discussed in [45]. In the following, we
provide a brief introduction to basic ideas of DST .

Let us start from informal analysis of some problems of the classical Bayesian
theory of probability presented in [15]. As it was pointed out in [15], the Bayesian
technique is not without its critics, including among others Walley [132], as well
as Caselton and Luo [22] who discussed the difficulty arising when conventional
Bayesian analysis is presented only with weak information sources. In such cases,
we have the “Bayesian dogma of precision”, whereby the information concerning
uncertain statistical parameters, no matter how vague, must be represented by con-
ventional, exactly specified, probability distributions. Some of the difficulties can be
understood through the “principle of insufficient reason”, as illustrated by Wilson
[139].

Suppose we are given a random device that randomly generates integer numbers
between 1 and 6 (its “frame of discernment”), but with unknown chances. What is
our belief in “1” being the next number? A Bayesian will use a symmetry argument,
or the principle of insufficient reason to say that the Bayesian belief in a “1” being
the next number, say P(1) should be 1/6. In general in a situation of ignorance
a Bayesian is forced to use this principle to evenly allocate subjective (additive)
probabilities over the frame of discernment. To further understand the Bayesian
approach, especially with the regard to representation of ignorance, consider the
following example adopted from [15], similar to that in [139].

Let a be a proposition that “I live in Kings Road, Cardi”. How could one con-
struct P(a), a Bayesian belief in a? Firstly we must choose a frame of discernment,
denoted by Θ and a subset A of Θ representing the proposition a; then would need
to use the principle of insufficient reason to arrive at a Bayesian belief. The problem
is there are a number of possible frames of discernment Θ that we could choose,
depending effectively on how many Cardi roads can be enumerated. If only two
such streets are identifiable, then Θ={x1,x2}, A = x1. The principle of insufficient
reason then gives P(A), to be 0.5, through evenly allocating subjective probabilities
over the frame of discernment. If it is estimated that there are about 1000 roads in
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Cardi, then Θ={x1,x2, ...,x1000} with again A = {x1} and the other xi’s representing
the other roads. In this case the theory of insufficient reason gives P(A) = 0.001.

Either of these frames may be reasonable, but the probability assigned to A is
crucially dependent upon the frame chosen. Hence one’s Bayesian belief is a func-
tion not only of the information given and one’s background knowledge, but also
of a sometimes arbitrary choice of frame of discernment. To put the point another
way, we need to distinguish between uncertainty and ignorance. Similar arguments
hold where we are discussing not probabilities per se but weights which measure
subjective assessments of relative importance.

In summary, DST is a numerical method for evidential reasoning (a term often
used to denote the body of techniques) specifically designed for manipulation of
reasoning from evidence, based upon the DST of belief functions ( see [78]).

Following on from the above example concerning Cardi roads, one of the pri-
mary features of the DST model is that we are relieved of the need to force our
probability or belief measures to sum to unity. There is no requirement that belief
not committed to a given proposition should be committed to its negation. As can be
seen in the further analysis below, this allows us to construct and analyze our “frame
of discernment” in a more flexible way. The total allocation of belief can vary to suit
the extent of our knowledge.

The second basic idea of DST is that numerical measures of uncertainty may be
assigned to overlapping sets and subsets of hypotheses, events or propositions as
well as to individual hypothesis.

To illustrate, consider the following expression of knowledge concerning mur-
derer identification adapted from [96]. Mr. Jones has been murdered, and we know
that the murderer was one of three notorious assassins, Peter, Paul and Mary, so we
have a set of hypotheses, i.e., frame of discernment, Θ=Peter, Paul, Mary. The only
evidence we have is that the person who saw the killer leaving is 80 percent sure that
it was a man, i.e., P(man) = 0.8. The measures of uncertainty, taken collectively are
known in DST terminology as a “basic probability assignment” (bpa ). Hence we
have a bpa, say m1 of 0.8 given to the focal element Peter, Paul, i.e., m1({Peter, Paul
})=0.8, since we know nothing about the remaining probability it is allocated to the
whole of the frame of the discernment, i.e., m1({Peter,Paul, Mary })=0.2.

The key point to note is that assignments to “singleton” sets may operate at the
same time as assignments to sets made up of a number of propositions. Such a sit-
uation is simply not permitted in a conventional Bayesian framework, although it is
possible to have a Bayesian assignment of prior probabilities for groups of proposi-
tions (since conventional probability theory can cope with joint probabilities).

As pointed out by Schubert [119], DST is in this sense a generalization of the
Bayesian theory. It avoids the problem of having to assign non-available prior prob-
abilities and makes no assumptions about non-available probabilities.

The next question to consider is what can then be done with the bpa’s. The an-
swer in the first instance is twofold. We may firstly collect bpa’s together in such
a way as to express our overall belief. This is examined below. More importantly,
we may then combine bpa’s from different sources. Continuing our example, if
we gained further evidence that it was reported with confidence 0.6 that Peter was
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leaving on a jet plane when the murder occurred, in this case we have bpa, say m2

({Paul, Mary })=0.6. Since we know nothing about the remaining probability it is
allocated to the whole of the frame of the discernment, i.e., m2({Peter, Paul,Mary
})=0.4.

Combination of conventional probabilities is achieved through the familiar multi-
plication rule. In the more generalized DST approach a more complex multiplication
rule is required, which combines two pieces of evidence. We can see how this works
in the context of the example.

Put simply, the result of combining two assignments is that for any intersect-
ing sets A and B, where A has mass M1 from assignment m1 (i.e., m1({A}) = M1)
and B has mass M2 from assignment m2, the belief accruing to their intersection is
the product of M1 and M2. For example, m3({Paul,Mary })=m1({Peter, Paul, Mary
})·m2({Paul, Mary })= 0.2 · 0.6= 0.12.

The new piece of evidence has a more spread-out allocation of probabilities to
varying subsets of the frame of discernment. We can bring together this evidence
to find some level of belief: the belief in any set is the sum of all the probabilities
of all the subsets of that set. Hence, for example: Bel({Peter, Paul })=m3({Peter
})+m3({Paul })+ m3({Paul, Peter })= 0 + 0.48 + 0.32=0.8.

The above loose definitions and reasoning may help to understand better the fol-
lowing formal definitions.

Assume V is a variable whose domain is the set X. It is important to note that vari-
able V may be treated also as a question or proposition and X as a set of propositions
or mutually exclusive hypotheses or answers [130, 150].

A DS belief structure has associated with it a mapping m, called basic assignment
function (bpa), from subsets of X into the unit interval, m : 2X → [0,1] such that
m( /0) = 0, ∑

A⊂X
m(A) = 1.

The subsets of X for which the mapping does not assume a zero value are called
the focal elements. We shall denote these as Ai, for i = 1 to n. We note that the
null set is never a focal element. In [117], Shafer introduced a number of measures
associated with this structure.

The measure of belief is a mapping Bel : 2X → [0,1] such that for any subset B
of X

Bel(B) =
n

∑
i=1

m(Ai), Ai ⊆ B, i = 1 to n. (3.79)

With V a variable taking its value in the set X under the semantics provided by Shafer
[117], Bel(B) is our degree of belief that the value of V lies in the set B. It can be
easily seen that Bel is a kind of fuzzy measure [150]:

Bel( /0) = 0,Bel(X) = 1, if B1 ⊂ B2 then Bel(B2) ≥ Bel(B1).

In [117], it is shown that m can be uniquely recovered from Bel.
A second measure introduced by Shafer [117] is the measure of plausibility. The

measure of plausibility associated with m is a mapping Pl : 2X → [0,1] such that for
any subset B of X
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Pl(B) =
n

∑
i=1

m(Ai), Ai ∩B �= /0, i = 1 to n. (3.80)

The semantics associated with this measure is that Pl(B) is the degree of plausibility
that the value of V lies in the set B. It can be easily seen that plausibility is also a
fuzzy measure

Pl( /0) = 1,Pl(X) = 1, if B1 ⊂ B2 then Pl(B2) ≥ Pl(B1).

It is easy to see that Bel(B) ≤ Pl(B).
Shafer denoted the doubt that V was contained in the set B t as Dou(B).

It can be shown that

Pl(B) = 1−Dou(B)

and hence

Pl(B) = 1−Bel(B)

and equivalently

Bel(B) = 1−Pl(B).

DS provides an explicit measure of ignorance about an event B and its comple-
mentary B as the length of the interval [Bel(B),Pl(B)] called belief interval (BI). It
can also be interpreted as imprecision on the “true probability” of B.

A couple of special DS belief structures are worth pointing out. One special case
is what Shafer [117] calls a Bayesian belief structure.

A belief structure is called a Bayesian belief structure if the focal elements are
singletons, that is each Ai consists of exactly one element. In this case it can be
shown that for every B, Pl(B)=Bel(B) , the plausibility and belief of a subset are the
same. Furthermore, it can be shown that when A∩B = /0 we get:

Bel(A
⋃

B) = Bel(A)+ Bel(B).

Essentially this is a probability distribution where

Ai = {xi} and m(Ai) = Prob(xi).

In this case, the measures Bel and Pl are probability measures.
Another special case of DS belief structure is what Shafer calls consonant be-

lief structures. A belief structure is called a consonant belief structure if the focal
elements can be indexed such that A1 ⊂ A2 ⊂ ... ⊂ An.

It was shown [117] that if our structure is consonant then for all A and B

Bel(A∩B) = min[Bel(A),Bel(B)],

Pl(A∪B) = max[Pl(A),Pl(B)].
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In this case Pl(B) is a possibility measure [150]. In this consonant case there
exists some function Π : X → [0,1], called a possibility distribution such that if
Π(x) = Pl(x) then:

Pl(A) = max[Π(x)] over all x ∈ A.

Thus, DST may be treated as the generalization of the probability theory as well
as the possibility theory.

To illustrate DST, a simple example is adopted from [13].
A certain politician has been accused of committing an illegal act. The politician
either knew that he was committing an illegal act or he was naive in his judgment. At
an inquiry into the case two witnesses gave testimonies and estimated the following
basic probability assignments (bpa) over the power set of the politician’s act, as
given in Table 3.2.

Table 3.2 Breakdown of evidence for politician

0 Politician knew (K) Politician naive (N) Either K,N
Witness X 0 0.3 0.1 0.6
Witness Y 0 0.4 0.0 0.6

Hence in our notation, the bpa for witness X is as follows:

mX ({K}) = 0.3, mX({N}) = 0.1, mX ({K,N}) = 0.6.

A similar bpa can be constructed for witness Y.
It follows, for witness X:

Bel({K}) = mX ({K}) = 0.3, Pl({K}) = mX({K})+ mX({K,N}) =

= 0.3+ 0.6 = 0.9.

3.3.2 Combination of Evidence in the Dempster-Shafer Theory

The core of the evidence theory is the Dempster’s rule of combination of evidence
from different sources [117]. The rule assumes that information sources are indepen-
dent and uses the so-called orthogonal sum to combine multiple belief structures:
m = m1 ⊕ m2 ⊕...⊕ mk, where ⊕ represents the operator of combination. With two
belief structures m1,m2, the Dempster’s rule of combination is defined as

m12(A) =
∑

B∩C=A
m1(B)m2(C)

1−K
, A �= /0, m12( /0) = 0, (3.81)
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where K = ∑
B∩C= /0

m1(B)m2(C). The denominator 1−K is called the normalization

factor, K is called the degree of conflict which measures the conflict between the
pieces of evidence and the process of dividing by 1−K is called normalization.

For example, using Dempster’s rule of combination on evidence from witnesses
X and Y (see Table 3.2) gives the following new bpa:

mXY{K}) = 0.5625, mXY ({N}) = 0.0625, mXY ({K,N}) = 0.3750.

A considerable body of literature has been devoted to the discussion of the appro-
priateness of this fusion operation.

In [157], Zadeh has underlined that this normalization involves counter-intuitive
behaviors in the case of considerable conflict.

Zadeh provides a compelling example of erroneous results.
Suppose that a patient is seen by two physicians regarding the patients neuro-

logical symptoms. The first doctor believes that the patient has either meningitis
with a probability of 0.99 or a brain tumor, with a probability of 0.01. The second
physician believes the patient actually suffers from a concussion with a probability
of 0.99 but admits the possibility of a brain tumor with a probability of 0.01. Us-
ing the values to calculate the m{brain tumor} with Dempster’s rule, we find that
m{brain tumor} = Bel{brain tumor}= 1. Clearly, this rule of combination yields a
result that implies complete support for a diagnosis that both physicians considered
to be very unlikely.

Therefore, a number of other approaches to the combination of evidence were
proposed in the literature. Smets [120] proposed the version of Dempster’s rule in-
troduced in the transferable belief model usually referred to as the TBM conjunctive
rule. The Smet’s rule of combination is nothing but the non-normalized version of
the conjunctive consensus (equivalent to the non-normalized version of Dempster’s
rule). It is commutative and associative and allows positive mass on the null/empty
set /0 (the so-called open-world assumption). Smet’s rule of combination of two in-
dependent (equally reliable) sources of evidence (denoted here by index S) is given
by:

mS( /0) = ∑
X1∩X2= /0

m1(X1)m2(X2) (3.82)

and for (∀X �= /0) ∈ 2Θ , where Θ is the so-called frame of discernment consisting in
a finite set of exclusive and exhaustive hypotheses, by

mS(X) = ∑
X1∩X2=X

m1(X1)m2(X2). (3.83)

The main limitations of the Dempster’s rule and the TBM conjunctive rule seem to
be their lack of robustness with respect to conflicting evidence (a criticism which
mainly applies to the Dempster’s rule), and the requirement that the items of evi-
dence combined be distinct [33].
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The Yager’s rule of combination [148] admits that in the case of conflict the re-
sult is not reliable, so that K = ∑

B∩C= /0
m1(B)m2(C) plays the role of an absolute

discounting term added to the weight of ignorance. This commutative, but not asso-
ciative rule, denoted here by index Y is given by mY ( /0) = 0 and ∀X ∈ 2Θ , X �= Θ by

mY (X) = ∑
X1∩X2=X

m1(X1)m2(X2) (3.84)

and when X = Θ by

mY (Θ) = m1(Θ)m2(Θ )+ ∑
X1∩X2= /0

m1(X1)m2(X2) (3.85)

The Dubois and Prade’s rule of combination [40] admits that the two sources are
reliable when they are not in conflict, but one of them is right when a conflict occurs.
Then if one observes a value in set X1 while the other observes this value in a set X2,
the truth lies in X1 ∩X2 as long X1 ∩X2 �= /0. If X1 ∩X2 = /0 then the truth lies in X1∪
X2. According to this principle, the commutative (but not associative) Dubois and
Prade’s hybrid rule of combination, denoted here by index DP, which is a reasonable
trade-off between precision and reliability, is defined by mDP( /0) = 0 and (∀X �= /0)∈
2Θ , X �= 0 by

mDP(X) = ∑
X1∩X2=X
X1∩X2 �= /0

m1(X1)m2(X2)+ ∑
X1∪X2=X
X1∩X2= /0

m1(X1)m2(X2). (3.86)

Recently Murphy [92] have proposed other combination rules. It is shown in [107,
121] that, in general, they (and some other too) are not associative. On the other
hand, the problems of conflict management with Dempster’s rule (and, to a lesser
extent, with the T BM conjunctive rule) are often due to incorrect or incomplete
modelisation of the problem at hand, and these rules often yield reasonable results
when they are properly applied [47].

Since we shall use the Demster’s rule for the aggregation of local criteria in deci-
sion making problems, it is important to note that the Dempster’s rule and the T BM
conjunctive rule are commutative and associative, but not idempotency operators.

Nevertheless, in spite of the lack of idempotency, the Dempster’s rule is success-
fully used in different real-world applications. Beynon et al. [15] proposed to use the
DST as an alternative approach to multiple criteria decision modeling with the use
of the Dempster’s rule for aggregation of local criteria. This approach has been de-
veloped and studied in the framework of analytic hierarchy process in [13, 14, 16],
where its advantages are exposed. Hua et al. [55] extended this approach to the case
of incomplete information. It is important to note that in this approach the weights
of local criteria are supposed to be only real values. In Subsection 3.3.4, we present
a new approach without this limitation.

In his recent paper [33], Denoeux introduced two new commutative, associative
and idempotent combination operators for belief functions. Contrary to the T BM
conjunctive and disjunctive rules, these operators (cautious conjunctive rule and
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bold disjunctive rule) do not require the assumption of independence or distinct-
ness of the information sources from which basic assignment functions are derived.
These operators can be useful in MCDM in the case of dependent (correlated) local
criteria or/and their weights. The problem of dependent local criteria is not widely
discussed in the literature. The probable cause of this is well described by Denoeux
[33]: “However, it is often the case that, although two items of evidence (such as,
e.g., opinions expressed by two experts sharing some experiences, or observations of
correlated random quantities) can clearly not be regarded as distinct, the interaction
between them is ill known and, in many cases, almost impossible to describe.”

Finally, Denoeux wrote “As expected, the TBM conjunctive rule achieves higher
performance in the case of independent features. However, it is outperformed by the
cautious rule when features are no longer independent” [33]. Thus, the use of the
combination rules proposed by Denoeux is justified in the case when interdepen-
dence between criteria is evident and important in context of considered decision
problem.

Nevertheless, taking into account that this is not usually the case, in this book,
we shall use only the classical Dempster’s rule of combination (3.81) as it is more
popular in applications than T BM conjunctive rule and other rules.

3.3.3 The Methods for Interval and Fuzzy Numbers Comparison
Based on the Probabilistic Approach and Dempster-Shafer
Theory

The problem of interval and fuzzy number comparison is of perennial interest, be-
cause of its direct relevance in modeling and optimization of the real-world pro-
cesses. In this subsection, we present an approach developed in [108] for interval
and fuzzy number comparison based on the probabilistic approach and DST .

The merit of this approach is that it makes it possible to obtain the result of
interval comparison in form of belief interval and to get the complete and consistent
set of expressions for inequality and equality relations between intervals and fuzzy
numbers. Since this approach and based on it methods were successfully used for
the solution of the decision making and optimization problems presented in the
following chapters, here we describe this approach with all details including the
critical review of other methods for interval and fuzzy number comparison presented
in [108].

Nowadays, many scientists make a distinction between fuzzy intervals and fuzzy
numbers depending on the multiplicity or uniqueness of modal values [39], i.e., the
real values at which a membership degree is equal to 1. Therefore, a trapezoidal
fuzzy quantity (multiplicity of modal values) is treated as a fuzzy interval, whereas
triangular fuzzy quantity (singular modal value) is considered as a fuzzy number. We
shall use the term “fuzzy number” in its most general sense in this book. A fuzzy
number may be viewed as an elastic constraint acting on a certain variable which is
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only known to lay “around” a certain value. This generalizes both the concepts of a
real number and a closed interval [32].

Theoretically, intervals and fuzzy numbers can only be partially ordered and
hence cannot be compared in usual sense. However, if interval or fuzzy numbers are
used in practical applications, the comparison of fuzzy numbers becomes necessary.
There exist numerous definitions of ordering relations over fuzzy numbers (as well
as intervals) in the literature [9, 10, 23, 39, 41, 50, 56, 66, 89, 102, 147, 149, 151].

Usually, the authors use some quantitative indices. The values of such indices
present a degree to which one interval or fuzzy number is greater/less than another
one. Existing approaches to interval and fuzzy number comparison may be clustered
into three groups: the methods for only qualitative ordering [9, 23, 56, 66, 89], the
methods permitting quantitative ordering with the use of some indices obtained from
the basic definitions of fuzzy sets theory [1, 39, 50] and the methods based on the
representation of fuzzy numbers using α-cuts [102, 147, 149, 151].

The widest review of fuzzy numbers comparison problem based on more than
35 literature indices has been presented in [134], where the authors proposed a new
interesting classification of the methods for fuzzy numbers comparison. Neverthe-
less, this problem is still open. In [135], it is noted that the most of proposed interval
comparison methods are “totally based on the midpoints of interval numbers”. The
authors of [135] write “Our experience told us that the use of midpoints to compare
or rank interval numbers was sometimes inconvincible and not easy to be accepted”.
Therefore, the authors developed a simple heuristic method which makes no use of
the midpoints of intervals. In [135], the degree of preference of interval A = [a1,a2]
over B = [b1,b2] (or A > B) is defined as

P(A > B) =
max(0,a2 − b1)−max(0,a1 − b2)

(a2 − a1)+ (b2 −b1)
.

The degree of preference of B over A is defined in the same way:

P(B > A) =
max(0,b2 − a1)−max(0,b1 − a2)

(a2 − a1)+ (b2 −b1)
.

It is obvious that P(A > B)+ P(B > A) = 1 and P(A > B) = P(B > A) ≡ 0.5 when
A = B , i.e., a1 = b1,a2 = b2. The main limitation of this approach is the lack of
interval equality relation. Furthermore, the midpoint of interval numbers still plays
a key role in this approach since for all nested intervals with the same midpoints we
have P(A > B) = P(B > A) ≡ 0.5. Therefore, if a midpoint of A is greater than that
of B then P(A > B) > P(B > A).

In [62], a possibilistic approach to fuzzy numbers comparison originally pro-
posed in [39] is developed in context of sequencing problems.The authors of [54, 69]
had shown the need for separate inequality (<,>) and equality (=) interval and
fuzzy number relations. In [118], a method based on the comparison of means and
variances of intervals and fuzzy numbers is developed in the framework of financial
profitability analysis. It is interesting that using such approach we implicitly deal
with two sometimes convincing local criteria: the interval mean and variance.
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This problem is exposed explicitly in [108]. In this paper, the author presents
the generalization of such methods. The proposed approach is based on the α-cut
representation of fuzzy numbers. The author uses the probability approach and DST
to get a numerical evaluation of fact that a certain interval is greater than or equal to
another interval.

The idea to use the probability interpretation of intervals is not novel. Neverthe-
less, now only a few works based on it can be cited [24, 65, 67, 68, 93, 94, 109, 110,
111, 112, 113, 114, 115, 116, 131, 152]. The main advantage of the probabilistic ap-
proach is the ability to infer a complete set of interval and fuzzy number relations as
well as their comparison with real numbers using only one major assumption: an in-
terval is a support of uniformly distributed random value. The probabilistic approach
to interval and fuzzy number comparison has proved to be a powerful practical tool
for modeling and optimization in the interval and fuzzy setting [111, 113, 114].

Nevertheless, there are some methodological problems within this approach and
as a consequence the different expressions for probabilities estimation were ob-
tained in [24, 65, 67, 68, 93, 94, 109, 110, 111, 112, 113, 114, 115, 116, 131, 152].

In [131], the set of expressions for the probabilities P(A < B) and P(A > B) has
been obtained. These were the same expressions as those obtained later in [109,
110, 111, 112, 113, 114, 115, 116] using other assumptions. On the other hand, the
probability P(A = B) in [131] has been presented (in our notation) as P(A = B) =
ε2/(W (A)W (B)), where W (A), W (B) are the lengths of compared intervals and ε is
an arbitrary small number.

The authors of [131] assumed that ε ≈ 0. In other words, in [131] it is implicitly
assumed that in any case P(A = B) = 0.

Nevertheless, in practice there may be situations when intervals , e.g., such as A =
[0,1000.1] and B = [0,1000.2], from common sense, should be considered rather as
the equal ones. Obviously, in such situations even intuitively, we feel that P(A =
B) > P(A < B) and requirement P(A = B) = 0 for all cases seems to be too much
restrictive one.

There are no comparisons of a real number with interval, nor the fuzzy interval
relations in [131]. The similar problems may be found in [65, 67, 68]. In [152], the
expression for P(A≤B) for overlapping case (see Fig. 3.10) has been obtained in the
form which is equivalent to the expression for P(A < B) proposed in [109, 110, 111].
It has been shown in [109, 110, 111] that different expressions for calculation of
P(A < B) and P(A = B) should be used in both overlapping and inclusion cases. For
the inclusion case (see Fig. 3.10), the authors of [152] proposed (in our notation A =
[a1,a2],B = [b1,b2]) P(A ≤ B) = (2b2 −a2 −a1)/(b2 −b1)/2. It is easy to see that
in the asymptotic case when a1 → b1 , a2 → b2, i.e., A→ B, we get P(A ≤ B)→ 0.5.
The same asymptotic result P(A ≤ B) → 0.5 if A → B was obtained in [94]. These
results can be qualified as the discussable ones. So some additional comments are
needed [108].

According to the classical interpretation [89], any interval A is completely de-
fined by its bounds (A = [a1,a2]). Obviously, if we consider an interval in a prob-
abilistic sense, i.e., as an interval of uniformly distributed random value, it is com-
pletely defined by its bounds too. In other words, we can treat an interval A as the
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mathematical object defined by pair [a1,a2]. Therefore, if we meet two such objects
A and B with equal bounds (a1 = b1,a2 = b2) we can say that they are equal objects.
Let us introduce a measure m(A,B) ∈ [0,1] of such objects equality/inequality. The
natural properties of m(A,B) should be such that m(A = B) = 1, m(A > B) = m(A <
B) = 0 for the equal A and B and m(A = B) = 0 for the completely different A and
B when their intersection is empty. That is why, if the probability P is treated as a
measure or degree of equality/inequality of the intervals then the only reasonable
result in the case of A → B should be P(A < B)→ 0, P(A > B)→ 0, P(A = B)→ 1.

Nevertheless, the discussed results (P(A = B)→ 0.5 when a1 → b1,a2 → b2) ob-
tained in [94] and some other papers make a sense if we look at the problem from
another point of view. In [94], the authors as the conceptual model of the proposed
approach used the next clear example: “... Control rule bases often include rule like
“if temperature a is higher than the temperature b, then open valve 1, else open
valve 2. In practice, after measurements, we only have intervals A and B of possi-
ble values of a and b. If the corresponding two intervals intersect, then none of the
temperatures is guaranteed to be higher than another. A natural idea is therefore to
choose an interval for which the probability that a ≥ b is greater than the probability
that a ≤ b”. As it is proved in [94], such a reasoning leads to the expression (in our
notation):

P(A ≥ B) = a2−b1
a2−b1−a1+b2

if a2 ≥ b1 and 0 else.

Although this expression leads to P(A = B)→ 0.5 when a1 → b1,a2 → b2, the result
is completely justified in context of considered example. It is easy to see that only
possible real valued temperatures ranging in corresponding intervals are compared,
not intervals. It is important that there are no comparisons between real number
and interval in [94]. It is shown in [94] that there are many real-life situations in
practice when such reasoning is valid. We think that observed variety of proposed
methods reflects the next fact: the interval and fuzzy number comparison is a context
dependent problem.

Therefore, to avoid a possible misunderstanding, it is emphasized in [108] that the
main author’s aspiration is to develop a method for comparison of intervals treated
as the mathematical objects defined completely by their bounds.

It is worth noting that such approach to the interval comparison is not a purely
mathematical conception, it is originated from real-world problems of simulation
and optimization in the interval and fuzzy setting [111, 112, 113, 114].

It is asserted in [108] that described differences observed in probabilistic methods
for interval comparison are caused by the limited ability of a purely probability
approach to deal with such objects as intervals or fuzzy numbers. The problem is that
the probability theory allows us to represent only uncertainty, whereas interval and
fuzzy objects in addition are inherently characterized by imprecision and ambiguity.

Consider another important problem of rather methodological nature. It is well
known that all arithmetic operations on intervals or fuzzy numbers result in intervals
or fuzzy numbers as well. From this point of view, it seems intriguing enough that
interval and fuzzy number relations have resulted in real numbers or Boolean values
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only. So the aspiration to express the results of interval and fuzzy number compar-
ison in terms of intervals and fuzzy numbers looks as quite natural. Of course, this
assertion may be considered as disputable. Nevertheless, whatever the case, it is
interesting and useful to embody this idea in some mathematical form.

3.3.3.1 Interval Comparison Based on the Probabilistic Approach

Since the method proposed in [108] is based on the α-cut representation of fuzzy
numbers, the main problem is to compare intervals. There are only two nontriv-
ial cases of interval locations deserve to be considered which were called in [108]
overlapping and inclusion cases (see Fig. 3.10).

Let A = [a1,a2] and B = [b1,b2] be independent intervals and a ∈ [a1,a2],
b ∈ [b1,b2] be random variables distributed on these intervals. As we are dealing
with non-fuzzy intervals, it is natural to assume that values of random variables a
and b are uniformly distributed. This assumption is in accordance with the Bayesian
“principle of insufficient reason” [11]: if there is no reliable information about prob-
abilities of events, they are treated as equally probable ones. Moreover, when dealing
with intervals representing α-cuts of fuzzy number, the uniform distribution is the
only reasonable choice.

There are some subintervals which play an important role in further analysis.
For example, in the overlapping case (see Fig. 3.10), falling of random variables
a ∈ [a1,a2], b ∈ [b1,b2] into subintervals [a1,b1], [b1,a2], [a2,b2] may be treated as
a set of independent random events.

Fig. 3.10 Examples of interval relations

Let us define the events Hk : a ∈ Ai,b ∈ B j , for k = 1 to n, where Ai and B j are
the subintervals formed by the boundaries of compared intervals A and B such that
A =

⋃
i

Ai, B =
⋃
j

B j. It is easy to see that the events Hk form a complete group of

events which represents all the cases of random values a and b falling into various
subintervals Ai and B j, respectively. Let P(Hk) be the probability of event Hk, and
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P(B > A/Hk) be a conditional probability of B > A given Hk. Hence, the composite
probability may be expressed as follows:

P(B > A) =
n

∑
k=1

P(Hk)P(B > A/Hk). (3.87)

Let us consider the case of overlapping intervals.
Since we are dealing with the uniform distributions of random variables a and b

in given subintervals, the probabilities P(Hk) can be easily obtained geometrically.
In the overlapping case (see Fig. 3.10), there is a set of four events:

H1 : a ∈ [a1,b1]∧b ∈ [b1,a2],H2 : a ∈ [a1,b1]∧b ∈ [a2,b2],
H3 : a ∈ [b1,a2]∧b ∈ [b1,a2],H4 : a ∈ [b1,a2]∧b ∈ [a2,b2]. (3.88)

Since the events a∈ [a1,b1], b∈ [b1,a2], . . . are independent, we obtain the following
probabilities:

P(H1) =
b1 − a1

a2 − a1

a2 − b1

b2 − b1
,P(H2) =

b1 −a1

a2 −a1

b2 −a2

b2 −b1
,

P(H3) =
a2 − b1

a2 − a1

a2 − b1

b2 − b1
,P(H4) =

a2 −b1

a2 −a1

b2 −a2

b2 −b1
. (3.89)

Obviously, the events H1 , H2 and H4 may be considered as the evidences of the
event B > A only, but the event H3 can be treated from two different points of view
since it is simultaneously an evidence of the events a ∈ [b1,a2] and b ∈ [b1,a2]. So
some comments are needed.

An important point is that in the framework of the conventional interval analysis,
the relation A > B for overlapping intervals shown in Fig. 3.10 is senseless. It was
first postulated by Moore [89], that if a1 < b1 and a2 < b2 then B > A and relation
A > B is impossible since there are no real values a ∈ A such that a > b2. In other
words, there are no arguments in favor of A > B in this case.

Indeed, in the asymptotic case when a2 = b2, an interval A cannot be greater than
B until a1 < b1. It is clear that opposite assumption is in contradiction with common
sense. On the other hand, as we deal with overlapping intervals, there is a common
area, where events a > b (a ∈ A, b ∈ B) take a place. Of course, if these events can
be considered as arguments in favor of A > B, we are in a conflict with the basics of
interval analysis and common sense.

The source of this contradiction is an assumption (not obvious) that relations
between particular a ∈ [b1,a2] and b ∈ [b1,a2] may be used to compare intervals as
a whole. Since this assumption leads to the absurd conclusion (we can not ignore
common sense) it is wrong in context of interval analysis. Thus, the relation A > B
for overlapping intervals shown in Fig. 3.10 is senseless, but there are no such strong
reasons to exclude the possibility (in some extent) of events A = B and A < B.

There are two different possible assumptions concerned with conditional proba-
bilities in observed situations defined in [108] as “weak” and “strong” relations.
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Let us consider the weak relations.
Since H3 is the evidence of events a ∈ [b1,a2] and b ∈ [b1,a2] simultaneously,

it may be treated as an evidence of events A < B and A = B only. According to
the Bayesian principle of insufficient reason [11], we assume that there are equal
chances for A = B and B > A when the event H3 occurs, i.e., P(B > A/H3) = P(A =
B/H3)= 1

2 . The same assumption as a natural one is used in [152] without additional
clarifications.

Thus, for the conditional probabilities we get:

P(B > A/H1) = 1, P(B > A/H2) = 1, (3.90)

P(B > A/H3) =
1
2
, P(B > A/H4) = 1.

From (3.89), (3.90) and (3.87) we have:

P(B > A) = 1− 1
2

(a2 −b1)2

(a2 −a1)(b2 −b1)
.

In a similar way, we obtain:

P(B = A) =
1
2

(a2 −b1)2

(a2 −a1)(b2 −b1)
.

Of course, we have P(B > A)+ P(A = B) = 1. It is easy to see that in asymptotic
conditions, where a1 = b1 and a2 = b2, i.e., A = B, we get P(B > A)= P(B = A)= 1

2 .
This seems as rather wrong result if intervals are treated as the mathematical objects
defined only by their bounds. On the other hand, common sense is not always the
best adviser in mathematically complicated situations. For example, we can say that
in our case we deal with intervals and therefore the fact A = B may be an evidence
of B > A and in the same degree of B = A. The similar reasoning was used in [94].

Let us consider the strong relations.
In this case, we assert that the event H3 is not a strong evidence of A < B, but is a

satisfactory evidence of A = B, i.e., P(B > A/H3) = 0 and P(A = B/H3) = 1. Thus,
for the conditional probabilities we get:

P(B > A/H1) = 1,P(B > A/H2) = 1, (3.91)

P(B > A/H3) = 0,P(B > A/H4) = 1.

From (3.87), (3.89) and (3.91) we obtain:

P(B > A) = 1− (a2 −b1)2

(a2 −a1)(b2 −b1)
. (3.92)

In a similar way, we get:

P(B = A) =
(a2 −b1)2

(a2 −a1)(b2 −b1)
. (3.93)
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Obviously, P(B > A)+ P(B = A) = 1. In the case of A = B, from Eqs.(3.92) and
(3.93) we get P(B > A) = 0, P(B = A) = 1 and there are no problems with interpre-
tation of these results. To simplify our further analysis, consider another simple but
exact method for inferring the probabilities P(B > A), P(B = A). It easy to prove
that in our case

P(H1)+ P(H2)+ P(H3)+ P(H4) = 1. (3.94)

Since in the case of “weak” relations we have P(B > A/H1) = 1, P(B > A/H2) = 1,
P(B > A/H3) = 1

2 , P(B > A/H4) = 1, for the compound probability from Eq.(3.94)
we get:

P(B > A) = P(H1)+ P(H2)+
1
2

P(H3)+ P(H4) =

= 1− 1
2

(a2 − b1)2

(a2 − a1)(b2 − b1)
. (3.95)

It is easy to see that the same expression have been obtained above using different
reasoning. In our further analysis, we shell use the similar argumentations when
inferring the expressions for the calculation of probabilities.

Let us consider the case of inclusion.
There are three possible events in this case:

H1 : a ∈ [a1,a2]∧b ∈ [b1,a1],H2 : a ∈ [a1,a2]∧b ∈ [a1,a2],
H3 : a ∈ [a1,a2]∧b ∈ [a2,b2]. (3.96)

The corresponding probabilities are:

P(H1) =
a1 − b1

b2 − b1
,P(H2) =

a2 −a1

b2 −b1
,P(H3) =

b2 −a2

b2 −b1
. (3.97)

Since b1 ≤ a1, in this case the relation A > B may be true. For instance, there are
no doubts that A > B if b1 < a1 and b2 = a2.

Consider the weak relations.
Let us assume that there are equal chances for A < B, A = B and A > B when the

event H2 takes place. This means that

P(A < B/H2) = P(A = B/H2) = P(A > B/H2) =
1
3
.

As a consequence, for the compound probabilities we get:

P(A < B) =
1
3

P(H2)+ P(H3) =
1
3

a2 −a1

b2 −b1
+

b2 −a2

b2 −b1
, (3.98)

P(A = B) =
1
3

P(H2) =
1
3

a2 −a1

b2 −b1
, (3.99)

P(A > B) =
1
3

P(H2)+ P(H1) =
1
3

a2 −a1

b2 −b1
+

a1 −b1

b2 −b1
. (3.100)
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In the case of A = B, we get P(A < B) = P(A = B) = P(A > B) = 1
3 . In a case

of the degenerate interval A, i.e., a1 = a2 = a, from Eqs. (3.98)–(3.100) we infer

P(A < B) =
b2 −a
b2 − b1

, P(A > B) =
a−b1

b2 − b1
and P(A = B) = 0. Some remarks are

needed to clarify obtained results. Of course, if B is an interval, and a is a real
number then equality relation B = a is senseless since the simultaneous fulfillment
of the conditions b1 = a and b2 = a is impossible. Thus, in such cases we have
P(B = a) = 0. On the other hand, inequality relation B < a may be used in analysis
since in the case, for example, b2 < a, there is no doubt that P(B < a) = 1. It is clear
that in the case of b1 ≤ a ≤ b2, the probability P(a < B) makes sense. An interesting
situation we have in the case of estimation of P(A = B), where A and B are intervals.
The simplest decision is to introduce a “strong” rule: A = B only if a1 = b1 and
a2 = b2. On the other hand, when dealing with optimization problems we often
use the equality type restrictions. Obviously, the interval or fuzzy extension of such
tasks inevitably leads to the extension of corresponding equality type restrictions.
It is clear that fulfillment of “strong” equality rules in these cases, especially when
using numerical optimization methods, is rather impossible.

Therefore, in the framework of proposed in [108] probabilistic approach the
“weak” equality rules have been developed. So, if a1 ≈ b1 and a2 ≈ b2, then
P(A = B) �= 0.

Consider the strong relations.
We assert that only H2 is an evidence of A = B, only H1 is a witness of A > B and

only H3 may confirm A < B. Hence

P(A < B) = P(H3) =
b2 −a1

b2 −a2
,P(A = B) = P(H2) =

a2 − a1

b2 − b1
,

P(A > B) = P(H1) =
a1 −b1

b2 −b1
. (3.101)

For A = B, from Eqs.(3.101) we get P(A < B) = P(A > B) = 0 and P(A = B) = 1.
For a degenerated A, i.e., a1 = a2 = a, from Eqs.(3.101) we get the same expressions

as in the “weak” relation case: P(A < B) =
b2 − a
b2 −b1

, P(A > B) =
a−b1

b2 − b1
and P(A =

B) = 0.
Thus, the complete set of expressions for “weak” and “strong” interval relations

is inferred. An interesting and useful task is an analysis of the transitivity properties
of interval relations (see [67]), but it is out of scope of this book.

The question arises: which approach - “strong” or “weak” - is the best one? To
answer, let us consider them in the case of A = B. In the “weak” case, for overlapping
intervals we have P(B > A/H3) = P(B = A/H3) = 1

2 . In the inclusion case, the
“weak” approach leads to the assumption P(A > B/H2) = P(A < B/H2) = P(A =
B/H2) = 1

3 when the event H2 occurs. In the case of A = B, we get P(A > B) =
P(A < B) = P(A = B) = 1

3 . Obviously, it is not easy to explain such a result, but
when using the “strong” approach we have no problems in the interpretation of the
results obtained for the case of A = B.
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Let us compare obtained expressions for the probabilistic interval relations with
those proposed by other authors. The main merit of the approach proposed in [108]
is an explicit introduction of interval equality relation as an essential constituent of
complete set of interval relations such that in all cases the fundamental property
P(A < B) + P(A = B) + P(A > B) = 1 is verified. It is important to note that in
the frameworks of most of known approaches - not only probabilistic ones - interval
equality is usually considered as an impossible relation [131], identity [89] or only in
conjunction with inequality relation [152]. It is shown in [108] that these treatments
lead to some theoretical problems.

We think that treating an interval equality as identity (A = B only if a1 = b1,
a2 = b2 ) can not provide good solutions of some practical problems, e.g., when
dealing with interval extension of optimization task under equality type restrictions.
In approach proposed in [108], an equality is not equivalent to identity since P
(A = B) ≤ 1. Let’s consider the example of comparing the intervals A = [1,10]
and B = [2,11]. Using the method proposed [108], e.g., strong relations, we get
P(A < B) = 0.21, P(A = B) = 0.79, P(A > B) = 0. An explanation of such results
is obvious, especially taking into account the large common area of compared in-
tervals, which is an argument for equality relation’s dominance in the considered
example.

There is no doubt that if we deal with the probability approach, the fundamental
condition P(A < B)+ P(A = B)+ P(A > B) = 1 should be automatically verified.
It will be shown below that above consideration remains valid in a fuzzy setting as
well. An interesting point is that the introduced set of interval relations makes it pos-
sible to look at the general problems of comparison from some debatable, but new
point of view [108]. If we compare two alternatives A and B then using their real
valued estimations a and b we usually introduce some value ε as a measure of indis-
cernibility. If |a−b|<ε then considered alternatives are treated as indiscernible. It
is well known that the value of ε is usually depends on inaccuracy of measurement,
subjective factors and other sources of imprecision and uncertainty. Nevertheless,
when thinking in interval or fuzzy spirit we can say that such estimation is pushing
the problem of uncertainty assessment from the stage of alternative evaluation to the
stage of their comparison. Suppose we have alternative estimations in the form of
intervals A and B. Then using our approach we can conclude that these alternatives
are indiscernible if P(A = B) > max(P(A < B),P(A > B)) or A is greater (better,
preferable and so on) than B if P(A > B) > max(P(A < B),P(A = B)). It easy to
see that there is no need for ε in such approach. Of course, we do not insist here
that proposed in [108] approach is a universal remedy for all comparison problems,
but what we really see is an absence of additional and - in our opinion - artificial
measure of indiscernibility, ε .

Recently, a numerical algorithm for minimization of interval and fuzzy valued
cost functions based on the described probabilistic approach to interval comparison
has been developed in [111, 113, 114]. In the fuzzy case, the decomposition of a
fuzzy number into a set of intervals representing the α-cuts of fuzzy number has
been used. Proposed numerical methods have been successfully used for modeling
and optimization of real-world processes [111, 113, 114].
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Nevertheless, one can say that an existence of two quite different results gained
from mutually exclusive assumptions (“weak”and “strong”) may be considered as
a weakness or incompleteness of proposed approach. It is noted in [111, 113, 114]
that all observed ambiguities may be treated as a consequence of the limited ability
of a purely probabilistic approach to deal with such objects as intervals or fuzzy
numbers. The problem is that the probability theory allows us to represent only
uncertainty. Nevertheless, interval and fuzzy objects are inherently characterized by
imprecision and ambiguity. To solve this problem, the DST is used in [108].

Among numerous approaches to interval comparison, there is a group of rather
qualitative methods which deserve to be mentioned because they have served as a
starting point for the development of interval relations using DST .

This group of methods has a long history. They can be traced back to the fun-
damental work by Moore [89], and now appear in software [133] which embodies
most of the modern concepts in the field of interval arithmetic. The main idea be-
hind these methods is contained in the following definition: “An interval is less than
another interval if it contains some value(s) that are less than some value(s) in an-
other interval”. As this definition is not broad enough to capture all the cases of
interval location and intersection, three main classes of interval relation are used:
certainty, possibility, set. To implement these relations, a set of relation functions
was proposed in [26]. It is important to note that these functions return only Boolean
values. In fact, these methods provide only qualitative results, expressed in verbal
form. Unfortunately, the linguistic term “Possibility” has in practice a wide, but fi-
nite (as a consequence of the limited nature of any natural language) set of nuances
(senses). In turn, each “nuance” reflects a certain group of qualitatively equivalent
interval relations, which, on the other hand, differ quantitatively.

Indeed, all the arithmetic operations on intervals provide us intervals as well,
and only interval comparisons have resulted in real numbers (different indices or
probabilities) or Boolean values. In order to catch not only an uncertainty of initial
information available, but an ambiguity and imprecision as well, it seems natural to
make attempt to build an approach which can provide the results of comparisons in
the interval form, for instance, as a probability interval. For this purpose, the DST
may be successfully applied [108].

3.3.3.2 Interval Comparison Based on the Dempster-Shafer Theory

In this subsection, we present the method developed in [108].
Let us consider a case of overlapping intervals (Fig. 3.10). Assume they are in-

dependent ones and a ∈ [a1,a2],b ∈ [b1,b2] be random values distributed on these
intervals.

Only four mutually exclusive events Hi, i = 1 to 4, may take place in considered
situation. For probabilities (see previous subsection) we get :

P(H1)+ P(H2)+ P(H3)+ P(H4) = 1.
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Thus, in the spirit of DSTthe probabilities P(Hi), i = 1 to 4, can be used to con-
struct a basic assignment function (bpa). In a case of overlapping intervals a1 ≤ b1

and a2 ≤ b2, only two interval relations make sense: A < B,A = B (see previous
subsection).

It is easy to see that events H1,H2 and H4 may be considered as “strong” evi-
dences of A < B , otherwise H3 can be treated as only a “weak” evidence of A < B
since it is simultaneously evidence of A = B.

Using DST notation we can represent the above conclusions as H1 ⊆ (A <
B),H2 ⊆ (A < B),H4 ⊆ (A < B). Since the events H1,H2,H4 are independent, a sum
of their probabilities may be treated as an argument (evidence) in favor of A < B.
So we have the first focal element of bpa: m({A < B}) = P(H1)+ P(H2)+ P(H4).
Event H3 is an evidence of events A < B and A = B simultaneously. Since they are
not mutually exclusive, i.e., (A < B)∩ (A = B) �= 0, the probability P(H3) may be
treated as an evidence of composed event (A < B,A = B) and the next focal element
of bpa may be represented as m({A < B,A = B}) = P(H3).

Thus, obtained bpa consists of only two focal elements. Using the basic defini-
tions (3.79), (3.80) and taking into account Eqs.(3.88) and (3.94) we get

Bel(A < B) = m({A < B}) = P(H1)+ P(H2)+ P(H4) =

= 1−P(H3) = 1− (a2 − b1)
2

(a2 −a1)(b2 − b1)
, (3.102)

Pl(A < B) = m({A < B})+ m({A < B,A = B} =
= P(H1)+ P(H2)+ P(H3)+ P(H4) = 1. (3.103)

In a similar way, for A = B we obtain:

Bel(A = B) = 0, (3.104)

Pl(A = B) = P(H3) =
(a2 −b1)

2

(a2 −a1)(b2 −b1)
. (3.105)

Denoting all the probabilities we have inferred in previous subsection for the
“strong” case as Ps(•) and for the “weak” case as Pw(•), we get the belief inter-
vals BI as follows:

BI(A < B) = [Bel(A < B),Pl(A < B)] = [Ps(A < B),1]

= [1−Ps(A = B),1], (3.106)

BI(A = B) = [Bel(A = B),Pl(A = B)] = [0,Ps(A = B)]. (3.107)

So, using an approach based on DST we get interval estimations for degrees of
interval inequality and equality.

An important property of BI(A < B) and BI(A = B) relations for overlapping A
and B is BI(A = B) < BI(A < B).
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It is worth noting that the last inequality is “strong” only if Ps ≤ 0.5 (see
Fig. 3.11).

BI(A < B)

BI(A=B)

0 1
P (A=B) = 0.5

s

Fig. 3.11 Relation between BI(A < B) and BI(A = B)

In the case of a1 = b1,a2 = b2, i.e., A≡B from (3.106) and (3.107) we get: BI(A <
B) = BI(A = B) = [0,1]. This result seems quite natural in the spirit of DST .

Introduced interval estimations can be considered as an embodiment of usually
not explicitly expressed, but pivotal requirement of interval arithmetic: the result of
interval operation should be an interval as well.

In [108], the degree of imprecision or ambiguity ID of interval relations rel as a
whole was proposed:

ID(rel) = BI(A < B)+BI(A = B) = [1−Ps(A = B),1+Ps(A = B)] =

= [1− (a2 −b1)
2

(a2 −a1)(b2 −b1)
,1+

(a2 −b1)
2

(a2 −a1) (b2 −b1)
].

It easy to see that the length of ID(rel) may be considered as a natural real valued
estimation of interval relation imprecision which decreases with lowering the length
of overlapping region.

Consider the case of inclusion.
In this case, we have three possible events Hi, i = 1 to 3, with corresponding

probabilities (see previous subsection). The elementary evidences of events A <
B,A = B,A > B were considered in [108] and they were taken then into account
to construct the bpa using nearly the same reasoning as in the case of overlapping
intervals. Finally, the following expressions were obtained in [108]:

m ({A < B}) = P(H3),m({A > B}) = P(H1),
m ({A < B,A = B,A > B}) = P(H2),

Bel(A < B) = m({A < B}) = P(H3) =
b2 −a2

b2 −b1
, (3.108)

Pl(A < B) = m({A < B})+ m({A < B,A = B,A > B}) =

= P(H3)+ P(H2) =
a2 −a1

b2 −b1
+

b2 −a1

b2 −b1
= (3.109)

= Ps(A < B)+ Ps(A = B),



86 3 The Methods for Uncertainty Modeling

Bel(A = B) = 0, (3.110)

Pl(A = B) = m({A < B,A = B,A > B}) = P(H2) =
a2 − a1

b2 − b1
, (3.111)

Bel(A > B) = m({A > B}) = P(H1) =
a1 −b1

b2 −b1
, (3.112)

Pl(A > B) = m({A > B})+ m({A < B,A = B,A > B}) =

= P(H1))+P(H2) =
a1 −b1

b2 −b1
+

a2 −a1

b2 −b1
= (3.113)

=
a2 − b1

b2 − b1
= Ps(A > B)+ Ps(A = B).

Let us consider some asymptotic cases.
In the case of A ≡ B we get:

Bel(A < B) = Bel(A > B) = Bel(A = B) = 0, (3.114)

Pl(A < B) = Pl(A > B) = Pl(A = B) = 1. (3.115)

In the case of a2 = b2,a1 > b1 we have:

Bel(A < B) = 0,Pl(A < B) = 1, (3.116)

Bel(A = B) = 0,Pl(A = B) =
b2 −a1

b2 −b1
, (3.117)

Bel(A > B) =
a1 −b1

b2 −b1
,Pl(A > B) = 1. (3.118)

In the case of a1 = b1,b2 > a2 we obtain:

Bel(A < B) =
b2 −a2

b2 −b1
,Pl(A < B) = 1, (3.119)

Bel(A = B) = 0,Pl(A = B) =
a2 −b1

b2 −b1
, (3.120)

Bel(A > B) = 0,Pl(A > B) =
a2 −b1

b2 −b1
. (3.121)

These results are in good agreement with common sense. Indeed, if A is a degenerate
interval, i.e., a1 = a2 = a then from (3.108)-(3.113) we get:

Bel(a < B) = Pl(a < B) =
b2 − a
b2 −b1

, (3.122)

Bel(a = B) = Pl(a = B) = 0, (3.123)
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Bel(a > B) = Pl(a > B) =
a−b1

b2 −b1
. (3.124)

It is important that we have real valued resulting estimations only in the case of
comparison of interval with real value.

For the belief intervals BI we get:

BI(A < B) = [Bel(A < B),Pl(A < B)] = [
b2 −a2

b2 −b1
,

b2 −a1

b2 −b1
]

= [Ps(A < B),Ps(A < B)+Ps(A = B)], (3.125)

BI(A = B) = [Bel(A = B),Pl(A = B)] = [0,
a2 −a1

b2 −b1
] = [0,Ps(A = B)], (3.126)

BI(A > B) = [Bel(A > B),Pl(A > B)] = [
a1 −b1

b2 −b1
,

a2 −b1

b2 −b1
]

= [Ps(A > B),Ps(A > B)+Ps(A = B)]. (3.127)

Observe that in the inclusion case using (3.125)-(3.127) we have

BI(A = B) < BI(A > B),BI(A < B),

but only in a “weak” sense, since (BI(A = B) ∩ BI(A > B) �= /0 and/or
BI(A = B)∩BI(A < B) �= /0.

Another important feature is that if A and B have a common center, i.e., (a1 +
a2) = (b1 +b2) we always have

BI(A = B) < BI(A > B) = BI(A < B)

and this inequality relation is a “strong” one only if b2 −a2 > a2 −a1. For instance,
if A = [1,7],B = [0,8] we get the result shown in Fig. 3.12.

BI(A>B)= BI(A<B)

BI(A=B)

0 12/8 4/8 6/8

Fig. 3.12 The case when A and B have a common center

In the inclusion case (see Fig. 3.10), we introduce an overall degree of impreci-
sion or ambiguity of interval relations rel as

ID(rel) = BI(A < B)+BI(A = B)+BI(A > B)

= [1−PS(A = B),1+2PS(A = B)] =

= [1− a2 −a1

b2 −b1
,1+2

a2 −a1

b2 −b1
]. (3.128)
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In contrast to the overlapping case we get resulting interval for degree of imprecision
or ambiguity, which is asymmetrical in relation to 1. However, its length decreases
with lowering the length of included interval A. This seems quite natural, since for
the degenerate A there is no any ambiguity or imprecision, i.e., if rel ∈ {<,>,=},
then Bel(A rel B) = Pl(A rel B) (see Eqs.(3.122)–(3.124)). Thus, in the inclusion
case the real valued estimation of ambiguity or imprecision of interval relation is
determined by the relation of lengths of included and enveloping intervals.

Finally, several real valued criteria may be applied in order to make a reasonable
choice when comparing intervals. Non-exhaustively, we can distinguish:

• strong preference:

B > A if Bel(B > A) > Pl(A < B),

• weak preference:

B > A if Bel(B > A) > Bel(B < A),

• mixed preference:

B > A if MP(B > A) > MP(B < A),

where MP(•) = αBel(•)+(1−α)Pl(•) with 0 ≤ α ≤ 1 (the value of α reflects the
risk aversion of decision maker).

Obviously, the mixed preference is a more flexible criterion. In the simplest case
(α = 0.5) for overlapping intervals we get:

MP(A < B) =
1
2
(Bel(A < B)+Pl(A < B)) = Pw(A < B), (3.129)

MP(A = B) =
1
2
(Bel(A = B)+Pl(A = B)) = Pw(A = B). (3.130)

It is interesting that
MP(A < B)+MP(A = B) = 1. (3.131)

In the inclusion case we have

MP(A < B) =
1
2
(1+Ps(A < B)−Ps(A > B)), (3.132)

MP(A = B) =
1
2

Ps(A = B). (3.133)

It is easy to see that in this case

MP(A < B)+MP(A > B)+MP(A = B) = 1+
1
2

Ps(A = B). (3.134)

Comparing expressions (3.131) and (3.134), we can see that interval relations in the
inclusion case are more doubtful and imprecise than those in the overlapping case.
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Expressions (3.129)–(3.134) expose the similarity between the DST and probability
approaches to interval the comparison.

When observing belief intervals BI in the overlapping and inclusion cases, we
can see that only “strong” interval comparison probability estimations (see previous
subsection) and their sums can be considered as natural bounds of corresponding
belief intervals. It is important that probabilities Ps(A > B),Ps(A < B) in all cases
represent the left bounds of belief intervals, i.e.,

Bel(A > B) = Ps(A > B),Bel(A < B) = Ps(A < B),

whereas the probabilities Ps(A = B) occur only in representations of right bounds of
BI.

Since DST may be treated as a generalization of probability theory, we can con-
clude that only the set of “strong” interval probability relations introduced in [108]
(see previous subsection) should be used in analysis as a direct asymptotic limit of
DST .

Consider the fuzzy number relations based on DST.
Let Ã and B̃ be fuzzy numbers on X with corresponding membership functions

μA(x),μB(x) : X → [0,1]. They can be represented by the sets of α-cuts: Ã =
⋃
α

Aα ,

B̃ =
⋃
α

Bα , where Aα = {x∈X : μA(x)≥α}, Bα = {x∈X : μB(x)≥α} are intervals.

Then all fuzzy number relations Ã rel B̃, rel ∈ {<,=,>} may be presented by the
sets of α-cut relations

Ã rel B̃ =
⋃
α

Aα rel Bα . (3.135)

Since in the framework of DST all interval relations Aα rel Bα provide the results
in form of corresponding intervals BI(Aα rel Bα) we conclude that in the left hand
side of (3.135) we have a fuzzy number. More strictly,

Ã rel B̃ =
⋃
α

Aα rel Bα =
⋃
α

BI(Aα rel Bα), (3.136)

where
BI(Aα rel Bα) = [Bel(Aα rel Bα),Pl(Aα rel Bα)] (3.137)

are belief intervals corresponding to the interval relations Aα rel Bα on α-cuts.
Using mathematical tools presented in previous subsection, we can calculate all

the values Bel(Aα rel Bα),Pl(Aα rel Bα) needed to determine fuzzy numbers rep-
resenting the result of fuzzy number relation. So, the fuzzy numbers

BI(Ã rel B̃) =
⋃
α

BI(Aα rel Bα )

can be considered as results of fuzzy number comparisons.
The resulting fuzzy estimations BI(Ã rel B̃) can be used directly. For instance,

let Ã, B̃, C̃ be fuzzy numbers and BI(Ã rel B̃), BI(Ã rel C̃) be fuzzy estimations of
fuzzy relations Ã > B̃ and Ã > C̃, respectively. Then estimation BI(BI(Ã > B̃) >
BI(Ã > C̃)) is a fuzzy number as well. Such fuzzy calculations may be useful at
intermediate stages of analysis since they preserve fuzzy information available.
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For practical purposes, it is useful to introduce some indices obtained as the result
of defuzzification. A simple, but perhaps the most useful one is:

BID f (Ã rel B̃) = 2

1∫

0

αBID f (Aα rel Bα)dα. (3.138)

Last expression is a form of defuzzification (or type reduction) and the result is
an interval. Formula (3.138) emphasizes that contribution of α-cut to an overall
estimation rises with increasing of its number. Of course, the set of complementary
parameterized functions of α can be used in (3.138) instead of α as it is proposed in
[151], but for the sake of simplicity only expression (3.138) has been used to obtain
the results presented below. Some typical cases of fuzzy number comparison are
represented in Fig. 3.13 and 3.14.
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Fig. 3.13 Special case of fuzzy number comparison: BID f (B̃ > Ã) = [0.86,1],BID f (B̃ = Ã) =
[0,0.13], IDD f = (BI(B̃ > Ã)+BI(B̃ = Ã))D f = [0.87,1.12].

It is easy to see when analyzing the case presented in Fig. 3.13 that imprecision
degree of fuzzy relations ID = BI(B̃ > Ã)+ BI(B̃ = Ã) may be treated as a fuzzy
number with linguistic interpretation ID=“near 1”, where “near 1” is a fuzzy num-
ber symmetrical in respect to 1. It worth noting here that in the discussed case the
main properties of probability are remained, but in the fuzzy sense. On the other
hand, the degree of fuzziness of the fuzzy numbers “near 1” provides us additional
information that may be useful for the estimation of overall uncertainty of fuzzy
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Fig. 3.14 Special case of fuzzy number comparison: BID f (Ã > B̃) = [0.26,0.36], BID f (B̃ >
Ã) = [0.49,0.69], BID f (B̃ = Ã) = [0,0.25], IDD f = (BI(Ã > B̃) + BI(B̃ > Ã) + BI(B̃ =
Ã))D f = [0.75,1.30].

number comparison result. This result could be a good completion of our analysis,
but it can be correctly used only when there are no any enclosing intervals on α-cuts
of compared fuzzy numbers. The situation when we have inclusion of intervals on
some a-cuts is presented in Fig. 3.14. It is easy to see that asymmetric fuzzy ID is
obtained and that the height of asymmetric part of ID is proportional to a number
of α-cut with included intervals. It was shown above that in inclusion case of in-
terval comparison, an interval ID is asymmetrical in relation to 1 (see expression
(3.128)). When looking at Fig. 3.14, the natural question arises: Is it possible to
interpret the objects BI(Ã > B̃), BI(Ã < B̃), BI(Ã = B̃) (obtained results of fuzzy
number comparison) as fuzzy numbers? Of course, it is impossible from a conven-
tional point of view, since ambiguous membership functions are needed to represent
such objects. On the other hand, we can use (for fuzzy arithmetic only) a less rigor-
ous definition of fuzzy, perhaps, “fuzzy type” object as a “set of closed α-cuts with
α ∈ [0,1]”. Indeed, there is no need for concept of membership function when fuzzy
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Fig. 3.15 Example of three fuzzy number comparison: BID f (Ã > B̃) = [0.77,1], BID f (B̃ >
C̃) = [0.77,1], BID f (Ã > C̃) = [0.89,1]

arithmetic is used in the framework of α-cuts representation of fuzzy numbers. It
is safe to say that the α-cuts representation may be considered, in some sense, as
a generalization of the membership function concept because of lack of rigorous
requirements for unambiguity, convexity an so on. We recognize that such opinion
is of discussable nature. It is only shown in [108] that complex “fuzzy type” objects
can be obtained as the result of fuzzy number comparison, which can not be rep-
resented by a conventional membership function. Thorough analysis of this result
from methodological point of view is out of scope of this book. Nevertheless, the
developed in [108] method for the crisp interval and fuzzy number comparison may
be considered as a useful practical tool that makes it possible to compare not only
intervals and fuzzy numbers, but to compare them with real values as well. The re-
sults we get in the crisp interval form after defuzzification are in a good agreement
with common sense (see Fig. 3.15).

3.3.4 Intuitionistic Fuzzy Sets in the Framework of
Dempster-Shafer Theory

In Subsection 3.1.4, we have shown that Atanassov’s theory of intuitionistic fuzzy
sets A-IFS is not isolated concept and there are different links between A-IFS and
some other theories modeling imprecision such as interval valued fuzzy sets, type 2
fuzzy sets and soft sets. Here we show that there exists also a strong link between
A-IFS and DST . We use this link to provide a transparent and fruitful semantics for
A-IFS in terms of DST .

We have noted also that there exist two important problems in multiple criteria
decision making MCDM in the intuitionistic fuzzy setting: aggregation of local cri-
teria without intermediate defuzzification in the case when criteria and their weights
are IFVs; comparison of IF valued scores of alternatives basing on the degree to
which one IFV is grater/smaller than the other.

Here we propose an approach to the solution of these problems based on the
interpretation of A-IFS in the framework of the DST .
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The concept of A-IFS is based on the simultaneous consideration of membership
μ and non-membership ν of an element of a set to the set itself such that 0≤ μ +ν ≤
1. For the reader’s convenience, we repeat here the Definition 3.21.

Let X = {x1,x2, ...,xn} be a finite universal set. An intuitionistic fuzzy set A
in X is an object of the following form: A = {< x j,μA(x j),νA(x j) > |x j ∈ X},
where the functions μA : X → [0,1], x j ∈ X → μA(x j) ∈ [0,1] and νA : X → [0,1],
x j ∈ X → νA(x j) ∈ [0,1] define the degree of membership and degree of non-
membership of the element x j ∈ X to the set A ⊆ X , respectively, and for every
x j ∈ X , 0 ≤ μA(x j)+ νA(x j) ≤ 1.

Following to [3], we call πA(x j) = 1− μA(x j)− νA(x j) the intuitionistic index
(or the hesitation degree) of the element x j in the set A. It is obvious that for every
x j ∈ X we have 0 ≤ πA(x j) ≤ 1.

Hong and Choi [53] proposed to use the interval representation [μA(x j),1 −
νA(x j)] of intuitionistic fuzzy set A in X instead of pair < μA(x j),νA(x j) > in
context of MCDM problem. The first obvious advantage of such approach is that
expression [μA(x j),1− νA(x j)] represents a regular interval as its right bound al-
ways is not smaller than its left bound (this is a consequence of the condition
0 ≤ μA(x j)+ νA(x j) ≤ 1. Obviously, this approach is equivalent to the interval val-
ued fuzzy sets interpretation of A-IFS. The second advantage is the possibility to
redefine the basics of A-IFS in terms of DST . Here we show that convenient in the
practical applications methods for MCDM can be developed using DST semantics
for A-IFS.

Firstly, we show that in the framework of DST the triplet (μA(x j), νA(x j), πA(x j))
represents the basic assignment function (bpa).

Really, when analyzing any situation in context of A-IFS, we implicitly deal
with the following three hypotheses: Yes: x j ∈ A, No: x j /∈ A, (Yes,No): both the
hypotheses x j ∈ A and x j /∈ A can not be rejected (the case of hesitation).

In this context, μA(x j) may be treated as the probability or evidence of x j ∈ A,
i.e., as the focal element of the basic assignment function: m(Yes)=μA(x j). Simi-
larly, we can assume that m(No)=νA(x j). Since πA(x j) is usually treated as the hes-
itation degree, a natural assumption is m(Yes,No)=πA(x j). Taking into account that
μA(x j)+νA(x j)+πA(x j) = 1 we come to the conclusion that triplet (μA(x j), νA(x j),
πA(x j)) represents a correct basic assignment function. According to the DST for-
malism we get BelA(x j)=m(Yes)=μA(x j) and PlA(x j)=m(Yes)+m(Yes,No)=
μA(x j)+ πA(x j)=1−νA(x j).

Therefore, the following definition can be introduced:

Definition 3.24. Let X = {x1,x2, ...,xn} be a finite universal set and x j is an ob-
ject in X represented by the functions μA(x j),νA(x j) which represent the degree
of membership and degree of non-membership of x j ∈ X to the set A ⊆ X such that
μA : X → [0,1], x j ∈X → μA(x j)∈ [0,1] and νA : X → [0,1], x j ∈ X → νA(x j)∈ [0,1]
and for every x j ∈X , 0≤ μA(x j)+νA(x j)≤ 1. An intuitionistic fuzzy set A in X is an
object having the following form: A = {< x j,BIA(x j) > |x j ∈ X}, where BIA(x j) =
[BelA(x j),PlA(x j)] is the belief interval, BelA(x j) = μA(x j) and PlA(x j) = 1−νA(x j)
are the measures of belief and plausibility that x j ∈ X belongs to the set A ⊆ X .
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At first glance, this definition seems as a simple redefinition of A-IFS in terms of
interval valued fuzzy sets, but we show that using the DSF semantics it is possible
to enhance the performance of A-IFS when dealing with MCDM problems. Partic-
ularly, this approach allows us to use directly the Dempster’s rule of combination to
aggregate local criteria presented by IFVs and develop a method for MCDM with-
out intermediate defuzzification when local criteria and their weights are IFVs. As
the result, we get final alternative’s evaluations in the form of belief interval. Hence,
an appropriate method for such intervals comparison is needed. In the previous sub-
section, we have presented a new method (based on the DST ) providing the results
of interval comparison in the form of belief interval, i.e., without loss of information
caused by intermediate type reductions.

Let us consider MCDM problems in the framework of Intuitionistic/DST
approach.

To make our consideration more transparent and comparable with the results ob-
tained earlier by the other authors, we shall use here the example analyzed in [72]
since only in this paper the MCDM problem is considered in the case when not only
local criteria, but also their weights are IFV s: “Consider an air-condition system
selection problem. Suppose there exist three air-condition systems x1, x2 and x3.
Suppose three criteria a1 (economical), a2 (function) and a3 (being operative) are
taken into consideration.” The degrees μi j and νi j for the alternatives with respect
to the criteria representing the fuzzy concept “excellence” were presented in [72] as
follows:

((μi j,vi j))3×3 = a1

a2

a3

⎛
⎜⎜⎝

x1 x2 x3

(0.75,0.10) (0.80,0.15) (0.40,0.45)
(0.60,0.25) (0.68,0.20) (0.75,0.05)
(0.80,0.20) (0.45,0.50) (0.60,0.30)

⎞
⎟⎟⎠ . (3.139)

The degrees ρi of membership and the degrees τi of non-membership representing
the fuzzy concept “importance” were presented in [72] as follows:

((ρi,τi))1×3 =
(

a1 a2 a3

(0.25,0.25) (0.35,0.40) (0.30,0.65)

)
. (3.140)

To get the final alternative’s evaluations FAE(xi) on the base of data from the struc-
tures (3.130), (3.140) we use the DST interpretation of A-IFS.

For each pair xi, a j there are two sources of information concerned with xi good-
ness: the degree of the local criterion satisfaction and the weight (importance) of
this criterion. Let us consider the first of them. It is easy to see that in this case we
deal with three hypotheses: Yes: the alternative xi is good as it satisfies the local
criterion a j; No: the alternative xi is rather bad (not good) as it does not satisfies a j;
(Yes,No): the compound hypothesis (we hesitate over a choice of Yes or No). The
degree of local criterion satisfaction can be treated as the first source of evidence
for estimation of xi goodness. Therefore, for the pair xi,a j it can be presented by
the basic assignment function as follows: mi j

1 (Yes), mi j
1 (No), mi j

1 (Yes,No), where

mi j
1 (Yes) = μi j, mi j

1 (No) = νi j, mi j
1 (Yes,No) = 1−μi j - νi j = πi j.
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The other source of evidence of xi goodness is the relative importance (weight)
of the local criterion.

So three hypothesis should be considered: Yes: the criterion a j is important; No:
the criterion a j is not important; (Yes,No): the compound hypothesis (we hesitate
over a choice of Yes or No). Then for the local criterion a j the basis assignment
function corresponding to its importance can be presented as follows: mj

2(Yes) = ρ j ,

m j
2(No) = τ j , m j

2(Yes,No) = 1−ρ j − τ j. To obtain the combined basic assignment
function mcom based on these sources of evidence presented by particular assignment
functions mi j

1 (Yes), mi j
1 (No), mi j

1 (Yes,No) and m j
2(Yes), m j

2(No), mj
2(Yes,No), we

have used the Dempster’s combination rule (3.81):

mi j
com(A) =

∑
B∩C=A

mi j
1 (B)m j

2(C)

1−K
, (3.141)

where K = ∑
B∩C= /0

mi j
1 (B)m j

2(C), A,B,C ∈ {Yes,No,(Yes,No)}. As the result, for

each pair xi,a j the basic assignment function mi j
com(Yes), mi j

com(No), mi j
com(Yes,No)

can be calculated.
Consequently, in the spirit of DST , the local criteria a j can be treated as the par-

ticular sources of information (evidence) for the generalized estimation of xi good-
ness. There are three local criteria in our example. Hence, each alternative xi can be
presented by the structure Mi as follows:

Mi =
⎛
⎝

mi1
com(Yes) mi1

com(No) mi1
com(Yes,No)

mi2
com(Yes) mi2

com(No) mi2
com(Yes,No)

mi3
com(Yes) mi3

com(No) mi3
com(Yes,No)

⎞
⎠ .

(3.142)

The final basic assignment function based on the particular evidences presented by
the local criteria combined with their importances can be obtained using Dempster’s
rule (3.81). For a MCDM problem with more than two local criteria, we can first
obtain the combination of focal elements of two assignment functions using the
Dempster’s rule and combine the obtained result with the third assignment function
and so on. It is easy to show that in our case of three local criteria, this process leads
to following expression:

mi
com(A) =

∑
B∩C∩D=A

mi1
com(B)mi2

com(C)mi3
com(D)

1−K
, (3.143)

where K = ∑
B∩C∩D= /0

mi1
com(B)mi2

com(C)mi3
com(D); A,B,C,D ∈ Yes,No,(Yes,No).

From this expression for each alternative xi we obtain the final basic assignment
function mi

com(Yes), mi
com(No), mi

com(Yes,No) and the bounds of believe interval
Bel(xi) = mi

com(Yes), Pl(xi) = mi
com(Yes) + mi

com(Yes,No). If it is needed, this result
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may be represented in terms of A-IFS theory since according to the Definition 3.24
μ i = mi

com(Yes), ν i = mi
com(No) and π i = mi

com(Yes,No).
The final alternative’s evaluation FAE(xi) can be presented both by the final basic

assignment function mi
com and by the belief interval [Bel(xi),Pl(xi)]. On the other

hand, the last presentation seems to be more convenient as it allows us to compare
the final alternative’s evaluations FAE(xi)=[Bel(xi),Pl(xi)] using the method for in-
terval comparison based on DST , presented in previous subsection.

The local criteria aggregation on the base of Dempster’s combination rule is only
one of the methods we can use for MCDM in the framework of A-IFS/DST ap-
proach. Therefore we shall denote the corresponding final alternative’s evaluation
as FAEcom(xi).

Using above approach, the following results for the considered example (3.139),
(3.140) have been obtained:

FAEcom(x1) = [Bel(x1),Pl(x1)] = [0.9257,0.9257],

FAEcom(x2) = [Bel(x2),Pl(x2)] = [0.8167,0.8168],

FAEcom(x3) = [Bel(x3),Pl(x3)] = [0.7377,0.7379].

Obviously, to select the best alternative, their final evaluations FAEcom(xi) presented
by corresponding intervals should be compared. To obtain the final ranking on the
set of comparing alternatives, the real valued criteria introduced in [108] and pre-
sented in previous subsection (strong, weak and mixed preferences) could be used,
but in the considered example we get the results of such comparison in the form of
degenerated belief intervals:

BIcomb (x1 > x2) = 1,BIcomb (x2 > x3) = 1,BIcomb (x1 > x3) = 1,

BIcomb (x1 < x2) = 0,BIcomb (x2 < x3) = 0,BIcomb (x1 < x3) = 0,

BIcomb (x1 = x2) = 0,BIcomb (x2 = x3) = 0,BIcomb (x1 = x3) = 0.

Since in our example only non interval results (0 or 1) of FAEcom(xi) comparison
have been obtained, it is easy to see that the final alternative’s ranking is x3 ≺ x2 ≺
x1. It is worth noting that using the same example, the substantially different result
x2 ≺ x3 ≺ x1 has been obtained in [72].

We can explain such divergence of the results only by the absence of any inter-
mediate type reduction in our method for MCDM in A-IFS setting that makes it
possible to avoid the loss of important information. Summarizing, we can say that
DST may serve as a good methodological base for interpretation of A-IFS. The use
of DSF semantics makes it possible to enhance the performance of A-IFS when
dealing with the MCDM problems. Particularly, when solving MCDM problems,
the proposed approach allows us to use the Dempster’s rule of combination directly
to aggregate the local criteria presented by IFV s when their weights are IFV s too
without intermediate defuzzification.
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3.4 Summary and Discussion

In this chapter, we have presented an overview of modern methods for uncertainty
modeling based on fuzzy sets and level 2 fuzzy sets, intuitionistic fuzzy sets, in-
terval analysis and Dempster-Shafer theory of evidence. We have shown the inter-
relations between these methods and emphasize some problems that impede their
applications.

It is shown that one of the most undesirable negative features of interval arith-
metic is the fast increasing of width of intervals obtained as the results of interval
calculations (excess width effect).

Another important problem of interval analysis is the so-called natural interval
extension. If we have to make interval extension of real valued function, all argu-
ment of this function should be replaced with corresponding intervals and all opera-
tions should be replaced with corresponding operations on intervals. Such approach
to interval extension seems to be justified enough and intuitively clear. Nevertheless,
the so-called dependency problem is a major obstacle to the application of exten-
sion principle in interval arithmetic. Although interval methods can determine the
range of elementary arithmetic operations and functions very accurately, this is not
always true with more complicated functions. If an interval occurs several times in
a calculation, and each occurrence is taken independently then this can lead to an
unwanted expansion of the resulting intervals.

An important problem of interval extension is also that the accuracy of result-
ing interval strongly depends on the algebraic form of function chosen for interval
extension.

It is worth noting that as the fuzzy arithmetic operations are usually based on the
α -cut representation of fuzzy numbers, the above mentioned problems of interval
analysis are the problems of fuzzy arithmetic as well.

It is noted that the most important applications of Atanassov’s intuitionistic fuzzy
sets (A-IFS) are the multiple criteria decision making problems (MCDM).

It is shown that there exist two important problems in MCDM in the intuitionistic
fuzzy setting: aggregation of local criteria without intermediate defuzzification in
the case when criteria and their weights are IFVs; comparison of IF valued scores
of alternatives basing on the degree to which one IFV is grater/smaller than the
other. In this chapter we have shown that there exist a strong link between DST and
A-IFS which makes it possible to reformulate the basic definitions of A-IFS in terms
of DST . We show that using the DST semantics it is possible to enhance the perfor-
mance of A-IFS when dealing with MCDM problems. Particularly, this approach
allows us to use directly the Dempster’s rule of combination to aggregate local cri-
teria presented by IFVs and develop a method for MCDM without intermediate
defuzzification when local criteria and their weights are IFVs. As the result we get
final alternative’s evaluations in the form of belief interval. Hence, an appropriate
method for such intervals comparison is needed.

Therefore, we present a method for interval and fuzzy numbers comparison based
on DSF which provides the results of comparison in the form of belief intervals.
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It is noted that now besides the classical Dempster’s rule of combination a num-
ber of other methods for combination of evidence are proposed in the literature.
All of them have own merits and drawbacks and the problem of choosing the best
method is now open.
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Chapter 4
MCDM with Applications in Economics and
Finance

In this chapter, the problems typical for multiple criteria decision making (MCDM)
are analyzed and new solutions of them are proposed as well. The problem of appro-
priate common scale for representation of objective and subjective criteria is solved
using the simple subsethood measure based on the α-cut representation of fuzzy
values. To develop an appropriate method for aggregation of aggregating modes,
we use the synthesis of the tools of type 2 and level 2 fuzzy sets. As the result,
the final assessments of compared alternatives are presented in the form of fuzzy
valued membership function defined on the support composed of considered alter-
natives. To compare obtained fuzzy assessments we use the probabilistic approach
to fuzzy values comparison. In is shown that investment evaluation problem is fre-
quently a hierarchical one and a new method for solving such problems, different
from commonly used fuzzy analytic hierarchy process (AHP) method, is proposed.
The developed methods are used for the solution of the stock ranking problem based
on the multiple criterion decision making and optimization in the fuzzy setting and
for multiple criteria fuzzy evaluation and optimization in budgeting.

4.1 MCDM in the Fuzzy Setting

This section presents an analysis of the methodological problems of MCDM such
as common representation of different types of local criteria, expert’s opinions ag-
gregation, aggregation of local criteria, aggregation of aggregating modes, fuzzy
numbers comparison, hierarchical structure of local criteria set.

It is well known that the evaluation of important investment projects usually can
not be successfully carried out using only financial parameters since the possible
ecological, social and even political effects of project’s implementation should be
evaluated as well. The role of these effects rises along with the project’s importance.
Obviously, such effects as a rule can not be predicted with a high accuracy, moreover
their estimations are usually based on the expert’s opinions expressed in a verbal
form. So the proper mathematical tools are needed to incorporate such ill defined
estimations into the general evaluation of investment project. On the other hand,
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the traditional approaches to the investment project evaluation are usually based on
the budgeting, i.e., analysis of the discounted financial parameters of the considered
projects such as Net Present Value (NPV ), Internal Rate of Return (IRR) and so on.

It is easy to see that in this case also the estimation of the investment efficiency,
as well as any forecasting, is rather an uncertain problem and the proper methods
for operating in the uncertain setting should be used. Since the applicability of tradi-
tional probability methods is often restricted by the absence of objective probabilis-
tic information about future events, during the last two decades the growing interest
to the application of interval and fuzzy methods in budgeting has been observing
(see [35, 55, 65, 135]).

On the other hand, when analyzing the investment project, we consider (some-
times implicitly) some local criteria based on the calculated financial parameters
or quantitative evaluations of the project’s implementation effects. Therefore, the
project estimation is in essence a multiple criteria problem. As the examples of suc-
cessful systematization, the local criteria sets proposed in [78, 135] may be consid-
ered. Even skin-deep analysis of these criteria systematization allows us to conclude
that investment and project quality estimation is the complicated multiple criteria
problem frequently with a certain hierarchical structure. There is a lot of multiple
criteria methods proposed in the literature for solving economic and financial prob-
lems. Steuer [118] presented the widest review of this problem based on more than
250 literature indices. Nevertheless, we can cite the only few papers devoted to the
multiple criteria financial project estimation (see [72, 87, 135]).

It is worth noting that in all these works the concepts of fuzzy sets theory were
used. The method proposed in [87] is based on the representation of local criteria
by membership functions and their aggregation using simple fuzzy summation. The
ranks of local criteria and possible hierarchical structure of the problem were not
taken into account. The hierarchical structure of the problem is considered in [136]
and well known AHP method is used for its building, but only simple normalization
of financial parameters (dividing them by their maximal values) is applied instead of
natural local criteria. An interesting example of practical application of the multiple
criteria hierarchical analysis is presented in [72]. The generalized AHP method was
used for estimation of 103 mutually dependent investment projects proposed for the
Tumen river region (China) industrial development.

We do not intend to make here the detailed review of these works, but as a re-
sult of the analysis we have done in the field of investment project estimation as
well as in some other practical applications, we can say that generally the project’s
evaluation is a multiple criteria decision making hierarchical problem in the fuzzy
setting. It is important that as it has been pointed out in [6] “The theory of MCDM
is an open theoretical field and not a closed mathematical theory solving a specific
class of problems”. Nevertheless, there are some methodological problems which
are common ones for almost all multiple criteria based approaches. They were con-
sidered and systemized in [5, 75, 99, 117, 118, 119]. There are different definitions
of MCDM proposed in the literature, but regardless of what type of MCDM task is
solving (choice, ranking, sorting, ets), two pivotal problems arise: how to evaluate
alternatives and how to compare them? The last problem is especially important if
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the results of alternatives evaluations are presented by interval or fuzzy numbers.
In this section, we focus on the class of MCDM problems which may be treated as
the developing the methods helping the decision maker to choose the best alterna-
tive when several local criteria (sometimes antagonistic ones) effect to the decision.
These problems usually are solved in a two phase process [25, 97, 128]: the rating,
i.e., aggregation of the criteria values for comparing alternatives and ranking or or-
dering these alternatives. Last phase is not trivial in the fuzzy or interval setting.
There are some problems we are faced in the rating phase especially when dealing
with fuzzy local criteria and/or their fuzzy weights (ranks). They can be roughly
clustered as follows:

(i) Common representation of different types of local criteria.
The local criteria may be constructed on the base of quantitative parameters such
as financial ones, as well as using expert’s subjective estimations (verbal assess-
ments of project’s scientific importance, technological level, etc). It is known that
experts prefer to provide rather “fuzzy” advises on the linguistic level of presen-
tation to avoid possible mistakes caused by the qualitative nature of predictions.
However, human experience and intuition play an important role in the projects
evaluation and cannot be ignored, although the specific uncertainty is their in-
herent property. This uncertainty is of subjective (fuzzy) nature and cannot be
described in the usual probabilistic way. So a proper methodology is needed to
take into account the uncertainty factors which will allow us to build a set of
comparable local criteria based on directly measurable quantitative parameters
as well as on linguistically formulated assessments. The mathematical tools of
fuzzy sets theory developed for dealing with subjective kind of uncertainty [143]
may be successfully used for this purpose. Thus, in the real-world problems we
meet two group of local criteria [22, 105, 134]: objective criteria based on the nu-
merical parameters and subjective ones based on the subjective expert’s opinions.
So the problem arises: how to find an appropriate common scale for representa-
tion of objective and subjective criteria?

(ii) Expert’s opinions aggregation. Usually for the evaluation of important invest-
ment projects a number of experts in the relevant fields are involved into deci-
sion making process. Since in such cases we are dealing with the group MCDM
[49, 69, 105, 134], we face with the problem of searching a compromise between
expert’s opinions available, especially if they are represented by different experts
in linguistic form, e.g., as “low importance”, “ medium importance”, “ high im-
portance”, “large importance” [134].

(iii) Aggregation of local criteria. Real-world decision problems may involve a
lot of local criteria to be analyzed simultaneously. Regrettably, the human ability
to do this is strongly restricted by the known empirical law of psychology ac-
cording to which a person can distinguish no more than 7 plus minus 2 classes
or grades on some feature scale. If the number of grades is greater, the adja-
cent grades start to merge and cannot be clustered confidently (see [84] and
[85]). To solve this problem, the relevant aggregation of local criteria taking into
account their ranking can be used to create some generalized criteria. There-
fore, the problem of choice of appropriate aggregation method is of perennial
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interest, because of its direct relevance to practical decision making [92, 138,
148]. The most popular aggregating mode is the weighted sum. It is used in
many well known decision making models such as AHP [100], multi-attribute
utility analysis [91] and so on, but often without any critical analysis. On the
other hand, in some fields, e.g., in ecological modeling, the weighted sum is not
used for aggregation [116]. The reason behind this is that in practice there are the
cases when if any of local criteria is totally dissatisfied then considered alterna-
tive should be rejected from the consideration at all. Nevertheless, when dealing
with a complex task characterized by a great number of local criteria, it seems
reasonable to use all types of aggregations relevant to this task. If the results ob-
tained using different aggregation modes are similar, this fact may be considered
as a good confirmation of their optimality. In opposite case, an additional analysis
of local criteria and their ranking should be advised.

(iv) Aggregation of aggregating modes. The natural consequence of problem (iii)
is a growing interest in the methods for generalizing the aggregating operators
(aggregation of aggregation modes) [98]. For this purpose, it is proposed to ap-
ply the possibility theory [39] as well as the weighted sum aggregation [141].
Also, Yager’s t-norms are used in [47] and a hierarchical aggregation approach
is developed in [40, 81]. Nowadays the most popular is the so-called γ-operator
[148, 149]:

η =
(
∏

i
μi
)1−γ(

1−∏
i

(1− μi)
)γ

, i = 1,2, . . . ,n, 0 ≤ γ ≤ 1, (4.1)

where μi is a membership function corresponding to the local criterion. Since
expression (4.1) is based only on the multiplicative aggregation, the more general
approach was proposed in [86]:

ηor = γ max
i

(μi)+
(1− γ)

(
∑
i

μi)

n
, (4.2)

ηand = γ min
i

(μi)+
(1− γ)

(
∑
i

μi)

n
. (4.3)

These expressions were used in [104] to solve the multiple level decision mak-
ing problem. As a key issue, the lack of strong rules for choosing the value of
γ is mentioned. The work [29] is specifically devoted to this problem, but the
method proposed by the authors demands too much additional information to be
presented by a decision maker in the quantitative form. In practice, it is hard to
get such information since it is not directly related to the decision maker’s real
problems. It is easy to see that local criteria in (4.3),(4.3) are considered to be not
ranked, whereas their ranking seems to be a more important issue than choosing
the value of γ . Finally, the generalizing modes (4.1)-(4.3) do not involve all pos-
sible approaches to the aggregation.

Of course, the set of above mentioned problems of rating in MCDM is not
complete and exhausted. For example, in the realm of group MCDM the values
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of membership functions describing the local criteria may be the fuzzy values
as well. So the problem of type-2 fuzzy representation of local criteria arises. To
solve this problem the constructive method based on the so-called hyperfuzzy ap-
proach [41, 42] had been proposed recently. A nontrivial problem in the ranking
stage of MCDM usually arises when as the result of previous rating phase the
fuzzy (or interval) valued evaluations of alternatives are obtained. Generally, this
problem can be formulated as follows.

(v) Fuzzy numbers comparison. It must be emphasized that the problem of inter-
vals and fuzzy numbers comparison plays a pivotal role in the fuzzy MCDM and
fuzzy optimization [18]. There exist numerous definitions of the ordering rela-
tion for fuzzy numbers (as well as crisp intervals) proposed in the literature. In
most cases, the authors use some quantitative indices. The values of such indices
present the degree to which one number (fuzzy or interval) is greater/smaller than
the other number. In some cases, even several indices are used simultaneously.
The widest review of this problem based on more than 35 literature indices was
presented in [133] where the authors proposed a new interesting classification
of methods for fuzzy numbers comparison. The separate group of methods is
based on the so-called probabilistic approach to the intervals and fuzzy numbers
comparison [18, 63, 66, 67, 89, 103, 112, 129, 142]. The attractiveness of this
approach is caused by the possibility to build interval and fuzzy value relations
using the minimum set of preliminary assumptions. In [109, 111], a new effec-
tive method for interval and fuzzy values comparison based on the probabilistic
approach has been developed.

(vi) Hierarchical structure of local criteria set. The local criteria may compose a
multilevel hierarchical structure when given set of local criteria consists of cer-
tain subgroups connected logically. Although the AHP method and its numerous
fuzzy modification nowadays are commonly used to solve this problem, we can
say that this problem is still open one.

The list of problems can be continued. For instance, some problems appear
when fuzzy valued financial parameters are used as arguments of functions rep-
resenting the local criteria [35] or when such functions are fuzzy as well [41, 42].
Nevertheless, the detailed analysis of these issues is out of scope of this book.

We can say that almost all components for building the efficient method that
may be used for real-life project evaluations are already developed and described
in the literature. What is needed is their critical analysis from the viewpoint of
considered problem, and a proper synthesis of them into the integrated method
for hierarchical multiple criteria evaluation of investment projects. The aim of
this chapter is to present a synthetical approach to solve the above mentioned
problems (i)-(vi) in context of investment evaluation. To make the presentation
more transparent, it is illustrated throughout the chapter with the use of two ex-
amples. The first of them is well known tool steel material selection problem
[134] which can be considered as the typical investment problem and relevant
test charged by all difficulties concerned with the problems (i)-(v). The next ex-
ample is a simplified investment project evaluation problem we have used to
show that even when project’s estimation is based on the budgeting, i.e., only
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financial parameters are taking into account, we are dealing with multiple cri-
teria task in the fuzzy setting. The rest of the chapter is organized as follows.
In Section 4.2, the tool steel material selection task is recalled and the expert’s
opinions aggregation problem (ii) concerned with the linguistic weights of lo-
cal criteria is considered. Subsection 4.2.1 provides an exposition of the simple
and transparent method for evaluation of fuzzy subsethood measure based on the
α-cut representation of fuzzy numbers. This method has been developed for solv-
ing the above mentioned problems (i) and (ii). Subsection 4.2.2 is devoted to the
common representation of different types of local criteria (i). Subsection 4.2.3
describes the probabilistic method for fuzzy numbers comparison (v). In Subsec-
tion 4.2.4, the problem of aggregation of local criteria (iii) is considered and a
new approach to aggregation of aggregating modes (iv) based on the synthesis
of type-2 and level-2 fuzzy sets is described. Proposed approach is illustrated
with the use of the tool steel material selection problem as an example. In Sec-
tion 4.3, we present the illustrative example of fuzzy multiple criteria investment
project evaluation and an approach to the solution of hierarchical fuzzy MCDM
problem which is different from the fuzzy AHP method. Section 4.4 is devoted
to the fuzzy MCDM and optimization in the stock screening. In Section 4.5, the
methods for multiple criteria fuzzy evaluation and optimization in budgeting are
performed.

Finally, concluding section summarizes the chapter and discusses future re-
search issues.

4.2 Tool Steel Material Selection Problem

This problem has been chosen as the test and illustrative example of investment
problem since it is well known and had been discussed in the literature earlier [105,
134]. The most important is that it is charged with all problems (i)-(v) noted in
Section 4.1.

Generally, the solution of this MCDM problem is organized as follows. The de-
cision maker with a help of analyst considers expert’s opinions and aggregates them
to obtain a final conclusion.

Let us briefly recall the main assumptions and restrictions were made in the for-
mulation of tool steel material selection problem in [134]. Suppose there are three
experts involved in the decision process. The best among of five tool steel mate-
rials V1, A2, D2, γ1, T1 (classification of American Iron and Steel Institute, AISI)
should be chosen. The local criteria are clustered into two groups: subjective crite-
ria defined by experts on the base their experience and intuition (the properties of
materials) and objective criteria based on the numerical parameters not dependent
on the expert’s opinions (the cost of material imposed by open market). In [134],
the classification of criteria had been proposed as follows.

Subjective criteria:

• Non deforming properties for materials - local criterion C1

• Safety in hardening for materials - local criterion C2
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Table 4.1 Linguistic values for criteria estimations

Linguistic terms Corresponding fuzzy number
Worst (W) (0,0,0.3)
Poor (P) (0,0.3,0.5)
Fair (F) (0.2,0.5,0.8)

Good (G) (0.5,0.7,1)
Best (B) (0.7,1,1)

• Toughness for materials - local criterion C3

• Resistance to softening effect of heat for materials - local criterion C4

• Wear resistance for materials - local criterion C5

• Machinability for materials - local criterion C6

Objective criterion:

• Cost -local criterion C7

Fig. 4.1 Membership functions for linguistic values

The subjective criteria in [105, 134] were assessed linguistically (see Table 4.1
and Fig. 4.1). The conventional approach [33, 125] was used, which assumes that
the meaning of each linguistic term (such as “good”, “poor”, when it is not directly
connected with the concrete values) is given by a fuzzy subset defined in the [0,1]
interval. Of course, there may be different ways to represent the linguistic terms
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as the triangles or trapezoids in the [0,1] interval, but usually the choice of such
performance is the prerogative of analyst since experts as a rule are not familiar
enough with fuzzy set theory. In contrast to subjective criteria, the cost of material
is presented directly by the fuzzy number. The method for obtaining the fuzzy costs
is not described in [105, 134], but here we suppose that such fuzzy numbers can be
obtained from usual statistics of market prices. Resulting assessments are presented
in Table 4.2. To make our result comparable with those obtained by other authors
[134], we have used exactly the same initial data and their fuzzy representation as
in [105, 134]. Obviously, the problem of common representation of different types
of local criteria (i) takes a place.

Table 4.2 Linguistically and numerically represented local criteria

Steel
quality

C1 C2 C3 C4 C5 C6 C7

V1 P F G P F B (1.5,1.6,1.7)
A2 B B F F G F (1.8,2.0,2.2)
D2 B B F F G P (1.0,2.0,2.2)
γ1 F G G F F F (1.0,1.0,1.0)
T1 G G F B G F (2.5,3.0,3.5)

The weights of the local criteria are represented linguistically with the use of
linguistic term (see Table 4.3). There is no consensus among expert’s with respect
to importance weights of local criteria and their final estimations are presented in
Table 4.4.

For the aggregation of expert’s opinions the simple expression was used:

Wi =
1
n

n

∑
j=0

⊕Wi j, (4.4)

where Wi is the aggregated importance weight of ith local criterion, Wi j is the im-
portance weight of ith local criterion given by jth expert, n is the number of partic-
ipating experts, ⊕ is the operation of fuzzy addition. Using expression (4.4), from
the data presented in Tables 4.3 and 4.4 we get the aggregated importance weights
shown in Table 4.5.

The fuzzy numbers from Table 4.5 may be used as the local criteria weights to
calculate the aggregated assessments of compared tool steel materials. Neverthe-
less, in practice, often the consensus of experts in respect to the obtained weights is
needed. To achieve such a consensus the special procedures, e.g., the Delphi method
[48] were developed. They are based on the correction by the experts their individ-
ual opinions taking into account the results of aggregation. In our case, the problem
is that the initial expert’s assessments of weights are represented in the linguistic
form. Usually experts, e.g., supplies engineers, are not enough familiar with the
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Table 4.3 Linguistic terms and corresponding triangular fuzzy values

Linguistic terms Corresponding fuzzy number
Very low (VL) (0,0,0.3)

Low (L) (0,0.3,0.5)
Medium (M) (0.2,0.5,0.8)

High (H) (0.5,0.7,1)
Very high (VH) (0.7,1,1)

Table 4.4 Linguistic assessment of importance weight made by three decision makers

Criteria
Opinions

E1 E2 E3

C1 H H VH
C2 M H M
C3 VH VH H
C4 H H M
C5 M M M
C6 H H VH
C7 VH VH VH

Table 4.5 Aggregated importance weights

Criteria Opinions in fuzzy form
C1 W1 = (0.567,0.800,1.000)
C2 W2 = (0.300,0.567,0.867)
C3 W3 = (0.633,0.800,1.000)
C4 W4 = (0.400,0.633,0.933)
C5 W5 = (0.200,0.500,0.800)
C6 W6 = (0.567,0.800,1.000)
C7 W7 = (0.700,1.000,1.000)

fuzzy sets theory and know nothing about the numerical representation of linguis-
tic terms. Hence, if the problem of consensus arises, an analyst should represent
the aggregated weights in the linguistic form to be understood by experts. More-
over, often the experts insist on using such aggregated linguistic weights (consen-
sus) in further analysis, since initially only the linguistic assessments of weights
have been presented. It is easy to see that the weighs in Table 4.5 are not coincide
with the fuzzy numbers representing linguistic terms used initially by experts (see
Table 4.3). So the problem of reasonable linguistic interpretation of aggregated im-
portance weights arises. The natural way for its approximate solution is to estimate
the degrees to which each of obtained Wi coincides with the corresponding fuzzy
numbers from Table 4.3 and to choose the linguistic term with the most degree of
coincidence. In other words, the subsethood measure should be estimated. The sim-
ple and transparent method for doing this is presented in the following subsection.
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4.2.1 Subsethood Measure for Linguistic Representation of Fuzzy
Numbers

As proposed by Kosko [62], the fuzzy subsethood S(A ⊂ B) measures the degree to
which a fuzzy subset A is a subset of a fuzzy subset B and is given by the expression

S(A ⊂ B) = ∑u∈U min(μA(u),μB(u))
∑u∈U μA(u)

, (4.5)

where U is the universe of discuss common for fuzzy subsets A and B. Although
expression (4.5) is widely used in applications [9], some of its drawbacks should be
noted which prevent from using it for our purposes. Expression (4.5) is formulated
for discrete supports of fuzzy subsets A and B, whereas we deal with continuous
ones. Besides, in the asymptotic case when the support of A is tending to zero (fuzzy
number A is reducing to a real value) the problem of reasonable interpretation of
(4.5) arises. That is why, in this subsection the simple and transparent approach free
of above mentioned drawbacks is described. It is based on the α-cuts representation
of fuzzy numbers [60]. So, if A is a fuzzy value then

A =
⋃
α

αAα ,

where αAα is the fuzzy subset (x ∈U,μA(x)≥ α) and Aα is the support set of fuzzy
subset αAα , U is the universe of discourse. It was proved that if A and B are fuzzy
numbers, then all the operations on them may be presented as operations on the set
of crisp intervals corresponding to their α-cuts: (A@B)α = Aα@Bα , @∈ {+,,∗,/}.
In a similar way, the subsethood operation can be defined as the set of subsethood
operations on corresponding α-cuts. So the definition of subsethood measure as a
degree to which a crisp interval Aα is a subset of Bα , i.e., S(Aα ⊂ Bα), is needed.
Since we deal with crisp intervals, an intuitively obvious measure of subsethood
may be defined as follows:

S(Aα ⊂ Bα) =
W (Aα ∩Bα)

W (Aα)
, (4.6)

where W(Aα) is the width of interval Aα , W (Aα ∩Bα) is the width of overlapping
area of intervals Aα and Bα . Expression (4.6) has the reasonable asymptotic prop-
erties. For example, in the case of W (Aα) → 0 from (4.6) we have the intuitively
obvious result

lim
W(Aα )→0

S(Aα ⊂ Bα) = S(a ∈ Bα) =
{

1 i f a ∈ Bα ,
0 i f a /∈ Bα ,

where a ∈ Bα is a real value. To get an aggregated estimation of subsethood mea-
sure on the base of its α-cuts representation (4.6), we propose to use the following
weighted sum:
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S(A ⊂ B) =
∑
α
(αS(Aα ⊂ Bα))

∑
α

α
(4.7)

The last expression indicates that the contribution of α- cut to the overall subsethood
estimation is increasing along with the rise of its number. The proposed method is
graphically illustrated in Fig. 4.2.

Fig. 4.2 Subsethood degree of fuzzy sets

In the asymptotic case, when a degree to which a real value a belongs to the
interval Bα should be assessed, the expression (4.7) is reduced to

S(a ⊂ B) =
∑
α

αS(a ∈ Bα)

∑
α

α
. (4.8)

This case is shown in Fig. 4.3.
It is clear (even without calculations) that the following equalities are verified:

S(a∗∗∗ ∈ B) > S(a∗∗ ∈ B) > S(a∗ ∈ B).

Of course, this intuitively obvious result well reflecting the inherent meaning of
subsethood is numerically confirmed with the use of expression (4.8).

The other asymptotic case we meet when fuzzy subset A is completely enveloped
by fuzzy subset B (see Fig.4.4). In this case, both the common sense and Exp.(4.8)
provide the same results: S(A ⊂ B) = 1.

The described approach has been used to estimate the degrees to which each
of aggregated importance weights Wi, obtained by averaging the expert’s opinions



118 4 MCDM with Applications in Economics and Finance

Fig. 4.3 Subsethood degree of the real number a in the fuzzy set B

Fig. 4.4 Subsethood degree of fuzzy sets in the case when fuzzy set B contains fuzzy set A

(see Table 4.5) coincides with the linguistic terms used initially by experts (see
Table 4.3). The results are presented in Table 4.6, where the bolded values mark the
greatest degrees of subsethood.

So we can approximately represent the obtained aggregated importance weights
by linguistic terms as shown in Table 4.7.

It is easy to see that the results obtained with the use of described approach (see
screenshots in Fig. 4.5 and Fig. 4.6) are in a good conformity with our intuition.
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Table 4.6 Degrees of confidence (subsethood degrees) of importance weight of the criteria
with linguistic terms

Aggregated

importance weight

Subsethood degree
V L L M H V H

(0.0,0.0,0.3) (0.0,0.3,0.5) (0.2,0.5,1.0) (0.5,0.7,0.8) (0.7,1.0,1.0)

W1 0% 0% 4.53% 14.45% 12.44%
W2 0% 2.83% 48.04% 19.86% 0.92%
W3 0% 0% 2.44% 37.45% 14.67%
W4 0% 0.40% 24.53% 35.69% 2.82%
W5 0.18% 8.98% 100.00% 8.98% 0.18%
W6 0% 0% 4.53% 14.45% 12.44%
W7 0% 0% 11.51% 11.51% 100.00%

Table 4.7 Final linguistic rating of ranks of local criteria

Criteria Fuzzy number representation Linguistic representation
C1 W1 = (0.567,0.800,1.000) H
C2 W2 = (0.300,0.567,0.867) M
C3 W3 = (0.633,0.800,1.000) H
C4 W4 = (0.400,0.633,0.933) H
C5 W5 = (0.200,0.500,0.800) M
C6 W6 = (0.567,0.800,1.000) H
C7 W7 = (0.700,1.000,1.000) VH

Fig. 4.5 Subsethood degree of W6 ⊂ H
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Fig. 4.6 Subsethood degree of W6 ⊂V H

4.2.2 Common Representation of Different Types of Local
Criteria

When dealing with real-world problem, we can meet two group of local criteria: ob-
jective ones, expressed in the numerical form directly and subjective criteria repre-
sented by experts in the form of linguistic terms [134]. Linguistic terms are usually
described by fuzzy numbers on the conventional common support [0,1], whereas
objective criteria may have different supports. So the problem arises in such situa-
tions: how to find an appropriate common scale for the representation of objective
and subjective criteria? The heuristic approaches proposed in [22, 134] based on the
concept of profit and benefit local criteria are only rough solutions of this problem
since they lead to some distortions of initial preferences.

To solve this problem the authors of [134] proposed the conversion of initial
fuzzy objective criteria

RTi = {Ti ⊗ [T−1
1 ⊕T−1

2 ⊕ . . .⊕T−1
m ]}−1, (4.9)

where Ti is the fuzzy value of considered objective criterion assigned to ith alterna-
tive. Of course, the converted fuzzy values RTi are defined on the support [0,1]. The
authors of [22] proposed to divide all the subjective and objective criteria into two
groups: cost criteria (denoted by C) lowering with rising of the parameter on which
the criterion is based (e.g., production cost) and benefit criteria (denoted by B) (e.g.,
the quality of goods) with opposite property. In order to ensure the compatibility be-
tween objective and subjective criteria, in [22] the following method was proposed.

Let x̃i j be the fuzzy rating of alternative Ai (i = 1, . . . ,m) with respect to criterion
Cj( j = 1, . . . ,n). Suppose x̃i j are represented by triangular fuzzy numbers, i.e., x̃i j =
(ai j,bi j,ci j). The following normalizations had been proposed in [22]: for the
benefit criteria
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r̃i j =
{

ai j

c∗j
,

bi j

c∗j
,

ci j

c∗j

}
,c∗j = max

i
ci j, (4.10)

for cost criteria

˜ri j =
{

ā j

ci j
,

ā j

bi j
,

ā j

ai j

}
, ā j = min

i
ai j (4.11)

The normalizations (4.10), (4.11) as well as the normalization (4.9) preserve the
property that supports of normalized fuzzy numbers belong to the interval [0,1]. On
the other hand, such normalizations lead to some distortions of initial preferences
that were explicitly or implicitly taken into account on the stage of local criteria
formalization. To clarify, consider an example.

Suppose there are two alternatives A1, A2, (the goods to be produced ) and two
local criteria for their assessment: investment cost (C1) and expansion possibility
(C2) (see [22]).

Table 4.8 Fuzzy assessments of alternatives with respect to local criteria

C1 C2

A1 (6.0,7.0,8.0) (6.3, 8.0, 9.0)
A2 (3.6,4.0,4.4) (9.0, 10.0, 10.0)

Suppose that evaluations of considered alternatives A1, A2 with respect to local
criteria are represented by triangular fuzzy numbers shown in Table 4.8. According
to [22], C1 is the “cost” criterion and C2 is the “benefit” criterion. That is why, the
criterion C1 was normalized using expression (4.11), whereas C2 was normalized
with the use of (4.10). The results of normalization are shown in Table 4.9.

Table 4.9 Fuzzy assessments of alternatives after normalization

C1 C2
A1 (0.45, 0.51, 0.60) (0.63, 0.80, 0.90)
A2 (0.81, 0.90, 1.00) (0.90, 1.00, 1.00)

It could be noted that normalization can not transform the initial fuzzy evalua-
tions of compared alternatives (see Table 4.8) into local criteria. Factually, in Table
4.9 we can see only triangular fuzzy numbers which can not be treated as the cri-
teria since the values of cost criterion must decrease with rising of the parameter
on which this criterion is based and the benefit criterion has the opposite property.
Conversion (4.9) provides the similar results. Nevertheless, the data from Table 4.8
can be used to build the correct cost and benefit criteria.
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For benefit criteria instead of (4.10) the following function may be used:

μB(r j) =

⎧⎪⎨
⎪⎩

0, if r j ≤ r jmin ,
(r j−r jmin)

(r jmax−r jmin) if r jmin < r j < r jmax,

1 if r j ≥ r jmax,

(4.12)

and for the cost criteria:

μC(r j) =

⎧⎪⎨
⎪⎩

1, if r j ≤ r jmin ,

1− (r j−r jmin)
(r jmax−r jmin) if r jmin < r j < r jmax,

0 if r j ≥ r jmax.

(4.13)

In (4.12) and (4.13), we have denoted r jmin = min
i

ai j and r jmax = max
i

ci j.

Fig. 4.7 The cost (A) and benefit (B) criteria based on the data from Table 4.8

In Fig. 4.7, the local criteria based on the data presented in Table 4.8 with the use
of (4.12) and (4.13) are shown. It is easy to see that triangular fuzzy costs and ben-
efits are only fuzzy arguments of membership functions representing corresponding
local criteria.

Let us turn to the tool steel material selection problem. It is clear that linguistic
terms in Table 4.2 represent the final linguistic assessments of criteria and the trans-
formations of them are not required. On the other hand, the local criterion based
on the cost of tool steel materials is needed. We have built it using the expression
(4.13). As the result, the membership function representing the local cost criterion
has been obtained. The next step is the calculation of fuzzy value of the cost cri-
terion as the function of fuzzy argument for all compared tool steel materials. To
do this, the well known procedure [60] of evaluation of function of fuzzy argument
illustrated in Fig. 4.8 has been used.
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Fig. 4.8 Calculation of fuzzy value of the cost criterion C7 for steel D2

Table 4.10 Linguistic representation of fuzzy values of cost criterion for compared tool steel
materials

Steel
quality

Fuzzy cost
Fuzzy value of cost

criterion

Subsethood

degree

Linguistic approximation of

cost criterion’s value

V1 (1.50,1.60,1.70) (0.72,0.76,0.80) 63.67% G
A2 (1.80,2.00,2.20) (0.52,0.60,0.68) 43.65% F
D2 (1.00,2.00,2.20) (0.52,0.80,1.00) 43.97% G
γ1 (1.00,1.00,1.00) (1.00,1.00,1.00) 100.00% B
T1 (2.50,3.00,3.50) (0.00,0.20,0.40) 39.53% P

Table 4.11 Fuzzy values of local criteria in the linguistic form

Steel quality C1 C2 C3 C4 C5 C6 C7

V1 P F G P F B G
A2 B B F F G F F
D2 B B F F G P G
γ1 F G G F F F B
T1 G G F B G F P

Obviously, the resulting values of cost criterion are fuzzy values and the prob-
lem of common representation of linguistically and numerically defined local criteria
arises. For its solution we have used the procedure of calculation of subsethood mea-
sure for the linguistic representation of fuzzy values described in Subsection 4.2.1.
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In Table 4.10, the calculated maximal degrees to which the fuzzy values of cost
criterion coincide with the linguistic assessments from Table 4.1 are presented. The
final linguistic estimations of compared alternatives regarding to all local criteria
taken into account are shown in Table 4.11. The following steps in the solution of
our sample problem should be the aggregation of local criteria, the aggregation of
aggregating modes and the ranking of fuzzy evaluations of alternatives with the use
of appropriate method for fuzzy number comparison. The methods proposed for the
solution of these problems are presented and illustrated with the use of considered
example of tool steel materials selection problem in the following subsections.

4.2.3 Probabilistic Method for Fuzzy Numbers Comparison

As we deal with the fuzzy valued local criteria and weights, any their aggregation
will be fuzzy as well. Of course, a defuzzification procedure may be used to get
real valued final estimations of compared alternatives, but such approach obviously
leads to the loss of important information. To avoid this, the method for direct com-
parison of fuzzy numbers can be used. As it has been explained in Section 4.1, we
prefer to use the probabilistic approach to fuzzy numbers comparison. It was already
successfully used in some applications [107, 110].

Let us recall the basics of this approach and developed method. We present firstly
the probabilistic crisp interval relations and further extend them to the fuzzy num-
bers comparison. There are only two nontrivial situation of intervals setting deserve
to be considered: the overlapping and inclusion cases (see Fig. 4.9).

Fig. 4.9 Examples of interval relations

Let A = [a1,a2] and B = [b1,b2] be independent intervals and a ∈ [a1,a2],b ∈
[b1,b2] be random values distributed on these intervals. As we are dealing with
crisp intervals, the natural assumption is that the random values a and b are dis-
tributed uniformly. There are some subintervals, which play an important role in
our analysis. For example, in overlapping case (see Fig. 4.9), the falling of random
a ∈ [a1,a2],b ∈ [b1,b2] into subintervals [a1,b1], [b1,a2], [a2,b2] may be treated as
a set of independent random events. Let us define the events Hk : a ∈ Ai,b ∈ B j ,
where Ai and B j are subintervals formed by the boundaries of compared intervals
A and B such that A =

⋃
Ai,B =

⋃
B j. It easy to see that events Hk form the com-

plete set of events describing all the cases of falling random values a and b into the
various subintervals Ai and B j , respectively. Let P(Hk) be the probability of event
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Hk and P(B > A/Hk) be the conditional probability of B > A. Hence, the composite
probability can be presented as

P(B > A) =
n

∑
k=1

P(Hk)P(B > A/Hk). (4.14)

As we are dealing with uniform distributions of random values a and b in the
given subintervals, the probabilities P(Hk) can be easily obtained geometrically.
These basic assumptions make it possible to infer the complete set of probabilis-
tic interval relations involving separated equality and inequality relations and com-
parisons of real numbers with intervals and fuzzy numbers [111]. The complete
set of expressions for interval relations is shown in Table 4.12, the cases without

Table 4.12 Probabilistic interval relations

P(B > A) P(B < A) P(B = A)
1. b1 > a1 ∧b1 < a2 ∧b1 = b2

�
a1 a2b1 = b2

B

A

b1 −a1

a2 −a1

a2 −b1

a2 −a1
0

2. b1 ≥ a1 ∧b2 ≤ a2

�
b1 b2a1 a2

B

A

b1 −a1

a2 −a1

a2 −b2

a2 −a1

b2 −b1

a2 −a1

3. a1 ≥ b1 ∧a2 ≥ b2 ∧a1 ≤ b2

�
b1 b2a1 a2

B

A

0 1− (b2 −a1)2

(a2 −a1)(b2 −b1)
(b2 −a1)2

(a2 −a1)(b2 −b1)
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overlapping and inclusion are omitted. In Table 4.12, only half of cases that may
be realized when considering interval overlapping and including are presented since
the other cases, e.q., b2 > a2 for overlapping and so on, can be easily obtained by
changing letter a through b and otherwise in the expressions for the probabilities.

It easy to see that in all cases P(A < B)+ P(A = B)+ P(A > B) = 1.
Let Ã and B̃ be fuzzy values on X with corresponding membership functions

μA(x),μB(x) : X → [0,1]. We can represent Ã and B̃ by the sets of α-cuts: Ã =
⋃
α

Aα ,

B̃ =
⋃
α

Bα , where Aα = {x ∈ X : μA(x) ≥ α},Bα = {x ∈ X : μB(x) ≥ α} are crisp

intervals. Then all fuzzy value relations Ã rel B̃, rel = {<,=,>}, may be presented
by the sets of α-cut relations Ã rel B̃ =

⋃
α

Aα rel Bα . Since Aα and Bα are crisp

intervals, the probability Pα(Bα > Aα) for each pair Aα and Bα can be calculated in
the way presented in Table 4.12. The set of the probabilities Pα(α ∈ (0,1]) may be
treated as the support of the fuzzy subset

P(B̃ > Ã) = {α/Pα(Bα > Aα)},

where the values of α may be considered as grades of membership to the fuzzy
number P(B̃ > Ã). In this way, the fuzzy subset P(B̃ = Ã) may also be easily defined.

The obtained results are simple enough and reflect, in some sense, the nature
of fuzzy arithmetic. The resulting “fuzzy probabilities” can be used directly. For
instance, let Ã, B̃, C̃ be fuzzy numbers and P(Ã > B̃), P(Ã > C̃) be fuzzy numbers
expressing the probabilities of A > B̃ and Ã > C̃, respectively. Hence, the probability
P(P(Ã > B̃) > P(Ã > C̃)) has a sense of probability’s comparison and is expressed
in the form of fuzzy number as well. Such fuzzy calculations may be useful at
intermediate stages of analysis since they preserve the fuzzy information available.
Indeed, it can be shown that in any case P(B̃ > Ã)+ P(B̃ = Ã)+ P(B̃ < Ã) =“near
1”, where “near 1” is a fuzzy number symmetrical relative to 1.

It is worth noting here that the main properties of probability are remained in
the introduced operations, but in the fuzzy sense. However, a detailed discussion of
these issues is out of the scope of this section (see Chapter 3 for more details).

Nevertheless, in practice, the real-valued indices sometimes are needed for fuzzy
numbers comparison. For this purpose, some characteristic numbers of fuzzy sets
could be used. But it seems more natural to use the following weighted sum:

P(B̃ > Ã) = ∑
α

αPα(Bα > Aα)/∑
α

α. (4.15)

This expression indicates that contribution of α- cut to the overall probability esti-
mation is increasing along with the rise in its number. Some typical cases of fuzzy
numbers comparison are represented in Fig. 4.10. It is easy to see that the resulting
quantitative estimations are in a good compliance with our intuition.
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Fig. 4.10 Typical cases of fuzzy numbers comparison

4.2.4 Aggregation of Local Criteria and Aggregating Modes

There are many different methods for aggregation of local criteria proposed in the
literature, but there is no method proved to be the best in all practical cases. More-
over, in [148] it is stated that the choice of aggregation scheme is a context depen-
dent problem. Nevertheless, we contribute here in its consideration from some other
point of view.

Firstly, it is possible to represent the membership functions of local criteria as
some artificial functions of alternatives. Such a transformation can be carried out
formally after calculation of the values of membership functions for all alternatives.
More strictly, let A and B be the local criteria and μA, muB be their membership
functions. Then for each x ∈ X , where X is a set of alternatives, the artificial func-
tions μA(x),μB(x) can be formally introduced. Of course, x is not a variable in the
common sense. Factually, it is only a label (or number) assigned to the correspond-
ing alternative. Hence, we can say that if for some x1 ∈ X we have μA(x1) = μB(x1),
then the alternative x1 satisfies the local criteria A and B in the equal extent, and
if for some x2 ∈ X , we have μA(x2) > μB(x2), then alternative x2 satisfies the local
criterion A in a greater degree than the criterion B. In this way, the initially multidi-
mensional problem can be formally transformed into the one-dimensional one with
the alternative number (label) as the variable.

To make our consideration more transferable, consider firstly the case of only
two local criteria A and B which are equally important for a decision maker and
therefore have equal ranks, i.e., αA = αB = 1. So if X is a set of the alternatives
and μA(x), μB(x), x ∈ X are membership functions representing formally – as it
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has been described above – the local criteria A and B, respectively, then the best
(optimal) alternative xo will be such that: a) μA(xo) = μB(xo) (since the criteria A
and B are of equal importance), b) the value of μA(xo) is maximal in comparison
with all alternatives for which condition a) is verified.

In this spirit, the theorem useful for our further analysis had been proved in [114].
It can be formulated as follows:

Theorem 4.1. If A and B are the equally ranked local criteria represented on a set
of the alternatives X by corresponding membership functions μA(x), μB(x), x ∈ X
such that they have unique maximal points xA,xB ∈ X, respectively, and

μA(xA) > μB(xA), μB(xB) > μA(xB), (4.16)

then optimal alternative xo can be found as

xo = argmax
x∈X

(μC(x)), (4.17)

μC(x) = min(μA(x),μB(x)). (4.18)

It is easy to see that function μC(x) can be naturally treated as an aggregation of the
local criteria A and B.

The results which can be achieved using some other popular aggregation methods
are shown in Fig. 4.11.

0.0
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0.4

0.6

0.8

1.0
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μA(x)
μ
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Fig. 4.11 Methods for equally ranked local criteria aggregation: 1: μC(x) = μA(x) · μB(x);
2: μC(x) = 0.5μA(x) + 0.5μB(x); 3: μC(x) = max(0,μA(x) + μB(x)− 1); x1 is the optimal
alternative for 1, 2 and 3 types of aggregation; x2 is the optimal alternative for the aggregation
μC(x) = min(μA(x),μB(x)).
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Obviously, only the min–type aggregation (4.17) derives the optimal alternative
x2 (see Fig.4.11) fulfilling the natural restriction a). All other considered aggrega-
tion methods provide the optimal alternative x1, which is in Pareto region, but far
from the actual optimum (see Fig. 4.11). In practice, we can meet more complicated
situations than considered above. For example, the membership functions can have
several points of extreme. This problem can be solved by clustering a subset of the
alternatives into some Pareto regions as it is shown in Fig. 4.12. Obviously, within
such regions (I, II, III in Fig. 4.12) all the conditions of Theorem 4.1 are verified.

Assume that the local criteria A and B are of different importance for a decision
maker, i.e., for their ranks we have αA �= αB. Since the additive and multiplicative
aggregations μC(x) = αAμA(x) + αBμB(x) and μC(x) = (αAμA(x)) · (αBμB(x)) in
the case of αA ≈ αB result in inappropriate decisions (see Fig. 4.11), we looked for
more correct aggregation rules.

In [147], the following aggregation has been proposed:

μ1
C(x) = min(αAμA(x),αBμB(x)). (4.19)

It is easy to see that in the asymptotic case αA = αB = 1, the expression (4.19)
reduces to the optimal min–type aggregation (4.18) and the weighting in (4.19)
appears to be logically justified. Nevertheless, in practice such aggregation can
produce completely absurd results. For example, let αA = 0.8,αB = 0.2 , i.e.,
the local criterion A is more important than B. As it is shown in Fig. 4.13, x0

is the optimal alternative for the case of equally ranked criteria A and B, i.e.,
x0 = argmaxx∈X (min(μA(x),μB(x))), and x1

0 is the optimal alternative for the case
of the weighted criteria, i.e., x1

0 = argmaxx∈X (min(αAμA(x),αBμB(x))). It is easy

Fig. 4.12 Multiple- extreme membership functions
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Fig. 4.13 Min–type aggregation of ranked local criteria: μ′A(x) = 0.8μA(x), μ′B(x) =
0.2μB(x)

to see that the alternative x1
0 satisfies the criterion B in a greater extent than the cri-

terion A. This is in contradiction with initial assumption for A to be more important
than B.

Additional drawback of considered aggregation is that the general criterion
μ1

C(x) = min(αAμA(x),αBμB(x)) is not normalized to 1. Hence, it is difficult to
assess the closeness of the optimal decision to the global optimum.

Yager [138] proposed the aggregation method, which properly reflects the sense
of ranking:

μ ′C(x) = min(μαA
A (x),μαB

B (x)), (αA +αB)/2 = 1. (4.20)

Observe that for αA = αB = 1 expression (4.20) reduces to (4.18). It is shown in
[138] that if αA > αB then in optimal point

x1
0 = argmax

x∈X
min
(
μαA

A (x) ,μαB
B (x)

)

the natural inequality
μA(x1

0) > μB(x1
0)
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always takes place. In the general form, the expression (4.20) can be rewritten as
follows:

μ ′C (x) = μα1
1 (x)∧μα2

2 (x)∧ ...∧μαn
n (x) , (4.21)

α1,α2, ...,αn > 0,
1
n

n

∑
i=1

αi = 1,

where ∧ is the min-operator, n is the number of the local criteria.
Therefore, it can be asserted that the aggregation (4.20) is the best one, but it is

true only when the conditions of Theorem 4.1 are verified. In practice, this is not al-
ways the case. Moreover, the min-type aggregation sometimes does not comply with
intuitive concepts of decision makers about optimality [39] since sometimes it does
not properly represent the contributions of local criteria to the overall estimation.

The detailed analysis of the advantages and drawbacks of aggregating modes can
be found in [114], where with a help of two proved theorems and on the base on
the author’s experience it was shown that, in general, the most reliable aggrega-
tion approach lies in the use of Yager’s min-type operator (4.20). The multiplicative
mode appears to be somewhat less reliable and, finally, the additive (weighted sum)
method may be considered as unreliable and insensitive when choosing an alterna-
tive in Pareto-region (see also Fig. 4.15 below).

On the other hand, as all known aggregation modes have their own advantages
and drawbacks it seems impossible to choose the best one especially when dealing
with a complicated hierarchical problem. Therefore, when dealing with a complex
task characterized by a great number of local criteria, it seems reasonable to use all
types of aggregation relevant to the considered problem.

Since the different final results may be obtained on the base of different aggre-
gating modes, the problems arises: how to aggregate such results?
For this purpose a new method for aggregation of aggregating modes was developed
in [36, 108].

For further analysis we choose the aggregation modes that are usually used as the
atomic ones for building more complex aggregating operations:

D1 = min(μ1(C1)W1 ,μ2(C2)W2 , . . . ,μn(Cn)Wn), (4.22)

D2 = μ1(C1)W1 ⊗ μ2(C2)W2 , . . . ,⊗μn(Cn)Wn , (4.23)

D3 = W1 ⊗ μ1(C1)⊕W2 ⊗ μ2(C2), . . . ,⊕Wn ⊗ μn(Cn), (4.24)

where ⊕ and ⊗ are the operations of fuzzy addition and multiplication, respectively.
Let us turn to our example of tool steel material selection problem. Since the

values of all local criteria and their weights are presented as the linguistic terms (see
Table 4.7 and 4.11) with the corresponding numerical representation (see Tables 4.1
and 4.2), the final aggregated assessments of compared tool steel materials obtained
using the aggregating modes (4.22)–(4.24) should be fuzzy numbers as well. All
arithmetical operations on fuzzy numbers needed to do this are well defined in [60],
and the method for fuzzy numbers comparison has been described in the previous
subsection. The results of calculations are presented in Table 4.13.
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Table 4.13 Results of aggregations with the use of modes (4.22)–(4.24)

Steel quality D1 D2 D3

V1 (0.000,0.382,0.675) (0.020,0.106,0.186) (0.000,0.191,0.577)

A2 (0.200,0.500,0.855) (0.077,0.186,0.257) (0.140,0.500,0.855)

D2 (0.000,0.382,0.675) (0.107,0.214,0.286) (0.350,0.700,1.000)

γ1 (0.200,0.574,0.881) (0.086,0.200,0.257) (0.140,0.574,0.881)

T1 (0.000,0.300,0.616) (0.040,0.123,0.214) (0.000,0.226,0.616)

Obviously, the different final fuzzy estimations for the compared tool steel mate-
rials were obtained with the use of different aggregating modes. Usually when the
results obtained using different aggregation modes are similar, this fact may be con-
sidered as a good confirmation of their optimality. In opposite case, an additional
analysis of local criteria and their ranking should be advised. It is easy to see that
such approach seems to be based on inexact reasoning, which implicitly takes into
account all aggregating modes relevant to the considering task.

To build the method for doing this more rigorously on the base of aggregation of
aggregating modes, the use of synthesis of type–2 and level–2 fuzzy sets defined on
the support composed of compared alternatives has been proposed in [36, 108]. It is
worth noting that in the framework of this approach we avoid the use of min, sum and
multiplication operations for aggregation of aggregating modes themselves, since
the use of them leads inevitably to the unlimited sequence of aggregation problems.

Let us recall briefly the basic definitions of type–2 and level–2 fuzzy sets.
As we deal with a restricted number of compared alternatives and aggregating
modes, it seems reasonable to consider only the discrete representation of type–2
and level–2 fuzzy sets.

Type–2 fuzzy sets were introduced by L. Zadeh in [146] as the framework for
mathematical formalization of linguistic terms. In essence, these sets are the exten-
sion of usual fuzzy sets (type–1) to the case when the membership function of fuzzy
subset is performed by another fuzzy subset.

More strictly, let A be the fuzzy set of type–2 on the support subset X . Then, for
any x ∈ X the membership function μA(x) of A is the fuzzy set with the membership
function fx(y). As the result, for the discrete set we get

μA(x) =
{

fx(yi)
yi

}
, i = 1, . . . ,n. (4.25)

Further elaboration of the theory of fuzzy sets of type–2 was presented in [59, 79,
140], where the main mathematical operations on such sets were defined. In [140],
it was proved that using Zadeh’s fuzzy extension principle, it is possible to build the
fuzzy sets of types–3,4 and so on.

Originally, level–2 fuzzy sets were introduced by Zadeh [144] and were more
elaborately studied in [46, 127].

As proposed by Zadeh [145], the level– 2 fuzzy set is a fuzzy set defined on
the support, elements of which are ordinary fuzzy sets. So if the fuzzy subset A is
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defined on a discrete set of xi, i = 1, . . . ,N, with the membership function μA(xi)
and xi are represented by ordinary fuzzy sets defined on discrete universe set of z j ,
j = 1, . . . ,M, with the corresponding membership function hi(z j) then A is a level–2
fuzzy subset defined by the following expressions:

A =
{

μA(xi)
xi

}
,xi =

{
hi(z j)

z j

}
. (4.26)

A =
{

max [μA(xi)hi(z j)]
z j

}
, i = 1, . . . ,N, j = 1, . . . ,M. (4.27)

It follows from expression (4.27) that the final degree of membership of z j in A
may be presented as:

μA(z j) = max
i

[μA(xi)hi(z j)] , j = 1, . . . ,M. (4.28)

Suppose there is a set of alternatives z j, j = 1, . . . ,M, and N types of aggregating
modes Di, i = 1, . . . ,N. Since usually in practice it is possible to estimate the relative
reliability of aggregating modes at least on a verbal level, it seems natural to intro-
duce the membership function μ(Di), i = 1, . . . ,N, representing expert’s opinions
about closeness of considered aggregating operator Di to the some perfect type of
aggregation, which can be treated as the best one or even “ideal” method of aggre-
gation. Then such an “ideal” method Dideal can be represented by its membership
function defined on the set of compared aggregation modes as follows:

Dideal =
{

μ(Di)
Di

}
, i = 1, . . . ,N. (4.29)

As for all alternatives z j , j = 1, . . . ,M, their estimations Di(z j) with the use of ag-
gregation modes Di, i = 1, . . . ,N can be calculated, each Di can be formally defined
on the set of comparing alternatives z j . As the result, each Di can be represented by
the fuzzy subset

Di =
{

Di(z j)
z j

}
, j = 1, . . . ,M, (4.30)

where Di(z j) is treated as the degree to which alternative z j belongs to the set
of “good” ones estimated with use of aggregating mode Di. Substituting (4.30) into
(4.29) with the use of definitions (4.26)-(4.28) we get

Dideal =
{

μideal(Di)
Di

}
, i = 1, . . . ,N, (4.31)

where
μideal(z j) = max

i
[μ(Di)Di(z j)], (4.32)
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Finally, the best alternative can be found as:

zbest = argmax
j

μideal(z j) (4.33)

In the case when μ(Di) or/and Di(z j) are fuzzy values, the expression (4.29)
represents an object which can be treated simultaneously as level–2 and type–2
fuzzy subset.

To illustrate, let us continue the consideration of our example. At first, we have
to calculate the values μ(Di), i = 1,2,3. As it has been stated above, the min-type
aggregation D1 is more reliable than the multiplicative aggregation D2 and both are
noticeably more reliable than additive aggregation D3. Such linguistic assessments
may be represented in the numerical form using the linguistic reciprocal pair com-
parison matrix [100] which in our case can be presented as in Table 4.14.

Table 4.14 Pair comparison of aggregating modes

Aggregation modes D1 D2 D3

D1 1 3 9
D2

1
3 1 9

D3
1
9

1
9 1

The number 3 in this Table indicates that min-type aggregation D1 is more re-
liable than multiplicative aggregation D2 an so on. Using the method proposed in
[32], from this matrix we get

μ(D1) = 0.7,μ(D2) = 0.25,μ(D3) = 0.05.

Thus, the “ideal” method of aggregation in our case can be presented as follows:

Dideal =
{

μ(D1)
D1

,
μ(D2)

D2
,

μ(D3)
D3

}
. (4.34)

In our case, the compared alternatives are tool steel materials V1, A2, D2, γ1, T1.
Hence, expressions (4.30) can be rewritten as follows:

Di =
{

Di(V1)
V1

,
Di(A2)

A2
,

Di(D2)
D2

,
Di(γ1)

γ1
,

Di(T1)
T1

}
, i = 1,2,3. (4.35)

The fuzzy values of Di(steel quality), i=1,2,3, steel quality ∈ {V1,A2,D2,γ1,T1}
are presented in Table 4.13. Finally, expression (4.31) in our example takes the form:

Dideal =
{

μideal(V1)
V1

,
μideal(A2)

A2
,

μideal(D2)
D2

,
μideal(γ1)

γ1
,

μideal(T1)
T1

}
, (4.36)

where μideal(steel quality) = max
i

(μ(Di) ·Di(steel quality)), i=1,2,3 and steel qual-

ity ∈ {V1,A2,D2,γ1,T1}.
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After calculations we get

μopt(V1) = max((0.000,0.267,0.472),(0.005,0.026,0.046),(0.000,0.009,0.028)),
(4.37)

μopt(A2) = max((0.140,0.350,0.598),(0.019,0.046,0.064),(0.007,0.025,0.420)),
(4.38)

μopt(D2)= max((0.000,0.267,0.472),(0.026,0.053,0.071),(0.017,0.035,0.050)),
(4.39)

μopt(γ1) = max((0.140,0.401,0.616),(0.021,0.050,0.064),(0.007,0.028,0.044)),
(4.40)

μopt(T1) = max((0.000,0.210,0.431),(0.008,0.030,0.053),(0.000,0.011,0.030)).
(4.41)

To find the maximal triangular fuzzy numbers in these expressions, the proba-
bilistic approach described in Subsection 4.2.3 has been used. The resulting

Fig. 4.14 Resulting evaluations of compared tool steel materials



136 4 MCDM with Applications in Economics and Finance

Table 4.15 Final probability relations

P(γ1 > A2) 77.31%
P(A2 > V1)=P(A2 > D2) 92.67%
P(V1 > T1) 80.28%

evaluations of compared tool steel materials are shown in Fig. 4.14. Comparing
them (see Table 4.15) we conclude that the best one is the steel γ1. The final ranking
order is γ1, A2, V1, D2, T1, but D2 and V1 have the same ranking.

This result is quite opposite to that obtained in [105, 134] where the steel γ1 is
only on the fourth place in ranking: A2, D2, T1, γ1, V1. This difference is easy to
explain. In the framework of our approach, the final ranking is based on aggregation
of aggregating modes producing own and different ranking (see Table 4.15). There-
fore, in general, our final ranking should differ from those obtained using particular
aggregating modes. Besides, we have assigned the lowest weight to the addition
type of aggregation used in [105, 134]. Hence, the contribution of this aggregation
to the final ranking is minimal.

The reasons for such weighting are partially pointed out at the beginning of this
subsection. What is worth noting in addition is that addition-type aggregation and
the so-called bounded difference aggregation max(0,μA(x)+ μB(X)− 1) might be
used only with a great prudence, since even in the case of only two local criteria
such aggregations frequently cannot reveal any preferences in Pareto-region (see
Fig. 4.15).

Fig. 4.15 Different types of aggregating operator



4.3 Multiple Criteria Investment Project Evaluation in the Fuzzy Setting 137

We think that just this negative feature of weighted sum type of aggregation was
the underlying cause of identical ranking of tool steel materials obtained in [105,
134] in spite of the fact that in [105] contrary to the work [134] instead of fuzzy
values their real valued representations were used (for the same initial data).

4.3 Multiple Criteria Investment Project Evaluation in the
Fuzzy Setting

In this section, we present the simplified example of investment project evaluation
using mainly financial parameters to stress the multiple criteria nature of this prob-
lem and the need for the use of fuzzy set theory tools even when we are dealing with
the traditional budgeting.

4.3.1 Local Criteria Building

Let us consider such important quantitative financial parameters as Internal Rate
of Return (IRR) and Net Present Value (NPV ). Since IRR is measured in percent-
ages, whereas NPV accounted in currency units, it seems impossible to compare
them while estimating the project. However, it can be done using the functions pre-
senting the local criteria based on these financial parameters. It is worth noting that
introducing of such function does not lead to the loss of the original information,
quite the contrary. Really, if x is some parameter of analyzed system representing
its quality to certain extent, then some scale of preference - presented on numerical
or verbal level - for this parameter inevitably exists at least in the decision maker’s
mind. Indeed, such preference type information is the key of decision-making and
local criteria are the mathematical tools for its formalization. Often they can be built
using the following simple and natural procedure.

For example, when considering IRR, it is easy to see that there always exists
some lower bound for permissible values of IRR, usually being equal to the bank
rate r. Further, there is some interval r ≤ IRR ≤ IRRm, where project’s quality rises
gradually along with increasing of IRR. Finally, it is expected that if IRR ≥ IRRm,
the project’s efficiency with respect to IRR is so high that it is difficult to make a
reasonable choice among such excellent projects.

To transform this description into mathematical form, the membership function,
which is the pivotal concept of fuzzy sets theory, may be used. The membership
function μ(IRR) representing the local criterion based on IRR for some analyzed
example is shown in Fig. 4.16.

The values of membership functions change from zero (for the worst values of
quality parameters) to maximum value equal to 1 in the area of best values of ana-
lyzed quality parameters. Hence, in the context of considered problem the values of
membership functions may be treated as degrees of quality parameter’s preference.
The linear form of membership function is not a dogma. However, in practice what
we usually know is only that some value is more preferable than other without any
certain quantitative estimation of this preference. In other words, in most cases we
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Fig. 4.16 Membership function representing the local criterion based on IRR

deal with the so-called “linear ordering” and for such situations the linear form of
criterion function is proved to be the best one [139]. Since the membership function
must be convex and normalized to 1, the only few forms of such function, presented
in Fig. 4.17, may usually be used. Of course, if the probability distribution of qual-
ity parameter is known, the corresponding membership function may have a more
complex form.

Consider a qualitative parameter presented in a verbal form, e.g., such as “eco-
logical impact on region”. It can be described by set of statements that linguistically
represent the degrees to which an analyzed project may affect the ecology of region:
“not significant”, “slightly significant”, “noticeably significant” and so on. As it was
shown in [84], no more then 9 such linguistic degrees may be used in practice. The
linguistic variables may be translated into mathematical form by presenting them in
the form of triangular of trapezoidal fuzzy numbers. This approach is in accordance
with the spirit of fuzzy sets theory and undoubtedly is very fruitful in a great num-
ber of applications, especially in fuzzy logic. Nevertheless, when dealing with the
decision-making problems, we usually do not have enough reliable information to
build such fuzzy numbers. Frequently, it is hard to choose the base for such triangu-
lar or trapezoidal fuzzy numbers, due to the absence of any evident reasons to prefer
some base as the best one. In fact, the set of linguistic terms such as “not significant”,
“slightly significant”, “noticeably significant” and so on in practice often represents
only some labels signed to the levels of the decision maker’s preference scale.

So the membership function shown in Fig. 4.18 seems to be a quite sufficient
level of abstraction for the formalization of local criteria in the majority of real-life
situations (of course, in some cases the use of more complex descriptions, e.g., on
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Fig. 4.17 Typical forms of membership functions

Fig. 4.18 Membership functions of qualitative local criterion

the base of type–2 fussy sets, may be preferable [41, 42]. Finally, we can see that all
the qualitative and quantitative local criteria can be naturally presented within the
universal scale of membership function.

To make our further analysis more transparent, consider simple example which
is not the description of any real projects estimation situation, but reflects good the
main advantages of the proposed approach.
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Assume we have four projects to be compared taking into account five quality pa-
rameters (see Fig. 4.19). Obviously, the number of parameters can be much greater
in a real situation, but four following main financial parameters are almost oblig-
atory for consideration: Internal Rate of Return (IRR), Net Present Value (NPV ),
Profitability Index (P), Payback period (PB). The Project Risk (R) is, generally
speaking, a complex aggregated characteristic estimated on a basis of the quanti-
tative data as well as on expert’s qualitative estimations. Details can be found in
[37].

Fig. 4.19 Parameters of the analyzed projects

For the sake of simplicity, suppose that in our example the risk is estimated in
such a way that it ranges from 0 to 1. All numerical values characterizing the con-
sidered projects are presented in Fig. 4.19. The next step is the building of the mem-
bership functions. In fact, the decision maker has to select an appropriate type of
function (see Fig. 4.17) and choose no more than four reference points on a scale of
the analyzing parameter to define completely the corresponding membership func-
tion. One may assign the reference points on the basis of expert’s evaluations, sta-
tistical analysis of similar projects or strong (e.g., banking) standards and so on. We
shall try to use the simpler approach, because in our case we just need to choose the
best of four projects. In our example (see Fig. 4.19), the worst value of NPV among
all the projects is equal to 2500 and the best one is 4000. Therefore, is seems rea-
sonable to assume for the first reference point x1=2000, i.e., less then 2500 because
we do not want to reject the project No 1 when using some types of local criteria ag-
gregations. Obviously, for the next point it is quite natural to assume x2=4000, and
to obtain a complete description of membership function we introduce an auxiliary
point x3=6000 (see Fig. 4.20).

The other membership functions for the considered example are built in a similar
way.

4.3.2 Ranking the Local Criteria

Since in the real-world decision problems local criteria are usually expected to pro-
vide different contributions to the final aggregated estimation of alternatives, an
appropriate method for the local criteria ranking is needed. It should be emphasized



4.3 Multiple Criteria Investment Project Evaluation in the Fuzzy Setting 141

Fig. 4.20 Building the membership functions

that the simple qualitative ordering of local criteria is not enough for practical pur-
poses: usually some quantitative indices representing the local criteria contributions
to the overall alternative estimation are necessary. The experience shows that quan-
titative ranking of criteria is more difficult task for a decision maker than building
the membership function. Though it is usually hard for decision makers to rank
a set of local criteria as a whole, they usually can confidently state preference, at
least verbally, when comparing only a pair of criteria. Therefore, the proper criteria
ranking technique should use this pair comparison in a verbal form. Such tech-
nique is based on the so-called matrix of linguistic pair comparisons, proposed by
T.Saaty [100]. The procedure of building this matrix for our example is illustrated in
Fig. 4.21.

Fig. 4.21 Matrix of pair comparison
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Of course, only 9 basic verbal estimates are used. Linguistic scales used in such
estimations may have different sense, but a number of the scale levels (linguistic
granules) cannot be more than 9 in any natural languages: this is an inherent fea-
ture of human thinking [13]. Nevertheless, to be able to make calculations, some
natural numbers are assigned to verbal estimations. It is important that numbers in
Fig.21 are shown only to illustrate our theoretical considerations. In practice, it is
not advised to show any numbers to the experts. More reliable result can be ob-
tained when only the linguistic opinions of experts are taken into consideration. The
matter is that if we propose to a group of experts to estimate some known objects,
their verbally expressed opinions usually are quite similar. We cannot expect any
other result: these people are learned using the same manuals, read the same arti-
cles, worked in the same field. However, if we force them to use some numbers for
the estimations (usually it is not easy to do, since nobody loves numbers) we do
not obtain any consensus [150]. The matter is that “In the beginning was the Word”
(The Holy Gospel of Jesus Christ). Numbers had appeared much later and during
last few millenniums, which are a minute from historical viewpoint, people have
not learned to use numbers properly yet. So far we are thinking using words, not
numbers, and even trying to teach our computers this trick.

More strictly, let Ci, i = 1 to n, be local criteria to be ranked. Then the pair
comparison matrix A can be created such that any entry ai j ∈ A represents the rel-
ative preference of criterion Ci when it is compared with the criterion Cj. The pair
comparison matrix is reciprocal, meaning that ai j = 1/a ji and aii = 1. If αi and α j

represent values of ranks, then in the perfect case with a consistent matrix we have
ai j = αi

α j
, ai j = aikak j and the ranks αi , i = 1 to n, can be calculated easily. Unfor-

tunately, in real-world situations, we usually have only approximate estimates of ai j

and actual values of ai j may be unknown. Then the question arises: how to find αi,
i = 1 to n, such that

ai j ≈ αi

α j
. (4.42)

Various approaches have been proposed to obtain these ranks. In [19], they were
roughly classified as follows: the eigenvector method; the least squares method
(LSM); the logarithmic least squares method (LLSM); the geometric row means
method (GRM); the weighted least squares method (WLSM) and a category of meth-
ods that involve only simple arithmetic operations: the row means of normalized
columns approach [100], the normalized row sum and the inverted column sum
methods [77].

The relative advantages and drawbacks of these methods are reviewed and dis-
cussed in the literature not only for the case of real valued ai j [32], but when the
entries of pair comparison matrix are represented by fuzzy numbers [19, 83]. Nev-
ertheless, since in practice we deal with an approximate equality (4.42), the natural
criterion of pair comparison efficiency can be presented as

S =
n

∑
i=1

n

∑
j−1

(ai j − αi

α j
)2, (4.43)
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where αi are the ranks obtained using considered method. For this reason, it is quite
natural to use the method based on the minimization of S, i.e.,

S =
n

∑
i=1

n

∑
j−1

(ai j − αi

α j
)2 → min, s.t.

n

∑
i=1

αi = 1 (4.44)

(sometimes the restriction
n
∑

i=1
αi = n is used). Using rich experimental data, it was

shown in [130] that this method (LSM) is the best one as it provides the least final
values of S. On the other hand, in some cases the simplest row means of normalized
columns method [100]

αi =

n

√
n
∏
j=1

ai j

n
∑

i=1

n

√
n
∏
j=1

ai j

(4.45)

may produce results good from practical viewpoint [130]. Of course, the criteria
weights in some special cases may be interpreted differently. Some not exhaustive
classification of such possible interpretations and the overview of corresponding
ranking methods are presented in [30]. However, in our case the method based on
the expressions (4.44) seems to be completely corresponding to the nature of the
problem and sufficiently justified mathematically.

4.3.3 Numerical Evaluation of the Comparing Investment
Projects

As in Subsection 4.2.4, we shall use three most popular aggregation modes: D1 =

min(μ1(C1)α1 ,μ2(C2)α2 , ...,μn(Cn)αn), D2 =
n
∏
i=1

μi(Ci)αi , D3 =
n
∑

i=1
αiμi(Ci).

The results of multiple criteria evaluation of compared projects using the data
and methods described in previous subsections are presented in Fig. 4.22.

Observe that the min-type and multiplicative aggregations give us similar result-
ing evaluations, which are far from those obtained using weighted sum type of ag-
gregations. It is important that the proposed approach allows us to estimate directly
the contribution of each local criterion to the generalized project assessment (see
Fig. 4.23).

As the aggregation modes D1, D2, D3 provide different numerical evaluations
of compared four projects, a natural approach to this problem is the aggregation
of these modes to get the compromise final evaluation. For this purpose we use the
method presented in Subsection 4.2.4. This method is based of the synthesis of type–
2 and level–2 fuzzy sets defined on the support composed of compared alternatives,
which in the considered case are the analyzed investment projects. The central in
this approach is a concept of “ideal” method of aggregation presented in the form
of mathematical object which can be treated as the level–2 fuzzy set of type–2:
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Dideal =
{

μ(D1)
D1

,
μ(D2)

D2
,

μ(D3)
D3

}
,

where the values of μ(Di) represent expert’s opinions about closeness of consider-
ing aggregating operators to the some perfect type of aggregation which can be
treated as the best or “ideal” method for aggregation. As it has been shown in
Subsection 4.2.4, the min-type aggregation D1 is more reliable one than the mul-
tiplicative aggregation D2 and both are noticeably more reliable than the additive
aggregation D3. Therefore, we have used the matrix of pair comparison of these ag-
gregation modes presented in Table 4.14. As in Subsection 4.2.4, using this matrix
we get: μ(D1) = 0.7, μ(D2) = 0.25, μ(D3) = 0.05.

Fig. 4.22 Resulting evaluations of the projects presented in Fig. 4.19 (min-type, multiplica-
tive and additive aggregations are denoted by D1,D2,D3, respectively)

Fig. 4.23 The contributions of local criterion to the final project’s evaluation
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In the considered case, Exp.(4.30) takes the form

Di =
{

Di(Pro ject1)
Pro ject1

,
Di(Pro ject2)

Pro ject2
,

Di(Pro ject3)
Pro ject3

,
Di(Pro ject4)

Pro ject4

}
, i = 1,2,3.

Hence, Dideal can be presented as

Dideal =
{

μideal(Pro ject1)
Pro ject1

,
μideal(Pro ject2)

Pro ject2
,

μideal(Pro ject3)
Pro ject3

,
μideal(Pro ject4)

Pro ject4

}
,

where μideal(Pro ject j) = maxi(μ(Di) ·Di(Pro ject j)), i = 1,2,3.
Finally, after all calculations using the results from Fig. 4.22 we obtain

Dideal =
{

0.18
Pro ject1

,
0.05

Pro ject2
,

0.42
Pro ject3

,
0.31

Pro ject4

}
.

Thus, the third project is the best one. Factually, we can infer the same result
analyzing the data presented in Fig. 4.22, but it would be hard to do this for a greater
number of projects or/and aggregating operators under consideration.

4.3.4 Hierarchical Structure of Local Criteria

As it has been noticed above, many of real-life problems of investment evaluation
are not only multiple criteria, but also multi-level (hierarchical) ones. The method
presented in previous subsections allows us to build in a natural way the branched
hierarchical structures as in Fig. 4.24.

It can be seen that each criterion of upper k level is built on a basis of local criteria
of underlying (k−1) levels using one of the aggregation methods or their general-
ization as proposed in Subsection 4.2.4. The general expression for the calculation
of criteria on intermediate levels of hierarchy is as follows:

Dk,in−1,in−2,...,ik = fk,in−1,in−2,...,ik(Dk−1,in−2,...,ik ,1,αk−1,in−2,,...,ik ,1, ...,

Dk−1,in−1,,in−2,...,ik ,mk,in−1 ,in−2,...,ik
,αk−1,in−1,in−2,...,ik ,mk,in−1,in−2 ,...,ik

)

where fk,in−1 ,in−2,...,ik
is an operator of criteria aggregation, mk,in−1,in−2,...,ik

is the num-

ber of of local criteria on (k − 1) level, aggregated to intermediate local criterion
Dk,in−1,in−2 ,...,ik

. It is worth noting that the values of Dn−1,in−1 are always in the inter-

val [0,1] and may be interpreted as some intermediate local criteria assessments. On
the lowest level of hierarchy the initial membership functions representing the local
criteria based on origin parameters of project’s quality are used, i.e.,

D1,in−1,in−2,...,i1 = f1,in−1,in−2,...,i1(μ0,in−1,in−2,...,i1,1,α0,in−1,in−2...,i1,1, ...,
μ0,in−1,in−2,...,i1,m1,in−1,in−2 ,...,i1

,α0,in−1,in−2,...,i1,m1,in−1 ,in−2,...,i1
)

where m1,in−1,in−2,...,i1
is the number of initial local criteria on the lowest level.
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Fig. 4.24 Hierarchical structure of local criteria

The method for building the hierarchical local criteria systems is based on the
multiple criteria approach described in previous subsections and generalizes it. The
method is implemented in the form of user-friendly software (see Fig. 4.25).

It is important that presented method not only gives us some generalized quanti-
tative evaluation of a project as a whole, but makes it possible to assess the contri-
bution of each local criterion to this final evaluation.

4.4 Fuzzy MCDM and Optimization in the Stock Screening

This section is devoted to the application of the methods presented above in sec-
tions 4.1-4.3. A new method for the stock ranking based on the multiple criterion
decision making and optimization is proposed. Two general criteria are used in the
analysis. The first of them is based on the financial indices and may be treated as
the criterion of firm’s “health” or its financial performance. The second one is the
two-criteria performance of firm based on the stock prices. It represents the firm’s
market success. The method rests on the selection of the stocks with a great corre-
lation of the firm’s financial performance and its market success. The local criteria
are built in the form of membership functions of corresponding fuzzy subsets. Two
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Fig. 4.25 Building the hierarchical local criteria system

different strategies for stock ranking and three most popular methods for local crite-
ria aggregation are compared. The method is addressed to those who prefer to select
for a portfolio only the firms which demonstrate the closeness of their overall finan-
cial performance in the past year and success in the stock exchange in the following
year.

Observed onrush of global stock market provides the new possibilities for the
successful investment. On the other hand, the pressing problem -the consequence
of market growth-is the choosing of appropriate stocks or stock selection. Since
the financial performance as well as the stock returns of almost all firms, which
are worth mentioning, is now presented in Internet, the stock screening programs
become popular. They make it easier and quicker to tailor a portfolio to fit the de-
sired style and preferences of the investor [3]. The user can customize a model to
include up to 20-40 different indicators simultaneously and can scan on relative val-
ues, e.g., the stocks with the highest relative strength, or on fundamental variables,
like earnings per share momentum. In many cases, such approaches based on the
single selecting criterion provide good results [44], but in general, the stock selec-
tion problem seems to be a multiple criteria one. In practice, an investor deals with
a set of local criteria based explicitly or implicitly on the different financial rations
and stock return. Since the preferences of the investor concerned such criteria often
are presented in the verbal form, the problem is usually charged by the uncertainty
of subjective type. Therefore, now the researches are focused on the synthesis of
fuzzy logic methods and multiple criteria approaches in the fuzzy setting. In [80],
the problem is considered in context of corporate acquisition process. In the pro-
posed fuzzy system, its hierarchical structure is confirmed by the user along with
the financial categories and ratios to populate it. Each financial category or ratio is
given a certain degree of influence over the decision-making process. The two level
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hierarchical system is proposed. The number of financial categories, their priorities
and where they fit in the hierarchy determine the structure of the system. Therefore,
four main categories have been identified in [80]: profitability, liquidity, financial
efficiency and gearing. These categories were used in the fuzzy inference system
based on the Takagi-Sugeno-Kang (TSK) method [120, 121, 122]. Now, neural net-
works have become a popular tool for financial decision making [64, 70, 74, 131].
There are mixed research results concerning the ability of neural networks to predict
financial performance. Due to a variety of research design and evaluation criteria,
it is difficult to compare the results of different studies [43, 94]. However, the re-
cent results presented in [68] make it possible to evaluate an efficiency of neural
network techniques for stock selection. In the proposed model, the predictor base
includes 16 financial ratio and 11 macroeconomic variables. Using representative
database containing the firm’s financial performance and macroeconomic variables,
the author with a help of neural network techniques extracted the rules which can
select the good stocks. It is important that the resulting rules were presented in the
linguistic form, although fuzzy logic is not used in this neural network model. The
direct fuzzy multiple criteria method for stock selection was used in [123]. This pa-
per proposes a new method for group decision making in the fuzzy environment.
Some modification of Chen’s method [21] is proposed and it is shown how this
approach can be used for stocks selection on ISE (Istanbul Stock Exchange). The
rating of each stock and the weight of each criterion are presented in the form of
linguistic terms represented by triangular fuzzy numbers. Six well known financial
rations (market value of firm/earnings before amortization, interest and taxes ratio,
return on equity (ROE), dept/equity ratio, current ratio market value/net sales, price
earnings ratio (P/E)) were used as the base for the multiple criteria performance
of analyzed firms. It is easy to see that in the framework of this approach there is
no intention to confront the parameters characterizing in general the firm’s financial
“health” with those performing its success in the stock exchange.

Summarizing, we can say that there is no common point of view on the problem
of stock selection. Moreover, in our opinion, the searching for the “best” method
of stock selection is rather senseless endeavor since in any case the method should
reflect the decision makers’ preferences, him/her acceptation of risk and so on.

Nevertheless, there are common points in the analyzed papers. It is easy to see
that the stock selection problem is a multiple criteria one. There are many ap-
proaches to the solution of this problem, but in practice, the best results provides
the synthesis of different methods. Bollinger and Pictet [12] used the synthesis of
known ELECT REIII, SURMESURE and AGATHA methods for multiple criteria
decision analysis and land-filling technologies for waste incineration residues in
Switzerland. Gomes et al. [45] proposed a multicriteria decision support system
based on multiattribute utility theory and preference modeling. Chen et al. [24] pro-
posed a case-based distance model to solve screening problems in multiple criteria
decision aid.

In this section, we factually use the felicitous definition proposed in [24]: “Screen-
ing is a process of multiple-criteria decision aid (MCDA) in which a large set of
alternatives is reduced to a smaller set that most likely contains the best choice”.
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Beynon et al. [8] proposed a synthesis of AHP and the Dempster-Shafer theory
(DST ). A major advantage of incorporating DST into the AHP lies in the reduction
of the complexity of the multiple criteria problem.

As the local criteria and methods for their mathematical formalization and ag-
gregation depend on the subjective decision maker’s preferences, the use of fuzzy
sets theory tools seems quite natural. Therefore, the fuzzy extensions of different
classical MCDM approaches are now frequently used for the solution of real- world
problems. The good examples of application of the fuzzy AHP in different fields are
presented in [17, 50]. The use of the specificity of fuzzy sets theory methods makes
it possible to enhance the performance of multiple criteria analysis. Chiou et al. [26]
proposed to use the so-called non-additive fuzzy integral, to cope with the MCDM
problem particularly while there is dependence among local criteria.

Two deferent sources of information can be used for stock selection: financial
rations and stock prices. The final results of selection can be obtained with the use
of teaching the decision making system based on the comparison of firm’s financial
performance with its success in the stock exchange. The teaching of decision making
system can be carried out with the use of optimization methods. The incorporation
of optimization methods into MCDM is widely used in different applications. The
good results of such synthesis recently have been obtained in multiobjective decision
making process for supplier selection and order allocation [34], optimal blending
for beneficiation of coal [16], aggregate production planning [115], fuzzy multi-
objective transportation problems [1], fuzzy R&D portfolio selection [132], and in
the land-use planning in agricultural system [10].

Here we propose a new approach to stock selection and screening taking into
account above mentioned circumstances. The method we have developed is not the
“best” one. As any other method, it can be accepted as appropriate one by some
investors and completely rejected by other ones. We address our method to those
who prefer to choose for a portfolio only such firms which demonstrate the closeness
of their overall financial performance in the past year and the success in the stock
exchange in the following year. Of course, our approach can reject many of possible
market championships, but we point out that proposed method is addressed to rather
cautious investors.

4.4.1 Multiple Criteria Performance of Firms

To evaluate the firm’s financial performance, we have used the financial rations from
database comprising the data of 162 firms (subsector of the biotechnology of US
economy). The next 12 financial rations were chosen for analysis:

• EPSTTM2TTM (Earnings per share (EPS) Percent Change, TTM vs. Prior TTM
(%))

• RTTM2TTM (Revenue Percent Change, TTM vs. Prior TTM (%))
• ChPTMgn (Change in Pretax Margin Positive)
• ChROI (Change in Return on Investment)
• ChSO (Change In Shares Outstanding)
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• EPSQ2Q (EPS Percent Change, Most Recent Quarter vs. Prior Quarter
• DCS (Depreciation of Capital Spending)
• MKTCAP (Market Capitalization)
• PTMgn (Pretax Margin)
• ROI (Return On Investment)
• EPSQ2TTM (EPS Percent Change, Most Recent Quarter vs. Last Twelve Months)
• RQ2TTM (Revenue Percent Change, Most Recent Quarter vs. Last Twelve

Months)

The detailed descriptions of these rations can be found in [51, 52]. It is worth noting
here that proposed set of financial rations is not the “best” and exhaustive one. When
choosing the rations, we have used mainly the well known textbooks such as [95]
and other literature sources [38, 61, 96, 124]. The other criterion of choice was the
availability of the data in Internet. This criterion is essentially important as we deal
with the stocks screening. The results of correlation analysis we have made for one
year show that the strong correlation between some rations takes place.

Therefore, using the results of correlation analysis and some additional informa-
tion from [38, 61, 95, 96, 124] concerned with an appropriateness of correlating
rations the next 7 most uncorrelated financial rations were selected for the subse-
quent analysis: EPSTTM2TTM, ChSO, EPSQ2Q, DCS, MKTCAP, EPSQ2TTM,
RQ2TTM.

4.4.2 General Criterion of Firm’s “Health” Based on Financial
Rations

To build the local criteria based on financial rations r they were divided into two
groups: the rations enhancing the firm’s performance along with rising of their val-
ues and the rations depressing the performance with rising of their values. For all
rations we have found the lowest and highest values in the available database con-
sidering all analyzing firms. These values were used as the base for building the
local criteria. For the first group of rations, the so-called profit type local criteria
[21] were built in the form of membership functions μ(r) (in terms of fuzzy sets
theory) rising from 0 to 1 in intervals between the lowest and highest values of the
corresponding financial rations we have found in the database. Similarly the cost
type local criteria were built. Examples are presented in Fig. 4.26.

It is worth noting that sometimes, e.g., when analyzing the earnings per share
(EPS) ratio, the linear form of membership function does not well reflect the fi-
nancial performing of firm and trapezoidal shape of function seems to be a more
appropriate one. On the other hand, such situations may be considered rather as the
exceptional cases, although there are no strong restrictions on the form of member-
ship functions is the framework of the proposed approach.

When all introduced seven local criteria μi(ri) of firm’s financial performance
based on the selected financial rations ri, i=1 to 7, are calculated, the problem arises:
how to aggregate them into the general criterion of financial performance taking into
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Fig. 4.26 Profit type criterion μ(EPSQ2Q) based on financial ratio EPSQ2Q and cost type
criterion μ(ChSO) based on financial ratio ChSO

account they ranks (weights), αi, i=1 to 7 ? To make the results of our analysis more
reliable, three most popular aggregating modes have been used:

D1 =
1
7

7

∑
i=1

αiμi, D2 =
7

∏
i=1

μαi
i , D3 = min

(
μα1

1 ,μα1
1 , . . . ,μα7

7

)
, (4.46)

where
7
∑

i=1
αi = 7.

Since there exists a pluralism in choosing of appropriate aggregating mode, some
comments are needed. Generally, the choice of aggregating mode is a context de-
pendent problem [148]. Nevertheless, now the most popular method of aggregation
is the weighted sum (D1 in our case). It is used in many well known decision mak-
ing models such as AHP [100], multi-attribute utility analysis [91] and so on, but
often without any critical analysis. On the other hand, in some fields, e.g., in eco-
logical modeling, the weighted sum is not used for aggregation [116]. The reason
behind this is that in practice there are cases when if any of local criteria is totally
dissatisfied then analyzed alternative should be rejected from consideration at all.
The detailed analysis of the advantages and drawbacks of aggregating modes can
be found in [36, 108]. It is shown in these papers that, in general, the most reliable
aggregation approach is the use of Yager’s [138] min-type operator D3. The mul-
tiplicative mode D2 appears to be somewhat less reliable and, finally, the additive
(weighted sum D1) method may be considered as unreliable and insensitive when
choosing an alternative in Pareto-region (see also Subsection 4.2.4). On the other
hand, as all known aggregation modes have their own advantages and drawbacks, it
seems impossible to choose the best one especially when dealing with complicated
hierarchical problem. Therefore, when dealing with a complex task characterized
by a great number of local criteria, it seems reasonable to use all relevant to the
considered problem types of aggregations. Since the different final results may be
obtained on the base of different aggregating modes, the problems arises: how to
aggregate such results? For this purpose, recently a new method for aggregation of
aggregating modes [36, 108] based on the synthesis of type–2 and level–2 fuzzy sets
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was proposed (see also Subsection 4.2.4). On the other hand, if the results obtained
using different aggregation modes are similar, this fact may be considered as a good
confirmation of their optimality. In opposite case, an additional analysis of local
criteria and their ranking should be advised. Therefore, here we prefer to use the
different aggregating modes separately. The main reason is that in the stock screen-
ing we deal with a great number of them and our aim is to select only few stocks
meeting the most rigorous conditions, i.e., the stocks which can be estimated as the
“best” ones using all relevant aggregation modes. In our case, an “ideal” firm should
be characterized by the maximal values (equal to 1) of all local criteria. Therefore,
for such “ideal” firm, the values of general criteria obtained using the aggregation
modes D1,D2,D3 should be equal to 1. Obviously, the performance of firms which
we can qualify as the “good” ones should be close to performance of “ideal” firm
(probably not existing). Hence, the values of the general criteria D1,D2,D3 for the
“good” firms should be close to 1.

To calculate the general criteria of firm’s “health” (4.46) based on the financial
rations, the values of local criteria ranks αi, i=1 to 7, are needed. The are two ap-
proaches to estimate αi we shall compare: the first one is based on the expert’s
opinions and the so-called matrix of linguistic pair comparisons, the second one
uses the teaching procedure formulated as the multiple criteria optimization task.

4.4.3 Two-Criteria Performance of Firm Based on Stocks Prices
History

In addition to the general criteria of the firm’s “health” described in previous sub-
section, we introduce here the general criterion of firm’s performance based on its
stocks prices history during the year after the date when we have estimated the firm’s
“health” taking into account only financial rations.

It worth noting that such investment horizon (one year) is chosen only for the
simplicity. There are no any restrictions on the investment horizon in the framework
of the proposed approach. Moreover, the analysis could be carried out using the
firm’s history in the last 3-5 years. Theoretically, such approach based on more his-
torical data should provide more reliable results. On the other hand, we can see the
decreasing of the durations between great market crises (financial crisis of 1997-
1998, dot.com crisis of 2000, the great crisis of 2008 and the local crises of less
importance). Therefore, the choice of relatively short investment horizon (one year)
and analyzing the firm’s “heals” only in the last year seems as an acceptable com-
promise, especially taking into account that the aim of this section is to present only
a new approach to the stock screening. Thereupon, all the results of stock screening
we have obtained analyzing the subsector of biotechnology of US economy should
be treated only as an illustration.

As it is impossible to make only proper decisions in the stock market, the total
result of trading should range from maximal losses ML (if all the decisions are
worst ones) to the maximal possible returns MR that can be received if an investor
makes only the best decisions during a year. We have used the values ML and MR to
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build the local criteria characterizing our intentions to reduce the risk and maximize
incomes, respectively. To estimate ML and MR the month bars (high and low month
stock prices) were used with the assumption that investor makes a decision monthly.
For the simplicity, suppose that the starting investment is of $100 000 and each
month an investor should buy or sell using the actual fund he/she possesses as the
result of all previous financial transaction based on the initial investment of $100
000. As usually there may be restrictions on the short sells for some stocks, we
except here the possibility of short sells at all. The month bars for the ticker(firm)
BBY and illustration of the best and worst decisions are presented in Fig. 4.27.

Fig. 4.27 Month bars of the ticker BBY (2004)

For this ticker, the interval of possible results of trading is [ML,MR] = [-65918,
291353]. Such intervals have been calculated for all considered stocks (subsector
of the biotechnology of US economy). The left bounds of these intervals represent
the financial risk as a consequence of poor decisions, whereas the right bounds are
maximal possible returns. Hence, they can be used for building the local criteria of
risk minimization μR and profit maximization μP. For this purpose, we calculate the
values MLmax = maxi{abs(MLi)} and MRmax = maxi{abs(MRi)}, i =1 to m, where m
is the number of tickers in the considered subsector. The corresponding local criteria
are presented in Fig. 4.28.

The general criterion of firm’s performance DP based on its stocks prices history
we have built as the aggregation of local criteria μR and μP. As in the previous
subsection, three types of aggregation have been considered for each ith stock:

D1Pi = αRμR(MLi)+ αPμP(MRi), D2Pi = μR(MLi)αR · μP(MRi)αP ,
D3Pi = min(μR(MLi)αR ,μP(MRi)αP) . (4.47)
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Fig. 4.28 Local criteria of risk minimization μR and profit maximization μP

Taking into account that risk minimization is usually a more important intent
than profit maximization and opinions of outside experts we have assumed αR=0.65,
αP=0.35 (αR +αP=1).

4.4.4 The Comparison of Stocks Ranking Methods

4.4.4.1 The Method Based on Expert’s Assessments of the Local Criteria
Ranks

The method for calculating the general criterion of firm’s performance based on its
stocks price history is described in the previous subsection, whereas for the esti-
mation of the general criterion of firm’s “health” based on the financial rations, the
values of local criteria ranks are needed. These ranks may be obtained with the use
of expert’s opinions about the local criteria relative importance. Experience shows
that quantitative ranking of the criteria is a more difficult task for a decision maker
than building membership functions. Though it is hard for decision makers to rank
the set of local criteria as a whole, they usually can confidently determine the pref-
erence, at least verbally, when comparing only a pair of criteria. Therefore, a proper
criteria ranking technique should use this pair comparison in the verbal form. Such
technique is based on the so-called matrix of linguistic pair comparisons which is
the basic mathematical tool of sound AHP method developed by Saaty [100]. As
this technique is described in details in the textbooks [101], here we only illustrate
it briefly.

Let X ,Y,Z be comparing local criteria. If X is rather more important than Y then
to this relation the number 3 is assigned and the value 1

3 is assigned to the opposite
statement “Y is rather more important than X”. If Y is definitely more important
than Z then to this relation the number 5 is assigned and the value 1

5 is assigned to
the opposite statement. Indeed, the number 7 is assigned to the linguistic assessment
“X is strongly more important than Z” and the value 1

7 is assigned to the opposite
statement.

Usually only 9 basic verbal estimates are in use. Linguistic scales used in such
estimations may have different sense, but a number of the scale levels (linguistic
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granules) cannot be more than 9 in any natural languages: this is an inherent feature
of human thinking [84]. There were different methods for obtaining the ranks from
matrix of pair comparisons proposed in the literature. For our purposes, we prefer
to use the method presented in [32]. The reasons behind this choice are based on the
recent literature review [36]. After analysis of the literature [38, 61, 95, 96, 124] and
opinions of outside experts the matrix of pair comparisons of local criteria based on
the financial rations has been built (see Table 4.16).

Table 4.16 Reciprocal matrix of pair comparisons of local criteria

EPS
TTM2TTM

ChSO EPS
Q2Q

DCS MKT
CAP

EPS
Q2TTM

RQ2
TTM

EPSTTM2TTM 1 9 1/2 2 8 1/3 3
ChSO 1/9 1 1/7 1/5 1/2 1/8 1/4

EPSQ2Q 2 7 1 3 6 1/2 4
DCS 1/2 5 1/3 1 4 1/4 2

MKTCAP 1/8 2 1/6 1/4 1 1/7 1/3
EPSQ2TTM 3 8 2 4 7 1 5

RQ2TTM 1/3 4 1/4 1/2 3 1/5 1

Finally, using this matrix and the method proposed in [32] (see also Subsection
4.2.4) the following ranks had been calculated: α1 = 1.081 ( EPSTTM2TTM), α2 =
0.205 (ChSO), α3 = 1.666 (EPSQ2Q), α4 = 0.67 (DCS), α5 = 0.243 (MKTCAP),
α6 = 2.663 (EPSQ2TTM), α7 = 0.477 (RQ2TTM). The ranks were normalized as
follows:

1
7

7

∑
i=1

αi = 1.

Using the obtained ranks and values of local criteria based on the financial ra-
tions and stocks price history, the values of generalized criteria D1,D2,D3 and
D1P,D2P,D3P described in previous subsection were calculated for each of 162
considered firms (subsector of the biotechnology of US economy). The results are
presented in Fig. 4.29-Fig. 4.31.

It is seen that rather there is no considerable correlation between Di,DiP, i=1 to 3.
We have confirmed this (null) hypothesis using standard statistical methods. For all
pairs Di,DiP, i=1 to 3, the Pearson product-moment correlation coefficient is equal
to 0 with significance level of α = 0.05. Since the Pearson’s approach concerns
with the linear relationship between variables, in addition the Spearman correlation
coefficient has been calculated. Its value is close to 0 too. Generally, this result is
not surprising as the firm’s market success is not wholly determined by its finan-
cial performance because of strong influence of “external” factors (public relations,
macroeconomic situation, rumors and so on).

Therefore, our “cautious” approach to the stocks selection is based on the as-
sumption that the “good” firms should demonstrate the closeness of their overall
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financial performance in the past year and success on the stock exchange in the fol-
lowing year. In such a way, it is possible to reject from consideration all “unsafe”
firms, i.e., such ones that their market success is based rather on the public rela-
tions, subjective opinions of market experts, rumors and other sometimes unreliable
information. Hence, taking into account that 0 ≤ D1,D2,D3,D1P,D2P,D3P ≤ 1 , the
“good” firms are those that gathered around the diagonal lines in Fig. 4.29-Fig. 4.31.

Fig. 4.29 “Good” firms (black points) selected using weighted sum type of aggregation and
pair comparison matrix for local criteria ranking

The channels in these figures are chosen (using the corresponding numerical al-
gorithm) in such a way that each of them contains only 20 “good” in above sense
firms (black points). Therefore, only 20 firms with minimal difference between their
generalized criteria based on the financial rations and stocks price history were se-
lected using all considered methods for local criteria aggregation. It is seen that the
widths of the channels of “good” firms are small enough to conclude that the se-
lected firms are really “good” ones in our case. Of course, we choose here the 20
“good” firms in the channel only to illustrate our method. In practice, the choice of
the number of “good” firms depends on the investment policy and many other ob-
jective and subjective factors. Obviously, the greater the values of D,DP, the better
is the firm contained in the channel. On the other hand, we have three analyzing
channels and the most of firms can be placed only in one of channels shown in Fig.
4.29-Fig. 4.31. Therefore, to make the results of our analysis more reliable, we are
looking for the firms containing simultaneously at lest in two channels. The results
of analysis are presented in Table 4.17. It is worth noting that in our case there are
no firms placed simultaneously in three considered channels.
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Fig. 4.30 “Good” firms (black points) selected using multiplicative type of aggregation and
pair comparison matrix for local criteria ranking

Fig. 4.31 “Good” firms (black points) selected using Yager’s aggregation and pair compari-
son matrix for local criteria ranking
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Table 4.17 Best selected firms (using pair comparison matrix for local criteria ranking)

D1 and D2 D1 and D3 D2 and D3

ICST MPAD DPAC
KLAS NVLS

CYMI
DPMI
FLEX
ACLS
ZRAN

It is seen that only 10 firms throughout considered subsector containing 162 firms
have been finally selected. Thus, the proposed method for stock selection seems to
be enough rigorous one. Of course, the wider channels can be used and as a con-
sequence, the more firms can survive the selection. In our case, the tickers MPAD,
DPAC, ACLS, ICST, ZRAN may be considered as the best ones since they are
characterized by the largest market success (detailed analysis is carried out in the
following subsection).

4.4.5 Stock Ranking with the Use of Multiple Criteria
Optimization

The main problem we are faced with when using approach presented in previous
subsection is the diversity of experts opinions about the values of ranks αi, i = 1
to 7. Taking into account their subjective origin, it seems reasonable to use the ap-
proaches based on fuzzy [82, 83] or interval presentation of pairwise comparison
matrix. As the result, the fuzzy or interval ranks can be obtained which reflect the
variety of opinions. Another approach we prefer to use is based on the looking
for such ranks αi which minimize the difference between the general criterion of
firm’s financial performance and the general criterion of their market success on the
considering group of firms. This approach allows us to assign the greater ranks to
those local criteria based on financial rations which better predict the firm’s mar-
ket success and reject unimportant (not influencing) local criteria. For the chosen
aggregating mode this difference is formulated as follows:

Si(α1,α2, ...,α7) =
m

∑
j=1

(Di j(α1,α2, ...,α7)−DiP j)2, i = 1.2.3, (4.48)

where m is the number of firms in analyzing subsector of economy. So we deal with
the following optimization problem:

(α1,α2, ...,α7)i,opt = argmin(Si(α1,α2, ...,α7), i = 1.2.3, (4.49)
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1
7

7

∑
i=1

αi = 1. (4.50)

The well known direct random search method [126] has been modified to develop
the numerical algorithm for the solution of this optimization problem. The special
procedure has been used for random choosing the vector (α1,α2, ...,α7) in such
a way that the constraint (4.50) is fulfilled on each step of algorithm. Of course,
any other modern optimization method, e.g., genetic algorithm can be used as well.
Nevertheless, it is shown in [2] that “when the optimizing function is nonlinear, non-
differentiable and non-smooth, direct search methods are the methods of choice”.
The results obtained using different aggregating modes are presented in Table 4.18.

Table 4.18 Optimized ranks αi, i = 1 to 7, of the local criteria based on financial ratios

Financial ratio/aggregating mode D1 D2 D3

EPSTTM2TTM 0 0 0
ChSO 0,65 3,39 0

EPSQ2Q 0 0,83 4,25
DCS 0,91 0 0

MKTCAP 4,3 0,11 0,21
EPSQ2TTM 0 0,76 0

RQ2TTM 1,11 1,92 2,54
Sopt 2,56 0,02 0,14

It is seen that the use of weighted sum aggregation D1 rejects the local cri-
teria based on financial ratios EPSTTM2TTM, EPSQ2Q and EPSQ2TTM as in-
significant ones; multiplicative aggregation D2 eliminates the local criteria based
on EPSTTM2TTM and DCS; Yager’s type aggregation D3 excludes the local cri-
teria based on EPSTTM2TTM, ChSO, DCS and EPSQ2TTM. These results show
that the local criterion based on EPSTTM2TTM should be definitely excluded from
further analysis as it has been rejected with the use of all compared aggregating
modes. It is interesting that this criterion has been estimated as an important one
using the ranking based on the pair comparison matrix. The values of the difference
S (α1,α2, ...,α7) for the optimal (α1,α2, ...,α7), i.e., Sopt , presented in the lower
row of Table 4.18, marginally show that the more reliable results of optimization
are those obtained with use of multiplicative D2 aggregation. This was the reason to
reject additionally the local criterion based on DCS (zero ranks with the use of D2

and D3), but reserve the local criterion based on EPSQ2TTM.
Using the obtained optimal ranks of local criteria, the generalized criteria D1,

D2,D3 and D1P,D2P,D3P have been calculated for the firms of analyzing subsector.
To select the “good” firms, the approach based on building the channels containing
at least 20 “best” firms, described in previous subsection has been used. The results
are presented in Fig. 4.32-Fig. 4.34.
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Fig. 4.32 “Good” firms (black points) selected using weighted sum type of aggregation and
optimized ranks of local criteria

In is easy to see that obtained distributions of firms around the channels contain-
ing the “good” firms are substantially different from those presented in Fig. 4.29-
Fig. 4.31, especially for multiplicative and Yager’s aggregations. Moreover, the set
of the “best” firms (see Table 4.19) we have selected as those contained simultane-
ously at lest in two channels is absolutely different from the set of the “best” firms
selected using the pair comparison matrix for local criteria ranking (Table 4.17).
This difference can be explained as follows. When ranking the local criteria based
on financial ratios, an expert treats these criteria rather as those characterizing inter-
nal financial, production, innovation “health” of firm, not its market potential. Quite
different treatment of local criteria is implicitly used in the framework of proposed
method for stock ranking based on the multiple criteria optimization. Factually, op-
timized ranks of local criteria are the degrees to which the local criteria of firm’s
“health” can predict its success in the stock market. Another merit of this approach
is that there is no need for the subjective expert’s opinions in the ranking procedure.
It is important that most of the “best” firms selected using optimized ranks of local
criteria are in the channels of “good” firms obtained on the base of multiplicative
D2 and Yager’s D3 aggregating modes which are more reliable and rigorous ones
than weighted sum aggregation D1. So we can say that the results obtained with use
of optimized ranks are more reliable. In Table 4.20, the extremal benefits and losses
of the “best” firms selected using comparing approaches are presented in the form
of intervals [ML,MR] (see Subsection 4.4.3).
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Fig. 4.33 “Good” firms (black points) selected using multiplicative type of aggregation and
optimized ranks of local criteria

Fig. 4.34 “Good” firms (black points) selected using Yagers’ aggregation and optimized
ranks of local criteria
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Table 4.19 Best selected firms (using optimized ranks of local criteria)

D1 and D2 D1 and D3 D2 and D3

KLIC SYXI QUIK
NANO
SODI
TQNT
PDFS

Table 4.20 Maximal possible benefits and losses of the “best” firms

Ranks based on pair comparison matrix Optimized ranks
Ticker Range of possible returns Ticker Range of possible returns
MPAD [-55271, 661000] QUIK [-87039, 243618]
DPAC [-97683, 425429] NANO [-90414, 231828]
ACLS [-70286, 241600] SODI [-90494, 223448]
ICST [-62685, 131867] SYXI [-80004, 148601]

ZRAN [-65938, 115862] TQNT [-85774, 140632]

It is seen that using the approach based on the pair comparison matrix in ranking
procedure, the firms with substantially greatest possible returns can be selected.
Nevertheless, taking into account the above consideration, the “best” firms selected
using optimized ranks seem as a more caution choice.

Of course, the selection of only few firms from the whole subsector may be
treated by some investors as an unsatisfactory result. In such cases, in the frame-
work or the proposed method, the less rigorous approach to choosing the “good”
firms can be advised. On the other hand, it is well known that a “well diversified
portfolio” should consist of several “best” firms from different sectors of economy
[102] and our caution (perhaps, conservative) approach allows us to select such
“best” firms in the analyzed sectors and subsectors.

Summarising, we can say that there exist two groups of parameters usually used
to choose the “good” stocks: financial indices characterizing the “health” of firm
and parameters directly reflecting its success or failure in the stock market. In this
section, we propose an approach enabling us to select the “good” stocks using ag-
gregated information about firm’s financial performance at the end of year and the
parameters characterizing the maximal possible returns that can be received if an
investor during the next year makes only correct decisions and losses if the deci-
sions are wrong ones. As the parameters of firm’s financial performance we use
the values of financial rations from database comprising the data of 162 firms from
subsector of the biotechnology of US economy. These ratios were used to build the
local criteria in the form of membership functions of fuzzy subsets.

Two different approaches to stock selection have been compared. The first of
them is based on the local criteria ranking with the use of the linguistic pair com-
parison matrix, the second one allows us to find the optimal ranks of local cri-
teria minimizing the difference between the general criterion of firm’s financial
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performance and the general criterion of their market success on the considered
group of firms. Three most popular aggregating modes- weighted sum, multiplica-
tive and min operator- were used for building the general criteria of firm’s financial
performance and market success. It is shown that a proper choice of method for the
local criteria aggregation plays a key role in the success of stock selection irrespec-
tive of used approach to the local criteria ranking.

The proposed method makes it possible to select a group of “good” stocks with
a great coincidence of their financial performance and market success and to reject
simultaneously the analysis of all “unsafe” firms, i.e., such ones that their market
success is based rather on the public relations, subjective expert’s opinions, rumors
and other, sometimes, unreliable information.

4.5 Multiple Criteria Fuzzy Evaluation and Optimization in
Budgeting

Capital budgeting is based on the analysis of some financial parameters of projects.
It is clear that estimation of investment efficiency, as well as any forecasting, is
rather an uncertain problem. In this section, the techniques for fuzzy evaluation of
financial parameters and estimation of risk of an investment are presented. Another
problem is that one usually should consider a set of local criteria based on financial
parameters of investments. As its possible solution, a numerical method for opti-
mization of future cash-flows based on the generalized project’s quality criterion is
proposed.

4.5.1 The Problem Formulation

Consider common non-fuzzy approaches to the solution of capital budgeting prob-
lem. There are is lot of financial parameters proposed in the literature [7, 14, 20, 73]
for budgeting. The main are: Net Present Value (NPV ), Internal Rate of Return (IRR),
Payback Period (PB), Profitability Index (PI). These parameters are usually used for
the project quality evaluation, but in practice they have different importance. It is
earnestly shown in [11] that the most important parameters are NPV and IRR.

Therefore, further consideration will be based only on the analysis of NPV and
IRR. The good review of other useful financial parameters can be found in [4]. Net
Present Value is usually calculated as follows:

NPV =
T

∑
t=tn

Pt

(1 + d)t −
tc

∑
t=0

KVt

(1 +d)t , (4.51)

where d is the discount rate, tn is the first year of production, tc is the last year of
investments, KVt is the capital investment in the year t, Pt is the income in the year
t, T is the duration of an investment project in years. Usually, the discount rate is
taken equal to the average bank interest rate in the country of investment or other
value corresponding to the profit rate of alternate capital investments.
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An economic nature of IRR can be explained as follows. Suppose that as an alter-
native to analyzed project, the deposit under some bank interest distributed in time
the same way as the analyzed investments is considered. All earned profits are also
deposited with the same interest rate. If the discount rate is equal to IRR, the invest-
ment in the project will provide the same total income as in a case of the deposit.
Thus, both alternatives are economically equivalent. If the actual bank discount rate
is less then IRR, the investment into the project is more preferable. Therefore IRR
is a threshold discount rate dividing effective and ineffective investment projects.

The value of IRR is the solution of the following nonlinear equation with respect
to d:

T

∑
t=tn

Pt

(1 +d)t −
tc

∑
t=0

KVt

(1 +d)t = 0. (4.52)

The estimation of IRR is frequently used as a first step of the financial analysis. Only
projects with IRR not below of some accepted threshold value, e.g., 15–20%, can
be chosen for further consideration.

There are two conjoint discussable points in the budgeting realm. The first one is
the multiple roots of Eq. (4.52), i.e., the so-called multiple IRR problem. The sec-
ond one is the negative NPV problem. The problem of multiple roots of Eq. (4.52)
rises when the negative cash flows take place. In practice, appearance of some neg-
ative cash flow after initial investment is usually treated as a local “force majeur” or
even a total project’s failure. That is why, on the stage of planning, investors try to
avoid situations when such negative cash flows are possible, except the cases when
they are dealing with long-term projects consist of some phases. Let us see to the
Fig. 4.35. This is a typical two-phase project: after initial investment the project

Fig. 4.35 Two stage investment project
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provides considerable profits and at the time τ1 a part of accumulated earnings and,
perhaps, an additional banking credit are invested once again. Factually, an investor
buys new production equipment and housings (in fact creating a new enterprise)
and from his/her point of view a quite new project is started. It is easy to see that
investor’s creditors which are interested in repayment of a credit, always analyze the
phases τ < τ1 and τ > τ1 separately. It is worth noting that what we describe is only
the investment planning routine, not some theoretical considerations we can find
in financial books. On the other hand, a separate assessment of different project’s
phases reflects better the economic sense of capital investment. Indeed, if we con-
sider a two phase project as a whole, we often get the IRRs performed by two roots
of (4.52) so different that it is impossible to make any decision. For example, we can
obtain IRR1 =4% and IRR2 =120%. It is clear that average IRR= (4+120)/2=62%
seems as rather fantastic estimation, whereas when considering the two phases of
project separately we usually get quite acceptable values, e.g., for the first phase
IRR1 =20% and for the second phase IRR2 =25%. So we can say that the problem
of “multiple IRR values” exists only in some financial textbooks, not in the practice
of capital investment. Therefore, only the case when Eq. (4.52) has a single root will
be analyzed in the current section. Similarly, the problem of negative NPV seems
to be rather an artificial one. Obviously, any investment project with negative NPV
should be rejected at the planning stage. On the other hand, all possible undesirable
events leading to the financial losses or even to the failure of the projects should
be taken into account. In the framework of probabilistic approach, e.g., when using
the Monte-Carlo method, there may be local results of calculations with negative
NPV and the problem of their interpretation in terms of risk management or in other
contexts arises.

The different situation we meet when future cash flows are presented by fuzzy
numbers. It is clear that the full body of uncertainty is involved in such a descrip-
tion. So if the decision maker find some negative part in predicted cash flow he/she
consider such a case as a source of risk and try to improve the project to avoid this
risk. As the result, in the fuzzy budgeting the negative cash flows and especially
NPV , seem to be rather exotics ones. Nevertheless, the probabilistic approach to in-
terval and fuzzy numbers comparison we have described in Subsection 4.2.3, makes
it possible to deal with such situation as well, i.e., to compare NPV comprising neg-
ative part with some real or fuzzy number representing acceptable risk associated
with future NPV .

It should be noted that nowadays the traditional approach to the evaluation of
NPV , IRR and other financial parameters is subjected to the quite deserved criti-
cism, since the future incomes Pt , capital investments KVt and rates d are rather un-
certain parameters. Uncertainties which one meets in capital budgeting differ from
those in a case of share prices forecasting and cannot be adequately described in
terms of the probability theory. In the capital investment, one usually deals with a
business-plan that takes a long time — as a rule, some years — for its realization. In
such cases, the description of uncertainty within the framework of traditional prob-
ability methods usually is impossible due to the absence of objective information
about probabilities of future events. Thus, what really is available in such cases are
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some expert’s estimates. In real-world situations, investors or experts involved are
able to predict confidently only intervals of possible values of Pt , KVt and d and
sometimes the most expected values inside these intervals. Therefore, during the
last two decades the growing interest in applications of interval arithmetic [88] and
fuzzy sets theory methods [143] in budgeting was observing.

After pioneer works by T.L.Ward [135] and J.U. Buckley [15], some other au-
thors contributed to the development of the fuzzy capital budgeting theory [23, 27,
28, 31, 35, 54, 55, 56, 57, 58, 65, 71, 93, 113].

It is safe to say that almost all problems of the fuzzy NPV estimation are solved
now, but an interesting and important problem of project risk assessment using fuzzy
NPV gains higher priority.

An unsolved problem is a fuzzy estimation of the IRR. Ward [135] considered Eq.
(4.52) and stated that such an expression cannot be applied to the fuzzy case because
the left hand side of Eq. (4.52) is fuzzy, 0 is crisp and an equality is impossible.
Hence, the Eq. (4.52) is senseless from fuzzy viewpoint.

In [65], a method for the fuzzy IRR estimation is proposed where the α-cut rep-
resentation of fuzzy numbers [60] is used.

The method is based on the assumption (see [65, p. 380]) that the set of equations
for IRR determination on each α-level may be presented (in our notation) as follows:

(CFα
0 )1 +

n

∑
i=1

(CFα
i )1

(1 + IRRα
1 )i = 0, (CFα

0 )2 +
n

∑
i=1

(CFα
i )2

(1 + IRRα
2 )i = 0, (4.53)

where CFα
i = [(CFα

i )1,(CFα
i )2], i = 0 to n, are crisp interval representations

of fuzzy cash flows on α-levels. Of course, from Eqs. (4.53) all crisp intervals
IRRα = [IRRα

1 , IRRα
2 ] expressing the fuzzy valued IRR may be obtained. Regret-

table, there is a little mistake in Eqs. (4.53). Taking into account the conventional
interval arithmetic rules, the correct crisp interval representation of fuzzy Eq. (4.52)
on α-cuts should be written as follows:

(CFα
0 )1 +

n

∑
i=1

(CFα
i )1

(1 + IRRα
2 )i = 0, (CFα

0 )2 +
n

∑
i=1

(CFα
i )2

(1 + IRRα
1 )i = 0. (4.54)

There is no way to get regular (non inverted) intervals IRRα from Eq. (4.54), but
some real valued estimates of IRR may be obtained (see Subsection 4.5.3 below).
Another problem not presented in the literature is an optimization of cash flows.

4.5.2 Fuzzy NPV and Risk Evaluation

The technique is based on the fuzzy extension principle [143]. According to it, the
values of uncertain parameters Pt , KVt and d are substituted for corresponding fuzzy
intervals. In practice, this means that an expert sets lower — Pt1 (pessimistic value)
and upper — Pt4 (optimistic value) boundaries of the intervals and internal inter-
vals of the most expected values [Pt2, Pt3] for analyzed parameters (see Fig. 4.36).
The function μ(Pt) is usually interpreted as a membership function, i.e., a degree
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Fig. 4.36 Fuzzy interval of the uncertain parameter Pt and its membership function μ(Pt)

to which values of a parameter belong to the interval (in this case [Pt1, Pt4]). A
membership function changes continuously from 0 (area out of the interval) up to
maximum value 1 in the area of the most possible values.

The linear character of the function is not obligatory, but such a mode is most
frequently used and allows us to represent the fuzzy intervals in the convenient form
of quadruple Pt = {Pt1,Pt2,Pt3,Pt4}. Then all necessary calculations are carried out
using fuzzy arithmetic rules based on the α-cut representation of fuzzy numbers.
These rules have been presented in Chapter 3.

To illustrate, consider the sample investment project, in which the building phase
proceeds two years with investments KV0 and KV1, accordingly. The profits are
expected only after the end of the building phase and will be obtained during two
years (P2 and P3). It is suggested that the fuzzy interval for the discount d remains
stable during the time of project realization. The sample trapezoidal initial fuzzy
intervals are presented in Table 4.21.

It was assumed that d = {0.08,0.13,0.22,0.35}. The resulting fuzzy NPV calcu-
lated using fuzzy extension of Eq. (4.51) is presented in Fig. 4.37.

The obtained fuzzy interval allows us to estimate the boundaries of possible val-
ues of predicted NPV , the interval of the most expected values, and also — that is
very important — to evaluate a degree of financial risk of investment.
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Table 4.21 Parameters of the sample project

KV0 {2,2.8,3.5,4} P0 {0,0,0,0}
KV1 {0,0.88,1.50,2} P1 {0,0,0,0}
KV2 {0,0,0,0} P2 {6.5,7.5,8.0,8.5}
KV3 {0,0,0,0} P3 {5.5,6.5,7.0,7.5}
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Fig. 4.37 Resulting fuzzy NPV

There may be different ways to define the measure of financial risk in the frame-
work of fuzzy sets based methodology. Therefore we consider here only the three,
in our opinion, most interesting and scientifically grounded approaches.

Let us consider the first approach.
To estimate the financial risk, the following inherent property of fuzzy sets has

been taken into account. Let A be some fuzzy subset of X , being described by the
membership function μ(A). Then complementary fuzzy subset Ā has the member-
ship function μ(Ā) = 1−μ(A). The principal difference between a fuzzy subset and
a usual precise one is that the intersection of fuzzy subset A and Ā is not empty, that
is A∩ Ā = B, where B is also not an empty fuzzy subset. It is clear that the closer A
to Ā, the more power of set B and more A differs from ordinary sets.

Using this circumstance Yager [137] proposed the set of grades of nonfuzziness
of fuzzy subsets

Dp(A, Ā) =
1
n

∣∣∣∣∣
n

∑
i=1

|μA(xi)− μĀ(xi)|p
∣∣∣∣∣

1
p

, p = 1,2, . . . ,∞. (4.55)
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Hence, the grade of fuzziness may be defined as follows:

ddp(A, Ā) = 1−Dp(A, Ā). (4.56)

The definition (4.56) is in compliance with obvious requests to a grade of fuzzi-
ness. If A is a fuzzy subset on X , μ(A) is its membership function and dd is a
corresponding grade of fuzziness, then following properties should be observed:

1. dd(A) = 0, if A is a crisp subset.
2. dd(A) has a maximum value if μ(A) = 1/2 for x ∈ X .
3. dd(A) > dd(B) if μ(x) < μ(y) (x ∈ A, y ∈ B).

It is proved that introduced measure is similar to the Shannon entropy measure
[137].

In the most useful case (p = 1), expression (4.56) is transformed to

dd = 1− 1
n

n

∑
i=1

|2μA(xi)−1|. (4.57)

It is clear (see Eq. (4.57)) that the grade of fuzziness is rising from 0 when
μ(A) = 1 (crisp subset) up to 1 when μ(A) = 1/2 (maximum degree of fuzziness).

With respect to considering problem, the grade of nonfuzziness of a fuzzy in-
terval NPV can linguistically be interpreted as a risk of obtaining the crisp interval
[NPV1,NPV4]. Really, the more precise, (more “rectangular”) is the obtained fuzzy
interval, the more is the degree of uncertainty and risk. At first glance, this assertion
seems to be paradoxical. However, any precise (crisp) interval contains no additional
information of the relative preference of values inside it. Therefore, it contains less
useful information than any fuzzy interval being constructed on its basis. In this
(fuzzy interval) case an additional information reducing uncertainty is derived from
the membership function of considered fuzzy interval.

The second approach to the risk evaluation is based on the α-cut representation
of fuzzy numbers and the measure of their fuzziness.

Let A be fuzzy value and Ar be rectangular fuzzy number defined on the support
of A and represented by the characteristic function ηA(x) = 1,x ∈ A;ηA(x) = 0,x /∈
A. Obviously, such rectangular value is not a fuzzy value at all, but it is the asymp-
totic limit (object) we obtain when the fuzziness of A tends to zero. Hence, it seems
quite natural to define a measure of fuzziness of A as its distinction from Ar. To do
this we define primarily the measure of non fuzziness as

MNF(A) =
1∫

0

((Aα2 −Aα1)/(A02 −A01))dα,

where A02 and A01 are the right and left bounds of the support of A, respectively,
Aα2 and Aα1 are the right and left bounds of crisp intervals on the corresponding
α-cuts. Of course, last expression makes sense only for the fuzzy or interval values,
i.e., only for the non zero width of support A02−A01. It is easy to see that if A → Ar
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then MNF(A)→ 1. Obviously, the measure of fuzziness can be defined as MF(A) =
1−MNF(A).

We can say that the rectangular value Ar defined on the support of A is a more
uncertain object than A. Really, only what we know about Ar is that all x ∈ A belong
to Ar with equal degrees, whereas the membership function (0 ≤ μ(x) ≤ 1) char-
acterizing the fuzzy value A, provides more information to the description and as a
consequence, represents a more certain object. Therefore, we can treat the measure
of non fuzziness MNF as the uncertainty measure. Hence, if some decision is made
concerning fuzzy NPV , the uncertainty and, consequently, the risk of such decision
can be calculated as MNF(NPV ).

Consider the third approach to the risk evaluation.
The authors of [90] proposed an approach that can be treated as a fuzzy analogue

of the sound VAR method [76]. According to this approach the risk associated with
the fuzzy NPV can presented as follows:

Risk = Prob(NPV < G),

where G is a fuzzy, interval or real valued effectiveness constrain [90]. In other
words, G is the low bound on acceptable values of NPV . It is clear that the focus of
this approach is the method for interval and fuzzy value comparison. In [90], such
method based on the geometrical reasoning has been proposed which leads to the
resulting formulas nearly the same as earlier were obtained in [142] with a help of
probabilistic approach to fuzzy numbers comparison.

In [109, 111] (see also Chapter 3), the overview of existing methods for fuzzy
numbers comparison based on probabilistic approach is presented. It is shown in
[109, 111] that analyzed methods have a common drawback- the lack of separate
equality relations- leading to the absurd results in the asymptotic cases and some
others inconsistencies. The same can be said about of non- probabilistic method
proposed in [90]. To solve the problem, in [109, 111] a new method based on
the probabilistic approach has been developed, which generates the complete set
of probabilistic interval and fuzzy numbers relations involving separated equality
and inequality relations, comparisons of real numbers with interval or fuzzy values.
This method has been presented above in Subsection 4.2.3.

Obviously, other approaches to the risk evaluation in the budgeting can be pro-
posed and can be relevant in the specific situations. It is clear that they should lead
to the different results of investment projects estimation or optimization tasks as
they reflect the different decision maker’s attitudes to the risk and its importance
in the considered problem . Therefore, we think that for methodical purposes it is
quite enough to consider only one of above approaches. So in further analysis the
first model of risk, based on the Exp.(4.57) will be used. It is important that all con-
sidered approaches based on an evaluation of fuzzy NPV inevitably generate two
criteria for the estimation of future profits: the fuzzy interval NPV and the degree of
its uncertainty (degree of risk).
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Therefore, the problem of evaluation of investment efficiency on a base of NPV
becomes two-criteria and requires the special approach and technique. Such tech-
nique has been presented above in Section 4.3.

4.5.3 The Set of Crisp IRR Estimations Based on Fuzzy Cash
Flows

In general, the problem of fuzzy IRR evaluation is based on the fuzzy solution of
the Eq. (4.52) with respect to d.

It is proved that the solution of equations with fuzzy parameters (in this case, Pt ,
KVt and d) is possible using the α-cuts representation of fuzzy parameters. For the
evaluation of fuzzy IRR, the system of non-linear crisp-interval equations can be
obtained:

T

∑
t=tn

[Pt ]α
(1 +[d]α)t −

tc

∑
t=0

[KVt ]α
(1 +[d]α)t = [0,0], (4.58)

where [Pt]α , [KVt ]α and [d]α are crisp intervals on corresponding α-cuts.
Of course, it can be claimed that assumption that the degenerated zero inter-

val [0,0] should be placed in the right hand side of Eq. (4.58) does not ensure the
obtaining of adequate outcomes since a non-degenerated interval expression is in
the left hand side of Eq. (4.58). Nevertheless, this situation needs a more thorough
consideration.

As a simplest example, consider a two-year project when all investments are
finished in the first year and all revenues are obtained in the second year. Then from
(4.58) on each α-cut we get the equation (index α is dropped for the simplicity):

[P11,P12]
(1 +[d1,d2]

− [KV01,KV02] = [0,0], (4.59)

where P11, P12 are the left and right bounds of interval income on the α-cut in the
second year, KV01, KV02 are the left and right bounds of interval investment on
the α-cut in the first year, d1, d2 are the left and right bounds of interval IRR on
the α-cut.

The formal solution of Eq. (4.59) with respect to d1 and d2 is trivial:

d1 =
P12

KV01
− 1, d2 =

P11

KV02
−1,

however it is senseless, as the right bound of the interval [d1,d2] always appears to
be less than the left one.

This absurd, at first glance, result is easy to explain from common methodological
positions. Really, the rules of interval arithmetic are constructed in such a manner
that any arithmetical operation on intervals results in an interval as well. These rules
fully coincide with well known common viewpoint stating that any arithmetical
operation with uncertainties should increase the total uncertainty and the entropy
of a system. Therefore, placing the degenerated zero interval in the right hand side
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of (5.58) and (4.59) is equivalent to the request of reducing the uncertainty of the
left sides down to zero. This is possible only in the case of inverse character of the
interval [d1,d2], and this in turn can be interpreted as a request to introduce negative
entropy into a system.

Thus, the presence of the degenerated zero interval in the right hand sides of in-
terval equations is incorrect. A more acceptable approach to solving this problem
has been constructed with a help of following reasons. When analyzing expressions
(4.59) it is easy to see that for any value d1 the minimal width of the interval NPV
is reached when d2 = d1. This is in accordance with a common viewpoint: the min-
imum uncertainty of an outcome (NPV ) is reached when uncertainty of all system
parameters is minimal. It is clear (see Fig. 4.38) that the most reasonable decision
of “zero” problem is a request for the middle of the interval NPV to be placed on
a zero point (request of symmetry of the interval in relation to zero). An obvious,
at first glance, intention to minimize the length of interval NPV results in the de-
riving positive or negative intervals with minimum widths, but not containing zero
point that does not correspond to the natural definition of zero containing interval.
Besides, it can be easily proved that only the request of symmetry of zero contain-
ing interval ensures an asymptotically valid outcome when contracting bounds of
all considered intervals to their centers. Thus, the problem is reduced to a search of
exact (non-interval) values d that will provide a symmetry of zero containing result-
ing intervals NPV on each α-cut in the equations (4.58), i.e., would guarantee the
fulfillment of (NPV1 + NPV2) = 0, for each α = 0,0.1,0.2 . . . ,1.
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Fig. 4.38 Interval NPV for different real valued discounts d for the case when the investments
in the first year is KV0 = [1,2], the income in the second year is P1 = [2,3], D(NPV ) is the
width of interval NPV
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Obviously, the problem is solved using numerical methods. To illustrate the pre-
vious theoretical considerations, compare two investment projects of 4 years dura-
tion. Fuzzy cash flows Kt = Pt −KVt are defined with a help of the four-reference
point form described above (see Table 4.22). It is worth noting that the data of the
first project are more certain.

Table 4.22 Results of IRRα calculation

Project 1 Project 2

Year Cash flow Year Cash flow

1 {−6.95,−6,95,−7,05,−8.00} 1 {−6.00,−6.95,−7.50,−8.00}
2 {4.95,4.95,5.05,6.00} 2 {4.00,4.95,5.50,6.00}
3 {3.95,3.95,4.05,5.00} 3 {3.00,3.95,4.50,5.00}
4 {1.95,1.95,2.05,3.00} 4 {1.00,1.95,2.50,3.00}
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The results of calculations for two investment projects with different fuzzy cash
flows are also presented in Table 4.22. It is seen that the values of IRRα obtained on
α-cuts can increase or decrease with growth of α .

As the result, the set of possible real values of IRR is obtained for each project.
Thus, the problem of the obtained results interpretation arises. To solve this problem,
it was proposed to reduce the sets of IRRα obtained on each α-cut to a small set of
parameters which can be easily interpreted.

The first elementary parameter — average value IRRm — is certainly convenient,
however it does not take into account that with growth of α, the reliability of an
outcome increases as well, i.e., IRRα , obtained on higher α-cuts are more reliable
than those obtained on lower α-cuts according to the α-cut definition. On the other
hand, the width of the crisp interval [NPV1,NPV2]α corresponding to the IRRα can
be considered as a measure of uncertainty for the obtained crisp value IRRα , since
such width quantitatively characterizes the difference of the left side of Eq.(4.58)
from the degenerated zero interval [0,0]. This allows us to introduce two weighted
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estimations of IRR on the set of IRRα : least expected (least reliable) IRRmin and
most expected (most reliable) IRRmax:

IRRmin =

n−1
∑

i=0
IRRi (NPV2i −NPV1i)

n−1
∑

i=0
(NPV2i −NPV1i)

, (4.60)

IRRmax =

n−1
∑

i=0
IRRiαi

n−1
∑

i=0
αi

, (4.61)

where n is the number of α-cuts.
In the decision making practice, all three proposed parameters IRRm, IRRmin,

IRRmax can be used when choosing the best project. An interpretation of lengths of
[NPV1,NPV2]α as an indexes of uncertainty of IRRα allows us to propose a quan-
titative, expressed in monetary units assessment of financial risk of a project (the
degree of uncertainty of the values IRRm, IRRmin, IRRmax derived from uncertainty
of initial data):

Rr =

n−1
∑

i=0
(NPV2i −NPV1i)

n
, (4.62)

where i is a number of α-cut.
Parameter Rr can play a key role in the project efficiency estimation. The values

of introduced derivative parameters for the considered sample projects are presented
in Table 4.23.

Table 4.23 Derivative (based on IRR) parameters of sample projects

Project# IRRmin IRRmax IRRm Rr

1 0.34 0.327 0.335 1.56
2 0.322 0.329 0.325 3.52

It is seen that the projects have rather the close values of IRRm, IRRmin, IRRmax.
At the same time, the risk Rr for the second project is considerably higher than
the risk of the first one. Hence, the first project is the best one. In addition, some
other useful parameters have been proposed: IRRmr — most reliable value of IRRα
— derived from the minimum interval [NPV1,NPV2]mr among all [NPV1,NPV2]α
and IRRlr — the least reliable value of IRRα — derived from the maximum in-
terval [NPV1,NPV2]lr among all [NPV1,NPV2]α . It is clear, that [NPV1,NPV2]mr

and [NPV1,NPV2]lr are the risk estimations for the considering IRRmr and IRRlr.
It should be noted (see Table 4.23) that the difference between values of IRRmr for
the projects is rather small, but the difference in risk estimations is considerable.
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4.5.4 A Method for Numerical Solution of the Project
Optimization Problem

Here we propose an approach to the solution of optimization problem which is based
on the consideration of all initial fuzzy Pt and KVt as the constraints on controlled
input data, as well as on assumption that dt is a random parameter describing exter-
nal, in relation to a considered project, uncertainty. The fact that some preferences
for the interval of possible values of d may be expressed by a certain membership
function μd(d) is also taken into account. Thus, while describing the discount factor
one deals with uncertainties of both random and fuzzy nature.

The problem is solved in two steps. At first, according to the fuzzy extension prin-
ciple all parameters Pt , KVt and dt in Eq. (7.45) are substituted for corresponding
fuzzy numbers. As a result the fuzzy NPV is obtained. On the next step, the ob-
tained fuzzy NPV is considered as a restriction on a profit when building the local
criterion for NPV maximization. For the mathematical description of local criteria,
the so-called desirability functions are used. In essence, they can be described as a
special interpretation of usual membership functions. Briefly, the desirability func-
tion rises from 0 (in area of unacceptable values of its argument) up to 1 (in area of
the most preferable values). Thus, a construction of desirability function for NPV is
rather obvious: the desirability function μNPV (NPV ) can be considered only on the
interval of possible values restricted by the interval [NPV1,NPV4]. Hence, the more
value of the NPV , the more degree of desirability (see Fig. 4.39).
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Fig. 4.39 Connection between the restriction and the local criterion: 1 - initial fuzzy interval
of NPV (fuzzy restriction); 2 - desirability function μNPV (NPV ).

The initial fuzzy Pt and KVt are also considered as desirability functions μP1 , μP2 ,
. . ., μKV1 , μKV2 ,. . . describing constraints on controlled input variables. It is clear
that initial fuzzy numbers were already constructed in such a way that when they are
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interpreted as desirability functions, the more preferable values in the fuzzy intervals
of Pt and KVt appear to be those more realizable (possible). Since these desirability
functions are connected with a possibility of realization of corresponding values of
the variables Pt and KVt , they implicitly describe the financial risk of the project.

As the result, the general criterion based on the set of all desirability functions
has been defined as follows:

D(Pt ,KVt ,dt) = μα1
NPV (NPV (Pt ,KVt ,dt))∧

(μP1 ∧μP2 ∧ . . .∧μKV1 ,μKV2 ∧ . . .)α2 , (4.63)

where α1 and α2 are the ranks characterizing the relative importance of local criteria
of profit maximization and risk minimization, ∧ is the min operator,
μNPV (NPV (Pt ,KVt ,dt)) is the desirability function of NPV .

Many different forms of the general criterion are in use. As emphasized in [148],
the choice of particular aggregating operator, usually called t-norm, is rather an
application dependent problem. However, the choice of min operator in Eq.(4.63) is
the most straightforward approach, when a compensation of small values of some
criteria by the great values of others is not permitted [36, 106].

The problem is reduced to the search for crisp values of PP1,PP2, . . . ,KKV1,
KKV2, . . . on corresponding fuzzy intervals P1,P2, . . . ,KV1,KV2, . . ., maximizing the
general criterion (4.63).

The problem is complicated by the fact that the discount d is a random parameter,
distributed in a specific interval.

The solution was carried out as follows.
Firstly, from the interval of possible values, the fixed value of discount di is se-

lected randomly. Further, with a help of the Nollaw-Furst random method the opti-
mum solution is obtained as the best compromise between uncertainty of basic data
and intention to maximize profit, i.e., the optimization problem reduces to maxi-
mization of the general criterion (4.63). Obtained optimal values PPd

t and KKV d
t

present the local optimum solution for the given discount d. Above procedure is
repeated with random discount values until the statistically representative sample of
optimum solutions for various di is obtained. The final optimum values PP0

t , KKV 0
t

are calculated by weighting with degrees of possibility of di, which are defined by
the initial fuzzy interval d with the membership function μd(di):

PP0
t =

m
∑

i=1
PPd

t (di)μd(di)

m
∑

i=1
μd(di)

, (4.64)

where m is the number of random discount values used for the solution of the prob-
lem. Similarly, all KKV 0

t can be calculated.
It is also possible to take into account the values of the general criterion in opti-

mum points:
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PP0
t =

m
∑

i=1

(
PPd

t (di)
(

μβ1
d (di)∧Dβ2(di)

))

m
∑

i=1

(
μβ1

d (di)∧Dβ2(di)
) , (4.65)

where β1,β2 are the corresponding weights.
The similar expression can be constructed for KKV 0

t . It is worth noting that the
expression (4.64) provides an ability to take into account, apart from reliability of
the values di, the degree of compatibility (in other words, the degree of consensus)
for each of selected values of discount.

Obtained optimal PP0
t and KK0

t may be used for the final project’s quality esti-
mation. The results of calculation for the first example from the previous subsection
(Table 4.22, project 1) are presented in Table 4.24.

Table 4.24 Results of optimization

Expression (4.64) Expression (4.65)

Years PP0
t , KK0

t PP0
t , KK0

t

0 0.00, 2.49 0.00, 2.50
1 0.00, 0.83 0.00, 0.79
2 8.05, 0.00 8.04, 0.00
3 7.12, 0.00 7.09, 0.00

Finally, with substituting PP0
t , KK0

t and fuzzy interval d in the expression (4.51)
the optimal fuzzy value of NPV was obtained.

For considered example we get the following results:
NPV1 = {4.057293,6.110165,8.073906,9.454419} using (4.64)
and
NPV2 = {4.065489,6.109793,8.064094,9.436519} using (4.65).

It is clear that there is no great deference between the results obtained using
expressions (4.64) and (4.65) in this case.

In Fig. 4.40, the fuzzy NPV obtained using PP0
t and KK0

t is compared with the
initial one, obtained with the use of initial fuzzy numbers Pt and KVt , without op-
timization. It is obvious that in the optimal case the mean value of fuzzy interval
NPV is greater.

Using the optimal PP0
t and KK0

t and the method described in Subsection 4.5.2,
the degree of project risk may be also evaluated. This risk can be considered as the
financial risk of a project as a whole.

For the needs of common accounting practice, it is possible to calculate the aver-
age weighted value of NPV using the following expression:

NPV =

m
∑

i=1
NPVi · μNPVi

m
∑

i=1
μNPVi

, (4.66)
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Fig. 4.40 Comparison of the initial and optimal fuzzy NPV : 1 - initial NPV ; 2 - optimal NPV

For the considered example NPV1 = 6.8931 and NPV2 = 6.8942 were obtained.

4.6 Summary and Discussion

In this chapter, we have presented the generalized method for multiple criteria hier-
archical evaluation of investments in the fuzzy setting. The key issue is the analyzing
the familiar approaches to the aggregation of local criteria. The problems of ranked
local criteria aggregation are analyzed and some new theoretical results which can
be useful for proper choice of aggregation method are presented. It is proved that
the most popular weighted sum method is the most unreliable one and can pro-
vide wrong results. As all known aggregation modes have their own advantages and
drawbacks it seems impossible to choose the best one especially when dealing with
complicated hierarchical problems. Therefore, a new approach which makes it pos-
sible to generalize the aggregating modes into some “ideal” criterion is developed
using the mathematical tools of level–2 and type–2 fuzzy sets. It is shown that pro-
posed method allows us to build in natural way the branched hierarchical structures
of the investment project’s local criteria. The theoretical consideration is illustrated
using examples of investments. The main direction of future research will be gener-
alization of the proposed approach using conception of hyperfuzzy sets [42] being
the useful particular case of type–2 fuzzy sets for representation of verbally formu-
lated local criteria and parameters of project’s quality.

Using the developed methodology, a new method for the stock ranking based on
the multiple criterion decision making and optimization has been proposed. Two
general criteria are used in the analysis. The first of them is based on the financial
indices and may be treated as the criterion of firm’s “health” or its financial perfor-
mance. The second one is the two-criteria performance of firm based on the stock
prices. It represents the firm’s market success. The method rests on the selection of
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the stocks with a great correlation of the firm’s financial performance and its market
success. The local criteria are built in the form of the membership function of cor-
responding fuzzy subsets. Two different strategies for the stock ranking and three
most popular methods for the local criteria aggregation are compared. As the exam-
ple, the values of financial rations and prices from the database comprising the data
of 162 firms from the subsector of the biotechnology of US economy were used.
It is shown that the proposed method makes it possible to select a small group of
“good” stocks characterized by a great coincidence of firm’s financial performance
and its market success. The method rejects from the consideration all the “unsafe”
firms, i.e., such ones that their market success is based rather on the public rela-
tions, rumors and other rather unreliable information. The method is addressed to
those who prefer to select for a portfolio only the firms which demonstrate the close-
ness of their overall financial performance in the past year and success in the stock
exchange in the following year.

Another application of the developed general approach to the solution of the
MCDM problems presented in this chapter are the problems of calculation of NPV
and IRR and investment project risk assessment in the fuzzy setting. It is shown
that the straightforward way of project risk assessment is to consider this risk as
a degree of fuzziness of the fuzzy NPV . Nevertheless, other methods for risk esti-
mation based on the probability approach to interval and fuzzy values comparison
can be relevant in the fuzzy budgeting as well. It is shown that the real values of
IRR may be obtained as the solutions of the fuzzy equation and a set of new useful
derivative parameters characterizing uncertainty of the problem may be obtained as
an additional result.

The problem of the multiobjective optimization of a project in the mixed fuzzy
and random environment is formulated in the form of compromise between local
criteria of profit maximization and risk minimization. The numerical method for the
solution of this problem is described and tested.
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Chapter 5
Interval and Fuzzy Arithmetic in Logistic

This chapter deals with the so-called distribution problem, which belong to the wide
class of the logistic problems.

It is known that distribution and transportation problems have similar mathe-
matical structures and are usually treated as particular cases of the general linear
programming problem.

There are many effective algorithms for the solution of transportation and dis-
tribution problems proposed in the scientific literature and in the textbooks. So we
can say that these problems in the case of real valued parameters are, generally,
solved. Nevertheless, in practice, we often meet different kinds of uncertainty when
the parameters of these optimization problems are presented by intervals or fuzzy
values.

The known approaches to the solution of fuzzy transportation and distribution
problems are usually based on some restrictions imposed on the form of member-
ship functions. These restrictions make it possible, using analytical procedures, to
transform the initial fuzzy problem to the set of usual linear programming problems
with real valued parameters. Nevertheless, in practice, membership functions rep-
resenting the parameters of the problem may have substantially complicated forms
and analytical procedures can not be used.

Therefore, in this chapter a new approach to the solution of fuzzy distribution
problem is developed. In the framework of this approach, all parameters and vari-
ables may be fuzzy values without any additional restrictions.

It is important that real-world distribution problems are usually multiple criteria
ones.

In this chapter, the results obtained as the solution of fuzzy single criterion dis-
tribution problem are used as the base for the formalization and solution of multiple
criteria fuzzy distribution problem.
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5.1 Fuzzy Linear Programming Approach to the Distribution
Planning Problem

A new numerical approach to the solution of the fuzzy distribution problem based on
the direct fuzzy extension of the simplex method is developed. The fuzzy extension
is based on the fuzzy arithmetic rules and the method for fuzzy values compari-
son based on the probabilistic approach (see Chapters 3 and 4). In the framework
of proposed approach, all parameters and variables may be fuzzy values without
any additional restrictions. The α-cut representation of all fuzzy parameters and
variables is used and any additional assumption regarding their form is not needed.
The implementation of the method is made using the object-oriented programming
technique.

The advantages of the proposed approach are illustrated with the use of case
study, where the fuzzy solution of the fuzzy distribution problem is compared with
that obtained using the Monte-Carlo method.

5.1.1 The Methods for the Solution of Fuzzy Linear
Programming Problem

The transportation and distribution problems have similar mathematical structures
and are usually treated as particular cases of the general linear programming prob-
lem. The first efficient algorithm for the solution of the transportation problem was
proposed in 1979 by Isermann [28]. In 1987, Ringuest i Rinks [47] developed two
iterative algorithms for the solution of the linear multiple criteria transportation
problem.

There are many effective algorithms for the solution of transportation and dis-
tribution problems proposed in the scientific literature and in the textbooks. So
we can say that these problems in the case of real valued parameters are, gener-
ally, solved. Nevertheless, in practice, we often meet different kinds of uncertainty
when the parameters of these optimization problems are presented by intervals or
fuzzy values. Zimmermann first proposed the formulation of fuzzy linear program-
ming problem (FLPP) and its approximate solution in [60]. Steuer [51], Tong [52],
Chanas and Kuchta [12] proposed the solutions of the linear programming problem
with the interval target function. The generalization of these solution was presented
by Kuchta in [33]. Similarly, in [16] the authors proposed the procedure for the solu-
tion of transportation problem with interval parameters of the objective function and
constraints.

Chanas [9] and Chanas and Kuchta [11, 13] developed an approach to the so-
lution of FLPP. This approach has been generalized in [21, 22]. It is based on
some restrictions imposed on the form of membership functions. These restrictions
make it possible, using analytical procedures, to transform the initial fuzzy prob-
lem to the set of usual linear programming problems with real valued parameters.
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Nevertheless, in practice, membership functions representing the parameters of the
problem may have substantially complicated forms and analytical procedures can
not be used. In [36], the fuzzy transportation problem has been reduced to the pair
of optimization tasks for the lower and upper bounds of the fuzzy target function
(fuzzy cost of transportation).

The literature analysis allows us to mark out two main approaches to the solution
of FLPP. In the most general form, this problem may be presented as follows:

max/min Ẑ =
n

∑
j=1

ĉ j x̂ j,

n

∑
j=1

âi jx̂ j ≤ b̂i, i = 1,2, ...,m,

x̂ j ≥ 0,

where X̂ = {x̂ j} is the vector of fuzzy variables, Ĉ = {ĉ j}, B̂ = {b̂i} and Â = {âi j}
are the vectors and the matrix of fuzzy parameters characterizing the objective func-
tion and constraints.

In the framework of the first approach, the above problem is solved in the assump-
tion that X is the vector of real valued variables. Hence, the non-fuzzy solution of
the fuzzy problem is obtained. In [24, 29, 31, 32, 35, 39, 46, 48], the set of real val-
ued solutions of the above problem obtained using different assumptions regarding
the form of fuzzy or interval parameters is presented. Similarly, in [2, 30, 36, 57] the
set of approximate solutions of the fuzzy transportation problem has been obtained
assuming that the variables X = {xi j} are real values.

The second approach is free of the above assumption that variables X are real
values. Hence, the solution of FLPP should be obtained in the fuzzy form (X̂).
Obviously, such approach seems to be more natural since all the model’s parameters
are fuzzy values. However, this approach leads to the more general formulation of
the problem and to additional mathematical problems that complicate the obtaining
of exact solutions. Therefore, only a few papers represent this approach.

In [25, 40, 41, 42, 44], the approximate fuzzy solutions X̂ = {x̂ j} of FLPP were
obtained in the assumption that the elements of matrix A and vector C are real val-
ues. Such an assumption makes it possible to obtain an approximate solution when
the elements of the vector B̂ are trapezoidal fuzzy values [40]. In [7], it is assumed
that the elements of X̂ , B̂, Ĉ and Â are fuzzy values, but instead of fuzzy objec-
tive function Ẑ its non-fuzzy representation was used. Three additional real valued
parameters (local criteria) were used to represent Ẑ. After such a simplification of
the initial problem, these local criteria were aggregated and finally the problem was
formulated as the multiple criteria optimization with fuzzy constraints. The similar
approach has been used in [37], where the additional restriction was introduced: all
parameters and variables of FLPP are triangular fuzzy valuess. These fuzzy trian-
gular values were approximated by their nearest symmetric triangular fuzzy values,
with the assumption that all decision variables are symmetrical triangles.
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Summarizing we can say that now there are no such general approaches that
make it possible to obtain the solution of FLPP, fuzzy transportation or fuzzy dis-
tribution problems without additional restrictions on the form of fuzzy parameters
and variables. Obviously, such restrictions substantially limit the ability of known
methods to solve practically important problems when additional restrictions disturb
the initial structure of the problem.

Therefore, in the current section we propose a new numerical approach to the
solution of fuzzy distribution problem (FDP) based on the direct fuzzy extension of
the simplex method. This extension is based on the fuzzy arithmetic rules and the
method for fuzzy values comparison.

The α-cut representation of all fuzzy parameters and variables is used and any
additional assumption regarding their form is not needed. The implementation of
this extension is made using object-oriented programming technique.

5.1.2 The Direct Fuzzy Extension of the Simplex Method

In the framework of the proposed approach to the fuzzy extension of the simplex
method, all the steps of the developed algorithm are similar to those of the stan-
dard simplex method with only one difference: the usual arithmetical operations
and operation of comparison are replaced by the corresponding operations on the
fuzzy values. Therefore, we call this approach “the direct fuzzy extension of the
simplex method”. Obviously, the choice of appropriate operations on fuzzy values,
especially the operation of fuzzy values comparison, plays a pivotal role in the de-
velopment of the proposed method.

Here we shall use the methos of applied interval analysis as the basis of fuzzy
arithmetic presented in Section 3.

When dealing with the distribution problem, we not only minimize the trans-
portation costs, but in addition we maximize the distributor’s profits.

Suppose the distributor deals with M wholesalers and N consumers (see Fig.5.1).
Let ai, i=1 to M, be the maximal quantities of goods that can be proposed by whole-
salers and bi, j=1 to N, be the maximal good requirements of consumers. The fuzzy
profit ẑi j obtained as the result of delivering of a good unit from ith wholesaler to
jth consumer can be calculated as ẑi j = c j − ci − t̂i j, where c j is the price of sell-
ing, ci is the price of buying, t̂i j is the total fuzzy transportation cost of delivering
of a good unit from ith wholesaler to jth consumer. In accordance with the signed
contracts, distributor must buy at least pi good units at price of ci monetary units
for unit of good from each ith wholesaler and to sell at least q j good units at price
of c j monetary units for unit of good to each jth consumer. These constraints pi, q j

limit only the lower bounds for the possible optimal quantities of goods which can
be bought and sold. Therefore, they can be negotiated and hereinafter we shall treat
them as the fuzzy constraints denoted as p̂i, q̂ j . Therefore, the problem is to find
such optimal good quantities x̂i j (i=1,...,M; j=1,...,N) delivered from ith wholesaler
to jth consumer which maximize the distributor’s total fuzzy profit D̂ under fuzzy
constraints:
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Fig. 5.1 The distributor’s activity

D̂ =
M

∑
i=1

N

∑
j=1

(ẑi j · x̂i j) → max, (5.1)

N

∑
j=1

x̂i j ≤ ai (i = 1..M),
M

∑
i=1

x̂i j ≤ b j ( j = 1..N), (5.2)

N

∑
j=1

x̂i j ≥ p̂i (i = 1..M),
M

∑
i=1

x̂i j ≥ q̂ j ( j = 1..N). (5.3)

In the above model, only the parameters ai and b j are real valued as they represent
the maximal quantities of goods proposed by wholesalers and the maximal good
requirements of consumers that in common practice usually can not be negotiated.

To transform the model (5.1)-(5.3) into its canonical form, we substitute the two-
index representation of this model for the single-index one.

To illustrate this routine procedure, let us consider the case of N=M=2. Then
introducing x̂1 = x̂11, x̂2 = x̂12, x̂3 = x̂21, x̂4 = x̂22 and ẑ1 = ẑ11, ẑ2 = ẑ12, ẑ3 = ẑ21,
ẑ4 = ẑ22 we rewrite (5.1) as follows:

D̂ =
f

∑
i=1

ẑi · x̂i → max, (5.4)

where in our case f = M ·N=4.
Introducing the variable ĝi (i=1 to 2N +2M) such that g1 = a1, g2 = a2, g3 = b1,

g4 = b2, ĝ5 = p̂1, ĝ6 = p̂2, ĝ7 = q̂1, ĝ8 = q̂2,
from (5.2) and (5.3) we get x̂1 + x̂2 ≤ g1, x̂3 + x̂4 ≤ g2, x̂1 + x̂3 ≤ g3,x̂2 + x̂4 ≤ g4,
x̂1 + x̂2 ≥ ĝ5, x̂3 + x̂4 ≥ ĝ6, x̂1 + x̂3 ≥ ĝ7, x̂2 + x̂4 ≥ ĝ8.

The simplex algorithm requires the linear programming problem to be in aug-
mented form, so that the inequalities are replaced by equalities [15]. Therefore, the
next step is the presentation of the above inequalities in the canonic form. Intro-
ducing the so-called slack variables ŝi, i=1 to r (r = 2M + 2N), we transform these
inequalities to the set of equalities in the canonical form:
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x̂1 + x̂2 + ŝ1 = g1, x̂3 + x̂4 + ŝ2 = g2, x̂1 + x̂3 + ŝ3 = g3, x̂2 + x̂4 + ŝ4 = g4, (5.5)

x̂1 + x̂2 − ŝ5 = ĝ5, x̂3 + x̂4 − ŝ6 = ĝ6, x̂1 + x̂3 − ŝ7 = ĝ7, x̂2 + x̂4 − ŝ8 = ĝ8. (5.6)

Expressions (5.4)-(5.6) with the constraints x̂i ≥ 0 (i=1 to N ·M), ŝi ≥ 0 (i=1 to
2M + 2N) represent the canonical form of FLPP for the considered example.

Of course, the presented routine procedure of the transformation of the initial fuzzy
distribution problem to the canonical form can be easily generalized, but correspond-
ing general mathematical expressions are too cumbersome to be relevant in this book.
Indeed, this transformation (in its non-fuzzy form) is presented in the textbooks. All
the following steps of the developed approach are similar to those of standard simplex
method with only one difference: usual arithmetical operations and the operation of
comparison are replaced by the corresponding operations on fuzzy values.

To implement this approach, the methods of object -oriented programming have
been used. To do that, the special class “Fuzzy value” was built using the language
C++ . This class contains the overloaded operators representing the operations on
fuzzy values. Since all the fuzzy parameters and variables are presented by objects
of this class, the algebraic structure of “fuzzy extended simplex method” formally
inherits the algorithm of the usual simplex method.

Let us consider an illustrative example.
We first solve the simplest distribution problem with N=2, M=2 and real valued

parameters: z11=3, z12=5, z21=6, z22=4, a1=20, a2=30, b1=25, b2=25, p1=20, p2=25,
q1=20, q2=25.

Its solution (in the two-index form) is x11=0, x12=20, x21=25, x22=5 and for the
total optimal profit we have obtained D=270.

The second step is the fuzzy extension of the above example such that all fuzzy
parameters are centered around the corresponding real valued parameters of this dis-
tribution problem. To perform the fuzzy extension, we have used trapezoidal fuzzy
values so that the fuzzy parameters were presented by real values and quadruples as
follows:

a1=20, a2=30, b1=25, b2=25, ẑ11=[2,2.5,3.5,4], ẑ12=[4,4.5,5.5,6],
ẑ21 =[5,5.5,6.5,6], ẑ22=[3,3.5,4.5,5], p̂1 =[19,19.5,20.5,21], p̂2 =[24,24.5,25.5,26],
q̂1=[19,19.5,20.5,21], q̂2=[24,24.5,25.5,26].
Using the developed algorithm for the direct fuzzy extension of the simplex method,
the following results (in the two-index form) were obtained:
x̂11=[0,0,0,0], x̂12 =[10,14,26,30], x̂21 =[12,17,28,33], x̂22 =[2,3.5,6.5,8],
D̂=[220,240,300,320].

It is easy to see that these results are centered around those obtained using real
valued version of the considered distribution problem. This may be treated as an
evidence in favor of the method’s correctness. On the other hand, we can see that
the relative widths of the results x̂11, x̂12, x̂21, x̂22 are greater than those of the initial
fuzzy parameters. This phenomenon is well known in interval analysis as the “ac-
cess width effect” and will be analyzed in the following subsection on the base of
comparison of the fuzzy solution with that obtained using Monte-Carlo method.
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5.1.3 Numerical Studies

To perform the proposed method, we compare the results of FDP solution with
those obtained from (5.1)-(5.3) when all the uncertain parameters are considered as
normally distributed random values.

The standard Monte-Carlo procedure was used, i.e., for each set of randomly
chosen real valued parameters the real valued solution of problem (5.1)-(5.3) was
obtained. Finally, repeating this procedure the results were presented in the form of
probability density functions of optimal xi j and D.

To make the results obtained using the fuzzy and probability approaches compa-
rable, the special simple method for the transformation of probability density distri-
butions into fuzzy values without drastic loss of useful information was used. This
method makes it possible to achieve the comparability of uncertain initial data in
the fuzzy and the random cases.

For the sake of simplicity, we have used the simplest normally distributed prob-
ability density functions, exhaustively represented be their averages m and standard
deviations σ . This method consist of two steps.

At the first step, using initial probability density function f (x), the cumulative

distribution function F(x) is obtained as follows: F(x) =
x∫

−∞
f (x)dx.

At the second step, the function F(x) is used to obtain a trapezoidal fuzzy num-
ber. We ask the decision-makers (experts) for the four values F(xi), i=1,...,4, which
define the mapping of F(x) on X in such a way that they provide the bottom and
upper α-cuts of the trapezoidal fuzzy number.

Let us consider the example presented in Fig.5.2. Since the probability that x lies
in the interval [a,b] is equal to F(b)−F(a), the intervals [95, 105] and [78, 120]
( in the considered example) correspond to the 30% and 90% confidence intervals.
Obviously, we place these intervals in such a way that they are centered around the
center of the cumulative distribution F(x).

Therefore, the resulting trapezoidal fuzzy number μ is presented by the quadruple
as follows μ= [78,95,105,120].

Is easy to see that accuracy of the proposed transformation depends only on the
expert’s subjective opinion about suitability and correctness of chosen upper and
button confidence intervals. Of course, this subjectivity is the source of additional
uncertainty. Nevertheless, taking into account that the transformation of a probabil-
ity density function into a fuzzy value leads inevitable to the loss of some infor-
mation, we can expect that the choice of 30% and 90% confidence intervals will
provide at least the satisfactory results of transformation.

Let us consider the example of the distribution problem (5.1)-(5.3) with N=3,
M=3. To compare the results of fuzzy programming with those obtained when using
the Monte-Carlo method, all the uncertain parameters were previously represented
by normally distributed probability density functions. As the parameters ai and b j

represent the maximal quantities of goods proposed by wholesalers and the maximal
good requirements of consumers and in common practice usually can not be nego-
tiated, they were presented by the real constant values a1=460, a2=460, a3=610,
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Fig. 5.2 The transformation of cumulative function into a fuzzy value

b1=410, b2=510, b3=610. The other parameters were represented by normally dis-
tributed probability density functions with the following averages:

p1 =440, p2=440, p3=590, q1=390, q2=490, q3=590, z11=300, z12 =480, z13=490,
z21 =400, z22=580, z23=290, z31=300, z32=380, z33 =600.

For simplicity, all the standard deviations σ were equal to 10. Using described
above method for the transformation of probability distribution function into a fuzzy
value, the following trapezoidal fuzzy parameters of the problem (5.1)-(5.3) have
been obtained:

p̂1=[417,435,444,459], p̂2=[417,435,444,459], p̂3=[567,585,594,609],
q̂1=[367,385,394,409], q̂2=[467,485,494,509], q̂3 =[567,585,594,609],
ẑ11=[277,295,304,319], ẑ12=[457,475,484,499], ẑ12=[467,485,494,509],
ẑ21=[377,395,304,319], ẑ22=[561,579,588,603], ẑ23=[272,290,299,314],
ẑ31=[377,395,304,319], ẑ32=[561,579,588,603], ẑ33=[272,290,299,314].

Some results we have obtained using the fuzzy optimization method and the Monte-
Carlo method (usual linear programming with real valued, but random parameters)
are presented in Fig.5.3-Fig.5.6. All the probability density functions in Fig.5.3-
Fig.5.5 were obtained using Monte-Carlo method with 1 000 000 random steps. It
is easy to see that the Monte-Carlo method sometimes provides two-extreme result-
ing probability density functions. Obviously, it is difficult to interpret these results,
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Fig. 5.3 The probability density function f -(1) and the fuzzy value μ -(2) for optimal x11.

Fig. 5.4 The probability density function f -(1) and the fuzzy value μ -(2) for optimal x22.

Fig. 5.5 The probability density function f -(1) and the fuzzy value μ -(2) for optimal x33.

whereas when using the fuzzy optimization we have no such a problem since the
results are always presented by trapezoidal fuzzy values. It is worth noting that to
obtain the smooth resulting probability density function of the benefit D, too much
of random steps (about 1 000 000) are needed (see Fig.5.6). Therefore, it seems
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Fig. 5.6 The probability density function f and the fuzzy number μ for optimized benefit D:
1 - Monte-Carlo method with 10 000 random steps, 2 - Monte-Carlo method with 1 000 000
random steps, 3 - fuzzy solution.

rather senseless to use the Monte-Carlo method for the solution of the distribution
problem in practice.

It is seen that the resulting fuzzy values are wider than the corresponding prob-
ability density functions. Partially, this is the consequence of the “access width ef-
fect”, but on the other hand, using the fuzzy optimization we implicitly take into
account the events which in the framework of Monte-Carlo method are treated as
those with extremely low probability.

The observed “access width effect” is not so drastic and it does not prevent the
use of the developed direct fuzzy extension of the simplex method for the solution
of the fuzzy distribution problem.

5.2 Multiple Criteria Fuzzy Distribution Planning Problem

In the previous section, we have treated the distribution problem as a single criterion
task. Only the total fuzzy benefit was maximized under fuzzy constraints. Neverthe-
less some of these constraints may be naturally treated as local criteria. This is in
compliance with the general approach to the solution of fuzzy optimization prob-
lems proposed by Bellman and Zadeh [3].

In this section, the results obtained in the previous one are used to formulate the
local criterion of the total benefit maximization and the fuzzy constraints are treated
as the local criteria of the particular risks minimization. The general criterion is
formulated as an aggregation of aggregation modes using level-2 fuzzy sets. These
modes are the different types of aggregations of local criteria characterizing the total
benefit and risks of breach of contracts. The developed method is illustrated with the
use of numerical example.

The mathematical model of the fuzzy multi-objective transportation problem
(FMOT P) [21, 22, 38] generally can be presented as follows:
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min F̂k(x) =
m

∑
i=1

n

∑
j=1

Ĉk
i j · xi j,

subject to
n
∑
j=1

xi j = âi, i=1 to m,
m
∑

i=1
xi j = b̂ j, j=1 to n, xi j ≥ 0, i=1 to m, j=1 to n,

where F̂k(x) = {F̂1(x), F̂2(x), ..., F̂K(x)} is a fuzzy vector of k objective functions,
the superscript on both F̂k(x) and fuzzy penalties Ĉk

i j are used to identify the num-
ber of objective functions (k = 1 to K), m and n are the numbers of fuzzy sources
and destinations, respectively. In [21] and [38], the fuzzy approaches that make it
possible to get the compromise solution of FMOT P were developed and studied.
Some shortcomings of using fuzzy set theory in solving such MOTP were noted.
In [21], it is shown that the use of fuzzy programming for solving MOT P changes
the standard form of the well known transportation problem. In addition, Lushu and
Lai [38] proved that the use of min-operator does not guarantee an efficient solution.
The other researches in this realm are presented in [4, 5, 6, 8, 10, 11, 20, 23, 34].
It should be emphasized here that in all cases the authors considered only the linear
form of FMOT P.

In the current section, we propose a new approach to the formulation of multiple
criteria fuzzy distribution problem based on the treating of fuzzy constraints as the
local criteria of risks minimization. To aggregate these local criteria with the crite-
rion of the total profit maximization, different aggregation modes are used. Finally,
these modes are aggregated using the level 2 fuzzy sets. Therefore, the proposed
general approach to the solution of multiple criteria fuzzy distribution problem is
realized in two stages. At the first of them, the direct numerical method for solving
the single-criterion fuzzy distribution problem is used. Using obtained results, the
local criteria needed in the second stage are formulated. As the result we get the
fuzzy multiple criteria nonlinear distribution problem which is solved using numer-
ical methods.

5.2.1 The Problem Formulation

Let us consider the parameters p̂i, q̂i, in the fuzzy constraints (5.3). They represent
the lower fuzzy bounds for the possible optimal quantities of goods which can be
bought and sold. Hence, they can be negotiated and the choice of the real values
pi ∈ p̂i, qi ∈ q̂i, has the strong influence on the total benefit.

Therefore, the fuzzy values p̂i, q̂i may be treated as local criteria.
For example, let us consider p̂i (the fuzzy bounds for quantities of goods which

can be bought from the wholesaler ). Generally, it can be presented by a trapezoidal
fuzzy number (see Fig.5.7). The interval [pi1, pi4] can be treated as the fuzzy interval
of acceptable values of pi with the membership function μi(pi). On the other hand,
in the interval [pi1, pi2], the lowering of μi(pi) with the decreasing of pi may be
naturally interpreted as follows: the risk that the contracts signed with the customers
will be unfilled is rising with the decreasing of pi. Similarly, the lowering of μi(pi)
with the increasing of pi in the interval [pi3, pi4] leads to the rising of the overbuying
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Fig. 5.7 The trapezoidal fuzzy constraint p̂i.

risk (the risk that the part of the bought goods could not be sold to the customers) .
In the interval [pi2, pi3] we have no above risks and therefore μi(pi) =1. Obviously,
in a such interpretation, the function μi(pi) represents the risk ranging from 0 to 1
and calculated as 1-μi(pi).

Using the similar reasoning, it can be shown that the membership function of q j,
i.e., μ j(q j) represents the corresponding risk ranging from 0 to 1 and calculated as
1-μ j(q j).

Hence, the distribution problem can be treated as the multiple criteria optimiza-
tion task including the local criteria of total benefit maximization and particular risks
minimization. It is seen that the local criteria of particular risks minimization can
be formulated directly using the fuzzy values p̂i, q̂i, but an explicit mathematical
formulation of the total benefit maximization criterion needs an additional analysis.
To formulate this criterion we can use the solution obtained in the previous stage
in Section 5.1 in the framework of the direct fuzzy extension of simplex method
in application to the fuzzy distribution problem. Since this approach is free of any
additional restriction on the form of fuzzy parameters and variables and is based on
the total benefit maximization under fuzzy constraints, the obtained optimal fuzzy
benefit D̂ can be treated as the fuzzy interval of achievable real valued benefits.
Therefore, we can use the support of D̂ to formulate the local criterion λ (D) per-
forming the distributor’s intention to maximize the total benefit as it is shown in
Fig.5.8. Of course, this criterion doesn’t reflect the “possibility” to gain the ben-
efit that implicitly performs the fuzzy benefit D̂ obtained taking into account the
constraints defined by the fuzzy parameters p̂i, q̂i, since in the multiple criteria dis-
tribution problem we use these parameters to formulate the local criteria of risk
minimization. It is seen that to calculate the value of λ (D), the real valued D are
needed.

It is worthy to note that in practice, all the bought and sold good quantities pi

, q j and optimal good quantities xi j delivered from ith wholesaler to jth customer
in the signed contracts should be presented in the form of real values. Hence, some
simplifications of the initial fuzzy problem can be justified. Therefore, we propose
to use in (5.1) instead of fuzzy ẑi j their real valued representations zi j. For example,
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Fig. 5.8 The local criterion of total benefit maximization λ (D).

in the case of symmetrical trapezoidal fuzzy ẑi j (as in our examples in Section 5.1),
the geometric centers of such trapezes will be used. Such a simplification allows us
to obtain from (5.1)-(5.3) for the real valued pi ∈ p̂i, qi ∈ q̂i, i=1 to N, j=1 to M,
the real valued profit D({pi},{q j}) needed for the calculation of λ (D({pi},{q j}))
on the consequent steps of the developed algorithm for the solution of multiple
criteria distribution problem. Since the minimization of local risks is equivalent to
the maximization of μi(pi), μ j(q j), the solution of the multiple criteria distribution
problem should be the optimal {pi}opt ∈ { p̂i},{q j}opt ∈ {q̂ j} maximizing some
general criterion that aggregates all the considered local criteria λ (D({pi},{q j})),
μi(pi), μ j(q j) taking into account their weights.

Under such conditions, the optimal good quantities xi j delivered from ith whole-
saler to jth customer are finally obtained from (5.1)-(5.3) as the solution of this
problem for the real valued zi j and optimal {pi}opt ∈ { p̂i}, {q j}opt ∈ {q̂ j}, i=1 to
N, j=1 to M.

5.2.2 The Solution of Multiple Criteria Fuzzy Distribution
Problem Using the Aggregation of Aggregation Modes

To formulate the general criterion, we propose here to aggregate the criteria of local
risks into the aggregated criterion of risk minimization and aggregate it with the
local criterion of profit maximization. There are many approaches to the aggregation
of local criteria proposed in the literature and the choice of an appropriate one is an
application dependent problem [61]. Nevertheless, the weighted sum, Yager’s [55]
and multiplicative aggregation modes can be marked out as the most popular [17].
In our case, they are presented as follows:
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F1({pi},{q j}) = α ·λ (D({pi},{q j}))+ (1−α) · (μ1(p1)+ μ2(p2)+ ...
...+ μM(pM)+ μ1(q1)+ μ2(q2)+ ...+ μN(qN))/(2 ∗ (N + M)),

F2({pi},{q j}) = min(λ α (D({pi},{q j})),min(μ1(p1),μ2(p2),
...,μM(pM),μ1(q1),μ2(q2), ...,μN(qN))1−α),

F3({pi},{q j}) = λ α(D({pi},{q j})) · (μ1(p1) ·μ2(p2) ·
... · μM(pM) ·μ1(q1) · μ2(q2) · ... ·μN(qN))1−α ,

where 0 ≤ α ≤ 1 is the weight of local criterion of the benefit maximization. The
weights of local criteria of risks minimization were assumed to be equal ones since
there are no reasons for other propositions. Therefore, their aggregation have the
common weight 1-α. The solutions of the multiple criteria optimization problems
based on the above general criteria can be presented in the following generalized
form:

({pi},{q j})k,opt = arg(max(Fk({pi},{q j}))),k = 1,2,3.

The results of theoretical analysis and practical experience make it possible to
state that the most reliable aggregation mode is the Yager’s type aggregation (F2),
the multiplicative mode (F3) appears to be somewhat less reliable and, finally, the
weighted sum (F1) may be considered as unreliable and insensitive when choosing
an alternative in Pareto-region [17](see also Chapter 4).

On the other hand, it is known that Yager’s type aggregation sometimes does
not comply with intuitive concepts of the decision maker about optimality [18].
Therefore, when dealing with a complex problem characterized by a great number
of local criteria, it seems reasonable to use all relevant types of aggregation. If the
results obtained using different aggregation methods are similar then we can say
that that they are rather optimal ones. In the opposite case an additional analysis of
local criteria and their weights should be carried out.

The natural consequence of the described problems is a rising interest in the
methods for the aggregation of aggregation modes [49]. The different approaches
to the aggregation of aggregation operators were proposed in [14, 18, 19, 27, 43,
45, 56, 62]. These approaches are based on the use of weighted sum, min operator,
multiplicative aggregation modes and their combinations for the aggregation of ag-
gregation modes. The common restriction of these approaches is that they do not
allow us to aggregate all possible aggregation operators.

Therefore, here we shall use a simple, but intuitively obvious and mathematically
strong approach proposed in [17, 50] which is free of this restriction. This method
for the aggregation of aggregation modes is based on the level-2 fuzzy sets [26, 54,
58].

As proposed by Zadeh in [59], the level-2 fuzzy sets is such a fuzzy set, of which
membership grades assigned to the elements of the universal set are ordinary fuzzy
sets. The approach proposed in [17, 50] was developed for the solution of the deci-
sion making problems. Therefore, here it is adapted to the use for the solution of the
multiple criteria optimization problems.

The solution of our problem can be obtained only using numerical methods.
Hence, when realizing such method we shall deal with the discrete finite set of
alternative νk = ({pi},{q j})k, k=1 to L, where L is the number of steps of an
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algorithm which is searching for the optimal alternative νLopt = ({pi},{q j})Lopt

in the domain pi ∈ p̂i, q j ∈ q̂ j, i=1 to N, j=1 to M.
Therefore, let us suppose we have K different aggregation modes Fl , l=1 to K,

and L alternatives νk = ({pi},{q j})k, k=1 to L. Let the membership function μ(Fl),
l=1 to K, represents expert’s opinion about the closeness of considering aggregation
operator Fl to some perfect type of aggregation, which can be treated as the “best”
one or “ideal” method for aggregation. The values of such membership function may
be treated as weights of aggregation modes. Then such “ideal” method Fideal can be
represented by its membership function and by the set of compared aggregation
modes Fl in the form of following fuzzy set:

Fideal =
{

μ(Fl)
Fl

}
, l = 1 to K. (5.7)

In turn, each Fl can be represented formally by the set of compared alternatives
νk = ({pi},{q j})k, k=1 to L, on which it is factually defined and for which the
values of Fl(νk) are calculated. It is clear that the value of Fl(νk) may be treated as a
degree to which the alternative νk satisfies the aggregated criterion Fl or as an extent
to which the alternative νk belongs to a set of alternatives satisfying Fl . Then

Fl =
{

Fl(vk)
vk

}
, k = 1 to L. (5.8)

Substituting (5.8) into (5.7) we obtain the Fideal in the form of level-2 fuzzy set and
using the operations on such fuzzy sets proposed in [59] we have finally:

Fideal =
{

μideal(vk)
vk

}
, k = 1 to L, (5.9)

μideal(vk) = max
l

(μ(Fl) ·Fl(vk)). (5.10)

It is clear that the best alternative can found as νopt = argmax
k

μideal(νk).

The well known direct random search method [53] has been adopted to develop
the numerical algorithm for the solution of the above optimization problem. Of
course, any other modern optimization method, e.g., genetic algorithm can be used
as well. Nevertheless in [1], it is shown that “when the optimizing function is non-
linear, non-differentiable and non-smooth, direct search methods are the methods of
choice”.

The algorithm of direct random search method has been realized as follows.
On the kth step of the random searching, the alternative νk = ({pi},{q j})k has been
randomly chosen in the domain pi ∈ p̂i, q j ∈ q̂ j. For the chosen ({pi},{q j})k and
the real valued representations of ẑi j from (5.1)-(5.3) the benefit Dk and the good
quantities {xi j}k are obtained. This makes it possible to calculate the value of the
local criterion λ (Dk) and the values of aggregation modes Fl(νk), l=1 to K. In our
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case, the weighted sum (F1), Yager’s aggregation (F2) and multiplicative mode (F3)
have been used.

Finally, from (5.10) the value of μideal(vk) is calculated . If μideal(vk)>μideal(vk−1),
we treat the kth step of random search method as the successful one. Repeating the
random steps, we gradually converge to the maximal (optimal) μideal(vopt).
Let us consider a numerical example.

We shall use the same example as in Section 5.1 using instead of fuzzy ẑi j their
real valued representations zi j . In the considered case of symmetrical trapezoidal
fuzzy ẑi j the geometric centers of such trapezes were used.

In Table 5.1, the solution of multiple criteria fuzzy distribution problem obtained
using the aggregation of aggregating modes is presented in comparison with those
obtained with the use of weighted sum (F1) , Yager’s (F2) and multiplicative (F3) ag-
gregation modes in the described above procedure of direct random search method.
According to the recommendation justified in [17], the following weights of aggre-
gation modes were used: μ(F1) = 0.05, μ(F2) = 0.7, μ(F3) = 0.25. It is seen that
the solution obtained using the aggregation of the aggregation modes can be treated
as the compromise one since it lies in the range of solutions we get with the use of
considered aggregation modes solely.

Table 5.1 The comparison of the obtained solutions of multiple criteria fuzzy distribution
problem

μideal(vopt) F1(νopt) F2(νopt) F3(νopt)
Dopt 853062 859701 853706 854259
x11 421 467 421 411
x12 52 44 50 54
x13 8 0 4 0
x21 0 0 0 0
x22 516 516 518 516
x23 0 0 0 0
x31 0 0 0 4
x32 0 0 0 0
x33 662 663 666 665
p1 476 511 476 465
p2 518 516 518 505
p3 666 663 666 669
q1 421 467 421 415
q2 568 569 568 560
q3 670 663 670 665

5.3 Summary and Discussion

A two stage approach to the solution of multiple criteria fuzzy distribution prob-
lem is developed. At the first stage, the direct numerical method for the solution
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of single-criterion fuzzy distribution problem is used. The method is based on the
α-cut representation of fuzzy numbers and probability estimation of the fact that
given fuzzy value is greater/equal than another one. The proposed approach makes
it possible to accomplish the direct fuzzy extension of usual simplex method with-
out restrictions on the form of fuzzy variables. The results of case studies with the
use of fuzzy optimization method and Monte-Carlo method (usual linear program-
ming with real valued, but random parameters) show that the fuzzy approach have
considerable advantages in comparison with Monte-Carlo method, especially from
the computational point of view.

At the next stage the results obtained at the first one, are used to formulate the
local criterion of the total benefit maximization and the fuzzy constraints are treated
as the local criteria of the particular risks minimization. The general criterion is
formulated as an aggregation of aggregation modes using level-2 fuzzy sets. These
modes are the different types of aggregations of local criteria characterizing the
total benefit and risks of breach of contracts. With the use of numerical example it
is shown that the solution obtained using the aggregation of the aggregation modes
can be treated as the compromise one since it lies in the range of solutions we get
with the use of considered aggregation modes solely.
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Chapter 6
The Synthesis of Fuzzy Logic and DST in Stock
Trading Decision Support Systems

Modern computerized stock trading systems (mechanical trading systems) are based
on the simulation of the decision making process and generate advice for traders
to buy or sell stocks or other financial tools taking into account the price history,
technical analysis indicators, accepted rules of trading and so on. There are many
approaches to building stock trading systems proposed in the literature. The appli-
cations of the methods of soft computing in this field of researches are analysed in
Chapter 2. It is noted that the source of many failures when building really prof-
itable stock trading systems is the ignoring of human factor. It was recognized in
[32], after obtaining a negative result that “The trading system loses money and gets
a negative Sharpe Ratio. We believe that if expert’s experience is available, it will
generate more promising results”.

We can say that the last statement is the pivotal idea on which the methods pre-
sented in this chapter are based. We believe that the wisdom accumulated by gen-
erations of traders in the form of well-known trading rules of technical analysis are
an adequate base on which it is possible to build optimal fuzzy expert systems for
stock trading. Our starting point was the paper [9], where the authors presented an
expert system based on the fuzzy logic representation of technical analysis trading
rules which are usually used by traders for decision making. Since technical analysis
provides indicators used by experts to predict stock price movements, the method
proposed in [9] maps these indicators into new inputs that can be used in a fuzzy
logic system. This chapter generalizes our experience in building stock trading sys-
tems. Some results we have obtained are partially presented in [10, 30].

Here we present and compare three different expert systems for stock trading
based on the synthesis of fuzzy logic and technical analysis. The first one is the
special adaptation of classical Mamdani’s approach. Another method is based on
the so-called “logic-motivated fuzzy logic operators” [29]. The third system that
will be presented is based on the synthesis of fuzzy logic and the Dempster-Shafer
theory.

L. Dymowa: Soft Computing in Economics and Finance, ISRL 6, pp. 207–240.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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6.1 Stock Trading Systems Based on Conventional Fuzzy Logic

In this section, two different expert systems for stock trading based on the synthesis
of fuzzy logic and technical analysis are presented and compared. The first one is,
in essence, a special adaptation of classical Mamdani’s approach. Another method
is based on the recognition of the fact that Mamdani’s approach was developed for
fuzzy logic controllers, not for solving decision making problems. Therefore, the
so-called “logic-motivated fuzzy logic operators” based on the other mathemati-
cal representation of t-norm and Yager’s implication rule were used in the expert
system. The efficiency of such expert systems is naturally measured by comparing
system outputs versus stock price movement. The preliminary results obtained using
the real data from extremely different markets (NYSE and Warsaw Stock Exchange)
allow us to say that optimized expert system based on the “logic-motivated fuzzy
logic operators” framework provides substantially greater benefits and is more reli-
able than the expert system based on the Mamdani’s approach. Moreover, the devel-
oped optimal investment strategy makes it possible to get a profit even in conditions
of trading in the direction opposite to the downtrend of stock prices.

6.1.1 Modern Approaches to Building Stock Trading Systems

During the last two decades, powerful mathematical methods have been employed
to find a way to predict stock prices accurately, but they have produced less than suc-
cessful results in practice [13]. In [19], it was shown that numerous studies address-
ing stock price prediction have generally employed time series analysis techniques
[17] and multiple regression models. Recently, artificial intelligence techniques such
as artificial neural networks (ANNs) and genetic algorithms (GAs) have been applied
in this area. However, the above-mentioned concern still exists [2, 20, 22].

In [18], ANNs had some limitations when learning the patterns since stock price
data have tremendous noise and complex dimensionality. In [19], it is pointed out
that numerous factors such as macro-economical and political events may have a
major influence on stock prices. As noted in [39], “in recent times interest has turned
to the use of neural networks for this task, but had less than successful results”.
Therefore, the growing interest among researchers in the application of rough sets
theory [24] for trading rules extraction can be observed [32, 39].

In [12], neuro-fuzzy (NF) systems were compared with rough sets (RS) based
methods applied in medicine and finance. It was shown that the decisions generated
by NF systems are not transparent. In RS based methods, the knowledge discovered
during the process of classifier generation is represented in a transparent form and
so provides a better understanding of the problem under consideration and a better
explanation of the circumstances behind decisions. RS methods “...ensure relatively
high accuracy using smallest numbers of rules. It is related to their design philoso-
phy to take into account only key relationships between attributes and decisions that
are specific for the objects from the whole universe” [12].
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As it was pointed out in [36], “One of the most important problems on rule in-
duction methods is that they cannot extract rules, which plausibly represent expert’s
decision processes. On one hand, rule induction methods induce probabilistic rules,
the description length of which is too short, compared with the expert’s rules. On
the other hand, construction of Bayesian networks generates too lengthy rules”.

Thus, the rough sets theory is not a universal remedy for the real-world problems
of stock trading. It was recognized in [32], after obtaining a negative result that
“The trading system loses money and gets a negative Sharpe Ratio. We believe that
if expert’s experience is available, it will generate more promising results”.

We can say that the last statement was the pivotal idea on which the approaches
presented in this chapter are based. We believe that the wisdom accumulated by gen-
erations of traders in the form of well-known trading rules of technical analysis are
an adequate base on which it is possible to build optimal fuzzy expert systems for
stock trading. Our starting point was the paper [9], where the authors presented an
expert system based on the fuzzy logic representation of technical analysis trading
rules which are usually used by traders for decision making. Since technical analysis
provides indicators used by experts to predict stock price movements, the method
proposed in [9] maps these indicators into new inputs that can be used in the fuzzy
logic system. Past sequences (history) of stock prices are used to calculate these in-
dicators. This method relies on fuzzy logic to generate a decision when certain price
movements or certain price formations occur. The main idea is to use technical indi-
cators and fuzzy logic to create a new fuzzy indicator that recommends the buying
or selling of a stock. This method avoids over-reliance on quantitative data. It con-
sists of a few inputs (e.g., rate of change (ROC), stochastic and support-resistance
indicators), one output variable (e.g., level of confidence to take a certain action),
and a few fuzzy rules expressing the relationships between financial indicators.

To build the stock trading expert system, the authors of [9] directly used the clas-
sical Mamdani’s multi-input-single-output [21] general form of fuzzy rules. How-
ever, it should be noted that the applied Mamdani’s approach was developed for the
use in automatic control systems, not for solving decision making problems. As a
consequence, it often produces somewhat artificial non-transparent systems of fuzzy
rules when dealing with the application of human reasoning. In [29], a new system
of the so-called “logic-motivated fuzzy logic operators” (LMFL) is proposed to ac-
commodate better the specificity of human reasoning in decision making processes.
This system is based on the modified mathematical representation of t-norm and
Yager’s implication rule [37]. In our opinion, a proper choice of the basic concept
of a fuzzy logic system plays a pivotal role in the building of stock trading sys-
tems. In [30], we demonstrated that LMFL approach can be split into two different
frameworks for expert systems building, which are called in this chapter Yagermax

and Yagerave, respectively. Using data from the Warsaw Stock Exchange we have
shown that Yagerave method yields significantly better results than Yagermax and
Mamdani’s approaches. It allows us (after optimization during a teaching period) to
make high profits even in the risky case of trading long positions against a dominat-
ing downtrend, whereas in [9] only some reduction in the total loss is indicated in
such cases.
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6.1.2 Technical Analysis Indicators and Their Fuzzy
Representation

To present the merits of our optimization-based approach more transparently, we
have used nearly the same set of technical analysis indicators as in [9]. However,
it should be noted that we have used only triangular membership functions in the
fuzzy logic systems as there is no need to consider more complicated membership
functions in the technical analysis setting.

Firstly, the historical data R(τ) representing the closing prices of a stock at con-
sequent moments τ were used to obtain a set of technical indicators (inputs). As in
[9], we shall use the notation τ = nT , where T is the employed time period (e.g.,
T =30 min, T =1 hour, T =1 day ...), n is the number of consequent time periods. The
closing price and the following five well known technical indicators (see [1]) were
used in the analysis:

• Rate of change momentum indicator ROC(nT) = R(nT )−R((n− r)T), where r
is the depth of analysis (n > r). It is worth noting here that r plays an important
role in further analysis as it is one of the model’s parameters which is optimized.

• Stochastic indicators

%K(nT ) =
(

R(nT )−Rmin (nT )
Rmax (nT )−Rmin (nT )

)
·100,

where Rmin(nT )=min(R(nT),R((n−1)T), ...,R((n− r)T)),

Rmax(nT)=max(R(nT ),R((n− 1)T), ...,R((n− r)T)).

%D(nT ) =
n
∑

(n=3)

%K(nT )
3 , n ≥ 3.

• Support level SL=Avg(nT)− 2σ(nT),
• Resistance level RL=Avg(nT )+ 2σ(nT),

where σ(nT) =

√
n
∑

n−g
(R(nT)−Avg(nT))2

g , Avg(nT ) =

n
∑

n−g
R(nT)

g is the so-called moving

average, g is the number of days for averaging.
In line with the conventional technical analysis practice [1], we assume g=20.
The next step is to transform the initial technical indicators into the modified set

of seven indicators which can be directly used in the fuzzy logic system [9]:

Y1 = YROC = R(nT)−R((n−r)T)
R((n−30)T) ,

Y2 = Y1((n−2)T)−Y1(nT ) = YROC((n− 2)T)−YROC(nT ),n ≥ 2,

Y3 = %D(nT ),Y4 = %K(nT )−Y3(nT ),Y5 = Avg(nT )+ 2σ −R(nT),

Y6 = R(nT )− (Avg(nT)− 2σ),Y7 = R(nT)−Avg(nT).
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These indicators represent the signals that a trader can take into account in the
decision making process. Nevertheless, the trader’s attitude to the values of these
indicators is usually expressed in linguistic (fuzzy) form, for example: If Y1 is large,
in other words, if the ROC indicator is large, then the price is likely to rise. If Y6 is
large, in other words, if the price is close to the resistance level, then the price is
likely to fall.

Fuzzy logic provides a method for quantifying such fuzzy concepts. This is
achieved using a membership function, which is a mapping from the domain of
the input value to a real value ranging from 0 to 1. This mapping represents the
degree of membership to a class defined by the user for a given application. For the
technical analysis application, four classes were selected [9]- small, medium, big
and large - to represent the four levels of quantification for each input value range.
Numerous methods for representing membership functions are proposed in the lit-
erature. In [9], Gaussian type membership functions were used. In this chapter we
shall use only triangular membership functions in fuzzy logic systems since there
is no need to introduce more complicated membership functions in the technical
analysis setting. Thus, all the results presented in this chapter were obtained using
triangular membership functions shown in Fig. 6.1. As all these membership func-
tions were presented as triangles of the same width of supports (see Fig. 6.1), only
the minimal In f (Yj) and maximal Sup(Yj) values of used indicators Y1 −Y7 need to
be defined. Of course, they can be treated as the adaptive parameters of a system,
which should be found when teaching (optimizing) the system using teaching time
series. However, for the sake of simplicity, we have used the minimal In f (Yj) and
maximal Sup(Yj) values of Yj on the considered teaching time series. In our case,
such an approach seems to be sufficiently justified. Moreover, as we shall compare
several different stock trading simulating systems, such an approach allows us to
compare and contrast them on the equal footing since the values of In f (Yj) and
Sup(Yj) do not depend on the simulating systems used.

Fig. 6.1 Triangular membership functions: In f (Yj),Sup(Yj) are minimal and maximal values
of the input Yj in the considered time series
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A more general representation of the triangular membership functions in our
case is:

μ jv =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, Yj ≤ a jv
Yj−a jv
b jv−a jv

, a jv < Yj ≤ b jv
cjv−Yj
c jv−b jv

, b jv < Yj < c jv

0, Yj ≥ c jv

where j is the number of the fuzzy variable, v is the number of used classes or
linguistic terms (small,medium,big, large).

Of course, this approach offers many opportunities to tune the fuzzy logic system
via an appropriate (optimal) selection of the values of the parameters a jv, b jv, c jv,
but this is one of many directions for future elaboration of our expert systems and is
outside the scope of this book.

The next step is the formulation of the fuzzy rules that will govern trading. This
collection of fuzzy rules approximately represents the human thinking in the deci-
sion making process. These rules, in the case of multi-input-single-output systems
(MISO) [21], can be presented as follows:

IF Yj is A1, ...,AND/OR Ym is Am THEN C is AL, (6.1)

where (IF Y1 is A1,..., AND/OR Ym is Am) are preconditions (antecedents) and AL

are postconditions, Y1 and Ym are input variables, C is the output variable, A1 is the
class defined on Y1, Am is the class defined on Ym, and AL is a class defined on C.

The antecedent (rule’s premise) describes to what degree a rule is applied, while
the conclusion (rule’s consequent) assigns a membership function to the output
variable.

As mentioned in Subsection 6.1.1, there are problems associated with represent-
ing the decision making process using conventional fuzzy logic. It is for this reason
that in both [9] and this chapter we consider an approach to the formulation of con-
sequents of fuzzy rules as only an approximation of the decision making process. As
in [9], four fuzzy classes - low,medium,big, large - to which an output variable can
be assigned are used (see Fig. 6.1). As in [9], we assume Inf(Y )=0, Sup(Y )=100,
though usually such sets of linguistic terms are represented by the interval [0,1].
The rule system proposed in [9] is built in such a way that a low value of C, i.e.,
“C is low” represents an excellent opportunity to sell and a high value of C, i.e.,
“C is big” is considered as a signal to buy. We have used the rule system proposed
in [9].

The combined rules for the classes low,medium,big, large have been formulated
as follows:

IF {(Y1 is big)and (Y2 is big)}or{(Y2 is large)and (Y3 is large)}
or (Y7 is large) THEN C is large,

(6.2)

IF (Y2 is large)or (Y6 is large) or (Y3 is large)or (Y5 is low)THEN
C is big,

(6.3)
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IF (Y4 is big)or{(Y7 is medium) or (Y4 is big)}THEN C is medium, (6.4)

IF {(Y1 is low)and (Y2 is medium)}or{(Y6 is low)and (Y7 is low)}
THEN C is low.

(6.5)

Of course, this set of rules (6.2)-(6.5) is not a complete and exhaustive one. It may
be modified and extended to incorporate other trading strategies. Moreover, the rule
“IF (Y3 is large) THEN C is large” is rather controversial, since according to the
technical analysis theory [1] a large value of Y3 (%D) means overbuying, i.e., it is
a signal to sell. Indeed, using the technical analysis theory and fuzzy logic we can
build more accurate, but somewhat more complicated rules, e.g., “IF (Y3 is large)
and (Y3(nT ) is smaller than Y3((n−2)T )) and (Y4 is substantially smaller than 0)
T HEN C is low”.

However, we do not intend to criticize here the set of rules proposed in [9], since
a robust trading system should work well even if a few of its rules are not correct.
It is clear that the intension to build a complete or exhaustive set of rules seems to
be a senseless endeavor since, in practice, there may be thousands of rules proposed
by different traders. Thus, any rule based trading strategy will omit some probably
good opportunities to generate buying or selling signals that would be generated by
another set of rules. Obviously, in such cases, the system generates nothing and this
can be naturally treated as the generation of the “hold” signal.

Indeed, the aim of our work is to develop an adequate methodological framework
for building mechanical trading systems (MT S), not to create them. Therefore, we
avoid such typical trading attributes as Stop Loss Orders, Take Profit Orders and so
on in our analysis.

6.1.3 Stock Trading System Based on the Mamdani’s Approach

Here we present an adaptation of Mamdani’s approach to the specificity of decision
making in the stock trading to build the optimized trading system.

Let μiν denotes the fuzzy membership grade of input Yj to a class ν . For example,
“Y2 is big” denotes the membership of the fuzzy input 2 to the class big. Its value is
computed using the membership grade μ23. Then the value of the antecedent of rule
(6.5) which is denoted in [9] as a0 may be calculated as follows:

a0 = max{min(μ22,μ11),min(μ61,μ71)},
where the “and” and “or” operators are replaced by min and max operators, respec-
tively. Similarly all other antecedents are calculated:

a1 = max{μ21,min(μ43,μ72)},

a2 = max{μ24,μ64,μ34,μ51},
a3 = max{min(μ23,μ13),min(μ24,μ34),μ74}.
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Mamdani’s fuzzy implication method is used to combine the rules and calculate the
outputs: for class low

μC−0(•) = a0 ∧μc−0(•), (6.6)

for class medium
μC−1(•) = a1 ∧μc−1(•), (6.7)

for class big
μC−2(•) = a2 ∧μc−2(•), (6.8)

for class large
μC−3(•) = a3 ∧μc−3(•), (6.9)

where μc−0(•), μc−1(•), μc−2(•) and μc−3(•) are membership functions corre-
sponding to the classes “low”, “medium”, “big” and “large” of output variable C,
respectively and symbol ∧ denotes the so-called clipping operation [21] that pro-
duces an output membership function μC−i(•) clipped off at a height equal to ai.
Finally, the Mamdani’s process produces

μC(C) = μC−0(C)∨μC−1(C)∨μC−2(C)∨μC−3(C) =
(a0 ∧μc−0(C))∨ (a1 ∧μc−1(C))∨ (a2 ∧μc−2(C))∨ (a3 ∧μc−3(C)), (6.10)

where ∨ is the max operator. Since the resulting C is a fuzzy value, its real value
representation Cr is needed. To get the real value estimation Cr, the standard center
of area (COA) defuzzification method [21] was used. Obviously, when Cr for ana-
lyzed session is close to 100 (high end), the stock is a strong buy. On the other hand,
when Cr is close to 0 (low end), the stock is a strong sell.

It is shown in [9] that a proper choice of some critical values Cmax and Cmin such
that fuzzy logic system generates advice for buying when Cr > Cmax and for selling
when Cr < Cmin makes it possible to create an effective investment strategy. Of
course, the presented trading system will be optimized using the teaching procedure
on the base of real historical data (the history of stock prices) and the results will be
shown in Subsection 6.1.5.

6.1.4 Expert System Based on Logic-Motivated Fuzzy Logic
Operators

As mentioned above, the Mamdani’s approach to fuzzy modeling was developed for
the use in automatic control, not for solving decision making problems.

However, trading is a process of decision making. The simplest fuzzy rule in a
trading system can be presented as follows:

i f x = A then y = B,

where A and B belong to one of the classes defined above, x is the value of an
indicator used in the technical analysis. For example, let B = large. As assumed
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above, in this case the trader decides to buy. In other words, the term large in our
trading rule is equivalent to the buy decision, whereas A may be naturally treated
as an argument in favor of such a decision. It is easy to see that factually we are
dealing with an implication A → B. The complete set of formal conditions that a
fuzzy implication should satisfy was formulated by Fodor [11]. Mamdani’s type
implication does not satisfy these conditions. Moreover, in his foreword to the recent
book [27], L. Zadeh wrote “A source of confusion is that Mamdani and Assilian
used this interpretation in their seminal 1974 paper, but referred to it as implication,
which it is not, rather than as a joint constraint”. Therefore, the so-called logical-
type implication modes satisfying all or at least most of conditions defined in [11]
seems to be more suitable for the solution of decision making problems.

Another problem is the choice of an appropriate type of aggregation for the par-
ticular antecedents to the resulting one. As this problem is very similar to the mul-
tiple criteria decision making problem, we think that as it was pointed out in [52],
the aggregation is a context dependent problem. From this point of view, the classi-
cal Mamdani’s non-compensative min operator can not correctly reflect the trader’s
reasoning as he/she usually “compensates in mind” a small value of one techni-
cal indicator by large values of others. Different Logical-type implication modes
were proposed by Lukasiewicz, Fodor, Zadeh, Yager, Willmott, Dubois and Prade.
In addition, a lot of methods were developed for aggregation: usual t-norms and t-
conorms [26], parameterized triangular norms, soft fuzzy norms (see [27] for more
detail). It seems unrealistic to test all possible combinations of implication and ag-
gregation modes. Therefore, in line with “context dependence” strategy, we have
selected an approach based on the so-called “logic-motivated fuzzy logic operators”
[29]. Although this approach is based on the well known interpretation of and and
or operators and Yager’s implication rule, we have chosen it because the method
for inferring the final mathematical expressions (for implication and aggregation as
well) within the framework of this approach is similar to the trader’s reasoning. It
is important that in our case, the implication A → B has a natural interpretation as
the “sum” of arguments (represented by A) in favor of action B (buying or sell-
ing). As a consequence, the value of membership function representing implication
μA→B(x,y) = I(μA(x),μB(y)) should be treated as the degree of certainty in state-
ments such as “if x = A then Buy/Sell”. Similar reasoning is used in the approach
based on the “logic-motivated fuzzy logic operators” [29].

Let us consider the implication operation f→(a,b). According to [29], the pur-
pose of an implication operation is, given our degrees of certainty a = d(A) and
b = d(B) in statements A and B, to estimate our degree of certainty d(A → B) in the
composite statement “A implies B”. From the viewpoint of the logic-motivated idea
[29], the fact that our degree of certainty in statement A is equal to d(A) means that
we have d(A) arguments in favor of A. Similarly, the fact that our degree of certainty
in statement B is equal to d(b) means that we have d(b) arguments in favor of B. If
we have an argument in favor of the implication “A implies B”, then by combining
each argument in favor of A with an argument in favor of the implication we obtain
a transformation of each argument in favor of A into an argument in favor of B. In
mathematical terms, we thus have a function mapping the set S(A) of arguments in
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favor of A into the set S(B) of arguments in favor of B. Thus, the number of argu-
ments in favor of A → B coincides with the number of functions from the set S(A)
to the set S(B). The number of such functions is known to be equal to d(B)d(A).
Hence, logic motivates the use of f→(a,b) = ba as an implication operation. This
operation was first introduced by R.Yager and is called Yager’s implication. An al-
ternative justification for the use of Yager’s implication comes from the requirement
that several natural properties of classical implication, such as

(A → B)&(A →C) ≡ (A → (B&C)) and (A → (B →C)) ≡ (A&B)→C

hold for the fuzzy implication as well [37]. As it was shown in [29], logic motivates
the use of an algebraic product f&(a,b) = a · b as the and-operation (t-norm) and
algebraic sum f&(a,b) = a +b−a ·b as the or-operation (t-conorm).

So, when using “logic-motivated fuzzy logic operators” all and-operators in ex-
pressions (6.2)-(6.5) were represented by algebraic products and similarly all or-
operators in the preconditions of rules (6.2)-(6.5) were represented by algebraic sums.

Let μ jv denote a fuzzy membership grade of an input Yj in a class V . For example,
“Y2 is big” denotes a membership of the fuzzy input Y2 in the class big. Its value is
computed using the membership grade μ23. Then the value of the antecedent of the
rule (6.5) denoted in [9] as a0 may be calculated as follows

a0 = μ11 ·μ22⊕ μ61 ·μ71.

The values of all the other antecedents are calculated in a similar way:

a1 = μ21 ⊕ μ43 ·μ72,
a2 = μ24 ⊕ μ64 ⊕μ34⊕ μ51,
a3 = μ23 ·μ13⊕ μ24 ·μ34 ⊕ μ74,
where ⊕ denotes the algebraic sum (or -operation).

Since the values of av, in general, may be more than 1, they were normalized
using the expression a′v = av

∑3
i=0 ai

. Obviously, ∑3
i=0 a′i = 1.

So instead of Mamdani’s outputs [9], we obtain the following implications:

μC−i(C) = (μc−i(C))a′i , i = 0 to 3, (6.11)

where μc−0(•),μc−1(•),μc−2(•) and μc−3(•) are the membership functions corre-
sponding to the classes low,medium,big, large of the output variable C.

Finally, the result of aggregation is presented as follows:

μC(C) = μC−0(C)⊕ μC−1(C)⊕ μC−2(C)⊕ μC−3(C). (6.12)

Since the resulting C is a fuzzy value, its real value representation Cr is needed. To
obtain the real value Cr, an appropriate defuzzification method is needed. There is
an important point concerning expressions (6.11) which needs to be clarified before
a proper defuzzification method is chosen. It is easy to see that when treating the in-
volution in (6.11) as an operation on a fuzzy set [51], i.e., as the involution of values
of its membership function, the critical points of the initial triangular fuzzy value
could not be changed (see Fig. 6.2). Obviously, such an operation is of no practical
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importance in our case, since the defuzzification of the fuzzy sets represented by the
membership functions μC−i(C) and (μC−i(C))a′i cannot provide different results.

Fig. 6.2 Involution of fuzzy values in the fuzzy set sense

On the other hand, the treatment of expression (6.11) in the fuzzy arithmetic
sense seems to be reasonable (see Fig. 6.3).

Fig. 6.3 Involution of fuzzy values in the fuzzy arithmetic sense

To implement the last approach, the α -cut representation [16] of the analyzed
fuzzy values has been used. As a result, the fuzzy values C̃ − i represented by the
membership functions μC−i(C) were obtained:

C̃− i =
⋃
α

[
C,C
]ai

α =
⋃
α

[
Cai ,C

ai
]

α , (6.13)

where
[
C,C
]

α are crisp intervals such that μc−i(C) ≥ α, C ∈ [C,C
]

α .
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To get a real value estimation of a fuzzy number C̃− i, two different approaches
may be used. The first is based on the results of [29] where the following logic-
motivated expression was proposed:

Cr = argmax μC−i(C). (6.14)

Hereinafter, we shall call this approach Yagermax.
The second approach is a consequence of the α-cut representation of the analyzed
fuzzy values and the use of interval arithmetic rules:

Cr = ∑
α

0.5α
(
Cai +C

ai
)/

∑
α

α. (6.15)

It is easy to see that expression (6.15) allows us to take into account more infor-
mation than expression (6.14), particularly, the contribution of α-cuts to the gener-
alized estimation. Hereafter, we shall call this approach Yagerave. Finally, we have
developed an expert system based on logic-motivated fuzzy logic operators, which
provides the real-valued parameter Cr indicating the conditions for buying and
selling.

Since the Mamdani’s type expert system described in Subsection 6.1.3 works in
the same way as the expert system based on logic-motivated fuzzy logic operators, it
is possible to compare the results obtained using Mamdani’s, Yagerave and Yagermax

approaches.

6.1.5 Comparing the Trading Systems Based on Mamdani’s
Approach and Logic-Motivated Fuzzy Logic Operators

The expert systems presented in previous subsections produce fuzzy logic outputs
and output ranges, which determine how actions will be combined to form an exe-
cuted action (decision stage). The success of the system is measured by comparing
its outputs versus stock price movement. As we want to optimize the decisions, the
control variables and the target function should be chosen. In the considered situa-
tion, a natural target function is the total return (profit), which can be obtained using
our optimized strategy during some control time period.

Since the value Cr may serve as indicator of good opportunity to buy or sell a
stock, it seems natural to introduce the top Cmax and the bottom Cmin , such that if
Cr > Cmax then the system buys and if Cr < Cmin then the system sells.

In our optimization task, the parameters Cmin, Cmax were considered as control
variables. A third control variable was the number r of stock exchange sessions
used in calculation of initial technical indicators inputs (see Subsection 6.1.2).

The optimization task was formulated as the maximization of the total return R
obtained during teaching period:

(Cmin,Cmax,r)opt = argmaxR(Cmin,Cmax,r).
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The direct random search method [35] was used for the optimization in the teach-
ing time period, and transaction costs were taken into account since they can signif-
icantly affect the total return in the real-world situations.

We have used the obtained optimal Cmax, Cmin and r in the simulation of decision
making process during the following time period (testing period) to get the predicted
total returns.

The use of optimization procedure provides us much more benefits in the testing
period than the method proposed in [9]. Moreover, the developed optimal investment
strategy employing technical analysis and fuzzy logic makes it possible to get a
profit even in conditions of downtrends (dropping stock prices) that is opposite to
results of [9] where only some reduction of total loss is indicated in such a case.

The results obtained using Mamdani’s, Yagerave and Yagermax approaches were
compared with those obtained on the base of simplest trend dependent (buy and
hold) strategy, i.e., when we buy some stocks at the beginning and sell them only at
the end of analyzed time period.

The typical results we got for stocks of the polish company COMARCH (Warsaw
Stock Exchange) are presented in Table 6.1, Fig. 6.4 and Fig. 6.5. In all cases the
initial investments of 10000 PLN were simulated at the beginning of teaching and
testing periods.

Table 6.1 Returns (PLN) obtained with use of different approaches for COMARCH, Warsaw
Stock Exchange

Method Teaching time period (one month) Testing time period (one month)
Mamdani’s 590 -514
Yagermax 600 146
Yagerave 1100 200

Buy and hold strategy 80 -429

Fig. 6.4 Teaching time period (COMARCH, Warsaw Stock Exchange): B1, B2,B3 are
buying signals according to Mamdani’s, Yagermax and Yagerave approaches respectively;
S1,S2,S2 are corresponding selling signals
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Fig. 6.5 Testing time period (COMARCH, Warsaw Stock Exchange): B1, B2,B3,.. are
buying signals according to Mamdani’s, Yagermax and Yagerave approaches respectively;
S1,S2,S2,... are corresponding selling signals

Analyzing the results presented in Table 6.1 we can say that Yagerave approach
seems to be more beneficial and reliable. On the other hand, Mamdani’s approach
can produce a negative profit (losses) in testing periods if they are characterized by
dropping stock prices. The same result for Mamdani’s approach was indicated in
[9]. Finally, the passive trend dependent strategy (buy and hold) can provide some
lower losses than Mamdani’s approach when dropping trend takes place, but this
strategy is absolutely not paying in the rising trends in comparison with any consid-
ered optimized strategy.

To estimate the robustness of the developed optimised trading systems, they were
tested in most difficult for trading and risky conditions - in the case of operating by
long position (buying) only in the direction opposite to a dominating downtrend.
For this purpose the quotations of Legal Play Entertainment Inc (NYSE) were used.
In all cases at the beginning of teaching and testing periods, the initial investments
of 10000 USD were simulated with corresponding transaction costs.

The typical results for the teaching time period 2003-10-31 - 2003-12-05 and the
testing time period 2004-04-02 - 2004-05-25 are presented in Table 6.2.

Table 6.2 Total returns (USD) obtained with use of different approaches for LPLE.OB (Legal
Play Entertainment Inc), NYSE

Method Teaching time period Testing time period
Mamdani’s 1412 -545
Yagermax 1420 -2664
Yagerave 3327 6286

It can be seen that although in the teaching period all compared methods provide
positive total returns, in testing period only the Yagerave approach guarantees the
benefits in such hard and risky trading conditions. It is worth noting that Yagerave

approach not only produces considerable returns on different testing periods, but its
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returns on teaching period are at least two times greater than those obtained using
Mamdani’s and Yagermax approaches (see Table 6.2).

Summarizing, we can say that Yagerave approach is the most adaptable, profitable
and robust method for building the fuzzy logic based stock trading systems.

It is seen in Fig. 6.4 and Fig. 6.5 that the optimized strategy does not always gen-
erate only the best from common sense trading decisions. Nevertheless, we can see
that optimization with the use of fuzzy expert systems makes it possible to generate
effective investment strategy providing positive final profits even in the case of risky
trading by long positions opposite to the downtrend.

6.2 The Stock Trading System Based on Fuzzy Logic and
Evidential Reasoning

The synthesis of fuzzy logic and methods of the Dempster-Shafer theory (the so-
called rule-base evidential reasoning) is proved to be a powerful tool for building
expert and decision making systems. Nevertheless, there are two limitations of such
approaches that reduce their ability to deal with uncertainties the decision makers
often meet in practice.

The first limitation is that in the framework of known approaches to the rule-
base evidential reasoning, a degree of belief can be assigned only to a particular
hypothesis, not to a group of them, whereas an assignment of a belief mass to a
group of events is a key principle of the Dempster-Shafer theory (the basics of this
theory are presented in Chapter 3).

The second limitation is concerned with the observation that in many real-world
decision problems we deal with different sources of evidence and the combination
of them is needed. The known methods for the rule-base evidential reasoning do not
provide a technique for the combination of evidence from different sources.

In this section, an approach free of these limitations is presented. The advantages
of this approach are demonstrated using simple numerical examples and the devel-
oped stock trading expert system optimized and tested on the real data from Warsaw
Stock Exchange.

6.2.1 Experts Systems Based on Rule-Base Evidential Reasoning

It is well known that the best solutions of real-world problems can be usually ob-
tained using the synthesis of some modern powerful methods.

Therefore, during the last two decades, the rising interest of researchers has
been observing in searching for an appropriate synthesis of fuzzy sets theory and
the Dempster-Shafer theory (DST ) methods. Several researchers have investigated
relationships between fuzzy sets and DST and suggested different approaches to
integrate them.
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The integration of fuzzy sets and DST methods within symbolic rule-based
models primarily has been used for solving control and classification problems
[4, 5, 15, 43, 50]. These models combine these theories in a synergic way, preserving
their strengths while avoiding disadvantages they present when used as monostrat-
egy approaches: a capacity for the representation of fuzzy classifiers is enhanced
by introducing the measure of ambiguity; limitations of DST in providing effective
procedures to draw inferences from belief functions are softened by integrating the
rule of propagation of evidence within the fuzzy deduction paradigm.

Generally, such a rule-base evidential reasoning system may be presented as in
[5]:

IF ((A is L) and (B is M)) THEN C is m0,

IF ((A is H) and (B is L)) THEN C is m1,

where m0 and m1 are two credibility structures with two focal elements and variable
C is defined in the universe of discourse which usually is a set of classes to deal with
in considered classification problem.

In the above example adopted from [5], the credibility structures were presented
as follows:

m0: D00 =
{

μ0
00

y0
,

μ0
01

y1

}
, m0(D00), D01 =

{
μ1

01
y1

}
, m0(D01),

m1: D10 =
{

μ0
11

y1
,

μ0
12

y2

}
, m1(D10), D11 =

{
μ1

10
y0

,
μ1

11
y1

,
μ1

12
y2

}
, m1(D11),

where D00, D01, D10, D11 are fuzzy subsets in Y = (y0,y1,y2), μ0
00, μ0

01, μ1
01, μ0

11,
μ0

12, μ1
10, μ1

11, μ1
12 are the corresponding membership grades, m0(D00), m0(D01),

m1(D10), m1(D11) are the basic probability values associated with fuzzy subsets
D00, D01, D10, D11.

The output of the system is obtained in [5] with use of COA method [44] in the
form of defuzzified value y.

This approach seems to be justified when universe of discourse {yi} is presented
by real values. On the other hand, if we deal with expert or decision support sys-
tems, the elements of universe of discourse {yi} can be only the names or labels of
corresponding actions or decisions, e.g., Buy, Sell and Hold in trading systems or
the names of medical diagnoses. It is clear that in such cases, the methods based
on conventional fuzzy logic, developed for the controlling can not be used at least
directly.

A more suitable for building expert and decision support systems seems to be
the methodology proposed by Yang, Liu, Sii, and Wang [46, 47] based on the ev-
idential reasoning approach [45, 48, 49]. In the belief rule system, each possible
consequent of a rule is associated with a belief degree. Such a rule base is capable
to capture more complicated and continuous causal relationships between different
factors than traditional IF-THEN rules. Therefore, the traditional IF-T HEN rules
may be treated as a special cases of the more general belief rule systems [14, 23, 34].

In the framework of rule-base inference methodology, using the evidential rea-
soning (RIMER) approach [46] a belief IF-T HEN rule, e.g., the kth rule Rk, is
expressed as follows:
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IF(X1 is Ak
1) ∧ (X2 is Ak

2) ∧ ... ∧ (XTk is Ak
Tk

)
THEN(D1,β1k), (D2,β2k), ..., (DN ,βNk), (6.16)

with rule weights θk, k = 1 to L, and attribute weights δ1,δ2, ...,δTk , where Ak
i , i = 1

to Tk is the referential value of the ith antecedent attribute, Tk is the number of
antecedent attributes used in the kth rule, βik, i=1 to N, is the belief degree to which
Di is believed to be the consequent of kth antecedent, L is the number of rules in the
rule-base, ∧ denotes t-norm.

If
N
∑

i=1
βik = 1, the kth rule is said to be complete; otherwise, it is incomplete. The

case of
N
∑

i=1
βik = 0 corresponds to the total ignorance about the output given the input

in the kth rule. The rule (6.16) is also referred to as a belief rule. In the framework of
RIMER approach, the final outcome obtained as the aggregation of the rules (6.16)
is presented as O = {(Dj,β j)}, where β j, j = 1 to N, is the aggregated degree of
belief in the decision (hypothesis, action, diagnosis) D j.

Therefore, the decision characterized by the maximal aggregated degree of belief
is the best choice. So the RIMER approach can be used for building expert and
decision support systems.

Nevertheless, there are two restrictions in the RIMER approach that reduce its
ability to deal with uncertainties the decision makers often meet in practice. The
first restriction is that in the framework of RIMER approach, a degree of belief can
be assigned only to a particular hypothesis, not to a group of them, whereas the
assignment of a belief mass to a group of events is a key principle of DST . The sec-
ond restriction is concerned with the observation that in many real-world decision
problems we deal with different sources of evidence and the combination of them
is needed. The RIMER approach does not provide a technique for the combination
of evidence from different sources. In this section, a new approach free of these
restrictions is proposed.

It is important that usually the advantages of the approach based on the rule-
base evidential reasoning were demonstrated using only simple numerical examples.
Only a few examples of solving real-world problems using this approach were found
in the literature. In [5], the neural model for fuzzy Dempster-Shafer classifiers was
developed and tested. The RIMER approach has been successfully used to build
the belief-rule-base expert system for pipeline leak detection in [41]. In [33], the
synthesis of fuzzy logic and DST is used to build the expert system for medical
diagnosis.

Therefore, the validity and capability of belief-rule-base systems in dealing with
more practical and complicated problems need to be examined. In this section, we
present a method for building fuzzy belief-rule-base systems and apply it to build
the stock trading expert system.

A brief review of the papers devoted to the building stock trading expert systems
has been presented in Section 6.1.
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6.2.2 A Modern Approach to the Rule-Base Evidential Reasoning

Here we present a modern approach to the rule-based evidential reasoning free of
the above mentioned restrictions of RIMER method.

To present this approach in more transparent form, we shall use the simple ex-
ample which makes it possible to expose the features of the proposed approach and
avoid here the complicated general formulas.

Suppose a doctor has to diagnose the diseases for a patient who has such outward
symptoms as high temperature, cough, heavy breathing, headache and so on, which
are typical for cold and flu.

There are two different groups of symptoms (different sources of evidence) avail-
able to make a diagnostic conclusion: outward symptoms based on the direct obser-
vation (high temperature, cough, heavy breathing, headache) and symptoms based
on the laboratory analysis of components of blood.

It is clear that part of them may be treated as arguments in favor of cold , other as
arguments in favor of flu and there may be symptoms of cold and flu simultaneously.
There are two possible types of reasoning in the analyzed situation: symptoms from
both groups (outward symptoms and symptoms based on the laboratory analysis) are
treated as having common source of evidence; each group of symptoms is treated as
a separate source of evidence.

It is clear that the first type of reasoning is only the special case of the second one.
Therefore, to represent our approach in a more general form, our further analysis
will be based on assumption that there are different sources of evidence in a rule-
base evidential reasoning system.

Let as denote Ak
j = (x1 is Ak

j1) ∧ (x2isAk
j2) ∧ ...∧ (xT, is Ak

jTj
), where Ak

j, j = 1
to N, k = 1 to M, is the antecedent of the jth rule for kth source of evidence, M is the
number of sources of evidence, N is the number of rules, Ak

ji, i = 1 to Tj is the refer-
ential value of the ith antecedent attribute, Tj is the number of antecedent attributes
used in the jth rule, x1,x2, ...,xTj are the values of parameter used in the jth rule,
e.g., if x1 is the temperature, then one of the antecedent attribute can be presented
as (x1 is High), where the linguistic term High is presented by the corresponding
fuzzy subset.

Let us return to our example. Denote D1 =cold, D2 = f lu. Suppose the rule-base
evidential reasoning system is presented as follows:

IF A1
1 T HEN D1, (6.17)

IF A1
2 T HEN (D1,D2), (6.18)

IF A1
3 T HEN D2, (6.19)

IF A2
1 T HEN D1, (6.20)

IF A2
2 T HEN (D1,D2), (6.21)

IF A2
3 T HEN D2, (6.22)

with rule weights θ k
i , i = 1 to 3 , k = 1,2.
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It is important that there are no implications in the sense of conventional fuzzy
logic in the above rules. In these rules, T HEN denotes the assignment of some
decision (action, diagnosis) to the conclusion part of a rule. For example, D1 in
the rule (6.17) is not any real or fuzzy value. It is only a label denoting the action
which a rule-base evidential reasoning system proposes if the value presented by
the precondition part of the rule is great enough. The similar treatment of rules in a
rule-base evidential reasoning system has been proposed in [33].

As an antecedent (rule’s premise) describes to what degree a rule is applied, we
can treat its value as the measure of belief that a decision (action or diagnosis) in
the conclusion part of a rule will be a good choice. In other words, we propose
to treat the value of rule’s antecedent as a focal element of some basic probability
assignment bpa (see Chapter 3). For example, the rules (6.17), (6.19),( 6.20), (6.22)
taking into account their weights can be rewritten as m∗

1(D1) = θ 1
1 A1

1, m∗
1(D2) =

θ 1
3 A1

3, m∗
2(D1) = θ 2

1 A2
1, m∗

2(D2) = θ 2
3 A2

3.
The more problems we have with the rules (6.18), (6.21). In these cases, a doctor

hesitates over the choice of an unambiguous diagnostic decision, as the observed
symptoms are typical for both possible diseases.

As in these cases a doctor cannot choose more probable diagnosis, the simplest
solution of the problem seems to be the assignment of the probability 50% to each
diagnosis. Such a solution is in the spirit of RIMER type approaches and conforms
to the Bayesian “principle of insufficient reason”: if there is no reliable information
about the probabilities of events, they are treated as equally probable [3].

Nevertheless, in the considered example, such approach seems to be somewhat
artificial one since the doctor’s hesitation over the choice of diagnosis is caused just
by the lack of reliable information of the probabilities of possible diagnosis to be
true. Moreover, in the considered case, both the diagnoses can be true simultane-
ously. The problem of the Bayesian approach is that the probability can be assigned
only to a single event, whereas in the framework of DST , the probability of a group
of events can be analyzed too. Therefore, in context of DST and taking into account
the rule weights, the rules (6.18), (6.21) can be rewritten as follows:
m∗

1(D1,D2) = θ 1
2 A1

2, m∗
2(D1,D2) = θ 2

2 A2
2.

Thus, we obtain two belief structures based on two sources of evidence:
m∗

1(D1)=θ 1
1 A1

1, m∗
1(D2)=θ 1

3 A1
3, m∗

1(D1,D2)= θ 1
2 A1

2 and m∗
2(D1)= θ 2

1 A2
1, m∗

2(D2)=
θ 2

3 A2
3, m∗

2(D1,D2) = θ 2
2 A2

2.
Generally, these belief structures are not normalized, i.e., the conditions

m∗
1(D1)+ m∗

1(D2)+ m∗
1(D1,D2) = 1, m∗

2(D1)+ m∗
2(D2) + m∗

2(D1,D2) = 1 are not
verified.

Therefore, to obtain the conventional basic assignment function, we have used
the following normalization procedure:
m1(D1) = m∗

1(D1)/S1, m1(D2) = m∗
1(D2)/S1, m1(D1,D2) = m∗

1(D1,D2)/S1,
m2(D1) = m∗

2(D1)/S2, m2(D2) = m∗
2(D2)/S2, m2(D1,D2) = m∗

2(D1,D2)/S2,
where S1=m∗

1(D1)+ m∗
1(D2)+ m∗

1(D1,D2), S2=m∗
2(D1)+ m∗

2(D2)+ m∗
2(D1,D2).

The next step is obtaining the combined basic assignment function using the
Dempster’s rule (3.81) (see Chapter 3). As the result we get:
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m12(D1) =
m1(D1)m2(D1)+ m1(D1)m2(D1,D2)+ m2(D1)m1(D1,D2)

1−K
,

m12(D2) =
m1(D2)m2(D2)+ m1(D2)m2(D1,D2)+ m2(D2)m1(D1,D2)

1−K
,

m12(D1,D2) =
m1(D1,D2)m2(D1,D2)

1−K
,

K = m1(D1)m2(D2)+ m1(D2)m2(D1).
The obtained combined basic assignment function is not suitable enough for

choosing the best decision among D1 and D2. Therefore, using the expressions
(3.78), (3.80) (see Chapter 3), the belief and plausibility measures have been ob-
tained as follows:

Bel(D1) = m12(D1), Pl(D1) = m12(D1)+ m12(D1,D2),
Bel(D2) = m12(D2), Pl(D2) = m12(D2)+ m12(D1,D2).

This makes it possible to present the competing decisions in the form of belief
intervals:

BI(D1) = [Bel(D1),Pl(D1)], BI(D2) = [Bel(D2),Pl(D2)].
It is known that a belief interval can be interpreted as imprecision of the “true

probability”. In our case, this can be treated as that BI(D1) encloses the true prob-
ability of D1 to be the best choice and the corresponding probability of D2 lies in
BI(D2). Therefore, to choose the best decision among D1 and D2, it is enough to
compare the intervals BI(D1), BI(D2).

It is easy to see that in such interval-probabilistic context we deal with, the use of
the probabilistic approach to the interval comparison presented in Subsection 3.3.3
(see Chapter 3) seems to be the best choice.

Obviously, the presented method can be used in the case of more sources of evi-
dence. The attribute weights may be also used in the way similar to that developed
in the framework of the RIMER approach. The proposed approach can be adopted
to the case when there exists some additional information of the probabilities of the
decisions D1 and D2 in the rules such as (6.18) and (6.21). For example, these rules
may be presented as follows:

IF A1
2 T HEN ((β 1

21D1),(β 1
22D2)), (6.23)

IF A2
2 T HEN ((β 2

21D1),(β 2
22D2)), (6.24)

where β k
i j, (i, j,k = 1,2) is the belief degree to which D j is believed to be the con-

sequent of the antecedent Ak
i . In context of the proposed approach, the rules (6.23),

(6.24) can be rewritten as follows:

m∗
1((β

1
21D1),(β 1

22D2)) = θ 1
2 A1

2, m∗
2((β

2
21D1),(β 2

22D2)) = θ 2
2 A2

2.

Finally, after normalization we get two belief structures based on two sources of
evidence:
m1(D1), m1(D2), m1((β 1

21D1),(β 1
22D2));

m2(D1), m2(D2), m2((β 2
21D1),(β 2

22D2)).
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Here we propose the following way to utilize an additional information of D1 and
D2 presented by β k

i j.
Firstly, let us consider the calculation of Bel and Pl measures using two following

examples.

Example 6.1. Suppose, there is no an additional information of D1, D2 and
m1(D1) = 0.2, m1(D2) = 0.5, m1(D1,D2) = 0.3,
m2(D1) = 0.2, m2(D2) = 0.3, m2(D1,D2) = 0.5.
Then from these sources of evidence we get respectively:
BI1(D1) = [0.2,0.5], BI1(D2) = [0.5,0.8],
BI2(D1) = [0.2,0.7], BI2(D2) = [0.3,0.8].
Using the Dempster’s rule of combination we obtain:

m12(D1) = 0.238,m12(D2) = 0.583,m12(D1,D2) = 0.179. (6.25)

Example 6.2. Suppose, there is the additional information of D1 and D2, presented
by β k

i j:

m1(D1) = 0.2,m1(D2) = 0.5,m1((β 1
21D1),(β 1

22D2)) = 0.3,

m2(D1) = 0.2,m2(D2) = 0.3,m2((β 2
21D1),(β 2

22D2)) = 0.5. (6.26)

We propose to utilize the additional information of D1 and D2, presented by β k
i j in

such a way that β k
i j will reduce the values of focal elements representing hesitations

of the decision makers concerned with the probabilities of D1 and D2 to be best
decisions in the rules such as (6.23), (6.24). The reason behind this proposition is
that any additional reliable information used in a mathematic model should reduce
the result’s uncertainty. Therefore, for the calculations of the Bel and Pl measures
we propose the following method for utilizing the additional information of D1 and
D2:

Bel1(D1) = m1(D1),Pl1(D1) = m1(D1)+ β 1
21m1((β 1

21D1),(β 1
22D2)),

Bel1(D2) = m1(D2),Pl1(D2) = m1(D2)+ β 1
22m1((β 1

21D1),(β 1
22D2)),

Bel2(D1) = m2(D1),Pl2(D1) = m2(D1)+ β 2
21m2((β 2

21D1),(β 2
22D2)),

Bel2(D2) = m2(D2),Pl2(D2) = m2(D2)+ β 2
22m1((β 2

21D1),(β 2
22D2)). (6.27)

Let β 1
21 = 0.4,β 1

22 = 0.6,β 2
21 = 0.3,β 2

22 = 0.7. Then from (6.26) and (6.27) we get:

BI1(D1) = [0.2,0.32], BI1(D2) = [0.5,0.68],
BI2(D1) = [0.2,0.35], BI2(D2) = [0.3,0.65].

Comparing these results with those obtained in the Example 1, we can see that
utilizing the additional information concerned with the probabilities of D1 and D2

to be best decisions in the rules such as (6.23), (6.24) leads to the reduction of
the lengths of all calculated belief intervals, i.e., to the reduction of the overall re-
sult’s uncertainty. It is important that although in both examples the interval relations
BI1(D2) > BI1(D1) and BI2(D2) > BI2(D1) are observed, the differences between
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BI1(D2) and BI1(D1), BI2(D2) and BI2(D1) are greater in the Example 2 than in the
Example 1. Moreover, opposite to the case in the Example 1, there is no intersection
of intervals BI1(D2) and BI1(D1) in the Example 2.

To explain this fact, let us consider the average belief degrees to which D1, D2 are
believed to be the consequents of the antecedents in the rules (6.23) and (6.24): β 1 =
1
2 (β 1

21 +β 2
21), β 2 = 1

2 (β 1
22 +β 2

22). Since β 1 = 0.35 and β 2 = 0.65, it is quite natural
for the decision D2 to be more preferable in the Example 2 than in the Example 1.

Thus, the results of the above analysis are in compliance with common sense.
Therefore, we propose here to use the described above method for utilizing the

additional information of D1 and D2 in the Dempster’s combination rule which we
propose to modify as follows:

m∗
12(D1) = (m1(D1)m2(D1)+ m1(D1)β 2

21m2((β 2
21D1),(β 2

22D2))+
+m2(D1)β 1

21m1((β 1
21D1),(β 1

22D2)))/N f ,

m∗
12(D2) = (m1(D2)m2(D2)+ m1(D2)β 2

22m2((β 2
21D1),(β 2

22D2))+
+m2(D2)β 1

22m1((β 1
21D1),(β 1

22D2)))/N f ,

m∗
12(D1,D2) = (β m1((β 1

21D1),(β 1
22D2))m2((β 2

21D1),(β 2
22D2)))/N f , (6.28)

where N f = 1−K is the normalization factor, K = m1(D1)m2(D2)+m1(D2)m2(D1),
β = β 1β 2, β 1 = 1

2 (β 1
21 +β 2

21), β 2 = 1
2(β 1

22 + β 2
22).

It is easy to see that always β 1 +β2 = 1.
Thus, the maximal value of β equal to 0.25 we have when β 1 = β 2 = 0.5 . The

value of β is reduced from 0.25 to zero with increasing the difference between of
β 1 and β 2.

In the extreme case, when, e.g., β 1
21 = β 2

21 = 0, β 1
22 = β 2

22 = 1, β = 0, from (6.28)
we get:

m∗
12(D1) = m1(D1)m2(D1)/(1−K), m∗

12(D1,D2) = 0,
m∗

12(D2) = (m1(D2)m2(D2)+ m1(D2)m2((β 2
21D1),(β 2

22D2))+
+m2(D2)m1((β 1

21D1),(β 1
22D2)))/N f .

Thus, in this case when decision maker possesses an additional information that in
the rules (6.23), (6.24) only D2 is the best decision, there is no the focal element
corresponding to the hesitation (i.e., m∗

12(D1,D2) = 0) in the combined bpa and the
values of the rest of focal elements are redistributed in favor of D2. Therefore, we
can say that when β = 0, we deal with the most certain case with minimal hesitation.
In the opposite situation, when β = 0.25 (e.g., β 1

22 = β 2
22 = 0.5, β 1

22 = β 2
22 = 0.5),

we deal with the maximally uncertain case since there is fifty-fifty chance for both
D1 and D2 to be the best decision. Therefore, the value of β can be treated as the
measure of uncertainty concerned with the probabilities of D1 and D2 to be best
decisions.

Let us consider some numerical examples illustrating this assertion.
For β 1

21 = 0.4, β 1
22 = 0.6, β 2

21 = 0.3, β 2
22 = 0.7 (β 1 = 0.35, β 2 = 0.65,

β = 0.2275), using the modified Dempster’s rule of combination (6.28) and the
subsequent normalization, from bpas (6.26) we get:
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m12(D1) = 0.184,m12(D2) = 0.741,m12(D1,D2) = 0.075. (6.29)

For β 1
21 = 0.5, β 1

22 = 0.5, β 2
21 = 0.5, β 2

22 = 0.5 (β 1 = 0.5, β 2 = 0.5, β = 0.25), we
obtain:

m12(D1) = 0.258,m12(D2) = 0.686,m12(D1,D2) = 0.056. (6.30)

For β 1
21 = 0, β 1

22 = 1, β 2
21 = 0, β 2

22 = 1 (β 1 = 0, β 2 = 1, β = 0), we obtain:

m12(D1) = 0.0476,m12(D2) = 0.580,m12(D1,D2) = 0. (6.31)

It is seen that the proposed modified Dempster’s rule of combination allows us to
utilize an additional information of D1 and D2 in such a way that the obtained results
are in good accordance with common sense. From (3.79), (3.80) and (6.28) after the
normalization procedure, the competing decisions are presented in the form of be-
lief intervals BI(D1) = [Bel(D1),Pl(D1)] , BI(D2) = [Bel(D2),Pl(D2)]. Finally, to
choose the best decision among D1 and D2, it is enough to compare these inter-
vals. A proper method for interval comparison is presented in Subsection 3.3.3 (see
Chapter 3).

6.2.3 Stock Trading Expert System

Modern computerized stock trading systems (or “mechanical trading systems” ) are
based on the simulation of the decision making process and generate advices for the
trader to buy or sell some stocks or other financial tool he/she deals with taking into
account the price history, technical analysis indicators, accepted rules of trading and
so on.

Generally, the stock trading expert systems (STES) are based on the analysis of
charts such us as shown in Fig. 6.6. The objects presented by High, Low, Open and
Close stock prices on a chosen time frame are called “Bars”. In Fig. 6.6, the 1-hour
time frame (1h-Bars) is performed.

In the most of STESs, different trend following strategies are used which are
based on the technical analysis, i.e., on methods for evaluating securities by analyz-
ing statistics generated by market activity, such as past prices and volumes (number
of transactions during a unit of a time frame).

Usually moving averages (e.g., averages of closing prices in the last n Bars) are
used to indicate the direction of a trend and to smooth out price and volume fluc-
tuations or “noise” that can confuse interpretation. Typically, upward momentum is
confirmed when a short-term average crosses above a longer-term average (see Fig.
6.7). Downward momentum is confirmed when a short-term average crosses below
a long-term average.

While some suggest the use of simple moving average rules [6, 7] others have
considered more complex indicators such as momentum and exponential moving
averages [25]. The seeking for proper trading rules, in general, involves learning
good indicators, as well as combinations of these in defining good rules. It is known
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Fig. 6.6 Prices and volumes of the futures contract FWIG20 (WIG20 is the main index of
Warsaw Stock Exchange)

Fig. 6.7 Simplest trend following strategy: SMA-simple moving average

that “trend-following methods typically utilize moving averages of closing price
data for buy and sell signals. Often, the signals turn out to be false due to short-term
market fluctuations” [40]. This drawback of moving averages is especially important
when short time frames are used on the market with high volatility or in the times of
financial crisis. On the other hand, the methods based on moving averages can also
be used in the development of other technical indicators.

To weaken the undesirable consequences of the above mentioned deficiency of
usual moving averages, we propose here to use instead of prices and volumes the
values of their changes on the nearest Bars. Finally, the short and long-term moving
averages based on these changes are used to advice Buy , Sell or Hold decisions
like in usual trend-following strategies.
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6.2.3.1 Trading Rules

In the proposed trading system, the changes of prices and volumes are used to build
the basic parameters of the system as follows:

- the change of the close price on ith Bar: ΔCi = Closei −Closei−1;
- the change of price movement presented by Bars taken as a whole. Generally,
this parameter should be presented by interval subtraction ΔBi = Bi −Bi−1 , where
Bi =[Lowi,Highi] is the interval of prices observed in ith Bar. For the sake of
simplicity, this price movement is approximately presented here by the parame-
ter εi = (Lowi+Highi)−(Highi−1+Lowi−1)

2 , i.e., by the change of interval’s means on the
nearest Bars; - the change of the volume on ith Bar: ΔVi = Vi −Vi−1;
- the change of the Bollinger band width ΔW BB(n)i =WBB(n)i-WBB(n)i−1, where
WBB(n)i is equal to two standard deviations away from a simple moving average
calculated on ith Bar using n previous Bars. Because standard deviation is a mea-
sure of volatility, Bollinger bands adjust themselves to the market conditions. Thus,
ΔWBB(n)i represents the change of volatility.

Traders usually make decisions using subjective assessments of parameters such
as introduced above and explain possible actions in the linguistic form, e.g., if (ΔCi

is Big and ΔVi is Big and ΔW BB(n)i is Medium) then Buy. Since the linguistic terms
such as Low, Big, Medium are the classes representing some fuzzy concepts, the use
of fuzzy logic for building stock trading systems seems to by quite natural. In the
proposed system, only three fuzzy classes Low, Big and Medium are used. They are
represented by corresponding triangular membership functions.

Since in the case of ΔCi > 0 or εi > 0, the Buy signal should be generated and
if ΔCi < 0 or εi < 0, the Sell signal should be the best choice, we have introduced
the classes LowC

B, MediumC
B and BigC

B for ΔCi > 0 and LowC
S , MediumC

S and BigC
S

for ΔCi < 0. Similarly the classes Lowε
B, Mediumε

B, Bigε
B, Lowε

S, Mediumε
S and Bigε

S,
have been introduced for εi. The membership functions μC

LOWB
, μC

MEDIUMB
, μC

BIGB
,

μC
LOWS

, μC
MEDIUMS

, μC
BIGS

of the classes for ΔCi are presented in Fig. 6.8.
In the same way, the membership functions με

LOWB
, με

MEDIUMB
, με

BIGB
, με

LOWS
,

με
MEDIUMS

, με
BIGS

of classes for assessment of εi have been built. Since the change
of the volume ΔVi does not generate the Buy or Sell signal, but can be treated as
the strength of signals generated by the parameters ΔCi and εi, the membership
functions μV

LOW , μV
MEDIUM , μV

BIG of the classes LowV , MediumV , BigV have been
built as presented in Fig. 6.9.

The membership functions μW BB
LOW , μWBB

MEDIUM , μW BB
BIG of the classes μW BB

LOW , μW BB
MEDIUM ,

μWBB
BIG based on the ΔW BB(n)i were built similarly, since the values of this param-

eter can only weaken or intensify the Buy and Sell signals. The optimal values of
parameters ΔCBig, εBig, ΔVBig, ΔWBBBig used to define the membership functions
(see Fig. 6.8, Fig. 6.9) and the optimal period n for the calculation of WBB(n)i were
found in the stage of teaching the trading system using historical data.
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Fig. 6.8 Membership functions of the fuzzy classes based on ΔC

Fig. 6.9 Membership functions of the fuzzy classes based on ΔV

There are only three possible decisions Buy, Sell and Hold in any trading situa-
tions, but in practice, there are more complicated situations when a trader hesitates
over the choice of an unambiguous decision. In such cases, a trader usually formu-
lates his/her opinion in the imprecise form, e.g., as (Buy or Hold) or (Sell or Hold).
Hereinafter, such situations will be denoted as (Buy,Hold) and (Sell,Hold), respec-
tively. Basing on the introduced fuzzy classes for assessment of market parameters,
the set of 108 rules generating possible trader’s decisions including the cases of hes-
itation on each ith Bar were built. For illustration, some of them are presented below
(here and hereinafter the index i is omitted for simplicity of notation):

IF (ΔC is BigC
B)Λ(ΔV is BigV )Λ(ΔW BB is BigWBB) T HEN Buy,

IF (ΔC is BigC
B)Λ(ΔV is BigV )Λ(ΔW BB is LowW BB) T HEN (Buy,Hold),

IF (ΔC is BigC
B)Λ(ΔV is MediumV )Λ(ΔW BB is LowW BB) T HEN Hold,

IF (ΔC is BigC
S )Λ(ΔV is BigV )Λ(ΔW BB is BigWBB) T HEN Sell,

IF (Δε is Bigε
B)Λ(ΔV is BigV )Λ(ΔW BB is MediumW BB) T HEN Buy,
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IF (Δε is Bigε
B)Λ(ΔV is BigV )Λ(ΔW BB is LowW BB) THEN (Buy,Hold),

IF (Δε is Bigε
S)Λ(ΔV is BigV )Λ(ΔW BB is MediumWBB) T HEN Sell,

IF (Δε is Bigε
S)Λ(ΔV is BigV )Λ(ΔW BB is LowW BB) T HEN (Sell,Hold).

It is worth noting that the proposed set of 108 rules performs the reasoning of rather
cautious (and experienced) trader participating in our research. All rules are based
on the parameters ΔV and ΔW BB, but the half of them (54 rules) include fuzzy
assessments of ε and the next half include fuzzy assessments of ΔC. Since at the
same moment (Bar) a positive change ΔC > 0 generating Buy signal and a negative
change ε < 0 generating Sell signal can appear simultaneously, the rules based on
ΔC and ε can be treated as those originated from two different sources of evidence.

The min operator has been used (as the connective “and”) to aggregate attributes
in antecedents as it is the most frequently used t-norm in the fuzzy logic. This op-
erator is in compliance with requirements of the cautious trader, although the sets
of parameterized families of more flexible t-norms and s-conorms were proposed in
the literature [27, 28]. All the rules were assumed to be of equal importance, i.e, for
the rule weights we have θk = 1, k = 1 to 108, and no reliable additional information
of probabilities of the decisions Buy, Sell and Hold in the rules with the ambigu-
ous consequents (Buy,Hold) and (Sell,Hold) has been reveled. On the other hand,
according to the trader’s opinion, the different weights of attributes in antecedents
should be introduced taking into account that attributes based on ΔC and ε are of
equal importance. Therefore, the weights wC=wε , wV , wW BB were introduced in the
system of rules and their values were obtained in the stage of teaching the trading
system using historical data under the condition wε + wV + wW BB=1 . Then in the
framework of the approach presented in Chapter 4, the above eight illustrative rules
can be rewritten as follows:

mC
1 (Buy) = min((μC

BIGB
)wC ,(μV

BIG)wV ,(μW BB
BIG )wWBB ),

mC
1 (Buy,Hold) = min((μC

BIGB
)wC ,(μV

BIG)wV ,(μW BB
LOW )wW BB),

mC
1 (Hold) = min((μC

BIGB
)wC ,(μV

MEDIUM)wV ,(μW BB
LOW )wW BB),

mC
1 (Sell) = min((μC

BIGS
)wC ,(μV

BIG)wV ,(μW BB
BIG )wWBB),

mε
1(Buy) = min((με

BIGB
)wC ,(μV

BIG)wV ,(μW BB
MEDIUM )wWBB),

mε
1(Buy,Hold) = min((με

BIGB
)wC ,(μV

BIG)wV ,(μW BB
LOW )wWBB),

mε
1(Sell) = min((με

BIGS
)wC ,(μV

BIG)wV ,(μW BB
MEDIUM )wWBB),

mε
1(Sell,Hold) = min((με

BIGS
)wC ,(μV

BIG)wV ,(μW BB
LOW )wWBB),

The power operator is used in the above rules as only such weighting procedure
guarantees reasonable results when dealing with the min operator for aggregation
[8, 31, 42]. Some comments are necessary. By mC

1 (Buy) we denote here the mass
of belief in Buy decision originated from the first source of evidence based on ΔC,
the index 1 marks the first occurrence of this type of belief in the set of rules ( there
are nC

BUY such masses of belief in the set of rules). Similarly, mε
1(Sell,Hold) is the

first occurrence of the mass of belief in the ambiguous (Buy,Hold) decision origi-
nated from the second source of evidence based on ε (there are nε

(SELL,HOLD) such
masses of belief in the set of rules) and so on.Therefore, the general set of 108 rules
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consists of two subsets originated from two sources of evidence based on ΔC and ε ,
respectively:

mC
iB

(Buy), iB = 1 to nC
BUY ;

mC
iS
(Sell), iS = 1 to nC

SELL;

mC
iH

(Hold), iH = 1 to nC
HOLD;

mC
iBH

(Buy,Hold), iBH = 1 to nC
(BUY,HOLD);

mC
iSH

(Sell,Hold), iSH = 1 to nC
(Sell,HOLD);

mε
jB

(Buy), jB = 1 to nε
BUY ;

mε
jS
(Sell), jS = 1 to nε

SELL;
mε

jH
(Hold), jH = 1 to nε

HOLD;
mε

jBH
(Buy,Hold), jBH = 1 to nε

(BUY,HOLD);

mε
jSH

(Sell,Hold), jSH = 1 to nε
(Sell,HOLD).

Summarizing the particular masses of belief in Buy decision based on the first source

of evidence, we get mc∗(Buy)=
nC

BUY

∑
iB=1

mC
iB

. Similarly, the other summarized masses of

belief mC∗ (Sell), mC∗ (Hold), mC∗ (Buy,Hold), mC∗ (Sell,Hold), mε∗(Buy), mε∗(Sell),
mε∗(Hold) , mε∗(Buy,Hold), mε∗(Sell,Hold) have been obtained. To get the nor-
malized basic assignment functions for both sources of evidence, the above sum-
marized masses of belief originated from these sources have been divided by the
normalization factors

SC= mC∗ (Buy)+mC∗ (Sell)+mC∗ (Hold) + mC∗ (Buy,Hold)+ mC∗ (Sell,Hold) and
Sε=mε∗(Buy) + mε∗(Sell) =mε∗(Hold)+mε∗(Buy,Hold)+ mε∗(Sell,Hold), respectively.
As the result, the basic assignment functions fulfilling the normalization conditions
mC(Buy)+mC(Sell)+mC(Hold)+mC(Buy,Holg)+mC(Sell,Hold)=1,
mε(Buy)+mε (Sell)+mε(Hold)+mε(Buy,Holg)+mε(Sell,Hold)=1 have been obtained.

Finally, using the Dempster’s rule (3.81) (see Chapter 3), we get the combined basic
assignment function

mCε (Buy),mCε(Sell),mCε (Hold),mCε (Buy,Hold),mCε(Sell,Hold). (6.32)

Using this bpa, from (3.79) and (3.80) (see Chapter 3) the competing decisions
Buy, Sell and Hold can be presented in the form of belief intervals BI(Buy)=
[Bel(Buy),Pl(Buy)], BI(Sell)=[Bel(Sell),Pl(Sell)]
and BI(Hold)= [Bel(Hold),Pl(Hold)].

Finally, to choose the best trading decision among Buy, Sell and Hold, it is
enough to compare these intervals using the method for interval comparison pre-
sented in Subsection 3.3.3 (see Chapter 3). Nevertheless, such approach leads, in
practice, to the poor trading results, since the presented above rule-based evidential
reasoning system may generate Buy or Sell signals almost in each Bar as the reac-
tion on random fluctuations of prices and volumes. Therefore, the signals generated
by the rule-base system were used as the most important part of the more general
strategy.
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6.2.3.2 Trading Strategy

To reduce the influence of the market “noise” to the decision making process, the
moving averages of the interval BI(Buy), BI(Sell) and BI(Hold) signals are used to
indicate the direction of a trend. The short-term averages BIN(Buy), BIN(Sell) and
BIN(Hold) of these signals have been calculated averaging the signals of the last N
Bars and the long-term averages have been obtained as the averages of the last M
Bars: BIM(Buy), BIM(Sell), BIM(Hold). Obviously, M > N.

Besides moving averages, the StopLoss and TakePro f it orders were used as they
are probably the most important tools to minimize losses and protect profits on an
open position. A StopLoss is an order to close a previously opened position at a
price less profitable for the customer than the opening price. A TakePro f it order
closes a position at a price more profitable than the opening price. The optimized
values of StopLoss (SL) and TakePro f it (TP) are obtained in the stage of teaching
the model using historical data.

In a nutshell, the trading strategy can be described as follows: if in the current ith
Bar there are no open positions then:

if BIN
i (Hold) > max(BIN

i (Buy),BIN
i (Sell)) (in interval sense), then the decision is

Hold and no positions should be opened in this Bar;
if BIN

i (Buy) > max(BIN
i (Hold),BIN

i (Sell)) then if ΔCi > 0 and
BIN

i (Buy) > BIN
i−1(Buy) > 0 then Buy, and Hold in all other cases.

If in the current ith Bar the long position (Buy) is open, then: if the current price is
lower than the StopLoss level or higher than the TakePro f it level or the short-term
moving average BIN

i (Buy) crosses above a longer-term moving average BIM
i (Buy)

then the long position should be closed. In all other cases, the long position should
be held. The strategy for opening and closing short positions (Sell) is a mirror re-
flection of the described above strategy for managing long positions.

Basing on this trading strategy, the model simulating the decision making process
in the trading with the use of historical data has been developed and implemented
using the well known specialized software Wealth-Lab Developer 3.0.
The main output of this model is the total return R, i.e., a profit gained by the model
during a chosen time period. In the developed stock trading expert system, the total
return R is the function of the parameters ΔCBig, εBig, ΔVBig, ΔWBBBig defining the
values of membership functions used in rule-base system, the weighs of attributes in
antecedents: wC, wV , wW BB, periods for calculation of the Bollinger band and short
and long-term averages: n, N, M, the values of the StopLoss and TakePro f it levels:
SL,TP.

The developed trading system has been optimized. Optimization pertains to the
ability to determine the combination of the values of trading system’s parameters
which result in the most favorable performance for the trading system. These op-
timization parameters include a variety of technical indicator periods, periodicity,
stops, targets, and more. So, in our case, the optimization problem has been formu-
lated as follows:
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maxR(ΔCBig,εBig,ΔVBig,ΔWBBBig,wC,wV ,wW BB,n,N,M,SL,T P),

s.t. wC + wV + wWBB = 1, N < M,

where R is the total return gained by the system during a teaching time period.
Of course, the duration of this period should be great enough to guarantee the statis-
tical validity of simulated results. Finally, the quality of a trading system is estimated
comparing the total return obtained in the teaching time period with that gained in
the test period usually immediately following the teaching period. An effective trad-
ing system usually provides good results in the teaching period and at least satisfac-
tory results in the testing period. It is well known that the results are usually dete-
riorating with widening the test period. Therefore, in practice, the reoptimization,
i.e., the repetition of the optimization procedure is usually used after some period
of real trading (test period) with the use of previously optimized system. Hence, it
is necessary to optimize durations of teaching and test periods. We have tested the
developed trading systems using the prices of FWIG20 futures contract (WIG20 is
the main index of Warsaw Stock Exchange). All the results were obtained with the
use of only one contract in trading without reinvestments and taking into account
the transaction costs. The best results with high profit, smooth profit curve and high
percentage of winning trades we have obtained using 1-hour time frame (1h-Bars).
The optimal durations of teaching and test period (in 2007-2008 years) were found
to be 22 and 4 weeks, respectively. The typical profit curve is shown in Fig. 6.10,
where the teaching and test time periods are separated by vertical black line. The

Fig. 6.10 Profit curie obtained trading FWIG20 futures contract: the teaching period:
06.08.2007 - 18.01.2008, the test period: 21.01.2008 - 22.02.2008

results obtained in the teaching and test periods are presented in Table 6.3 and Table
6.4. In the last column of Table 6.4, the total profit gained by the system during first
six months of 2008 year is presented.

The average Initial Margin Deposit was $1135 per one contract. To estimate the
efficiency of the system, we propose to treat this Deposit as the average month
investment. In this case, the average month profitability in the test periods in first six
months of 2008 year is $4882/1135/6=0.72. The positive high returns with relatively
high percentage of winning trades in all test periods illustrate well the trading system
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Table 6.3 Results in the teaching periods

06.08.2007-

18.01.2008

10.09.2007-

22.02.2008

15.10.2007-

28.03.2008

19.11.2007-

02.05.2008

24.12.2007-

06.06.2008

Profit,$ 8181 5086 4178 3613 7110
Number of trades 144 95 86 112 109
Winning trades,% 57.64 56.84 59.3 54.64 62.38

Gross profit,$ 14040 11645 10373 10890 10900
Gross loss,$ -5859 -6559 -6195 -7277 -3790

Table 6.4 Results in the test periods

21.01.2008-

22.02.2008

25.02.2008-

28.03.2008

31.03.2008-

02.05.2008

05.05.2008-

06.06.2008

09.06.2008-

11.07.2008

21.01.2008-

11.07.2008

Profit,$ 1160 1522 695 850 650 4882
Number of trades 34 24 18 21 26 123
Winning trades,% 55.88 54.17 55.55 57.14 61.54 56.91

Gross profit,$ 3577 3122 1459 1391 1527 11077
Gross loss,$ -2417 -1600 -764 -541 -877 -6195

reliability and stability. Taking into account also the high value of the ratio Gross
profit/ Gross loss=11077/6195=1.78 we can say the developed trading system may
be successfully used in the practical trading.

6.3 Summary and Discussion

In this chapter, two approaches to building stock trading expert systems are
presented.

The first of them is based on fuzzy logic representation of trading rules. In the
framework of this approach, two stock trading expert systems are developed and
compared. The first expert systems is built using the special adaptation of well-
known Mamdani’s approach. Another system is based on the recognition that Mam-
dani’s approach had been developed for fuzzy logic controllers, not for solving
decision making problem. Therefore, the so-called “logic-motivated fuzzy logic op-
erators”, based on the other mathematical representation of t-norm and Yager’s im-
plication rule, were used for the expert system engineering. The efficiency of such
expert systems is naturally measured by comparing the system outputs versus the
stock price movement. It is shown that “logic-motivated fuzzy logic operators” ap-
proach splits out into two different frameworks for expert systems building referred
here as Yagerave and Yagermax, respectively. The results obtained using the real data
of NYSE and Warsaw Stock Exchange allow us to say that the optimized expert
system based on “logic-motivated fuzzy logic operators” framework provides sub-
stantially greater benefits and is more reliable. It is shown that Yagerave approach
is the most adaptable, profitable and robust method for building fuzzy logic based
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stock trading systems which provides positive final profits even in the case of risky
trading by long positions (buying) opposite to the downtrend.

The second considered approach to building expert and decision support systems
is based on evidential reasoning. Unlike the other known methods, in the framework
of this approach it is possible (in compliance with the key principle of the Dempster-
Shafer theory) to assign a belief mass to a group of events, and aggregate different
sources of evidence using the Dempster’s rule of combination.

The basic principles and features of this approach are illustrated using numeri-
cal examples. In addition, to prove its practicability, the stock trading expert system
based on evidential reasoning has been developed, optimized and tested on the real
data from Warsaw Stock Exchange. It is shown that this system provides high re-
turns (profits) with smooth profit curve and high percentage of winning trades when
trading the futures contract on the main index of Warsaw Stock Exchange (WIG20).
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Chapter 7
Application of Interval and Fuzzy Analysis in
Economic Modeling

In this chapter, a new approach to solving interval and fuzzy equations based on the
generalized procedure of interval extension called “interval extended zero” method
is proposed. The central for the proposed approach is the treatment of “interval zero”
as an interval centered around 0. It is shown that such proposition is not of heuristic
nature, but is a direct consequence of interval subtraction operation. Some method-
ological problems concerned with this definition of interval zero are discussed. It is
shown that the resulting solution of interval linear equations based on the developed
method may be naturally treated as a fuzzy number. An important advantage of a
new method is that it substantially decreases the excess width effect. On the other
hand, we show that it can be used as the reliable practical tool for solving linear
interval and fuzzy equations as well as the systems of them. The fundamentals of
the proposed approach we have published in [67, 68]. In this chapter, we present the
generalization of the obtained and some new results.

The applications of the proposed approach are performed by the solution of well
known Leontief’s input-output problem in the interval setting and the solution of the
problem of fuzzy Internal Rate of Return in budgeting.

7.1 Basics of “Interval Zero Extension” Method

This section deals with the problem of solving interval and fuzzy linear equations.
The generalized procedure of interval extension called “interval extended zero”
method is proposed, which leads to the solution of linear interval equations in the
form of fuzzy number.

Therefore, some interval representations of such fuzzy solution are proposed. It
is shown that they may be naturally treated as the modified operations of interval
division.

The methodological problems concerned with this new approach to interval ex-
tension are discussed.
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It is shown that a new method substantially decreases the so-called excess width
effect, i.e., undesirable and sometimes drastic rising of the width of resulting inter-
vals as the consequence of interval computations.

7.1.1 The Problem Formulation

The problems of interval and fuzzy equations solution are of perennial interest, be-
cause of their direct relevance to practical modeling and optimization of real world
processes including finance [14, 21], economy [15, 20, 54, 74], mechanics [26].

Nevertheless, the problem of interval or fuzzy equations solution is not a trivial
one even for the linear equations such as

A ·X = B, (7.1)

where A and B are intervals or fuzzy values. As it is stated in [12], “...for certain
values of A and B, Eq. (7.1) has no solution for X . That is, for some triangular fuzzy
numbers A and B there is no fuzzy set X so that, using regular fuzzy arithmetic, A ·X
is exactly equal to B”.

The same problem takes place in the case of interval form of Eq. (7.1). In other
words, the classical solution too often fails to exist [17, 19]. Therefore, in the frame-
work of modern approaches to the solution of fuzzy and interval forms of Eq. (7.1)
as well as of linear fuzzy and interval systems, an equality of the left and right hand
sides of Eq. (7.1) is not obligatory requirement [60].

The different numerical methods for solving a specific fuzzy linear system
A ·X = B, where the entries of matrix A are real values and the entries of vector
B are fuzzy numbers were proposed in [3, 5, 6, 7, 30, 77]. Ferreira et al. [34] pro-
posed a numerical method for solving systems of interval polynomial equations.
This method provides only a real valued solution. Abbasbandy and Otadi [4] ob-
tained the real valued roots of fuzzy polynomials using fuzzy neural networks. Shieh
[72] considered the equation B = A + X where A, B are known fuzzy numbers and
the fuzzy number X has to be calculated. It is shown in [72] that this problem can
be formulated in the form of a fuzzy relation.

Although many different numerical methods were proposed for solving interval
and fuzzy equations, including such complicated ones as neural net solutions [16,
18] and fuzzy extension of the Newton’s method [1, 2], only particular solutions
valid in the specific conditions were obtained.

Currently, the dominant approaches to the solution of linear fuzzy and interval
systems are based on the treating of Eq. (7.1) as a set of real valued equations whose
parameters belong to the corresponding intervals or fuzzy values A and B [49].
In this framework, the important ideas are the concepts of the united solution set
(USS), its subsets called the tolerable solution set (T SS) and the controllable solu-
tion set [49]. Basing on these ideas, Buckley and Qu [19] and Buckley et al. [17] pro-
posed three solutions of a fuzzy linear system: joint or vector solution XJ , marginal
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solution XE and the solution X1. It was shown that XJ ⊆ XE ⊆ X1, that means that the
vector solution XJ is the more important one. Muzzioli and Reynaerts [60] proposed
a generalization of the vector solution to the fuzzy linear system A1x+b1 = A2x+b2.
We note here that the vector solution plays an important role in our further analysis
since it serves as an external constraint for the solution proposed in this section.
Although the significant advances were achieved using these approaches, two prob-
lems are still open. The first of them is of methodological nature: how to interpret
a solution of fuzzy or interval linear equation if it is not a solution of an equation
in the classical sense? The second problem is the so-called “excess width effect”
or inadmissible wide intervals or fuzzy values representing final solutions. In this
section, we propose an approach alleviating these problems.

Since there is a certain pluralism in choosing an appropriate method for solving
fuzzy or interval linear systems, we propose to turn back to the classical approach,
but looking at the problem from the other point of view.

In our opinion, the root of the problem is that the equations

F(X)−B = 0, F(X) = B,

where B is an interval or fuzzy value, F(X) is some interval or fuzzy function, are
not equivalent ones. Moreover, the main problem is that the conventional interval
or fuzzy extension of usual equation, which leads to the interval or fuzzy equation
such as F(X)−B = 0, is not a correct procedure. Really, in the left hand side of this
extended equation we have an interval, whereas in the right hand side we have the
real valued zero. Since an interval can not be equal to the real value we shall call
here this observation “interval equation’s right hand side problem”.

Less problems we meet when dealing with interval or fuzzy equation in the form
of F(X) = B, but in many cases its roots are inverted intervals, i.e., such that x < x.
This fact deserves a more detailed analysis and we study it thoroughly in this section.
We prefer to treat fuzzy values as the sets of α-cuts since in this framework we have
no problem of membership function’s shape. Therefore, all fuzzy arithmetic prob-
lems are reduced to the interval ones. The key to the proposed approach is the ob-
servation that “zero” value in interval analysis does not mean “nothing” and a more
natural is the treating of “interval zero” as an interval centered around zero. This
allows us to avoid formally what we call here “interval equation’s right hand side
problem” and to use the classical approach to solving linear interval equations. As
the result, an underdetermined equation with two variables representing the bounds
of an interval root we are looking for is inferred. Of course, such equations nor-
mally have no solutions, but if there are known interval constraints on the variables,
the solution can be obtained in the interval form with the use of constraint satisfac-
tion method CSM [29]. We shall show that such constraints could be obtained from
the basis definitions of interval analysis and that they completely coincide with the
vector solution XJ [17, 19] reduced to the case of single interval equation.

The technique is based on the fuzzy extension principle [76]. The values of
uncertain parameters in an equation are substituted for corresponding intervals or
fuzzy values and all arithmetic operations are substituted for relevant interval/fuzzy
operations.
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Let us recall some basic principles of the fuzzy arithmetic [76] needed for further
analysis. In general, for an arbitrary form of membership function the technique of
fuzzy-interval calculations is based on the representation of initial fuzzy values in
the form of the so-called α-cuts which are the intervals associated with the corre-
sponding degrees of membership. All calculations are made with those α-cuts ac-
cording to the well known interval arithmetic rules and the resulting fuzzy intervals
are obtained as the set of corresponding final α-cuts. Thus, if A is a fuzzy number,
then A =

⋃
α

αAα , where Aα is a crisp interval {x : μA(x) ≥ α}, αAα is a fuzzy value

with the support Aα .
Therefore, if A,B,Z are fuzzy values and @ is an operation from {+,−,∗,/},

then
Z = A@B =

⋃
α

(A@B)α =
⋃
α

Aα@Bα . (7.2)

Since in the case of α-cut presentation, the fuzzy arithmetic is based on the interval
arithmetic rules, the basic definitions of the applied interval analysis should also be
presented. One of the most inconvenient features of interval arithmetic is the fast
increasing of width of intervals obtained as the results of interval calculations. To
reduce this undesirable effect, several different modifications of interval arithmetic
were proposed. The most known are: non- standard interval arithmetic [56] based on
the special form of interval subtraction and division, generalized interval arithmetic
[36], segment interval analysis [66], centralized interval arithmetic [59], MV-form
[22]. All these approaches provide good results only in the specific conditions. On
the other hand, in practice the so-called “naive” form proposed by Moore [59] is
proved to be the best one [39]. According to it, if [x] = [x,x] and [y] = [y,y] are crisp
intervals and @ ∈ {+,−,∗,/}, then

[x]@[y] = {x@y,∀x ∈ [x],∀y ∈ [y]}. (7.3)

As the direct outcome of the basic definition (7.3), the following expressions were
obtained:

[x]+ [y] = [x + y,x + y], (7.4)

[x]− [y] = [x− y,x− y], (7.5)

[x]∗ [y] = [min(xy,xy,xy,xy),max(xy,xy,xy,xy)], (7.6)

[x]/[y] = [x,x]∗ [1/y,1/y],(0 /∈ [y]). (7.7)

There are many inherent problems within the applied interval analysis, e.g., a divi-
sion by zero-containing interval, but in general, it can be considered as a reliable
mathematical tool for modeling under conditions of uncertainty. It is proved that
a solution of an equation with fuzzy parameters can be obtained using the α-cuts
representation of these parameters [47]. As the result we obtain a system of interval
equations (see Chapter 3 for more detail).
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Let us look at this problem from more general point of view. An important
methodological problem of interval equations solution which is not widely dis-
cussed in the literature is what we call “interval equation’s right hand side problem”.
Suppose there exists some basic non-interval equation f (x) = 0. Its natural interval
extension can be obtained using replacement of its variables by interval ones and all
arithmetic operations by relevant interval operations. As a result we get an interval
equation [ f ]([x]) = 0. Observe that this equation is senseless since its left hand part
represents an interval value, whereas the right hand part is non-interval degener-
ated zero. Obviously, if [ f ](x) = [ f , f ], then equation [ f ]([x]) = 0 is true only when
f = f = 0. It is easy to show that, in general, the equation [ f ]([x]) = 0 can be verified
only for the inverted interval [x], i.e., when x < x. Inverted intervals are analyzed in
the framework of modal interval arithmetic [35], but it is very hard and perhaps even
impossible to meet a real-life situation when the notation x < x is meaningful.
It is known [59] that if an expression can be presented in the different, but alge-
braically equivalent forms, they provide different interval results after interval ex-
tension. The same is true for the equations.

Let us consider interval extensions of the simplest linear equation

ax = b (7.8)

and its algebraically equivalent forms

x =
b
a
, (7.9)

ax− b = 0, (7.10)

for a, b being intervals (0 /∈ a ).
Since there are no strong rules in interval analysis for choosing the best form of

equation among its algebraically equivalent representations to be extended, it is nat-
ural to compare the results we get from interval extensions of Eq. (7.8) - Eq. (7.10).
Let [a] = [a,a] and [b] = [b,b] be intervals. For the sake of simplicity, let us first con-
sider the case of [a] > 0, [b] > 0, i.e., a,a > 0 and b,b > 0. Then interval extension
of Eq. (7.8) is [a,a][x,x] = [b,b]. Using conventional interval arithmetic rule (7.6)
from this equation we obtain [ax,ax] = [b,b]. It is clear that equality of the right and
left hand sides of this equation is possible only if ax = b and ax = b and finally we
have

x =
b
a
, x =

b
a
. (7.11)

As a consequence of the rule (7.7), interval extension of Eq. (7.9) results in the
expressions

x =
b
a
, x =

b
a
. (7.12)

It is important that the solution (7.12) is equivalent to what is called as joint or vec-
tor solution XJ (see [17, 19]) in the simplest case of single equation. In this case, the
definition of XJ is automatically reduced to [x] = {x′ ∈R : ∃a∈ [a],∃b∈ [b],ax = b}.
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It is easy to see that this definition (based on the extension principle) is equivalent
to the conventional rule of interval division (7.7). This is not surprising as the con-
ventional interval arithmetic rules (7.4)-(7.7) are based on the “natural extension
principle” [59]. The solution (7.12) plays an important role in our analysis. For the
simplicity, here we shall call it “conventional interval solution”.

Consider some examples.

Example 7.1. Let a = [3,4], [b] = [1,2]. Then from Eqs. (7.11) we get x = 0.333,x =
0.5 and from Eqs. (7.12) x = 0.25,x = 0.666.

Example 7.2. Let a = [1,2], [b] = [3,4]. Then from Eqs. (7.11) we get x = 3,x = 2
and from Eqs. (7.12) x = 1.5,x = 4.

Example 7.3. . Let a = [0.1,0.3], [b] = [1,1] (i.e., b is a real number). Then from
Eqs. (7.11) we obtain x = 10,x = 3.333 and from Eqs. (7.12)) x = 3.333,x = 10.

We can see that interval extension of Eq. (7.8) may result in inverted intervals [x],
i.e., such that x < x (see Examples 2 and 3), whereas extension of Eq. (7.9) gives us
correct intervals (x < x). It is worth noting that interval extension of Eq. (7.9) will al-
ways provide the correct resulting intervals because Eqs. (7.12) are inferred directly
from the basic definition (7.7). For our purposes it is quite enough to state that in-
terval extension of Eq. (7.9) guarantees the resulting intervals be correct ones in
all cases, whereas interval extension of Eq. (7.8) may result in practically senseless
inverted intervals. It is worth noting that in Example 3, the formal interval exten-
sion of Eq. (7.8) leads to contradictory interval equation since in the right hand side
of extended Eq. (7.8) we have a degenerated interval b (real value), whereas the
left hand side is an interval. In all such cases the solution of interval extension of
Eq. (7.8) is an inverted interval. This, at first glance, strange result is easy to explain
from common methodological positions. Really, the rules of interval mathematics
are constructed in such a way that any arithmetical operation on intervals results in
an interval as well. These rules conform to the well known common viewpoint that
any arithmetical operation with uncertainties should increase total uncertainty (and
entropy) of a system. Therefore, placing the degenerated intervals in right hand side
of Eq. (7.8) would be equivalent to the requirement to reduce an uncertainty of the
left hand side down to zero. This is possible only in the case of inverse character
of the interval [x] that in turn can be interpreted as a request to introduce negative
entropy into a system.

The standard interval extension of Eq. (7.10) is [ax,ax]− [b,b] = 0. With the use
of interval arithmetic rules (7.4) and (7.5), from this equation we obtain [ax− b,
ax−b] = 0 and finally

x =
b

a
,x =

b

a
.

It is easy to see that in any case x > x , i.e., we obtain an inverted interval. Obviously,
such solution may be considered only as absurd one. We can say this fact is the direct
consequence of that conventional interval extension of Eq. (7.10) is in contradiction
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with the basic assumptions of interval analysis since the right hand side of this
equation always is the degenerated zero, whereas the left hand side is represented
by interval.

Summarizing, we can say that only Eq. (7.9) can be considered as the reasonable
base for interval extension. On the other hand, from this base we obtain Eqs .(7.12)
which often result in a drastic extension of the output interval in comparison with
input intervals (see Example 3, where the width of the resulting interval [x] is almost
35 times greater than the width of the initial interval [a]).

It is worthy to note here that we can use Eq. (7.9) only in the simplest cases of
linear equations, whereas the key methodological problem we deal with is to find an
adequate interval extension of linear and nonlinear equations in their most general
form f (x) = 0.

It is easy to see that there is no way to improve the interval solutions we obtain
from interval extensions of Eq. (7.8) and Eq. (7.9). In general, an effect of interval’s
width increasing can not be eliminated at all since it reflects the reality and is con-
sistent with the indeterminacy (entropy) increase principle. Nevertheless, it does not
mean that we could not attempt to improve interval arithmetic rules to reduce the
width of resulting intervals to the maximum possible extent.
That is why, let us turn to the consideration of Eq. (7.10) and look at it from another
point of view.

Strictly speaking, in the framework of conventional interval analysis any inter-
val extension of Eq. (7.10) is not a correct operation since we obtain an interval
mathematical expression only in the left hand side of the equation, whereas in its
right hand side the usual zero integer is not changed. In our opinion, the root of the
problem is that the conventional approach to the interval extension do not involve
an operation we call “interval zero extension”. Formally, when extending equation
Eq. (7.10), one obtains not only interval in its left hand side, but interval zero in
the right hand side, and in general, this interval zero cannot be degenerated interval
[0,0].

In other words, we propose an operation called “interval zero extension” to obtain
an “interval zero” in the right side of extended Eq. (7.10). Since “interval zero” is
not a degenerated interval, such approach makes it possible to solve the problem of
the correct interval extension of Eq. (7.10).

First of all, what is “interval zero”? In conventional interval analysis [39], it is
assumed that any interval containing zero may be considered as the “interval zero”.
This is a satisfactory definition to suppress the division by zero in the conventional
interval arithmetic, but for our purposes a more restrictive definition is needed. Let
us look at this problem from another point of view. Without a loss of generality,
we can define the degenerated (usual) zero as the result of the operation a − a,
where a is any real valued number or variable. Hence, in a similar way we can
define an “interval zero” as the result of operation [a]− [a], where [a] is an in-
terval. It is easy to see that for any interval [a] from basic definitions (7.3) and
(7.5) we get [a,a]− [a,a] = [a−a,a−a] = [−(a−a),a−a]. Therefore, in any case
the result of interval subtraction [a]− [a] is an interval centered around 0. Another
approach to the interval subtraction [a]− [a] and division [a]/[a] is the so-called
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“dependence” hypothesis. It is based on the assumption that any x ∈ [a] is depen-
dent on corresponding x that belongs to the other sample of [a]. Hence, [a]− [a] = 0
and [a]/[a] = 1. The “dependence” hypothesis is well known and in some partic-
ular cases provides quite good results [38]. Nevertheless, in our case we prefer to
use the other reasoning. It is clear that generally the result of interval calculations
in the left hand side of Eq. (7.10) is not obligatory presented by the subtraction of
dependent intervals. Therefore, to define an “interval zero”, the subtraction of in-
dependent intervals should be considered. Let [a] and [b] be independent intervals.
Then from basic definition (7.5) we get [a]− [b]=[a−b,a−b] and in the asymptotic
case when a → b and a → b we obtain ([a]− [b]) → ([a]− [a])=[−(a− a),a− a].
Obviously, there is no need for “dependence” hypothesis in such reasoning. There-
fore, in all cases when we write anything like [a]− [a] we threat such expression
only in interval arithmetic sense according to the general definition (7.5).

Thus, if we want to treat a result of subtraction of two identical intervals as “inter-
val zero”, then the most general definition of such “zero” should be “interval zero is
an interval centered around 0”. It must be emphasized that introduced definition says
nothing about the length of “interval zero”. Really, when extending equation such
(7.10) with previously unknown values of variables in the left hand side,the only
thing we can say about the left hand side is that it should be an interval centered
around with a not defined length. Hence, in general case, as the result of interval
extension of Eq. (7.10) we get

[a,a][x,x]− [b,b] = [−y,y], (7.13)

where y is an undefined parameter. The method for solving Eq. (7.13) has been
developed. The right hand side of Eq. (7.13) is an interval centered around zero
which can be treated as an interval extension of the right hand side of Eq. (7.10),
in other words, as an interval extension of 0. This is the reason for us to call our
approach “interval extended zero” method. Of course, the value of y in Eq. (7.13) is
not yet defined and this seems to be quite natural since the values of x, x are also not
defined.

At first, consider the case of positive interval numbers [a] and [b], i.e., a,a,b,b >
0. Then from Eq. (7.13) we get

{
ax−b = −y,
ax−b = y.

(7.14)

Summing the left hand sides and the right ones in Eqs. (7.14) we obtain only one
linear equation with two unknown variables x and x:

ax +ax−b−b = 0. (7.15)

It is impossible to get a single real valued solution of Eq. (7.15)) as it is an under-
determined equation. On the other hand, if there are some constraints on the values
of unknown variables, then Eq. (7.15) with these constraints may be considered as
the so-called constraint satisfaction problem [29] and its interval solution may be
obtained.
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In our case of continuous variables the appropriate definition of the constraint satis-
faction problem (CSP) can be presented as follows: given a vector (x1, ...,xn) of un-
knowns, a (C,x) constraint system is defined by a set of constraints C = {c1, ...,cp}
and a bounded domain x = x1 × ...× xn as follows:

Ci : fi(x1, ...,xn) = 0, i = 1, ...,n,

Cj : f j(x1, ...,xn) ≤ 0, j = m+ 1, ..., p,

xk ∈ [xk,xk], k = 1, ...,n.

The constraints are presented by linear or nonlinear analytic expressions which do
not need to be differentiable. Each variable lies in a closed interval. The Cartesian
product of variable domains x is called a box. The solution set is the set of tuples
in x that satisfy all the constraints from C. The purpose of interval-based algorithms
is to generate a set of n-dimensional boxes whose union encloses the solution set.
These boxes can be generated using, e.g., a branch-and-prune algorithm.

Nevertheless, in our case there is no need for such complicated numerical method
as the analytic solution can be obtained. In our case, x = x× x. So the set of con-
straints should be defined. As the first of them, we can treat the Eq. (7.15) itself. The
other constraint on the variables x and x is the solution of Eq. (7.15) in assumption

that x = x. In this degenerated case we get the solution of Eq. (7.15) as xm = b+b
a+a . It

is easy to see that xm is the upper bound for x and the lower bound for x: if x > xm or
x < xm we get the degenerated solution of Eq. (7.15), i.e., x > x. The lower bound for
x and the upper bond for x should be defined too. It is known that there are no strong
rules for definition of the constraints in the framework of CSP. Generally, they can
be introduced as “external” ones with respect to the considered problem. However,
in our case there is no need for “external” constraints. We can use the conventional
interval solution (7.12) to define the constraints as it provides the widest interval
solution and may be obtained from the basic definition of interval arithmetic.

Therefore, we define the natural lower bound for x and the upper bond for x as
follows: x = b

a , x = b
a .

Thus, we have [x] = [ b
a ,xm] and [x] = [xm, b

a ]. These intervals can be narrowed
taking into account Eq. (7.15) which in the spirit of CSP is treated as a constraint. It
is clear that the right bound of x and the left bound of x , i.e., xm, can not be changed
as they present the degenerated (real valued) solution of Eq. (7.15). So let us focus
of the left bound of x and the right bound of x. From (7.15) we have

x =
b+b−ax

a
,x ∈ [xm,

b
a
], x =

b+b− ax
a

,x ∈ [
b
a
,xm]. (7.16)

Obviously, when x is maximal in the interval [xm, b
a ] , i.e., x = b

a , we get the mini-

mal value of x, i.e., xmin = b+b
a − ab

a2 . Similarly, from (7.16) we get the maximal in the

interval [ b
a ,xm] value of x, i.e., xmax = b+b

a − ab
a2 when x = b

a .
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Generally, it is possible that xmin < b
a and xmax > b

a . Therefore, the maximal lower
bound of x and the minimal upper bound of x can be presented by the expressions

xL
max = max

(
b
a , b+b

a − ab
a2

)
, xU

min = min
(

b
a , b+b

a − ab
a2

)
, respectively. Therefore, we

get the following interval solution of Eq. (7.15):

[x] =
[

xL
max,

b+b
a+a

]
, [x] =

[
b+b
a+a

,xU
min

]
. (7.17)

It is important that in the framework of CSP, the following relations between xL
max

and xU
min are fulfilled in calculations: if xL

max = b
a , then xU

min = b+b
a − ab

a2 ; if xU
min = b

a ,

then xL
max = b+b

a − ab
a2 . It is worth noting that in our simplest case, the method based

on CSP. i.e., CSM leads to the solution, which have one of the bounds (upper or
lower, see (7.17)) the same of corresponding bound of conventional interval solution
(in the considered case of positive [a] and [b], the solution is as follows: xL

max = b
a ,

xU
min = b+b

a − ab
a2 ).

Taking into account our remark concerned with equivalence of the conventional
interval division rule and the so-called vector solution XJ [19, 17], we can say XJ

serves as an external constrain or envelopment of our solution.
It is seen that Eqs. (7.17) define all possible solutions of Eq. (7.15). The values

xL
min, xU

max constitute the interval which produces the widest interval zero after of its
substitution in Eqs. (7.14). In other words, the maximum interval solution’s width
wmax = xU

min − xL
max corresponds to the maximum value of y: ymax = ab

a − b. Substi-
tution of the degenerated solution x = x = xm in Eqs. (7.14) produces the minimum

value of y: ymin = a·b−a·b
a+a .

Indeed, using the conventional CSM we get an approximate interval solution of
underdetermined real valued equation which has no solution in usual sense. The
similar problem we meet in the case of interval and fuzzy equations which often
have no solution in usual (classical) sense too. Therefore, an approximate solution
of interval equation obtained using the CSM and “interval extended zero” method
may be treated as the natural extension of CSM.
It is clear that for any permissible solution x′ > xL

max we have corresponding x′ <
xU

min, for each x′′ > x′ inequalities x′′ < x′ and y′′ < y′ take place. Thus, the formal
interval solution (7.17) factually represents the continuous set of nested interval
solutions of Eq. (7.15). Hereinafter, we show that this set of interval solutions can
be in a natural way interpreted as a fuzzy number.

We can see that the values of y characterize the closeness of the right hand side of
Eq. (7.13) to degenerated zero and the minimum value ymin is defined exclusively by
interval parameters [a] and [b]. Hence, the values of y may be considered, in a certain
sense, as a measure of interval solution’s uncertainty caused by initial uncertainty
of Eq. (7.13). Therefore we can introduce

α = 1− y− ymin

ymax − ymin
, (7.18)
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which may be associated with each permissible solution of Eq. (7.13), [x,x]. We can
see that α rises from 0 to 1 with a decrease in the interval’s length from maximum
value to 0, i.e., with an increase of the solution’s certainty. Consequently, the values
of α may be treated as labels of α-cuts representing some fuzzy solution to interval
Eq. (7.13). Finally, we obtain the solution in the form of triangular fuzzy number
(see Fig. 7.1):

x̃ =
{

xL
max,

b+b
a+a

,xU
min

}
(7.19)

This result needs some comments. Using the proposed approach to the solution

Fig. 7.1 Fuzzy root of fuzzy Eq. (7.13)

of interval linear equation based on the Eq. (7.13), we obtain a triangular fuzzy
number with a support which in all cases is included in the interval obtainable from
conventional interval extension of Eq. (7.9).

An important characteristic of the fuzzy solution x̃ is its mode xm = b+b
a+a (see

Fig. 7.1). It was shown above that xm is a degenerated solution of Eq. (7.15), i.e.,
x = x = xm. On the other hand, xm is an asymptotic solution when intervals [a] and
[b] contract to the points. Thus, xm plays in a fuzzy solution the role similar to a
middle point of usual interval.

At first glance, it seems somewhat surprising to have a fuzzy solution of interval
equation. On the other hand, the proposed “interval extended zero” method is based
on some restricting assumptions. The main assumption is the treating of “interval
zero” as an interval centered around 0. As a consequence, we obtain a solution in
the form of triangular fuzzy number, which is more certain result than the interval
representing its support since such fuzzy number inherits more information about
possible real valued solutions.

Another explanation of these results can be provided using the following inex-
act, but intuitively obvious reasoning. When we have interval uncertainty in the
parameters of an equation, then we usually produce the interval of possible values
of the solution. Intuitively, however, some values from this interval are more plau-
sible (probable) and some are less plausible (probable). For example, if we know
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that x = a + b and we know that a and b are in the intervals [−1,1], then strictly
speaking, we can only guarantee that x belongs to the interval [−2,2]. However, in-
tuitively, the value 0 is much more plausible (probable) than say 2 because the only
way to get 2 is to have the worst-case situation of a = b = 1, while 0 can come from
many different values of a and b. It is therefore desirable to supplement the widest
interval solution with the fuzzy number describing which values from this interval
are more plausible and which are less plausible.

The developed method can be illustrated graphically. Consider the example [a] =
[1,3], [b] = [3,5]. Evidently, the shaded area in Fig. 7.2 is formed by the natural
constrains (7.12) and x ≤ x. Since in addition for each pair x,x, Eq. (7.15) should

Fig. 7.2 Graphical illustration of the solution procedure

be verified too, we conclude that the segment between the points A and B in Fig.
7.2 includes all feasible solutions of Eq. (7.15). It is easy to see that at point A we
have the widest interval [x,x] = [1, 7

3 ]. In other words, this point corresponds to the
lowest α-cut of the fuzzy solution (see Fig. 7.3). Point B corresponds to the real
value solution, i.e., x = x and α = 1 (see Fig. 7.2 and Fig. 7.3). The points between
A and B correspond to the intermediate α-cuts (0 ≤ α ≤ 1).

It is important that introduced “interval zero” [−y,y] in the right hand side of
Eq. (7.13) may be naturally treated as an “error” of an approximate fuzzy solution.
Obviously, substituting the widest interval solution [x,x] = [1, 7

3 ] obtained in the
considered example in Eq. (7.13) we get the maximal “error” of the approximate
solution [−4,4]. On the other hand, substituting the conventional interval solution
Eq. (7.12) (which is the same as joint or vector solution XJ [17, 19]) into Eq. (7.13)
or Eqs. ( 7.14), we get in the right hand side of these equations the interval “error”
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[−4,12]. It is seen that the proposed “interval extended zero” method provides the
substantially smaller “error” than the conventional or joint solution XJ can produce.
It is important also that using the “interval extended zero” method we get an “error”
in the form of the centered around zero interval which can be naturally treated as
an “interval zero”. It is shown in the Fig. 7.3 that the width of the fuzzy solution
obtained in the considered example is substantially smaller than that of the conven-
tional interval solution.

Fig. 7.3 Fuzzy and interval solutions of Eq. (7.13) for [a] = [1,3], [b] = [3,5]

In the similar way, the fuzzy solutions of Eq. (7.13) have been obtained for other
placements of intervals [a] and [b]. In these cases, interval extensions of (7.10) are
usually resulted in the expressions different from (7.12) and Eq. (7.15) takes another
forms too.

In the case of [a] < 0, [b] > 0, i.e., a,a < 0 , b,b > 0 we get ax−b+ax−b = 0,

x̃ =
{

xL
max,

b+b
a+a ,xU

min

}
, xL

max = max( b
a , b+b

a − ab
a2 ), xU

min = min( b
a , b+b

a − ab
a2 ).

In the case of [a] > 0, [b] < 0, i.e., a,a > 0 , b,b < 0 we get ax−b+ax−b = 0,

x̃ =
{

xL
max,

b+b
a+a ,xU

min

}
, xL

max = max
(

b
a , b+b

a − ab
a2

)
, xU

min = min
(

b
a , b+b

a − ab
a2

)
.

In the case of [a] < 0, [b] < 0, i.e., a,a < 0 , b,b < 0 we get ax−b+ax−b = 0,

x̃ =
{

xL
max,

b+b
a+a ,xU

min

}
, xL

max = max
(

b
a , b+b

a − ab
a2

)
, xU

min = min
(

b
a , b+b

a − ab
a2

)
.

In the case of [a] > 0, 0 ∈ [b], we get ax−b+ax−b = 0, x̃ =
{

xL
max,

b+b
2a ,xU

min

}
,

xL
max = max

(
b
a , b+b

a − b
a

)
, xU

min = min
(

b
a , b+b

a − b
a

)
.

In the case of [a] < 0, 0 ∈ [b], we get ax−b+ax−b = 0, x̃ =
{

xL
max,

b+b
2a ,xU

min

}
,

xL
max = max

(
b
a , b+b

a − b
a

)
, xU

min = min
(

b
a

b+b
a − b

a

)
.
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Obviously, we can assume the support of obtained fuzzy number to be a solution
of the analyzed problem. Such a solution may be treated as a “pessimistic” one since
it corresponds to the lowest α-cut of the resulting fuzzy value. We use here the word
“pessimistic” to emphasize that this solution is charged with the largest imprecision
as it is obtained in the most uncertain conditions possible on the set of considered
α -cuts.

On the other hand, we can treat it as an approximate solution of the initial interval
equation (7.10), which in turn can be formally presented in the algebraically equiv-
alent form of interval division [x] = [b]

[a] . Therefore, the solution [xmax,xmin] can be
formally treated as the result of modified interval division. Hereinafter, such result
will be denoted as [x] mod .

The concept of modified interval division plays an important role in the solution
of linear interval systems presented in the following section.

The solution [x] mod is only a rough representation of the obtained fuzzy solution.
Therefore, it seems natural to utilize all additional information available in the fuzzy
solution.

We can reduce the resulting fuzzy solution to the interval solution using well
known defuzzification procedures. In our case, the defuzzified left and right bounds
of the solution can be represented as follows:

xde f =
∫ 1

0 x(α)dα∫ 1
0 dα

,xde f =
∫ 1

0 x(α)dα∫ 1
0 dα

. (7.20)

Expressions (7.20) present the simplest form of type reduction and the result is
an interval. They emphasize that contribution of the α-cut to an overall estimation
rises with increase of α . Hence, we can say that the use of Esp. (7.20) provides
the less type reduction “error” than using the support of the fuzzy solution, as these
expressions utilize more information of this solution. Of course, the set of com-
plementary parameterized weighted functions of α can be used in these integrals.
Nevertheless, if there are no additional reasons to introduce such functions, the sim-
plest form of the type reduction (like (7.20)) should be used. For example, in the
case of [a], [b] > 0, from (7.14) and (7.18) we get the expressions for x(α) and x(α).
Substituting them into Esp. (7.20) we have

xde f =
b
a
− ymax + ymin

2a
,xde f =

b
a

+
ymax + ymin

2a
. (7.21)

Hereinafter, such interval solutions which can be treated also as the results of mod-
ified interval division will be denoted for all placements of [a] and [b] as [x] mod de f .

It is easy to prove that the obtained interval [xde f ,xde f ] is always included
into support interval of the initial fuzzy solution, i.e., [xde f ,xde f ] ⊂ [xL

max,x
U
min]. To
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illustrate, let us consider the example: [a] = [14,60], [b] = [25,99]. In the conven-
tional interval arithmetic, Eqs. (7.12) provide [x,x] = [0.42,7.07]. Using the pro-
posed method we get [xL

max,x
U
min] = [0.42,1.97] and [xde f ,xde f ] = [1.04,1.82]. It is

easy to see that [xde f ,xde f ]⊂ [xL
max,x

U
min]⊂ [x,x]. Moreover, the length of [x,x] is 4.3

times greater than that of [xL
max,x

U
min] and 8.5 times greater than that of [xde f ,xde f ].

Thus, the proposed method provides a considerable reduce in the resulting interval’s
length in comparison with that obtained using conventional interval arithmetic rules.

The developed approach to solving interval linear equations was used to develop
a new interval Gauss elimination algorithm allowing us to solve the interval ex-
tended Leontiefs input-output problem without drastic increasing of resulting in-
tervals (see Subsection 7.2.2). The method presented here may be considered as a
general framework for solving not only linear interval equations and sets them, but
interval and fuzzy nonlinear equations as well.

7.1.2 Solution Linear Fuzzy Equations

Let us consider a fuzzy linear equation

A ·X = C, (7.22)

where A , C are fuzzy values.
Using the α -cut representation of fuzzy values

A =
⋃
α

[a]α ,C =
⋃
α

[c]α ,

where [a]α ,[c]α are intervals on the α -cuts, and the “interval extended zero” method
described in the previous subsection, the problem (7.22) can be reformulated as the
set of crisp interval equations on the corresponding α-cuts.

Then taking into account that the “interval extended zero” method leads to the
fuzzy solution of an interval equation, the problem (7.22) finally takes the following
form: ⋃

α
([a]αXα − [c]α) = [−y,y]α , (7.23)

where Xα is a fuzzy value to be found as a solution of interval equation on the
corresponding α -cut. The role of the undefined parameter y has been clarified in
the Subsection 7.1.1. As the solution of (7.23) provides the set of Xα , the generalized
solution of (7.22) in the spirit of α -cuts based approach can be presented as X =⋃
α

Xα .

Let us consider two simple examples. In the first of them, the values A and C are
the symmetrical trapezoidal fuzzy numbers A = [14,30,44,60], C = [25,50,74,99]
(see Fig. 7.4).
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Fig. 7.4 Symmetrical fuzzy parameters of Eq. (7.22)

The resulting solution in the form of the set of Xα is presented in Fig. 7.5. It is
seen that Xα have a common peak.

Fig. 7.5 Solution of Eqs. (7.23) in the case of symmetrical fuzzy parameters

Nevertheless, if A and C are asymmetrical fuzzy number, then the resulting Xα
have no a common peak. For example, if A = [14,26,40,60], C = [25,60,80,99]
(see Fig. 7.6), we get the result presented in Fig. 7.7.

The fuzzy solutions on the α -cuts in the case of symmetrical A and C have a

common peak which in this case corresponds to real valued solutions bα +bα
aα +aα

(see
Fig. 7.1) of interval equations on α-cuts. It is easy to see that these real valued
solutions are the same for the symmetrical A and B, whereas they are different ones
for the asymmetrical A and C. Therefore, in the last case there is no common peak.
It is seen that fuzzy solutions on α-cuts are not nested. This is the cost of the use
of CSM which is not a linear procedure (see (7.17)). A natural question arises: how
to use such set of not nested fuzzy solutions on the α -cuts? We use the standard
disjunction procedure, i.e., the final fuzzy solution is constructed as X =

⋃
α

Xα . In

practice, this solution can be simplified as it is usually enough to take into account
only the lower and upper α-cuts: X = X0 ∪X1. Using this approach, the set of Xα
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shown in Fig. 7.7 can be finally transformed to the fuzzy solution presented in Fig.
7.8. Therefore, the lack of nesting of the local solutions we obtain on the α-cuts is
not a practical problem.

Fig. 7.6 Asymmetrical fuzzy parameters of Eq. (7.22)

Fig. 7.7 Solution of Eqs.(7.23) in the case of asymmetrical fuzzy parameters

Fig. 7.8 Aggregated solution of Eq. (7.23) in the case of asymmetrical fuzzy parameters
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It is important that in the both considered examples, the maximal length of gener-
alized solution, i.e., the length of bottom of the trapezoidal fuzzy number X =

⋃
α

Xα ,

is substantially smaller than that obtained using the conventional approach, i.e., ex-
pressions (7.12) on each α-cut. At first glance, it seems rather surprising that there
is an appreciable difference between the solutions obtained in considered examples
in spite of that the bottoms of A and C in both cases are the same. Nevertheless, this
difference is easy to explain taking into account the clear-cut distinction between
the tops of A and C in these examples.

7.2 Solving Interval Linear Systems and the Interval Leontiev’s
Input-Output Problem

Since the presented in previous section “interval extended zero” method leads to
the fuzzy solution of interval equation, its interval representations are proposed. It
is shown that they may be naturally treated as the modified operations of interval
division. These operations of interval division are used for the modified interval ex-
tensions of known numerical methods for solving systems of usual linear equations
and finally for solving systems of linear interval equations. Using the well known
example, it is shown that the solution obtained using the proposed approach can be
treated as the inner interval approximation of the united solution and the outer in-
terval approximation of the tolerable solution and lies within the range of possible
AE-solutions between the extreme tolerable and united solutions.

Seven known examples are used as an illustration of the method’s efficacy. It is
shown that the proposed new method provides results which are close to the so-
called maximal inner solution. The proposed method not only decreases the excess
width effect, but makes it possible to avoid the inverted interval solutions too. The
influence of system’s size and zero entries on the resulting excess width effect is
analyzed using the Leontief’s input-output model of economics as an application of
the proposed method.

7.2.1 Solving Systems of Interval Linear Equations

The developed method for solving systems of interval linear equations is based on
the modification of the usual interval Gauss elimination procedure (UIGEP) which
briefly can be presented as follows.

Let [A][x] = [b] be a system of interval linear equations, where [A] is an n ×
n interval matrix with interval entries [ai j], [b] is a column interval vector with n
entries [bi], [x] is a interval solution vector.

In the forward elimination stage, the system is reduced to the triangular form
using elementary row operations:

[ai j](k+1) = [ai j](k)− [aik](k)[ak j](k)

[akk](k)
,
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[bi](k+1) = [bi](k)− [aik](k)[bk](k)

[akk](k)
,

[akk](k) �= 0, (k = 1,2, ...,n−1; i, j = k + 1,k +2, ...,n), (7.24)

where k is the row number.
In the backward elimination stage, the interval solution vector is obtained as fol-

lows:

[xn] =
[bn](n)

[ann](n)
,

[xi] =
[bi](i)−

n
∑

j=i+1
[ai j](i)[x j]

[aii](i)
,

(i = n− 1,n− 2, ...,2,1). (7.25)

The usual interval arithmetic rules are applied in UIGEP. To improve the numerical
stability of the above algorithm, partial pivoting, based on the means of interval
entries is employed in the forward elimination stage.

To develop the modified interval Gauss elimination procedure (MIGEP), the
usual operation of interval division in (7.24) and (7.25) is substituted for the modi-
fied interval divisions presented in previous Section.

First of all we compare the results obtained using our method with the so-called
formal, united, controllable and tolerable solution sets which play an important role
in the theory of interval analysis [71]. The key concept in the solution of interval
equations is the so-called formal solution of the interval equation sometimes re-
ferred to as the algebraic solution. By definition, an interval solution (interval vector,
matrix, etc.) is called a formal solution of the interval equation (system of equations,
inequalities, etc.) if substituting this interval into the equation and executing all in-
terval arithmetic operations results in a valid equality. There are also the following
three solution sets which have been the subject of (more or less) active research in
modern interval analysis:

• United solution set

Ξuni([A], [b]) = {x ∈ ℜn|(∃A ∈ [A])(∃b ∈ [b])(Ax = b)} formed by the solutions of
real valued system Ax = b with A ∈ [A] and b ∈ [b]. It is undoubtedly the most pop-
ular solution sets due to historical origination of interval analysis from sensitivity
problems. Ξuni([A], [b]) is sometimes called the simply solution set. Its analogue for
dynamical systems is the well-known attainability set (see [45, 52]).

• Tolerable solution set

Ξtol([A], [b]) = {x ∈ ℜn|(∀A ∈ [A])(∃b ∈ [b])(Ax = b)} formed by all real valued
vectors x such that Ax = b for any A ∈ [A] (see, e.g., [31, 61, 69]) It was actually the
first of the solution sets whose definition involves different logical quantifiers.
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• Controllable solution set

Ξctr([A], [b]) = {x ∈ ℜn|(∀b ∈ [b])(∃A ∈ [A])(Ax = b)} formed by all real valued
vectors x∈ℜn, such that for any desired ∀b∈ [b] we can find an appropriate ∃A∈ [A]
satisfying Ax = b (see [70]).

Since obtaining united, tolerable and controllable solution sets is an NP-hard prob-
lem, these solutions are usually illustrated using examples of 2× 2 linear interval
systems. Therefore, we consider the popular interval linear system from [9] repeat-
edly considered by many authors [71] as an example:

A =
[

[2,4] [−2,1]
[−1,2] [2,4]

]
B =

[
[−2,2]
[−2,2]

]

In this case, the controllable solution set is empty [71]. The tolerable, united and for-

mal solutions of this system are presented in Fig. 7.9 together with the solution ob-
tained using the usual interval Gauss elimination procedure ([x] = ([−5,5], [−4,4]))
and the solution obtained using the modified interval Gauss elimination ([x]mod =
([−0.96,0.96],[−0.92,0.92])). We can see that the usual interval Gauss elimination
procedure produces the outer interval estimate (enclosure) of the united solution set
and the formal solution (x=([− 1

3 , 1
3 ], [− 1

3 , 1
3 ])) really provides a good inner approx-

imation of the tolerable solution set. It is seen that in this example, our solution
obtained using the modified interval Gauss elimination procedure can be treated
as an inner interval approximation of the united solution and an outer interval ap-
proximation of the tolerable solution. However, the united solution set (often called
simply solution set), tolerable solution set and controllable solution set, are only
extreme points of a large family of all possible AE-solution sets. The definition of
AE-solution set seems to be much more complicated than those of the united, toler-
able and controllable solution sets, but is similar to them. The complete definition
and detailed description of AE-solution sets are presented in [65, 71]. It is known
that in the case of n×n linear interval system there are 2n(n+1) AE-solution sets (see
[71] p.347). For example, we can consider 61 generalized AE-solution sets for an
interval linear 2×2 -system. Therefore, in Fig. 7.10 we present a comparison of our
solution ([x]mod = ([−0.96,0.96],[−0.92,0.92])) obtained using the modified inter-
val Gauss elimination procedure with some of the AE-solutions obtained in [71] (p.
349) for the considered example of a 2× 2 system. It is easy to see that our solu-
tion lies within the range of possible AE-solutions between the extreme tolerable
and united solutions. To show the features and the advantages of our approach, we
shall use some examples which are characterized by some specific features and can
be considered as critical tests. Two versions of MIGEP were examined: the first is
based on the widest interval result of modified division [x] mod , the second - on the
defuzzified result of modified division [x] mod de f (see previous section).
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Fig. 7.9 Solutions of the example 2× 2 system of linear interval equations: 1-the solution
obtained using the usual interval Gauss elimination procedure, 2- the solution obtained us-
ing the modified interval Gauss elimination, 3-tolerable solution, 4-united solution, 5-formal
solution

Therefore, the solutions obtained using UIGEP and MIGEP will be denoted as
[xi], [xi] mod ,[xi] mod de f , i = 1, ...,n, respectively. Seven well known in the literature
examples were used to compare the methods:

Example 1 from [37]:

A =

⎡
⎣

[0.7,1.3] [−0.3,0.3] [−0.3,0.3]
[−0.3,0.3] [0.7,1.3] [−0.3,0.3]
[−0.3,0.3] [−0.3,0.3] [0.7,1.3]

⎤
⎦ B =

⎡
⎣

[−14,7]
[9,12]
[3,3]

⎤
⎦

Example 2 from [63]:

A =

⎡
⎣

[3.7,4.3] [−1.5,−0.5] [0.0,0.0]
[−1.5,−0.5] [3.7,4.3] [−1.5,−0.5]

[0.0,0.0] [−1.5,−0.5] [3.7,4.3]

⎤
⎦ B =

⎡
⎣

[−14,14]
[9,9]

[−3,3]

⎤
⎦

Example 3 from [63]:

A =

⎡
⎣

[3.7,4.3] [−1.5,−0.5] [0.0,0.0]
[−1.5,−0.5] [3.7,4.3] [−1.5,−0.5]

[0.0,0.0] [−1.5,−0.5] [3.7,4.3]

⎤
⎦ B =

⎡
⎣

[−14,0]
[−9,0]
[−3,0]

⎤
⎦
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Fig. 7.10 A comparison of the solution ([x]mod = ([−0.96,0.96], [−0.92,0.92])) obtained us-
ing the modified interval Gauss elimination procedure with some of AE-solutions from [71]
(p. 349): the original notation of AE-solutions (Ξ ()) used in [71] is retained
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Example 4 from [63]:

A =

⎡
⎣

[3.7,4.3] [−1.5,−0.5] [0.0,0.0]
[−1.5,−0.5] [3.7,4.3] [−1.5,−0.5]

[0.0,0.0] [−1.5,−0.5] [3.7,4.3]

⎤
⎦ B =

⎡
⎣

[0,14]
[0,9]
[0,3]

⎤
⎦

Example 5 from [63]:

A =

⎡
⎣

[3.7,4.3] [−1.5,−0.5] [0.0,0.0]
[−1.5,−0.5] [3.7,4.3] [−1.5,−0.5]

[0.0,0.0] [−1.5,−0.5] [3.7,4.3]

⎤
⎦ B =

⎡
⎣

[2,14]
[−9,−3]
[−3,1]

⎤
⎦

Example 6 from [63]:

A =

⎡
⎣

[3.7,4.3] [−1.5,−0.5] [0.0,0.0]
[−1.5,−0.5] [3.7,4.3] [−1.5,−0.5]

[0.0,0.0] [−1.5,−0.5] [3.7,4.3]

⎤
⎦ B =

⎡
⎣

[2,14]
[3,9]

[−3,1]

⎤
⎦

Example 7 from [37]:

A =
[

[2,3] [0,1]
[1,2] [2,3]

]
B =

[
[0,120]
[60,240]

]

The numbered examples correspond to the numbers in Table 7.1. These examples
are characterized by some specific features and can be considered as critical tests.
In Table 1, the results obtained with the use of the usual interval Gauss elimination
procedure ([xi]) and the modified interval Gauss elimination procedure ([xi] mod and
[xi] mod de f ) are compared with those obtained by Markov [57, 58] using the Jacobi
type iteration method since Markov’s results can be treated as the maximal inner
solution [51].

It is seen that only in the examples 2, 5 and 7, does Markov’s method provides
non-inverted interval solutions which can be treated as inner interval estimates of
the solution set since it was proved by Shary [71] that “If a proper (non inverted)
interval vector [x] is a formal solution to the equation [A][x] = [b] then [x] is an
inner interval estimate of the solution set.” Hence, the inverted solutions obtained
by Markov in the other examples are not maximal inner solutions. Of course, within
the frameworks of directed interval arithmetic, “modal” arithmetic or the extended
interval arithmetic developed by Kaucher [46], inverted interval solutions make a
sense from a purely mathematical point of view. But it is very difficult to use inverted
intervals in economical or mechanical applications. We can see that in examples
2, 5 and 7 the results obtained using our methods are close enough to Markov’s
solutions (an exception is the example 7 where the Markov’s method provides the
considerable narrower solution than our method). But the most important is the
fact that in all the considered examples, our methods provide non-inverted interval
solutions which are considerable narrower that those obtained by the usual interval
Gauss elimination procedure.
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Table 7.1 A comparison of obtained solutions

Markov’s method [xi] mod de f [xi] mod [xi]

1.
[-9.13, -13.05] [-14.19, 8.80] [-37.29, 31.91] [-101, 91]
[16.77, 7.16] [3.45, 11.60] [-10.22, 25.21] [-62.25, 99]
[11, -2.68] [-8.59, 12.43] [-22.12, 25.92] [-66, 90]

2.
[-2.93, -2.93] [-2.43, 2.43] [-6.30, 6.30] [-6.38, 6.38]
[-0.94, -0.94] [-2.67, 2.67] [-6.21, 6.21] [-6.40, 6.40]
[-0.37, -0.37] [-1.50, 1.50] [-3.15, 3.15] [-3.40, 3.40]

3.
[-3.46, -0.94] [-3.40, -1.28] [-4.73, 0.00] [-6.38, 0.00]
[-2.31, -1.77] [-3.16, -1.19] [-4.23, 0.00] [-6.40, 0.00]
[-0.90, -0.94] [-1.62, -0.54] [-2.25, 0.00] [-3.40, 0.00]

4.
[0.94, 3.46] [1.28, 3.40] [0.00, 4.73] [0.00, 6.38]
[1.77, 2.31] [1.19, 3.16] [0.00, 4.23] [0.00, 6.40]
[0.94, 0.90] [0.54, 1.62] [0.00, 2.25] [0.00, 3.40]

5.
[0.39, 2.87] [0.67, 2.41] [-0.69, 3.76] [-1.09, 4.29]

[-1.11, -1.09] [-1.82, -0.07] [-3.03, 1.17] [-4.02, 1.24]
[-0.82, -0.18] [-1.17, 0.05] [-1.84, 0.71] [-2.44, 0.78]

6.
[1.46, 3.54] [1.69, 3.62] [0.52, 4.82] [0.52, 6.25]
[2.46, 2.28] [1.66, 3.32] [0.46, 4.27] [0.45, 6.07]
[0.11, 0.52] [-0.15, 1.23] [-0.87, 2.02] [-0.88, 2.73]

7.
[0, 17.14] [-12.4, 30.33] [-53.22, 71.74] [-120, 90]

[30, 68.57] [-1.33, 67.55] [-42.00, 106.44] [-60, 240]

To estimate the quality of obtained results, we employ the special relative index

of uncertainty: RIU =
(

max((xm−x),(x−xm))
xm

)
·100%, where xm = (x+x)/2. This index

may serve as a quantitative measure of the excess width effect: the more RIU , the
more distinctly the excess width effect becomes apparent. In our analysis, we shall
use only maximal values of RIU obtained on the entries of interval matrices and
vectors.

It is easy to see that the proposed approach to the solution of linear interval sys-
tems based on the “interval extended zero” method may be easily used for the in-
terval extension of other methods for the solution of linear systems. To illustrate the
capability of our approach we have extended the Gauss-Jordan and LU decompo-
sition methods as well as the iterative Gauss-Jacobi and Gauss-Seidel methods. As
a basis of comparison we have taken the known Leontief’s input-output model of
economics.

7.2.2 Application to the Interval Leontief’S Input-Output Model
of Economics

The general representation of the Leontief’s input-output model IOM [53] is

(I−A)× x = f , (7.26)
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where I is the identity matrix, A is a main interval technological coefficients matrix,
f is an interval vector of final outputs (usually sales and inventory), x is a total output
products vector.

First of all, we shall compare the interval extensions of the Gauss-Jordan and
LU decomposition methods as well as the iterative Gauss-Jacobi and Gauss-Seidel
methods to find the best of them using the known example of interval IOM taken
from the paper [54], where the interval IOM of the national economics was pre-
sented by six basic sectors: agriculture (sector 1), industry (sector 2), construction
(sector 3), transportation-post (sector 4), business and catering trade (sector 5), and
other service departments (sector 6). In [54], the following interval vector of final
outputs was used:

f ={[5000,5200], [91000,92000], [5200,5500], [1100,1300], [3400,3600],
[5900,6180]}.

The main interval technological coefficients matrix A of the problem analyzed in
[54] is shown in Fig. 7.11.

Fig. 7.11 Main interval technological coefficients matrix A [54]

Using the classical interval Gauss elimination procedure we obtain

[x] = {[27940,28913], [226211,232376], [5815,6224], [9079,9735], [23674,24686],
[17797,21969]}.

The use of the modified interval Gauss elimination procedure based on the “in-
terval extended zero” method provides fuzzy vector solutions to interval linear sys-
tems. Therefore, to make such results comparable with those obtained using the
usual interval Gauss elimination procedure, only the supports ([x]mod) of the trian-
gular fuzzy solutions will be used in further analysis. Using our extensions of the
usual Gauss method, Gauss-Jordan, LU decomposition, Gauss-Jacobi and Gauss-
Seidel methods based on the “interval extended zero” approach, for the considered
example of the Leontief’s IOM we obtained the results presented in Table 7.2. In
all these extensions, we have used [x]mod as the result of interval division. It is seen
that the modified interval Gauss method provides results with the minimal excess
width effect (RIU = 2.68%) and all the studied modified methods provide solutions
which are substantially narrower than that of the classical interval Gauss elimination
procedure which gives RIU = 10.2%.

I light of this, in our further analysis we shall examine only the modified interval
Gauss method in comparison with the usual interval Gauss method.
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Table 7.2 Results obtained using different interval extended methods

Modified Gauss Gauss-Jordan LU Gauss-Jacobi Gauss-Seidel
method method decomposition method method

[28294,28555] [27957,28896] [28286,28564] [28291,28558] [28291,28558]
[228367,230179] [226315,232261] [228227,230325] [228307,230246] [228307,230246]

[5933,6106] [5817,6223] [5926,6113] [5927,6112] [5927,6112]
[9304,9507] [9087,9727] [9288,9524] [9308,9504] [9308,9504]

[24009,24345] [23689,24670] [23978,24378] [24047,24308] [24047,24308]
[19198,20256] [17850,21631] [18766,20693] [18830,20631] [18830,20631]
RIU = 2.68% RIU = 9.57% RIU = 4.88% RIU = 4.56% RIU = 4.56%

Since the defuzzified modified division [x] mod de f provides substantially nar-
rower results than the modified division [x]mod (see Table 7.1), in the following we
shall use only [x] mod de f in the modified interval Gauss elimination procedure.

To be sure of the method efficacy, we have tested it on the examples of matrix
A with greater sizes. To do this, two interval technological coefficients matrices
10× 10 and 1000× 1000 were generated using the following procedure. At a first
step, the real valued means ai j of interval entries were randomly generated. Since
in the Leontief’s method the sums of the entries in the rows of A should be less or
equal to 1, an additional normalization procedure was used. At a second step, the
interval entries were obtained as [ai j −Δ ·ai j,ai j +Δ ·ai j].

To examine the influence of Δ on the results we chose Δ=0.05, 0.1 and 0.15.
Therefore, in the considered examples, we have the following initial relative in-

dexes of uncertainty: RIUin=5%, RIUin=10% and RIUin =15% (see Table 7.3).
The interval entries of the vector f have been generated in a similar way as [ fi −

Δ · fi, fi +Δ · fi]. The values of fi were randomly varied from 0 to 2500000. In Table
7.3, the modified interval Gauss method and the usual interval Gauss method are
denoted as mod.Gauss and usual Gauss. AvgW , MaxW and MinW are the average,
maximal and minimal widths of resulting interval solutions, respectively.

It can be seen that the results obtained using the modified interval Gauss method
are not charged by the appreciable excess width effect (only a small difference be-
tween the values of RIUin and RIU is observed) and are substantially (2-3 times)
narrower that those obtained by the usual interval Gauss Elimination procedure.

In practice, the main technological coefficients matrix A often has a considerable
number of zero entries, i.e., it is a sparse matrix. This problem is typical also for the
finite element method used for modeling mechanical systems.

Since such zero entries may affect the results, we studied the influence of the
percentage of zero entries in A on the resulting interval solution.

To generate the matrix A, the two-step approach described above was used and
then the randomly chosen entries were filled with zeros.

In Table 7.4, we present the results obtained for the percentages of zero entries 5%,
30% and 70%. In all cases, matrix A was generated in such a way that RIUin =5%.

It can be seen that there is no considerable influence of zero entries on the final
excess width effect.
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Table 7.3 Influence of matrix’s size and RIUin on the results

Matrix RIUin Method RIU AvgW MaxW MinW

10×10 5%
usual Gauss 12.33% 44115140 55768471 31647227
mod. Gauss 5.49% 18616304 24029404 14159352

10×10 10%
usual Gauss 25.92% 73256293 102820082 50264174
mod. Gauss 11.34% 31262290 42765608 20188133

10×10 15%
usual Gauss 40.07% 68147565 113734175 42096300
mod. Gauss 19.24% 28358578 47740859 16719267

1000×1000 5%
usual Gauss 14.87% 48784126 62546499 35461871
mod. Gauss 7.31% 20224392 29853675 11388946

1000×1000 10%
usual Gauss 29.13% 96271977 125150270 70118707
mod. Gauss 14.22% 39796769 60694099 22058638

1000×1000 15%
usual Gauss 42.57% 152979563 193242858 112521620
mod. Gauss 20.00% 63118358 94800262 35317744

Table 7.4 Influence of zero entries

Matrix Zero entries Method RIU AvgW MaxW MinW

10×10 5%
usual Gauss 12.51% 35849343 60405911 21129885
mod. Gauss 5.29% 15208019 23861280 9155307

10×10 30%
usual Gauss 10.22% 30103368 56240358 12246081
mod. Gauss 4.89% 13428105 25360970 5738751

10×10 70%
usual Gauss 9.51% 16904647 24958373 5499126
mod. Gauss 3.65% 8158243 12342386 2106151

1000×1000 5%
usual Gauss 13.26% 34671500 47923356 21220081
mod. Gauss 6.53% 15142112 22884583 7014559

1000×1000 30%
usual Gauss 12.54% 27795873 41735433 14433180
mod. Gauss 6.16% 12429883 20387022 4980193

1000×1000 70%
usual Gauss 10.81% 16383036 29803632 4161731
mod. Gauss 5.20% 7858973 14772038 1748289

7.3 Solving Nonlinear Interval and Fuzzy Equations

In this section, the generalized procedure of interval extension called “interval ex-
tended zero” presented in Section 7.1 is extended to the case of nonlinear interval
and fuzzy equations. The known “test” example of quadratic fuzzy equation is used
to perform the advantages of a new method. In this example, only the positive so-
lution can be obtained using known methods, whereas generally a negative fuzzy
root can not be excepted. The sources of this problem are clarified. It is shown that
opposite to the known methods, a new approach makes it possible to get both the
positive and negative solutions of quadratic fuzzy equations. Generally, the devel-
oped method can be applied for solving a wide range of nonlinear interval and fuzzy
equations if some initial constraints on solution’s bounds are known.

Although the problem of solving nonlinear interval and fuzzy equations is of
perennial interest [1, 2, 14, 16, 18, 23, 32, 48, 62], currently there are no univer-
sal methods for solving such equations proposed in the literature. Therefore, this
problem is now open.
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There are many different numerical methods proposed in the literature for solv-
ing interval and fuzzy equations including such complicated as neural net solu-
tions [16, 18] and fuzzy extension of Newton’s method in [1, 2], but only partic-
ular solutions valid in specific conditions were obtained. For example, only a pos-
itive root of the quadratic fuzzy equation have been obtained in [2, 19], although
a negative solution can exist too. In our opinion, the root of such problems is
the interpretation of interval and fuzzy extensions. It is known that the equations
F(X)−B = 0,F(X) = B, where B is an interval or fuzzy value, F(X) is some inter-
val or fuzzy function, are not equivalent ones. Moreover, the main problem is that
the conventional interval and fuzzy extensions of usual equation which lead to the
interval or fuzzy equations such as F(X)−B = 0 are not correct procedures. Less
problems we meet when dealing with the interval or fuzzy equation of the form
F(X) = B, but in many cases its roots are inverted interval or fuzzy values, i.e., such
that x < x.

To alleviate these problems in the case of linear interval and fuzzy equations, in
Section 7.1, we proposed a new “interval extended zero” method.

In the current section, we show that “interval extended zero” method may be
successfully used for solving nonlinear interval and fuzzy equations. Using the same
example as in [2, 19], we get not only a positive fuzzy solution, but a negative too.

The general approach described in Section 7.1 can be adapted for solving non-
linear equations. The method we present in this section can be applied for solving
a wide range of nonlinear interval and fuzzy equations if some initial constraints on
the solution’s bounds are known.

Nevertheless, to present our method more transparent, we consider the well
known example of quadratic fuzzy equation [2, 19] that factually can be treated
as the test task:

ax2 + bx = c, (7.27)

where a =(3,3,4,5),b = (1,2,3),c =(1,1,2,3) are trapezoidal and triangular fuzzy
numbers (see Fig. 7.12). Although it is stated in [2, 19] that Eq. (7.27) have no a
negative fuzzy root, we obtain such root. Moreover, using the results of our analysis
in Section 7.1, we clarify the origins of the problem the authors of [2, 19] faced
with.

Fig. 7.12 Fuzzy parameters of Eq. (7.27)
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As we prefer to use the α-cut representation of fuzzy numbers, fuzzy Eq. (7.27) is
decomposed to the set of interval equations on the corresponding α-cuts. Obviously,
when dealing with Eq. (7.27), on the lowest α-cut, i.e., for α = 0, we get

[3,5]x2 +[1,3]x = [1,3]. (7.28)

Consider the case of x > 0, i.e., x,x > 0. Then from Eq. (7.28) we obtain

3x2 + x = 1, 5x2 +3x = 3

and finally x = 0.4343, x = 0.5307. Nevertheless, in the assumption of negative
x < 0, i.e., x,x < 0, from Eq. (7.28) we get

3x2 +3x = 1, 5x2 + x = 3

and “...x ∼= −0.629,x ∼= −0.98, hence x > x and therefore a negative root does not
exist” [2].

To clarify the origins of this problem, let as consider the simplest interval linear
equation ax = b, where a, b are intervals. Using conventional interval arithmetic
rules [59], from this equation we get [ax,ax]=[b,b] and finally: x = b

a , x = b
a .

Consider some examples.
For a = [3,4], [b] = [1,2] from x = b

a , x = b
a we get x = 0.333,x = 0.5, for

a = [1,2], [b] = [3,4] we get x = 3,x = 2, for a = [3,4], [b] = [0.7,0.8] we get
x = 0.23,x = 0.2

It is seen that interval equation ax = b often have only inverted exact interval
solution, i.e., such that x > x.

Obviously, in the case of the degenerated b, i.e., b = b only inverted interval
solutions can be obtained. It is seen that exact correct (non inverted) solutions of
interval equation ax = b exist only in some special conditions.

On the other hand, the united solution set (often called simply solution set), tol-
erable solution set and controllable solution set [71] can be analyzed as the approx-
imate solutions, but this is out of scope of this book.

Only what we can say is that the interval equation in the form of ax = b is not a
reliable representation of the interval equation problem. We can see that Eq. (7.28)
has the structure similar to that of ax = b which is an unreliable representation of the
interval equation problem. As with lowering the width of the right hand side of ax =
b this equation can provide inverted interval roots, we can expect such senseless
results from nonlinear Eq. (7.28) as well. For example, changing c = (1,1,2,3) by
the more narrow fuzzy value c1 = (1,1.5,2), instead of (7.28) we get [3,5]x2 +
[1,3]x = [1,2] and finally 3x2 + x = 1, 5x2 + 3x = 2. The positive roots of these
equations are x = 0.4343,x = 0.4. So we have inverted interval solution x > x.

Indeed, when the right hand side of Eq. (7.28) is contracted to a point, i.e., it is
a real value, Eq. (7.28) becomes completely senseless, since its interval left hand
side can not be equal to any real value. Nevertheless, in considered particular case,
the authors of [2, 19] obtained the positive fuzzy solution of Eq. (7.27) (see Fig.
7.13). To avoid above problems, in the spirit of “interval extended zero“ method we
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Fig. 7.13 Fuzzy root of Eq. (7.27) obtained in [1,6]

represent Eq. (7.27) on each α-cut in the following form:

[a,a][x,x]2 +[b,b][x,x]− [c,c] = [−y,y], (7.29)

where y is the undefined parameter (see Section 7.1) and index α is omitted for the
simplicity. Using conventional interval arithmetic rules, from Eq.(7.29) we get

[ax +b,ax +b][x,x]− [c,c] = [−y,y]. (7.30)

Firstly, consider the case of the positive interval root of Eq. (7.30), i.e., x,x > 0.
Then from (7.30) we obtain

ax2 +bx− c = −y, ax2 +bx− c = y. (7.31)

The sum of Eqs. (7.31) results in the following equation

ax2 + bx− c+ ax2 +bx− c = 0. (7.32)

Since in the case of real valued a,b,c, the positive root of (7.27) is presented by

the expression x = −b+
√

b2+4ac
2a , the “natural constraints” on the positive interval

solution of (7.31) can be represented as follows:

xmin =
−b+

√
b2 +4ac

2a
, xmax =

−b+
√

b
2 + 4ac

2a
. (7.33)
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Similar to the case of linear interval equation (see Section 7.1) we consider the real
valued (degenerated) solution of Eq. (7.32), xm, as the natural top bound for positive
x, i.e., x≤ xm and bottom bound for positive x, i.e., xm ≤ x. For the case of x = x = xm

from (7.32) we get

xm =
−(b+b)+

√
(b+b)2 +4(a+a)(c + c)

2(a+ a)
. (7.34)

Eq. (7.32) with described above constraints xmin ≤ x ≤ xm,xm ≤ x ≤ xmax is a typical
constraint satisfaction problem [29] and its interval solution can be obtained. From

Eq. (7.32) we get the expressions x = f (x) = −b+
√

b2+4a(c+c−ax2−bx)
2a , x = f (x) =

−b+
√

b
2+4a(c+c−ax2−bx)

2a .
Generally, the interval solution of the above constraint satisfaction problem can

be represented as follows:

[x] = [xmin,xm]∩ [x∗1,x
∗
2], [x] = [xm,xmax]∩ [x∗1,x

∗
2], (7.35)

where
x∗1 = min f (x), x∗2 = max f (x) (xm ≤ x ≤ xmax);
x∗1 = min f (x), x∗2 = max f (x) (xmin ≤ x ≤ xm).

It is easy to see that in our case

x∗1 = −b+
√

b2+4a(c+c−ax2
max−bxmax)

2a , x∗2 = −b+
√

b2+4a(c+c−ax2
m−bxm)

2a ,

x∗1 =
−b+

√
b

2+4a(c+c−ax2
m−bxm)

2a , x∗2 =
−b+

√
b

2+4a(c+c−ax2
min−bxmin)

2a .

It is clear that Exp. (7.35) leads to the interval solution

[x] = [xmin,xmax], [x] = [xmin,xmax], (7.36)

where xmin = max(xmin,x∗1), xmax = min(xm,x∗2), xmin = max(xm,x∗1),
xmax = min(xmax,x∗2).

As in the linear case (see Section 7.1), substituting the widest possible interval
solution [xmin,xmax] into Eqs. (7.31) we get the maximal value of y, i.e., ymax, and
substituting in this equation the shortness possible solution [xmax,xmin]= [xm,xm]
we obtain ymin. As in the linear case, the formal interval solution (7.36) factually
represents the continuous set of nested interval solutions of Eqs. (7.31) and we can
use the expression η = 1− y−ymin

ymax−ymin
(similar to (7.18)) to calculate the values of

y on η-cuts (these η-cuts are introduced to represent the fuzzy solution on the α-
cuts). For η rising from 0 to 1 using the last expression we get the values of y
and substituting them into (7.31) we obtain the set of interval solutions [x,x]η on
corresponding η-cuts. In Fig. 7.14, the positive fuzzy solution for the lowest α-cut
(a=[3,5], b=[1.3], c=[1,3]) is presented.
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Using the proposed method, the negative root (x,x < 0) of fuzzy Eq.(7.30) can be
obtained as well. For this case we get the following set of expressions:

ax2 +bx− c = −y, ax2 +bx− c = y. (7.37)

ax2 + bx− c+ ax2 +bx− c = 0. (7.38)

xm =
−(b+b)−

√
(b+b)2 +4(a+a)(c + c)

2(a+ a)
. (7.39)

xmin =
−b−

√
b

2 +4ac

2a
,xmax =

−b−
√

b2 + 4ac
2a

. (7.40)

x = f (x) =
−b−

√
b

2 + 4a(c+ c−ax2 − bx)
2a

,

x = f (x) =
−b−

√
b2 +4a(c + c−ax2 −bx)

2a
. (7.41)

[x] = [xmin,xm]∩ [x∗1,x
∗
2], [x] = [xm,xmax]∩ [x∗1,x

∗
2], (7.42)

where x∗1 = min f (x), x∗2 = max f (x) (xm ≤ x ≤ xmax); x∗1 = min f (x), x∗2 = max f (x)
(xmin ≤ x ≤ xm).

The numerical algorithm we used to obtain the negative root is similar to that
we presented above for the positive root. The negative fuzzy solution for the lowest
α-cut (a=[3,5], b=[1.3], c=[1,3]) is presented in Fig. 7.14.

It is seen that our positive fuzzy solution in the considered example is wider than
the interval solution obtained in [2, 19] (see Fig. 7.13). Nevertheless, it does not
mean that the results from [2, 19] are more “true” since the methods proposed in
[2, 19] except obtaining the negative roots. Besides, our results may be substantially
shortened using the reduction of fuzzy solution to an interval one with a help of
defuzzification procedure (7.20).

The fuzzy solution presented in Fig. 7.14 was obtained for the lowest α-cut
(α=0). To get the complete fuzzy solution of (7.27), the fuzzy solutions for other
α-cuts (0 < α ≤ 1) should be obtained using the algorithm described above. The
positive solutions obtained for α = 0, α = 0.5 and α = 1 are presented in Fig. 7.15.

For different α -cuts we have fuzzy solutions with different supports and peaks.
As a fuzzy value can be represented by the disjunction of its α-cuts, we treat the
shaded area in Fig.7.15 as the final fuzzy solution. It is interesting that opposite to
the result of [2, 19] (see Fig.7.13) it has a trapezoidal form and this seems quite
natural since some parameters of the considered fuzzy equation (a and c in Eq.
(7.27)) are trapezoidal fuzzy values too.
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Fig. 7.14 Fuzzy roots of quadratic interval equation: 1,3-fuzzy solution obtained with use of
“interval extended zero” method, 2-interval solution from [2, 19]

Fig. 7.15 Positive fuzzy root of Eq. (7.27)

The numerical algorithm we have used to obtain the negative root is similar to
that we have presented above for the positive root. The result is presented in Fig.
7.16.
The resulting negative fuzzy root has a triangular form, whereas the positive root

(see Fig. 7.15) is of trapezoidal type. This fact is a consequence of the special form
of trapezoidal fuzzy parameters a and c (see Fig. 7.12), which have no fuzzy left
parts.

It can be seen that the proposed method allows us to get positive and negative
fuzzy solutions of quadratic interval and fuzzy equations, whereas the known ap-
proaches do not provide negative solutions.
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Fig. 7.16 Negative fuzzy root of Eq. (7.27)

In the case of considered quadratic fuzzy equation, from Eq. (7.32) we obtained
the expressions x = f (x), x = f (x) simplifying the analysis, but in the general case
of nonlinear fuzzy equation F(x) = 0, such expressions can not always be obtained.

Therefore, generally, the algorithm for solving a nonlinear fuzzy equation can be
presented as follows:

1. Split out the nonlinear fuzzy equation F(x) = 0 into the set of α-cuts. For each
α-cut accomplish the steps 2-7.
2. Obtain [F(x,x)] = [−y,y] and

F1(x,x) = −y, F2(x,x) = y. (7.43)

These expressions are similar to (7.31). Finally from (7.43) obtain

g(x,x) = F1(x,x)+ F2(x,x) = 0

(the last equation is the analog of Eq. (7.32)).
3. Obtain xm as the numerical solution of equation g(x,x) = 0.
4. Define xmin and xmax as the natural constraints (like in the case of quadratic equa-
tion) or as the external constraints originated from the mechanical or economical
features of the considered problem.
5. Let x(x) be a numerical solution of g(x,x) = 0 for given x and x(x) be a numerical
solution of g(x,x) = 0 for given x. Then obtain
x∗1 = minx(x), (x ∈ [xm,xmax]), x∗2 = maxx(x), (x ∈ [xm,xmax]),
x∗1 = minx(x), (x ∈ [xmin,xm]), x∗2 = maxx(x), (x ∈ [xmin,xm]),
[x] = [xmin,xm]∩ [x∗1,x

∗
2], [x] = [xm,xmax]∩ [x∗1,x

∗
2],

[x] = [xmin,xmax], [x] = [xmin,xmax],
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where xmin = max(xmin,x∗1), xmax = min(xm,x∗2), xmin = max(xm,x∗1),
xmax = min(xmax,x∗2).
6. Substituting the widest possible interval solution [xmin,xmax] into (7.43) obtain
ymax and substituting in this equation the shortness solution [xmax,xmin] obtain ymin

(usually xmax= xmin=xm).
7. Introduce the set of η-cuts as follows:

η = 1− y− ymin

ymax − ymin
. (7.44)

For each η-cut (0 ≤ η ≤ 1) from (7.44) obtain y, substitute it in (7.43) and obtain
the numerical solution of nonlinear system on η -cut : [x,x]η .

To obtain the complete solution of initial nonlinear fuzzy equation F(x) = 0, the
steps 2-7 should be repeated for all α -cuts and solutions obtained on α-cuts should
be disjointed into the final solution.

In the following section, we shall show that the developed method can be suc-
cessfully used for solving more complicated nonlinear problems.

7.4 Fuzzy Internal Rate of Return in Budgeting

In the capital budgeting, we usually deal with projects taking a long time — as
a rule some years — for their realization. In such cases, the description of uncer-
tainty within the framework of traditional probability methods usually is impos-
sible due to the absence of objective information about the probabilities of future
events.

This is the reason for the growing interest in the application of interval and fuzzy
methods in budgeting, which has been observing during the last two decades. There
are many financial parameters proposed in the literature for the project quality as-
sessment, but the two primary among them — Net Present Value (NPV ) and Internal
Rate of Return (IRR) — are necessarily used in the financial analysis.

Whereas the problem of NPV fuzzy estimation is now well studied and many
authors have contributed to its solution, obtaining the fuzzy IRR seems to be rather
an open problem.

This problem is a consequence of inherent properties of fuzzy and interval math-
ematic, but it seems unnatural to have only a real valued IRR in the fuzzy environ-
ment when all other financial parameters are fuzzy. In this section, the problem of
IRR estimation in the fuzzy setting is considered in the framework of more gen-
eral problem of solving nonlinear fuzzy equations. Finally, the concept of restricted
fuzzy IRR as the solution of the corresponding nonlinear fuzzy equation is proposed
and analyzed.
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7.4.1 The Problem Formulation

There are a lot of financial parameters proposed in literature [10, 13, 24, 55] for
budgeting. The main ones being: Net Present Value (NPV ), Internal Rate of Return
(IRR), Payback period (PB), Profitability Index (PI). It is shown in [11] that the most
important parameters are NPV and IRR. A good review of other useful financial
parameters may be found in [8].

Net Present Value is usually calculated as follows:

NPV =
T

∑
t=1

Pt

(1 + d)t −KV, (7.45)

where d is a discount rate, KV is a starting capital investment, Pt is a total income
(cash flow) in a year t, T is a duration of an investment project in years. Usually the
discount rate is equal to the average bank interest rate in a country of an investment
or other value corresponding to a profit rate of alternative capital investments. The
value of IRR is a solution of non-linear equation with respect to d:

T

∑
t=1

Pt

(1 +d)t −KV = 0. (7.46)

If Pt , KV (or at least one of them) are fuzzy numbers with the use of fuzzy ex-
tension of Eq. (7.46), i.e., by replacement of its parameters and variable with fuzzy
ones and all arithmetic operations with relevant fuzzy operations, Eq. (7.46) can be
transformed to the fuzzy equation. The problem is to find a fuzzy solution of such
fuzzy equation, i.e., to obtain fuzzy IRR.

An economic nature of IRR can be explained as follows. If an actual bank
discount rate or return of any other alternative investment under consideration is
less than IRR of considered project, then the investment in this project is more
preferable.

Only the cases when Eq. (7.46) has single root will be analyzed. The reasons
behind this was presented above in Subsection 4.5.1 (see Chapter 4).

Currently, traditional approaches to the evaluation of NPV , IRR and other finan-
cial parameters are subjected to quite deserved criticism, since future incomes Pt

and rates d are rather uncertain parameters. Uncertainties which one meets in cap-
ital budgeting cannot be adequately described in terms of probability. Really, in
budgeting we usually deal with a business-plan that takes a long time for its realiza-
tion. In such cases, the description of uncertainty via probability representation of
Pt , KV and d usually is impossible due to a lack of information about probabilities
of future events. Thus, what we really have in such cases are some subjective ex-
pert’s judgments. In real-world situations, investors or experts involved are able to
estimate only intervals of possible values Pt and d and the expected (more probable)
values inside these intervals. That is why during the last two decades the growing
interest to applications of the interval arithmetic [59] and fuzzy sets theory meth-
ods [76] in budgeting has been observing. After pioneer works by Ward [73] and
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Buckley [14], some other authors contributed to the development of fuzzy capital
budgeting theory [21, 25, 27, 28, 33, 40, 41, 42, 43, 44, 50, 64]. It is safe to say now
that almost all problems of the fuzzy NPV estimation are solved. An unresolved
problem is the fuzzy estimation of the IRR. Ward [73] considered Eq. (7.46) and
stated that this expression cannot be applied to the fuzzy case because the left hand
side of Eq. (7.46) is fuzzy, 0 in the right hand side is a crisp value and an equal-
ity is impossible. Hence, Eq. (7.46) is senseless from the fuzzy viewpoint. Kuchta
[50] proposed a method for fuzzy IRR estimation where the α-cut representation of
fuzzy numbers [47] was used. The method is based on an assumption (see [50, p.
380]) that a set of equations for IRR determination on each α-cut may be presented
(in our notation) as follows:

(KVV α)1 +
T

∑
t=1

(Pα
t )1

(1+ IRRα
1 )t = 0, (KVV α)2 +

T

∑
t=1

(Pα
t )2

(1 + IRRα
2 )t = 0, (7.47)

where KVV = −KV , indexes “1”, “2” stand for the left and right bounds of corre-
sponding intervals, respectively, Pα

t = [(Pα
t )1,(Pα

t )2] are crisp interval representa-
tions of fuzzy cash flows at time t on the α -cuts.

Of course, from the equations (7.47) all crisp intervals dα = [dα
1 ,dα

2 ], expressing
the fuzzy valued IRR may be obtained. On the other hand, Eqs. (7.47) are not a
direct consequence of conventional fuzzy and interval arithmetics rules.

Eqs. (7.47) were obtained in [50] using fuzzy extension of (7.46) assuming that
Pt , KV (or at least one of them) are fuzzy numbers and representing them by the sets
of α-cuts. Since Eqs. (7.47) should be verified on each α -cut, it is quite enough to
consider only crisp interval extension of (7.46), which is the particular case of more
general equation

F(d)−B = 0, (7.48)

where B is an interval (B = KV in our case ) and F(d) is an interval valued function
of interval argument d (in our case F(d) = ∑T

t=1
Pt

(1+d)t ).

Using regular interval arithmetic [39], this equation can be transformed to [F1

(d)−B2,F2(d)−B1] = 0, and finally we get two equations F1(d)−B2 = 0,F2(d)−
B1 = 0. Of course, if we deal with a linear interval function F(d) = A · d (A is
an interval) , then F1(d) = A1 · d1 and F2(d) = A2 · d2, but if F(d) = A

d we have

F1(d) = A1
d2

, F2(d) = A2
d1

since F1 is the left bound (min value in interval) and F2 is
the right bound (max value in interval) of interval value F(d).

Hence, the use of regular interval arithmetic rules leads to the following
equations:

(KVV α)1 +
T

∑
t=1

(Pα
t )1

(1+ IRRα
2 )t = 0, (KVV α)2 +

T

∑
t=1

(Pα
t )2

(1 + IRRα
1 )t = 0. (7.49)

There is no way to get a correct not inverted interval solution of (7.49). Only in-
verted intervals IRR, i.e., such that IRRα

1 > IRRα
2 can be obtained. Since it is hard or

even impossible to interpret reasonable such results, they can not be used in practice.
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It was shown in Subsection 4.5.1 (see Chapter 4) that only approximate real valued
IRR (represented by usual non interval numbers) may be obtained from (7.49). In
Section 7.1, we shown that the main problem is that the conventional interval ex-
tension (and the fuzzy as well) of usual equation, which leads to the interval or
fuzzy equation such (7.49) is not a correct procedure. Less problems we meet when
dealing with interval or fuzzy equation in the form

F(d) = B. (7.50)

An important feature of interval and fuzzy mathematics is that Eq. (7.50) is not
equivalent to Eq. (7.48). This fact deserves more detailed analysis and we have
studied it thoroughly in Section 7.1.

Summarizing, we can say that the problem of IRR estimation in the fuzzy setting
should be considered in the framework of more general problem of solving fuzzy
equations.

7.4.2 Fuzzy Internal Rate of Return for Crisp Interval Cash
Flows. Basics.

To make the main idea more transparent, let us consider a simplified example of a
one-year project, when a real valued investment KV is made at the beginning of the
first year and production starts right away. An interval profit P = [P,P] is earned
at the end of the first year and then the project is finished. In this case Eq. (7.46)
transforms into the following form:

P
1 +d

−KV = 0. (7.51)

Rewriting Eq. (7.51) as:

d =
P

KV
− 1 (7.52)

we get the simplest, but the widest (see Section 7.1) interval solution for d:

[d] = [d,d] =
[

P
KV

−1,
P

KV
−1

]
. (7.53)

Using the “interval extended zero” method described in Section 7.1, we get the
interval extension of Eq. (7.51) as follows:

[P,P]
1+[d,d]

−KV = [−y,y] (7.54)

With a help of interval analysis rules (7.4)-(7.7), the interval equation (7.54) may be
represented in the form

[
P

1 +d
−KV,

P

1 +d
−KV

]
= [−y,y] (7.55)
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and finally as
{

P
1+d

−KV = −y,
P

1+d −KV = y.
(7.56)

From equations (7.56) we obtain the explicit dependence between bounds of interval
[d]:

d =
P

2 ·KV − P
1+d

−1. (7.57)

On the other hand, the original Eq. (7.51) can be rewritten in algebraically equivalent
form

P−KV(1 +d) = 0. (7.58)

With a help of “interval extended zero” method we get from Eq. (7.58):

[P,P]−KV(1+[d,d]) = [−y,y] (7.59)

and after some simple transformations

d =
P+P
KV

−2−d. (7.60)

It is easy to see that in both cases when using representations (7.54) or (7.59) for

the degenerated solution we have d = d = P+P
2·KV − 1. Also taking into account the

widest possible interval solution (7.53) we conclude that in both cases the following
restrictions are verifying:

d ∈
[

P
KV

−1,
P +P
2 ·KV

−1

]
,d ∈

[
P+P
2 ·KV

−1,
P

KV
−1

]
. (7.61)

Taking into account the natural restriction 0 ≤ d ≤ d (usually the values of IRR are
positive, but generally this restriction is not obligatory) we can solve Eq. (7.54) in
interval the form for d and d in the framework of constraint satisfaction problem
[29] as follows

[d] =
(

P
2·KV− P

1+d

− 1

)
∩
[
max(0, P

KV −1), P+P
2·KV −1

]
|

| d ∈
[

P+P
2·KV −1, P

KV − 1
]

[d] =
(

P

2·KV− P
1+d

− 1

)
∩
[

P+P
2·KV −1, P

KV − 1
]
|

| d ∈
[
max(0, P

KV −1), P+P
2·KV − 1

]
.

(7.62)
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As a result we get from (7.62) the following interval solutions:

[d] =

⎡
⎣ P

KV ·
(

2− P
P

) −1,
P+P
2 ·KV

−1

⎤
⎦ , [d] =

[
P+ P
2 ·KV

− 1,
P

KV
−1

]
. (7.63)

Finally, using the approach described in Section 7.1 we get a fuzzy solution of
Eq. (7.54) based on solution (7.63), i.e., the fuzzy IRR as

d̃ =

⎧⎨
⎩

P

KV ·
(

2− P
P

) −1,
P+P
2 ·KV

−1,
P

KV
−1

⎫⎬
⎭ . (7.64)

In a similar way from equations (7.59)-(7.61) and restriction 0 ≤ d ≤ d we obtain

[d] =
[
max

{
0, P

KV −1
}

, P+P
2·KV −1

]
,

[d] =
[

P+P
2·KV − 1,min

{
P+P
KV −2, P

KV − 1
}]

,
(7.65)

d̃ =
{

max

{
0,

P

KV
−1

}
,

P+ P

2 ·KV
− 1,min

{
P+P

KV
−2,

P

KV
− 1

}}
. (7.66)

Some illustrative examples are presented in Fig. 7.17.
Thus, the different but algebraically equivalent representations (7.51) and (7.58)

of the equation for IRR provide after the interval extension the different fuzzy solu-
tions (7.64) and (7.66). Basically, this result is not new, since it is well known [59]
that different representations of some original algebraic expression often derive dif-
ferent numerical results after interval extension (see Section 3 for more detail).

Currently, this circumstance is not considered as the drastic drawback, but rather
as a specific feature inherent in applied interval analysis [39]. That is why it seems
quite natural in situations when we have some different interval or fuzzy solutions
of some original problem, to use an intersection of obtained solutions as the most re-
liable solution of considered problem. Such intersections are performed in Fig. 7.17
by the shaded regions.

7.4.3 Numerical Solution of the Nonlinear Fuzzy Problem of
Internal Rate of Return Calculation

As it was shown in previous subsection, the fuzzy IRR problem can be formulated
with use of fuzzy extension of two different, but algebraically equivalent represen-
tations of initial non-fuzzy Eq. (7.46):

T

∑
t=1

Pt

(1 +d)t −KV = 0, (7.67)
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Fig. 7.17 Examples of fuzzy solutions of interval equations (7.54) and (7.59): μ is the mem-
bership function of fuzzy value
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T

∑
t=1

Pt(1 +d)T−t −KV(1+ d)T = 0. (7.68)

It is shown above that generally the solution of fuzzy IRR problem can be obtained
in three phases:

• Fuzzy extension of the above equations and the α-cut representation of obtained
fuzzy equations with the use of “interval extended zero” method.

• Numerical solution of obtained two sets of interval equations. As the result, the
different fuzzy values of IRR corresponding to the fuzzy extensions of equations
(7.67) and (7.68) should be obtained in this phase.

• Calculating the resulting fuzzy IRR as the intersection of the fuzzy valued IRRs
obtained in previous phase from the fuzzy extension of equations (7.67) and
(7.68).

The proposed numerical algorithm for solving the fuzzy IRR problem is not too
complicated, but its detailed description seems as rather cumbersome one. On the
other hand, in previous section we shown that there may be only a bit difference
between algorithms for solving the fuzzy extensions of equations (7.67) and (7.68).
Therefore, to illustrate the proposed approach, we restrict themselves only with the
consideration of the algorithm for solving the fuzzy extensions of Eq.(7.68), as its
description is shorter than that for fuzzy extensions of Eq.(7.67). In further analysis,
we assume that KV is the usual non-fuzzy value. This assumption is not a simplifi-
cation: quite contrary. In addition, it corresponds to the reality as usually the starting
investment KV is well known.

Since the phase 1 is obvious, we start from phase 2. In this phase on each α -
cut in the framework of “interval extended zero” method we deal with the interval
equation (index α is omitted for the simplicity)

T

∑
t=1

[
Pt ,Pt

][
1 +d,1 +d

]T−t −KV
[
1 + d,1 +d

]T = [−y,y]. (7.69)

As a result of transformation of the Eq.(7.69) according to the rules of interval anal-
ysis we have

[
∑T

t=1 Pt(1 +d)T−t −KV(1 + d)T , ∑T
t=1 Pt(1 +d)T−t −KV(1+ d)T

]
= [−y,y]

(7.70)

and

T

∑
t=1

Pt(1 + d)T−t −KV (1 +d)T = −y,
T

∑
t=1

Pt(1 + d)T−t −KV (1 +d)T = y. (7.71)
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The sum of the equations (7.71) provides us the expression connecting the unknown
left d and right d bounds of IRR:

T

∑
t=1

Pt(1 +d)T−t −KV(1 +d)T +
T

∑
t=1

Pt(1 +d)T−t −KV(1 +d)T = 0. (7.72)

To obtain the fuzzy solution of Eq. (7.72), according to the results of Section 7.3,
the natural restriction 0 ≤ d ≤ d should be used. This restriction allows us to get a
simple nonlinear equation with respect to d for each fixed value of d. This equation
can be solved using well-known numerical methods.

Finally, as in the linear case (see Section 7.1), the resulting fuzzy interval repre-
sentation of IRR with corresponding membership function is obtained.

When dealing with fuzzy cash flows, the Eq. (7.68) is represented bt the set of α-
cuts. For each α-cut the interval equation in the form of the Eq. (7.72) is obtained.
Since the set of α-cuts is only an approximate representation of the fuzzy number
(as we deal with the method based on the discretization), the precision of final result
depends on the number of α -cuts. In practice, this number is usually choosing when
analyzing the shapes of used fuzzy values: if we deal with complicated shapes, the
number of α-cuts rises.

Thus, the fuzzy problem is reduced to the crisp interval one. The algorithm for
its solving may be presented as follows:

1. By partition into n α-cuts, the fuzzy interval problem (Eq. (7.68)) is transformed
into the set of crisp interval equations.

2. On each α-cut the crisp intervals
[P1,P1]α , [P2,P2]α , [P3,P3]α , . . . , [PT ,PT ]α
are calculated.

3. For each α-cut the maximum value dα is calculated by solving the non-linear
equation (7.72) in the assumption of dα = dα . Substituting obtained values of
dα = dα into one of the expressions (7.71) on observed α-cut the corresponding
yα min is obtained.

4. Substituting the dαmin = 0 in (7.72) the corresponding dαmax is obtained. Substi-
tuting the dαmin, dαmax in (7.71) we get the values of yα max.

5. For each α-cut the interval of possible values dα = [0,dα ] is divided into m equal
parts and dα i, i = 1, . . . ,m (d1α0 = 0, dαm = dα) are calculated. Using dα i in
(7.72) corresponding values dα i are obtained. Then using dα i and dαi in (7.71)
the values yαi are obtained. Finally, using the expression analogous to (7.18)
(see Section 7.3) the values ηα i characterizing the degrees of membership of the
crisp intervals [dα i,dαi] in the resulting fuzzy solution of (7.68) on the α-cuts are
calculated.

To illustrate, let us consider the project with the crisp initial investment KV = 1
(one million of some monetary units) and trapezoidal fuzzy positive cash flows ex-
pected for the subsequent three years and presented by their bottom and top α-
cuts (see Table 7.5). The bounds of intermediate α-cuts are obtained using simple
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Table 7.5 Sample project

Year Bottom α-cuts of fuzzy cash flows Top α-cuts of fuzzy Cash Flows
1 [P1,P1] = [1,2] [P1,P1] = [1.1,1.5]
2 [P2,P2] = [1.5,3] [P2,P2] = [1.6,2]
3 [P3,P3] = [1,2] [P3,P3] = [1.2,1.5]
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Fig. 7.18 Fuzzy IRR for three-year investment project

interpolation. The result obtained with the use of numerical algorithm for our exam-
ple is presented in Fig.7.18.

Fig. 7.18 shows that on each ηα i-cut we have IRR = [dαi,dα i] being in turn the
intervals on α-cuts. It seems to be natural for intervals IRR = [dα i,dαi] with upper
values of α to contribute more to the final fuzzy solution. Hence, for defuzzification
of obtained results it is possible to use, for example, following expressions:

di =
∑n

α=0 dα i ·α
∑n

α=0 α
,di =

∑n
α=0 dα i ·α
∑n

α=0 α
. (7.73)

The result of defuzzification of IRR using expressions (7.73) for considered example
is shown in Fig. 7.19, where the result obtained for considered example with the use
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of fuzzy extension of Eq. (7.67) is presented as well. The final solution may be
obtained as the intersection of these fuzzy solutions (the shaded area in Fig. 7.19). It
can be seen that such intersection is a narrowed final solution of fuzzy IRR problem.

Fig. 7.19 IRR defuzzified on α-cuts: 1,2 -the results obtained from fuzzy extension of (7.67)
and (7.68) respectively

7.4.4 Possible Applications

There may be different possible applications of fuzzy IRR in budgeting, but here we
briefly describe only three more obvious ones.

• If several investment projects should be compared in regard to their fuzzy IRRs,
the problem of fuzzy values comparison arises. There exist numerous definitions
of ordering relation over fuzzy values (as well as crisp intervals) in the liter-
ature. The review of the problem of intervals and fuzzy values comparison was
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presented in Chapter 3, where a new approach to to the solution of this problem
based on the probabilistic approach and the Dempster-Shafer theory of evidence
is presented as well. So if IRR1 and IRR2 are fuzzy valued IRRs of two com-
pared projects, the following probabilities may be calculated P(IRR1 > IRR2),
P(IRR1 = IRR2), P(IRR1 < IRR2). Since in practice, the routine task is the com-
parison of IRR (fuzzy value in our case) with known (non fuzzy) bank discount
rate, it is important that these relations make it possible to compare the fuzzy and
interval values with usual numbers.

• Often decision makers prefer to analyze instead of fuzzy IRR its interval repre-
sentation. This can be justified psychologically since the left and right bounds
of interval valued IRR are naturally treated as the pessimistic and optimistic
assessments of IRR, respectively. An interval representation of fuzzy IRR, i.e.,
[IRR1, IRR2] can be calculated using expressions

IRR1 = ∑n
α=0 α · IRRα1

∑n
α=0 α

, IRR2 = ∑n
α=0 α · IRRα2

∑n
α=0 α

.

Of course, the problems of interval comparison and comparison of intervals with
usual values arise, but they can be solved using the above mentioned probabilistic
method.

• It is well known that fuzzy numbers can be characterized by the measure of its
fuzziness [75]. The measure of fuzziness is directly connected with uncertainty
measure, which in financial applications is usually treated as the measure of risk.
Hence we can adopt an uncertainty measure of fuzzy IRR as the assessment of
risk caused by the decision we made considering the fuzzy IRR as the criterion.
Let Ã be a fuzzy value and A be a rectangular fuzzy value defined on the support
of Ã and represented by the characteristic function ηA(x) = 1,x ∈ A;ηA(x) =
0,x /∈ A. Obviously, such a rectangular value is not a fuzzy value at all, but it is
asymptotic limit (object) we obtain when fuzziness of Ã tends to zero. Hence,
it seems quite natural to define the measure of fuzziness of Ã as its distinction
from A. To do this, we define primarily the measure of non-fuzziness using α-cut
representation as follows:

MNF(Ã) =
1∫

0

f (α)((Aα2 −Aα1)/(A02 −A01))dα,

where f (α) is some function of α , e.g., f (α) = 1 or f (α) = α . Of course,
the last expression makes sense only for the fuzzy or interval values, i.e., only
for non zero width of support A02 −A01. It is easy to see that if f (α) = 1 and
Ã → A then MNF(Ã) → 1. Obviously, the measure of fuzziness can be defined
as MF(Ã) = 1−MNF(Ã).
We can say that a rectangular value A defined on the support of Ã is a more
uncertain object than Ã.
Really, only what we know about A is that all x ∈ A belong to A with equal de-
grees, whereas the membership function (0 ≤ μ(x) ≤ 1) characterizing the fuzzy
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value Ã provides more information to the description and as a consequence,
represents a more certain object. Therefore, we can treat the measure of non-
fuzziness MNF as the uncertainty measure. Hence, if some decision is made
concerning the fuzzy IRR , the uncertainty and, consequently, the risk of such
decision can be calculated as MNF(IRR). Since the fuzzy IRR and the corre-
sponding risk assessment can play the role of local criteria, a multiple criteria
problem arises. Generally, an investment evaluation is a multiple criteria task.
The methods for its solving in the fuzzy setting are discussed in Chapter 4.

7.5 Summary and Discussion

In this chapter, we present a new approach to the solution of interval and fuzzy
equations based on the generalized procedure of interval and fuzzy extension called
“interval extended zero” method. The key idea is the treatment of the interval zero
as an interval centered around zero. It is shown that such approach is the direct con-
sequence of the interval subtraction operation. Some methodological problems con-
cerned with this definition of the interval zero are discussed. The proposed method
is based on the solution of an interval equation presented in the form of the nested
interval solutions, which can be in a natural way treated as a fuzzy number. To solve
a linear fuzzy equation, the α-cut representation of fuzzy parameters of an equation
is used and interval equations on the corresponding α-cuts are obtained. The set of
fuzzy solutions on these α -cuts is obtained using the “extended zero” method. It is
important that these solutions, generally, are not nested. Finally, using the standard
disjunction procedure, the resulting fuzzy solution is obtained as the aggregation of
the fuzzy solutions on the α-cuts. It is shown that the proposed method can be used
as the reliable practical tool for solving interval and fuzzy linear equations as well as
systems of them. An important for practice advantage of the developed new method
is that it provides substantially narrower solutions than conventional methods.

As the “interval extended zero” method generally provides the fuzzy solution
of interval equation, its interval representations are proposed. It is shown that they
may be naturally treated as the modified operations of interval division and used
for interval extension of known numerical methods for solving systems of linear
equations.

Using the well known example, we show that our solution obtained using the
modified interval Gauss elimination procedure can be treated as the inner interval
approximation of the united solution and the outer interval approximation of the
tolerable solution. We show also that our solution lies within the range of possi-
ble AE-solutions between the extreme tolerable and united solutions. To illustrate
the proposed method, we present the results obtained for known seven examples
repeatedly used in the literature as the tests for numerical methods in the interval
setting. Comparing our results with those obtained using Markov’s Jacobi type it-
erative method and usual interval Gauss elimination procedure, we show that the
proposed method not only allows us to decrease the excess width effect, but makes
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it possible to avoid inverted interval solutions too. It is important that our results
are close to the so-called maximal inner solutions, i.e., approximate solutions with
minimal excess width effect.

The influence of the system’s size and zero entries on the resulting excess width
effect is analyzed using the Leontief’s input-output model of economics as an
example.

It is shown that the “interval zero” method provides a fuzzy solution of nonlinear
interval and fuzzy equations. It is important that opposite to the known approaches,
the method makes it possible to get both the positive and negative fuzzy solutions
of interval and fuzzy quadratic equation.

The proposed method may be used for the solution of more complicated fuzzy
nonlinear equations and the corresponding general algorithm is presented as well.

In this chapter, we analyze the problem of calculation of IRR in the fuzzy setting
and use the developed numerical method for the solution of nonlinear fuzzy equa-
tions to obtain the fuzzy IRR. The resulting fuzzy IRR can be used directly or may
be defuzzified as well if the crisp final result is needed. It should be emphasized that
for practical purposes the most useful approach is a reduction of fuzzy IRR to some
crisp intervals by means of type reduction. The width of such interval can serve as
a natural measure of risk connected with the use of IRR in financial analysis in the
fuzzy setting.
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