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PREFACE

The simplest theorem on differential inequalities is the elassical one
on monotone functions, which reads as follows: for a differentiable function
@(t) satisfying the inequality ¢'(t) < 0 in an interval A we have the inequality
p(t) = @(t,) for any two points t,, t, from the interval A such that &, <t,.

This theorem may be stated in a somewhat more sophisticated form.
In order to do this, let us introduce the following definition. Consider
a differential equation

(1) ¥y =1ty

with the right-hand side continuous in an open region I and suppose
that for every point (f,, y,) ¢ D the solution of (1) passing through this
point is unique. Let us denote this solution by w(t; t,, 9,) and its maximal
existence interval by A(t,, y,). Now, let ¢(t) be a continuous function
on an interval 4 and assume its graph to lie in D. Under all these assump-
tions we say that the function ¢(t) is decreasing with respect to equation (1)
if the following holds true: for every ¢, ¢ 4 the inequality ¢(t,) < y, implies
the inequality ¢(f) < w(t; 1y, ¥,) for all #’s such that t =1, and ted A

~ A(ty, Yo).
Now, since for the particular equation

(2) ¥y =0

we have w(; 1y, ¥o) = ¥,, the theorem on monotone functions may be
restated as follows: a differentiable function ¢(t) satisfying the inequality
P'(t) <0 in an interval A is decreasing with respect to equation (2).

The above statement is a particular case of the following general
theorem: under the preceding assumptions on equation (1), a differentiable
function (1) satisfying the inequality

(3) ¢'(t) <1t ()

in an interval A is decreasing with respect to equation (1).

We state now, without insisting on a precise formulation, the problem
covered by the above theorem: an estimate for the initéial value of a function
@(t) and an estimate for its derivative being given, to find an adequate estimate
for the function itself. All theorems and their applications, presented in this
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book, concern problems of this type for functions of one or several varia-
bles. In case of several variables we will have, in general, to require that
besides the initial estimates some boundary estimates be given in advance.

Differential inequalities treated in this book are the so-called non-
stationary inequalities.

Chapters I-VIII of the book deal with the theory of ordinary differ-
ential inequalities and with its applications to ordinary differential
equations and to first order and second order partial differential equations
of parabolic and hyperbolic type. The theory of ordinary differential
inequalities was originated by Chaplygin [6] and by Kamke [13] and
then developed by Wazewski [60]. The main applications of the theory
concern questions such as: estimates of solutions of differential equations,
estimates of the existence domain of solutions, estimates of the difference
hetween two solutions, criteria of the uniqueness of the solution, estimates
of theerror for an approximate solution, stability and Chaplygin’s method.

Chapters IX-X concern partial differential inequalities of first and
second order. First order partial differential inequalities were first treated
by Haar [11] and by Nagumo [34]. Partial differential inequalities of
second order, dealt with in this book, are of parabolic and hyperbolic
type. First results on second order partial differential inequalities of
parabolic type were obtained by Nagumo [35] and by Westphal [66].

Chapter XTI deals with differential inequalities in linear spaces. This
chapter as well as §§ 31, 32 in Chapter V and §§ 66, 67 in Chapter X are
written by Wlodzimierz Mlak.

We close these introductory remarks by the following one. From
theorems that will be proved here on ordinary and partial differential
inequalities, criteria of continuous dependence on initial values for solu-
tions of corresponding equations can be derived. Now, sinee solutions of
elliptic equations do not depend continuously on initial data, it is clear
that theorems of the type described above cannot be expected to apply
to partial differential equations or inequalities of elliptic type, i.e. to sta-
tionary equations or inequalities.

I am greatly indebted to C. Olech for reading the manuscript and
his helpful comments, to W. Mlak for reading the proofs and valuable
remarks, and to 8. Brzychezy for assistance in the preparation of the
manuscript.

I wish to express my thanks to M. Stark for having encouraged me
to write this book and to the Editorial Committee of Monografie Mate-
matyeczne for the kind interest in my book.

Jacek Szarski
Krakéw, January 1965



CHAPTER I

MONOTONE FUNCTIONS

§ 1. Zygmund’s lemma. We adopt the following terminology. A real
funection ¢(t) defined in an interval A is called increasing if for any two
points #,, t, from 4 such that

(1.1) 1 < 1,

we have
p(t) <o(t).

If for any two points of A inequality (1.1) implies

@(t) < oplty),

then ¢(t) is called strictly increasing. In a similar way we define a de-
creasing and a strictly decreasing function.

For a function ¢(¢), defined in some neighborhood of the point #,, we
denote by D g(t), Dy (), D plty), D_g(t,), respectively, its right-hand
upper, right-hand lower, left-hand wupper and left-hand lower Dint’s
derivatives at the point t,, i.e.
w@_q’(to)

h y

D* p(ty) = limsup
R0+

D, o(ty) = limint?
h—0+

’

(to+h)—oplty)
h

D™ p(ty) = limsup (wl)

?
h—0— h

D_p(ty) = limint 2ot M —9l)

h—0— h ’

(the values + oo and — oo heing not exeluded). Symbols ¢’ (4,) and ¢_(t,)
will stand for the right-hand and left-hand derivative respectively.

The inequality ¢ > 0 will mean that either a is finite and positive or
a = +oo. The meaning of the inequalities a > 0, a < 0, a < 0 is defined
in a similar way.
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To begin with we will prove the following lemma,
ZYGMUND’S LEMMA. Let @(2) be continuous in an interval A and write

Z.={ted: D, g(t)< 0},

Suppose that the set P(A—Z.) () does not contain any tnterval.
Under these assumptions @(t) is decreasing on A.

Proof. Suppose the contrary; then there would exist two points
%y & € A satisfying (1.1) and such that ¢(f,) < ¢(t,). Since, by our assump-
tion, the set ¢(4—2Z,) does not contain the interval ((p(tl),q;(tz)), there

is a point y, e (@(t), ¢ (%)) such that
(1.2) Yot p(4—1Z,).
By Darboux’s property, the set
E= {te (B, &) : @(t) = Yo}

Is not empty. Let us denote by 1, its least upper bound. Then we have
loe(ty, %) and, by continuity,

(1.3) plto) = 9,
and
(1.4) p(t) >y, for ty<t< ty.

Relations (1.2) and (1.3) imply that t, ¢ Z, and hence, by the defini-
tion of Z,,
(1.5) D, g(t) <0.
On the other hand, by (1.3) and (1.4), it follows that
D-t—‘?(tu) =0,
which is a contradiction with (1.5). This completes the proof.
Remark 1.1. Since (1.3) and (L.4) imply D*p(t,) >0, it is obvious
that the set Z. in Zygmund’s lemma can be replaced by the set
ZT = {ted: Do) < 0} .
Remark 1.2, The set Z, can be replaced by the set
Z_={ted: D_g(t) < 0}

or by the corresponding set Z~. To prove Zygmund’s lemma with Z,
replaced by Z_ or Z~, we have only to change the above argument by
taking for ¢, the greatest lower bound of E.

Remuark 1.3. A similar lemmag, holds true for increasing functions.

(*) 4 being a subset of A, @(A) denotes the image of 4 by means of the mapping
¥y =)
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§ 2. A necessary and sufficient condition for a continuous function to be
monotone. As a consequenee of Zygmund’s lemma we get the following
theorem.

THEOREM 2.1. Let ¢(t) be continuous in an interval A. Then a necessary
and sufficient condition for @(t) to be decreasing on A is that the set 4 —Q.,
where

Qi ={ted:D.p{t) <0},

be at most countable.

Proof. The necessity is obvious since for a decreasing funection the
set 4—@.. is empty. To prove the sufficiency of the condition, let & > 0
be arbitrary and put

p(t) = p(t)—st.
We have
Dyy(t) = D,g(t)—e,

and, consequently,

Dopt)< 0 for 1eQ,.
Hence it follows that for the set

Z+ = {tGA :D+1/J(t)<0}

we have Q. CZ, and consequently 4—Z, C A—¢,. Therefore, the set
A—€, being at most countable, the same holds true for the sets 4A—Z
and yp(4—Z,). Hence the set y(4—Z,) does not contain any interval
and, by Zygmund’s lemma, y(t) is decreasing. Now, ¢ > 0 being arbitrary,
it follows that ¢(f) is deereasing too.

CoROLLARY 2.1. Let ¢(t) be continuous in an interval A. Then a sufficient
condition for @(t) to be strictly decreasing on A is that the set A— P., where

P,=1{ted: D, g(t)< 0},
be at most couniable.

Proof. Let 4— P, be at most countable. By Theorem 2.1, ¢(?) is
decreasing on A. If it were not strictly deereasing, we would have ¢(t,)
= p{t,) for some two points ¢, ¢, such that t, < ¢,. Therefore, ¢(t) would
be constant on the interval [¢,%,] and consequently ¢'(¢) =0 on [¢, t,],
contrary to our assumption that 4— P, is at most countable.

Remark 2.1. Due to Remark 1.2, the set @, in Theorem 2.1 can be
replaced by the set

Q= {ted: D_gp(t) <0}.

Remark 2.2. The results of this section can be summarized in a slightly
less general form as follows: if @(t) is continuous in an interval A and if
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D_g(t) <0 for every te d or D_g(t) <0 for every ted, then ¢(t) is de-
creasing in A. Now, if we assume that for every te¢4 we have either
D, p(t) < 0 or D_g(t) < 0, then ¢(?) is not necessarily decreasing. Indeed,
for Weierstrass’s functions ¢(f) (a continuous function without finite
derivative at any point) we have for every ¢ either D, p(l) = —co or
D_¢(t) = —oo, and the funetion is not monotone.

Similar results for inereasing functions follow from those concerning
decreasing functions by considering — ¢(2) instead of ¢(2).

We close this paragraph by an important theorem due to Dini.

THEOREM 2.2. For ¢(t) continuous in an interval A the following two
propositions are true:

1° If any of its Dini's derivatives is < a (<< a) forte ZC A, where A —Z
is at most countable, then for any two different points t,s from A we have
2.1) eW=0l) ) (2.

i—s

2° If any of its Dini’s derivatives is = (> f) for te ZC A, where A—Z

is at most countable, then for any two different points t,s of A we have
P09 s s (> p).

Proof. Since 2° follows from 1° by taking —¢(t) in place of ¢(t), we

prove proposition 1°. Suppose then, for instance, that

(2.2) Dip(t)y <a (<a) in ZCA4.
Fix s in 4 and put
() =@(t)—¢@(s)—at for ted.
w(t) is then continuous in A4 and, by (2.2),
Diy(t)= D p(t)—a<0 (<0) in Z.

Since 4—Z is at most countable, it follows, by Theorem 2.1 (Corol-
lary 2.1), that y(¢) is decreasing (strictly decreasing) in 4 and consequently

p() <y(s) (WO <p(s) for t>s.

Hence we get (2.1) for ¢ > 5. Since s and { > s were arbitrary points
in the interval 4, we conclude that (2.1) holds true for any two different
points t,s of A.

Next theorem is an immediate consequence of the preceding one.

THEOREM 2.3. Let () be continuous in an open interval 4. Asswume
that one of its Dind’s derivalives is finite and continuous at t,e A. Then
@'(t,) exists.
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Proof. Suppose, for instance, that D.e(t) is finite and continuous
at ty. Put D, ¢(f) =1 and take an arbitrary ¢ > 0. Then there is a 4 > 0
so that
l—e<Dygp(ty<l+e for te(ty—05,1,+08).

Hence, by Theorem 2.2, we get

(2.3) l——5<(£(%—:_%p(i°)<l+s for fe(ty—0d,8+9d),t+*1%,.
0

&> 0 being arbitrary, inequality (2.3) implies the conclusion of
our theorem.

COROLLARY 2.2. For ¢(t) continuous in an open interval A assume
that one of its Dini’s derivatives is finite and continuous on A. Then ¢'(t)
exists and is continuous on A.

§ 3. A sufficient condition for a function to be monotone. As a further
consequence of Zygmund’s lemma we prove the following theorem.

THEOREM 3.1. Let (1) be absolutely continuous in an interval A and
assume that
(3.1) @'(t) <0 for almost every ted.

Then @(1) is decreasing in A.
Proof. Let ¢ > 0 be arbitrary and put

p{t) = @(t)—et.
() is absolately eontinuous in 4 and.
P (1) =¢’(t)—e for almost every ted.

Therefore, by (3.1), we have y'(f) < 0 for almost every ¢ ¢« 4 and hence
the set 4—Z,, where

Zi={ted: Dyyp(t) <0},

is of measure 0. y(f) being absolutely continuous the set y(4—Z.) is of
measure 0 too, and consequently does not contain any interval. Hence,
by Zygmund’s lemma, (1) is decreasing in 4 and ¢ > 0 being arbitrary
the same holds true for ¢(t).

Remark 3.1. A similar theorem is true for increasing functions.

Remark 3.2. By an argument similar to that used in the proof of
Theorem 3.1 we show the following result: If p(t) is a generalized absolutely
continuous function (see [45]) in an interval A and if its approximative
derivative (see [45]) is non-positive almost everywhere in A, then ¢(t) is
decreasing in A.



CHAPTER 11

MAXIMUM AND MINIMUM SOLUTION OF ORDINARY
DIFFERENTIAL EQUATIONS

~

§ 4. Some notations and definitions. Let ¥ = (y, ..., ¥a), Y= (Y1y evy Yn)
be two points of the n-dimensional space. We will write

~

Y<y it yiggi 1=1,2,..,n)
and
Y<Y if yy<% (=1,2,..,m).
The index ¢ being fixed we write

1
~

Y<¥ if y,<% (=1,2,..,n) and vy, =7;.
Let a system of functions [ X, Y) = flay, ..., Tp, Y1) ooy Yn) (=
1,2, ..., n) be defined in a region D.
CoNDITION V. (V_). System fy(X,Y) (j =1,2,..,n) is said to
satisfy condition V. (V_) with regard to Y in D if for every fixed index ¢

the funetion fi(X, Y) is increasing (decreasing) with respect to each
variable y,, ..., Y1, Yiz1, ..., Yn separately.

CoNbpITION W, (W_). System f4X,Y) (j=1,2,..,n) is said to
satisfy condition W, (W_) with respect to Y in D if for every fixed index ¢
the following implication holds true:

Y<¥, (X,¥)eD, (X,T)eD=}(X,Y) <X, T)

(Y<T¥, (X,D)eD, (X,D)eD=/(X,Y)= X, 7).

Coxprriox W, (W_). System (X, Y) (j=1,2,..,%) is said to
satisfy condition W.. (W_.) with respect to Y in D if the following implica-
tion holds true:

Y<¥, (X,Y)eD, (X, D)eD=f(X,Y)<fiX,T)
G=1,2,..,n)

(Y<Y, X,DeD, (X, DeD=fX,T)>M(X, T
(i=1,2,..,n)).
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It is obvious that condition W, (W_) implies condition V. (V_) and
that for » = 1 all four conditions are trivially satisfied. It is also clear
that for n = 2 condition W, (W_) and condition V. {(V_) are equivalent.
This equivalence is—in general-—no more valid for » > 2, as may be shown
by a suitable counter-example. However, the above equivalence holds
true in special regions without any restriction on the dimension. For
instance, it is easy to check the equivalence of the conditions W, (W.)
and V, (V_)in the case when the projection of the region D on the space
(41, ..., Yu) i3 a parallelepipede

—oo K y<yYyy << +o00 (F=1,2,..,n).

For Y = (44, ..., Yn) We write

=Y = (=¥ r=Yn)y Y] =(tnls s |9a]) -
For @ (1) = (pu?), ..., pa(t)) Wwe write
D_®(t) = (D_gy(t), ..., D_gn(t))
and similarly for D™, D. and D™.

§ 5. Definition of the maximum (minimum) solution. Let a system of
ordinary differential equations

(5.1) —= = 0ty Y1y vy Yu) (t=1,2,..,n)

be defined in a region D and let (f,, Y,) e D.

A solution () = {wy(t), ..., wa(t)) of system (5.1), passing through
the point (¢, Y,) and defined in some interval 4% = [#,, a) (*), is called right-
hand mazimum (minimum) solution of system (5.1) in the interval 4™, passing
through the point (t,, Y,), if for every solution Y (t) = (y.(1), ..., ¥a(?))
of (5.1), passing threugh (t;, ¥,) and defined in an interval At =11, a) ),
we have

Yy < Q@) (Y@ >=2() for ted ~A%.

We define in a similar way the left-hand maximum (minimum)
solution passing through (fy, ¥,). It is clear that the maximum (minimum)
solution in some interval, passing through a given point, is uniquely
determined (whenever it exists) in that interval. It is also evident that
if the solution of system (5.1), passing through (4,, Y,) to right (left)
is unique in some interval, then it is both right-hand (left-hand) maximum
and minimum solution in this interval.

(}) In A+ resp. A+ stands a resp. @ for a finite number or -+ oo.
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Now, the following two propositions are easy to check.
ProPOSITION 5.1. By the mapping

(5.2) T=—t, m=y (=1,2,..,n)

the right-hand maximum (minimum) solution of system (5.1), passing

through (t,, Y,), 18 transformed into the left-hand maximum (minimum)
solution of system

(5.3) == =0Ty My ey ) (1=1,2,..,n),

passing through (—1,, Y,).
ProrositioN 5.2. By the mapping

(5.4) T=1, n=—y;i (=1,2,..,m)

the right-hand maximum (minimum) solution of system (5.1), passing
through (14, Y,), is transformed into the right-hand minimum (maximum)
solutton of system

(6.5) ”’“‘:"Gi(ra—nl,---’ "777") (7::1’29---;”')7

passing through (14, — ¥,).

A gimilar proposition holds true for the left-hand maximum (minimum)
solution. Sufficient conditions for the existence of the right-hand (left-
hand) maximum and minimum solution will be given in further paragraphs.

§ 6. Basic lemmas on strong ordinary differential imequalities. We prove

LeMmA 6.1. Let the right-hand sides of system (5.1) be defined in some
open region D and satisfy in D condition W, with respect to Y (see § 4).
Let (ty, Yo) e D. Assume that @) = (@:(t), ..., ga(d)} is continuous in
Ay =[ty,d) and that the curve ¥ = &(t) lies in D. Let T (t) = (yy(t), ...
ey y,,(t)) be an arbitrary solution of system (5.1), passing through (t,, ¥,)
and defined in some interval A, = [t,, a).

Under these assumptions, if

(6.1) D) < Y,
and
(6.2) D_gt) < ci(t, Put)y ey (pn(t)) (t=1,2,..,n)

for t e (ty, @), then we have the inequality
D)< Y(@) for ted,nd,.
Proof. Since Y (t) = Y,, by (6.1) and by the continuity, the set

E={:t<7<min(a,d),dt) < X for {, <t <7}
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is non-void. Denote by #* its least upper bound (!). We have to prove
that t* = min(a, a). Suppose that t* < min(a, @). Then, by the definition
of t*, we have ’

(6.3) Q)< Y(#) for f,<t<t*

and, by the continuity, for at least one index j

(6.4) (1) < ¥ (1*)
(see § 4). From (6.3) and (6.4) we get, in particular,

@i(t) < yi(t) for f, <t <T*, @i(t*) = yu(t*) .
Hence
(6.5) D_g;(t*) = y;(t*) .

On the other hand, from (6.2) and (6.4) we deduce, due to the condi-
tion W, (see § 4),

D_gs(t*) < oj(t*, D(t*)) < o5(t*, Y (t*)) .
Since
yi(t*) = Gf[t*7 Y(t*)) )
it follows that
D_g;(t*) < yj(t*) ,

which gives a contradiction with (6.5). Therefore, we have t* = min (e, @)
and this completes the proof of our lemma.

Remark 6.1. It is possible to construct a counter-example showing
that—in general—Lemma 6.1 is not true if the left-hand derivative in
(6.2) is replaced by the right-hand one.

Next we state two easy to check propositions.

ProPOSITION 6.1. If the right-hand sides of system (5.1) satisfy condi-
tion W (see § 4) with respect to Y, then the right-hand sides of the transformed
system (5.3) (see Proposition 5.1) satisfy condition W_ (see § 4) with regard
to Y.

By mapping (5.2) (denoting ypir) = pi(—1)) the system of differential
inequalities (6.2) is transformed into the system

Dy(z) > *Gi(“fa (7)) ooy Wn(T)) (t=1,2,..,n).

PROPOSITION 6.2. If the right-hand sides of system (5.1) satisfy con-
dition W (see § 4) with respect to Y, then the right-hand sides of the trans-
formed system (5.5) (see Proposition 5.2) satisfy the same condition.

(1) By the least upper bound of a set which is unbounded from above we mean + co.

J. Szarski, Differential inequalities 2
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By mapping (5.4) (putting v:(z) = —@i(t)) the system of differential
inequalities (6.2) is transformed into the system

D yifz) > "O‘i(ﬁ —puT)y ory _'l’n(f)) (t=1,2,..,m).
Applying mapping (5.4) we get from Lemma 6.1, by Proposition 6.2,
the following lemma:
LEMMA 6.2. Under the assumplions of Lemma 6.1, if

D(t,) > X,
and

D7pi(t) > O'i(ta Pa(t)y oeey (pn(t)) (t=1,2,..,2)
for te(ty, @), then we have the inequality
Ot)>Y({H) for ted,nd,.

Similarly, applying mapping (5.2) and using Proposition 6.1 we
derive from Lemmas 6.1 and 6.2 the next lemma.

LEMMA 6.3. Let the right-hand sides of system (5.1) be defined in some
open region D and satisfy in D condition W_( see § 4) with respect to Y.
Let (t), Yo) e D. Assume that D(t) = (q)l(t), very qu,.(t)) 18 continuous in
A_ = (B, 1] (1) and that the curve ¥ = B(t) lies in D. Let Y (1) = (ga(8), ...
vy y,,(t)) be an arbitrary solution of system (5.1), passing through (t,, Y,)

and defined in some interval A_ = (8, t,] (*).
Under these assumptions, if

D)< ¥y, (D) > X,)
and

D gi(t) > oilty gu(t), s @alt))  (D1@ilt) < 0ilt, @ult), ---, @alt))
(1=1,2,..,n)

for te (B, &), then we have the ineguality
)< Y() (2()>X(t))
for ted_. a_.

§ 7. Some notions and theorems on ordinary differential equations.
Let the right-hand sides of system (5.1) be continuous in some open
region D and let @(t) = (pu(t), ..., @alt)) and W(t) = (i(t), ..., va(t)) be
two solutions defined on 4, = [t,, a) and 4, = [{,, &) respectively. Suppose
that 4., C Z+. The solution Y¥(¢) is called right-hand continuation of the
solution @(t) if

Yty=@() for ted,.

(*) In A_ resp. 4_ is B resp. § a finite number or — oa.
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In a similar way we define the left-hand continuation of a solution.
A solution, which is both a right-hand and left-hand continuation of
another one, is called simply continuation.

A solution @(1) defined in 4. = [t,, a) is said to reach the boundary
of the open region D by its right-hand extremity if the corresponding
solution-path ¥ = &(t) is not contained in any eompact subset of D.
In this case the interval [1,, a) is called the righi-hand maximal interval
of existence of the solution PD(1).

It is obvious that for a solution &(#) reaching the boundary of D
by its right-hand extremity there is no right-hand continuation different
from @(t).

A solution reaching the boundary of D by its left-hand extremity
and the left-hand maximal interval of existence are defined similarly.

Now the following theorem holds true (see [14], p. 135).

THEOREM 7.1. Every solution of system (5.1) with continuous right-
hand sides in an open region D admits at least one continuation reaching
the boundary of D by its both extremities.

The last theorem can be restated in a less precise way as follows:
Every solution can be continued to the boundary of D in both directions.

Remark 7.1. The above continuation is, in general, not unique.
In case of uniqueness, Theorem 7.1 is an almost immediate consequence
of the next theorem (see [64]).

THEOREM T7.2. Assume the right-hand sides of system (5.1) to be con-
tinwous in an open region D. Let @ (1) be a solution defined in a bounded
interval Ay = [t,, a) (A4- = (B, 1,]) and suppose that for some sequence t.
we have

litn (tu Q)(t,,)) = (a, Yo) [(B, Y,)]

=00

and (a, Yo) e D [(B, X,) € D]. Then the limit
Iim@(t) = Y, () (limP{) = Y,)

{—ra t—p
exists and
D(t) for tefty, a) (Te(f, toD ’

T(t)z{yo jor t—a (t=p)

is a solution of system (5.1) in the closed interval [ty, a] ([, t])-

Next, for the convenience of the reader, we prove a theorem giving
a rough estimate of the interval of existence of a solution.

@) lim & (¢) = (lim g, (f), ..., lim g,(2)).
t—a t—a t—a

2%
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THEOREM 7.3. Let the right-hand sides of system (5.1) be continuous
n a cube

Q:lt—t| <a, lyi—gl<a (i=1,2,..,m)
and satisfy the inequalities

(7.1) lot, T)| < M (i=1,2,..,n).
Suppose that

~ a .
(7.2) i?/i—yi|<§ (6=1,2,..,m)

and take an arbitrary solution Y () = (yl(t), wes Yn(t)) of system (5.1),
reaching the boundary of Q by its both extremilies and passing through the
point (ty, Y) = (44, Y15 ..., Yn). Denote its maximal <nterval of existence
by 4 = (a, ) and put

6= (to_’ha t0+h) ’

where
. a
(7.3) h = mm(a, ﬁf) .
Under these assumptions we have
(7.4) 6C 4.

Proof. Suppose that (7.4) is not true and, for instance,

(7.5) < B<tyt+h.
Choose b so that
(7.6) B<b<tyt+h.

The solution Y (¢) reaching the boundary of @ by its right-hand
extremity the solution-path ¥ = Y (1), ¢ €[4, 8), is not contained in the
compact subset of @

h<t<b, i~y <%a (i=1,2,..,n).
Hence, since 8 < b, there is a t* € (4, 8) and an index j such that
(7.7) |y5(#*)—9;l > 3a.
From (7.2) and (7.7) it follows that
o~ a
(7.8) 9i(t*) =45l > 35 -
On the other hand, there is a 7 ¢ (¢, #*) so that

(19) [yat)—§i| = (3 —yito)] = [t~ 1ol [yj(0)] = |*—tolosfe, T (x)] -
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Since t* € (ly, §), we get from (7.3) and (7.5)
a

Hence, by (7.1) and (7.9), we have

[y5(*) =93] <

I

Wl

which contradiets (7.8). Thus the proof is completed.

§ 8. Local existence of the right-hand maximum solution. We first
prove a theorem giving, among others, sufficient conditions for the local
existence of the right-hand maximum solution.

THEOREM 8.1. Suppose that the right-hand sides of system (5.1) are
continuous and satisfy condition W with respect to Y (see § 4) in an open
region D. Let (1,, ¥,) € D and take an arbitrary sequence of points (t,, X*) e D
such that
(8.1) Y, <Y<Y, lmY=Y,.

For every positive integer v consider the system of ordinary differential
equations

d
(8'2) % = Ui(t7 Yiy oeey yn)+

A

(1=1,2,..,n)

and let Y'(t) = (yi(1), ..., yn(1)) be an arbitrary solution of (8.2), passing
through (14, Y’) and reaching the boundary of D by its both extremities (such
solution exists by Theorem 7.1).

Under these assumplions, there is a positive number h so that

1° For indices v sufficiently large Y'(1) is defined in Ay = [ty, t,+h)
and

Y ) < Yty for  teds,.

2° The sequence Y’(t) is uniformly convergent in the interval A to
the right-hand maximum solution Q(t) = {wl(t), ey wn(t)] of system (5.1)
in 4y, passing through (t,, Y,), and

Y'(t) > Q1) .

P IfY=0()= (qal(t), cey qan(t)) 18 an arbitrary continuous curve for
te Ay, = [ty, to+h), contained in D and satisfying the initial inequality

(8.3) o1 < ¥,
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and the differential inequalities

(8.4)  D_gill) < oilt, @i(1), ey @alt))  for fy<t<ty+h
(6=1,2,..,%),

then

(8.5) D)< 2(t) for tednn 45,

Proof. There is a positive number a, so that the closure of the cube
Q:lt—tl<a, |[yi—y|<a (¢=1,2,..,n),
where Y, = (?}1_, .sy Yn), i8 contained in D. The functions o4(f, ¥) being
continuous in ¢, we have for some M
ot Y)-{-%\ <M for (t,¥)ed (i=1,2,.,m;9=1,2,..).
Put

. a
h = min (a, W) .
Since, by (8.1), there is

P =] a -
\y,—y1|<§ (t=1,2,..,n)

from a certain index », on, we see, by Theorem 7.3, that Y’(t) are defined
in 4, = [ty, to+h) for » > »,. In what follows, we consider only indices
¥ > 9. Since the right-hand sides of system (8.2) satisfy condition W
with respect to ¥ in D and because of the inequalities
Y ) = Y < X" = Y'(t),
dy:™
dt

we have, by Lemma 6.1,

YW t) < Y(t) for ted,.

14 1 a4 1 .
= aft, Y (1)) +—5 < oift, X77(1)) += ((=1,2,.,m),

By a similar argument we prove that the sequence Y'(t) is bounded
from below by any solution of system (5.1), passing through the point
(ts, Y,). Hence and from the last inequalities it follows that there exists
the limit
(8.6) lim Y'(¢t) = Q(t) for ted,
and, by a standard argument, we get that 2(?) is a solution of system (5.1),
passing through (#,, ¥,) and that the convergence in (8.6) is uniform.
By (8.3) and (8.4), we have

Dt < Y’
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and
1 >~
D_q;,-(z)<a,-(t,¢>(t))+; for tfh<i<tyo+h (i=1,2,..,n).

Hence, by Lemma 6.1,

(8.7) D)< Y1) for tedyn Ji.

From (8.6) and (8.7) follows (8.5). In particular, (8.5) holds true
for @(t) being an arbitrary solution of system (5.1), passing through
{te» Yo). Therefore, £(t) is the right-hand maximum solution through
(1o, Y,) of system (5.1) in the interval 4;. Thus the proof of 1° 2° and 3°
is completed.

§ 9. Global existence of the maximum and minimum solution. Now
we prove

THEOREM 9.1. Assume the right-hand sides of system (3.1) to be con-
tinuous and to satisfy condition W, with respect to Y (see § 4) in an open
region D. Then, through every point (o, Y,) e D there exists the right-hand
mawimum and the right-hand minimum solution reaching the boundary
of D by its right-hand extremity.

Proof. We first prove the part of theorem coneerning the right-hand
maximum solution. By Theorem 8.1, for (f,, ¥,) e D there is a posi-
tive h, so that the right-hand maximum solution through (f,, Y,) exists
in the interval 4, = [t, t, —~h). Denote by h, the least upper bound of
such numbers k. Now notice that if we have the right-hand maximum
solution in some interval 43, then its restriction to any interval 4,, where
h < ﬁ, is the right-hand maximum solution in 4;. Hence it follows that
for every positive h < h, there is the right-hand maximum solution in 4,
say 5(t). Next, we conclude that if 0 < k, < b, << by, then—by the uni-
queness (see § b)—the right-hand maximum solution in 4,, is the right-
hand continuation (see § 7) of the one defined in 4;,. Now, forte[ty,t,+h)
choose h so that t << +h < t;-Fhy and put

(9.1) Q1) = (1) .

By our preceding remark, the value of £2(t) is independent of the
choice of h. Hence, formula (9.1) defines a function in the interval
Ap, = [y, 1o+ k). It is clear that £2(t) is the right-hand maximum solution
through (%), ¥,) in 4,. Next, we will prove that £ (1) reaches the boundary
of D by its right-hand extremity. Indeed, if it were not so, the correspond-
ing solution-path ¥ = 2(¢) would be contained in some compact subset
of D (see § 7). Therefore, there would exist a sequence f, {t, < t, << t; -+ hg),
so that

lim (t,, Q(1,)) = (to+hy, ¥) e D .

»—>00
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Hence, by Theorem 7.2, we would have

lim (¢, 2()) = (fy+hy, ¥)

t—to+ho

(t) - .Q(t) for te Aho y
h { for t=1+h

and

sl

would be a solution of (5.1) in the eclosed interval (&, {,+ k). Since
(to+ by, Y) e D, we can apply Theorem 8.1 to the point (t,+he, ¥) and
hence we get that there is a positive %, so that the right-hand maximum
solution through (ty- ki, Y) exists in the interval [ty hq, to-+he-+ k).

~

Denote it by £(t). Then £2*(t) defined by the formula

.Q*(t) - !Z(f) for te Aho ,
“{ﬁm for 1 e[ty tot-ho+ )

is clearly a solution of system (5.1), passing through (%, Y,) and defined
in the interval Az 1% = [%, to+ ho +7).

We will prove now that:

(o) £2%(t) is the right-hand maximum solution through (4,, ¥,) in the
interval Ap,.5.

To prove («), we have to show that if Y (f) is an arbitrary solution

through (f,, Y,) defined in some interval 4, = [%,, {,+ %), then
(9.2) Y(t) <Ot) for tedyn Aps.

Inequality (9.2) is true if h < h, because O*(t) = 2(¢) in 4, and
£(t) is the right-hand maximum solution through (%, Y,) in 4s,. If & > hq,
then, by the preceding argument, we have (9.2) in 4,, and, by continuity,
Y (ty+ ho) < Q2*(fg+ Do) = Q(ty+hy). Hence, due to the definition of (¢)
and by Theorem 8.1, 3° it follows that

V() <O(t) = Q1) for tellotho,lo+h) m[lotTig, fo+ho+B),

which completes the proof of («). But, proposition («) contradicts the
definition of hy; and consequently the first part of Theorem 9.1 is proved.
Now applying the mapping (5.4) and using Proposition 5.2 and Proposi-
tion 6.2 we get the second part of our theorem, concerning the minimum
solution, as an immediate consequence of the first part.

THEOREM 9.2. Assume the right-hand sides of system (5.1) to be con-
tinuous and to satisfy condition W_ with respect to Y (see § 4) in an open
region D. Then, through every point (1,, Y,) € D there is the left-hand maximum
and the left-hand minimum solution reaching the boundary of D by its left-
hand extremity.

Proof. Theorem 9.2 follows from Theorem 9.1 by applying the
mapping (5.2) and by Proposition 5.1 and 6.1.
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Remark 9.1. In case n = 1, i.e. when system (5.1) reduces to a single
equation, both conditions W, and W_ are trivially satisfied (see § 4).
Hence we have the following result: For a single first order differential
equation with a right-hand side continuous in an open region D there is,
through every point (ty, Y,o) € D, the right-hand (left-hand) maximum and
minimum solution reaching the boundary of D by its right-hand (left-hand)
extremity.

Remark 9.2. In case n = 2 condition W, (W_.) in Theorem 9.1
(Theorem 9.2) ean be substituted by the equivalent condition V, (V_)
(see § 4). However, in case n > 2 condition W, in Theorem 9.1 cannot
be replaced by the essentially weaker condition V.. Indeed, it is possible
to construct a suitable counter-example (see [60]) showing that for a sys-
tem of three equations, with right-hand sides continuous and satisfying
condition V. in an open region D, it may happen that the right-hand
maximum solution—which exists locally—eannot be continued so as to
reach the boundary of D by its right-hand extremity.

The theorem we are going to prove next is a generalization of 3°
in Theorem 8.1, which was of local character.

THEOREM 9.3. Assume the right-hand sides of system (5.1) to be con-
tinuous and to satisfy condition W, with respect to Y (see § 4) in an open
region D. Let (t,, ¥,) e D and denote by Q7(t) the right-hand mazimum
solution through (t,, X,), reaching the boundary of D by its right-hand extre-
mity. Let A4 = [1,, ay) be ils existence interval.

Under these assumptions, if ¥ = ®(t) = (py(1), ..., ga(t)) is an arbitrary
continuous curve for t e A= [to, o), contained in D and satisfying the initial
inequality

Bty) < Y,

and the differential inequalities

D_gi(t) < ity pa(t), ooy ga(t))  for fo<i<d (i=1,2,..,n),
then
(9.3) D) <) for tednAd.

Proof. By 3° of Theorem 8.1, inequality (9.3) holds true in the
interval [%,, a) for some a > f, and sufficiently close to {,. Let a* be the
least upper bound of such numbers a. We have to show that
o* = min (ay, d). Suppose that a* < min(ay, a); then a*e d n A and
since—by the definition of a*—(9.3) holds in [t,, a*), we have by continuity

D (a*) < QT (a*).

Hence we can apply 3° of Theorem 8.1 to the point (a*, 27(a*)) and —
noticing that 27 (¢) is the right-hand maximum solution through (a*, .Q‘L(a*))
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in the interval [a*, a,)—we get that inequality (9.3) holds in some interval
[a*, a**), where o** < min(ey, ap) is sufficiently close to a*. Therefore,
inequality (9.3) is satisfied in [#,, o**), contrary to the definition of o*,
since o** > a*. This contradiction completes the proof.

Remark. For # > 2 condition W, in Theorem 9.3 cannot be sub-
stituted by the weaker condition V. (see § 4). Indeed, the subsequent
counter-example (see [60]) shows that with the condition V, it may occur
that inequality (9.3) does not hold in any right-hand neighborhood of ¢,.

Let D= D,v D,C(t, ¥y, ..., Yn), Where

Dl:——oo<t<+oo,yf+y§<1,-—oo<y3<+00,
Dy: —oo<t<+oo, (1h—3)+(¥—3)"<1, —oco< Yy <-+oo,
and put
f 1 in Dy,
t,: =
oilt; Y1, Y25 Ys) 1 ~1 in D, (i=1,2,3).

It is easy to check that the functions o¢ (¢ = 1, 2, 3), thus defined,
satisfy in D condition V,. Now, for ¢4(f) =0 (¢=1, 2, 3) we have

q’i(o) <3 (% = 17 2) s ?’3(0) < 0
and

gi(t) < U‘(ty u(?), @u(1), ¢3(t)) for >0 (i=1,2,3).
The unique solution of the system

/) ,

_d?/?t = odl, Y1, Y2, ¥s) (1=1,2,3),

passing through (0, 3, 3, 0), and consequently its right-hand maximum
solution through (0, 3, 3, 0) is obviously

wi(t)=3—t (i=1,2), wif(t)= —tfort>0.
However, we have
ps(t) > w3 (1)  for t>0.

It is also possible to construct a similar example with D and its
intersections by planes ¢ = const being connected.

By mapping (5.4) and by Propositions 5.2 and 6.2 we get from Theo-
rem 9.3 the following one:

THEOREM 9.4. Under the assumptions of Theorem 9.3 denote by £2.(1)
the right-hand mimimum solution through (t,, X,), reaching the boundary
of D by its right-hand extremity. Let A = [t,, ay) be the existence interval
of Q,(1). This being assumed, if ¥ = O(t) = (pi(t), ..., ga(t)) is an arbitrary
continuous curve for t € A = [1,,&,), contained in D and satisfying the initial
tnequality

D(ty) = ¥, ,
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and the differential inequalities

D™ gi(t) = Gi(t7‘pl(t)y '--7¢ﬂ(t)) for  t<t<d (i=1,2,..,n),
then
D(t)y=Q.(t) for tednd.

Using the mapping (5.2) and Propositions 5.1 and 6.1 it is easy to
derive from the above theorems similar theorems concerning the situation
to the left from the initial point.

Since in the case of a single equation conditions W, and W_ are
trivially satisfied, we get—as corollaries of the above theorems—the
following two theorems.

THEOREM 9.5. Assume the right-hand side of equation
(9.4) W ott,m)
to be continuous in an open region D. Let (1y, yo) e D and denote by o™ (1)
(w.(2)) the right-hand wmaximum (mintmum) solution through (ly, ¥o),
reaching the boundary of D by its right-hand extremily, and defined in the
interval A, = [ty, ag). Let y = ¢(t) be a continuous curve for te A, = [1,, &),
contained in D and satisfying the initial imequality

Plto) <% lp(t) = Yo)
and the differential inequality
D_pt)y <oft,p(t)) (D @) =olt,p(t)) for to<t<dq.
Under these assumptions we have
p(t) <o™(t)  (9(t) > wi(t) for tedindy.

THEOREM 9.6. Suppose the righi-hand side of equation (9.4) to be con-
tinuous in an open region D. Let (ty,y,) € D and denote by o™ (t) (w_(t))
the left-hand maximum (minimum) solution through (ty, y,), reaching the
boundary of D by its lefl-hand extremity and defined in an interval
4. = (8, 1]. Let y = ¢(t) be a continuous curve for t € A_ = (B, t,], contained
in D and satisfying the initial inequality

p(to) <¥o  (@(t) = Yo)

and the differential inequality
Do)z oft, e(t))  (Dig(t) <oft,p®) for PF<t<ty.
Under these assumptions we have

p() <o™(t) (pt) = w-() for ted.~A_.
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Remark 9.3. We will see in § 13 that Theorems 9.3-9.6 hold true
with any of the four Dini’s derivatives.

ExampLE 9.1. Let ¢(t) be continuous in [, @) and suppose that
p(f) < yo and
D_g(t) <a()gt)+b(t) for te(ty, %),

where a(t) and b(¢) are continuous in some open interval A containing ¢,.
Here equation (9.4) has the form

dy

o —aly+o(),

and its unique solution through (f,, ¥,) is

t

[ c
w(t; &, Yo) = €Xp “ a(r)d‘r){yo-l—tf b(a)exp(—— f a(r)dr) da} .
0 to

to
Hence, by Theorem 9.5, we have

t t

< exp ( [a dr) \Wo+ ) b(o)exp (—— fa(r)dr) da} for tedn[t,),a).
to

ExampLE 9.2. Consider a system of differential equations

d .
(9.5) =il Yy e yn) (G=1,2, . ym)

with right-hand sides continuous in the region

D:0<t< +oo, 2y?<h’3
=1

and satisfying the inequality

n n.

]
(9.6) 2 Yifilly Yoy ooy Yu) < —¢ X U2,

=1 =1

where ¢ is a positive eonstant. Under these assumptions every solution
of system (9.5) exists in an infinite interval and tends to zero as ¢ goes
to +oo. ,

Indeed, let y¢) (¢ =1,2,...,n) be a solution of (9.5) starting at
some #, > 0 and let [#,, ¥) be its right-hand maximal interval of existence.
Consider the function

2

Z (O] 5
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for which we have

plty) = 2 [yalt)? < B2

gt =2 Y yuOyitt) = 2 Y gil®)flty ya(8), ..., yalt))

<—c Z [y = —cp(?)
i=1

in the interval [t,, »). Hence, putting v, = ¢({,) we have, by Theorem 9.5,
(9.7) p(t) <yoot  for telty,y).
Since y, < h?, it follows that

o) = D )P < yo < B2

on the interval [, ). Hence we must have y = -+ oo, because otherwise
the solution would not reach the boundary of the region D by its right-
hand extremity. On the other hand, from (9.7) it follows that the solution
tends to zero as t— -+ oco.

§ 10. Continuity of the maximum and minimum solution on the initial
point and on the right-band sides of system. We begin this section by
proving a lemma generalizing parts 1° and 2° of Theorem 8.1, which were
of local character.

LeMMA 10.1. Under the assumptions of Theorem 8.1 let (1) be, in the
interval [ty, ay), the right-hand maximum solution through (t,, Y,), reaching
the boundary of D by its right-hand extremity (such solution exists by Theo-
rem 9.1). Then, for every a e (ty, a) there s an index v, such that

1° for v = vy, Y'(t) ewxists in the interval [1,, a) and
o < Y < Y1),
2° im Y'(¢) = Q2(1) uniformly in [t,, a).
Yoo

Proof. By Theorem 8.1, the set of numbers a € (¢, o), such that 1°
and 2° hold true for some %, is non-void. Let a* be its least upper bound.
We have to show that o* = a,. Suppose that a* < ¢, and consider the
point (a*,Q(a*))eD. Let Q* be a cube centered at (a*,f2(a*)] such
that §* is contained in D. By the continuity, there is a positive M such
that

(10.1)

1 ,
ai(t, Y)+;|<M (i=1,2,...,0n5; v=1,2,..)
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for (t, Y) e @*. Choose a** and a > 0 so that

(10.2) ly < a** < a*,

. a
(10.3) a*— o** < min (a,, m) =h
and that the cube
Q:lt—a**| <a, [yi—wla¥)| <a (t=1,2,..,n)

be contained in Q*. Such a choice is obviously possible. Since @ C @*,
inequalities (10.1) hold true in @ and since a** < a*, 1° and 2° are satisfied
in [ty, a**] for some v,. Hence, in particular,

lim Y'(a**) = Q(a**), Q(a**) < Y " a**) < Y'(a**) for v >,

and consequently we see, by the choice of h (compare (10.3)) and by the
proof of Theorem 8.1 applied to the point (a**,2(a**)), that 1° and 2°
are satisfied in the interval [a**, o**+h) for indices » sufficiently large.
Therefore, 1° and 2° hold true in the interval {t,, a** +£k) from a certain »
on. But, in view of the definition of a*, this is impossible because, by (10.3),
a* < a** 4 k. This contradiction completes the proof.

Let us denote by 2%(t; ¢, ¥,) the right-hand maximum solution
through (4, Y,), reaching the boundary of D by its right-hand extremity
and let 47(t,, ¥,) be its existence interval. We define in a similar obvious
way the symbols Q.(% %, Y,), 27 (8540, Yo)y, £2-(4 1y, Yo), 4-(t, ¥o),
A (ly, Xo)y, A-(ty, X,).

We will show the right-hand sided (left-hand sided) continuity of
Q7(t; ty, Yo) (24+(%; ty, Y,)) on the initial point ({,, ¥,), i.e. we will prove

lim Q+(t; by ¥)=Q7(t; 80, Xo)y, LmQ.(t54, ¥) = 2. 1, ¥y) .

YT, Y—->Y,
Y=Y ¥Y<Y,

More generally and miore precisely we have the following theorem.

THEOREM 10.1. Let the right-hand sides of system (5.1) be continuous
and satisfy condition W, with respect to Y (see § 4) in an open region D.
Let (ty, Xo) € D. Consider the right-hand maximum (minimum) solution
QF(t; 1y, Yo) (Q4(t; to, Yo)) through (t,, Y,), reaching the boundary of D by
its right-hand extremity and let A (1,, X,) (A(ty, X)) be its existence interval.
For B = (e, ..., &), where e =0 (e6<0) (¢t=1,2,..,n), denote by
Q5 1y, Y, B) (.(t; 8, X, E)) the right-hand maximum (minimum)
solution through (t,, Y) of the system

dyi

(10.4) —d?:'—"o'i(ta?/la'"y Yo) e (0=1,2,..,m),

reaching the boundary of D by its right-hand extremity and defined in the
interval A*(ty, Y, E) (4.(ty, Y, E)). Then,
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1° To every ae A (ty, Y,) (A:(ty, Xo)) there is a 8(a) > 0 such that
Qt(t; 1, Y, BE) (Q.(t; 1, Y, E)) is defined in [1,, a), whenever 0 < &; < 8(a)
(—é(a) <& <0) 6=1,2,..,n) and
Y=Yy <d(a) (1), Yo<Y (Y,=7Y).

2° We have uniformly in [t,, «)

lim Q+(t5 tov Ya E) = ‘Q+(t§ lo, Yo)
YoYo, 50
Y=Y, E=0

(_lLm Q.(14,Y, B)= 2., X)) .
Y—Yo, E-0
Y<¥, E<0
Proof. We first prove the part of theorem concerning the right-
hand maximum solution. Take a sequence of points Y*, so that

(tepy YVeD, Y, <Y<Y, lmY =1,
’

00

and let Y'(f) be a solution of system (8.2), passing through (f,, ¥") and
continued to the boundary of D in both directions. For fixed a € A™(t,, ¥,)
there is, by Lemma 10.1, an index », such that Y™(?) exists in [f,, a] and

T(0) > Q¥ (t; by, Yo) -

Because of the uniform convergence of Y () to 27(t; 4, X,) in [ty, a] we
can assume that v, is chosen sufficiently large so that the compact set

(10.5) {(t, Z) 1 te[ly; al, 27(t; ty, Yo) < Z < X7(1)}

be contained in D. On the other hand, since ¥, < Y™, there is a 6(a) > 0
such that if

(10.6) Yo <Y, |Y-Y,<d(a), O0<e&<dla) (1=1,2,..,n0),
then

(10.7) Y<y», 0<si<yl (1=1,2,..,n).
0

Let Y and e; satisfy (10.6). Then, since Y, << Y, we have by Theo-
rem 9.3, applied to the point (#), ¥) and to system (10.4),

(10.8) Q% (t;t), Yo) < QT (451, Y, E) for te[ty,a)n At (ty, Y, E).
In view of the inequalities

da);-(t; 1y, Y? E)
dt

1
= oift, (4 1, ¥, B)) +e < ou(t, 7 (8 1, ¥, B)) +v—0

(*) For two points 4 and B, |4 — B| denotes their Euclidean distance.
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and of (10.7) we get, by Lemma 6.1 applied to the point (¢,, ¥™), and
to system (8.2),

(10.9) Q%(t;4, Y, E)<Y"™(t) for telty,a)n ATk, Y, E).

From (10.8) and (10.9) it follows that [t,, a) C 4 (t,, ¥, H). Indeed,
otherwise we would have A(t,, Y, E)C[t,, a) and the solution-path
corresponding to Q7 (¢;t, Y, E) would be contained in the compact
subset (10.5) of D, which is impossible, since Q%(t; t,, Y, E) reaches the
boundary of D by its right-hand extremity. Thus we have proved 1°.

Now, to prove 2° let ¢ be an arbitrary positive number. Since, by
Lemma 10.1,

Hm Y*(2) = Q1 (8 1y, Y)

¥—=>00

uniformly on [f,, a), there is a », such that
{10.10) Y- QT (5 6, X)l <& for  telly, a).

Because of the inequality ¥, < Y", there exists a positive d(¢) < §(a)
such that
v 1 )
Y< ¥, O<£i<;— (¢t=1,2,..,n),
1
whenever

(1011) Y, <Y, |Y—Y,<d(e), O0<ei<dle) (i=1,2,..,n).

Let Y and e; satisfy (10.11); then, by the same argument as in the
first part of the proof, we conclude that

(1012) QT (t;ty, Yo) < Q% (358, Y, B)< Y'Nt) for telt,, a).
From (10.10) and (10.12) follows
’~Q+(t§ ty Y, E)_Q+(t§ by Yo)l<e In [, a)

for ¥ and &; satisfying (10.11). This completes the proof of 2°. Applying
the mapping (5.4) we obtain that part of our theorem which refers to the
right-hand minimum solution as an immediate consequence of the just
proved result referring to the right-hand maximum solution.

By mapping (5.2) we derive from Theorem 10.1 the following theorem:

THEOREM 10.2. Let the right-hand sides of system (5.1) be continuous
and satisfy condition W_ with respect to Y (see § 4) in an open region D.
Consider the left-hand maximum (minimum) solution L7 (t; 1y, Y,)
{Q_(t; 1, Y,)) through (85, Yo) € D, reaching the boundary of D by its left-
hand extremity and defined in the interval A (ty, Y,) (A-(4y, Y,)). For
B = (g, .. 8n), where & <0 (520) (1=1,2,..,n), denote by
Q7 (51, Y, E) (Q_(t; 4, Y, E)) the left-hand maximum (minimum) solution
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through (ty, Y) of system (10.4), reaching the boundary of D by its left-hand
extremity and defined in the interval A (4, ¥, E) (4_(t,, Y, E)). Then

1° To every BedA (ty, Xo) (A-(ty, X,)) there is a 8(B) > 0 such that
O (t; 4, Y, E) (2_-(; ty, ¥, E)) is defined in (B, t,], whenever

Y—=Yo| <o(f), Yo<Y (¥Yo2=7),
—dA<a <0 (0<e<of) (i=1,2,..,n).

2° We have uniformly in (B, tp)

3 im Q7 (1, Y, E) =Q (&, Y,),
—Yo, E—>0
Y=Y, E<0

(_ lm Q_(t4,Y, E)=Q_(t 1, Yo)) .
Y—->Yo, E—Ep
Y<Yo,E>0
We close this section by the following example (see [4]).

ExampLE. Consider the differential equation

(10.13) ‘;—f =a(t,y),
where
) — 2Ly +2Myy for y=0,
a(,y)-—-{ 0 for y<0;

L>0, M >0 are some constants.

We will prove that for each point (4, y,), where y, > 0, the right-
hand maximum solution of (10.13) through (4, y,) is
2

(10.14) o(t; T, Yo) = []/%ew—to) _;_% (eL(t—'o)__l)]

Suppose first that y, > 0; then, since (¢, y) > 0, we have for any
solution %(¢) of (10.13) through (%, ye)

Yy@) =y, >0 for 1=1.

Therefore, putting u(t) = y'y(t), we find that w(t) satisfies, for t > t,,
the linear equation

du
@ =Lu+M

and consequently is of the form

u(t) = Vyoeri= +% (ebt—to — 1) .

J. Szarski, Differential inequalities 3
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Hence it follows that, for y, > 0, function (10.14) is, in the interval
t>1,, the unique solution of equation (10.13) through (%, ¥,) and con-
sequently its right-hand maximum solution through (¢, ¥,). Our assertion
for y, = 0 follows now from Theorem 10.1 if we let 7, > 0 tend to 0. Notice
that for y, = 0 we do not have uniqueness.

By Theorem 9.5, we get the following result. Let ¢(t) be continuous
and non-negative for te[{,, a). Suppose it satisfies the initial inequality

P(to) < Yo
and the differential inequality
D_g(t) < 2Lp(t) -2M Vop(t) .
This being assumed, we have for fe[%, a}
p(t) < o(t; Lo, Yo)

where o(t; ty, ¥,) is given by formula (10.14).



CHAPTER II1

FIRST ORDER ORDINARY DIFFERENTIAL INEQUALITIES

§ 11. Basic theorems on first order ordinary differential inequalities.
In this section we give theorems generalizing Theorems 9.3 and 9.4 in
the direction that will be briefly explained here (see [22] and [61]). In
Theorem 9.3 we assumed the system of differential inequalities to be satis-
fied in the whole interval where the curve ¥ = @(t) = (gy(), ..., @a(t))
was defined. This assumption will be substituted by a less restrictive
one; we will require only that for every index ¢ the i-th differential inequa-
lity be satisfied at such points ¢ where @4(f) is greater than the ¢-th com-
ponent of the maximum solution. As we will see (Example 11.1,
Remark 48.1), such a weakening of assumptions is very useful in applica-
tions of the theory of ordinary differential inequalities.

THEOREM 11.1. Suppose the righi-hand sides of system (5.1) are con-
tinuous and satisfy condition W, with respect to Y (see § 4) in an open
region D. Let (ty, X,) ¢ D and consider the right-hand maximum solution
Q7(t; 1y, Xy) = (07 (1), ...y 0n (1)) through (ty, Y,), defined in the interval
[ts; @) and reaching the boundary of D by its right-hand extremity. Let
Y=0( = ((pl(_t), ...,qp,,(t)) be a continuous curve on the interval [y, y)
and suppose that (t, P (1)) € D. Write a, = min(ay, y) and

Bi={le(ty o)t out) >0 (1)} (i=1,2,..,m).
Under these asswumptions, if

(11.1) b(t,) < T,

(11.2)  D_gft) < oift, D)) for teBy (i—1,2,..,n),

+
then the sets F; (1 =1,2, ..., n} are emply, i.e.
(11.3) D) <27 (t; 1, Yo)  for telly, a).

Proof. Take a sequence of points ¥’ such that (fp, ¥ ) e D, Yo < ¥
<Y and HmY = ¥,. Let Y'(t) = (4i(t), ..., yn(t)} be a solution of

=00

3*
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system (8.2), passing through (f,, ¥’) and continued to the boundary
of D in both directions. Take an arbitrary a e (¢, oy). By Lemma 10.1,
there is an index », (depending on a) such that, for v >w,, Y’(t) exists
on (%, a) and

(11.4) QF (51, Yo) < T )< X'(1)  in [t a),

(11.5) lim Y*(t) = Q% (t; 8y, ¥o)  in  [ty, a).

y—>00

In view of (11.5), to prove (11.3) it is sufficient to show that for
¥ > v, we have

(11.6) )< Y in [t a).

Take a fixed v > v,. Since @ (f,) < ¥y < ¥" = Y’(4,), inequality (11.6)
holds, by continuity, in some interval [#,, @). Denote by a* the least upper
bound of @ € (t,, a) such that (11.6) is satisfied in [%, @). We have to show

that a* = a. Suppose a* < a; then, by the definition of ¢* and by the
continuity, we have

(11.7) D) < Y'(1) on [ty a*),

and for at least one index j

(11.8) &(a*) ]é Y’(a*)

(see § 4). Hence, in particular,

(11.9) pi(a*) = yj(a*), @i{t) <y;(t) for te(ty, a*).
From (11.9) it follows that

(11.10) D_g;(a*) = y}(a*) = o;(a*, ¥(a*)) +% :

On the other hand, since by (11.4) we have wj(a*) < y}(a*), we get

from (11.9) that o (a*) < @;(a*) and consequently a* ¢ E;. Therefore,
by (11.2), (11.8) and by condition W, (see § 4), we have

D_gj(a*) < ojla*, D(a*)) < o5(a*, X'(a*)) < o5(a*, X(a*)) +%,

contrary to inequality (11.10). Hence, a* < a is impossible and this com-
pletes the proof.

ExAMPLE 11.1 (see [59]). Consider a linear equation

d

= —aly+b(),
where a(t) and b(t) are continuous, complex-valued functions on [0, a).
Put s(f) = Rea(?) and suppose that |b(t)| < ¢(t), where p(t) is continuous.
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Let y(t) satisfy the above equation in [0, a). Under these assumptions
we have in [0, a)

where

¢ ¢
w(t) = |ly(0)exp (! s{t)dr ) fexp (f 8( t)dr)

Indeed, put
H={te(0,0a):|y(t)] > w(t)}.

For t ¢ B we have obviously |y(t)| > 0, and consequently

dt T2 wun
Since L
Yy =a®ly®E+d6)y @),
y' () y (1) = a()|y )2+ by (),
bYH -+ () < 2oy (),
we get
41y < 20E20 014 001,

Thus we have shown that i ¢ ¥ implies

d
VOl < sy +o(t) .
Now, since w(t) is the unique solution of the linear equation

Y s+,

satisfying the initial condition w(0) = |y(0)}, our assertion follows from
Theorem 11.1. Observe that we were able to check the differential ine-
quality only for ¢ such that |y(¢)| > 0.

By means of the mapping (5.4) we get from Theorem 11.1 the fol-
lowing theorem.

THEOREM 11.2. Suppose the right-hand members of system (5.1) are
continuous and satisfy condition W, with respect to Y (see § 4) in D. Let
{ts, XYo) e D and consider the right-hand minimum solution Q.(t; iy, Yo}
= (W}(t), oy @5(8)) through (ty, Yo), defined im [ty, ay) and reaching the
boundary of D by its right-hand extremity. Let ¥ = ®D(t) = (tpl(t), ey qo,,(t))
be a continuous curve on [t,y) and assume that (t, (15(t)) eD. Put
o; = min(ay, y) and

Bi={te(tya):gt) <oi®) (=1,2,.,n).
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Under these assumptions, if
D(t) = Yo,
D qi(t) = ait, ®(t)) for teBy (i=1,2,..,n),
then ’
D(t) > Q,(1; %, Yo)  for telty, a).

Using the mapping (5.2) we get, as an immediate consequence of
Theorems 11.1 and 11.2, the following theorem (see Propositions 5.1
and 6.1).

THEOREM 11.3. Suppose the righi-hand sides of system (5.1) are con-
tinuous and satisfy condition W_ with respect to Y (see § 4) in an open
region D. Let (t,, Y,) € D and consider the left-hand maximum (minimum)
solution Q7 (t; o, Vo) = (01 (1), ..., g (1)) (2-(t; 19, ¥y) = (01(2), ..., &Z(1)))
through (t,, Y,), defined in the imterval (By,1,] and reaching the boundary
of D by its left-hand ewtremity. Let ¥ = ®(t) = (ps(1), ..., @alt)) be con-
tinuous on (8, t,] and assume that (t, D(1)) € D. Write f, = max(f,, 6) and

Bi={eB,t):olt)>wi ()} (=1,2,..,n)
(Bs = {t € (B, )2 pult) < @Z(D)}) -
Under these assumptions, if
D)<Y, (D) >7%,),
and
D¥pu(t) = oult, ®(t)) for teEy (i=1,2,..,n)
(Dygut) < oift, D)) for teEy),
then
D) <L (151, Yo)  for te(Bry ]
(D(t) = Q_(t;5 1y, Yo)  for te(fi,l]).

§ 12. Necessity of condition V., (V_) in theorems on differential ine-
qualities. Let the right-hand members of system (5.1), with » > 1, be
continuous in a parallelepipede

D:—ooLa<t<bg +00, —co< A< Ys<'by < + o0

(1=1,2,...,m).

Since conditions W, and V, are equivalent in D (see §4), we get from
Theorems 11.1 2nd 11.2, as a particular conclusion, the following result:

If the right-hand sides of system (5.1) satisfy condition V. with respect
to Y (see § 4), then

(ay) to every point (fy, Yo) e D there is a solution QF(t;1,, Y,)
(824(t; 1y, Yy)) through (ty, Y4) such that for any solution Y (t) satisfying the
initial inequality Y (1) < X, (Yy) = Y,) we have Y () < Q7F(t; 1y, Y,)
(Y (f) = 24(t; ts, Yy)) in some right-hand meighborhood of t,.
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The above result can be inverted; in fact, we have the following
theorem for an arbitrary open region D:

THEOREM 12.1. Let the right-hand sides of system (5.1), with » > 1, be
continuous in an open region D. Then the condition V_ with respect to Y is
a necessary one for the property {«.) to hold true.

Proof. It is sufficient to prove the part of theorem referring to Q%.
The part of theorem concerning 2, will follow then by the mapping (5.4).

Let the indices ¢ and j = ¢ be fixed and consider two points

(to’ Y,) = (torﬁ;ly 71‘;7») EDi (to’ 17) = (tw ??1} "":';:i—l,%’?;?’-i-l’ 9:'}7!) eD

such that ¥; < g;. Let Y (1) be a solution through (4, Y). Since ¥ (t,)
=Y < Y,, we have, by («),

Y (t) < Q75 1, Yo)

in some right-hand neighborhood of #,. In particular, ¥(t,) = ¢: = o7 (%),
7it) < wf (t) in a right-hand neighborhood of ?,. Hence, it follows that

o1(ty, Y) = Ui(toy iv(to)) = Yi(ty) < wEL (t) = O'i(toy Q+(to§ to, Yo)) = oi(lp, Yo),

and thus the proof is completed.

By mapping (5.2) we obtain from Theorem 12.1 a similar theorem
concerning condition V_ and the property:

(x.) To every point (t,, X,) e D there is a solution L7 (t; 1, ¥,)
(£2_(t; £,y Y,)) through (ty, Y,) such that for any solution Y (t) satisfying the
indtial inequality Y (t,) < Y, (Y (%) = Y,) we have Y (1) < Q7 (L 1y, Y,)
(Y(t) = Q_(t; 1y, Y,)) in some left-hand neighborhood of t,.

From the last remark and from Theorem 12.1 follows the next theorem.

THEOREM 12.2. The only systems (5.1) with right-hand members con-
tinuous in an open region D, for which both properties (o) and (x_) hold
true, are those of the form
(12.1) % =git,ys) (1=1,2,..,n),

i.e. systems of independent equations, each containing only one unknown
function.

Proof. The right-hand sides of system (5.1), having both properties
{ox+) and («—), satisfy necessarily conditions V. and V_. This means that
the function oy(t, Y) is both increasing and decreasing with respect to
the variables ¥, ..., ¥i—1, ¥i+1 ..., Yn» and hence depends only on the
variable . '

Less precisely, Theorem 12.2 may be summarized in the following way:

Systems (12.1) are the only ones that can be used for estimates from
above (from below) both to right and to left from the initial point.
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§ 13. Some variants of theorems on differential inequalities. To begin
with we will show that Theorem 11.1 holds true if the derivative D_
in (11.2) is replaced by D~ or D, or D*. We do it for D*, for instance.
Obviously it is sufficient to prove that if (11.2) is satisfied with D" instead
of D_, then it is satisfied with D_ too. Suppose then that

4
(13.1)  DYeut) < oift, D)) for teBE; (i=1,2,..,n).

+
The set H; is open and, therefore, is the union of a sequence (finite
or infinite) of open intervals. Take any of these intervals, say A7, and
consider the Picard’s transform ¥(t) = (yy(t), ..., pu(t)] of D(t), defined

by the formula
¢

(13.2) vilt) = gilt)— [ oifr, @@ (i=1,2,...,0),

70

where 7, is fixed in 47. By (13.1) and (13.2), we have
DFypi(t) = D¥gi(t)—aift, D(8)) <O for ted]
(i=1,2,..,nv=1,2,..).

Hence, wi(t) being continuous in the interval A7, we get, by Theo-
rem 2.1, that v(¢) is decreasing in A;. Therefore,

0> D_yi(t) = D_gi(t) —oft, (1)) in 4]

(1=1,2,.,nv=1,2,.)),
what was to be proved.

By a similar argument we show that Theorems 11.2 and 11.3 hold
true with any of the four Dini’s derivatives appearing in the system of
differential inequalities.

All theorems of this chapter will be formulated, from now on, with
the D_ derivative; but, due to the preceding remarks, they will be true
with any of the four remaining derivatives, and in our subsequent con-
siderations we will remember this fact without pointing it explicitly.

Applying Picard’s transform (13.2) we obtain, by the argument
used in our preceding remarks, the following theorem.

THEOREM 13.1. Theorems 11.1, 11.2 and 11.3 are true if the corre-
sponding differential inequalities are supposed to be satisfied in the sets
E;— C;, where C;C E; is an arbitrary countable set.

A much stronger result is obtained if we additionally assume that
@(1) is absolutely continuous. In faet, we have the following theorem.

THEOREM 13.2. Under the assumptions of Theorem 11.1, let D(1)
= (pu(t), ..., @ul?)) be absolutely continuous in [y, y). This being assumed, if

D(t) < X,,
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and
(13.3) i) < o4ft, D(1)) almost everywhere in i’i (t=1,2,..,n),
then
D(t) < Q+(t oy Yo)  im [ty @) .
Proof. In view of Theorem 11.1, it is sufficient to show that (13.3)
1mphes (11 2). Like in our considerations at the beginning of this paragraph,

let Ei U 45, where 4; are open intervals, and introduce the Picard’s
y=1

transform (13.2). The function yq(t) is absolutely continuous in 4; because
s0 is @i(t). By (13.3), we have yi(t) = ¢i(t)— oi(t, D(1)) <0 almost every-
where in A;. Hence, by Theorem 3.1, the function v(t) is decreasing
in A7, and therefore

D_gift)—oift, ?(t)) = D_wpi(t) <O in 4] (vr=1,2,..),

what was to be proved.

Similar theorems, corresponding to Theorems 11.2 and 11.3, can be
stated in an obvious way.

Using Remark 3.2, we show similarly that Theorem 13.2 holds true
if @(t) is a generalized absolutely continuous funetion and (13.3) is satisfied
with ¢i(t) substituted by the approximative derivative of gi(t) (see [22}
and [50]).

§ 14. Comparison systems. In this section we introduce systems of
first order ordinary differential equations having some special properties.
These systems, called comparison systems, will be used in applications
of the theory of differential inequalities.

A system of differential equations

dy .
(14.1) rn —oi(t,yl,..,yn) (t=1,2,..,n)

will be called comparison system of type I if its right-hand sides are con-
tinuous and non-negative and satisfy condition W. with respect to ¥
(see § 4) in the closed region

Q:t=0, y=>0 (¢=1,2,..,n).
ExAMpLE 14.1. The linear system
d .
A Zaw Oy +odt)  (i=1,2,..,m),
1j=
with a;(t), b:(t) continuous and non-negative for ¢ >0, is a comparison
system of type I.
Since the region @ is not open, we are not able here to apply directly

the results of § 9 on the maximum solution of system (14.1). Nevertheless,
we will show that the following proposition holds true:
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PropostTioN 14.1. Through every potnt (0, H) = (0, %y, «ooy 1) € Q
there is the right-hand maximum solution of the comparison system of type 1,
which will be denoted by Q(t; H) = (wl(t; H), ..., wa(t; H)) and its mavimal
interval of existence by A(H) = [0, ag(H)). Moreover, we have either ay{H)
= + oo, or ay(H) is finite and (1)

lim |Q(t; H)| = + oo.
t—ay

Proof. It is easy to see that there exists an extension gy(?, Y) of
ai(t, Y), so that Gi(t, ¥) are continuous and non-negative and satisfy
condition W with respect to Y in the whole space of points (¢, ¥). Now,
by Theorem 9.1, applied to the extended system
(14.2) %/Tizgi(ty?/u'“a?/ﬂ) (t=1,2,..,m),
there is the right-hand maximum solution 2(¢; H) of (14.2) in an interval
A(H), passing through (0, H) and reaching the boundary of the space
by its right-hand extremity. For this solution, since o;(f, Y) are non-
negative and since Q(0; H) = H >0, we have £(; H) >0 in A(H).
Hence, (t,2(t; H)) e @ for teA(H), and consequently Q(f; H) is the
solution of the original system (14.1) with required properties. The existence

of the limit
lim ]/2 [wit; H)P
i=1

t—ap

follows from the fact that wq(t; H) are increasing functions since
oi(t, Y) > 0.

Remark 14.1. Taking advantage of the extended system (14.2)
we can prove that Theorem 10.1 holds true for a comparison system of
type I.

Using the extended system (14.2) we derive from Theorem 11.1 the
next theorem.

FirsT COMPARISON THEOREM. A comparison system (14.1) of type 1 being
given, let (0; H) e Q and denote by Q(t; H) = (wy(t; H), ..., wa(t; H)) its
right-hand maximum solution through (0, H), defined in [0, a). Let D (1)
= {p:(2), ...,(p,.(t)) be continuous and non-negative in some interval [0, y).
Put ay = min(ay, y) and

Bi={te(0,aq):q:(t) > et H)} (1=1,2,..,1).
Under these assumptions, if
20)< H,

£ ]
() For a point 4 = (ay, ..., a,), | 4| denotes ‘/Zaﬁ.
-
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and
D_gi(t) < oift, @(1)) for teB: (i=1,2,..,n),
then
D)< H) for te[0,0).

For n = 1 we introduce two special types of comparison equations;
but, first we prove a lemma.

LEMMA 14.1. Let the right-hand side of the differential equation

dy
(14.3) a? = O'(t, y)
be continuous and non-negative in the region
Q:1>0,y=0

and suppose that
(14.4) o(t,0)=0.

Under these assumptions, for every point (t,,y,) e Q there is the left-

hand minimum solution w_(t; %y, Yo) through (i, ¥,), and its mazximal in-
terval of existence is (0,1,]. Moreover, we have

o_(134,0)=0.

Proof. We consider the auxiliary equation

d ~
(14.5) 71% =0o(t,y),
where
~ o(t,y) for t>0,y>0,
o(t,y) =
0 for t>0, y<o0.

By (14.4), the right-hand side of equation (14.5) is continuous in
the open half-plane ¢t > 0. Hence, by Remark 9.1, there is the left-hand
miminum solution w_(%; t,, ¥,) of (14.5) through (¢,,%,), reaching the
boundary of the positive half-plane by its left-hand extremity. Denote
its existence interval by (B, t]. We will show that

1° w_(8; %y, ¥o) = 0 for te(f, t,],

2 g =0.

To prove 1° observe that the unigue solution of (14.5) issued from
a point (t*, y*), where y* < 0, is y(f) = y* < 0. Hence it follows that 1°
holds true since w_(t; %9, ¥s) = ¥, > 0. Now, we must have § = 0; other-
wise, since wl_{t; %y, ¥,) = 0 and by 1° the solution path y = w_(¢; &, ¥,)
would be contained in the compact subset 0 < <<t <<t, 0<y <y,
of the positive half-plane, which is impossible because w_(1; 1y, 4,) reaches
the boundary of the positive half-plane by its left-hand extremity. From 1°
and 2° it follows that w_{t; ¢y, ¥,) is the left-hand minimum solution of
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the original equation (14.3) with required properties; w_(¢; 45, 0) = 0 is
obvious.

Equation (14.3) with the right-hand member continucus and non-
negative for ¢t > 0, ¥y > 0, and satisfying (14.4), will be called comparison
equation of type II if y(t) = 0 is in every interval (0, y) the only solution
satisfying the condition

lim y(t) = 0.
0

ExAMpPLE 14.2. We give three examples of comparison equations of
type II:

(2) % = a(t)y with a(t) > 0 continuous for ¢ > 0;

8
. dy
& th 0 f 0, 5(0) =0, | X _ L o
() & = oy) with o(y) > 0 for y >0, a(0) ’of“(y +

() %~ ngly.

SECOND COMPARISON THEOREM. Let a comparison equation (14.3)
of type II be given and let ¢ (t) be continuous in an interval [0, a) and satisfy
the condition
(14.8) @(0)<O0.

Write
E={te(0,a): (>0}
and suppose that

(14.7) D_op(t) <oft,p(t) for tekE.
Under these assumptions
et) <0 in  [0,a).
Proof. Suppose that for some #, (0, @) we have

P(l) =Y > 0.

By Lemma 14.1, the left-hand minimum solution of (14.3) w_{t; %, ¥o)»
issued from (%), y,), is defined in (0, ¢]. Since ¢(0) <0 and ¢(f) > 0,
there is the first ¢, to left from #;, such that ¢(f;) = 0. We have obviously
t =0 and

0 <o) for t<i<t,.

Hence, applying Theorem 9.6 (compare Remark 9.3) to equation (14.3)
(considered in the open region { >0, y > 0) we see, by (14.7), that

(14.8) 0< o (tito, ) <p) for H<t<t,.
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If ¢ = 0, then from (14.6) and (14.8) it follows that

{14.9) 1t11101 w-(t; gy %) = 0.

If ¢, > 0, then since ¢(#,) = 0, we have w_(Iy; %y, ¥) = 0, by (14.8);
hence, by Lemma 14.1, we get w_(¢; 4, ¥o) = w_(t54,0)=0for 0 <t <
and, consequently, (14.9) holds true in this case too. Therefore, w_(¢; to, ¥,)
would be a solution of (14.3) tending to zero as t goes to zero and different
from y(t) = 0 since w_(ty; &y, ¥9) = yo > 0. Buf, this is impossible in view
of the definition of a comparison equation of type II. This contradiction
completes the proof.

Remark 14.2. A comparison equation (14.3) of type II is not—in
general-—one of type I, because o(?, y) is not supposed to be continuous
for t = 0. If (¢, y) is continuous for ¢ = 0, then the second comparison
theorem is a eorollary of the first one.

Equation (14.3) with the right-hand side continuous and non-negative
for £ > 0, y > 0, and satisfying (14.4), will be ealled comparison equation
of type III if the following property holds true:

() In every interval (0, y) the function y (1) = 0 s the only solution
satisfying the conditions

(14.10) limy () = 1im3-§9 —~0.

A comparison equation of type II is obviously one of type III too.
But, a comparison equation of type III may not be one of type 1I. This
is shown by the following example.

Example 14.3. Let

dy _y
et

The general solution of this equation is y = Ot (C = const) and
hence the equation is of type III, but not of type II.

THIRD COMPARISON THEOREM. Let a comparison equation (14.3) of type
III be given and let (t) be continuous in an interval [0, a) and satisfy the
conditions
(14.11) 9(0)<0, D7p(0)<0.

Put

E = {te(0,a): ¢(t) >0}
and suppose that
D_gt) <olt,p(t)) for teB.

Under these assumptions
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Proof. We proceed just like in the proof of the second comparison
theorem and find that if the thesis were not true, then for some ¢, ¢ (0, a)
and 0 <t <t we would have ¢(f,)=10 and (14.8) with v, = @(f).
Hence, if ¢, = 0, it would follow from (14.8) and (14.11) that

(14.12) Hm w_(¢; ty, 9,) = lim o5 by %) _ o
{—0 {—0 t

If #, > 0, then—Ilike in the proof of the second comparison theorem—
we have w_(t;1,,y,) =0 for 0 <t < ¢, and consequently (14.12) would
hold in this case too. Therefore, w_(t; 5, ¥,) would be a solution satisfying
conditions (14.10) and different from y(t) =0 (because w—_(fy; o, Yo)
==, > 0), contrary to the definition of a comparison equation of type III.

Remark 14.3. It is obvious that property («;) in the definition
of the comparison equation of type III implies the following one:

(2tg) In every interval (0, y) the function y(t) =0 is the only solution of
(14.3) satisfying the conditions

limy(t) = limy'(t) = 0.
>0 -0

Now we will construet an example showing that

1° property («,) is essentially weaker than property («),

2° if property («) is replaced by property («,), then the third com-
parison theorem is—in general—false.

Indeed, let ¢(t) be differentiable for ¢ >> 0 and satisfy the conditions

1) 9(0) =0, ¢(t) >0 for t >0,

2) ¢5(0) =0, ¢'(¢) >0 for ¢ >0,

3) ¢'(t) is continuous for ¢ > 0,

4) limg'(t) does not exist.

-0

It is not difficult to construet such a function. Consider the linear

equation
dy _ ¢'(t)
(14.13) T~ o’

Its right-hand side is continuous and non-negative for ¢ >0, y >0
and its general solution is y = Cp(t). Hence, by 1) and 2), every solution
of (14.13) satisfies conditions (14.10) and consequently equation (14.13)
does not have property («;). On the other hand, by 4), property («,) holds
true. Moreover, the function ¢() satisfies, with respect to equation (14.13),
all the assumptions of the third comparison theorem and, by 1), is not <0.

§ 15. Absolute value estimates. This section deals with a theorem
that enables us to obtain estimates of absolute valye of functions both
to right and to left from the initial point.
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Before stating the theorem we first prove a proposition on Dini's
derivatives of the absolute value of a function.

ProposiTioN 15.1. For a function @(t) defined in the neighborhood
of 1, we have the inequalities

(15.1) D_|p(te)] < 1D-g(b)! ,
(15.2) Dlg(te)l < 1Dy g(to)] -

Proof. We prove, for instance, (15.1). Let ¢, be a sequence such
tha:t ty < t07 ty">t0 and

15.3) m#BW=?®) _p oy i PNl

0 v“'to »—>00 t.,——to
Since
‘ oty —lto)| _ [let)i—let)l] _ ’\v) A =lplt)l] - l@(t)]—Ip(t)]
t,—1t, = [t,— 1 t,—1, = t,—t, ’

inequality (15.1) follows from (15.3).

THEOREM 15.1. Let a comparison system (14.1) of type I (see § 14) be given
and let D(z) = (tpl(w), oy @u(2)) be continuous in the interval |w—m,| < y.
Assume that (1)
(15.4) |9 (20)] < H ,

where H = (9, ..., 1) and put

B = {o: |o—m) < min (y, a(H)) , |pi@)| > o|z—xl; H)}
(i=1,2,..,m),

where Q(t; H) = (wy(t; H), ..., oa(t; H)) is the right-hand mazimum solu-
tion of the comparison system through (0, H), defined in the interval [0, ao(H)).
Suppose finally that

(15.5) |D_gix)| < aifw—axo| , |P@)]) for @eEi(i=1,2,..,n).
This being assumed, we have
(15.6) [o@)| <Qz—aol; H) for |z—a < min(y, aH)) .

Proof. Since the assumptions of our theorem are invariant under
the mapping & = —z + 2%, (2), it is enough to prove (15.6) for the interval

(15.7) 0 <o— 3y < min(y, ) .

(*) For the definition of the symbol ||, see § 4.

(*) It should be remarked that the mapping & = — x+ 27, transforms the deriva-
tive D_ in (15.5) into D*; however, Theorem 15.1 is true with D- substituted by D*.
This explains how the invariance of assumptions is to be understood.
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For this purpose, put

pi(t) = lpdae+1)| for O0<<i<y (1=1,2,..,0),
Hi= {t: 0 <t < min(y, @), vi(t) > wlt; H)} (1 =1,2,..,%).
Then y;(t) are continuous in [0, y) and, by (15.4),

Y(0)< H.

Moreover, in view of Proposition 15.1 we have, by (15.5),

D_wilt) < aift, P(t) for teli (i=1,2,..,n).
Hence, by the first comparison theorem, we get

(15.8) Yi) <Lt H)Y for 0<t<min(y, q).

From (15.8) follows (15.6) in the interval (15.7), what completes
the proof.

If &(x) = H >0 (—H < 0), then it is useful to have some better
estimate of @(x) from below (from above) in the neighborhood of .
Such an estimate is given in the following theorem:

THEOREM 15.2. Under the assumptions of Theorem 15.1 suppose addi-
tionally that the right-hand members of the comparison system satisfy con-
dition W, (t.e. are increasing with respect to all variables y;). Assume that

(15.9) D(x)=H>0 (Px)=—-H<O0),
and
(15.10)  |D_gu(t)] < aallz—a|, [B(@)]) for |2—ay| < min(y, a)

. (i=1,2,..,n).
This being supposed, we have

(1511) (@) = 2H—Q(|lv—x|; H) (P(0) < —2H +Q2(|o—m|; H))
in the interval
(15.12) | — 2| < min (y, a) .

Proof. We restrict ourselves to the case @(x,) = H > 0. Like in
Theorem 15.1 it is sufficient to prove (15.11) in the interval (15.7). By
Theorem 15.1, the inequalities

|9 (2)] < Q(2—zy; H)
hold true in the interval (15.7). Hence, by (15.10) and by condition Ww,,
we get in (15.7)
(15.13)  D_gi(t) = —oi(@— @, Qe —a; H)) (6 =1,2,...,m).
Put
vi(x) = pi(x) — 2y +w{e—ae; H) (1=1,2,..,n).



§ 15. Absolute value estimates 49

The functions yi(x) are continuous in (15.7) and, by (15.13), we have

D_ypiz) = D-gpi(®) + 0i@—2o; H) = D_gi) 4 0@ — 1y, 2) > 0
(5=1,2,..,0).

Hence, by Theorem 2.1, yix) are inecreasing in the interval (15.7)
and since ¥(z,) = 0 by (15.9), we get ¥(z) > 0, i.e.

& (2) > 2H— Q(o—a; H)

in (15.7), what was to be proved.
As an immediate corollary of Theorem 15.2 we get the next theorem.

THEOREM 15.3. Under the assumptions of Theorem 15.2 suppose that
(15.14) H>H>0 (-H<-H<0)),
where H = (31, ..., Tn). Denote by t; the least root of the equation in t
(15.15) Omi—wi(t; H) =% (—2ni+wilt; H) = — ;)

1f such a root exists in the interval 0 << 1 < ay; if it does not exist, putt; = + oo.
This being assumed, we have

(15.16) Ox)>H (D)< —H)
in the interval
{15.17) |2 — @] < min(y, agy tyy eeey tn) -

Proof. Since 29— wi(0; H) = n¢ > 7;, we have, by the definition
of ti,
{15.18) 2mi—oit; HY > (0=1,2,..,n)

in the interval
0 < 1< mm('y, (279 t17 ceey tn) .

Hence, by (15.11), we obtain (15.16) in the interval (15.17).
ExXAMPLE. Let ¢4z) (¢=1,2,...,n) be continuous in the interval

{15.19) [z—me] <
and satisfy differential inequalities

D-gile)| <K D lpf@)l+L  (i=1,2,..,n5 K>0; L>0).

j=1

The comparison system is here of the form

n
dyi .
E{:K§y1+L (t=1,2,..,n)

J. Szarski, Differential inequalities 4
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and its unique solution through the point (0, 7y, ..., na) is
ne+ Lt for  K=0 (i=1,2,..,n),
Yyi= L\ i L
(n¢+%K)e nk for K>0.

Hence, if |@i(@) < (£ =1,2,...,n), then, by Theorem 15.1,

ni + L | — @) for K=0 (i=1,2,..,n),
lpda)| <
n

(ni+%%)enle-xol—£—K for K>0

in the interval (15.19). If, moreover, gi#,) =n:>0 (i =1, 2,...,n),
then, by Theorem 15.2,

ni— L|2— x| for K=0 (=1,2,..,0),
L
nK

>
#i(@) l for K>0.

.

Let K >0 and oda,)=m>%:=0 (1=1,2,..,2). Equation (15.13)
is now

and its only root is

(15.20) t = L In|1+ (i—7 A
: i = n |1+ (=) |mi+ 2] |-
Therefore, by Theorem 15.3, we have
pw) > (i=1,2,..,0)

in the interval |z—a,) < min(y,t, ..., %), where t; are given by for-
mula (15.20).

Now, let ¢(t) be a vector-valued function of the real variable ¢, its
values belonging to a normed linear space £ with the norm | ||. Suppose
p(t) is strongly differentiable at a point ¢,. Then, using the properties
of the norm we check that

(15.21) |D_llp (1] < llg (@ -

For vector-valued functions we can prove the following theorem.

THEOREM 15.4. Let a comparison system (14.1) of type I (see § 14)
be given and let yi(x) (i =1,2,...,n) be strongly continuous vector-valued
functions of the real variable x on the interval |x— xy] < y. Assume that

HW(%)H < i (¢ = 1,2,..,m)
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ﬁi = {w Dr—a| < min(% ao(H)), llwa@)l > wil|z— 2|5 H)}
(t=1,2,..,n),

where Q2(t; H) = (wl(t; H), .., o8 H )) is the right-hand maximum solution
of the comparison system, issued from (0, H) = (0, %, ..., 7a) and o'!gjined
in [0, a( H)). Suppose finally that yi(x) is strongly differentiable in E; and

(@)l < aillao— 2], @), ooy llpal@)l) Jor @eBi (6=1,2,..,m).
This being assumed, we have
(@)l < willo—zl; H) for |o—a,| < min(y, a(H)) (6=1,2,..,n).
Proof. If we put
pil@) = llp(e)} (1=1,2,..,n)

and use (15.21), then all assumptions of Theorem 15.1 are satisfied.

ExampLE. Suppose the real functions wu(z), ..., yx(2) are differen-
tiable on the interval |z — ,| < y and satisfy the following initial inequality

O T——
]/ 2 [l < 7,

and differential inequality

% &
]/ 2 i) < K]/ O i@ +L  (E>0,L>0)

in the interval |#—a,| < y. Then we have

—_—
L K|x—xo| L i —_
]/g (pe(@)? < (71+K—)0 % lw—ayl < v .

Indeed, the sequence of functions w,(x), ..., yx(x) can be considered
as a vector-valued function ¥(z) with values in the Fuclidean space.
The above initial and differential inequalities can now be rewritten in
the form

@M <n, ¥@I<KIP@)+L,

where || || is the Euclidean norm. Hence, by Theorem 15.4 (in our case
we have » = 1), we get in the interval |z—uz,| < y

Y (@)|l < w(le—ml; 1) ,
4*
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where w(t; 1) is the unique solution through (0, ) of the linear equation

ay
The last inequality is nothing else but the inequality that was to
be proved.

§ 16. Infinite systems of ordipary differential inequalities and systems
satisfying Carathéodory’s conditions. This paragraph deals with analogues
of Theorems 9.1 and 9.3 for countable systems of first order differential
equations and inequalities.

The method of proving Theorems 9.1 and 9.3 for both finite and
infinite systems, due to W. Mlak and C. Olech, which we use here is based
on the validity of Theorems 9.1 and 9.5 for a single differential equation
resp. inequality (see [301).

We also discuss Theorems 9.1 and 9.3 for systems satisfying Cara-
théodory’s conditions.

Consider a finite or countable system of ordinary differential equations
(16.1) %‘?: oty Yoy Yoy ) E=1,2,..).

By a solution of system (16.1) we mean a sequence of differentiable
functions y«(f) (¢ =1, 2,...) in some interval A satisfying (16.1) for t e 4.
The right-hand maximum solution of (16.1) through a point (Zy, 1, 925 ...)
is defined in a similar way like that of a finite system of differential equa-
tions.

Concerning the right-hand sides of system (16.1) we introduce the
following assumptions:

AssumprioNns H. The functions ooty ¥, ¥ay ...) (£ =1, 2, ...) are defined
and bounded in the region

D:a<t<<b, y1,Ys, ... arbitrary .

For every fized i, the funetion i, 4y, Yo, ...) 18 increasing in the variables
Yy ooy Yim1y Yir1y ooy a0d 1§ continuous in D in the following sense: for any
point (o, Yo) = (t, Yi; Yz, ) €Dy i t—ty, yr—Yp (k=1,2,..), then
oi(t, Y)—>ailly, Y,).

THEOREM 16.1. Let the right-hand sides of system (16.1) satisfy Assump-
tions H and (ty, Yo) = (to, i1, 42, ...) be an arbitrary point of D. Then

1° there is the right-hand maximum solution w4(t) (i =1, 2, ...) of (16.1)
through (t,, Y,) in the interval

(16.2) th<t<b,
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2° for any sequence D(t) = (p:(?), @olt), ...) of continuous functions in
the interval (16.2), such that

(16.3) pilty) <% (1=1,2,..),

(16.4) D_git) < ailt, ga(1), @uld), ...)  (1=1,2,..)
tn the interval t, <t << b, we have

(16.5) elt) <we(t) (1=1,2,..)

in the interval (16.2).

Proof. Denote by ¥ the family of sequences of continuous functions
in the interval (16.2). Take an arbitrary sequence @ (t) = ((pl(t), (1), ) eF
and put

olt, y; P) = Ui(t’ @1(t)y ooy @ica(?), U5 @isa(?), )

in the region
D* .ty <t < b, y arbitrary .

The function ¢y(t, y; P) is obviously continuous in D*. Hence, by
Theorem 9.1 (see Remark 9.1), there is the right-hand maximum solution
of the single equation
(16.6) Y _ ot y; )
through the point (t,, 4;), reaching the boundary of D* by its right-hand
extremity. We denote it by wt; @) and we claim that it exists in the
interval (16.2). Indeed, the right-hand side of equation (16.6) is bounded
and hence every solution of (16.6) is bounded in every bounded subinterval
of (16.2). Therefore, if wi(t, ¥; @) did not exist in the whole interval (16.2),
it would be bounded and consequently it would not reach the boundary
of D* by its right-hand extremity. Now, denote by F, the subfamily of ¥,
congisting of sequences satisfying (16.3) and (16.4). This family is not
empty since, for instance, the sequence gi(t) = y: + u:i{t—1,) (i =1, 2, ...),
where

Hi = inf O‘i(t, Y),
t.¥)eD
belongs obviously to F,;. Let @(t) be an arbitrary sequence in F;; then,
by (16.4), we have
D_gi(t) < ault, pilt); D)

in the interval (16.2). Hence, by Theorem 9.5 applied to the single equa-
tion (16.6), it follows that for every fixed ¢

(16.7) @i(t) < oilt; D)

in the interval (16.2). Since the function ai(t, y; @) is bounded in D*,
uniformly with respect to @ ¢ F,, it follows that for every ¢ the family
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of functions wg(t; @) is bounded from above at every point fe¢[f,,d)
and equicontinuous in this interval. Hence

wi(t) = sup wi(t; D)

oed,

exists in the interval (16.2) and is a continuous funetion. Moreover, it
satisfies obviously the initial condition

wi(to),= f’;i .

By (16.7), inequalities (16.5) hold true for any sequence D(t) e F,.
Hence points 1° and 2° of our theorem will be proved if we show that
wi(t) (¢ =1, 2, ...)1s a solusion of system (16.1). T'o do this, we first observe
that for two sequences D (1) = (gy(t), gu(?), ...) ¢ F and D) = (@a(t), Palt), ...} € F
such that

(16.8) pilt) <@ilt) (1=1,2,..)
we have
(16.9) wi(t; @) < oit; @) (1=1,2,..)

in the interval (16.2). Indeed, by (16.8) and by the monotonicity con-
ditions imposed on the functions gy, Y), we get

WHED) — aufty ity B); B) = oulty ga0), - islD), w1l8; B), Girald), )

< Ui(’? il(t)’ ey ‘P@ (t)y wi(t; Q)a Pit1r t)y o ) = Gi(t wi(t Q)y ¢)

Hence, w¢(t; D) being the right-hand maximum solution of

d ~
Y —alt,y; B)

through (%, ¥;), we obtain (16. 9) by Theorem 9.5. In particular, if @(?)
is any sequence in F; and @() = Q(t) = (04(1), 0y(t), ...}, it follows
from (16.5) and (16.9) that

wilt; D) < wi(t; Q) for DeF, (i=1,2,..).
Therefore,

(16.10) wilt) = sup wi(t; ) < wit; Q) (1 =1,2,..)

(pefr_l
and consequently, putting ﬁ(t) = (wl(t; Q), ay(t; 2), ), we get

(16.11) will; D)< wi; Q) (1=1,2,..).
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On the other hand, we have

6.12)  YBR) o w; 9); 9)

dat
= oi(t, wy(t)y «ooy @i-a(t), ill; R), wisa(t), )

Hence, by (16.10) and by the monotonicity conditions, we conclude
that

dws(t; 2)

at

< aift, an(t; Q) wy(t; ), ...)  (1=1,2,..).

The last inequalities, together with the relations
willy )=y (1=1,2,..),
mean that the sequence ?J(t) satisfies (16.3) and (16.4) and consequently
belongs to F,. Hence it follows that
(16.13) wi(t; @) < sup wilt; D) = wi(t) (1=1,2,..).

e,
Inequalities (16.10), (16.11) and (16.13) imply that
wit) = owi(t; Q) (1=1,2,..)

in the interval (16.2) and consequently, by (16.12), it follows that
wit) (1=1,2,..) is a solution of system (16.1) in the interval (16.2),
what was to be proved.

We introduce now Carathéodory’s conditions. We say that the right-
hand sides of the finite or countable system (16.1), defined in the region

D:a<t<b, y,Y,, .. arbitrary,

satisty Carathéodory’s conditions if

(x) for every fixed ¢, a4(t, ¥y, ¥, ---) {# = 1,2, ...) are continuous in
the variables %, 9,, ... (in the sense specified in Assumptions H),

(B) for fixed ¥y, Y5y ..., ou(t, ¥) (1 =1,2,...) are measurable in ¢
and there exist functions m(t) (¢ =1, 2,...), Lebesgue integrable on
every bounded subinterval of (a, b), such that

loa(t, V)| <mi(t) (1 =1,2,..).

By a solution of system (16.1), satisfying Caratheodory’s conditions,
we mean a sequence of functions y(t) (¢ = 1, 2, ...) which are absolutely
continuous on some interval A and satisfy (16.1) almost everywhere on 4.

It is a well-known theorem, due to Carathéodory (see for instance [7]),
that under the above conditions in case of a single equation there is a solution
of (16.1) through every point (t,, X,) e D, defined on the interval (a, b).

The right-hand maximum solution is defined as usually. Now we
have the following theorem.
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THEOREM 16.2. Let the right-hand sides of the finite or countable
system (16.1) satisfy Carathéodory’s conditions in the region D. Suppose
that, for every fized i, the function oyt, Y) is increasing in the variables
Yiy ooy Yimty Yir1y ooy and let (ty, Yo) = (by, 41, Y2, ...).€ D. Under the above
assumptions the following propositions hold true:

1° there is the right-hand mavimum solution w;(t) (1 = 1,2, ...) of (16.1)
through (ty, X,) in the interval (16.2),

2° for any sequence ((pl(t),¢2(t), ) of absolutely continuous functions
on (16.2), satisfying initial inequalities

pilt) <¥: (=1,2,..)
and differential inequalities

Pilt) < Ui(t7 #1(1) @al?), ) (¢t=1,2,..)
almost everywhere on the interval ty <<t << b, we have
pil) S owlt) (1=1,2,...) on (16.2).

Proof. It is sufficient to prove Theorem 16.2 in the case when the
system (16.1) reduces to a single equation with one unknown function.
Indeed, it is not difficult to check that adequately modified arguments
used in the proof of Theorem 16.1 permit to derive the validity od Theo-
rem 16.2 from its validity in the case of one equation.

Let us then consider one equation

dy

(16.14) = alt,y)

and assume its right-hand side to satisfy Carathéodory’s conditions in
the region
D: a<t<b,y arbitrary .

Let (#g, yo) € D. What concerns the existence of the right-hand maxi-
mum solution w(t) of (16.14) through (4,, ¥,) on the interval (16.2) we
refer to [7] and we restrict ourselves to the proof of point 2° Let ¢(¢)
be an absolutely continuous function on (16.2) and suppose that

(16.15) P(ty) < Yo
(16.16) ¢'(t) < oft, p(f)) almost everywhere on (i, b) .

We have to prove that
(16.17) () <w(t) on [i,b).

To this purpose, consider an auxiliary equation

(16.18) %?tf =7(t,y),
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where
a(t, y) for (t),
aft,p(t)) for (t) .
It may be checked that the right-hand side of (16.18) satisfies Cara-
theodory’s conditions. Denote by ¥ (f) a solution of (16.18) through (¢, %,),
defined in the interval [#, b). We will show that

(16.19) p) <y(®) on [i,b).

'
T(t, y) = p

n W

Y
y

Suppose the contrary, i.e. (i) > y(f,) for some ¢, e (4, b). Then,
since, by (16.13), ¢(f) < ¥y, = y(l), there would exist a #,,4, <1, <t,,
such that

(16.20) pt) =y(t),
(16.21) () >y(t) on (4,%).

On the other hand, by (16.16) and (16.21) and by the definition of
r(¢,y), we have almost everywhere in the interval (¢, t,)

gt —y' () <olt,p®)—z(t,y(®) = oft, p(t) —o(t, () = 0.

Hence, both functions ¢(¢) and y(t) being absolutely continuous,
the function ¢(f)—y(t) is, by Theorem 3.1, decreasing on the interval
(4, %] and consequently we have, by (16.20),

() <y(1) on (ty &)

what contradicts (16.21). Thus inequality (16.19) is proved. But, from
this inequality and from the definition of (¢, y) it follows that y(¢) is
a solution of the equation (16.14) through (%, ¥,). Hence, w(t) being its
right-hand maximum solution through (%, ¥,), we get

Yy <o) on [t,d).
The last inequality together with (16.19) implies (16.17).



CHAPTER 1V

ORDINARY DIFFERENTIAL INEQUALITIES OF HIGHER ORDER
AND SOME INTEGRAL INEQUALITIES

§ 17. Preliminary remarks and definitions. Consider an ordinary differ-
ential equation of order n > 2

(17.1) yo(t) = oft, y (1), ¥'(1), .., Y22

with the right-hand member o(t, ¥, ¥1, .--s Yn—1) continuous in an open
region D of the space (%, Yo, Y1y -5 Yn—1)- Lt (o, Yo) = (fo; Yoy Y1y -+ s Yn—1)
and introduce Cauchy initial conditions

(17.2) Yto) =y;  (j=0,1,..,n—1).

It is a well-known fact that the Cauchy problem for equation (17.1)
with initial eonditions (17.2) is equivalent to the Cauchy problem for
the system of first order differential equations

d, .
%ﬁzyz’-{—l (6=0,1,..,n-2),
(17.3)

Ay
dnt 1= oty Yos Y1y +ory Yn—1)

with initial values
(17.4) Yilto) = ?73' (j=0,1,..,n-1).

This equivalence is understood in the following sense. If y(t) is a solution
of problem (17.1), (17.2), then (y,(t), ..., ¥a-s(t)| defined by the formulas

(17.5) Yty =99t (j=0,1,..,n—1)

is a solution of problem (17.3), (17.4). Vice versa, if (yo(t), ..., Yn-1(t))
is a solution of problem (17.3), (17.4), then ¥ (¢) = ¥,(t) is that of problem
(17.1), (17.2).

A solution of equation (17.1) is said fo reach the boundary of D by
tts right-hand (left-hand) extremity if the same is true for the corresponding
solution of system (17.3) (see § 7).

By the mapping
(17.6) T=—t, 3=y,
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a funetion y(t) of class O" is transformed into the function 7(r) = y(—1)
80 that

(17.7) 1) = (=19 (=7) (=0,1,..,n).
Hence, the mapping (17.6) transforms equation (17.1) into

(17.8) 7)) = (=1)"o(~7, 9(x), = 0'(), e, (= 1)" 9" 72)) .

The corresponding system (17.3) is now

d .
ars) %:niﬂ (z=0,1,..,n—2),
) AN n—
'% = (—'1)n‘7(_77 Moy — M1y »eoy (—1) 177n~1} .

ConDITION W.. The right-hand member of equation (17.1) will be
said to satisfy condition W, with respect to ¥ = (¥oy %1y« s Yn—1) in D
if the right-hand sides of the corresponding system (17.3) satisfy condi-
tion W, with regard to Y (see §4). This condition obviously means
that for any two points (¢, ¥Y) = (, Yoy ---s Un—2s Yn-1) € D and (¢, Y)
= (t, Yoy oy Yn—2y Yn—1) € D such that y; <¥; (1 =0,1,...,n—2), we have

(17.10) o(t, Y)<o(t, Y).

CoxpITioN W... If inequality (17;10) is satisfied for any two points
(t, Y) = (t, Yoy ooy Yn-1) €D and (t, ¥) = (t, %1y .., Yn—1) e D such that
¥ <% (j =0,1,..., n—1), then the right-hand member of equation (17.1)
is said to satisfy condition W, with respect to ¥ in D.

It is obvious that in this case the right-hand sides of the corresponding
system (17.3) satisfy condition W. (see § 4).

CoxpiTioN W_. The right-hand member of equation (17.1) will be
said to satisfy condition W_ if the right-hand side of the transformed
equation (17.8) satisfies condition W...

This is equivalent to sayin~g that for any two points (¢, Y)
= (b Yoy -y Yn—2y Yn—1) € D and (¢, Y) = (¢, Fo, .-y §n—2 Yn—1) € D such that
(=D <(—-1)'y; (6=0,1,..,n—2)

the inequality
(—=1)'s(t, ¥) < (=1)a(t, T)
holds true.

§ 18. Maximum and minimum solution of an nth order ordinary differential
equation. A solution w*(t; 1y, Yo) = 0t (t; tyy Yoy voes Yno1) (@:(t; &, X))
of equation (17.1), satisfying initial conditions (17.2) and defined in an
interval 4. = [t,, a), is called a right-hand maximum (minimum) solution
of (17.1) through (t,, Y,) if the corresponding solution of system (17.3)
with initial data (17.4) is the right-hand maximum (minimum) solution
of system (17.3) through (t,, Y,) (see § 5). This comes to saying that for
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any solution y(t) of (17.1), satisfying initial conditions (17.2) and defined
in some interval 4. = [i,, @), the inequalities

¥ <[t 4, Y)1” 70 = (0w 46, TIV)  (G=10,1,..,5—1)

hold true for ted, ~ A+.

A solution w—(# 4, Y,) (w_(I; &, ¥,)) of equation (17.1), satisfying
(17.2) and defined in an interval A_ = (§,%,), is called a left-hand maximum
(minimum) solution of (17.1) through (l,, Y.} if it is transformed by the
mapping (17.6) into the right-hand maximum (minimum) solution of
the transformed equation (17.8) through (—fy, %o, — F1y -ry (—21)" "Fu—).
This is equivalent to saying that for any § sohmon y(2) of (17 1), satisfy-
ing (17.2) and defined in some interval A = 13, o], the inequalities

(=170 < (=107 4, TP, (= 173P0) = (= 1) w-(t; s, To)I7)
N (j=0,1,..,n—1)
are true forted_nd_

By Theorem 9.1, the following theorem is an immediate consequence
of the definition of the right-hand maximum (minimum) solution.

THEOREM 18.1. Let the right-hand member o(t, Yoy ..y Yn—1) 0f equa-
tion (17.1) be continuous and satisfy condition W, (see § 17) with respect
10 Y = Yoy ooy Yn—1) 0 an open region D. Then through every (ty, Y,) ¢ D
there is the right-hand maximum (minimum) solution of (17.1), reaching
the boundary of D by its righi-hand extremity (see § 17).

Now, from Theorem 18.1 we deduce, by the definition of the left-
hand maximum (minimum) solution and by the definition of condition W_
(see § 17), the next theorem.

THEOREM 18.2. If the right-hand side of equation (17.1) is continuous
and satisfies condition W_ (see § 17) with respect to Y in an open region D,
then through every {(t,, Y,) € D there is the left-hand mazximum (mintmum}
solution of (17.1), reaching the boundary of D by ils left-hand extremity
(see § 17).

§ 19. Basic theorems on nth order ordinary differential inequalities.
We start with the following general remark. Consider an ath order
differential inequality of the form

(19.1) D_g=(t) < oft, (), ¢'(1), ..., g»=(2))
with initial inequalities
(19.2) o) <y, (G=0,1,..,2—1),

where (1) is of class C""'. It is clear that if @(t) is a solution of (19.1)
and (19.2), then (gq?), ..., pa—s(t)), defined by the formulas

(19.3) @i(t) = (1) (1=10,1,..,n-1),
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is a solution of the system

doi(t ,
PO pealt)  (1=0,1,.,n-2),

(19.4)
D_gns(t) < oty @o(t)y ey Pra(t))

with initial inequalities
(19.5) @s(to) < gi (j=10,1,..,n—1).

Following this remark and the definitions and results of §§ 17, 18
we get the next theorem, by Theorems 9.3 and 9.4 applied to the
system (19.4).

THEOREM 19.1. Let the right-hand member o(t, Yy, ..., Yn-1) of equa-
tion (17.1) be continuous and satisfy condition W, with respect fto
Y = (Yo, o..s Yn—1) (see § 17) in an open region D. Let (15, Yo) = (ty, Yo, ---
vy Yn_1) € D and consider the righi-hand maximum (minimum) solution
t(t; 1y, Yo) (wo(t; g, ¥,)) (see § 18) of (17.1) through (t,, Y,), defined in
the interval A, = [y, a) and reaching the boundary of D by its right-hand
ewiremity (see § 17). Suppose that (1) is of class C"™* on the interval
Ay =1, @) and that (t, p(2), ¢'(t), ..., ™)) € D.

Under these assumptions, if

(19.6) Pl) <Yy (@) =95 (j=0,1,..,n-1)
and
(19.7)  D_gmD(t) < a(t, @(2), ¢'(t); .., g D(1))
(D7gm=0(t) > ot, p(1), ¢'(1), ocr g 0B))  in Ay,
then
¢ <[0™(t 1, TP (6V00) 2 [0+t 4, Y)IP) (G =10,1,...,n—1)

fO?' t€A+ ') A+.

The derivative D_ in the differential inequality (19.7) ean be sub-
stituted by any of the three remaining Dini’s derivatives.

Remark 19.1. We want now to explain why in Theorem 19.1 the
apparently strong assumption on ¢ (t) to be of class ¢""'in A, is an essen-

tial one. To this purpose, let us first introduce the following notation for
an arbitrary function ¢(t) in A.:

D%(t) = @(t) for ted,,
DIV (t) = D_(DD(t)) for ted.,
‘whenever Dg)w(t) is finite in A. +. We might now consider, instead of (19.7),

the differential inequality

~

(19.8) D (1) < oft, p(t), DY%(1), ..., D2 Vp(t)) in 4,
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with initial inequalities
(19.9) D%ty <@ (j=0,1,..,m—1)

for a function having all derivatives DY (j = 0,1, ..., n—1) finite in A, .
It is evident that if ¢ (?) is a solution of (19.8) and (19.9), having the above
regularity, then (go?), ..., a—1(?)), defined by the formulas

‘Pi(vt):D(—{)‘p(t)‘ (Gi=0,1,..,0—-1),
is a solution of the system
D_gi(t) = @ia(?) (t=10,1,..,n—-2),

(19.10) D_gnft) < U(ta Po(t) s -es (pn—l(t))
with the initial inequalities (19.5). Hence it follows that the apparently
stronger variant of Theorem 19.1 with (19.7) replaced by (19.8) is equiv-
alent with Theorem 9.3 for system (19.9). But for the wvalidity of Theo-
rem 9.3 it is essential to assume ¢;(¢) (j = 0,1, ..., n—1) to be continuous
in 4,. Thus, the continuity of the derivatives DV (t) (j = 0,1, ..., n—1)
in A, is essential for the above variant of Theorem 19.1; but, by Corol-
lary 2.2, continuity of DPp(t) implies that of ¢(¢). In this way we are
led to that regularity of ¢(t) which was required in Theorem 19.1.
Now, notice that if we apply the mapping (17.6) and put y(r) = ¢(—1),
then the initial inequalities (19.6) are transformed into

(1 (—t) < (—1V[(—~1Y§;]1 (j=0,1,..,n—1)

and the differential inequality (19.7) into

(—1)"D*" ) < (1) [(— 1o (—7, p(0), =9/ (1) s (—=1)" %" @]

Hence, applying the mapping (17.6) we get, by the definitions and
results of §§ 17, 18 the next theorem from Theorem 19.1.

THEOREM 19.2. Let the right-hand member of equation (17.1) be con-
tinuous and satisfy condition W_ with respect to Y (see § 17) in an open
region D. Let (ty, Y,) e D and consider the left-hand maximum (minimum)
solution w—(%; &, ¥o) (w_(t; t, YX,)) (see § 18) of (17.1) through (i, Y,),
defined in the interval A_ = (B,1,] and reaching the boundary of D by its
left-hand extremity. Suppose that ¢ (t) is of class ™" in the interval A_ = (8, ,]
and that (t, (1), ¢'(t), ..., g™ V()) € D.

Under these assumptions, if

(—1et) < (=19 (—1V¢"(t) = (~1Y5) (G =0,1,..,n—1)
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and
(—1)"D* " (1)

< ( 1)n0(t7 ), ¢’ (1), ...y ‘P(n—l)(t)}
(—1)" Dy g™ 1) >

(_1)n6 (ty ®(1), 9'(8), --es ¢(n_1)(t))) ’
then

(1Y) < (—1V [0 (5 tyy T)T? (= 167(0) = (1) [0-(t; ts, T)I?)
(j=0,1,..,n—1)
for A_ n a_.

Theorem 19.2 is true with any of the remaining Dini’s derivatives
instead of DV (D).

§ 20. Comparison equation of order n. Equation (17.1) will be called
comparison eguation of order n if the corresponding system (17.3) is a com-
parison system of type I (see § 14), i.e. if its right-hand side o (¢, ¥y, %1 ---
wey Yn—1) 18 mon-negative and continuous and satisfies condition W,
(see § 17) with respect to Y in

Q:t?O,ijO (G=0,1,..,n—-1).

Proposition 14.1 implies the following result:

Through every point (0, H) = (0, 1, N1y vy fn—1) there is the right-
hand maximum solution of a comparison equation of order n which we denote
by o(t; H) and its existence interval by A(H) = [0, a,(H)).

Moreover, we have either ay(H) = +oo, or ay(H) is finite and

n—1
im ]/ > [o®(t; H)F = +oo.
t—ap i=0
COMPARISON THEOREM. A comparison equation (17.1) being given,
let () be of class C"~" in an interval A = [0, y) and suppose that ¢i)t) > 0
(j=0,1,..,n—1). Under these assumptions, if
PN < (j=0,1,..,n—1)
and
D_gn(t) < oft, (), s g O)  in A,
then
¢(1) < 0t; H)  (j=0,1,..,0—1)
forte A(H) ~ A, where w(t; H) is the right-hand mazimum solution of (17.1)
through the point (0, H) = (0, 19y N1y +ery fp—1)-
This theorem is an immediate consequence of Theorem 19.1.

§ 21. Absolute value estimates. Let a comparison equation (17.1) of
order n (see § 20) be given and consider for a function ¢(x) of class ¢**
the differential inequality

(21.1) 1D g =D@)| < 0|z~ 0|, @ (@), ...p I ()]} -
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It is clear that if @(#) is a solution of (21.1), then (py(@), ..., Pn—1())
defined by the formulas ¢j(2) = ¢P(z) (j =0,1,..,n—1) is a solution
of the system

dps

dx
D_guna| < o(|z—m|y |@oly -5 |Pn—1l) -

= |(Pi.L1| (?:-—_—0,1,...,7?/—2),

(21.2)

By this remark, the next theorem follows from Theorem 15.1.

THEOREM 21.1. Let a comparison equation (17.1) (see § 20) be given
and assume g(x) to be of class C"* in the interval |z — m,| < y. Suppose that

lpP(ao)| < 75 (j=0,1,..,0—1)
and

[D_go=(@)| < o(|@— 0|y [@(@)], |9/ (@)]5 oovy I @)])  for |o—mg| <.
Under these assumptions we have the inequalities
leD(@)] < 0|lw—am|; H) (j=0,1,..,n—1)

for |w—wxo| < min (y, ao(H)), where w(t; H) is the right-hand mazimum
solution of (17.1) through (0, H) = (0, 1y, ---y n-1), defined in the interval
[0, ao(H)).

Next, from Theorem 15.2 we derive the following

THEOREM 21.2. Under the assumptions of Theorem 21.1 suppose addi-
tionally that the right-hand member o(t, Yo, Yuy +ory Yn—1) 0f the comparison
equation (17.1) satisfies condition W . (i.e. increases with respect to all varia-
bles y;) and that

P @) = ;>0 (¢Dwg) = —y < 0)  (j=0,1,...,n—1).
This being assumed we have

¢ w) > 20— 0Nl —aol; H)  (¢W2) < — 25+ 0|2 — 2|5 H))
i=0,1,..,n—1)
in the interval |x— x| < min (y, oo H)).
As an immediate ecorollary of Theorem 21.2 we obtain the next
theorem.

THEOREM 21.3. Under the assumptions of Theorem 21.2 suppose that
n > =0 (—g<—7<0) (=0,1,..,n-1)
Denote by t; the least root of the equation in t
(21.3) 20—t H) =75 (—2m5+ oD(t; H) = —7;)

if such a root exists in the interval 0 < t < ay; if it does not exist, put t; = + oo.
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§ 21. Absolute values estimates

Under these hypotheses we have
¢idw) > (pDw)<—7) (j=0,1,..,0-1)
in the interval |w— a,| < min(y, ag, Loy try cey tno1).
Examrre 21.1. Let ¢(x) be of class €' in the interval
(21.4) le—ao| <y .
Suppose that ¢(x) satisfies the initial inequalities
@)l <70, ' (@)l <
and the differential inequality
\D-¢'(2)] < alg'(@)] (a>0).
The comparison equation of second order is here
y'(t) = ay'(t)

and its unique solution, satisfying the initial conditions

, Y(O) =m, y'@) =,
18

(1) = (et —1) 475,
By Theorem 21.1, we have in the interval (21.4)
p(@)] < B(eslod—1) 47y, |g'(@)] < mevloeol
If, moreover, we assume that

P(e) =1>0, ¢'(@)=m>0,
then, by Theorem 21.2,
p(x) > no—%(e“'“"”"'—l) y o 9(@) = 2m— g etleml
in the interval (21.4). Suppose finally that 5, > % >0, 7 > 7 > 0.
Equations (21.3) bave now the form

nr%(e‘”—l) =70, 2m—met =17.

Their only solutions are respectively

_ 1 . (10— Tj) 1 h—T
to—aln(lf—z——), h=gin (14 0R).

Hence, by Theorem 21.3, we have
(@) >, ¢@)>n

in the interval |#— x| < min(y, &), t).

J. Szarski, Differential inequalities J
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§ 22. Some integral inequalities. Integral inequalities we are going
to deal with in this section are closely related with first order ordinary
differential inequalities. This will be made clear by the proposition we
prove first.

ProrosiTION 22.1. Let oi(t, 415 -y Yn) (¢ =1,2,...,0) be continuous
in an open region D and let (Y4, Xo) = ({y, Y1y -y Yu) € D. Suppose that

D(t) = (pa(t), ..or @ult)) is continuous in an interval [t,,y) and that
{t, (1)) e D. Under these assumptions, if

(22.1) D(ty) < Yy,

and

(22.2) D_(pz(i) < 01“7 Palt) s ey ‘pn(t)) for o <t<y
(t=1,2,..,n),

then
{

(22.3)  @ilt) <Gt | oift, ¢a(1)y eoor palr) e for o <t<y
o .
(i=1,2,..,1n).

Proof. Consider the Picard’s transform of @(¢)
t
yilt) = ‘Pi(t)"f O'i(Ta P1(T)y +ves ‘Pn(f))dt (1=1,2,..,0).
to

The funetion y4(t) is continuous in [f,, ¥) and, by (22.2), we have
D_yi(t) = D—‘Pi(t)"“ai(t’ i(t)s -y ‘Pn(t)) <0.

Hence, by Remark 2.1, y4(t) is decreasing and since, by (22.1), there
is pi(ly) < 9, we obtain

vil) <wilte) < ¥ on [ty 7)),

which is equivalent to (22.3).

By Proposition 22.1, inequalities (22.1) and (22.2) imply integral
inequalities (22.3); but, obviously, (22.3) does not imply (22.2).

Now we know, by Theorem 9.3, that under the assumptions of Prop-
osition 22.1, provided that o¢(¢f, Y) satisfy condition W (see § 4), from
the inequalities (22.1) and (22.2) result the inequalities

(22.4) D) < 2(t; t, Y¥,y)  for 1, <t< min(y, a),

where £2(i; t,, Y,) is the right-hand maximum solution of (5.1) through
(to, Yy), defined in [4,, ay).

Next, we will prove that (22.4) is also a consequence of the essen-
tially weaker (than (22.1) and (22.2)) inequalities (22.3), provided that
the condition W, be substituted by the stronger condition W, (see § 4).
In fact, we have the following theorem (see [39] and [65]):



§ 22. Some integral inequalities 67

THEOREM 22.1. Let oi(t, Y15 --.r ¥a) (1 =1,2,...,0) be continuous in
the open region D = {(t, Y): @ < t < b, Y arbitrary} and satisfy condition W .
(see §4). Let (ty, Xo) = (to, §1, -, ¥n) € D. Suppose that ®(t) = (py(t), ..., Pa(t))
is continuous in an interval [4,, v) and that (t, @(t)) € D. Under these assump-
tions, if

t
(22.8)  pult) <Gi+ [ oilt, pi(0), s a2 de  Jor fy<t<y
to

(1=1,2,..,n),
then

(22.6) D(t) <Lt %y Yo)  for <t <min(y, q),
where Q(t; 1y, Y,) s the righi-hand maximum solution of (5.1) through
(toy Xo), defined on [ty, ap).

Proof. Put

£
Bilt) = Yi+ [ oilr, pu(v), s @)y (i =1,2,...,m).
to

Then, by (22.5) and by condition W,, we have
Bilt) = oift, a(t), ey oal®)) < ailty Bul2), ..o; Balt))  for o <E<y
(t=1,2,..,n).
Moreover, Bi(t,) = ¥:; therefore, by Theorem 9.3, we get
Bilt) < wilty 1y, X)) for <t < min(y,a) (1=1,2,..,%n),

whence follows (22.6), since @«t) < fult) (1 =1,2, ..., n).
As a corollary of Theorem 22.1 we obtain immediately the following
known result (see [10]).

Assume ¢(?) to be continuous on an interval [t,, ) and to satisfy
the integral inequality

t
p(t) < g+ [ aln)o(v)dr,
ty

where a(t) is continuous and non-negative for ¢, <¢ < y. Then

t

() < ypexp (f a(’r)dr) for ¢t <t<y.
lo

Remark. One can show (see [39]) that in Theorem 22.1 condition W .
is essential.

From Theorem 22.1 we derive the following corollary:
CoROLLARY 22.1. Under the assumptions of Theorem 22.1 suppose that

t
22.7) i) <wi®) + [ ailr, pu(0), oy ul@))dr (E=1,2, .., )

5*
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for 1, <t <y, where V(1) = (pit), ..., pu(l)) s continuous on [ty, y). This
being assumed, we have

(22.8) () S V()+2,(1)  for t,<t<min(y,a),
where Q2,(t) is the righi-hand maximum solution through (4,0, ...,0) of

the system

d .
% = oi(t, wl(t)+y1, ey '/’n(t)+yn) (@ = 17 27 veey ’)’l/) ’

defined on [1,, o).
Proof. Put

Git, ¥) = aift, P+ Y)  (6=1,2,..,m).

The functions &;(t, Y) are continuous and satisfy condition W, in
the region D.
If we write
@i(t) = @u(t)—pi(t) (¢=1,2,..,m),
then, by (22.7), we have

¢

gt < [ Gife, Buln)y vy Fulr))dr (6=1,2,...,m).
to

Therefore, we see that &(t), 5(t, ¥) (i =1, 2, ..., n) satisfy all the
assumptions of Theorem 22.1 in the region D with (f,, Y,) = (4, 0, ..., 0).
Hence we have

¢'T(t) <O(t)  for  t <t < min(y, a),

which is equivalent with (22.8).



CHAPTER V

CAUCHY PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS

In the present chapter we give a number of applications of results
obtained in Chapters ITT and IV to different questions concerning the
Cauchy problem for ordinary differential equations. In particular, we
find: estimates of the solution and of its existence interval, estimates
of the difference between two solutions, estimates of the error for an
approximate solution and uniqueness criteria. Moreover, we discuss con-
tinnous dependence of the solution on initial data and on the right-hand
sides of the equations, Chaplygin method and approximation of solutions
of ordinary differential equations in a normed linear space.

§ 23. Estimates of the solution and of its existence interval. We prove
THEOREM 23.1. Consider a system of ordinary differential equations

dy; ) .
(23.1) L= 1@, Y1y ey yn) ((=1,2, ).

Suppose the right-hand members fdx, Y) to be defined in the region
(23.2) [e—my| < by |Yi—¥l <hbi (E=1,2,..,n)
and to satisfy the inequalities
(23.3) fi(e, D) < ollo—al, [Y-T,|) (1=1,2,..,9),

where Yo = (Y1, -5 Yu)y @nd oi(t, Y1, ..., Yn) are the right-hand members of
a comparison system of type 1 (see § 14)

, d .
(23.4) —d% = 0ty Yo, s Yn) (6=1,2,...,0).

Denote by Q(t; H) = (oy(t; H), ..., ou(t; H)) the right-hand mazimum
solution of (23.4) through (0, H) = (0, ny, ..., na), defined in the intervel
[0, o). Suppose Y (x) = (yy(2), ..., Yn(®)) is a solution of system (23.1)
satisfying initial inequalities

(23.5) |yi(.af'o)""?°/i| << by (¢t=1,2,..,n)
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and reaching the boundary of (23.2) by both extremities (see § 7). Denote
by t; the least root of the equation in

wi(t; H) = hy

if such a root exists in the interval (0, a,); if it does not exist, put t; = + co.
Under these assumptions the solution Y (x) exists in the interval

(23.6) \@— @] < hg = min (h, ag, ty, -.n, ta)
and satisfies there the imequalities
(23.7) Y (2)— Xo| < Q(|z—wl; H) .

Proof. Let (#y—a,x,+ ) be the maximal existence interval of
Y () and put

D(») = (‘Pl(x)y ) ‘Pn(m)) = (yl(w)—gh ey ?/n(“f')_fgn);
then we have, by (23.3) and (23.5),
9i@)| = |yi@)| = |fulw, Y (@)| < ollo—m|, |2@)]) (=1,2,..,n)
in the interval (®,— a, %, + f) and
o) <H.

Hence, by Theorem 15.1, inequality (23.7) is satisfied in the interval
(23.8) | — | < min (ay, a, B) .

Therefore, to complete the proof of our theorem it is enough to show
that the interval (23.6) is contained in (23.8). We may suppose that,
for instance, < a; then we have to show that h, < 8. Suppose the
contrary, i.e. h, > ; then the point § would belong to the interval (0, k)
and since ws(0; H) = n; < hi, we would have, by the definition of ¢,
(23.9) wif; Hy<hy (1=1,2,..,n).

Consider now the following compact set:

(23.10) |o—m| <P, |yi—gil <ol H) (=1,2,..,m).

By (23.9) and by the inequality g < h, < &, this compact set is con-
tained in (23.2). On the other hand, in view of the inequalities 8 < q,
B8 < hy < a4, the interval (23.8) is identical with |x—ax, < f§, and since
inequalities (23.7) are satisfied in (23.8), we would have in particular

|Y () — Y| < (o —~al; H) < 2(8; H)
in the intcrval
(23.11) 0 —wy < 8.
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This means that the solution-path Y = Y(x) would be contained,
for # belonging to (23.11), in the compaect set (23.10) which—as we saw—is
contained in (23.2). But this is impossible because the solution Y (),
considered in (23.11), reaches the boundary of (23.2) by its right-hand
extremity (see § 7).

By an analogous argument, using Theorem 21.1 we obtain

THEOREM 23.2. Consider a differential equation of n-th order
(23.12) Yy (@) = f(x7 y(@),y'(®), ..., y(nvl)(w)) .

Suppose its right-hand member f(x, Yo, Y1y ..oy Yn—1) 10 be defined in
the region

(23.13) =@l <h, lyi—gl<h; (j=0,1,..,n-1)
and to satisfy the inequality
f(t, V)| <o(lw—ml, |Y—X,),

where Xy = (Yo, Y1y <oy Yn—1)y N 0(y Yo, Y1y vy Yn—1) 18 the right-hand side
of & comparison equation (see § 20)

(23.14) Yo t) = o (t, y(8), ¥'(1), e Y I(T)] -

Denote by w(t; H) the right-hand maximum solution of (23.14) through
(0, H) = (0, gy 1y ---» Tn—1), defined in the interval [0, a)). Suppose that
y(x) is a solution of equation (23.12) satisfying the initial inequalities

|.7/(j)(‘170)'—§7'| S <y (j=10,1,..,n—1)
and reaching the boundary of (23.13) by both extremities (see § 17). Denote
by t; the least root of the equation in t
Nty H) = hy

if such a root exists in the interval (0, a,); if it does not exist, put t; = + co.

Under these assumptions the solution y(x) exists in the interval

|e— 2| < min(h, ag, ty, ...y tp-1)

and satisfies the inequalities

¥0(@) ;| < 0|z —als H)  (j=0,1,...,n~1).

§ 24. Estimates of the difference between two solutions. We prove
THEOREM 24.1. Let the right-hand members of systew (23.1) and of
the system

d ~ .
(24.1) D= Tu@, yuy ey yn) (G=1,2, 05 m)



72 CHAPTER V. Cauchy problem for ordinary differential equations

be defined in an open region D and satisfy the imequalilies
(24.2)  |fiw, ))—Tile, T)l <odllo—aml, [Y~¥])  (i=1,2,..,0),

where ci(ty Yy, oy Yn) are the right-hand sides of a comparison system (23.4)
of type 1 (see §14). Suppose that Y (x) = (yl(w), ey yn(w)} and Y (2)
= (J1(@), ..., Yn(®)) are two solutions of systems (23.1) and (24.1) respectively,
defined in an interval |x—axy| < y and satisfying the initial inequalities

(24.3) |Y () — ¥ ()] < H,

where H = (qy, ..., na). Denote by Q(t; H) = (oy(t; H), ..., wa(t; H)) the
right-hand maximum solution of the comparison system (23.4) through (0, H)
and let it be defined in [0, ap).

Under these hypotheses we have the inequalities

(24.4) |Y (2)— Y (2)] < 2z —a,/; H)
wn the interval
(24.5) |2 — @) < min(y, ay) .

Proof. In the interval |z— x| < y put
P (@) = (72(®), -, ¥a(@)) = (Ya(®) ~Fa(®) .., Yn(®) —Fl)) -
Then, by (24.2) and (24.3), we have
lpi(m)| = i) —Fi@)| = |filz, Y (@) —fo(x, ¥ (2))
<oillo—ml, |P@]) (i=1,2,..,9),

and |@(x,)| < H.

Hence, by Theorem 15.1, inequalities (24.4) hold true in the inter-
val (24.5).

In a similar way, using Theorem 21.1 we get

THEOREM 24.2. Let the right-hand wmember of equation (23.12) and
of equation

(24.6) Yy @) =T (@, y(@), y' (@), ..., yo())
be defined in an open region D and sotisfy the inequality
i@, ¥)—f(@, D) < o(le—m, | Y- T,

where o(t, Yo, Y1y ooy Yn—) 15 the righi-hand side of the comparison equa-
tion (23.14). Suppose y(x) and y(x) are two solutions of equation (23.12)
and (24.6) respectively, defined in an interval |x— x| < y and satisfying the
initial inequalities

Y )~ T o) <my (G=10,1,..,n—1).
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Denote by w(t; H) the right-hand maximum solution of the comparison
equation (23.14) through (0, H) = (0, 1g; N1y ey Nu—1) and let it be defined
in [0, ap).

Under these assumptions we have the inequalities

[y P(2) -y Nw)| < oN|lw—m); H) (j=0,1,...,n—1)

in the interval
| — x| < min(y, a) -

§ 25. Uniqueness criteria. Continuous dependence of the solution of Cauchy
problem on the initial values and on the right-hand sides. As an immediate
consequence of Theorem 24.1 we obtain the following uniqueness cri-
terion:

THEOREM 25.1. Let the right-hand members of system (23.1) be defined
in an open region D, containing the point (zy, Y,), and satisfy the inequalities

25.1)  |fi(z, Y)—fue, 1) <ollz—a, |T-Y)) (=1,2,..,n),

where oi(t, Yy s ..., Yn) are the right-hand sides of a comparison system of type I
(see § 14). Suppose that
6i(t,0,...,00)=0 (i=1,2,..,2%)
and that
Q)=0 for 0<t<-+oo,
where Q(t) = (w,(t), ..., wn(t)) is the right-hand maximum solution of the

comparison system through the origin.
Under these assumptions system (23.1) admits at most one solution

through (xy, ¥,) ¢n D.
Proof. Let Y (x) = (yu(®), ..., Yn(®)) and ¥ () = (Ja(®), ..., Ju(®)) be
two solutions of system (23.1), defined in some interval |x—z| < y and

such that N
Y(my) = Y(w,) = ¥,.

Then, by Theorem 24.1 (systems (23.1) and (24.1) are now identical)
and by our assumptions, we have

|Y (2)— ¥ ()] < Q(la—a]) = 0
and consequently
Y@)=Y@) for |o—az)<y.

Remark 25.1. In particular, the comparison system with

oilty Yuy ooy Yn) = K Zw (K> 0)
i=1
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satisfies all the assumptions of Theorem 25.1 and in this case inequalities
(25.1) mean that the right-hand members of system (23.1) satisfy a Lip-
schitz condition with respect to Y.

Remark 25.2. What concerns uniqueness of the solution for » > w,,
i.e. to right from the initial point, condition (25.1) can be substituted
by an essentially weaker one, viz.

() [fle, Y)~filz, DIsgn(y—7:) < ole—a, | ¥~ ¥))
(i=1,2,..,n).

In this case the proof of uniqueness is achieved in the following way.
Let yix) and yi(x) (1 =1, 2, .., n) be two solutions issued from (xy, ¥,)
and defined in some interval 0 <<ax—a, < y. Put for 0 i<y

@ilt) = yi(@o+t)— Yil@o+ )| (¢=1,2,...,mn).

Since @i(0) = [yuw,) —Fs(@)| = 0 (¢ =1, 2, ..., n), it suffices, by The-
orem 11.1, to show that
(i1) pi(t) < Gi(ty P1(t)y oeey <Pn(t))

for ¢ in the set
By = {te(0,y): @it) > 0}.

Now, if 7¢ H;, then we have
gilt) = [yalo+1)—Fu(@q + 1)]sgn (ye(to + ) —Fileto +7))
in some neighborhood of 7 and consequently we get
#i(1) = [Yi(@o 1) — Jho+ 1) sgn [y (o + 1) — Fulwo + 1)) -
From the last relation and from (i) we obtain (ii) for t=1.

From this remark it follows, in particular, that for one equation

d
=iy,
with f(z,y) decreasing with respect to ¥, we have uniqueness to right
from the initial point. Indeed, under this assumption equation
dy
v i 0
can be taken for a comparison one.

By Theorem 24.2, we get the next theorem.

THEOREM 25.2. Let the right-hand member of equation (23.12) be defined
in an open region D, containing the point (o, Yoy Y1y oy Yn—1), and satisfy
the inequality

i@, Y)—](@, D) < ollo—al, [T T,
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where a(ty Yo, Y1y +eey Yn—1) 8 the righi-hand side of a comparison equation
(see § 20). Suppose that
6(t,0,..,0)=0
and that
w(t)=0 for 0<<t<+oo,

where w(t) is the right-hand maximum solution of the comparison equation,
satisfying the initial conditions

oD0)=0 (j=0,1,..,n—1).

Under these hypotheses equatton (23.12) admits at most one solution
satisfying the initial conditions

YNz) =9; (=0,1,..,0—1).

Next we will show that under the hypotheses of Theorem 23.1 the
solution of system (23.1) depends continuously on the initial point and
on the right-hand sides.

THEOREM 25.3. Let the right-hand sides fix, Y) (1 =1,2,..,%) of
system (23.1) be continuous in an open region D and satisfy the assumptions
of Theorem 25.1. Let Y () = (y1(®), ..., Yn()) be the solution of system (23.1)
through (xq, Y,) € D and assume it to be defined in an interval |z — x, < a.
Suppose that the right-hand members 7¢(w, Y)(#=1,2,..,n)of system (24.1)
are continuous in D and let Y(x; ¥) = (1 Y), ey ks 17)) be any
solution of system (24.1) through (zy, Y¥) € D, continued to the boundary of D
in both directions (see § 7).

Under these assumptions we have the following propositions:

1. To every positive y < a there is a positive 6 such that if \17— Y| <4
and
(25.2) fi(w, T)—TFa(w, T <8 (i=1,2,..,n),
then the solution Y (#; Y) of system (24.1) is defined in the interval
(25.3) le—a,| <y .

2. To every ¢ > 0 there is a positive 8, < 6 such that inequalities

i D=yl <& (i=1,2,..,%)
are satisfied in the interval (25.3) whenever
Y — Y| < 6, |fda, Y)—Tolw, ¥)| <& (i=1,2...,n).
Proof. For u > 0 consider the comparison system

dys

e, Dtp (i=1,2,.,m)
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and let Q(t; H, u) = (wy(t; H, u), ..., oalt; H, p)) be its right-hand maxi-
mum solution through (0, H) = (0, 7y, ... 77n) Since—in view of our
assumptions—there is 2(¢; 0, 0) = Q(t) =90 for 0 <t < 4 oo, we conclude,
by Theorem 10.1, that for any positive y < a

1° there is a positive ¢ such that £2(¢; H, u) is defined in the interval
[0, ] whenever p <4, 0 < ni<d (¢=1,2,..,n),

2° lim Q(i; H, p) = 0 uniformly in [0, y].

H—0,—0
Hz0,uz0

Suppose (25.2) holds true with the above 4. By (25.1) and (25.2),
we have for any two points (z, ¥), (#, ¥Y)e D
(25.5) (@, T)—F(e, T)| < Ifs(w, T)—File, T) +|fi@, T)— iz, D)
< oy|le— |, | Y — Y| )+6 (1= 1, 2,...,n0).
Suppose that
(25.6) ¥ — Y, < 6;
then, putting #; = [¢;—¥:| we have
(25.7) 0< = |Ji—il <6 (i=1,2,..,n).

Denote by (z,—d, z, +§) the maximal existence interval of Y(z; Y).
We may assume that, for instance, 0 < g << a. Let f; and Y satisfy (25.2)
and (25.6). By (25.7), we have

REEY y)—Z’/i(fﬂoﬂ =g~ =m<d (1=1,2,...,n).
Hence, by (25.5) and by Theorem 24.1, we get

(25.8) |¥ (@5 ¥)— Y (2)] < Q(ja—a,; H, 6)
in the interval
(25.9) |&— x| < min(y, f) .

By 2° we may assume that § was chosen small enough, so that the
compact set

(25.10) =@l <y, [Y—-Y@)|<Q(2—al; H,?)

be contained in the region D. In order to prove assertion 1 of our theorem,
it is sufficient to show that J; and ¥ satisfying (25.2) and (25.6) we have
B>y Suppose the contrary, i.e. B < y; then, by (25.8), the solution
path Y = Y(m, Y) would be contained in the _compact set (25.10) for
0<e—my< /3, which is impossible since Y(w, ) reaches the boundary
of D by its right-hand extremity. Thus, assertlon 1 is proved.

Now, take an arbitrary ¢ > 0. By 2°, there is a positive §; < § such
that for 0 << d, (6 =1,2,..,n) we have

(25.11)  ot; H,0)<e in 0<t<y (i=1,2,..,n).



-3
-1

§ 25. Uniqueness criteria

Suppose that
Y—Y < é, |filz, V)=Filx, )< (6=1,2,..,n);

then by an argument similar to that used in the proof of assertion 1 we
conclude, by (25.11), that

‘yi(m; Y)—yu@)| < oi|lz—2ol; H, 0) < e (t1=1,2,..,n)

in the interval (25.3). This completes the proof of assertion 2.

What concerns an nth order ordinary differential equation we have
the following

THEOREM 25.4. Let the right-hand member f(2, Yo, Y1y vy Yn_1) 0f
equation (23.12) be continuous in an open region D and satisfy the assump-
tions of Theorem 25.2. Let y(x) be the solution of equation (23.12) satisfying
initial conditions

YNwg) =¢; (=0,1,..,n—1)

and assume it to be defined in an interval |x—x,| < a. Suppose that the

~

reght-hand sige F(2y Yos Yry eey Yn—1) Of equation (24.6) is continuous in D
and let y (x; Y) be any solution of equation (24.6), satisfying initial conditions
Y (@3 ?) =7y ({=0,1,.,n-1)

and continued to the boundary of D in both directions (see § 17).
Under these assumptions the following propositions hold true:
1. To every positive y < a there is a positive & such that if
Fi—@l <8 (=0,1,.,n-1), |f(@ V)~f@, D)<,
then the solution ¥ (x; Y) of equation (24.6) is defined in the interval
|&— x| < 7.
2. To every & > 0 there is a positive 6, < 0 such that the inequalities
F@; T)—y@) <e  (j=0,1,..,n-1)
are satisfied in the interval \@— u,| < y whenever
Fi=gil <6 (i=0,1,.,n=1), [f(z,Y)~](@, V)| <.
Now, we are going to prove Kamke’s (see [14], p. 139) uniqueness
criterion which is more general than the one contained in Theorem 25.1.
This time the much weaker assumptions will not assure, in general, the
continuous dependence of the solution on the initial point.
THEOREM 25.5. Let the right-hand members fix, Y) (1 =1,2,..,0)
of system (23.1) be defined in an open region D, containing the point (zq, Y,),
and satisfy the inequality

n

2512) Do, V)—fue, D <oljo—al, X 1i—5) Jor @+,

i=1
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where o(t,y) 48 the right-hand side of a comparison equation of type IIT
(see § 14). Then system (23.1) admits at most one solution through (x,, ¥Y,)
in D.

Proof. Suppose Y (z) = (41(2), -.., ya(®)) and ¥ (z) = (§i(2), ..., V(@)
are two solutions of system (23.1), defined in an interval |z— x| < 7 and
satisfying initial conditions

(25.13) Y(z)) = Y(w) = ¥,.

Since the assumptions of our theorem are invariant under the mapping
&= —ux+2x,, it is sufficient to prove that
(25.14) | [yi{@) —Fila@) = 0

i=1

in the interval
(25.15) O<o—my<y.

Put

n

P(t) = 2 lydao-+ = Filan +1)
for
(25.16) 0<t<y.
The function ¢(f) is continuous in the interval (25.16) and, by (25.13),
there is
(25.17) p(0)=0.
Further we have

n

(25.18)  D¥g(0) < D lyian) ~Film) = X fiao Yo)—Fitao, Fo)l = 0.

n
=1 =1

-,

Finally, by (25.12), we get for 0 <t <y

(25.19) D_@(t) < 2, |yil@+1)—yi(w+1)]

'tﬁs

i
1

.fi(wo—l—t Ym0+t)~f(w0+t Ywﬁ—t)' oft, @(t )

M:

1

From (25.17), (25.18) and (25.19) it follows, by the third eomparison
theorem (see § 14), that

-
l

@(t) <0

in the interval (25.16). But, since ¢(f) > 0, we conclude that ¢(f) =0
in (25.16) and consequently (25.14) is satisfied in the interval (25.15).



Remark 25.3. If the comparison equation of tiype II1 is, in particular,
equation () from Example 14.2, then Theorem 25.5 gives Osgood’s uni-
queness criterion. Similarly, Theorem 25.5 contains, as a particular case,
Nagumo’s criterion if the comparison equation is that of the Example 14.3.

Remark 25.4. In view of the Remark 14.3, Theorem 23.5 would
be false if property («;) of the comparison equation of type III were re-
placed by the essentially weaker property (w,). Indeed, if we put

¢'(2)
O for >0 >0
f(w,y): ¢(.’)§')y ) y/ ’
0 elsewhere ,
then for the equation
- d
(25.20) E% = f(%,¥)

and for the comparison equation (14.13) the assumption (25.12) of Theorem
25.5 is satisfied at the point (0, 0). However, there are two different solu-
tions of (25.20) through the origin, viz. y(z) = ¢(z) and y(z) = 0. In the
above counter-example the right-hand member f(x, y) of (25.20) was dis-
continuous for & = 0. It is possible to construct a similar example with
f(x,y) continuous in the whole plane [56].

Remark 25.5. In the case of one equation with a continuous right-
hand side Kamke’s uniqueness criterion is only apparently more general
than the criterion of Theorem 23.1. Indeed, the following result, due
to C. Olech {37], is true.

Let the function f(x,y) be continuous in the neighborhood of the
point (z,, ¥,) and satisfy there the inequality

lf(-%!/)“f(wayﬂ<0(|$—%(,l?/*“m) for w#“"o’

where o(t, y) is the right-hand side of a comparison equation of type IIT;
then f(x, y) also satisfies an inequality

|f(x7 3/)~f($, ?7)] < &’(]w~w0|, ‘y"g)) i
where o(t, y) is the right-hand side of a comparison equation of type T
(see § 14) satisfying assumptions of Theorem 25.1.

Remark 25.6. Due to Theorem 15.4 it is easy to check that Theo-
rems 24.1, 25.1 and 25.5 are true for a system (23.1) with a being a real
variable, y; (i =1,2,..,n) being vectors in a linear normed space €,
f{z, Y) being vector-valued funetions with values in £ and the absolute
value being substituted by the norm in €.

§ 26. Estimates of the error of an approximate solution. In this section
we describe a general method by which we can evaluate the error when,
instead of the solution of a given (“difficult to solve”) system, the
solution of an approximate (‘‘easy to solve’’) one is taken (see [60]).
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Let the right-hand members of the (‘“difficult to solve”) system

d .
(26.1) D 1@y 91y ey g0) (G=1,2,.ym)
be continuous in an open region D containing the point (x,, ¥,)
= (&g, Y15 ++oy Yn). Denote by ¥ (z) = (yi(), ..., ¥n(x)) a solution of sys-
tem (26.1) through (w,, ¥,). Suppose that the inequalities

(262) iz, T)| <Fllo—aol, [T—T)) (i=1,2,..,n)

hold true, @;(t, ¥, ..., ¥») being the right-hand sides of a comparison
system of type I (see § 14). Let 2(f) = (@i(t), ..., @a(t)) be its right-hand
maximum solution through the origin. Consider the approximate (‘‘easy
to solve”) system

d .
(26.3) L @y Yy ey Yn) (E=1,2, )

with right-hand sides continuous in D and let ¥(z) = (71(2), ..., Gul))
be its solution through (z,, ¥,) in the interval |z— &, < y. Assume that

(26.4)  |gue, Y)—giw, ¥)| <6dllo—a|, |Y-¥) (i=1,2,..,n),

where 0;(t, ¥;, ..., ¥n) are the right-hand members of a comparison system
of type I (see § 14). Suppose finally that the following limitation of the
difference between the right-hand sides of the given system (26.1) and
of the approximate one (26.3) is known

(26.5)  [fi(z, ¥)—gu@, Y)| S hl|z— @, |[ Y- Tol)  (i=1,2,..,n),

where the functions hi(t, ¥y, ..., ¥s) satisfy condition W. with respect
to Y (see § 4).

Under all these assumptions we are able to evaluate the difference
between the solution Y (x), which is sought for, and the approximate
one Y(x). We do it in two steps.

I step. Estimate of the solution and of its existence interval. In view
of (26.2) we evaluate, by Theorem 23.1, the existence interval

(26.6) |— 24 << hy
of Y(x) and Y(x) itself
(26.7) | Y (2)— Y| < 'w %ol)

in the interval (26.6).
IT step. Evaluation of the error. Solution Y (x) of system (26.1)
satisfies obviously the system

d )
(26.8) Ly py s yn) ((=1,2, . m),
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where

Jitw, Y) = giw, ¥)+ [filw, Y (@) —gifw, Y(®))] (i=1,2,..,n).

By (26.4), (26.5), (26.7) and by the condition W, (satisfied by he),
we get
(26.9) lgilw, V)~ Gile, T)| < ollo—al, [Y—F) (E=1,2,...,n),
where for oi{t, ¥, ..., ¥u) We can take any functions satisfying inequalities
(26.10)  0ulty Y1y oy Yn) 3= Gty Yry ooy Yn) HRaft, 2(1))  (6=1,2,...,0)

and being right-hand sides of a comparison system of type I. Denoting
by 2(t) = (w,(t), ..., wa(?)) its right-hand maximum solution through the
origin, defined in an interval [0, ay), we conclude, by (26.9) and by Theo-
rem 24.1 applied to system (26.3) and (26.8), that

(26.11) | Y (2)— ¥ (2)] < Q(lw—al)
in the interval
(&— x| < min(hy, ¥, o) .

Inequalities (26.11) give the evaluation of the error that was sought for.

Exampie 26.1. To illustrate the procedure described above, let us
congider the case when the approximate system (26.3) is linear, its right-
hand sides being Taylor’s expansions up to order one of the right-hand
members of the given system (26.1). '

Assume then that the right-hand sides f'(z, ¥) of system (26.1)
are of class C? in the cube

(26.12) el <h, |yl<h (E=1,2,..,n),

and let (@, ¥,) = (0,0, ..., 0). Suppose that we have

(2613)  11(0,0,..,0) =0, |fal, Ify,l <A, |faal, fonsl ol < B
in the cube (26.12); then we get in (26.12)

fac =) Z A& E)Y;

[1

fi(@, ) = |f(@, ¥)~10, 0)l =
Aflel+ 2, 1) -
Hence, for 6;(t, Y) in (26.2) we can take

G, D)= A+ Xy (=1,2,.,n).
j=1

J. Szarski, Differential inequalities 8



82 CHAPTER V. Cauchy problem for ordinary differential equations

The unique solution through the origin of the comparison system with
the above right-hand sides is

~ 1 .
wi(t) = oyl (end'—1—ndt) (1=1,2,..,n).
Since

nAt (nAt)3

@i(t) = fnﬁA 31

1
-+ ...] < §At2€n‘4t 9

the unique root #; of the equation in #, m«(?) = h, is not less than that of the
equation fAwer4t = k. The root of the last equation is, by its twrn, not

less than
- o
& = min (h’ VZ 8—71,4}!/2) .

Hence we have t; =20 (t=1,2,..,n) and, by Theorem 23.1, the

solution Y(z) = (yl veey Yn()) of system (26.1) through the origin
exists in the interval
(26.14) || < 6

and satisfies there the inequalities

(26.15) @) < Blo)) < FA|ePerdr  (i=1,2,..,0).
Write
fo=140,0,..,0), fi =£0,0,..,0)
and take for the right-hand sides of the approximate system (26.3)

n
@, V) =afe+ Y yifl, (=1,2,.,m).
i=1
By (26.13), we have then
g, Y)—gi(e, V)| < 4 ny; Wl (i=1,2,.,m),
and consequently for ¢; in (26.4) we can choose
n
(26.16) Silt, H)=A Dy (i=1,2,..,m).
j=

By Taylor’s formula and by (26.13), we get

o, )=gte, 1)l = [5[o +Zway> e, =) <

< 35[0 +Z ) -
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Hence, for k'(z, Y) in (26.5) we can put

Wiz, ¥) = 4B+ Y ) (=1,2,..,n).
i=1

Since in the interval (26.14) we have

iy & 1 n 2 1 " 2
h (t, .Q(t)) < §B(t + EAﬁenAt) < §B(1 + _Q_AhenAh) e,

we can choose for o4(f, Y) in (26.10) (see (26.16))

ot, ) = C+4 Dy, (i=1,2,..,n),
j=1

where
C = 1B(1+in Aherdh)?

Now, the only solution through the origin of the comparison system
with the right-hand members o4(t, Y), defined above, is

20 Aty
20 [(nAt)E (nAt) (o} )
= (%A)s [( 31 ) ( T ) _{_”.] < E_taenzﬂ (,[/ — 1, 2’ s ’”/) .

Therefore, we get finally
~ ¢ )
yil@)—Filw)| < 3 loPerdl= (i=1,2,...,n)

in the interval (26.14), where y;(z) (¢ = 1, 2, ..., %) is the solution through
the origin of the approximate (in our case linear) system (26.3).

§ 27. Stability of the solution. We give here a stability criterion
which is an immediate consequence of Theorem 23.1.

THEOREM 27.1. Let the right-hand sides of system (26.1) be continuous
in the region

Te<er< +00, |ysl<h (#=1,2,..,n).
Suppose that fix,0,..,0)=0 (i=1,2,..,n) and
(27.1) [fw, X)| < osw—ao, |Y]) (i=1,2,..,n),

where oi(t, Y) are the right-hand members of a comparison system of type 1
(see §14). Assume that o0i(¢,0,..,0)=0 (i=1,2,..,n) and that the
null solution of the comparison system is stable (see [7], p. 314).

Under these assumptions the null solution of system (26.1) is stable.

0¥
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Proof. In view of the stability of the null solution of the comparison
system, there is an h, < h such that whenever

O m<h (1=1,2,..,n),

then any solution ws(t) of the comparison system, starting from the point
(0, H) = (0, 51y ..., u), is defined in the interval [0, + oo) and satisfies
the inequalities wi(t) < b (¢ =1, 2, ..., n). Hence, by (27.1) and by Theo-
rem 23.1, any solution of system (26.1) through a point (z,, Y) exists
in the interval [#,, - co), whenever Y = (71, ..., ) satisties the ine-
qualities
|?7i|<h’0 (1=1,2,..,n).

Moreover, for any such solution Y(»; ¥) = (ya(; Y), ..., ynla; f)}
inequalities
(27.2) |¥ (#; T)| < Q(2—a; |T))

hold true, where Q(¢; H) is the right-hand maximum solution of the
comparison system through (0, H). From (27.2) and from the assumptions
on the comparison system follows the conclusion of our theorem.

By the same argument we prove the next theorem.

THEOREM 27.2. If, under the hypotheses of Theorem 27.1, we additionally
assume that the right-hand sides oi(t, Y) of the comparison system do not
depend on 1, then the null solution of system (26.1) is uniformly stable.

§ 28. Differential inequalities in the complex domain. In this section
we will obtain an analogue of Theorem 15.1 in the case when gi(2)
(k=1,2,..,n) are holomorphic functions of the complex variable z
in a disk |z—2| < v.

In order to apply here the theory of differential inequalities in the
real domain, we will have to consider real functions

My(t) = max |gp(2)] for O0<t<y.
|2 20| =t
Therefore, we first prove a lemma on Dini’s derivatives D._ M(t).
LEMMA 28.1. Let ¢(2) be holomorphic in the disk

(28.1) 2— 2| < ¥
and put
M) = max |p(zg)] for 0<t<y.
|z~20| =1
Then, to every te (0, y) there is a 3 such that
(28.2) 13—%| =1,
(28.3) M(t) = e,

(28.4) D_M()<|¢'3)l -
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Proof. There exists, obviously, a 3 satisfying (28.2) and (23.3). Let
3 = 2 +1e¥,

where 4 is the imaginary unit, and take a sequence %,, 0 < 1, < y, 8o that
t, < t, t,—1 and

(28.5) Lim M_{@@ = D_M(t).

y=>00 tv"
Put
v =2+t (v=1,2,..).

Since, by the definition of M(4), there is

M) > lel,
we get, by (28.3),

(8.6) =M M(t)=leB) _loB)I—leG)

t,—1 th—1 - t,—1

@) —19@)] _ leG)—eB) _ l«p(au)—q)(‘a)l
= ] T =t 3v—3 '

Because of 3,3, relations (28.5) and (28.6) imply (28.4).

THEOREM 28.1. Suppose that D(2) = (¢y(2), ..., 9u(?)) is holomorphic in
the disk (28.1) and satisfies initial inequality

(28.7) |9(0)| < H,
where H = (1y, vey W)y, as well as differential inequalities
(28.8) I94()| < oufle—2), |D@)) (b =1,2,..,m)

in (28.1), where ox(t, ¥y, ..., Yn) are the right-hand sides of a comparison
system of type I (see § 14).
Under these hypotheses we have

(28.9) [P ()] < L(1z—2%l; H)
tn the disk
(28.10) |#2— 2| < min (y, ao(H)) ,

where Q(t; H) = (wy(t; H), ..., wa(t; H)) is the right-hand mavimum solution
through (0, H) of the comparison system in the interval [0, ay(H)).
Proof. Put

Myt) = max gu(9)] (B =1,2,.,m), M(t) = (Msft), ..., Maft))

le—2o} =t
for 0 <t < y. The funections M(t) are continuous and satisfy, by (28.7),
initial inequalities
(28.11) M(0)<H.
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By Lemma 28.1, for any f ¢ (0, y) there is a 3; such that

(28.12)  [ge—2l =1, M) = |gc(3e)l, D-M(t) < |@k(3¢)]

(k=1,2,..,m).
Hence, by (28.8), we have

(28.13)  D_ M(t) < |gi(30)| < ou(i3x— 2, |PGr)]) (b =1,2,..,n).

Further, by the definition of My(¢) and by (28.12), the following
inequalities hold true (see § 4):

|2 (3%)] gk M@ (k=1,2,..,n).
Therefore, in view of condition W. (see § 4), we have
(28.14) or(3e— 20l |2 (30)]) < olt, M(t) (k=1,2,..,n).
Inequalities (28.13) and (28.14) imply
(28.15) D_Mu(t) < oxlt, M(t)) (k=1,2,..,n)

in the interval (0, y). From (28.11) and (28.15) it follows, by Theorem 9.3,
that

(28.16) M@ < Q(; H)

in the interval 0 < ¢ < min (y, ay(H)); but inequalities (28.16) are equiv-
alent with (28.9) in the disk (28.10), which completes the proof.

§ 29, Estimates of the solution and of its radius of convergence for
differential equations in the complex domain, This paragraph deals with
an analogue of Theorem 23.1 in the complex domain (see [58]). To start
with, we state an analogue of Theorem 7.3, which is easily proved by
the method of successive approximations.

THEOREM 29.1. Let the vight-hand sides of the system

dz k

(29.1) T = {2, 215 oy 2n)  (k=1,2,..,0)
be analytic functions of n+41 complex variables (2, 2y, ..., #n) in the domain
(29.2) 2—30l < kb, |2e—3kl<h (k=1,2,..,n)

and suppose that in (29.2)
(29.3) lfe(z, Z) | <M (k=1,2,..,n).

Under these assumptions the unique solution Z(z) = (2,(2), ..., 2n(2))
of system (29.1), satisfying initial conditions

(29.4) 2e(30) = 3 (k=1,2,..,n),
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is holomorphic in the disk

(29.5) [2—3¢] < min(h, jhf) .

THEOREM 29.2. Suppose that the right-hand members [i(z, 2y, ..., 2)
of system (29.1) are analytic functions in the complex domain
D:jz—gl<r, @r—2l<rn (k=1,2,..,n)
and satisfy the inequalities
(29.6) (2, Z)| < owlla—20], |2~ 2Z,)) (k=1,2,..,n),

where Zy = (214 .0y 2n) and oil{t, Yy, ..., Yn) are the vighi-hand sides of
a comparison system of type I (see § 14). Denote by Q(t; H) = (ay(t; H), ...
eevy wp(t; H)) its vight-hand mazimum solution through (0, H) = (0, 7y, vy ),
defined in the interval [0, ao(H)). Suppose that Z(z) = (%(2), ..., 2(2)} is
o solution of system (29.1) satisfying initial inequality

(29.7) |Z(2)—Z| <H < R,
where B = (ry, ..., 11). Denote by ty the least root of the equation in &
wr(t; H) = ry

if such a root exists in the interval (0, ay); ¢f it does not exist, put ty = + oo.
Under these hypotheses the solution Z(z) is holomorphic in the disk

(29.8) [— 2] < g = Min(r, ay, ty, ..., tn)

and satisfies there the inequalities

(29.9) | Z(2)— Zo) < 2(|2—2|; H) .
Proof. Let
(29.10) le—zl <y <7

be the largest disk in which the solution Z(2) is holomorphic and put
B(2) = (pa(2), ey @al®)) = (ea(2)— 21, o 20(2) —20) -

The funetion @(z) is holomorphic in the disk (29.10) and, by (29.7),

satisfies initial inequality (28.7). By (29.6), we have in (29.10)
r(2)] = 125(2)] = |fi(e) Z(@))| < oxllz— 20|, | Z(2)— &)
= ap(|z—2|, |P@)]) (k=1,2,..,%).

Hence, by Theorem 28.1, inequalities (28.9) are satisfied in the

disk (28.10) and consequently inequalities (29.9) hold true in the

disk (28.10). Therefore, to complete the proof it remains to show that
o < 7. Suppose the contrary is true, i.e. r, > y; then y e (0, a,) and, by
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the definition of {x, we have wi(y; H) <7 (k=1,2, ..., n). Choose »', b
and b’ so that

(29.11) y <y <1y,
(29.12) o(y; H) <b<b' <y (k=1,2,...,10)
and consider the compact domain

Dy Ja—z) <y |lox—2| <b (B=1,2,..,n).

Obviously D, C D and there is an M such that

(29.13) fxl2, Z) < Min D, (k=1,2,..,n).
Put
_ y,_y r__ b'—b
(29.14) h=tot, W=

and choose g > 0 such that
(29.15) 0<y, y——@<min(h,7;:[—).
Let 3 =2,+pe* be an arbitrary point of the circle |z—3z,| =y

and put 3, = 2+ 0€%, 3 = 2x(3,) (k =1, 2, ..., n). Since inequalities (29.9)
hold true in the disk {28.10) and since ¢ < y < a,, we have, by (29.12),

(20.16) | 3x— 3kl = [2k(30)— &4l < wi(30—2l; H)
=owp(o; H) < op(y; H)Y<bd (k=1,2,..,n).
Consider the domain
D2: |Z—30‘<h, Izk-?)k(<h, (70—-—1,2,...,%),

with & and b’ defined by formulas (29.14:). We claim that D, C D,. Indeed,
by (29.11), (29.12), (29.15) and (29.16), we have

|2—30l < h=>{2—2| < [2—3| +[30—2| < h+g

Y=y Yt T e
=5 te<—H— +y—~——2 <y,

26— 8| < B'=|2x—2n| <|2p— 3l + 36—l < B+

b'—b b +b

Therefore, by (29.13),
ez, Z) <M in D,

and, by Theorem 29.1, the unique solution wg(?) (k=1,2,..,n) of
system (29.1), satisfying initial conditions

(29.17) ve(30) = e = %(30) (A =1,2,..,20),
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is holomorphic in the disk (29.5). We claim that the last disk contains
the point 3 = 2, + yeit. Indeed, by (29.15),

— 3 =py—eo<min|h W,
13— 3 =v—e Tl

but, in view of (29.17) and of the uniqueness of the solution of the Cauchy
problem, we have

vi(2) = 2x(2) (b =1,2,..,n)

in the intersection of the disk (29.5) and (29.10). That means that yg(z)
is the analytic continuation of z¢(2) in the neighborhood of the point
3 =% +ye. Hence, 3 being an arbitrary point of the circle |z— 2}
=y, it follows that Z(z) is holomorphic in a larger disk than (29.10),
contrary to the definition of the disk (29.10). This contradiction completes
the proof of the inequality 7, < y.

§ 30. Estimates of the difference between two solutions in the complex
domain. Here we prove an analogue of Theorem 24.1.

THEOREM 30.1. Let the right-hand sides of system (29.1) and of system

| du o,
(30.1) %‘ =T, 21y ytm) (B=1,2,..,1)

be analytic in an open region D and satisfy the inequalities
(30.2)  [fulz, 2)—fele, 2)| < oulle—aol, 1Z2-2))  (k=1,2,...,n),

where ox(t, Y) are the right-hand members of a comparison system of type 1
(see § 14). Suppose Z(2) = (4(2), ..., 2(2) and Z(2) = (3u(2), ..., Zul?)) are
two solutions of system (29.1) and (30.1) respectively, holomorphic in a disk
[2—2,| < y and satisfying the initial inequality

~

(30.3) [Z(20) —Z(2)] < H ,
where H = (1), .oy 7). Let Q(t; H) = (wy(t; H), ..., wn(t; H)) be the right-
hand mazimum solution of the comparison system through (0, H), defined

in the interval [0, a).
Under these assumptions we have

(30.4) 1Z(2)— Z (2)] < 2(|s—2l; H)
in the disk
(30.5) |2—2o] < min(y, a) .

Proof. Put in the disk |2—2,| < »

D(2) = ((2(2), ... Pa(2)) = [(2) = F(2), ..., 20(2) —Zn(2));
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then, by (30.2) and (30.3), we have

I9k(2)] = [24(2)—F(2)| = |felz, Z () —Fales Z(2))| < onlle— 2ol [P (2)])

(k=1,2,..,n)
and
[P(2)| < H .

Hence, by Theorem 28.1, inequalities (30.4) hold true in the disk
(30.5).

To close this section we make the following remark. All the results
of § 26 are valid for systems (29.1) of ordinary differential equations in
the complex domain. Indeed, in our considerations in § 26 we used only
Theorems 23.1 and 24.1, while their analogues in the complex domain,
viz. Theorems 29.2 and 30.1, have just been proved in § 29 and § 30.

§ 31. Chaplygin method for ordinary differential equations. We consider
the differential equation

(31.1) w = f(t, u)
with the initial condition
(31.2) #(0) = ¥, ,

where f(t, 4) is continuous for 0 <<t < a and arbitrary «. Suppose that
fult, w) is continuous in (¢, ). Given an arbitrary continuous funetion
¢(t), te[0, a], we write down the equation

(31.3) w = f(t, o) +fult, o) (u—@(t)) = o(¢, u; @) .

The right-hand side of this equation is a linear approximation of
that of (31.1). This is nothing else but the analogue of Newton’s method
known for numerical equations. Like in this classical case, we need some
a priori bounds for solutions. To begin with we introduce the following
definition:

DrrFiniTION. Let the function ¢(f) (y(t)) be differentiable in the
interval [0, a]. We say that ¢(f) (w(t)) is a lower (upper) function if
@'(1) <f(t, o), 1[0, a] (W) =F(t,v(?), @(0) = u, (¥(0) = u,).

Notice now that if f,(¢, #) is continuous, then the Cauchy problem
(31.1), (31.2) has the uniqueness property. Denote its unique solution
by %(t). It follows then from Theorem 9.5 and from the classical conti-
nuation procedure (see Theorem 7.1) that the following proposition
holds true:

PrOPOSITION 31.1. Let f(t, u), fu(t, ) be continuous and suppose that
there exist an wupper function y(t) and a lower one ¢(t). Then the unique
solution u(t) of (31.1), (31.2) exists all over the interval [0, a] and ¢(t)
<u(t) <p() for 0 <t<a.
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ExXAMPLE. Suppose that
—Aju|—B < f(t,u)< Alu|+B.
We can take ¢(t) as the solution of
w =—A4u—B, @0)=1u
and () as the solution of
w=d\ul+B, p(0)=1u.

Besides the linear approximation of type (31.3) we can approximate
equation (31.1) by the equation
Fit, o) —1{t, v(2))

() —yp(1)

provided that ¢(t) < w(t). If ¢(t) = ¢(f), then we put

8(ty u; @, p) = Ff{t, (1) +fult, p(0) (u—a (1)) .

We say that the couple (¢, ) is admissible if p(t) is a lower function
and p(t) is an upper function.

In what follows we deal with the method originated by Chaplygin
in [6] and developed by Lusin [20]. The first theorem is the following one:

THEOREM 31.1. Suppose that the couple (¢, y) is admissible. Let f(t, u)
and f,(t, u) be continuous and suppose that f,(t, u) increases in u.

Define now: @(t) = the solution of u' = d(t, u; @) such that (0) = u,,

B(1) = the solution of w’ = 8(t, u; @, p) such that P(0) = u,.

Then (@, %) is an admissible couple and

w = 8(t, u; @, p) =f(t, @(t)) + (u—g(t)

pt) <) <u() <p)<yp#) for 0<ti<a.

Proof. The functions ¢,y are the solutions of linear equations.
Hence they are defined all over the interval [0, a]. We have ¢'() < f(t, o t))
=0(t, 9(1); ), 9(0) = up = @(0) and @'(t) = 4(t, p(t); ¢). It follows then
from Theorem 9.5 that
(31.4) p(t) <gll) .

On the other hand, the function f(#, %) is convex in u. Hence
F(t) = 3(t, p(0); ¢) = 1{t, p(1)) +1ult, 0 (D) (@MW) —9 (1) <F(t, B(1). We see
that () is a lower funetion and consequently, by Proposition 31.1,
@(1) < u(t).

Notice now that

3ty p(1); @y 9) = F(t, w(1)) .
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But p(#) is an upper function. Hence y'(t) > f(t, ¢(t)) and conse-
quently _
Y1) > 8{t, w(t); @, ) -

Since y(0) = ¥ (0) = %y, Theorem 9.5 applies and we get (1) < p(1).
Observe that 5(t, @ (1); @, 9) = flt, ¢(t)) = ¢'(t) and p(0) = p(0). By Theo-
rem 9.5, we get therefore ¢(t) < p(t). This last inequality together with
the convexity of f(t, u) in u proves that p'(t) = 8(t, p(1); ¢, v) > f(t, B(?)),
i.e. p(t) is an upper function. It follows then that «#(f) < p(¢) which com-
pletes the proof.

The above theorem defines the transformation (¢, v)-—>(p,y). We
denote this transformation by C and thus get (¢, ») = C(gp, ). Moreover,
Theorem 31.1 shows that O maps admissible couples on admissible ones.
If we start with an admissible couple (¢,, ¥,), then the sequence (@1, ¥ni1)
= CO(pn, yn) is well defined. It consists of admissible couples or more
precisely the following conditions hold true:

(31.5) Pn(0) = u(0) = pu(0) = 2, ,
(31.6) #ult) < f(t pa(t))

(31.7) Yalt) > f(t, va?))

(31.8) Pa(t) < Pnr1(l) < U(l) < Pusar(t) < walt)
(31.9) gn(t) = 3¢, 9a(®); @n)
(31.10) Y(t) = 6(t, vu(t); Pa-1y Yn1) -

The sequence (g, w.) is called the Chaplygin sequence.
Next we prove

THEOREM 31.2. Under the assumptions of Theorem 31.1, if (g, y)
is an admissible couple, the Chaplygin sequence

(Pos wo) = (5 9) sy (Pnr1s Y1) = Olon, ¥u)

18 uniformly convergent to u(t) on [0, a].
Proof. It follows from (31.8) that the sequences {pn(f)} and {y.(?)}
are uniformly bounded on [0, a]. Let

max {|ga(1)], [pa())} < K < + oo
for n =0,1,2, ..., 0<t< a; then
(ty s ()] + [fult) groa(®)] (l9a(®)] + l@n-a(D)]) ,
(ty ona(8))] + |fults Ou(0)| (fa(D)] + [ @na(D)])

where
Pn-1(t) < Oa(t) < pnalt).
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Write
R =max{ sup |f({,u)l, sup |fult, w)[3;

o<i<a, [ul<K o<it<a, ju|<K
then
lgn(t)] < B4-2RK,  |pu(t)) < B+ 2RK

and consequently gx(f) and y(f) are equicontinuous on [0, ¢]. But, these
sequences are equibounded on [0, a]. By Arzela’s theorem both of them
have uniformly convergent subsequences. Since both are monotonic,
they must be uniformly convergent. We will show that both limit func-
tions are equal to the unique solution «(#) of the problem (31.1), (31.2).
Indeed, we have

@) = F (¢, pus(D) | < B l@a(t) — gn1(t)] -
Hence

t a
oalt)—o— [ 1(v, pu-s(x)) de| < R [ |gu(r)— gns(m) dr .
0 0

The right-hand side of the last inequality tends to zero. It follows
that lim ¢, is the (unique) solution of problem (31.1), (31.2) and con-
N—>0

sequently «(1) = lim gy(?).

n—>00

Write #(t) = lim yyu(t). It follows from (31.10) and from the definition
of 8 that
lpn(t)— 1 {t, Pa-2()| < Blya(t)— @aa(d)] -

The integration and the equalities ¢,(0) = %, = ¢4(0) give us

t
|on(t) — to— [ (z, pucsl®)) x| < R [ lyale) —pnalo)l .
0 0

The limit passage in this inequality and the fact that () = lim @,(t)

satisfies

i
w(t) = uy+ [ f{z, u(x))de
¢
imply that
¢
() —u(®) <R [ |p(r)—u(z)|dr.
0
By theorem on integral inequalities (see § 22), we get |v(t)—u(t)] = 0,
ie. v(t) = u(t), as was to be proved.
Following Lusin we will prove
THEOREM 31.3. Suppose that f,.(t, u) exists, is bounded and f (t, u) = 0
in D = {(t, w): 0 <1< a, golt) < u < pylt))}.
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Let (gy, o) be an admissible couple and write
-1
" 2HaeEe’
where K == sgpifu(t, u), H = sup |fuult, 4)|-
Assume that 0 <%('t)—%(lt)) < C. Then, for the Chaplygin sequence

2¢

(31.11) |#a(t)—¥a(t)] < 53

and consequently, by (31.8),

|N(t):—(]7n(t)l <2—‘2€y |“<t)*w(t)i <;g'

Proof. (31.11) holds for # = 0. Let it hold for some #. It follows
from the definition of ¢,1,¥n+1 that

Yor1(t)—pa-a(t) = fult, P) (Wn—l—l(t) - ‘Pn+x(t)) +
+fult, D) {CPn-H(vt) - ‘Pn(t)) ‘fu(tr ‘Pn(t)) (‘Pnﬂ(t) - Q’n(t)) ’

where
(31.13) oa(t) < p < wall) .
On the other hand,
(31.14) fult, ») “fu(ty (Pn(vt)) = fuu{t, qQ)(p— ‘P‘n(t)) ’

where @,(t) < ¢ < p. But
fult, I S K (fuddt, QI < H .
It follows from (31.13) and from (31.14) that
(81.13)  [ynra()~@ura(t)|
< K |9n41(t) —@nra()] + H {9 — @u()] l@nsa(f) — al?)] -
But |p—ea(t)] < |pa(t) —ga(t)] by (31.13). Notice that
Pu(t) < @ria(t) S #(t) < yalt);
[@n+1(8)— @a(t)| < [9alt) — @u(t)] .

It follows from (31.15) and from the above inequalities that

hence

[Yn+1(t) — @us1(t)] < K| pnia(t) — @n 2] + H [palt) — @a(1) .

We have assumed that

20
fwa(t) —@a(t)| < o -
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We obtain, therefore,
2207

[Pn+1(t) = @r41(t)] < K|9na(t) — @as1(?)] +H22n+1
and consequently, by Theorem 15.1 when applied to v, 1(f)— @a.a(t),

¢
[¥n+1(t) — @rra(t)] < {QKU S)H rg ds .

Now
22(2 92
2 T i i2pKa g

and
t

f eEt-9ds < geke ,
1]

We get, therefore,

H aeKe2? 2C
lw7l71(t) (Pn+l(t)\ = 22H2a-825“22"“ = éﬁ—l ’ q'e'd'

Let us consider now the system

(31.16) Yi = filly Yay ey Yu) (I =1,2,..,0)
together with initial conditions
(31.17) yi(0) = ¥; .

We assume that fi(f, ¥y, ..., ¥s) are defined on [0, a] x R". In the
vector form (31.16) and (31.17) may be written as

(31.18) Y=FtY, Y(0)=
The vector-valued function @(t) is called lower if
2(0)=Y, DO<F{tP) () on [0,a].

The definition of an upper function is obvious.
Suppose now that f; have continuous derivatives &fioy; (4,7 =1,
2,..,n). We write down a linear system in the vector form

(3L19) Y =PF(t, V(1) +F,(t, V) (Y-¥(1) () £ @, ;)

where F, stands for the matrix {9f;/oy;} and ¥(?) is continuous vector-
valued function.
Let us introduce the following condition:

(31.20) F(t, U)+F,t, )(V-T)<F(,V) for Tx=TU.

() For the meaning of the inequality sign, see § 4.
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Suppose now that f; satisfy condition W, (see § 4) and let the solu-
tion Y (¢) of (31.18) exist all over [0, a]. It follows from Theorem 9.3 that
if @ (t) is lower, then @ (t) <Y (f) on [0, «]. On the other hand, given a vector
function ¥(t), continuous on [0, a], we can find a unique solution ¥(t)
of (31.19) such that ¥(0) = Y. The system (31.19) is linear. Hence ¥(t)
exists on the whole interval [0, a]. We have thus the transformation
¥, formally ¥ = O(¥). The question is whether ¥ is lower function
if ¥ is a lower one. We will prove

THEOREM 31.4. Suppose that f; are of class C* and satisfy condition W
and let Y (t) be the solution of (31.18) ewisting on [0, a]. Let F(t,Y) satisfy
{31.20) and let @(t) be lower. Then ¥ = C(P) is lower and

O <PH<Y(E) on [0,d].

Proof. Notice that since f; satisfy condition W, then &f;/0y; = 0
for ¢ #j. It fcllows then that the right-hand sides of system (31.19)
satisfy condition W.,.

We have:

Yty = G(t, P(t); D), @'(t) <F(t,D(t) =G, P(1); D), D(0)="P(0).

But G(t,Y; @) satisfies condition W,.. By Theorem 9.3 we get,
therefore, @(f) << W(¢) and consequently, by (31.20),

(1) = Gt, P(t); ) < F[t, P()) .

Hence, ?(t) is lower what implies ¥(t) < Y (1).
The above theorem shows that the sequence

By =0@, Ppi= 0Dy

is well defined on [0, ] and ®Pu(t) < Dp41(t) < ¥ (). This is the Chaplygin
sequence for a system of ordinary differential equations. It is easy to check
that &,(t) tends uniformly to Y (¢) on [0, a].

§ 32, Approximation of solutions of an ordinary differential equation in
a Banach space. Preceding sections concerned scalar differential equa-
tions. We could get some estimates for abselute values by using differential
inequalities. It is of some interest to consider equation of form (31.1)
from the purely metric point of view. What we have in mind is the discus-
sion of problem (31.1), (31.3) in Banach space, without any relation of
semi-order, which is the case of scalar equations.

To be more precise, we consider the equation

(32.1) @ = f(t, x),

where z and f (¢, z) take on the values in a Banach space %, the derivative z’
being taken in the strong sense.
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We add the initial eondition
(32.2) z(0) = @, .

The elements of F will be denoted by «, y, ... The functions of the
real variable ¢ with values in ¥ are denoted by x(t), y(t), ...; ||| stands
for the norm of x. We will work under the assumption that f (¢, ) is defined
for 0 <¢ < a and arbitrary «. In what follows we suppose that for every
fixed ¢ the function f(¢, x) is Fréchet differentiable in & to f.(t, x) (see [21],
p. 300). f.(t, ®) is a linear, bounded operator mapping F into E. We
assume that f.(t, #) is strongly continuous in (¢, ), i.e. if ¢,—t,z,—>x
(strongly), then

falte, Xp)2—>f{t, )2
strongly for every z ¢ E. Next we introduce the assumption:

(32.3) There is a function w(t, %) > 0, continuous for 0 <t << a, u = 0,
increasing in « and such that ||f.(t, x)—7.(f, ¥)| < (L, |z—yl)-

Suppose now that the function #,(f) is continous on [0, a] and write
the equation

(32.4) @' = f(t, 26(t)) + folt, wo(t)) (£ — o(2))
and
(32.5) ®(0) = @, .

Notice that f.(t, ) being continuous, the condition (32.3) implies that
f(t, ) satisfies locally the Lipschitz condition in x. Moreover, we assume
that f(t, #) is continuous in (f, #). It follows then that (32.1), (32.2) is
locally solvable (see [21], p. 291). By the same token (32.4), (32.5) has
a unique solution x(t), which by the linearity of (32.4) exists all over
the interval [0, a]. Hence to every x(-) e Cg[0, a] () there corresponds
an z(-) € Og[0, o] via the equation (32.4). Like in § 31 we have the trans-
formation C defined by x# = Cx, and the sequence

Lpyr1 = Cwn

is well defined. Tt consists of functions () e Cg[0, a] and satisfying
the relations
(32.6) 2a(0) = @,
(32.7) Biosa(t) = F{t, Dalt)) + falty 2a(®) (Ensa(t)— 2al?) -

We first prove

THEOREM 32.1. Let f(t, ) satisfy (32.3) and suppose that |lwa(t)||
<M< +oo for 0Kt<a (n=20,1,2,..). Then {xa(t)} is uniformly
convergent on [0, a] to the solution x(t) of (32.1), (32.2).

(1) €40, a] denotes here the space of E-valued functions strongly continuous
on [0, a].

J. Szarski, Differential inequalities




98 CHAPTER V. Cauchy problem for ordinary differential equations

Proof. It follows from the continuity of f.(¢, 8) and from the Banach-
Steinhaus principle that

sup fx(ty O)l = N < + oo.

The difference 2,(t) = x,.1(t) —xa(f) satisfies the equation

(32.8)  a(t) = fac(ty (L‘,,(t)} an(t) +f (tr mn(t)) ‘—fuv(tr wn—l(‘t))zn—l(t)“f(t’ wn—l(t))
and
(32.9) 2n(0) = 6.

We need the estimate of
7(t5 @n()) — Folts #as(0)) 20-rt) = F (¢, Bua(t)) | -

To do this, notice that by the classical results of the theory of Banach
spaces there exists a linear, continuous functional & with norm ||&| <1
such that

L = &[f{t, wa(®)) — (£, Tnoa(t) — falty Bar)) 2n-1(t)]
= ||£{ts @a(®) = 7 (t, Bus(t)) —Falt, Bnr()) 2na ()] -
Consider the real function
¢ (r) = Ef(t, @na(t) +7{@a(t) — @0-s(D))) -
By mean value theorem, there is 7 € (0, 1) such that
P(1)—@(0) = &foft, Tu—a(t) + n2u—a(t)) 2ua(?) -
We apply now (32.3) and thus get
L = £|falt, @) + n8n-1(t)) 2n-1(t) — flt, Xn—1(t)) 201 (1)]
<|IFelty Basa(t) + n2n1(1) = flt s @us()))] 20 -1(8)]
< @ty nliza-1 @)l oDl -
But w(t, #) increases in «. Hence
oty 7zl < oft, [#a-1(Dl])

and consequently
L < oft, |10} l1#a-1(8)I] -

The above estimates show that (32.3) implies
(8230)  [|f(t, @n(®) —fofts 2ns(®)) 2n-s(t) = F (¢, @u-a(t)) |

< w(t7 Hzn—l(t)n) | 2n—-1(D)] -
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Moreover,
{32.11) K=N{imax o(t, )< + co.

[0,a]

It follows from (32.8) and (32.10) that
[en(tl < K |2n(®)l] + @ (¢, |2n-1(®)l) l|2a—1()]
and consequently, by (32.9) and by Theorem 153.4,

¢
)l < [ €K (s, ||zn-1(8)]) 12n-r(8)1ds .

But ||z4(f)]] < 2M; hence,

ol <23 G0 =120,

where
F = Rexp(Ra), R = max(K,max o(t,2M)).

[0,a]

We infer, by completeness of E, that {x,(f)} is uniformly convergent
on [0, a] to a certain limit y(¢). By (32.6), (32.7),

4
wn+1(t) = &p +‘f [f (87 Wn(s)) +f:c(8y wﬂ(s)) (w,,,+1(s)— xﬂ(s))] ds .
The limit passage gives us
11
y(t) = 2+ 1(s, y(9))ds ,

which, by uniqueness of (32.1), (32.2), proves that y(t) = 2(l), q.e.d.
The Lusin estimates can be generalized as follows:

THEOREM 32.2. Swuppose that the assumptions of Theorem 32.1 hold
true and suppose that

e —2 @)l <wlt), 0<ti<a.
We define

t

Wpra(t) = f eKt-9 s, wa(8)) w(s)ds
with ’
K = sup||f.(t, 8)| + max w(t, M) .
{0,a} {0,a}

Then ||wa(t)— 2 ()| < walt).
Proof. Let ga(t) = ||2a(t) —2(t)]- We have
@'(t) = f{t, x(t))

d
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and, by (32.7),

[@a(t)—@(8)]' = falt, @na(t)) [n(t)— 2 ()] +
+folty @na(t) [#(8) = Zas(] + [f (£, @a—alt)) —f (¢, 2(1))] -
Condition (32.3) implies that (see the proof of (32.10))

D_gn(t) < Ega(t) + o (t, @o1()) gu-alt) -
Notice that ¢,{0) = 0. Hence (see Example 9.1)

t
Pa(t) < f KG9 (87 (Pn—l(s))‘?n—l(s)ds .
(1]
Now, an easy induction and the monotonicity of (¢, #) in 4 proves
our assertion.

Remark. If o = Qu (@ = const), then

aalt)— 2 ()] <

1
) < 2gaexpiga ~

The function w, may be chosen in many ways, by using the a priori
estimates (see [28]). The most simple choice is w, = 2M.

The question of boundedness plays an essential role in Theorem 32.1.
We will give a certain method of evaluation of the interval of equibounded-
ness for the sequence {x,(t)}. We start with a lemma which is due to T. Wa-
zewski.

LeMMA 32.1. Suppose that the function o(t, u,v) >0 48 continuous
for 0 <t << a; u,v=0. We assume that o(t, u, v) increasés in v. Suppose
that for n =0 the right-hand maximum solution w(t,n) (w(0,n) = n) of

the equation
w =c(t,u,u)

exists on [0, al. Under the above assumptions the right-hand maximum
solution w(t, n) (w(0, n) = n) of the equation
w =yt u) = olt,u, w(t, "7))
exists on [0, a] and
w(t, n) =w(t,n).

Proof. The maximum solution (¢, ) exists in a right-hand neigh-
borhood of zero. Suppose that

(32.12) w(t, n) < w(t, n)
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for some ¢t within the common part of the existence intervals of considered
maximum solutions. The monotonicity of o(t, u, ) in » implies then

(32.13) w'(t,n) = G(ty w{t, ), w(t, "7)) G(t’ w(t, n), w(t, "7))

for such ¢. Hence, (32.12) implies (32.13) what, by Theorem 11.1, proves
that % (¢, ) < w(t,n) in the common existence interval. On the other
hand, w(t, 5) exists on [0, al, a(t, %, v) > 0 and (¢, 5) can be continued
to the boundary (see § 9). It follows then that @W(¢, n) exists all over the
interval [0, a]. Previous arguments apply and we conclude that w(t, n)
<w(t, ) on [0, a]. Notice now that w'(t, n) = o{t, w(t, n), w(t, n)) =
y(t, w(t, ). Hence w(t,n) <W®(¢,n) and consequently
w(t, ) =w(,n) on [0,a],

which completes the proof.
Suppose now that the functions F(f) and G(t) are continuous on the
interval [0, a] and

IF @ @)l < F(t), |felty @)l < G(f) on [0, ].
Let us take the equation
w = 3Gt u+3w(, w)u-F(t)

and denote by ¢(?) its right-hand maximum solution such that ¢(0) = 0.
Let us assume that ¢(f) exists on the interval [0, a]. Next we prove the
following theorem:

TaEOREM 32.3. Let (32.3) be satisfied and suppose that z(t)e Og[0,a] and
2(0) =@y, [@(t)—wl < (D).
Suppose that y(t) satisfies
y'(t) =1(t, (1)) +folt, () (y () —2 (1)) ,
Y(0) =a,.
Then |y (¢) — |l < (1) on [0, al.
Proof. We have

[y ()=o)’ = F{t, @(0)) + falt, @) [y () — @) + alt, (1)) [m6— 2 (1)]
and
falt, @ () (y () — @) || < [G41) + o (1, e ()] 1y ) — @l

felts 2 (O) {ge— 2 (1) + 12, 2M)]| < 20(t, W) p (1) + 26 (D) +F (1) -
Hence,

Iy (&) — 2]l < [G() +wt, @ ()] 1y (£) — ol + ,
+2(t, p(t))(t) +2G (e (t)+F() on [0,a]
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and, by Theorem 15.4,
(32.14) 1y () —@ll < 9(2),
where »(0) = 0 and u(?) is the right-hand maximum solution of
W = [@(t) Folt, pt)]u+ [20(t, o) +260)]p@) +F ().
By Lemma 32.1, applied for
a(t,u,v) = 2w, v)v+2G(#)0+F )+ o, v) +G(t)]u

we get y(t) = ¢(t) which, by (32.14), completes the proof.
It follows from the above theorem that if x, is given, then [0, a] is
determined by x,, f(t, ) and by w(t, ). On the interval [0, a] we get then

(1) — || < @ (1)

if 2y(t) = x,. Hence {wx(t)} is equibounded on [0, a]. We may then evaluate
a priori the interval of equiboundedness with a special choice of constant
initial function xy(t) = x,.



CHAPTER VI

SOME AUXILIARY THEOREMS

The theory of ordinary differential inequalities, developed in Chap-
ter IV, enables us to get estimates for functions of one variable. Now,
in the subsequent chapters we are going to deal with applications of
ordinary differential inequalities to partial differential equations. Since
solutions of partial differential equations are functions of several variables,
we will have to associate with a given function ¢(f, X) = @(¢, #y, ..., &n)
a function M (¢) of one variable only, so that ¢(f, X) < M (1). In this way,
an estimate from above obtained for the funection M (¢), by means of
ordinary differential inequalities, will yield automatically an estimate
from above for the function ¢(¢, X).

§ 33. Maximum of a continuous function of »n+1 variables on n-dimen-
sional planes. To begin with, we introduce the definition of a region of
special type.

Region of type C. A region D in the space of points (f, 24, ..., Z»)
will be called region of type C if the following conditions are satisfied:

(a) D is open, contained in the zone t, <t <ty,+T < -+ oo, and the
intersection of the closure of D with any closed zone t, <t <t <, +T
is bounded.

{b) The projection §;,, on the space (z, ..., #z) of the intersection of
the closure of D with the plane t = #, is, for any ?; € [t), t, +T'), non-empty.

(¢) The point (t, X) being arbitrarily fixed in the closure of D, to
every sequence t, such that i, € %y, {,+7T') and ?, —1, there is a sequence X,,
so that X, e 8, and X,—X.

ExsMPLES 33.1. () Let G be an open, bounded region in the space
(®15 ..., ). Then the topological product D = (f,, {,+1') x G is a region
of type C.

(B) Another example of a region of type C is a pyramid defined
by the inequalities

fh<t<ty+T, |mi—x:i <a—L{t—1) (=1,2,..,n),

where 0 <L < + o0, 0 < a; < + oo and T < min(ay/L).
i
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(v) Put
D ={X)r0<ti<l, 0<a<?2},
D,={t, X):1<t<2, 0<2<1},
D =D, uD,.
Then D is not a region of type C.
In fact, condition (c) is not satisfied, for example, at the point (1, 3).

THEOREM 33.1. Let ¢(t, X) = @(t, @1y ..y ¥n) be continuous in the
closure of a region D of type C and put

M) =max p(t, X) for ta<<t<t,+T.
XES@

Then
1° For every t* € [t,, to+1T) there is a point X* ¢ Sy such that

(33.1) M(t*) = p(t*, X¥).

2° If (33.1) holds true for an interior point (t*, X*) ¢ D and if gi(t*, X*)
exists, then
(33.2) D™ M () < gu(t*, X*) .

3° M(t) is continuous in the interval [t,,t, +T).

Proof. Because of conditions (a) and (b), satisfied by a region of
type C, 8; is a non-empty, compact set for any ¢t e [t,, {,+1); hence, by
the continuity of ¢(¢, X), follows 1°.

Now, let (33.1) hold true for an interior point (#*, X*) ¢ D and suppose
that ¢(t*, X*) exists. Choose a sequence %,, so that f, < ¥, #, - and

(33.3) D2 (t*) = lim L) = M)

y—00 tv —1*

The point (¢*, X*) being interior we have (t,, X*) ¢ D for » sufficiently
large and

*\ _ s *

(33.4) hm?’(tvax )—@(t*, X*)

00 tv - t*

= @(t*, X*).

On the other hand, by the definition of M (¢) and by (33.1), for »
sufficiently large we have

M(t,)— M (t*) < (P(tvy X*)—g(t*, X¥)

t,—1* = t,—t*

(33.5)

From (33.3), (33.4) and (33.5) follows (33.2) and thus 2° is proved.
Next, fix fe[ty,t,+7) and take an arbitrary sequence ¢, e[t,,t,+T)
such that #,->7.



§ 33. Maximum of a continuous function of n 41 variables 105

To prove 3% it is sufficient to show that there is a subsequence h,
such that

(33.6) M(t,,)—~M(t).
By 1°, there are X, ¢ 8;, and X €8, such that
(33.7) M) =ot, X)), M@=¢tX).
By condition (a), there exists a subsequence X ” such that X ,,#—af €S
Hence, by the continuity of ¢(t, X), we get
(33.8) (t,, Xy >0ty X).

In view of (33.7) and (33.8), relation (33.6) will be proved if we show
that

(33.9) o(t, X) = M@).

By condition (¢), since (t, X) ¢ D and t,,—1, there is a sequence X,

such that X,” € St"” and X,ﬂ—)X . Because of continuity we have, by (33.7),
(33.10) @ty X,)—>o(t, X) = M(1) .
Further, by the definition of M (f) and by (33.7), we get
o(ty,, X,) < M(t,) = o(ty,, X,,) .
Hence, from (33.8) and (33.10) it follows that
M(1) < o(t, X).

The last inequality together with the obvious inequality (by the
definition of M (%))

M) > gt X)
yields (33.9), which completes the proof.

Remark 33.1. Condition (c¢) is essential for the continuity of func-
tion M(f) in Theorem 33.1. Indeed, take for D the region from the
Example 33.1, (v) and put

(t, @) = 0 for 0<<I<2,0<0<1,
PHE=1 =1 for 0<t<1,1<s<2.

Then ¢(t, ) is continuous in the closure of D, but M (?) is discon-
tinuous for t =1 since obviously we have M(f) =1 for 0 <t <1 and
M(t)=0 for 1<t<2.

Remark 33.2. It is easily seen that if in point 2° of Theorem 33.1
the derivative ¢ (t*, X*) does not exist, then (33.2) holds true with ¢
replaced by Dini’s derivative D~ with respect to ¢.
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§ 34. Maximum of the absolute value of functions of %1 variables on
n dimensional planes. We prove

THEOREM 34.1. Let the functions ¢(t, X) (I = 1,2, ..., k) be continuous
in the closure of a region D of type C (see § 33). Put

W (t) = max {max |g(t, X)|},
l XeS;

My(t) = max gyt, X) (1=1,2,..,k),
XeS;

Ny(t) = max (—qol(t, X)) I1=1,2,..,k).
XeS;
Under these assumptions the function W (1) is continuous on the interval
[tey To+T') and for every t e [ty, t,+T') there is an index j and a point X € S;
such that either

(34.1) W(t) = Myt) = gi(t, X), D W(t) <D Mt),
or
(34.2) W(t) = Nyt) = —gilt, X), D W(t) <D Nyt).

Relations (34.1) or (34.2) are true with D~ replaced by D*.

Proof. Continuity of W(t) follows from Theorem 33.1, 3° Fix
a telty,t+T) and take a sequence ¢, such that 7, <, t,—~t and

(34.3) D W(t) = hm]mt_;):t_w_%t) .

Obviously, for every » there is an index j, and a point X, e 8, such
that either

(34.4) W(t,) = M;(t,) = ¢;,(t, X,) ,
or
(34_5) W(ty) == Ny'v(ty) - —(pf,,(tvy Xﬂ) .

It is clear that for infinitely many indices » we have either (34.4)
with the same index, say j, or (34.5). Taking, if necessary, a suitable
subsequence we may suppose that, for instance,

(34.6) W(t,) = Myt,) = oft,, X,) for »=1,2,..

Further taking, if necessary, another subsequence we may suppose
(by condition (a) of a region of type C) that

(34.7) X,—+XeS;.

By (34.6), (34.7) and by the continuity of W(¢), M4(¢) and ¢s(t, X),
we get
(34.8) W (1) = Mi(t) = i, X).
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On the other hand, from (34.3), (34.6) and (34.8) it follows that

D W(1) = lim K(L;){TWL) — lim Mg_:tm < DML,

The last inequality together with (34.8) gives (34.1). For D" the
proof is quite similar.

§ 35. Maximum of a continuous function of several variables on plane
sections of a pyramid. Here we get stronger results than those of Theo-
rem 33.1, taking for the region D a pyramid and impesing stronger regula-
rity requirements on the function ¢(t, X).

THEOREM 35.1. Let ¢(t, X) be coniinuous in the pyramid

(35.1) ty<t<<ty+T, |®i—&i <ai—L(t—1%) (t=1,2....,n),

where 0 <L < + oo, 0 < ay<< + oo and Tgm_in(ai/L). Put

M) =maxe(t, X) for t,<t<t+T,
XeSy

where Sy, is the projection on (%, ..., xn) of the intersection of the pyramid
(35.1) with the plane t = 1,.

Under these assumptions,

1° For every 1e (t,, t,+1T) there is a point X €87 such that

(35.2) M) = ¢(t, X)

and the following implication holds true: if either

I. (i, X) is an interior point of the pyramid and the derivatives gi(t, X),
oo, X) (1 =1,2,..,n) evist,

or

II. (tN, X)) is a point on the side surface of the pyramid and ¢ (t, X') possesses
Stole’s differential at (1, X),

then

~

n
(35.3) DM@ <qlfy X)—L D) [gut, X)! .
i=1
2° If, moreover, gi(t, X) ewxists for ty <t <i,+e and is continuous
with respect to (t, X) for t = 1y, then there is a point X, e S;, such that
(35.4) D™ M (to) < oulty, Xo) -

Proof. By Theorem 33.1, 1° there is a point X e 87 such that (35.2)
holds true. Suppose first that I is true. Then, ¢ (¢, X) attaining its maximum
at the interior point X and possessing there first order derivatives, we have

(35.5) put, X)=0 (i=1,2,..,1).
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On the other hand, by Theorem 33.1, 2° we get
(35.6) D M®E) < eff, X).

Relations (35.5) and (35.6) imply (35.3).
Suppose now that II holds true; then, changing—if necessary—the
numbering of variables, we may assume that

51,—-%1,: ap”“L(Z t) p=1,2,..,%,
(35.7) Wq—@g = —ag+L(t—1,) (q=k+1,..,k+1),
|Zr—2e| < ap—L(t—1,) (r=k+14+1,..,n).

Introduce the mapping

_ a(we— &4) .
t=t, q= TRTRL (=1,2,.m),

which transforms the pyramid (35.1) into the parallelepipede

(35.8) h<t<ty+T, g <as (1=1,2,..,n).
Put in (35.8)

(b, H) = p(ty %1y -y 1)

. ay—L{t—1 . an—L(t—t,)
:(,,(t, joy @ LO=0) o (e D)
a'l a/n
Then
M(t) = max y(t, H),
H€;§t
where ;8711 is the projection on (#,, ..., ys) of the intersection of the paral-

lelepipede (35.8) with the plane ¢t = ¢,. Write

~ ai(Ts— @4)

—_— t1=1,2,..,n),
ai—L(t—to) ( 4y ? )

Then, by (35.7), we have
(35.9) =0, Tg=—0, |Tl<ar.

By our assumption that II holds true, o(t, X) possesses Stolz’s dif-
ferential at the point (t X). Therefore, th(t H) = ( s M1y -y n) €Xists
and

~

wlt, B) = of, D L 2 B3,
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whenee, by (35.9),
(35.10)

wll, ) = (@, ¥) - LZ%? ) +L2%q<t %) Z"”%,w ).

By an argument similar to that used in the proof of Theorem 33.1,
2°, we get
{35.11) DM@ <wydi, H).

Now, consider the function of one variable z,

~

(p(’t‘; Byy ey §p——1, Tpy 5p+1, very Zn)
in the interval
[&p— @y +L(E—1), &5 +ap—L{E—1)] .
Since this function attains its maximum at the right-hand extremity
Tp = ®p+ap—L(t—1,) of the interval, we have
(35.12) Faylty X) >0
In a similar way we obtain

(35.13) (qu(?, j) <0, (er(?; X) =

From (35.10), (35.11), (35.12) and (33.13) follows (35.3). Thus part 1°
of our theorem is proved.

Suppose now that ¢ is continuous for f =1¢,. Take a sequence i,
1y > 1y, ty—1, such that

Mt ) - M (%)

{35.14) DY M (t) = lim = i
y—>00 — Yy
and let M(i,) = ¢(t,, X,), where X, eS;,. Then we have
{35.15) M(tv) M(to) g (t.,, X")—_(P(tw v) (t,, X)
t,— 1, t,b—1t, *

where 1, < 1, <t,. We may suppose—taking, if necessary, a subsequence—
that (t,, X,)—>(ty, X,), where X,¢S;. Then, by the continuity of ¢
for t = ¢,, we get

(35.16) lim @i, X.,) = gilly, Xo) .

P—>00

Relations (35.14), (35.15) and (35.16) imply (35.4).

Remark 35.1. It is not difficult to construct a counter-example
showing that continuity of ¢, at {, is essential for part 2° of Theorem 33.1.
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Remark 35.2. It is easy to check that if (7, X) is an interior point
of the pyramid and ¢(t, X) does not exist, then (35.3) holds true with
pi(t, X) replaced by Dini’s derivative D~ of ¢ with respect to 7.

§ 36. Comparison systems with right-hand sides depending on parameters.
To close the present chapter we prove rather special theorems which
will be needed in Chapter VII.

THEOREM 36.1. Let the functions o4(t, V) = oi(t, ¥4, ..., 0p) (1 =1, 2, ...
..., M) be the right-hand members of a comparison system of type I (see § 14).
Denote by 0(t; H) = (wl(t; H), ..., on(t; H)) its right-hand mazimum
solution through (0, H) = (0, 5y,-.., ) tn the interval [0, ay(H)). Consider,
for an arbitrary 1= 0, the comparison system of type I

dm

S(A): ¥

= Aoe(At, U1y ey ) (6=1,2,..,m).

Under these hypotheses, Q2(At; H) is the right-hand mazimum solution
of system S(1) through (0, H) in the interval
(36.1) 0<t<a°—(f[—).

Proof. Observe that if V(1) = (vy(?),..., va(t)) is any solution of
system §(1) through (0, H) in an interval [0, p), then V(1) = (v:(22), ...
ery 'v,,.(ﬂ.t)) is obviously a solution of system S(4) through (0, H) in the
interval [0, y/A). In particular, 2(it; H) is a solution of system S(4)
through (0, H) in the interval (36.1). Hence, the theorem will be proved
if we show that for any solution V() of system S(A) through (0, H), defined
in an interval [0, %), we have

(36.2) V() <Qi; H) for 0<t<min(y, a(H)).

For 4 = 0 it is trivial. Now let 2 > 0 and let ¥ () be any such solution;
then V(f) = V(t/4) is a solution of system S(1) through (0, H), defined
in the interval [0, 7). Henee we have

V() <Q(t; H) for 0<t<min(iy, oH)),

which is equivalent with (36.2).

THEOREM 36.2. Let o(t,v) be the right-hand side of a comparison
equation of type II (see § 14). Then, for any A > 0, the equation

dv

(36.3) % = ho(it, v)

is a comparison equation of type II.
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Proof. Let $(f) be any solution of (36.3) satisfying the condition

Lm®(t) = 0.
t—0
Then, obviously, v»(t) = ¥(¢/4) is a solution of the comparison equation
of type II

and satisfies condition lim v(f) = 0. Hence, v(f) =0 and consequently
10

?(t) = 0, which completes the proof.

In a similar way we prove

THEOREM 36.3. Let a(t,v) be the right-hand member of a comparison
equation of type III (see § 14). Then, for any % > 0, equation (36.3) is a com-
parison equation of type IIL.



CHAPTER VII

CAUCHY PROBLEM FOR FIRST ORDER PARTIAL DIFFERENTIAL
EQUATIONS

In this chapter we discuss a number of questions referring to the
Cauchy problem for systems of first order partial differential equations
of the form

i i 1 m i : .
Uy = [y Yry ooy Yny Uy ooy y Uyyy ey Uhy,) (t=1,2,..,m)
with initial conditions

W&oy Yiy ooy Yu) = WY1y ooy Yu)  (E=1,2,...,m)

and, more generally, for overdetermined systems of the form

i ) 1 m i i
Upg = Ji(Bry coey Doy Yrg covy Yy Wy vvey Uy Ugyy vuey Uy,)
(t=1,2,..,m; j=1,2,..,p)
with initial data

ui(i’h seey ‘ovm Yiy ey f’/’n) = /‘i(ﬁ'/u eeey ?/ﬂ) (" = 1’ 27 seey m) .

The above systems are of special hyperbolic type since each equation
contains first order derivatives of only one unknown function.

In particular, we will give applications of the theory of ordinary
differential inequalities to questions like: estimates of the solution and
of its domain of existence, estimates of the difference between two solu-
tions, estimates of the error for an approximate solution, uniqueness
criteria and continuous dependence of the solution on initial data and
on the right-hand sides of the system.

§ 37. Comparison theorems for systems of partial differential inequalities.
In order to simplify formulation of subsequent theorems, we first
introduce the following definition.

A function u(X, Y) = u(®y, ..., Tp, Y1, -y Yn) Will be called the func-
tion of class D in a pyramid

p P
Z'wr'—i’r|<?7 ‘yk_f&k| <ak_L2|wr—'%r| (k=1727"';/n’)7
r=1 r=1
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where 0 <L << + oo, 0 < a3 < + o0, ¥ < min(ay/L), if w(X, Y) is con-
k

tinuous in the pyramid, possesses Stolz’s differential with regard to (X, Y)
on its side surface and has first derivatives with respect to ¥ and Stolz’s
differential with regard to X in its interior.

If, moreover, the derivatives u, (X, Y) (i =1, 2, ..., n) are continuous
with respect to (X, Y) for X = Xy = (&, ..., ¥p), then (X, Y) will be
called the function of class Dy.

THEOREM 37.1. Let the functions U(x, ¥Y) = (u'(z, ¥), .., w"(z, ¥))
be of class D in the pyramid

(B7.1) |e—ml<y, |yp—9xl<ar—L|z—m| ((k=1,2,..,n),

where 0 <L <400, 0<<ay<<+oo, y< min(ay/L). Suppose the initial
k

inequalities

(37.2) U (@, DI < H,

where H = (ny, ..., 4m), and the differential inequalilies

(37.3) wh] < oillo—a,l, [UD+L D) July|  (1=1,2,..,m)
k=1

are satisfied in the pyramid (37.1), where oit, vy, ..., ) (¢ =1,2,..,m)
are the right-hand members of a comparison system of type 1 (see § 14).
Let Q(t; H) = (wy(t; H), ..., om(t; H)) be its right-hand mazimum solution
through (0, H) and assume it to be defined in the interval [0, a,).

Under these assumptions,

(37.4) |U(z, Y)| < Q(lw—l; H)

in the pyramid (37.1) for |x— x| < min(y, a).

Proof. Since the assumptions of our theorem are invariant under
the mapping & = —x +2x,, it is sufficient to prove (37.4) in the right-
hand pyramid

(37.3) O0<w—w<d=min(y,a), |¥x—Fil < ax—L{x—x)
k=1,2,..,n).
Put, for 0 <t < 4,

Wi(t) = max |u'(z,+1, ¥)| ,
YeS,

Mi(t) = max u'(w,+1t, Y) (i=1,2...,m),
YeS;

N'(t) = max (—u'(y+1, Y)),
YeS,

J. Szarski, Differentfal inequalities
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where 8; is the projection on (y,, ..., ¥») of the intersection of the pyramid
(37.5) with the plane x = x,-+t. It is obvious that (37.4) in (37.5) is
equivalent with

(37.6) W) < owlt; H) for te[0,0) (i=1,2.,..,m).

Now, we will prove (37.6) using the theory of ordinary differential
inequalities. By (37.2), we have

(37.7) W) <H,

where W(t) = (W'(t), ..., W™(t)), and, by Theorem 34.1, W’(t) are con-
tinuous on [0, §). By the same theorem, for every fixed j and for every
te (0, d), there is a point Y € 8; such that either

(37.8)  Wi(t) = M(t) = w/(x,+t, X), D_WH)<D M),
or
(37.9) Wi(t)=N({t)=—w(x+t,Y), D_W{t)<D N(@).

Fix a j and t ¢ (0, §) and suppose that, for instance, relations (37.8)
hold true. By Theorem 35.1, 1°, we have

n
(37.10) D™ () < wl(@o+t, T)—L D luly (2, +1, )i .
k=1

~ On the other hand, since in view of (37.8) and of the definition of
W'(t) we have (see § 4)

i
Uz +1t, X)| < W),
we get, by (37.3) and by condition W, (see § 4) imposed on a(t, V),

u;(wo+ty Y) < Gf(t’ IU(wo“l‘ty Y)I}+L 2 lu%k(wo'f‘t, Y)|
k=1

< ojfty, W(t) +L D) |ufy(ay+1, X)) .
k=1

From (37.8), (37.10) and from the last inequality it follows that the
differential inequalities

D_W'(t) < oslt, W(t)

are satisfied for every fixed j and te (0, 6). Hence, and by (37.7), we get
inequalities (37.6) in virtue of the first comparison theorem (see § 14),
This completes the proof.
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CoROLLARY 37.1. If under the assumptions of Theorem 37.1 inequa-
lities (37.3) are, in particular, linear

ot SE D 1w/| +L D jub | +€  (E>0,0>0) (i=1,2,..,m)
j=1 k=1

(Haar’s inequalities [11]) and if ni =n (¢ =1, 2, ..., m), then we get
c C

nK |z—xo| - g

. e ’” (77+nK) nk for K=>0,

|wite, Y)| <
Cle—ax| +7 for K =0.

in the pyramid (37.1).
THEOREM 37.2. Let the fumctions Uz, ¥) = (u'(z, ¥), ..., w"™(z, Y))
be of class D in the pyramid (37.1). Assume that
(37.11) U(xgy, ¥Y) =0
and that the inequalities

n
: ) i .
(37.12)  joe] < oflo— )y max u) + L 2, |upl  (i=1,2,..;m)

k=

b

are satisfied in the pyramid (37.1) for x +# x,, where o(t,v) is the right-
hand side of a comparison equation of type II (see § 14).

Under these hypotheses we have

Uz, Y)=0

in the pyramid (37.1).

Proof. Like in Theorem 37.1, it is sufficient to prove our theorem
in the right-hand pyramid

Po: 0<o—2y<y, |s—yxl <axr—L(z—2z,) (k=1,2,..,n).

Put, for 0 <t <y,

W(t) = max {max |ul(x,+t, Y)|},
I TYeS:

Mi(t) = max u'(z,+1, Y),
YesS; (t=1,2,..,m)
Ni(t) = max (—u'(zy+1, X)) .
YeS;
Identities to be proved in the pyramid P, are obviously equivalent
with
(37.13) W(ity=0 for tel0,7).
§*
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We will prove (37.13) using the second comparison theorem (see § 14).
By (37.11), we have

(37.14) W) =0

and, by Theorem 34.1, W (1) is continuous on [0, ). By the same theorem,
for every t e (0, y) there is an index j and a point Y € S, such that either
(37.15)  W(t) = M(t) = W (m+1,Y), D_W(t)<D M),

or

(37.16)  W(t) = N(t) = —u(my+t, ¥Y), D_W()<D N().

Suppose, for example, that for a ¢ e (0, y) relations (37.16) hold true.
By Theorem 35.1, 1°, we have

(37.17) D N(t) < —uli(wy+1t, T)— L2|u,,,(mo+t Y)|.

Since, by (37.16),
— W@y +t, ¥) = W(t) = max |ulz, +1, Y)|
1
we get from (37.12)

(37.18)  —ui@y+t,Y) <o Z |l (204, 7)) .

From (37.16), (37.17) and (37.18) it follows that the inequality
(37.19) D_W (1) <oft, W(t)

is satisfied for any te (0, y). Hence, by (37.14) and by the second com-
parison theorem (see § 14), we conclude that W(¢) <0 in [0, y) and,
since obviously W(t) > 0, we f{finally obtain (37.13), which completes
the proof.

THEOREM 37.3. Let the functions U(z, Y) = (u'(z, Y), ..., w™(, Y))
be of class D, in the pyramid (37.1). Assume that

(37.20) Uy, Y) = Uglw, ¥Y) =0,

where Ug(@, Y) = (uz(@, Y), ..., uz (2, Y)), and that the inequalities (37.12)
are satisfied in the pyramid (37.1) for x = x,, where o(t,v) is the right-
hand member of a comparison equation of type IIL (see § 14).

Under these assumptions we have

Uz, X)=0
in the pyramid (37.1).

Proof. Again it is sufficient to prove the theorem in the right-hand
pyramid P,. With the notations in the proof of Theorem 37.2, identity
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U(z, Y)=0 in P, is equivalent with (37.13). This time we will prove
(37.13) using the third comparison theorem (see § 14). By (37.20), we have

(37.21) W) =0.
Next, by Theorem 34.1, there is an index j such that either
(37.22) D*W(0) < D*M(0),
or
(37.23) DYW(0) < D*N(0).

Suppose, for instance, that (37.22) holds true. Then, by Theorem 35.1,
2°, there is a point ¥, e S;, such that

DTW(0) < D" M(0) < ul(xy, Xy) -
Hence, by (37.20), it follows that
(37.24) DTW(0)<o0.

Now, like in Theorem 37.2, we prove that (37.19) is satisfied for
t € (0, y). Therefore, due to (37.21) and (37.24) we conclude, by the third
comparison theorem (see § 14), that W(f) < 0 for t<[0,y) and conse-
quently (37.13) holds true, which completes the proof.

Remark 37.1. By Remark 35.2, all theorems of § 37 are true
without the requirement that u. exist in the interior of the pyramid,
provided that u be replaced by Dini’s derivative D~ of «° with regard to .

Remark 37.2. All theorems of § 37 hold true if, instead of the
pyramid (37.1), we have the zone

(37.25) |e— 2] < ¥, Y1, ...y Yn arbitrary,

provided that the functions w'(x, ¥) be continuous and possess Stolz’s
differential in (37.25), and in Theorem 37.3 the derivatives ui(x, Y) be,
in addition, continuous for z = z,.

Indeed, under these assumptions, all the hypotheses of theorems
in question are satisfied in any pyramid (37.1) with arbitrary finite a,
and hence follows our remark.

§ 38. Comparison theorems for overdetermined systems of partial differen-
tial inequalities. We prove
THEOREM 38.1. Let the functions U(X, ¥) = (u(X, ¥), ..., w™(X, ¥))

= (W ®yy ooy Bpy Yay ey Yn)s ooy W Bpy oovy Tpy Y1y ooy Yn)) DE of class D (see
§ 37) in the pyramid

Y4 »
(38.1) Z'wf_&f|<7’ |yk_f';kl <ak_L2|xi—f;71| (k:1727'"7n)’
i=1 i=1
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where 0 <L < + o0, 0 < ap < + oo, y < min(ay/L). Suppose that the
k

initial inequality

(38.2) |U(Xe, Y)| < H

where Xo = (&1, ...y Tp)y H = (1) ey 7m)y, and the differential inequalities

0 n
(383)  lukyl < os Y 1es—, |U)) +L 2 [l
=1

r=1
t=1,2,...,m;j=1,2,..,p)
hold true in the pyramid (38.1), where the functions o(t, vy, ..., V) are the
right-hand sides of a comparison system of type I (see § 14). Let its right-hand
mazimum solution Q(t; H) = (wy(t; H), ..., on(t; H)) through (0, H) be
defined in an interval

(38.4) 0<t< ayH).
Under these hypotheses we have

4
(38.5) U, D) <2(D 10— &/; H)
r=1

in the pyramid

Y4 D
(38.6) D |oy— &yl < min(y, a(H)), |yx—9xl <ax—L D |wj— 4]

i=1 j=1
(k=1,2,..,n).
Proof. By means of Mayer's transformation

(38'7) -X _ X0+A(D,

where A = (4;, ..., 4,), we will reduce our theorem to Theorem 37.1.
For A = (4,..., %), consider the comparison system of type I

dv ;
—(th = 10'1(j.t’ IUI’ .-.”vm) (@:1,2,...,”’/),

v
where 4 = J'|4|. By Theorem 36.1 we know that Q(it; H) is its right-
i=1

hand maximum solution through (0, H) in the interval [0, ai(H)/A). In
particular, for 4 < a(H), we have

a(H)

(38.8) z

>1.
Suppose that

»

(38.9) Z 3| < min(y, a(H))
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and put
(38.10) Uz, Y; A) = U(X,+Az, Y).
It is clear that, for A = (A, ..., 4,) satisfying (38.9), U(z, X; A)
= (@Mx, X3 A), ..., 7@, T; A)) is of class D (see § 37) in the pyramid
(38.11) |zl <X, |me—gil <ap—ILdlel (k=1,2,..,n),

where, by (38.9),

(38.12) % >1.

In virtue of (38.2) and (38.3) we get

T, Y; )| <H
and

k] < za¢z|w|,|U|)+LzZmuk (6=1,2,..,m)

in the pyramid (38.11). Hence, by Theorem 37.1, we have
|T (@, Y5 A)| < Q2(2e); H)
in the pyramid (38.11) for

|#| < min (y a"(H)> .

A2
Since, by (38.8) and (38.12),

minZ, S0 - 1,

we have, putting x =1,

(38.13) |T(1, ¥; 4)| < H)

for A = (4, ..., 4,) satisfying (38.9). Hence, if (X, Y) is any point in the
pyramid (38.6) and if we set A = X— Xg = (#,— &y, ..., Tp— &p), then

»
T(X, 1) =T, ¥; XX <2

r=1

&, — )3 H)

what was to be proved.

THEOREM 38.2. Let the functions U(X, Y) = (v'(X, Y), ..., w™(X, Y))
be of class D (see § 37) in the pyramid (38.1). Suppose that

(38.14) U(X,, Y)=0
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and
»

(38.15)  [uhy| < o D) lar— el maxful) + Y lul  for X £ X,
k=1

r=1

i=1,2,..,m; j=1,2,..,p)

in the pyramid (38.1), where o(t, v) is the right-hand member of a comparison
equation of type II (see § 14).
Under these assumptions we have

(38.16) U(X,Y)=0
in the pyramid (38.1).

Proof. Like in the proof of Theorem 38.1 we introduce Mayer’s
transformation (38.7) and we define U(z, Y; A) by formula (38.10),
for an arbitrary vector A = (4,, ..., 4,) satisfying

D
(38.17) 0<i= D |4 <.
i=1

Then U(w, Y; 4) = (@', ¥; 4), ..., %", ¥; 4) is of class D
{see § 37) in the pyramid (38.11) and inequality (38.12) is satisfied. In
view of (38.14) and (38.15) we obtain

~

U0, Y; A)=0
and

P
| < Ao(Alel, max |W)) L4 ) |uh,| for @#0 (i=1,2,..,m),
l k=1

in the pyramid (38.11). Since, by our assumptions and by Theorem 36.2,
La(At, v) is—for any A > 0—the right-hand member of a comparison
equation of type II, we conclude, by Theorem 37.2, that

U@, ¥; A)=0,

for A satisfying (38.17), in the pyramid (38.11). Because of (38.12), we
have in particular
U@,Y; 4)=0.

Hence, if (X, Y) is any point in the pyramid (38.1) such that X = X,
and if we set 4 = X— X, then

U(X,Y)=U@1,Y; X—X,) =0,

which completes the proof, since for X = X, the last identity holds true
by (39.14).
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In a similar way, using Theorems 36.3 and 37.3 we obtain

THEOREM 38.3. Let the functions U(X, ¥) = (u(X, ¥), ..., w"(X, Y))
be of class D, (see § 37) in the pyramid (38.1). Suppose that

U(XM Y) = Uzj(Xo, Y) =0 (? = 17 2? "':P) y

where Us, = (Uzyy ..., Uy;) and that inequalities (38.15) hold true in the
pyramid (38.1) with o(t, v) being the right-hand side of a comparison equa-
tion of type I1I (see § 14). Then we have (38.16) in the pyramid (38.1).

Remark 38.1. All theorems of § 38 remain true if, in place of the
pyramid (38.1), we have the zone

Yy
(38.18) D @—&: <7, Y1, ., yn arbitrary,

r=1

provided that the functions %X, Y) be continuous and possess Stolz’s
differential in (38.18) and in Theorem 38.3 the derivatives ui,(X , Y) be,
in addition, continunous for X = X,. This remark is a consequence of the
argument used in Remark 37.2.

§ 39. Estimates of the solution. Since a system
u, = f(=, Yiy ooy Yny W'y ., u”, '“?/u oo u;ln) (t=1,2,..;m)
is a particular case, for p = 1, of the overdetermined system

(39.1) %ﬁ:; = f§($17 veey Bpy Y19 0eey Yny uly ooy umy uf/n eeey uf/n)
(t=1,2,..,m; j=1,2,..,p),
where the ¢th equation contains derivatives of #’ only, we consider in

subsequent sections systems (39.1). We will give first some estimates
of solutions of system (39.1).

TrEOREM 39.1. Let the right-hand members

f;(X’ Y, U,Q) = f;:(wn vy Tpy Y1y oevy Yny ’“17 ey 87 4, vy Gn)
(1=1,2,..,m;j=1,2, vy )

of system (39.1) be defined in a region whose projection on the space (xy, ..., Zp,
Yy ooey Yu) cONtains the pyramid

Drs

P
(80.2) Do —ad <y, lwa—irl Sau—L X lo—a,] (k=1,2,..,n),
r=1

r=1

where 0 <L << 4+ o0, 0 < a < + oo, y < min(ay/L). Suppose that
k

(39.3) IfiX, Y, U, Q) <oil D lon—,,|U|) +Z ) sl
r=1 k=1

(¢=1,2,..,m; j=1,2,..,p),
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where oilt, vy, ..., Vm) are the right-hand sides of a comparison system of
type I (see §14). Let Q(t; H) = (owy(t; H), ..., om(l; H)) be its right-hand
maximum solution through (0, H) = (0,5, ..., 7m) defined in an inlerval
[0, a). Let U(X,Y) = (u'(X,Y),...,u"(X, Y)) be a solution of system (39.1),
of class D in the pyramid (39.2) (see § 37) and satisfying initial inequality

(39.4) |U(X,, V)| <H.

This being assumed, we have

»
(39.5) v, )| <2(Y 1o —al, H)
r=1
in the pyramid

D Y4
(39.6) D |m—& | <min(y,a), |ye—ul < ae—L D |wr— |
r=1

r=1
(k=1,2,..,m).

Proof. By (39.3) and (39.4), the solution U(X, Y) satisfies all the
assumptions of Theorem 38.1 and, hence, inequalities (39.5) hold true
in the pyramid (39.6).

§ 40. Estimate of the existence domain of the solution. In the present
section we restrict ourselves to the Cauchy problem for one equation

(40.1) Ug == [ (B Yiy oony Yny Uy Uyyy cony Uy,)

with the initial data

(40.2) U(Zoy Yry oory Yn) = @Y1y ooy Yn) -

We will discuss here briefly—without insisting on detailed computa-
tions—how the existence domain of the solution of the above problem
may be evaluated. As for details omitted here we refer to T. Wazewski’s
paper [b7]. Using the theory of ordinary differential inequalities we will
construct the solution by means of the Cauchy characteristics.

Suppose that the right-hand member f(x, Y, u, Q) = f(2, Y1, ey Yn,
U,y Gy, ..oy §n) and the initial function ¢(yy, ..., ¥») are of class 02 in the
cube
(40.3) ol <b, |wl<b, [uj<b, l@l<d (k=1,2,..,2)
and

@0,y 0) =@, (0,...,0) =0 (k=1,2,..,0).

Assume further that f and ¢ together with their first and second
derivatives are bounded by a constant M in the cube (40.3).

Under these assumptions, there are two numbers a(b,n, M)
and é6(b,n, M) (which can be effectively evaluated, for instance
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a=b/dn(M +1), 6 ="b¥[(n-+1)(M+b-+1)P) depending only on b, n, M
50 that the solution of problem (40.1), (40.2) exists and is of class O in the
pyramid

(40.4) x| < d(byn, M), |yl <alb,n, M)-WNlzl (k=1,2,..,n).

We will indicate the way of proving this statement. Consider the
characteristic equations

a ,
d_y; = —fale, ¥,u,Q),
da:
(40.5) ‘ag‘; = fule, ¥, u,Q)+qfu(w, ¥, u, Q) (k=1,2,..,n),
du . C
=1, T, 0, @)= ) lale, ¥y u,Q),
iz

and let
(40.6) yi = @7’“«(977 My oos )y Qe = QT N1y ooy M) 5 8 = W(Dy 1y oeny M)
(k=1,2,..,n)
be the solution of system (40.5), satisfying the initial conditions
yk(O;H)=77k, qk(O,H)=%;,(H), ﬁ(O,H)=¢(H) (k=1927‘"7n)’
where H = (%, ..., ») is any point from the cube
lml <& (k=1,2,...,%).

Now, Cauchy’s method consists in solving, with respect to 7,

I R/LY
the system of equations

(40.7) Yp = ?7k(w9 gy ooy Tn) (k=1,2,..,n),
thus finding the inverse mapping
(40.8) N = el@y Y1y ey Yn)  (K=1,2,..,0),

and in making the substitution

(40.9) ULy Y1y 0ey Yn) = %(wy T(%y Yy eeey Yndy oeey Ny Y1y ooy yn)) .

If the mapping (40.7) is one-to-one and of class ¢* in some domain
(40.10) o] <8, Iml<e (k=1,2,..,n)
with the Jacobian

-D(;l:ily ceey yn) ’
(10.11) Dy ey ) 0

and if the domain D C (#, ¥y, ..., ¥s) is the image of (40.10) by means
of the mapping (40.7), then the function u(z, ¥, ..., ¥»), defined by for-
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mula (40.9), is the solution of the problem (40.1), (40.2), of class C* in D.
Therefore, in order to prove our statement concerning the existence of
the solution in the pyramid (40.4), it is sufficient to find a cube (40.10)
such that

1° The mapping (40.7) is one-to-one and of class €' in (40.10) with
the Jacobian satisfying (40.11).

2° The domain D contains the pyramid (40.4).

Now, this is achieved in several steps.

I. By Theorem 23.1, we evaluate the interval || < b,, in which
the functions (40.6) exist for |5 < b (k =1,2, ..., n), and the functions
themselves, thus obtaining estimates of the form

(40.12)  |yi(z, H)| < all2l) ,  |q(e, H)| < Bullo]) , (2, H)| < y(|o])
(k=1,2,..,n0).

Under our assumptions on f(z, Y, u,§) we may choose for the
corresponding comparison system a linear one, whose solution is ag(t),
Br(t), v(t) (k=1,2,..,n).

IT. The functions (40.6) are of class C! and their derivatives with
respect to 7, satisfy a linear system of ordinary differential equations.
Applying Theorem 23.1 to this system (for the comparison system may
be chosen a linear one) and remembering that %(0, H) = ; and hence

oy(0, H .
O oy (=102, ),
we find 6(b,n, M) and ¢(b, n, M), so that inequalities
oyr(xe, H 1 .
(40.13) WT’]_)—% <= (ki=1,2,.,n)

hold true in cube (40.10). With such choice of d and ¢ point 1° is achieved.

III. Point 2°, which consists in finding a(b, n, M), is achieved by
any method allowing to evaluate the existence domain of the inverse
mapping (40.8).

Observe that, since for the function % (z, ¥) defined by formula (40.9)
we have

U@, ¥) = Qelz, (@, X)y ooy T2, X)) (A=1,2,..,n),

from (40.12) we get the estimates
(40.14)  Ju(z, X)| <y(l2), |uyle, Y) <Bull2)) (k=1,2,..,n).

We close this paragraph with the following remark. Using the above
results concerning one equation (40.1) with one unknown funetion it is
possible to construct the solution and to evaluate its existence domain
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for a non-overdetermined system by means of successive approximations
(see [52]). The last result enables us to do the same for an overdetermined
system (39.1) by means of Mayer’s transformation (38.7); this time, we
have to require that the right-hand sides of system {(39.1) satisfy com-
patibility conditions (see [52]).

§ 41. Estimates of the difference between two solutions.

THEOREM 41.1. Let the right-hand members of system (39.1) and of
system
(41.1) u:i; = g;'(xl’ cres Tpy Y1y ooy Yny '“17 oy 8™ u;n ey “;n)

(t=1,2,...,m; j=1,2,..,p)

be defined in a region, whose projection on the space of points (%, ..., %y,
Y1y -vy Yn) contains the pyramid (39.2), and satisfy the inequalities

» n
FZ, Y, U, ~giX, ¥, T, 0) < ool X 1o—aol, [TU-T1) +5 Y |gs—l
r=1 k=1

t=1,2,...,m;j=1,2,...,n),

where oi(t, vy, ..., On) are the right-hand sides of a comparison system of
type I (see §14). Denote by 2(t; H) = (wy(t; H), ..., on(t; H)) its right-
hand mazimum solution through (0, H) = (0, 7y, ..., 7m), defined in the
interval [0, a). Suppose that U(X, Y) = (u'(X, X), ..., w™(X, Y)) and
VX,Y)= (v‘(X, Y), .., "™X, Y)) are two solutions of system (39.1)
and (41.1) respectively, of class D in the pyramid (39.2) (see § 37) and
satisfying initial inequality

(41.2) |U(X,y, Y)—V(X,, Y)|<H.

Under these assumptions we have

(41.3) 00E, D)=V (X, D) < @Y (0. b H)

in the pyramid (39.6).
Proof. If we put U(X,Y)= U(X,Y)-V(X,Y), then U(X,Y)
satisfies all the assumptions of Theorem 38.1 and hence (41.3) holds true.

§ 42. Uniqueness criteria. The next theorem is an immediate con-
clusion from Theorem 41.1.

THEOREM 42.1. Let the right-hand members of system (39.1) be defined
in a region, whose projection on the space (Xyy ..., Tpy Y1y --ry Yn) CONLALNS
the pyramid (39.2), and satisfy inequalities

(421) (X, Y,U,Q)—f(X,Y,U,Q)

p n
<”¢(r=2;|wr_53rl’ |U— UI) +L;qu—§kl (0=1,2,..,m; j=1,2,..,p),



126 CHAPTER VII. Cauchy problem for partial differential equations

where oy(t, vy, ..., Vm) are the right-hand sides of a comparison system of
type I (see § 14). Suppose that

(42.2) 0lt,0)=0 (i=1,2,..,m)
and that
(42.3) QH)=0 for 0<t< + o0,

where 2(t) ts the right-hand maximum solution of the comparison system
through the origin.

Under these assumptions, Cauchy problem for system {39.1) with initial
data

(42.4) U(X,, Y) = &(Y)

admits at most one solution of class D (see § 37) in the pyramid (39.2).

Proof. For two solutions, satisfying the same initial conditions (42.4),
relations (41.2) hold true with H = 0; hence, by (41.3) and (42.3), their
difference is identically zero.

m
Remark 42.1. In particular, for o;(t,V) = K X v; (K > 0), inequa-
j=1

lities (42.1) mean that the right-hand sides of system (39.1) satisfy a Lip-
schitz condition with regard to U.
Next we will prove uniqueness criteria of Kamke’s type.

THEOREM 42.2. Let the right-hand members of system (39.1) be defined
in a region, whose projection on the space (Ly, ..., Tp, Yiy ey Yn) cONlAINS
the pyramid (39.2), and satisfy inequalities

(42.5) (X, Y, U,Q)—fiX, ¥, T,
» n
<ol lo— &), max ' @) + I Y lge—7
r=1 k=1
(t=1,2,...,m; j=1,2,..,p),

where o(t, v) is the right-hand side of a comparison equation of type IL (of
type III) (see § 14).

This being assumed, Cauchy problem for system (39.1) with initial
data (42.4) admits at most one solution of class D (of class Dy) in the
pyramid (39.2) (see § 37).

Proof. For two such solutions U(X, ¥) = (¢/(X, X), ..., w"(X, X))
and V(X,Y)= (vl(X, Y),.., o™X, Y), put U(X,Y)=U(X,Y)—
~-V(X,Y) = (@X, ¥), ..., w"(X, Y)). Then we have

(42.6) U(Xy, Y) = U(Xy, ¥)—V (X, T) = 0
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and, by (42.5),

P n
) < 0(21’ 2y~ ), max|i) +LkZ W
— =1

(t=1,2,...,m; j=1,2,...,p).
Further, by (42.6),

U,(Xe, V)=V, (X, Y) (k=1,2,..,n)

and hence, writing uy = (u5,, ..., uy,), 0% = (v},, ..., v},), we get w¥(X,, ¥)
= v¥(X,, ¥Y) and consequently

%;;,(Xo, Y)= “i;(‘xo’ Y)—v;j(XD’ Y)
= fi(X,, ¥, U(X,, X), ue(Xy, X)) —fi(Xo, ¥, V(Xey X), 0¥(X,, Y)) =0
(t=1,2,...,m; j=1,2,..,p).

Therefore, we see that U(X, Y) satisfies all the assumptions of
Theorem 38.2 (of Theorem 38.3) and hence we have

U(X,Y)=0

in the pyramid (39.2), what was to be proved.

Remark 42.2. If, in particular, o(¢, v) in Theorem 42.2 is the right-
hand member of the equation (B) from Example 14.2 or of the equation
from Example 14.3, we get uniqueness criteria of Osgood’s and Nagumo’s
type.

§ 43. Continuous dependence of the solution on initial data and on right-hand
sides of system. We now prove

THEOREM 43.1. Let the right-hand members f{(X, Y, U,Q) of sys-
tem (39.1) satisfy assumptions of Theorem 42.1 in a region D. Suppose that
the right-hand sides gi(X, Y,V,Q) of system (41.1) are defined in D. Let
U(X,Y)= (u(X,Y),.., w™X, X)) be the solution of system (39.1), of
class D (see § 37) and satisfying initial conditions (42.4) in the pyramid (39.2),
and V(X,Y)= (WX, Y),.., o™X, X)) be a similar solution of sys-
tem (41.1) with initial data

(43.1) V(X,, Y)=W(Y).
Under these assumptions, to every & > 0, there is a 6 > 0 such that if
(43~2) lf;(X’ Yy U7 Q)_g;:(X’ Ys U}Q” <9

i=1,2,...,m; j=1,2,..,p)
in D and

(43.3) [2(Y)—¥(Y)|< 4,
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where A = (8, ..., 8), then we have
(43.4) |U(X, Y)—V(X, Y)|<E,

where B = (g, ..., &), in the pyramid (39.2).
Prooi. Due to Theorem 10.1, to ¢ > 0 we can choose 4 > 0, 30 that

the right-hand maximum solution Q(t; H, 8) = (w,(t; H, 6), ..., om(l; H, 6))
of the comparison system

de ,

‘Jt“ =0ty Uy ey Om)+8  (i=1,2,..,m),
passing through (0, H) = (0, 4, ..., 7m), be defined in the interval [0, ¥)
and satisfy inequalities

(43.5) Qt H,0)<E for 0<<t<y,
provided that
(43.6) 0<H<24.

Suppose that (43.2) and (43.3) hold true with the above chosen d;
then, by (43.3), we have

IU(.XM Y)_V(X(n Y)I <H
with some H satisfying (43.6) and, by (42.1) and (43.2), we get
HX, Y, U,Q—g(X, ¥, U,Q)

»

<o Y a—i, JU=Ol) +6+L Y |ge—l
k=1

=1

~N

(i=1,..,m; j=1,2,..,p)
in the region D. Hence, by Theorem 41.1, inequality

3

(43.7) |UX, 1)-V(X, D)| < 2( ) le—&; H, o)
r=1
holds true in the pyramid (39.2). From (43.5) and (43.7) follows (43.4).

Remark 43.1. All theorems of §§ 39-43 are true if, in place of the
pyramid (39.2), we have the zone

P
(43.8) 2 \@— 2| < ¥, Y1y ...y Ya arbitrary,
r=1
provided that the solution be continuous and possess Stolz’s differential
in (43.8) and in Theorem 42.2 their derivatives with respect to z; be,
in addition, continuous for X = X,. This remark is an immediate con-
sequence of Remark 38.1.
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§ 44. Estimate of the error of an approximate solution. In this section,
like in § 40, we restrict ourselves to the Cauchy problem for equation (40.1)
with initial conditions (40.2). We will indicate a procedure by which we
can evaluate the error when, instead of the solution of a given (‘‘difficult
to solve”’) problem (40.1), (40.2), the solution of an approximate (‘“easy
to solve’’) one is taken.

Let the right-hand member f(z, ¥, u, Q) of equation (40.1) and the
initial function ¢(Y) satisfy assumptions introduced in § 40.

Consider the approximate (‘“easy to solve’) equation

(44.1) Ug = (&) Y1y ooy Yny Uy Uyyy ony Uyy,)
with ¢(xz, Y, u, @) defined in the cube (40.3) and the approximate initial
condition
(44.2) (0, Y)=v(Y).
Suppose that

(443)  Ig(o, ¥y u, Q) —g(@, X, %, @) <F(lal, fu— )+ D |ge— el
k=1

where o(t, v) is the right-hand side of a comparison equation of type I
(see § 14). Let v(x, Y) be a solution of the approximate problem (44.1),
(44.2) in a pyramid

| <¥, |yl <G—Mla| (k=1,2,..,n).
Suppose finally that the limitation
(44.4) (@, Y, u,Q)—g(@, ¥, u, Q) < h(lal, |ul, Q)

is known, where h(t,v, ¢y, ..., ¢z) satisfies condition W, with respect to
(v, ¢y ...y Qu) (see § 14), and

(44.5) lp(Y)—p(Y) <7

Under these hypotheses we can evaluate the difference between the
solution %(z, ¥) of problem (40.1), (40.2), which is sought for, and the
approximate one v(xz, Y). We do it in two steps.

1 step. Estimate of the solution and of its existence domain. Following
the results of § 40 we evaluate the pyramid (40.4), in which «(z, Y) is
of class €', and find the functions p(f) and B(t) for which inequalities
(40.14) hold true. The functions u(z, ¥) and v(z, Y¥) are then both defined
in the pyramid
(44.6) |2l <min(8,d), |yxl <min(a,d)—M|e| (F=1,2,..,%).

II step. Evaluation of the error. Solution w(x, Y) satisfies obviously
the equation
(44.7) Uy = (@) Xyt Uyyy ey Uy,)

J. Szarski, Differential inequalities 9
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where
g, Y,u,Q)=9g(z, Y, u,Q)+
+[f >, ¥, u(x, X), up(z, Y))—g(@, ¥, u(z, Y), up(z, Y))| .
By (44.3), (44.4), (40.14) and by the condition W. , imposed on #,
we get
(44.8)  |g(o, ¥, u,Q)—§(o, ¥, %, Q) <o(al, lu—a)+M D' lge—qi ,
where o

o(t, v) =T, 0) +h{t, (1), fult), ..y Bal?))

is the right-hand member of a comparison equation of type I (see § 14).
Denoting by w(t) its right-hand maximum solution through (0, ), defined
in an interval [0, a,), we conclude, by (44.5), (44.8) and by Theorem 41.1
applied to equations (44.1) and (44.7), that inequality

holds true in the pyramid (44.6) for |2| < min (6, &, a,). This is the estimate
of the error that was sought for.

§ 45. Systems with total differentials. A system with total differentials
(45.1)  wl, = fi(X, ', . u™) (=1,2,...,m; §=1,2,...,p)
or shortly

[\ﬂs

= ) X, u, ., u™de; (i=1,2,..,m)

7

I
-

is a particular case of the overdetermined system (39.1) dealt with in
the preceding paragraphs. Cauchy initial conditions for system (435.1)
have the form

(45.2) w(Xy)=uw (I=1,2,..,m).

Now, it is clear that all theorems of §§ 41-43 hold true for the Cauchy
problem (45.1), (45.2).



CHAPTER VIII

MIXED PROBLEMS FOR SECOND ORDER PARTIAL DIFFERENTIAL
EQUATIONS OF PARABOLIC AND HYPERBOLIC TYPE

In the first paragraphs of the present chapter we deal with parabolic
solutions (see the subsequent definitions) of nonlinear systems of second
order partial differential equations of the form (see [53] and [54])

7 i 1 m 1 1 i i i
Ut =Ty Bry vy Bay U 5 ey Uy Wagy eony Uayyy Wagay s Uaymgy +or s Uagy)
(t=1,2,..,m),

where the ith equation contains derivatives of only one unknown func-
tion w!. We discuss a number of questions concerning mixed problems
in a region DC (¢, 2y, ..., xn) of type C (see § 33). In particular, using
the theory of ordinary differential inequalities we treat questions referring
to mixed problems like: estimates of the solution, estimates of the dif-
ference between two solutions, uniqueness criteria, continuous dependence
of the solution on initial and boundary values and on the right-hand
sides of system and, finally, stability of the solution.

In the last paragraphs we derive, by means of ordinary differential
inequalities, energy estimates of Friedrichs-Levy type for the solution
of a system of linear hyperbolic equations (see [517)

3 m n m
D G Bk, = 3 D 0 Xyl + Y X (X) (i=1,2, ., m),
k=1 I=17=1 1=1
where the ith equation contains second derivatives of only one unknown
function .

§ 46. Ellipticity and parabolicity. To begin with, we recall the defini-
tion of a positive (negative) quadratic form and prove, for the convenience
of the reader, a lemma.

n
A real quadratic form in Ay, ..., A, > ajxh Ay (aj = az;) is called
7.k=1
positive (negative) if for arbitrary 4., ..., A, we have
n
Z ajdidy =0 (< 0)
F k=1

9*
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n
LEMMA 46.1. Let the quadratic form ®(A) = @ (A, ey 2a) = O ajidihy
fk=1

n
be positive and the quadratic form W(A) =¥ Ay, ., tn) = D bjxhiiy be
f =1
negative; then we have ’

(46.1) aibir < 0.

7,le=1

Proof. The form & () being positive we have, for suitably chosen
coefficients a,q (p,q¢=1,2,...,n),

D(A) = I;' Wi Ay = 2 (2 apqlq)2;
ji=1

p=1 q=1
hence

n
Ajp == Opitpr  (J,k=1,2,..,n)
p=1

and consequently

n

n n n
(46.2) 2 aibip = Z ( ; bjkap;iapk) = Z 'll('ap“ ey azm) <0.
p 7,k=1 p=1

7.k=1 =1

DEFINITION OF ELLIPTICITY. Let the function
) . .
f(h X,U,Q,R)= fl(ty Lyg eeey Ty Uy oony '“’ma Qry eees Qny T1ay Tazy oory Tun)

be defined for (¢, X) belonging to a region D C (¢, x;, ..., y) and for arbi-
trary U, @, R. Suppose that U(t, X) = (u'(t, X), ..., w™(t, X)) is defined
and possesses first derivatives with respect to @; at a point (, X)e D.
Write

wy = (uil, ey ufcn) .

Under these assumptions, we say that the function f'(t, X, U,Q, R)
is elliptic with respect to U(t, X) at the point (I, X)e D if for any two
sequences of numbers R = (Fu,Tigy s ¥un) aDd B = (Fir, Fizy erey Tan)
(7% = ¥rj, Tix = Tr;) such that the quadratic form in 2, ..., i,

n

(46.3) D' (1 =) A 2 I8 negative
i k=1
we have '

(46.4) f(1, X, U@, X), vk, X), R) <f(i, X, U@, X), «k(, X), ) .

If the above property holds true for every point @, X ) e D, then
we say that f'({, X, U, Q, R) is elliptic with respect to U(t, X) in D.
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ExaMpLE 46.1. Consider the second order linear equation

n n

(46.5) w = 2 @ity X) Uiy +Z bi(ty X)ug, +o(t, X)u-+d(t, X),
7,k=1 j=1

where a;x(t, X), bj(t, X), ¢(t, X) and d(¢, X) are defined in a region D.

Equation (46.5) is called parabolic at a point (t, X) ¢ D if the quadratic

form in A, ..., 4

(46.6) 2 a;ilt, f)i.,- Ar 18 positive .

i.k=1

Now, by Lemma 46.1, we conclude that the right-hand member
f(t, X,u,Q, R) = d(t, X)+o(t, X)yut D bt, X)gs+ D, ajlt, X)rin
7=1 7,k=1

of a parabolic equation at a point (tN, X) is elliptic at (¢, X) with respect
to any function w(f, X) having first derivatives wu,, at (t, X).

Remark 46.1. If, in particular, fit, X , U, @, R) is independent
of R, then it is trivially elliptic with regard to any U (¢, X).

DEFINITION OF PARABOLIC SOLUTION. Consider a system of second
order partial differential equations

i _ g 1 m i i i i
(46.7) g =F(t, Dyy ey Duy Uy ey Uy gy eeey Ugyy Uzigry Ugyzyy +oey Yiryz,)

(i=1,2,..,m)

with right-hand sides (¢, X, U, @, R) defined for (¢, X)e D and U,Q, R
arbitrary. A solution U(t, X) = (u'(t, X), ..., w"(t, X)) of (46.7) in D is
called parabolic at a point (i, X) ¢ D if all the functions f(¢, X, U, @, R
(t=1,2,..,m) are elliptic with respect to U(t, X) at (t, X).

If thls property holds true for every point in D, then the solution
is called parabolic in D.

According to Example 46.1 every solution of a parabolic equa-
tion (46.5) is a parabolic one.

Remark 46.2. In virtue of Remark 46.1, every solution of a sys-
tem (46.7) is parabolic if its right-hand sides do not depend on sec-
ond derivatives, i.e. if it reduces to a system of first order partial dif-
ferential equations or of ordinary differential equations with param-
eters.

§ 47. Mixed problems. Before formulating the mixed problems we
are going to deal with in the present chapter, we introduce some defini-
tions and assumptions.



134 CHAPTER VIII. Mixed problems for second order differential equations

DEFINITION OF SETS 2 AND 2. Consider a region D C (t, &, ..., @)
of type C (see § 33). We denote by X the side surface of D, i.e. that part
of the boundary of D which is contained in the open zone #, < t < ¢, T.

A funection «(f, X) being given on X we denote by X, the subset
of X on which a(?, X) # 0.

AssumprTiONs A. A region DC (t, @y, ..., &) of type C (see § 33) being
given, let the functions ai(t, X) (1 =1, 2, ..., m) be defined on its side sur-
face 2. Suppose that

(47.1) ai(t, X) >0 (i=1,2,..,m).

For every (t, X) e Xy, let a direction 1i(t, X) be given, so that I’ is ortho-
gonal to the t-axis and some segment, with one extremity at {t, X), of the
straight half-line from (t, X) in the direction ' is contained in the closure
of D.

Regular solutions and mixed problems. Consider a sys-
tem (46.7) with right-hand sides (¢, X, U,Q, R) (i =1, 2, ..., m) defined
for (1, X)e D of type C (see § 33) and for arbitrary U, Q, R. Let the
functions «fi(t, X) and directions i, X) (6=1,2,..,m), satisfying
Assumptions A, be given on the side surface X of D. A solution U(¢, X)
= (ul(t,X), ...,um(t,X)) of (46.7) in D will be called regular solution
if it is continuous in the closure of D, possesses continuous derivatives
o/t ofox;, &?jox;0my,, and satisfies (46.7) in the interior of D. If, in addition,
for every 4 the derivative du'ldl’ exists at each point (f, X)e Z,, then
the solution is called ZX,-regular solution. Being given

1. a system (46.7) with right-hand sides f(¢, X, U,Q, R)
(1=1,2,..,m) defined for (¢, X) e D of type C (see § 33) and
for arbitrary U, @, R,

2. functions «i(t, X) and directions I'(t, X) (i =1,2,...,m) on the
side surface X of D, satisfying Assumptions A,

3. funections yi(f, X) on X and (¢, X) on s (i =1, 2, ..., m) where
(47.2) ft,X)>0o0n Zg (1=1,2,..,m),

4. functions ¢{(X) (¢ =1,2,...,m) on 8, (for the definition of S,
see § 33, definition of a region of type C),
the first miwed problem with initial values ¢é(X) and boundary values
yi(t, X) consists in finding a Z,-regular solution U(¢, X) = (ul(f, X), ...
vy W, X)) of (46.7) in D, satisfying the initial conditions

(47.3) Ut,, X) = ®(X) for XeS,,
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where @(X) = (¢'(X), ..., ¢"(X)), and boundary conditions, called of
first type,

Bit, Xyui(t, Ty—ai(t, Y — i, X)  for (1, X) € S,

(47.4) dr
wilt, X) = wi(t, X) for (1, X)e Z—Zg
(t=1,2,..,m).

If, in particular, oi(t, X)=0 (¢ =1, 2, ..., m), the boundary condi-
tions (47.4) are of Dirichlet’s type and the first mixed problem reduces
to the classical first Fourier’s problem. If condition (47.2) is not imposed
on f(t, X), the problem described above is called second mized problem
and the boundary conditions (47.4) are called of second type.

In particular, when o'(f, X) =1, Bit, X)=0 (i =1, 2, ..., m), the
boundary conditions (47.4) are of Neumann’s type and the second mixed
problem reduces to the classical second Fourier’s problem.

To close this paragraph, we prove a lemma which will be of use in
our subsequent considerations.

LeMMA 47.1. Suppose we are given a region D of type C (see § 33),
a function a(t, X) and a direction 1(t, X) satisfying (for m = 1) Assump-
tions A on the side surface X of D, and a function §(t, X) on X, such that

(47.5) B, X)>B>=>0 for (t,X)el,.

Let the function w(t, X) be continuous in the closure of D and possess
the derivative du/dl on X,. Suppose that

wio) pit, Dult, N)—alt, X) W < By(t) (< Ba®)  Jor (1, X e 2

u(t, X)y<n@) (<n@) for (1,X)e2— 2.,

where 7 (1) > 0. Denote by S7 (see § 33) the projection on the space (&y, ..., &a)
fo the intersection of the closure of D with the plane t = 1.

Under these assumplions, if for a point (t,X)eD (l,<t<t,+T)
we have
47.7) max u(f, X) = u(l, X) >t} (=),

XeSy

then (i, X) is an interior point of D.

Proof. Suppose that the assertion of our lemma is false; then

(tN, X Ye X andNthere are two possible cases to be distinguished: I. (t, X )e
eX—2,, IL. (t, X) e Z,.

In the case I we have, by (47.6),

~ ~

w(t, X)<n(t) (< q{),
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contrary to (47.7). Now in the case II we get, by (47.6)

~oy o~ ~ o~ du N ~
18) B Dl DH—ad, D5 <B@ (< By(d).
(t, X)
The straight half-line from (f, X) in the direction I(7, X) has the
parametric equation

X =X +versl(, X), 7>0.

By Assumptions A, some segment of this half-line, say 0 <t < 1,
belongs to S;. Hence the function

p(t) = u(t, X +rversi(t, X))
is defined for 0 <z < 7, and attains, by (47.7), its maximum at the left-
hand extremity of this interval. Therefore,

oy At
(47.9) PO =7 . <0.

-
Since a(f, X) >0 (by Assumptions A), it follows from (47.8) and
(47.9) that

B(t, X)u(t, X) < Bn(l) (< Bn(d))
and hence, by (47.5),
u(t, X) <q@ (<7,
what contradiets (47.7). This completes the proof of our lemma.

§ 48, Estimates of the solution of the first mixed problem. We prove

THEOREM 48.1. Assume the right-hand members f(t, X, U,Q, R)
(1 =1,2,..., m)of system (46.7) to be defined for (t, X) e D of type C (see §33)
and for arbitrary U,Q, R. Suppose that (*)

(48.1) (¢, X, U, 0,0)sgnwi < at—t,, |U|) (i=1,2,..,m),

where ot, V) are the right-hand sides of a comparison system of type T
(see §14). Denote by 2(t; H) = (wy(t; H), ..., ou(t; H)) its right-hand
maximum solution through (0, H) = (0, 1y, ..., 4m), defined in an interval
[0, ao(H)). Let the functions oi(t, X) and the directions I'(t, X) (i =1, 2, ceey M)

satisfy Assumptions A (see § 47) on the side surface X of D. Let f'(t, X)
be defined on Zg (i =1,2,..,m) and satisfy inequalities

{48.2) Bit,X)>B' >0 0n Zg (i=1,2,..,m).

(*) sgnz denotes 1 if x > 0, and —1 if » < 0.
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Suppose finally that U(t, X) = (ul(t, X), ooy u™(t, X)) is a parabolic
(see § 46), 2,-reqular (see § 47) solution of system (46.7) in D, satisfying
initial inequalities
(48.3) Uy, X)|<H for Xe8,
and boundary inequalities

ﬂ‘(t,xm"(t,X)—a"(t,X)%?li; < Bloft—ty; H) for (t, X)e Zu,

(48.4)
|| < wdt—ty; H) for (t,X)e E— .

(t=1,2,..,m).
Under these assumptions inequality
(48.5) |U(t, X)| < Q(t—1t,; H)
holds true in D for
0 <t—f, <min(T, a(H)) = 6.

Proof. Since the assumptions of our theorem are invariant under
the mapping 7 = t—1,, we may assume, without loss of generality, that
t = 0. Denoting by 87 the projection on (2, ..., #4) of the intersection
of D with the plane ¢ =7 (see § 33) put, for 0 <t < T,

Wi(t) = max lW'(t, X), W)= (W'@), ..., W),

Mi(t) = max u'(t, X) (i=1,2,..,m),
XeS;

N'(t) = max (—u'(t, X)) .
XeS;

By Theorem 34.1, the functions W(t) are continuous in the interval
[0, T) and, by (48.3), we have

(48.6) Wo0)<H.
Inequalities (48.5) are obviously equivalent with
W) <Q@t; H) for 0<t<min(T,aH)) =24.

Now, in view of (48.6) and of the first comparison theorem (see § 14),
the last relation will be proved if we show that, for every fixed j, dif-
ferential inequality

(48.7) D_W(t) < oyft, W (1)
holds true in the set

(48.8) F = {te(0,8): Wit)> wit; H)}.
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Fix an index j and let 7 ¢ E'; then, we have
(48.9) W) > wj(t; H) .

By Theorem 34.1, there is a point X e 87, so that either

~ s~

(48.10) W@ =M@ =4{7T,X), D-WH<D MGE),
or
(4811) W)= N(@)=—4(1,X), D_-W{E <D N(Q).

Suppose we have, for instance, (48.11). Then, in view of (48.2), (48.4)
and (48.9) we conclude, by Lemma 47.1, that (1, X) is an interior point
of D. The function — w/ (T, X) attains its maximum at the interior point X
and is of elass C® in its neighborhood. Therefore,

(48.12) wi(@, X)=0

and the quadratic form in 2, ..., 4,
(48.13) — Z ug’;,xk(?, X YA Ax I8 negative .
Lk=1

By Theorem 33.1, 2° we have
DNy < —ui(F, X);
hence, by (48.11), we get
(48.14) D_W{) < —ui(f, X) = —/'(t, X, U@, X), uk(?, X), wkx(?, X)),
where we have put
wex(t, X) = (Wha,(ty X), whyny(ty X,y eoey Wy (8, X)) -
Since, by (48.11), we have
sgnud(i, X) = —1,

it follows from (48.14), by (48.12), that
(48.15) D_W@H<|[f(t, X, U{, X),0,0)—

—7(t, X, U@, X), 0, ukx(t, X)) | +7(F, X, U{F, X), 0, 0)sgne/(t, X) .

The difference in brackets is, by the parabolicity of solution U (¢, X)
{see § 46) and by (48.13), non-positive. Hence, from (48.1) and (48.15)
we obtain
(48.16) D_W(t) < g4lt, |U(E, X))
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But, by the definition of W'(t) and by (48.11), we have (see § 4)
~ o~ ~
U DI < W(E).

Therefore, in view of the condition W, (see § 4) imposed on functions
aoi(t, V), inequality (48.16) implies that (48.7) is satisfied for ¢ = {, which
completes the proof.

Remark 48.1. Under the assumptions of Theorem 48.1 it may
happen that the differential inequality (48.7) does not hold for any
te (0, 8). In this case Theorem 9.3 does not enable us to conclude on the
validity of inequality W (t) < Q(f; H), whereas the first comparison
theorem (see § 14)—which is a consequence of Theorem 11.1—doces.

The above situation occurs in the following trivial example. Let
n =m =1 and put

e, u,q,7y=7r, D={tax): o0<ti<T,O0<x<l}.
The system (46.7) reduces now to the heat equation and its right-
hand side satisfies inequality (48.1) with o(t, ») = 0. Put
alt,®) =0, Bt,z)=1, n=ery
then u(t,x) = €77 is a solution of the heat equation, satisfying assumptions
of Theorem 48.1. But, since obviously

W(t) = max |u(t, x)] = e+,
o<1

we have W'(t) > 0 and inequality (48.7) does not hold for any te (0, d).
This remark shows the usefulness of Theorem 11.1.

§ 49. Estimates of the difference between two solutions of the first mixed
problem. Now we prove

THEOREM 49.1. Suppose the right-hand members fit, X, U,Q,R)
(i=1,2,..,m) .of system (46.7) and of system

(49.1)  uf = gt, By, veny Buy Uy ey U™, UE oy Uy Uiy, Uniyy oey Ubryr,)
' (i=1,2,..,m)
arve defined for (t, X)e D of type C (see § 33) and for arbitrary U,Q, R.
Assume that
(40.2) [f¢, X, U,Q, R)—¢'t, X, U,Q, B)lsgn(u'—')
<oilt—t, [U=T)) (1=1,2,..,m),
where oit, V) are the right-hand sides of a comparison system of type I

(see § 14). Let Q(t; H) = (wl(t; H), ..., wom(t; II)) be its right-hand maximum
solution through (0, H) = (0, %y, -..; 7m), defined on an interval [0, ay(H)).
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Let d(t, X), V(t,X) (i=1,2,...,m) satisfy Assumptions A (see § 47)
and B(t,X) (6=1,2,..,m) inequalities (48.2). Suppose, finally, that
Ui, X) = (ul(t, X), ..., u™(t, X)) s a parabolic (see §46), X,-regular
(see § 47) solution of system (46.7) in D and V (t, X) = ('vl(t, X), .., 0"(t, X))
is @ X, regular solution of system (49.1) in D, satisfying initial inequalities

(49.3) |U(tey X)=V(to, )| <H for Xe&,
and boundary inequalities

ot i i i R i

it Dta'tt, 1)—o'tt, D1— e, DL < Bor—t,; 1)
(49.4) for (1, X)e 2,

u'(t, X)—o'(t, X)| S ault—to; H)  for (1, X)e Z— Zu
(t=1,2,..,m).
Under these assumptions we have inequalities
(49.5) |U(t, X)—-V (¢, X)| <L(t—1t; H)
in D for
0 <t—ty<min (T, aH)) =6 .

Proof. Like in Theorem 48.1 we assume, without loss of generality,
that t, = 0. Put, for 0 <t < 7T,

Wi(t) = max lui(t, X)—v'(t, X}, WD) = (W), ..., W)

XSSt

Mty = max (u'(t, X)—o'(t, X)) (i=1,2,..,m),
XeS;

N¥t) = max (v'(t, X)—u'(t, X)) .
XeS;

Just like in the proof of Theorem 48.1, it is sufficient to show that
inequality (48.7) holds true in the set E’ defined by (48.8). Fix an index j
and let 7 ¢ B/ ; then we have (48.9) and, by Theorem 34.1, there is a point
X ¢ 87 such that either

~ .~ s~ ~

(49.6) Wi@) = M@) =, )o@, X), D_-WEH<<D M@,
or
(49.7) W) =N =+ -/, X)), D_-W(@) <D N().

Suppose we have, for instance, (49.6); then, like in the proof of Theo-
rem 48.1, we conclude that (f, X) is an interior point of D. Hence we have

(19.8) vi(t, X) = ok(t, X)
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and the quadratic form in 4, ..., is
n
(49.9) Z [u;,z,‘(t, X)— ety X)]4Ax  is negative.
k=1

By Theorem 33.1, 2° we have
D™ M (1) < wi(t, X)—l(T, X);
therefore, by (49.6), we obtain

—y ((t, X, v, X), v(t, X”), vkx(t, X)) .
From the last inequality it follows, by (49.8), that
D_WH <[f(1, X, UF, X), vk, X), whx(?, X)) —
—fi(t, X, U@, X), vk(t, X), vkx(?, X)) +
+|F(t X, U, X), uA(t X), vkx(t, X))~
—¢(t, X), k(@ X), vix(t, X))] -

The first difference in brackets is, by the parabolicity of solution
U(t, X) (see § 46) and by (49.9), non-positive. Since, by (49.6),

Wi, X) > v, X),

X
X, v

we get in virtue of inequality (49.2)
D_WFH <oty \UT X)-V{F, 1)) .

From the last inequality if follows, like in the proof of Theorem
48.1, that (48.7) holds true for ¢ = t, which completes the proof.

Using the results contained in Example 46.1 we get from Theorem 49.1
the following corollary:

COROLLARY 49.1. Let the linear equation

n

w = aplty X)tham,+ D, bty X)ug,+olt, X)u+d(t, X)
ik=1 j=1
be parabolic (see Example 46.1) in a region D of type C (see § 33). Suppose
that
e(t, X) <0
and
Bt,X)>B =0 for (t,X)eZ,,
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and that a(t, X), 1{t, X) satisfy Assumptions A (see § 47). This being assumed
we have, for any two X,regular solutions (see § 47) u(t, X) and v(t, X),
the inequality
|u(t, X)—o(, X)|<np in D,
provided that
[w(ty, X)—2v(ty, X)| < for Xeb,,,

Bt X)u(t, X)—v(t, X)]—at, X) L

lw(t, X)—o(@, X)| <y for (t,X)e2—2,.

<By for (t,X)eZ,,

Proof. All the assumptions of Theorem 49.1 are satisfied with m = 1,
system (49.1) being identical to the above equation, and with o(¢,v) = 0
and w(t; ) = 7.

ExampLe 49.1 (see [33]). Consider a system of almost linear equa-
tions

n
(49.10) = D) (XUl + (L, X, 0y ey u™)  (6=1,2, .y m)
Lk=1

with a}(X), h'(t, X, U) defined for (t, X) ¢ D and U arbitrary, where D
is a cylinder
D= (0, + c0) x G,

and G is a bounded region in the space (2, ..., #»). Suppose that for every ¢
and X € G the quadratic form in 4, ..., 4,

n
Z ap( X) Ay Ag
=1

is positive. Assume that for any positive h we have

m

49.11) B +h, X, U)—H(t, X, D) < M D i/ —7| + Rh"
j=1
(it=1,2,..,m).

where M and R are positive constants and 0 < a«<<1. Let U(t, X)
= (u'(t, X), ..., w™(t, X)) be a regular (see § 47) solution of system (49.10)
in D, such that for every positive h we have

(49.12) |0’ (0, X)—u'(h, X)| < KW for XeG@ (i=1,2,..,m),

(49.13)  |W'(t+h, X)—u'(t, X)| < KR* for (t,X)e(0, + oo) X &G,
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where K is a positive constant and 0 < g < 1. Under these assumptions,
for any positive h, inequalities

Rha Mmi
@Y

(i=1,2,..,m)

(49.14) |t + b, X)—u'(t, X)| < KeM™ 0’ +

are satisfied in D.
Indeed, fix an k> 0 and put

n

Gt X, U,Q,R) = Y a(X)ru+1(t+h, X, U)
(49.15) Li=1 .
(¢=1,2,..,m),

vi(t, X) =w(t+h, X) (1=1,2,...,m).

Then V(t, X) = (v'(t, X), ..., o™(t, X)) is a regular (see § 47) solution
of system (49.1) with ¢* defined by formula (49.15). If we denote by
fit, X, U,Q, R) the right-hand sides of system (49.10), then we can
easily check that all the assumptions of Theorem 49.1 are satisfied with

m
oilt, V) =M D v;+RE* (i=1,2,..,m),

j=1

dit, ) =0, p@,X)=1, mn=Kr (i=1,2,.,m)),

oty H) = KeM""hﬁJr%y—b (@™_1) (i=1,2,..,m).

Therefore Theorem 49.1 yields inequalities (49.14).

The result just obtained may be summarized less precisely in the
following form: if the functions h(t, X, U) are Holderian with respect
to ¢ and Lipschitzian with respeet to U, then any regular solution of sys-
tem (49.10) in D is Holderian with respect to ¢ in every bounded subdomain,
provided that it be Holderian with regard to ¢ in the set (0, + oco) X 9G
and for ¢ = 0.

§ 50. Uniqueness criteria for the solution of the first mixed problem.
We prove

THEOREM 50.1. Let the right-hand members {'(t, X, U,Q,R) (i =1,
2, ..., m) of system (46.7) be defined for (t, X)e D of type C (see § 33) and
for arbitrary U,Q, R. Assume that
(50.1) [f(t, X, U,Q, R)—1(t, X, U,Q, R)[sgn(u'—7")
Solt—t, |[U-T) (1=1,2,..,m),
where oi(t,V) are the right-hand sides of a comparison system of type I
(see § 14). Suppose that

oi(t,0)=0 (i=1,2,..,m)
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and that
(50.2) L0=0 in [0, +co),
where 2(t; 0) is the right-hand maximum solution of the comparison system
through the origin in the interval [0, +oo). Let o'(t, X), U(t, X)
(i=1,2,..,m) satisfy Assumptions A (see § 47) and let f'(t, X) satisfy
inequalities
Bit; X)y>0o0n Zg (i=1,2,..,m).
Under these assumptions the first mived problem for system (46.7)

with tnitial conditions (47.3) and boundary conditions (47.4) admits al most
one parabolic (see § 46), X,-reqular (see § 47) solution in D.

Proof. Suppose that
U(t, X) = (w'(t, X), ..., w™(t, X))}, V(¢ X)= ('@, X), ..., o"(t, X))
are two such solutions. Then they satisfy all the assumptions of Theo-
rem 49.1 with ¢'=f, mi=B"=0 (i=1,2,..,m) and oy 0) = + oo.
Therefore, we have
U@, X)—V(t, X)| < Q(t—1; 0)
in D and hence, by (50.2), it follows that
U, X)=V(t, X)

in D, what was to be proved.

THEOREM 50.2. Let the right-hand sides f(t,X,U,Q,R) (i =1,
2, ..., m) of system (46.7) be defined for (t, X) e D of type C (see § 33) and
for arbitrary U,Q, R. Assume that, for t > t,,
(30.3) [f(t, X, U,Q,R)—f(t, X, ﬁa Q, R)]sgn (u'— ')

< o(t—ty, max |ul—ut),
1

where o(t, v) is the right-hand side of a comparison equation of type IL
(see §14). Let o'(t, X), U'(t, X) (i =1,2,...,m) satisfy Assumptions A
(see § 47) and let B'(t, X) satisfy inequalities

B, X)>0o0n s (i=1,2,..,m).

Under these assumptions the first mixed problem for system (46.7)
with initial conditions (47.3) and boundary conditions (47.4) admits al
most one parabolic (see § 46), Z,-regular (see § 47) solution in D.

Proof. Suppose that U(t, X) = (u'(¢, X), ..., w"(t, X)) and V (I, X)
= (v'(t, X), ..., v"(t, X)) are two such solutions. Like in Theorem 48.1
we assume, without loss of generality, that t, = 0. Then we have

(50.4) U©,X)=V(0,X) for Xeb,,
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and

i, D)talte, —oe, D1t 0 L o

{50.5) for (t, X)eZu,
wi(t, X)—vi(t, X) =0 for (,X)eZ—Zu

Put, for 0 <t < T,
Mi(t) = max (u'(t, X)—2'(t, X)),
XES;

N(t) = max (v'(t, X)—u'(t, X)) (1=1,2,..,m),
X €S

W (t) = max {max |u'(t, X)—o'(t, X)[}.
b XeS;

The assertion of our theorem is equivalent with
£30.6) Wit)=0 for O0<<t<T.

Now, by Theorem 34.1, W{(t) is continuous in the interval [0, T)
and, by (50.4), we have
W(0)=0.

Hence, by the second comparison theorem (see § 14), identity (50.8)
will be proved if we show that the differential inequality

(50.7) D_W(t) < olt, W(1))
is satisfied in the set
E={e(0,T) W(t)>0}.
Let 7 ¢ E; then we have
(50.8) LAGEX' P
By Theorem 34.1, there is an index j and a point X e §; such that
either
(60.9) W@ = M) =4, ), X), D.WFTH <D M,
or
(50.10) W) = N@) =, X) — W7, X), D_-WE <D NQ).
Suppose we have, for instance, (50.9); then, in view of (50.5), (50.8)
and (50.9) we conclude, by Lemma 47.1, that (¢, X) is an interior point

of D. Hence, relations (49.8) and (49.9) hold true. By Theorem 33.1, 2°,
we have

~ o~

DM (@) <ult, X)—j(F, X) .

J. Szarski, Differential inequalities 10



146 CHAPTER VIII. Mixed problems for second order differential equations

Therefore, proceeding further like in the proof of Theorem 49.1
and using (49.8) and (50.9) we get

p_WH) <[f(T, X, UF D), uk(f, B), wkex(F, B))—
—fi(t, X, U@, X), vk(t, X), vkx(?, )] -

+ (1, X, U, X), uk(t, X), vxx(t, X))—

~—

"‘fj(;y XN’ V({; X“), 'N/ZY(?; f)a OZXX(tN, 4?)}] .
The first difference in the brackets is, by the parabolicity of solution
U(t, X) (see § 46) and by (49.9), non-positive. Since, by (50.8) and (50.9),
we have
wi(t, X) > vi(i, X)

inequality (50.3) applied to the second difference in brackets yields

~

D_W () < o7, max |u(?, X)—o¥(t; X)) .
1

In view of the obvious relation (see (50.9))

~

w@) = mgx(ul(ti X)-a(@, X,

the last inequality is equivalent with (50.7), which completes the proof.

Remark 50.1. The uniqueness criterion contained in Theorem 50.2
is more general than that of Theorem 50.1. This depends on the fact
that the right-hand sides of a comparison system of type I (see § 14)
are supposed to be continuous for ¢ = 0, while the right-hand side of
a comparison equation of type II is not. Thus, for instance, the uniqueness
of the solution of the first mixed problem for the equation

w = {In(t—t,)|u+h(t, X, ux, uxx)

is a consequence of Theorem 50.2 (see Example 14.2, (vy)), whereas it is
not one of Theorem 50.1.

Remark 50.2. It easily follows from the proof of Theorem 50.2
that if we knew that W (0) = 0, then we would obtain a still more general
uniqueness eriterion with o(f, ») in (50.3) being the right-hand side of
a comparison equation of type III (see § 14). But, to get relation W(0) =0,
we would have to require that the solutions U (¢, X) and V (¢, X) satisfy
system (46.7) for ¢ = 0. Therefore, such a criterion would be useful only
in particular cases since usually parabolic equations are not satisfied on
the lower base of the domain D.
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Remark 50.3. In the proofs of Theorems 48.1, 49.1, 50.1 and 50.2
we used, as an essential argument, the following very well known pro-
position: if a function ¢ (X) = ¢(=z,, ..., #s) is of class 02 in the neighborhood
of the point X, and if it attains local maximum at that point, then

¢x(Xo) =0
and the quadratic form in 4,, ..., 4s
2 Pl Xo) A1 de
Lk=1

is negative. On the other hand, if the function ¢(X) were even of class ¢,
nothing could be inferred on the behavior of its higher derivatives at X,
from the fact that it attains local extremum at X,. This explains why
general theorems of the types discussed in §§ 48-30 cannot be expected
to hold true for equations of higher order than 2.

Remark 50.4. In the particular case, when the right-hand sides
of system (46.7) and (49.1) respectively do not depend on second deriva-
tives, Theorems 48.1, 49.1, 50.1 and 50.2 concern systems of first order
partial differential equations. Now, the guestion arises how these theorems
are related with analogous theorems of Chapter VII. In Chapter VII we
have more restrictive assumptions on the domain D and on the regularity
of the right-hand sides of system, viz. the domain D is a pyramid and the
right-hand sides of the system satisfy a Lipschitz condition with regard
to the first derivatives of unknown functions (the pyramid depending
on the Lipschitz constant); on the other hand, in Chapter VIII we impose
boundary conditions for the solution on the side surface of D which are
superfluous in theorems of Chapter VII.

§ 51. Continuous dependence of the solution of the first mixed problem
on initial and boundary values and on the right-hand sides of system. We
now prove

ToEOREM 51.1. Let the right-hand sides f(t, X, U,Q,R) and
7t X, U,Q,R) (i =1,2,..,m) of system (46.7) and (49.1) respectively
be defined for (t, X) e D of type C with T < + oo (see § 33) and for arbitrary
U,Q, R. Suppose ' to satisfy assumptions of Theorem 50.1. Let oi(t, X),
Ut,X) (i=1,2,..,m) satisfy Assumptions A (see §47) and Ft, X)
inequalities

Bt,X)y>B >0 for (t,X)eZs (1=1,2,..,m).
Suppose finally that U(t, X) = (@'(t, X), ..., w™(t, X)) is a parabolic

(see § 46), Z,-reqular (see § 47) solution of system (46.7) in D and V (¢, X)
= {v'(t, X), ..., 0™(t, X)) is a Zyregular solution of system (49.1) in D.

10*
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Under these assumptions, to every &> 0 there is a 6 > 0 such that
whenever we have

(51.1) If'¢, X, U,Q,R)—¢'(t, X, U,Q,R)|<d (i=1,2,..,m)),

(51.2) (Uty, X)—V (to, X)| < 4 fjor XeSy,
ﬁi(t’X)[“i("X)—v"(t,X)]~a"(t,X)g%jﬂ< 5

for  (t,X)e Xy,
(51.3) |[ui(t, X)—vi(t, X)| <& for (t,X)eZ—Zu

(t=1,2,..,m),
where A = (4, ..., 6), then inequality

(51.4) \U(t, X)—V(t, X)] < E

holds true in D, where E = (e, ..., &).

Proof. In view of Theorem 10.1, to every ¢ > 0 there is a & >0
such that the right-hand maximum solution £2(t; H, ;) of the comparison
system

d .

%ﬁzai(tyyh""ym)‘*'él (t=1,2,..,m)
(concerning o4(f, Y) see the assumptions of Theorem 50.1), passing through
(0, H) = (0, 91y ey m), is defined in the interval [0, T) and satisfies
inequality

(51.5) Q; H,6)<E for 0<i<T,
provided that
(51.6) 0 < H< 4y,

where 4, = (6;, ..., 6;). Let inequalities (51.1)-(51.3) hold true with
8 = min(é;, B'a;) > 0;
then, by (51.2) and (51.3), inequalities (49.3) and (49.4) of Theorem 49.1

are satisfied with ;= 6, (¢ =1, 2, ..., m). On the other hand, by (50.1)
and (51.1) we have

[, X, U, Q, R)—¢'t, X, U, Q, B)]sgn(u' — %) <ou(t—1to, U~ T+ 5
(t1=1,2,..,m).
Hence, by Theorem 49.1, we get
(51.7) |U@t, X)—V (¢, X)| <2 44,6,) in D.
From (51.5) and (51.7) follows (51.4), what was to be proved.
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§ 52. Stability of the solution of the first mixed problem. Let the
right-hand sides of system (46.7) be defined for (¢, X) e D of type C with
T= + oo (see § 33) and for arbitrary U, @, R, and satisfy identities

(52.1) fi(t, X,0,0,0)=0 (i=1,2,..,m).

Let d'(t, X), I'(t, X) (i =1, 2, ..., m) satisfy Assumptions A (see § 47)

and f'(t, X) inequalities
Bt,X)y>B >0 for (t,X)eZu (1=1,2,..,m).

Owing to assumption (52.1), V(¢, X) =0 is a 2Z,-regular (see § 47)
solution of the first mixed problem (47.3), (47.4), with &(X) = ¥(i, X) = 0,
for system (46.7).

DEFINITION OF STABILITY. Put F = (s,...,¢) and 4 = (8, ..., d).
We say (under the above hypotheses) that the null solution of system (46.7)
is stable if to every & > 0 there is a 6 > 0 such that for every Z,-regular
(see § 47) and parabolic (see § 46) solution U (1, X) = (v'(t, X), ..., w™(t, X))
of system (46.7) in D we have
(52.2) |[U(t, X)|<E in D,
whenever
[U(ty, X)] <4 for Xeb,

» g s du’i
t, X)u'(t, X)—ad'(t, X) —|< & for (t,X)eX,
(52.3) p(t, X)w(t, X)—alt, )dl’ (ty X) e 2t
lui(t, X)| <6 for (t,X)el2—2yu
(i=1,2,..,m).

Now, we can prove the folowing

THEOREM 52.1. Under the assumptions introduced at the beginning of
this paragraph swppose that

(52.4)  f(t, X, U,0,0)sgne’ < ot—1,, |U]) (i =1,2,..,m),

where oit, V) are the right-hand sides of a comparison system of type I
(see § 14). Assume that
gi{(t, 0) =0 (1=1,2,..,m)
and that the null solution of the comparison system is stable (see [7], p. 314).
Then the null solution of system (46.7) is stable too.
Proof. The null solution of the comparison system being stable,
to ¢ > 0 there is a ¢, > 0 such that whenever

O<H4 (4y = (8 .5 01))
then

(52.5) Qit; Hy<E for 0<t< +oo,
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where 2(¢; H) i3 the right-hand maximum solution of the comparison
system through (0, H) = (0, 9y, ..., 7m). Put

0 = min(4;, B'%;) >0
<

and suppose that inequalities (52.3) hold true with the above 4. Then,
by (52.3) and (52.4), all the assumptions of Theorem 48.1 are satisfied
with s =6, (4 =1,2,...,m) and V (¢, X) = 0. Hence, by Theorem 48.1,
we get

(52.6) U, X)| <R 4,) in D.

Inequality (52.2) follows now from (52.5) and (52.6).
ExAMPLE. Let the comparison system be a linear one of the form

d 3 :
(52.7) L= Dauthyr  (1=1,2,.,m),
k=1

where a;(t) > 0 are continuous for ¢ > 0. Suppose that for
p(t) = max |ai(t)|

we have

[ o)ydt< +oo.
0

It is well known that under these assumptions the null solution of
system (52.7) is a stable one. Hence, if system (46.7) satisfies hypotheses
of Theorem 52.1 with inequalities (52.4) of the form
m
T i \ |
1, X, U, 0,0)sgnu’ < D ault) |u'],

k

I
-

then the null solution of (46.7) is stable.

§ 53. Preliminary remarks and lemmas referring to the second mixed
problem. We are going now to discuss the second mixed problem for
systems of the form (46.7). We recall (see § 47) that the second mixed
problem consists in determining a X, -regular solution (see § 47) of (46.7)
satisfying initial conditions (47.3) and boundary conditions (47.4), where
ﬁi(t , X) are functions which—unlike in the first mixed problem—are
not supposed to be positive for (¢, X) e Zs. In order to get analogues of
theorems concerning the first mixed problem, we will have to impose
some more restrictive conditions on the right-hand sides of system
(46.7) and, moreover, we will assume the existence of adequate sign-stab-
ilizing factors. More precisely, we will suppose that there exist functions
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K'(t,X) (i=1,2,..,m), such that new unknown functions defined by
formulas

wit, ¥) = H )

K'(t, X)

satisfy boundary conditions (47.4) with new coefficients B'(t, X), which
are positive for (¢, X) e 4. In the case of one linear parabolic equation
the introduction of the above sign-stabilizing factors is due to M. Krzy-
zanski [18]. We will establish certain sufficient conditions referring to
the domain D, the coefficients a'(t, X) and fi(t, X) and to the directions
(t, X) which imply the existence of the above factors.

In what follows we suppose that a region D of type O (see § 33),
directions T'(¢, X), and functions o'(t, X), f(t, X) (i =1, 2, ..., m) defined
on the side surface X of D respectively on X are given, where «i(t, X),
I(t, X) satisfy Assumptions A (see § 47).

Let the funetions K'(¢, X) (i =1, 2, ..., m) be positive and of class C?
in the closure of D and let U(t, X) = (u'(t, X), ..., u™(t, X)) be Z,-regular
(see §47) in D. Under these assumptions we have the following easy
to check

LemmA 53.1. Define U(t, X) = (u'(t, X), ..., W"(t, X)) by the formalas

(1=1,2,..,m)

(53.1) wit, X) = o'(t, X)[K'(t, X0 (i1=1,2,..,m);

then we have the following propositions:
1° glui— a’%@li; - K"[E%"— ai%;] for (t, X) e Zu (i=1,2, ...,m), where

,dK*

(53.2)  Bi(t, X) = (¢, X)—d'(t, X)[EXt, X)I” 7

for  (t, X)eZy

(t=1,2,..,m).

20 If U(t, X) satisfies initial conditions (47.3) and boundary conditions
(47.4), then
(63.3) Wy, X) = ¢ (X)[K'(ty, X)]™* for Xe8, (=1,2,..,m),
and
~i ~q i dut i i -
Bitt, D', X)— e, X) =7 = wi(t, DI, X7
for (8, X)e Zu,
(53.4) W, X) =o't HE(E, X jor (1, X) e T— Zu
y (i=1,2,..,m),
where B'(t, X) are given by formulas (53.2).
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The above lemma justifies the following definition.

DEFINITION OF SIGN-STABILIZING FACTORS. Functions K¢, X)
(¢=1,2,..,m), which ar> positive and of -lass C? in the closure of D,
will be called sign-stabilizing factors if there exist constants B’ (i =1,
2, ..., m) such that

Bit, Xy>B' >0 for (1,X)eZy (i=1,2,..,m),

where ﬁi(t, X) are defined by formulas (53.2).
Remark 53.1. The existence of sign-stabilizing factors is trivial if
we assume that for the original coefficients g'(¢, X') we have

B, X)y>B >0 for (,X)eZu (i=1,2,..,m).

Indeed, in that case K'(t, X)=1 (i=1,2,..,m) are obviously
sign-stabilizing factors. On the other hand, we will see in § 54 that sign-
stabilizing factors may exist also in the case when ,Bi(t, X) take on values
which are non-positive. Hence, it follows that the existence of sign-
stabilizing factors is an essentially less restrective condition imposed on
ﬁi(t, X) than the above inequalities, and that sign-stabilizing -factors can
be of service in the treatment of the second mixed problem.

Next we state, without proofs, three easy to check lemmas.

Lemma 53.2. If U(t, X) = (w'(t, X), ..., w™(t, X)) is a Z.regular
(see § 47) and parabolic (see § 46) solution of system (46.7) in D, then
U(t, X) = (@'(t, X), ..., w"(t, X)) defined by (33.1) is a Z,regular and
parabolic solution of the transformed system

(53.5) d=T0,X,7Z,7,dkx) (i=1,2,..,m),
where
(53.6) Ui, X,Z,Q,R)
=[K'¢t, X'k, X,/ K\¢, X), ..., &"K™(t, X), QK'(t, X) +
+ 2 K5(t, X), ooyt Kty X) + @5 Kz(t, X) -+ o Ko(t, X)+
+ 2 Koy, (t, X), ) —2Ki(t, X)] (=1,2,..,m).

LeMMA 53.3. Let the functions K, X)(i=1,2, «ey M) be of class C*
in the closure of D and satisfy inequalities

(53.7) 0<u< K@, X)< I, |Ki,|Kyl, | Kepl < I;
put

M= n(n+l)ﬂ.
Suppose the functions oit, Yiy ooy Ym)s it y) T =1,2,...,m) to be
continuous, non-negative and increasing in all variables for t >0, y > 0,



§ 53. Lemmas referring to the second mixed problem 153

yi=0 (1=1,2,..,m). Assume finally that the right-hand sides of
systems (46.7) and (49.1) satisfy inequalities

(53.8) [f(t,X,U,Q,R)—4¢'(t, X, U, Q, B)]sgn(v'—7’)
< oift—1,, |U—ﬁ|)+ﬂ(t—toy Z V%'—%HZ lf”jk—'fﬂcl)
7 i,k

(t1=1,2,..,m).
Under these assumptions the vight-hand sides of the transformed
system (53.5) and of the system
(53.9) 4 =790 X,2,4%,d%x) (1=1,2,..,m),
obtained by transformation (53.8) from system (49.1), satisfy inequalities

(33.10) [f'¢, X, U,Q, R)-3'(t, X, U, Q, R)lsgn(w'—7')
< Gt—1t, [U=T|) (i=1,2,..,m),
where
: ~ 1 M M
(53.11) GUt, Y1y ey Ym) = /—‘ [ai(iﬂ—t, Myy, ...,y Mym)+—r¢(7t, Myi) +My¢]
(i=1,2,..,m).

LEMMA 53.4. Let o4(t, Yy ..., Ym) and v(t,y) (i =1,2, ..., m) salisfy
assumptions of Lemma 53.3 and define G;(t, Y1y ...y Ym) by formula (53.11).
Consider two systems of ordinary differential equations

d .
(63.12) 7?? = 0i{t, Y1y ooy Ym) FTell, Y}y (1 =1,2,...,m)

and

d ~ .
(53.13) % =0ty Y1y ooy Ym) (E=1,2,..,m).

Under the above assumptions we have the following propositions:

1° Both systems are comparison systems of type I (see §14).

20 If Q(t; H) 4s the right-hand maximum solution of system (53.12)
through (0, H) = (0, %y, ..., m) defined on [0, + oo), then

~ 1 (M
(53.14) Q(t; H) = ﬂg(_,u—t; Mnyy ooy My
i8 the right-hand maximum solution of system (53.13) through (0, H) defined
on [0, -+ co).

§ 54. Sufficient conditions for the existence of sign-stabilizing factors.
It is important to know whether the domain D, the functions o¥(t, X),
g'(¢, X) and the directions I'(¢, X) being given the existence of sign-sta-
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bilizing factors K(t, X) (see § 53), satisfying inequalities (53.7), is guaran-
teed.

We will consider a particular case when the construction of sign-
stabilizing factors can be easily achieved. Let D be a cylinder whose axis
is parallel to the t-axis and whose basis is a bounded domain G in the
plane ¢ = 0. Assume the boundary &G of G to be a surface given by the
equation G(X) = 0, where G'(X) is of class C? in the closure of G. Suppose
that

(X)), 6o (X)), [Gua D) <N for Xed,

grad*G(X) >0 for X eoG.
Let o'(t,X)=1 and £, X)=b (1=1,2,..,m), where b' are

some negative constants. Assume finally the directions I'(f, X) to be
chosen so that

m
D@ (Xeos(lit, X),z) >I">0 for (4, X)eX (i=1,2,..,m).
j=1

A simple computation shows that under these assumptions the

functions
K, X)=¢""% (i=1,2,..,m),

1—b°
y = max (55),

K]

where

are sign-stabilizing factors with B* = 1 (i = 1, 2, ..., m), satisfying inequa-
lities (53.7) with

p=eN, M =eVNyN+1p3.

§ 55. Analogues of theorems in §§ 48-52 in case of the second mixed
problem. Using lemmas of the preceding section we will derive from
theorems contained in §§ 48-52 the following results for the second mixed
problem: estimates of the solution, estimates of the difference between
two sclutions, nniqueness criteria, continuous dependence of the solution
on initial and boundary values and on the right-hand sides of system
and, finally, a stability criterion.

In what follows we will assume, without stating it explicitly in each
theorem that

(«) the right-hand sides of systems to be considered are defined for
(t, X)e D of type C (see § 33) and for arbitrary U, @, R,

(B) functions «'(¢, X) and directions I'(t, X) (i =1, 2, ..., m) satisfy-
ing Assumptions A (see § 47) are given on the side surface X of D, as
well as functions f(t, X) on Zs (i =1,2,...,m).
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THEOREM 55.1. Suppose that the vight-hand sides of system (46.7)
satisfy inequalities

(#51) 1(t, X, U,Q, R)sgnu’ < oilt—1to, |U) +1ilt—to, >, 1+, Irzl)
J 7.k

(i=1,2,..,m),

where oi(t, Yy, ...y Ym) ond (L, y) are continuous, non-negative and increasing
in all variables for t >0,y =0, v =0 (1 =1, 2, ..., m). Denote by 2(t; H)
= (wl(t; H), .., on(t; H )) the right-hand maximum solution of system (53.12)
through (0, H) = (0, 1, ..., 7m) and assume it to be defined on [0, + oo).
Suppose there exist sign-stabilizing factors (see § 53) K, X)(i=1,2,.., m)
satisfying inequalities

(55.2) 0<p<K(@X)<H, |Ki |Ee, | Kapl<H
(t=1,2,...,m; f,k=1,2,..,n)

and some constants B* such that

(65.3) B, X)>B' >0 Jor (t,X)eZu (i=1,2,..,m),

where

(55.4)  Bt, X) = Bt, X)—ai(t, X)LE(t, X K

dr

for  (t, X)e Xy
(¢t=1,2,..,m).

Let U(t, X) = (w'(t, X), ..., u"(t, X)) be a parabolic (see § 46), Z,-requ-
lar (see § 47) solution of system (46.7) in D, satisfying initial inequality

(55.5) Uty )| <H for Xe8,,
and boundary inequalities
8, )it X)—dit, 1) P < B2, (g(t—to); X i) for (¢, X)e 5,
ar M \u U
(55.6)
, M M .
lui(t, X)| < %w,(-ﬁ— {t—1o); ;H) for (t,X)e2—2y (¢=1,2,..,m),
where M = n(n-+1) M.
Under the above assumptions we have in D
(55.7) 1, ) < 2[5 (- 3 5 7).
Proof. Put
(55.8) Aty X) = u't, X)[K¢, X)T" (=1,2,..,m).
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By Lemma 53.2, U(f, X) = (@', X), ..., 9", X)) is a Z,-regular
and parabolic solution of the transformed system (53.5) and, by Lemma.
53.1, inequalities (55.2), (55.5) and (55.6) imply

H

(55.9) |ﬁ(t0,X)|<; for Xe8,,

and

~y . , i .

ﬂ'(t,X)’qZ’(t,X)—az(t,X)d—q’i <B’lwi(—M—-(t—~to);%H) for (1, X)e Zu,
ar M \u 0

(55.10)

|’ﬁ"(t,X)l<%wi(f—(t—to);%{ﬂ) for (t,X)eZ—Zi (i=1,2,..,m),

where B(t, X) are given by formula (55.4). From (53.6), (55.1) and (55.2)
it follows that the right-hand sides of the transformed system (53.5)
satisfy inequalities

(35.11)  7'(¢, X, U,0,0)sgne’ < (t—1, |U|) (i=1,2,..,m),

where
M

~ 1 M
(35:12) Bty s, o U) = [az(—ﬂ—t, My, o, Mym)m(;t, Myf)+Myi}
(i=1,2,..,m).

From (55.3), (55.9), (55.10) and (55.11) we infer that for the transfor-
med system (53.5) and its solution U(#, X) all the hypotheses of Theo-
rem 48.1 are satisfied. Hence, we have in D

(55.13) [T, X)) < Q(t—to; %) :

where Q(t; H) is the right-hand maximum solution of system (53.13)
through (0, H). But, by Lemma 53.4, we have, for 0 <t < + oo,

~ 1 (M
(55.14) Q(; H) = ﬂQ(Ft; MH) .

Relations (55.2), (55.8), (55.13) and (55.14) imply inequalities (55.7)
in D, what completes the proof.

THEOREM b5.2. Let the right-hand members of systems (46.7) and (49.1)
satisfy inequalities

Dﬂ.(t7 X7 U7 Q7 R)~gl(t7 4Y7 U? Q’ R)]Sgn(ui_’ai)
< 04t —1y, |U~l7|)+z,(t—t0, Z 195 — il +2 Wc—fﬂcl) ,
j j’k

where oi(t, Y) and vit,y) satisfy assumptions of Theorem 55.1. Suppose
there exist sign-stabilizing factors (see § 53) satisfying inequalities (55.2)
and constants B', such that inequalities (55.3), with B'(t, X) defined by (55.4),
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hold true. Assume that U(t, X) = (ul(t, X), ., u™(t, X)) i8 a parabolic
(see § 46), 2,-regular (see § 47) solution of system (46.7) in D and V (t, X)
= [v'(t, X), ..., V"(t, X)) is a Z,-regular solution of system (49.1) in D,
their difference satisfying initial inequalities (55.5) and boundary inequa-
lities (55.6).

Under these assumptions the inequality

UG, )=V (¢, )| < @ (=10 H)

holds true in D, where 2(t; H) is the right-hand maximum solution of sys-
tem (53.12) through (0, H) = (0, 71y ...y Nm)-
Proof. Proceeding like in the proof of Theorem 53.1, we put (55.8) and

(55.15) B, X) = oit, X)[K@, X)]* (i=1,2,..,m)

and we check (using Lemmas 53.1-53.3) that for the transformed sys-
tems (53.5) and (53.9) and their solutions ﬁ(t,X) and I7(t, X) all the
assumptions of Theorem 49.1 are satisfied. Hence, applying Theorem 49.1
and using Lemma 53.4, we get the assertion of our theorem.

THEOREM 55.3. Let the right-hand sides of system (46.7) satisfy the
inequalities

[fi(t’ X,U0,Q, R)“‘fi(ta X,U0,Q, R)]Sgn(ui_ui)
< 0ilt—to, |[U=T|) +1elt—to, D las—sl + Y, Irse—Fsel)
i ik
(t=1,2,..,m),
where o4(t, Y), Ti(t, y) satisfy assumptions of Theorem 55.1. Suppose that

oi(t,0) =74, 0) =0 (i=1,2,..,m)
and that
Qt;00=0 in [0, + o),

where 2(t; 0) is the right-hand maximum solution of system (53.12), tssued
from the origin. Assume, finally, there exist sign-stabilizing factors (see § 53),
satisfying inequalities (55.2), and constants B® such that inequalities (55.3)
hold true.

Under these assumptions the second mized problem for system (46.7)
with initial conditions (47.3) and boundary conditions (47.4) admits at
most one parabolic (see § 46), Z,-regular (see § 47) solution in D.

Proof. Since two solutions of the problem satisfy assumptions of
Theorem 55.2 with f' =g¢° and 5 = B' = 0, our theorem follows from
Theorem 55.2.
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THEOREM b5.4. Assume the right-hand sides of system (46.7) to satisfy
the inequalities

(35.16) [f¢, X, U,Q,R)—f(t, X, U, q, B)lsgn(u'—7°)
< a(t—1y, mf{bXW"~ﬁj|)+f(t—to, 2 =3+, ITﬂc—ﬁkl)
[ 7 7.k

for t>t, (i=1,2,...,m),

where o(t, y) and ©(t,y) are continuous, non-negative and increasing in all
variables for t > 0, y > 0. Suppose that

- d :
(55.17) = olt, )+ it ) +y

is a comparison equation of type II (see § 14). Assume, finally, there exist
sign-stabilizing factors (see § 53), satisfying inequalities (55.2), and con-
stants B', such that inequalities (55.3) hold true.

Under these assumptions the second mized problem for system (46.7)
with initial conditions (47.3) and boundary conditions (47.4) admits at most
one parabolic (see § 46), X,-reqular (see § 47) solution in D,

Proof. It is obvious that it suffices to prove uniqueness of the corre-
sponding problem for the transformed system (53.6) obtained from the
given system (46.7) by the mapping (55.8). Now, in view of (55.16), it
is easy to check that the right-hand sides of the transformed system
satisfy the inequalities

7 X, U,Q, BT, X, U, @, R)lsgn(u'~ )
< G(t—ty, max|u’ —@'|) for t>1, (i=1,2,..,m),
where !
~ 17 (M, M ,
o(t,y) = u [a(;t, My) +r(7t, My) —{-My] )

Equation (55.17) being a comparison one of type II it is not difficult
to check that the same is true for the equation

Y _0,m.

The above remarks and inequalities (55.3) imply that for the trans-
formed system (53.5) and the transformed initial and boundary con-
ditions (53.3) and (53.4) all the assumptions of Theorem 50.2 are satisfied.
This completes the proof.

THEOREM 55.5. Let the right-hand sides of system (46.7) satisfy assump-
tions of Theorem 55.3. Assume there exist sign-stabilizing factors (see § 53),
satisfying inequalities (55.2), and constants B* such that inequalities

(55.18) B, X)>B' >0 for (t,X)eZs (i=1,2,..,m)
hold true.
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Under these assumptions the parabolic and Z,-reqular solution of the
second mizved problem for system (46.7) depends continuously (in the sense
specified in Theorem 51.1) on initial and boundary values and on the right-
hand sides of system.

Proof. Applying our standard procedure we check that for the
transformed problem obtained from the original one by the mapping (55.8)
all the hypotheses of Theorem 51.1 are satisfied. Thus, our theorem follows
from Theorem 51.1.

In a similar way, from Theorem 52.1 we derive the following

THEOREM 55.6. Let the right-hand sides of system (46.7) satisfy ine-
qualities

1t, X, U, Q, Rysgnu' < ault—to, U] +ilt—to, D las|+ ) 17l
j 7.k

(1=1,2,..,m),
where oi(t, Y) and t, y) satisfy assumptions of Theorem 35.1. Suppose that
fitt, X,0,0,0) = o4(t,0) =74(t,0) =0 (i =1,2,..,m)

and that the null solution of system

dy; .
%2O'i(t7?/17"~7ym)+”(t7'3/1)+yi (t=1,2,..,m)

is stable. Assume the existence of sign-stabilizing factors (see § 53), satisfying
inequalities (55.2) and such that inequalities (55.18) hold true. This being
assumed the null solution of system (46.7) is stable (for the definition of
stability, see § 52).

§ 56. Energy estimates for solutions of hyperbolic equations. In this
section we consider a system of linear equations of the form

n

D ail(X) i,

j,k=1

[

(56.1) HTu']

m n 3

= Y N i xyul,+ D X +54X) (=1,2,..,m),
l

l=1j= =1

-

where the ith equation involves second derivatives of « only and a};, = aj;.
The coefficients of equations (56.1) are supposed to be defined in a region D.
Before we define D more precisely, we recall the following notions.
The differential operator H'[u] is called hyperbolic at a point X ¢ D
if »—1 eigenvalues of the matrix (a}:k(X)} are positive and one

. . f,k=1,..,n
is negative.
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Let G(X) be of class (! in the neighborhood of a point X,e D and
suppose that grad®G(X) > 0 and G(X,) = 0. Let us write

(36.2) AT = ) Gl X) G X) Gyl X) .

fk=1

The operator H' being hyperbolic at the point .X, we say that the
orientation with respect to H' of the surface X defined by the equation
G(X) =0 is at the point X

(a) characteristic f A"[G]x_xo =0,

(B) space-like if Ai[G]x_xD< 0,

() time-like if ATGlp—z, > 0.

We introduce now following assumptions concerning the region D
in the space (o, ..., #y) and the coefficients of system (56.1).

ASSUMPTIONS B. (a) D is open, contained in the zone 0 < &, < b < 4 oo,
and the intersection of D with any closed zone 0 <t <o <t4+h<b is
non-empty and bounded.

(b) IT; denoting the intersection of D with the plane @, =t and y(X)
being an arbitrary continuous function in D, the function

ot) = [ [ p(@y, o, ww)do ()
11

is continuous on [0, b).
(¢) air(X) are of class O, b(X), ¢{(X) and f(X) are bounded and
integrable in D and

n n—1 n
(6563) u ) E< D aX) h— e (DE <M D B (1=1,2,..,m)
r=1 7. k=1 r=1
for X ¢ D and arbitrary Ay, ..., Jun, where M and p are positive constants (2).
(d) The side surface X of D, i.e. that part of the boundary of D which
18 contained in the open zone 0 << xp < b, is composed of two (n— 1)-dimen-
sional surfaces Z° and ZT (one of them may be empty).
(e) 2% is the union of a finite number of surfaces of class C' whose
orientation, with respect to every operator H', is characteristic or space-like
at every point; moreover, we have

co8(,xn) <0 on ZS,
where 7 denotes the interior orthogonal direction.
@) fas, ]I do, JIf dv denote (n— 2)-dimensional, (- 1)-dimensional and n-dimen-

sional integrals respectively.
{3) It is easy to check that the left-hand inequality (56.3) implies hyperbolicity

of the operator H*.



§ 56. Energy estimates for solutions of hyperbolic equations 161

(f) X7 is the union of a finite number of surfaces of class C' whose
orientation, with respect to every operator H', is time-like at each point and

cos(@, wz) >0 on X7

moreover, Xi denoting the intersection of T with the plane x, =t and p(X)
being an arbitrary continuous function in D, the function

x{t) = fy) (@yy ...y Tn)ds
=
s continuous on [0, b).

THEOREM 56.1. Suppose the Assumptions B to hold true, and let the
functions u(X) = u¥(@y, ..., 2s) (1 =1,2,..,m) be of class C* in D and
of class C* in the closure of D. Assume U(X) = (u'(X), ..., w™(X)) to sat-
isfy system (56.1) in D. For 0 <<t <<b, put

mn n.—l . . .
Bt = [ D] D bty b, — abn(ud,f + ('] do.

o i=1 jik=1

Under the above assumptions we have in the interval [0, b)

(56.4) DE(@) <LE@®)+g¢(t),

where ~

(56.5) = fz [ 2 a,ku,,juyk+(u ) ]cos(n @n)ds +ff 2 (f'Ydo ,
T i=1 = m i=1
l

and (Yy, ..., Yn—1) are suitably chosen local coordinates on 2T s Lisa positwe
constant depending on u (see (56.3)) and on the bounds of coeffwwnts b, ¢
and of the first derivatives of aji, but independent of the solution U(X).

Proof. It can easily be checked that

n

L N
1 Ty ..t
2H Tu Uy, = 2 E ajkuxjwku% =2 E ajkuzkuxn)

k= 7,k=1

n
§ 17 6a9k 2 801:,]0 i
- 8@7 ajkuleuxk) 2 xk xn+ x;uack .
7.k=1

Hence multiplying the equation

H’i[u 22 b l1+2 At "Hd
=1 j=1

=1

J. Szarski, Differential inequalities 11
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by 2u., we obtain in D the identity

n n
5 o+ i o . . . o .
(36.6) 2 Z 57, (@5k Uy, Uir,) — 2 %(a}kuﬁqu;k) = 2f'uy, +Fi[u],
fk=1 fl=1

where F: is a quadratic form in u!, .., w” and their first derivatives.
The coefficients of F: are polynomials of 5%, ¢ and of the first derivatives
of af-k.
For 0 <t< b and h > 0 and for any set E in the space (z, ..., &),
let us denote by E,; the intersection of E with the zone f <&, <t-+h.
Integrating identity (56.6) over the region D,; and applying Green-
Gauss theorem we get

n n
(56.7) ff [2 2 a?kufg,cuincos('ﬁ,m;)— Z aﬁkuijuikcos(ﬁ,mn)]do
D¢ k=1 Fk=1
= — [ (Firu +2f ) do.
De,n
In virtue of the assumptions (d), (e) and (f), the set
(56.8) 8Dy = Iy v Iy o Zoh v 5,

is the union of a finite number of surfaces, each of which can be deseribed
analytically by an equation of the form

G(.’D]_, ...,.’L'”) == O y

with @ of class C* and G,, # 0 in the neighborhood of the respective
surface. Introducing new independent variables

yy=a; (=1,2,..,n—=1), Yn= G(xy, ..., %)
and using formulas
Uay = U+ U6y (G=1,2,ym—1),  Ug, = UG,
Gy, c08(n, w;) = Gy eo8(h, @) (j=1,2,..,n—1)

on the corresponding surface, the expression under the sign of integral
on the left-hand side of (56.7) ean be written in the form

n—1

[Ai[G] (uh, ) — 2 aly, uf,,c]cos (%, @n) ,
j,k=1

where ATG] is defined by formula (56.2). Hence, by (56.8) and in view
of the fact that on I7; 5 we have G(X) = o, — (t + k) and cos (%, ;) = —1,



§ 56. Energy estimates for solutions of hyperbolic equations 163

while on /7; there is G(X) = w,—t and cos(@, ®s) = 1, formula (56.7)
can be rewritten in the following way:

(56.9) ff[ Z AUy Uiy — @ (0, ]dc—- _]f [ 2 Aty U, — @l (Ul ]do

My k=
= [T L3 ety A1 eos 5, 5o +
zth &
nfl
+ ff{ Z “;:"uf/fulilk‘"Ai[G](“Zn)Zlcos(ﬁ, @) do—
zT i, k=1

~fff(FTu]+2fuu

Since we have —Zf’uz" < (fi_)z-{—(ufa")z, ATG1 <0 on 2 (space-like
or characteristic orientation), ATG] >0 on X (time-like orientation),

and, by (e), (e), (),
n~1
Z a‘;'k“:llu;lk 20 ’
jk=1

cos (7, x,) < 0 on th , cos(@,s;) >0 on Xy,

formula (56.9) yields the following inequality:

(56.10) ff [ 2 a,kux,uxk ﬂz,m uﬂﬂn) ]dO' ff [ 2 ajlc“z;ua:k ann ’”/zn) ]da
I

Mesn §.k=
ff [ Z a,kuwuy,c]cos(n ) da—}-fff (f*Ydv +fffF2[u]dv ,
zT, R

where F; is a quadratic form with properties analogous to those of Fi.
Now, integrating the identity

- o .
2u'uy, = — (u')
Tn

over the region Dy; and applying, once more, Green-Gauss theorem we
obtain

wayﬂmm

My+n

—ffw eosnxnda—kff(wOOSnw,,da+2fffu a0 5

":th
11%*
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whence
(36.11) [ [ (uipda— f [ (uipdo
iin
ff Y cos (7 a:n)da+fff [(u')? +(uxn) 1dv .

Dy,

Adding inequalities (56.10) and (56.11) and then sumiming over ¢
we get

m n—1
(56.12) E({-+h)—E UZ [ 2 a,kuy,u,,kf u)]cos (7, &p)do +
‘.,T t=1

+fff2 ffdeUZFstv

Dep i=

where Fi is another quadratic form similar to Fi. Inequality (56.12)
devided by h > 0 gives in the limit, when & goes to zero following a suitable
sequence,

(56.13) D E(1) fZ‘[Z Al by, 4 ()] eos (7, ) ds +

ET@
+(f Z f)2do+ff2Fs[u]d0

m
Observe that > Fi[u] is a quadratic form in «!, ..., w™ and in their
=1

tirst derivatives, its coefficients being polynomials of b}, ¢ and of the
first derivatives of a@j,. Hence, it is obvious that

(56.14) Zm’F:;[u] < M, 2 | j (k) + (Y],
i=1 i=1 j=1

where M, is a positive constant depending only on the bounds of the
coefficients of system (56.1) and of the first derivatives of aj;. From (56.3)
and (56.14) it follows that

n—1

m m
; M o S ;
D) Fd <22 SN ahd ud— a2+ (0]
im1 o=

7k=1

where y; = min(1, x), whence

(56.15) ffZFs[u]da \El_ (1) .

I i=1
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Putting
M,

o
we obtain from (56.13) and (56.15) differential inequality (56.4) with L
having the required properties.

THEOREM 56.2. Under the assumptions of Theorem 56.1 we have the
energy estimate, for 0 <t < b,

(56.16) ffz [Z(ux, +(u)]
f.:[MH)ff‘l (Ul 24 ( u)zldwf d-r]

n—

[Z Uy, Ui, + u)]cos(n wn)ds+ff2 f)do .

jk=1

L:

where

g = [

ET
T

||M§

Proof. From Theorem 56.1 it follows, by Theorem 9.5 (see Ex-
ample 9.1) that, for 0 <t < b,

t
B(t) < e4|B(0)+ [ e-trg(r)de] .

Hence, by (56.3) and by the definition of KE(¢), we get (56.16).

We recall that under the Assumptions B the mixed problem for
system (56.1) in the region D consists in finding a solution U(X)
= (ul(X), Gy um('X)) of system (56.1), of class C? in D and of class C*
in the closure of D, satisfying initial conditions

U(X) =0y(X), U,(X)=d(X) for Xell,
and boundary conditions
U(X)=Y(X) for Xe2".

In the case when X7 is empty, the above problem reduces to the
Cauchy problem.

The energy estimate (56.16) implies uniqueness of the solution of the
mixed problem. Indeed, to show this, it is sufficient to prove that U(X) =0
is the only solution of the homogeneous problem, i.e. of the problem
with @y(X) = &,(X) = P(X) = f(X) = 0. Now, let U(X) be a solution
of the homogeneous problem and observe that in the variables v, ..., ¥a
the surface X7 is described by the equation y, = 0 (see the proof of Theo-
rem 56.1). Hence it follows that U(X) being identically zero on X7 the
first derivatives Uy, (j =1,2,...,n—1) vanish on 27T, Since the same is
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true for U and U,, (k =1, 2, ..., n) on I, the right-hand side of inequa-
lity (56.16) is zero. Hence it follows that U(X) =0 on II; for every
0 <t< b and consequently U(X)=0 in D.

COROLLARY 356.1. Theorems 56.1 and 56.2 remain true if U(X)
= (u(X), ..., w™(X)| is supposed to satisfy—instead of system (56.1)—the
following system of differential inequalities

(36.17) | D @i X)tbye,| < Y D 1BHX)| |y + Z 16%CX)| || + |£(X)|
j.k=1 I=1j=1
(1=1,2,..,m).

Proof. Let ¢ be an arbitrary positive number and put for U (X)
satisfying inequalities (56.17)

?Ms

L a’;k(X) u:cjmk(X)

(56.18)  £i(X) = ; 2 — .
2 b X)) |u( X) |+l2 16X | X))+ | F(X)] + ¢

f=1

M§

1

1
-
-

It follows from (56.17) that
(56.19) [(X) <1 (1=1,2,..,m).

On the other hand, (56.18) implies that

(66.20) D afi(X)ubym, = _22 Dy, + T (X7,

i.k=1

where
b X) = '(X) [b(X)|sgnuz(X),

(56.21) THX) = £(X) |4 X)| sgnu’(X)
74X) = X[ (X)| +e] -

Thus we see that U(X) satisfies a system (56.20) for which the
assumptions of Theorem 56.1 are satisfied. Moreover, by (56.19) and (56.21),
it is clear that b and " have the same bounds as b¥ and ¢*. Hence it
follows, by Theorem 56.1 and 56.2, that the differential inequality (56.4)
and the energy estimate (56.16) hold true with f* in the formula (56.5)
replaced by 7:; but, since ¢ > 0 is arbitrary and

lim 7: =] ’ ’

&0

we get in the limit (56.4) and (56.16) what was to be proved.
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Remark. Corollary 56.1 is more convenient in applications than
Theorem 56.2. Let us congider, for example, an almost linear system

. ] . ) . .
(56.22) D Gh(X) by, = Bty X, 0y ooy U™, Uy ey Uy ey Uy ey )
7k=1

(i=1,2,..,m).

By Corollary 56.1, we get the following uniqueness criterion: if the
right-hand sides of system (56.22) satisfy a Lipschitz condition with
TeSPect £0 W'y cey W™y Uzyy oy Uy y veey Uy ooey Uimy, then the mixed problem
for system (56.22) admits at most one solution. Indeed, under the above
assumptions, the difference of two solutions of system (56.22) satisfies
a system (56.17) of differential inequalities with f* = 0. Hence the difference
of two solutions, having the same initial and boundary values, satisfies
the energy estimate (56.16) with the right-hand side identically zero;
but, this implies the vanishing of the above difference what was to be
proved.



CHAPTER IX

PARTIAL DIFFERENTIAL INEQUALITIES OF FIRST ORDER

This chapter deals with systems of first order partial differential
inequalities of the form

T 7 1 m t [ .
Uz <f(w’y17"°7 Yny Wy ey Uy Uy, "'7u’yn) (Q/ :1727 ,m)

and, more generally, with over-determined systems of the form

i 7 1 m 7 T
Uy (@15 coey Bpy Yiy coey Yny Wy ey Uy Uyyy oony Uy,)

(t=1,2,..,m;j=1,2,..,p),

where the ith inequality involves derivatives of w¢ only.

In Chapter VII we considered systems of equations of the above
form and obtained—among others—estimates of the solution and of the
difference between two solutions by means of maximum solutions of
adequate comparison systems of ordinary differential equations. Now,
the results of the present chapter will enable us to do the same by means
of solutions of adequate comparison systems of first order partial dif-
ferential equations.

We begin by discussing systems of strong inequalities and then we
will pass to systems of weak inequalities. We want to stress here that—
unlike in the theory of ordinary differential equations—it is useless to
introduce the notion of a maximum solution of the Cauchy problem
for first order partial differential equations. In fact, the notion of a maxi-
mum solution is very useful—as we have seen—but only in the case when
some regularity assumptions assure local existence and do not exclude
non-uniqueness of solution. Now, this situation does not occur in the
theory of first order partial differential equations. The practically least
restrictive regularity assumptions which guarantee local existence of
solution of the Cauchy problem in the non-linear case, viz. the requirement
that the right-hand sides of equations be of class €' with first derivatives
Lipschitzian, assure at the same time uniqueness (see Theorem 42.1 and
Remark 42.1).
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§ 57. Systems of strong first order partial differential inequalities, We
start by introducing the following definition:

DerFiNmTION 57.1. A region D in the space (Z, U, Q) = (21 ...y &g,
ULy urey Wy 1y +eey Q) Will be called positive with respect to U if whenever
(Z,U,Q)eD and V = U, then (Z,V,Q)eD.

THEOREM 57.1. Let the functions F{x, ¥y, ..oy Yny Wy oy Wy Gy wovy Q)
=fix, Y, U,Q) (i=1,2,..,m) be defined in a region which is positive
with respect to U and whose projection on the space (%, Y1, ..., Yn) cOniains
the pyramid

(67.1) <3<y, |pp—dl<ar—L{®—2) (k=1,2,..,m),
where 0 <L << 4 oo, 0 < ag < + o0, y < min(ax/L). Assume the functions
k

fle, ¥, U,Q) (i =1,2,...,m) to satisfy condition W, with respect to U
(see § 4) and the Lipschitz condition with regard to Q

(57.2) e, ¥, U, Q— e, ¥, U,§)l <L Y lga—
k=1
(t=1,2,..,m).

Let Uz, Y) = (W', X), ..., u"(®, Y)) and V(z, ¥) = ((x, Y),..

vy 0@, X)) be of class D in the pyramid (37.1) (see § 37) and satisfy
initial inequalities

(57.3) U@y, ¥) < V (2, Y) .
Denoting by D the pyramid (57.1) put

B ={a Y)eD: Ulp, V) <V(e,Y)} (i=1,2,..,m)
and suppose that, for every i, differential inequalities
(57.4) u;(x*, T*) < ff(m*, Y+, Ur*, T, uf}(x*, ),
ve(a*, X*) > f (%, X*, V(a*, ¥*), vi{a*, ¥*))
are satisfied whenever (x*, Y*) e B'. This being assumed inequalities
(57.5) U, Y)<V(e, Y)
hold true in the pyramid (57.1) (*).

Proof. By (57.3) and by the continuity, the set of %, such that
2o <% < wy+y and that (57.53) holds true in the intersection of the

(1) From the proof it will follow that our theorem remains true under less re-
strictive assumptions on the regularity of U(x, ¥) and ¥ (z, ¥). It is sufficient to suppose
that U(x, ¥) and V(x, Y) are continuous in D and that, for (z*, ¥*) ¢ B/, v/ and ¢’
have first derivatives at (z*, ¥*) and, moreover, Stolz’s differentials if (z*, Y*)
belongs to the side surface of D.
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pyramid (57.1) with the zone z, < # < %, is not empty. Let #* denote its
least upper bound. We have to prove that a* = x,+y. Suppose it is not
true and hence x* < x,+ . Then there exists an index § and a point ¥*
such that (z*, ¥*) belongs to the pyramid (57.1) and

Uz, Y) <V, Y) for z,<o<<o*,

(57.6) ) )
wi(w*, Y*) = vi(a*, Y*).

By the last relations (#*, ¥*) ¢ EY and hence differential inequali-
ties (57.4) hold true. Now, there are two cases to be distinguished.

Case I. Suppose (#*, Y*) is an interior point of (57.1). Consider the
function w/(x*, Y)—v¥(z*, Y) depending on Y. By (57.6), it attains maxi-
mum at Y* and hence, ¥Y* being an interior point, we have

(57.7) w(a*, Y*) = vf(a*, ¥*).

Similarly, the funetion w/(x, ¥Y*)—v¥(z, ¥*) depending on 2 attains
its maximum in the interval [#,, #*] at the point 2*. Therefore

(57.8) uj(a*, T*)—vi(a*, ¥*) > 0.
On the other hand, by (57.4), (57.6), (57.7) and by condition W,
we get
ulfa*, Y*)—vha*, Y*) < fi(z*, T*, U(a*, Y*), uila*, T*))—
"'ff(w*7 Y*,V(a*, Y¥), “:I’F(w*a Y*)) <0,
which contradicts (57.8).

Case II. Suppose (z*, Y*) is a point on the side surface of the pyra-
mid (57.1). We can assume (rearranging the indices if necessary) that
we have

Yy = 0p— L{x*— ) (p=1,2,..,8),
(57.9) Yy = —ag+L{ax*—x) (g=s8+1,..,8471),
lyE| < ax— L(x*— m,) (k=s8+r+1,..,n).

Fix p and consider the function
uf(w*, yry ey y;—h Yo,y y;—i-ly o0y y:)‘"”"(w*’ yi‘, ey .7/;—1’ Yo, ?/;+1, (AR ] y:)
depending on y, in the interval
—ap + L(@*— @) < Yp < ap— L(2*—20) .

By (57.6) and (57.9) it attains maximum at yj = a,—L(x* —a,),
i.e. at the right-hand extremity of the interval. Hence, it follows that

(87.10) upa*, Y )—vl(a*, ) =0 (p=1,2,..,9).
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By a similar argument, we get

(57.11) wpm*, T — vl (a*, T <0 (¢=s+1,..,8+7),
. u;k(w*’ Y*)—’U?lk(m*i Y*) =0 (k = S+T+19 ey 'n) .

Now, for x, < 2 < o*, put

Y(z) = (a'p"L(m_wo)y —ag+L(z—a,), y;‘c)

and consider the composite function w/(z, ¥ (x))—vi(z, ¥ (x)). It attains
maximum at z*, by (57.6) and (57.9), and hence

(57.12) d—‘i [wie, X (@) —vi(e, ¥ (@))],_ > 0.

But, 4/ and o being of class D in the pyramid (57.1) (see § 37) and
the point (x*, ¥*) = (w*, Y(w*)) belonging to the side surface of (57.1),
the functions w/, v/ possess Stolz’s differentials at (#*, ¥ (#*)). Therefore,
we can apply to the left-hand side of inequality (57.12) the formula for
the derivative of a composite funetion and thus we get

(57.13)  wl(x*, Y*)—vi(a*, X¥*)
> 13 (el )= olyat, )= 3 fudat, TI—clfor, 7).
On the other hand, we have, by (57.4),
wla*, Y*)— vi(a*, T*)
< []u'(x*, Y+, Uz*, ¥*), u’}(w"‘, Y*))~fj(x*, Y+, Ve, Y*), u’}(m*, y*))] +
+[fla*, T*, V (2%, Y*), uhla*, Y*)—f(2*, T*, V(e*, T*), vi(a*, T*))].
The first difference in the brackets is non-positive, by (57.6) and

by condition W, (see § 4). To the second difference in brackets we apply
inequality (57.2) and thus—taking advantage of (57.10) and (57.11)—we get

w(a*, Y*)—vi(a*, T¥)

< L[ X (uya*, T —vjya*, T9) = Y (", T =) a*, 7)),
p q
which contradicts (57.13).

Since in both cases I and IT we obtained a contradiction, the theorem
is proved.

Remark 57.1. Theorem 57.1 as well as all theorems to be proved
in this chapter are true for more general domains than the pyramid
(see [49]). Indeed, in the case of Theorem 57.1, for instance, if we assume
additionally that the derivatives f, exist, then the Lipschitz condition (57.2)
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has the following geometrical meaning with regard to the pyramid (57.1)
which we denote by D:

(«) for any point («*, Y*) on the side surface of D and for every
fixed ¢, the vector

(17 _fm(m*7 Y*7 UyQ)a i "'fqn(w*7 Y*7 U;Q))

is either tangent to the side surface of D or points to the exterior of D.

Now, the pyramid (57.1) in Theorem 57.1 can be replaced by an
arbitrary region D with the side surface being the union of a finite number
of surfaces of class C' and having—in case of the existence of the deriva-
tives f;k—the geometrical property (o).

§ 58. Overdetermined systems of strong first order partial differential
inequalities. Our next theorem will be derived from Theorem 57.1 by
means of Mayer’s transformation (see § 38).

THEOREM 58.1. Let the functions [i(@i, ..., @py Yoy ooy Yoy Uy cory U™
Gry ey o) = (X, Y, U,Q) (¢ =1,2,...;m; k=1,2,..,p) be defined
in a region which is positive with respect to U (see Definition 57.1) and
whose projection on the space (Ly, ..., Tpy Yy ...y Yu) contains the pyramid

D D
(38.1) O<am—&, D (@—d0)<y, |9—irl <a—L D (@x—bi)
k=1

k=1
I=1,2,..,p5r=1,2,..,n),
where 0 <L < + oo, 0 < ay < + oo, y<min(a,/L). Suppose that, for

every fized k, the functions fu(X,Y,U,Q) (i =1,2,...,m), satisfy con-
dition W . with respect to U (see § 4) and the Lipschitz condition with regard
to @

(58.2) (X, Y, U,Q)~fX, Y, U, Q) <L D 4.~
r=1
(i=1,2,.,m; k=1,2,..,p).

Let U(X,Y) = (u'(X,Y), .., u"X,Y)) and V(X, ¥) = (v'(X, Y),...
ey ®(X, X)) be of class D in the pyramid (58.1) (see § 37) and satisfy
the initial inequality
(58.3) U(X,, Y)< V(X,, Y).

Denoting by D the pyramid (58.1) put

G ={X,Y)eD: UX,Y)<V(X,¥) (i=1,2,.., m)
and suppose that, for every fiwed j, the differential inequalities
up <fUX, ¥, UX, X), wp(X, ¥))

(58.4) ) ) y .
Vay, > ﬁc(X7 Y, V(X,Y), (X, Y))
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are satisfied for (X, Y) e @. This being assumed, inequalities

UX,Y)<V(X,Y)

hold true in the pyramid (58.1).
Proof. Introduce Mayer’s transformation

X = X, 4 A,

where A = (4, ..., 4,). For A satisfying

»
(58.5) W20 (1=1,2,..,p), D hk=2i<y,
k=1

put
Uz, ¥; A) = U(X,+ Az, ),

(58.6) ~
Vi, Y; A) = V(Xy+ Az, T).

It is obvious that, for A satisfying (58.5), the functions (58.6) ave
of class D (see § 37) in the pyramid

(38.7) o<m<’7{, =iyl < @p—ALx  (r=1,2,..,n),
where
(38.8) 751,

A

By (58.3), functlons U(a; Y; A) = (@'(@, X; 4), ..., %"(x, ¥; 1)),
Viw, ¥; 4) = (v (¢, Y vy 8@, Y5 A))  satisfy initial inequality
v, ¥; 4)< V(O, Y, /1). The functions U(X, Y) and V{(X, Y) being
of class D they possess Stolz’s differentials with regard to X; therefore,
we have

U, =

e

i
-

i)
WU Xy+ Az, T), 2 X, + Az, V).

?
Denoting by D); the pyramid (58.7), put
. ~ i
Bi={x,Y)eD;: Ulw, Y; A)<V(x,Y; )}y (i=1,2,..,m).

Fix an index j and suppose that (@, ¥) ¢ Ej. Then (X,+ 42, ¥) e G/
and hence it follows, by (58.4) and (58.5), that

Ve < Fl(z, Y, Uz, Y), u(z, ¥); 4),
ve > Fz, ¥, V(x, ¥), o, Y); 4),
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for (, Y) e E] where

(58.9) Fix,Y,U,Q; A) = Iglkf}'c(Xo—{—Ax, Y,U,Q) (i=1,2,..,m).
In virtue of the hypotheses of our theorem we check, by (58.2), that

(e, ¥, U,Q; 4)—F'(a, X, U, ; A)] <L D¢~
r=1

(t=1,2,..,m)

and that the functions F(z, ¥, U,Q; A) (i=1,2,..,m) satisfy con-
dition W, with regard to U. Thus we see that U(x, ¥; 4), V(x, Y; 4)
and F'(x, ¥, U, Q; A) satisfy, for every fixed A, subject to conditions
(58.5), all the assumptions of Theorem 57.1 in the pyramid (58.7). Hence,
we have in the pyramid (58.7)

Uz, ¥; A) < V(z, X¥; A)
and in particular, by (58.8),
(58.10) U@,Y; A)<V(@,x; A).

Now, let (X, Y) be an arbitrary point in the pyramid (58.1); then
A=X—-X, = (8,—2, ..., 8p—,) satisfies conditions (58.5) and, by (58.6)
and (58.10), we get

UX,Y)=0Q,Y; X-X)<V(1,Y; X—-X,) =V(X,Y),
what was to be proved.

§ 59. Systems of weak first order partial differential inequalities. In this
section we deal with weak differential inequalities (see [42]). Unlike in
§§ 57-568, we will have to make more restrictive assumptions on the right-
hand sides of the differential inequalities, viz. assumptions which imply
right-sided uniqueness of the solution of the Cauchy problem for the
corresponding system of equations (see Corollary 60.1).

THEOREM 59.1. Let the functions f'(w, ¥, U,Q) (i =1,2,...,m) be
defined in a region which is positive with respect to U (see Definition 57.1)
and whose projection on the space of points (€, X) contains the pyramid (57.1).
Assume the functions f(z, ¥, U,Q) to satisfy condition W, with regard
to U (see § 4) and the inequalities

(39.1)  fi(e, ¥, U,Q)—f(a, ¥, U, Q)< oilw—ay, U= N +L Y g~
r=1
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whenever U > U, where oit, U) are the right-hand sides of a comparison
system of type I (see § 14). Concerning the comparison system we suppose
that

0i(t,0) =0 (1=1,2,..,m)

and that for dts right-hand mazimum solution Q(t; 0) through the origin
we have

(59.2) Q@;0)=0.

Let Uz, Y)= (u'(z, X), ..., ™, Y)) and V(z, ¥)= (v'(z, T), ...
vy 0@, X)) be continuous in the pyramid (57.1) and satisfy initial inequa-
lities
(59.3) Uz Y) < Vi, Y) .

Denoting by D the pyramid (57.1) put

B={z,Y)eD: Wiz, Y)>0' (@, Y)} (i=1,2,..,m).

Assume that for every fived j, whenever (v, Y) e E', then o and o'
possess first derivatives at (¢, Y) and, moreover, Stolz’s differentials if (¢, Y)
belongs to the side surface of D, and satisfy at (x, Y) differential inequalities

iz, Y)<flz, Y, Uz, Y), ublz, Y)),

(59.4) oo, ¥) > flo, ¥,V (2, ¥), vk(e, T)) .

Under these assumptions inequality
(59.5) U(w, Y)<V(r, )

is satisfied tn the pyramid (57.1).
Proof. Denote by 8; the projection on (y,, ..., ¥») of the intersection
of the pyramid (57.1) with the plane ¥ = w,-+¢ and put, for 0 <t <y,

M(t) = max [u'(w,+1, Y)—v'(m+1, T)], (1) = max(0, M(t)
res (i=1,2,..,m).
M @) = (M), ..., I(H)} .
It is obvious that (59.3) is equivalent with
(59.6) Miy<o in [0,y).

Now, relation (59.6) will be proved by means of the first comparison
theorem from the theory of ordinary differential inequalities (see § 14).
By (59.3), we have

(59.7) M) <o.
ey o Mos<o.
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From Theorem 33.1 it follows that M%) are continuous on 10, ).
By Theorem 35.1, for every index j and &* ¢ (0, y) there is a point Y* € Si
such that

(59.8) M) = ul (g + 1%, X*)— 0 (s + 1%, T*)

and whenever «/ and o/ possess first derivatives at (x,--t*, Y*) and,
moreover, Stolz’s differentials if (x,--t*, Y*) belongs to the side surface
of D, then

(59.9) DM (t*) < wllmo+1%, Y*)—vh(wo +1*, Y*)—
— LY [ (o + 1, T*)— ], (@ +1*, T¥)| .

r=1

Put
Bi={te(0,y): Fl'¢)>0y (1=1,2,..,m).

Fix an index j and suppose that #* ¢ E;. Then, obviously, we have
(59.10) M@x) = Muxy, D Iy =D M)
and consequently, by (59.8), there is a point Y* ¢ 8;» such that
(39.11) Mtxy = w/(we+ 1%, Y*)— o' (@, +1*, ¥*).

Since M’(t*) >0, we conclude that (wo+1*, Y*) ¢ B/ and hence
inequalities (59.4) hold true at (x,+t*, Y*); moreover, «/ and v/ have at
(4,4 t*, Y*) that regularity which implies (59.9). By (59.9) and (59.10),
we get

DAL (t*) < wlwy+1*, Y*)— vfarg 1, ¥*)—

—L 2 |u§},(a;0+t*, Y*) — vl (@ -+ 1%, T*)| .

r=1

From the last inequality and from (59.4) it follows that
(59.12) D7) < flme+1*, X*, Ulmy+1*, %), wilw,+1* Y*))—
”fj(xo+t*’ Y*, Viz, +v, ¥*), 'U?i/‘(wo +1¥, Y*))'“

—L Y (@ +1*, T*)— 0 (@ +1*, T .
r=1

Observe now that, by the definition of J () and by (59.11), we have
(see § 4)

U@ +1*, Y < V(g +1*, T*)+ 3Lt .
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By the last inequalities and by condition W, (see § 4) imposed on
the functions f'(z, Y, U, @), it follows from (59.12) that

DI (t*) < flmg+t*, X*, V(mg+1*, T*) 4 J (%), wh(ay+t* Y*))—
— P12, Y5,V (@ + 1%, T%), 0lp(ay + 1%, 7)) —

n
—L ) |6 (o 1%, Y*)— ) (o +1*, T*)].
r=1

Since I (t*) > 0, we get from the last inequalities, by (59.1), that
(59.13) D) < O'j(t* () .

Thus we have proved that, for every j, inequality (59.13) holds true
whenever ¢* ¢ E'. Hence and by (59.2) and (59.7), inequalities (59.6)
follow from the first comparison theorem (see § 14). This completes
the proof.

Remark 59.1 (). Theorem 59.1 can be derived from Theorem 57.1
without having recourse to the first comparison theorem. Indeed, for
¢ >0, denote by Q(t; &) = (wy(t; &), ..., wm(?; €)) the right-hand maximam
solution through the point (0, ¢, ..., &) of the comparison system

dw;
dt

Since, by (59.2), £2(t, 0) =0, we infer, by Theorem 10.1, that, for
¢ > 0 sufficiently small, Q(t; ¢) is defined on [0, y) and
(59.14) limQ(t; =0 on [0,y).

&0

oty Wyy ey Wm)+e (6=1,2,..,m).

Consider now the function
V(w, Y) =@~y &) +V (2, ¥) = (3Yx, ¥), ..., 5™, T))
in the pyramid (57.1), which we denote by D, and put
= {(x, Y) e D: Uz, Y) Ve, X)) (=1,2,..,m).

Fix an index j and let (2%, X*) B ; then, since wj(a*— xy; €) > 0,
we have (z*, Y*) e E' and hence, by the second inequality (59.4), we get
Baler, 1*) > fla*, T*, V (@%, T*), v(a*, T*)) + oja* —ap; ¢)

= fi{a*, T*, V (a*, Y*),v’} x*, Y*)) + o5(w* — g, 2 (0* —mo; &) + &
— fi x*, ¥* V('n* Y*), 5% w* Y*)) €
+[f7(a;* Y* V(a;" Yt)’ w* y*))
—f’(w“‘ ¥+, V(a*, Y*), 5 (a*, Y*) +
+ oj(a* — @y, V(z*, Y*)—V (a*, )| +e.

(*) This remark is due to P. Besala.

J, Szarski, Differential inequalities 12
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Since V(x*, Y*)—V(z*, Y*) = Q(x*—2y; €) > 0, it follows from the
last inequality, by (59.1), that
(59.15) T, X*) > fla*, T,V (a*, Y*), 55>, T*) .

By (59.3), we have

Vi@o, ¥) = V@, Y)+2(@—a5; &) > V(w, T) > Ula, T),
and hence, by the first inequality (59.4) and by (59.15), we get from
Theorem 57.1 that
U, Y)<V (e, Y)=V(, Y)+2(x—y; &)

in the pyramid (57.1). From the above inequality and from (59.14) we
obtain in the limit (letting ¢ tend to 0) inequalities (59.5).

The usefulness of Theorem 59.1 with weak assumptions concerning
the regularity of functions w/ and v/ and differential inequalities in the
set B, will appear in the proof of Theorem 61.1.

ExawmpriE 59.1. Suppose #(z, Y) to be of class D in the pyramid (57.1)
and to satisfy there the differential inequality

n
<L Dy (g > LZI%
r=1

where L > 0, and the initial inequality
w(wy, YY) <n  (u(z, ¥) =),

where # is a constant. Then we have in the pyramid (57.1)
wie, T)<n  (u(e, Y)>n).

This follows immediately from Theorem 59.1 (for m = 1) if we put
vz, Y) =1

Remark 59.2. Theorem 59.1 remains true if inequalities (59.1) are
replaced by somewhat less restrictive ones, viz.

fla, X, U,Q~fo, ¥, T, Q) < oo—ay, max(w—7) +LZ|qk—qk|
(@=1,2,...,m),

whenever U > U, where o(t, ) is the right-hand side of a comparison
equation of type II (see § 14). The proof of this variant of Theorem 59.1
is quite similar to that of Theorem 59.1 and is carried out by applying

the second comparison theorem (see § 14) to the function i {t) = max M),
where M’ (t) are defined like in the proof of Theorem 59.1.
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In a natural way the question arises whether in Theorem 59.1 strong
initial inequalities (59.3) imply strong inequalities (59.5) in the pyra-
mid (57.1). We are going to answer this question in the case m =1,
introducing some additional more restrictive hypotheses. We start by
recalling a definition from the theory of first order partial differential
equations.

Consider a first order partial differential equation

(59.16) Ug = (@, X,y 0,y Uy, y oony Uy,)

and suppose f(#, Y, u, @) to be of class €' in some region whose projection
on the space (x, Y) contains the pyramid (57.1). The characteristic equa-
tions, corresponding to (59.16), are of the form (40.5). Its solutions are
called characteristic strips. Let wu(x, Y) be an arbitrary function having
first derivatives in the  pyramid (57.1). We say that w(z, Y) ¢s generated
by characteristics of equation (59.16) if, for every point (x*, Y*)
= (&*, ¥}, ..., ) in the pyramid (57.1), there is a characteristic strip

Y (#) = (13(®@), s 4a(@) , Q@) = (1(®), ..r ga(@)),  w()

defined on the interval [x,, #*], such that

Y(z*) = Y*,
(59.17) lyp(e) —yx| < ax—L(z—ax) for wmy<e<a* (k=1,2,..,n0),
Q@) = uyle, Y(®) (k=1,2,..,n), u(@) =ulz, ¥Y().

It is a well-known fact that a function of class (! generated by char-
acteristics is necessarily a solution of (59.16).

We are now able to state the next theorem, whose proof resembles
that of Theorem 57.1.

THEOREM 59.2. Suppose f(z, Y, u, Q) to be of class C* in some region,
whose projection on the space (xz, Y) covers the pyramid (57.1) with L > 0,
and to satisfy the Lipschitz condition

(59.18)  |f(%, ¥, u,Q)—f(@, ¥, u, )| < L D |qx— il
k=1
for Z |gx— qr| > O .
k=1

Suppose that solutions of system (40.5) are uniquely determined by
initial data. Let uw(x, Y) and v(x, Y) be of class D in the pyramid (57.1)
(see § 37) and satisfy there initial imequality

(59.19) U, ¥) < v(@, Y)
12%
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and differential inequalities
(59-20) Ug <,f(m7 Y’uaul’)y /Uz>f(w7 vi;’”l’)-

Assume finally that both u(x, Y) and v(v, Y) are generated by charac-
teristics ().

Under these assumptions we have
(59.21) u(x, Y)< vz, Y)
in the pyramid (57.1).

Proof. By (59.19) and by the continuity, there is an Z (2, <% < 2, + )
such that (59.21) holds true in the pyramid (57.1) for z, < # < Z. Denote
by «* the least upper bound of such numbers %. We have to prove that
x* = x,+y. Suppose it is not true and hence x* < x,--y. Then there is
obviously a point Y* such that («*, Y*) belongs to the pyramid and

(59.22) w(z*, Y*) = v(a*, T*).

Now, there are two cases to be distinguished.
Case I. Suppose (2*, Y*) is an interior point of (57.1). Then—like
in the proof of Theorem 57.1—we have

(59.23) Uy (@*, T*) = v,(a*, T*)  (k=1,2,..,m).

By (59.22), (59.23) and by the uniqueness of solutions of system (40.5)
the characteristic strip corresponding to u(x, ¥) and satisfying (59.17)
is identical on the interval [«,, #*] with that corresponding to v(z, Y).
Hence, for £ = z, in particular, we have

u(mo, Y('mo)) = 'U(-’l’o’ Y(xo)) y

whieh eontradicts (59.19).

Case II. Suppose (z*, Y*) is a point on the side surface of the pyra-
mid (57.1). We can assume—like in the proof of Theorem 57.1—that
we have (57.9). Then, by a gimilar argument, we get

Uy (2% Y*)— vy (2%, Y*) >0 p=1,2,..,9),
(59.24) uy(o*, Y*)—v,(a*, Y*) <0 (¢=s+1,..,8+7),
Uy (0*y X*)— vy (2*, ¥Y*) =0 (k=s+7r+1,..,n),
and
(69.25)  ug(w*, XY*)— vo(a*, X*)

> I[ Y (w00, T)—vy,(a%, T) = X (uya*, T*)—v,0a%, T4)] -
P q

(*) This last assumption implies that if «#(z, ¥) and v(z, Y) are of c¢lass C*, then
they are solutions of equation (59.16).
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On the other hand, by (59.20) and (59.22), we have
Ug(2* ) X*)—vg(a*, T*)
< f(m*’ X*, u(w*, X*), up(a*, Y*))—f(‘v*’ Y=, u(a*, X*), vy(a*, Y*)) .

We can assume that

n
D Juy(a*, T — v, (a*, T*) >0,
r=1

since otherwise we would have (59.23) and we would reach contradiction
like in case I. Now, from the last inequality we obtain, by (59.18) and (59.24)

ug{a*, Y*)—v.(a*, Y*)

<L [Z (’"’w(‘x*’ Y*)_vyp(“}*y Y*))"‘ Z (ullq(w*7 Y*)—qu(“"*7 Y*))]
v q
what contradicts (59.25). Sinece in both cases we have reached a contra-
diction, the theorem is proved.

§ 60. Overdetermined systems of weak first order partial differential
inequalities. The theorem of this section will be derived from Theorem 59.1
by means of Mayer’s transformation. Its proof is patterned on that of
Theorem 58.1.

THEOREM 60.1. Let the functions FUl@ry crey Ty Uiy ooy Yny Uy vuey U™
Gy @) =X, Y,0,0Q) i=1,2,...,m; L=1,2,...,p) be defined in
a region which is positive with regard to U (see Definition 57.1) and whose
projection on the space of points (X, X) contains the pyramid (58.1). Assume
that, for every fized 1, the functions fi(X, Y, U,Q) (i =1, 2, ..., m) satisfy
condition W, with regard to U (see § 4) and the inequalities

~ o~

(60.1) fYX,Y,U,Q)—fi(X,7, )

b
) n
<ol X lon—i0), U= ) +L Y lae— Tl
k=1

r=1

(i=1,2,.,m; 1=1,2,..,p),

whenever U > U, where oit, V) are the right-hand sides of a comparison
system of type I (see § 14). What concerns the comparison system, we suppose
that

a(t,0) =0 (i=1,2,..,m)

and that for its right-hand maximum solution through the origin £2(i; 0)
we have

(60.2) Q(t;0)=0.
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Let U(X, Y) = (u{(X, X), ..., w(X, Y)) and V(X, ¥) = ("X, T), ...
(X, Y)) be continuous in the pyramid (58.1) and satisfy initial
inequality
(60.3) U(X,, Y)<V(X,y, Y)

Denote by D the pyramid (58.1) and put
F={X,Y)eD: w(X,Y)>o(X,Y)} (i=1,2,..,m).

Assume that for every fized j, whenever (X, Y)e &, then 4'(X, Y)
and vI(X, Y) possess first derivatives with respect to Y and Stolz’s differen-
tials with regard to X at (X, Y) and, moreover, Stole’s differentials with
respect to all variables if (X, Y) belongs to the side surface of D, and satisfy
at (X, Y) differential inequalities

um <SAX, Y, uy .., u” ujl u"”
(60.4) 1 fl( PR m7 7.1/7 ’jy) (l=1,2,...,p)
>fl(X Y ’0 ey 0 7”1}17"‘?/0%)'

This being assumed, inequality
UX, Y)<V({, )

holds true in the pyramid (58.1).

Proof. Proceeding like as in the proof of Theorem 58.1 define, for
= (A, -..s Ap) satisfying (58.5), Uz, ¥; A4), V(z, ¥; A) and Fiz, Y,
@; A) by formulas (58.6) and (58.9) respectively. Then Uz, Y; A)
(@@, X5 A), ..., W=, Y; 4)) and V(z, Y; 4) = (32, ¥; /1),

, M@, Y /1)) are continuous in the pyramid (58.7), where y/i satis-
fies (58.8) and the functions F' satisfy condition W, with regard to U.
By (58.9) and (60.1), we have

A
U,

Fl@,Y,U,Q; )—F(z, Y, T,q A)< doiw, U= T)+iL D 1g—l
fe=1

(G =1,2,..,m),

whenever U > U. Notice that for the comparison system of type I with
right-hand sides Ag;(4f, U) the right-hand maximum solution through
the origin is, by Theorem 36.1, 2(4f; 0) and, therefore, by (60.2), it is
identically zero. In virtue of (60.3), the functions U and V satisfy initial
inequality

U0,Y; A)<V(©,Y; 4).

Denote by D; the pyramid (58.7) and put

Bl = {&, Y)eDy: %z, ¥; A)> 5w, ¥; A)} (1=1,2,..,m).
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Fix an index j and let (2, Y)e El; then, obviously, we have
(Xo+ Az, Y) e @ and hence «' and o’ have at (X, -+ Az, Y) that regularity
which was assumed at points of & and they satisfy inequalities (60.4)
at (X, + Az, Y). From this we infer that, for (z, Y) < B}, the functions
Wz, Y; A) and Pz, ¥Y; A) have at (¢, Y) the regularity required in
Theorem 59.1 and that they satisfy differential inequalities

T <F(s,Y, U, %?Y; 4y, LA ?Fy(wy Y’V"FY; A4)

at points of E]. Thus we see that, for A subject to conditions (58.5),
the functions U(z, Y; A), V(z, Y; A) and F (=, Y, U, Q; A) satisty all
the assumptions of Theorem 59.1 in the pyramid (58.7). Hence we have
in this pyramid
Uw, ¥; A)<V(s, ¥; A)

and in particular, by (58.8),
(60.5) U@, Y, H<vV(Qa,Y; A).

Now let (X, Y) be an arbitrary point in the pyramid (58.1); then
A = X — X, satisfies conditions (58.5) and, by (58.6) and (60.5), we get

U(X,Y)=UQ1,Y; X—X)<V(1, ¥; X—X,) = V(X, ¥),

what was to be proved.

Since non-overdetermined systems of equations or inequalities are
particular cases of overdetermined ones, from now on we will formulate
and prove theorems only for overdetermined systems.

From Theorem 60.1 immediately follows the next corollary on the
right-sided uniqueness of the solution of the Cauchy problem.

COROLLARY 60.1. If the right-hand members of the system of equations
(60.6) ul = X, ¥,u'y o, w™, b, ., uh)
(t=1,2,..,m; 1=1,2,..,p)

satisfy assumptions of Theorem 60.1, then the Cauchy problem for sys-
tem (60.6), with initial data set on X = X,, admits at most one solution
of class D (see § 37) in the pyramid (58.1).

§ 61. Comparison systems of first order partial differential equations.
A system of equations

(61.1) 0% = hi(&yy ey &y Ty 0y ey 0™ 0, e, W)

(6=1,2,..,m;1=1,2,..,p)



134 CHAPTER IX. Partial differential inequalities of first order

will be called comparison system of partial differential equations if the
following conditions are satisfied:

1° W5, Y,V,Q) (i=1,2,..,m; 1=1,2,..,p) are defined and
non-negative for V > 0 and @ > 0 and for (£, Y) in the pyramid

D
0<§, 257‘<V 1=1,2,..,p),
(61.2) =

»
We— sl Sam—L D & (k=1,2,..,n),
j=1

where 0 <L <+ o0, 0 < az <-+o0, y < min(ar/L);
k
2° for every fixed ! the functions Ai(Z, ¥,V,Q) (i =1,2,...,m)
satisfy condition W, with respect to V;

3° inequalities

» n
(613) M(E, X,V,Q—ME, T, V, 0 <oy & V—F)+L Y 10—l
r=1 k=1
(1=1,2,..,m 1=1,2,..,p)

are satisfied whenever V > f’, where o4t, V) are the right-hand sides
of a eomparison system of type I (see § 14) with 64(¢,0) =0(s =1, 2, ..., m)
and with the right-hand maximum solution through the origin
Q(t; 0) = 0.

By a solution of the comparison system (61.1) we will mean a sequence
of non-negative functions V(Z, Y) = (vl(E y ¥), oy ¥™(E, X)) of class D
in the pyramid (61.2) (see § 37), satisfying equations (61.1), and such that

(61.4) VR E,Y) =0 (i=1,2,..,m).

Using the above defined comparison system we will prove the follow-
ing theorem on absolute value estimates:

THEOREM 61.1. Let a comparison system of partial differential equa-
tions (61.1) be given. Suppose that the fumctions U(X, Y) = (ul(X , X)), ..
vy WX, X)) are of class D (see § 37) in the pyramid

2, B
(61.5) Z lo—al <y, |ye—ixl < ak—LZ [Br—@|  (k=1,2,..,%)
=1 =1

and satisfy differential inequalities

(61.6) |uk <H(X—X|, T, [T, |ue) (i=1,2,..,m51=1,2,..,2),
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where Xy = (81, ..., &p). Let finally V(Z,Y) = ('01(5, Y), .., "™(&, Y)) be
a solution of the comparison system (61.1) such that
(61.7) |U(X,, V)| <V(0,Y).

Under these assumpitions we have in the pyramid (61.5)
(61.8) IU(X, D) <V(X-Xy, Y

Proof. It is clear that the assumptions of Theorem 61.1 are invariant
under the transformation

T —ax = 81(99‘1—.’21) (Z=1,2, ...,p),

where |g| = 1. Hence, it suffices to prove (61.8) in the right-hand pyra-
mid (58.1). Put
(61.9) TE, V) =|U(&X+E, X, ”E, Y,V,Q =hsY,V,(Ql
t=1,2,....m;1=1,2,..,p).
It is obvious, by (61.3), that

Ri(E, X, V,Q)—h(@E, (Z &y V— V)+LZ |gx— !
(@=1,2, wymy 1=1,2,..,p),
whenever V = V. By (61.7), we have
U(0,Y)<7V(0,Y).
Denoting the pyramid (61.2) by D, put
¢ ={5,Y)eD: W&, T)>E,T)} (i=1,2,..,m).

Fix an index j and suppose that (&%, Y*)e &. Since W(X,Y) is
of class D in the pyramid (58.1) and for (5%, Y*) e @ we have

WXy + 5%, T*)| = w(E*, T*) > vi(5*, T*) >0,

it follows that the function #/(Z, ¥) has at (&%, Y*) first derivatives
with respect to Y and Stolz’s differential with regard to Z and, moreover,
Stolz’s differential with respect to all variables if (£*, Y*) belongs to
the side surface of D. Further we have at (5%, ¥*)e &

uwl Wnl (1=1,2,..,p), l@_’nyl = Iu{YI .
Hence, by (61.6) and (61.9), we get for (Z*, ¥*) e &

(5%, Y*) S Bj(E*, T+, U(5*, T, @(Z*, T*) (1=1,2,..,p).
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On the other hand, V(Z, Y) being a solution of system (61.1) we
have, by (61.4) and (61.9),

oL(5*, T*) = Bj(E*, X*, V(E*, T*), v%(E*, T*) (1=1,2,..,p).

Thus we see that the functions U, V and ki satisfy all the assumptions
of Theorem 60.1 in the pyramid (61.2) and therefore inequality

UE, Y)<VI(E, T)

holds true in the pyramid (61.2). But this is eguivalent with (61.8) in
the right-hand pyramid (58.1), what was to be proved.

§ 62. Fstimates of solutions of first order partial differential equations
and a uniqueness criterion, In this section we deal with analogues of
Theorems 37.1 and 38.1 in the case when, instead of a comparison
system of ordinary differential equations, we use a comparison system
of partial differential equations. The next theorem is an immediate conse-
quence of Theorem 61.1.

THEOREM 62.1. Let the right-hand sides f{X, Y, U,Q) (s =1, 2, ..., m;
1=1,2,..,p) of system (60.6) be defined in a region whose projection
on the space of points (X, Y) contains the pyramid (61.5). Suppose the
inequalities

(X, Y, U, Q) <M(|X—XJ, ¥, |U[,|Q))
(¢t=1,2,...,m; 1=1,2,..,p)
to be satisfied, where Wi(=Z, Y,V , Q) are the right-hand sides of a comparison
system of partial differential equations (see §61). Let U(X, X)
= (WX, Y), ..., w™(X, Y)} be a solution of system (60.6) of class D (see
§ 37) in the pyramid (61.5). Suppose that V (2, Y) = (v'(&, Y), ..., v™(&, X))
i8 a solution of the comparison system (61.1) (see § 61) such that
|U(X,, DI <V(0, Y).

Under these assumptions we have

|U(X, Y)| <V(X-X), Y)
in the pyramid (61.5).

The example we give below shows that, in general, the estimate
obtained by means of Theorem 62.1 is sharper than that given in Theo-
rem 37.1.

Exampre. Consider an equation

(62.1) g = (@, Y, u, uy)
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and let its right-hand side be defined in a region whose projection on the
plane of points (x, y) contains the pyramid

T 7
<E“L|m_“f'ol, 7’<E-

622)  lo-ml<y, |y}

Suppose that
(62.3) f(z,y,u, 9| < Kju|+Llg| + C,

where K > 0, C = 0. Let u(x, y) be a solution of (62.1) of class D (see § 37)
in the pyramid (62.2) and satisfying the initial condition

(62.4) u (o, ¥y) = siny .
It follows from (62.4) that
(62.5) lu(@e, ) < sup |u(z, y)| =1.
ly—nle|<nl4

If, in order to get an estimate of |u(x, y)|, we want to apply Theo-
rem 37.1, then the comparison equation of type I (see § 14) is

dav
Jt— =K77+C

and its only solution through (0,1) is
. cy ©
— Kt e —
w(t) =e¢ (1 + K) %
Hence, by Theorem 37.1, we get the estimate

C C
,(62-6) lu (@, ¥)| < eKIw—I"‘(l +f) %

in the pyramid (62.2). Now, if we apply Theorem 62.1, the comparison
partial differential equation is
vy = Kv+Lv,+C

and its only solution »(£, y) in the pyramid

0< <y, (y—gj <i-Li,
satisfying the initial condition
_ v(0,y) = |u(, y)| = siny,
is
v(&,y) = er[sin(y—]—Lf)—{—%}—% .
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Therefore, by Theorem 62.1, we obtain the estimate which is obviously
sharper than the estimate (62.6).

THEOREM 62.2. Suppose the right-hand sides of system (60.6) and
of system
(62.7) ub,=giX,Y,U,uy) ((=1,2,..,m;1=1,2,..,p)

are defined in a region, whose projection on the space of points (X, Y) contains
the pyramid (61.5), and satisfy the inequalities

X, Y, U,Q)—gi(X,Y,U,Q) <m(X-X,),Y,|U-T|,1e—Q)
(t=1,2,...,m;1=1,2,..,p),

where hi(E, Y,V ,Q) are the right-hand sides of a compa(;ison system of
partial differential equations (see § 61). Let U(X,Y) and U(X, X) be two
solutions of system (60.6) and of system (62.7) respectively, of class D
(see § 37) in the pyramid (61.5). Suppose finally that V(Z, Y) is a solution
of the comparison system (61.1) such that

~
=

|T( Xy, Y)— U (X,, T)|<V(0, ¥).

This being assumed, we have

|IT(X, ¥)-T(X, )| <V(X~-X,), )

in the pyramid (61.5).
Proof. Theorem 62.2 follows from Theorem 61.1 when we put there

~
X

UXx,Y)=0(X,Y)-U(X,Y).

From the last theorem we derive the following uniqueness criterion.
COROLLARY 62.1. Suppose the right-hand sides of system (60.6) are
defined in a region whose projection on the space of points (X, Y) covers the
pyramid (61.5), and satisfy the inequalities
WX, Y, U,Q—f(X, Y, T, Q) <m(X— X, ¥,|U-T[,19-Q)
(6=1,2,..,m;1=1,2,..,p),

where hi(Z, Y,V ,Q) are the right-hand members of a comparison system
of partial differential equations (see § 61). Assume that

(62.8) WE,7,0,00)=0 (1=1,2,..,m;1=1,2,..,p).

This being supposed, the Cauchy problem for system (60.6) with initial
data given on X = X, admits at most one solution of class D (see § 37)
in the pyramid (61.5).
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Proof. Observe first that, by (62.8), V(Z, Y) = 0 is a solution of the
comparison~system (61.1), satisfying the initial condition V (0, ¥) = 0.
Hence, if U(X, Y) and U(x , Y) are two solutions of system (60.6), of
class D in the pyramid (61.5) and satisfying the same initial conditions, i.e.

U(Xy, V)= U(X,, 1) =0,
then, by Theorem 62.2, we have
VX, T)—-U(X,Y)=0

in the pyramid (61.5), what was to be proved.



CHAPTER X

SECOND ORDER PARTIAL DIFFERENTIAL INEQUALITIES
OF PARABOLIC TYPE

In this chapter we investigate systems of parabolic partial differential
inequalities of the form (see [55])

i i 1 m i i i i i
U T (Ey Bryovey By U g ney Wy Ugyy voey Ugyy Ugyayy Uy y ooy Uyay)

(i=1,2,..,m).

We also discuss maximum solution and Chaplygin’s method for

parabolic equations (see [267]).
We use here notions and assumptions introduced in Chapter VIII.

§ 63. Strong partial differential inequalities of parabolic type. In this
section we give a generalization of the Nagumo-Westphal theorem. We
first recall assumptions introduced in § 47.

AsSUMPTIONS A. A region D C(t, &y, ...,2:) of type C (see § 33)
being given let the functions o'(t, X) (¢ =1, 2, ..., m) be defined and non-
negative on its side surface X. Denote by X, the subset of X on which
a'(t, X) # 0. For every (t, X) ¢ Zu, let a direction 1'(t, X) (6 = 1,2, ..., m)
be given, so that I’ is orthogonal to the t-axis and some segment starting at
(t, X) of the straight half-line from (¢, X) in the direction I’ is contained in
the closure of D.

A parabolic and regular or Z,-regular solution of a system of dif-
ferential inequalities is defined in the same way as it was for a system of
equations in §§ 46 and 47.

THEOREM 63.1. Assume the functions fi(t, X,U,Q,R)=f(t, .., Tn,
ULy eoey Uy Gy oeey Qny P11y T1gy ooy Tan) (8 =1,2,...,m) fo be defined for
(t, X) e D of type C (see § 33) and for arbitrary U,Q, R and to satisfy
condition W . with respect to U (see § 4). Let the functions oi(t, X) and the
directions T(t, X) (i =1, 2, ..., m) satisfy Assumptions A on the side surface
of Z. Suppose f(t,X) (i=1,2,..,m) are defined and positive on Zy.
Let U(t, X) = (u'(t, X), ..., w"(t, X)) and V (¢, X) = (v'(t, X), ..., v"(t, X))
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be Z,-regular (see § 47) in D and suppose that every function f° is elliptic
with respect to the sequence U(t, X) (see § 46). Put

G = {t,X)eD: U(t, X) < Vi, X)) (i=1,2,..,m)
and suppose that, for every fized j, we have
(63.1) (e, X*) < e, X*, U(t*, X*), wi(t*, X*), ukx(t*, X*)),
(63.2)  wi(t*, X*) > (1*, X*, V(t*, X*), vk(t*, X*), vex(t*, X*)),
whenever (t*, X*) e G/, Suppose finally that the initial inequalities
(63.3) Ulty, X) < V(ty, X) for XeS,

and boundary inequalities of first type

Bi(t, X)[u'(t, X)—o'(t, X)]—d'(t, X)——[———l——-:-l<0

(63.4) for  (t, X)e Xy,
wi(t, X)—vi(t, Xy <0 for (t,X)eZ—2Zy4
(i=1,2,..,m)

hold true.

Under the above assumptions we have
(63.5) Ui, X)y<Vi(t, X)
in D.

Proof. Since the set of points (¢,, X ), such that X ¢ 8, is compact,
there is, by (63.3) and by the continuity, a ? (f, < i< to+T), so that (63.5)
holds true in the intersection of D with the zone #, < t < 7. Denote by t*
the least upper bound of such 7. We have to prove that #* = #, -+ T'. Suppose
the eontrary, i.e. t* < t,-+-7. Then we have in D

(63.6) Ut, X) <V({#, X) for t<<t<t*
and for some index j and some X* ¢ S+
(63.7) w(t*, X*) = vl(t*, X*).
Indeed, by the definition of #*, inequalities
v, X)y<Vv(, X)

hold true in D for ¢, < ¢ < t*. Now, for any point (t*, X) ¢ D, there is—by
property (¢) of the region D of type C (see § 33)—a sequence (t,, X,) ¢ D,
50 that t, < f, <t and (¢, X,)—(t*, X). Since

Ult,, X,) < V(i, X,),
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it follows, by the continuity, that
U, X)<ve, X).
Thus inequalities (63.6) are proved. If (63.7) were not true, we would
have, for every X e S,
U, X) <V, X),
and hence, the set of points (t*, X), such that X e 8;, being compact,
inequalities (63.5) would be true, by continuity, in D for #, <t < t**,

where t** is some number greater than t*. But, this contradicts the defini-
tion of t*. From (63.6) and (63.7) it follows that

max [wi(t*, X)—oi(t*, X)] = w/(t*, X*)—vi(t*, X*) =0
XeSpx

and hence, by (63.4) and by Lemma 47.1, we conclude that (¢*, X*) is
an interior point of D. Moreover, by (63.6) and (63.7), we have (t*, X*) ¢ &',
and consequently inequalities (63.1) and (63.2) hold true. The difference
wi(t*, X)—oi(1*, X) is of class C? and attains its maximum at the interior
point X*. Therefore, we have

(63.8) uk(t*, X*) = vk(t*, X*)

and the quadratic form in 4,, ..., 44

(63.9) D [yt X*)— thy(t*, X*) [k is negative.

Lk=1
Now, from (63.1), (63.2) and (63.8) it results that
up(tr, X*)—oj(t*, X*) < f(1*, X*, U (%, X*), wk(t*, X*), ukx(t*, X*))—
“fj(t*v X*, V(t*, X*), '“&(t*9 X*), 'UZ;KX(t*a X*)) .
By (63.6), (63.7) and by the condition W, (see § 4), we get from the
last inequality
“g(t*’ X‘)_”{(t*y X*) < fj(t*! X*, U(t*, X*), ui’f(t*a X*), ’“’jXX(t*’ X*))"'
—f(tx, X*, U@t*, X*), vk(t*, X*), okx(t*, X*)) .
Owing to the ellipticity of f' (see § 46) with regard to U(¢, X) and

by (63.9), the right-hand side of the last inequality is non-positive and
consequently we have

(63.10) wj(t*, X*)—oj(t*, X*) < 0.
On the other hand, the function
uj(ty X*)""vj(t’ X*)
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of one variable ¢ attains, by (63.6) and (63.7), its maximum at the right-
hand extremity t* of the interval [#, ¢*]. Hence it follows that

uj(t*, X*)—oj(t*, X*) >0,

what contradicts (63.10). This completes the proof.

Remark. Theorem 63.1 as well as the next Theorem 63.2 are true
if, instead of the ellipticity with regard to U (f, X), we assume the ellipticity
with respect to V(t, X).

Now we are going to prove a similar theorem with boundary inequal-
ities of second type, i.e. with inequalities (63.4) without the assumption
that B(t, X) be positive. Like in § 53 we will assume the existence of
sign-stabilizing faetors.

THEOREM 63.2. Let the assumptions of Theorem 63.1 be satisfied with
the exception of f(t, X) (i =1, 2, ..., m) being positive. Suppose, instead,
that there ewist sign-stabilizing factors, i.e. positive functions K'(t, X)
(t=1,2,..,m) of class C* in the closure of D, such that

Bit, X)y>0 for (t,X)eZs (1=1,2,..,m),
where
aK’

(63.11) Ei(-t, X) — ﬂi(t’ X)—— a?(t, X)[Ki(t7 X):[‘l dli

for  (t, X) e Zu

(t=1,2,..,m).
Under these assumptions inequalities (63.3) hold true in D.
Proof. We put, like in § 53,
w'(t, X) = o'(t, X)[K'(t, )], F(t, X) = o'(¢, XK, X)]
(t=1,2,..,m).
The new functions U(t, X) = (¥'(t, X), ..., a"(t, X)), V¢, X)=
@, X), ..., 3™(¢, X)) satisfy, by (63.3), initial inequalities
Ulty, X) < V(ty, X) for XeS,
and, by Lemma 53.1 and by (63.4), boundary inequalities
B, X)[w'¢, X)—%"¢, X)]—d'(t, X) ‘”—“";l'_j’—] <0 for (t,X)eZu,
alt, X)—%, X)<0 for (t,X)eX—Zu
(¢?=1,2,..,m),
where B’ are defined by tormulas (63.11) and are supposed positive. By
Lemma 53.2, every function f'(¢, X, U, @, R), defined by formula (53.6),

J. Szarski, Differential inequalities 13
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is elliptic with respect to U(t, X); moreover, l~7(t, X) and 17(15, X) are
Z.regular in D and f* satisfy condition W, with regard to U. Put

F=(t,X)eD: Ut, )<V, X)) (6=1,2,..,m).

Fix an index j and let (t*, X*)e @’; then obviously (*, X*) e G’
and, by (63.1) and (63.2), we have (see Lemma 53.2)

Bir, X0 <Tfex, X+, T+, X*), wkt*, X*), dhx(t*, X)),
T, X0 =T (e, X*, TV (24, X%), The(t*, X*), Bex(t*, X¥) .

Thus U, V, 7" and F° satisfy all the assumptions of Theorem 63.1
and hence we have in D

~

v, H<¥e, 0,
what implies (63.5).

We close this section by proving an analogue of Theorem 63.1 with
a different kind of non-linear boundary inequalities (see [32]).

THEOREM 63.3. Let all the assumptions of Theorem 63.1 be satisfied
with oi(t, X) =1 (¢ =1, 2, ..., m) and with the boundary inequalities (63.4)
substituted by

21 m -
PHuty oy UM) < P
(63.12) ooom X (1=1,2,..,m),
gty .oy ™) > ?ﬁ
where the functions ¢¥Hul, .., u™) (¢ =1,2,...,m) satisfy condition W_
(see § 4).

This being assumed, inequalities (63.5) hold true in D.

Proof. Notice that, in the proof of Theorem 63.1, boundary inequal-
ities (63.4) were taken advantage of merely to show that if for some
index § and some point (t*, X*) ¢ D we have (63.6) and (63.7), then (i*, X*)
is an interior point of D. Hence Theorem 63.3 will be proved if we show
that (63.6), (63.7) and (63.12) imply that (t*, X*) is an interior point
of D. Suppose that (i*, X*) ¢ Z. Now, from (63.6) and (63.7) it follows
that the function

p(7) = o (t*, X* + vversl'(1*, X*)) — o' (t*, X* +vversl'(t*, X*))

—which, by Assumption A, is defined for non-negative v sufficiently close
to zero—attains its maximum at v = 0. Hence we get that

_ alul—vf]

(63.13) »'(0)
dlj (tO’ .X‘)

<0.
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On the other hand, inequalities (63.6) and (63.7) and condition
W.. imply that

¢ (U@, X*) = ' (V(t*, X)) .
From the last inequality and by (63.12) we obtain

d[uf——fv_q

v |eoxy

>0,

what contradicts (63.13). This contradiction completes the proof.

§ 64. Weak partial differential inequalities of parabolic type. In order
to obtain a theorem on weak inequalities we apply in the present section
methods similar to those used in § 59. In particular, we will have
to introduce more restrictive assumptions than in Theorem 63.1, which
imply (see Corollary 64.1) uniqueness of solution of the ecorresponding
mixed problem.

THEOREM 64.1. Let the functions fi(t, X, U,Q, R) = fi(t, @y, ..., &n,
ULy oy U™, Qyy eeey Gy Tiay Trzy voy Tun) (=1, 2, ..., m) be defined for
(t, X)e D of type C (see § 33) and for arbitrary U, Q, R and to satlisfy
condition W, with respect to U (see § 4). Suppose further that

(64.1) f(t, X, U,Q,R)—f(t, X, U,Q,R) < ait—ty, U—T)
(i=1,2,..,m),

whenever U > U, where oi(t, V) are the right-hand sides of a comparison
system of type I (see § 14). As to the comparison system we assume that

0i(t,0) =0 (¢=1,2,..,m)

and that for its right-hand mazimum solution through the origin (t; 0)
we have

(64.2) Q(t0)=0.

Let the functions o(t, X) and the directions U'(t, X) (i =1,2,...,m)
satisfy Assumptions A (see § 63) on the side surface X of D. Suppose gi(t, X)
is positive on Xy (i =1,2,..,m). Let U(t, X) = (u'(t, X), ..., u™(t, X))
and V(t, X) = (V'(t, X), ..., v"(t, X)) be Z,-regular in D (see §47) and
suppose that every function f'(t, X,U,Q,R) is elliptic with regard to
U(t, X) (see § 46). Assume that the initial inequality

(64.3) Uly, X) <V (ty, X) for XeB8
13*
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and boundary inequalities
d[w— ]
ar

ﬁi(t; X)[ui(ta -X)“/Di(ta X)]* ai(ty X)

N

(64.4) for  (t, X)e Zu,
w't, X)—v'(t, X) <0  for (t,X)eX—Zx (i=1,2,..,m)
are satisfied. Write
E = {{t,X)eD: W(t, X)>o(t, X)} (i=1,2,..,m)
and suppose that for every fiwed j
(64.5)  wi(t*, X*) < fi{t*, X*, U(t*, X*), u(t*, X*), vkx(t*, X*)) ,
(64.6)  of(t, X*) > fi(e, X*, V (t*, X*), o(t*, X*), vkx(t*, X*)),

whenever (i*, X*) e B .
This being assumed, we have in D
(64.7) Ut, X) <V, X).

Proof. Since the assumptions of our theorem are invariant under
the mapping v = {—1,, we may assume, without loss of generality, that
1, = 0. Put, for 0 <t < 7,

Mit) = max [wi(t, X)—o'(t, X)], M(t) = max(0, M(t))
€5
(6=1,2,..,m),
M) = (I, ..., H™2)) .

Tt is clear that the assertion of our theorem is equivalent with the
inequality
{64.8) M@y<o on [0,T).

We are going to prove relation (64.8) by means of the first comparison
theorem (see § 14) By (64.3), we have M) <0 and, by Theorem 33.1,
the functions H'(t) are continuous on [0, T). Therefore, writing

B ={te(o,T): M@t)>0y (=1,2,..,m),
inequality (64.8) will be proved by the first comparison theorem (see §14),
if we show that
D_M(t) < oilt, H (1)) for tel.

Now, fix an index j and let t* ¢ &’. By Theorem 33.1, there is a point

X* e /Sp such that

(64.9) M) = w1, X*)—o'(t*, X*).
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Since, by the assumption that t* e &', inequality M’(1*) > 0 holds
true, we have obviously
(64.10) W) = My, D (%) = D™ AM(*)
and consequently, by (64.9),
(64.11) W (1*) = wi(tx, X*)—v'(t*, X*) > 0.

From the last inequality and from (64.4) it follows, by Lemma 47.1,
that (t*, X*) is an interior point of D. Hence, the function w«(t*, X)—
—oi(t*, X) attaining, by (64.9), its maximum at the interior point X*,
we have relations (63.8) and (63.9). By Theorem 33.1 and by (64.10),
we have moreover

(64.12) D_ B (1) < uj(t*, X*)—oj(t*, X*).

Tnequality (64.11) implies that (i*, X*) ¢ E' and consequently,
by (64.5), (64.6) and (63.8), we get

(64.13)  wui(t*, X*)—oi(t*, X¥)
< e, X*, U+, X*), ws(t*, X%), ukx(t*, X))~
—fT(t*, X%, V (1, X*), wh(t*, X*), vhe(t*, X)) .
Observe that, by the definition of M’(f) and by (64.11), (see § 4)
U(t*, X*) i V(t*, X*)+ M (%) .

By the last inequalities and by condition W, (see § 4), it follows
from (64.12) and (64.13)

(64.14) D_II(t+) < [f(r*, X*, U(t*, X*), vk(t*, X*), vx(t*, X*))—
—fi(t*, X*, U@, X*), w(t*, X*), vkx(t*, X*)]+
+ |fler, X*, V(t*, X*) 3L (%), wh(rr, X*), vhx(t*, X))~
—fier, X*, V(tr, X*), al(t*, X¥), okx(t*, X*)] .

The first difference in brackets is—owing to (63.9) and to ellipticity
of f7 with regard to U(f, X)—non-positive. To the second difference we
apply inequality (64.1) and finally we obtain

(64.15) D_ I (t*) < osft*, B (%)) .

Thus we have shown that inequality (64.15) holds true for any
t* ¢ I’; but, this completes the proof.



198 CHAPTER X. Second order parabolic inequalities

As an immediate consequence of Theorem 64.1 we obtain the fol-
lowing corollaries.

COROLLARY 64.1 (Uniqueness criterion). Suppose that the right-hand
sides of the system of differential equations

(64.16) ui = f'(t, X, U, uk,ukx) (=1,2,..,m)

satisfy all the assumptions of Theorem 64.1. Then the first mized problem
(see § 47) for system (64.16) admits in D at most one parabolic, Z,-reqular
(see §§ 46, 47) solution.

CoRrOLLARY 64.2 (Maximum prineiple). Let the functions ft, X, O,
Q,R) (s =1,2,..,m) satisfy all the hypotheses of Theorem 64.1. Assume
that for U = 0 we have

fit,X,0,0,0)<0 (i=1,2,..,m).

Suppose U(t, X) = (u'(t, X), ..., w"(t, X)) to be a Z,-regular (see § 47)
and parabolic (see § 46) solution of the system of differential inequalities

u§<]‘i(t,X, U"“&y ’i&x) (t=1,2,..,m)
in D and to satisfy initial inequalities
U(ta, .X) <M= (ml, ...’mm) fOT .XGS[o,

where my are non-negative constanis, and boundary inequalities

ﬂ"(t,Xm"(t,X)—a"(t,X)%’lif<m«ﬂf<t,X) jor  (t,X)eZu,

wi(t, X) < my for  (t,X)e X—Zu
(t=1,2,..,m),

where o', I satisfy Assumptions A (see § 63) and f° are positive.
Under these assumptions we have in D

Uit, X)y< M.
Proof. We check immediately that U(i, X) and V{({,X) =M
== const > 0 satisfy all the assumptions of Theorem 64.1.

Remark 64.2 (). Theorem 64.1 can be derived from Theorem 63.1
without having recourse to the first comparison theorem (see § 14). In

() This remark is due to P. Besala. Similar arguments were used, in some parti-
cular cases, by K. Nickel (see [36]).
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this case we use arguments similar to those applied in the proof of Re-
mark 59.1.

The theorem to be proved now involves somewhat less restrictive as-
sumptions under which the first comparison theorem (see § 14), used in
the proof of Theorem 64.1, cannot be taken advantage of, whereas the sec-
ond comparison theorem (see § 14) is applicable.

THEOREM 64.2. Under the assumptions of Theorem 64.1 with inequal-
ities (64.1) replaced by

(6417)  ft, X, U, Q, R)~1(t, X, U, Q, B) < ot — o, max (w—))
(t=1,2,..,m)

for U> U and t > 1,, where o(t,y) is the righi-hand side of a comparison
equation of type II (see § 14), inequality (64.7) holds true in D.

Proof. Like in the proof of Theorem 64.1, we assume that 7, = 0.
Put, for 0 <t < T,

W(t) = max JW(t) R

where J'(t) were introduced in the proof of Theorem 64.1. It is obvious
that inequality (64.7) is equivalent with

(64.18) Wi <0 on [0,T).

Inequality (64.18) will be proved by means of the second comparison
theorem (see § 14). By (64.3), we have

W) <0

and, by Theorem 33.1, the function W (t) is continuous on [0, T). There-
fore, writing

E={te(0,T): W(t)> 0},

inequality (64.18) will be proved, by the second comparison theorem
(see § 14), if we show that

D_W@)<oft, W(t)) for teE.

Now, suppose that t* ¢ E. Obviously there is an index j, so that
(see the proof of Theorem 34.1)

(64.19) Wy = M@, D_W@*) <D ).
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Since t* ¢ B, we have, by (64.19), 3(t*) > 0, and hence relations (64.10)
and (64.11) are satisfied. Therefore, like in the proof of Theorem 64.1,
we get inequality (64.13) and consequently, by (64.19), we have

D_W(t+) < [f(r, X*, U(t*, X*), wk(t*, X*), ukex(t*, X*))—
—ft*, X*, U(t*, X*), uk(t*, X*), vhex(t*, X9)] +
P, XV (8, X0+ F (1), uk(tr, X¥), ox(tr, X¥)—
—fift*, X*, V(t*, X*), wh(t*, X*), vex(t*, X*)] .

The first difference in brackets is—like in the preceding proof—non-
positive, whereas to the second difference we apply inequality (64.17)
and get

D_Wt*) < oftr, W()),
what was to be proved.

The next corollary is an immediate consequence of Theorem 64.2.

CoROLLARY 64.3 (Uniqueness criterion). If the right-hand sides of the
system of equations (64.16) satisfy all the assumptions of Theorem 64.2,
then the first mized problem (see § 47) for the above system admits in D
at most one parabolic, X,-reqular solution (see §§ 46,47).

Remark 64.3. Unlike Theorem 64.1, Theorem 64.2 cannot be derived
from Theorem 63.1 without having recourse to the second comparison theo-
rem. This depends on the fact that the right-hand side of a comparison equa-
tion of type II (see § 14), appearing in inequality (64.17), is not supposed to
be continuous for { = 0, and consequently Theorem 10.1 ean not be applied
to its solutions issued from the points (0, &).

We turn now to analogues of Theorems 64.1 and 64.2 in the case of
boundary inequalities of second type, i.e. when §'(t, X) (4 =1, 2, ..., m)
are not supposed to be positive. Like in Theorem 63.2 we will have to
assume, instead, the existence of sign-stabilizing factors (see § 53).

THEOREM 64.3. Let the functions fi(t, X, U,Q,R) (i =1,2,...,m) be
defined for (t, X)e D of type C (see § 33) and for arbitrary U,Q, R and
satisfy condition W, with respect to U (see § 4). Suppose that, whenever
U > U, the inequalities

(64-20) fi(t’X7 U,Q,R)—-—fi(t,X, Uy@y R)
< oift—1y, U—UH-Ti(t——to,Z 19—l +2 |7'jk—‘75k|)
i 7.k
(t=1, 2,..,m)

hold true, where oit, Yy, ..., Ym), wi(t, y) are continuous, non-negative and
increasing in all variables for t >0, y >0, y; >0 (j=1,2,..,m) and
satisfy identities

oift,0) =14(t,0)=0 (1 =1,2,..,m).
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Suppose further that the right-hand maximum solution through the
origin of the comparison system

dy; .
’;%‘ = 04ty Yy evy Yu) HTall, ¥i) + Y t=1,2,..,m)

s ddentically zero. Let the functions oit, X) and the directions Ui, X)
(¢ =1,2,..,m) satisfy Assumptions A (see § 63) on the side surface of D.
Suppose that pi(t, X) is defined on Xs (i =1,2,..,m) (without being
necessarily positive), and there ewist sign-stabilizing factors, i.e. positive
functions Kt, X) (i = 1,2, ..., m) of class (* in the closure of D, so that

B, X)>0 jor (t,X)eZe (1i=1,2,..,m),
where E" are given by formulas (63.11). Assume, moreover, that
O<pu<K(t,X)<H, |Ki K, |Kopl < I .

Let, finally, U(t, X) = (w'(t, X), ..., u"(t, X)) and V (¢, X) = (v!(t, X),
oy 0M(t, X)) satisfy assumptions of Theorem 64.1. This being assumed,
inequality

(64.21) Uit, X) <V, X)
holds true in D.
Proof. Like in the proof of Theorem 63.2, we put

W, X) =o', DK D77, ¥, X) =o', DHIEE, ]
t=1,2,...,m)
and cheek that the new functions are Z,-regular in D and satisfy, by (64.3),
initial inequalities

~ ~

D’Ktu, .X)<V(t0, .X) f(lI‘ XES[O,

and, by (64.4) and by Lemma 53.1, boundary incqualities
7, T, 0-5, 1-ae, DT o o )€ s
B, X) -, X)<0  jor (4, X)eZ—Za

(i =1,2,..,m),
where B are defined by formula (63.11) and are supposed positive. By
Lemma 53.2, all functions (¢, X, U, @, R), defined by formula (53.6),
are elliptic with respect to U(t, X) and satisfy, by (64.20) and by
Lemma 53.3, inequalities

T, X, U,Q,R)—ft, X, U,Q, R) < &it—1y, U—~T)
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whenever U > U, where G(t, ¥y, ..., Ym) are given by formulas (53.11);
moreover, by Lemma 53.4, o;(f, Y) are the right-hand sides of a comparison
system of type I (see §14) and satisfy the assumptions of Theorem 64.1.
The functions 7° satisfy condition W, with respect to U. Put

F={tX)eD: %t, X)>7, X)} (1=1,2,..,m).

Fix an index j and let (t*, X*) ¢ &’; then, obviously, (i*, X*)e B’
(see Theorem 64.1) and hence, by (64.5) and (64.6), we have (see
Lemma 53.2)

w(er, X*) <f e+, X*, U+, X*), Wk, X*), Wkx(t*, X*),
T, X*) ST (e, X*, Ver, X*), a(t*, X*), Tex(t*, X¥) .

Thus we see that @’, %, 7* and B’ satisfy all the hypotheses of Theorem 64.1
and, therefore, we have in D

U@, X)<¥(, X)
what implies (64.21).
In a similar way we derive from Theorem 64.2 the next theorem.

THEOREM 64.4. Let the assumpiions of Theorem 64.3 hold true with
inequalities (64.20) substituted by

fi(ta X,U,Q, R)_'fi(t, X, U, @, R < G(t_tm m?’X(ul'—"—"l)} +
trlt—to, O l—@l+ ) Ire—Fnl) (i =1,2, .., m)
7 7.k

for U>U and t>1,, where o(t,y) and T(t,y) are continuous, non-
negative functions, increasing in all variables for t> 0, y > 0, such that
a(t,y)+v(t,y)+y is the right-hand side of a comparison equation of
type II (see § 14). This being supposed, inequality (64.21) is satisfied in D.

We close this section by deriving from Theorem 64.1 (resp. 64.2)
a theorem [5] involving in thesis absolute value estimates.

THEOREM 64.5. Let f(t, X, U,Q, R), d'(t, X), l'(t, X) and p't, X)
(¢ =1,2,..,m) satisfy all the assumptions of Theorem 64.1 (resp. 64.2)
and suppose additionally that

(64.22) ft,X,-U,-Q,—R)=—f(t,X,U,Q,R) (i=1,2,..,m).

Let U(t, X) and V(t, X) = 0 be Z-regular in D (see § 47) and satisfy
initial inequalities

(64.23) |U (e, )| <V (t, X)
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and boundary inequalities
Bi(t, X)u't, X)—d(t, X)%? < ft, X)v'(e, X)—d(t, X) Z—’Z’

(64.24) for (b, X)e Zy,
|ui(t, X)| < oi(t, X) for (t,X)eZ— Xy
(t=1,2,..,m).

Suppose that all the functions e, X , U, @, R) are elliptic with regard
to U(t, X) (see § 47). Put

B = {(t, X) e D: |u'(t, X)| > o'(t, X)} (1=1,2,..,m)
and assume that, for every fized j,
(64.25)  wj(t*, X*) = f(t*, X*, U(t*, X*), vk(t*, X*), wkx(t*, X*)),
(64.26)  oi(t*, X*) > f(t*, X*), V(t*, X*), vk(t*, X*), vex(t*, X*))
whenever (t*, X*) e B'. This being supposed, inequality
(64.27) U, <V, X)

is satisfied in D.
Proof. If we put

L= {(t, X) e D: u'(t, X)>o(t, X)} (1=1,2,..,m),

then, since v'(t, X) > 0, it is obvious that (t*, X*) ¢ E. implies (1*, X*) ¢ &’
and hence, by.the assumptions of our theorem, (t*, X*) ¢ B, implies (64.25)
and (64.26). Therefore, owing to (64.23) and (64.24), U(?, X) and V (¢, X)
satisfy all the assumptions of Theorem 64.1 (resp. 64.2) and consequently
we have in D

(64.28) Ui, X)svit,X).
Now, if we put
B = {t,X)eD:—'t, X) > u'(t, X)} (i=1,2,..,m),
then—Ilike in the preceding case—we check that (&*, X*)e F. implies

(t*, X*) e ' and consequently (¢*, X*) e E. implies (64.25) and (64.26).
But, from (64.22) and (64.26) it follows that

(64.29) —oj(t*, X*) < f(t*, X*), =V (t*, X*), —ok(t*, X*), —vxx(t*, X*)) .

Thus we see that (t*, X*) e BL implies (64.25) and (64.29). Hence,
owing to (64.23) and (64.24), —V (¢, X) and U (¢, X) satisfy all the assump-
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tions of Theorem 64.1 (resp. 64.2) (with U(¢, X) replaced by —V (f, X)
and V(t, X) by U({, X)). Therefore, we have in D

U, X) > -V, X)

what together with (64.28) gives (64.27).

Remark. A theorem similar to Theorem 64.5 can be derived from
Theorems 64.3 and 64.4.

§ 65. Parabolic differential inequalities in unbounded regions, We are
going to prove in this section an analogue of Theorem 64.1 in the case
when D is an unbounded region specified below (see [3]).

DEFINITION OF THE REGION OF TYPE C*. A region D in the space
of points (¢, @, ..., 2,) will be called region of type C* if following con-
ditions are satisfied:

(«) D is open and contained in the zone t, <t <t,+7T < + oo.

(B) For any #,% <t <it+1T, the intersection o, of the -closure
of D with the plane { = ¢, is non-void and unbounded.

(v) For any #%,, oy, (see (B)) is identical with the intersection of the
plane ¢ = ¢, with the closure of that part of D which is contained in the
zone f, <t < t,.

Like in the case of a region of type C (see § 47), we denote by 2 that
part of the boundary of D which is contained in the open zone ¢, <t
< t,+T.

Since we will have to impose certain bounds on the growth at infinity
of the functions involved, we introduce the following definition:

DEFINITION OF THE CrLAss F,. Two positive constants M and K
being given, a function ¢(¢, X), defined in a region of type C*, is said
to be of class H,(M, K) if

(65.1) 9, X)| < MeXX*,

where | X| = ]/ D ;. A function (¢, X) is said to be of class E, if there
i=1

exist some positive constants M and K, so that (65.1) holds true.
We are able now to formulate and prove the following theorem:

THEOREM 65.1. Let the functions f(t, X, U,Q,R) (i =1,2,..., m)
be defined for (t, X) ¢ D of type C* and for arbitrary U, Q, R, and satisfy
condition Wy with respect to U (see § 4). Suppose further that inequalities

(65.2) [f(t, X, U,Q, R)—f(t, X, U, q, E)]sgn(u'— &’
<Ly D) lrue—Ful + (Lol X| + L) D) @~ + (Lal XE+Ly) ) fwr—r|
Lk I r

(i=1,2,..,m)
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hold true, where L (8 =0,1,2,3,4) are positive constants. Let U (t, X)
= (w'(t, X), .., w™(t, X)) and V(t, X)= (v'(t, X), ..., v"(¢, X)) be regular
(see § 47) and of class B, in D and satisfy initial inequality

(65.3) Ulley X) <V (te, X} Jor (1, X)e o
and boundary inequalities of first type
(65.4) U, X)<Vit,X) for (,X)eZX.

Suppose all the functions fit, X, U,Q, R) are elliptic with respect
to U(t, X) (see § 46). Put

E = {t,X)eD: W, X)>v'(,X)} (i=1,2,..,m)
and assume that, for every fized j, whenever (1*, X*) ¢ B, we have
(65.5)  wi(t*, X*) < f(1*, X*, U(*, X*), uk(t*, X*), wix(t*, X*)),
(65.6)  wj(tr, X*) > [ (1*, X*, V(t*, X*), ok(1*, X*), vhx(t*, X*) .

Under all these assumptions we have in D
(65.7) Ui, X)y <7V, X).

Proof. Let U(t, X) and V (¢, X) be of class E,(M, K), i.e.
(65.8) lui(t, X)I, |oi(t, X)| < MeKIXE (4=1,2,..,m).

We introduce the growth damping factor

2
H(t, X) = exp (ig—:;_%tl% 4_—vt] s
‘where
v = 4[2n (K +1) (Lo +Ly) +mL,+1],
mdig
F+1’

(65.9) p= 40K +1) Lo+ 2n(Ly + L,) +

and new functions
Wty X) = u'(t, )[HE, X, (@, X) =, X)[HE, X)]
(1=1,2,..,m).
Obviously, (63.7) is equivalent with
(65.10) Ui, Xy< v, X)

in D. Now, we will prove first that (65.10) holds true in D", D" denoting
the intersection of D with the closed zone

{65.11) fo <t <ty+h
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where

1

(65.12) h = e
For any set E, denote by E? the intersection of E, of the zone (65.11)

and of the cylinder | X| < r. It is clear that, in order to prove (65.10) in D",

it suffices to show that, for any ¢ > 0, there is a r, > 0, so that inequalities
(65.13) wt, X)—vit, X)<e (¢=1,2,..,m)

are satisfied in D?, whenever r > 7,. Let ¢ be an arbitrary positive number;
there is a positive r, such that r > ry implies

2MexpK|X|?

SR II?

(65.14) [H(t, X)]'2MexpK |X[ =
{1

~

for (t, X) e C*, where C! denotes the intersection of the surface | X|=1r
with the zone (65.11). We will prove that inequalities (65.13) hold true
in D! for r > 7o, With 7o chosen above. Let r > 7y; there is an index j and

a point (t*, X*) e D?, so that
W, X*)—F(t*, X*) = max {max [¥%t, X)—7F(, X)]}.
oot
Suppose that inequalities (65.13) are not true in D}; then, we would
have
(65.15) wtr, X*)—0i(t*, X*) > &> 0.

We claim that (&*, X*) e D¥. Indeed, we have
Dl=D'o (a)t o PO Ot

Owing to (65.3) and (65.15), the point (¢*, X*) does not belong to
(a,o)f. By (65.4) and (65.15), it does not belong to Z} either. Finally, by
(65.8) and (65.14), we have for (t, X) e Cr

2MexpK|X?

< e
(K+1)| Xy~
)

and consequently, because of (65.15), the point (#*, X*) is not in cr.
Therefore, we must have (t*, X*)e D, Then, by (65.15), (t*,X*)eEi
and hence inequalities (65.5) and (65.6) are satisfied. Since the funetion
of one variable &, w/(f, X*)—v/(t, X*), attains for ¢ = ¢* its maximum in
the interval ¢, < <t*, we have

(65.16) e, X =%, X*) = 0.

%j(ta X)“‘%j(t’ X) <



§ 65. Parabolic differential inequalities in unbounded regions 207

Similarly, the function of the point X, w/(t*, X)—%/(t*, X), attaining
its maximum at the interior point X*, we get that the quadratic form
in Al? seey }m,

(65.17) Z (U (1 — (P, X*)TMA:  is negative
Lk=1

and

(65.18) W (1%, X*) =T0.(t5, X*)  (k=1,2,..,m).

Now, substituting in (65.5) and (65.6)
W=%H, o=%H (=1,2,..,m)
and subtracting (65.6) from (65.5) we obtain at the point (t*, X*)
(65.19) (%] —%)H+ @ —v)H,
<[fler, X*, U@, X0 H,Q%, BY)—F (t*, X*, U(t*, X*)H, Q", B*")] +
+[f (e, X*, U(e*, X*)H, @7, R™¥) —f'(t*, X*, V(t*, X H, ¢, E¥)],
where
Q" = (L (1, X*)H(t*, X*) + 3/ (t*, X*) Hy,(t*, X*)}Yoz1,
Q% = (Bh(t*, X*)H(t*, X*) +%(t*, X*) Ho,(t*, X*)}ier
and similarly at the point (t*, X*)
= (Ui, H + Wy Hoy + Wty Hoy + 0 Hug Yorem1
{vx;ka+vx; a;,,'*"v o He, -7 Hx;zk}lk =1,
B = (@ H 400, Hoy 0y Hoy 3 Hop Y1 -

By the ellipticity of f(t, X, U,Q, R) with respect to U(t, X)
= ?f(t, X)H (see § 46) and by (65.17), the first difference in the brackets
on the right-hand side of inequality (65.19) is non-positive. As to the
second difference in brackets we rewrite it in the form

(65.20) [f'(*, X*, T (=, X*)H, @, R™®) —f/(t*, X*, W(*, X*)H, @°, B")] +
+if (e, X+, W, X9 H, Q% BY)—f(e+, X*, V(t*, X0 H, Q°, R’)],
where
W(t, X) = (w'(t, X), ..., w™(t, X)), /¢, X) = min[%Y¢, X), 3%, X)]
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Since, by (65.15) (see § 4),
W (t*, X*) V(t X*),

the second difference (65.20) is non-positive, by the condition W, with
respect to U (see § 4). To the first difference (65.20) we apply inequal-
ity (65.2). Taking advantage of (65.18) and remembering that, by the
definition of W(t, X) and by (65.15),

W+, X*)—w'(tr, X*)| = ul(ex, X*)— (%, X*)
< max [0, B{t*, X*) =% (1*, X*)]
< W+, X0 ¥ (t+, X*)
1=1,2,..,m)
we finally get from (65.2) and (65.19)

(65.21)  [wl(t*, X*)—F(t*, X*)]H < [%(¢*, X*) % (t*, X*)] F[H]
where
FIH] = Ly Y |Hewyl + (I (X[ +Ly) Y | Hay +m(Ly| X2+ L)H—H, .
Lk=1 k=1

Computing the derivatives of H(t, X) we find that

[ 4(K 4+ 1%L (K +1)nL,
FIH] < Hl[l 0 tﬁzZ(zkw A

2(K+1)

+1—-,u(t-—t0) (Lo X1 +L2)2 [0 + (Lo X2+ L) m—

k=1

p(K+1) X }
- put—1,)P |

Since in D we have, by (65.12),
(65.22) P <1—p(t—t) <1,

and since, obviously,

ol < 1X[, (X <[XP+1,
we get further

FIH] <L {(K+1)IXP[ (K 1) Lyn? +-2(L, + Loy 4

=Nk
+I2(K + 10 (T + T) + mE)—v[1— plt— 1] .

H
[1—p(t—1,)F

Hence, by (65.9) and (65.22), it follows that

FIH] < —4H
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and consequently, by (65.15) and (65.21),
W, X =T, X*) < —4[A'(*, X -F(t*, X< 0,

which contradicts (65.16). This contradiction completes the proof of
inequalities (65.7) in D", where h is given by formulas (65.9) and (65.12).
In particular, we have inequalities (65.7) in the intersection of the closure
of D" with the plane ¢ = {,- h; but, since this intersection is—by prop-
erty (y) of the region of type C*—identical with oy, we have (65.7)
for (¢, X) e 04y+5. Therefore, we can repeat our argument starting from
the plane ¢t = ¢, h, instead of the plane t = {,, and thus obtain inequali-
ties (65.7) in the intersection of D with the zone

to+h <t <ty+2h.

In this way we prove inequalities (65.7) in any point of D after a finite
number of steps.

As an immediate consequence of Theorem 65.1 we obtain the fol-
lowing uniqueness criterion.

COROLLARY 65.1. Let the right-hand sides of the system of differential
equations (64.16) satisfy all the assumptions of Theorem 65.1 for (1, X)e D
of type C* and for arbitrary U, Q, R. Then the first Fourier’s problem (see § 47)
for system (64.16) admits in D at most one parabolic, regular (see §§ 46,
47) solution of class E,.

Remark. In particular, when D of type C* is the half-space t > {,,
then X' is empty and the first Fourier’s problem reduces to the so-called
reduced Cauchy problem. This problem consists in finding a regular and
parabolic solution in the half-space t > #,, satisfying a given initial con-
dition for ¢ = #,. In this case Corollary 65.1 gives a uniqueness criterion
for the solution of the reduced Cauchy problem.

§ 66. The Chaplygin method for parabolic equations. This section deals
with the Chaplygin method for the equation

ou  *u

(66.1) ’g—%g‘l"f(tyw,“)-

We consider here the first Fourier’s problem (see § 47). We assume
always that (f,2) e {(t,2): 0 <1< T, a <2 <b}= R. The interior of R
is denoted by R°, the boundary by oR. I' stands here for the plane set
composed of points (0, #) with a <« < b and (¢, a), (¢, d) with 0 <t < T.
By a regular function in R we mean a function % which is continuous
on E, continuously differentiable in £ to du/of and twice in @ to 2%u/ox*
for 0 <t< T, we(a,b).

J. Szarski, Differential inequalities 14
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Theorem 64.1 implies

Lemma 66.1. If u(t,x), v(t,x) are regular in R and of(t, x, u)/ou
is continuous and

ou _ 0*u

(66.2) P <a—w2+f(ta$,“(tam)}7
ov _ o

(66.3) 5 = e T @, v, @)

on R® and w(t,x) <o(t,x) on I, then u(t, x) <v(l,x) on R.

Tf u (v) satisfies (66.2) ((66.3)), then u (v) is called a lower (upper)
function. Let f(t, x, u) be differentiable in u to f,(¢, #, #). Assume that
f(t, 2, ) and fu(t, 2, u) are continuous and locally Holder continuous
(exponent < 1) in all variables for ¢ > 0. Suppose now that the function
wu(t, ) is Holder continuous in K. Then the composite functions
F{t, @, u(t, ), fult, @, u(t, »)) are locally Holder continuous. It is a classi-

cal result that there is a unique solution z(f, #) of the equation
oz 0%
(66.4) 5% = 5t + 7ty @, u(t, @) -+fult, 2, w(t, 2)(z—u(t, )

with the boundary condition
(66.5) g=¢ on I,

where ¢ is continuous on I'. The functions f, ¢ being fixed, the function 2
is uniquely determined by . Hence, we have here the transformation law
w->2, in symbols 2z = Cu. We form the sequence

Zo=1U, Zy1= Oz
which is the Chaplygin sequence for equation (66.1) with boundary data
(66.5). First we will prove
THEOREM 66.1. Suppose that uyl, x) is lower and v (t, x) upper and
let f(t, 2, u) be continuously differentiable in u to f,(t, x, u). We assume
that f(t, x, u), fu(t, z, u) are continuous and locally Holder continuous for
t> 0. Let ¢ be continuous on I' and suppose that u, <o < v, on I.
If fu(t, x, u) increases in u, then the Chaplygin sequence
B = Ugy Bny1= C2y
satisfies the following conditions:

O%py1 2

(66.6) a - ont +1(t, @, 20) +fult, @, 20) (Bns1—%n)
oz, 0%

(66.7) 5 S T2, 2),

(66.8) g on T,

(66.9) Ug K B S Bpp1 ¥y oOn R.
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Proof. The fact that 2, is well defined is a consequence of the previous
discussion and of the regularity of #,. Conditions (66.6) and (66.8) follow
from the definition of the Chaplygin sequence. Suppose now that (66.7)
holds for » = k. Consider the eguation

oz - 0%z

(66.10) o o T @ %),
where
(66.11) g(t, @, 2) = f(t, @, 2) +fult, @, 26) (2 —2%)

The solution of (66.10) with the boundary condition z = ¢ on I is
Srat. Hence

Ofpy1 Oy

ot > ox®

But ¢(t, x, 2x) = f(¢, #, 2x) and consequently, by the inductive assumption

+g9(, 2, 2x41)

32]9 822']5
ELETE g, w, 2)
at 31/.2 T‘g( b w? k)

The last two inequalities and Lemma 66.1 imply that
(66.12) 2il(t, 2) < 2pna(t,xz) in  R.
Formula (66.12) and the convexity of f(f, x,«) in % imply
f(t, ¢, 2x) +fu(t7 x, 2x) (Brr1—2) < [ (L, %, 2x41)
which by (66.6) proves (66.7) for n = k—+1. (66.7) being proved for
arbitrary =, the above reasoning proves (66.12) for any k. This completes
the proof.

CorOLLARY. The assumptions of Theorem 66.1 imply that the solution
z(t, x) of (66.1), (66.5) exists and by Lemma 66.1

u(t, ®) < 2(t,x) <vft,x) on R.

It follows then from Lemma 66.1 that (¢, ) is the unique solution
of the considered boundary value problem. One can prove under our
assumptions that {z,} is compact in sup norm and by its monotonicity
it must be unifermly convergent. Simple limit passages show that limz, = 2.

For other extensions of the Chaplygin method for parabolic gquations,
see [26].

The Lusin type [20] estimates for {z,} are given in the following
theorem.

THEOREM 66.2. Let u,, vy, [ satisfy the assumptions of Theorem 66.1
and suppose that

(fult, @, @) — full, ®, u)| < o(t, |T—4ul)
Jor wy(t, ) < U, u < vy(t, ).
14*
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It is assumed that o(t, u) > 0 is continuous for 0 <t < T, 4 =0 and
increases in . Let
max {o)(t, ) —ult, @)} <7wlt), 0<t<T,
asse<h

and define
¢

Tarall) = [ K905, 7a(8)) a(s) ds ,

where
K =sup|fut,z, )|, (@, 2)eR, dy<u<0,.
Then |z(t, 2)—2(t, x)| < a(t) on R.
The proof for the above theorem is modelled after the proof of Theo-

rem 32.2. Instead of Theorem 9.5 for ordinary differential inequalities
one applies Theorem 64.1 of § 64.

§ 67. Maximum solution of the parabolic equation. We will use in
this section notation and definitions of § 66. Theorem 63.1 implies
LEMMA 67.1. Let the regular functions wu(t, x), vy(t, ) satisfy
oy (< )8 %1ty
W o

0vy ) 020,
ot = ox?

+g(ty 2, ult, 2) ,

+g(t’ Z, V{8, w)}

on R and wuy(t, ©) < v(t, x) on I'. Then uyt, x) < vy(t, ) on R.

Suppose that the funetions (¢, 2), g(¢, 2, 2) and ¢(¢, x) are continuous
in R,
@ = {(t, z, 2): (¢, x) e R, 2 arbitrary}

and I respectively. We define

be (w— &)
rit, o) = V’ U p(w =)

gz, &, u(r, ) dédr .

Let q(t, ) be the solution of the equation #; = #,, such that ¢ =¢—7r
on I. We put

dt
v(t, x) = q(t, 2) +r(t, x)

and denote by T(u; ¢, ¢) the transformation % —v. Hence v = T'(u; ¢, ¢).

One can prove [26] that if Un 2y Gn 3‘(1’ Pn=9, then v, = T (%n} gy pu) >

=v = T(u; g,9) on R.
If %s, gn, pu are bounded in sup norm, then {v,} is compact.
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If ¢(t,»,2) is continuous in (¢, z,2) and Holder continuous in =
and 2, then the solution 2 of the equation

2=1T(29,9)
is a regular solution of

oz %
(67.1) 5 =TI, %),
(67.2) z=¢ on I

The following theorem is due to Prodi [41]:

THEOREM 67.1. Let uy(t, z), v4(t, x) satisfy the assumptions of Lemma 67.1
and uy < @ < vy on I" where @ i3 continuous on I'. It is supposed that ¢(t, x, 2)
is continuous in Q and Holder continuous in x and z. Then the problem (67.1),
(67.2) has at least one regular solution.

We say that the regular solution u(t, x) of (67.1), (67.2) is a mazimum
solution (mintmum solution) of that problem, if for every other solution
of the problem v(t, #) the inequality »(f, ) < u(¢, ) (v({t, ) = u(t, ©))
holds in R. ’

Next we prove

THEOREM 67.2. Let uy, v,, g, ¢ satisfy the assumptions of theorem 67.1.
Then (67.1), (67.2) has a mazimum solutton wu(t,x) and & mintmum one
w(t, ).

If u(t, x) s regular in R and

o _ 0% ou _ %u .
rl <%§+g(ta"”: u(t, »)) (ﬁ?a—ﬁ‘f‘g(t:a”u(hm))) in R
and
u(t,w)<q)(t,m) (u(t’m)>¢(t7w)) on F?
then

u(t, o) <u(t,x) (u(Et,z)=>u(,2) on K.

Proof. We start with the following definition:

glt, @, uglt, ) if 2 < ult, ),
@, z,2) = glt, x,2) if uy(t, 2) < 2z << v(t, »),
glt, z, v(t, @) if 2> vy, z).
The function ¢* is bounded and if supl|¢g*| < M and suplg| < K,

then the funections %y = — Mt— K, %, = Mi-+K satisfy assumptions of
lemma 67.1 with %, = u,, B = vy, ¢ = ¢*. It is easy to check that ¢* is

(1) For references, see [26].
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Holder continuous in # and 2. Applying the theorem of Prodi we get that

there is a solution 2z, of the problem
oz % . 1
a—t:éﬁ‘{‘g (t’wyz)+%,
(67.3)

z:<p+%b on I

for » sufficiently large. By Lemma 67.1

(67.4) Zni1 < %n iIn R.
Obviously
(67.5) 2n = 123 *+1 +1
. n = ny Y j';y 'Zan ﬁ) N

Hence {z,} is compact. (67.4) implies then that z, =2 By a limit
passage in (67.5) we get z = T(2; g*, ¢). It follows then that 2(¢,x) is
a solution of the problem

oz 0%

5% o +g*(t, @, 2),

z=¢ on I.
But

g*(t7 z, uo(ta .%‘)) = g(t7 z, uo(t7 w)) ’
g*(ty r, 'Uo(t’ .Z‘)} = g(t7 Zz, Q’o(ta '7/')) .

Hence the triples (o, 2, g%), (v, 2, g*) satisfy the assumptions of
Lemma 67.1 and consequently

uo(t, ) < 2(t, 2y < v{t,x) in R.
It follows then from the definition of ¢* that
g*(ty Z, z(t’ .’17)) = g(t’ Z, z(ta m)) .

This proves that 2z is a solution of (67.1), (67.2).
We will now prove that if a regular function w satisfies

onw _ oy
ot > o2
uit,z) <elt,z) on I,

+g(t,», u(t,2)) in R

then u (¢, ) < z(t, ). This being proved we get the conclusion that z(t, )
is the maximum solution and simultaneously the second part of the
assertion follows.
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Suppose that u(t, z) satisfies the above inequalities and let w (i, )
= 24(t, X) for a point (¢, x) ¢ E. Lemma 67.1 implies

uglt, ) < zalt, @), wu(l, x) < vy(t, @) .
Hence, at {f, 2),
uo(t, x) < u(t, x) = zu(t, ) < vy(t, @)
and by definition of ¢*
g (t, @, 2a(t, @) = g(t, @, za(t, @) at (¢, 7).
It follows then that at (¢, x)

ouw _ Pu 1
7= it +g(t, z, u(t, z)) +

and
1
= o gt v, 2, ) + -

By Theorem 63.1 we conclude therefore that w(f, #) < as(t, #) in R,
which by a limit passage proves that (¢, ) < 2{f, ), q.e.d. The proof
for the minimum solution is quite similar and can be omitted.

The following example (see [31]) shows that the assumptions of The-
orem 67.2 do not imply the uniqueness of problem (67.1), (67.2). Moreover,
it shows that it can really happen that

u(t, ») $ w(t,x) .

Exampre. We put in the definition of R:

T= g’ a = '—72}, b= ;—E
and define ¢ by -
git, @, u) ;{—Vcoszw—uwu it (ul < cosa,
o u if |u|>cosw.

It is easy to prove (see [31]) that g satisfies loeally Holder conditions
in # and # with an exponent }. On the other hand, the functions

wo(t, 2) = —3et+1, (t,®) = 3¢¢—1

satisfy the inequalities of lemma 67.1 with the above defined g. Notice
now that the functions 2, = cosx- cost, 2, = cosx satisfy the same boundary
conditions on /" and both are solutions of the equation 2z = 25+ ¢{t, z, 2)
in R. Moreover, uy < #, = 2, < v, on I. Hence, all the assumptions of
Theorem 67.2 are satisfied for ¢ = 2, = 2, on I', but there are two different
solutions 2, # 2, of the same problem. It follows then that the maximum
solution #% is different from minimum solution «.




CHAPTER X1

DIFFERENTIAL INEQUALITIES IN LINEAR SPACES

The present chapter attempts to give some general theorems con-
cerning differential inequalities, when treated by methods of functional
analysis. There are two basic concepts: the generalized mean value theo-
rems and the generalized Bendixson equation. Strictly speaking, the second
step is the systematic use of the so called method of first integrals. This
method enters here through the Bendixson equation, which in classical
form was implicitly used in the integration of a linear ordinary differential
inequality. In case of non-linear inequalities the Bendixson equation
was used in {50] as a method of proof of Theorem 13.2. For generalized
mean value theorems see [1], [23] and [63].

§ 68. Convex sets in linear topological spaces. Let E be a real linear space.
We denote by z,y, .. the elements of E. Suppose we have introduced
in ¥ the topology in which the operations of addition and of multi-
plication by real scalars are jointly continuous; then, F becomes a linear
topological space. If the topology is induced by a system of convex
neighborhoods of the zero vector, then F is called a locally convex linear
space. Let E’ denote the adjoint of E. E’ consists of all linear and con-
tinuous real valued functionals defined over Z. The adjoint space E’
is non-trivial if and only if ¥ contains an open, convex set different from E.
In what follows we assume always that E’ is non-trivial, i.e. that it con-
tains non-zero funectionals. This certainly happens for locally convex
spaces and consequently for Banach spaces.

Let £¢ E'. We introduce the following notation:

H{,a)={xeE: & — a}.

In geometrical terms, H(£, o) stands for a hyperplane determined
by its “gradient’ £ and a scalar a. Following the geometrical terminology
we define the closed half-space by

K(,a)={rekE: tx <a}.
The open half space is defined by
K&, q) = {x c H: éx < a}.
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The set VC E is a convexr body if it is convex, closed and has some
interior points. The last definition is the following one: the hyperplane
H(&, a) is tangent to the set Z if Z C K (&, a) and if there is an x, belonging
to the boundary of Z such that &z, = a.

A nice part of geometrical properties of convex sets known for
Euclidean spaces apply to convex subsets of linear topological spaces.
Due to classical theorems of Mazur and Eidelheit we can apply the
separation theorems in pretty general situations in such spaces. We list
below as lemmas some theorems concerning the structure of convex
subsets of linear topological spaces. For references see [8].

LEMMA 68.1. Let E be a real linear topological space and let VC E
be a convex body. Then for every xedV () there is a &e B such that
V C K (&, &x). Moreover, the set V is equal to the intersection of all closed
half-spaces which include V, i.e.

V= (O K(,a).

VCK(4,a)
The interior of V is the intersection of all open half-spaces K&, &x)
with x €0V which include V.

In the case of a locally convex space a similar property holds for
arbitrary closed and convex sets:

LEMMA 68.2. Let E be a locally convex linear topological space. Suppose

that V is a closed, convex subset of E. Then V = [ K(&, a).
VCK(a)

The above lemmas take on a simple form if V is a cone (with vertex
zero). We say that the closed set V is a cone if it satisfies the following
two conditions:

(681) If zeV and yeV, then z+yeV,
(68.2) If xeV and A= 0, then Az eV.
V being a cone, its dual V' is defined by
V' ={fel':&x >0 for every zeV}.

The elements of V' are called positive functionals.

Given a cone V we define in ¥ a partial order < by

r<y=(y—z)eV.

The partial order defined above is called a partial order induced by V.

It follows from the definition of a cone that:

(68.3) o<y and y <z imply z < 7,

(68.4) x <y implies # +2 < y+4% for arbitrary 2z ¢ H,
(68.5) @<y and 4>0 imply Ax < 4y,

(68.6) If ZCV, then its closure Z C V.
Wstands for the boundary of V.
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On the other hand, if the partial order < satisfies (68.3), (68.4)
and (68.5) and the set V = {#: 8 < x} is closed, then V is a cone which
induces the preseribed partial order.

Let V be a cone. Then V is closed and convex. Applying Lemma 68.1
and Lemma 68.2 one concludes that the following lemmas hold true:

LeMMA 68.3. Let E be a real linedr topological space. Suppose that
VCE (V s+ H) is a cone with the non-empty interior. This being assumed,
if for every £e V', 0 < &, then x e V. Moreover, if 0 < Ex for every £eV',
then x belongs to the interior of V.

LEvmuMA 68.4. Let E be a locally convex real linear topological space.
Suppose that V C E (V # E) is a cone. Then x €V if and only if for every
& eV’ the inequality &x > 0 holds.

Notice that the above discussion applies to spaces with complex
field of scalars, provided we consider the real parts of complex-valued
funectionals.

§ 69. Mean value theorems, It is of some interest to consider functions
of a real variable ¢ with values in a linear space. Let x(t) be defined on
the interval A and suppose that x(t) ¢ K forte 4. For the sake of simplicity
we assume now that Z is a Banach space. The symbol ||#| stands for the
norm of the element v e E. Let x(?) be strongly differentiable to 2'(¢)
on A, i.e.

lim

h—0 |

w(Hhizi(”_w'(t)H ~0

for each t € A. The analogue of a classical theorem of advanced calculus
is the following conjecture: if x’(f) = 0 (zero vector) for t e A, then x(t)
= const on A.

We can attack the problem as follows: let #, ¢ 4 and notice that

%t + h)— 2 (to)l|— |2 (t) =2 (t)]| < @t +h)—2(D)] -

Hence, for ¢(t) = ||x(t) — 2 (%,)|| the inequality D ¢(t) << 0 holds all over A.
This implies, by Theorem 2.1, that @(!) decreases and consequently
z(t) = w(t,) for t > t,. But {, was an arbitrary point 6f 4. This shows that
2 (t) = const. The above statement can be proved by using much more sophi-
sticated arguments. It is a classical theorem in the theory of Banach spaces
that for every 2 e E there exists a & E’ such that |&§| <1 and &z = 2.
Take now 2z = () —x(f,) (t; € A) and & such that &[x(t,)—x(t)] = l|l@ () —
—x(t,)l|. Consider the real-valued function o(f) = &[x(t)—x(%)]. The
assumption 2'(f) = 0 implies y'(t) = 0 on 4. Hence y(#) = const on 4.
This implies that |2 (f)— (%)l = w(f) = 0, which completes the proof.

Notice now that we have used essentially the fact that the real-
valued funection y(t) has the derivative equal to zero. We can replace
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the assumption @'(f) = 6 by the requirement that the weak derivative
25(t) be zero on 4. The weak derivative is defined by
limf{x(t+ hh):—”@} — El(l), EcB.

If we assume that a3,(f) = 0 on 4, then the previous arguments apply
and we thus obtain a stronger result: if #,(t) == 6 on 4, then z(t) = const
on 4.

The further generalization runs in three directions. First of all we
require that the function z(f) be merely weakly continuous, that is for
every £ e E' the real-valued function &x(f) is continuous. In the second
step we replace the very particular set, consisting of the zero vector, by
a closed and convex one. The last move is to replace the derivative by
a certain analogue of a derivative with respect to this convex, closed set.
All these three points are mentioned in the subsequent theorem.

THEOREM 69.1. Let F be a real linear topological space and let V C E
be a convexr body. Suppose that:

k0

(69.1)  For every & e E' the function Ex(t) is continuous on A.

(69.2) For every & e E' the set A—Z. is at most countable, where Z;C A
i8 the set of those t for which there is a sequence of reals T, >0+
and a sequence Y, eV (both sequences depending possibly om t)
such that

]im{’m(t +10) —2(t)

N—>00 ‘ Tn

Then
st)—a(l)

-1,

for t, £ty b, ted.

Proof. We will use Lemma 68.1. It suffices to prove that if
(69.3) VCEK(¢,a),
then

ﬁ(.t!);_(tﬁejf(é’a), t, £ 1.
t—1t,

Consider the function y(#) = éx(f). By (69.1) »(t) is continnous on A.
For the fixed £ we take the set Z.. Let te¢ Z.. We take the sequence
yn ¢ V corresponding to . Hence

(69.4) EYn < a.
It follows now from (69.2) that

(69.5) ’f’(-tﬂ:)—*l(it Eyfn >0 .

S
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Relations (69.4) and (69.5) show that
(69.6) D.opt)y< a.

Inequality (69.6) holds for every ¢ e Z;. The set 4— Z, being at most
countable we get by Theorem 2.2

vi)=vll) -y Ly
== b 29

th—1ly

that is

The last relation means that

what was to be proved.

Remark. Theorem 2.2 is obviously a very particular case of the
above theorem.

CorOLLARY. It follows from Lemma 68.2 and from the above proof that
Theorem 69.1 remains true if E is locally convex and V is a closed, convex
subset of B, not necessarily possessing inierior points.

For the sake of completeness we will prove the following theorem:

THEOREM 69.2. Let V be an open, convexr subset of the real linear
topological space E. Suppose that the function x(t) 4s weakly continuous
on the interval A. We assume that for every £ e B’ the set A— Z; is at most
countable, where Z: C A is the set of those t for which there exisis a sequence

=0+ and an element 2, ¢V so that
hmglﬂtjﬂ);ﬂv(t)} —

Then
w(h)—a(t) e (t—1)V, t,led.

Proof. Suppose that V C K&, tx), where xedV. We take the
function y(f) = &r(t). This funection is continuous and for fe¢ Z;

el =gl _ .

Tn

Dyyp(t) < limé

n—>o0

But 2; ¢ V; hence &2 < &x and consequently Diy(t) < éo for e Z;.
It follows then, by Theorem 2.2, that for ¥, £ ¢,

5{"’”(%::2@} < .
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This means that x(t)—a(L,) € (,,—,) K%&, éx). We conclude that

2 () —a(t)
1,

belongs to every K%¢, éx) such that V C K%¢, &r). By Lemma 68.1 this
implies our assertion.

It is easy to verify that the above mean value theorems remain
true if we assume that &xz(t) is absolutely continuous for every &e B’
and A— Z; are of Lebesgue measure zero. To do this we have to use Theo-
rem 3.1. We formulate right now one of the possible theorems.

THEOREM 69.3. Let E be a locally convex real linear topological space
and let V be its closed and convex subset. Suppose that x(t) i3 weakly absolutely
continuous on the interval A, i.e. for every & € B’ the function Ex(t) is absolutely
continuous on A. Assume that for every & e F’' there is. a set Z: C A, A—Z,
being of Lebesgue measure zero, such that for each t e Z. there is a sequence
7. —0 and a sequence yn eV so that

lim 2T =20 .

n—>00 Tn

Then

o) =2l) v gy e d.
tl—t2

Next we introduce the following definition: the weak right-hand deri-
vative of x(r) at ¢ equals y, DV x(i) =y, it for every &e¢ B’

lim & {m___('t + h}zi(t) } =&y .

B0+

We will say that a certain property holds nearly everywhere if it
holds except an at most countable set of points.

The following theorem is an immediate consequence of what we
have proved already:

THEOREM 69.4. Let E be a real linear topological space and let V be
a convex body (or merely closed and convex in case E is locally convex).
Let x(t) be weakly continuous. If DY x(t) e V nearly everywhere on A, then
2(t)—x(ty) € (L,—1)V for t,, 8, e A. If D5 x(t) belongs to the interior of V
nearly everywhere on A, then x(h)—x(t) e (h—1t)int V for ¢, %, € 4.

Let V be a cone. We write 8 < ¢ if x eintV and <y if y—z > 6.
The above theorem implies the following one:

THEOREM 69.5. Let V be a cone with a non-empty interior. If 6 < DY x(t)
nearly everywhere on A and x(t) is weakly continuous, then x(t;) < x(i,)
for t, < ty. If 0 < DY x(t) nearly everywhere on A and x(t) weakly continuous
on A4, then x(t,) < x(t,) for t, < t,. If E is locally convex, then the inequality
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DY x(t) = 0 satisfied nearly everywhere implies x(t,) < ®(t,), t, < 1y, V being
an arbitrary cone, not necessarily possessing interior poinis.
The following theorem is an immediate consequence of Theorem 69.2:
THEOREM 69.6. Let K be a real linear topological space and let R(x)

be a continuous functional defined on E. Assume that R(x) is convex in this
sense that

R(iw+(1—A)y) < AR(x)+(L—A)R(y) for 0<i<1.

Suppose that the function z(t) is weakly continuous on the interval A.
We assume that the weak derivative DY x(t) ewists nearly everywhere on A.
Then for any t,,t, e A there is a v e[ty, t,] such that D% z(t) ewists and

R(ﬂll__w—@) < R(D® #(z)) -

tl”— 2

Proof. Suppose our assertion is not true. Define

N (@;”0_(__’2) |
V&lw. R{zy < R 1, )
The negation of the assertion means that DY «(¢) eV nearly everywhere
on [t,, t,]. It follows from the properties of R that V is open and convex.
Hence, by Theorem 69.2,
2()—z(1,)
BT vV,
which is a contradiction with the definition of V. This completes the proof.

COROLLARY. If E is a Banach space and R(x) stands for the norm
of x, then Theorem 69.6 states that

ll2(8) — 2 (t;)]| < |-D% @ ()| 11, — b

for some v, provided that x(t) be weakly continuous and right-hand weakly
differentiable nearly everywhere (see [2]).

We will now present some simple examples. More advanced appli-
cations of mean value theorems are given in subsequent sections.

ExampLE. Let E be a Banach space and let x(t) be weakly continuous
on the interval 4. Suppose that the weak right-hand derivative DY x(t)
exists nearly everywhere on 4 and satisfies nearly everywhere the ine-
quality

IDY @) < M, M=const.

Theorem 69.4 then applies with V = {z: | z|| < M} and consequently

@) -2l < M th—b]  (h,ted).
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ExXAMPLE. Let F be a Banach space and suppose that x(t) is strongly
differentiable for 0 << 5 ( > 0). Assume that
limz(t) =6, lmz'(l) =2,
t—0+ 0+

(both limits in the strong sense). We generalize the I'Hépital rule by

showing that

lim 28

-0+ 1
Let ¢ > 0. Then there is a d > 0 sueh that ||z,—2'(t)]| < e for 0 <t < 6.
We put in Theorem 69.4

_ V = fo: la—al < e}
and. thus obtain
x(t)—x(ty) |

et N 14 <eg
0 t,—ta =

i
if 0 <1t,1,<4é, t; #1. The limit passage in the above inequality with
t,—>0+4- shows that

y
|
. 2
for 0 < ¢, « 6 which completes the proof.

Let us mention that our main assumption that B’ contains non-
trivial functionals cannot be omitted in the presented generalization of
mean values theorems. We consider the following example of [44].

Let S be the metric space of Lebesgue measurable functions on [0, 11,
the distance function being defined by

=

_a(t)
0 tl

ORGP

9= T iy

Tt is known that 8’ reduces to the zero functional. Consider the func-
tion «(f) of the wvariable t ¢ [0, 1] with values in S defined by

if 0<<o<t,

5!;(t)-Jl
I T S I I

We have
1 it t<o<<tdh,
t+h)—a(t) =
iR =) {o i v (t,1+h],
and consequently

Q(ﬁtj%—m(t), 0) <|-

which implies that #'(t) = 6. But x(¢) is not identically constant in
4 =1[0,1].
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§ 70. Strong differential inequalities. Let V be a cone in the linear top-
ological space E and suppose that ¥V has a non-empty interior. We have
introduced the definition

r<y=y—xeintV .

In what follows we apply notation of § 69. It is easy to check that the
following conditions hold true:

{70.1) If » <y and y < %, then z < 2.
(70.2) If >0 and z <y, then Ar < Ay.
{(70.3) If x <y and z¢ F, then z+2 <y +=2.

Let the space F satisfy the separation axiom of Hausdorff; then, we
are able to introduce the definition (of Cauchy type) of the right-hand

limit lim #(¢) for functions of the real variable ¢ with values in H. It is
t—tp+

a simple matter to verify that this limit has the following property:

(70.4) If lim x(t) > xy, then =2(t) >x, for t>1, and t sufficiently
t—to+

close to i,.
We define the strong right-hand derivative by the formula
2(t+h)—x(t)

¢ 2(t) = 1lim 201
0+ h

THEOREM 70.1. Let the function [(t,x) be defined on the product
[to, 2o+ @) X E. Suppose that f(t,x) e B and

(70.5) y<y implies [(t,y)<f(t,Yy).

Let the functions 2(t), y(t) be continuous on [t,, {,+a) and suppose
that:

(70.6) @ (to) < Y (t) ,
(70.7) o) <flt, o) on [t t+a),
(70.8) Ly =1t y@) on [t th+a).

Then x(t) < y(t) on (ty, to+ ).
Proof. It follows from (70.5) and (70.6) that
f(toy m(to)) < f(to’ Ql(to))
and consequently by (70.7) and (70.8)
D w(ty) < Diy(t) -
a(t)—alt) _y(H)—y(l)
t—1, i—1,
for t, < t < t,+ 6 with a suitable é > 0.

Hence, by (70.4),




o
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§ 70. Strong differential inequalities

The above inequality and (70.2) imply
@(t)—w(ty) < y(t) —y (L) .

But «(t,) < y(%), and by (70.1) and (70.3) we infer therefore x(f) < y(t)
for f, < t < t,-+96. Suppose now that the set

Z = {te(ty, to+a) y(t)—x(t)eintV}

is non-empty and write 7 = infZ. Obviously 7 > {,+4d and «(t) < y(f)
for t, < t < t. The functions x(¢), y(f) are continuous and V is closed.
Hence z(r) <y(r) and consequently D (7)< D3 y(r). This implies that
there is an % > 0 such that x(t) < y(t) for te{(z,v+1n). We see that x(t)
< y(?) in the interval [#,, T + ). It follows then by (70.5), (70.7) and (70.8)
that D%, x(t) < D% y(f) on [{,, v + 7). Applying Theorem 69.5 to the difference
y(t)—x(t) we get z(t)—y(f) < x(ly)—y(f,) and consequently x(f) << y(t)
on (%, 7+7), which is a contradiction with the definition of 7. Hence,
7 is empty as was to be proved.

Using the above theorem one can easily imitate the classical pro-
cedure of § 8 in order to construct the maximum solution for the equation
x' = f(t,z). It is necessary to have some existence theorems which
combined with Theorem 70.1 give the desired result. This is the case
when for example E is a Banach space and f(t, x) is completely continuous.
For other details in this matter, see [25].

§ 71. Bendixson equation and differential inequalities. Let w () be
a real-valued funection and suppose that

w(t) < Ku(t), a<t<b,

with K = const. Multiplying this inequality by ekt we get

%(u(t)e”m) = w'(t)e Kt -~ Ku(t)e Xt < 0.

Hence, u(t)e~X! decreases in [a, b], and consequently
u(t) < u(a)ekt-a 4t <h.

This classical approach admits some generalization. Notice that the
function ¢(¢, &, 5) = neK¢—9 satisfies the equation

op(t, &, 1) op(t, &, 77)_
(71.1) AR AT )’Tn - =
with f(&, ) = Kn and 7 <7 implies ¢(t, &, %) < ¢(t, &, 7). Hence
op
71.2 P>0.
(71.2) i

J. Szarski, Differential inequalities 15



226 CHAPTER XI. Differential inequalities in linear spaces

It is a classical result that (71.1), (71.2) hold for f(t, ) of class C.
In this case ¢(t, &, 1) stands for the value of solution of 4’ = f(¢, #) which
at ¢ = £ takes on the value 7.

Suppose now that the function () satisfies

(71.3) w'(t) < f(t, u(t))

on the interval [a, b]. By analogy with the linear case we form the function
v(&) = plt, &, u(£)). We have

’ op(t, &, n) o nop(ty & m)
71.4 v S ALEERE 1S Ll (E) 2 ¥ .
(71-4) (€) 2 (€) 2/ B -
Multiplying (71.3) by op/on (= 0) and using (71.2) we get
o 0o, £, 1) ‘ op(t, &, n)
71.5 w(f)————"—"+ < f(g, n) 222 1
(71.5) OFg 0 <pe et

which by (71.1) and by (71.4) shows that »'(§) < 0. Hence o(f) = <p(t, t, u(t‘)}
=ult) <ol & u(g) if £<t.

We will now try to extend the above method. First of all the cone
8 = (— oo, 0] will be replaced by the closed and convex set V in a linear
real topological space. Inequality (71.2) expresses the fact that § is in-
variant under the operator of multiplication by é¢/és. It is then natural
to require that the analogue of this operation leave invariant the set V.
Inequality (71.3) should be replaced by the inclusion a'(t)—f(¢, z(t)) € V.
The most difficult part concerns the proper interpretation of formula (71.1).
On the other hand, we need the formula for differentation of composite
functions. All these properties can be stated formally as assumptions.
We will get then a formal theorem. Anyhow, it will be worthwhile for
its assumptions admit a great deal of interesting interpretations.

We start with some notation and definitions. First we assume that
the space F in question is locally convex. Let 4 =[0,a) (a < + o0)
and suppose that the funection f (¢, ) is defined on 4 x Z, where Z is a subset
of E. It is supposed that the values of f(¢, #) belong to E. Let the function
#(t) be defined on 4 and let {, e 4. The equality Dozt = y means that
there is a sequence 7, —~0-+4 such that for each &e B’

lim & z(t +Tn)"m(to)} — gy,
n—>o0 n
We say then that x(t) is quasidifferentiable to D.w(1,) at the point ¢ = {,.
THEOREM 1.1. Let V C E be closed and convex. Suppose that x(s) € Z
for sed and let D, x(t) exist nearly everywhere on A. Assume that
(71.6) Dia(s)—f(s,@(s) eV

nearly everywhere on A.
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We assume that there exists a vector-valued function ¢(t, s, z) defined
on AxAXZ such that:

(711.7)  oft, 8, 2(s)) is weakly continuous in s on A, for te A.

0 + (p(vt, $,% )
s )
It 48 supposed that there exists a linear mapping .1, s, 2} from E
into E, depending on parameters (t, s, x), for which the following conditions
hold true:

(71.8) ¢@(t,s,n) is weakly right-hand differentiable in s on 4 to

(71.9) Pty s, )V C V.
(71.10)  For every (t,3,2)e A xAXZ
.9ty 8, )

78 +'p:c(t7'5'aw)f(ta z)=0.

We assume that for each fized te A the function g(t, s, x(s)) is quasi-
differentiable in s to 1~)+[<p{t, s,w(s)|| for those s for which D.w(s) ewists
and, moreover,

~ \ -y 17 t,8
(1) Bifplt, 5, 0(6)] = pulty 5, 2] Boafe) + HLE2D
= (8
for such s.

Under these assumplions

(P(ty 81y w(sl))_?’(t’ 855 m(82)) €(8—8)V
fO?” 81, 82’ t € A.
Proof. Uging (71.6) and (71.9) we get

(71.12) Palty 8, 2(8) D 2(5) —galt, s, @(5)) f (5, @(8)) € V

nearly everywhere on the interval 4. It follows from (71.10) and
from (71.11)

~ ~ d t
M13)  Bilplt, 5, a6)] = wolt, 5, 0(a) Doy + =222

= q’x(t’ S, .’I)(S)) ﬁ+m(s)_¢x(t7 8, w(s))f(s7 $(8)) .

(71.12) and (71.13) imply that
(71.14) Dojolt, s, a(s))] eV
nearly everywhere on 4. Assumption (71.7) and (71.14) and Theorem 69.1
imply the assertion of the theorem.

A few comments are now necessary. We are not precise and omit the
analytical details.

Formally equation (71.10) means that ¢(t, s, «} is for every fixed ¢
the so-called first integral for the equation ' = f(#, #). In our case the first

15%
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integral is a vector-valued function. The linear operator ¢.(t,s,z) is
nothing else but the analogue of the Fréchet differential of ¢(¢, s, 2)
in 2. Given the function f(¢, #), we look for the first integrals of equation
' = f(t, ). Then we form the operators ¢,(t, s, #) and just try to charac-
terize some closed and convex subsets invariant under the mappings
@1, 8, ). In that way the question when and how our theorem can be
used is reduced to the question of invariant sets of some linear operators.
Suppose that the right-hand Cauchy problem for equation

(71.15) z' = [(t, x)

has the unique solution within a sufficiently large class of initial con-
ditions. Let us take the solution #(t) of (71.15) such that x(s) = . Denote
by ¢(t, s, #) the vector =(t) (s < t,8,ted),ie. ¢(t,s,x) = 2(t). It follows
then that ¢(t, s, #(s)) (= «(t)) does not depend on s. If ¢(t, s, x) is a suf-
ficiently regular function, then it satisfies (71.10). This is in general the
case when f(t, #) is a regular function. In a scalar case, if f is of class (1,
(71.10) holds. In what follows (71.10) will be called the Bendixson equation.
If F is a Banach space and f(¢, #) is Fréchet differentiable in (¢, z) in
a continuous way, then (71.10) holds for the above defined ¢(t, s, ).
Notice yet that the function ¢ just discussed is, in general, linear in
provided that f(¢, #) be linear in x. Formally this can be written as
P(t,8,2)—@(l,8,y) = guft, 8, @) (2—y) for each =.

§ 72. Linear differential inequalities in Banach spaces I. We noticed
in the previous section that if K is a Banach space, then the Bendixson
equation holds for sufficiently regular functions f(¢, ) with a natural
choice of the function ¢. The method of Bendixson equation for integration
of finite systems of ordinary differential inequalities was used in [50].
This is the case when F is finite dimensional.

Different choices of the space E give the interpretations of Theo-
rem 71.1. Here are included infinite systems of first order ordinary differ-
ential inequalities of the form

S;(t) < fi(ty &(1), ) (1=1,2,..),
ni(t) = filt, m(t), ) (E=1,2,..).

E will stand for a space of sequences with sunitable restrictions on
their behaviour as ¢—oco. Also we need that f = {fi} ¢ E. The abstract
regularity assumptions about f will be translated onto corresponding
classical properties of functions and sequences in question.

There are, however, some other interesting interpretations of Theo-
rem 71.1 in which the regularity assumptions about f(t, ) are of different
and more delicate character. What we have in mind is the case when
f(t, ) is linear in 2. There is a great variety of methods of establishing
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the Bendixson equation in the linear case. We mention here two methods.
The first one is the method based on the theory of distributions. The
Bendixson equation can be obtained in this case by using the Holmgren
methoed of adjoint systems. This approach was developed in [29], where
are discussed first order partial linear differential inequalities for distri-
bution-valued function. The second method is the method of the Hille-
Yosida theory of one-parameter semi-groups of operators in Banach
spaces. This theory will be used in the present and subsequent sections.

We will give now a brief outline of basic facts on one-parameter
semi-groups of operators. We follow here the monograph [12]. From
now on EF will stand for a Banach space.

First we introduce some notational conventions. For definitions and
other details, we refer to [12].

8
The Bochner integral of the function x(t) is denoted by [w(r)dr,

]
the Pettis integral by (P)[z(r)dr. The symbol w-lim denotes the weak

limit, s-lim the strong one. Let the function z(f) be defined in the neigh-
borhood of t,. We define

@ (to -+ h) — (%)

% 5 (ty) = w-lim T T 8)
R0+ h
8 w(fy) = s-lim ﬁ(tﬁ_hizm_x@ ,
B0+
@ty +h)— 2 (ty)

x'(t,) =8 }llil()l 3

The right-hand weak (strong) partial differentiation is denoted by

Y jes (6% /es). The bilateral strong partial derivative is denoted by &°/os.

Given the operator U its domain is denoted by D[ U], the range by R[U].

Let {T(t)} be a one-parameter family of bounded, linear operators

in E defined for ¢ > 0. We say that {I'(t)} is a semi-group if the following
condition holds true:

(72.1) T(ty+1,) = T(t)T(ty) ’ byt >0.

We always assume that for each = ¢ E the function T'(¢)x is strongly
continuous on the half-line (0, co). Next we define

1 —
1 (h)l r = A

(72.2) s-lim

h—0+

whenever the limit exists. Notice that if 0 < a < # and @ is an arbitrary
element of F, then

B
f T(r)wdr = x5 € D[A,] .
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The linear manifold D[A4,] is dense in || K, = E, where E, = {y: ¥

a>0
= T'(a)z, # ¢ H}. In what follows we assume that E, is dense in F and
consequently D[A4,] is dense in E.
Assume now that for each z ¢ E the funetion ||T (f)2| is summable
over the interval [0, 1], i.e.

(72.3) [T @a)dr < + oo.

One can prove that there are two finite constants M > 0, o such
that

(72.4) 1T (@) < Met

for sufficiently large ?. (72.3) and (72.4) imply that the integral
Rz = [ enT(t)wdt
0

converges strongly for 2 with Rel > o and arbifrary z. The operator
R(4) is linear and bounded.

We say that the semi-group is of class (0, A) if it satisfies (72.3) and
additionally the following equality holds true:

(72.5) s-imAR(A)x =2 for wxekFE.
2~>00
One can prove that if {T'(¢)} is of elass (0, 4), then the corresponding
operator A, defined by (72.2) has the smallest closed extension 4 —4,C A.
A ig called the infinitesimal generator of {T'(t)}. The resolvent R(1, A)
exists for Red > w and R(i) = R(4, 4). In case when

h—0+4-

h
s-lim%f T()adr—=o for wel
0

we have exactly A4 = A,. This obviously happens when 7'(#) is of class (C,),

that is when s-lim T'(h)z = 2 for z ¢ E.
h—0+

V being a cone in E we say that the operator U is positive, in symbols
U= 0,if UWD[U}J~V)CV. The basic property we need is the following one:
The semi-group {T(t)} of class (0, A) consists of positive operators
(simply—is positive) if and only if R(4, A) > 8 for sufficiently large real A.
Let us consider the one-parameter family A (¢f) of linear operators
with domains and ranges in E. We are interested in the abstract differential

inequalit
y () —A@)@(t) eV
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where V is a closed and convex subset of E. Following the general ideas
of § 71 we introduce the following conditions:

(72.6) There exists a family U(¢,8) (0 < s <t < a) of linear bounded
operators which leave invariant the set V, i.e. U(f,s)V CV.

(72.7)  The strong derivative

& U, s)x
os

exists for x € D{A(s)] and

%f‘)_%r U(t,8)A(s)z = 6

(s < t)

for those x.

(72.8) For each x ¢ E the function U(¢, 8)# is strongly continuous in s.

We will prove the following theorem:

THEOREM 72.1. Let (72.6), (72.7) and (72.8) be satisfied and suppose
that the function x(t) e D{A(1)], 0 <t < a, is strongly continuous on (0, a).
We assume that

(72.9) Sa(s)—A)x(s) eV
nearly everywhere on (0, a).
Then
(72.10) U(t, s))@(s1)— UL, s5)@(85) € (51— 8,)V

for s, < t, 8, <t 8,8,%te(0,a).
Proof. We will verify that the function

(72.11) o(t,s,2)=U(t, 8)x

satisfies the assumptions of Theorem 71.1. Obviously we put f(¢,x)
= A(t)s. It follows from (72.8) that ¢(t, s, #(s)) is weakly continuous
in s. Moreover, @.(t, s, 2) = U(t, s)x. By (72.7) we see that ¢, ¢, satisfy
the Bendixson equation. Also ¢.(f,s,¥y) =@, s,y)eV if yeV.
Suppose that DS ax(s,) exists. It follows from the formula (h > 0)

LU (1, 80+ W80+ 5)— T (1, s0)a(5,)]

= T, s+ Dhalsg) +3 LT 1) Tt sa)latso) + Uty s+ 1) 2

and from the equiboundedness of U(t, s) on compact subsets of (0, a) that

(72.12) AU e AU s)o(s0)

o8 3=8 os s=3p

+U(t, s0) D 2ls,) .



232 CHAPTER XI. Differential inequalities in linear spaces

Hence U(t,s)x(s) satisfies (71.11) of Theorem 71.1. The as-
sertion (72.10) follows now from Theorem 71.1.

Suppose now that V is a cone. It induces the semi-order <. We need
the following lemma:

LemMA 72.1. Suppose that the functions x(t), y(t) satisfy either one
of the following conditions:

(a) The functions x(1), y(t) are weakly continuous on (0, e) = A and
for every & e V' there exists an at most countable subset A— Z: of A such that
D tx(t) < &y(t) for t e Z:. The function y(t) is Pettis integrable.

(b) The function x(t) is weakly absolutely continuous and d%éw(t)

< Ey(t) for teZe mes(A—Zg) =0, EeV'. The function y(t) is Pettis
integrable.
Then

iy
st)—w(t) < ®) [y@dr, t<t,.
5

The above lemma can be easily proved by using methods developed
in § 69.
Now we are able to prove the following

THEOREM 72.2. Let V be a cone and let conditions (72.6), (72.7) and (72.8)
be satisfied. Assume that

(72.13) U(r,t) =1 for 1€(0,a),

I denoting the identity operator. Let the strongly continuous junclion
z(t) e D[A(1)], 0 <t < a, satisfy nearly everywhere on (0, a) the inequality

(72.14) Dix(t) < A@W)z(t)+y(t).

We suppose that y(t) is strongly continuous on (0, a).
Then

t
s) < U@, 9)as)+ [ U, y)de, s<t.

Proof. It follows from (72.14) that
Uty s) D% w(s)—U(t, ) A(s)a(s) < U(t, s)y(s) -
Using (72.12) of the previous proof and (72.7) we get that

& (U@, s)u(s))
o8

(72.15) < Ut s)y(s)

holds nearly everywhere on (0,?). Applying Lemma 72.1 and (72.13) we
get the assertion.
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Suppose that U(t,s) = T(¢—s), where {T'(t)} is a semi-group of
class (0, 4). In that case (72.6) is satisfied if V is invariant under 7 ()
for £ > 0. It is obvious that A(t) = const = A, where A stands for the
infinitesimal generator of {7'(¢)}. Notice that

g (T'(t—s)ax) = 2 T(T)&|iepes = —AT({{—8)x = —T'(1— s) Az,

08 dr
x e D[A]

(see Theorem 11.5.3 of [12]). If {T(?)} is of class (C,) then T(r—r1)
= T{0) = I and (72.13) holds. Observe that the assumptions of the above
theorem are true if V is a cone and {7'()} is positive. The corresponding
theorem, which is a generalization of the classical theorem about linear
differential inequalities, is the following one:

THEOREM 72.3. Let V be a cone and let {T(t)} be a positive semi-group
of class (C,). Assume that the function x(t) is strongly continuous on [0, a)
and
(72.16) Sa(t) < Ax(t)  nearly everywhere on [0, a),
(72.17) z(0) < 6.

Then x(t) < 6 on [0, a).

Proof. We put y(¢) =6 and U(t,s) = T'({—s) in Theorem 72.2
and thus get

z(t) < T({t—s)x(s)

for s <t. For s =0 we have z(t) < T'(0)x(0) < T(t)8 < 0, q.e.d.

Going back to Theorem 72.1 we point out that usually the eon-
struction of the function U (f, s) is achieved by using semi-groups generated
by A (t). One assumes that, for a fixed ¢, A (¢) is an infinitesimal generator
of a semi-group {I'(7;t)} of class (C,). One can prove that the required
operator function U may be obtained by the formula

slim  ITT(ti—t5 ) = U(t,s), s=th<t<..<ta=t,

max [fgr1——0
provided that A (t) satisfy some regularity assumptions. This way of inte-
gration of equation
(72.18) z'(t) = A @)z (l)
was initiated by T. Kato in [15]. For an extensive review of related topies,
see [17).

In general the Bendixson equation is a consequence of the integration
procedure of (72.18). The assumptions about A (i) are of that type that
for x-es belonging to a dense subset of () D[A(?)]

(72.19) %(U(t, sye) =AU, )z (8<1)
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and
(72.20) Ut,t)a =2 for all xeF.

Moreover, U(t,s) are bounded and strongly continuous in (i, s).
On the other hand, the Cauchy problem for (72.18) has the uniqueness
property. It follows then that U(f,s) satisfies the functional equation

(72.21) U,s)U(s,u)=U(t,u), u<s<t.

If the above properties hold, then the Bendixson equation may be
proved as follows. Let x ¢ D[4 (t)] and consider (h > 0)

U, s+h)a—U(t, s)x

JOR h
By (72.21)
Eh) = Ut s—Hz)w— U(sh+h, s)x .
By (72.19)
z— U(s+h,s)x — —A(s)a.

h h—0+

Hence ¢(k)—— U(t, s)A(s)z as was to be proved.

The function U(#,s) being in general the multiplicative integral
of T'(v;t), the inclugion U(t, s)V CV holds whenever T'(z;{)V CV. For
example, if ¥ is a cone and every semi-group {Z'(r;?)} is positive, then
U(t, s) is positive for 0 <s <1t < a.

Now we will present an application of Theorem 72.3 to integration
of countable systems of linear ordinary differential inequalities.

The temporally homogeneous Markoff process with a countable
number of possible states is described by the infinite matrix {p;i(t)},
0 <t< + oo, of transition probabilities. Inequalities ps > 0 and the
semi-group property

Pa(t+8) = D) pusit) psals)

il

are satisfied. Under some general conditions psu(t) satisfy the Kolmogoroff
equations

(72.22) pall) = Z DijQjk
il

(72.23) Pty = D aupie s
il

with the initial conditions
(72.24) Pix(0) = o5 .
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The constants a;; satisfy
—a;;=a;>20, ap=0 for £k,

(72.25) o
Zajkzz(), 7{221,2,3,...
j1

Conversely, given the matrix {a;} which satisfies (72.25) we can
ask about the integration of (72.22), (72.23).

T. Kato in [16] constructed the solution of the Kolmogoroff equations
by using the semi-group theory. We will give here a brief summary of
his results.

Let I' be the space of one-sided summable real valued sequences
x = {&} with the usual norm

el = > il -
1
The matrix {a;;} defines the operator A with domain and range in I
as follows: the domain D[A] consists of those x = {&;} ¢ I* for which the

series i = O a;ué; are absolutely convergent and D mi| < + co. We
i1 k|1

define then Ax = {n;}. Let D, be a linear manifold spanned by vectors
yi = {0} (Sux — Kronecker symbol). It is easy to see that Dy C D{4]. The
restriction of 4 to D, is denoted by A% Observe that D, is dense in L.
In I' we define a natural cone V by

V=lo:o={&E}el, &§20,1=1,2,3,..}.

In what follows the term ‘“‘positive” is used in the sense of that cone.
The main result of [16] is the following statement: There is at least one
positive semi-group of class (Cy) in I' with a generator being an exlension
of A°. Among these semi-groups there is the unique minimal one () {T'(1)}
such that its gemerator G satisfies A D G A°,

The domain D[@] is not characterized explicitly. Anyhow, D[A4°]
C D[G]. For ¢ € D[A’] we have

G = A% = {Z a;kéj} .
i
Notice that D, contains pretty regular, non-trivial curves of type

2 = 2(t). Indeed, let the real-valued function e(t) be of class €2 on [0, oo)
and e(f) = 0 for £ > 1 and t << 0. Define {&(f)} = «(f) with

1
Ex(t) = W@k”

() Minimal in the sense of semi-order relation.
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and assume that e(f) 5= 0 in (0, 1). It is a simple matter to verify that
{&k(t)} € I'; x(t) is strongly continuously differentiable. Moreover, in every
neighborhood of zero the curve x = x(¢) does not run in a finite dimen-
sional space.

Suppose we are given the funetion x(f) = {&(t)} € D, strongly right-
hand differentiable to D% z(f). Notice that the strong convergence in I!
implies the convergence in coordinates. Hence D% x(t) = {D. &(t)}. By

definition of 4°and by theorem of Kato, Gu(t) = {3 a fj(t)}. The abstract
il

inequality D% x(t) < Gz (1) is equivalent with the countable system of
ordinary inequalities.

THEOREM 72.4. Suppose that the matric {a;} satisfies (72.25). Let
the continuous function z(t) = {£x(t)} be strongly right-hand differentiable
on (0, a), in ', to D x(t). Assume that for every t e (0, a) there is a finite
number of Ex(l) different from zero.

Suppose that for 0 <t < a

(72.26) Do) < ) ambst)  (k=1,2,3,..),
and "
(72.27) B0)<0 (k=1,2,3,..).

Then Ex(t) <0 (k=1,2,..), 0 <t < a.
Proof. We see that z(t) e D,. By (72.26) and (72.27)

La(t)y < Ge(l), x(0)<0.

The semi-group generated by G is positive. By Theorem 72.3 we get
therefore #(1) < 8, ie. &(t) <0, q.e.d.

CoROLLARY. Notice that the infinitesimal generators of positive semi-
groups in some functional spaces of continuous or merely summable functions
are in a certain sense necessarily second order elliplic operators satisfying
a version of maximum principle (see [9] and [68]).

Thus the theorems of the present section give the operator-theoretical
treatment of linear parabeli¢c inequalities of second order.

The final result of the present section is the following theorem:

THEOREM 72.5. Let A be an infinitesimal generator of a positive semi-
group {T(t)} of class (C,). Let B(t) be a strongly continuous operator-valued
function. Assume that there is a real number 8 such that B(t)+8I = 0 for
te[0, a). If x(t) is strongly differentiable to x’(t) on [0, a) and

7yt <[4+BMx(#) on [0,a), x(0)<0,
then x(t) < 6 on [0, a).
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Proof. Write z(f) = ¢ (t). Then
(1) < Az(t) +[B)+pI12(2) .

We put U(t,s) = T'(t—s) and y(t) = [B(f) +pI]2(f) in Theorem 72.2

and thus obtain
t

2(1) < [ T(t—0)[B(x) +pl2(r)dr .
0
The operator T (i—z)[B(r)+pI) is positive. It follows that the
sequence
z(t) = 2(1),

f
2wt = [ T(t—7)B(v) 4 pLlen(v)dr

is an increasing one: zu(t) < 2,41(f). Obviously
Za(t)—~6 on [0, a),

which completes the proof.

§ 73. Linear differential inequalities in Banach spaces II. So far the
functions in inequalities have been strongly differentiable. In what follows
we will assume less, namely that the functions are weakly differentiable.
For the sake of clarity we restrict ourselves (not essentially of course)
to the case when V is a cone. We assume that A is an infinitesimal gen-
erator of a positive semi-group {7'(¢)} of class (0, A).

LEMMA 73.1. Let the function x(t) be right-hand weakly differentiable
to DY uw(ty) at t,. Write
a(t) = AR(4, A)w(l)
for sufficiently large 1.

Then the function T (t— s)x,(s) is right-hand weakly differentiable in s
at s =t, and

T (Dt $)ads)),_,, = T~ t) DY )~ T{1—1y) Awle) .

Proof. Let £ E'. We have

T(t—to— h)my(ty + k) — T (t—1o) xa(t)
h
T(t—to—h)—=T(—1) @alo + h) — walty)

= = E T ) + T (1t — ) PR

&
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The first member tends to — EAT (t—t,) z:(,). The other one equals to

E[T(t—to—h)—T(t—to)]um,A)“E(t_oJr’;z;w(%)+

FET(1—1,) Tt + h}i — @) )

The second member of that sum tends to &7 (i—1,) DY z;(t,). On the
other hand, the formula

[T(t)~T(x)1AR(A, A)w = [ T(r)AAR(A, A)zdv, zeH,

implies
(73.1) [T (z)— T (2)1AR(2, A)a|| < sup AT (v)|||| AR(Z, A)a| |7 —7,]

and consequently
E[T (t—ty— h)—T (t1— 1) ]AR(%, A)’—”ﬂﬂ%ﬂ < MNh,

where

!‘w(to+ k) — 2 (1)
h

<M

|
and N is a suitable constant derived from (73.1).
Summing up the above relations we get the assertion of the lemma.

THEOREM 73.1. Let x(1) be weakly continuous in (0, a) and let it satisfy
nearly everywhere the inequality

(73.2) ©(t) < Aw(t) .

Then z(t) < T({t—s)x(s) for 0 <s <t < a.
Proof. Write x,(t) = AR(4, A)x{t). We have by Lemma 73.1

W

4 w

a_; (T(t—s)@s(8)) = T(t—8) DY ay(s)—T (1 —s) Awy(s)

whenever DY x(s) exists. The resolvent R(A, 4) is positive for large 2
and commutes with A. Hence, by (73.2),

(73.3) DY xy(s) < Azy(s) .

Using the arguments similar to those used in the proof of Lemma 73.1
one shows that T (f— s)x,(s) is weakly continuous in s. By the same lemma
and by (73.3) we get that z;(s) satisfies the assumptions of Theorem 71.1
with suitable ¢, ¢, and f. Thus

T(t—s)asy) < T(t—8)wa(81), 8 <8;.
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But z;(s) >x(s). Hence T'(t— s,)w(s,) < T(t—s,)2(sy). Weputt = t—s,
and get T{z)z(s,) < T{z) T(s,— ;)2 (s,). Hence

(73.4)  AR(A, A)a(sy) = 4 [ € FT(r)a(sy)dr
<A [ eFT(@) T(sy—s)a(s))dr = AR(A, A) T (s,—8,)0(sy) -

But s-limAR(A, A)x = 2, e E. The assertion follows from (73.4)

Ao
by a limit passage.
COROLLARY. Assume additionally in the above theorem that
w-limz(t) = #(0) < 6.
10+
By (73.4) and by the theorem

o) < T(t—8)m(s), s<t,
and consequenitly
w-Lm T'(T— s)xx(8) = T(t)x:(0) < 6.
§>0+

Hence

z(t) = s-lima;(t) < 0.
A0

Using the same technique as in the proof of the above theorem and
applying Lemma 72.1 and Lemma 73.1 one proves the following theorem:

THaEOREM 73.2. Let the function x(t) have the Bochner summable (over
every compact in (0, o)) derivative z'(t) and suppose that

@) —x{1y) = fz Z(vydr  for 1,7,¢(0,a).

Suppose that x(t) satisfies almost everywhere the inequality
z'(t) < Ax(t) .

Then z(t) < T(t—s)x(s) for 0 < s < i,

The assumptions concerning the differentiability of x(f) can be
weakened at the cost of some additional assumptions. That possibility
is included in the following theorem:

THEOREM 73.3. Let the fumction xz(t) be weakly absolutely continuous
and Bochner integrable in any compact subinterval of (0, a). Assume that

y

f z(r)dr e D[A] for 1,,7,€(0,a)

1
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and let Ax(t) be Bochner integrable in every compact subinterval of (0, a).
It is supposed that for every positive functional & eV’ the inequality

d

dt

holds for t e Z: where mes((0, a)— Zg) = 0. Then
() < T(t—s)x(s), s<t.

(73.5) u(t) < EAx(1)

Proof. We take the function
t+h

ap(t) = f z(t)dr

t
and verify by integration of (73.5) that

t+h

(73.6) fe(t+h)—a(t) <& [ Av@mdr, £V,
H

The summability of A« () and the fact that 4 is closed imply
t+h

(73.7) £ Aw(r)de = EAmy(t) .
Notice that t
@ onlt) = ot +1)—a (1)

at
for almost all t. By (73.6) and (73.7) we get therefore
d
(73.8) 7 () < Am(t)

almost everywhere on (0, a). It is easy to see that x,(t) satisfies the reg-
ularity assumptions required in theorem 73.2. Hence (73.8) implies

ap(t) < T(t—s)an(s) .

The weak continuity of x(f) and the limit passage h—0+4 in the
inequality
1

5 Em(t) < %gT(t— 8)xn(s)

complete the proof.

Previously we assumed always that A generates the semi-group.
Suppose now that A is merely closed and (AI—A)™" exists for 1> 0.
A is defined and linear on a manifold included in E.

Let ¢(4) be a real-valued function of class C™ on (0, oo). It is called
completely monotone if

(—1)"%2%’20, 2=0 (n=0,1,2,.).
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The classical Berstein-Widder theorem [67] states that a necessary
and sufficient condition for ¢ to be completely monotone is that it be
of the form

(1) = [ e-4dal1)

with an increasing a(t), the Stieltjes integral being convergent for 1 > 0.
It follows then that if ¢ is completely monotone and

0

o) = [ e ()t

0
with a continuous f(t), then f(¢) = 0.
THEOREM 73.4. Let the function x(t) be bounded, strongly measurable
and weakly absolutely continuous over the interval [0, oo). Suppose that
2{0) = 0 and let for every £¢V’' the inequality

(73.9) %Ew(t) < Edx()

be satisfied almost everywhere on (0, oo). We assume that (AI—A)™ = 6.
It 4s supposed that Ax(t) is strongly measurable and

[ |A2(x)|dr < + oo.
1]

Then x(t) < 0 for t > 0.

Proof. Let us multiply (73.9) by e~# and integrate over [0, R].
We get

R R
(73.10) et +2 [ e-Hen(dt <& [ e-HAw(t)dt.
0 0
Write

o0

L(3) = [ e*m(t)at

0

and let R— 4 co. It follows then from (73.10) and from the closedness

of A that
ML(2) < EAL(A), EeV'.

Hence — (Al — A)L(2) ¢V and consequently, by positivity of (AI —4)™*
L)<, 21>0.

The multiplication of (73.9) by "¢~* and integration from 0 to + oo
gives us

§0I-A) [ e u(tyat <né [ e Mu()dt  for Ee V.
0 4]

J. Szarski, Differential inequalities 16
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Hence

o0

(AI—A) [ e ety <n [ ¢ a(r)dr .
0

=]

By induction

[t sat <0 (n=0,1,2,..,

0

and consequently the function @i 1) = —EL(A) (& € V') satisfies

(—1)"1‘%5 =—f f te M (t)dt > 0.
da S
We infer by the previous discussion that —&r(¢) is non-negative,
which completes the proof.

§ 74. Almost linear differential inequalities in Banach spaces. This sec-
tion concerns inequalities of the form

#(t) < Aw(t) +1(t, (1)) .

The operator A is the generator of a positive semi-group {T(¢)} of
class (C,). As usually the relation of inequality is induced by a cone V.
In what follows the symbel Cg[0, a] denotes the space of vector-valued
functions with values in F, continuous on [0, «], with the sup norm.

THEOREM 74.1. Let the function f(t, ) be strongly continuous in (f, x)
and bounded, ||f(t, )| < M < + oo. Assume that f(t, x) increases in .

Let the transformation
i

F: z(t)-»f Tt—7)f(e, z(t)) dr

0

be completely continuous when considered in the space Cg[0, al. Suppose
that the function x(t) is strongly differeniiable on [0, a] and

(74.1) () < Aw(t)+f(t,x(), O0<i<a.

Under our assumptions there is a solution y (i) of

t
y(t) = T(t)w(0) + [ T(t—0)f(r, y(v))dr

such that
z@) <y@t), 0<t<a.

Proof. Inequality (74.1) implies

t
(74.2) @(t) < T(1)w(0)+ [ T(t—1)f(r, w(v)dr .
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Define now
N =sup|T(=)ll, K =supfz()
[0,a] [0,a]
and

Z = {z(-): 2(-) e Cl0, a], 2(0) = x(0), x(t) < 2() on [0, ]
and |jz(1)|| < max (N ||z(0)[| +MNa, K); .

Notice that #(-)e Z.

Z is clogsed, bounded and convex in ([0, a]. The monotonicity of
f(t, #) and (74.2) imply that ¥ (Z) C Z. By Schauder fixed point theorem
there is y such that y = Fy. Obviously «z(t) <y (t), q.e.d.

CoROLLARY. Using the method of successive approvimations one verifies
easily that theorem remains true if the complete continuity of F is replaced
by the Lipschitz condition in x, for f(t, x). In that case y (1) is unique.

Now we will discuss the couple of inequalities
(74.3) w'(1) < Aw()+1(t, 2(1) ,
(74.4) y'() = Ay () +1(t, y (1) -

The linearization procedure we apply requires the following condition:

{74.5) The function f(¢, x) is Fréchet differentiable in x to f,(f, ) and
f=(t, ) is strongly continuous in (¢, x).

THEOREM 74.2. Let x(t) and y (1) satisfy on [0, ] the inequalilies (74.3),
(74.4) and let f(t, x) satisfy (74.5). Suppose that

Lot y (&) +r{e@®—y@)) +8I =6, 0<r<1,

for 0 <t < o and some veal B. Then, if x(0) < y(0), then x(t) < y(l) on
[0, a].

Proof. It follows from (74.3) and from (74.4) that
(74.6) [2()—y (O] < Ala@®)—y )1+ [f(t, @) —Ht, y @)} -
On the other hand,

(74.7) e, @) —1(t, y(2) = BO) =)~y () ,

where

B = [ filt, y(&) ~r((t)—y () dr .
0

Moreover, B(t)+pI > 0. We see that 2(1) = z(t)—y(f) satisfies the as-
sumptions of Theorem 72.5. Hence z(t) < 6, q.e.d.

16*
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If 4 = 0, then (74.3), (74.4) reduce to
o) <flt,2@), YO =1t 9()-

Taking F as a space of sequences {£;} we can get interpretations of
the above theorem and just apply it to integration of infinite systems
of ordinary differential inequalities. The systems are of the form

1) <filt, £(3), &(), ..,

7:(t )>fi( s Mu(t)y 1a(D)5 - )7

where the properties of {7}, {£:}, {fi} are restricted by the fact that all
these sequences belong to E. The cone V is defined by

= o= {3}, & > 0}.

The Fréchet differentiability of f implies usually the existence of
classical derivatives and the abstract condition

(74.8) fo+BI =6
produces (f; = fi(t, @y, @5, 3, ...))
af,; . . afi
(74.9) @20 (1 # k); 5—M>~ﬁ.

In case F is finite dimensional the above theorem gives us some
particular case of Theorems of § 9.

We will apply now the previous theory to some extension of the
Chaplygin method (see § 31). Let (74.5) hold and suppose we are given
a function z(f) and write down the equation

(74.10) Y = Ay +1{t, o (1) +iult, 2(0) (y— (1) -

Following the general ideas of § 69 one proves easily the following
lemma;:

LeMma 74.1. Suppose that the Fréchet differential f, of the function f(x)
satisfies the following condition:

If & <@y, 0 < 2, then fo(2,)2 < fo{ws)z. Then

fo(w)(y—a)+f(2) <fly) for @<y.

Now we can prove the following theorem:

THEOREM 74.3. Let the function y(t) satisfy on [0, a] equation (74.10).
Assume that for every t [0, a] if o < 2,5, 0 < 2, then [o(t, 7))z < folt, @,)2.
Suppose that
(74.11) fo(t, 2(t))

>yl for some real v,
(74.12) @' (1) < Aw(t) +F{t, 2(1)) -
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Then, if x(0) = y(0), then

(74.13) z(t) <y() on [0,d],
(74.14) Y < Ayt)+1(t, y@®) on [0,q],
(74.15) feft, y(®) =21 on [0, 4].

Proof. It follows from (74.10) and (74.12) that 2() = x(f)—y(f)
satisfies

(1) < Az (1) +f(t, w()2(t)
2(0) = 6.

We can apply Theorem 72.5 and thus obtain 2(f) < 6. On the other
hand, f,(, #) increases in #. The inequality #(f) < y(¢) and Lemma 74.1
imply

folts 2(0)) (v (0 —2(0)) -1 (t, 2()) <f(t, (2)

which together with (74.10) proves (74.14).
Notice that f.(¢, #) increases in 2. Hence

VI\<\f:c(%w(t)) <fw{t7y(t)) for te[0,qa],

which completes the proof.
The above theorem can be used in the abstract treatment of the
Chaplygin method. For details in this field we refer to [27] and [28].
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