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PREFACE

The simplest theorem on differential inequalities is the classical one
on monotone functions, which reads as follows: for a differentiable function
rp(t) satisfying the inequality rp'(t) ~ 0 in an interval Ll we have the inequality
rp(tt) ;;:, rp(t2 ) for any two points to t2 from the interval L1 such that tt < t2 •

This theorem may be stated in a somewhat more sophisticated form.
In order to do this, let us introduce the following definition. Consider
a differential equation

(1) y' = f(t, y)

with the right-hand side continuous in an open region D and suppose
that for every point (to, Yo) t: D the solution of (1) passing through this
point is unique. Let us denote this solution by wit; to, Yo) and its maximal
existence interval by Ll (to, Yo). Now, let rp (t) be a continuous function
on an interval Ll and assume its graph to lie in D. Under all these assump
tions we say that the function rp(t) is decreasing with respect to equation (1)
if the following holds true: for every to E: L1 the inequality rp(to) ~ Yo implies
the inequality rp(t) ~ w(t; to, Yo) for all i's such that t ~ to and t E: L1 "
A Ll (to, Yo)'

Now, since for the particular equation

(2) y' = 0

we have wit; to, Yo) == Yo, the theorem on monotone functions may be
restated as follows: a differentiable function rp(t) satisfying the inequality
rp'(t) ~ 0 in an interval Ll is decrea.~ing with respect to equation (2).

The above statement is a particular case of the following general
theorem: under the preceding assumptions on equation. (1), a differentiable
function rp (t) satisfying the inequality

(3) rp'(t) ~ f(t, rp(t»)

in an interval L1 is decreasing with respect to equation (1).
We state now, without insisting on a precise formulation, the problem

covered by the above theorem: an estimate for the initial valt~e of a function
rp(t) and an estimate for its derivative being given, to find an adequate estimate
for the function itself. All theorems and their applications, presented in this
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book, concern problems of this type for functions of one or several varia
bles. In case of several variables we will have, in general, to require that
besides the initial estimates some boundary estimates be given in advance.

Differential inequalities treated in this book are the so-called 1wn
stationary inequalities.

Chapters I-VIII of the book deal with the theory of ordinary differ
ential inequalities and with its applications to ordinary differential
equations and to first order and second order partial differential equations
of parabolic and hyperbolic type. The theory of ordinary differential
inequalities was originated by Chaplygin [6] and by Kamke [13J and
then developed by Wazewski [60J. The main applications of the theory
concern questions such as: estimates of solutions of differential equations,
estimates of the existence domain of solutions, estimates of the difference
between two solutions, criteria of the uniqueness of the solution, estimates
of the'error for an approximate solution, stability and Chaplygin's method.

Chapters IX-X concern partial differential inequalities of first and
second order. First order partial differential inequalities were first treated
by Haar [11] and by Nagumo [34J. Partial differential inequalities of
second order, dealt with in this book, are of parabolic and hyperbolic
type. First results on second order partial differential inequalities of
parabolic type were obtained by Nagumo [35] and by Westphal [66].

Chapter XI deals with differential inequalities in linear spaces. This
chapter as well as §§ 31, 32 in Chapter V and §§ 66, 67 in Chapter X are
written by Wlodzimierz Mlak.

'Ve close these introductory remarks by the following one. From
theorems that will be proved here on ordinary and partial differential
inequalities, criteria of continuous dependence on initial values for solu
tions of corresponding equations can be derived. Now, since solutions of
elliptic equations do not depend continuously on initial data, it is clear
that theorems of the type described above cannot be expected to apply
to partial differential equations or inequalities of elliptic type, i.e. to sta
tionary equations or inequalities.

I am greatly indebted to C. Olech for reading the manuscript and
his helpful comments, to W. Mlak for reading the proofs and valuable
remarks, and to S. Brzychczy for assistance in the preparation of the
manuscript.

I wish to express my thanks to M. Stark for having encouraged me
to write this book and to the Editorial Committee of Monografie Mate
matyczne for the kind interest in my book.

J acek Szarski
Krakow, January 1965



CHAPTER I

MONOTONE FUNCTIONS

§ 1. Zygmund's lemma. We adopt the following terminology. A real
function qy(t) defined in an interval Ll is called increasing if for any two
points t1 , t2 from Ll such that

(1.1)

we have

If for any two points of zl inequality (1.1) implies

then qy(t) is called strictly increasing. In a similar way we define a de
creasing and a strictly decreasing function.

For a function qy(t), defined in some neighborhood of the point to, we
denote by D+qy(to), D+qy(to), D-qy(fo), D_qy(to), respectively, its right-hand
upper, right-hand lower, left-hand upper and left-hand lower Dini's
derivatives at the point to, i.e.

D (t) -1' . fqy(to+h)-qy(io)
+qy 0 - irmn h '

h-->O+

(the values +00 and -00 being not excluded). Symbols qy+(io) and qy'-.(tn)

will stand for the right-hand and left-hand derivative respectively.
The inequality a > 0 will mean that either a is finite and positive or

a = +00. The meaning of the inequalities a ~ 0, a < 0, a :s;; 0 is defined
in a similar way.
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To begin with we will prove the following lemma.

ZYGMUND'S LEMMA. Let q;(t) be continuous in an interval L1 and

Z+ = {t E Lt : D+q;(t) < O} •

Suppose that the set q; (Lt - Z +) (1) does not contain any interval.

Under these assumptions q;(t) is deereasing on Lt.

Proof. Suppose the contrary; then there would exist two points
tll t2 E Lt satisfying (1.1) and such that q;(tl ) < q;(ts). Since, by our assump
tion, the set q;(Lt-Z+) does not contain the interval (q;(t

l),q;(t2
»), there

is a point Yo E (q;(tl ) , pets») such that

(1.2) Yofq;(L1-Z+).

By Darboux's property, the set

E = {t E (t l , ts) : q;(t) = Yo}

is not empty. Let us denote by to its least upper bound. Then we have
to E (t l , t2) and, by continuity,
(1.3)

and
(1.4)

q;(t»yo for to<t<t2
•

Relations (1.2) and (1.3) imply that to € Z+ and hence, by the defini
tion of Z+'

(1.5) D+q;(to) < 0 .

On the other hand, by (1.3) and (1.4), it follows that

D+T(to) ~ 0,

which is a contradiction with (1.5). This completes the proof.

Remark 1.1. Since (1.3) and (1.4) imply D+q;(to)~ 0, it is obvious
that the set Z+ in Zygmund's lemma can be replaced by the set

Z+ = {t E Lt : D+q;(t) < O} •

Remark 1.2. The set Z+ Can be replaced by the set

Z_ = {t E Lt : D_q;(t) < O}

or by the corresponding set Z-. To prove Zygmund's lemma with Z+
replaced byZ_ or Z-, we have only to change the above argument by
taking for to the greatest lower bound of E.

Re m a.rk 1.3. A similar lemma holds true for increasing functions.

(1) A being a subset of Ll, tp(A) denotes the image of A by means of the mapping
Y = <p(t).
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§ 2. A necessary and sufficient condition for a continuous function to be
monotone. As a consequence of Zygmund's lemma we get the following
theorem.

THEOREM 2.1. Let <p(t) be continuous in an interval.d. Then a necessary
and sufficient condition for rp(t) to be decreasing on LJ is that the set .d-Q+,
where

be at most countable.

Proof. The necessity is obvious since for a decreasing function the
set 11- Q+ is empty. To prove the sufficiency of the condition, let (5 > 0
be arbitrary and put

'IJ'(t) = <p(t)- st .

We have

and, consequently,

D+ 1J' (t) < 0 for t IEQ+ .

Hence it follows that for the set

we have Q+ C Z+ and consequently LJ- Z+ C LI-Q+. Therefore, the set
LI - Q+ being at most countable, the same holds true for the sets LI- Z+
and 'IJ'(LI- Z+). Hence the set 'IJ'(LI- Z+) does not contain any interval
and, by Zygmund's lemma, 'IJ'(t) is decreasing. Now, e> 0 being arbitrary,
it follows that rp (t) is decreasing too.

COROLLARY 2.1. Let <p(t) becontinuous in an interval LI. Then a sufficient
condition tor <p (t) to be strictly decreasing on .d is that the set LI- P +, where

be at most countable.

Proof. Let LI-P+ be at most countable. By Theorem 2.1, rp(t) is
decreasing on LI. If it were not strictly decreasing, we would have <P(tl)
= <p(t2 ) for some two points t1 , t2 such that t1 < t2 • Therefore, <p(t) would
be constant OIl the interval [tll t2J and consequently rp'(t) == 0 on [til t2] ,

contrary to our assumption that LJ- P + is at most countable.
Remark 2.1. Due to Remark 1.2, the set Q+ in Theorem 2.1 can be

replaced by the set
Q_ = {t € zl : D_rp(t) ~ O} •

Remark 2.2. The results of this section can be summarized in a slightly
less general form as follows: if rp(t) is continuous in an interval LI and if
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(2.1)

D-rrp(t) ~. 0 for every tELl or D_rp(t) ~ 0 for every tELl, then rp(t) is de
creasing in LJ. Now, if we assume that for every tELl we have either
D+rp(t) ~ 0 or D_rp(t) ~ 0, then rp(t) is not necessarily decreasing. Indeed,
for Weierstrass's functions rp(t) (a continuous function without finite
derivative at any point) we have for every t either D+rp(t) = -00 or
D_rp(t) = -00, and the function is not monotone.

Similar results for increasing functions follow from those concerning
decreasing functions by considering -rp(t) instead of rp(t).

We close this paragraph by an important theorem due to Dini.

THEOREM 2.2. For rp(t) continuous in an interval LJ the following two
propositions are true:

1° If any of its Dini's derivatives is :(; a « a) for t E Z Czl, where Ll- Z
is at most countable, then for any two different points t, s from zl we have

rp(t)-rp(s) ~ a
t-:» ~ «a).

2° If any of it.'J Dini's derivatives is ~ {J (> (J) for t E Z Czl, where Ll- Z
is at most countable, then f01' any two different points t, s of Ll we have

Proof. Since 2° follows from 1° by taking -rp(t) in place of rp(t), we
prove proposition 10

• Suppose then, for instance, that

(2.2) D+rp(t) ~ a « a) in zeLJ.

Fix s in Ll and put

1p(t) = rp(t)-rp(s)- at for t € LJ •

1p(t) is then continuous in Ll and, by (2.2),

D+'IJ!(t) = D+cp(t)-u:(; 0 « 0) in Z.

Since LJ - Z is at most countable, it follows, by Theorem 2.1 (001'01
lary 2.1), that 1p(t) is decreasing (strictly decreasing) in LJ and consequently

1p(t) :(; 1p(s) (1p(t) < 1p(s)) for t > s .

Hence we get (2.1) for t :» e. Since sand t :» s were arbitrary points
in the interval zl, we conclude that (2.1) holds true for any two different
points t, s of LI.

Next theorem is an immediate consequence of the preceding one.

THEOREM 2.3. Let rp(t) be continuGtls in an open interval LJ. Assume
that one of its Dini's derivatives is finite and continuous at to E LJ. Then
tp' (to) exists.
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Proof. Suppose, for instance, that D+rp(t) is finite and continuous
at to' Put D+q;(to) = 1 and take an arbitrary e > O. Then there is a b > 0
so that

l-e < D+rp{t) < l+e for t E (to-b, to+b).

Hence, by Theorem 2.2, we get

l-e < q;(t)-q;(to) < l+e for t E (to-b, to+b), t of= to'
t-to

e > 0 being arbitrary, inequality (2.3) implies the conclusion of
our theorem.

CoROLLARY 2.2. For rp{t) continuous in an open interval L1 assume
that one of its Dini's derivatives is finite and continuous on ,1. Then q;'(t)
exists and is continuous on ,1.

§ 3. A sufficient condition for a function to be monotone. As a further
consequence of Zygmund's lemma we prove the following theorem.

THEOREM 3.1. Let q;(t) be absolutely continuous in an interval ,1 and
assume that

(3.1) rp'{t) :s:;: 0 for almost every t € ,1 .

Then q;(t) is decreasing in ,1.

Proof. Let e > 0 be arbitrary and put

1jl(t) = rp(t)-et.

1jl(t) is absolutely continuous in L1 and

1jl'(t) = q;'(t)- e for almost every t E ,1 .

Therefore, by (3.1), we have 1jl'(t) < 0 for almost every t E L1 and hence
the set Lt- Z+, where

Z+ = {t E ,1 : D+1jl{t) < O} ,

is of measure O. 1jl(t) being absolutely continuous the set 1jl(,1--Z+) is of
measure 0 too, and consequently does not contain any interval. Hence,
by Zygmund's lemma, 1jl(t) is decreasing in Ll and e > 0 being arbitrary
the same holds true for q;(t).

Remark 3.1. A similar theorem is true for increasing functions.

Remark 3.2. By an argument similar to that used in the proof of
Theorem 3.1 we show the following result: If rp(t) is a genemlized absolutely
continuous function (see [45J) in an interval Ll and if its approximative
derivative (see [45]) is non-positive almost everywhere in ,1, then rp(t) is
.decreasing in Lt.



CHAPTER II

MAXIMUM AND MINIMUM SOLUTION OF ORDINARY
DIFFERENTIAL EQUATIONS

§ 4. Some notations and definitions.Let Y = (Yu ,.. , Yn), :Y = UYl, ... , Yn)
be two points of the n-dimensional space. We will write

Y ~ Y if Yi ~ Yi (j = 1,2, ... , n)
and

Y < IT if Yi < Yi (j = 1,2, ... , n).

The index i being fixed we write
i ~

Y~Y if Yj~'ih (j=I,2, ... ,n) and Yi=Yi'

Let a system of functions jJ(X, Y) = IJ(xu ... , xp, Yu ... , Yn) (j =

1,2, ... , n) be defined in a region D.

OONDITION V+ (V.,}, System IJ(X, Y) (j = 1,2, ... , n) is said to
satisfy condition V+ (V_) with regard to Y in D if for every fixed index i
the function ft(X, Y) is increasing (decreasing) with respect to each
variable Yu ... , Yi-l, Yi+l, ... , Yn separately.

OONDITION W+ (W_). System jJ(X, Y) (j = 1,2, ... , n) is said to
satisfy condition W+ (W _) with respect to Yin D if for every fixed index i
the following implication holds true:

Y;;Y, (X,Y)ED, (X,Y)ED*Ii(X,Y)~f;(X,Y,>

(Y ~ Y, (X, Y) ED, (X, Y) E D=>!i(X, Y) ~ fi(X, Y)).

CoNDITION W+ (W_). System !J(X, Y) (j = 1,2, ... , n) is said to
satisfy condition W+ (W_) with respect to Y in D if the following implica
tion holds true:

Y ~ Y, (X, Y) ED, (X, Y) E D=>!J(X, Y) <!J(X, Y)
(j=1,2, ... ,n)

(Y ~ :Y, (X, Y) to D, (X, Y) to D=>!J(X, Y) ~ !J(X, Y)
(j = 1, 2, ... , n) •
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(5.1)

It is obvious that condition W + (W_) implies condition V + (V_) and
that for n = 1 all four conditions are trivially satisfied. It is also clear
that for n = 2 condition W + (W_) and condition V + (V_) are equivalent.
This equivalence is-in general-no more valid for n > 2, as may be shown
by a suitable counter-example. However, the above equivalence holds
true in special regions without any restriction on the dimension. For
instance, it is easy to check the equivalence of the conditions W + (W_)
and V + (V _) in the case when the projection of the region D on the space
(Yll ... , Yn) is a parallelepipede

- ex:> ~ aj < Yj < bj ~ + ex:> (j = 1,2, ... , n) .

For T = (Yll ... , Yn) we write

- T = (-Yll ... , -Yn), ITI = (fYII, ... , IYnl).

For tP(t) = (!PI(t) , ... , !Pn(t») we write

D_tP(t) = (D-tpl(t), ... , D_tpn(t»)

and similarly for D-, D ... and D+.

§ 5. Definition of the maximum (minimum) solution. Let a system of
ordinary differential equations

dYta£ = (Ji(t, Yu ... , Yn) (i = 1,2, ... , n)

be defined in a region D and let (to, Yo) e D.
A solution .o(t) = (Wl(t), ... , Wn(t») of system (5.1), passing through

the point (to, Yo) and defined in some interval Ll+ = [to, a) (1), is called rigkt
kand maximum (minimu.m) 8oZ1J,tion of system (5.1) in the interval Ll+, passing
through the point (to, Yo), if for every solution Y (t) = (Yl(t), ... , Yn(t»)

of (5.1), passing through (to, Yo) and defined in an interval J+ = [to, a) (1),
we have

Y(t) ~ .o(t) (Y(t) ~ .o(t» for

We define in a similar way the left-kand maximum (minimum)
solution passing through (to, Yo). It is clear that the maximum (minimum)
solution in some interval, passing through a given point, is uniquely
determined (whenever it exists) in that interval. It is also evident that
if the solution of system (5.1), passing through (to, Yo) to right (left)
is unique in some interval, then it is both right-band (left-hand) maximum
and minimum solution in this interval.

(1) In LI + resp. :1+ stands a resp. Ii for a finite number or + 00.
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Now, the following two propositions are easy to check.
PROPOSITION 5.1. By the mapping

(5.2) .=-t, 'YJj=Yj (j=1,2, ... ,n)

(5.3)

the right-hand maximum (minimum) solution of system (5.1), passing
through (to, Yo), is transformed into the left-hand maximum (minimum)
solution of system

d'Yji7ii = -(1i(-., 'YJu ••• , 1]n) (i = 1,2, ... , n),

passing through (-to, Yo)'

PROPOSITION 5.2. By the mapping

(5.4) .=t, 'YJj=-Yi (j=1,2, ... ,n)

the right-hand maximum (minimum) solution of system (5.1), passing
through (to, Yo), is tranejormed into the right-hand minimum (maximum)
solution of systmn

d'YJi
(5.5) -d-=-ai(i,-'YJ1, ... ,-'/}n) (i=1,2, ... ,n),

i .

passing through (to, - Yo)'

A similar proposition holds true for the left-hand maximum (minimum)
solution. Sufficient conditions for the existence of the right-hand (left
hand) maximum and minimum solution will be given in further paragraphs.

§ 6. Basic lemmas on strong ordinary differential inequalities. We prove
LEMMA 6.1. Let the right-hand sides of system (5.1) be defined in some

open region D and satisfy in D condition W + with respect to Y (see § 4).
Let (to, Yo) € D. Assume that <P(t) = (fPl(t), ... , gJn(t)) is continuous in

21+ = [to, a) and that the curve Y = <f>{t) lies in D. Let Y{t) = (Yl(t) , ...
... , Yn(t)) be an, arbitrary solution of system (5.1), passing thr01l,gh (to, Yo)
and defined in some interval zl., = [to, a).

Under these assumptions, if

(6.1) !P(to) < Yo

and

(6.2) D_gJi(t) < ai(t, gJl(t), ... , fPn(t)) (i = 1,2, ... , n)

jor t e (to, a), then we have the inequality

!P(t) < Yet) for t E zl., f\ J+ .
Proof. Since Y(to) = Yo, by (6.1) and by the continuity, the set

E = {t: to < t < min (a, a), (/j(t) < Yet) for to ~ t < t}
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is non-void. Denote by t* its least upper bound (1). We have to prove
that t* = min(a, a). Suppose that t* < min(a, a). Then, by the definition
of t*, we have

(6.3) 1>(t) < Y(t) for to :(; t < t*

and, by the continuity, for at least one index j

(6.4)
j

1>(t*) :(; Y(t*)

(see § 4). From (6.3) and (6.4) we get, in particular,

Pj(t) < Yj(t) for to < t < t* , pj(t*) = Yj(t*) .
Hence

(6.5) D_pj(t*) ~ yj(t*) .

On the other hand, from (6.2) and (6.4) we deduce, due to the condi
tion W+ (see § 4),

D_pj(t*) < (1j(t*, 1>(t*») :(; (1j(t*, Y(t*») .
Since

yj(t*) = Gi(t*, Y (t*») ,
it follows that

D_pj(t*) < yj(t*) ,

which gives a contradiction with (6.5). Therefore, we have t* = min (a, a)
and this completes the proof of our lemma.

Remark 6.1. It is possible to construct a counter-example showing
that-in general-Lemma 6.1 is not true if the left-hand derivative in
(6.2) is replaced by the right-hand one.

Next we state two easy to check propositions.

PROPOSITION 6.1. If the right-hand sides of system (5.1) satisfy condi
tion W + (see § 4) with respect to Y, then the right:hand sides of the transformed
system (5.3) (see Proposition 5.1) satisfy condition W_ (see § 4) with regard
to Y.

By mapping (5.2) (denoting 1f';('r) = Pi(-r» the system of differential
inequalities (6.2) is transformed into the system

(i=1,2, ... ,n).

PROPOSITION 6.2. If the right-hand sides of system (5.1) satisfy con
dition W+ (see § 4) with respect to Y, then the right-hand sides of the trans
formed syste,m (5.5) (see Proposition 5.2) satisfy the same oondition.

(1) By the least upper bound of a set which is unbounded from above we mean + 00.

J. szarski, Differ-ential inequalities 2
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By mapping (5.4) (putting ""lr) = -tplr») the system of differential
inequalities (6.2) is transformed into the system

D-"Pt{-r) > -at(i, -"Pl(i) , ... , -""n(i») (i = 1, 2, ... , n).

Applying mapping (5.4) we get from Lemma 6.1, by Proposition 6.2,
the following lemma:

LEMMA 6.2. Under the assumptions of Lemma 6.1, if

(j) (to) > Yo
and

D-tpt(t) > at(t, tpl(t) , ... , tpn(t») (i = 1,2, ... , n)

for t e (to, a), then we have the inequality

(j)(t) > Yet) for t E Lf+ f"\ J+.
Similarly, applying mapping (5.2) and using Proposition 6.1 we

derive from Lemmas 6.1 and 6.2 the next lemma.
LEMMA 6.3. Let the right-hand sides of system (5.1) be defined in some

open region D and satisfy in D condition W _( see § 4) with respect to Y.
Let (to, Yo) ED. Assume that (j)(t) = (tpl(t) , ... , tpn(t») is q,ontinuous in
J_ = (Ii, to] (l) and that the curve Y = (j)(t) lies in D. Let Yet) = (Yl(t) , ...
... , Yn(t») be an arbitrary solution of system (5.1), passing through (to, Yo)
and defined in some interval Lf - = ({3, to] (1).

Under these assumptions, if

and

D+tpt(t) > adt, tpl(t) , ... , tpn(t») (D+tpl(t) < at(t, tpl(t) , ... , tpn(t}))

(i=1,2, ... ,n)

for t E CiJ, to), then we have the inequality

(j)(t) < Yet) «(j)(t) > Yet»~

for t E Lf _ f"\ iL.
§ 7. Some notions and theorems on ordinary differential equations.

Let the right-hand sides of system (5.1) be continuous in some open
region D and let (j)(t) = (tpl(t) , ... ,tpn(t») and ':P(t) = ("Pl(t), ... ,""n(t») be
two solutions defined on zl., = [to, a) and 3+ = [to, a) respectively. Suppose
that ,1+ C 3+. The solution ':P(t) is called right-hand continuation of the
solution (j) (t) if

':P(t) = (j)(t) for t E ,1+ .

{1} In .1_ resp, iL is p resp, 7f a finite number or - 00.
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In a similar way we define the left-hand continuation of a solution.
A solution, which is both a right-hand and left-hand continuation of
another one, is called simply continuation.

A solution tP(t) defined in L1+ = [to, a) is said to reach the boundary
of the open region D by its r·ight-hand extremity if the corresponding
solution-path Y = tJ>(t) is not contained in any compact subset of D.
In this case the interval [to, a) is called the right-hand 'maximal interval
of existence of the solution tJ> (t).

It is obvious that for a solution tJ>(t) reaching the boundary of D
by its right-hand extremity there is no right-hand continuation different
from tP(t).

A solution reaching the boundary of D by its left-hand extremity
and the left-hand maximal interval of existence are defined similarly.

Now the following theorem holds true (see [14J, p. 135).

THEOREM 7.1. Every solution of system (5.1) with continuous right
ha1~d sides in an open region D admits at least one continuation reaching
the boundary of D by its both extremities.

The last theorem can be restated in a less precise way as follows:
Every solution can be contin1(ed to the boundary of D in both directions.

Remark 7.1. The above continuation is, in general, not unique.
In case of uniqueness, Theorem 7.1 is an almost immediate consequence
of the next theorem (see [64J).

THEOREM 7.2. Assume the right-hand sides of system (5.1) to be con
tinuou.~ in an open region D. Let tJ> (t) be a solution defined in a bounded
interval .1+ = [to, a) (.1_ = ({3, toJ) and suppose that for some sequence t;
we have

lim (t., tJ>(t.)) = (a, Yo) [({3, Yo)]
.->00

and (a, Yo) 6 D [({3, Yo) 6 DJ. Then the li1nit

lim tP(t) = Yo (1) (lim tP(t) = Yo)
t-e-a t->/i

exists and

pet) = { tP(t)
Yo

for

for

t E [to, a) (t E ({3, toD ,

t = a (t = {3)

is a solution of syste'in (5.1) in the closed interval [to, a] ([{3, toJ).

Next, for the convenience of the reader, we prove a theorem giving
a rough estimate of the interval of existence of a solution.

(1) lim rp(t) = (lim qJl(t), ... , lim qJn(t)).
t-+a t-e-a t-sa
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T.HEOREM 7.3. Let the right-hand sides of system (5.1) be continuous
in a cube

Q : It-tol < a, !Yt-Yil < a (i = 1,2, ... , n)

and satisfy the inequalities

(7.1)

Suppose that

(7.2)

(i=1,2, ... ,n).

(i=1,2, ... ,n)

and take an arbitrary solution yet) = (Yl(t), ... , Yn(t)) of system (5.1),
reaching the boundary of Q by its both extremities and passing through the
point (to, Y) = (to, Yl, ... ,Yn). Denote its maximal interval of existence
by LI = (a, fJ) and put

(7.3)

(7.4)

(7.5)

(7.6)

h= min (a, 3~f) .
Under these assumptions we have

t5CLl.

Proof. Suppose that (7.4) is not true and, for instance,

Choose b so that

fJ<b<to+h.

The solution yet) reaching the boundary of Q by its right-hand
extremity the solution-path Y = Yet), t e [to, fJ), is not contained in the
compact subset of Q

to~t~b, IYi-Yil~Ja (i=1,2, ... ,n).

Hence, since fJ < b, there is a t* e (to, f3) and an index j such that

(7.7)

(7.8)

IYi(t"')-Yil >~a .

From (7.2) and (7.7) it follows that

IYi(t*)-Yil > ~ .

On the other hand, there is a T € (to, t*) so that

(7.9) IYj(t*)-Yil = IYj(t*)-Yj(to)1 = It*-tollyj(T)/ = It*-toljoj(T, Y(T))I.
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Since t* € (to, (J), we get from (7.3) and (7.5)

It*-tol < 3~'

21

Hence, by (7.1) and (7.9), we have

IYi(t*)-Yil ::( i,
which contradicts (7.8). Thus the proof is completed.

§ 8. Local existence of the right-hand maximum solution. We first
prove a theorem giving, among others, sufficient conditions for the local
existence of the right-hand maximum solution.

THEOREM 8.1. Snppose that the right-hand sides oj system (5.1) are
continuous and satisjy condition W+ with respect to Y (see § 4) in an open
region D. Let (to, Yo) € D and take an arbitrary sequenoe oj points (to, Y~) e D
such that

(8.1) Yo < y~+l < Y~ , lim Y~ = Yo .
~--+oo

For every post'tive integer v consider the system oj ordinary differential
equations

(8.2)
dYi 1
df=ai(t,Yu ... ,Yn)+; (i=1,2, ... ,n)

and let ret) = (y~(t), ... , y~(t)) be an arb'itrary sotutio« of (8.2), passing

through (to, Y~) and reaching the bonndaTy of D by its both extremities ieucb.
soltttion exists by Theorem 7.1).

Under these assumptions, there is a positive mombe: h so that

1° For indices v snfficiently large ret) is defined in Ll h = [to, to+h)
and

r+I(t) < Y~(t) for t € Ll h •

2° The sequence Y~(t) is nnifoTmly conoerqent in the interval Llh to
the right-hand maximum solntion Q(t) = (WI(t) , ... , Wn(t)) of system (5.1)
in Llh , passing through (to, Yo), and

ret) > Q(t) .

3° If Y = wet) = (lfl(t), ... , Ifn(t)) is an arbitrary continnons cnrve [or

t e Llii = [to, to+h), contained in D and satisjy'ing the initial inequality

(8.3)
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and the differential inequalities

(8.4) D-Cf!i(t) ~ adt, Cf!1(t), ... , Cf!n(t») for to < t < to+h

(i=1,2, .... ,n),
then

(8.5)

Proof. There is a positive number a, so that the closure of the cube

Q:lt-tol<a,IYi-Yil<a (i=1,2, ... ,n),

where Yo = (YI, ... , Yn), is contained in D. The functions ai(t, Y) being
continuous in Q, we have for some M

lai(t,y)+~I~211 for (t,Y)EQ (i=1,2, ... ,n; )1=1,2, ... ).

Put

h = min (a, 3~) .

Since, by (8.1), there is

(i=1,2, ... ,n)

from a certain index )10 on, we see, by Theorem 7.3, that r(t) are defined
in L1 h = [to, to+h) for )I > )10' In what follows, we consider only indices
)I> )10' Since the right-hand sides of system (8.2) satisfy condition W +
with respect to Y in D and because of the inequalities

y~+l(to) = y.+ 1 < Y' = Y"(to) ,

d~t+l =ai(t, r+l(t»)+'JI~l<ai(t, Y'+l(t»)+~ (i=1,2, ... ,n),

we have, by Lemma 6.1,

r+I(t) < r(t) for t E L1 h •

By a similar argument we prove that the sequence ret) is bounded
from below by any solution of system (5.1), passing through the point
(to, Yo)· Hence and from the last inequalities it follows that there exists
the limit

(8.6) lim Y"(t) = D(t) for t E L1 h

and, by a standard argument, we get that D(t) is a solution of system (5.1),
passing through (to, Yo) and that the convergence in (8.6) is uniform.
By (8.3) and (8.4), we have



§ 8. Local existence of the right-hand maximum solution

and

D_rpi(t) < Oi(t, W(t)) +~ for to < t < to+h (i = 1,2, ... , n).
11

Hence, by Lemma 6.1,

(8.7)

From (8.6) and (8.7) follows (8.5). In particular, (8.5) holds true
for tP(t) being an arbitrary solution of system (5.1), passing through
(to, Yo)' Therefore, D(t) is the right-hand maximum solution through
(to, Yo) of system (5.1) in the interval L1h • Thus the proof of 1°, 2° and 3°
is completed.

§ 9. Global existence of the maximum and minimum solution. Now
we prove

THEOREM 9.1. Assume the ,tight-hand side» of system (5.1) to be con
tinuous and to satisfy condition V{+ with respect to Y (see § 4) in an open
region D. Then, through every point (to, Yo) € D there exists the right-hand
maximum and the right-hand minimum sol1dion reaching the boundary
of D by its right-hand extremity.

Proof. We first prove the part of theorem concerning the right-hand
maximum solution. By Theorem 8.1, for (to, Yo) € D there is a posi
tive h, so that the right-hand maximum solution through (to, Yo) exists
in the interval L1 k = [to, to -+ h). Denote by ho the least upper bound of
such numbers h. Now notice that if we have the right-hand maximum
solution in some interval L1h:, then its restriction to any interval ilk, where
h < h, is the right-hand maximum solution in L1 h • Hence it follows that
for every positive h < ho there is the right-hand maximum solution in L1h ,

say Dh(t). Next, we conclude that if 0 < h1 < liz < no, then-by the uni
queness (see § 5)-the right-hand maximum solution in L1 h 2 is the right
hand continuation (see § 7) of the one defined in .Jhl' Now, for t E [to, to+h)
choose h so that t < to+ h < to+b« and put

(9.1) D(t) = Dh(t) .

By our preceding remark, the value of D(t) is independent of the
choice of h. Hence, formula (9.1) defines a function in the interval
Ll"" = [to, to+ho)' It is clear that Q(t) is the right-hand maximum solution
through (to, Yo) in L1 ho ' Next, we will prove that D(t) reaches the boundary
of D by its right-hand extremity. Indeed, if it were not, so, the correspond
ing solution-path Y = D(t) would be contained in some compact subset
of D (see § 7). Therefore, there would exist a sequence t; (to < i, < to+ho),
so that

lim (tr , D(t.)) = (to+ho, Y) € D.
'->00
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Hence, by Theorem 7.2, we would have

lim (t, Q(t») = (to+ho, Y)
t-+to+ho

for t € Llho ,

for t = to+ho

would be a solution of (5.1) in the closed interval Lto, to + hoJ. Since
(to +ho, Y) € D, we can apply Theorem 8.1 to the point (to +ho, Y) and
hence we get that there is a positive h, so that the right-hand maximum
solution thl'ou[h (to+ho, f) exists in the interval [to+ho, to+ho+h).

Denote it by Q(t). Then Q*(t) defined by the formula

Q*(t) = { ~(t)
Q (t)

for t e Llho ,

for t € [to +ho, to+ho+h)
is clearly a solution of system (5.1), passing through (to, Yo) and defined
in the interval Llho+~h = [to, to+ho+h).

We will prove now that:
(IX) Q*(t) is the right-hand maximum solution through (to, Yo) in the

interval Llho+h.
To prove (IX), we have to show that if Yet) is an arbitrary solution

through (to, Yo) defined in some interval Llh = [to, to+h), then

(9.2) yet) ~ Q*(t) for t e Llh n Llho+h '

Inequality (9.2) is true if h ~ ho because Q*(t) = Q(t) in Ll h o and
Q(t) is the right-hand maximum solution through (to, Yo) in Llho' If h > ho,
then, by the preceding argument, we have (9.2) in Ll h o and, by continuity,

Y(to+ho) ~Q*(to+ho) = Q(to+ho). Hence, due to the definition of D(t)
and by Theorem 8.1, 3°, it follows that

Yet) <o.Q(t) = Q*(t) for t € [to+ho, to+h) n [to+ho, to+ho+h) ,

which completes the proof of (IX). But, proposition (IX) contradicts the
definition of ho and consequently the first part of Theorem 9.1 is proved.
Now applying the mapping (5.4) and using Proposition 5.2 and Proposi
tion 6.2 we get the second part of our theorem, concerning the minimum
solution, as an immediate consequence of the first part.

THEOREM 9.2. Assume the right-hand sides of system (5.1) to be con
tinuous and to satisfy condition W _ with respect to Y (see § 4) in an open
region D. Then, through every point (to, Yo) € D there is the left-hand maximum
and the left-hand minir;mm solution reaching the boundary of D by its left
hand extremity.

Proof. Theorem 9.2 follows from Theorem 9.1 by applying the
mapping (5.2) and by Proposition 5.1 and 6.1.
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Remark 9.1. In case n = 1, i.e. when system (5.1) reduces to a single
equation, both conditions W+ and W _ are trivially satisfied (see § 4).
Hence we have the following result: For a single first order differential
equation with a right-hand side continuous in an open region D there is,
through evCt·y point (to, Yo) E D, the right-hand (left-hand) maxim7tm ana
minimum solution reaching the boundary of D by its right-hand (left-hand)
extremity.

Remark 9.2. In case n = 2 condition W+ (W_) in Theorem 9.1
(Theorem 9.2) can be substituted by the equivalent condition V+ (V_)
(see § 4). However, in case n > 2 condition \V+ in Theorem 9.1 cannot
be replaced by the essentially weaker condition V+. Indeed, it is possible
to construct a suitable counter-example (see [60]) showing that for a sys
tem of three equations, with right-hand sides continuous and satisfying
condition V+ in an open region D, it may happen that the right-hand
maximum solution-which exists locally-cannot be continued so as to
reach the boundary of D by its right-hand extremity.

The theorem we are going to prove next is a generalization of 3°
in Theorem 8.1, which was of local character.

THEOREM 9.3. Assume the right-hand sides of system (5.1) to be con
tinuous and to satisfy condition W+ with respect to Y (see § 4) in an open
region D. Let (to, Yo) ED and denote by Q+(t) the right-hand maximu'm
solution through (to, Yo), reaching the boundat·y of D by its right-hand extre
mity. Let LI = [to, ao) be its existence interval.

Under these assumptions, if Y = <p(t) = (<fI(t) , ... , <fn(t») is an m'bitrary

continuo~ts curve for t E J = [to, ao), contained in D and satisfying the initial
inequality

and the differential inequalities

D-<fi(t) ~ O'i(t, <fI(t) , ... , lpn(t») for to< t < ao (i = 1,2, ... , n),

then

(9.3)

Proof. By 3° of Theorem 8.1, inequality (9.3) holds true in the
interval [to, a) for some a> to and sufficiently close to to' Let a* be the
least upper bound of such numbers a. We have to show that
a* = min (au, ao). Suppose that a* < min (ao, ao); then a* ELI" 2i and
since-by the definition of a*-(9.3) holds in [to, a*), we have by continuity

<P(a*) ~ Q+(a*) .

Hence we can apply 3° of Theorem 8.1 to the point (a*, Q+(a*») and
noticing that Q+(t) is the right-hand maximum solution through (a*, Q+(a*»)
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in the interval [a*, ao)-we get that inequality (9.3) holds in some interval
[a*, a**), where a** < min(ao, ao) is sufficiently close to a*. Therefore,
inequality (9.3) is satisfied in [to, a**), contrary to the definition of a*,
since a** > or, This contradiction completes the proof.

Remark. For n > 2 condition W + in Theorem 9.3 cannot be sub
stituted by the weaker condition V+ (see § 4). Indeed, the subsequent
counter-example (see [60]) shows that with the condition V+ it may occur
that inequality (9.3) does not hold in any right-hand neighborhood of to'

Let D = D} u DsC (t, Y1' ... , Yn), where

D1 : - 00 < t < + 00, yi + Y~ < 1, - 00 < Ys < + 00 ,

D 2 : -00 < t < +00, (Yl-3)s+(Ys-3)s < 1, -00 < Ys < +00,

and put

(i=1,2,3).

It is easy to check that the functions 01 (i = 1, 2, 3), thus defined,
satisfy in D condition V+. Now, for qJt(t) = 0 (i=1,2,3) we have

qJi(O) < 3 (i = 1,2) , qJs(O) :(; 0
and

qJi(t):(; O((t, qJ}(t) , qJ2(t) , qJs(t») for t?:· 0 (i = 1,2,3).

The unique solution of the system

dYtdi = a;(t, Y1' Yz, Ys) (i = 1,2,3),

passing through (0, 3, 3, 0), and consequently its right-hand maximum
solution through (0,3,3, 0) is obviously

wt(t)=3-t (i=1,2), wi(t) = -t for t~O.

However, we have

9'a(t) > witt) for t > 0 .

It is also possible to construct a similar example with D and its
intersections by planes t = const being connected.

By mapping (5.4) and by Propositions 5.2 and 6.2 we get from Theo
rem 9.3 the following one:

THEOREM 9.4. Under the assumptions of Theorem 9.3 denote by .Q+(t)
the right-hand mimimum solution through (to, Yo), reaching the boundary
of J) by its right-hand extremity. Let L1 = [to, ao) be the existence interval
of .Q+(t). This being assumed, if Y = tP(t) = (9'l(t), ... , 9'n(t») is an arbitrary
continuous curve for t e J = [to,ao), contained in D and satisfying the initial
inequality
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and the differential inequalities

D-9'i(t) ~ O"i(t, 9'1(t) , ',., 9'n(t») for to < t < Uo (i = 1,2, ... , n),

then

(/>(t) ~ Q+(t) for t s Ll rv a.
Using the mapping (5.2) and Propositions 5.1 and 6.1 it is easy to

derive from the above theorems similar theorems concerning the situation
to the left from the initial point.

Since in the case of a single equation conditions W+ and 'V_ are
trivially satisfied, we get-as corollaries of the above theorems-the
following two theorems.

THEOREM 9.5. Assume the right-hand side oj equation

dy
dt = a(t, y)

to be continuous in an open region D. Let (to, Yo) ED and denote by w+(t)
(w+(t» the right-hand mamim'um (minimum) solution through (to, Yo),
reaching the boundary of D by its right-hand extremity, and defined in the
interval zl., = [to, au). Let y = 9'(t) be a continuous curve for t E A+ = [to, ao),
contained in D and satisfying the initial inequality

9'(to) ::( Yo (9'(to) ~ Yo)

and the differential inequality

Under these assumptions we have

9'(t) ::( co+(t) (9'(t) ~ w+(t» for t E A+ r-.. J+ '
THEOREM 9.6. Suppose the right-hand side oj equation (9.4) to be con

tinuous in an open region D. Let (to, Yo) E D and denote by w-(t) (w_(t»
the left-hand maximum (minimum) solution through (to, Yo), reaching the
boundary of D by its left-hand extl'emity and defined in an interval
zl., = ({J, to]. Let y = 9'(t) be a continuous curve for t e 3_ = (ji, toJ, contained
in D and satisfying the initial inequality

9'(to) ::( Yo (9'(to) ~ Yo)

and the differential inequality

D+9'(t) ~ o(t, 9'(t») (D+rp(t) ::( a(t, 9'(t»)) for 7i < t < to .

Under these assumptions we have

rp(t)::( w-(t) (9'(t) ~ w_(t» for t E A_ r-.. J_,
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Remark 9.3. We will see in § 13 that Theorems 9.3-9.6 hold true
with any of the four Dini's derivatives.

EXAMPLE 9.1. Let q;{t) be continuous in [to, (10) and suppose that
q;(to) ~ Yo and

where a (t) and b (t) are continuous in some open interval Ll containing to'
Here equation (9.4) has the form

dy
dt = a (t)Y + b (t) ,

and its unique solution through (to, Yo) is

I I a

w(t; to, Yo) = exp (J a (r)dr){yo+ Jb(a)exp(- Ja(r)dr)da} •
10 10 10

Hence, by Theorem 9.5, we have

I I a

q;(t) ~ exp (J a(r)dr){yo+ f b{a)exp (- Ja(r)dr)da} for t € Ll rv [to, <Zo).
to 10 to

EXAMPLE 9.2. Consider a system of differential equations

(9.5) dYidi = !i(t, Yll ... , Yn) (i = 1,2, ... , n)

with right-hand sides continuous in the region

n

D : 0 < t < +00 , }; Y; < h2

i~1

and satisfying the inequality

(9.6)
n n

2}; Yi/i(t, Yll ... , Yn) ~ -011 Y7,
i=1 i~1

where c is a positive constant. Under these assumptions every solution
of system (9.5) exists in an infinite interval and tends to zero as t goes.
to +00.

Indeed, let Yi(t) (i = 1, 2, ... , n) be a solution of (9.5) starting at
some to> 0 and let [to, y) be its right-hand maximal interval of existence.
Consider the function

n

q;(t) = 2; [Yi{t)]2 ,
i=1
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lor which we have
n

rp (to) = 2: [Yi(tO)]2 < h2
i~1

and, by (9.6),
n • n

lp'(t) = 22: Yi(t)yi(t) = 22: Yi(t)!i(t, Y1(t), ... , Yn(t))
i=1 i=1

n

:'( -c l' [Yi(t)]2 = -Clp(t)
i=1

'in the interval [to, y). Hence, putting Yo = rp(to) we have, by Theorem 9.5,

(9.7) rp(t) ~ Yoe-C(l-fo) for t e [to, y) .

Since Yo < h2, it follows that

n

ep(t) = .2 [Yi(t)]2 ~ Yo < h2
i=1

'On the interval [to, y). Hence we must have y = + 00, because otherwise
the solution would not reach the boundary of the region D by its right
hand extremity. On the other hand, from (9.7) it follows that the solution
tends to zero as t -7 + 00.

§ 10. Continuity of the maximum and minimum solution on the initial
point and on the right-hand sides of system. We begin this section by
proving a lemma generalizing parts 1° and 2° of Theorem 8.1, which were
'Of local character.

LEMMA 10.1. Under the ass1tmptions of Theorem 8.1 let Q(t) be, in the
interval [to, ao), the right-hand maximum solution through (to, Yo), reaching
the boundary of D by its right-hand extremity (such solution existe by Theo
rem 9.1). Then, for every a e (to, ao) there is an index 'Vo such that

10 for 'V ;?: 'Vo, Y"(t) exists in the interval [to, a) and

.Q(t) < r+1(t) < Y"(t) ,

2° lim r(t) = Q(t) uniformly in [to, a).
Y--..oo

Proof. By Theorem 8.1, the set of numbers a € (to, ao), such that 1°
and 2° hold true for some 'Vo, is non-void. Let a* be its least upper bound.
We have to show that a* = ao. Suppose that a* < 110 and consider the
point (a*, Q(a*)) € D. Let Q* be a cube centered at (a*, Q(a*)) such

that Q* is contained in D. By the continuity, there is a positive M such
that

(10.1) lai(t, y)+~1 ~ M (i = 1, 2, ... , n; v = 1, 2, ... )
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to < a** < a* ,

a*-a** < min (a ~) = h, 3.JI

for (t, Y) e Q*. Choose a** and a > 0 so that

(10.2)

(10.3)

and that the cube

Q: It-a**1 < a, IYi-wi(a**)1 < a (i = 1,2, ... , n)

be contained in Q*. Such a choice is obviously possible. Since Q L Q*,
inequalities (10.1) hold true in Q and since a** < a*, 1° and 2° are satisfied
in [to, a**] for some Vo' Hence, in particular,

lim YV(a**) = Q(a**) , Q(a**) < y·+t(a**) < yV(a**) for v> vo,
P-->OO

and consequently we see, by the choice of h (compare (10.3» and by the
proof of Theorem 8.1 applied to the point (a**, Q(a**»), that 1° and 2°
are satisfied in the interval ra**, a** +h) for indices v sufficiently large.
Therefore, 1° and 20 hold true in the interval [to, a** + h) from a certain v
on. But, in view of the definition of a*, this is impossible because, by (10.3),
a* < a** +h. This contradiction completes the proof.

Let us denote by Q+(t; to, Yo) the right-hand maximum solution
through (to, Yo), reaching the boundary of D by its right-hand extremity
and let ,1+(to, Yo) be its existence interval. We define in a similar obvious
way the symbols Q+(t; to, Yo), tru, to, Yo), Q_(t; to, Yo), fL(to, Yo),
L1-(to, Yo), fL(to, Yo)'

We will show the right-hand sided (left-hand sided) continuity of
Q+(t; to, Yo) (Q+(t; to, Yo)) on the initial point (to, Yo), i.e. we will prove

lim Q+(t; to, Y) = Q+(t; to, Yo) ,
Y-Yo
Y;;'Yo

lim Q+(t; to, Y) = Q+(t; to, Yo) .
Y-Yo
Y';;;Yo

More generally and more precisely we have the following theorem.

THEOREM 10.1. Let the right-hand sides of system (5.1) be continuous
and satisfy condition W + with respect to Y (see § 4) in an open reqion. D.
Let (to, Yo) e D. Consider the right-hand maximum (minimum) solution.
Q+(t; to, Yo) (Q+(t; to, Yo» through (to, Yo), reaching the boundary of D by
its right-hand extremity and let ,1+(to, Yo) (,1+(to, Yo» be its existence interval.
For E=(ell ... ,en), where ei~O (ei~O) (i=1,2, ... ,n), denote by
Q+(t; to, Y, E) (Q+(t; to, Y, E» the right-hand rnaxinwm (minimum)
solution through (to, Y) of the system

dYi
(10.4) 7it=ai(t,Yll ... ,Yn)+ei (i=1,2, ... ,n),

1'eaching the boundary of D by its 1'ight-hand extremity and defined in the
interval L1+(to, Y, E) (,1+(to, Y, E». Then,
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Yo < Y (Yo;;:: Y) .

1° To every a E ,1-!-(to, Yo) (,1+(to, Yo)) there is a ~(a) > 0 such that
O+(t; to, Y, E) (O+(t; to, Y, E)) is defined in [to, a), whenever 0';;;; 8i < ~(a)

(-~(a}';;;; ei';;;; O) (i = 1,2, ... , n) and

IY-Yol<~(a}(l),

2° We have uniformly in [to, a)

lim O+(t; to, Y, E) = Q+(t; to, Yo)
Y-+Yo,E-->{)
Y;;"Yo,E;;..O

( lim Q+(t; to, Y, E) = Q+(t; to, Yo}} .
Y-+Yo,E-->{)
Y<;;;Yo,E,,;;O

Proof. We first prove the part of theorem concerning the right
hand maximum solution. Take a sequence of points Y·, so that

Yo < Y · +l < Y· , I' Y· Y1m = 0'
.-+00

and let ret) be a solution of system (8.2), passing through (to, r) and
continued to the boundary of D in both directions. For fixed a E ,1+(to, Yo)
there is, by Lemma 10.1, an index Yo such that rO(t) exists in [to, a] and

rO(t) > Q+(t; to, Yo) .

Because of the uniform convergence of Y·(t) to Q+(t; to, Yo) in [to, a] we
can assume that Yo is chosen sufficiently large so that the compact set

(10.5)

be contained in D. On the other hand, since Yo < Y·o, there is a ~(a) > 0
such that if

(10.6)

then

IY-Yol<d(a), O';;;;ci<~(a} (i=1,2, ... ,n),

(10.7) Y < Y·o ,
1o ,;;;; ci < - (i = 1, 2, ... , n) .
Yo

Let Y and ci satisfy (10.6). Then, since Yo < Y, we have by Theo
rem 9.3, applied to the point (to, Y) and to system (lOA),

(10.8) Q+(t; to, Yo) < Q+(t; to, Y, E) for t E [to, a) rv ,1+(to, Y, E) •

In view of the inequalities

dwt(t; to, Y, E) (Q+( Y E)) (Q+( Y E)) 1dt =ai t, t;to, , +e,<a,t, t;to, , +%

(1) For two points A and E, IA- BI denotes their Euclidean distance.
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and of (10.7) we get, by Lemma 6.1 applied to the point (to, rO), and
to system (8.2),

{10.9) Q+(t; to, Y, E) < yOO(t) for t ~ [to, a) rl Ll+(to, Y, E) .

From (10.8) and (10.9) it follows that [to, a) C Ll+(to, Y, E). Indeed,
otherwise we would have Ll+(to, Y, E) C [to, a) and the solution-path
corresponding to Q+ (t; to, Y, E) would be contained in the compact
subset (10.5) of D, which is impossible, since Q+(t; to, Y, E) reaches the
boundary of D by its right-hand extremity. Thus we have proved 1°.

Now, to prove 2°, let e be an arbitrary positive number. Since, by
Lemma 10.1,

uniformly on [to, a), there is a Yi such that

{10.10)

Because of the inequality Yo < r i
, there exists a positive bee) < b(a)

such that

whenever

Y < y Ol
, (i=1,2, ... ,n),

(10.11) Yo~.Y, IY-Yol<~(s), O~si<b(e) (i=1,2, ... ,n).

Let Y and Si satisfy (10.11); then, by the same argument as in the
first part of the proof, we conclude that

(10.12) Q+(t; to, Yo) ~ Q+(t; to, Y, E) < ri(t) for t E [to, a) .

From (10.10) and (10.12) follows

IQ+(t; to, Y, E)-Q+(t; to, Yo)1 < e in [to, a)

for Y and Si satisfying (10.11). This completes the proof of 2°. Applying
the mapping (5.4) we obtain that part of our theorem which refers to the
right-hand minimum solution as an immediate consequence of the just
proved result referring to the right-hand maximum solution.

By mapping (5.2) we derive from Theorem 10.1 the following theorem:

THEoRE~f 10.2. Let the right-hand sides of system (5.1) be continuous
4nd satisfy condition W_ with respect to Y (see § 4) in an open region D.
Consider the left-hand maximum (minimum) solution Q-(t; to, Yo)
(Q_(t; to, Yo)) through (to, Yo) ~ D, reaching the boundary of D by its left
kand extremity and defined in the interval Ll-(to, Yo) (Ll_(to, Yo)). For
~=(sH ... ,Sn), where St~O (ei;):O) (i=1,2, ... ,n), denote by
fret; to, Y, E) (Q_(t; to, Y, E» the left-hand maximum (minimum) solution
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through (to, Y) of system (lOA), reaching the boundary of J) by its left-hand
extremity and defined in the interval Ll-(to, Y, E) (L:L(to, Y, E)). Then

1° To every (3 € Ll-(to, Yo) (Ll_(to, Yo)) there is a 13((3) > 0 such that
!r(t; to, Y, E) (Q_(t; to, Y, E)) is defined in ((3, toJ, whenever

IY - Yo! < 0((3) , Yo ~ Y (yo;;::: Y) ,

-13((3)<Bi~O (O~Bi<O((3)) (i=1,2, ... ,n).

2° We have uniformly in ((3, toJ

lim Q-(t; to, Y, E) = sru, to, Yo) ,
Y""'Yo,E-..O
r>Yo,E-s;;O

( lim !L(t; to, Y, E) = Q_(t; to, Yo)).
Y""'Yo,E...,.Eo
Y";;;Yo,E;;.O

We close this section by the following example (see [4J).
EXAMPLE. Consider the differential equation

(10.13)

where

dy
dt =a(t,y),

{
2Ly+2~fyy

a(t, y) = o
for s » 0,
for y < 0;

(10.14)

L > 0, M > 0 are some constants.
We will prove that for each point (to, Yo), where Yo ~ 0, the right

hand maximum solution of (10.13) through (to, Yo) is

w(t; to, Yo) = [l/yoeL(t-to)+~ (eL<t-to)- l )f ·

Suppose first that Yo> 0; then, since a(t, y) ~ 0, we have for any
solution y(t) of (10.13) through (to, Yo)

y(t)~yo>O for t;;:::to •

Therefore, putting u(t) = yy(t), we find that u(t) satisfies, for t ~ to,
the linear equation

du =L +M
dt U

and consequently is of the form

.c: Mu(t) = r YoeL(t-to)+- (eL(Ho)-l) .
L

J. Szarski, Differential inequalities 3
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Hence it follows that, for Yo > 0, function (10.14) is, in the interval
t ~ to, the unique solution of equation (10.13) through (to, Yo) and con
sequently its right-hand maximum solution through (to, Yo)' Our assertion
for Yo = 0 follows now from Theorem 10.1 if we let Yo > 0 tend to O. Notice
that for Yo = 0 we do not have uniqueness.

By Theorem 9.5, we get the following result. Let cp(t) be continuous
and non-negative for t e [to, a). Suppose it satisfies the initial inequality

cp(to) ~ Yo

and the differential inequality

D _ ep (t) ~ 2Lep (t) +2111 }/ep (t) .

This being assumed, we have for t E [to, a)

ep(t) ~ w(t; to, Yo) ,

where w(t; to, Yo) is given by formula (10.14).



CHAPTER III

FIRST ORDER ORDINARY DIFFERENTIAL INEQUALITIES

§ 11. Basic theorems on first order ordinary differential inequalities.
In this section we give theorems generalizing Theorems 9.3 and 9.4 in
the direction that will be briefly explained here (see [22J and [61]). In
Theorem 9.3 we assumed the system of differential inequalities to be satis
fied in the whole interval where the curve Y = (/) (t) = (<PI(t) , ... , /Pn(t))
was defined. This assumption will be substituted by a less restrictive
one; we will require only that for every index i the i-th differential inequa
lity be satisfied at such points t where /Pi(t) is greater than the i-th com
ponent of the maximum solution. As we will see (Example 11.1,
Remark 48.1), such a weakening of assumptions is very useful in applica
tions of the theory of ordinary differential inequalities.

THEOREM 11.1. Suppose the right-hand sides of system (5.1) are con
tinuous and satisfy condition W + with respect to Y (see § 4) in an open
region D. Let (to, Yo) ED and consider the right-hand maxirnum solrttion
Q+(t; to, Yo) = (wt(t), ... , w~(t)) through (to, Yo), de/,i'ned in the interval
[to, ao) and reaching the boundary of D by its right-hand extrMn-ity. Let
Y = (/)(t) = (/PI(t) , ... , tpn(t)) be a continuo'us eurne on the interval [to, y)

and suppose that (t, (]i(t)) ED. Write UI = mintc,, y) and
..L

fiJi = {tE (to, al ) : tpi(t) > wt(t)} (i = 1, 2, ... , n).

Under these assumptions, ij

(11.1 )

(11.2) D_tpi(t) ~ O'I(t, (]i(t») [or tEE; (i = 1,2, ... , n),

+
then the sets E; (i = 1, 2, ... , n) are empty, i.e.

(11.3 )

Proof. Take a sequence of points Y' such that (to, Y·) ED, Yo < y,+l
< Y' and lim F" = Yo' Let :Y'(t) = (y;(t) , ... , y~(t)) be a solution of

,-+00

3*



[to, a) ,

[to, a) •
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system (8.2), passing through (to, F") and continued to the boundary
of D in both directions. Take an arbitrary a e (to, al)' By Lemma 10.1,
there is an index Yo (depending on a) such that, for Y~ Yo, Y"(t) exists
on [to, a) and

(11.4) Q+(t; to, Yo) < y O+1(t ) < Y"(t) in
(11.5) lim yV(t) = Q+(t; to, Yo) in

0-+00

In view of (11.5), to prove (11.3) it is sufficient to show that for
Y ~ Yo we have

(11.6) ifJ(t) < r(t) in [to, a) .

Take a fixed Y~ Yo' Since ifJ(to) ~ Yo < F" = r(to), inequality (11.6)
holds, by continuity, in some interval [to, a). Denote by a* the least upper
bound of a € (to, a) such that (11.6) is satisfied in [to, a). We have to show
that a* = a. Suppose a* < a; then, by the definition of a* and by the
continuity, we have

(11.7) lP(t) < yV(t) on [to, a*) ,

and for at least one index j

(11.8)
j

lP(a*) ~ r(a*)

(see § 4). Hence, in particular,

(11.9) 'Pj(a*) = yj(a*) , 'Pj(t) < yj(t) for t e (to, a*) .

From (11.9) it follows that

(11.10) D-'Pj(a*) ~ yf(a*) = O'j(a*, r(a*») +~.

On the other hand, since by (11.4) we have wt(a*) < yj(a*), we get
+

from (11.9) that wt(a*) < 'Pj(a*) and consequently a* E E j . Therefore,
by (11.2), (11.8) and by condition W+ (see § 4), we have

D_'PJ(a*) ~ 0'11 a*, lP(a*») ~ (J'j(a*, Y"( a*») < (J'j(a*, r(a*») +!. ,
Y

contrary to inequality (11.10). Hence, a* < a is impossible and this com
pletes the proof.

EXAMPLE 11.1 (see [59]). Consider a linear equation

dy
dt = a(t)y +b(t) ,

where a(t) and b(t) are continuous, complex-valued functions on [0, a).
Put s(t) = Rea(t) and suppose that Ib(t)1 :s;; Il(t), where e(t) is continuous.
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Let yet) satisfy the above equation in [0, a). Under these assumptions
we have in [0, a)

ly(t)1 ~ w(t) ,
where

t t t

wet) = ly(O)lexpU8(T)dT) +f exp (f 8(T)dr) e(u)du .
o 0 u

Indeed, put
E = {t E (0, a) : ly(t)1 > w(t)}.

For t e E we have obviously ly(t)1 > 0, and consequently

Since

we get

!!:..I (t)1 = ~ y(t)Y'(t)+YWy'(t)
dt y 2 !y(t)1 .

y'(t)y(t) = a(t)\y(t)12+b(t)y(t) ,

y'(t)y(t) = a(t)ly(t)12+b(t)y(t) ,

b(t)y(t) +b(tjy(t) ~ 2e(t)ly(t)j ,

1t ly(t)1 ~ aft) ta[t) ly(t)1 + eft) .

Thus we have shown that tEE implies

d
dt1y(t)1 ~8(t)ly(t)l+e(t).

Now, since w(t) is the unique solution of the linear equation

dy
dt = 8(t)y +eft) ,

&atisfying the initial condition 00(0) = ly(O)I, our assertion follows from
Theorem 11.1. Observe that we were able to check the differential ine
quality only for t such that Iy(t)! > O.

By means of the mapping (5.4) we get from Theorem 11.1 the fol
lowing theorem.

THEOREM 11.2. Suppose the right-hand members of system (5.1) are
continuous and satisfy condition W + with respect to Y (see § 4) in D. Let
(to, Yo) e D and consider the right-hand minimum solution Q+(t; to, Yo)
= ((Q~(t), ... , w~(t)) through (to, Yo), defined in [to, ao) and reaching the

boundary of D by its right-hand extremity. Let Y = <P(t) = (!PI(t), ... , !Pn(t»)

be a continuous curve on [to, ')I) and assume that (t, <P(t») e D. Put
(11 = min(ao, ')I) and

E i = {t € (to, a1): !pi(t) < w~(t)} (i = 1, 2, ... , n) .
....
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Under these assumptions, if

lP (to) ;:?; Yo ,

D-<Pi(t) ;:?; G,(t, lP(t») for t e Ei (i = 1,2, ... , n) ,
+

then
lP(t) ;:?; Q+(t; to, Yo) for t fi [to, al) .

Using the mapping (5.2) we get, as an immediate consequence of
Theorems 11.1 and 11.2, the following theorem (see Propositions 5.1
and 6.1).

THEOREM 11.3. S1tppOse the right-hand sides of system (5.1) are con
t,inuous and satisfy condition W_ with respect to Y (see § 4) in an open
region D. Let (to, Yo) € D and consider the left-hand maximum (minimum)
solution Q- (t; to, Yo) = (wI (t), ... , w;(t») (Q_(t; to, Yo) = (w:-(t), ... , w~(t»))
through (to, Yo), defined in the interval (Po, to] and reaching the boundary
of D by its left-hand extremity. Let Y = lP(t) = (<PI(t) , ... , <Pn(t») be con
tinuous on (b, to] and assume that (t, lP(t») -e D. Write PI = max(po, b) and

it i = {t e (Pu to): <pi(t) > wj(t)} (i = 1,2, ... , n)

(lR, = {t € (Pu to): <Pi(t) < w~(t)}) .

Under these assumptions, if

lP(to) :::;;: Yo (lP(to) ~ Yo) ,
and

then

D+<Pi(t) ;:?; Gi(t, lP(t») for

(D+<Pi(t) :(; Gi(t, lP(t») for

t€Ef (i=1,2, ... ,n)

t € ~i) ,

lP(t) :(;au, to, Yo) for t € (Pu to]
(lP(t) ~ Q_(t; to, Yo) for t E (Pu to]) .

§ 12. Necessity of condition V + (V_) in theorems on differential ine
qualities. Let the right-hand members of system (5.1), with n :» 1, be
continuous in a parallelepipede

D : - 00 :(; a < t < b :(; + 00, - 00 :(; af < y, < 'b« :(; + 00

(i=1,2, ... ,n).

Since conditions W+ and V+ are equivalent in D (see § 4), we get from
Theorems 11.1 and 11~2, as a particular conclusion, the following result:

If the right-hand sides of system (5.1) satisfy condition V+ with respect
to Y (see § 4), then

(~+) to every point (to, Yo) ED there is a solution Q+(t; to, Yo)
(Q+(t; to, Yo» through (to, Yo) such that for any solution Y(t) satisfying the
initial inequality Y(to):(; Yo (Y'-io) ~ Yo) we have Y(to) ~ Q+(t; to, Yo)
(Y(to) ~Q+(t; to, Yo» in some right-hand neighborhood of to.
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The above result can be inverted; in fact, we have the following
theorem for an arbitrary open region D:

THEOREM 12.1. Let the right-hand sides of system (5.1), with n > 1, be
continuous in an open region D. Then the condition V ~ with respect to Y is
a necessary one for the property (IX+) to hold true.

Proof. It is sufficient to prove the part of theorem referring to £2+.
The part of theorem concerning £2+ will follow then by the mapping (5.4).

Let the indices i and j =1= i be fixed and consider two points

(to, Yo) = (to, ill, ... ,Yn) ED; (to, Y) = (to, YI, ... ,Yi-l, Yi, Yi+l, ... , Yn) ED

such that Yi < Yi' Let :Y\t) be a solution through (to, Y). Since :Y (to)
= Y ~ Yo, we have, by (IX+),

~ +
Y(t) ~ £2 (t; to, Yo)

in some right-hand neighborhood of to' In particular, 7h(to) = Yi = wt(to),
Yi(t) ~ wt(t) in a right-hand neighborhood of to' Hence, it follows that

(I£(to, Y) = O'i(to, Y(to)) = y·i(to) ~ wt (to) = O'i(to, £2+(to; to, Yo)) = O'i(to, Yo) ,

and thus the proof is completed.
By mapping (5.2) we obtain from Theorem 12.1 a similar theorem

concerning condition V_and the property:
(IX_) To every point (to, Yo) ED there is a solution £2-(t; to, Yo)

(£L(t; to, Yo)) through (to, Yo) such that for any solution Y(t) satisfying the
initial inequality Y(to) ~ Yo (Y(to) ~ Yo) we have Y(t) ~ £2-(t; to, Yo)
(Y(t) ~ £2_(t; to, Yo)) in some left-hand neighborhood of to.

From the last remark and from Theorem 12.1 follows the next theorem.
THEOREM 12.2. The only systems (5.1) with right-hand members con

tinuous in an open region D, for which both properties (IX+) and (cx-) hold
true, are those of the form

dYi
(12.1) df=O'i(t,Yi) (i=1,2, ... ,n),

i.e. systems oj independent equations, each containing only one unknown
function.

Proof. The right-hand sides of system (5.1), having both properties
((l+) and (IX_), satisfy necessarily conditions V+ and V_. This means that
the function O'i(t, Y) is both increasing and decreasing with respect to
the variables Yll"" Yi-l, Yi+l, ... , Yn and hence depends only on the
variable Yi. .

Less precisely, Theorem 12.2 may be summarized in the following way:
Systems (12.1) are the only ones that can be used for estimates from

above (from below) both to right and to left from the initial point.
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§ 13. Some variants of theorems on differential inequalities. To begin
with we will show that Theorem 11.1 holds true if the derivative D_
in (11.2) is replaced by D- or D+ or D+. We do it for D+, for instance.
Obviously it is sufficient to prove that if (11.2) is satisfied with D+ instead
of D_, then it is satisfied with D_ too. Suppose then that

(13.1)
+

for t e E i (i = 1, 2, ... , n) .

+
The set Ei is open and, therefore, is the union of a sequence (finite

or infinite) of open intervals. Take any of these intervals, say .1~, and
consider the Picard's transform 'P(t) = ('lP1(t), ... , '/fJn(t)) of C/>(t), defined
by the formula

(13.2)
t

'/fJi(t) = qJi(t)- Jai(T, C/>(T»)dT (i = 1, 2, ... , n),
TO

where To is fixed in .1~. By (13.1) and (13.2), we have

D+'/fJi(t) = D+qJi(t)- ai(t, C/>(t») ,,;;; 0 for t € .1~

(i=I,2, ... ,nj v=I,2, ... ).

Hence, '/fJi(t) being continuous in the interval .1~, we get, by Theo
rem 2.1, that "Pi(t) is decreasing in .1~. Therefore,

o~ D-"Pi(t) = D_qJi(t) - at(t, C/>(t)) in .1:

(i=I,2, ... ,n; v=I,2, ... ),
what was to be proved,

By a similar argument we show that Theorems 11.2 and 11.3 hold
true with any of the four Dini's derivatives appearing in the system of
differential inequalities.

All theorems of this chapter will be formulated, from now on, with
the D_ derivative; but, due to the preceding remarks, they will be true
with any of the four remaining derivatives, and in our subsequent con
siderations we will remember this fact without pointing it explicitly.

Applying Picard's transform (13.2) we obtain, by the argument
used in our preceding remarks, the following theorem.

THEOREM 13.1. Theorems 11.1, 11.2 and 11.3 are true if the corre
sponding differential inequalities are supposed to be satisfied in the sets
E; - Oi, where O, C E i is an arbitrary countable set.

A much stronger result is obtained if we additionally assume that
C/>(t) is absolutely continuous. In fact, we have the following theorem.

THEOREM 13.2. Under the assumptions of Theorem 11.1, let C/>(t)
= (qJl(t), ... ,qJn(t») be absolutely continuous in [to, y). This being asewmed, if

C/>(to) ,,;;; Yo,
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and
+

(13.3) Ti(t) ~ O't(t, <P(t») almost everywhere in E i (i = 1,2, ... , n),

then
<P(t) ~ .Q+(t; to, Yo) in [to, a1 ) •

Proof. In view of Theorem 11.1, it is sufficient to show that (13.3)
implies (11.2). Like in our considerations at the beginning of this paragraph,

+ 00

let E i = U J~, where J~ are open intervals, and introduce the Picard's
.~1

transform (13.2). The function 'lfJi(t) is absolutely continuous in J; because
so is Ti(t). By (13.3), we have 'lfJi(t) = Ti(t) - O't(t, <P (t») ~ 0 almost every
where in J;. Hence, by Theorem 3.1, the function "Pi(t) is decreasing
in Ji, and therefore

D_Tt(t)-O't(t, <P(t)) = D_'lfJt(t) ~ 0 in Ji (v = 1,2, ... ),

what was to be proved.
Similar theorems, corresponding to Theorems 11.2 and 11.3, can be

stated in an obvious way.
Using Remark 3.2, we show similarly that Theorem 13.2 holds true

if ep(t) is a generalized absolutely continuous function and (13.3) is satisfied
with Ti(t) substituted by the approximative derivative of Tt(t) (see [22)
and [50]).

§ 14. Comparison systems. In this section we introduce systems of
first order ordinary differential equations having some special properties.
These systems, called comparison systems, will be used in applications
of the theory of differential inequalities.

A system of differential equations

dYt
(14.1) de = O't(t, Yu ... , Yn) (i = 1,2, ... , n)

will be called comparison system of type I if its right-hand sides are con
tinuous and non-negative and satisfy condition W+ with respect to Y
(see § 4) in the closed region

Q:t~O,Yt~O (i=I,2, ... ,n).

EXAMPLE 14.1. The linear system

dy· ~at = .? aij(t)Y1+ bt(t ) (i = 1, 2, ... , n),
t,l=l

with aii(t) , bi(t) continuous and non-negative for t ~ 0, is a comparison
system of type 1.

Since the region Qis not open, we are not able here to apply directly
the results of § 9 on the maximum solution of system (14.1). Nevertheless,
we will show that the following proposition holds true:



42 CHAPTER III. First order ordinary differential inequalities

PROPOSITION 14.1. Through every point (0, H) = (0, 1111 ••• , 11n) eQ
there is the right-hand maximum solution of the comparison system of type I,
which will be denoted by Q(t; H) = (WI(t; H), ... , Wn(t; H») and its maximal
interval of existence by iJ (H) = [0, ao(H». Moreover, we have either an(H)
= + 00, or a o(H) is finite and (l)

lim IQ(t; H)I = + 00 •
t-ao

Proof. It is easy to see that there exists an extension Gi(t, Y) of
(J'i(t, Y), so that ai(t, Y) are continuous and non-negative and satisfy
condition W+ with respect to Y in the whole space of points (t, Y). Now,
by Theorem 9.1, applied to the extended system

) dYi '" ( ) (. ){14.2 -dt = (1i t, Yll ... , Yn 'j, = 1,2, ... , n ,

there is the right-hand maximum solution Q(t; H) of (14.2) in an interval
iJ (H), passing through (0, H) and reaching the boundary of the space
by its right-hand extremity. For this solution, since Gi(t, Y) are non
negative and since Q(O; H) = H ~ 0, we have Q(t; H) ~ 0 in Ll(H).
Hence, (t,Q(t;H»)eQ for teLl(H), and consequently Q(t;H) is the
solution of the original system (14.1) with required properties. The existence
of the limit

limV1; [Witt; H)J2
t->ao i=l

follows from the fact that Witt; H) are increasing functions since
(J'i(t, Y) ~ O.

Remark 14.1. Taking advantage of the extended system (14.2)
we can prove that Theorem 10.1 holds true for a comparison system of
type I.

Using the extended system (14.2) we derive from Theorem 11.1 the
next theorem.

FIRST COMPARISON THEOREM. A comparison system (14.1) of type I being
given, let (0; H) € Q and denote by Q(t; H) = (WI(t; H), ... , wn(t; H») its
right-hand maximum solution through (0, H), defined in [0, an). Let l.f>(t)
= (PI(t) , ... , Pn(t») be continuous and non-negative in some interval [0, y).

Put al = min (an, y) and

Ei = {t e (0, al) : Pitt) > Witt; Hn (i = 1,2, ... , n).

Under these assumptions, if

l.f>(0) ~ H ,

(1) For a point A = (au ... , an)' IAI denotes -Vi a~.
0-1
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D_CPi(t)~adt,qi(t») for t e E; (i=I,2, ... ,n),

43

(14.3)

qi(t) ~ Q(t; H) for t e [0, al)'

For n = 1 we introduce two special types of comparison equations;
but, first we prove a lemma.

LEMMA 14.1. Let the right-hand side of the differential equation

dy
dt = a(t, y)

be continuous and non-negative in the region

Q:t>O,y-:;:O
and suppose that
(14.4) a(t, 0) =°.

Under these assumptions, for every point (to, Yo) e Q there is the left
hand minimum solution w_(t; to, Yo) through (to, Yo), and its maximal in
terval of existence is (0, to]' Moreover, we have

w_(t; to, 0) == 0 .

Proof. We consider the auxiliary equation

dy "'( )dt =0' t,y ,(14.5)

where

a(t, y) = { ~(t, y)
for
for

t>o, Y>o,
t>O, y~o.

By (14.4), the right-hand side of equation (14.5) is continuous in
the open half-plane t > O. Hence, by Remark 9.1, there is the left-hand
miminum solution w_(t; to, Yo) of (14.5) through (to, Yo), reaching the
boundary of the positive half-plane by its left-hand extremity. Denote
its existence interval by (fJ, to]. We will show that

10 w_(t; to, Yo) -:;: 0 for t e (fJ, to],
2° fJ = O.

To prove 1°, observe that the unique solution of (14.5) issued from
a point (t*, y*), where y* < 0, is y(t) =y* < O. Hence it follows that 1°
holds true since w_(to; to, Yo) = Yo -:;: O. Now, we must have fJ = 0; other
wise, since w~(t; to, Yo) -:;: 0 and by 1°, the solution path y = w_(t; to, Yo)
would be contained in the compact subset 0 < fJ ~ t ~ to, 0 ~ Y ~ Yo
of the positive half-plane, which is impossible because w_(t; to, Yo) reaches
the boundary of the positive half-plane by its left-hand extremity. From 1°
and 2° it follows that w_(t; to, Yo) is the left-hand minimum solution of
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the original equation (14.3) with required properties; w_(t; to, 0) == 0 is
obvious.

Equation (14.3) with the right-hand member continuous and non
negative for t > 0, Y ;): 0, and satisfying (14.4), will be called comparison
equation of type II if y(t) = 0 is in every interval (0, y) the only solution,
satisfying the condition

lim y(t) = 0 .
t-+O

EXAMPLE 14.2. We give three examples of comparison equations of
type II:

(Il) : = a(t)y with a(t) ;): 0 continuous for t ;): 0;

"
(~) : = a(y) with a(y) > 0 for y > 0, a(O) = 0, J a~~) = + 00;

o

(y) ~~ = IIntly·

SECOND COMPARISON THEOREM. Let a conuporison. equation (14.3)
of type II be given and let !p(t) be continuo'us in an interval [0, a) and satisfy
the condition

(14.6)

Write

and suppose that

(14.7)

!p(0)~0.

E = {t € (0, a) : !p(t) > O}

D_qJ(t) ~ a(t, qJ(t)) for tEE.

Under these assumptions

!p(t)~O in [O,a).

Proof. Suppose that for some to E (0, a) we have

!p(to) = Yo > 0 .

By Lemma 14.1, the left-hand minimum solution of (14.3) w_(t; tOt Yo)~

issued from (to, Yo), is defined in (0, to]. Since !p(0) ~ 0 and !p(to) > O~

there is the first t1 to left from to, such that qJ(t1) = O. We have obviously
t1 ~ 0 and

o<!p(t) for tl<t~tO'

Hence, applying Theorem 9.6 (compare Remark 9.3) to equation (14.3)
(considered in the open region t> 0, y> 0) we see, by (14.7), that

(14.8)
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If t1 = 0, then from (14.6) and (14.8) it follows that

V4.9) limw_(t; to, Yo) = O.
t-..o

If h > 0, then since g;(t1 ) = 0, we have w-(t1 ; to, Yo) = 0, by (14.8);
hence, by Lemma 14.1, we get w_(t; to, Yo) == w_(t; tll 0) == 0 for 0 < t ~ t1
and, consequently, (14.9) holds true in this case too. Therefore, w_(t; to, Yo)
would be a solution of (14.3) tending to zero as t goes to zero and different
from y(t) - 0 since w_(to; to, Yo) = Yo> o. But, this is impossible in view
of the definition of a comparison equation of type II. This contradiction
completes the proof.

Remark 14.2. A. comparison equation (14.3) of type II is not-in
general--one of type I, because a(t, y) is not supposed to be continuous
for t = O. If ait ; y) is continuous for t = 0, then the second comparison
theorem is a corollary of the first one.

Equation (14.3) with the right-hand side continuous and non-negative
for t > 0, Y ~ 0, and satisfying (14.4), will be called comparison equation
<Jf type III if the following- property holds true:

(01:1 ) In every interval (0, y) the function y(t) == 0 is the only solution
satisfying the conditions

(14.10) limy(t) = lim y(t) = O.
t-..o t~o t

A. comparison equation of type II is obviously one of type III too.
But, a comparison equation of type III may not be one of type II. This
is shown by the following example.

Example 14.3. Let

The general solution of this equation is y = Ct (0 = const) and
hence the equation is of type III, but not of type II.

THIRD COMPARISON THEOREM. Let a comparison equation (14.3) of type
III be given and let g;(t) be continuous in an interval [0, a) and satisfy the
condition»

.(14.11)

Put

and suppose that

g;(0) ~ 0, D+g;(O) ~ O .

E = {t € (0, a) : g;(t) > O}

D_g;(t) ~ a(t, <p(t») for tEE.

Under these assumptions

rp(t) ~ 0 in [0, a) .
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Proof. We proceed just like in the proof of the second comparison
theorem and find that if the thesis were not true, then for some to € (0, a)

and 0 ~ t1 < to we would have q>(t1 ) = ° and (14.8) with Yo = q>(to)'
Hence, if t1 = 0, it would follow from (14.8) and (14.11) that

(14.12) 1· (t· t ) - li 01-(t; to, Yo) - °im co., , 0' Yo - im t -.
t->o t->o

If t1 > 0, then-like in the proof of the second comparison theorem
we have w_(t; to, Yo) == 0 for 0 < t ~. t1 and consequently (14.12) would
hold in this case too. Therefore, w_(t; to, Yo) would be a solution satisfying
conditions (14.10) and different from y(t) == 0 (because w-(to; to, Yo)
= Yo > 0), contrary to the definition of a comparison equation of type III.

Remark 14.3. It is obvious that property (0(1) in the definition
of the comparison equation of type III implies the following one:

(0(2) In every interval (0, y) the function y(t) == 0 is the only solution of
(14.3) satis!y'ing the conditions

limy(t) = limy'(t) = 0 .
t->o t->O

Now we will construct an example showing that

10 property (0(2) is essentially weaker than property (0(1)'

20 if property (0(1) is replaced by property (0(2), then the third com-
parison theorem is-in general-false.

Indeed, let q> (t) be differentiable for t?' 0 and satisfy the conditions

1) q>(0) = 0, q>(t) > 0 for t > 0,

2) q>+(0) = 0, q>'(t)?, 0 for t > 0,

3) q>'(t) is continuous for t > 0,

4) limq>'(t) does not exist.
t->O

It is not difficult to construct such a function. Consider the linear
equation

(14.13)
dy q>'(t)
dt = q>(t)Y .

Its right-hand side is continuous and non-negative for t > 0, Y ~ 0
and its general solution is y = Oq>(t). Hence, by 1) and 2), every solution
of (14.13) satisfies conditions (14.10) and consequently equation (14.13)
does not have property (0(1)' On the other hand, by 4), property (0(2) holds
true. Moreover, the function q> (t) satisfies, with respect to equation (14.13),
all the assumptions of the third comparison theorem and, by 1), is not ~ O.

§ 15. Absolute value estimates. This section deals with a theorem
that enables us to obtain estimates of absolute value of functions both
to right and to left from the initial point.
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Before stating the theorem we first prove a proposition on Dini's
derivatives of the absolute value of a function.

PROPOSITION 15.1. For a funotion P(t) defined in the neighborhood
of to we have the inequalities

(15.1) D-Ip(toll ~ ID_p(to)1 ,

(15.2) D+lp(to)1 ~ ID+p(to)1 .

Proof. We prove, for instance, (15.1). Let t, be a sequence such
that tv < to, tv-+ to and

Since

I
P (tv) - P (to) I~ lip(tv)I-lp(to)11 = jIP(tv)I-IP(to)lj ~ Ip (tv)I-lp(to)1 •

tv-to Itv-tol tv-to tv-to

inequality (15.1) follows from (15.3).
THEOREM 15.1. Let a oomparison system (14.1) of type I (see §14) begiven

and let tP(x) = (PI(x), ... , pn(x)j be continuous in the interoal Ia: - XoI < y.
AS8u1ne that (1)

(15.4) 1eJ)(xo)/ ~ H ,

where H = (1}1l ••• , 1}n) and put

E i = {x: Ix-xol < min (r, ao(H)) , Ipt(x)1 > Wt(lx-xol; H)}
(i=1,2, ... ,n),

where .Q(t; H) = (wI(t; H), ... , wn(t; H)) is the right-hand maximum solu
tion of the eompariso» system through (0, H), defined in the interval [0, ao(H)).
Suppose finally that

(15.5) ID_Pi(X)! ~ O'i(lx-xo! , 1eJ)(x)1) for x € Ei (i = 1,2, ... , n).

This being aS8umed, we have

(15.6) ItP(x)1 ~ .Q(lx-xol; H) for Ix-xol < min (r, ao(H)) •

Proof. Since the assumptions of our theorem are invariant under
the mapping ~ = - x +2xo (2), it is enough to prove (15.6) for the interval

(15.7)

(1) For the definition of the symbol II, see § 4.
(2) It should be remarked that the mapping ~ = - x+ 2xo transforms the deriva

tive D- in (15.5) into D+; however, Theorem 15.1 is true with D- substituted by D+.
This explains how the invariance of assumptions is to be understood.
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For this purpose, put

tpi(t) = !tt'i(xo+t)1 for 0 ~ t < y (i = 1,2, ... , n),

7!Ji = {t: 0 < t < min tv , ao) , tpi(t) > (Vi(t; H)} (i = 1,2, ... , n) .

Then tpi(t) are continuous in [0, y) and, by (15.4),

P(O) ~H.

Moreover, in view of Proposition 15.1 we have, by (15.5),

D_tpi(t)~O'i(t,P(t)) for tEEt (i=1,2, ... ,n).

Hence, by the first comparison theorem, we get

(15.8) pet) ~ .Q(t; H) for 0 ~ t < min Iy, ao) .

From (15.8) follows (15.6) in the interval (15.7), what completes
the proof.

If ([>(xo) = H> 0 (-H < 0), then it is useful to have some better
estimate of ([>(x) from below (from above) in the neighborhood of Xo'
Such an estimate is given in the following theorem:

THEOREM 15.2. Under the assumptions of Theorem 15.1 suppose addi
tionally that the right-hand members of the comparison system satisfy con
dition W+ (i.e. are increasing with respect to all variables Yj) . Assume that

(15.9)

and
(15.10) ID_tt'i(t)1 ~ O't(lx-xol, 1~(x)1) for IX-Xo 1< min tv , ao)

(i=I,2, ... ,n).
This being supposed, we have

(15.11) ([>(x) ~ 2H-.Q(lx-xol; H) (([>(x) ~ -2H +.Q(lx-xol; H))

in the interval

(15.12)

Proof. We restrict ourselves to the case ([>(xo) = H > O. Like in
Theorem 15.1 it is sufficient to prove (15.11) in the interval (15.7). By
Theorem 15.1, the inequalities

I([>(x)l ~ .Q(x-xo; H)

hold true in the interval (15.7). Hence, by (15.10) and by condition W+,
we get in (15.7)

(15.13) D-tt'i(t) ~ - O'i(X-Xo, .Q(x-xo; H)) (i = 1,2, ... , n).

Put
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The functions "I'i(X) are continuous in (15.7) and, by (15.13), we have

D_"I'i(X) = D_qJi(x) +wi(x-xo; H) = D_qJi(x)+ (Ji(X-Xo, Q) ~ 0

(i=1,2, ... ,n).

Hence, by Theorem 2.1, "I'i(X) are increasing in the interval (15.7)
and since P(xo) = 0 by (15.9), we get P(x) ~ 0, i.e.

c.P(x) ~ 2H-Q(x-xo; H)

in (15.7), what was to be proved.
As an immediate corollary of Theorem 15.2 we get the next theorem.

THEOREM 15.3. Under the assumptions of Theorem 15.2 suppose that

(15.14) H>il~o (-H<-il,;;;O),

where it = errl, ... ,nn). Denote by ti the least root of the equation in t

(15.15)

if sucha rootexists in the interval 0 < t < ao; if it doesnot exist, put ti = + 00.

This being assumed, we have

(15.16)

in the interval

(15.17)

c.P(x»H (t/>(x)<-ii)

Ix-xol < min Ij», ao, tll ... , tn) .

Proof. Since 2t)t- Wi(O; H) = 'fJi > ni, we have, by the definition
of ti,
(15.18) 21]i- Wi(t; H) > ni (i = 1,2, ... , n)

in the interval

Hence, by (15.11), we obtain (15.16) in the interval (15.17).

EXAMPLE. Let qJi(X) (i = 1,2, ... , n) be continuous in the interval

(15.19) Ix-xol < Y

and satisfy differential inequalities

n

ID_qJi(X)! ,;;; K l: IqJj(x) I+L (i = 1,2, ... , n; K ~ 0; L ~ 0) .
j=1

The comparison system is here of the form

n
dYi ~-- = K L.J YJ+L
dt j=1

J. Szarski, Differential inequalities

(i=1,2, ... ,n)

4
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and its unique solution through the point (O,'YJu •.. , 'YJn) is

I'YJi vu
Yi = L L

('YJ i + - )enKt- nK nK

for K = 0 (i = 1, 2, ... , n) ,

for K> O.

Hence, if l!Pi(Xo)! :( 'YJi (i = 1,2, ... , n), then, by Theorem 15.1,

!
'YJi + L IX- xol for

ITi(X)I:::;;: ('YJi+~)enKlx-xol_~ for
nK nK

K>O

(i=1,2, ... ,n),

in the interval (15.19). If, moreover, !pi(Xo) = 'YJi > 0 (i = 1, 2, ... , n),
then, by Theorem 15.2,

for K = 0 (i = 1, 2, ... , n) ,

for K > o.

Let K > 0 and Ti(Xo) =?'/i > rti ~ 0 (i = 1, 2, ... , n). Equation (1.5.15)
is now

and its only root is

(15.20) ti=n~ln[l+('YJi-rti)('YJi+n~rl].

Therefore, by Theorem 15.3, we have

cpi(X) > rti (i = 1, 2, ... , n)

in the interval Ix-xol < minty, tl , ••• , tn ), where ti are given by for
mula (15.20).

Now, let !p(t) be a vector-valued function of the real variable t, its
values belonging to a normed linear space l.: with the norm II II. Suppose
cp(t) is strongly differentiable at a point to' Then, using the properties
of the norm we check that

(15.21)

For vector-valued functions we can prove the following theorem.
THEOREM 15.4. Let a comparison system (14.1) of type I (see § 14)

be given and let tpi(X) (i = 1, 2, ... , n) be strongly continuous vector-valued
functions of the real variable x on the interval Ix- xol < y. Assume that

IItpi(xo)II :::;;: 'YJi (i = 1, 2, ... , n)
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and put

Ei = {X: [x-xol < min(y, ao(H)), II"Pi(x)1I > wi(lx-xoli H)j

(i=I,2, ... ,n),

where Q(t; H) = (W1(ti H), ... , wn(ti H)) is the right-hand maximum solution
of the comparison system, issued from (0, H) = (0, 1]1l ••• , 1]n) and defined
in [0, ao(H)). Suppose finally that "Pi(X) is strongly differentiable in Ei and

lI"Pi(x)1I ~ O'i(lx- xol , II"Pl(X)II, ..., II"Pn(x)ll) for x € Ei (i = 1, 2, ... , n) .

This being assumed, we have

II"Pi(X)II:( wi(!x-xol; H) for Ix-xol < min(y, ao(H)) (i = 1,2, ... , n).

Proof. If we put

cpi(X) = IIV'i(X)11 (i = 1,2, ... , n)

and use (15.21), then all assumptions of Theorem 15.1 are satisfied.

EXAMPLE. Suppose the real functions "Pl(X), •.. , '!fk(X) are differen
tiable on the interval/x-xol < y and satisfy the following initial inequality

and differential inequality

V~ [V'i(X)]2 :( KV~ [V'i(X)J2 +L (K> 0, L ~ 0)

in the interval Ix-xol < y. Then we have

Indeed, the sequence of functions "Pl(X),,,,, V'k(X) can be considered
as a vector-valued function P(x) with values in the Euclidean space.
The above initial and differential inequalities can now be rewritten in
the form

IIP(xo)11 ~ 1] , II P'(x)11 ~ KIIP(x)11+L,

where II II is the Euclidean norm. Hence, by Theorem 15.4 (in our ease
we have n = 1), we get in the interval Ix-xol < y

IIP(x)11 :( w(lx-xol; 'YJ) ,

4*



52 CHAPTER III. First order ordinary differential inequalities

where w(t; 'fJ) is the unique solution through (0, 1J) of the linear equation

dy
dt = Ky+L.

The last inequality is nothing else but the inequality that was to
be proved.

§ 16. Infinite systems of ordinary differential inequalities and systems
satisfying Caratheodory's conditions. This paragraph deals with analogues
of Theorems 9.1 and 9.3 for countable systems of first order differential
equations and inequalities.

The method of proving Theorems 9.1 and 9.3 for both finite and
infinite systems, due to W. Mlak and C. Olech, which we use here is based
on the validi4,y of Theorems 9.1 and 9.5 for a single differential equation
resp, inequality (see [30).

We also discuss Theorems 9.1 and 9.3 for systems satisfying Oara
theodory's conditions.

Consider a finite or countable system of ordinary differential equations

(16.1)
dYIdi = Gi(t, Yl1 Y2' ... ) (i = 1, 2, ... ).

By a solution of system (16.1) we mean a sequence of differentiable
functions Yi(t) (i = 1,2, ... ) in some interval zl satisfying (16.1) for t s zl,
The right-hand maximum solution of (16.1) through a point (to, YI, Y2' ... )
is defined in a similar way like that of a finite system of differential equa
tions.

Ooncerning the right-hand sides of system (16.1) we introduce the
following assumptions:

ASSUMPTIONS H. The functions Gi( t, Yl1 Y2' ... ) (i = 1, 2, ... ) are defined
and bounded in the region

D : a < t < b , YI, Y2' ... arbitrary.

For every fixed i, the function Gi(t, Yl1 Y2' ... ) is increasing in the variables
Yu ... , Yi-I, Yi+l' ... , and is continuous in D in the following sense: for any
point (to, Yo) = (to, Yl' Y2' ... ) e D, if t-+to, Yk-+Yk (k = 1,2, ... ), then
Gi(t, Y)-+Gi(to, Yo)·

THEOREM 16.1. Let the right-hand sides of system (16.1) satisfy Assump
tions Hand (to, Yo) = (to, ]/1, Y2, ... ) be an arbitrary point of D. Then

1° there is the right-hand maximum solution witt) (i = 1,2, ... ) of (16.1)
through (to, Yo) in the interval

(16.2)
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2° for any sequence ifJ(t) = (Tl(t),T2(t), ... ) of continuous functions in
the interval (16.2), such that

(16.3)

(16.4)

Tt(fo)<Yi (i=1,2, ... ),

D-Tt(t) < Gilt, Tl(t), T2(t) , ...) (i = 1,2, ... )

in the interval to < t < b, we have

(16.5) Tt(t) < Wt(t) (i = 1,2, ... )

(16.6 )

in the interval (16.2).

Proof. Denote by 9' the family of sequences of continuous functions
in the interval (16.2). Take an arbitrary sequence <1> (t) = (TI(t) , T2(t), ... ) E 9'
and put

O't(t, y; 4» = O't(t,Tl(t) , ... , 'Pi-l(t) , y, THl(t), ...)

in the region
D* : to < t < b , Y arbitrary .

The function Gi(t, y; ifJ) is obviously continuous in D". Hence, by
Theorem 9.1 (see Remark 9.1), there is the right-hand maximum solution
of the single equation

dy
dt = Gt(t, y; <1»

through the point (to, Yi), reaching the boundary of D* by its right-hand
extremity. We denote it by Wi(t; <1» and we claim that it exists in the
interval (16.2). Indeed, the right-hand side of equation (16.6) is bounded
and hence every solution of (16.6) is bounded in every bounded subinterval
of (16.2). Therefore, if Wi(t, y; 4» did not exist in the whole interval (16.2),
it would be bounded and consequently it would not reach the boundary
of D* by its right-hand extremity. Now, denote by 9'1 the subfamily of 9',
consisting of sequences satisfying (16.3) and (16.4). This family is not
empty since, for instance, the sequence Tt(t) = ili+Pi(t-to) (i = 1, 2, ... ),
where

Pi = inf O't(t, Y) ,
(t,Y)£D

belongs obviously to 9'1' Let ifJ(t) be an arbitrary sequence in :F1; then,
by (16.1), we have

D_'Pt(t) <. O'i(t, Tt(i); (1»)

in the interval (16.2). Hence, by Theorem 9.5 applied to the single equa
tion (16.6), it follows that for every fixed i

(16.7)

in the interval (16.2). Since the function O'i(t, y; 4» is bounded in D*,
uniformly with respect to 4> E9'1' it follows that for every i the family
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of functions O)I(t; <P) is bounded from above at every point t E [to, b)
and equicontinuous in this interval. Hence

O).(t) = sup w.(t; <P)
1/J£:F1

exists in the interval (16.2) and is a continuous function. Moreover, it
satisfies obviously the initial condition

w.(to), = iii .
By (16.7), inequalities (16.5) hold true for any sequence <P (t) E :Fl'

Hence points 10 and 20 of our theorem will be proved if we show that
O).(t) (i = 1, 2, ... ) is a solution of system (16.1). To do this, we first observe
that for two sequences 4'(t)= ((P!(t) , P2(t) , ... ) E:F and $(t) = (;Pl(t) , 9>2(t) , ... ) €:F
such that

(16.8)

we have

(16.9) w.(t; <P)":;; w.(t; <P) (i = 1,2, ... )

in the interval (16.2). Indeed, by (16.8) and by the monotonicity con
ditions imposed on the functions a.(t, Y), we get

dw.(t; <P) ( ) ( )dt = (1. t, w.(t; <P); <P = a. t, PI(t), ... , Pi-let), w.(t; <P), Pi+l(t) , ...

~ (1.(t, ~I(t), ... , <Pi-1(t) , w.(t; <P), <PHl(t), ... ) = a.(t, w((t; <P); a;).

Hence, w.(t; /P) being the right-hand maximum solution of

through (to, iii), we obtain (16.9) by Theorem 9.5. In particular, if 4'(t)
is any sequence in :FI and <P(t) = Q(t) = (O)l(t) , W2(t), ... ), it follows
from (16.5) and (16.9) that

O).(t; <P) ~ w.(t; Q) for <P E :F1 (i = 1, 2, ... ) .

Therefore,

(16.10) w.(t) = sup w.(t; <P) ,,:;; w.(t; £2) (i = 1,2, ... )
1/J£:F1

and consequently, putting ?J(t) = (Wl(t; Q), w2(t; £2), ...), we get

(16.11) w.(t; Q) ,,:;; Wi(t; Q) (i = 1,2, ... ) .
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On the other hand, we have

dWi(t; Q)
(16.12) dt = ai(t, witt; Q); Q)

= ai(t, Wl(t), ... , Wi-l(t) , Witt; Q), Wi+l(t) , ...) .

Hence, by (16.10) and by the monotonicity conditions, we conclude
that

(i=1,2, ... ).

The last inequalities, together with the relations

Wi(to; Q) = iii (i = 1, 2, ... ),

mean that the sequence £J(t) satisfies (16.3) and (16.4) and consequently
belongs to .:Fl' Hence it follows that

(16.13) Wi(t; Q) :( sup witt; ep) = Witt) (i = 1,2, ... ).
<[JE:F1

Inequalities (16.10), (16.11) and (16.13) imply that

witt) = Witt; Q) (i = 1,2, ... )

in the interval (16.2) and consequently, by (16.12), it follows that
Wi(t) (i = 1, 2, ... ) is a solution of system (16.1) in the interval (16.2),
what was to be proved.

We introduce now Caratheodory's conditions. We say that the right
hand sides of the finite or countable system (16.1), defined in the region

D : a < t < b , Yll Y2, ... arbitrary,

satisfy Caratheodory's conditions if

(IX) for every fixed t, ai(t, Yll Y2' ... ) (i = 1, 2, ... ) are continuous in
the variables Yll Y2,'" (in the sense specified in Assumptions H),

(~) for fixed Yl' Y2' ... , ai(t, Y) (i = 1, 2, ... ) are measurable in t
and there exist functions mitt) (i = 1,2, ... ), Lebesgue integrable on
every bounded subinterval of (a, b), such that

lai(t, Y)I :( mitt) (i = 1,2, ... ).

By a solution of system (16.1), satisfying Caratheodory's conditions,
we mean a sequence of functions Yi(t) (i = 1,2, ... ) which are absolutely
continuous on some interval LJ and satisfy (16.1) almost everywhere on LJ.

It is a well-known theorem, due to Oaratheodory (see for instance [7]),
that under the above conditions in case of a single equation there is a solution
of (16.1) through every point (to, Yo) € D, defined on the interval (a, b).

The right-hand maximum solution is defined as usually. Now we
have the following theorem.
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THEOREM 16.2. Let the right-hand sides of the finite or countable
systern (16.1) satisfy Caratheodory's conditions in the region D. Suppose
that, for every fixed i, the function O't(t, Y) is increasing in the variables
YI, ... , Yi-l, Yi+l' ... , and let (to, Yo) = (to, YI, Y2' ... )1: D. Under the above
assumptions the following propositions hold true:

1° there is the right-hand maximum solution Wi(t) (i = 1,2, ... ) of (16.1}
tMough (to, Yo) in the interval (16.2),

2° for any sequence (P1(t) , fP2(t), ...) of absol'utely continuous functions
on (16.2), satisfying initial inequalities

fPi(to)<Yi (i=1,2, ... )

and differential inequalities

fPi(t) < O'i(t, fPI(t) , fP2(t) , ...} (i = 1,2, ... )

almost everywhere on the intel'val to < t < b, we have

fPi(t) < Wi(t) (i = 1, 2, ... ) on (16.2).

Proof. It is sufficient to prove Theorem 16.2 in the case when the
system (16.1) reduces to a single equation with one unknown function.
Indeed, it is not difficult to check that adequately modified arguments
used in the proof of Theorem 16.1 permit to derive the validity od Theo
rem 16.2 from its validity in the case of one equation.

Let us then consider one equation

(16.14)
dy
dt = O'(t, y)

and assume its right-hand side to satisfy Caratheodory's conditions in
the region

D: a < t < b, Y arbitrary.

Let (to, Yo) I: D. What concerns the existence of the right-hand maxi
mum solution w(t) of (16.14) through (to, Yo) on the interval (16.2) we
refer to [7J and we restrict ourselves to the proof of point 2°. Let fP(t)
be an absolutely continuous function on (16.2) and suppose that

(16.15) fP(to) :(. yo,

(16.16) fP'(t) :( O'(t, fP(t)) almost everywhere on (to, b) .

We have to prove that

(16.17) fP(t) < w(t) on [to, b) .

To this purpose, consider an auxiliary equation

(16.18)
dy
dt = T(t, y) ,
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where

{

a(t, y)

r(t, y) = a(t, ep(t))

for y ?: ep(t) ,

for y ~ ep(t) .

It may be checked that the right-hand side of (16.18) satisfies Oara
theodory's conditions. Denote by y(t) a solution of (16.18) through (to, Yo),
defined in the interval [to, b). We will show that

(16.19) ep(t) ~ y(t) on [to, b) .

on

ep(tl ) = y(tl ) ,

ep(t) > y(t)

Suppose the contrary, i.e, ep(t2 ) > y(t2 ) for some t2 f: (to, b). Then,
since, by (16.15), ep (to) ~ Yo = y (to), there would exist a tu to< t l < t2 ,

such that

(16.20)

(16.21)

On the other hand, by (16.16) and (16.21) and by the definition of
.,;(t, y), we have almost everywhere in the interval (tl , t2 )

ep'(t)-y'(t) ~ a(t, ep(t))-r(t, y(t)) = a(t, ep(t))-a(t, ep(t)) = o.

Hence, both functions ep(t) and y(t) being absolutely continuous,
the function ep(t)-y(t) is, by Theorem 3.1, decreasing on the interval
[tu t2J and consequently we have, by (16.20),

ep (t) ~ Y (t) on (tu t2) ,

what contradicts (16.21). Thus inequality (16.19) is proved. But, from
this inequality and from the definition of r (t, y) it follows that y (t) is
a solution of the equation (16.14) through (to, Yo). Hence, w(t) being its
right-hand maximum solution through (to, Yo), we get

y(t) ~ w(t) on [to, b) •

The last inequality together with (16.19) implies (16.17).



CHAPTER IV

ORDINARY DIFFERENTIAL INEQUALITIES OF HIGHER ORDER
AND SOME INTEGRAL INEQUALITIES

§ 17. Preliminary remarks and definitions. Consider an ordinary differ
ential equation of order 11,): 2

(17.1) y(nJ(t) = a(t, yet), y'(t), ... , y(n-I)(t)) ,

(17.3)

with the right-hand member aCt, Yo, YI, ... , Yn-d continuous in an open
region D of the space (t, Yo, Yll ... , Yn-I)' Let (to, Yo) = (to, Yo, YI, ... , Yn-I)
and introduce Cauchy initial conditions

(17.2) y(i)(to)=Yi (j=0,1, ... ,n-1).

It is a well-known fact that the Cauchy problem for equation (17.1)
with initial conditions (17.2) is equivalent to the Cauchy problem for
the system of first order differential equations

dYidt = Yi+1 (i = 0,1, ... , 11,-2),

dYn-1------a:;;- = aCt, Yo, lh» ... , Yn-I)

with initial values

(17.4 ) Yi(to) = Yi (j = 0,1, ... ,11,-1).

This equivalence is understood in the following sense. If Y(t) is a solution
of problem (17.1), (17.2), then (Yo(t), ... , Yn-I(t)) defined by the formulas

(17.5) Yj(t) = yU)(t) (j = 0,1, ... ,11,-1)

is a solution of problem (17.3), (17.4). Vice versa, if (Yo(t), ... , Yn-I(t))
is a solution of problem (17.3), (17.4), then yet) = Yo(t) is that of problem
(17.1), (17.2).

A solution of equation (17.1) is said to reach the boundary of D by
its right-hand (left-hand) extremity if the same is true for the corresponding
solution of system (17.3) (see § 7).

By the mapping

(17.6) i=-t, 17=Y,
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(17.9)

a function Y (t) of class On is transformed into the function 1] (T) = Y(- T)
so that
(17.7) rp>(T) = (_l)i y(i) (_ T) (j = 0,1, ... , n).

Hence, the mapping (17.6) transforms equation (17.1) into

(17.8) rr>(r:) = (-lta(-r:, 1](T), -1]'(r:), ... , (-It-1
1](n - 1\ T)) .

The corresponding system (17.3) is now

d1]i
dT = 1]i+1 (i = 0,1, ... , n-2),

d1]n-1 (l)n ( (1)n-1 )
~ = - a -T, 1]0' -1]1' ... , - 1]n-l'

CONDITION W+. The right-hand member of equation (17.1) will be
said to satisfy condition W+ with respect to Y = (Yo, Yl' .. , Yn-1) in D
if the right-hand sides of the corresponding system (17.3) satisfy condi
tion W+ with regard to Y (see § 4). This condition obviously means
that for any two points (t, Y) = (t, Yo, ... , Yn-2, Yn-1) e D and (t, Y)
= (t, Yo, ''',Yn-2,Yn-1)€D such that Yi <-Yi (i = 0,1, ... , n-2), we have

(17.10) a(t, Y) <- a(t, Y) •
CONDITION W +. If inequality (17.10) is satisfied for any two points

(t,Y)=(t,Yo"",Yn-1)€D and (t,Y)=(t,'ih, .. ,Yn-1)€D such that
Yi <- Yi (j = 0,1, ... , n-1), then the right-hand member of equation (17.1)
is said to satisfy condition W + with respect to Y in D.

It is obvious that in this case the right-hand sides of the corresponding
system (17.3) satisfy condition W+ (see § 4).

CONDITION W_. The right-hand member of equation (17.1) will be
said to satisfy condition W _ if the right-hand side of the transformed
equation (17.8) satisfies condition W+.

This is equivalent to saying that for any two points (t, Y)
= (t, Yo, ... , Yn-2' Yn-1) € D and (t, Y) = (t, Yo, ... , Yn-2, Yn-1) € D such that

(-l)iyi :(; (-l)iYi (i = 0,1, ... , n-2)
the inequality

(-lta(t, Y) :(; (-lta(t, Y)
holds true.

§ 18. Maximum and minimum solution of an nth order ordinary differential
equation• .A solution w+(t; to, Yo) = w+(t; to, Yo, ... , Yn-1) (w+(t; to, Yo))
of equation (17.1), satisfying initial conditions (17.2) and defined in an
interval L1+ = [to, a), is called a right-hand maximum (minimum) solution
of (17.1) through (to, Yo) if the corresponding solution of system (17.3)
with initial data (17.4) is the right-hand maximum (minimum) solution
of system (17.3) through (to, Yo) (see § 5). This comes to saying that for
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any solution y(t) of (17.1), satisfying initial conditions (17.2) and defined
in some interval 3+ = rto' a'j, the inequalities

y(i)(t) < [w+(t; to, Yo)J(i) (y(f)(t) ~ [w+(t; to, Yo)](i) (j = 0,1, ... , n-l)

are true for t E zl., " LI-.
By Theorem 9.1, the following theorem is an immediate consequence

of the definition of the right-hand maximum (minimum) solution.

THEOREM 18.1. Let the right-hand member a(t, Yo, ..., Yn-l) of equa
tion (17.1) be continuous and satisfy condition W+ (see § 17) with respect
to Y = (Yo, ... , Yn-l) i1~ an open regi01~ D. Then thr01tgh every (to, Yo) ED
there is the right-hand maximum (minimum) solution of (17.1), reaching
the boundary of D by its right-hand extremity (see § 17).

Now, from Theorem 18.1 we deduce, by the definition of the left
hand maximum (minimum) solution and by the definition of condition W_
(see § 17), the next theorem.

THEOREM 18.2. If the right-hand side of equation (17.1) is continuou~

and satisfies condition W_ (see § 17) with respect to Y in an open region D,
then through every (to, Yo) ED there is the left-hand maaimwm (minimum}
solution of (17.1), reaching the boundary of D by its left-hand extremity
(see § 17).

hold true for t E L1 +" 3+.
A solution w-(t; to, Yo) (w_(t; to, Yo» of equation (17.1), satisfying

(17.2) and defined in an interval LL = (fJ, to), is called a left-hand maximum
(minimum) solution of (17.1) through (to, Yo) if it is transformed by the
mapping (17.6) into the right-hand maximum (minimum) solution of
the transformed equation (17.8) through (-to, Yo, -YI, ... , (-I)"'-IYn_l)'
This is equivalent to saying that for any solution y (t) of (17.1), satisfy
ing (17.2) and defined in some interval iL = (p, to], the inequalities

(_l)iy(f)(t) < (-I)i[w-(t; to, Yo)](i) , ((_I)iy{i\t) ~ (-l)i[w_{t; to, Yo)]{il}

(j = 0, 1, ... , n-l)

§ 19. Basic theorems on nth order ordinary differential inequalities.
'Ve start with the following general remark. Consider an nth order
differential inequality of the form

(19.1) D_q;(n-l)(t) < a(t, q;(t), q;'(t) , ... , Ip(n-t)(t»)

with initial inequalities

(19.2) q;{i)(tO)<'Yi (j=O,I, •.•,n-1),

where Ip(t) is of class on-to It is clear that if q;(t) is a solution of (19.1}
and (19.2), then (q;o(t), ... , q;n-t(t»), defined by the formulas

(19.3) q;j(t) = q;(il(t) (j = 0,1, ... , n-l),
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Is a solution of the system

d~it) = Ipi+l(t) (i = 0,1, ... , n-2),

D-Ipn-l(t):( (1(t, Ipo(t) , ... , Ipn-l(t))

with initial inequalities
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(19.5) Ipj(to) ~Yi (j = 0,1, ... ,n-l).

Following this remark and the definitions and results of §§ 17, 18
we get the next theorem, by Theorems 9.3 and 9.4 applied to the
system (19.4).

THEOREM 19.1. Let the right-hand member (1(t, Yo, ... , Yn-l) of equa
tion (17.1) be continuous and satisfy condition W + with respect to
Y = (Yo, ... , Yn-l) (see § 17) in an open region D. Let (to, Yo) = (to, Yo, ...
... , Yn-l) € D and consider the right-hand maximum (minimum) solution
m+(t; to, Yo) (w+(t; to, Yo)) (see § 18) of (17.1) through (to, Yo), defined in
the interval .1+ = [to, a) and reaching the boundary of D by its right-hand
extremity (see § 17). Suppose that Ip(t) is of class en-IOn the interval
X+ = [to, a) and that (t, Ip(t), Ip'(t) , ... , Ip(n-l)(t)) € D.

Under these assumptions, if

(19.6 )

and

(19.7) D_Ip(n-l)(t):( (1(t, Ip(t), Ip'(t) , ... , Ip(n-l)(t))

(D-Ip(n-l)(t);:;;: (1(t, Ip(t), Ip'(t) , ... , Ip(n-l)(t))) in X+,

then

Ip(i)(t) ~ [w+(t; to, Yo)f) (Ip(i)(t);:;;: [w+(t; to, Yo)J(j») (j = 0,1, ... , n-l)

for t€.1+r.L1+.

The derivative D_ in the differential inequality (19.7) can be sub
stituted by any of the three remaining Dini's derivatives.

Remark 19.1. We want now to explain why in Theorem 19.1 the
apparently strong assumption on Ip(t) to be of class Cn-1 in .1+ is an essen
tial one. To this purpose, let us first introduce the following notation for
an arbitrary function Ip(t) in 3+:

D~)rp (t) = Ip (t) for t e 3'+ ,

D<!...+l)lp(t) = D_(D<!...>rp(t)) for t € X+ ,

whenever D<!...>Ip(t) is finite in J+. We might now consider, instead of (19.7),
the differential inequality

(19.8) D~nrp(t):( (1(t, Ip(t), D<!-)Ip(t) , ... , D~-l)lp(t)) in 3'+
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with initial inequalities

(19.9) D(_i)rp (to) ,,;:: ?~1' ( . 0 1 1)~::r J=, , ... ,n-

for a function having all derivatives D<!} (j = 0, 1, ... , n -1) finite in 1'+.
It is evident that if rp(t) is a solution of (19.8) and (19.9), having the above
regularity, then (rpo(t), ... , rpn-l(t)), defined by the formulas

rpAt) = D"!.lrp(t) (j = 0,1, ... , n-1),

is a solution of the system

(19.10)
D-rpi(t) = rpi+l(t) (i = 0, 1, ... , n-2),

D-rpn-l(t) ~ o(t, rpo(t) , ... , rpn-l(t))

with the initial inequalities (19.5). Hence it follows that the apparently
stronger variant of Theorem 19.1 with (19.7) replaced by (19.8) is equiv
alent with Theorem 9.3 for system (19.9). But for the validity of Theo
rem 9.3 it is essential to assume rpj(t) (j = 0, 1, ... , n -1) to be continuous
in 3'+. Thus, the continuity of the derivatives D"!.lrp(t) (j = 0,1, ... , n-1)
in 1'+ is essential for the above variant of Theorem 19.1; but, by Corol
lary 2.2, continuity of D<!}rp(t) implies that of rp(jl(t). In this way we are
led to that regularity of rp(t) which was required in Theorem 19.1.

Now, notice that if we apply the mapping (17.6) and put 1j!(i) = rp(-i),
then the initial inequalities (19.6) are transformed into

(-l)i1j!(j)(-to) ~ (-l)i[(-lri/i} (j = 0, 1, ... , n-1)

and the differential inequality (19.7) into

Hence, applying the mapping (17.6) we get, by the definitions and
results of §§ 17, 18 the next theorem from Theorem 19.1.

THEOREM 19.2. Let the right-hand member of equation (17.1) be con
tintwus and satisfy condition W_ with respect to Y (see § 17) in an open
region D. Let (to, Yo) ED and consider the left-hand maximum (minimum)
solution co-(t; to, Yo) (co_(t; to, Yo)) (see § 18) of (17.1) through (to, Yo),
defined in the interval .1_ = (f3, toJ and reaching the boundary of D by its
left-hand extremity. Suppose that rp(t) is of class c:: in the interval 1'_ = (if, toI
and that (t, rp(t), rp'(t), ... , rp(n-ll(t)) ED.

Under these assumptions, if
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(_l)nn+rp(n-l)(t)~.(-lta(t, rp(t), rp'(t) , , rp(n-l)(t»)

((-ltn+rp(n-l)(t):;:::: (-lta(t, rp(t) , rp'(t), , rp(n-l)(t»)) ,
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then

(_l)irp<i)(t) ~ (-I)i[w-(t; to, Yodi ) ((-l/rp<i\t):;:::: (-I)i[w_(t; to, Yo)](i»

(1 = 0,1, ... , n-l)
for LL (\ .1"'_ .

Theorem 19.2 is true with any of the remaining Dini's derivatives
instead of n: (D+).

§ 20. Comparison equation of order n, Equation (17.1) will be called
comparison equation of order n if the corresponding system (17.3) is a com
parison system of type I (see § 14), i.e, if its right-hand side a(t, Yo, Yl' ...
... , Yn-l) is non-negative and continuous and satisfies condition "OW+
(see § 17) with respect to Y in

Q: t:;::::O, Yi:;::::O (j=O,l, ... ,n-l).

Proposition 14.1 implies the following result:

Through every point (0, H) = (0, 'YJo, 'YJu ... , 'YJn-l) there is the r-ight
hand maximum solution of a comparison equation of order n which we denote
by w(t; H) and its existence interval by .1(H) = [0, ao(H».

Moreover, we have either aofH) = +00, or ao(H) is finite and

lim ... /}! [w(i)(t; H)]2 = + 00 .
t-ao J! i=o

COMPARISON THEOREM. .A. comparison equation (17.1) being given,
let rp(t) be of class On-l in an interval .1 = [0, y) and suppose that rp(j)(t) :;:::: 0
(j = 0, 1, ... , n-1). Under these assumptions, if

rp<i)(O) < 1}i (j = 0, 1, ... , n -1)
and

n_rp(n-l)(t) < a(t, rp(t) , ... , rp(n-l)(t») in .1 ,
then

rp(i)(t) < w<i)(t; H) (j = 0,1, ... , n-1)

for t € .1(H) (\ .1, where t» (t; H) is the right-hand maximum solution of (17.1)
through the point (0, H) = (0, 'YJo, 1}u ... , 1}n-l)'

This theorem is an immediate consequence of Theorem 19.1.

§ 21. Absolute value estimates. Let a comparison equation (17.1) of
order n (see § 20) be given and consider for a function rp (x) of class tr::
the differential inequality

(21.1) ID_rp(n-l)(x)1 < a(lx-xol, jrp(x)l, ... , \rp(n-l)(x)l) .
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It is clear that if 9? (x) is a solution of (21.1), then (9?o(x) , ... , 9?n-l(X))
defined by the formulas 9?J(x) = 9?(f)(x) (j = 0, 1, ... , n -1) is a solution
of the system

1:1 = 19?i-l-11 (i = 0,1, ... , n-2) ,

D_ 9?n-11 :( a (Ix- xol, 19?ol, ... , !9?n-ll) .

By this remark, the next theorem follows from Theorem 15.1.

THEOREM 21.1. Let a comparison equation (17.1) (see § 20) be given
and assume 9?(x) to be of class Cn-I in the intervallx-xol < y. Suppose that

19?(i)(xo)! :( 1]J (j = 0, 1, ... , n-1)
and

ID_9?(n-I)(x)1 :( a(lx-xol, 19?(x)l, 19?'(X)\ , ... , 19?<n-l)(x)l) for Ix-xol < y.

Under these assumptions we have the inequalities

19?(J)(x)I :( w(i)(lx-xol; H) (j = 0,1, ... , n-1)

for Ix- xol < min (y, ao(H)), where w(t; H) is the right-hand maximum
solution of (17.1) through (0, H) = (0, 'flo, ... , 1]n-I), defined in the interval
[0, ao(H)).

Next, from Theorem 15.2 we derive the following

THEOREM 21.2. Under the assumptions of Theorem 21.1 Sttppose addi
tionally that the right-hand member aft, Yo, Yl1 ... , Yn-I) of the comparison
equation (17.1) satisfies condition W+ (i.e. increases with respect to all varia
bles Yj) and that

9?(f)(xo) = 1]} > 0 (9?(i)(xo) = -rlf < 0) (j = 0,1, ... , n-1).

This being assumed we have

9?(i)(x) ~ 21]j-w(j)(lx-xol; H) (9?(i)(x):( -2'flJ+oP)(lx-xol; H))

(j = 0,1, ... , n-1)
in the interval Ix-xol < min (y, ao(H)).

As an immediate corollary of Theorem 21.2 we obtain the next
theorem.

THEORE~i 21.3. Under the assumpiion« of Theorem 21.2 suppose that

'flj>r;j~O (-1]j<-r;j:(O) (j=0,1, ... ,n-1)

Denote by tj the least root of the equation in t

(21.3)

if such a root exists in the interval 0 < t < ao; if it does not exist, put tj = +00.
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Under these hypotheses we have

q;U>(m) > 'ifi (q/i>(x) < -'ifi) (j = 0, 1, ... , n-l)

in the interval Ix-xol < min(y, ao, to, til ... , tn- 1) .

EXAMPLE 21.1. Let lJ?(x) be of class 0 1 in the interval

(21.4) Ix-xol < y.

Suppose that lJ?(x) satisfies the initial inequalities

[1J?(xo)1 < 1)0' 1IJ?'(xo) I < 1)1

and the differential inequality

ID_IJ?'(x)1 < a I1J?'(x) I (a> 0) .

The comparison equation of second order is here

y"(t) = ay'(t)

and its unique solution, satisfying the initial conditions

y(O) = 1)0' y'(x) = 1)1'
is

w(t) = 1)1 (eat-I) +1)0 .
a

By Theorem 21.1, we have in the interval (21.4)

IIJ?(x)[ < ~(ealx-xol-l)+1)o, IIJ?' (x) I < 1)1 eaIx- xo! •
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If, moreover, we assume that

lJ?(xo) = 1)0> 0 , q/(xo) = 1)1 > 0 ,

then, by Theorem 21.2,

lJ?(x) ~ 1)0- :1 (calx-xol-l) , 1J?'(x) ~ 21)1-1)1ea/x-xol

in the interval (21.4). Suppose finally that 1)0 > 'ifo ~ 0, 1)1 > 'ifl ~ O.
Equations (21.3) have now the form

Their only solutions are respectively

to = !In(l+ a(1)O-'ifo)) , t1 = !In(l+ 1)1-'if1
) .

a 1)1 a 1)1

Hence, by Theorem 21.3, we have

lJ?(x) > 'ifo , 1J?'(x) > 'ifl

in the interval Ix-xal < min(y, to, t1).
J. Szarski, Differential inequalities 5
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§ 22. Some integral inequalities. Integral inequalities we are going
to deal with in this section are closely related with first order ordinary
differential inequalities. This will be made clear by the proposition we
prove first.

PROPOSITION 22.1. Let Gi(t, Yll ... , Yn) (i = 1,2, ... , n) be cont-inuous
in an open region D and let (to, Yo) = (to, fll, ... , fin) ED. Suppose that
tJ>(t) = (tpl(t), ... , tpn(t)) is continuous in an interval lto, y) and that

(t, tJ>(t)) ED. Under these ossuswption», it

(22.1) tJ>(to) ~ Yo,

and

(22.2) D-tpi(t)<Gi(t,tpl(t), ... ,tpn(t)j for to~·t<y

(i=1,2, ... ,n),
then

f

(22.3) tpi(t) < fli + JGi(T, tplr), ... , tpn(T)) dT tor to ~. t < Y
to

(i=1,2, ... ,n).

Proof. Consider the Picard's transform of tJ>(t)
t

tpi(t) = tpt(t)- JGi(T, tpl(T) , ... , tpn(T))dT (i = 1,2, ... ,11).
fo

The function tpi(t) is continuous in [to, y) and, by (22.2), we have

D-"Pi(t) = D_lpi(t)-Gi(t, Ipl(t) , ... , Ipn(t)) < O.

Hence, by Remark 2.1, "Pt(t) is decreasing and since, by (22.1), there
is "Pi(to) < fit, we obtain

tpi(t) ~ "Pi(to) ~ fli on [to, y) ,

which is equivalent to (22.3).
By Proposition 22.1, inequalities (22.1) and (22.2) imply integral

inequalities (22.3); but, obviously, (22.3) does not imply (22.2).
Now we know, by Theorem 9.3, that under the assumptions of Prop

osition 22.1, provided that Gi(t, Y) satii'ify condition W+ (see § 4), from
the inequalities (22.1) and (22.2) result the inequalities

(22.4)

where Q(t; to, Yo) is the right-hand maximum solution of (5.1) through
(to, Yo), defined in [to, ao)·

Next, we will prove that (22.4) is also a consequence of the essen
tially weaker (than (22.1) and (22.2)) inequalities (22.3), provided that
the condition W+ be substituted by the stronger condition W+ (see § 4).
In fact, we have the following theorem (see [39J and [65]):
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THEOREM 22.1. Let Gt(t, YH ... , Yn) (i = 1, 2, ... , n) be continuous in
the open reqio» D = {( t, Y): a < t < b, Y arbitrary} and satisfy condition W +
(see§ 4). Let (to, Yo) = (to, ill, ... ,Yn) ED. Suppose that (j)(t) = (lpl(t), ... , lpn(t»)
is continuous in an interval [to, y) and that (t, (])(t») E: D. Under these aS8ump
tions, if

t

(22.5) lpt(t) ~ Yi+ JGt(i, lpl(T) , ... , lpn(-r»)dT for to ~ t < y
to

(i=I,2, ... ,n),
then

(22.6) (])(t) <. .o(t; to, Yo) for to <.. t < min(y, ao) ,

where .o(t; to, Yo) is the right-hand maximum solution oj (5.1) through
(to, Yo), dejined on [to, ao)'

Proof. Put
t

{h(t) = Yi+ Jat(T, tpl(T) , ... , lpn(i»)di (i = 1,2, ... , n).
to

Then, by (22.5) and by condition W +, we have

Pi(t) = Gi(t, Pl(t) , ... , rpn(t») <. Gi(t, Pl(t), ... , Pn(t») for to ~ t < y

(i = 1,2, ... , n).

Moreover, Pi(to) = Yi; therefore, by Theorem 9.3, we get

Pt(t) <: Wt(t; to, Yo) for to ~ t < min(y, au) (i = 1,2, ... , n),

whence follows (22.6), since rpt(t) <. Pi(t) (i = 1, 2, ... , n).
As a corollary of Theorem 22.1 we obtain immediately the following

known result (see l10J).
Assume rp(t) to be continuous on an interval [to, y) and to satisfy

the integral inequality
t

rp(t) <. Yo +f a(i)lp(i)dT ,
to

where aft) is continuous and non-negative for to <: t < y. Then

t

p(t) <.: yoexp (J a(i)di) for to~· t < y .
to

Remark. One can show (see [39J) that in Theorem 22.1 condition W+
is essential.

From Theorem 22.1 we derive the following corollary:

OOROLLARY 22.1. Under the ass1tmptions of Theorem 22.1 suppose that
t

(22.7) tpift) <':"Pt(t) + f Gt(i, lpl(i), ... , Ipn(i»)di (i ==- 1, 2, ... , n)
to

5*
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for to~ t < y, where pet) = (V'l(t), ... , V'n(t)) is continuous on [to, y). This
being assumed, we have

(22.8) lP(t) ~ P(t)+Q,lt) for to ~ t < minfv, ao),

(i=1,2, ... ,n),

where Q.lt) is the right-hand maximum solution through (to, 0, ... , 0) of
the system

dYi ( )([t = (ji t, V'l(t) +Yl, ... , V'n(t) +Yn

defined on [to, ao).
Proof. Put

Gi(t, Y) = (ji(t, P(t)+ Y) (i = 1,2, ... , n).

The functions Gi(t, Y) are continuous and satisfy condition 'IN+ in
the region D.

If we write

ipi(t) = CfJi(t)-V'i(t) (i = 1,2, ... ,.n) ,

then, by (22.7), we have

t

qJi(t) ~ JGift, qJl(T), ... , ipn(T») dT (i = 1, 2, ... , n) .
to

Therefore, we see that (P(t) , alt, Y) (i = 1, 2, ... , n) satisfy all the
assumptions of Theorem 22.1 in the region D with (to, Yo) = (to, 0, ... ,0).
Hence we have

$(t) ~Q'I,(t) for to ~ t < min Iy , a.),

which is equivalent with (22.8).



CHAPTER V

CAUCHY PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS

In the present chapter we give a number of applications of results
obtained in Chapters III and IV to different questions concerning the
Cauchy problem for ordinary differential equations. In particular, we
find: estimates of the solution and of its existence interval, estimates
of the difference between two solutions, estimates of the error for an
approximate solution and uniqueness criteria. Moreover, we discuss con
tinuous dependence of the solution on initial data and on the right-hand
sides of the equations, Ohaplygin method and approximation of solutions
of ordinary differential equations in a normed linear space.

§ 23. Estimates of the solution and of its existence interval. We prove
THEOREl\I 23.1. Consider a system of ordinary differential equations

(23.1) dYi
dx = fi(x, Yu ... , Yn) (i = 1, 2, ... , n).

Suppose the right-hand members fi(x, Y) to be defined in the regiorn

(23.2)

and to satisfy the inequalities

(23.3) Ifi(x, Y)I ~ Gi(lx-xol, IY- Yo!) (i = 1,2, ... , n) ,

(23.4)

where Yo = (YI' ..., Yn), and O'i(t, Yu ...., Yn) are the right-hand members of
a comparison system of type I (see § 14)

dYi
(It = Gi(t, YI' ... , Yn) (i = 1,2, ... ,n).

Denote by Q (t; H) = (Wl(t; H), ... , wn(t; H)) the right-hand maximum
solution of (23.4) through (0, H) = (0, 'YJu ... , "Yjn), defined in the interval
(0, an). Suppose Y (x) = (Yl(X) , ... , Yn(X)) is a solution of system (23.1).
satisfying initial inequalities

(23.5)
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and reaching the boundary of (23.2) by both extremities (see § 7). Denote
by ti the least root of the equation in t

witt; H) = hi

if such a root exists in the interval (0, ao); it it does not exist, put ti = + 00.

Under these assumptions the solution Y (x) exists in the interval

(23.6)

and satisfies there the inequalities

(23.7) IY(x)- Yol ~.Q(lx-xol; H).

Proof. Let (xo-u,xo+ ,8 ) be the maximal existence interval of
Y(x) and put

(/)(x) = (CPl(X) , ... , CPn(X)) = (Yl(X)-Yl, ... , Yn(X)-Yn);

then we have, by (23.3) and (23.5),

Icpj(x) I = IYi(x)1 = \fi(x, Y(x))! ~ Gf(lx-xol, 1(/)(x)1) (i = 1,2, ... ,11,)

in the interval (xo- a ; Xo+,8) and

I(/)(xo)\ ~ H .

Hence, by Theorem 15.1, inequality (23.7) is satisfied in the interval

(23.8) Ix-xol < min(ao, u,,8).

Therefore, to complete the proof of our theorem it is enough to show
that the interval (23.6) is contained in (23.8). We may suppose that,
for instance, ,8:;:;; U; then we have to show that ho :;:;; ,8. Suppose the
contrary, i.e. ho > (3; then the point (3 would belong to the interval (0, ho)

and since Wi(O; H) = 1]i < hi, we would have, by the definition of ti,

(23.9) Wi«(3; H) < ht (i = 1,2, ... ,11,).

Consider now the following compact set:

(23.10) Ix-xol ~ (3, IYi-Yil ~ Wi({3; H) (i = 1,2, ... ,11,).

By (23.9) and by the inequality ,8 < ho~ h, this compact set is con
tained in (23.2). On the other hand, in view of the inequalities {3 ~ a,
{3 < ho~ uo, the interval (23.8) is identical with Ix-xol < (3, and since
inequalities (23.7) are satisfied in (23.8), we would have in particular

IY(X)- Yol ~.Q(lx-xol; H) :;:;;.Q({3; H)

in the interval

(23.11 ) o~ X-Xo < ,8.
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This means that the solution-path Y = Y (x) would be contained,
for x belonging to (23.11), in the compact set (23.10) which-as we saw-is
contained in (23.2). But this is impossible because the solution Y (x),
considered in (23.11), reaches the boundary of (23.2) by its right-hand
extremity (see § 7).

By an analogous argument, using Theorem 21.1 we obtain

THEOREM 23.2. Consider a differential equation. of n-th order

(23.12) y(n)(x) = f(x, y(x), y'(x), ... , y(n-l)(x)).

Suppose its right-hand member f (x, Yo, Yll ... , Yn-l) to be defined in
the region

(23.13) Ix-xol < h, Iyj-Yil < hj (j = 0,1, ... ,11,-1)

and to satisfy the inequality

If(t, Y)I ~O'(lx-xol,IY-YoD,

where Yo = (Yo, Yl' ... , Yn-l), and O'(t, Yo, Yll ... , Yn-l) is the right-hand side
of a comparison equation (see § 20)

(23.14) y(n)(t) = 0' (t, Y (t), y'(t), ... , y(n-l)(t)) .

Denote by w(t; H) the right-hand maximum solution of (23.14) through
(0, H) = (0,170,1711 ... , 17n-l), defined in the interval [0, no). Suppose that
y (x) is a solution of equation (23.12) satisfying the initial inequalities

Iy(i)(xo) - Yil ~.17j < hj (j = 0,1, ... , n-1)

and reaching the boundary of (23.13) by both extremities (see § 17). Denote
by tj the least root of the equation in t

wU)(t; H) = h j

if such a root exists in the interval (0, ao); if it does not exist, put tj = -+- CXJ.

Under these assumptions the solution y(x) exists in the interval

and satisfies the inequalities

lyU)(X)-Yil ~. w(j)(lx-xol; H) (j = 0, 1, ... ,11,-1).

§ 24. Estimates of the difference between two solutions. We prove

THEOREM 24.1. Let the right-hand members of system (23.1) and of
the system

(24.1 )
dYi ~
dx = fi(x, Yl1 ... , Yn) (i = 1,2, ... ,11,)
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be defined in an open region D and satisfy the inequalities

(24.2) I/i(x, Y)-!t(x, Y)I ~ at(lx-xol, IY- YI) (i = 1,2, ... , n),

where at(t, Yu ... , Yn) are the right-hand sides of a comparison system (23.4)
of type I (see § 14). Suppose that Y (x) = (Yl(X) , ... , Yn(X») and Y(x)

= (Yl(X), ... , Yn(X») are two solutions of systems (23.1) and (24.1) respectively,
defined in an interval Ix-xol < y and satisfying the initial inequalities

(24.3) IY(xo)- Y(xo)1 ~ H ,

where H = (r;u ... , r;n). Denote by Q(t; H) = (Wl(t; H), ... , wn(t; H») the
right-hand maximum soZ'ution of the comparison system (23.4) through (0, H)
and let it be defined in [0, ao)'

Under these hypotheses we have the inequalities

(24.4)

in the interval

(24.5)

IY(x)- Y(x)l ~Q(lx-xol;H)

Proof. In the interval Ix-xol < y put

tP(x) = (cplx) , ... , CPn(X») = (Yl(X)-Yl(X) , ... , Yn(X)-Yn(X») .

Then, by (24.2) and (24.3), we have

Icpi(x) I = Iyi(x)-yi(x) I = 'fi(x, Y (x») - fi(x, Y(x)) I

::S;;.ai(lx-xol,ltP(x)1) (i=I,2, ... ,n),

and ItP(xo)1 ~ H.
Hence, by Theorem 15.1, inequalities (24.4) hold true in the inter

val (24.5).
In a similar way, using Theorem 21.1 we get

THEOREM 24.2. Let the right-hand member of equation (23.12) and
of equation

(24.6) y(n)(x) = 7(x, y (x), y'(x), ... , y(n-l)(x»)

be defined in an open region D and satisfy the inequality

If(x, Y)- !(x, Y)I ~ a(lx-xol, IY- YI) ,

where aCt, Yo, Yu ... , Yn-l) is the right-hand side of the comparison equa
tion (23.14). Suppose y(x) and y(x) are two solutions of equation (23.12)
and (24.6) respectively, defined in an interval Ix-xol < y and satisfying the
initial inequalities

ly(j)(xo)_y(i)(xo)1 ~r;j (j = 0, 1, .. , n-l).
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Denote by co (t; H) the right-hand maximum solution of the comparison
eq1tation (23.14) through (0, H) = (0, 'f}o, 'f}l' ••. , 'f}n-d and let it be defined
in [0, ao).

Under these assumptions we have the inequalities

Iy(j)(x)-y(j)(x)l ~ co(j)(Ix-xol; H) (j = 0,1, ... , n-1)

in the interval
Ix-xol < min(y, ao) .

§ 25. Uniqueness criteria. Continuous dependence of the solution of Cauchy
problem on the initial values and on the right-hand sides. As an immediate
consequence of Theorem 24.1 we obtain the following uniqueness cri
terion:

THEOREM 25.1. Let the right-hand members of system (23.1) be defined
in an open region D, containing the point (xo, Yo), and satisfy the inequalities

(25.1) Ift(x, Y)-ft(x, Y)I ~O'i([x-xol,IY-YI) (i=1,2, ... ,n),

where O'i(t, Yll ... , Yn) are the right-hand sides of a comparison system of type I
(see § 14). Suppose that

0'i(t, 0, ... , 0) == 0 (i = 1, 2, ... , 'iI..)

and that
!J(t) == 0 for 0 ~ t < + 00 ,

whm'e !J(t) = (cotCt) , ... , COn(t») is the right-hand maximum sol'ution of the
comparison system through the origin.

Under these assumptions system (23.1) admits at most one solution
through (xo, Yo) in D.

Proof. Let Y(x) = (Yl(X) , ... , Yn(m») and Y(x) = (Yl(X), ... , Yn(X») be
two solutions of system (23.1), defined in some interval Ix-xol < y and
such that

Y(xo) = Y(xo) = Yo'

Then, by Theorem 24.1 (systems (23.1) and (24.1) are now identical)
and by our assumptions, we have

IY(x)- Y(x)l ~ !J([x-xo[) = 0

and consequently

Y(x) == Y(x) for Ix-xol < y.

Remark 25.1. In particular, the comparison system with

n

O'i(t, Yl' ... , Yn) = K 2.-1 YJ (K ~ 0)
i=1
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satisfies all the assumptions of Theorem 25.1 and in this case inequalities
(25.1) mean that the right-hand members of system (23.1) satisfy a Lip
schitz condition with respect to Y.

Remark 25.2. What concerns uniqueness of the solution for x ~ xo,

i.e. to right from the initial point, condition (25.1) can be substituted
by an essentially weaker one, viz.

(i) [!t(x, Y)-!t(x, Y)Jsgn(Yt-Yi) ~ ai(x-xo, IY- YD
(i=1,2, ... ,n).

In this case the proof of uniqueness is achieved in the following way.
Let !/i(x) and Yi(X) (i = 1,2, ... , n) be two solutions issued from (xo, Yo)
and defined in some interval 0 ~ X-Xo < y. Put for 0 ~ t < y

cpi(t) = IYt(xO+t)-Yi(XO+t)1 (i = 1,2, ... , n).

Since cpi(O) = IYi(XO)-Yi(Xo) / = 0 (i = 1,2, ... , n), it suffices, by The
orem 11.1, to show that

(ii)

for t in the set
E t = {t € (0, y): lfJi(t) > O}.

Now, if t € E i , then we have

cpi(t) = [Yi(XO+ t)-Yi(Xo+ t)] sgn (Yt(xo+0-Yi(XO+t»)

in some neighborhood of t and consequently we get

cpi(t) = [Yi(xo+t) - yi(xo+t)Jsgn (Yt(xo+t) - Yi(XO+t») .

From the last relation and from (i) we obtain (ii) for t = t.
From this remark it follows, in particular, that for one equation

dy
dx =!(x, y),

with [i», y) decreasing with respect to Y, we have uniqueness to right
from the initial point. Indeed, under this assumption equation

dy = 0
dt

can be taken for a comparison one.
By Theorem 24.2, we get the next theorem.
THEOREM 25.2. Let the right-hand member of equation (23.12) be defined

in an open region D, containing the point (xo, Yo, Yl' ... ,Yn-l), and satisfy
the inequality

I!(x, Y)- !(x, Y)I ~ a(!x-xol, /Y - YD ,
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where aft, Yo, Y1' •.. , Yn-1) is the right-hand side of a comparison equation
(see § 20). Suppose that

aft, 0, ... , 0) == 0
and that

w (t) == 0 for 0 ~ t < + 00 ,

where w (t) is the right-hand maxilmum soiution. of the comparison equation;
satisfying the initial conditions

w(n(0) = 0 (j = 0, 1, ... , n - 1) .

Under these hypotheses equation (23.12) admits at most one solution
satisfying the initial conditions

y(J)(xo) = Yi (j = 0,1, ... , n-1).

:Next we will show that under the hypotheses of Theorem 25.1 the
solution of system (23.1) depends continuously on the initial point and
on the right-hand sides.

THEOREM 25.3. Let the right-hand sides fi(X, Y) (i = 1, 2, ... , n) of
system (23.1) be continuous in an open region D and sat'isfy the assuoiption«
of Theorem 25.1. Let Y (x) = (Y1(X), ... , Yn(X») be the solution of systMn (23.1)
through (xo, Yo) ED and assume it to be defined in an interval Ix-xol < a.
Suppose that the right-hand members fi(X, Y) (i = 1, 2, , n) of systern (24.1)

are continuous in D and let Y(x; Y) = (Y1(X; Y), , Yn(x; Y») be any

solution of system (24.1) through (xo, Y) € D, continued to the boundary of D
in both directions (see § 7).

Under these assumptions we have the following propositions:

1. To every positive y < a the're is a positive <5 such that if \Y- Yol < <5

and

(25.2) Ifi(x, Y)-~(x, Y)\ < <5 (i = 1, 2, ... , n),

then the solution Y(x; Y) of sY8tem (24.1) is defined in the interval

(25.3) Ix-xol < y.

2. To every e > 0 there ie a p08itive <51 < 0 suoh. that inequalities

IYi(X; Y)-Yi(X)! < 8 (i = 1,2, ... , n)

are satisfied in the interval (25.3) whenever

Ifi(x, Y)-~(x, Y)! < <51 (i = 1, 2 .... , n).

(25.4)

Proof. For fl ~ 0 consider the comparison system

dYi
-dt = ai(t, Y)+fl (i = 1,2, ... , n)
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and let Q(t; H, p,) = (w1(t; H, ,,), ... , wn(t; H, ,,)) be its right-hand maxi
mum solution through (0, H) = (0, 'l}l' ..• , 'l}n)' Since-in view of our
assumptions-there is Q(t; 0,0) == Q(t) = 0 for 0 ~ t < + 00, we conclude,
by Theorem 10.1, that for any positive I' < a

1° there is a positive ~ such that Q (t; H, ,,) is defined in the interval
[0,1'1 whenever ,,~~, 0 <. 'l}i < ~ (i = 1,2, ... , n),

2° lim Q(t;H,,,)=O uniformly in [O,YJ.
H-->O,p-+O
H~O,I'>O

Suppose (25.2) holds true with the above ~. By (25.1) and (25.2),
we have for any two points (x, Y), (x, Y) e D

(25.5) Ift(x, Y)-!t(x, Y)I ~ Ifi(x, Y)-fi(x, Y)I + Ifi(x, Y)-!t(x, Y)I

~ O'i(lx-xol, IY- :YD+~ (i = 1,2, ... , n).
Suppose that

(25.6) IY - Yol < ~;

then, putting 'l}i = IYi-Yil we have

(25.7) 0 ~ 'l}i = IYi-yi! < ~ (i = 1,2, ... , n).

Denote by (xo-a, xo+p) the maximal existence interval of :f(x; :f).
We may assume that, for instance, 0 < If<. a. Let It and Y satisfy (25.2)
and (25.6). By (25.7), we have

IYi(xo; Y)- Yi(XO) I = IYi-Yil = 'l}i < ~ (i = 1,2, ... , n) .

Hence, by (25.5) and by Theorem 24.1, we get

(25.8) IY(x; Y)- Y(x)l <.Q(lx-xol; H, 15)

in the interval

(25.9) Ix- xol < min (I' , If) .

By 2°, we may assume that ~ was chosen small enough, so that the
compact set

(25.10) Ix-xol ~ I' , IY- Y(x)l ~Q(lx-xol; H, ~)

be contained in the region D. In order to prove assertion 1 of our theorem,
it is sufficient to show that It and Y satisfying (25.2) and (25.6) we have
7i ~ r- Suppose the contrary, i.e, 7i < 1'; then, by (25.8), the solution
path Y = Y(x; Y) would be contained in the compact set (25.10) for
o~ x-xo < ", which is impossible since Y(x; Y) reaches the boundary
of D by its right-hand extremity. Thus, assertion 1 is proved.

Now, take an arbitrary e > O. By 2°, there is a positive ~l < ~ such
that for 0 ~ 'l}i < ~l (i = 1,2, ... , n) we have

(25.11) Wi(t; H, (II) < e in 0 ~ t < I' (i = 1, 2, ... , n) •
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Suppose that

IY-Yol < <51 , Ift(x,Y)-!t(x,Y)I<<51 (i=1,2, ... ,n);

then by an argument similar to that used in the proof of assertion 1 we
conclude, by (25.11), that

jYi(X; Y)-Yt(x)1 ~ Wt(!x-xol; H, 61) < B (i = 1,2, ... , n)

in the interval (25.3). This completes the proof of assertion 2.
What concerns an nth order ordinary differential equation we have

the following

THEOREM 25.4. Let the right-hand member f (x, Yo, Yl1 ... , Yn-1) of
equation (23.12) be continuous in an open region D and satisfy the assump
tions of Theorem 25.2. Let y (x) be the solution of equation (23.12) satisfying
initial conditions

y(il(xo) = iJi (j = 0,1, ... , n-1)

and assume it to be defined in an interval Ix-xol < a. Suppose that the
right-hand side nx, Yo, Yl1 ... , Yn-1) of equation (24.6) is continuous in D
and let y(x; Y) be any solution of equation (24.6), satisfying initial conditions

y(J)(xo; Y) = YJ (j = 0,1, ... , n-1)

and continued to the boundary of D in both directions (see § 17).
Under these assumptions the following propositions hold true:

1. To every positive y < a there is a positive 6 such that if

!YJ-Yil < 6 (j = 0,1, ... , n-1), If(x, Y)-f(x, Y)I < (),
then the solution y(x; Y) of equation (24.6) is defined in the interval
Ix-xol < y.

2. To every e > 0 there is a positive <51 < <5 such that the inequalities

!y(i)(x; Y)_y(Jl(x)! < e (j = 0,1, ... , n-1)

are satisfied in the interval Ix- xol < y whenever

I!li-YJI < <51 (j = 0,1, ... , n-1), If(x, Y)-!(x, Y)I < <51 ,

Now, we are going to prove Kamke's (see [14], p. 139) uniqueness
criterion which is more general than the one contained in Theorem 25.1.
This time the much weaker assumptions will not assure, in general, the
continuous dependence of the solution on the initial point.

THEOREl\<1 25.5. Let the right-hand members ft(x, Y) (i = 1,2, ... , n)
of systC1n (23.1) be defined in an open region D, containing the point (xo, Yo),
and satisfy the inequality

n n

(25.12) }; I,ft(x, Y)- ft(x, Y)I < a{lx-xol, }; IYJ- Yil) for x i= xo,
i~1 i~l
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where art, y) is the right-hand side of a comparison equation of type III
(see § 14). Then system (23.1) admits at most one eolsuion throu,gh (xo, Yo)
in D.

Proof. Suppose Y(x) = (Yl(X) , ... , Yn{x)) and Y(x) = (Y1(X) , ... , Yn(X))
are two solutions of system (23.1), defined in an interval Ix-xol < y and
satisfying initial conditions

(25.13)

Since the assumptions of our theorem are invariant under the mapping
~ = -x+2xo, it is sufficient to prove that

(25.14)

in the interval

(25.15)

Put

for
(25.16)

11

'\' '"L.J IYi(X)-YI(x)1 = 0
1=1

o :(:. x - Xo < Y •

11

cp(t) = 2; IYi(Xo+t)-YI(xo+t)1
1=1

O:(:.t<y.

The function cp(t) is continuous in the interval (25.16) and, by (25.13),
there is
(25.17)

Further we have

cp(O)=O.

11 11

(25.18) D+cp(O):(:. 2; Iyi(xo)-yi(xo)I = L I/i(xo, Yo)-!i(Xo, Yo)1 = 0 .
i=1 i=1

Finally, by (25.12), we get for 0 < t < y

n

(25.19) D_cp(t):(:. 2; IYi(xo+t)-yi(xo+t)1
i=1

n

= 2: Ifi(xo+t, Y(xo+t))-ft(xo+t, Y(xo+t))1 :(:.a(t, cp(t)).
i=1

From (25.17), (25.18) and (25.19) it follows, by the third comparison
theorem (see § 14), that

cp(t) :( 0

in the interval (25.16). But, since cp(t) ~ 0, we conclude that cp(t) == 0
in (25.16) and consequently (25.14) is satisfied in the interval (25.15).



Remark 25.3. If the comparison equation of type III is, in particular,
equation (~) from Example 14.2, then Theorem 25.5 gives Osgood's uni
queness criterion. Similarly, Theorem 25.5 contains, as a particular case,
Nagumo's criterion if the comparison equation is that of the Example 14.3.

Remark 25.4. In view of the Remark 14.3, Theorem 25.5 would
be false if property (ell) of the comparison equation of type III were re
placed by the essentially weaker property (!X2 ) . Indeed, if we put

1
q/(x) y

I(x, Y) = ~(X)

then for the equation

for x > 0, Y > 0 ,

elsewhere,

(25.20)
dy
dx = I(x, y)

and for the comparison equation (14.13) the assumption (25.12) of Theorem
25.5 is satisfied at the point (0,0). However, there are two different solu
tions of (2t>.20) through the origin, viz. y(x) = rp(x) and y(x) = O. In the
above counter-example the right-hand member I(x, y) of (25.20) was dis
continuous for x = O. It is possible to construct a similar example with
f(x, y) continuous in the whole plane [56].

Remark 25.5. In the case of one equation with a continuous right
hand side Kamke's uniqueness criterion is only apparently more general
than the criterion of Theorem 25.1. Indeed, the following result, due
to C. Olech [37], is true.

Let the function j(x, y) be continuous in the neighborhood of the
point (xo, Yo) and satisfy there the inequality

I/(x, y)-f(x, Y)I ~ a(lx-xol, IY-YI) for x -=1= xo ,

where aft, y) is the right-hand side of a comparison equation of type III;
then 1(x, y) also satisfies an inequality

It(x, y)-f(x, Y)I ~ a(lx-xol, Iy-YI),
where aft, y) is the right-band side of a comparison equation of type J
(see § 14) satisfying assumptions of Theorem 25.1.

Remark 25.6. Due to Theorem 15.4 it is easy to check that Theo
rems 24.1, 25.1 and 25,5 are true for a system (23.1) with x being a real
variable, Yi (i = 1, 2, ... , n) being vectors in a linear normed space C,
!t(x, Y) being vector-valued functions with values in t and the absolute
value being substituted by the norm in C.

§ 26. Estimates of the error of an approximate solution. In this section
we describe a gen eral method by which we can evaluate the error when,
instead of the solution of a given ("difficult to solve") system, the
solution of an approximate ("easy to solve") one is taken (see [GO}).
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Let the right-hand members of the ("difficult to solve") system

dYt
(26.1) dx = ft(x, Yl1 ... , Yn) (i = 1, 2, ... , n)

be continuous in an open region D containing the point (xo, Yo)
= (xo, !1l, ... , Yn). Denote by Y (x) = (YI(X) , ... , Yn(x)) a solution of sys
tem (26.1) through (xo, Yo). Suppose that the inequalities

(26.2)

hold true, Gi(t, Yl1 ... , Yn) being the right-hand sides of a comparison
system of type I (see § 14). Let .Q(t) = (Wl(t), ... , wn(t)) be its right-hand
maximum solution through the origin. Consider the approximate ("easy
to solve") system

dYi
(26.3) dx =gi(X'YI, .. ·,Yn) (i=1,2, ... ,n)

with right-hand sides continuous in D and let Y(x) = (!lI(X), ... , Yn(X))
be its solution through (xo, Yo) in the interval Ix-xol < y. Assume that

(26.4) Igt(x, Y)-gi(X, Y)I ~ Gi(lx-xol, IY- Y!) (i = 1,2, ... , n),

where (li(t, Yl1 ... , YlI) are the right-hand members of a comparison system
of type I (see § 14). Suppose finally that the following limitation of the
difference between the right-hand sides of the given system (26.1) and
of the approximate one (26.3) is known

(26.5) Ifi(x, Y)-gt(x, Y)I ~ ht(lx-xol, IY- Yo!) (i = 1,2, ... , n),

where the functions ht( t, YI' ... , Y1l) satisfy condition W + with respect
to Y (see § 4).

Under all these assumptions we are able to evaluate the difference
between the solution Y(x), which is sought for, and the approximate
one Y(x). We do it in two steps.

1step. Estimate of the solution and of its existence interval. In view
of (26.2) we evaluate, by Theorem 23.1, the existence interval

(26.6) Ix-xol < ho

of Y(x) and Y(x) itself

(26.7) IY(x)- Yol ~.Q(lx-xol)

in the interval (26.6).

II step. Evaluation of the error. Solution Y(x) of system (26.1)
satisfies obviously the system

dYt
(26.8) dx = gi(X, YI' ... , Y1l) (i = 1,2, ... , n),



where
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?li(X, Y) = Ui(X, Y)+ [fi(X, Y(X))-Ui(X, Y(X))] (i = 1,2, ... , n).

By (26.4), (26.5), (26.7) and by the condition W + (satisfied by ht),
we get

(26.9) IUi(X, Y)-!],;(x, Y)I ~ O'i(lx-xol, IY- YI) (i = 1,2, ... , n),

where for O'i(t, Yll , Yn) we can take any functions satisfying inequalities

(26.10) O'i(t, Yll , Yn) ~ rJi(t, Yl' ... , Yn)+htft, D(t)) (i = 1,2, ... , n)

and being right-hand sides of a comparison system of type r. Denoting
by Q (t) = (C01(t), ... , COn(t)) its right-hand maximum solution through the
origin, defined in an interval [0, llo), we conclude, by (26.9) and by Theo
rem 24.1 applied to system (26.3) and (26.8), that

(26.11)

in the interval
Ix-xol < min(ho, y, ao) .

Inequalities (26.11) give the evaluation of the error that was sought for.

EXAMPLE 26.1. To illustrate the procedure described above, let us
consider the case when the approximate system (26.3) is linear, its right
hand sides being Taylor's expansions up to order one of the right-hand
members of the given system (26.1).

Assume then that the right-hand sides t\x, Y) of system (26.1)
are of class 02 in the cube

(26.12) ixl<h, iYil<h (i=1,2, ... ,n),

and let (xo, Yo) = (0,0, ... ,0). Suppose that we have

(26.13) leo, 0, ... , 0) = 0, It~l, Ittll~.A, It~xl, It~ll, IttlYl.1 ~B

in the cube (26.12); then we get in (26.12)
n

Iti(x, Y)! = Iti(x, Y)-ti(O, 0)1 = It~(~, E)x+2: ttM, E)Yi/
i=l

n

~.A (Ixl +2: IYil) .
j=l

Hence, for Gi(t, Y) in (26.2) we can take

n

(li(t, Y) =.A (t+ 2: Yi) (i = 1,2, ... , n).
j~l

J. Szarski, Differential inequalities 6
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The unique solution through the origin of the comparison system with
the above right-hand sides is

w;(t) = n;A (en At-l-nAt) (i = 1,2, ... , n).

Since
~ ( ) _ ~ [(nAt)2 (nAt)3 I ] !A 2 n Ai
Wi t - n2A 2! + 3! T· .. :(; 2 t e ,

the unique root ti of the equation in t, Wi(t) = h, is not less than that of the
equation -l At2en A t = h. The root of the last equation is, by its turn, not
less than

s = min (h,V~ e-nA h
/
2
) •

Hence we have tt ~ () (i = 1, 2, ... , n) and, by Theorem 23.1, the
solution Y(x) = (Y1(X) , •••, Yn(X)) of system (26.1) through the origin
exists in the interval

(26.14) Ix[ < ()

and satisfies there the inequalities

(26.15)

Write
°i i 0

0
'

Ix = tx(O, 0, ... ,0), t~J = t~J(O, 0, ... ,0)

and take for the right-hand sides of the approximate system (26.3)

n

l(x, Y) = xh+2: ydtJ (i = 1,2, ... , n).
1=1

By (26.13), we have then
n

19i(x, Y)_gi(X, Y)! :(; A 2: IYi-Titl (i = 1,2, ... , n),
1=1

and consequently for ai in (26.4) we can choose

(26.16)
n

ai(t, Y) = A 2: Yi (i = 1,2, ... , n) .
1=1

.By Taylor's formula and by (26.13), we get

n 11

. . 11 (a ~ a)(2) . I 1 ( ~ )2If(x, Y)- gt(x, Y)I = "2 xax +#. YJ
aYi

r(~, E) :(;"2B Ixl +#. IYi! •
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Hence, for hi(x, Y) in (26.5) we can put

n

hi(x, Y) =lB(t+}; Yit (i = 1, 2, ... , n).
i=l

Since in the interval (26.14) we have

hi(t, Q(t)) :( ~B(t+ ~At2enAtr ~ ~B(l + ~AhenAhrt2,

we can choose for Cli(t, Y) in (26.10) (see (26.16))

n

Cli(t, Y) = Ot2+A}; Yi (i = 1,2, ... , n),
i=l

where

83

0= lB(l + lnAhenAh)2 .

Now, the only solution through the origin of the comparison system
with the right-hand members Cli(t, Y), defined above, is

20 [ (nAt)2]Wi(t) = -- enAt-1- nAt---
(nA)3 2!

_~ [(nAt)3 (nAt)4 ] Q3 nAt
- (nA)3 3! + 4! +... ~ 3 t e (i=1,2, ... ,n).

Therefore, we get finally

IYi(X)-Yi(X)1 ~*!xl3enAlxl (i = 1,2, ... , n)

in the interval (26.14), where Yi(X) (i = 1,2, ... , n) is the solution through
the origin of the approximate (in our case linear) system (26.3).

§ 27. Stability of the solution. We give here a stability criterion
which is an immediate consequence of Theorem 23.1.

THEOREM 27.1. Let the right-hand sides of system (26.1) be continuous
in the region

xo~x< + 00, IYil<h (i=1,2, ... ,n).

Suppose that fi(x, 0, ... ,0) = 0 (i = 1, 2, ... , n) and

(27.1) Ifi(x, Y)I ~ Cli(X-Xo, IYD (i = 1,2, ... , n),

where Cli(t, Y) are the right-hand members of a comparison system of type I
(see § 14). Assume that Cli(t, 0, ... , 0) = 0 (i = 1, 2, ... , n) and that the
null solution of the comparison system is stable (see [7], p. 314).

Under these assumptions the null solution of system (26.1) is stable.

6*
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Proof. In view of the stability of the null solution of the comparison
system, there is an ho< h such that whenever

o~ 'fJi < ho (i = 1, 2, ... , n) ,

then any solution Wi(t) of the comparison system, starting from the point
(0, H) = (0, 'fJI, ... , 'fJn), is defined in the interval [0, + 00) and satisfies
the inequalities Wi(t) < h (i = 1,2, ... , n). Hence, by (27.1) and by Theo
rem 23.1, any solution of system (26.1) through a point (xo, f) exists
in the interval [xo, +00), whenever Y = (ifI , ... , Yn) satisfies the ine
qualities

IYil<ho (i=1,2, ... ,n).

Moreover, for any such solution Y (x; f) = (YI(X; f), ... , Yn(X; f))
inequalities

(27.2) IY(x; f)1 ~ .Q(x-xo; IfD
hold true, where .Q(t; H) is the right-hand maximum solution of the
comparison system through (0, H). From (27.2) and from the assumptions
on the comparison system follows the conclusion of our theorem.

By the same argument we prove the next theorem.

THEOREM 27.2. If, under the hypotheses of Theorem 27.1, we additionally
assume that the right-hand sides (li(t, Y) of the comparison system do not
depend on t, then the null solution of system (26.1) is uniformly stable.

§ 28. Differential inequalities in the complex domain. In this section
we will obtain an analogue of Theorem 15.1 in the case when CPk(Z)
(k = 1, 2, ... , n) are holomorphic functions of the complex variable Z

in a disk Iz- zol < y.
In order to apply here the theory of differential inequalities in the

real domain, we will have to consider real functions

Mk(t) = max ICPk(Z)1 for 0 ~. t < y.
Iz-zol=t

Therefore, we first prove a lemma on Dini's derivatives D_ Mk(t).

LEMMA 28.1. Let cp(z) be holomorphic in the disk

(28.1)

and put
Iz-zol < y

~7If(t)= maxlcp(z)1 for O~t<y.
Iz-zol=t

Then, to every t e (0, y) there is a 3 such that

(28.2)

(28.3)

(28.4)

13-zol = t,

M(t) = ICP(3)1 ,

D_ M(t) < ICP'(3)I .
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Proof. There exists, obviously, a 3 satisfying (28.2) and (28.3). Let

3 = Zo +te<i ,

where i is the imaginary unit, and take a sequence tv, 0 < t; < y, so that
t, < t, t.~t and

(28.5)

Put

li M(t,) - ~7J1(t) = D M()
~ t,-t - t.

3" = Zo+ t, e<i (v = 1, 2, ... ) .

Since, by the definition of M(t), there is

we get, by (28.3),

(28.6) M(t,)- M(t) = M (t.) -lcp(3) I~ lCP(3.)I-1CP(3)!
4-t 4-t 4-t

~ 1191(3,,)1-191(3)11 :::;; !91(3,)-CP(3)1 = !91(3,,)-CP(3)!.
[t,-tl It,-tl 3,,-3

Because of 3,,~3, relations (28.5) and (28.6) imply (28.4).

THEOREM 28.1. Suppose that I/> (z) = (91l(Z) , ... , 91n(Z)) is holomorphic in
the disk (28.1) and satisfies initial inequality

(28.7)

where H = (1]1l ... , 1]n), as well as differential inequalities

(28.8) ICPk(Z) I :::;; O'k(lz-zo!, II/>(z)1) (k = 1, 2, ... , n)

in (28.1), where O'k(t, Yll ... , Yn) are the right-hand sides of a co'rnparison
system of type I (see § 14).

Under these hypotheses we have

(28.9)

in the disk
(28.10) Iz-zol < min (y, ao(H)) ,

where lI(t; H) = (w1(t; H), ... , wn(t; H)) is the right-hand maximum solution
through (0, H) of the comparison system in the interval [0, ao(H)).

Proof. Put

Mk(t) = max ICPk(Z)! (k = 1, 2, ... , n), ~lf(t) = (MI(t) , ... , Mn(t))
IZ-Zol~t

for 0 ~ t < y. The functions Mk(t) are continuous and satisfy, by (28.7),
initial inequalities

(28.11) 11£(0) ~ H .
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By Lemma 28.1, for any t e (0, 1') there is a 3k such that

(28.12) 13k-Zol = t, .Mk(t) = l<J?k(3k) I , D_ -'.7JiIk(t ) ~ I<J?k(3k) I

(k=1,2, ... ,n).
Hence, by (28.8), we have

(28.13) D_Mk(t) ~ I<J?k(3k) I ~ O"k(13k-Zol, 1et>(3k)1) (k = 1,2, ... , n).

Further, by the definition of .Llih(t) and by (28.12), the following
inequalities hold true (see § 4):

k

1et>(3k)1 ~ M(t) (k = 1,2, ... ,11,).

Therefore, in view of condition 'V+ (see § 4), we have

(28.14)

Inequalities (28.13) and (28.14) imply

(28.15)

in the interval (0, y). From (28.11) and (28.15) it follows, by Theorem 9.3,
that

(28.16) M(t) ~ Q(t; H)

(29.1)

in the interval 0 ~. t < min (1', ao(H)); but inequalities (28.16) are equiv
alent with (28.9) in the disk (28.10), which completes the proof.

§ 29. Estimates of the solution and of its radius of convergence for
differential equations in the complex domain. This paragraph deals with
an analogue of Theorem 23.1 in the complex domain (see [58]). To start
with, we state an analogue of Theorem 7.3, which is easily proved by
the method of successive approximations.

THEOREM 29.1. Let the right-hand sides of the system

dZkdz = fk(z, zll ... , zn) (k = 1,2, ... , n)

be analytic functions of 11, + 1 complex variables (z, zll , zn) in the domain

(29.2) IZ-3ol<h, IZk-3kl<h' (k=1,2, ,n)

and suppose that in (29.2)

(29.3) l/k(z, Z)I ~ M (k = 1,2, ... ,11,).

Under these assumptions the unique solution Z (z) = (Zl(Z), ... , Zn(Z))
of system (29.1), satisfying initial conditions

(29.4)
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is holomorphic in the disk

(29.5) IZ-301 < min(h' ';;).

THEOREM 29.2. Suppose that the right-hand members !k(z, Zu ... , Zn)
of system (29.1) are analytic junctions in the complex domain

D: Iz-zol < 1', IZk-hl < rk (k = 1,2, ... , n)

and satisfy the inequalities

(29.6) Ih(z, Z)\ < Gk(lz-zol, IZ-ZoD (k = 1, 2, ... , '11),

where Zo = (Zl' ... , Zn) and Gk(t, Yu ... , Yn) are the right-hand sides oj
a comparison system oi type I (see § 14). Denote by Q(t; H) = (WI(t; H), ...

... , wn(t; H)) its right-hand maximum solution through (0, H) = (0,111' ... , 'fln),
defined in the interval [0, ao(H)). Suppose that Z (z) = (Zl(Z) , ... , Zn(Z)) is
a 8Olution oj system (29.1) satisfying initial inequality

(29.7)

sohere R = (ru ... , rn). Denote by ik the least root of the equat-ion in t

Wk(t; H) = rk

if such a root exists in the interval (0, ao); if it does not exist, put t» = + 00.

Under these hypotheses the solutio« Z (z) is holomorpkic in the disk

(29.8) [Z-Zol < 1'0 = min(r, C!o, tu ... , tn)

and satisfies thm'e the inequalities

(29.9)

Proof. Let

(29.10)

be the largest disk in which the solution Z (z) is holomorphic and put

<P (z) = (9?l(Z), ... , 9?n(Z)) = (Zl(Z) - Zl' ..., zn(z)- Zn) •

The function <P(z) is holomorphic in the disk (29.10) and, by (29.7),
satisfies initial inequality (28.7). By (29.6), we have in (29.10)

19?k(Z) I = Iz,,(z)1 = l/k(z, Z(x))1 ~ Gk(lz-zol, IZ(z)-Zol)

= Gk(lz- zol, 1<P(z)1) (k = 1,2, ... , '11) •

Hence, by Theorem 28.1, inequalities (28.9) are satisfied in the
disk (28.10) and consequently inequalities (29.9) hold true in the
disk (28.10). Therefore, to complete the proof it remains to show that
"0 < y. Suppose the contrary is true, i.e. 1'0> y; then y ( (0, ao) and, by
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the definition of tk, we have Wk(Y; H) < r» (k = 1,2, ... ,11,). Choose 1", b
and b' so that
(29.11)

(29.12)

I' < 1" < t'o,

Wk(YiH)~b<b'<rk (k=1,2, ... ,n)

and consider the compact domain

D1 : Iz-zol<y', IZk-Zkl<.b' (k=1,2, ... ,n).

Obviously D1 C D and there is an M such that

(29.13)

Put

(29.14) 1"-1'
h=-2-'

(k = 1, 2, ... , 11,) •

h' = b' -b
2

and choose tl > 0 such that

(29.15) tl < 1', y-tl < min(h' ':;).

Let 3 = zo+yei ; be an arbitrary point of the circle Jz-zol = I'
and put 30 = Zo + tlei;, 3k = zk(30) (k = 1, 2, ... , n). Since inequalities (29.9)
hold true in the disk (28.10) and since (! < I' < ao, we have, by (29.12),

(29.16) 13k-Zkl = IZk(30)-Zkl <. wk(130-zo/i H)

= Wk«(!; H) < wk(Yi H)::( b (k = 1,2, ... , n).

Consider the domain

D2 : IZ-3ol<h, IZk-3k!<h' (k=1,2, ... ,n),

with hand h' defined by formulas (29.14). We claim that D 2 C D l • Indeed,
by (29.11), (29.12), (29.15) and (29.16), we have

IZ-30! < h=?lz-zol < IZ-301+130- zol < h+tl

= 1" - I' + (! < 1" - I' + I' = 1" + I' < y'
222

IZk-3kl < h' =? IZk-Zkl ~ IZk-3kl + /3k-Zkl < h' +b

= b' - b+b = b' +b < b' .
2 2

Therefore, by (29.13),

l/k(z, Z) I ::( M in D 2

and, by Theorem 29.1, the unique solution "Pk(Z) (k = 1,2, ... ,11,) of
system (29.1), satisfying initial conditions

(29.17) 'ljJk(30) = 3k = zk(30) (k = 1,2, ... , n),



(30.1)
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is holomorphic in the disk (29.5). We claim that the last disk contains
the point 3 = 150 +yei". Indeed, by (29.15),

13-301 = y-e < min(h' J~;);

but, in view of (29.17) and of the uniqueness of the solution of the Oauchy
problem, we have

lfJk(Z) = Zk(Z) (k = 1, 2, ... , n)

in the intersection of the disk (29.5) and (29.10). That means that lfJk(Z}
is the analytic continuation of Zk(Z) in the neighborhood of the point
3 = 150 + yei". Hence, 3 being an arbitrary point of the circle 115- 1501
= y, it follows that Z(z) is holomorphic in a larger disk than (29.10),
contrary to the definition of the disk (29.10). This contradiction completes
the proof of the inequality ro~ y.

§ 30. Estimates of the difference between two solutions in the complex
domain. Here we prove an analogue of Theorem 24.1.

THEOREM 30.1. Let the right-hand sides of system (29.1) and of system

dZk ~
dz = !k(z, Zll ... , zn) (k = 1, 2, ... , n)

be analytic in an open reg'ion D and satisfy the inequalities

(30.2) l/k(z, Z)-h(z, Z)I ~ O'k(lz-zol, IZ-ZI) (k = 1, 2, ... , n),

where O'le(t, Y) are the right-hand members of a comparison system of type I
(see § 14). Suppose Z(z) = (Zl(Z), ... , z~(z)) and Z(z) = (zlz) , ... , Zn(z)) are
two solutions of system (29.1) and (30.1) respectively, holomorphic in a disk
115 - 1501 < Y and satisfying the initial inequality

(30.3) IZ(zo)-Z(zo)l ~ H ,

where H = ('fill ... , 1]n). Let D(t; H) = (ml(t; H), ... , mn(t; H)) be the right
kand maximum solution of the comparison system throuq]» (0, H), defined
in the interval [0, au).

Under these assumptions we have

(3004)

in the disk

(30.5)

IZ(z)- Z(z)I ~ D(lz-zol; H)

Proof. Put in the disk Iz-zol < y

tP(z) = (971(15), ... , 97n(Z)) = (Zl(Z) - Zl(Z) , ... , Zn(Z) - Zn(Z));
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then, by (30.2) and (30.3), we have

Ip,,(z) I = jz,,(z) - Zk(Z) I = Ih(z, Z (z») - fk(Z, Z(z») I< Gk(lz- zol, 14> (z)1)
(k = 1,2, ... ,11,)

and

Hence, by Theorem 28.1, inequalities (30A) hold true in the disk
(30.5).

To close this section we make the following remark. All the results
of § 26 are valid for systems (29.1) of ordinary differential equations in
the complex domain. Indeed, in our considerations in § 26 we used only
Theorems 23.1 and 24.1, while their analogues in the complex domain,
viz. Theorems 29.2 and 30.1, have just been proved in § 29 and § 30.

§ 31. Chaplygin method for ordinary differential equations. We consider
the differential equation
(31.1) u' = f(t, u)

with the initial condition

(31.2) u(O) = tto ,

where f (t, u) is continuous for 0 ,s:; t ,s:; a and arbitrary u, Suppose that
fu(t, u) is continuous in (t, u). Given an arbitrary continuous function
p (t), t E [0, a], we write down the equation

(31.3) u' = f(t, p(t») +fu(t, p(t») (u-p(t») == ~(t, U; p).

The right-hand side of this equation is a linear approximation of
that of (31.1). This is nothing else but the analogue of Newton's method
known for numerical equations. Like in this classical case, we need some
a priori bounds for solutions. To begin with we introduce the following
definition:

DEFINITION. Let the function p(t) (1jJ(t» be differentiable in the
interval [0, a]. We say that p(t) (1jJ(t)) is a lower (tlppe'r) function if
p'(t) ,s:; f (t, p(t»), t E [0, a] (1jJ'(t):;;:: f(t, 1jJ(t»)), p(O) = U o (tp(O) = uo)'

Notice now that if fu(t, u) is continuous, then the Oauchy problem
(31.1), (31.2) has the uniqueness property. Denote its unique solution
by u (t). It follows then from Theorem 9.5 and from the classical conti
nuation procedure (see Theorem 7.1) that the following proposition
holds true:

PROPOSITION 31.1. Let f(t, u), fu(t, u) be continuous and Sttppose that
there exist an upper function 1jJ(t) and a lower one p(t). Then the ,unique
solution u(t) of (31.1), (31.2) exists all ove1· the interval [0, a] and p(t)

,s:; u (t) < 1jJ (t) for 0 < t ,s:; a.
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EXAMPLE. Suppose that

-A\ul-B < I(t, u) < Alul +B.

We can take !pet) as the solution of

u' = -Alul-B, !prO) = Uo

and "P(t) as the solution of

u' = Alul +B, "P(O) = Uo '
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Besides the linear approximation of type (31.3) we can approximate
equation (31.1) by the equation

, - f(t, !pet)) - I(t, "P(t))
1t = 15 (t, 'U; !p, "P) == f (t, !p (t)) + !p (t) _ "P (t) (1t -!p (t))

provided that !pet) < 'IjJ(t). If !p(t) = 'IjJ(t), then we put

;5(t, u;!p, 'IjJ) = fit, !pet)) +fu(t, !p(t))(u-!p(t)) .

We say that the couple (!p, 'IjJ) is admissible if rp(t) is a lower function
and "P(t) is an upper function.

In what follows we deal with the method originated by Chaplygin
in [6] and developed by Lusin [20J. The first theorem is the following one:

THEOREM 31.1. Suppose that the couple (!p, 'IjJ) is admissible. Let f (t, u)
and fu(t, u) be contin1wus and suppose that lu(t, u) increases in u.

Define now: ~(t) = the 80lu,tion of u' = ~(t, U; !p) such that ~(O) = uo,
!pet) = the soltttion of u' = b(t, 16; !p, 'IjJ) such that Vi(O) = Uo'

Then (~, Vi) is an admissible couple and

rp(t) < ~(t) < u(t) <. Vi(t) < 'IjJ(t) for 0 < t < a .

Proof. The functions ~,Vi are the solutions of linear equations.
Hence they are defined all over the interval [0, «]. We have !p'(t) < f(t, !pet))

= Q(t, rp(t); rp), !p(O) = Uo = ~(O) and ~'(t) = ~(t, ~(t); !p). It follows then
from Theorem 9.5 that

(31.4) rp (t) < ~(t) .

On the other hand, the function f(t, u) is convex in 11. Renee
~'(t) = Q(t, !pet); rp) = f(t, !pet)) +fu(t, rp(t))(~(t)-!p(t))<.f(t,9i(t)). We see
that g5(t) is a lower function and consequently, by Proposition 31.1,
ip (t) ~ u (t).

Notice now that

J(t, 'IjJ(t); !p, 'IjJ) = I(t, 'IjJ(t)) .
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But 'ljJ(t) is an upper function. Hence tp'(t);;:: fit, 'ljJ(t)) and conse
quently

'ljJ'(t) ;;:: ~ (t, 'ljJ(t); cP, 'ljJ) •

Since 'ljJ(O) = tji(O) = uo, Theorem 9.5 applies and we get tji(t) <;. 'ljJ(t).
Observe that J(t, <p(t); cP, 'ljJ) = l(t, cp(t)) ;> cp'(t) and cp(O) = tj!(0). By Theo
rem 9.5, we get therefore cp(t) ~ tji(t). This last inequality together with
the convexity of f(t, u) in u proves that tji'(t) = ~(t, tji(t); tp, 'ljJ) ;;:: fit, tji(t)) ,
i.e. tji(t) is an upper function. It follows then that u(t) ~. tj!(t) which com
pletes the proof.

The above theorem defines the transformation (cp, 'ljJ)-+(;P, tji). We
denote this transformation by 0 and thus get (;p, tji) = O(cp, 'ljJ). Moreover,
Theorem 31.1 shows that 0 maps admissible couples on admissible ones.
If we start with an admissible couple (CPo, 'ljJo), then the sequence (CPn+l' 'ljJn+l}
= 0 (cpn, 'ljJn) is well defined. It consists of admissible couples or more
precisely the following conditions hold true:

(31.5) cpn(O) = u(O) = 'ljJn(O) = Uo,

(31.6) cp~(t) <;. l(t, CPn(t)) ,

(31.7) 'ljJ~(t) ;> l(t, 'ljJu(t)) ,

(31.8) cpn(t) <;. CPn+l(t) ~ u(t) ~ 'ljJn+l(t) ~ 'ljJn(t) ,

(31.9) Ip~(t) = Q(t, Ipn(t); CPn-l) ,

(31.10) 'ljJ~(t) = bit, 'ljJn(t); cpn-I, 'ljJn-l) •

The sequence (cpn, 'ljJn) is called the Ohaplygin sequence.
Next we prove
THEOREM 31.2. Under the assumptions of Theorem 31.1, if (cp, 'ljJ}

is an admissible couple, the Ohaplygin sequence

(CPo, 'ljJo) = (cp, 'ljJ), (CPn+l' 'ljJn+l) = O(cpn, tpn)

is uniformly convergent to u(t) on [0, a].

Proof. It follows from (31.8) that the sequences {CPn(t)} and {'ljJn(t)}
are uniformly bounded on [0, u], Let

max {ICPn(t)1 , l'ljJn(t)l} ~ K < + 00

for n = 0, 1, 2, ... , 0 ~ t ~ a; then

Icp~(t)1 ~ If(t, Ipn-l(t)) I+ 11u(t, Ipn-l(t)) I(ICPn(t)! + !CPn-l(t)l) ,

1'ljJ~(t)1 <;. If(t, Ipn-l(t)) I+ Ifu(t, On(t)j! (l'ljJn(t) I+ \lpn-l(t)\) ,

where



then

\Vrite
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R = max { sup I/(t, 'u)1 , sup I/u(t, u)I};
o,;;;;t';;;;u,lul,;;;;K o,;;;;t';;;;u,lul,;;;;K
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Ilp~(t)1 ~ R+2RK , 11p~(t)1 ~ R+2RK

and consequently lpn(t) and "Pn(t) are equicontinuous on [0, a]. But, these
sequences are equibounded on [0, a]. By Arzela's theorem both of them
have uniformly convergent subsequences. Since both are monotonic,
they must be uniformly convergent. We will show that both limit func
tions are equal to the unique solution u(t) of the problem (31.1), (31.2).
Indeed, we have

Hence
t u

!lpn(t)- Uo- Jf (T, lpn-l(T)) dTI ~ R J ITn('r)- f{n-l(')! ds ,
o 0

The right-hand side of the last inequality tends to zero. It follows
that lim lpn is the (unique) solution of problem (31.1), (31.2) and con-

n->oo

sequently u(t) = lim lpn(t).
n.....oo

Write v(t) = lim tpn(t). It follows from (31.10) and from the definition
n.....oo

of ~ that

Itp~(t) - t (t, lpn-l(t)) I< R Itpn(t) -lpn-l(t)1 •

The integration and the equalities tpn(O) = U o = lpn(O) give us

t

j"Pn(t) - Uo- J1(" 9?n-l(')) dTI ~ R J!1pn(T) -lpn-l(T) IdT •
o 0

The limit passage in this inequality and the fact that u(t) = lim lpn(t)
n .....oo

satisfies
t

u(t) = uo+Jf{T, u(T))dT
o

imply that
t

Iv(t)- u(t)1 < R JIV(T)- u(T)ldT.
o

By theorem on integral inequalities (see § 22), we get jv(t)-u(t)1 = 0,
i.e. v(t) = u(t), as was to be proved.

Following Lusin we will prove
THEOREM 31.3. Suppose that luu(t, u) exists, is bounded and luu(t, u) ~ 0

in D = {(t, u): 0 < t ..~ a, lpo(t) ~ u < tpo(t)}.
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Let (To,1J!o) be an admissible couple and write

1
0----

- 2HaeK a '

where K = sup Itu(t, ~t)l, H = sup Ituu(t, u)l.
D D

Assulne that 0 ~ 1J!o(t) - To( t) ~ O. Then, t01' the Ohaplygin sequence

(31.11)

and consequently, by (31.8),

l~t(t);-Tn(t)1 ~ :~ ,
20

IU(t)-1J!n(t)1 ~ 22n •

Proof. (31.11) holds for n = O. Let it hold for some 11. It follows
from the definition of Pn+l, 1J!n+1 that

1J!~+1(t)-P~+l(t)= tuft, P)(1J'n+1(t)-Tn+l(t))-+

+tu(t, p) (Pn+l(t) - Pn(t)) - tu(t, Pn(t)) (lpn+l(t) - Ipn(t)) ,
where
(31.13)

On the other hand,

(31.14) tuft, p)-Iu(t, Ipn(t)) = luu(t, q)(P-Tn(t)) ,

where Ipn(t) ~ q ~ p, But

Ilu(t, p)1 ~ K, Ituu(t, q)1 ~ H.

It follows from (31.13) and from (31.14) that

(31.15) 11J!~+l(t)-Ip~+l(t)I

~ K I 1J!n+l(t) -Ipn+1(t) 1 +HIp - Ipn(t) Illpn+l(t) - Ipn(t) I •

But Ip-Ipn(t)1 ~ l1J!n(t)-Pn(t)1 by (31.13). Notice that

Ipn(t) ~ Ipn+l(t) ~ u(t) ~ 1J!n(t);
hence

It follows from (31.15) and from the above inequalities that

'Ye have assumed that
20

l1J!n(t)-Ipn(t)1 ~ 22n •
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We obtain, therefore,

11j!~+1(t)-tp~+1(t)1 ~ KI1j!n+l(t)-tpn+1(t)'1 +H~:~:

and consequently, by Theorem 15.1 when applied to 1j!n+l(t)-tpn+l(t),

Now
2aC2 22

22n+ l = 22H2a2e2Ka22n+1

and
t

JeK(t-s)ds ~ aeKa •

o

We get, therefore,

Let us consider now the system
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(31.16) yi = Mt, Yl1 •.. , Yn) (i = 1, 2, ... , n)

together with initial conditions

(31.17)

We assume that ft(t, Yl1 ... , Yn) are defined on [0, a] X B", In the
vector form (31.16) and (31.17) may be written as

(31.18) y' = F(t, Y), YeO) = Y.
The vector-valued function <P(t) is called lower if

<1>(0) = t, <P'(t) <-F(t, <P(t)) (1) on [0, a] .

The definition of an upper function is obvious.
Suppose now that ft have continuous derivatives a/doYj (i, j = 1,

2, ... , n). We write down a linear system in the vector form

(31.19) Y' = F(t, pet)) +F~(t, pet)) (Y -pet)) ~ G(t, Y; P),

where P y stands for the matrix {o/tloYJ} and pet) is continuous vector
valued function.

Let us introduce the following condition:

(31.20) F(t, U) +Fy(t , U)(V - U) ~ pet, V) for r ~ F .

(1) For the meaning of the ineqnality sign, see § 4.
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Suppose now that fi satisfy condition W+ (see § 4) and let the solu
tion Yet) of (31.18) exist all over [0, a]. It follows from Theorem 9.3 that
if lP(t) is lower, then lP(t) ::::; Y (t) on [0, a]. On the other hand, given a vector
function pet), continuous on [0, a], we can find a unique solution pet)
of (31.19) such that P(O) = Y. The system (31.19) is linear. Hence pet)
exists en the whole interval [0, a]. We have thus the transformation
P ~ lji; formally ljJ = 0 (P). The question is whether lji is lower function
if P is a lower one. We will prove

THEOREM 31.4. Suppose that f i are of class 0 1 and satisfy condition W +
and let Yet) be the solution of (31.18) existing on [0, a]. Let pet, Y) satisfy
(31.20) and let lP(t) be lower. Then P = O(lP) is lower and

lP(t)·:::;; P(t):::;; Yet) on [0, a] .

Proof. Notice that since fi satisfy condition W +, then ofdoYj;?: 0
for i i= j. It fellows then that the right-hand sides of system (31.19)
satisfy condition W+ .

We have:

P'(t) = G(t, pet); lP), lP'(t)::::; F(t, lP(t)) = G(t, lP(t); lP), lP(O) = P(O) .

But G(t, Y; lP) satisfies condition W+. By Theorem 9.3 we get,
therefore, lP(t) ~ pet) and consequently, by (31.20),

P'(t) = G(t, pet); lP) ~F(t, pet)) .

Hence, pet) is lower what implies pet) ~ Yet).
The above theorem shows that the sequence

lPo = lP , lPn+I = 0 (lPn)

is well defined on [0, a] and lPn(t) :::;; lPn+I(t) :::;; Yet). This is the Chaplygin
sequence for a system of ordinary differential equations. It is easy to check
that <Pn(t) tends uniformly to Yet) on [0, a].

§ 32. Approximation of solutions of an ordinary differential equation in
a Banach space. Preceding sections concerned scalar differential equa
tions. We could get some estimates for absolute values by using differential
inequalities. It is of some interest to consider equation of form (31.1)
from the purely metric point of view. What we have in mind is the discus
sion of problem (31.1), (31.3) in Banach space, without any relation of
semi-order, which is the case of scalar equations.

To be more precise, we consider the equation

(32.1) x' = f (t, x) ,

where x and f(t, x) take on the values in a Banach space E, the derivative x'
being taken in the strong sense.



§ 32. Approximation of solution in a Banach space 97

We add the initial condition

(32.2) x(O) = xo•
The elements of E will be denoted by x, y, ... The functions of the

real variable t with values in E are denoted by x(t), yet), ... ; Ilxll stands
for the norm of x. We will work under the assumption that f(t, x) is defined
for 0 ~ t :::;; a and arbitrary x. In what follows we suppose that for every
fixed t the function f(t, x) is Frechet differentiable in x to fx(t, x) (see [21J,
p. 300). fx(t, x) is a linear, bounded operator mapping E into E. We
assume that fx(t, x) is strongly continuous in (t, x), i.e. if tp--+t, Xp--+X
(strongly), then

fx(tp, xp)z--+fx(t, x)z

strongly for every z e E. Next we introduce the assumption:

(32.3) There is a function w(t, u) ~ 0, continuous for 0 ~ t·~ a, u ~ 0,
increasing in u and such that Ilfx(t, x)-fx(t, y)11 ~ w(t, IIx-YII).

Suppose now that the function xo(t) is continous on [0, aJ and write
the equation

(32.4) x' = f(t, xo(t)) +fx(t, xo(t)) (x-xo(t))

and
(32.5) x(O) = Xo •

Notice that fAt, x) being continuous, the condition (32.3) implies that
f(t, x) satisfies locally the Lipschitz condition in x. Moreover, we assume
that f(t, x) is continuous in (t, x). It follows then that (32.1), (32.2) is
locally solvable (see [21J, p. 291). By the same token (32.4), (32.5) has
a unique solution x(t), which by the linearity of (32.4) exists all over
the interval [0, c], Hence to every xo( · ) E OE[O, a] (1) there corresponds
an x(.) E OE[O, a] via the equation (32.4). Like in § 31 we have the trans
formation 0 defined by x = OXo and the sequence

Xn +1 = OXn

is well defined. It consists of functions Xn(') e OE[O, aJ and satisfying
the relations
(32.6)

(32.7)

xn(O) = Xo ,

X~+1(t) = f (t, Xn(t)) +fx(t, xn(t)) (Xn+l(t) - xn(t)) .

We first prove
THEOREM 32.1. Let f(t, x) satisfy (32.3) and suppose that Ilxn(t)11

~ ltl < + 00 for 0 ~ t ~ a (n = 0,1,2, ... ). Then {xn(t)} is uniformly
convergent on [0, a] to the solution x(t) of (32.1), (32.2).

(1) 0E[O' a] denotes here the space of E-valued functions strongly continuous
on [O,a].

J. Szarskl, Differential inequalities
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Proof. It follows from the continuity of Ix(t, 0) and from the Banach
Steinhaus principle that

sup Il/x(t, 0)11 = N < + 00 •
[O,a)

The difference zn(t) = Xn+l(t)-xn(t) satisfies the equation

(32.8) z~(t) = Ix(t, xn(t)) zn(t) +I (t, Xn(t)) - Ix(t, Xn-1(t))Zn-1(t) - I (t, Xn-1(t))

and
(32.9)

We need the estimate of

Zn(O) = (J •

To do this, notice that by the classical results of the theory of Banach
spaces there exists a linear, continuous functional ~ with norm II~II ~ 1
such that

L = ~[/(t, xn(t))-/(t, xn-1(t))-lx(t, Xn-1(t))Zn-1(t)]

= III (t, Xn(t)) - I (t, Xn-1(t)) - Ix(t, Xn-1(t))Zn-1(t) II .
Consider the real function

q;(T) = ~/(t, Xn-1(t)+T(Xn(t)-Xn-l(t))) .

By mean value theorem, there is 1} Ii: (0, 1) such that

q;(1)-q;(O) = ~/x(t, Xn-1(t)+1}Zn-1(t))Zl1-1(t).

'We apply now (32.3) and thus get

L = ~ [tx(t, Xn-1(t)+ l) Zl1 - 1(t))Zn-1(t) - Ix(t, Xn-1(t))Zn-1(t)]

~ Il/x(t, Xn-1(t)+ l)Zn- 1(t ))- Ix(t, Xn-1(t))1III zn- 1(t)11

~ ro(t, 1)1Izn-1(t)ll) Ilzn-l(t)ll.

But ro(t, u) increases in u, Hence

and consequently

The above estimates show that (32.3) implies

(32.10) III (t, xn(t)) - Ix(t, Xn-l(t))Zn-1(t) - I (t, Xn-1(t)) II
<; ro(t, \IZn-1(t)ll) Ilzn-1(t)\I, •
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K = N +max wet, M) < + 00.
[O,a]
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It follows from (32.8) and (32.10) that

Ilz~(t)1l < K Ilzn(t)11 +w(t, Il Zn-l(t) II) IIzn-l(t)11

and consequently, by (32.9) and by Theorem 15.4,

t

Ilzn(t)11 <JeK(t-S)W(8, Il zn- l(8)11) II zn- l(8)lld8 .
o

But Ilzn(t)11 < 2~ilf; hence,

(Ftt- 1

IIZn(t)Il·":;;2M(n_1)! (n=1,2, •.. ),

where
F = Rexp(Ra) , R = max(K, max wet, 2M)) .

[O,a]

We infer, by completeness of E, that {xn(t)} is uniformly convergent
011 [0, a] to a certain limit yet). By (32.6), (32.7),

t

Xn+l(t) = XO+J [f(8, Xn(8)) +f:l:(s, Xn(s)) (Xn+l(S)-Xn(S))] ds .
o

The limit passage gives us
t

y(t) = xo+Jf(s, y(s))ds,
o

which, by uniqueness of (32.1), (32.2), proves that yet) = x(t), q.e.d.
The Lusin estimates can be generalized as follows:

THEOREM 32.2. Suppose that the ass1tmptions of Theorem 32.1 hold
true and suppose that

Ilxl(t)-x(t)11 <wl(t) , 0":;; t ,,:;; a.

We define
t

Wn+I(t) = f eK(t-S)w(s, wn(S))wn(s)ds,
o

with
K = sup II f",(t , 0)11 +max wet, lJ'I) .

[O,a] [O,a]

Then IIxn(t)-x(t)II ~ Wn(t).

Proof. Let cpn(t) = Ilxn(t)-x(t)ll. We have

x'(t) = f(t, x(t))

7*
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and, by (32.7),

[xn(t)-x(t)]' = fx(t, Xn-l(t)) [xn(t)-x(t)] +

+fx(t, Xn-l(t)j[X(t)-Xn_l(t)] + [f(t, xn-l(t))-f(t, x(t))].

Condition (32.3) implies that (see the proof of (32.10))

D-lfJn(t) ~ KlfJn(t) +w(t, IfJn-l(t))lfJn-l(t) .

Notice that IfJn(O) = O. Hence (see Example 9.1)

t

IfJn(t) ~ JeK(t-s)w(s, IfJn-l(s))lfJn-l(s)ds.
o

Now, an easy induction and the monotonicity of wet, u) in u proves
our assertion.

Remark. If w = Qu (Q = const), then

20
Ilxn(t) - x(t)11 :s;; 22n

if
1

w1(t ) ~ ')Q (Q ) = O.
OJ aexp a

The function Wl may be chosen in many ways, by using the a priori
estimates (see r28J). The most simple choice is WI = 2M.

The question of boundedness plays an essential role in Theorem 32.1.
We will give a certain method of evaluation of the interval of equibounded
ness for the sequence {xn(t)}. We start with a lemma which is due to T. Wa
zewski,

LEMMA 32.1. Suppose that the function aCt, u, v) ;::: 0 is continuous
for 0 ~ t :s;;. a; u,v;::: O. We assume that aCt, u, v) increases in v. Suppose
that for 1];::: 0 the right-hand maximu'l'n solution w(t,1]) (w(O, 1]) = 1]) of
the equation

u' = o it; u , u)

exists on [0, a]. Under the above assumptions the right-hand maximum
solution wet, 'YJ) (w(O, 1]) = 'YJ) of the equation

u' = yet, u) == a(t, u, wet, 1]))

exists on [0, a] and

wet, 1]) == wet, 'YJ) •

Proof. The maximum solution wet, 'YJ) exists in a right-hand neigh
borhood of zero. Suppose that

(32.12) wet, 'YJ) < wet, 1))
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for some t within the common part of the existence intervals of considered
maximum solutions. The monotonicity of aft, u, v) in v implies then

(32.13) w'(t, 'f)) = a(t, w(t, 'f)), w(t, 'f))).~ O'(t, wet, rJ), wet, rJ))

for such t. Hence, (32.12) implies (32.13) what, by Theorem 11.1, proves
that w(t, rJ) ~ wet, rJ) in the common existence interval. On the other
hand, w(t, rJ) exists on [0, a], aft, tt, v) ~ °and wet, 1)) can be continued
to the boundary (see § 9). It follows then that w(t, rJ) exists all over the
interval [0, a]. Previous arguments apply and we conclude that w(t, rJ)
~ wet, rJ) on [0, a]. Notice now that w'(t, rJ) = a(t, w(t, rJ), w(t, 'f))) =

y(t, wet, rJ)). Hence wet, rJ) ~ wet, rJ) and consequently

wet, 'f)) = wet, 17) on [0, a},

which completes the proof.
Suppose now that the functions F(t) and G(t) are continuous on the

interval [0, a] and

llt(t, xo)11 ~F(t), Ilfx(t, xo)11 ~ G(t) on [0, a].

Let us take the equation

u' = 3G(t)u +3w(t, u)u +F(t)

and denote by q;(t) its right-hand maximum solution such that rp(O) = O.
Let us assume that q;(t) exists on the interval [0, a]. Next we prove the
following theorem:

THEOREM 32.3. Let (32.3) besatisfied and wppose that X(t)€OE[O,a] and

x(O) = xo , Ilx(t)-xoll ~ q;(t) .

Suppose that yet) satisfies

y'(t) = l(t, x(t)) + fx(t, x(t)) (y(t)-x(t)) ,

yeO) = Xo •

Then Ily (t) - xoll ~ rp (t) on [0, a].

Proof. We have

[y (t) - xo]' = f (t, x(t)) + f x(t, x(t)) [y (t) - xo]+ fx(t, x(t)) [xo- x(t)]

and
IIfx(t, x(t))(y(t)-xo))11 ~ [G(t) +w (t, q;(t))]lly(t)-xoll ,

Il/x(t, x (t)) (xo-x(t)) +1(t, x(t)) II ~. 2w(t, q;(t))q;(t) + 2G(t)rp(t) +F(t) •

Hence,

II[y(t)-xoJ'11 ~ [G(t) +w(t, q;(t))] Ily(t)-xoll +

+2w(t, !p(t))rp(t) +2G(t)rp(t) +F(t) on [0, a]
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and, by Theorem 15.4,

(32.14) Ily(t)-xoll ~ 1p(t) ,

where 1p(0) = 0 and 1p(t) is the right-hand maximum solution of

u' = [G(t)+w(t, cp(t))]u+ [2w(t, cp(t)) +2G(t)]cp(t)+F(t).

By Lemma 32.1, applied for

a(t, u, v) = 2w(t, v)v+2G(t)v+F(t)+[w(t, v)+G(t)]u

we get 1p(t) = cp(t) which, by (32.14), completes the proof.
It follows from the above theorem that if Xo is given, then [0, a] is

determined by xo, j(t, x) and by w(t, u). On the interval [0, a] we get then

Ilmn(t)-xoll ~ cp(t)

if xo(t) == Xo. Hence {mn(t)} is equibounded on [0, a]. We may then evaluate
a priori the interval of equiboundedness with a special choice of constant
initial function mo(t) == mo.



CHAPTER VI

SOME AUXILIARY THEOREMS

The theory of ordinary differential inequalities, developed in Chap
ter IV, enables us to get estimates for functions of one variable. Now,
in the subsequent chapters :we are going to deal with applications of
ordinary differential inequalities to partial differential equations. Since
solutions of partial differential equations are functions of several variables,
we will have to associate with a given function p(t, X) = p(t, Xu ..• , xn)

a function M(t) of one variable only, so that p(t, X) ~ M(t). In this way,
an estimate from above obtained for the function M(t), by means of
ordinary differential inequalities, will yield automatically an estimate
from above for the function p (t, X).

§ 33. Maximum of a continuous function of n + 1 variables on n-dimen
sional planes. To begin with, we introduce the definition of a region of
special type.

Region of type C. A region D in the space of points (t, Xu ••. , x n )

will be called region of type C if the following conditions are satisfied:

(a) D is open, contained in the zone to < t < to +T < + 00, and the
intersection of the closure of D with any closed zone to ~ t ~ t1 < to +T
is bounded.

(b) The projection Stl on the space (xu .." xn ) of the intersection of
the closure of D with the plane t = t1 is, for any t1 " [to, to +T), non-empty.

(c) The point (t, X) being arbitrarily fixed in the closure of D, to
every sequence t, such that t, " [to, to +T) and t. ---*t, there is a sequence X.,
so that X." St. and X. ---*X.

EXAMPLES 33.1. (IX) Let G be an open, bounded region in the space
(xu ... , xn ). Then the topological product D = (to, to +1') X G is a region
of type C.

(~) Another example of a region of type C is a pyramid defined
by the inequalities

to < t < to+T, iXt-:hl ~ at-L(t-tg ) (i == 1, 2, ... , n),

where 0 ~L < + 00, 0 < at < + 00 and T~· min (ai/L).
i
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(y) Put
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D1 = {(t, X): 0 < t < 1 , 0 < X < 2} ,

D 2 = {(t, X): 1 :0( t < 2, 0 < X < 1} ,

D = D1 V D 2 •

Then D is not a region of type C.
In fact, condition (c) is not satisfied, for example, at the point (l,n

THEOREM 33.1. Let lp(t, X) = lp(t, Xu ... , Xn) be continuous in the
closure of a region D of type C and pu;

M(t) = max lp(t, X) for to ~ t < to +T .
XESt

Then

1° For every t* E [to, to +T) there is a point x* € St' such that

(33.1) .11£ (t*) = lp (t*, X*) .

2° If (33.1) holds true for an interior point (t*, X*) ED and if lpt(t*, X*)
exists, then

(33.2) D- M (t*) :0( lpt(t* , X*) .

3° M(t) is continuous in the interval [to, to+T).

Proof. Because of conditions (a) and (b), satisfied by a region of
type C, St is a non-empty, compact set for any t E [to, to +T); hence, by
the continuity of lp(t, X), follows 1°.

Now, let (33.1) hold true for an interior point (t*, X*) ED and suppose
that lpt(t*, X*) exists. Choose a sequence t., so that t. < t*, t, -+ t* and

(33.3) D- lJct (t*) = lim M (t.) -1tf (t*) .
.-+00 t.- t

The point (t* , X*) being interior we have (t., X*) E D for y sufficiently
large and

(33.4) lim lp(t., X*)-lp(t*, X*) = (t* X*)
t - t* lpt,·

"-..00 "

On the other hand, by the definition of .11I(t) and by (33.1), for v
sufficiently large we have

(33.5)
1J!I(t.l- M(t*) :s::: lp(t., X*)-Ip(t*, X*)

t, - t* '" t, - t* .

From (33.3), (33.4) and (33.5) follows (33.2) and thus 2° is proved.
Next, fix t E [to, to +T) and take an arbitrary sequence t; E [to, to +T)
such that t; -+t.
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To prove 3°, it is sufficient to show that there is a subsequence tv
"'such that

(33.6) M(tv )~M(t) •
"

By 1°, there are Xv € Sty and X € St such that

(33.7)

By condition (a), there exists a subsequence Xy such that Xv ----*X € St.
" "Hence, by the continuity of q; (t, X), we get

(33.8) q;(t. ,Xv )----*q;(t, X) .
" "

In view of (33.7) and (33.8), relation (33.6) will be proved if we show
that

(33.9) q;(t, X) = M(t) .

By condition (c), since (t, X) € Jj and t; ----*t, there is a sequence Xv
" "'such that Xv e St and Xv ~X. Because of continuity we have, by (33.7),

p v" "
(33.10) q;(tv ,Xy )~q;(t, X) = M(t) .

" "
Further, by the definition of M(t) and by (33.7), we get

q; (tv ,Xv ) ~ M (tv) = q; (tv , Xv ) .
"" " ""

Hence, from (33.8) and (33.10) it follows that

M(t) ~ q;(t, X) .

The last inequality together with the obvious inequality (by the
definition of M (t))

M(t) ~ q;(t, X)

yields (33.9), which completes the proof.

Remark 33.1. Condition (c) is essential for the continuity of func
tion M (t) in Theorem 33.1. Indeed, take for D the region from the
Example 33.1, (y) and put

q;(t,X)={ 0
x-I

for

for
0~t~2, O~x~l,

O~t~l, l<x~2.

Then q;(t, x) is continuous in the closure of D, but M(t) is discon
tinuous for t = 1 since obviously we have M(t) = 1 for 0 ~ t ~.I and
M(t) = 0 for 1 < t ~ 2.

Remark 33.2. It is easily seen that if in point 2° of Theorem 33.1
the derivative q;t(t*, X*) does not exist, then (33.2) holds true with q;t
replaced by Dini's derivative D- with respect to i.
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§ 34. Maximum of the absolute value of functions of n +1 variables on
n dimensional planes. We prove

THEOREM 34.1. Let the functions (/Jl(t, X) (l = 1,2, ... , k) be continuous
in the closure of a region D of type C (see § 33). Put

W(t) = max {max \{j1z(t , X)i} ,
Z XESt

J11(t ) = max (/Jl(t, X) (l = 1,2, ... , k),
XESt

Nl(t) = max (-(/Jl(t, X)) (l = 1,2, ... , k).
XESt

Under these assumptions the function W (t) is continuous on the interval
[to, to+T) and [or every t € [to, to+T) there is an index j and a point X e St
such that either

(34.1)

or
(34.2)

Relations (34.1) or (34.2) are true with D" replaced by ir.
Proof. Oontinuity of W(t) follows from Theorem 33.1, 3°. Fix

a t e [to, to +T) and take a sequence t, such that t; < t, t; -+ t and

(34.3) n-W(t) = lim W(t.)- W(t) .
.-->00 t.- t

Obviously, for every 'J' there is an index j. and a point X. E St. such
that either
(34.4)

or
(34.5)

It is clear that for infinitely many indices 'J' we have either (34.4)
with the same index, say j, or (34.5). Taking, if necessary, a suitable
subsequence we may suppose that, for instance,

(34.6) W(t.) = ~7l1j(t.) = (j1j(t., X.) for 'J' = 1, 2, ...

Further taking, if necessary, another subsequence we may suppose
(by condition (a) of a region of type C) that

(34.7)

By (34.6), (34.7) and by the continuity of W(t), Mj(t) and (j1J(t, X),
we get
(34.8) W (t) = ~7l1j(t) = CfJJ{t, X) •
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On the other hand, from (34.3), (34.6) and (34.8) it follows that

D- W (t). = lim W if..)=W
t

(t) = lim J.l1j(t~)=;tlj(t) < D- Mj(t) .
v~oo tv "-+00 V

The last inequality together with (34.8) gives (34.1). For D+ the
proof is quite similar.

§ 35. Maximum of a continuous function of several variables on plane
sections of a pyramid. Here we get stronger results than those of Theo
rem 33.1, taking for the region D a pyramid and imposing stronger regula
rity requirements on the function g;(t, X).

THEOREM 35.1. Let g;(t, X) be continuous in the pyramid

(35.1) to < t < fo+T, IXt-Xtl ~ at-L(t-to) (i = 1,2 .... , n),

where 0 ~L < + 00, 0 < at < + 00 (I/nd T ~ min (adL). Put
i

.M(t) = max g;(t, X) for to~ t < to+T,
X£St

where Stl is the projection on (xu ... , xn ) of the intersection of the pyramid
(35.1) with the plane t = tl •

Under these assumptions,

10 For every t € (to, to +T) there is a point X e S7 suck that

(35.2) M(t) = g;(t:, X)
and the following implication holds true: if either

I. (t, X) is an interior point of the pyramid and the derivatives g;t(t, .i'),
g;x/i, X') (i = 1, 2, ... , n) exist,

or
II. (i', X) is a point on the side surface of the pyramid and fP(t, X) possesses

Stolz's differential at (t', X),
then

(35.3)
n

IT 21I(t) ~ fPi!, X)-L 2: !fPxt(t, X)I·
i=l

2° If, moreover, fPt(t, X) exists for to < t < to + e and is continuous
with respect to (t, X) for t = to, then there is a point X o € Sio such that

(35.4)

Proof. By Theorem 33.1, 1°, there is a point X e S7 such that (35.2)
holds true. Suppose first that I is true. Then, g; (l, X) attaining its maximum
at the interior point X and possessing there first order derivatives, we have

(35.5) fPxlt:, ~Y) = 0 (i = 1, 2, ... , n) .
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On the other hand, by Theorem 33.1, 2°, we get

(35.6)

Relations (35.5) and (35.6) imply (35.3).
Suppose now that II holds true; then, changing-if necessary-the

numbering of variables, we may assume that

(35.7) !
Xp-Xp = ap-L(t-to)
Xq-Xq = -aq+L(i:-to)

IXr-xrl < ar-L(t-to)

(p = 1, 2, , k) ,

(q = k+1, , k+l),

(r = k+l+1, ... , n).

Introduce the mapping

at(Xt- Xt)
t=t, 1]t= (i=1,2, ... ,n),

ai-L(t-to)

which transforms the pyramid (35.1) into the parallelepipede

Put in (35.8)

"P (t, H) = "P (t, 1]1l ... , 1]n)

(

0 1]l{al-L(t-to)) 0 1]n{an-L(t-to)))
= cp t, Xl + , ... , Xn+ .

a l an
Then

M(t) = max "P(t, H) ,
HESt

where Bel is the projection on (1]1' ... , 1]n) of the intersection of the paral
lelepipede (35.8) with the plane t = tl • Write

Then, by (35.7), we have

(35.9)

By our assumption that II holds true, cp(t, X) possesses Stolz's dif
ferential at the point (i:, X). Therefore, "Pli:, H) = "Pt(t, 'ifl' ... , 'ifn) exists
and
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whence, by (35.9),

(35.10)

vii, H) = cpli', X)-L 2; CPxii, X)+L 2; CPxlt, X)-L 2; ~: CPxl'i, X).
p a r

By an argument similar to that used in the proof of Theorem 33.1,
2°, we get
(35.11) u:Jll(t) ~ vii', H) .

Now, consider the function of one variable xp

in the interval

Since this function attains its maximum at the right-hand extremity
:Xp = xp +ap - L (i'- to) of the interval, we have

(35.12) CPxlf, X) ;): 0 .

In a similar way we obtain

(35.13)

From (31).10), (35.11), (35.12) and (35.13) follows (35.3). Thus part 1°
of our theorem is proved.

Suppose now that CPt is continuous for t = to' Take a sequence t.,
tv> to, tv-to such that

(35.14) u: M (to) = lim ]/1J!.) -]iiI (to)
v-+oo tv- to

and let M(t.) = cp(tv, Xv), where X. e Stv' Then we have

(35.15)

where to < tv < tv. We may suppose-taking, if necessary, a subsequence
that (tv, Xv)-(to, Xo), where .r, € Sio' Then, by the continuity of CPt
for t = to, we get

(35.16) lim cpta:, X.) = f{)t( to, X o) •
.-,>00

Relations (35.14), (35.15) and (35.16) imply (35.4).

Remark 35.1. It is not difficult to construct a counter-example
showing that continuity of CPt at to is essential for part 2° of Theorem 33.1.
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Remark 35.2. It is easy to check that if (t, X) is an interior point
of the pyramid and rpii, X) does not exist, then (35.3) holds true with
rplt:, X) replaced by Dini's derivative D- of rp with respect to t.

§ 36. Comparison systems with right-hand sides depending on parameters.
To close the present chapter we prove rather special theorems which
will be needed in Chapter VII.

THEOREM 36.1. Let the functions ai(t, V) = ai(t, V l1 ••• , vm) (i = 1,2, ...
... , m) be the right-hand members of a comparison system of type I (see § 14).
Denote by D(t; H) = (Wl(t; H), , wm(t; H») its right-hand maximum
solution through (0, H) = (0, rn»: , 1}m) in the interval [0, ao(H». Consider,
for an arbitrary A?:: 0, the comparison system of type I

dVi
SeA): di = AI1i(At, vl1 ... , Vm) (i = 1,2, ... ,m).

Under these hypotheses, D(At; H) is the 'Y'ight-hand maximum solution
of system SeA) through (0, H) in the interval

(36.1)

Proof. Observe that if Vet) = h(t) , ... , Vm(t») is any solution of

system S(l) through (0, H) in an interval [0, r), then Vet) = (V1(At) , ...
... , Vm(At») is obviously a solution of system SeA) through (0, H) in the
interval [0, riA). In particular, D(At; H) is a solution of system SeA)
through (0, H) in the interval (36.1). Renee, the theorem will be proved
if we show that for any solution V(t) of system SeA) through (0, H), defined
in an interval [0, y), we have

(36.2) Vet) ~ D(At; H) for 0 ~ t < min (y, ao(H)/A) .

(36.3)

For A = °it is trivial. Now let A> 0 and let Vet) be any such solution;
then V(t) = V(tIA) is a solution of system S(l) through (0, H), defined
in the interval [0, AY). Renee we have

Vet) ~ au, H) for °~ t < min (Ay, ao(H») ,

which is equivalent with (36.2).

THEOREM 36.2. Let I1(t, v) be the right-hand side of a comparison
equation of type II (see § 14). Then, for any A > 0, the equation

dv
dt = AI1(At, v)

is a comparison equation of type II.
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Proof. Let v(t) be any solution of (36.3) satisfying the condition

limv(t) = 0 .
1->0

Then, obviously, v(t) = V(tjA) is a solution of the comparison equation
of type II

dv
dt = aft, v)

and satisfies condition lim v(t) = O. Hence, v(t) == 0 and consequently
1->0

v(t) == 0, which completes the proof.
In a similar way we prove
THEOREM 36.3. Let a(t, v) be the right-hand member of a comparison

equation of type III (see § 14:). Then, tor any A> 0, equation (36.3) is a com
parison equation of type III.



CHAPTER VII

CAUCHY PROBLEM FOR FIRST ORDER PARTIAL DIFFERENTIAL
EQUATIONS

In this chapter we discuss a number of questions referring to the
Cauchy problem for systems of first order partial differential equations
of the form

i fi( 1 m i i )U x = X, Yu ... , Yn, U , ... , U , UYll ... , ttYn

with initial conditions

(i=1,2, ... ,m)

ui(XO' Yu ... , Yn) = /J,i(yu ... , Yn) (i = 1, 2, ... , m)

and, more generally, for overdetermined systems of the form

i fi( 1 m i i )tt X j = j Xl' ... , Xp , Yu ... , Yn, U , ... , U , UYll ... , UYn

(i=1,2, ... ,m; j=1,2, ... ,p)

with initial data

ui(:h, ... , xp, YI, ... , Yn) = f'i(yu ... , Yn) (i = 1,2, ... , m).

The above systems are of special hyperbolic type since each equation
contains first order derivatives of only one unknown function.

In particular, we will give applications of the theory of ordinary
differential inequalities to questions like: estimates of the solution and
of its domain of existence, estimates of the difference between two solu
tions, estimates of the error for an approximate solution, uniqueness
criteria and continuous dependence of the solution on initial data and
on the right-hand sides of the system.

§ 37. Comparison theorems for systems of partial differential inequalities.
In order to simplify formulation of subsequent theorems, we first
introduce the following definition.

A function u(X, Y) = u(xu ... , xp, Yu ... , Yn) will be called the func
tion of etas» ~ in a pyramid

p

.J; Ixr- xrl < y ,
r=l

p

IYk-Ykl :( ak-L.J; Ixr-xrl
r=l

(k=1,2, ... ,n),
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where 0 ~ L < + 00, 0 < ak < + 00, y ~ min (ak/L), if u(X, Y) is con-
k

tinuous in the pyramid, possesses Stolz's differential with regard to (X, Y)
on its side surface and has first derivatives with respect to Y and Stolz's
differential with regard to X in its interior.

If, moreover, the derivatives ux,(X, Y) (i = 1,2, ... , n) are continuous
with respect to (X, Y) for X = X o = (xu ... ,xp ) , then u(X, Y) will be
called the function of class ~o'

THEOREM 37.1. Let the functions U(x, Y) = (u1(x, Y), ... , um(x, Y))
be of class ~ in the pyramid

(37.1) Ix-xol < y, (k = 1,2, ... ,11,) ,

where 0 ~ L < + 00, 0 < ak < +00, y ~ min (ak/L). Stlppose the initial
k

inequalities

(37.2)

where H = (17u ... , 17m), and the differential inequalities

(37.3)
n

IU~1 ~ Gt([x-xol, IUI)+L l: IU~kl
k=1

(i=1,2, ... ,m)

are satisfied in the pyramid (37.1), where Gj(t, Vu ... , vm) (i = 1,2, ... , m)
are the right-hand members of a comparison system of type I (see § 14).
Let Q(t; H) = (Wl(t; H), ... , wm(t; H)) be its right-hand maximum solution
throuqh. (0, H) and assume it to be defined in the interval [0, ao).

Under these assumptions,

(37.4) Itu», Y)[ ~Q(lx-xol; H)

in the pyramid (37.1) for Ix-xol < min(y, ao).

Proof. Since the assumptions of our theorem are invariant under
the mapping ~ = -x+2xo, it is sufficient to prove (37.4) in the right
hand pyramid

(37.5) 0 ~ x-xo < ~ = min(y, ao) , IYk-Ykl ~ ak-L(x-xo)
(k=1,2, ... ,n).

Put, for 0 ~ t < b,

W(t) = max lui(xo+t, Y)I ,
Y~St

~(t) = max ui(xo+t, Y)
Y~St

Ni(t) = max (-ui(xo+t, Y)) ,
Y~S,

J. Szarski, Differential inequalities

(i=1,2 .... ,m)"
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where St is the projection on (Yll ... , Yn) of the intersection of the pyramid
(37.5) with the plane x = Xo+t. It is obvious that (37.4) in (37.5) is
equivalent with

(37.6) W(t):'(Wt(t;H) for t~[O,~) (i=1,2., ... ,m).

Now, we will prove (37.6) using the theory of ordinary differential
inequalities. By (37.2), we have

(37.7) W(O)~. H,

where W(t) = (W1(t) , ... , Wm(t)), and, by Theorem 34.1, Wi(t) are con
tinuous on [0, ~). By the same theorem, for every fixed j and for every
t ~ (0, ~), there is a point Y e St such that either

(37.8)

or

(37.9)

Fix a j and t ~ (O,~) and suppose that, for instance, relations (37.8)
hold true. By Theorem 35.1, 1°, we have

(37.10)
n

D" .Lrli(t):'( u~(xo+t, Y)-L}; IU~lc(XO+t, Y)i .
k=l

On the other hand, since in view of (37.8) and of the definition of
W(t) we have (see § 4)

i
W(xo+t, Y)I :'( W(t) ,

we get, by (37.3) and by condition W+ (see § 4) imposed on Gt(t, Y),

n

u~(xo+t, Y) :'( Gj(t, lU(xo+t, Y)I) +L }; IU~lc(XO+t, Y)I
k=l

n

~ Gj(t, W(t)) +L 1: IU~lc(XO +t, Y)! .
k=l

From (37.8), (37.10) and from the last inequality it follows that the
differential inequalities

are satisfied for every fixed j and t € (0, b). Hence, and by (37.7), we get
inequalities (37.6) in virtue of the first comparison theorem (see § 14).
This completes the proof.
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COROLLARY 37.1. If under the assumptions of Theorem 37.1 inequa
lities (37.3) are, in particular, linear

m n

IU~1 ~K 2: luil+L 2: lut!:1 +0 (K ~ 0, 0 ~ 0) (i = 1, 2, ... , m)
i=l k=l

(Haar's inequalities [11]) and if 'Y)i = 'Y) (i = 1, 2, ... , m), then we get

IenKlx-xol('Y)+~) - £
. nK nK

lut(x, Y)I ~

Olx-xol +'Y) for

K>O,

K=O.
(i=1,2, ... ,m)

in the pyramid (37.1).

THEOREM 37.2. Let the functions Ut», Y) = (u1(x, Y), ... , um(x, Y))
be of class ~ in the pyramid (37.1). Assume that

(37.11)

and that the inequalities

U(xo, Y) = 0

n

(37.12) IU~1 ~ a(lx-xol, max lUll) +L 2: lut!:1 (i = 1,2, ... , m)
I k=l

are satisfied in the pyramid (37.1) for x =f= xo, where aft, v) is the right
hand side of a comparison equation of type II (see § 14).

Under these hypotheses we have

tit». Y) == 0

in the pyramid (37.1).

Proof. Like in Theorem 37.1, it is sufficient to prove our theorem
in the right-hand pyramid

P+: 0 ~ x-xo < y, IYk-Ykl ~ ak-L(x-Xo) (k = 1,2, ... , n) .

Put, for 0 ~ t < y,

Wet) = max {max lul(xo+t, Y)I} ,
I YESt

~(t) = max ui(xo+ t, Y) ,
YES,

Ni(t) = max (-ui(xo+t, Y)) .
YESt

(i = 1, 2, ... , m)

Identities to be proved in the pyramid P + are obviously equivalent
with

(37.13) Wet) == 0 for t e [0, y) .

8*
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We will prove (37.13) using the second comparison theorem (see § 14).
By (37.11), we have

(37.14) W(O) = 0

and, by Theorem 34.1, W(t) is continuous on [0, y). By the same theorem,
for every t € (0, y) there is an index j and a point Y e 8/ such that either

(37.15)

or

(37.16) W(t) = Ni(t) = -ui(xo+t, Y), D_ W(t):'( D-Ni(t).

Suppose, for example, that for a t € (0, y) relations (37.16) hold true.
By Theorem 35.1, 1°, we have

(37.17)
n

irs'u;« -u~(xo+t, Y)-L); IU~J:(xo+t, Y)I .
k=l

Since, by (37.16),

-ui(xo+t, Y) = W(t) = maxlu1(xo+t, Y)\,
I

we get from (37.12)

(37.18)
n

-u~(xo+t, Y):'( a(t, W(t)) +L}; IU~k(XO+t, Y)I .
k~l

From (37.16), (37.17) and (37.18) it follows that the inequality

(37.19) D_W(t) ~ a(t, W(t))

is satisfied for any t e (0, y). Renee, by (37.14) and by the second com
parison theorem (see § 14), we conclude that W(t) ~ 0 in [0, y) and,
since obviously W(t) ~ 0, we finally obtain (37.13), which completes
the proof.

THEOREM 37.3. Let the functions Ut», Y) = (u1(x, Y), ... , um(x, Y))
be of class ~o in the pyramid (37.1). .Assume that

(37.20) U(xo, Y) = Ux(xo, Y) = 0,

where Ux(x, Y) = (u~(x, Y), ... , u:(x, Y)), and that the inequalities (37.12)
are satisfied in the pyramid (37.1) for x =1= xo, where aft, v) is the right
hand member of a comparison equation of type III (see § 14).

Under these assumptions we have

tu», Y) == 0
in the pyramid (37.1).

Proof. Again it is sufficient to prove the theorem in the right-hand
pyramid P +. With the notations in the proof of Theorem 37.2, identity
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U(X, Y) = 0 in P + is equivalent with (37.13). This time we will prove
(37.13) using the third comparison theorem (see § 14). By (37.20), we have

(37.21) W(O) = O.

Next, by Theorem 34.1, there is an index j such that either

(37.22)

or
(37.23)

Suppose, for instance, that (37.22) holds true. Then, by Theorem 35.1,
2°, there is a point Yo e So, such that

n+W(O) ~ tr ~7l[}(0) ~ u~(xo, Yo) .

Hence, by (37.20), it follows that

(37.24)

Now, like in Theorem 37.2, we prove that (37.19) is satisfied for
t € (0, y). Therefore, due to (37.21) and (37.24) we conclude, by the third
comparison theorem (see § 14), that Wet) ~ 0 for t € [0, y) and conse
quently (37.13) holds true, which completes the proof.

Remark 37.1. By Remark 35.2, all theorems of § 37 are true
without the requirement that u~ exist in the interior of the pyramid,
provided that u; be replaced by Dini's derivative D" of ui with regard to x.

Remark 37.2. All theorems of § 37 hold true if, instead of the
pyramid (37.1), we have the zone

(37.25) Ix-xol < y, Yll ... , Yn arbitrary,

provided that the functions ui(x, Y) be continuous and possess Stolz's
differential in (37.25), and in Theorem 37.3 the derivatives tl~(X, Y) be,
in addition, continuous for x = Xo'

Indeed, under these assumptions, all the hypotheses of theorems
in question are satisfied in any pyramid (37.1) with arbitrary finite ak,
and hence follows our remark.

§ 38. Comparison theorems for overdetermined systems of partial differen
tial inequalities. We prove

THEOREM 38.1. Let the functions U(X, Y) = (u1(X, Y), ... , um(X, Y»)

= (U1(X1, ..., Xp , Yll ... , Yn), ... , um(x
ll ... , Xp , Yll ... , Yn») be of class ~ (see

§ 37) in the pyramid

(38.1)
p

l: lXi-Xii < y,
}=1

p

IYk-llkl ~ ak- L 2: lXi-xii
}=1

(k=1,2, ... ,n),
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where 0 ~ L < + 00, 0 < ak < + 00, y ~ min (ak/L). Suppose that the
k

initial inequality

(38.2) IU(Xo, Y)I ~ H ,

where Xo = (X11 •••, xp ) , H = (1711 •.• , 17m), and the differential inequalities

p n

(38.3) IU~jl ~ a,(.r Ixr-xrl, lUI) +L.r IU~lcl
r=1 k=1

(i = 1, 2, ... , m; j = 1, 2, ... , p)

hold true in the pyramid (38.1), where the functions <1,(t, VI' ••• , Vm) are the
right-hand sides of a comparison system of type I (see § 14). Let its right-hand
maximum solution Q(t; H) = (Cl1t(t; H), ... , wm(t; H)) through (0, H) be
defined in an interval

(38.4) O~t<ao(H).

Under these hypotheses we have

(38.5)

in the pyramid

p

IU(X, Y)I ~Q(.r Ixr-xrl; H)
r=1

p

(38.6) .r jX1- Xii < min(y, ao(H)) ,
i=1

p

IYk-Ykl <;. ak-L .r IXj-Xj]
1=1

(k=I,2, ... ,n).

Proof. By means of Mayer's transformation

(38.7) x = Xo+Ax,

where A = (AI' •.. , 4), we will reduce our theorem to Theorem 37.1.
For A = (AI' ••. , Ap ) , consider the comparison system of type I

dv,
(Jj = A<1,(At, VI' ••• , vm ) (i = 1,2, ... , m),

1)

where;' = l; 11.11. By Theorem 36.1 we know that Q(At; H) is its right
j=1

hand maximum solution through (0, H) in the interval [0, ao(H)jA). In
particular, for A< ao(H), we have

(38.8)

Suppose that

(38.9)

uo(H) 1
-;,-> .

p

A = .r I;'jl < min(y, uo(H))
j=l
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(38.10)
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fJ(x, Y; A) = U(Xo+Ax, Y) .

It is clear that, for A = (Al , ... , Ap) satisfying (38.9), fJ(x, Y; A)
= (;Ul(X, Y; A), ... , :um(x, Y; A)) is of class ~ (see § 37) in the pyramid

(38.11) Ixl <~, !Yk-Ykl ~ ak-LAlxl (k = 1, 2, ... , n),

where, by (38.9),

(38.12)
y
I> 1.

In virtue of (38.2) and (38.3) we get

IU(O, Y; A)I ~ H
and

n

1:U~1 ~ AGt(Alxl, IfJn +LA 2: IU~kl (i = 1,2, ... , m)
k=l

in the pyramid (38.11). Hence, by Theorem 37.1, we have

IU(x, Y; A)I ~ .Q(A[xl; H)

in the pyramid (38.11) for

Ixl < min (~, Uo~Hl) .

Since, by (38.8) and (38.12),

min(! ao(H)) > 1
A' A '

we have, putting x = 1,

(38.13) IfJ(l, Y; A)I ~.Q(A; H)

for A = (All ... , Ap ) satisfying (38.9). Hence, if (X, Y) is any point in the
pyramid (38.6) and if we set A = X-Xo = (Xl-Xll ... , xp-xp), then

p

IU(X, Y)I = IU(l, Y; X-Xo)1 ~.Q(llIXr-xrl;H) ,
r~l

-what was to be proved.

THEOREM 38.2. Let the functions U(X, Y) = (u\X, Y), ... , um(X, Y))
be of class ~ (see § 37) in the pyramid (38.1). Suppose that

(38.14) U(Xo, Y) = 0
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and
p n

(38.15) IU~JI ~ a(..r IXr-Xrl, max lUll) +L..r lutkl for X =1= .r,
r=l I k=l

(i = 1, 2, ... , m; j = 1, 2, ... , p)

in the pyramid (38.1), where aft, v) is the right-hand member of a comparison
equation of type II (see § 14).

Under these assumptions we have

(38.16) U(X, Y) == 0

in the pyramid (38.1).

Proof. Like in the proof of Theorem 38.1 we introduce Mayer's
transformation (38.7) and we define U(x, Y; A) by formula (38.10),
for an arbitrary vector A = (All ... , Ap) satisfying

(38.17)
p

0< A= ..r IAil < y.
i=l

Then iu», Y; A) = (u?ex, Y; A), ... , um(x, Y; A)) is of class ~

(see § 37) in the pyramid (38.11) and inequality (38.12) is satisfied. In
view of (38.14) and (38.15) we obtain

UfO, Y; A) = 0
and

p

lu~1 < Aa(Alxl, max lull)+LA ..r lutkl for x =1= 0 (i = 1,2, ... , m) ,
I k=l

in the pyramid (38.11). Since, by our assumptions and by Theorem 36.2,
AO'(At, v) is-for any A > O-the right-hand member of a comparison
equation of type II, we conclude, by Theorem 37.2, that

U(x, Y; A) = 0 ,

for A satisfying (38.17), in the pyramid (38.11). Because of (38.12), we
have in particular

U(l, Y; A)=O.

Hence, if (X, Y) is any point in the pyramid (38.1) such that X =1= X o
and if we set A = X-Xo, then

U(X, Y) = U(l, Y; X-Xo) = 0,

which completes the proof, since for X = X o the last identity holds true
by (39.14).
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In a similar way, using Theorems 36.3 and 37.3 we obtain
THEOREM 38.3. Let the functions U (X, Y) = (u1(X, Y), ... , um(X, Y))

be of class ~o (see § 37) in the pyramid (38.1). Suppose that

U(Xo, Y) = Ux,{Xo, Y) = 0 (j = 1, 2, ... ,p),

where UXJ = (u~J' ... , u~) and that inequalities (38.15) hold true in the
pyramid (38.1) with aCt, v) being the right-hand side of a comparison equa
tion of type III (see § 14). Then we have (38.16) in the pyramid (38.1).

Remark 38.1. .All theorems of § 38 remain true if, in place of the
pyramid (38.1), we have the zone

(38.18)
p

.2) Ix1' - x1'j < Y, YIl ... , Yn arbitrary,
1'=1

provided that the functions ui(X, Y) be continuous and possess Stolz's
differential in (38.18) and in Theorem 38.3 the derivatives u~J(X, Y) be,
in addition, continuous for X = X o' This remark is a consequence of the
argument used in Remark 37.2.

§ 39. Estimates of the solution. Since a system

i fie 1 m i i )Ux = X, YI' ... , Yn, U , ... , U , U Y1 , ... , U Yn (i=1,2, ... ,n~)

is a particular case, for p = 1, of the overdetermined system

i fie 1 m i i )(39.1) U X j = j XIl ... , Xp , YIl ... , Yn, U , ... , U , UY1 , ... , U Yn

(i=1,2, ... ,m; j=1,2, ... ,p),

where the ith equation contains derivatives of ~ti only, we consider in
subsequent sections systems (39.1). We will give first some estimates
of solutions of system (39.1).

THEOREM 39.1. Let the right-hand members

f}(X, Y, U, Q) = f}(xll ... , xp , Yll ... , Yn, ~l1, , ~lm, qll ... , qn)

(i=1,2, ,m; j=1,2, ... ,p)

of system (39.1) be defined in a region whose projection on the space (Xl' ... , X p ,

YI, ... , Yn) contains the pyramid
p

(39.2) .2) Ix,,- xrj < y ,
1'=1

p

IYk-Ykl :( ak- L L ix,,-x,,1
"=1

(k=1,2, ... ,n),

where 0 :( L < + 00, 0 < ak < + 00, y ~ min (ak/L). Suppose that
k

p n

(39.3) If}(X, Y, U, Q)I :(0'(.2) ix,,-xrl, lUI) +L 27lqkl
,,=1 k=1

(i = 1, 2, ... , m; j = 1, 2, ... , p) ,
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where Gi(t, 'lh, ... , vm) are the right-hand sides of a comparison system of
type I (see § 14). Let £1(t; H) = (Wl(t; H), ... , wm(t; H)) be its right-hand
maximum solution through (0, H) = (0, 'YJ11 ••• , 'YJm) defined in an interval
[0, ao). Let U (X, Y) = (u1(X, Y), ... , um(X, Y)) be a solution of system (39.1),
Qf class ~ in the pyramid (39.2) (see § 37) and satisfying initial inequality

(39.4)

This being assumed, we have

(39.5)

in the pyramid

p

IU(X, Y)I ~£1(27IXr-xrl,H)
r=l

p

(39.6) l: Ixr-xrl < min(y, ao),
r=l

p

IYk-hl ~ ak-L l: Ixr-xrl
r=l

(k=I,2, ... ,n).

Proof. By (39.3) and (39.4), the solution U(X, Y) satisfies all the
assumptions of Theorem 38.1 and, hence, inequalities (39.5) hold true
in the pyramid (39.6).

§ 40. Estimate of the existence domain of the solution. In the present
section we restrict ourselves to the Cauchy problem for one equation

(40.1) Ux = f(x, Yl' ... , Yn, u, U1h' ... , ull,,)

with the initial data

(40.2)

We will discuss here briefly-without insisting on detailed computa
tions-how the existence domain of the solution of the above problem
may be evaluated. As for details omitted here we refer to T. Wazewaki's
paper [57J. Using the theory of ordinary differential inequalities we will
construct the solution by means of the Cauchy characteristics.

Suppose that the right-hand member f(x, Y, 1t, Q) = f(x, Yl1 ... , Yn,
U, ql' ... , qn) and the initial function rp (Yl' ... , Yn) are of class 0 2 in the
cube

(40.3) [xl<b, IYkl<b, lul<b, Iqkl<b (k=I,2, ... ,n)
and

rp(O, ... , 0) = rpllk(O, ... ,0) = 0 (k = 1,2, ... , n).

Assume further that f and rp together with their first and second
derivatives are bounded by a constant M in the cube (40.3).

Under these assumptions, there are two numbers a(b, n, M)
and b(b, n, M) (which can be effectively evaluated, for instance
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a = bj4n(.Zll+1), <5 = b2j[(n+1)(..cW +b+1)J2) depending only on b , 'It,.M
so that the solution of problem (40.1), (40.2) exists and is of class 01 in the
pyramid

(40.4) Ixi < c5(b, n, Jl), IYkl ~ a(b, n, ..i}I)- J[\xl (k = 1,2, ... , n) .

We will indicate the way of proving this statement. Consider the
characteristic equations

1

, :1£ = -fCik(X, Y, tt, Q),

d .
(40.5) d~ = fllk(X, Y, tt, Q)+qkfu(x, Y, tt, Q) (k = 1,2, ... , n),

Idu. nl dx = f (x, Y, u, Q) - J,;. qj tCij(x, Y, u, Q) ,

and let

(40.6) Yk = Yh'(X, 'Ill, ... , "In), qk = qk(X, '/11, ... , 'ljn), tl = u(x, ,/11, ... , "In)

(k=1,2, ... ,n)

be the solution of system (40.5), satisfying the initial conditions

y,.{O, H) = 1]k, qk(O, H) = plIk(H) , 17(0, H) = p(H) (k = 1,2, ... , n),

where H = (1]u ... , 'fjn) is any point from the cube

l1'/kl<b (k=1,2, ... ,n).

Now, Cauchy's method consists in solving, with respect to 1]11 ... , 'ljn,
the system of equations

(40.7) Yk = Yk(X, 1]1' ... , 1]n) (k = 1,2, ... , n),

thus finding the inverse mapping

(40.8) '/')k = 1]k(X, Yl, ... , Yn) (k = 1,2, ... , n),

and in making the substitution

(40.9) u(x, Yll ... , Yn) = u(X, 111(X, Yu ... , Yn), ... , 1}n(X, Yll ... , Yn»).

If the mapping (40.7) is one-to-one and of class 01 in some domain

(40.10) Ixl<b, l1]kl<c (k=1,2, ... ,n)

with the Jacobian

(40.11)

and if the domain DC (x, Yll ... , Yn) is the image of (40.10) by means
of the mapping (40.7), then the function u(x, Yll ... , Yn), defined by for-
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mula (40.9), is the solution of the problem (40.1), (40.2), of class 0 1 in D.
Therefore, in order to prove our statement concerning the existence of
the solution in the pyramid (40.4), it is sufficient to find a cube (40.10)
such that

1° The mapping (40.7) is one-to-one and of class 01 in (40.10) with
the Jacobian satisfying (40.11).

2° The domain D contains the pyramid (40.4).

Now, this is achieved in several steps.

I. By Theorem 23.1, we evaluate the interval Ixl < bo, in which
the functions (40.6) exist for l1Jk I < b (k = 1, 2, ... , n), and the functions
themselves, thus obtaining estimates of the form

(40.12) IYk(X, H)I < ak(lxl), Iqk(X, H)I < th(lxl), lu(x, H)I < y(lxl)
(k=1,2, ... ,n).

Under our assumptions on it», Y, u , Q) we may choose for the
corresponding comparison system a linear one, whose solution is ak(t),
(3k(t), y(t) (k=1,2, ... ,n).

II. The functions (40.6) are of class 0 1 and their derivatives with
respect to 17k satisfy a linear system of ordinary differential equations.
Applying Theorem 23.1 to this system (for the comparison system may
be chosen a linear one) and remembering that Yk(O, H) = 1Jk and hence

8Yk(0,H)=~k' (k' 12 )
81]} u 1 , J = , , ... , n ,

we find <5 (b, n, M) and c(b, n, .i'Ji!), so that inequalities

1

8Yk(X, H) - ~k1.1 < !u (k,j=1,2, ... ,n)
81J} I n

hold true in cube (40.10). With such choice of <5 and c point 1° is achieved.

III. Point 2°, which consists in finding a(b, n, M), is achieved by
any method allowing to evaluate the existence domain of the inverse
mapping (40.8).

Observe that, since for the function 1i(X, Y) defined by formula (40.9)
we have

Uyk(x, Y) = qk(X, 'if1(X, Y), ... , 'ifn(x, Y))

from (40.12) we get the estimates

(k=1,2, ... ,n),

(40.14) Iu(x, Y)I < Y(lxl),

We close this paragraph with the following remark. Using the above
results concerning one equation (40.1) with one unknown function it is
possible to construct the solution and to evaluate its existence domain
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for a non-overdetermined system by means of successive approximations
(see [52]). The last result enables us to do the same for an overdetermined
system (39.1) by means of Mayer's transformation (38.7); this time, we
have to require that the right-hand sides of system (39.1) satisfy com
patibility conditions (see [52J).

§ 41. Estimates of the difference between two solutions.
THEOREM 41.1. Let the right-hand members of system (39.1) and of

system

) i i( I m i i )(41.1 1tx 1 = gj Xl' ... , Xp , Yu ... , Yn, u , ... , u ,uYll " " uYn

(i = 1, 2, ... , m; j = 1, 2, ... , p)

be defined in a region, whose projection on the space of points (xu ... , xp ,

YI' ... , Yn) contains the pyramid (39.2), and satisfy the inequalities
p n

If;(X, Y, U, Q)-g}(X, Y, U, Q)! ~ a,(~IXr-xrl, IU-UI)+L~ Iqk-qkl
r=l k=l

(i=1,2, ... ,m; j=1,2, ... ,n),

where a,(t, Vu ... , vm) are the right-hand sides of a comparison system of
type I (see § 14). Denote by .Q(t; H) = (WI(t; H), , wm(t; H») its right-
hand maximum solution through (0, H) = (0, 'Yjl' , 'Yjm), defined in the
interval [0, ao). Suppose that U(X, Y) = (ul(X, Y), ... , um(X, Y») and

V(X, Y) = (vl(X, Y), ... , vm(X, Y») are two solutions of system (39.1)
and (41.1) respectively, of class ~ in the pyramid (39.2) (see § 37) and
satisfying initial inequality

(41.2)

Under these assumptions we have

(41.3)
p

IU(X, Y)-V(X, Y)\ :(;.Q(~ Ixr-xrl; H)
r=l

in the pyramid (39.6).

Proof. If we put U(X, Y) = U(X, Y)- VeX, Y), then fJ(X, Y)
satisfies all the assumptions of Theorem 38.1 and hence (41.3) holds true.

§ 42. Uniqueness criteria. The next theorem is an immediate con
clusion from Theorem 41.1.

THEOREM 42.1. Let the right-hand members of system (39.1) be defined
in a region, whose projection on the space (xu ... , xp , Yu ... , Yn) contains
the pyramid (39.2), and satisfy inequalities

(42.1) If;(X, Y, U,Q)-f}(X, Y, U,Q)I
p n

:(; O',(~ Ixr-xrl, IU - UI) +L}; Iqk-qkl (i = 1, 2, ... , m; j = 1, 2, ... ,p),
r=l k=l
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where ai(t, vll ••• , vm ) are the right-hand sides of a comparison system of
type I (see § 14). Suppose that

(42.2)

and that

(42.3)

ai(t, 0) = 0 (i = 1, 2, ... , m)

Q(t) = 0 for 0 ~ t < + 00 ,

where Q(t) is the right-hand maximum sol1ttion of the coniparisor; system
through the origin.

Under these assumptions, Oauchy problem for system (39.1) with initial
data

(42.4) U(Xo, Y) = if> ( Y)

admits at most one solution of class ~ (see § 37) in the pyramid (39.2).

Proof. For two solutions, satisfying the same initial conditions (42.4),
relations (41.2) hold true with H = 0; hence, by (41.3) and (42.3), their
difference is identically zero.

m

Remark 42.1. In particular, for ai(t, V) = K .2Vi (K;;::: 0), inequa
1=1

Iities (42.1) mean that the right-hand sides of system (39.1) satisfy a Lip-
schitz condition with regard to U.

Next we will prove uniqueness criteria of Kamke's type.

THEOREM: 42.2. Let the right-hand members of system (39.1) be defined
in a region, whose projection on the space (Xl'"'' Xp , Yll ... , Yn) contains
the pyramid (39.2), and satisfy inequalities

(42.5) If~(X, Y, U,Q)-f~(X, Y, U,Q)I
P 'It

~a(~ Ixr-xrl, max\ul-ull) +L l' Iqk-qkl
r=l I k=l

(i = 1, 2, ... , m; j = 1, 2, ... , p) ,

where aft, v) is the right-hand side of a comparison equation of type II (of
type III) (see § 14).

This being assumed, Oauchy problem for system (39.1) with initial
data (42.4) admits at most one solution of class ~ (of class ~o) in the
pyramid (39.2) (see § 37).

Proof. For two such solutions U(X, Y) = (u\X, Y), ... , um(X, Y)}

and V(X, Y) = (vl(X, Y), ..., vm(X, Y»), put U(X, Y) = U(X, Y)
- V(X, Y) = (ul(X, Y), ... , um(X, Y»). Then we have

(42.6)
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and, by (42.5),

p n

FU~jl :::;; a(~ Ixr-xrl, max lull) +L~ /utkl
r~l I k=l

(i = 1, 2, ... , m; j = 1, 2, ... , p) .
Further, by (42.6),

Uy/c(Xo, Y) =Vl/k(Xo, Y) (k = 1, 2, ... , n)

and hence, writing u~ = (uti' ... , u~n)' v~ = (vtl' ... , vtn)' we get uir(Xo, Y)
= v~(Xo, Y) and consequently

u~J(Xo, Y) = u~lXo, Y)-v~iXo, Xl

=fHXo, Y, U(Xo, Y),ut(Xo, Y»)-fHXo, Y, V(Xo, Y),v~(Xo, Y») =0

(i=1,2, ... ,m; j=I,2, ... ,p).

Therefore, we see that U(X, Y) satisfies all the assumptions of
Theorem 38.2 (of Theorem 38.3) and hence we have

U(X,Y)==O

in the pyramid (39.2), what was to be proved.

Remark 42.2. If, in particular, aft, v) in Theorem 42.2 is the right
hand member of the equation (~) from Example 14.2 or of the equation
from Example 14.3, we get uniqueness criteria of Osgood's and Nagumo's
type.

§ 43. Continuous dependence of thesolution on initial dataand onright-hand
sides of system. We now prove

THEOREM 43.1. Let the right-hand members f~(X, Y, U, Q) of sys
tem (39.1) satisfy assumptions of Theorem 42.1 in a region D. Suppose that
the right-hand sides gJ(X, Y, V,Q) of system (41.1) are defined in D. Let
U(X, Y) = (u\X, Y), ... , um(X, Y») be the solution of system (39.1), of
class~ (see § 37) and satisfying initial conditions (42.4) in the pyram'id (39.2),
and V (X, Y) = (v\X, Y), ... , vm(X, Y») be a similar solution of sys
tem (41.1) with initial data

(43.1) V(Xo, Y) = P(Y).

Under these assumptions, to every e > 0, there is a l5 > 0 such that if

(43.2) If:(X, Y, U,Q)-g~(X, Y, U,Q)I < s
(i=1,2, ... ,m; j=I,2, ... ,p)

in D and

(43.3) lep(y)- P(Y>I < Ll ,
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where L1 = (b, ... , b), then we have

(43.4) IU(X, Y)-V(X, Y)I<E,

where E = (e, ... , e), in the pyramid (39.2).

Proof. Due to Theorem 10.1, to e > 0 we can choose 15 > 0, so that
theright-handmaximumsolution.Q(t; H, b) = (Wl(t; H, b), ... , wm(t; H, b))
of the comparison system

dt'i
-dt = (fi(t, 'lill ••• , 'lim) +15 (i = 1,2, ... , m),

passing through (0, H) = (0, 1)1' ... , 'Y/m), be defined in the interval [0, y)
and satisfy inequalities

(43.5) .Q(t; H, b) < E for 0 ~ t < r ,
provided that

(43.6) o~ H < 2,1 .

Suppose that (43.2) and (43.3) hold true with the above chosen 15;
then, by (43.3), we have

IU(Xo, Y)- V(Xo, Y)I ~ H

with some H satisfying (43.6) and, by (42.1) and (43.2), we get

If}(X, Y, U, Q)-g}(X, Y, U, Q)I
p n

~ ai(~ Ixr-xrl, IU- ul) +b+L 2: Iqk-qkl
r=l k=l

(i = 1, ... , m; j = 1, 2, ... , p)

in the region D. Hence, by Theorem 41.1, inequality

(43.7)
n

IU(X, Y)- V(X, Y)I ~ .Q(~ !xr-xrl; H, b)
r=l

holds true in the pyramid (39.2). From (43.5) and (43.7) follows (43.4).

Remark 43.1. All theorems of §§ 39-43 are true if, in place of the
pyramid (39.2), we have the zone

(43.8)
p

~ Ixr-xrl < r , Yll ... , Yn arbitrary,
r=l

provided that the solution be continuous and possess Stolz's differential
in (43.8) and in Theorem 42.2 their derivatives with respect to Xj be,
in addition, continuous for X = Xu' This remark is an immediate con
sequence of Remark 38.1.
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§ 44. Estimate of the error of an approximate solution. In this section,
like in § 40, we restrict ourselves to the Cauchy problem for equation (40.1)
with initial conditions (40.2). We will indicate a procedure by which we
can evaluate the error when, instead of the solution of a given ("difficult
to solve") problem (40.1), (40.2), the solution of an approximate ("easy
to solve") one is taken.

Let the right-hand member j(x, Y, u , Q) of equation (40.1) and the
initial function qJ(Y) satisfy assumptions introduced in § 40.

Consider the approximate ("easy to solve") equation

(44.1) Ux = g(x, Yl' ... , Yn, u, U Y1, ... , uYn )

with g(x, Y, u, Q) defined in the cube (40.3) and the approximate initial
condition
(44.2)

Suppose that
u (0, Y) = 1p (Y) •

n

(44.3) jg(x, Y, u, Q)- g(x, Y, u, Q)I ~ o(lxl, Iu- ul) +.itI }; Iqk- qkl
k~l

where aft, v) is the right-hand side of a comparison equation of type I
(see § 14). Let v(x, Y) be a solution of the approximate problem (44.1),
(44.2) in a pyramid

Suppose finally that the limitation

(44.4) Ij(x, Y, u, Q)- g(x, Y, u, Q)I <; h(lxl, lui, IQD
is known, where h(t, v, qu ... , qn) satisfies condition W+ with respect to
{V, qu ... , qn) (see § 14), and

(44.5)

Under these hypotheses we can evaluate the difference between the
solution u(x, Y) of problem (40.1), (40.2), which is sought for, and the
approximate one v(x, Y). We do it in two steps.

I step. Estimate oj the solution and oj its existence domain. Following
the results of § 40 we evaluate the pyramid (40.4), in which u(x, Y) is
of class 01, and find the functions y(t) and f3k(t) for which inequalities
(40.14) hold true. The functions u(x, Y) and v(x, Y) are then both defined
in the pyramid

(44.6) Ix\ < min(b, b), IYkl ~ min (a, a)- .ilflxl (k = 1,2, ... , n).

II step. Evaluation oj the error. Solution u(x, Y) satisfies obviously
the equation

(44.7) U:r, = g(x, Y, u , uYll ... , uYn ) ,

J. Szarski, Differential inequalities 9
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where

g(x, Y,u,Q)=g(x, Y,u,Q)+

+[f(x, Y, u(x, Y), Uy(x, y))-g(x, Y, u(x, Y), Uy(x, Y))].

By (44.3), (44.4), (40.14) and by the condition W+, imposed on h,
we get

n

(44.8) Ig(x, Y, u , Q)-g(x, Y, u, Q)I ~ a(lx[, !u-ul) +111}; Iq,,- q"l ,
"=1

where

a(t, v) = a(t, v) +h (t, Y (t), /31(t ), ... , /3n (t ))

is the right-hand member of a comparison equation of type I (see § 14).
Denoting by wet) its right-hand maximum solution through (0,1]), defined
in an interval [0, ao), we conclude, by (44.5), (44.8) and by Theorem 41.1
applied to equations (44.1) and (44.7), that inequality

lu(x, Y)-v(x, Y)I ~ w(lxl)

holds true in the pyramid (44.6) for Ixl < min(b, b, ao)' This is the estimate
of the error that was sought for.

§ 45. Systems with total differentials. A system with total differentials

(45 1) i fi(x 1 m)• U X j = i , '/1, , ... , u

or shortly

(i = 1, 2, ... , m; j = 1, 2, ... , p)

m

du' = }; fJ(X, u1
, ... , um

) dXj (i = 1, 2, ... , m)
i~l

is a particular case of the overdetermined system (39.1) dealt with in
the preceding paragraphs. Cauchy initial conditions for system (45.1)
have the form

(45.2) ui(XO) = it,i (i = 1,2, ... , m).

Now, it is clear that all theorems of §§ 41-43 hold true for the Cauchy
problem (45.1), (45.2).



CHAPTER VIII

MIXED PROBLEMS FOR SECOND ORDER PARTIAL DIFFERENTIAL
EQUATIONS OF PARABOLIC AND HYPERBOLIC TYPE

In the first paragraphs of the present chapter we deal with parabolic
solutions (see the subsequent definitions) of nonlinear systems of second
order partial differential equations of the form (see [53J and [54J)

i ti( 1 m iii i i)Ut = t, Xll ••. , Xn, 1/ , ••• , U , UXll ... , U""', UXl";" UX , X2 ' ••• , Ux"x"

(i=1,2, ... ,m),

where the ith equation contains derivatives of only one unknown func
tion ui . We discuss a number of questions concerning mixed problems
in a region DC(t,x1, ... ,Xn) of type C (see §33). In particular, using
the theory of ordinary differential inequalities we treat questions referring
to mixed problems like: estimates of the solution, estimates of the dif
ference between two solutions, uniqueness criteria, continuous dependence
of the solution on initial and boundary values and on the right-hand
sides of system and, finally, stability of the solution.

In the last paragraphs we derive, by means of ordinary differential
inequalities, energy estimates of Friedrichs-Levy type for the solution
of a system of linear hyperbolic equations (see [51J)

n m 11 m

}; a~k(X)u~1Xk = 2:2: b~I(X)U~j+.2: Cil(X)ul+l(X) (i = 1, 2, ... , m),
i,k=1 1=1 i=1 1=1

where the ith equation contains second derivatives of only one unknown
function u i .

§ 46. Ellipticity and parabolicity. To begin with, we recall the defini
tion of a positive (negative) quadratic form and prove, for the convenience
of the reader, a lemma.

11

A real quadratic form in All ... , An, 1: aikAiAk (aik = aki) is called
j,k=l

positive (negative) if for arbitrary All .•• , An we have
n

}; aikAjAk ~ 0 (~ 0)
j,k=l

9*
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n

LEMMA 46.1. Let the quadratic form lP( A) = lP(A'l' ... , An) = }; ajkAjAk
j,k~l

n

be positive and the quadratic form P( A) = P(All ••• , An) = }; bjkAjAk be
j,k=l

negative; then we have

(46.1)
n

}; ajkbjk <; 0 •
j,k=1

Proof. The form lP(A) being positive we have, for suitably chosen
coefficients C!pq (p, q = 1, 2, ... , n),

n n n

lP(A) = }; ajkAiAk = }; (}; C!pqAq)2;
i.k~1 1'=1 q=l

hence
n

ajk = }; C!pjC!pk (j, k = 1,2, ••. , n)
1'=1

and consequently

n n n n

(46.2) .2: ajkbjk = .2: (.J: bjku1'jU1'k) = .r P(C!p1' ... , U1'n) <; O.
j,k=1 1'=1 j,k~1 p~1

DEFINITION OF ELLIPTICITY. Let the function

be defined for (t, X) belonging to a region DC (t, Xl' ••• , xn) and for arbi
trary U, Q, R. Suppose that U(t, X) = (ul(t, X), ... , um(t, X») is defined

and possesses first derivatives with respect to xJ at a point (t', X) € D.
Write

Under these assumptions, we say that the function l(t, X, u, Q, R)
is elliptic with respect to U(t, X) at the point el, X) e D if for any two
sequences of numbers R = (ru, 1'12' ••• , rnn) and 11 = ('rn, r12' ... , rnn)
(rjk = 1'kj, rjk = rki) such that the quadratic form in All ... , An

(46.3)

we have

n

.2: (rjk-rjk)AjAk is negative,
i.k~1

(46.4) fYt', X, U(r, X), u~(t, X), R) <; fi(t, X, U(t', X), u~«, X), R) .

If the above property holds true for every point (t, X) e D, then
we say that l(t, X, u, Q, R) is elliptic with 1'espect to U(t, X) in D.
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EXAMPLE 46.1. Oonsider the second order linear equation

n n

(46.5) Ut = 2: ajk(t, X)UXjx/c+ 2: bj(t, X)uxJ+c(t, X)u+d(t, X),
j,k=l i=l
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where ajk(t, X),bj(t, X), c(t, X) and d(t, X) are defined in a region D.
Equation (46.5) is called parabolic at a point (t', X) € D if the quadratic
form in Al' ... , An

(46.6)
n

2: ajit, X)Aj Ak is positive.
j,k=l

Now, by Lemma 46.1, we conclude that the right-hand member

n 'It

f(t, X, u, Q, R) = d(t, X) +c(t, X)u +2: bj(t, X)qj + 2: ajk(t, X)rik
j~l i,k~l

of a parabolic equation at a point (t; X) is elliptic at (t; X) with respect
to any function U (t, X) having first derivatives uXJ at (t', X).

Remark 46.1. If, in particular, let, X, U, Q, R) is independent
of R, then it is trivially elliptic with regard to any U(t, X).

DEFINITION OF PARABOLIC SOLUTION. Consider a system of second
order partial differential equations

(i=1,2, ... ,m)

with right-hand sides let, x, U, Q, R) defined for (t, X) € D and U, Q, R
arbitrary. A solution U(t, X) = (u1(t, X), ... , um(t, X)) of (46.7) in D is

called parabolic at a point (t; X) e D if all the functions fi(t, X, U, Q, R)
(i = 1, 2, ... , m) are elliptic with respect to U (t, X) at Tt, X).

If this property holds true for every point in D, then the solution
is called parabolic in D.

According to Example 46.1 every solution of a parabolic equa
tion (46.5) is a parabolic one.

Remark 46.2. In virtue of Remark 46.1, every solution of a sys
tem (46.7) is parabolic if its right-hand sides do not depend on sec
ond derivatives, i.e, if it reduces to a system of first order partial dif
ferential equations or of ordinary differential equations with param
eters.

§ 47. Mixed problems. Before formulating the mixed problems we
are going to deal with in the present chapter, we introduce some defini
tions and assumptions.
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DEFINITION OF SE'rS I: AND I:a. Consider a region DC (t, Xu ••• , xn )

of type C (see § 33). We denote by I: the side surface of D, i.e. that part
of the boundary of D which is contained in the open zone to < t < to+T.

A function aCt, X) being given on I: we denote by I:a the subset
of I: on which a (t, X) =i= O.

ASSUMPTIONS A. A region D C (t, Xu , Xn) of type C (see § 33) being
given, let the functions ai(t, X) (i = 1,2, , m) be defined on its side sur-
face I:. Suppose that

(47.1) airt, X) ~ 0 (i = 1, 2, ... , m) .

t«, X, U, Q, R)
C (see § 33) and

For every (t, X) E I:ai, let a direction lift, X) be given, so that li is ortho
gonal to the t-axis and some segment, with one extremity at (t, X), of the
straight half-line [rom. (t, X) in the direction li is contained in the closure
of D.

Regular solutions and mixed problems. Consider a sys
tem (46.7) with right-hand sides t\t, X, U, Q, R) (i = 1,2, ... , m) defined
for (t, X) ED of type G (see § 33) and for arbitrary U, Q, R. Let the
functions airt, X) and directions liet, X) (i = 1, 2, ... , m), satisfying
Assumptions A, be given on the side surface I: of D. A solution U(t, X)
= (u\t, X), ... , um(t, X)) of (46.7) in D will be called regular solution
if it is continuous in the closure of D, possesses continuous derivatives
%t, o/OXj, 02/0XjOXk, and satisfies (46.7) in the interior of D. If, in addition,
for every i the derivative dui/dli exists at each point (t, X) E I:ai, then
the solution is called I:a-regular solution. Being given

1. a system (46.7) with right-hand sides
(i = 1, 2, ... , m) defined for (t, X) E D of type
for arbitrary U, Q, R,

2. functions ai(t, X) and directions li(t, X) (i = 1, 2, ... , m) on the
side surface I: of D, satisfying Assumptions A,

3. functions Vi(t, X) on I: and {3i(t, X) on I:ai (i = 1, 2, ... , m) where

(47.2) {3\t, X) > 0 on I:ai (i = 1,2, ... , m),

4. functions lpi(X) (i = 1,2, ... , m) on Sto (for the definition of St,
see § 33, definition of a region of type C),

the first mixed problem with initial values lpi( X) and boundary values
!pi(t, X) consists in finding a I:a-regular solution U(t, X) = (u1(t, X), ...

... , um(t, X)) of (46.7) in D, satisfying the initial conditions

(47.3) U(to, X) = a>(X) for X E Sto ,
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(47.4)

where $(X) = (g/(X) , ... , Ij?m(X»), and boundary conditions, called of
jirst type,

j3l(t, X)ui(t, X)-ai(t, X)~u~ = 'Il(t, X) for (t, X) € Eat,
dl'

ui(t, X) = Vi(t, X) for (t, X) E E- Ea!

(i=1,2, ... ,m).

If, in particular, ai(t, X) = 0 (i = 1,2, ... , m), the boundary condi
tions (47.4) are of Dirichlet's type and the first mixed problem reduces
to the classical first Fourier's problem. If condition (47.2) is not imposed
on pitt, X), the problem described above is called second mixed problem
and the boundary conditions (47.4) are called of second type.

In particular, when ai(t,A;") =1, j3i(t,X) =0 (i=1,2, ... ,m), the
boundary conditions (47.4) are of Neumann's type and the second mixed
problem reduces to the classical second Fourier's problem.

To close this paragraph, we prove a lemma which will be of use in
our subsequent considerations.

LEMMA 47.1. Suppose we are given a region D oj type 0 (see § 33),
a junction a(t, X) and a direction l(t, X) satisfying (jor m = 1) .Assump
tione A on the side surface E of D, and a function j3(t, X) on Ea such that

(47.5) 13 (t, X) > B ~ 0 for (t, X) E .Ea •

(4-7.6)

Let the function u(t, X) be continuous in the closure of D and possess
the derivative du/dl on Ea. Suppose that

du
f3(t, X)u(t, X)- a(t, X) dl ~ B1](t) « B1](t» for (t, X) E Ell,

u(t, X) < fJ(t) « fJ(t» for (t, X) E E-.Ea ,

where 1](t) ~ O. Denote by Sj (see § 33) the projection on the space (Xl' ... , Xn)
fo the int ersection of the closure of D with the plane t = t.

Under these a8sumptions, if for a point ei, X) E 15 (to < t < to+T)
we have

47.7)

then (t; X) is an interior point of D.

Proof. Suppose that the assertion of our lemma is false; then
(t', X) E E and there are two possible cases to be distinguished: 1. (t', i') E

€ E - .Ea, II. (t, 1) E Ea.

In the case I we have, by (47.6),

u(t, X) ~ 1](t) « 1](t» ,
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contrary to (47.7). Now in the case II we get, by (47.6)

{3(i', X)u(t, ~Y)- a(t', X) ddtlfl _ _ :(; B'1(t) « B'1(t) .
(I,X)

The straight half-line from (t', X) in the direction ui; X) has the
parametric equation

x = X +rversl(t', X) , T ~ 0 .

By Assumptions A, some segment of this half-line, say 0:(; T < To,

belongs to ST. Hence the function

Ip(T) = u(i', X + Tversl(t, X»)

is defined for 0 :(; T < To and attains, by (4:7.7), its maximum at the left
hand extremity of this interval. Therefore,

(47.9) 1p'(0) = ddull _ _ « 0 .
(I, X)

Since aft, X) ~ 0 (by Assumptions A), it follows .from (47.8) and
(47.9) that

{3(i', X)tt(t, X) :(; B'1(t) « B'1(t)

and hence, by (47.5),

what contradicts (47.7). This completes the proof of our lemma.

§ 48. Estimates of the solution of the first mixed problem. We prove

THEOREM 48.1. Assume the right-hand members t«, X, U, Q, R)
(i = 1,2, ... , m) of system (46.7) to be defined for (t, X) € D of type 0 (see §33)
and for arbitrary U, Q, R. Suppose that (1)

(48.1) f\t, X, U, 0, O)sgnui:(; (li(t-to, IUD (i = 1,2, ... , m),

where (It(t, V) are the right-hand sides of a cO'inparison system of type I
(see § 14). Denote by Q(t; H) = (w1(t; H), ... , wm(t; H») its right-hand
maximum solution through (0, H) = (0, '1u ... , '1m), defined 'in an interval
[0, ao(H». Let the functions ai(t, X) and the directions li(t, X) (i = 1, 2, ... , m)
satisfy Assumptions A (see § 47) on the side surface E of D. Let (l(t, X)
be defined on .Eat (i = 1, 2, ... , m) and satisfy inequalities

(48.2) {3i(t, X) > B i
~ 0 on Eat (i = 1,2, ... , 'in).

(1) sgnx denotes 1 if x ~ 0, and - I if x < o.
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Suppose finally that U(t, X) = (u\t, X), ... , um(t, X)) is a parabolic
(see § 46), Ea-regular (see § 47) solution of system (46.7) in D, satisfying
initial inequalities

(48.3)

(48.4)

and boundary inequalities

jpi(t, X)u\t, X)- ai(t, X) ~~il ,-s;; Biwi(t-to; H) for (t, X) € Eal,

luil :s; Witt-to; H) for (t, X) e E-- E a;

(i=1,2, ... ,m).
Under these assumptions ineqttality

(48.5)

holds true in D for

lU(t, X)I ~Q(t-to; H)

Proof. Since the assumptions of our theorem are invariant under
the mapping 7: = t-to, we may assume, without loss of generality, that
to = O. Denoting by Sr the projection on (Xl' ... , xn ) of the intersection
of [j with the plane t = t (see § 33) put, for 0 :s; t < T,

Witt) = max lui(t, X)j, W(t) = (W\t), ... , wm(t)) ,
x ce,

Mi(t) = max ui(t, X) (i = 1, 2, ... , m),
xes,

Ni(t) = max (- ui(t, X)) .
XESt

By Theorem 34.1, the functions Wi(t) are continuous in the interval
[0, T) and, by (48.3), we have

(48.6) W(O) ~H.

Inequalities (48.5) are obviously equivalent with

W(t) ~ Q(t; H) for 0 ~ t < min (T, ao(H)) = 15 .

Now, in view of (48.6) and of the first comparison theorem (see § 14),
the last relation will be proved if we show that, for every fixed j, dif
ferential inequality

(48.7)

holds true in the set

(48.8) E i = {t e (0, b): Wi(t) > Wj(t; H)} .
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Fix an index j and let t E E i ; then, we have

(48.9)

By Theorem 34.1, there is a point X E Si, so that either

(48.10)

or
(48.11)

Suppose we have, for instance, (48.11). Then, in view of (48.2), (48.4)
and (48.9) we conclude, by Lemma 47.1, that (t, X) is an interior point
of D. The function - ui(t, X) attains its maximum at the interior point X
and is of class 0 2 in its neighborhood. Therefore,

(48.12)

and the quadratic form in All ... , An

(48.13)
n

- }; u~lxit, X)AIAk is negative.
l,k=l

By Theorem 33.1, 2°, we have

D-Ni(t) ~ - ut(t, ~Y);

hence, by (48.11), we get
.", .......... '" ............................ "" j .................. . ......... ,....,

(48.14) D_ WJ(t)::::;; -uj(t, X) = -F(t, X, U(t, X), 1tx(t, X), 1t~X(t, X)),

where we have put

u~x(t, X) = (U~lXl(t, X), U~lX.(t, X), ... , u~nXn(t, X)).

Since, by (48.11), we have

sgn uJ(t, .i) = -1 ,

it follows from (48.14), by (48.12), that

(48.15) D_Wi(t'):(; [ji(t, X, U(t, X), 0, 0)-

-let, x, U (t, X), 0, u~x(t, X))J + ji(~, X, U (t, .1),0,0) sgn ui(t, X) .

The difference in brackets is, by the parabolicity of solution U (t, X)
(see § 46) and by (48.13), non-positive. Hence, from (48.1) and (48.15)
we obtain
(48.16)
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But, by the definition of Wi(t) and by (48.11), we have (see § 4)

"J ........ j f"V

IU(t, X)I ~ W(t).

Therefore, in view of the condition W+ (see § 4) imposed on functions
Gi(t,V), inequality (48.16) implies that (48.7) is satisfied for t = ~ which
completes the proof.

Remark 48.1. Under the assumptions of Theorem 48.1 it may
happen that the differential inequality (48.7) does not hold for any
t € (0, <5). In this case Theorem 9.3 does not enable us to conclude on the
validity of inequality W (t) ~ Q(t; H), whereas the first comparison
theorem (see § 14)-which is a consequence of Theorem 11.1-does.

The above situation occurs in the following trivial example. Let
n = rn = 1 and put

f(t, x, u, q, r) = r , D = {(t, x): 0 < t < T, 0 < x < 1} .

The system (46.7) reduces now to the heat equation and its right
hand side satisfies inequality (48.1) with G(t, 'v) === O. Put

aft, x) =" 0 , fJ(t, x) ~ 1 , 1') = eT +1 ;

then u (t, x) = ei+x is a solution of the heat equation, satisfying assumptions
of Theorem 48.1. But, since obviously

W(t) = max lu(t, x)1 = et+1 ,
O~x~l

we have W/(t) > 0 and inequality (48.7) does not hold for any t € (0,15).
This remark shows the usefulness of Theorem 11.1.

§ 49. Estimates of the difference between two solutions of the first mixed
problem. Now we prove

THEOREM 49.1. Suppose the right-hand members r«, X, U, Q, R)
(i = 1,2, ... , m) .of system (46.7) and of system,

(i=1,2, ... ,m)

Me defined for (t, X) € D oi type 0 (see § 33) and tor arbitrary U, Q, R.
Assume that

(49.2) tr«, X, U,Q,R)_gi(t,X, U,Q, Rl]sgn(ui-ui
)

~ Gi(t-to, IU- UI) (i = 1,2, ... , m),

where Gi(t,V) are the right-hand sides of a comparison system of type I
(see § 14). Let Q(t; H) = (Wl(t; H), ... , wm(t; H») be its right-hand maximum
solution througft (0, H) = (0, 'YJ11 ••• , 'YJm), defined on an interval [0, ao(H».
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Let ai(t, X), li(t, X) (i = 1,2, ... , m) satisfy Assumptions A. (see § 47)
and piCt, X) (i = 1, 2, ... , m) inequalities (48.2). Suppose, finally, that
U(t, X) = (u\t, X), ... , um(t, X)) is a parabolic (see § 46), Ea-regular

(see § 47) solution of system (46.7) in D and V (t, X) = (v\t, X), ... , vm(t, X))
is a Ea-regular solution of system (49.1) in D, satisfying initial inequalities

(49.3)

and boundary inequalities

r- X) [ui(t , X)-vi(t, X)]- ai(t, X) d[UL-:-ViJI :(; BiWi(t-to; H)
dl'

(49.4) for (t, X) € Ea"

jui(t, X)-vi(t, X)I :(; Wi(t-to; H) [or (t, X) € E- Ea,

(i = 1,2, ... , m) •

Under these assumptions we have inequalities

(49.5)

in D [or

IU(t, X)- Vet, X)\ ~ !J(t-to; H)

o~ t-to < min (T, ao(H)) = ~.

Proof. Like in Theorem 48.1 we assume, without loss of generality,
that to = O. Put, for 0 ~ t < T,

Wi(t) = max lui(t, X)-vi(t, X)\ , Wet) = (W1(t), ... , wm(t)) ,
X.St

JF(t) = max (ui(t, X)-V\t, X)) (i = 1,2, ... , m),
X.St

Ni(t) = max (vi(t, X)- u\t, X)) .
X.St

Just like in the proof of Theorem 48.1, it is sufficient to show that
inequality (48.7) holds true in the set E i defined by (48.8). Fix an index j
and let t€ Ei ; then we have (48.9) and, by Theorem 34.1, there is a point
X € SI such that either

(49.6) Wi('t) = Mi('t) = t(i(i', X) - viet; X) , D_ Wi(t) ~ D- Mi(t) ,

or

(49.7) Wi('t) = Ni('t) = v\t; X)-ui(t; x), D_ wi('t):(; D-Ni('t).

Suppose we have, for instance, (49.6); then, like in the proof of Theo
rem 48.1, we conclude that (t', X) is an interior point of D. Hence we have

(49.8)
j ................. i "" ""

ux(t, X) = vx(t, X)
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and the quadratic form in Au ... , An

{49.9)
n

.l: [U~!X,,(t: X)-V~I:l)IC(t,X)] Al)'k is negative.
l,k=l

By Theorem 33.1, 2°, we have

D-lyi(T) ~ 1t{(t, X)-1)l(t, X);

therefore, by (49.6), we obtain

D_ wi(T) ~ ul(t, X)-vl(t: X)

= / (t, X, U (t; X), u~(t, X'), u~x(t, X))-

- gi ((t: X, V (t; X), v~(t; .i), v~x(t: "y)) .

From the last inequality it follows, by (49.8), that

D_ Wi(t) ~ [li(t, X, U(t, X), u~(t, X), 1t~x(t: X))-

-ti(t: X, U(t:, j'~), u~(t, X), v~x(t: X))] +

+[/(t, X, U(t:, X), u~(t, X), v~x(t, X))-

- gi(t, X, V (t, X), 1t~(t: X), v~x(t, X))] .

The first difference in brackets is, by the parabolicity of solution
V(t, X) (see § 46) and by (49.9), non-positive. Since, by (49.6),

u1(t , X) ~ v1(t , X) ,

we get in virtue of inequality (49.2)

D_wi(T) ~ (11(t, IU(t, X)- V(t, X)I) .

From the last inequality if follows, like in the proof of Theorem
·48.1, that (48.7) holds true for t = t, which completes the proof.

Using the results contained in Example 46.1 we get from Theorem 49.1
the following corollary:

COROLLARY 49.1. Let the linear equation

n n

Ut = .l: ajk(t, X)UXjX,,+.l: b;(t, X)UXj+c(t, X)u+d(t, X)
i,k~l i=1

be parabolic (see Example 46.1) in a region D oi type 0 (see § 33). Suppose
that

c(t, X) ~ 0
.and

fJ(t,X»B~O tor (t,X)€J:a ,
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and that aCt, X), let, X) satisfy Assumptions A (see § 47). This being assumed
we have, fOT any two Ea-regulaT solution» (see § 47) u(t, X) and vet, X),
the inequality

lu(t, Xl-vet, X)I ~ 1} in u ,
provided that

lu(to, Xl-veto, X)I ~.1} for X € St.,

!P(t,·X)[U(t, Xl-vet, X)]-a(t, X) d[Ud~vJI ~B1} for (t, X) e Ea,

lu(t, Xl-vet, X)I ~ 1} for (t, X) € E-Ea.

Proof. All the assumptions of Theorem 49.1 are satisfied with 'In = 1,
system (49.1) being identical to the above equation, and with «tt: v) == 0
and wet; 1}) == 1}.

EXAMPLE 49.1 (see [33]). Consider a system of almost linear equa
tions

11

(49.10) u~= l:ah,(X)u;IXk+hi(t,X,~tl, ... ,um) (i=1,2, ... ,m)
l,k=l

with a}k(X), hiet, X, U) defined for (t, X) € nand U arbitrary, where D
is a cylinder

D = (0, -j- 00) x G ,

and G is a bounded region in the space (xu ... , xn). Suppose that for every i
and X € G the quadratic form in Au ... , )'11

n

l: atk(X) )'/ Ak
/,k=l

is positive. Assume that for any positive h we have

(49.11)
'w.

Ih\t+h,X, U)-hi(t,X, if)1 ~.~~I 2: i
lli - ui l + R ha

i~l

(i=1,2, ... ,m).

where M and R are positive constants and 0 < a ~ 1. Let U(t, X)
= (~tl(t, X), ... , ~r(t, X)) be a regular (see § 47) solution of system (49.10)
in D, such that for every positive h we have

(49.12) IU\O, X)-ui(h, X)I ~ Kh/3 for X € G (i = 1,2, ... ,m) ,

(49.13) lu\t +h, X)-ui(t, X)I ~ Kh fJ for (t, X) € (0, + 00) x &0,
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where K is a positive constant and 0 < (3 ~ 1. Under these assumptions,
for any positive h, inequalities

(49.14) Ju\t +h, X)-1.ti(t, X)[ ~ KeMm1hfl +;~ (e2lJml -1)

(i=I,2, ... ,m)
are satisfied in D.

Indeed, fix an h > 0 and put

n

gift, X, U, Q, R) = .2 a:k(X)rlk+h\t+h, X, U)
l,k=l(49.15)

(i=I,2, ... ,m),

viet, X) = ui(t+h, X) (i = 1, 2, ... , m) .

Then V(t, X) = (v\t, X), ... , vm(t, X)j is a regular (see § 47) solution
of system (49.1) with gi defined by formula (49.15). If we denote by
tift, X, U, Q, R) the right-hand sides of system (49.10), then we can
easily check that all the assumptions of Theorem 49.1 are satisfied with

m

Gi(t, V) == M .J: vj+Rhu (i = 1,2, ... , 1n),
j~l

i _ i _ fIa(t,X)=O, (3(t,X)=I, 'YJi=Kh (i=I,2, ... ,m),

COi(t; H) = KeMm1hfl + ~~: (eMml-1) (i = 1,2, ... , m) .

Therefore Theorem 49.1 yields inequalities (49.14).
The result just obtained may be summarized less precisely in the

following form: if the functions hi(t, X, U) are Holderian with respect
to t and Lipschitzian with respect to U, then any regular solution of sys
tem (49.10) in D is Holderian with respect to t in every bounded subdomain,
provided that it be Holderian with regard to t in the set (0, + 00) >~ 8G
and for t = O.

§ 50. Uniqueness criteria for the solution of the first mixed problem.
We prove

THEOREM 50.1. Let the right-hand members ti(t, X, U, Q, R) (i = 1,
2, ... , m) oi system (46.7) be detined tor (t, X) € D of type C (see § 33) and
tor arbitrary U, Q, R. Assume that

(50.1) [let, X, u, Q, R)-l(t, X, U, Q, R)]sgn(ui-ui
)

~Gi(t-to,IU-UD (i=I,2, ... ,m),

wkere Gi(t,V) are the right-hand sides of a comparison, system ot type I
(see § 14). Suppose that

Gi(t,O) ==0 (i=I,2, ... ,m)
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and that

(50.2) .Q(t;O)=O in [O,+co),

where .Q(t; 0) is the right-hand maximurn solution of the comparison system
through the origin in the interval [0, + co). Let ai(t, X), li(t, X)
(i = 1,2, ... , m) satisfy Assumptions.A. (see § 47) and let tift, X) satisfy
inequalities

{3i(t;X»O on I:ai (i=I,2, ... ,m).

Under these assumptions the first mixed problem for system (46.7)
with initial conditions (47.3) and boundary conditions (47.4) admits at most
one parabolic (see § 46), I:a-regular (see § 47) solution in D.

Proof. Suppose that

U(t, X) = (u\t, X), ... , um(t, X»), Vet, X) = (vl(t, X), ... , vm(t, X))

are two such solutions. Then they satisfy all the assumptions of Theo
rem 49.1 with l == fi, 'Yjt = B i = 0 (i = 1, 2, ... , m) and ~(O) = + co.
Therefore, we have

IU(t, X)- Vet, X)I ~ .Q(t-to; 0)

in D and hence, by (50.2), it follows that

U(t, X) == Vet, X)

in D, what was to be proved.
THEOREM 50.2. Let the right-hand sides fi(t, X, U, Q, R) (i = 1,

2, ... , m) of system (46.7) be defined for (t, X) ED of type C (see § 33) and
for arbitmr'y U, Q, R. Assume that, for t > to,

(50.3) [fi(t,X, U,Q,R)-l(t,X, fJ,Q,R)]sgn(ui-ui)

~ o(t- to, max lul-Ul!) ,
I

where ott; v) is the right-hand side of a comparison. equation of type II
(see § 14). Let a\t, X), lift, X) (i = 1, 2, ... , m) satisfy Assumptions .A.
(see § 47) and let {3t(t, X) satisfy inequalities

{3i(t, X) > 0 on I:ai (i = 1,2, ... , rn).

Under' these assumptions the first muoed. problem. for system (46.7)
with initial conditions (47.3) and boundary conditions (47.4) admits at
most one parabolic (see § 46), I:a-regular (see § 47) solution in D.

Proof. Suppose that U(t, X) = (ul(t, X), ... , um(t, X») and Vet, X)

= (v\t, X), ... , vm(t, X») are two such solutions. Like in Theorem 48.1
we assume, without loss of generality, that to = O. Then we have

(50.4) UfO, X) = V(O, X) for X E So,
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and

s«, X)[U\t, X)-Vi(t, X)]-ai(t, X) d[UL~Vi]= 0
dl'

(50.5) for (t, X) e Lai,

ui(t, X)-vi(t, X) = 0 for (t, X) € L- Lai

(i=1,2, ... ,m).
Put, for 0 ~ t < T,

Mi(t) = max (ui(t, X) - vi(t, X») ,
x cs,

Ni(t) = max (v\t, X)-ui(t, X)) (i = 1,2, ... , m),
X,St

Wet) = max {max lui(t, X)-vi(t, X)I}.
i X,St

The assertion of our theorem is equivalent with

(50.6) W(t):==O for O~t<T.

Now, by Theorem 34.1, Wet) is continuous in the interval [0, T)
and, by (50.4), we have

W(O) = o.
Hence, by the second comparison theorem (see § 14), identity (50.6)
will be proved if we show that the differential inequality

(50.7)

is satisfied in the set

D_W(t) ~ a(t, Wet»)

E = {t e (0, T): Wet) > O} .

Let t e E; then we have

(50.8) wet) > O.

By Theorem 34.1, there is an index j and a point X € S; such that
either

(50.9) W(t") = BIi(t) = ui(t, .i,>-vi(t, X), D_W(t) ~ D-lJli (i ) ,
or

(50.10) W(t') = Ni(t) = viet, X) - ui(t, X) , D_W(t) ~. D-Ni(i') .

Suppose we have, for instance, (50.9); then, in view of (50.5), (50.8)
and (50.9) we conclude, by Lemma 47.1, that (t, X) is an interior point
of D. Hence, relations (49.8) and (49.9) hold true. By Theorem 33.1, 2°,
we have

J. Szarski, Differential inequalities 10
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Therefore, proceeding further like in the proof of Theorem 49.1
and using (49.8) and (50.9) we get

D_W(t) ~ [fi(t', X, u(i, X), tt~(t, X), tt~x(t, i'))-

- fi (t, X, uti, X), tt~(t; X), v~x(t; X)) J.-:...

+ [t(t, X, U(t; X), u~(t-, X), v~x(t; X))-

_fi(t', X, vet; X), u~(t; X), v~x(t, ~Y))J .

The first difference in the brackets is, by the parabolicity of solution
U(t, X) (see § 46) and by (49.9), non-positive. Since, by (50.8) and (.50.9),
we have

inequality (50.3) applied to the second difference in brackets yields

D_ W(t) ~ a(t', max Iut(t; X)-vl(t; X)I) .
I

In view of the obvious relation (see (50.9))

W(t) = maxlul(t, X)-vl(t, X)\ ,
I

the last inequality is equivalent with (50.7), which completes the proof.

Remark 50.1. The uniqueness criterion contained in Theorem 50.2
is more general than that of Theorem 50.1. This depends on the fact
that the right-hand sides of a comparison system of type I (see § 14)
are supposed to be continuous for t = 0, while the right-hand side of
a comparison equation of type II is not. Thus, for instance, the uniqueness
of the solution of the first mixed problem for the equation

Ut = Iln(t-to)lu+h(t, X, ux, uxx)

is a consequence of Theorem 50.2 (see Example 14.2, (y)), whereas it is
not one of Theorem 50.1.

Remark 50.2. It easily follows from the proof of Theorem 50.2
that if we knew that W~(O) = 0, then we would obtain a still more general
uniqueness criterion with a(t, v) in (50.3) being the right-hand side of
a comparison equation of type III (see § 14). But, to get relation W~(O) = 0,
we would have to require that the solutions U(t, X) and Vet, X) satisfy
system (46.7) for t = O. Therefore, such a criterion would be useful only
in particular cases since usually parabolic equations are not satisfied on
the lower base of the domain D.
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Remark 50.3. In the proofs of Theorems 48.1, 49.1, 50.1 and 50.2
we used, as an essential argument, the following vcry well known pro
position: if a funetion ef.Z) = lJ?(xll ... , xn) is of class 0 2 in the neighborhood
of the point X o and if it attains local maximum at that point, then

and the quadratic form in AI' ... , An

n

.L: lJ?XIXk(XO) AZAk
Z,k=l

is negative. On the other hand, if the function lJ? (X) were even of class 0"",
nothing could be inferred on the behavior of its higher derivatives at X o
from the fact that it attains local extremum at X o' This explains why
general theorems of the types discussed in §§ 48-50 cannot be expected
to hold true for equations of higher order than 2.

Remark 50.4. In the particular case, when the right-hand sides
of system (46.7) and (49.1) respectively do not depend on second deriva
tives, Theorems 48.1, 49.1, 50.1 and 50.2 concern systems of first order
partial differential equations. Now, the question arises how these theorems
are related with analogous theorems of Chapter VII. In Chapter VII we
have more restrictive assumptions on the domain D and on the regularity
of the right-hand sides of system, viz. the domain D is a pyramid and the
right-hand sides of the system satisfy a Lipschitz condition with regard
to the first derivatives of unknown functions (the pyramid depending
on the Lipschitz constant); on the other hand, in Chapter VIII we impose
boundary conditions for the solution on the side surface of D which are
superfluous in theorems of Chapter VII.

§ 51. Continuous dependence of the solution of the first mixed problem
on initial and boundary values and on the right-hand sides of system. We
now prove

THEOREM 51.1. Let the right-hand sides fi(t, X, U, Q, R) and
gift, X, U, Q, R) (i = 1,2, ... , m) of system (46.7) and (49.1) respectively
be defined for (t, X) e D of type 0 with T < + 00 (see § 33) and for arbitrary
U, Q, R. Suppose l to satisfy assumptions of Theorem 50.1. Let ai(t, X),
lift, X) (i = 1,2, ... , m) satisfy Assumptions A (see § 47) and p\t, X)
inequalities

p\t,X»Bi>O for (t,X)€Eui (i=1,2, ... ,m).

Suppose finally that U (t, X) = (1,1,1 (t, X), ... , u"(t, X») is a parabolic
(see § 46), Eu-regular (see § 47) solution of system (46.7) in D and V(t, X)
= (v1(t,X), ... ,vm(t,X») is a J:u-regular solution of system (49.1) in D.

10'"
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Under these assumptions, to every e > 0 there is a b > 0 such that
whenever we have

(51.1)

(51.2)

(51.3)

w«. X, U, Q, R)-i(t, X, U, Q, R)I < b (i = 1,2, ... , m),

lU(to, X)- Veto, X)I < L1 for X e Sto '

Ipi(t, X)[ui(t, X)-vi(t, X)]-ai(t, X) d[U~tViJI< b

for (t,X)erai,

lui(t, X)-vi(t, X)I < <5 for (t, X) e.E- s;
(i=1,2, ... ,m),

where L1 = (<5, ... , b), then inequality

(51.4) lU(t, X)- Vet, X)I < E

holds true in D, where E = (e, ... , e).

Proof. In view of Theorem 10.1, to every e > 0 there is a <51 > 0
such that the right-hand maximum solution Q(t; H, <51) of the comparison
system

(concerning ai(t, Y) see the assumptions of Theorem 50.1), passing through
(0, H) = (0, 'Y)1' ... , 'Y)m), is defined in the interval [0, T) and satisfies
inequality

(51.5)

provided that
(51.6)

Q(t; H, b1 ) < E for 0 :::;; t < T,

where L1 1 = (<51l ... , b}). Let inequalities (51.1)-(51.3) hold true with

b = min(b1 , Bib}) > 0;
i

then, by (51.2) and (51.3), inequalities (49.3) and (49.4) of Theorem 49.1
are satisfied with 'Y)i = b} (i = 1,2, ... , m). On the other hand, by (50.1)
and (51.1) we have

[fi(t,X, U,Q,R)-l(t,X, U,Q,R)]sgn(ui-ui):::;;:ai(t-to,IU-UD+b}

(i=1,2, ... ,m).

Hence, by Theorem 49.1, we get

(51.7) IU(t, X)- Vet, X)I :::;;:Q(t; L1 1l <5}) in D.

From (51.5) and (51.7) follows (51.4), what was to be proved.



§ 52. Stability of the solution of the first mixed problem 149

§ 52. Stability of the solution of the first mixed problem. Let the
right-hand sides of system (46.7) be defined for (t, X) € D of type C with
T = + 00 (see § 33) and for arbitrary U, Q, R, and satisfy identities

(52.1) let, X, 0, 0, 0) =0 (i = 1,2, ... , nL).

Let ai(t, X), lift, X) (i = 1,2, ... , m) satisfy Assumptions A (see § 47)
and fli(t, X) inequalities

fl\t,X»Bi>O for (t,X)€Eai (i=I,2, ... ,m).

Owing to assumption (52.1), Vet, X) == 0 is a Ea-regular (see § 47)
solution of the first mixed problem (47.3), (47.4), with <P(X) == 'P(t, X) = 0,
for system (46.7).

DEFINITION OF STABILITY. Put E=(e, ... ,e) and Ll=(15, ... ,15).
We say (under the above hypotheses) that the null solution of system (46.7)
is stable if to every 8> 0 there is a 15 > 0 such that for every Ea-regular
(see§ 47) and parabolic (see § 46) solution U(t, X) = ('u1(t , X), ... , um(t, X))
of system (46.7) in D we have

(52.2)

whenever
lU(t,X)I<E in D,

{52.3)

I lU(to, X)I < .1

\

• • r , dUij
flt(t, X)?t'(t, X)- a'(t, X) ---;- < 15

dl'

lui(t, X)I < 15

for

for

for

(t,X)€Eai,

(t, X) e E- Eai

(i=1,2, ... ,m).

Now, we can prove the following
THEOREM 52.1. Under the assumptions intToducecl at the beginning of

this pamgraph suppose that

(52.4) fi(t, X, U, 0, O)sgn'ui
~ Gi(t-to, IUD (i = 1,2, ... , m),

where Gt(t, V) are the right-hand sides of a comparieon system of type I
(see § H), Assume that

Gt(t,O) ==0 (i=1,2, ... ,m)

and that the null solution of the comparison system is stable (see [7], p. 314).
Then the null solution of system (46.7) is stable too.

Proof. The null solution of the comparison system being stable,
to 8 > 0 there is a "1 > 0 such that whenever

o~ H ~.11 (Ll 1 = (<5u ... , <51) ) ,

then
(52.5) Q (t; H) < E for 0 ~ t < + 00 ,



150 CHAPTER VIII. Mixed problems for second order differential equations

where Q(t; H) is the right-hand maximum solution of the comparison
system through (0, H) = (0,1]11 ... , 'fJm). Put

15 = min (1511 B ib
1 ) > 0

i

and suppose that inequalities (52.3) hold true with the above b. Then,
by (52.3) and (52.4), all the assumptions of Theorem 48.1 are satisfied
with 1]i = 151 (i = 1,2, ... , m) and V(t, X) == O. Hence, by Theorem 48.1,
we get

(52.6) jU(t, X)I :'(, Q(t; ,11) in D.

Inequality (52.2) follows now from (52.5) and (52.6).

EXAMPLE. Let the comparison system be a linear one of the form

(52.7) (i = 1, 2, ... , m) ,

where aik(t) ~ 0 are continuous for t ~ O. Suppose that for

qJ(t) = max Iaik(t)1
i,k

we have
00

JqJ(t)dt < + 00 •

o

It is well known that under these assumptions the null solution of
system (52.7) is a stable one. Hence, if system (46.7) satisfies hypotheses
of Theorem 52.1 with inequalities (52.4) of the form

m

ji(t, X, U, 0, O)sgnui
:'(, }; aik(t)lukl,

k~l

then the null solution of (46.7) is stable.

§ 53. Preliminary remarks and lemmas referring to the second mixed
problem. We are going now to discuss the second mixed problem for
systems of the form (46.7). We recall (see § 47) that the second mixed
problem consists in determining a .Ea-regular solution (see § 47) of (46.7)
satisfying initial conditions (47.3) and boundary conditions (47.4), where
pi(t, X) are functions which-unlike in the first mixed problem-are
not supposed to be positive for (t, X) E .Eni. In order to get analogues of
theorems concerning the first mixed problem, we will have to impose
some more restrictive conditions on the right-hand sides of system
(46.7) and, moreover, we will assume the existence of adequate sign-stab
ilizing factors. More precisely, we will suppose that there exist functions
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Ki(t, X) (i = 1,2, ... , m), such that new unknown functions defined by
formulas

1i8t, X) = 1ti~t,X) (i=I,2, ... ,m)
tc«, X)

satisfy boundary conditions (47.4) with new coefficients P'(t, X), which
are positive for (t, X) € IaL In the case of one linear parabolic equation
the introduction of the above sign-stabilizing factors is due to M. Krzy
zariski [18J. We will establish certain sufficient conditions referring to
the domain D, the coefficients a\t, X) and (i(t, X) and to the directions
li(t, X) which imply the existence of the above factors.

In what follows we suppose that a region D of type 0 (see § 33),
directions r«, X), and functions ai(t, X), ~i(t, X) (i = 1, 2, ... , m) defined
on the side surface Iof D respectively on I a; are given, where ai(t, X),
li(t, X) satisfy Assumptions A (see § 47).

Let the functions s'«, X) (i = 1,2, ... , m) be positive and of class 02

in the closure of Dand let U(t, X) = (u\t, X), ... , um(t, X») be Ia-regular
(see § 47) in D. Under these assumptions we have the following easy
to check

LEMMA 53.1. Define ti«, X) = (1'?(t, X), ... , 1i"\t, X») by the formulas

(53.1) ui(t, X) = ui(t, X)[Ki(t, X)r 1 (i = 1,2, ... , m);

then we have the following propositions:

1° {lUi - aidu,i = Ki[piUi - aidU,i] for (t, X) e Ial (i = 1,2, ... , m), where
dl t dt

(53.2) pi(t, X) = (l(t, X)- ai(t, X)[Ki(t, Xn-1 d;i for (t, X) e Ial

(i=1,2, ... ,tn).

2° If U (t, X) satisfies initial conditions (47.3) and boundary conditions
(47.4), then

(53.3) ui(to, X) = rpi(X)[Ki(to, X)J-l for X € Sto (i = 1, 2, ... , m),

and
~, , ,dui , , 1
13~(t, X)u~(t, X)- at(t, X) dl i = 1p~(t, X)[Kt(t, X)r

for (t,X)€Ial,

(53.4) ui(t, X) = 1pi(t, X)[Ki(t, X)]-l for (t, X) € I- Ial

(i=1,2, ... ,m),

where pi(t, X) are given by formulas (53.2).
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The above lemma justifies the following definition.

DEFINITION OF SIGN-STABILIZING FACTORS. Functions s'«, X)
(i = 1, 2, ... , m), which an pnsitive and of class 0 2 in the closure of D,
will be called sign-stabilizing factors if there exist constants B i (i = 1,
2, ... , m) such that

7fi(t, X) > Bi
~ 0 for (t, X) € Eui (i = 1, 2, ... , m) ,

where 7f\t, X) are defined by formulas (53.2).

Remark 53.1. The existence of sign-stabilizing factors is trivial if
we assume that for the original coefficients ;3\t, X) we have

;3i(t, X) > Bi
~ 0 for (t, X) € Ea! (i = 1,2, ... , m).

Indeed, in that case tc«, X) = 1 (i = 1,2, ... , m) are obviously
sign-stabilizing factors. On the other hand, we will see in § 54 that sign
stabilizing factors may exist also in the case when ;3\t, X) take on values
which are non-positive. Hence, it follows that the existence of sign
stabilizing factors is an essentially less restrective condition imposed on
;3\t, X) than the above inequalities, and that sign-stabilizing factors can
be of service in the treatment of the second mixed problem.

Next we state, without proofs, three easy to check lemmas.

LEM~IA 53.2. If U(t, X) = (u\t, X), ... , um(t, X)) is a Ea-regular
(see § 47) and parabolic (see § 46) solution of system (46.7) in D, then
ii«, X) = (u1(t, X), ... , um(t, X)) defined by (6.3.1) is a Eu-1'egttlar and
parabolic solution of the transfor'med system

(53.5 )

where

(53.6) 7i(t , X , Z , Q , R )

= [K\t, X)]-1[fi(t, X, z1K1(t, X), ... , zmKm(t, X), os'«, X) +
+ ziK~(t, X), ... , rjIcKi(t, X) + (bK~k(t, X) +qkK~it, X) +

+ziK~JXk(t, X), ... )-iK:(t, X)] (i = 1, 2, ... , m).

LEMMA 53.3. Let the junctions u'u, X) (i = 1,2, ... , m) be oj class O~

in the closure of D and satisfy inequalities

(53.7) 0 <!'~ tc«, X) ~ if, IK:I, IK~JI, IK~Jxlcl ~ .Iff;
ptd

.1.11 = n(n+1)1l1.

Suppose the functions (Ti(t, Yll ... , Ym), Ti(t, y) (i = 1, 2, ... , m) to be
contisvuoue, non-negative and increasing in all variables for t ~ 0, Y ~ 0,
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Yi ~ ° (i = 1,2, ... , m). Assume finally that the right-hand sides of
systems (46.7) and (49.1) satisfy inequalities

(53.8) [t(t, X, U, Q, R)-i(t, X, V, Q, R)]sgn(tti-ui
)

~ Gi(t-to, IU - VI) +TAt-to, }; Iqj-rlJl +}; [rjk-fjkl)
i j,k

(i=1,2, ... ,m).

Under these assumptions the right-hand sides of the transformed
systetn (53.5) and of the system

(53.9) zf = {/(t, X, Z, z~y, z~x) (i = 1, 2, ... , m) ,

obtained by transformation (53.6) from system (49.1), satisfy inequalities

[7i(t , X , U,Q,R)-{/(t,X, V,Q,R)Jsgn(Ui~Ui)

~ ai( t - to, IU- VD (i = 1, 2, ... , 1n) ,

(fi(t, YI, ... , Ym) = ~ [O'i(: t, .2IIYll ... , MYm)+Ti(~ t, .ilfYi)+..I.7JfYi]

(i=1,2, ... ,m).

LEMMA 53.4. Let O'i(t, Yu ... , Ym) and Ti(t, y) (i = 1, 2, ... , m) satisfy
assumptions of Lemma 53.3 and define (fi(t, Yll ... , Ym) by formula (53.11).
Ooneide» two systems of ordinary differential equations

(53.10)

(53.11)

where

(53.12)

and

(53.13) dYi ~ ( )7JI = O'i t, Yu ... , Ym (i=1,2, ... ,n~).

Under the above assumptions we have the following propositions:
1° Both systems are comparison systems of type I (see § 14).

2° If D(t; H) is the right-hand maximum solution of system (53.12)
through (0, H) = (0, rjI, ... , rjm) defined on [0, + 00), then

(53.14) D(t; H) = 1i-D(~t; Mrju ... , Mrjm)

is the right-hand maximum solution of system (53.13) through (0, H) defined
on [0, + 00).

§ 54. Sufficient conditions for the existence of sign-stabilizing factors.
It is important to know whether the domain D, the functions ai(t, X),
{let, X) and the directions li(t, X) being given the existence of sign-eta-
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bilizing factors s'«, X) (see § 53), satisfying inequalities (53.7), is guaran
teed.

We will consider a particular case when the construction of sign
stabilizing factors can be easily achieved. Let D be a cylinder whose axis
is parallel to the t-axis and whose basis is a bounded domain G in the
plane t = O. Assume the boundary 8G of G to be a surface given by the
equation G(X) = 0, where G(X) is of class 0 2 in the closure of G. Suppose
that

IG(X)I, !G,,)X) I, IGXiXk(X) I ~ N for

grad2 G(X ) > 0 for

XdJ,
Xd}G.

Let ai(t,X) =1 and /3i(t,X);:::bi (i=1,2, ... ,m), where bi are
some negative constants. Assume finally the directions li(t, X) to be
chosen so that

m

2: GX,(X )cos (li(t, X), Xi) ;::: t: > 0 for
1=1

(t,X)e1: (i=1,2, ... ,m).

A simple computation shows that under these assumptions the
functions

s'«, X) = e-yG(X) (. 1 2 )'/,= , , ••• ,11t,

where

(
l _ b

i
)Y = max -.- ,

i I"

are sign-stabilizing factors with B i = 1 (i = 1,2, ... , m), satisfying inequa
lities (53.7) with

It = e-yN , .ill = eyN(yN +1)2.

§ 55. Analogues of theorems in §§ 48-52 in case of the second mixed
problem. Using lemmas of the preceding section we will derive from
theorems contained in §§ 48-52 the following results for the second mixed
problem: estimates of the solution, estimates of the difference between
two solutions, uniqueness criteria, continuous dependence of the solution
on initial and boundary values and on the right-hand sides of system
and, finally, a stability criterion.

In what follows we will assume, without stating it explicitly in each
theorem that

(ex) the right-hand sides of systems to be considered are defined for
(t, X) e D of type 0 (see § 33) and for arbitrary U, Q, R,

(~) functions ai(t,X) and directions li(t,X) (i=1,2, ... ,m) satisfy
ing Assumptions A (see § 47) are given on the side surface 1: of D, as
well as functions (l(t, X) on 1:at (i = 1, 2, ... , m).
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THEOREl\1 55.1. Suppose that the right-hand sides of system (46.7)
satisfy inequalities

(55.1) fi(t, X, U, Q, R)sgn ~li <; (Ji(t- to, IUj) +ii(t- to, }; IqJI +2: Irjkl)
j i,k

(i = 1,2, ... , tn) ,

where (Ji(t, Yll ... , Ym) andii(t, y) are continuous, non-negative and inc'reasing
in all variables for t ~ 0, Y ~ 0, Yi ~ 0 (i = 1,2, ... , m). Denote by D(t; H)
= (w1(t; H), ... , Wm(t; H») the 'right-hand maximum solution. of system (53.12)
through (0, H) = (0, 'YJ1l ... , 17m) and aSS~lme it to be defined on [0, + 00).
Suppose there exist sign-stabilizing factors (see § 53) s'«, X) (i = 1, 2, ... , m)
satisfying inequalities

(55.2) 0 < ft <; Ir(t, X) ~ ill , IXll, IX~JI, IX~jxkl <;M

(i=1,2, ... ,m; j,k=1,2, ... ,n)

and some constants Bi such that

(55.3) {f\t,X»Bi~O for (t,X)€Eal (i=1,2, ... ,m),

where

(55.4) {f'(t, X) = pi(t, X)- ai(t, X)[X'(t, X)]-l ~~i for (t, X) € Eaj

(i = 1, 2, ... , tn).

Let U(t, X) = (~ll(t, X), ... , 'u1n(t , X») be a parabolic (see § 46), Ea-regu
lar (see § 47) solittion of syste'm (46.7) in D, satisfying initial inequality

(55.5)

and boundary inequalities

If/ (t , X)u'(t, X)-ai(t, X) d'~il <; Bi .1!... wi (M (t-to); .11f H) for (t, X) e Eal,
dl ..L7JtI ft ft

(55.6)

lUi(t,X)I<;.1~wi(~(t-to);~H) for (t,X)€E-Eal (i=I,2, ... ,m),

where lJf = n(n +1) 1'11.
Under the above assumptions we have in D

(55.7)

Proof. Put

(55.8) ui(t, X) = ui(t, X) [K\t, Xn- 1 (i = 1,2, ... , 1n).



156 CHAPTEH VLll. Mixed problems for second order differential equations

By Lemma 53.2, ii«, X) = (it(t, X), ... , ;;;,m(t, X)) is a .Ea-regular
and parabolic solution of the transformed system (53.5) and, by Lemma
53.1, inequalities (55.2), (55.5) and (55.6) imply

~ H
(55.9) lU(to, X)I :;:;;;; - for X E Sto ,

ft
and

I
pi(t , X)u\t, X)- ai(t, X) d~11 :;:;;;; Bi -.!..-Wi (M (t~to); M H) for (t, X) E .Eai,

dl M ft ft

(55.10)

lui(t, X)I :;:;;;; .irW; (~(t-to); ~H) for (t, X) E .E- .Eai (i = 1,2, ... , m) ,

where pi(t, X) are given by formula (55.4). From (53.6), (55.1) and (55.2)
it follows that the right-hand sides of the transformed system (53.5)
satisfy inequalities

(55.11) 7\t, X, U, 0, O)sgnui
:;:;;;; o;(t-to, IUD (i = 1,2, ... , m),

where

(55.12) Oi(t, Yl1 ... , Ym) = 1[oA~ t, MYl1 ... , MYm) +'t'i(~t, MYi) +MY;]

(i = 1, 2, ... , m) .

From (55.3), (55.9), (55.10) and (55.11) we infer that for the transfor
med system (53.5) and its solution U(t, X) all the hypotheses of Theo
rem 48.1 are satisfied. Hence, we have in D

(55.13) ~ . ~(H)IU(t, X)I:;:;;;; Q t-to; Ii '
where lJ(t; H) is the right-hand maximum solution of system (53.13)
through (0, H). But, by Lemma 53.4, we have, for 0 :;:;;;; t < + 00,

(55.14) Q(t; H) = ~ Q(~t; MH).
Relations (55.2), (55.8), (55.13) and (55.14) imply inequalities (55.7)

in D, what completes the proof.
THEOREM 55.2. Let the right-hand members of systems (46.7) and (49.1)

satiSfy inequalities

[fi(t, X, U, Q, R)-g\t, X, U, Q, R)]sgnCui-ui)

:;:;;;; G;(t-to, IU-UD+T~(t-to, I Iqj-qt'l +I Irjk-rjkl) ,
i j,k

where G;(t, Y) and 't'i(t, y) satisfy assuntptions of Theorem 55.1. Suppose
there exist sign-stabilizing factors (see § 53) satisfying inequalities (55.2)
and constants Bt, such that inequalities (55.3), with pi(t, X) defined by (55.4),
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hold true. Assume that U(t, X) = (u1(t, X), ... , um(t, X)) is a paroboiic
{see § 46), Ea-regular (see § 47) solution of system (46.7) in D and V(t, X)
= (ll(t, X), ... , 1r(t, X)) is a Ea-regular solution of system (49.1) in D,
their difference satisfying initial inequalities (55.5) and boundary inequa
lities (55.6).

Under these assumptions the inequality

holds true in D, where Q(t; H) is the right-hand rnaximum solution of sys
tem (53.12) tMough (0, H) = (0, 'YJIl ... , 'YJm).

Proof. Proceeding like in the proof of Theorem 55.1, we put (55.8) and

(55.15)

and we check (using Lemmas 53.1-53.3) that for the transformed sys
tems (53.5) and (53.9) and their solutions ii«, X) and V(t, X) all the
assumptions of Theorem 49.1 are satisfied. Hence, applying Theorem 49.1
and using Lemma 53.4, we get the assertion of our theorem.

THEOREM 55.3. Let the 1'ight-hand sides of system (46.7) satisfy the
ineq1ialities

[f\t,X, U,Q,R)-fi(t,X, U,Q, R)]sgn(ui-ui)

~ Gi(t- to, IU- UD +Tt(t- to, L !qi- iiiI+L Irik- Tjkl)
j j,k

(i=1,2, ... ,m),

where Gt(t, Y), Tt(t, y) satisfy assumptions of Theorem 55.1. Suppose that

Gi(t, 0) == Tt(t, 0) - 0 (i = 1,2, ... , rn)
and that

Q(t; 0) == 0 in [0, + 00),

where Q(t; 0) is the right-hand maximum solution of system (53.12), issued
from the origin. Assume, finally, there exist sign-stabilizing factors (see § 53),
satisfying inequalities (55.2), and constants B i such that ineqrtalities (55.3)
hold true.

Under these assumptions the second mixed problem for system (46.7)
with initial conditions (47.3) and boundary conditions (47.4) admits at
most one parabolic (see § 46), Ea-regular(see § 47) solution in D.

Proof. Since two solutions of the problem satisfy assumptions of
Theorem 55.2 with fi =land 'YJt = Bi

= 0, our theorem follows from
Theorem 55.2.
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THEOREM 55.4. Assurne the right-hand sides of system (46.7) to satisfy
the inequalities

(55.16) [I\t, X, U, Q, R)_ji(t, X, U, (J, R)]sgn(ui-ui
)

:« O'(t- to, m~x lui - uil) +r(t-to, 2: \qj-iiJl +2: Irjk-rikl)
1 i i,k

for t > to (i = 1, 2, ... , m) ,

where aft, y) and r(t, y) are continuous, non-negative and increasing in all
variables for t > 0, Y ~ O. Suppose that

dy
(55.17) dt = a(t,y)+r(t,y)+y

is a comparison equation of type II (see § 14). Assume, finally, there eanst
sign-stabilizing factors (see § 53), satisfying inequalities (55.2), and con
stants B\ such that inequalities (55.3) hold true.

Under these assumptions the second mixed problem for system (46.7)
with initial conditions (47.3) and boundary conditions (47.4) admits at most
one parabolic (see § 46), Ea-regular (see § 47) solution in D.

Proof. It is obvious that it suffices to prove uniqueness of the corre
sponding problem for the transformed system (53.6) obtained from the
given system (46.7) by the mapping (55.8). Now, in view of (55.16), it
is easy to check that the right-hand sides of the transformed system
satisfy the inequalities

[ji(t, X, U, Q, R)_ji(t, X, U, (J, R)]sgn(Ui_Ui )

:« (1'(t-to, maxlui-uil) for t > to (i = 1, 2, ... , m),
i

where

(1'(t, y) = ~ [O'( ~It, lrlY) +r(~[ t, MY) + J1[y] .

Equation (55.17) being a comparison one of type II it is not difficult
to check that the same is true for the equation

dy ~( )dt = a t, y .

The above remarks and inequalities (55.3) imply that for the trans
formed system (53.5) and the transformed initial and boundary con
ditions (53.3) and (53.4) all the assumptions of Theorem 50.2 are satisfied.
This completes the proof.

THEOREM 55.5. Let the right-hand sides of system (46.7) satisfyassump
tions oj Theorem 55.3. Assume there exist sign-stabilizing factors (see § 53),
satisfying inequalities (55.2), and constants B i such that inequalities

(55.18) pi(t, X) > B i > 0 [or (t, X) e Eai (i = 1,2, ... , m)

hold true.
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Under these assumptions the parabolic and Ea-regular solution of the
second mixed problem for system (46.7) depends continuously (in the sense
specified in Theorem 51.1) on initial and boundary values and on the right
hand sides of system.

Proof. Applying our standard procedure we check that for the
transformed problem obtained from the original one by the mapping (55.8)
all the hypotheses of Theorem 51.1 are satisfied. Thus, our theorem follows
from Theorem 51.1.

In a similar way, from Theorem 52.1 we derive the following

THEOREM 55.6. Let the right-hand sides of system (46.7) satisfy ine
qualities

l(t, X, U, Q, R)sgnu
i < (fi(t-to, IUD+Ti(t-to, }; Iqjl +}; Irjkl)

i s,«

(i=I,2, ... ,m),

where (fi(t, Y) and Ti(t, y) satisfy assumptions of Theorem 55.1. Suppose that

l(t, X, 0, 0, 0) == (fi(t, 0) == Ti(t, 0) = 0 (i = 1,2, ... , m)

and that the null solution of system

dYi
(JI = (fi(t, Yl1 ... , Ym) +Ti(t, Yi) +Yi (i = 1,2, ... , m)

is stable. Assume the existence of sign-stabilizing factors (see § 53), satisfying
inequalities (55.2) and such that inequalities (55.18) hold true. This being
assumed the null solution of system (46.7) is stable (for the definition of
stability, see § 52).

§ 56. Energy estimates for solntions of hyperbolic equations. In this
section we consider a system of linear equations of the form

n

(56.1) F[ui] == }; ah(X)u~jXk
i,k~l

In n m

= };}; b~I(X)u;j+}; Cil(X)UI+l(X) (i = 1,2, ... , m) ,
l=li~l l~l

where the ith equation involves second derivatives of ui only and a~k = ati.
The coefficients of equations (56.1) are supposed to be defined in a region D.
Before we define D more precisely, we recall the following notions.

The differential operator F[u] is called hyperbolic at a point XED
if n-1 eigenvalues of the matrix (ah(X»)i,k=l, ...,n are positive and one
is negative.
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Let G(X) be of class 01 in the neighborhood of a point Xo ~ D and
suppose that grad2G(X) > 0 and G(Xo) = O. Let us write

(56.2)
n

AtG] = }; ah(X) Gx/X) GXk(X) .
i,k=1

The operator Jr being hyperbolic at the point Xo we say that the
orientation with respect to u' of the surface }; defined by the equation
O(X) = 0 is at the point X o:

(oc) characteristic if Ai[G]x_xo = 0,

(~) space-like if AtG]x-xo < 0,

(y) time-like 'if AtG]x-xo > O.

We introduce now following assumptions concerning the region D
in the space (xu ... , xn ) and the coefficients of system (56.1).

ASSUMPTIONS B. (a) D is open, contained in the zone 0 < Xn < b < + 00,

and the intersection of D with any closed zone O,s;; t « Xn « t + h < b is
non-empty and bounded.

(b) IIt denoting the intersection of Jj with the plane Xn = t and VJ (X)
being an a1'bitrary continuous function, in D, the function

<p(t) = JJVJ(xu ... , xn)da (1)
IIt

is continuous on [0, b).

(c) a}k(X) are of class c; by(X), Ci1(X) and l(X) are bounded and
integrable in D and

(i=1,2, ... ,m)

for X ~ n and arbitrary Au ... , An, where .11/ and fl are positive constants (2).

(d) The side surface J.: of D, i.e. that part of the boundary of D which
is contained in the open zone 0 < Xn < b, is composed of two (n-l)-dimen
sional surfaces J.:s and J.:T (one of them may be empty).

(e) J.:s is the union of a finite number of surfaces of class 01 whose
orieaauo«, with respect to every operator u', is characteristic or space-like
at every point; moreover, we have

cos(n, xn) < 0 on z",
where n denotes the interior orthogonal direction.

(1) f de, Hdo, Hi dv denote (n- 2)-dimensional, (n- I)-dimensional and n-dimen
sional integrals respectively.

(0) It is easy to check that the left-hand inequality (56.3) implies hyperbolicity
of the operator Hi.
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(f) rT is the union of a finite nU1nber of surfaces of class 01 whose
orientation, with respect to every operator H\ is time-like at each point and

cos(n, Xn) > 0 on

moreooer, rr denoting the intersection of r T with the plane Xn = t and '1jJ (X)
being an arbitrary continuous function in D, the function

is continuo'us on [0, b).

THEOREM 56.1. Suppose the Assumptions B to hold true, and let the
functions ui(X) = ui(xll ... , Xn) (i = 1, 2, ... , m) be of class 02 in D and
of class 0 1 in the closure of D. Assume U (X) = (tt 1(X ) , ... , um(X)) to sat
isfy systC1n (56.1) in D. For O·~ t < b, put

m n-1

E(t) = ff }; [}; a~ku~ju~!;-a~n(u~n)2+(ui)2]d()'.
tt, i=1 i ,k=1

Under the above assumptions we have in the interval [0, b)

(56.4: )

whm'c

(56.5)

D+E(t) ~LE(t)+g(t),

and (Yll ... , Yn-1) are suitably chosen local coordinates on r T
; L is a positive

constant depending on # (see (56.3)) and on the bounds of coefficients b~l, C
i l

and of the first derivatives of a~k, but independent of the solution U(X).

Proof. It can easily be checked that

Hence multiplying the equation

m n m

~[UiJ =};2: bYu~j+2: Cilu1+t
1=1 i=1 1=1

J. Szarski, Differential inequalities 11
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by 21l~n we obtain in D the identity

n n

(56.6) 2 2) a:j (ahtt~k1l~n)- 2) a:
n
(a}ku~Ju~k) = 2tiu~n +Fi[u] ,

i,k=l i,k=l

where Fi is a quadratic form in u1 , ••• , um and their first derivatives.
The coefficients of Pi are polynomials of b}l, Cil and of the first derivatives
of a}k.

For 0 ~ t < band h > 0 and for any set E in the space (xu ... , xn),
let us denote by El,h the intersection of E with the zone t ~ Xn ~ t +h.

Integrating identity (56.6) over the region Dt,h and applying Green
Gauss theorem we get

(56.7)
n n

ff [2 2: a}ku~ku~cos{n, Xj)- 2: a}ku~Ju~kcos(n, xn)]da
oDe," j,k=l j,k~l

= - fff (FiCuJ +2lu~n)dv .
De,,.

In virtue of the assumptions (d), (e) and (f), the set

(56.8)

is the union of a finite number of surfaces, each of which can be described
analytically by an equation of the form

0{X1 , ... , Xn ) = 0,

with 0 of class 01 and OXn =1= 0 in the neighborhood of the respective
surface. Introducing new independent variables

Yj = Xj (j = 1,2, ... , n-1), Yn = O(xu ... , xn)

and using formulas

(j = 1,2, ... , n-1),

(j = 1,2, ... , n-1)

on the corresponding surface, the expression under the sign of integral
on the left-hand side of (56.7) can be written in the form

n-1

[AtO](ut,l- 1: a}kutJutk]coS{n, Xn),
i,k=l

where Ato] is defined by formula (56.2). Hence, by (56.8) and in view
of the fact that on Ill+h we have O{X) =xn-{t+h) and cos{n, x n) = -1,
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while on Il, there is G(X) = xn-t and cos(n, xn) = 1, formula (56.7)
can be rewritten in the following way:

n-l n-l

(56.9) JJr 2: aku~,u~,.-a~n(u~n)2Jda- IJ [2: a}ku~,u~,,-a~n(U~)2]da
IIIH i ,k=l IIt j ,k=l

n-l

= JJ[2: a}kut,ut" - A.i[G] (utn)2Jcos (n, xn)dO'+
IS j,k~l

1,11

n-l

+ JJ{2: a}kU~jutk-AtG](u~n)2Icos(n, xn)da-
IT j,k=lt,h

- JJJ(Ff[u] +2ti1t~)dv.
Dt,h

Since we have -2tu~n ~ (fi)2 + CU~)2, AtG] ~ 0 on Et~h (space-like
or characteristic orientation), Ai[G] ~ 0 on E{h (time-like orientation),
and, by (c), (e), (f),

cos (n, xn) > 0 on E{h'

formula (56.9) yields the following inequality:

n-l n-l

(56.10) JJ[2: a}kU~jU~k - a~n(u~n)2 ]da-JJ[2: a}kU~jU~" - a~n(u~n)2]da
IIt+h i,k=l IIt j,k~l

n-l

~ JJ[2: a}kutj1tt" ]cos(n, xn)dO'+JJJ(fi)2dv +JJJF~[uJdv,
xT 1.k=1 Dt,h Dt,h

I,ll

where F~ is a quadratic form with properties analogous to those of F/.
Now, integrating the identity

2UiU i = ~ (1~i)2
x" oXn

over the region Dt,h and applying, once mare, Green-Gauss theorem we
obtain

JJ(Ui)2dO'- JJ(ui)2da
IIt+h a,

11*
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whence

(56.11) IJ (u i)2da-JJ(u i)2da
lItHo tt,

:;(. IJ(U
i)2cos (n, Xn) do +III [(U

i)2+ (U~n)2J dv .
z;T Dt,n

t,r.

Adding inequalities (56.10) and (56.11) and then summing over i
we get

m n-l

(56.12) E(t+h)-E(t):;( II};[}; a~kutjutk+(ui)2]cos(n, xn)da+
"T i=l i.k~l
~t,h

m m

+ III }; (fi)2dv +JJI }; F~[uJdv ,
Dt,n i~l Dt,n i~l

where F~ is another quadratic form similar to FL Inequality (56.12)
devided by h > 0 gives in the limit, when h goes to zero following a suitable
sequence,

m n-l

(56.13) n+E(t):;( J2: [2: a~kutjutk+(ui)2]cos(n, xn)ds+
z;; i=l i,k=l

m m

+ II}; (l)2da+II 2: F:[uJda.
lIt i=l lIt i=l

m

Observe that 2: F~[uJ is a quadratic form in 1tl, ... , um and in their
i=l

first derivatives, its coefficients being polynomials of b~l, Oil and of the
first derivatives of a~k' Hence, it is obvious that

(56.14)
m rn n

}; F~[uJ :;( All}; [}; (1t~/+ (U
i )2] ,

i=l i~l i=l

where M I is a positive constant depending only on the bounds of the
coefficients of system (56.1) and of the first derivatives of a~k' From (56.3)
and (56.14) it follows that

where {-tl = min (1 , {-t), whence

(56.15)

m

JJ1:F~[uJda :;( .:.lII E(t) .
u, i=l PI
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Putting

L ._ ltIl
- ,

PI

we obtain from (56.13) and (56.15) differential inequality (56.4) with L
having the required properties.

THEOREM 56.2. Under the assumptions of Theorem 56.1 we have the
energy estimate, for 0 :;( t < b,

1n n

(56.16) ff 2 [2 (U~/+(ui)2]da
IIt i~l i~l

where
m n-l m

g(r) = J2 r2 a}kutJU~"+ (ui)2Jcos(n, xn)ds +JJ2 (fi)2da .
IT i~l i,k~l IIr i~l

r

Proof. From Theorem 56.1 it follows, by Theorem 9.5 (see Ex
ample 9.1) that, for 0 ~. t < b,

t

E(t) ~ eLt[E(O) +Je-Lrg(r)dr] .
o

Hence, by (56.3) and by the definition of E(t), we get (56.16).
We recall that under the Assumptions B the mixed problem for

system (56.1) in the region D consists in finding a solution U(X)
= (ul(X) , ... , um(X)) of system (56.1), of class 0 2 in D and of class 0 1

in the closure of D, satisfying initial conditions

U (X) = q)o(X) ,

and boundary conditions

U(X) = P(X) for X € IT.

In the case when IT is empty, the above problem reduces to the
Cauchy problem.

The energy estimate (56.16) implies uniqueness of the solution of the
mixed problem. Indeed, to show this, it is sufficient to prove that U (X) = 0
is the only solution of the homogeneous problem, i.e. of the problem
with q)o(X) == q)l(X) == P(X) = fi(X) == O. Now, let U(X) be a solution
of the homogeneous problem and observe that in the variables Yl' ... , Yn
the surface If is described by the equation Yn = 0 (see the proof of Theo
rem 56.1). Hence it follows that U(X) being identically zero on IT the
first derivatives UIIi (j = 1, 2, ... , n -1) vanish on IT. Since the same is
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true for U and Ux /< (k = 1,2, ... , n) on Ilo' the right-hand side of inequa
lity (56.16) is zero. Hence it follows that U(X) = 0 on Il, for every
o~ t < b and consequently U(X) == 0 in D.

COROLLARY 56.1. Theorems 56.1 and 56.2 remain true if U (X)
= (u1(X ) , ... , tr(X)) is supposed to satisfy-instead of system (56.1)-the
following system of differential inequalities

n, m 11. m

(56.17) 12: ah(X)U~jXkl ~ 2: 2: Ib}I(X)llu~jl +}; ICi1(X)llu11 + Iti(X)1
i,k~1 1=1 i=1 1=1

(i=I,2, ... ,m).

Proof. Let e be an arbitrary positive number and put for U(X)
satisfying inequalities (56.17)

n

}; a}k(X)u~jXk(X)
(56.18) ei(X) = m n i,k=1 m

}; }; Ib}I(X)llu~iX)1+}; ICi1(X)llu1(X)1 + Ifi(X)1 +e
1=11=1 1=1

It follows from (56.17) that

(56.19) lei(X)1 ~ 1 (i = 1,2, ... , m).

On the other hand, (56.18) implies that

(56.20)

where

(56.21)

n m n m

2: a}k(X)u~jXk = 2:2: bfl(X)u~j +2:Cil(X )1i +7.i(X) ,
i.k=1 1=1 i=1 1=1

I
b;I(X) = ei(X) Ib}I(X) Isgn u~lX) ,

cil(X) = ei(X) ICi1(X)1 sgnu1(X) ,

7.\X) = ei(XHll(X)! +e] .

Thus we see that U(X) satisfies a system (56.20) for which the
assumptions of Theorem 56.1 are satisfied. Moreover, by (56.19) and (56.21),
it is clear that 'b}l and Ci1 have the same bounds as b}l and cil

• Hence it
follows, by Theorem 56.1 and 56.2, that the differential inequality (56.4)
and the energy estimate (56.16) hold true with l in the formula (56.5)
replaced by 1:; but, since e > 0 is arbitrary and

lim I: = t .
.--.0

we get in the limit (56.4) and (56.16) what was to be proved.
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Remark. Corollary 56.1 is more convenient in applications than
Theorem 56.2. Let us consider, for example, an almost linear system

n

'\1 i (X) i hi(t X 1 m 11m m)(56.22) L:.J ajk U Xj Xk = , ,U, ••• , U , Ux " ••• , Ux n , ••• , Ux " ••• , UXn

j,k=l

(i=I,2, ... ,m).

By Corollary 56.1, we get the following uniqueness criterion: if the
right-hand sides of system (56.22) satisfy a Lipschitz condition with
respect to 1tt, ..., um

, 1l~1l ••• , U~n' ... , U:., ... , u:., then the mixed problem
for system (56.22) admits at most one solution. Indeed, under the above
assumptions, the difference of two solutions of system (56.22) satisfies
a system (56.17) of differential inequalities with f == O. Hence the difference
of two solutions, having the same initial and boundary values, satisfies
the energy estimate (56.16) with the right-hand side identically zero;
but, this implies the vanishing of the above difference what was to be
proved.



CHAPTER IX

PARTIAL DIFFERENTIAL INEQUALITIES OF FIRST ORDER

This chapter deals with systems of first order partial differential
inequalities of the form

i fi( 1 m i i )
Ux ~ X, Yo ... , Yn, U , ••• , U , U11l' ••• , UYn (i=1,2, ... ,m)

and, more generally, with over-determined systems of the form

i fi( 1 In i i )
U X j ~ i Xl' ... , Xp , Yu ... , Yn, U , ••• , U , U yp ... , UYn

(i = 1, 2, ... , m; j = 1, 2, ... , p) ,

where the ith inequality involves derivatives of u i only.
In Chapter VII we considered systems of equations of the above

form and obtained-among others-estimates of the solution and of the
difference between two solutions by means of maximum solutions of
adequate comparison systems of ordinary differential equations. Now,
the results of the present chapter will enable us to do the same by means
of solutions of adequate comparison systems of first order partial dif
ferential equations.

We begin by discussing systems of strong inequalities and then we
will pass to systems of weak inequalities. We want to stress here that
unlike in the theory of ordinary differential equations-it is useless to
introduce the notion of a maximum solution of the Oauchy problem
for first order partial differential equations. In fact, the notion of a maxi
mum solution is very useful-as we have seen-but only in the case when
some regularity assumptions assure local existence and do not exclude
non-uniqueness of solution. Now, this situation does not occur in the
theory of first order partial differential equations. The practically least
restrictive regularity assumptions which guarantee local existence of
solution of the Oauchy problem in the non-linear case, viz. the requirement
that the right-hand sides of equations be of class C1 with first derivatives
Lipschitzian, assure at the same time uniqueness (see Theorem 42.1 and
Remark 42.1).



§ 57. Systems of strong first order differential inequalities 169

§ 57. Systems of strong first order partial differential inequalities. We
start by introducing the following definition:

DEFINITIOK 57.1. A region D in the space (Z, U, Q) = (zu ... , Zq,

u1, ... , u'ln, qu ... , qn) will be called positive with respect to U if whenever
(Z, U,Q)€D and V~ U, then (Z,V,Q)€D.

THEOREM 57.1. Let the functions fi(x, Y1' ... , Yn, ttl, ... , u"", q1, ... , qn)
= fi(x, Y, U, Q) (i = 1, 2, ... , m) be defined in a region which is positive
with respect to U and whose projection on the space (x, YI, ... , Yn) contains
the pyratnid

(57.1) 0 ~ x-xo < y,

where 0 ~ L < + 00, 0 < ale < + 00, y ~ min (ale/L). As.~1tme the funotions
k

fi(x, Y, U, Q) (i = 1, 2, ... , m) to satisfy cond'ition W+ with respect to U
(see § 4) and the Lipschitz condition with 'regard to Q

(57.2)
n

Ifi(x, Y,. U, Q)-fi(x, Y, U, Q)! ~L l' jqk-qkl
k=1

(57.4)

(i=1,2, ... ,rn).

Let U(x, Y) = (u\x, Y), ... , um(x, Y») and Vex, Y) = (tl(x, Y), ...

... , vm(x, Y») be of class 'J) in the pyramid (57.1) (see § 37) and satisfy
initial inequalities

(57.3) tu»; Y) < V(xo, Y).

Denoting by D the pyramid (57.1) pttt
. i

E'= {(x, Y)€D: U(x,Y)~V(x,Y)} (i=1,2, ... ,n~)

and swppose that, for every j, differential inequalities

u~(x*, y*) ~ fi(x*, Y*, U(x*, Y*), u~·(x*, Y*») ,

v~(x*, Y*) > t'(x*, Y*, V (x*, Y*), v~(x*, Y*»)

are satisfied whenever (x*, Y*) e Ei . This being assumed inequalities

(57.5) U(x, Y) < V(x, Y)

hold true in the pyramid (57.1) (1).

Proof. By (57.3) and by the continuity, the set of X, such that
Xo~x < xo+y and that (57.5) holds true in the intersection of the

(1) From the proof it will follow that our theorem remains true. under less re
strictive assumptions on the regularity of U (x, Y) and V (z , Y). It is sufficient to suppose
that U(x, Y) and V(x, Y) are continuous in D and that, for (x*, Y*) «E", u i and Vi

have first derivatives at (x*, Y*) and, moreover, Stolz's differentials if (x*, Y*)
belongs to the side surface of D.
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pyramid (57.1) with the zone Xo ::::;;: x < X, is not empty. Let x* denote its
least upper bound. We have to prove that x* = xo+y. Suppose it is not
true and hence x* < Xo+ y. Then there exists an index j and a point y*
such that (x*, Y*) belongs to the pyramid (57.1) and

(57.6)
U(x, Y) :'( V(x, Y) for Xo :'( x:'( x* ,

1tJ(X* , Y*) = vJ(x*, Y*) .

By the last relations (x*, Y*) E EJ and hence differential inequali
ties (57.4) hold true. Now, there are two cases to be distinguished.

Case I. Suppose (x*, Y*) is an interior point of (57.1). Consider the
function uJ(x*, Y)-vi(x*, Y) depending on Y. By (57.6), it attains maxi
mum at y* and hence, y* being an interior point, we have

(57.7) u~(x*, Y*) = vhx*, Y*) .

Similarly, the function uJ(x, Y*)-v1(x, Y*) depending on x attains
its maximum in the interval [xo, w] at the point x*. Therefore

(57.8) u~(x*, Y*) - v~(x*, Y*) ;;:: 0 .

On the other hand, by (57.4), (57.6), (57.7) and by condition W+,
we get

u~(x*, Y*)-t\~(x*, Y*) < f1(x*, Y*, U(x*, Y*), u~(x*, Y*»)-

-l(x*, Y*, V(x*, Y*), u~(x*, Y*)) :(; 0,

which contradicts (57.8).

Case II. Suppose (x*, Y*) is a point on the side surface of the pyra
mid (57.1). We can assume (rearranging the indices if necessary) that
we have

(57.9) I
y; = ap-L(x*-xo)
y; = -aq+L(x*-xo)
Iytl < ak-L(x*-xo)

(p=I,2, ,8),

(q = 8+1, , 8+r),
(k = s+r+1, ... , n).

Fix p and consider the function

depending on YP in the interval

-ap+L(x*-xo):'( YP:(; ap-L(x*-xo).

By (57.6) and (57.9) it attains maximum at y; = ap-L(x*-xo),
i.e. at the right-hand extremity of the interval. Hence, it follows that

(57.10)
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(57.11)

By a similar argument, we get

ui (x* y*)_vi (x* Y*) «: 0
Uq' Uq'"'"

tti (x* y*) - vi (x* Y*) - 0Uk' Uk'-

Now, for Xo ~ x ~ x*, put

(q = 8+1, ... , 8+r),

(k = s+r+l, ... , n).

Y(x) = (ap-L(x-xo) , -aq+L(x-xo) , Yk)

and consider the composite function ui(x, Y(x))-vi(x, Y(x)). It attains
maximum at x*, by (57.6) and (57.9), and hence

(57.12)
d

dx [ui(x, Y (x)) - vi(x, Y (x))lx=x. ;> 0 .

But, ui and vi being of class ~ in the pyramid (57.1) (see § 37) and
the point (x*, Y*) = (x*, Y(x*)) belonging to the side surface of (57.1),
the functions ui, vi possess Stolz's differentials at (x*, Y (x*)). Therefore,
we can apply to the left-hand side of inequality (57.12) the formula for
the derivative of a composite function and thus we get

(57.13) u~(x*, Y*) - v~(x*, Y*)

;>L[27 (u~p(x*, Y*)-v~p(x*,Y*))- 27(u~q(x*, Y*)-V~q(x*, y*))].
p q

On the other hand, we have, by (57.4),

u~(x*, Y*) - v~(x*, Y*)

< [ti(x*, Y*, tu», Y*), u~(x*, Y*))-fi(x*, Y*, V(x*, Y*), u~(x*, Y*))] +

+[t(x*, Y*, V(x*, Y*), u~(x*, y*))-t(x*, Y*, V(x*, Y*), v~(x*, y*))].

The first difference in the brackets is non-positive, by (57.6) and
by condition W+ (see § 4). To the second difference in brackets we apply
inequality (57.2) and thus-taking advantage of (57.10) and (57.11)-we get

u~(x*, Y*) - v~(x*, Y*)

< L [27 (u~p(x*, Y*) - v~p(x*, Y*))- }; (u~q(x*, Y*) - V~q(x*, Y*))) ,
p q

which contradicts (57.13).
Since in both cases I and II we obtained a contradiction, the theorem

is proved.
Remark 57.1. Theorem 57.1 as well as all theorems to be proved

in this chapter are true for more general domains than the pyramid
(see [49J). Indeed, in the case of Theorem 57.1, for instance, if we assume
additionally that the derivatives fqj exist, then the Lipschitz condition (57.2)
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has the following geometrical meaning with regard to the pyramid (57.1)
which we denote by D:

(<1.) for any point (x*, Y*) on the side surface of D and for every
fixed i, the vector

(1,-fQl(x*, Y*, U,Q), ... ,-fqn({v*, Y*, U,Q))

is either tangent to the side surface of D or points to the exterior of D.
Now, the pyramid (57.1) in Theorem 57.1 can be replaced by an

arbitrary region D with the side surface being the union of a finite number
of surfaces of class 0 1 and having-in case of the existence of the deriva
tives f~k-the geometrical property (<1.).

§ 58. Overdetermined systems of strong first order partial differential
inequalities. Our next theorem will be derived from Theorem 57.1 by
means of Mayer's transformation (see § 38).

THEOREM 58.1. Let the [unction» f~,(Xl' ... , Xp , Yu , Yn, 11.1 , ... , um

ql, ... ,qn)=fk(X,Y,U,Q) (i=I,2, ... ,mi k=I,2, ,p) be defined
in a region which is positive with respect to U (see Definition 57.1) and
whose projection on the space (xu ... , x p , Yu ... , Yn) contains the pyramid

p p

(58.1) 0 ~ Xl-Xl, II (Xk-'-Xk) < y, IY1'-Y1'1 ~ a1'-L 2: (Xk-Xk)
k=l k=l

(l=I,2, ... ,Pi r=I,2, ... ,n),

where 0 ~ L < + 00, 0 < ak < + 00, y < min (ar/L). Suppose that, for
l'

every fixed k, the functions fk(X, Y, U, Q) (i = 1,2, ... , m), satisfy con
dition W + with respect to U (see § 4) and the Lipschitz condition with regard
to Q

(58.2)
n

Ifk(X, Y, U, Q)-fk(X, Y, U, Q)I <L}; Iqr-q1'1
1'=1

(i=I,2, ... ,mi k=I,2, ... ,p).

Let U(X, Y) = (u\X, Y), ... , tlm(X, Y)) and V(X, Y) = (v\X, Y), ...

... , vm(X, Y)) be of class j) in the pyramid (58.1) (see § 37) and satisfy
the initial inequality

(58.3) U(Xo, Y) < V(Xo, Y) .

Denoting by D the pyramid (58.1) put

(k=I,2, ... ,p)(58.4)

. i
G'= {(X, Y)€D: U(X, Y)~V(X, Y)} (i=I,2, ... ,m)

and suppose that, for every fixed j, the differential inequalities

U~k ~ f~(X, Y, U(X, Y), Uiy(X, Y))

V~k > f~(X, Y, V(X, Y), v~(X, Y))
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are satisfied for (X, Y) € o'. This being assumed, inequalities

U(X, Y) < V(X, Y)

hold true i'n the pymmid (58.1).
Proof. Introduce Mayer's transformation

X = Xo+Ax,

where A = P'l' ..., Ap ) . For A satisfying

(58.5)

put

(58.6)

1)

Al ~ 0 (1 = 1, 2, ... , p) , 2: Ak = A< r ,
lc=l

U(x, Y; A) = U(Xo+L1x, Y),

V(x, ¥; A) = V(Xo+Ax, ¥).

It is obvious that, for A satisfying (58.5), the functions (58.6) am
of class :D (see § 37) in the pyramid

(58.7)

(58.8)

where
y
X> 1.

By (58.3), functions iu», Y; .11) = (:U?(x, Y; A), ... , uln(x, Y; A)),

V(x, Y; A) = (VI(X, Y; A), ... , V'1n(x, Y; A)) satisfy initial inequality

U(O, Y; A) < V(O, Y; A). The functions U(X, Y) and V(X, Y) being
(If class ~ they possess Stolz's differentials with regard to X; therefore,
we have

p

fix = 2: A1Uxj(Xo+Ax, Y),
i=l

p

Vx = .2 AjVxJ(Xo+Ax, Y).
i~1

Denoting by VA the pyramid (58.7), put

. ""' i '"
E~ = {(x, Y) € D A: U(x, Y; A) ~ V(x, Y; An (i = 1,2, ... , 'in).

Fix an index j and suppose that (x, Y) € E{. Then (Xo+Ax, Y) € Gi
and hence it follows, by (58.4) and (fi8.5), that

U~~Fi(X, Y, U(x, Y),u~{lJ, Y); A),

V~>pi(x, Y, V(x, Y),:Vhx, Y); Al,
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for (x, Y) € El where
p

(58.9) pi(X, Y, U, Q; A) = l: Akf~(Xo+Ax, Y, U, Q) (i = 1,2, ... , tn).
k=1

In virtue of the hypotheses of our theorem we check, by (58.2), that

n

iF\x, Y, u, Q; A)_pi(X, Y, U, Q; A)I ~ AL l: Iqr-qrl
r=1
(i = 1,2, ... , tn)

and that the functions pi(X, Y, U, Q; A) (i = 1,2, ... , m) satisfy con
dition W + with regard to U. Thus we see that U(x, Y; A), V(x, Y; A)
and p\x, Y, U,Q; A) satisfy, for every fixed A, subject to conditions
(58.5), all the assumptions of Theorem 57.1 in the pyramid (58.7). Hence,
we have in the pyramid (58.7)

iu», Y; A) < vex, Y; A)

and in particular, by (58.8),

(58.10) U(I, Y; A) < V(I, Y; A).

Now, let (X, Y) be an arbitrary point in the pyramid (58.1); then
A = X-Xo = (Xl-XU ... , xp-xp) satisfies conditions (58.5) and, by (58.6)
and (58.10), we get

U(X, Y) = U(I, Y; X-Xo) < V(I, Y; X-Xo) = V(X, Y),

what was to be proved.

§ 59. Systems of weak first order partial differential inequalities. In this
section we deal with weak differential inequalities (see [42J). Unlike in
§§ 57-58, we will have to make more restrictive assumptions on the right
hand sides of the differential inequalities, viz. assumptions which imply
right-sided uniqueness of the solution of the Cauchy problem for the
corresponding system of equations (see Oorollary 60.1).

THEORE~ 59.1. Let the functions hx, Y, U, Q) (i = 1,2, ... , m) be
defined in a region which is positive with respect to U (see Definition 57.1)
and whose projection on the space of points (x, Y) contains the pyramid (57.1).
Assume the functions t'(x, Y, u, Q) to satisfy condition W+ with regard
to U (see § 4) and the inequalities

(59.1)
n

lex, Y, u,Q)-l(x, Y, tJ, Q) ~ O";(X-Xo, U - U) +L 2: Iqr-qrl
r=1

(i = 1,2, ... , tn) ,
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whenever U ~ tJ, where O'i(t, U) are the Tight-hand sides of a comparison
system of type I (see § 14). Concerning the comparison system toe suppose
that

(fi(t,O) ==0 (i=I,2, ... ,m)

and that for its right-hand maximum solution Q(t; 0) through the origirr,
we have

(59.2) Q(t; 0) == 0 .

Let U(x, Y) = (1t\X, Y), ... , um(x, Y») and V(x, Y) = (v\x, Y), ...

... , vm(x, Y») be continuo1,ts in the pyramid (57.1) and satisfy initial inequa
lities

(59.3)

Denoting by D the pyramid (57.1) put

E = {(x, Y) E D: 1ti(X, Y) > vi(x, Y)} (i = 1,2, ... , m) .

.Assume that for every fixed j, whenever (x, Y) EEi, then 1/ and vi

possess first derivatives at (x, Y) and, moreover, Stolz's differentials if (x, Y)
belongs to the side surface of D, and satisfy at (x, Y) differential inequalities

(59.4)
u~(x, Y) ~l(x, Y, tu», Y), u~(x, Y»),

v~(x, Y) ~ fi(x, Y, V(x, Y), v~(x, Y») .

Under these assumptions inequality

(59.5) in», Y) <V(x, Y)

is satisfied in the pyramid (57.1).

Proof. Denote by St the projection on (Yl' ... , Yn) of the intersection
of the pyramid (57.1) with the plane x = xo+t and put, for 0 ~ t < y,

~(t) = max [u\xo+t, Y)-vi(XO+t, Y)J,
Y~St

M\t) = max (0, ll'Ii(t»)

(i=I,2, ... ,m).

if (t) = (1J11 (t ) , ... , Mm(t») .

It is obvious that (59.5) is equivalent with

(59.6) M(t) <0 in [O,y).

Now, relation (59.6) will be proved by means of the first comparison
theorem from the theory of ordinary differential inequalities (see § 14).
By (59.3), we have

(59.7) M(O) ~ 0 .
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From Theorem 33.1 it follows that 1.r(t) are continuous on [0, y).
By Theorem 35.1, for every index j and t* € (0, y) there is a point y* € St.
such that

(59.8)

and whenever ui and vi possess first derivatives at (xo+ t*, Y*) and,
moreover, Stolz's differentials if (xo --L t*, Y*) belongs to the side surface
of D, then

l59.9) n-Mi(t*):(; u~(xo+t*, Y*)-v~(xo+t*,Y*)-
n

-L 2: lutr(xo+t*, y*)-vtr(XO+t*, Y*)[.
1'=1

Put

Et = {t e (0, y): Jli (t ) > O} (i = 1,2, ... , rn).

Fix an index j and suppose that t* f Ej • Then, obviously, we have

(39.10)

and consequently, by (59.8), there is a point y* € St. such that

(59.11)

Since Mi(t*) > 0, we conclude that (xo+t*, Y*) e Til and hence
inequalities (59.4) hold true at (xo+t*, Y*)i moreover, ui and vi have at
(xo+t*, Y*) that regularity which implies (59.9). By (59.9) and (59.10),
we get

n-J;]i(t*) ~u~(xo+t*, Y*)-v~(xo+t*, Y*)-
n

-L 2: luUxo+t*, Y*)-1'~r(XO+t*, y*)! .
r~1

From the last inequality and from (59.4) it follows that

(.59.12) n-J'ji(t*) ~ti(xo+t*, Y*, U(xo+t*, Y*), u~.(xo+t* Y*»)-

-jl(xo+t*, Y*, V(xo+t*, Y*), v~(xo+t*, Y*»)-
n

-L}; Itt~r(xo+t*, Y*)-v~r(XO+t*,Y*)I.
1'=1

Observe now that, by the definition of -,-11(t) and by (59.11), we have
(see § 4)

i ~

U(xo+t*, Y*) :cV(xo+t*, Y*)+llI(t*).
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By the last inequalities and by condition W + (see § 4) imposed on
the functions fi(x, Y, U, Q), it follows from (59.12) that

D" 111i (t* ) ~ t'(xo+ t*, Y*, V (xo+t*, Y*) + ..Zlf (t*) ,u~(xo + t* Y*))

_fi(xo+t*, Y*, V(xo+t*, Y*), v~(xo+t*, Y*))-
n

-L l: IU~r(xo+t*, Y*)-vtr(XO+t*, Y*)I·
r=1

Since Ji(t*);> 0, we get from the last inequalities, by (59.1), that

(59.13) tr j[i(t*) ~ Gi(t*, M(t*») .

Thus we have proved that, for every j, inequality (59.13) holds true
whenever t* € Ei . Hence and by (59.2) and (59.7), inequalities (59.6)
follow from the first comparison theorem (see § 14). This completes
the proof.

Remark 59.1 (1). Theorem 59.1 can be derived from Theorem 57.1
without having recourse to the first comparison theorem. Indeed, for
e > 0, denote by .o(t; e) = (wI(t; e), ... , wm(t; e») the right-hand maximum
solution through the point (0, e , ... , e) of the comparison system

~i = Gi(t, WI' ... , Wm)+e (i = 1, 2, ... , m).

Since, by (59.2), .o(t, 0) == 0, we infer, by Theorem 10.1, that, for
e > 0 sufficiently small, .0 (t; e) is defined on [0, y) and

(59.14) lim.o(t; e) = 0 on [0, y) .
e->{)

Consider now the function

V(x, Y) =.o(x-xo; e)+V(x, Y) = (1)1(X, Y), ... ,:vm(x, Y»)

in the pyramid (57.1), which we denote by D, and put
",. i .......
E' = {(x, Y) ED: U(x, Y) ~V(x, Y)} (i = 1, 2, ... , m).

Fix an index j and let (x*, Y*) E 'FJi; then, since wJ(x*- xo; e) > 0,
we have (x*, Y*) E E i and hence, by the second inequality (59.4), we get

:v~(x*, Y*) ~fi(x*, Y*, V(x*, Y*),v~(x*, Y*»)+wj(x*-xo; e)

= ji(x*, Y*, V(x*, Y*), v~(x*, Y*») +GJ(x*-xo, .o(x*-xo; e») +e

= j1(x*, Y*, V(x*, Y*), v?(x*, Y*») +

+[l(x*, Y*, V(x*, Y*),v?(x*, Y*»)~

-l(x*, Y*, V(x*, Y*), vhx*, Y*») +

+ Gi(X*-Xo, V(x*, Y*)- V(x*, Y*»)] +e.

(1) This remark is due to P. Besala,

J, Szarskl, Differential inequalities 12
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Since V(x*, Y*)- V(x*, Y*) = Q(x*-xo; e) > 0, it follows from the
last inequality, by (59.1), that

(59.15 ) v~(x*, Y*) > l(x*, Y*, V(x*, Y*), vhx*, Y*»).

By (59.3), we have

V(xo, Y) = V(xo, Y) +Q(x-xo; e) > 17(xo, Y) ;;?: U(xo, Y) ,

and hence, by the first inequality (59.4) and by (59.15), we get from
Theorem 57.1 that

tu», Y) < vex, Y) = vex, Y) +Q(x-xo; e)

in the pyramid (57.1). From the above inequality and from (59.14) we
obtain in the limit (letting s tend to 0) inequalities (59.5).

The usefulness of Theorem 59.1 with weak assumptions concerning
the regularity of functions uJ and vi and differential inequalities in the
set E J, will appear in the proof of Theorem 61.1.

EXAMPLE 59.1. Suppose u(x, Y) to be of class ~ in the pyramid (57.1)
and to satisfy there the differential inequality

n

Ux ::;;; L .r IUyrl
r=l

n

(ux ;;?: -L .r IUYrl) ,
r=1

where L > 0, and the initial inequality

u (xo, Y) ::;;; rj (tt (xo, Y) ;;?: rj) ,

where rj is a constant. Then we have in the pyramid (57.1)

u(x, Y) ::;;; rj (u(x, Y) ~ rj) •

This follows immediately from Theorem 59.1 (for m = 1) if we put
vex, Y) == n-

Remark 59.2. Theorem 59.1 remains true if inequalities (59.1) are
replaced by somewhat less restrictive ones, viz.

n

lex, Y, u, Q)-l(x, Y, it, Q) < O'(x-xo, max(ul-ul»)+L.r Iqk-qkl
I k=l

(i=1,2, ... ,m),

whenever U;;?: U, where O'(t, v) is the right-hand side of a comparison
equation of type II (see § 14). The proof of this variant of Theorem 59.1
is quite similar to that of Theorem 59.1 and is carried out by applying

the second comparison theorem (see §14) to the function if (t) = max Mi(t),
roo..J • j

where M 7(t ) are defined like in the proof of Theorem 59.1.
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In a natural way the question arises whether in Theorem 59.1 strong
initial inequalities (59.3) imply strong inequalities (59.5) in the pyra
mid (57.1). We are going to answer this question in the case m = 1,
introducing some additional more restrictive hypotheses. We start by
recalling a definition from the theory of first order partial differential
equations.

Consider a first order partial differential equation

(59.16)

and suppose f (x, Y, u, Q) to be of class 0 1 in some region whose projection
on the space (x, Y) contains the pyramid (57.1). The characteristic equa
tions, corresponding to (59.16), are of the form (40.5). Its solutions are
called characteristic strips. Let u(x, Y) be an arbitrary function having
first derivatives in the- pyramid (57.1). We say that u(x, Y) is genemted
by characteristics of equation (59.16) if, for every point (x*, Y*)
= (x*, yt, ... , y:) in the pyramid (57.1), there is a characteristic strip

Y(x) = (Y1(X) , ... , Yn(X)) , Q(x) = (Q1(X) , ... , qn(X)) , u(x)

defined on the interval [xo, x*], such that

j
Y(x*) = Y* ,

(59.17) IYk(X)-Ykl~ak-L(It-xo) for Xo<,m<,m* (k=I,2, ... ,n),

qk(m) = uyk(m, Y(x)) (k = 1,2, ... , n), u(x) = u(x, Y(x)).

It is a well-known fact that a function of class 01 generated by char
acteristics is necessarily a solution of (59.16).

We are now able to state the next theorem, whose proof resembles
that of Theorem 57.1.

THEOREM 59.2. Suppose f(x, Y, u , Q) to be ofclass 01 in some reg'tOn,
whose projection on the space (x, Y) covers the pyramid (57.1) with L> 0,
and to satisfy the Lipschitz condition

n

(59.18) If(x, Y, u, Q)-f(x, Y, u, Q)I < L}; Iqk-qkl
k=l

n

for }; lqk-qkl > 0 .
k=l

Suppose that solutions of system (40.5) are uniquely determined by
initial data. Let u(x, Y) and v(x, Y) be of class ~ in the pyramid (57.1)
(see § 37) and satisfy there initial inequality

(59.19)

12*
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and differential inequalities

(59.20) Ux ~ f(x, Y, u, Uy), Vx ~ f(x, Y, v, Vy).

Assume finally that both u(x, Y) and v(x, Y) are generated by charac
teristics (1).

Under these assumptions we have

(59.21) u(x, Y) < v(x, Y)

in the pyramid (57.1).

Proof. By (59.19) and by the continuity, there is an x (xo< x< xo+y)
such that (59.21) holds true in the pyramid (57.1) for Xo~ x < X. Denote
by x* the least upper bound of such numbers x. We have to prove that
x* = Xo+y. Suppose it is not true and hence x* < Xo+ y. Then there is
obviously a point y* such that (x*, Y*) belongs to the pyramid and

(59.22) u(x*, Y*) = v(x*, Y*) .

Now, there are two cases to be distinguished.
Case I. Suppose (x*, Y*) is an interior point of (57.1). Then-like

in the proof of Theorem 57.1-we have

(59.23) ul/k(x*, Y*) = vllk(x*, Y*) (k = 1,2, ... , m) •

By (59.22), (59.23) and by the uniqueness of solutions of system (40.5)
the characteristic strip corresponding to u(x, Y) and satisfying (59.17)
is identical on the interval [xo, x*] with that corresponding to v(x, Y).
Hence, for x = Xo in particular, we have

u(xo, Y(xo») = v(xo' Y(xo») ,

which contradicts (39.19).
Case II. Suppose (x*, Y*) is a point on the side surface of the pyra

mid (57.1). We can assume-like in the proof of Theorem 57.I-that
we have (57.9). Then, by a similar argument, we get

(59.24) I
u llp(x*, Y*) - vllp(x*, y*) ~ 0

u llf,/«(lJ*, Y*)-v llf,/«(lJ*, Y*) ~ 0
u llk (x* , Y*) - vllk(x*, Y*) = 0

(p=I,2, ,s),
(q = s+l, , s+r),

(k = s+r+1, ... , n),
and
(59.25) ux(x*, y*) - vx(x·, y*)

~L[2(uIlP(x*,Y*)-v llp«(lJ*, Y*»)- 2 (ullq(w , Y*)-V llq«(lJ*, y*»)].
p q

(1) This last assumption implies that if u(x, Y) and v(x, Y) are of class (]1, then
they are solutions of equation (59.16).
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On the other hand, by (59.20) and (59.22), we have

ux(X*, Y*) - vx(X*, Y*)

~f(x*, Y*,u(x*, Y*),uy(x*,Y*))-f(x*, Y*,u(X*, Y*),Vy(x*, Y*)).

We can assume that

n

.};Iuyr(x*, Y*)-vyix*, Y*)I >0,
r=1

since otherwise we would have (59.23) and we would reach contradiction
like in case I. Now, from the last inequality we obtain, by (59.18) and (59.24)

ux(x*, Y*)-vx(x*, Y*)

<L[.}; (uyp(x*, Y*)-vYp(x*, Y*))- .};(uyq(x*, Y*)-vyq(x*, y*))]
p q

what contradicts (59.25). Since in both cases we have reached a contra
diction, the theorem is proved.

§ 60. Overdetermined systems of weak first order partial differential
inequalities. The theorem of this section will be derived from Theorem 59.1
by means of Mayer's transformation. Its proof is patterned on that of
Theorem 58.1.

THEOREM 60.1. Let the funotions ff(x1, ... ,xp ' Y1, ... ,Yn,U1, ... ,um,
gil ... , qn) = fUX, Y, U, Q) (i = 1,2, ... , m; 1= 1,2, ... , p) be defined in
a region whioh is positive with regard to U (see Definition 57.1) and whose
projeotion on the spaee of points (X, Y) oontains the pyramid (58.1) . .Assume
that, for every fixed l, the funotions fhx, Y, U, Q) (i = 1, 2, ... , m) satisfy
oondition W+ with regard to U (see § 4) and the inequalities

(60.1) ff(X, Y, U,Q)-fr(X, Y, fJ,Q)
p n

~ 0"£(2' (x,-&r), U - fJ) +L 2lqk-qkl
r=1 k=1

(i = 1, 2, ... , m; 1 = 1, 2, ... , p) ,

whenever U ~ fJ, where O"(t, V) are the right-hand sides of a comparison
system of type I (see § 14). What concerns the comparison system, we stlppose
that

O"(t,O) ==0 (i=I,2, ... ,m)

and that for its right-hand maximum solution through the origin D(t; 0)
we have
(60.2) D(t; 0) == 0 .
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(l=I,2, ... ,p)(60.4)

Let U(X, Y) = (tt1(X, .Y), ... , um(X, Y)) andV(X, Y) = ('1l(X, Y), ...

... , vm(X, Y)) be continuous in the pyramid (58.1) and satisfy initial
inequality

(60.3) U(Xo, Y) ~ V(Xo, Y)

Denote by D the pyramid (58.1) and put

Gi={(X,Y)€D: u\X,Y»vi(X,Y)} (i=I,2, ... ,m).

Assttme that for every fixed j, whenever (X, Y) € o', then ui(X, Y)
and vJ(X, Y) possess first det'ivatives with respect to Y and Stolz's differen
tials with regard to X at (X, Y) and, moreover, Stolz's differentials with
respect to all oariobles if (X, Y) belongs to the side surface of D, and satisfy
at (X, Y) differential inequalities

i fi(x '-,7 1 m i i )U XI ~ I , J- , U , ••• , U ,UY1 , ,, , , U Yn

i fi(X Y 1 m i i )VXI 7 I , , V , ••• , v , VYU ... , VlI n •

This being assumed, inequality

U(X, Y) ~ V(X, Y)

holds true in the pyramid (58.1).

Proof. Proceeding like as in the proof of Theorem 58.1 define, for
A = (All .,., Ap ) satisfying (58.5), iu», Y; A), V(x, Y; A) and pi(X, Y,
U, Q; A) by formulas (58.6) and (58.9) respectively. Then U(x, Y; A)
= (u1(x, Y; A), ... , :u;m(x, Y; A)) and V(x, Y; A) = (v1(x, Y; A), ...

... , vm(x, Y; A)) are continuous in the pyramid (58.7), where rjA satis
fies (58.8) and the functions pi satisfy condition W+ with regard to U.
By (58.9) and (60.1), we have

n

pi(X, Y, U,Q; A)-F(x, Y, D,Q; A)~AO'i(AX, U-D)+AL};Iqk-i[kl
k=l

(i =1,2, ... ,m),

whenever U ~ D. Notice that for the comparison system of type I with
right-hand sides AO'i(At, U) the right-hand maximum solution through
the origin is, by Theorem 36.1, Q(At; 0) and, therefore, by (60.2), it is
identically zero, In virtue of (60.3), the functions fj and V satisfy initial
inequality

U(O, Y; A) :( V(O, Y; A).

Denote by D A the pyramid (58.7) and put

El = {(x, Y) € D A: :U;i(X, Y; A) > 'Vi(x, Y; A)} (i = 1, 2, ... , m).
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Fix an index j and let (x, Y) e E1; then, obviously, we have
(.xo+Ax, Y) e Gj and hence u j and v j have at (Xo+Ax, Y) that regularity
which was assumed at points of oj and they satisfy inequalities (60.4)
at (Xo+Ax, Y). From this we infer that, for (x, Y) e EL the functions
'1J)(x, Y; A) and 15j (x , Y; A) have at (x, Y) the regularity required in
Theorem 59.1 and that they satisfy differential inequalities

111 ~pi(x, Y, U, u~; A), v~ ~pi(x, Y, V, v~; A)

at points of Ei. Thus we see that, for A subject to conditions (58.5),
the functions tu», Y; A), V(x, Y; A) and pi(X, Y, U, Q; A) satisfy all
the assumptions of Theorem 59.1 in the pyramid (58.7). Hence we have
in this pyramid

iu», Y; A)·~ V(x, Y; A)

and in particular, by (58.8),

(60.5)

Now let (X, Y) be an arbitrary point in the pyramid (58.1); then
A = X -Xo satisfies conditions (58.5) and, by (58.6) and (60.5), we get

U(X, Y) = U(I, Y; X-Xo) <V(I, Y; X-Xo) = V(X, Y),

what was to be proved.
Since non-overdetermined systems of equations or inequalities are

particular cases of overdetermined ones, from now on we will formulate
and prove theorems only for overdetermined systems.

From Theorem 60.1 immediately follows the next corollary on the
right-sided uniqueness of the solution of the Cauchy problem.

COROLLARY 60.1. If the right-hand members oj the system oj equations

(60.6) i ji(X Y 1 m i i )U X1 = I , , U , ... , u ,Uy l , ,, , , UYn

(i = 1, 2, ... , m; 1 = 1, 2, ... , p)

satisjy assumptions oj Theorem 60.1, then the Oauchy problem for sys
tem (60.6), with initial data set on X = X o, admits at most one solution
of class ~ (see § 37) in the pyramid (58.1).

§ 61. Comparison systems of first order partial differential equations.
A system of equations

(61.1) i hi( I: I: Y 1 m i i )V<l = 1;-1, ... , ;-p, , V , ... , v ,VYl' ... , VYn

(i=I,2, ... ,m; l=I,2, ... ,p)
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will be called comparison system of partial differential equations if the
following conditions are satisfied:

1° M(E,Y,v,Q) (i=1,2, ... ,m; l=1,2, ... ,p) are defined and
non-negative for V ~ 0 and Q~ 0 and for (8, Y) in the pyramid

(61.2)

p

o :(; ~l , }; ~j < y (l = 1, 2, ... , p) ,
j=1

p

IYk-Ykl <:; ak-L}; ~j (k = 1, 2, ... , n),
j=1

where 0 <L < +=, 0 < ak < +=, y < min (akIL);
k

2° for every fixed l the functions 11,;(8, Y, TT, Q) (i = 1,2, ... , m)

satisfy condition W+ with respect to V;

3° inequalities

(61.3)
p "

M(8, Y, V, Q)-M(8, Y, tT, Q) < Gi(}; ~r, V-V) +L}; Iqk-qkl
r=1 k-l

(i=1,2, ... ,m; l=I,2, ... ,p)

are satisfied whenever V ~ V, where Gi(t, V) are the right-hand sides
of a comparison system of type I (see § 14) with Gi(t, 0) == 0 (i = 1,2, ... , m)
and with the right-hand maximum solution througli the origin
Q(t; 0) == O.

By a solution of the comparisow system (61.1) we will mean a sequence
of non-negative functions V (E, Y) = (v1(E, Y), ... , vm(E, Y)) of class j)

in the pyramid (61.2) (see § 37), satisfying equations (61.1), and such that

(61.4) v~(8,Y)~0 (i=1,2, ... ,m).

Using the above defined comparison system we will prove the follow
ing theorem on absolute value estimates:

THEOREM 61.1. Let a comparison system of partial differential eq1w
tions (61.1) be given. Suppose that the functions U(X, Y) = (u1(X, Y), .. ,

... , um(X, Y)) are of class j) (see § 37) in the pyramid

p

(61.5) l~ lXI-xli < y,
Z=1

p

IYk-jhl :(; ak- L }; IXz-XII
Z=1

(k=1,2, ... ,n)

and satisfy differential inequalities

(61.6) IU~II:(;h;(IX-Xol,Y,IUI,lu~D (i=1,2, ... ,m; l=1,2, ... ,p),
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iohere X o = (XH ... , xp ) . Let finally V (E, Y) = (v1(E , Y), ... , vm(5 , Y)) be
a solution of the comparison system (61.1) such that

(61. 7) \U(Xo, Yll ~V(O, Y).

Under these assumptions we have in the pyramid (61.5)

(61.8) IU(X, Y)I ~vqx-xol,Y).

Proof. It is clear that the assumptions of Theorem 61.1 are invariant
under the transformation

Xl-Xl = 81(Xl-Xl) (l = 1, 2, ... ,p),

where lell = 1. Hence, it suffices to prove (61.8) in the right-hand pyra
mid (58.1). Put

(61.9) U(E, Y) = W(Xo+E, Y)I, lii(E, Y, V, Q) = hf(E, Y, V, IQI)

(i=1,2, ... ,m; l=I,2, ... ,p).

It is obvious, by (61.3), that

p n

h}(E, Y, v,Q)-lif(E, Y, "V:Q) :«(1i(2: ~r, V-V)+L 2: lqk-qk!
r=l k=l

(i=I,2, ... ,m; l=I,2, ... ,p),

whenever V ~ V. By (61.7), we have

UfO, Y) ~ V(O, Y) .

Denoting the pyramid (61.2) by D, put

if = {(E, Y) ED: ui(8 , Y) > vi(8 , Y)} (i = 1, 2, ... , m).

Fix an index j and suppose that (E*, Y*) E ai . Since ui(X, Y) is
of class ~ in the pyramid (58.1) and for (E*, Y*) E aj we have

luJ(Xo+8*, Y*)I = u1(E*, Y*) > v1(E* , Y*) ~ 0 ,

it follows that the function ui(S, Y) has at (E*, Y*) first derivatives
with respect to Y and Stolz's differential with regard to 8 and, moreover,
Stolz's differential with respect to all variables if (E*, Y*) belongs to
the side surface of D. Further we have at (8*, Y*) E aj

U~l ~ IU~11 (1 = 1, 2, ... , p), luH = lu~l.

Hence, by (61.6) and (61.9), we get for (8*, Y*) E aj

u~I(E*, Y*)~7iHE*, Y*, U(5*, Y*),u~(E*, Y*)) (1=1,2, ... ,p).
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On the other hand, VeE, Y) being a solution of system (61.1) we
have, by (61.4) and (61.9),

v;'z(E*, Y*) = hf(E*, Y*, V(E*, Y*), v~(E*, Y*)) (1 = 1, 2, ... ,p).

Thus we see that the functions U, V and h} satisfy all the assumptions
of Theorem 60.1 in the pyramid (61.2) and therefore inequality

U(E, Y) ~ VeE, Y)

holds true in the pyramid (61.2). But this is equivalent with (61.8) in
the right-hand pyramid (58.1), what was to be proved.

§ 62. Estimates of solutions of first order partial differential equations
and a uniqueness criterion. In this section we deal with analogues of
Theorems 37.1 and 38.1 in the case when, instead of a comparison
system of ordinary differential equations, we use a comparison system
of partial differential equations. The next theorem is an immediate conse
quence of Theorem 61.1.

THEOREM 62.1. Let the right-hand sides f}(X, Y, U, Q) (i = 1,2, ... , m;
1 = 1,2, ... ,p) of system (60.6) be defined in a region whose projection
on the space of points (X, Y) contains the pyramid (61.5). Suppose the
inequalities

m(X, Y, U, Q)I ~ h}(IX-Xol, Y, lUI, [QI)

(i=1,2, ... ,m; 1=1,2, ... ,p)

to be satisfied, where h}(E, Y, V, Q) are the right-hand sides of a c01nparison
system of partial differential equations (see § 61). Let U (X, Y)
= (uI(X, Y), ... , um(X, Y)) be a solution of system (60.6) of class ~ (see

§ 37) in the pyramid (61.5). Suppose that VeE, Y) = (vI(E, Y), ... , vm(E, Y))
is a solution of the comparison system (61.1) (see § 61) such that

IU(Xo, Y)I~V(O, Y).

Under these assumptions we have

IU(X, Y)I ~ V([X-Xol, Y)

in the pyramid (61.5).

The example we give below shows that, in general, the estimate
obtained by means of Theorem 62.1 is sharper than that given in Theo
rem 37.1.

EXAMPLE. Consider an equation

(62.1) Ux = f (x, y, u, uy)
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and let its right-hand side be defined in a region whose projection on the
plane of points (x, y) contains the pyramid

(62.2) Iy-i I~ i -Llx-xol ,

Suppose that

(62.3) If(x, y, u, q)\ :'(Klul +Llq\ + C ,

where K > 0, C ~ O. Let u(x, y) be a solution of (62.1) of class :0 (see § 37)
in the pyramid (62.2) and satisfying the initial condition

(62.4) u(xo, y) = siny .

It follows from (62.4) that

(62.5) lu(xo, y)/ :'( sup lu(xo, Y)I = 1 .
jY-lt/4! <'It/4

If, in order to get an estimate of lu(x, y)/, we want to apply Theo
rem 37.1, then the comparison equation of type I (see § 14) is

dv
dt = Kv+C

and its only solution through (0,1) is

w(t) = C
K t(l+i)- i; .

Hence, by Theorem 37.1, we get the estimate

(62.6)

in the pyramid (62.2). Now, if we apply Theorem 62.1, the comparison
partial differential equation is

v. = Kv+Lvy+C

and its only solution v (~, y) in the pyramid

o~ ~ < y , Iy - i I :'( i - L~ ,

satisfying the initial condition

v (0, y) = /u (xo, y) I = sin y ,
is
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Therefore, by Theorem 62.1, we obtain the estimate which is obviously
sharper than the estimate (62.6).

THEOREM 62.2. Suppose the right-hand sides of system (60.6) and
of system

(62.7) U~l = gf(X, Y, U, u~) (i = 1,2, ... , m; 1 = 1,2, ... ,p)

are defined in a region, whose projection on the space of points (X, Y) contains
the pyramid (61.5), and satisfy the inequalities

Iff(X, Y, u,Q)-gf(X, Y, U,Q)I <hfox-Xol,Y,IU-UI,IQ-QI)
(i=1,2, ... ,m; l=1,2, ... ,p),

where h1(S, Y, V, Q) are the right-hand sides of a comparison system of

partial differential equations (see § 61). Let U(X, Y) and U(X, Y) be tsoo
solutions of system (60.6) and of system (62.7) respectively, of class ~
(see § 37) in the pyramid (61.5). Suppose finally that VeE, Y) is a solution
of the comparison system (61.1) such that

IU(Xo, Y)- if(Xo, Y)I ~ YeO, Y) .

This being assumed, we have

IU(X, Y)- U(X, Y)I <V(IX-Xol, Y)

in the pyramid (61.5).

Proof. Theorem 62.2 follows from Theorem 61.1 when we put there

U(X, Y) = U(X, Y)- U(X, Y) .

From the last theorem we derive the following uniqueness criterion.

COROLLARY 62.1. Suppose the right-hand sides of system (60.6) are
defined in a region whose projection on the space of points (X, Y) covers the
pyramid (61.5), and satisfy the inequalities

Iff(X, Y, U,Q)-fj(X, Y, U,Q)I:::;;hj(IX-Xol, Y,IU-U[,[Q-QD

(i=I,2, ... ,m; l=1,2, ... ,p),

where hi(S, Y, V, Q) are the right-hand members of a comparison system
of partial differential equations (see § 61). Assume that

(62.8) hj(S, Y,O,O)=O (i=1,2, ... ,m; l=1,2, ... ,p).

This being supposed, the Cauchy problem for system (60.6) with initial
data given on X = X o admits at most one solution of class ~ (see § 37)
in the pyramid (61.5).
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Proof. Observe first that, by (62.8), V(E, Y) =0 is a solution of the
comparison system (61.1), satisfying the initial condition V (0, Y) = o.
Hence, if iiis , Y) and U(X, Y) are two solutions of system (60.6), of
class ~ in the pyramid (61.5) and satisfying the same initial conditions, i.e.

U(Xo, Y)- U(Xo, Y) = 0,

then, by Theorem 62.2, we have

U(X, Y)- U(X, Y) == 0

in the pyramid (61.5), what was to be proved.



CHAPTER X

SECOND ORDER PARTIAL DIFFERENTIAL INEQUALITIES
OF PARABOLIC TYPE

In this chapter we investigate systems of parabolic partial differential
inequalities of the form (see [55J)

(i=1,2, ... ,m).

We also discuss maximum solution and Chaplygin's method for
parabolic equations (see [26J).

We use here notions and assumptions introduced in Chapter VIII.

§ 63. Strong partial differential inequalities of parabolic type. In this
section we give a generalization of the Nagumo-Westphal theorem. We
first recall assumptions introduced in § 47.

ASSUMPTIONS A. A region DC (t, xll ... , Xn ) of type C (see § 33)
being given let the functions ai(t, X) (i = 1,2, ... , m) be defined and non
negative on its side surface 1:. Denote by Ea! the subset of E on which
ai(t, X) # O. For every (t, X) e Ea! , let a direction lift, X) (i = 1, 2, ... , m)
be given, so that li is orthogonal to the t-axis and some segment starting at
(t, X) of the straight half-line from (t, X) in the direction li is contained in
the closure of D.

A parabolic and regular or Ea-regular solution of a system of dif
ferential inequalities is defined in the same way as it was for a system of
equations in §§ 46 and 47.

THEOREM 63.1. Assume the functions t(t, X, U, Q, R) = t(t, xll ... , Xn,

u l , ••• , um, qll ... , qn, rIll r12, ... , rnn) (i = 1,2, ... , m) to be defined [or
(t, X) € D of type C (see § 33) and for arbitrary U, Q, R and to satisfy
condition W+ with respect to U (see § 4). Let the functions ai(t, X) and the
directions lift, X) (i = 1,2, ... , m) satisfy Assumptions A on the side surface

of E. Suppose fie t, X) (i = 1, 2, ... , m) are defined and positive on Eal.
Let U(t, X) = (ul(t, X), ... , um(t, X)) and Vet, X) = (vl(t, X), ... , vm(t, X))
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be La-regular (see § 47) in D and suppose that every function fi is elliptic
with respect to the sequence U (t, X) (see § 46). Put

. i
Gt = {(t, X) € D: U(t, X) ~ V(t, X)} (i = 1,2, ... , m)

and suppose that, for every fixed j, we have

(63.1)

(63.2)

uiw, X*) < tj
(t*, X·, U (t", X*), u~w, X"), u~x(t* , X*») ,

v~(t*, X*) ~ t'(t*, X*, V (t", X"), v!YW, X"), v!Yx(t*, X*») ,

whenever (t*, X*) e o'. Suppose finally that the initial inequalities

(63.3)

and boundary inequalities of first type

(i(t, X)[ui(t; X)-v\t, X)]-ai(t, X) d[ui-:-viJ < 0
dl'

(63.4) for (t,X)€};al,

ui(t,X)-vi(t,X)<O for (t,X)€E-Eai

(i=1,2, ... ,m)
hold true.

Under the above assumptions we have

(63.5) U(t, X) < V(t, X)

in D.

Proof. Since the set of points (to, X), such that X e Sto, is compact,
there is, by (63.3) and by the continuity, at (to < t < to+T), so that (63.5)
holds true in the intersection of D with the zone to~ t < t. Denote by t*
the least upper bound of such t. We have to prove that t" = to+T. Suppose
the contrary, i.e. t» < to+T. Then we have in 15

(63.6) U(t, X) ~ V(t, X) for to ~ t ~ t"

and for some index j and some X" € St.

(63.7) uJ(t", X") = vJ(t", X") .

Indeed, by the definition of t*, inequalities

c«, X) < V(t, X)

hold true in D for to~ t < t*. Now, for any point (t*, X) E D, there is-by
property (c) of the region D of type C (see §33)-a sequence (t., X.) € D,
so that to < t, < t* and (t., X.)~(t*, X). Since

ou; Xv) < V(t., X.),
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it follows, by the continuity, that

tur, X) <V(t*, X).

Thus inequalities (63.6) are proved. If (63.7) were not true, we would
have, for every X ESt-,

tnr , X) < V(t*, X),

and hence, the set of points (t*, X), such that X ESt-, being compact,
inequalities (63.5) would be true, by continuity, in Jj for to< t < t**,
where t** is some number greater than t*. But, this contradicts the defini
tion of t*. From (63.6) and (63.7) it follows that

max [ui(t*, X)-vi(t*, X)] = ui(t*, X*)-vi(t*, X*) = 0
X£St-

and hence, by (63.4) and by Lemma 47.1, we conclude that (t*, X*) is
an interior point of D. Moreover, by (63.6) and (63.7), we have (t*, X*) € Gi ,
and consequently inequalities (63.1) and (63.2) hold true. The difference
ui(t* , X) - vi(t*, X) is of class 02 and attains its maximum at the interior
point X*. Therefore, we have

(63.8) u~(t*, X*) = v~(t*, X*)

and the quadratic form in A1 , ... , An

(63.9)
n

}; [U~IXIo(t*, X*) - V~IXIo(t*, X*)JAlAk is negative.
l.k~l

Now, from (63.1), (63.2) and (63.8) it results that

u~(t*, X*)-v~(t*,X*) < ti(t*, X*, tur , X*), u~(t*, X*), u~x(t*, X*»)

-l(t*, X*, V(t*, X""), u~(t*, X*), v~x(t*, X*»).

By (63.6), (63.7) and by the condition W+ (see § 4), we get from the
last inequality

uf(t*, X*)-v~(t*,X*) < ti(t*, X*, ut», X*), u~(t*, X*), u~x(t*, X*»)

-l(t*, X*, U (t*, X*), u~(t*, X*), v~x(t*, X*») .

Owing to the ellipticity of l (see § 46) with regard to U (t, X) and
by (63.9), the right-hand side of the last inequality is non-positive and
consequently we have

(63.10) uf(t*, x*)-vf(t*, X*) < O.

On the other hand, the function

ui(t, X*)-vJ(t, X*)
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of one variable t attains, by (63.6) and (63.7), its maximum at the right
hand extremity t* of the interval [to, t*]. Hence it follows that

uf(t*, X*) - vf(t*, X*) ;;::, 0 ,

what contradicts (63.10). This completes the proof.

Remark. Theorem 63.1 as well as the next Theorem 63.2 are true
if, instead of the ellipticity with regard to U (t, X), we assume the ellipticity
with respect to Vet, X).

Now we are going to prove a similar theorem with boundary inequal
ities of second type, i.e. with inequalities (63.4) without the assumption
that {i(t, X) be positive. Like in § 53 we will assume the existence of
sign-stabilizing factors.

THEOREM 63.2. Let the assumptions of Theorem 63.1 be satisfied with
the exception of {i(t, X) (i = 1,2, ... , m) being positive. Suppose, instead,
that there exist sign-stabilizing factors, i.e. positive functions Ki(t, X)
(i = 1, 2, ... , m) of class 02 in the closure of D, such that

for (i=1,2, ... ,m),

where

(63.11) pi(t, X) = {let, X)- ai(t, X)[Ki(t, X)]-l ~~i for (t, X) E Eal

(i=1,2, ... ,m).

Under these assumptions inequalities (63.5) hold true in D.

Proof. We put, like in § 53,

ui(t, X) = ui(t, X)[Ki(t, Xn-I , v\t, X) = v\t, X)[Ki(t, X)]-I

(i=1,2, ... ,m).

The new functions ti«, X) = (u\t, X), ... , um(t, X)), Vet, X) =

(VI(t, X), ... , vm(t, X)) satisfy, by (63.3), initial inequalities

U(to, X) < Veto, X) for X E Bio

and, by Lemma 53.1 and by (63.4), boundary inequalities

7Ji(t, X)[ui(t, X) - vi(t, X)] - ai(t, X) d [Ui;i
Vi] < 0 for (t, X) E z. ,

ui(t, X)-vi(t, X) < 0 for (t, X) E E - Eai

(i=1,2, ... ,rn),

where pi are defined by formulas (63.11) and are supposed positive. By
Lemma 53.2, every function 7\t, X, U, Q, R), defined by formula (53.6),
J. Sz araki , Differential inequalities 13



194 CHAPTER X. Second order parabolic inequalities

is elliptic with respect to ti«, X); moreover, ti«, X) and 17U, X) are
Ea-regular in D and Ii satisfy condition W + with regard to U. Put

row' ........ i ..-..
(J' = {(t, X) ED: U(t, X) <: V(t, X)} (i = 1,2, ... , m).

Fix an index j and let (t*, X*) E '(ji; then obviously (t*, X*) E ai

and, by (63.1) and (63.2), we have (see Lemma 53.2)

7ti{(t*, X*) <T(t*, X*, U(t*, X*), u1:-(t*, X*), u1:-x(t*, X*)) ,

v{(t*, X*) ~T(t*, X*, 17(t*, X*), v1:-(t*, X*), v1:-x(t*, X*)) .

Thus U, 17,7 i and 7Ji satisfy all the assumptions of Theorem 63.1
and hence we have in D

tr«. X) < V(t, X) ,
what implies (63.5).

We close this section by proving an analogue of Theorem 63.1 with
a different kind of non-linear boundary inequalities (see [32]).

THEOREM 63.3. Let all the assumptions of Theorem 63.1 be satisfied
with ai(t, X) == 1 (i = 1,2, ... , m) and with the boundary inequalities (63.4)
substituted by

.( 1 ) du i

cp' U , ... , um <-.
dl'

(63.12)
.(. 1 ) dv i

m' v , ... , vm ~-.
T dl'

on E (i = 1, 2, ... , m) ,

(63.13)

where the functions cpi(u1 , ... , um) (i = 1, 2, ... , m) satisfy condition W_
(see § 4).

This being assumed, inequalities (63.5) hold true in D.

Proof. Notice that, in the proof of Theorem 63.1, boundary inequal
ities (63.4) were taken advantage of merely to show that if for some
index j and some point (t*, X*) E 15 we have (63.6) and (63.7), then (t*, X*)
is an interior point of D. Hence Theorem 63.3 will be proved if we show
that (63.6), (63.7) and (63.12) imply that (t*, X*) is an interior point
of D. Suppose that (t*, X*) E E. Now, from (63.6) and (63.7) it follows
that the function

'lj!(.) = ui(t*, X*+-rverszi(t*, X*))-vi(t*, X*+-rversli(t*, X*))

-which, by Assumption A, is defined for non-negative. sufficiently close
to zero-attains its maximum at • = O. Hence we get that

'lj!'(O) = d[ui-v
i] I <: 0 •

dli (to, XO)
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On the other hand, inequalities (63.6) and (63.7) and condition
W _ imply that

q/ (U (t*, X*») ~ q/ (V(t*, X*») .

From the last inequality and by (63.12) we obtain

d[ui-viJ I---=-------,-.- > 0 ,
dll

(/·;x·)

what contradicts (63.13). This contradiction completes the proof.

§ 64. Weak partial differential inequalities of parabolic type. In order
to obtain a theorem on weak inequalities we apply in the present section
methods similar to those used in § 59. In particular, we will have
to introduce more restrictive assumptions than in Theorem 63.1, which
imply (see Corollary 64.1) uniqueness of solution of the corresponding
mixed problem.

THEOREM 64.1. Let the functions fi(t, X, u, Q, R) = fi(t, Xll ... , Xn,
uI, ... , um, ql' ... , qn, ru, r12 , ... , rnn) (i = 1, 2, ... , m) be defined for
(t, X) e D of type 0 (see § 33) and for arbitrary U, Q, R and to satisfy
condition W + with respect to U (see § 4). Suppose further that

(64.1) f\t,X, U,Q,R)-l(t,X, tJ,Q,R)~a,(t-to,U-U)

(i=1,2, ... ,m),

whMtever U ~ if, where ai(t, V) are the right-hand sides of a comparison
system of type I (see § 14). As to the comparison system we assume that

ai(t, 0) == 0 (i = 1, 2, ... , m)

and that for its right-hand maximum solution through the origin .Q(t; 0)
we have

(64.2) .Q(t; 0) == o.

Let the fwnctions ai(t, X) and the directions li(t, X) (i = 1, 2, ... , m)

satisfy Assumptions A (see § 63) on the side surface E of D. Suppose (lift, X)
is positive on Eal (i = 1,2, ... , m). Let U(t, X) = (u1(t, X), ... , um(t, X»
and V(t, X) = (v\t J X), ... , vm(t, X») be Ea-regular in D (see § 47) and

suppose that every function f\t, X, u, Q, R) is elliptic with regard to
U(t, X) (see § 46). Assume that the initial inequality

(64.3)

13*
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and boundary inequalities

. . . . d~-~
f3'(t,X)[u'(t,X)-v'(t, X)]-at(t, X) . <,0

dZt

(64.4) f (X).,.or t, E """ai,

Ui(t,X)-Vi(t,X) <,0 for (t,X)EE-Eal (i=1,2,o.o,m)

are satisfied. Write

E' = {(t, X) ED: ui(t, X) > vi(t, X)} (i = 1,2, ... , m)

and suppose that for every fixed j

(64.5) uf(t*, X*) <.l(t*, X*, tur, X*), u~(t*, X*), u~x(t*, X*»),

(64.6) vlw, X*) ~ l(t*, X*, V(t*, X*), v~(t*, X*), v~x(t*, X*») ,

whenever (t*, X*) E E i •

This being assumed, we have in D

(64:.7) U(t, X) <. V(t, X) •

Proof. Since the assumptions of our theorem are invariant under
the mapping 1" = t- to, we may assume, without loss of generality, that
to = O. Put, for 0 <. t < P,

~(t) = max [tt\t, X)-vi(t, X)J, JiIi(t) = max(O, _Jfi(t»
XES!

(i=1,2, ... ,m),

__if (t) = (M\t), .", ?(t») .

It is clear that the assertion of our theorem is equivalent with the
inequality

(64.8) -,li(t) <.0 on [0, T) .

We are going to prove relation (64.8) by means of the first comparison
theorem (see § 14). By (64.3), we have M(O) <. 0 and, by Theorem 33.1,
the functions JiIi(t) are continuous on [0, T). Therefore, writing

E={tE(O,T): .1ifi(t»O} (i=1,2,.",m),

inequality (64.8) will be proved by the first comparison theorem (see §14),
if we show that

D_ ifi(t) <. O"i(t, .M (t») for t E Jji .

Now, fix an index j and let t* E if By Theorem 33.1, there is a point
X* E SI. such that

(64.9)
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Since, by the assumption that t* e ]if, inequality Jili(t*) > 0 holds
true, we have obviously

(64:.10)

and consequently, by (64.9),

(64.11)

From the last inequality and from (64.4) it follows, by Lemma 47.1,
that (t*, X*) is an interior point of D. Hence, the function uJ(t*, X)
- vJ(t*, X) attaining, by (64.9), its maximum at the interior point X*,
we have relations (63.8) and (63.9). By Theorem 33.1 and by (64.10),
we have moreover

(64.12)

Inequality (64.11) implies that (t*, X*) € E i and consequently,
by (64.5), (64.6) and (63.8), we get

(64.13) u{(t*, X*)-v[(t*, X*)

« l(t*, X*, iur . X*), U~y(t*, X*), 1J?x:x(t*, X*»)-

- t(t*, X*, V (t*, X*), 1J~(t*, X*), 1'~X(t*, X*») .

Observe that, by the definition of M\t} and by (64.11), (see § 4)

i ~

U(t*, X*) « V(t*, X*) +M(t*).

By the last inequalities and by condition W+ (see § 4), it follows
from (64.12) and (64.13)

(64.14) IJ_~IJ(t*) « [ti(t*, X*, tur, X*), u~(t*, X*), u~x(t*, X*))

-s'(t*, X*, U (t* , X*), u~(t*, X*), v~x(t"', X*))] +

+- lti(t*, X*, V(t*, X*)+M(t*), u~(t*, X*), v~x(t*, X*»)

-l(t*, X*, V(t*, X*), u~(t*, X*), v~x(t*, X*))] .

The first difference in brackets is-owing to (63.9) and to ellipticity
of ti with regard to U(t, X)-non-positive. To the second difference we
apply inequality (64.1) and finally we obtain

(64.15)

Thus we have shown that inequality (64.15) holds true for any
t* € JjJi; but, this completes the proof.
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As an immediate consequence of Theorem 64.1 we obtain the fol
lowing corollaries.

COROLLARY 64.1 (Uniqueness criterion). Suppose that the right-hand
sides of the system of differential equations

(64.16) u; = fi(t, X, U, u~, u~x) (i = 1,2, ... , m)

satisfy all the assumptions of Theorem 64.1. Then the first mixed problem
(see § 47) for system (64.16) admits in D at most one parabolic, La-regular
(see §§ 46, 47) solution.

COROLLARY 64.2 (Maximum principle). Let the functions t«. X, u,
Q, R) (i = 1, 2, ... , m) satisfy all the hypotheses of Theorem 64.1. A.ssume
that for U ~ 0 we have

fi(t,X, U,O,O)~O (i=I,2, ... ,m).

Suppose U(t, X) = (u1(t, X), ... , um(t, X)) to be a La-regular (see § 47)
and parabolic (see § 46) solution of the system of differential inequalities

•• "1
u~ ~ j'(t, X, U, ux, uxx) (i = 1,2, ... , m)

in D and to satisfy initial inequalities

where ml are non-negative constants, and boundary inequalities

. . . duo .
pt(t, X)ut(t, X)- a\t, X) -. ~ mlpt(t, X) for (t, X) E La',

dt
ui(t, X) ~ m, for (t, X) E L- La'

(i=1,2, ... ,m),

where at, t satisfy A.ssumptions A (see § 63) and pi are positive.
Under these assumptions we have in D

U(t, X) ~ M.

Proof. We check immediately that U(t, X) and V(t, X) = M
= const ~ 0 satisfy all the assumptions of Theorem 64.1.

Remark 64.2 (1). Theorem "64.1 can be derived from Theorem 63.1
without having recourse to the first comparison theorem (see § 14). In

(I) This remark is due to P. Besala, Similar arguments were used, in some parti
cular cases, by K. Nickel (see [36]).
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this case we use arguments similar to those applied in the proof of Re
mark 59.I.

The theorem to be proved now involves somewhat less restrictive as
sumptions under which the first comparison theorem (see § 14), used in
the proof of Theorem 64.1, cannot be taken advantage of, whereas the sec
ond comparison theorem (see § 14) is applicable.

THEOREM 64.2. Under the assumptions of Theorem 64.1 with inequal
ities (64.1) replaced by

(64.17) fi(t, X, U, Q, R)-fi(t, X, iI, Q, R) ~ a(t-to' max (UI_UI»)
I

(i=1,2, ... ,m)

[or U ~ fj and t > to, where o(t, y) is the right-hand side of a comparison
equation of type II (see § 14), inequality (64.7) holds true in D.

Proof. Like in the proof of Theorem 64.1, we assume that to = O.
Put, for 0 ~ t < T,

if (t) = max JI1i(t) ,
i

where JI1i(t) were introduced in the proof of Theorem 64.1. It is obvious
that inequality (64.7) is equivalent with

(64.18) W(t)~O on [O,T).

Inequality (64.18) will be proved by means of the second comparison
theorem (see § 14). By (64.3), we have

W(O) ~ 0

and, by Theorem 33.1, the function W(t) is continuous on [0, T). There
fore, writing

E = {t € (0, T): W(t) > O} ,

inequality (64.18) will be proved, by the second comparison theorem
(see § 14), if we show that

D_ W(t) ~ a(t, W(t») for t € E.

Now, suppose that t* € E. Obviously there is an index j, so that
(see the proof of Theorem 34.1)

(64.19)
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Since t* € E, we have, by (64.19), .ili(t*) > 0, and hence relations (64.10)
and (64.11) are satisfied. Therefore, like in the proof of Theorem 64.1,
we get inequality (64.13) and consequently, by (64.19), we have

D_ W(t*) ~ [f'(t*, X*, tur, X*), U~y(t*, X*), u~x(t*, X*»)-

- fi (t*, X*, U (t*, X*), u~(t*, X*), v~x(t*, X*») 1+
+[lW, X*, V(t*, X*)+M(t*), u~(t*, X*), v~x(t*, X*»)-

- t (t*, X*, V (t*, X*), u~(t*, x*), v~x(t*, X*»)] .

The first difference in brackets is-like in the preceding proof-non
positive, whereas to the second difference we apply inequality (64.17)
and get

D _W(t*) ~ G(t*, W(t*») ,

what was to be proved.
The next corollary is an immediate consequence of Theorem 64.2.

COROLLARY 64.3 (Uniqueness criterion). If the right-hand sides of the
system of equations (64.16) satisfy all the assumptions of Theorem 64.2,
then the first mixed problem (see § 47) [or the above system admits in D
at most one parabolic, .Ea-regular solution (see §§ 46,47).

Remark 64.3. Unlike Theorem 64.1, Theorem 64.2 cannot be derived
from Theorem 63.1 without having recourse to the second comparison theo
rem. This depends on the fact that the right-hand side of a comparison equa
tion of type II (see § 14), appearing in inequality (64.17), is not supposed to
be continuous for t = 0, and consequently Theorem 10.1 can not be applied
to its solutions issued from the points (0, e).

We turn now to analogues of Theorems 64.1 and 64.2 in the case of
boundary inequalities of second type, i.e. when (l(t, X) (i = 1,2, ... , m)
are not supposed to be positive. Like in Theorem 63.2 we will have to
assume, instead, the existence of sign-stabilizing factors (see § 53).

THEOREM 64.3. Let the functions t(t, x, U, Q, R) (i = 1,2, ... , m) be
defined for (t, X) € D of type C (see § 33) and for arbUrary U, Q, Rand
satisfy condition W + with respect to U (see § 4). Suppose that, whenever
U ~ U, the inequalities

(64.20) l(t, X, U, Q, R)-l(t, X, U, Q, R)

~ Gi(t-to, U-U)+T~(t-to,}; Iqj-qil +}; Irjk-rikl)
i i~

(i=1,2, ... ,m)

hold true, where Gi(t, Yll ... , Ym), Ti(t, y) are continuous, non-negative and
increasing in all variables for t ~ 0, Y;?: 0, Yi ~ 0 (j = 1,2, ... , m) and
satisfy identities

Gi(t,O) == Ti(t, 0) == 0 (i = 1,2, ... , m).



for (t,X)~Eol,

for (t, X) ~ };- Eo.

(i=I,2, ... ,tn),

§64. Weak partial differential inequalities of parabolic type 201

Suppose jurther that the right-hand maximum solution tht'ough the
origin oj the comparison system

dYi
(ft = (fi(t, Y1' .,., Yn) +Ti(t, yt} +Yi (i = 1,2, ... , 'm)

is identically zero. Let the functions ai(t, X) and the directions li(t, X)
(i = 1, 2, ... , m) satisfy Assttmptions A (see § 63) on the side surface of D.
Suppose that (Ji(t, X) is defined on l.'ai (i = 1, 2, ... , m) (without being
necessarily positive), and there exist sign-stabilizing [actors, i.e. positive
jmwtions s'«, X) (i = 1, 2, ... , m) oj class 0 2 in the closure oj D, so that

71i(t , X ) >0 [or (t,X)~};oi (i=I,2, ... ,tn),

where pi are given by formulas (63.11). Assume, moreoveT, that

0< p. ~ s'«, X) ~ M, \K;I, /K;j!, jK;,xkl ~M .

Let, finally, U(t, X) = (u1(t, X), ... , um(t, X») and V(t, X) = (v1(t, X),

... , vm(t, X») satisfy assumptions of Theorem 64.1, This being assumed,
inequality

(64.21) nu, X) ~ V(t, X)

holds true in D.

Proof, Like in the proof of Theorem 63.2, we put

;;tift, X) = ui(t, X)[E(t, X)r1
, vi(t, X) = vi(t, X)[Ki(t, X)]-l

(i=1,2, ... ,m)

and check that the new functions are Eo-regular in D and satisfy, by (64.3),
initial inequalities

U(to, X) ~ V(to, X) for X ~ Sf.,

and, by (64.4) and by Lemma 53.1, boundary inequalities

71i(t , X)[ui(t, X)-v\t, X)]- ai(t, X) d[u
i -;Vi

] ~ 0
dl

ui(t, X)-vi(t, X) ~ 0

where 7l are defined by formula (63.11) and are supposed positive. By
Lemma 53.2, all functions 7i (t , X, U, Q, R), defined by formula (53.6),
are elliptic with respect to U(t, X) and satisfy, by (64.20) and by
Lemma 53.3, inequalities

ii(t, X, U,Q,R)-t'U,X, U,Q,R)~ai(t-to,U-U)
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whenever U ~ V, where Gi(t, Yll ... , Ym) are given by formulas (53.11);
moreover, by Lemma 53.4, ai(t, Y) are the right-hand sides of a comparison
system of type I (see § 14) anr' satisfy the assumptions of Theorem 64.1.
The functions Ii satisfy condition W + with respect to U. Put

'iff = {(t, X) ED: 11,i(t, X) > vi(t, X)} (i = 1, 2, ... , m).

Fix an index j and let (t*, X*) E 'iif; then, obviously, (t*, X*) E E i

(see Theorem 64.1) and hence, by (64.5) and (64.6), we have (see
Lemma 53.2)

11,{(t*, X*) ~"'l(t*, X*, iiir , X*), 11,~(t*, X*), 11,!x:x(t*, X*») ,

vi (t* , X*) ~7i(t*, X*, iT (t* , X*), v!x:(t*, X*), v~x(t*, X*») .

Thus we see that 11,\ Vi, Ii and pi satisfy all the hypotheses of Theorem 64.1
and, therefore, we have in D

ti«, X) ~ V(t, X)

what implies (64.21).
In a similar way we derive from Theorem 64.2 the next theorem.

THEOREM 64.4. Let the assumptions of Theorem 64.3 hold true with
inequalities (64.20) substituted by

fi(t, X, U, Q, R)_ji(t, X, V, ii, R) ~ a(t-to, max(ul-ul»)+
I

+'l'{t-to' 2: jqi-qil +l' Irile-rilel) (i = 1,2, ... , m)
i i,k

for (; ~ V and t > to, where a(t, y) and 'l'(t, y) are continuous, non
negative functions, increasing in all variables for t> 0, '!J ~ 0, such that
a(t, y)+'l'(t, y)+y is the right-hand side of a comparison equation of

type II (see §14). This being supposed, inequality (64.21) is satisfied in D.

We close this section by deriving from Theorem 64.1 (resp. 64.2)
a theorem [5] involving in thesis absolute value estimates.

THEOREM 64.5. Let ji(t, X, U, Q, R), ai(t, X), li(t, X) and (f(t, X)
(i = 1,2, ... , m) satisfy all the assumptions of Theorem 64.1 (resp. 64.2)
and suppose additionally that

(64.22) l(t, X, - u, -Q, -R) = _fi(t, X, U, Q, R) (i = 1, 2, ... , m).

Let U(t, X) and V(t, X) ~ 0 be La-regular in D (see § 47) and satisf.1f
initial inequalities

(64.23)



IU(t, X)I:( V(t, X)

U(t, X) :( V(t, X) .
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and boundary inequalities

I
(/(t, X)ui(t, X)- ai(t, X) dU~1 :( rl(t, X)vi(t, X)- a\t, X) dV~

dl' dl'

(64.24) for (t, X) E Eal ,

Iui(t, X)I :( vi(t, X) for (t, X) E E- Eal
(i=1,2, ... ,m).

Suppose that all the functions t«, X, U, Q, R) are elliptic with regard
to ti«, X) (see § 47). Put

Ei = {(t, X) ED: lui(t, X)I > vi(t, X)} (i = 1,2, ... , tn)

and assume that, for every fixed j,

(64.25) u~(t*, X*) = l(t*, X*, tnr , X*), u~(t*, X*), u~x(t*, X*)) ,

(64.26) v~(t*, X*) ~ l (t*, X*), V (t*, X*), v~(t*, X*), v~x(t*, X*))

whenever (t*, X*) E Fl. This being supposed, inequality

(64.27)

is satisfied in D.

Proof. If we put

E~ = {(t, X) ED: ui(t, X) > vi(t, X)} (i = 1,2, ... , m),

then, since vi(t, X) ~ 0, it is obvious that (t*, X*) E E~ implies (t*, X*) E Ff
and hence, by. the assumptions of our theorem, (t*, X*) E E~ implies (64.25)
and (64.26). Therefore, owing to (64.23) and (64.24), U(t, X) and V(t, X)
satisfy all the assumptions of Theorem 64.1 (resp. 64.2) and consequently
we have in D

(64.28)

Now, if we put

E_ = {(t, X) E D:-vi(t, X) > ui(t, X)} (i = 1, 2, ... , m),

then-like in the preceding case-we check that (t*, X*) E E~ implies
(t*, X*) E Ei and consequently (t*, X*) E E~ implies (64.25) and (64.26).
But, from (64.22) and (64.26) it follows that

(64.29) -v~(t*, X*):( l(t*, X*), - V(t*, X*), -v~(t*, X*), -v~x(t*, X*)).

Thus we see that (t*, X*) E E~ implies (64.25) and (64.29). Hence,
owing to (64.23) and (64.24), - V(t, X) and U(t, X) satisfy all the assump-
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tions of Theorem 64.1 (resp. 64.2) (with U(t, X) replaced by - Vet, X)
and Vet, X) by U(t, X)). Therefore, we have in D

U(t, X) ;;:, - Vet, X)

what together with (64.28) gives (64.27).

Remark. .A. theorem similar to Theorem 64.5 can be derived from
Theorems 64.3 and 64.4.

§ 65. Parabolic differential inequalities in unbounded regions. We are
going to prove in this section an analogue of Theorem 64.1 in the case
when D is an unbounded region specified below (see [3]).

DEFINITION OF THE REGION OF TYPE C*. .A. region D in the space
of points (t, xll ... , xn ) will be called reqio» of type C* if following con
ditions are satisfied:

(IX) D is open and contained in the zone to < t < to -t-T:::;; + oo,

(~) For any tIl to :::;; t1 < to +T, the intersection Gtl of the closure
of D with the plane t = t1 is non-void and unbounded.

(y) For any t1 , Gtl (see (~)) is identical with the intersection of the
plane t = t1 with the closure of that part of D which is contained in the
zone to :::;; t ~ t1 •

Like in the case of a region of type C (see § 47), we denote by E that
part of the boundary of D which is contained in the open zone to < t

< to+T.
Since we will have to impose certain bounds on the growth at infinity

of the functions involved, we introduce the following definition:

DEFINITION OF THE CLASS E 2 • Two positive constants M and K
being given, a function ljJ(t, X), defined in a region of type C*, is said
to be of class E 2(M, K) if

(65.1) 19'(t,X)I:::;;MeK X 2 ,

where IXI = -Vi~ X~ • .A. function ljJ(t, X) is said to be of class E2 if there

exist some positive constants M and K, so that (65.1) holds true.
We are able now to formulate and prove the following theorem:

THEOREM 65.1. Let the functions let, X, u, Q, R) (i = 1,2, ... , m)
be defined for (t, X) e D of type C* and for arbitmry U, Q, R, and satisfy
condition W+ with respect to U (see § 4). Suppose further that inequalities

(65.2) [fi(t, X, U, Q, R)-l(t, X, ii, ii, R)]sgn(ui-ui)

~ i; .2lrzk-rzkl + (L1IXI +L2 ) .2lql-qzl +(LaIXI2+L4 ) .2lur- urj

I,k Z r

(i=1,2, ... ,m)
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hold true, where L, (s = 0,1,2,3,4) are positive oonstamts, Let U(t, X)
= (u1(t, X), ... , um(t, X») and V(t, X) = (v\t, X), ... , vm(t, X)) be regular
(se e § 47) and of olass E 2 in D and satisfy initial inequality

(65.3)

and boundm'y inequalities of first type

( 65.4) U(t, X)':::;; V(t, X) for (t, X) € I:.

Suppose all the functions t\t, X, U, Q, R) are elliptic with respect
to U(t, X) (see § 46). Put

Ei = {(t, X) e D: ui(t, X) > vi(t, X)} (i = 1,2, ... , m)

and assume that, for every fixed j, whenever (t*, X*) € E j
, we have

(65.5) u:(t*, X*) .:::;; l (t*, X*, U (t*, X*) ,u~(t*, X*), u~X"x(t*,x*») ,

(65.6) v:(t*, X*) ~ I j
(t*, X*, V (t*, X*), 'o~(t*, X*), v~u(t*, X*») .

Under all these assumptions we have in D

(65.7) U(t, X) .:::;; V(t, X) .

Proof. Let U(t, X) and V(t, X) be of class E 2(i"}!, K), i.e.

(65.8) lui(t, X)I, Ivi(t, X)I <; JIeK 1X \2 (i = 1,2, ... , m).

We introduce the growth damping factor

[
(K + 1 ) IX I2 ]

H(t, X) = exp 1-p(t- to) + vt ,

where
'/l = 4[2n(K+1)(Lo+L2)+mL4+1] ,

(65.9) JnL
p = 4n2(K+1)Lo+2n(L1+L2 )+ K-+:1'

and new functions

U;i(t, X) = ui(t, X)[H(t, X)]-l , vi(t, X) = vi(t, X)[H(t, X)r1

(i=1,2, ... ,m).

Obviously, (65.7) is equivalent with

(65.10) [J(t, X) <; V(t, X)

in D. Now, we will prove first that (65.10) holds true in D\ Dh denoting
the intersection of D with the closed zone

{65.11)
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(65.14)

1
(65.12) h = 2p .

For any set E, denote by E~ the intersection of E, of the zone (65.11)
and of the cylinder IXI ~ f. It is clear that, in order to prove (65.10) in D\
it suffices to show that, for any e > 0, there is a f o > 0, so that inequalities

(65.13) ui(t, X)-vi(t, X) ~ e (i = 1,2, ... , 1ft)

are satisfied in D~, whenever r > roo Let e be an arbitrary positive number;
there is a positive f o such that f > f o implies

-1 2 2MexpKIXI2
[H(t,X)] 2MexpKIXI = {(K+l)IXI2 }~e

exp I-p(t-to) +vt

for (t, X) E C~, where C~ denotes the intersection of the surface IX I = r
with the zone (65.11). We will prove that inequalities (65.13) hold true
in D~ for r > f o' with f o chosen above. Let 1" > f o; there is an index j and

a point (t*, X*) E D~, so that

ui(t*, X*)-vi(t*, X*) = max {max rul(t, X) - Vl(t, X)]} .
1 D~

Suppose that inequalities (65.13) are not true in D~; then, we would
have

(65.15) l1,i(t*, X*)-vJ(t*, X*) > e > o.

We claim that (t*, X*) E D~. Indeed, we have

Owing to (65.3) and (65.15), the point (t*, X*) does not belong to
((Jto)~' By (65.4) and (65.15), it does not belong to £~ either. Finally, by
(65.8) and (65.14), we have for (t, X) E C~

~J( X) ~J( X) 2~ilfexpK IXI2
u t, -v t, ~ {(K+l)IXI 2 \ ~e,

exp I-p(t-to)+vt r

and consequently, because of (65.15), the point (t*, X*) is not in C~.

Therefore, we must have (t*, X*) E D~. Then, by (65.15), (t*, X*) E E i

and hence inequalities (65.5) and (65.6) are satisfied. Since the function
of one variable t, uJ(t, X*)-vJ(t, X*), attains for t = t* its maximum in
the interval to ~ t ~ t*, we have

(65.16) 'itl (t* , X*) - vl (t* , X*) ~ 0 .
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Similarly, the function of the point X, Ui(t*, X)-Vi(t*, X), attaining
its maximum at the interior point X*, we get that the quadratic form
in A.u ... , A.n

(65.17)

and

n

}; [U~IXk(t*, X*) - V~IXk(t*, X*)]A.ZA.k
Z,k=l

is negative

(65.18) (k=1,2, ... ,m).

Now, substituting in (65.5) and (65.6)

i ~iH
1t = U ,

and subtracting (65.6) from (65.5) we obtain at the point (t*, X*)

(65.19) (ul-vl)H + (u i -7;/)Ht

<; [l (t*, X*, fj (t*, X*)H, Q", R'i1) - t'(t*, X*, tJ(t*, X*)H, QIZ, R'i1,V)] +

+fti(t*, X*, U(t*, X*)H, Q'" Ru';'l-ti(t*, X*, V(t*, X*)H, QU, RVl],

where

QU = {U~lc(t*, X*)H(t*, X*) +ui(t*, X*) HXk(t*, X*)}~=l ,

QV = {V~lc(t*, X*)H(t*, X*) +vi(t*, X*)Hxl;(t*, X*)}~=l ,

and similarly at the point (t*, X*)

Rtl {~i H ~i H ~i H ~iH }n= UXIXk +UXI XI; +UXk Xl +U xlXk l,k=1 ,

By the ellipticity of t (t, X, U, Q, R) with respect to U (t, X)
= U(t, X)H (see § 46) and by (65.17), the first difference in the brackets
on the right-hand side of inequality (65.19) is non-positive. As to the
second difference in brackets we rewrite it in the form

(65.20) [ti(t*,X*, U(t*,X*)H,Qu,Rft,fJ)-l(t*,x*, W(t*, X*)H, Q,;,R"')] +

+ [t(t* , X*, W(t*, X*)H, QV, RV)-l(t*, X*, V(t*, X*)H, QV, R fJ
)] ,

where

W(t, X) = (w\t, X), ... , wm(t, X)), wl(t, X) = min[uz(t, X), Vl(t, X)J

(1 = 1, 2, ... , m) .
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Since, by (65.15) (see § 4),

i ~

W(t*, X*) < V(t*, X*),

the second difference (65.20) is non-positive, by the condition W+ with
respect to U (see § 4). To the first difference (65.20) we apply inequal
ity (65.2). Taking advantage of (65.18) and remembering that, by the
definition of Wet, X) and by (65.15),

lul(t*, X*)-Wl(t*, X*)I = :;"i(t*, X*)-wl(t*, X*)

< max [0, ul(t*, X*) -'1/(t*, X*)]

< :;;;1(t*, X*)-vi(t*, X*)

(1=1,2, ... ,m)

we finally get from (65.2) and (65.19)

(65.21) [u{(t*, X*)-v{W, X*)]H < [ui(t*, X*)-vi(t*, X*)]F[H]

where
n n

F[H] = x, 1:IH XI Xk I+(L1 IXI +L2) 1: IHxkl +n~(L3IXI2+L4)H -Ht •
~k=l k-l

Computing the derivatives of H(t, X) we find that

Since in n~ we have, by (65.12),

(65.22)

and since, obviously,

we get further

F[H] ~ [1-,u~-to)]2{(K+1) IXI2[4(K +1)Lon2 -12(L1 +Lz)n +;~31-It] +

+[2 (K +l)n(Lo+Lz)+mL4J- '1'[1- It(t- to)]2} .

Hence, by (65.9) and (65.22), it follows that

F[H] < -4H
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and consequently, by (65.15) and (65.21),

u{W, X*)-v{(t*, X*) ~ -4[ui(t*, X*)-vi(t*, X*)J < 0,

which contradicts (65.16). This contradiction completes the proof of
inequalities (65.7) in D\ where 71, is given by formulas (65.9) and (65.12).
In particular, we have inequalities (65.7) in the intersection of the closure
of Dh with the plane t = to+ 71,; but, since this intersection is-by prop
erty (y) of the region of type O*-identical with Gto+h, we have (65.7)
for (t, X) E Gto+h' Therefore, we can repeat our argument starting from
the plane t = to + 71" instead of the plane t = to, and thus obtain inequali
ties (65.7) in the intersection of D with the zone

to+h ~ i «; to+2h.

In this way we prove inequalities (65.7) in any point of D after a finite
number of steps.

As an immediate consequence of Theorem 65.1 we obtain the fol
lowing uniqueness criterion.

OOROLLARY 65.1. Let the right-hand sides of the system of differential
equations (64.16) satisfy all the assumptions of Theorem 65.1 for (t, X) ED
of type 0* and for arbitrary U, Q, R. Then the first Fourier's problem (see § 47)
for system (64.16) admits in D at most one parabolic, regular (see §§ 46,
47) solution of class E 2.

Remark. In particular, when D of type 0* is the half-space t » to,
then E is empty and the first Fourier's problem reduces to the so-called
reduced. Oauchy problem. This problem consists in finding a regular and
parabolic solution in the half-space t > to, satisfying a given initial con
dition for t = to' In this case Corollary 65.1 gives a uniqueness criterion
for the solution of the reduced Cauchy problem.

§ 66. The Chaplygin method for parabolic equations. This section deals
with the Chaplygin method for the equation

(66.1)
8u 82u
ot = 8x2 +f(t, », u).

We consider here the first Fourier's problem (see § 47). We assume
always that (t, x) E {(t, x): o,s;; t ~ T, a ~ x ~ b} = R. The interior of R
is denoted by RO, the boundary by 8R. r stands here for the plane set
composed of points (0, x) with a ~ x ~ band (t, a), (t, b) with 0 ~ t ~ T.
By a regular function in R we mean a function u which is continuous
on R, continuously differentiable in t to 8u/8t and twice in (J) to 82u/8(J)2

for 0 < t ~ T, (J) E (a, b).
J. Szarski, Differential inequalities 14
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Theorem 64.1 implies
LEMMA 66.1. If u(t, x), v(t, x) are regular in Rand 8f(t, x, 11,)/811,

is continuous and

(66.2)

(66.3 )

au 8211,

8t ,:;; 8x2 + f (t, x, 11, (t, x)) ,

8v 82v
8t ~ 8x2 + f(t, oi, v(t, x))

on RO and u(t, x) ,:;;v(t, x) on r, then u(t, x) ,:;;v(t, x) on R.
If 11, (v) satisfies (66.2) ((66.3)), then 11, (v) is called a lower (upper)

function. Let f(t, x, u) be differentiable in u to fu(t, ai, 11,). Assume that
f(t, x, 11,) and fu(t, x, 11,) are continuous and locally Holder continuous
(exponent «, 1) in all variables for t > O. Suppose now that the function
u(t, x) is Holder continuous in R. Then the composite functions
f(t, x, u(t, x)), fu(t, x, u(t, x)) are locally Holder continuous. It is a classi
cal result that there is a unique solution z(t, x) of the equation

8z 82z

(66.4) at = 8x2 +f(t, x, u(t, x)) +fu(t, ai, u(t, x))(z- u(t, x))

with the boundary condition

(66.5) Z = f{J on r,
where f{J is continuous on r. The functions t, f{J being fixed, the function Z

is uniquely determined by u, Hence, we have here the transformation law
u--+z, in symbols z = Cu. We form the sequence

Zo = 11, , Zn+l = CZn

which is the Chaplygin sequence for equation (66.1) with boundary data
(66.5). First we will prove

THEOREM 66.1. Suppose that uo(t, x) is lower and vo(t, x) upper and
let f(t, x, u) be continuously differentiable in 11, to fu(t, x, 11,). We assume
that f(t, x, 11,), fu(t, x, u) are continuous and locally Holder continuous for
t > O. Let f{J be continuous on r and suppose that uo ':;; f{J ,:;; vo on r.

If fu(t, e, u) increases in u, then the Chaplygin sequence

Zo = Uo , Zn+l = CZn

satisfies

(66.6)

(66.7)

(66.8)

(66.9)

the following conditions:

8zn+1 82zn +l---et = 8x2 +f (t, x, ZlI)+ fu(t, x, Zn)(Zn+l - ZlI) ,

aZlI 02zn
at ,:;; 8a;2 +f(t, x, ZlI),

ZlI=f{J on T,

UO ,:;; Zn ,:;; Zn+l ,:;; 'Do on R .
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Proof. The fact that Zn is well defined is a consequence of the previous
discussion and of the regularity of UO' Conditions (66.6) and (66.8) follow
from the definition of the Chaplygin sequence. Suppose now that (66.7)
holds for n = k, Consider the equation

8z 82z

(66.10) 8t = 8x~ +g(t, x, z) ,

where

(66.11) g(t, x, z) = f(t, x, Zlc) +fu(t, x, Zlc)(Z-Z.t).

The solution of (66.10) with the boundary condition Z = ffJ on r is
Zk+l. Hence

8Zk +l 82zk +1--m;;' ox2 +g(t, ai, Zk+l)'

But g(t, x, Zlc) = f(t, x, Zk) and consequently, by the inductive assumption

8Zk 82Zk,at ~ 8x2 -r-g(t, x, Zk) •

The last two inequalities and Lemma 66.1 imply that

(66.12)

Formula (66.12) and the convexity of I(t, x, u) in u imply

f(t, x, zlc)+fu(t, x, Zk)(Zk+l-Zk):(; f(t, x, Z/c+l)

which by (66.6) proves (66.7) for n = k +1. (66.7) being proved for
arbitrary n, the above reasoning proves (66.12) for any k, This completes
the proof.

COROLLARY. The assumptions 01 Theorem 66.1 imply that the solution
z(t, x) of (66.1), (66.5) exists and by Lemma 66.1

uo(t, x) :(; z(t, x) :(; vo(t, x) on R.

It follows then from Lemma 66.1 that z(t, x) is the unique solution
of the considered boundary value problem. One can prove under our
assumptions that {zn} is compact in sup norm and by its monotonicity
it must be uniformly convergent. Simple limit passages show that lime; = z.

n-..oo

For other extensions of the Chaplygin method for parabolic equations,
see [26].

The Lusin type [20] estimates for {zn} are given in the following
theorem.

THEOREM 66.2. Let uo, vo, I satisfy the assumptions 01 Theorem 66.1
and suppose that

Ilu(t, x, u)- lu(t, ta, u)1 ~ a(t, lu-ul)
for uo(t, x) ~ u, 11 ~ vo(t, x).

14*
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It is aSBUmed that aft, u) ~ ~ is continuous for 0 :::;; t :;;;; T, u ~ 0 and
increases in u. Let

max {vo(t, x)-uo(t, x)} :;;;; TO(t) , 0:;;;; t «; T,
a~x~b

and define
t

Tn+l(t) = JeK(t-S)a(s, Tn(S») Tn(S) ds ,
o

where
K = sup Ifu(t, ta, u)1 , (t, x) E R, uo:;;;; u :;;;; VO'

Then IZn(t, x)-z(t, x)1 :;;;; Tn(t) on R.

The proof for the above theorem is modelled after the proof of Theo
rem 32.2. Instead of Theorem 9.5 for ordinary differential inequalities
one applies Theorem 64.1 of § 64.

§ 67. Maximum solution of the parabolic equation. We will use in
this section notation and definitions of § 66. Theorem 63.1 implies

LEMMA 67.1. Let the regular functions uo(t, x), vo(t, x) satisfy

8u «) 82u

8/:;;;; 8{1/+ g(t, x, uo(t, x») ,

on RO aHd uo(t, x) < vo(t, x) on r. Then uo(t, x) < vo(t, x) on R.

Suppose that the functions u(t, x), get, x, z) and f/l(t, x) are continuous
in R,

Q = W, x, z): (t, x) E R, z arbitrary}

and r respectively. We define

t b exp (_ (x- ~)2)

1 rJ 4(t-T) ( )ret, x) = ,r ,/ g T,~, U(T,~) d;dT.
2V 1C o a Jlt-7:

Let q(t, x) be the solution of the equation Zt = Zxx such that q = f/l-r
on r. We put

df
vet, x) = q(t, x) +r(t, x)

and denote by T(u; g, f/l) the transformation u--+v. Hence v = T(u; g, f/l).
One can prove [26] that if u.=>u, gn=>g, f/ln=>f/l, then v. = T(un ; gn,f/ln}=>

R Q r
=>v = P(u; g, f/l) on R.

If un, gn, f/ln are bounded in sup norm, then {vn} is compact.
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If get, x, z) is continuous in (t, x, z) and Holder continuous in x
and z, then the solution z of the equation

z = T(z; g, rp)
is a regular solution of

(67.1)

(67.2)

Bz B2Z
Bt = Bx2 +g(t, », z),

z=rp on r(1).

The following theorem is due to Prodi [41]:

THEOREM 67.1. Let uo(t, x), vo(t, x) satisfy the assumptions of Lemma 67.1
and Uo< rp < Vo on r where rp is oontinuous on r. It is supposed that get, x, e)
is continuous in Q and Holder oontinuous in x and z. Then the problem (67.1),
(67.2) has at least one regular solution.

We say that the regular solution u(t, x) of (67.1), (67.2) is a maximum
solution (minimum solution) of that problem, if for every other solution
of the problem vet, x) the inequality vet, x) :::;; u(t, x) (v(t, x) ;;:, u(t, x))
holds in R. '

N ext we prove

THEOREM 67.2. Let Un, vo, g, rp satisfy the assumptions of theorem 67.1.
Then (67.1), (67.2) has a maximum solution u(t, x) and a minimum one
!!:(t, x).

If u(t, x) is regular in Rand

Bu »« Bu B2U
Bf :::;; 8x2 +g(t, x, tift, x)) (Bt ~ Bx2+g(t, e, u(t, aJ))) in RO

and
u(t, x) :::;; rp(t, x) (u(t, x) ~ rp(t, x)) On r,

then
u(t, x) :::;; u(t, x) ('U(t, x) ~ ~(t, x)) on R.

Proof. We start with the following definition:

I
g(t, «, uo(t, x)) if z < uo(t, x) ,

g*(t, ta, z) = get, x, e) if uo(t, x) :::;; z :::;; vo(t, x) ,

g(t, x, vo(t, x)) if z > vo(t, x) .

The function g* is bounded and if sup Ig*1 < M and sup Irpl < K,
then the functions Uo = -Mt-K, vo = Mt+K satisfy assumptions of
lemma 67.1 with Uo = uo, vo = vo, g = g*. It is easy to check that g* is

(1) l<'or references, see [26].
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Holder continuous in x and z. Applying the theorem of Prodi we get that
there is a solution Zn of the problem

(67.3)

8z _ 82z * 1
ot - 8x2 +g (t, x, z) +:n'

1
z = p+- on r

n

for n sufficiently large. By "Lemma 67.1

(67.4)

Obviously

(67.5)

Zn+l -c e; in R .

_T( .* 1 1)Zn - zn, g + -, p + - .
n n

in

Hence {zn} is compact. (67.4) implies then that e« =>z. By a limit
R

passage in (67.5) we get Z = T(z; g*, p). It follows then that z(t, x) is
a solution of the problem

8z 82z
8t = 8x2 +g*(t, », z) ,

z = p on r.
But

g*(t, «, uo(t, x») = g(t, x, uo(t, x)) ,

g*(t, x, vo(t, x») = g(t, x, ~'o(t, x») .

Hence the triples (uo, z, g*), (vo, z, g*) satisfy the assumptions of
Lemma 67.1 and consequently

uo(t, x) < z(t, x) < vo(t, x) in R.

It follows then from the definition of g* that

g*(t, x, z(t, x») = g(t, x, z(t, x») .

This proves that z is a solution of (67.1), (67.2).
We will now prove that if a regular function u satisfies

8u fJ2u
8t :(; 8x2 +g(t, x, u(t, x»)

u(t,x) :(;p(t,x) on r,
then u(t, x) :(; z(t, x). This being proved we get the conclusion that z(t, x)
is the maximum solution and simultaneously the second part of the
assertion follows.
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Suppose that u(t, x) satisfies the above inequalities and let u(t, x)
= zn(t, X) for a point (t, x) € R. Lemma 67.1 implies

uo(t, x) < Zn(t, x) , u(t, x) < vo(t, x) .

Hence, at (t, x),

uo(t, x) < u(t, x) = zn(t, x) < vo(t, x)

and by definition of g*

g*(t, x, zn(t, x») = g(t, x, zn(t, x») at (t, x) .

It follows then that at (t, x)

8u 821~ 1
8t < 8x2 +g (t, x , u (t, x») +n

and
OZn 82zn ( ) 1.-at )0 ox2 +g t, x, zn(t, x) +n'

By Theorem 63.1 we conclude therefore that u(t, x) < zn(t, x) in R,
which by a limit passage proves that u(t, x) ~ z(t, x), q.e.d, The proof
for the minimum solution is quite similar and can be omitted.

The following example (see [31J) shows that the assumptions of The
orem 67.2 do not imply the uniqueness of problem (67.1), (67.2). Moreover,
it shows that it can really happen that

u(t, x) =1= !!(t, x) .

EXAMPLE. We put in the definition of R:

'It 11: b __ 'lt_T=-, a=--,
4 2 2

and define g by

{
-l/coS2X-U2+U

g(t, x, 'u) =
t~

if

if
lui ~ cosx,

lui;;?: eose .

It is easy to prove (see [31J) that g satisfies locally HOlder conditions
in x and u with an exponent !. On the other hand, the functions

1'/'0(t, x) = -3et+1, vo(t, x) = 3et-1

satisfy the inequalities of lemma 67.1 with the above defined g. Notice
now that the functions Z1 = cosx· cos t, Z2 = cosx satisfy the same boundary
conditions on r and both are solutions of the equation Zt = zxx+g(t, x, z)
in R. Moreover, Uo < Z1 = Z2 < Vo on r. Hence, all the assumptions of
Theorem 67.2 are satisfied for rp = Z1 = Z2 on r, but there are two different
solutions Z1 #. Z2 of the same problem. It follows then that the maximum
solution u is different from minimum solution y:.



CHAPTER XI

DIFFERENTIAL INEQUALITIES IN LINEAR SPACES

The present chapter attempts to give some general theorems con
cerning differential inequalities, when treated by methods of functional
analysis. There are two basic concepts: the generalized mean value theo
rems and the generalized Bendixson equation. Strictly speaking, the second
step is the systematic use of the so called method of first integrals. This
method enters here through the Bendixson equation, which in classical
form was implicitly used in the integration of a linear ordinary differential
inequality. In case of non-linear inequalities the Bendixson equation
was used in [50] as a method of proof of Theorem 13.2. For generalized
mean value theorems see [1], [23J and [63].

§ 68. Convex sets in linear topological spaces. Let E be a real linear space.
We denote by e, y, ... the elements of E. Suppose we have introduced
in E the topology in which the operations of addition and of multi
plication by real scalars are jointly continuous; then, E becomes a linear
topological space. If the topology is induced by a system of convex
neighborhoods of the zero vector, then E is called a locally convex linear
space. Let E' denote the adjoint of E. E' consists of all linear and con
tinuous real valued functionals defined over E. The adjoint space E'
is non-trivial if and only if E contains an open, convex set different from E.
In what follows we assume always that E' is non-trivial, i.e. that it con
tains non-zero funetionals. This certainly happens for locally convex
spaces and consequently for Banach spaces.

Let ~ E E'. We introduce the following notation:

H(~, a) = {xEE: t» - a}.

In geometrical terms, H(~, a) stands for a hyperplane determined
by its "gradient" ~ and a scalar a. Following the geometrical terminology
we define the closed half-space by

K(~, a) = {xEE: ~x,e;; a}.

The open half space is defined by

KO(~, a) = {x E E: t» < a} .



§ 68. Convex sets in linear topological spaces 217

(68.3)

(68.4)

(68.5)

(68.6)

The set veE is a convex body if it is convex, closed and has some
interior points. The last definition is the following one: the hyperplane
H (~, a) is tangent to the set Z if Z C K (~, a) and if there is an Xo belonging
to the boundary of Z such that ~xo = a.

.A nice part of geometrical properties of convex sets known for
Euclidean spaces apply to convex subsets of linear topological spaces.
Due to classical theorems of Mazur and Eidelheit we can apply the
separation theorems in pretty general situations in such spaces. We list
below as lemmas some theorems concerning the structure of convex
subsets of linear topological spaces. For references see [8].

LEMMA 68.1. Let E be a real linear topological space and let VeE
be a convex body. Then for every x e oV (1) there is a ~ € E' such that
V C K(~, ~x). Moreover, the set V is equal to the intersection of all closed
half-spaces which include V, i,e.

V = n K(~, a).
VCK(;,a)

The interior of V is the intersection of all open half-spaces KO(~, ~x)

with x € oV which include V.

In the case of a locally convex space a similar property holds for
arbitrary closed and convex sets:

LEMMA 68.2. Let E be a locally convex linear topological space. Suppose
that V is a closed, convex subset of E. Then V = n K(~, a).

VCK(~,a)

The above lemmas take on a simple form if V is a cone (with vertex
zero). We say that the closed set V is a cone if it satisfies the following
two conditions:

(68.1) If x € V and y € V,then x+y € V,

(68.2) If x e V and A;? 0, then AX € V.

V being a cone, its dual V' is defined by

V' = {~ € E': ~x ;? 0 for every x € V} .

The elements of V' are called positive functionals.
Given a cone V we define in E a partial order :s::; by

x:s::;y==(y-x)€V.

The partial order defined above is called a partial order induced by V.
It follows from the definition of a cone that:

x :s::; y and y :s::; z imply x:S::; z,

x :s::; y implies x +z :s::; y +z for arbitrary z € E,

x :s::; y and A;? 0 imply AX:S::; Ay,

If Z C V, then its closure Z L V.
----

(I) BV stands :for the boundary of V.
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On the other hand, if the partial order ,:;; satisfies (68.3), (68.4)
and (68.5) and the set V = {x: (j ~ x} is closed, then V is a cone which
induces the prescribed partial order.

Let V be a cone. Then V is closed and convex. Applying Lemma 68.1
and Lemma 68.2 one concludes that the following lemmas hold true:

LEMMA 68.3. Let E be a real linear topological space. Suppose that
VeE (V #- E) is a cone with the non-empty interior. This being assumed,
if for every; E V', 0 ~ ;x, then x E V. Moreover, if 0 < ;X for every; E V',
then x belongs to the interior of V.

LEl\'IJ\'IA 68.4. Let E be a locally convex real linear topological space.
Suppose that VeE (V #- E) is a cone. Then x E V if and only if for every
~ E v' the inequality ;x ~ 0 holds.

Notice that the above discussion applies to spaces with complex
field of scalars, provided we consider the real parts of complex-valued
functionals,

§ 69. Mean value theorems. It is of some interest to consider functions
of a real variable t with values in a linear space. Let x(t) be defined on
the interval L1 and suppose that x(t) E E fort E L1. For the sake of simplicity
we assume now that E is a Banach space. The symbol j]»] stands for the
norm of the element x E E. Let x(t) be strongly differentiable to x'(t)
on L1, i.e.

l~ IIX(t + hi- x(t) -X'(t)11 = 0

for each t E L1. The analogue of a classical theorem of advanced calculus
is the following conjecture: if x'(t) = (j (zero vector) for t E L1, then x(t)
= const on L1.

We can attack the problem as follows: let to E L1 and notice that

Ilx(t+h)-x(to)il-llx(t)-x(to)11 ~ Ilx(t+h)-x(t)ll·

Hence, for Ip(t) = Ilx(t)-x(to)11 the inequality D+Ip(t) ~ 0 holds all over L1.
This implies, by Theorem 2.1, that Ip (t) decreases and consequently
x(t) = x(to) for t > to' But to was an arbitrary point Of L1. This shows that
x(t) = const. The above statement can be proved by using much more sophi
sticated arguments. It is a classical theorem in the theory of Banach spaces
that for every Z E E there exists a ~ E E' such that I~I ~ 1 and ;z = Ilzl/.
Take now Z = x(t1)-x(tO) (t) E L1) and ~ such that Hx(t1)-x(tO)J = Ilx(t1 ) 

-x(to)ll. Consider the real-valued function 1p(t) = Hx(t)-x(to)J. The
assumption x'(t) = (j implies 1p'(t) = 0 on L1. Hence 1p(t) = const on L1.
This implies that Ilx(t1)-x(to)11 = 1p(to) = 0, which completes the proof.

Notice now that we have used essentially the fact that the real
valued function 1p(t) has the derivative equal to zero. We can replace
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the assumption x'(t) = 0 by the requirement that the weak derivative
x~(t) be zero on LI. The weak derivative is defined by

1· c{X(t+h)-X(t)} - t: '(t)nn e ---I-- - "xw ,
h--;.() b

~€E' .

If we assume that x:"(t) = 0 on LI, then the previous arguments apply
and we thus obtain a stronger result: if x:"(t) = (J on LI, then x(t) = const
on LI.

The further generalization runs in three directions. First of all we
require that the function x(t) be merely weakly continuous, that is for
every ~ € E' the real-valued function ~x(t) is continuous. In the second
step we replace the very particular set, consisting of the zero vector, by
a closed and convex one. The last move is to replace the derivative by
a certain analogue of a derivative with respect to this convex, closed set.
All these three points are mentioned in the subsequent theorem.

THEOREM 69.1. Let E be a real linear topological space and let VeE
be a convex body. Suppose that:

(69.1)

(69.2)

Then

For every ~ € E' the function ~x(t) is continuous on. LJ.

For every ~ e E' the set LJ- Zt; is at most countable, where ZI;C LJ
is the set of those t for which there is a sequence oj reals Tn -+0 +
and a sequence Yn E V (both sequences depending possibly on t)
such that

I , cIX(t+Tn)-X(t) . l_ 0Im,,\ -YnJ - .
n-e-eo Tn

Proof. We will use Lemma 68.1. It suffices to prove that if

(69.3)

then
VLK(~,a),

Consider the function V;(t) = ~x(t). By (69.1) V;(t) is continuous on LI.
For the fixed ~ we take the set ZI;. Let t E ZI;' We take the sequence
Yn E V corresponding to t, Hence

(69.4) ~Yn ~ a.

(69.5)

It follows now from (69.2) that

V;(H Tn)-V;(t) -~Yn-+O.
Tn
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Relations (69.4) and (69.5) show that

(69.6)

Inequality (69.6) holds for every t E Z;. The set L1-Ze being at most,
countable we get by Theorem 2.2

that is

The last relation means that

what was to be proved.
Remark. Theorem 2.2 is obviously a very particular case of the

above theorem.

COROLLARY. It follows from Lemma 68.2 and from the above proof that
Theorem 69.1 remains true if E is locally convex and V is a closed, conoee
subset of E, not necessarily possessing interior points.

For the sake of completeness we will prove the following theorem ~

THEOREM 69.2. Let V be an open, convex subset of the real linear
topological space E. Suppose that the function x(t) is weakly continuous
on the interval L1. We assume that for every ~ E E' the set J - Z e is at most
countable, where Z~ C L1 is the set of those t for which there exists a sequence
t« --+0 + and an element Zt E V so that

Then
X(t1)-X(t2 ) E (t1-t2)V, tu t2 E L1 •

Proof. Suppose that V C KO(~, ~x), where x E av. We take the
function 'ljJ(t) = ~x(t). This function is continuous and for t E Ze

"But Zt E V; hence ~Zt < ~x and consequently D+"P(t) < ~x for t E Ze.
It follows then, by Theorem 2.2, that for t1 =1= t2

~{X(t~~=~(t2)} < ~x.



§ 69. Mean value theorems 221

This means that x(t1)-X(t2) E (tl-t2)KO(~, ~x). We conclude that

x(t1)-X(t2)
t1-t2

belongs to every KO(~, ~x) such that V C KO(~, ~x). By Lemma 68.1 this
implies our assertion.

It is easy to verify that the above mean value theorems remain
true if we assume that ~x(t) is absolutely continuous for every ~ E E'
and zl - Z¢ are of Lebesgue measure zero. To do this we have to use Theo
rem 3.1. We formulate right now one of the possible theorems.

THEOREM 69.3. Let E be a locally convex real linear topological space
and let V be its closed and convex subset. Suppose that x(t) is weakly absolutely
continu01"s on the interval zl, i.e. for every ~ E E' the function ~x(t) is absolutely
continuous on zl. Assume that for every ~ e E' there is. a set Z¢ C zl, Ll- ZE
being of Lebesgue measure zero, such that for each t E Z¢ there is a sequence
'tn-+0 and a sequence Yn E V so that

Then
X(t1)-X(t2) V

E ,
t1 - t2

Next we introduce the following definition: the weak right-hand deri
vative of x('t) at t equals y, nU:-x(t) = y, if for every ~ E E'

1. I:{X(t + h)-x(t)} _ I:
lID" h - "y.

h-->{)+

We will say that a certain property holds nearly everywhere if it
holds except an at most countable set of points.

The following theorem is an immediate consequence of what we
have proved already:

THEOREM 69.4. Let E be a real linear topological space and let V be
a convex body (or merely closed and convex in case E is locally convex).
Let x(t) be weakly continuous. If nU:-x(t) E V nearly everywhere on zl, then
x(t1)-X(t2) E (t1-t2)V for tu t2E Ll. If nU:-x(t) belongs to the interior of V
nearly everywhere on zl, then x(t1)-X(t2) E (t1-t2) int V for tu t2E zl,

Let V be a cone. We write e< x if x e intV and x < y if y-x > e.
The above theorem implies the following one:

THEOREM 69.5. Let V be a cone with a non-empty interior. If e~ nU:-x(t)
nearly everywhere on Ll and x(t) is weakly continuous, then x(t1 ) ~ x(t2)
for t1 ~ t2. If () < D~ x(t) nearly everywhere on Ll and x(t) weakly continuous
on Ll, then x(t1 ) < x(t2) for t1 < t2. If E is locally convex, then the inequality
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fl~ x(t) ;:?: () satisfied nearly everywhere implies x(tI ) ~ x(t2 ) , tl ~ t2 , V being
an arbitrary cone, not necessarily possessing interior points.

The following theorem is an immediate consequence of Theorem 69.2:

THEOREM 69.6. Let E be a real linear topological space and let R(x)
be a contin'uous functional defined on E. A.ssume that R (x) is conoeai in this
sense that

R(Ax+(l-A)y) ~ AR(x)+(l-A)R(y) for 0 ~ A ~ 1.

Suppose that the function x (t) is weakly continuo us on the interval .1.
We assume that the weak derivative tr; x(t) exists nearly everywhere on .1.
Then for any tIl t2 € L1 there is a r € [tIl t2J such that flU:- x(r) exists and

Proof. Suppose our assertion is not true. Define

The negation of the assertion means that ir; x(t)€ V nearly everywhere
on [t I , t2J. It follows from the properties of R that V is open and convex.
Hence, by Theorem 69.2,

which is a contradiction with the definition of V. This completes the proof.
OOROLLARY. If E is a Banach space and R(x) stands for the norm

of x, then Theorem 69.6 states that

Ilx(tI)-x(t2)11 ~ IItr; x(r)111 (1- t2 1

for some r, provided that x(t) be weakly continuous and right-hand weakly
differentiable nearly everywhere (see [2J).

We will now present some simple examples. More advanced appli
cations of mean value theorems are given in subsequent sections.

EXAMPLE. Let E be a Banach space and let x(t) be weakly continuous
on the interval .1. Suppose that the weak right-hand derivative fl~ x(t)
exists nearly everywhere on .1 and satisfies nearly everywhere the ine
quality

Ilfl~ x(t)11 < .M, ~y = eonst .

Theorem 69.4 then applies with V = {x: Ilxll ~ M} and consequently
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EXAMPLE. Let E be a Banach space and suppose that x(t) is strongly
differentiable for 0 < t < YJ (1] > 0). Assume that

lim x(t) = (j, lim x'(t) = 100
1-0+ 1-0+

(both limits in the strong sense). We generalize the I'Hopital rule by
showing that

. x(t)
lim -t- = Zo·
1_0+

Let e > O. Then there is a t5 > 0 such that Ilzo-x'(t)11 :0;;; 8 for 0 < t < o.
We put in Theorem 69.4

and thus obtain

if 0 < t1 , t2 < 0, t1 i= t2 • The limit passage in the above inequality with
t2 -+0 + shows that

for 0 < t1 < t5 which completes the proof.
Let us mention that our main assumption that E' contains non

trivial functionals cannot be omitted in the presented generalization of
mean values theorems. We consider the following example of (44].

Let S be the metric space of Lebesgue measurable functions on (0, 11,
the distance function being defined by

1

f if(v)- g(v)1
e(f , g) = 1 + ,t(v)_ g (v)Idv .

o

It is known that S' reduces to the zero functional. Consider the func
tion x(t) of the variable t E [0, 1] with values in S defined by

x(t) = {~
We have

x(t+ h)-x(t) = {~
and consequently

if

if
O~v~t,

t<v~l.

if t<v~t+h,

if vf(t,t+h],

e(X(t+hl-X(t), 0) ~ Il~hl

which implies that x'(t) = O. But x(t) is not identically constant in
L1 = [0,1].
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§ 70. Strong differential inequalities. Let V be a cone in the linear top
ological space E and suppose that V has a non-empty interior. We have
introduced the definition

x < y =y-x E intV .

In what follows we apply notation of § 69. It is easy to check that the
following conditions hold true:

{70.1) If x :( y and y < e, then x < z.

(70.2) If A> 0 and x < y, then AX < Ay.

{70.3) If x < y and z E E, then x+z < y+z.

Let the space E satisfy the separation axiom of Hausdorff; then, we
are able to introduce the definition (of Cauchy type) of the right-hand
limit lim x(t) for functions of the real variable t with values in E. It is

t......to+
a simple matter to verify that this limit has the following property:

(70.4) If lim x(t) > xo, then x(t) > Xo for t > to and t sufficiently
t......to+

close to to'

We define the strong right-hand derivative by the formula

D B (t) _ li x(H- h) - x(t)+x - 1m ------.
h......o+ h

THEOREM 70.1. Let the funotion f(t, x) be defined on the product
[to,to+a)xE. Suppose that f(t,x)EE and

{70.5) y :( y implies f(t, y) :( f(t, y) .

Let the functions x(t), yet) be continuous on [to, to+a) and suppose
that:
(70.6) x(to) :( y(to) ,

(70.7) D~x(t) < f(t, x(t)) on

(70.8) D~y(t) ~ f(t, y(t)l on

Then x(t) < yet) on (to, to+a).
Proof. It follows from (70.5) and (70.6) that

f(t o, x(to)) :( I(to' y(to))

and consequently by (70.7) and (70.8)

D~x(to) < D~y(to) .
Hence, by (70.4),

x (t) - to(to) < y=---(,--,-t)_---=-y (to)
t-to t-to

for to < t < to + <5 with a suitable b > O.
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The above inequality aud (70.2) imply

225

(71.1)

x(t)-x(to) < y(t)-y(to) .

But x(to) ~ y(to), and by (70.1) and (70.3) we infer therefore x(t) < y(t)

for to < t < to + fJ. Suppose now that the set

Z = {t € (to, toTal: :y(t)-x(t) f intV}

is non-empty and write. = infZ. Obviously • ~ to + fJ and x(t) < y(t)

for to < t < r. The functions x(t), y(t) are continuous and V is closed.
Hence x(.)~y(.) and consequently D"t-x(.) < D"t-Y(.). This implies that
there is an 'YJ > 0 such that x(t) < y(t) for t € (r , .+1)). We see that x(t)

~ y(t) in the interval [to, .+1)). It follows then by (70.5), (70.7) and (70.8)
that D: x(t) < D"t-y(t) on [to,. +'YJ)' Applying Theorem 69.5 to the difference
y(t)-x(t) we get x(t)-y(t) < x(to)-y(to) and consequently x(t) < y(t)

on (to,. + fJ), which is a contradiction with the definition of r. Hence,
Z is empty as was to be proved.

Using the above theorem one can easily imitate the classical pro
cedure of § 8 in order to construct the maximum solution for the equation
x' = I(t, x). It is necessary to have some existence theorems which
combined with Theorem 70.1 give the desired result. This is the case
when for example E is a Banach space and 1ft,x) is completely continuous.
For other details in this matter, see [25J.

§ 71. Bendixson equation and differential inequalities. Let u (t) be
a real-valued function and suppose that

u'(t) ~ Ku(t) , a ~ t ~ b ,

with K = const. Multiplying this inequality by e-Kt we get

:t (tt(t)e-Kt) = u'(t)e- Kt-K1t(t)e-Kt ~ o.

Hence, u(t)e-Kt decreases in [a, bJ, and consequently

u(t) ~ tt(a)eK(t-a) , a ~ t ~ b .

This classical approach admits some generalization. Notice that the
function rp(t,~, 'YJ) = 'YJeK(t-o) satisfies the equation

orp (t, ~ '!1l +I (~ 1)) ~rpj t, ~ '.!l~ = 0
8~ , 01)

with I(~, 'YJ) = K'I} and "if ~ 1J implies cp(t,~,"if) ~ cp(t, ;, 'if). Hence

(71.2)

J. Szarski, Dtff'eren tfal inequalities 15
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It is a classical result that (71.1), (71.2) hold for jet, u) of class 01 •

In this case Ip(t, ~, 'YJ) stands for the value of solution of u' = jet, u) which
at t = ~ takes on the value 'YJ.

Suppose now that the function u(t) satisfies

(71.3) u'(t) ~ j(t, u(t»)

on the interval [a, b]• .By analogy with the linear case we form the function
v(~) = Ip(t,~, u(~»). We have

(71.4) v'(e) = olp(t, e, 'YJ)I +u'(e)olp(t,~, 'YJ)/ .
o~ '1=u«) 0'YJ '1=U(~)

Multiplying (71.3) by olp/o'YJ (~ 0) and using (71.2) we get

(71.5) u'(e)olp(t,~, 'YJ)! ~ tu, 'YJ)OIp(t, ~,fJ)/
0'YJ '1=u(.) 0'YJ '1=u(~)

which by (71.1) and by (71.4) shows that v'm ~ O. Hence vet) = Ip(t, t, u(t))

= u(t) ~ Ip(t, ~,u(~») if ~ ~ t.
We will now try to extend the above method. First of all the cone

S = (- 00, 0] will be replaced by the closed and convex set V in a linear
real topological space. Inequality (71.2) expresses the fact that S is in
variant under the operator of multiplication by olp/0'YJ' It is then natural
to require that the analogue of this operation leave invariant the set V.
Inequality (71.3) should be replaced by the inclusion x'(t)-j(t, x(t») E V.
The most difficult part concerns the proper interpretation of formula (71.1).
On the other hand, we need the formula for differentation of composite
functions. All these properties can be stated formally as assumptions.
We will get then a formal theorem. Anyhow, it will be worthwhile for
its assumptions admit a great deal of interesting interpretations.

We start with some notation and definitions. First we assume that
the space E in question is locally convex. Let Ll = [0, a) (a ~ + 00)
and suppose that the function jet, x) is defined on Ll x Z, where Z is a subset
of E. It is supposed that the values of j(t, x) belong to E. Let the function
x(t) be defined on Ll and let to E zl. The equality D+x(to) = y means that
there is a sequence Tn ~O + such that for each eE E'

1· t{x(to+Tn)-x(to)l_ t
im 10 J - lOy.
n~oo Tn

We say then that x(t) is quasidijjerentiable to D+x(to) at the point t = to'

THEOREM 71.1. Let VeE be closed and convex. Suppose that xes) E Z
jor SELl and let D+x(t) exist nearly everywhere on Ll. Assume that

(71.6)

nearly everywhere on zl,
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(71.9)

(71.10)

We assume that there exists a oector-oalued function rp(t, s, x) defined
on d x d x Z such that:

(71.7) rp(t, s, x(s)) is weakly continuous in s on il, for t e A.

(71.8) rp (t, s , x) is weakly right-hand differentiable in e on d to 0+ /p(;; s, x) •

It is supposed that there exists a linear mapping rp",(t, s , x) from E
into E, depending on parameters (t, s , x), for which the following conditions
hold true:

rp",(t, s , x)V C V.

For every (t, s , x) e A x d x Z

o+rp(t, e , x)
os + rpx(t, s , x) f (t, x) = () .

We assume that for each fixed t e L1 the function rp (t, s , xes)) is quasi
differentiable in e to D+[<p(t, 8, x(s),I] for those s for 1))hich D+x(s) exists
and, moreover,

(71.11) D+[<p(t, s , xes))] = rpx(t, s, x(I?))D+x(s) + o+rp(~, s, X)I
S "'=X(8)

for such s.
Under these assumptions

for SllS2,tt:d.
Proof. Using (71.6) and (71.9) we get

(71.12) <p",(t, e , x(s))D,x(s)-rpx(t, s , x(8))f(s, xes)) t: V

nearly everywhere on the interval d. It follows from (71.10) and
from (71.11)

~ [ ( I) ( ) ~ o+rp(t, s , X)I(71.13) D+ <p t, s, xes), = 'flx t, e , x(s) D+x(s) + os x=x(s)

= rp",(t, 8, x(s))D+.'V(s)-<Px(t, e , x(s))f(s, x(s)).

(71.12) and (71.13) imply that

(71.14) D+(rp(t, s , xes))] € V

nearly everywhere on zl, Assumption (71.7) and (71.14) and Theorem 69.1
imply the assertion of the theorem.

A few comments are now necessary. We are not precise and omit the
analytical details.

Formally equation (71.10) means that rp(t, 8, x) is for every fixed t
the so-called first integral for the equation x' = f (t, x). In our case the first

15*
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integral is a vector-valued function. The linear operator CPx(t, 8, x) is
nothing else but the analogue of the Frechet differential of cp(t, 8, x)
in e. Given the function I(t, x), we look for the first integrals of equation
x' = I(t, x). Then we form the operators CP.c(t, 8, x) and just try to charac
terize some closed and convex subsets invariant under the mappings
CPx(t, 8, x). In that way the question when and how our theorem can be
used is reduced to the question of invariant sets of some linear operators.

Suppose that the right-hand Cauchy problem for equation

(71.15) a' = I(t, x)

has the unique solution within a sufficiently large class of initial con
ditions. Let us take the solution x(t) of (71.1.5) such that X(8) = «: Denote
by cp(t, 8, x) the vector x(t) (8 < t, 8, t € zl), i.e. cp(t, 8, x) = x(t). It follows
then that cp(t, 8, X(8)) (= x(t)) does not depend on 8. If cp(t, 8, x) is a suf
ficiently regular function, then it satisfies (71.10). This is in general the
case when I (t, x) is a regular function. In a scalar case, if I is of class 01,

(71.10) holds. In what follows (71.10) will be called the Benduoson. equation,
If E is a Banach space and I(t, x) is Frechet differentiable in (t, x) in
a continuous way, then (71.10) holds for the above defined cp(t, 8, x).
Notice yet that the function cp just discussed is, in general, linear in x
provided that I(t, x) be linear in e: Formally this can be written as
cp(t, 8, z)-cp(t, 8, y) = cpx(t, 8, x)(z-y) for each a:

§ 72. Linear differential inequalities in Banach spaces I. We noticed
in the previous section that if E is a Banach space, then the Bendixson
equation holds for sufficiently regular functions I (t, x) with a natural
choice of the function cpo The method of Bendixson equation for integration
of finite systems of ordinary differential inequalities was used in [50J.
This is the case when E is finite dimensional.

Different choices of the space E give the interpretations of Theo
rem 71.1. Here are included infinite systems of first order ordinary differ
ential inequalities of the form

';i(t) ~ li(t, ';l(t) , )

'lJi(t) ~ li(t, 'lJ1(t) , )

(i=1,2, ),

(i=1,2, ).

E will stand for a space of sequences with suitable restrictions on
their behaviour as i-H'O. Also we need that j = {fd € E. The abstract
regularity assumptions about I will be translated onto corresponding
classical properties of functions and sequences in question.

There are, however, some other interesting interpretations of Theo
rem 71.1 in which the regularity assumptions about j(t, x) are of different
and more delicate character. What we have in mind is the case when
I (t, x) is linear in oi. There is a great variety of methods of establishing
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the Bendixson equation in the linear case. We mention here two methods.
The first one is the method based on the theory of distributions. The
Bendixson equation can be obtained in this case by using the Holmgren
method of adjoint systems. This approach was developed in [29J, where
are discussed first order partial linear differential inequalities for distri
bution-valued function. The second method is the method of the Hille
Yosida theory of one-parameter semi-groups of operators in Banach
spaces. This theory will be used in the present and subsequent sections.

\Ve will give now a brief outline of basic facts on one-parameter
semi-groups of operators. We follow here the monograph [12J. From
now on E will stand for a Banach space.

First we introduce some notational convention s. For definitions and
other details, we refer to [12J.

fJ
The Bochner integral of the function x(t) is denoted by JX ('l')d'l',

a
fJ

the Pettis integral by (P) Jx(r)dT. The symbol w-lim denotes the weak
a

limit, s-lim the strong one. Let the function x(t) be defined in the neigh
borhood of to' We define

D~x(to) = w-lim ~(to+h)-x(to) ,
h->-o+ h

D B (t) l' x (to+ h) - x (to)
+ x '0 = s- nn h '

h->-o+

The right-hand weak (strong) partial differentiation is denoted by
0'i/8s (0,,-+-/8s). The bilateral strong partial derivative is denoted by (l/os.
Given the operator U its domain is denoted by D[UJ, the range by R[U].

Let '{T (tn be a one-parameter family of bounded, linear operators
in E defined for t > O. We say that {T(t)} is a semi-group if the following
condition holds true:

(72.1) T(t1 +t2 ) = T(t1 ) T(t2 ) , tIl t 2 > 0 .

We always assume that for each x € E the function T(t)x is strongly
continuous on the half-line (0, oo}, Next we define

l'(h)-I
(72.2) s-lim --h-x = Aox

h->-o+

whenever the limit exists. Notice that if 0 < a < fJ and x is an arbitrary
element of E, then

{J

JT(T)xdT = Xa,fJ € D[AoJ .
a
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The linear manifold D[Ao] is dense in U B; = Eo where B; = {y: y
a>O

= T(a)x, x € E}. In what follows we assume that Eo is dense in E and
consequently D[Ao] is dense in E.

Assume now that for each x € E the function liT (t)xll is summable
over the interval [0,1], Le.

(72.3)

1

JIIT('r)xlldT < + 00.

o

One can prove that there are two finite constants M > 0, w such
that

(72.4) IIT(t)1I :'( Jtlcwt

for sufficiently large t. (72.3) and (72.4) imply that the integral

co

R(A)X = J e-i.tT(t)xdt
o

converges strongly for A with ReA> wand arbitrary e. The operator
R(A) is linear and bounded.

We say that the semi-group is of class (0, A) if it satisfies (72.3) and
additionally the following equality holds true:

(72.5) s-lim AR(A)X = x for x € E .
i......co

One can prove that if {T(t)} is of class (0, A), then the corresponding
operator ADdefined by (72.2) has the smallest closed extension A - ADC A.
A is called the infinitesimal generator of {T(t)}. The resolvent R(A, A)
exists for ReA> wand R(A) = R(A, A). In case when

h

1J's-lim h T(T)xd7: = X
h--+o+ 0

for x€E

we have exactly A = AD. This obviously happens when T(t) is of class (00 ) ,

that is when s-lim T(h)x = x for x € E.
h-+O+

V being a cone in E we say that the operator U is positive, in symbols
U ~ 0, if U(D[ U] 1'\ V) C V, The basic property we need is the following one:

The semi-group {T (t)} of class (0, A) consists of positive operators
(simply-is positive) if and only if R(A, A) ~ ()for sufficiently large real A,

Let us consider the one-parameter family A (t) of linear operators
with domains and ranges in E. We are interested in the abstract differential
inequality

x'(t)-A(t)x(t) € V
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where V is a closed and convex subset of E. Following the general ideas
of § 71 we introduce the following conditions:

(72.6) There exists a family U(t, s) (0 < s < t < a) of linear bounded
operators which leave invariant the set V, i.e. U(t, s)V C V.

(72.7) The strong derivative

o~ U(t, s)x (s < t)
os

exists for x e D[A (s)] and

8~ U~:' s)x + U(t, s)A(s)x = (J

for those x.

(72.8) For each x e E the function U(t, s)x is strongly continuous in s.

We will prove the following theorem:
THEOREM 72.1. Let (72.6), (72.7) and (72.8) be satisj'ied and suppose

that the junction x(t) € DrA(t)], 0 < t < a, is stron,gly continuous on (0, a).
We assume that

(72.9) D~x(s)-A(s)x(s)e V

nearly everywhere on (0, a).
Then

(72.10)

[or Sl < t, S2 < t, Su S2' t € (0, a).
Proof. We will verify that the function

(72.11) 91ft, s , x) = U(t, s)x

(72.12)

satisfies the assumptions of Theorem 71.1. Obviously we put tv, x)

= A(t)x. It follows from (72.8) that 91(t, s , xes») is weakly continuous
in s, Moreover, 91x(t, s , x) = U(t, s)x. By (72.7) we see that 91, 91x satisfy
the Bendixson equation. Also 91x(t, s, y) = 91ft, s , y) € V if y € V.

Suppose that D~x(so) exists. It follows from the formula (h> 0)

~[U(t, so+h)x(so+h)- U(t, so)x(so)]

8 1 , o(h)
= U(t, So +h)D+x(so) +1i [U(t, So +h)- U(t, so)]x(so) + U(t, So -;- h) T

and from the equiboundedness of U(t, s) on compact subsets of (0, a) that

8~(U(t, S)X(S»)I 8~(U(t, s)x(so»)I 8

os 8=80 = OS 8=80 +U(t, so)D+x(so) .
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Hence U(t, s)x(s) satisfies (I1.11) of Theorem 71.1. The as
sertion (72.10) follows now from Theorem 71.1.

Suppose now that V is a cone. It induces the semi-order er , We need
the following lemma:

LEMMA 72.1. Suppose that the functions x(t), y(t) satisfy either one
of the following conditions:

(a) The functions x(t), y(t) are weakly coniinuou« on (0, u) = Ll and
for every ~ E v' there exists an at most countable subset Ll- Z; of Ll such that
D+~x(t) ::::;; ~y(t) for t E Z;. The function y(t) is Pettis integrable.

(b) The function x(t) is weakly absolutely continuotls and :t ~x(t)

::::;;~y(t) for tEZ;, mes(Ll-Z;)=O, ~EV'. The function y(t) ie Pettis
integrable.

Then
i a

x(t2) - X (t1) ::::;; (P) Jy(r)dr, t1 < t«.
It

The above lemma can be easily proved by using methods developed
in § 69.

Now we are able to prove the following

THEOREM 72.2. Let V be a cone and let conditions (72.6), (72.7) and (72.8)
be satisfied. Assume that

(72.13) U(r,r)=I for rE(O,a),

I denoting the identity operator. Let the strongly continuous function
x(t) E D[A(t)], 0< t < a, satisfy nearly everywhere on (0, a) the inequality

(72.14) D~x(t) ::::;; A (t)x(t) +y(t) .

(72.15)

We suppose that y (t) is strongly continuous on (0, a).
Then

t

x(t) ~ U(t, s)x(s) +JU(t, r)y(r)dr, 8 < t.
s

Proof. It follows from (72.14) that

U(t, S)D~X(8)-U(t, 8)A(s)x(s) ~ U(t, s)y(s) .

Using (72.12) of the previous proof and (72.7) we get that

o~(U(t, 8)X(S))
aS ~ U (t, s) Y(s)

holds nearly everywhere on (0, t). Applying Lemma 72.1 and (72.13) we
get the assertion.
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Suppose that U(t, s) = T(t-s), where {T(t)} is a semi-group of
class (0, A). In that case (72.6) is satisfied if V is invariant under T(t)
for t > O. It is obvious that A (t) = eonst = A, where A stands for the
infinitesimal generator of {T(t)}. Notice that

e d
os (T(t-s)x) = - dT T(T)xlr=t-s = -AT(t-s)x = - T(t- s)Ax,

x E D[A]

(see Theorem 11.5.3 of [12]). If {T(t)} is of class (00 ) then T(T-T)
= T(O) = I and (72.13) holds. Observe that the assumptions of the above
theorem are true if V is a cone and {T(t)} is positive. The corresponding
theorem, which is a generalization of the classical theorem about linear
differential inequalities, is the following one:

THEOREM 72.3. Let V be a cone and let {T(t)} be a positive sl31ni-gr01tp
of class (00 ) , Assume that the function x(t) is strongly continuous on [0, a)
and

(72.16) D"-t-x(t) ~ Ax(t) nearly everywhere on [0, a) ,

(72.17) x(O) ~ ().

Then x(t) ~ () on [0, a).

Proof. We put y(t) == () and U(t, s) = 1'(t-s) in Theorem 72.2
and thus get

x(t) ~ T(t-s)x(s)

for s < t. For s = 0 we have x(t) ~ T(t)x(O) ~ T(t) () ~ (), q.e.d.
Going back to Theorem 72.1 we point out that usually the con

struction of the function U(t, s) is achieved by using semi-groups generated
by A (t). One assumes that, for a fixed t, A (t) is an infinitesimal generator
of a semi-group {T(T; t)} of class (00 ) , One can prove that the required
operator function U may be obtained by the formula

s-lim IlT(ti+l-ti; td = U(t, s), s = to < t1 < ." < tn = t,
max Itl+l-t~l-O

provided that A (t) satisfy some regularity assumptions. This way of inte
gration of equation

(72.18) x'(t) = A(t)x(t)

was initiated by T. Kato in [15]. For an extensive review of related topics,
see [17].

In general the Bendixson equation is a consequence of the integration
procedure of (72.18). The assumptions about A (t) are of that type that
for x-es belonging to a dense subset of nD(A (t)]

(72.19)
oat (U(t, s)x) = A(t) U(t, s)x (s ~ t)
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and
(72.20) U(t, t)x = x for all x € E •

Moreover, U(t, s) are bounded and strongly continuous in (t, s).
On the other hand, the Cauchy problem for (72.18) has the uniqueness
property. It follows then that U(t, s) satisfies the functional equation

(72.21) U (t, s) U (s , u) = U (t, u) , u ~ s ~ t •

If the above properties hold, then the Bendixson equation may be
proved as follows. Let x € n D[A (t)] and consider (h > 0)

C(h) = U (t, s +h) x - U (t, 8) X •

h
By (72.21)

By (72.19)

x-U(s+h,s)x A()
h

~ - . s x.
h~O+

Hence C(h)~-U(t, s)A(s)x as was to be proved.
The function U(t, s) being in general the multiplicative integral

of T(T; t), the inclusion U(t, s)V C V holds whenever T(T; t)V C V. For
example, if V is a cone and every semi-group {T('r; t)} is positive, then
U(t, s) is positive for 0 ~ s ~ t ~ a.

Now we will present an application of Theorem 72.3 to integration
of countable systems of linear ordinary differential inequalities.

The temporally homogeneous Markoff process with a countable
number of possible states is described by the infinite matrix {Pik(t)},
o~ t < + 00, of transition probabilities. Inequalities Pik ~ 0 and the
semi-group property

00

Pik(t+S) =}; Pii(t)Pilc(S)
ill

are satisfied. Under some general conditions PJk(t) satisfy the Kolmogoroff
equations

(72.22)

(72.23)

with the initial conditions

(72.24)

00

pik(t) = }; pijajk .
ill

00

pik(t) = }; aijpjlc ,
ill
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The constants ajle satisfy

- ajj = aj ~ 0 , ajle ~ 0 for j =F k ,

(72.25) 00

..2: ajle = 0 , k = 1, 2, 3, ...
j 1

Conversely, given the matrix {ajle} which satisfies (72.25) we can
ask about the integration of (72.22), (72.23).

T. Kato in [16] constructed the solution of the Kolmogoroff equations
by using the semi-group theory. We will give here a brief summary of
his results.

Let l1 be the space of one-sided summable real valued sequences
x = {~i} with the usual norm

00

Ilxll = .I i~il .
1

The matrix {ajle} defines the operator A with domain and range in P
as follows: the domain D[A] consists of those x = {~i} E l1 for which the

00 00

series 11k = .2 ajle~j are absolutely convergent and .2111le! < + 00. We
ill kl1

define then Ax = {11k}. Let Do be a linear manifold spanned by vectors
Yi = {~ile} (~ik - Kronecker symbol). It is easy to see that Do C D[A_]. The
restriction of A to Do is denoted by AO. Observe that Do is dense in l1,
In P we define a natural cone V by

V = {x: x = gil E P, ~i ~ 0, i = 1,2,3, ... 1.
In what follows the term "positive" is used in the sense of that cone.

The main result of [16] is the following statement: There is at least one
positive semi-group of class (Go) in l1 with a generator being an extension
of AO. Among these semi-groups there is the unique minimal one (1) {T(t)}
such that its generator G satisfies A:) G) AO.

The domain D[G] is not characterized explicitly. Anyhow, D[AO]
C D[G]. For x E D[AO] we have

00

G« = AOx = {.I ajle~j} .
ill

Notice that Do contains pretty regular, non-trivial curves of type
x = x(t). Indeed, let the real-valued function e(t) be of class G2 on [0, 00)
and e(t) = 0 for t ~ 1 and t ~ O. Define {~k(t)} = x(t) with

1 k
~Ic(t) = ---ake(2 t)

2

(1) Minimal in the sense of semi-order relation.
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and assume that e(t) :f= 0 in (0,1). It is a simple matter to verify that
{~k(t)} Ell; x(t) is strongly continuously differentiable. Moreover, in every
neighborhood of zero the curve x = x(t) does not run in a finite dimen
sional space.

Suppose we are given the function x(t) = {~k(t)} E Do strongly right
hand differentiable to D~x(t). Notice that the strong convergence in 11
implies the convergence in coordinates. Hence D~x(t) = {D+~k(t)}. By

00

definition of A 0 and by theorem of Kato, Gx(t) = fl' ajle ~j(t)}. The abstract
ill

inequality D'~x(t) ~ Gx(t) is equivalent with the countable system of
ordinary inequalities.

THEOREM 72.4. Suppose that the matrix {ajk} satisfies (72.25). Let
the continuous function x(t) = {~k(t)} be strongly right-hand differentiable
On (0, a), in v, to D~x(t). Assume that for every t E (0, a) there is a finite
number of ~k(t) different from zero.

Suppose that for 0 < t < a

(72.26)

and

(72.27)

00

D+~k(t) ~ 1: ajk~j(t) (k = 1,2,3, ... ),
ill

~,,(0) ~ 0 (k = 1, 2, 3, ... ) .

Then ~k(t)~O (k=1,2, ... ), O~t<a.

Proof. We see that x(t) E Do. By (72.26) and (72.27)

D~x(t) ~ Gx(t) , x(O) ~ (j •

The semi-group generated by G is positive. By Theorem 72.3 we get
therefore x(t) ~ (j, i.e. ~k(t) ~ 0, q.e.d.

COROLLARY. Notice that the infinitesimal qenerotor» of positive semi
groups in somefunctional spaces of continuous or merely summable functions
are in a certain sense necessarily second order ellipt'ic operators satisfying
a version of maximum principle (see [9) and [68).

'I'hus the theorems of the present section give the operator-theoretical
treatment of linear parabolic inequalities of second order.

The final result of the present section is the following theorem:

THEOREM 72.5. Let A be an infinitesimal generator of a positive semi
group {T(t)} of class (00 ) , Let B(t) be a strongly cont·inuous operator-valued
function. Assume that there is a real numbe?' fJ such that B (t) + fJI )': () for
t E [0, a). If x (t) is strongly differentiable to x'(t) on [0, a) and

x'(t) ~ [A +B(t»x(t) on [0, a), x(O) ~ e,
then x(t) ~ () on [0, a).
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Proof. Write z(t) = efJtx(t). Then

Z'(t) ~ Az(t) + [B(t) +pl]z(t) .

We put U(t, s) = T(t-s) and y(t) = [B(t) +pi]z(t) in Theorem 72.2
and thus obtain

t

z(t) ~ J.'ll(t-T)[B(i) + j3I]z(i)di.
()

The operator T(t-T)[B(T)+j3I] is positive. It follows that the
sequence

zo(t) = z(t) ,

t

Zn+1(t) = JT(t-iHB(i) + j3I]zn(T)dT
()

is an increasing one: zn(t) ~ Zn+1(t). Obviously

Zn(t)->(J 011 [O,a),

which completes the proof.

§ 73. Linear differential inequalities in Banach spaces II. ;;0 far the
functions in inequalities have been strongly differentiable. In what follows
we will assume less, namely that the functions are weakly differentiable.
For the sake of clarity we restrict ourselves (not essentially of course)
to the case when V is a cone. We assume that A is an infinitesimal gen
erator of a positive semi-group {T(t)} of class (0, A).

LEJ\>IMA 73.1. Let the function x(t) be n"ght-hand weakly differentiable
to D~ x (to) at to' Write

X,l(t) = AR(J.., A)x(t)

for 8ufficiently large J..
Then the function T(t-s)x;.(s) is right-hand weakly differentiable in 8

at s = to and

~; (T(t-s)x,l(s))s=t
o

= T(t--to)D~x,l(to)-1'(t-to)Ax,l(to).

Proof. Let $ e E'. We have

;T(t- to- h)x,l(to+ h) -T(t- to)X,l(to)
h

= _~T(t-to-~);:11(t-to)X}.(tu)+;T(t_to_h)X,l(to+l~-XA(to).
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The first member tends to - ~AT(t- to)XA(tO) ' The other one equals to

~[T(t- to- h) - T (t- to)]AR(A, A) x (to +hi -m(to) +

+~T(t_to)xA(to+hi-XA(to) .

The second member of that sum tends to ~T(t-to)D::XA(tO). On the
other hand, the formula

<2

[T(T2)-T(T1)]AR(A, A)x = JT(r)AAR(A, A)xdT , X E E ,

implies

(73.1) II[T(T2)-T(r1)]AR(A, A)xll :(; sup IIAT(r)IIIIAR(A., A)xlllr2-r11

and consequently

InT(t-to-h)-T(t-to)]AR(A, A)X(to+hi-X(to)!:(; JtINh,

where

and N is a suitable constant derived from (73.1).
Summing up the above relations we get the assertion of the lemma.

THEOREM 73.1. Let x(t) be weakly continuous in (0, u) and let it satisfy
nearly everywhere the inequality

(73.2) D':f-m(t) :(; Ax(t) .

Then x(t) :(; T(t-s)x(s) for 0 < s < t < u.
Proof. Write xAt) = AR(A, A)x(t). We have by Lemma 73.1

~; (T (t- S)XA(S») = T (t- s)D~x.(s) - T (t- s)Ax.(s)

whenever D~x(s) exists. The resolvent R(A, A) is positive for large A
and commutes with A. Hence, by (73.2),

(73.3)

Using the arguments similar to those used in the proof of Lemma 73.1
one shows that T(t-s)xis) is weakly continuous in s. By the same lemma
and by (73.3) we get that x.(s) satisfies the assumptions of Theorem 71.1
with suitable sp, % and [, Thus

T(t-S2)XA(S2) :(; T(t-sdx.(Sl) ' Sl < S2'
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But x,,(s)--+x(s). Hence T(t- S2)X(S2) ~ T(t- 81) X(Sl). We put 1: = t- S2
and get T(1:)X(82) ~ T(1:)T(S2-S1)X(SI)' Hence

(73.4)
00

J"R(J", A)X(82) = J" Je- AtT(1:)x(s2)d1:

o
00

~ J" J e-ATT(1:)T(S2- S1)X(SI)d1: = AR(A, A)T(S2- S1)X(Sl)'
o

But s-lim J"R(A, A)x = x, X E E. The assertion follows from (73.4)
)......co

by a limit passage.
COROLLARY. Assume additionally in the above theorem that

w-limx(t) = x(O) < () .
t~+

By (73.4) and by the theorem

xA(t) < T(t-s)xls) , s < t,
and consequently

w-Iim T(t-s)xA(s) = T(t)x,,(O) < ().
8->0+

Hence
x(t) = s-limx).(t) < () .,,-?CO

Using the same technique as in the proof of the above theorem and
applying Lemma 72.1 and Lemma 73.1 one proves the following theorem:

THEOREM 73.2. Let the function x(t) have the Bochner eummable (over
every compact in (0, a» derivative x'(t) and suppose that

T.
x(1:2)-x(1'1 ) = f x'(1')d1: for 1'1,1:2 E (0, a) .

Tl

Suppose that x(t) satisfies almost everywhere the inequality

x'(t) < Ax(t) .

Then x(t) < T(t-s)x(s) for 0 < e < t.

The assumptions concerning the differentiability of x(t) can be
weakened at the cost of some additional assumptions. That possibility
is ineluded in the following theorem:

THEOREM 73.3. Let the junction x(t) be weakly absolutely continuous
and Bochner integrable in any compact subinterval of (0, a). Assume that

T2

J x(1')dr E D[A] for <u <2 E (0, a)
71
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and let Ax(t) be Bochner integrable in every compact subinterval of (0, a).
It is supposed that for every positive functional ~ e V' the inequality

(73.5)
d
dt ~x(t) ~. ~Ax(t)

holds tor tfZ~ where mes((O, a)-Z~) = O. Then

x(t) ~ T(t- s)x(s) , 8 < t.

Proof. 'Ve take the function

t+h
Xh(t) = J x(T)dT

t

and verify by integration of (73.5) that

(73.6)
t+h

~(x(t+h)-x(t)) ~~ J AX(T)dT, ~fV'.
t

(73.7)

The summability of A x (t ) and the fact that A is closed imply
t+h

~ J AX(T)dr = ~AXh(t) .
t

Notice that

for almost all t. By (73.6) and (73.7) we get therefore

d
(73.8) dtXh(t) ~ AXh(t)

almost everywhere on (0, a). It is easy to see that Xh(t) satisfies the reg
ularity assumptions required in theorem 73.2. Hence (73.8) implies

Xh(t) ~ T(t-s)xh(s).

The weak continuity of x(t) and the limit passage h--+O+ in the
inequality

complete the proof.
Previously we assumed always that A generates the semi-group.

Suppose now that A is merely closed and (AI - A)-l exists for A> O.
A is defined and linear on a manifold included in E.

Let tp(A) be a real-valued function of class Cro on (0, 00). It is called
completely monotone if

(_ l )n dntp ~ 0 ' 0 ( 0 1 2 )dAn? , A > n = , , ,... .
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The classical Berstein-Widder theorem [67J states that a necessary
and sufficient condition for T to be completely monotone is that it be
of the form

T(A) = Je-A1da(t)
o

with an increasing a(t), the Stieltjes integral being convergent for A> o.
It follows then that if cp is completely monotone and

00

T(A) = J e-Atf(t)dt
o

with a continuous f (t), then f (t) ;?: O.
THEOREM 73.4. Let the function x(t) be bounded, strongly measurable

and weakly absolute1ty contintwus over the interval [0, 00). Suppose that
x(O) = 0 and let for every ef: v' the inequality

(73.9)
d
dt ex(t) ~ eAx(t)

be satisfied almost everywhere on (0,00). We assume that (AI-Ar l
;?: O.

It is supposed that Ax(t) is strongly measurable and

00

f IIAx(-r)lldi < + 00 .
o

Then x(t) ~ 0 for t ;?: O.

Proof. Let us multiply (73.9) bye-At and integrate over [0, R].
We get

(73.10)

Write

R R

e-Atex(t)I~+A Je-Uex(t)dt ~ eJe-AtAx(t)dt.
o 0

00

L(A) = Je-Atx(t)dt
o

and let R-'?- + 00. It follows then from (73.10) and from the closedness
of A that

ML(A) ~ eAL(A) , ee V' .

Hence - (AI - A)L(A) f: V and consequently, by positivity of (AI - A)-l

L(A) ~ () , A> 0 .

The multiplication of (73.9) by tne-At and integration from 0 to +00
gives us

00 00

eo,] -A) f tne-Atx(t)dt ~ ne f tn-1e-Atx(t)dt for ef: V'.
o 0

J. Szarski, Differential inequalities 16
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Hence
00 00

(AI -A) J tne-Atx(t)dt ~. n !tn-1e-Atx(t)dt.
o 0

By induction
00

J tne-Atx(t)dt ~ () (n = 0,1,2, ... ),
o

and consequently the function tp.;(A.) = - ;L(A.) (; € V') satisfies

n 00

(-lt~iJ = -; f f'e-Atx(t)dt ~ O.

We infer by the previous discussion that - ;x(t) is non-negative,
which completes the proof.

§ 74. Almost linear differential inequalities in Banach spaces. This sec
tion concerns inequalities of the form

x'(t) ~ Ax(t)+f(t, x(t)).

The operator A is the generator of a positive semi-group {T(t)} of
class (Co), As usually the relation of inequality is induced by a cone V.
In what follows the symbol CE[O, a] denotes the space of vector-valued
functions with values in E, continuous on [0, a], with the sup norm.

THEOREM 74.1. Let the function f(t, x) be strongly continuous in (t, x)
and bounded, Ilf(t, x)11 ~ .'-'If < + 00. Assume that f(t, x) increases in ai,

Let the transformation
t

F: z(t)-J T(t-T)f(T, z(T))dT
o

be completely continuous when considered in the space CE[O, a]. Suppose
that the function x(t) is strongly differentiable on [0, a] and

(74.1) x'(t) ~ Ax(t) +f(t, x(t)) , 0 ~ t ~ a.

Under our assumptions there is a solution y (t) of

t

y(t) = T(t)x(O)+J T(t-T)f(T,Y(T))dT
o

such that
x(t)~y(t), O~t~a.

Proof. Inequality (74.1) implies

(74.2)

t

x(t) ~ T(t)x(O)+J T(t-T)f(T, x(T))dT.
o
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Define now

N = sup IIT(T)11 , K = sup IIX(T)II
[O,a] [O,a]

and

Z = {z(.): z(·) e 01£[0, a] , Z(O) = X(O) , X(t) ::::;; z(t) on [0, a]

and Ilz(t)11 < max(Nllx(O)11+MNa, K)} .

Notice that x(·) € Z.
Z is closed, bounded and convex in 01£[0, a]. The monotonicity of

f(t, x) and (74.2) imply that F(Z) C Z. By Schauder fixed point theorem
there is y such that y = Fy. Obviously x(t) ::::;; y(t), q.e.d.

COROLLARY. Using the method of successive approximations one verifies
easily that theorem remains true if the complete continuity of F is replaced
by the Lipschitz condition in ai, for f (t, x). In that case y (t) is unique.

Now we will discuss the couple of inequalities

(74.3)

(74.4)

x'(t) ~ Ax(t) + fit, x(t)) ,

y'(t);;;;: Ay(t) +f(t, y(t)) .

The linearization procedure we apply requires the following condition:

(74.5) The function f(t, x) is Frechet differentiable in x to fx(t, x) and
fx(t, x) is strongly continuous in (t, x).

THEOREM 74.2. Let x(t) and y(t) satisfy on [0, a] the inequalities (74.3),
(74.4) and let f(t, x) satisfy (74.5). S?lppOSe that

fx(t, y(t) +T(X(t)-y(t))/ +[31;;;;: 0, 0::::;; T::::;; 1,

for 0 < t ~ a and some real [3. Then, if x(O) ~. y(O), then x(t)::::;; y(t) on
[0, a].

Proof. It follows from (74.3) and from (74.4) that

(74.6) [x(t)- y(t)]' ~ A[x(t)-y(t)J + [f(t, x(t») - fit, y(t»)] .

On the other hand,

(74.7)

where

fit, x(t»)-f(t, y(t») = B(t)(x(t)-y(t») ,

1

B(t) = f fx(t, y(t) -t-T(x(t)-y(t»))dT.
o

Moreover, B(t)+fJI;;;;: O. We see that z(t) = x(t)-y(t) satisfies the as
sumptions of Theorem 72.5, Hence z(t) ~ 0, q.e.d,

16*
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If A = f), then (74.3), (74.4) reduce to

X'(t) ~ f(t, x(t») , y'(t) ~ f(t, y(t») .

Taking E as a space of sequences {~i} we can get interpretations of
the above theorem and just apply it to integration of infinite systems
of ordinary differential inequalities. The systems are of the form

~i(t) ~ fi(t, ~l(t), ~2(t), ) ,

'tIi(t) ~ fi(t, 'tII(t) , 'tI2(t) , ) ,

where the properties of {'tid, gd, {It} are restricted by the fact that all
these sequences belong to E. The cone V is defined by

V = {x: x = {~i}, ~i ~ O} •

The Preehet differentiability of f implies usually the existence of
classical derivatives and the abstract condition

(74.8)

produces

(74.9)

fx+fJI~f)

(ti = Ii(t, Xu X 2, X 3, ••• »)

~fi ~ 0 (i '1= k);
uXic

In case E is finite dimensional the above theorem gives us some
particular case of Theorems of § 9.

We will apply now the previous theory to some extension of the
Chaplygin method (see § 31). Let (74.5) hold and suppose we are given
a function x(t) and write down the equation

(74.10) y' = Ay+f(t, x(t») +fx(t, x(t»)(y-x(t»).

fx(t, x(t») ~ yI for some real y,

x'(t) < Ax(t)+f(t, x(t»).

Following the general ideas of § 69 one proves easily the following
lemma:

LEMMA 74.1. Suppose that the Erecbet differential fx of the function f(x)
satisfies the following condition:

If Xl ~ x2, f)~ z, then fx({fh)z ~ fAx2)z. Then

fx(x)(y-x)+f(x) ~f(y) for X ~y.

Now we can prove the following theorem:
THEOREM 74.3. Let the function y(t) satisfy on [0, a] equation (74.10).

Assume that for every t E [0, a] if Xl ~X2' (j < z, then fx(t, xl)z ~ fx(t, x2)z.
Suppose that

(74.11)

(74.12)
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Then, -it X(O) = y(O), then

(74.13)

(74.14)

(74.15)

x(t) ~. y(t) on

y'(t) ~ Ay(t) +t(t, yet»)

13)(t, yet») ~ yI on

[0, a] ,

on [O,a],

[0, a] .

Proof. It follows from (74.10) and (74.12) that z(t) = x(t)-y(t)
satisfies

z'(t) ~ Az(t)+lx(t, x(t»)z(t) ,

z(O) = () .

VVe can apply Theorem 72.5 and thus obtain z(t) :::;;. O. On the other
hand, Ix(t, x) increases in ai. The inequality x(t) ~. y(t) and Lemma 74.1
imply

13)(t, m(t») (y(t)-x(t») +/(t, x(t») ~ I(t, y(t»)

which together with (74.10) proves (74.14).
Notice that 13)(t, x) increases in o: Hence

yI~t3)(t,x(t»)~tx(t,y(t») for t€[O,a],

which completes the proof.
The above theorem can be used in the abstract treatment of the

Chaplygin method. For details in this field we refer to [27] and [28].
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