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ABSTRACT Existing tools of control system analysis have certain limitations in terms of
their applicability, reliability, and accuracy, particularly for the nonrational class of linear and
nonlinear systems. The main objective of this work is to develop tools that help overcome these
limitations for a large class of linear and nonlinear, fixed and uncertain parameter systems.
The proposed tools are in the form of algorithms, and address the following problems: (a) com-
putation of the well known Bode, Nyquist and Nichols frequency response plots for nonrational
transfer functions, (b) computation of robust gain margins, phase margins, and crossover fre-
quencies for nonrational transfer functions with general nonlinear parametric dependencies, (c)
computation of spectral set for uncertain polynomials with polytopic as well as general nonlinear
parametric dependencies, and (d) computation of limit cycle sets for seperable uncertain non-
linear systems covering a large class of nonlinear elements represented by nonrational describing
functions, nonrational linear elements, and generic nonlinear parametric dependencies. Further,
in the spirit of the well known root locus for linear systems, a new tool called limit cycle locus
is proposed for uncertain nonlinear systems.

The proposed algorithms are developed in the framework of Moore’s interval analysis [48]. The
salient features of the proposed algorithms are their provision of several important guarantees:
the computed results are reliable and accurate, all solutions are found, and the solutions are
computed in finite number of iterations for a prescribed accuracy. An upper bound on the number
of iterations required to achieve a prescribed accuracy is also given.

Theoretical results concerning key properties of the algorithms, such as convergence, termination,
reliability, and accuracy are derived. The proposed algorithms are also demonstrated on several

difficult practical examples, including those that cannot be readily solved with existing tools.

KEYWORDS: Control System Analysis, Describing Function, Frequency Response, Gain Mar-
gin, Interval Analysis, Limit Cycle, Nonlinear Control, Phase Margin, Robust Control, Spectral
Set.



ii



+

Contents
List of Figures viii
List of Tables ix
Glossary xi
1 Introduction 1
1.1 Linear control systems . . . . . . . . . ... Lo e 1
1.1.1 Frequency response plots . . . . . . . .. ... oL 2
1.1.2 Gain and phase margins . . . . . .. ... ... oL 3
1.1.3 Spectralsets . . . . . . . . . . e 4
1.2 Nonlinear control systems . . . . . . . . ... ... L. 5
1.21 Limitcyclelocus . . . . . . . . .. o oo 6
1.2.2 Limitcycleset . . . . . . . . . ... 7
1.3 Imterval analysis . . . . . . . . . . . . . e 7
1.4 Objectives . . . . . . . . . e e e e 8
1.5 Contributions . . . . . . . ..o e 10
1.6 Thesis organization . . . . . . . . . ... L oL e 12
2 Frequency responses 13
2.1 Imtroduction . . . . . . . . . .. e e e 13
2.2 Proposed algorithm . . . . . .. .. ... o 14
2.2.1 Algorithm for Bode magnitude plot . . . . .. ... ... ....... 14
2.2.2  Algorithm for Bode phaseplot . . . ... ... ... .......... 17
2.3 Algorithms for Nyquist and Nichols plots . . . . . . ... ... ... ..... 17

This is page iii
Printer: Opaque t



iv

Contents

2.4 Properties . . . . . ... L e e e e e
2.5 Tlustrative examples . . . . . . . . . . . L e
25.1 Results . . . .. e
2.5.2 Discussion . . . . . . ..o e e e e e e e e e
2.5.3 Nichols and Nyquist plots . . . . . . ... ... ... ... ......
2.6 Conclusions . . . . . . . . L e

Gain and phase margins

3.1 Imtroduction . . . . . . . . . . e e e
3.2 Proposed algorithm for robust gain margins . . . . . ... ... ... .....
3.2.1 Imitial search box . . . . . . . . ... Lo L oo
3.2.2 Algorithm . . . . . . ...
3.3 Fixed parameters . . . . . . . . ... e e e
3.4 Properties . . . . . .o e e e
3.4.1 Convergence . . . . . ...t e e e e e e e
3.4.2 Termination . . . . . . . . ..
343 Reliability . . . . . . . ..
3.5 Computing phase margins . . . . . .. .. ... L o oL
3.6 Tllustrative examples . . . . . . . . . . . ...
3.6.1 Fixed parameters . . . . . . . . .. ... oL e
3.6.2 Uncertain parameters . . . . . . . . .. . ... .. oo
3.7 Conclusions . . . . . . . L. e e

Spectral sets - polytopic case

4.1 Imtroduction. . . . . . . . . . oL
4.2 Proposed algorithm . . . . . . . ... Lo L
4.2.1 Imitialsearch box . . . . . . . . . .. L Lo
4.2.2 Algorithm . . . . . . .. . .
4.2.3 Termination conditions . . . . ... ... ... ... oo
4.3 Properties . . . . ... L e
4.3.1 Convergence . . . . .. i i i e e e e e e e e
4.3.2 Termination . . . . . . . . ... oo
4.3.3 Computational complexity . . . . . . . ... ... ... ...,
4.3.4 Reliability . . . . . . . oo
4.4 Tllustrative examples . . . . . . . . . . . L e e e e e
4.5 Conclusions . . . . . . . Lo i e e e e

Spectral sets - general case

5.1 Introduction . . . . . . . . . ... e e e e

31
31

32
33
33
36
36
37
40
41
41
42
42
44
45

53
53
55
55
55
o7
57
58
61
62
63
63
64

67



Contents v

5.2 Proposed algorithm . . . . . ... ... . L 68
5.2.1 Imitial search box . . . . . . . . . . ..o oo 68

5.2.2 Algorithm . . . . . . ... 69

5.3 Properties . . . . . . L e 71
5.3.1 Convergence . . . . . . . ... e e 73

5.3.2 Termination . . . . . . . . . .. Lo e 75

53.3 Reliability . . . . . . . ..o 75

5.4 Tlustrative example . . . . . . . . . . . L e 75
5.5 Conclusions . . . . . . . L 76

6 Limit cycles 81
6.1 Introduction. . . . . . . . . . . . 81
6.2 Proposed algorithm . . . . . ... ... .. L oL 83
6.2.1 Imitial search box . . . . . . .. .. ..o L oo o 84

6.2.2 Algorithm . . . . .. ... 85

6.3 Properties . . . . . ... L e e e 86
6.4 Tlustrativeexamples . . . . . . . . . . . L e 86
6.4.1 Limitcyclelocus . . . . . ... ... ... o o 86

6.4.2 Limitcycleset . . . . . . .. . L 89

6.5 Conclusions . . . . . . . .. L e e 90

7 Conclusions and future scope 99
I Interval Analysis 101
.1 Natural inclusion functions and properties . . . . . . . .. .. ... ... ... 101

.2 Generalized Krawczyk operator . . . . . . .. .. ... ... ... ..., 102
1.3 Imterval topology . . . . . . . . . o . e 103
.4 Complex interval arithmetic . . . . . . ... . ... o0 o000, 103
References 105

Acknowledgements 111



vi Contents



List of Figures

1.1
1.2

2.1

2.2
2.3

24

2.5

2.6
2.7

3.1

3.2

3.3

4.1

Block diagram of a typical linear control system. . . . .. ... ... .....

Block diagram of a typical separable nonlinear control system. . . ... ...

Comparison of Bode plots obtained using different methods for the heat ex-
changer system in Example 2.1. . . . . . .. ... .o o o000,
Enlarged Bode plots for the heat exchanger system in Example 2.1. . . . . . .
Comparison of Bode plots obtained using different methods for the integrating
system with measurement delay in Example 2.2. . . . .. ... .. ... ...
Enlarged Bode plots for integrating system with measurement delay in Exam-
Ple 2.2, L L
Enlarged Bode plots for the hydraulic servo system with long tube in Example
2.3 e
Enlarged Bode plots for the steam chest rod heating system in Example 2.4. .
Comparison of Nichols plots obtained using different methods for the heat

exchanger system in Example 2.1.. . . . . . ... ... 0 0oL,

Nichols plot of the frequency response of the uncertain nuclear reactor system
in Example 3.3. . . . ...
Nichols plot of the frequency response of the uncertain nuclear reactor system
inExample 3.3. . . . ...
Nichols plots for the uncertain nuclear reactor system in Example 3.3, obtained

using intense gridding of the parameter space. . . . . . . . . ... ... ...

Spectral set of Example 4.1 computed using the proposed algorithm. . . . . .

+

22
23

26
27

28

48

This is page vii
Printer: Opaque t



viii

4.2

5.1
5.2

6.1
6.2
6.3
6.4

6.5
6.6

6.7

Contents

Spectral set of Example 4.2 computed using the proposed algorithm. . . . . .

Spectral set of Example 5.1 computed using the proposed algorithm. . . . . .
Spectral set of Example 5.2 computed using the proposed algorithm. . . . . .

Uncertain nonlinear system . . . . . . . . .. ... L oL oo
Limit cycle locus for various parameters in Example 6.1. . . . . . .. .. ...
Limit cycle locus for various parameters in Example 6.3. . . . . . . . ... ..
The band of controller parameter values generated by the proposed algorithm
to achieve a prescribed limit cycle behavior in Example 6.3. . . . . . ... ..
The limit cycle set computed using proposed algorithm in Example 6.4.

Polar plots of g(jw,qg) and the describing function plots —1/h (a,w,qy) for
the three cases in Example 6.4. . . . . . . . ... ... ... .
The limit cycle behaviour for three cases of the nonlinear system in Example
6.4 obtained by the closed loop simulation using SIMULINK. . ... ... ..

92
93

94
94



List of Tables

21
2.2
2.3
2.4

3.1

3.2

6.1

Maximum errors in Bode magnitude plot using various methods. . . . . . ..
Maximum errors in Bode phase plot using various methods. . . . . . ... ..

Performance metrics of the proposed VA algorithm to compute Bode plots.

Performance metrics of the proposed VA algorithm to compute Nyquist plots.

Performance comparison of the proposed algorithm with that of allmargin
routine of MATLAB in Example 3.1. . . . . .. ... .. ... .......
Performance comparison of the proposed algorithm with that of allmargin
routine of MATLAB in Example 3.3. . . . . ... ... ... . ........

Comparison of limit cycle points obtained using three methods for three cases

in Example 6.4. . . . . .. L.

+

30

This is page ix
Printer: Opaque t



X Contents



+This is page xi

Printer: Opaque t

Glossary

Abbreviations:

Box: A parallelepiped having sides parallel to the coordinate axes.

DF: Describing function

GM: Gain margin

TA : Interval analysis

LTI: Linear time invariant

PM: Phase margin

VA: Vectorized adaptive

Generic symbols:

C' : Real nonsingular [ x [ matrix (here [ = 2), used as preconditioning matrix.

d(.,.) : Hausdorff distance between two nonempty compact sets in R”.
1)
Fe)
70)

)

Arbitrary function.

: The exact range of f .
: the Jacobian of function f w.r.t. y.

!

Natural inclusion function for f.

Fy (.): A natural inclusion function for f;.

g : Transfer function of the linear element.

9mag : Magnitude function in decibels.

Iphase : Phase function in degrees.

Grmag : Natural inclusion function for the magnitude function
Gphase : Natural inclusion function for the phase function
Gey = Set of all gain crossover frequencies.

Gm : Set of all gain margins.

h : Describing function of the nonlinear element.
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I (X): Set of all boxes contained in X.

I (R™): Set of all boxes contained in R".

K (X): Generalized Krawczyk operator applied to X.

k : Tteration number.

Lc @ Set of limit cycles.

L'élg : Set of limit cycles as computed by the algorithm.
E‘é{gmm : Set of limit cycles as computed by a MIA version of the algorithm.
m (.) : Midpoint of a box.

p : The polynomial.

p : Exact range of polynomial.

P : Natural inclusion function for p.

Py : Set of all phase crossover frequencies.

Puflg : Computed set of all phase crossover frequencies.

C

Pg;ﬁni . - Computed set of all phase crossover frequencies, using MIA.
P : Set of all phase margins.

q : Vector of all system parameters, q = (q1,--.,¢qn)-

qp: Vector of parameters of the nonlinear element.

qg: Vector of parameters of the linear element.

r : Radius or magnitude of a complex number in the polar representation.

Q : Box of uncertain system parameters.

QP: Initial box of uncertain system parameters.

s : Laplace variable.

S : Spectral set of p.

S8 : Spectral set of p as computed by the algorithm.

Sﬁblii : Spectral set of p as computed by the algorithm using machine interval arithmetic.
w(.) : Width of a box.

¥y : Point in Y, usually taken as the midpoint of Y.

Y : Box of unknowns.

Y : Initial search box of unknowns.

Greek:

« : Constant appearing in definition of convergence order.

eq4p : Accuracy tolerance on magnitude (or gain margin as applicable), in dB.
€deg : Accuracy tolerance on phase (or phase margin as applicable), in degrees.
€p : Polynomial range accuracy tolerance.

€z : Accuracy tolerance for search domain z.

€w  Accuracy tolerance on crossover frequency.

€, : search domain (a plane of complex numbers) accuracy tolerance.

v : Maximum number of iterations required by the algorithm.



Contents xiii

0 : Angle of a complex number in the polar representation.

Q0 : Frequency range over which the frequency response plots are desired (or the initial
search frequency range for the margins).

w : frequency

Symbols specific to different chapters:

In Chapter 2:

L : List of boxes containing frequency subintervals €2

L£° : List of frequency versus magnitude or frequency versus phase solution boxes satisfying
the specified tolerance.

In Chapter 3:

f = function defined in (3.2).

L : List of boxes of pairs of form (X, Gpqeq (X))

L£5° : List of solution boxes, that satisfy both domain and range tolerance conditions.

x : Vector containing unknown and parameters, defined as (w,q) .

X : Box containing unknown and parameters, defined as (€2, Q).

XO: Initial X i.e. (£2°,QP).

In Chapter 4:

L : List of boxes of unknowns Z.

L% : List of solution boxes.

z : Point in the rectangular coordinate complex plane

Z : Box of unknowns in the complex plane.

Z0 : Initial box of unknowns in the complex plane.

In Chapter 5:

f(.) : Vector function defined in (5.2).

L : List of boxes of unknowns X.

L£° : List of solution boxes.

X : Box containing unknowns boxes in search domain and parameters, defined as (Y, Q).

XO: Initial box (Y?,QP).

y : Vector of unknowns in polar complex plane of (r,0)

In Chapter 6:

a : Amplitude of periodic input signal to nonlinear element.

f(.) : Vector function defined in (6.1).

L : List of boxes of unknowns X.

L£° : List of solution boxes.

X : Box containing both unknowns and parameters, and defined as (Y, Q).

X0: Initial box (YO, QO).

y : Vector of unknowns (a,w)

w : Frequency of periodic input signal to the nonlinear element.
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Introduction

Real life systems by themselves are generally not capable of achieving the specified perfor-
mance while fulfilling the desired objectives. Therefore, the use of additional components in
the form of controlling and feedback elements usually becomes mandatory [31]. A real life
system along with the necessary additional components is called a control system, and the
branch of engineering that deals with the analysis and synthesis of such systems is known
as control system engineering. Before actually synthesizing and implementing a control sys-
tem, it is usually analyzed and synthesized with the help of a mathematical model. The type
and complexity of the mathematical model to be used for a particular control system de-
pends upon various factors, such as complexity and characteristics of the system, the desired
accuracy and performance, and the operating conditions.

Mathematical models used in control systems analysis may be classified as linear or non-
linear models, rational or nonrational transfer function models, fixed or uncertain parameter
models, single variable or multivariable models, deterministic or stochastic models, continu-
ous or discrete time models, etc., [3], [8], [55]. Naturally, different analysis and synthesis tools
are required, depending upon the type of the mathematical model chosen. However, there
are several common issues pertaining to all the control system analysis and synthesis tools,
such as scope of applicability, reliability, and accuracy.

Let us examine some of the basic analysis tools used in control systems and their related

issues.

1.1 Linear control systems

Linear control system theory is widely used for the analysis and synthesis of feedback control

systems. The block diagram of a typical linear control system is shown in Fig. 1.1. In the

This is page 1
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2 1. Introduction

setpoint output
—O— c(s,qc) 9(s,qg)

FIGURE 1.1. Block diagram of a typical linear control system.

figure, g(s,qg) represents the transfer function of the system to be controlled (i.e., the plant),
and c(s, qc) represents the transfer function of the controller, where q4 and q. represent the
plant and controller parameter vectors. For a comprehensive treatment of classical linear
control system theory, see [30], [55], and [50].

1.1.1 Frequency response plots

For over five decades, the classical Bode, Nyquist, and Nichols frequency response plots have
been of immense use in frequency domain analysis and synthesis of linear control systems,
see, [8], [10], [30] and [54] for an exposition of these tools.

For transfer functions that have a rational form, these frequency response plots can be
computed to a fair degree of accuracy with the routines such as bode, nyquist, and nichols,
which are based on the automatic frequency selection procedure available in the control
systems toolbox of MATLAB [27],[46].

On the other hand, many important applications found in practice involve nonrational
transfer functions. For instance, systems with time delay abound in chemical processes [56],
hydraulic servomechanisms [20], [45], and nuclear reactor systems [14]. However, the above
mentioned automatic frequency selection procedure is not readily applicable to nonrational
transfer functions. To use the procedure for such functions, we first need to derive a satisfac-
tory rational approximation to each nonrational term, and then apply the said procedure to
the resulting rational transfer function.

For nonrational transfer functions involving only time delay as the nonrational term, the

well known Pade approximation [16] has been widely used to effect a rational approximation.
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However, the error introduced through the Pade approximation itself is difficult to estimate,
and in certain applications it may turn out to be so appreciable as to produce frequency
response plots of poor accuracy. Further, for nonrational transfer functions that involve other
transcendental terms, such as trigonometric, hyperbolic, and inverse hyperbolic terms, it is
quite difficult to find satisfactory rational approximations, and the only alternative then is
to resort to the conventional gridding method for computing the frequency response plots.
The conventional gridding method consists of arbitrarily gridding the frequency range of
interest, computing the frequency responses at the obtained grid points, and using interpola-
tion to obtain the responses over the entire frequency range. However, this method has two
significant limitations: (a) the number of grid points required to achieve a prescribed accuracy
is in general unknown, and (b) for a given plot, the amount of error present is unknown, i.e.,
no error estimates are available. These limitations are particularly severe when the frequency
response plots exhibit single or multiple sharp peaks or dips. Despite the severe limitations
of the conventional gridding method, surprisingly little is found in the literature to overcome

them, especially for nonrational transfer functions.

1.1.2  Gain and phase margins

Gain and phase margins [30] are popularly used as stability specifications in classical methods
of analysis and synthesis of linear control systems. These specifications basically relate to the
maximum allowable variation in the open loop gain or phase of the system to conserve closed
loop stability.

For linear systems represented by rational transfer functions, a sophisticated method is
available to compute the margins, in the form of the allmargin routine of MATLAB’s control
system toolbox [27]. However, many systems found in practice are represented by nonrational
transfer functions, and unless some rational approximation to the function is used, no existing
method can be readily applied to compute the margins for nonrational transfer functions.

Robust gain and phase margins

The system models found in classical approaches to linear control systems usually have
fixed parameter values. However, for most real life systems, some uncertainty is present in
the model parameters due to our ignorance of the system. The uncertainty can be modelled
as one of these types: parametric, nonparametric, or mixed. In case of the parametric type,
the parameter vector q4 in Fig.1.1 is taken to vary usually over a box like region!. Then,
stability analysis, such as gain and phase margin analysis, must be carried out by considering
every point in the parameter box, leading to the notion of robust stability of the system.

The problem of computing the robust stability margin for linear systems in the presence

of parametric uncertainty has recently been the focus of some attention. To calculate the

However, it is not necessary that all the parameters of a given transfer function have uncertainty.
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so-called maximal parametric stability box, several approaches are available depending on
the parametric uncertainty structure involved. For interval systems, Fadali et al. [23] present
a method based on the reciprocal Nyquist value set to compute the combined gain and phase
margins. For affine or multilinear parametric dependencies, the domain splitting technique
of deGaston and Safonov [17], the mapping theorem based algorithm of Sideris and Pena
[62], the Generalized Kharitonov theorem based method of Keel and Bhattacharyya [37] ,
and the critical direction procedure of Mahon et al. [43] are available. For special classes of
nonlinear parametric dependencies, such as polynomial dependency, branch and bound algo-
rithms based on geometrical programming are available [65], [25]. For fairly general nonlinear
parametric dependencies, the interval arithmetic based bisection methods in [40] and [44] are
applicable.

On the other hand, for the design of many control systems, the conventional robust gain and
phase margins remain as important specifications, see, for instance, [31] and [37]. However,
relatively fewer methods are available in the literature for directly calculating the robust
gain and phase margins as well as the crossover frequencies for systems with parametric
uncertainty. Bhattacharyya et al. [8] present a method based on the Generalized Kharitonov
theorem for rational transfer functions with multilinear parametric dependency. Wilson et
al. [66] address the case of rational transfer functions with nonlinear (rational) parametric
dependencies using specially constructed minimized plants.

Thus, we see that there is a lack of direct methods to compute the robust margins and
crossover frequencies for systems represented by nonrational transfer functions with general
nonlinear parametric dependencies. As is well known, nonrational transfer functions involv-
ing time delays and transcendental terms (such as inverse hyperbolic terms) form a very
important problem class and are found in key application areas, for instance, in chemical

processes , hydraulic servomechanisms, and nuclear reactor systems.

1.1.3 Spectral sets

The coefficients of the characteristic polynomial of an uncertain linear system depend upon
the system parameters. The parametric dependency can be categorized as independent, affine
linear, multilinear, and nonlinear. The spectral set for the uncertain polynomial is defined as
the set of all roots of the polynomials belonging to the polynomial family. The spectral set
is of considerable interest in stability analysis of linear control systems, see [8], [4].

For polynomials whose coefficients are affine linear functions of the uncertain system pa-
rameters, i.e., for a polytope of polynomials, Barmish and Tempo [4] and Cerone [12] proposed
techniques to compute the spectral set. A nice feature of these techniques is that they involve
only a 2 — dim gridding of a bounded subset of the complex plane rather than a gridding
of the parameter box. The feature is attractive as it circumvents a potential combinatoric

explosion in computations with an increase in the number of parameters. For polynomials
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whose coefficients are multilinear functions of the uncertain system parameters, Yang and
Chen [67] present an algorithm to compute the spectral set.
Let us examine the limitations of the existing techniques for computation of the spectral

set:

e First, an important requirement from a stability analysis viewpoint is that no actual
points should be missing from the computed spectral set. The above mentioned tech-
niques are based on gridding, and a well-known drawback of all gridding based tech-
niques is that they compute underbounds of the actual sets, because of the very nature
of the grid process. Therefore, potentially critical points could be missing from the

computed spectral sets with the existing methods.

e Second, the existing techniques for affine and multilinear parameter dependencies lack

the ability to compute the spectral sets to a prescribed accuracy. In particular,

— it is a priori unknown how fine the parameter space or complex plane grid must

be in order to achieve a prescribed accuracy, and

— it is a posteriori unknown how accurate is the computed set for a selected fineness
of the grid.

e Third, existing techniques do not provide any guarantee on the reliability, i.e., trust-

worthiness of the computed results in the face of various computational errors.

e Lastly, for uncertain polynomials having nonlinear parametric dependencies, techniques

that can readily compute the spectral set are not available in the literature.

1.2 Nonlinear control systems

The block diagram of a typical separable nonlinear control system is shown in Fig. 1.2,
where h(a,w, qp) represents the describing function [3] of the nonlinear element, and g(s, qg)
represents the overall transfer function of all the linear elements in the control loop. The
variables ¢ and w denote the amplitude and frequency of the input signal to the nonlinear
element, while q, and qy, represent the parameter vectors of the linear and nonlinear elements.

Nonlinear systems may exhibit autonomous constant amplitude closed loop oscillations,
known as limit cycles [3], [26]. The popular describing function approach [3], [26] is mainly
employed to predict the existence of the limit cycles. If limit cycles are predicted, then it is
also of interest to know the number of limit cycles, their frequencies and amplitudes, and key
characteristics such as stability or instability. Describing function analysis occasionally fails
to predict the limit cycles, particularly when the system under consideration does not satisfy

the assumption of filtering out the higher order harmonics. It is also possible for describing
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—(O— h(a,w,qn) 9(w,qg)

FIGURE 1.2. Block diagram of a typical separable nonlinear control system.

function analysis to predict no limit cycles, even when a limit cycle actually exists. Despite
these limitations, describing function analysis has been successfully used in many practical
applications, for example, see [2], [13], [53]. For a comprehensive treatment of the describing

function approach, see, for instance, [3], [26].

1.2.1  Limut cycle locus

The root locus [21] has established itself as a very useful tool for the analysis and synthe-
sis of linear systems. The root locus readily provides information about the stability and
performance of the control system for variations in a given system parameter.

In the context of nonlinear systems, a similar tool that can be thought of is the limit cycle
locus. The limit cycle locus for a given system parameter is the locus of the limit cycle points
as the parameter varies over a given range. The chosen parameter may belong to the linear or
nonlinear element of the system. The limit cycle locus can be useful in a variety of situations
in nonlinear system analysis and design, for instance, in obtaining graphical insight into the
system behavior, or in tuning the parameters of a controller. However, to our knowledge
the direct limit cycle locus tool does not as yet exist in the control literature, and may be
introduced. Though, somewhat similar concept of M-locus exists in the parametric approach
of control system analysis literature [63], it does not use more useful and direct concept of
limit cycle locus as introduced in our work. The M-locus approach is based on the Mikhailov

stability criterion [63], and is quite tedious with the restricted applicability.
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1.2.2  Limit cycle set

In real life, often there are uncertainties in the parameters of the nonlinear system. The
conventional graphical technique [26] for finding the set of limit cycle points becomes quite
tedious when uncertainties are present in the system parameters, because it requires plotting
a number of polar plots and/or describing function curves depending on the parameters and
their ranges. Indeed, the describing function approach for computing the limit cycle points
of uncertain nonlinear systems has itself only recently attracted the attention of researchers.
Fadali and Chachavalvoong [22] overbound the unknown coefficients of the system charac-
teristic equation and use Kharitonov’s theorem to do the overall stability test. The method
gives non-conservative results only when the numerator of the linear element is constant.
Tierno [64] fits a rational approximation to the describing function of the nonlinear element,
and incorporates describing function analysis into a generalized structured singular value (p)
framework of robustness analysis. His method requires a good rational approximation to the
describing function of the nonlinear element. Ferreres and Fromion [24] propose a p based
method for limit cycle analysis, but the method assumes uncertainties only in the linear ele-
ment. Impram and Munro [33] pose the describing function analysis problem in a generalized
interval polynomial framework. This method is non-conservative only when the coefficients
of the linear element have interval or affine linear uncertainty structure.

Thus, there is a lack of methods which can readily compute the set of limit cycle points

for the large and important class of uncertain nonlinear systems having

e 3 linear part represented by a nonrational transfer function with coefficients having a

nonlinear parametric uncertainty structure, and

e a nonlinear part represented by a nonrational describing function with uncertain pa-

rameters.

Such nonlinear systems are commonly found, for instance, in chemical processes - in heat

exchanger systems [11] and distillation columns [58], and in nuclear reactor systems [32].

1.3 Interval analysis

It is seen from the foregoing that nearly all existing methods of control system analysis,
especially those involving parametric uncertainty, require some form of grid to be setup during
the computations, such as a frequency space grid, a parameter space grid, and in general,
a domain grid. As mentioned previously, the use of gridding leads to certain difficulties
concerning the reliability and accuracy of the computed results. These difficulties essentially
arise because existing methods are founded on the use of point methods and “point methods

and computations with ordinary floating-point numbers have no direct way of dealing with
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sets containing infinitely many or uncountably many points” [49, section 5|, and further,
“using point methods, there may be no indication, let alone guarantee, of the accuracy or
completeness of the results” [18].

On the other hand, we see that in the current context of control system analysis, we deal
with information or data that naturally occurs in the form of intervals, for e.g., computing
frequency response plots over a frequency interval, computing stability margins for parameters
varying over intervals, computing limit cycles over interval variations in parameter, amplitude
and frequency variables, etc. Therefore, it seems to be more appropriate to adopt the interval
analysis framework for the development of control system analysis methods.

The idea behind the interval analysis (IA) methods [47] is to design algorithms, which in a
single computation, do the approximation and a rigorous error analysis. With interval meth-
ods, one can directly deal with interval sets containing infinitely many points, and perform
set operations such as subdivisions, unions, intersections, finding convex hulls, testing for set
inclusion, testing for disjointedness of sets, etc. The basis for the systematic approach of TA
methods is to combine computer arithmetic with order relations. For details of TA and its
methods, see [1], [28], [36], [48], [52], [60].

1.4 Objectives

The primary objective of this work is to develop reliable and accurate tools for the analysis
of single-input single-output control systems involving linear systems, nonlinear systems, and
nonlinear parametric uncertainty structures.

In particular, the following four main objectives are set for the present work:

1. Frequency response plots: To develop algorithms for reliably computing the well-known
Bode, Nyquist, and Nichols frequency response plots to a prescribed accuracy, for a large
class of linear systems. In particular, for nonrational transfer functions the algorithms

should be readily applicable without requiring any rational approximations.

2. Gain and phase margins: To develop algorithms for reliably computing all gain margins,
phase margins, and crossover frequencies to a prescribed accuracy, for a large class of
uncertain linear systems. In particular, the algorithm should be readily applicable to
a large class of nonrational transfer functions with nonlinear parametric dependencies,

without requiring any rational approximations.

3. Spectral set: To develop algorithms for reliably computing the spectral set of uncer-
tain polynomials to a prescribed accuracy, for a large class of nonlinear parametric

dependencies.
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4. Limit cycle analysis: To develop algorithms for reliably computing the limit cycle be-

havior of uncertain nonlinear systems to a prescribed accuracy, for a large class of

nonrational transfer functions and describing functions with nonlinear parametric de-

pendencies. In particular, the algorithm should be readily applicable to nonrational type

of transfer and describing functions without requiring any rational approximations.

In addition, the desired properties of the above algorithms are specified as follows.

1. Wide applicability: The algorithms should apply to the following classes of linear sys-

tems, nonlinear systems, and parametric uncertainty structures, as the case may be:

(a)

Linear systems: The algorithms should apply to very generic forms of nonrational
transfer functions consisting of time delay, trigonometric, and transcendental (such

as inverse hyperbolic) terms.

Nonlinear systems: The algorithms should apply to a large class of separable non-
linearities represented by nonrational describing functions, including memory less,

memory type, frequency independent, and frequency dependent nonlinearities.

Parametric uncertainty structures: The algorithms should apply to a large class of
parametric uncertainty structures associated with the linear and nonlinear system,

including interval, affine linear, multilinear, and general nonlinear types.

2. Computational properties: Each algorithm must offer several guarantees concerning reli-

ability, enclosure, convergence, and finite termination of the computations. To elaborate,

o Reliability: The reliability of the algorithm guarantees that the computed results

are trustworthy despite the various computational errors, such as roundoff, ap-

proximation, and truncation.

Enclosure: The enclosure property of the algorithm guarantees that the computed
solution set always contains all points of the actual solution set - that is, no point
of the actual solution set is ever missed out. This means that in the frequency
response plots, none of the magnitude or phase peaks and dips are missed out;
similarly, in computing the gain and phase margins, spectral sets, or limit cycles,
this property guarantees that none of the actual values of margins and cross over

frequencies, characteristic roots, or limit cycles are missed out.

Prescribed accuracy: This property guarantees that the algorithm can generate

results to a prescribed accuracy.

Convergence and finite termination: These properties guarantee that the algorithm
indeed converges to the solution of a prescribed accuracy, in a finite number of

iterations.
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1.5 Contributions

Broadly the thesis pursues a novel approach to linear and nonlinear control system analysis
in the framework of interval analysis. The main contributions of the thesis are summarized

as follows:

1. Frequency response plots for nonrational transfer functions: We propose algorithms to
compute the well known Bode, Nyquist, and Nichols frequency response plots for non-
rational transfer functions. The proposed algorithms are very widely applicable - the
magnitude and phase functions need to be only bounded and continuous in frequency.
No rational approximation of any nonrational term in the transfer function is required
by the algorithms. The proposed algorithms guarantee that the magnitude and phase
plots are reliably computed to a prescribed accuracy, and in a finite number of iter-
ations. Through several practical nonrational examples, we demonstrate the superior
performance of the proposed algorithms over the widely used bode,nyquist, and nichols
routines in MATLAB’s control system toolbox [46], [27] and over the conventional grid-

ding method.

2. Robust gain and phase margins for nonrational transfer functions with nonlinear para-
metric dependencies: We propose an algorithm to compute robust gain and phase mar-
gins and crossover frequencies for nonrational transfer functions with nonlinear para-
metric dependencies. The proposed algorithm is very widely applicable - the magnitude
and phase functions need to be only bounded and continuous in frequency and system
parameters, and the crossover frequencies be bounded. No rational approximation of the
nonrational terms is required in the algorithm. The proposed algorithm guarantees that
all robust margins and crossover frequencies are reliably found to a prescribed accuracy,
and in a finite number of iterations. Moreover, an upper bound for the maximum num-
ber of iterations is a priori computable. Through several examples, we demonstrate
the superiority of the proposed algorithm over the widely used allmargin routine in
MATLAB?’s control system toolbox [46], [27] and the conventional gridding method.

3. Spectral set for uncertain polynomials with affine linear parametric dependencies: We
propose an algorithm to compute the spectral set of a polytope of polynomials. The
proposed algorithm guarantees that the spectral set is reliably computed to a prescribed
accuracy, and that it contains all the actual spectral set points. Moreover, for a given
accuracy, it computes the spectral set in a finite number of iterations, and an upper
bound for this number is given. A further merit is that the computational complexity
of the proposed algorithm is O (n) in contrast to O (n2) for existing techniques, where
n is the degree of the polynomial. We demonstrate the algorithm on a few examples

taken from the literature.
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4. Spectral set for uncertain polynomials with nonlinear parametric dependencies: We pro-
pose an algorithm to compute the spectral set of uncertain polynomials with nonlinear
parametric dependencies. The proposed algorithm is very widely applicable - it can
compute the spectral set for a very general class of uncertain polynomials where the
polynomial coefficients need to be only continuous in the parameters. Further, the pro-
posed algorithm guarantees that the spectral set is reliably computed to a prescribed
accuracy, and that it contains all the actual spectral set points. Moreover, for a given
accuracy, it computes the spectral set in a finite number of iterations, and an upper
bound for this number is given. We demonstrate the algorithm on an example that

cannot be solved using existing techniques.

5. Limit cycle locus: We introduce a novel and powerful tool called the limit cycle locus for
the analysis of nonlinear systems. The limit cycle locus for a given uncertain parameter
is the locus of the limit cycle points as the parameter varies over its range. The concept
is similar to that of the root locus in linear systems, and can be as useful for nonlinear
control systems. We then propose a reliable and accurate algorithm to compute the limit
cycle locus for separable nonlinear systems with nonlinear parametric dependencies.
The uncertainty may be in the parameter of the linear or nonlinear element in the
system. The proposed algorithm makes use of the popular describing function technique
and tools of interval analysis. We demonstrate the capability of the proposed tool
on an example involving nonrational transfer and describing functions with nonlinear
parametric dependencies, that cannot be readily solved using existing methods. An
additional example is given to demonstrate how the proposed algorithm can be applied

to tune a controller for achieving a prescribed limit cycle behavior.

6. Limit cycle set: We apply the above algorithm to compute the limit cycle set for un-
certain nonrational nonlinear systems with nonlinear parametric dependencies. The
proposed algorithm computes the limit cycles for a wide class of uncertain nonlinear
systems where the transfer and describing functions need to be only continuous in the
parameters and continuously differentiable in the amplitude and frequency of the peri-
odic input signal. The proposed algorithm guarantees that the limit cycles are reliably
computed to a prescribed accuracy, and that all (if any) limit cycles are indeed found.
Moreover, for a prescribed accuracy, the proposed algorithm computes all the limit
cycles in a finite number of iterations, and an upper bound for this number is given.
We demonstrate the algorithm on the above challenging uncertain nonlinear system

example that cannot be readily solved using existing methods.
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1.6 Thesis organization

The rest of the thesis is organized as follows.

In chapter 2, we present algorithms for computing the Bode, Nyquist and Nichols frequency
response plots. Through several practical nonrational examples, we demonstrate the superior
performance of the proposed algorithms over the widely used routines in MATLAB’s control
system toolbox [46], [27] and over the conventional gridding method.

In chapter 3, we present an algorithm for computing robust gain margins, phase mar-
gins, and corresponding crossover frequencies for a very general class of nonrational transfer
functions with nonlinear parametric dependencies. We prove the various properties of the
proposed algorithm concerning enclosure, convergence, accuracy, reliability, and finite termi-
nation. Through several examples, we demonstrate the superiority of the proposed algorithm
over the widely used allmargin routine in MATLAB’s control system toolbox [46], [27] and
the conventional gridding method.

In chapter 4, we present an algorithm for computing the spectral set for a polytope of
polynomials. We prove the various properties of the proposed algorithm concerning enclosure,
convergence, accuracy, reliability, computational complexity, and finite termination. We test
and compare the algorithm on a few examples taken from the literature.

In chapter 5, we present an algorithm for computing the spectral set for polynomials
with nonlinear parametric dependencies. We prove the various properties of the proposed
algorithm concerning enclosure, convergence, accuracy, reliability, and finite termination. We
demonstrate the algorithm on an example that cannot be solved using existing techniques.

In chapter 6, we present a similar algorithm to the above one for computing the limit cycle
set for uncertain nonrational nonlinear systems with general nonlinear parametric depen-
dency. We also introduce a new tool called the limit cycle locus. We demonstrate the capa-
bility of the proposed limit cycle locus tool and the algorithm on an example that cannot be
readily solved using the existing methods. An additional example is given to demonstrate how
the proposed tool of limit cycle locus and the algorithm can be applied to tune a controller
for achieving a prescribed limit cycle behavior.

In Chapter 7, the overall conclusions of the work are given along with some suggestions for
further work.

Some of the preliminaries of interval analysis required in this work are given in Appendix



1
2

Frequency responses

2.1 Introduction

In section 1.1.1, we described the limitations of existing tools for computing the Bode,
Nyquist, and Nichols frequency response plots for nonrational transfer functions. In this
chapter, we address these limitations and present algorithms that can reliably and accurately
compute the frequency response plots for nonrational transfer functions, without requiring
any rational approximations. The proposed algorithms, called as the vectorized-adaptive (VA)
algorithms, are based on tools of interval analysis [48]. The main features of the proposed

VA algorithms are:

1. VA algorithms are applicable to nonrational transfer functions whose magnitude and
phase functions are bounded and continuous in frequency. Subject to these assumptions,
there is no restriction on the structure or form of the transfer function. Thus, the
transfer function can be described by any sequence of arithmetic expressions involving
the frequency, using the built -in functions of a programming language. On the other
hand, frequency response tools based on the automatic frequency selection procedure

in MATLAB'’s control systems toolbox are restricted to rational transfer functions.

2. VA algorithms are readily applicable to nonrational transfer functions, that is, they do
not need rational approximations to the transfer functions. Thus, multiple time delays
and transcendental terms can be handled with equal ease, without the need for any

rational approximation.

3. VA algorithms automatically compute magnitude and phase values that are guaranteed
to have a prescribed accuracy. Moreover, error estimates are readily available from

the computed plots. Thus, VA algorithms overcome the difficulties associated with

This is page 13
Printer: Opaque t
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the conventional gridding method, such as proper grid size selection and lack of error

estimates.

4. VA algorithms guarantee that the computed magnitude and phase values are reliable
in face of all kinds of computational errors, such as roundoff, truncation, and approxi-

mation. In contrast, existing methods do not account for such computational errors.

5. VA algorithms compute the required plots in a finite number of algorithmic iterations,

for a prescribed accuracy.

The rest of this chapter is organized as follows. In section 2.2, we present the proposed
algorithm for computing Bode plots. In section 2.3, we give the proposed algorithms for
computing Nyquist and Nichols plots, and in Section 2.4, the mathematical properties of the
proposed algorithms. We test and compare the performance of the various methods on several

nonrational examples in section 2.5, and give the conclusions of the chapter in section 2.6.

2.2 Proposed algorithm

Consider a linear system represented by the transfer function g(s,q), where s is the Laplace
variable and q € R" is a given vector of system parameters. Let w denote the frequency.

Define the magnitude and phase functions of ¢(s,q) as

9mag (waCI) := 201og; |g(3 = jw,q)| 5 Yphase (wa(I) = 49(3 = jw,q) (2-1)

Note that the magnitude is expressed in decibels (dB) and phase in degrees. We assume that
the magnitude and phase functions are bounded and continuous in w. For functions satisfying
these assumptions, we propose algorithms that compute the Bode, Nyquist, and Nichols plots

to a prescribed accuracy.

2.2.1 Algorithm for Bode magnitude plot

We first present the algorithm for computing Bode plots to a prescribed accuracy. The pro-
posed algorithm uses natural inclusion functions [47] for interval evaluation of the magnitude
and phase functions. We can find a natural inclusion function of the magnitude function as
follows, see also Appendix I. In the expression for g,,q4, replace each occurrence of w by €2,
each occurrence of a pre-declared real function (like sin, cos, exp, etc.) by the corresponding
pre-declared interval function, and all real arithmetic operations by the corresponding interval
arithmetic operations. The natural inclusion function of g4 (w,q) is denoted Gnqq (€2, Q).
On identical lines, we can construct the natural inclusion function Gppgse (€2, q) for the phase

function.
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Let 20 denote the frequency range over which the Bode plots are required. With a single
evaluation of Gmag(ﬂo, q), we can obtain a magnitude plot comprising of a single frequency -
magnitude box!, or simply, a magnitude box. By inclusion property of natural inclusion func-
tions [48, Theorem 3.1], Gpqg (€2°,q) encloses the actual Bode plot over entire ©2°. However,
this magnitude box Gma_q(ﬂo, q) usually has a width that considerably exceeds the prescribed
magnitude accuracy €45.

We may therefore repeatedly subdivide the given frequency range 00, find the evaluations
of Ginag over the frequency subintervals using interval arithmetic, and take the union of the
results to get Bode magnitude plots comprising of smaller and smaller magnitude boxes which
give increasingly accurate information about the actual magnitude values. By a fundamental
result of interval analysis [48, Theorem 4.1], these magnitude plots will converge to the actual
magnitude plot as we refine the partition of Q°. We may stop the subdivision process when
the widths of all the magnitude boxes are less than the prescribed accuracy e4p. A similar
method can be followed for Gphase(ﬂo, q) to obtain a phase plot of a prescribed accuracy €qeg-
Thus, the proposed algorithm computes a collection of frequency - magnitude and frequency
- phase boxes covering the actual Bode magnitude and phase plots. The magnitude or phase
side of each box in this collection has a width not exceeding the prescribed accuracy tolerance
€dB OT Edeg, respectively.

There are two existing approaches to the subdivision processes in interval analysis, namely,
the uniform subdivision process and the adaptive subdivision process. The references for these
two subdivision processes are discussed in [35], and [48, sec. 4.1], respectively. The attractive
feature of the former approach is vectorized evaluation of Gy,qg and Gppese over all frequency
subintervals of a partition, while that of the latter is adaptive subdivision of €.

The proposed algorithm is based on a novel subdivision process that combines the two
advantageous features of existing subdivision processes mentioned above, i.e., vectorized
functional evaluation and adaptive subdivision. We call the new subdivision process as the
vectorized - adaptive process, and the proposed algorithm based on it as the wvectorized -
adaptive (VA) algorithm. For details on the use of vectorized interval operations for function
evaluations, subdivisions, width checks, etc., see [51].

We first present the proposed VA algorithm for finding the Bode magnitude plot.

Algorithm (Computation of the Bode magnitude plot)

Input : An expression for the magnitude function gy,4(w, q), the frequency range Q0 over
which the response is to be computed, and a prescribed accuracy tolerance on the magnitude
€dB-

Output: A plot of magnitude boxes enclosing the actual Bode magnitude plot. The width

of the magnitude side of each box in the plot does not exceed 45.

In the sequel, we prefer to use the generic term boz while referring to an interval or a rectangle.
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Note: The algorithm is to be executed in the order given below, except when otherwise
indicated.
BEGIN Algorithm

1. (Initialization part) From the expression for the magnitude function, construct a

natural inclusion function Gqeg.
2. Construct initial box and lists:

(a) Set € + QO.
(b) Set k «+ 0 and initialize lists £5% <+ {}, £ « {Q}.

3. (Iterative part) Start a new iteration:

(a) Set k + k+ 1 and I, < length of L.
(b) Pick all boxes Q;), i = 1,2,...,, from £ and delete their entries from L.
(c) Evaluate Giqq (Q(i),q) yfori=1,2,...,1,.

4. Solution set:

(a) IF w (Gmag (R(),q)) < eap THEN enter the pair (R, Gmag (i), q)) in L5

and discard €2(;) from further processing, for : = 1,2,..., ;.

(b) If no more ;) remain, go to step 7.

5. Subdivision phase:
For each remaining box €(;), subdivide €2(; to get subboxes Q%i) and Q%Z.) such that
Q) = Q%i) U Q%i)' Enter the subboxes Q%i) U Q%i) in L.

6. End current iteration: Return to step 3.

7. (Termination part) For each pair of items in £5° plot Grag (Q(i),q) versus £2;), and
EXIT.

END Algorithm.

Remark 2.1 If Gpag (2,q) is used as an enclosure of the range of gmaeg over €2, then the
error can be no greater than the width of Gyag (Q, Q) itself, see [48, Theorem 3.1]. Therefore,

we use the accuracy tolerance condition

w (Gmag (2,9)) < €4p (2.2)

where, eqp 1S the prescribed magnitude accuracy tolerance.
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Remark 2.2 The continuity of the magnitude and phase functions in w is required in order
that the natural inclusion function Gpag and Gppese be continuous. The continuity property
ensures that the widths of the intervals evaluations Gpag and Gppgse tend to zero as the width

of Q tends to zero, so that in turn, convergence and arbitrary accuracy can be achieved.

2.2.2 Algorithm for Bode phase plot

The VA algorithm for computation of Bode phase plot is immediately obtained from the
VA algorithm for Bode magnitude plot, by using the phase function gppqse instead of the

magnitude function gmqg, and a prescribed accuracy tolerance eqeq instead of 4.

2.3 Algorithms for Nyquist and Nichols plots

The VA algorithm for computing the Nyquist plot is similar to that given above for Bode

plots, except for the following changes:

e In step 3c: evaluate both Giag (i), ) and Gppase(2(s), q) over Q), for i = 1,2,...,1;.

e In step 4a: IF
w (Gmag(n(i)a Q)) < eqp and w (Gphuse(ﬂ(i)a Q)) < Edeg

THEN enter the triple (Q(i), Gmag (Q(i),q) ,Gphase(ﬂ(i),q)) in £%°, and discard Q)

from further processing, for 1 = 1,2, ..., 1.

e In step 7: For each pair of items in £5° with the magnitude interval in absolute units,

draw the polar plot of (Gphase(€(i), q), Gmag (i), q)) , annotate £;), and EXIT,

The VA algorithm for computing the Nichols plot is similar to that for Nyquist plots,

except for the following change:

e In step 7: For each pair of items in £ plot Grag (Q(i),q) versus Gphase(£2(3),Q),
annotate €2;), and EXIT.

2.4 Properties

The mathematical and computational properties of the VA algorithms readily follow from

well-known theorems in interval analysis:

e Guaranteed enclosure property: it follows immediately from the inclusion property of
natural inclusion functions [48, Theorem 3.1] that for any e4p,€4eg > 0, the computed

frequency response plots indeed enclose the corresponding exact ones.
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e Convergence property: it is a fundamental result in interval analysis [48, Theorem 4.1]
that as we refine the partition, the enclosures will converge to the actual range of the
values over the given set. From this property, it follows that in the limiting case of
€dB,Edeg = 0, the VA algorithms give frequency response plots that converge to the

exact ones.

e Error estimates: from Remark 2.1, the possible error at each frequency can be readily
computed as the width of the corresponding box in the plot. Then, the maximum
possible error over the entire frequency interval is the maximum width over all the

boxes in the plots.

e Finite termination property: for any e4p,eqeg > 0, the VA algorithms compute fre-
quency response plots of a prescribed accuracy in a finite number of steps. This can be

shown by proceeding on similar lines to [34, Theorem 2.10].

e Computational reliability of the VA algorithms means that the algorithms are stable
when implemented on floating-point systems. We can make the VA algorithms compu-
tationally reliable by implementing them in an interval arithmetic compiler which uses

machine interval arithmetic in all computations [38].

e Efficiency of implementation: the VA algorithms are efficient to implement as they are
simple from a computer programmer’s point of view, and as their performances are not

sensitive to details of implementation or to any “tuning”.

e Range of application of the VA algorithms is very vast, as the algorithms are applicable

to any transfer function that is bounded and continuous in frequency.

2.5 Illustrative examples

We now test and compare the performance of the proposed VA algorithm for Bode plots, with
those of the bode routine of MATLAB’s control systems toolbox [27], and the conventional
gridding method. We consider four practical nonrational transfer function examples for this
testing. In all examples, we set the prescribed accuracy for Bode plots to e4g = 1 dB and
€deg = 1deg, and carry out the computations on a PC Pentium-III 550 MHz machine. The

examples considered are:

Example 2.1 The heat exchanger system [56]:

q1(1 — goe™ %)
q4s+1)(gss + 1)

9(s,q) = (

where, g1 = 5000, go = 0.5,q93 = 10,94 = 40 and g5 = 15. The frequency range of interest is
Q0 =[0.01,100] rad/sec.
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Example 2.2 The integrating system with measurement delay [45]:

q1

g9(s,q) = 5+ qre—zs

where, ¢ = 10 and g2 = 10. The frequency range is Q° = [0.01,10] rad/sec.

Example 2.3 The flexible and long hose pipe system connecting a servo-valve with the

actuator in a hydraulic servo system [20]:

1
cosh(gi18) + g2 sinh(q; s)

9(s,9) =

where, g1 = 10 and gz = 0.1. The frequency range is Q° = [0.01, 10] rad/sec.

Example 2.4 The system for heating a 1 — dim metal rod by the steam chest [56]:

1
1+ Y2 /s tanh(y/5)

where, g1 = 10. The frequency range is ©° = [0.01,1000] rad/sec.

9(s,q) =

We first implement the VA algorithm using the interval analysis toolbox INTLAB [61] in
the MATLAB environment, and apply it to compute the Bode plots in all examples.

Next, we compute the Bode plots using the bode routine of control systems toolbox of
MATLAB [46], [27]. As stated earlier, the bode routine has an automatic frequency grid
selection procedure. However, this routine is applicable only to rational transfer functions.
To handle nonrational transfer functions, some rational approximation of the transfer function
has to be supplied.

Accordingly, in the first two examples, we approximate the time delay term with the well
known first order and second order Pade approximations [16], and apply the bode routine to
the resulting rational transfer functions. In the last two examples, however, we are unable
to apply the bode routine, as satisfactory rational approximations to the involved inverse
hyperbolic terms are difficult to find (the Pade approximation is applicable only to time
delay terms).

Lastly, we compute the Bode plots using conventional gridding of the frequency interval.

Two different number of grid points are used for this purpose: 100 and 1000 points.

2.5.1 Results

The Bode plots computed using the various methods are shown in Figs. 2.1 to 2.6. To bench-
mark and compare the obtained results, the Bode plots are computed using a very dense grid
of 5 x 10° points in all examples. The errors in the Bode plots computed with bode routine

and gridding are calculated with respect to these very dense grid plots. However, with the
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VA algorithm the maximum possible error in the plots can be computed immediately as the
maximum width of all the boxes in the plots, see Remark 2.1.

Accordingly, the maximum error is found for the various methods and shown in Tables 2.1
and 2.2. For more clarity, some of the Bode plots are also zoomed around the frequencies

where the maximum errors occur, and shown in the figures.

2.5.2 Discussion

From the results in Tables 2.1 and 2.2, we observe the following:

Conventional Gridding method: In all examples except the last, the results computed
with the conventional gridding method have significant errors, even for a grid of 1000 points.
The maximum magnitude error is as much as —15 dB in Example 2.2, while the maximum
phase error is as much as 90 deg in the same example. Over all examples, on the average the
maximum magnitude error is about —9 dB, and the maximum phase error is about 47 deg.

bode routine of MATLAB: As mentioned earlier, the bode routine could be applied only
to the first two examples. In these examples, the results are found to have considerable errors
in the magnitude, and very large errors in the phase plots. The difference in errors with first
and second order Pade approximations is relatively little. The maximum magnitude error is
as much as +30 dB and occurs in Example 2.2, while the maximum phase error is as much
as 5474 deg and occurs in the same example.

Proposed VA algorithm: In all examples, the results computed with the VA algorithm
have errors within the prescribed tolerances. Further, the VA algorithm is able to capture
all the magnitude and phase peaks that occur in the given frequency range, whereas some
of these peaks are missed by the conventional gridding method. For instance, in Example
2.3, all 32 magnitude peaks are captured by the VA algorithm in the given frequency range,
whereas only 15 peaks could be found by the gridding method.

Table 2.3 reports the number of iterations required, computational time taken, and the
number of magnitude and phase boxes computed by the VA algorithm. It is interesting to
note that in nearly all examples, the CPU time taken by the VA algorithm is just a few

seconds. Thus, the VA algorithm is evidently computationally efficient.

2.5.8 Nichols and Nyquist plots

We also test and compare the performance of the proposed VA algorithms for Nichols and
Nyquist plots, with those of the nichols and nyquist routines of MATLAB’s control systems
toolbox [27] and the conventional gridding method. We consider the same nonrational transfer
function examples given above for this testing.

A sample Nichols plot is shown in Fig. 2.7 for Example 2.1, while Table 2.4 reports the

number of iterations required, computational time taken, and the number of result boxes
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computed by the VA algorithm for computing the Nyquist plots. Similar remarks to the
Bode plots hold for these plots.

2.6 Conclusions

The results of the examples show that the application of Pade approximations in conjunction
with the bode routine of the control systems toolbox [27] may lead to Bode plots of poor
accuracy, for nonrational transfer functions. Further, the amount of error present in the plots
computed with this method remains unknown.

Moreover, the widely applicable conventional gridding method to compute frequency re-
sponse plots is also liable to yield large errors in the plots. The main difficulty with this
method is that, in general, the user is unaware of what the grid size should be so that plots of
prescribed accuracy can be obtained. For instance, in our examples, it was found that grids
even with 1000 points yielded plots of poor accuracy. Without a good estimate of the grid
size to be used and without a systematic way of estimating the error present in the computed
plots, there is every risk that one may be lead to erroneous analysis and synthesis results
using the plots computed with the conventional gridding method.

In contrast, with the proposed VA algorithm we obtain guarantees that the computed
frequency response plots are reliable and accurate throughout a given frequency range. The
VA algorithm can be used for a very wide spectrum of nonrational transfer functions, and
it does not require rational approximation of any nonrational terms. The VA algorithm thus
relieves the user of the difficulties associated with proper grid size selection, finding good
rational approximations, and the lack of error estimates associated with existing frequency

response computation methods.
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FIGURE 2.1. Comparison of Bode plots obtained using different methods for the heat exchanger
system in Example 2.1. For better clarity of the errors, the plots are displayed here only over the
frequency range [0.1,10]. (dotted: Pade 1st order, dash-dot: Pade 2nd order, solid boxes: proposed
algorithm).
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FIGURE 2.2. Bode plots for the heat exchanger system in Example 2.1, zoomed around the frequen-
cies where large errors occur. (dotted: grid size 100, dash-dot: grid size 1000, solid boxes: proposed

algorithm).
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FIGURE 2.3. Comparison of Bode plots obtained using different methods for the integrating system
with measurement delay in Example 2.2. For better clarity, the plots are displayed here only over
the frequency range [1,10]. (dotted: Pade 1st order, dash-dot: Pade 2nd order, solid boxes: proposed

algorithm).
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FIGURE 2.4. Bode plots for the integrating system with measurement delay in Example 2.2, zoomed
around the frequencies where large errors occur. (dotted: grid size 100, dash-dot: grid size 1000, solid
boxes: proposed algorithm). Note: The phase plot with grid size 100 is out of range in the shown plot.
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FIGURE 2.5. Bode plots for the hydraulic servo system with long tube in Example 2.3, zoomed around
the frequencies where large errors occur. (dotted: grid size 100, dash-dot: grid size 1000, solid boxes:
proposed algorithm). Note: The phase plot with grid size 100 is out of range in the shown plot.
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FIGURE 2.6. Bode plots for the steam chest rod heating system in Example 2.4, zoomed around the
frequency where the large errors occur. (dotted: grid size 100, dash-dot: grid size 1000, solid boxes:
proposed algorithm).
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FIGURE 2.7. Comparison of Nichols plots obtained using different methods for the heat exchanger
system in Example 2.1. (dotted: Pade 1st order, dash-dot: Pade 2nd order, thick solid: proposed
algorithm). Note: Only midpoints of the boxes obtained by the proposed algorithm are plotted.



2.6 Conclusions

TABLE 2.1. Maximum errors in Bode magnitude plot using various methods. .

Max. error in mag, dB

Example Grid points | MATLAB’s Bode [27] VA
100 | 1000 | 1% order Pade | 2*? order Pade | alg.
2.1 Heat exchanger —-10 | —10 | 410 +9 +0.99..
2.2 Integ. with delay | —37 | —15 | +30 +30 +0.99..
2.3 Long pipe -20 | —-10 | — — +0.99..
2.4 Heating of a rod | —2.5 | —0.5 | — — +0.99..

TABLE 2.2. Maximum errors in Bode phase plot using various methods.

Max. error in phase, deg

Example Grid points | MATLAB’s Bode [27] VA
100 | 1000 | 1°* order Pade | 2*dorder Pade | alg
2.1 Heat exchanger | —130 | —35 | +45 +60 +0.99..
2.2 Integ. with delay | +100 | +90 | +5474 +5388 +£0.99..
2.3 Long pipe =70 | —60 | — — +0.99..
2.4 Heating of a rod —60 1| - — +0.99..

29
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TABLE 2.3. Performance metrics of the

proposed VA algorithm to compute Bode plots.

Example Time, No. of No. of

sec | iterations | boxes
2.1 Heat exchanger 15.75 36 | 44,200
2.2 Integ. with delay 4.59 34| 9,435
2.3 Long pipe 4.61 31 | 10,014
2.4 Heating of a rod 4.43 35 | 4,816

TABLE 2.4. Performance metrics of the proposed VA algorithm

to compute Nyquist plots.

Example Time, No. of No. of

sec | iterations | boxes
2.1 Heat Exchanger | 24.85 20 | 78,152
2.2 Integ. with delay 6.35 19 | 16,784
2.3 Long pipe 5.93 17 | 16,062
2.4 Heating of a rod 5.48 19| 8,274
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3

Gain and phase margins

3.1 Introduction

In section 1.1.2, we described the limitations of existing algorithms in computing the gain and
phase margins for nonrational transfer functions. In this chapter, we address these limitations.
We present an algorithm that can reliably and accurately compute the robust gain and phase
margins and crossover frequencies for systems represented by nonrational transfer functions
with nonlinear parametric dependencies. We develop the proposed algorithm using tools of

interval analysis [48]. The main features of the proposed algorithm are:

1. The proposed algorithm is applicable to a very general class of nonrational transfer
functions and nonlinear parametric dependencies. The magnitude and phase functions
need to be only bounded and continuous in the frequency and parameters, and the
crossover frequencies be bounded. Subject to these assumptions, there is no restriction
on the structure or form of the transfer function. Thus, the magnitude and phase
functions can be described by any sequence of arithmetic expressions involving the
frequency and parameter variables, using the built -in functions of a programming
language. On the other hand, the gain and phase margin routine in MATLAB’s control

systems toolbox, called allmargin, is restricted to rational transfer functions.

2. The proposed algorithm can readily handle nonrational transfer functions and needs no
rational approximation of any nonrational term in the transfer function. Thus, multiple
time delays and transcendental terms can be handled with equal ease, without the need

for any rational approximation.
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3. The proposed algorithm guarantees that all gain and phase margins and crossover fre-
quencies are found, see Theorem 3.11 below. This guarantee - that no margins and
crossover frequencies are ever missed - meets an important requirement in stability
analysis and synthesis of control systems. Existing methods do not offer any such guar-

antee.

4. The proposed algorithm guarantees that the gain and phase margins and crossover

frequencies are computed to a prescribed accuracy, see Theorem 3.9 below.

5. The proposed algorithm guarantees that the computed gain and phase margins and
crossover frequency values are reliable in face of all kinds of computational errors, see
Theorem 3.12 below. In contrast, existing methods do not account for such computa-

tional errors.

6. The proposed algorithm computes all the gain and phase margins along with the
crossover frequencies in a finite number of iterations, for a prescribed accuracy. More-
over, an upper bound on the number of algorithmic iterations required is given, see
Theorem 3.10 below.

The rest of this chapter is organized as follows. In section 3.2, we present the proposed algo-
rithm for computing robust gain margins. In section 3.3, we describe the proposed algorithm
for analyzing systems with fixed parameters. In section 3.4, we study the theoretical and
computational properties of the proposed algorithm. In section 3.5, we consider the problem
of computing robust phase margins. In section 3.6, we demonstrate the proposed algorithm
on some practical nonrational examples. Lastly, in section 3.7, we give the conclusions of this

chapter.

3.2 Proposed algorithm for robust gain margins

Consider a linear system represented by the transfer function g(s,q), where s is the Laplace
variable and q € R” is a vector of the system parameters. Let w denote the frequency. Define

the magnitude, phase, and phase crossover functions respectively as

9mag (wa q) : =20 loglo |g(3 = jw, q)l 5 Yphase (w, q) = ég(s = jwa q) deg (3-1)
f(w,q) : =180° + gphase(waQ) (3'2)

Note that the magnitude is expressed in decibels (dB) and phase in degrees.
Suppose there is parametric uncertainty in the system such that the parameter vector q

varies over a bounding box Q¥ € I (R") given by

QO = {q c §Rn QZ S q; S qia where gzaqz € §Ra 1= 1a27 17”}
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The parametric uncertainty gives rise to an uncertain linear system. Now define the set Ps

of phase crossover frequencies and the set G, of gain margins as

Pep={w: f(w,q) =0, € Q’}; G := {—gmag(w,q) : q € Q°, wEP,;}

We address the problem of reliably computing P.; and G,, to a prescribed accuracy. We

assume the following throughout this work.

Assumption 3.1 The magnitude and phase functions gmag and gphase are bounded and con-

tinuous in w and q over the domain of interest. Moreover, the crossover frequencies are

bounded.

Subject to the above assumption, the magnitude and phase functions can be described by
any sequence of arithmetic expressions involving w and q using +, -, *, /, 4/, exp, log, power,
trigonometric functions, inverse trigonometric functions, etc.

In the sequel, we prefer to use the more generic term box even while referring to an interval.

3.2.1 Initial search boz

In the proposed algorithm, we need to construct an initial search box Q0 that contains
all phase crossover frequencies. We can construct this box as follows. The frequency w is
nonnegative, so 20 € I (). On a computer, we can set Q° < [0, realrmx]2 where realy,,x is
the largest machine representable number on the computer. We sometimes know the range in
which the phase crossover frequencies occur in a particular problem. If so, we can bound Q°
to enclose this range. Finally, by Assumption 3.1, P.s is bounded, and so we can construct
an initial search box that is guaranteed to contain all crossover frequencies, by adopting a

procedure of Moore [48, chapter 6].

3.2.2 Algorithm

The proposed algorithm is a binary search algorithm based on subdivision and an interval
version of the well known zero exclusion test [8]. It consists of three parts: an initialization
part, an iterative part, and a termination part.

In the initialization part, first, natural inclusion functions Gye9, Gphase, and F for the
magnitude, phase, and phase crossover functions are constructed. Let x := (w,q). Then,
following section 3.2.1, an initial box QO that encloses the set Py is constructed, along
with the work box X0 = (QO, QO). Next, the two lists that are needed in the algorithm are
initialized: a working list £ that contains boxes for processing is initialized with the work box
X0, and the list £5° that contains solution boxes is initialized to the empty list. Then, the

algorithm branches to the iterative part.
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In the iterative part, all boxes X;) present in the working list £ are chosen, and a branch
and bound strategy is applied to discard irrelevant boxes using the interval zero exclusion
test and subdivisions.

A box is accepted as a solution box when both the domain (frequency) and range (mag-
nitude) accuracy tolerances are satisfied for that box, see Remark 3.2. For all such boxes,
the pairs (X(i), —Ginag (X(i))) are deposited in the solution list £%%. The remaining boxes
are subdivided along the longest direction of the box X(;), and the resulting subboxes are
put in £. The entire iterative part is repeated till no more boxes are left in £ for processing.
Following this, the algorithm branches to the termination part.

In the termination part, the set of all phase crossover frequencies is constructed as the
union of all boxes ;) present in L£%°. Likewise, the set of all gain margins is constructed as
the union of all boxes (—Gmag (X(i))) present in the same list. The algorithm now exits.

The entire process is greatly speeded up by concurrently (rather than sequentially) process-
ing all the subboxes present in a given iteration. Concurrent processing is possible through
the use of vectorized interval operations for function evaluations, subdivisions, width checks,
etc., see [51] for details.

We next present the proposed algorithm.

Algorithm (Computation of all robust gain margins and phase crossover frequencies)

Input: Expressions for the magnitude, phase and phase cross over functions, the uncertain
parameter vector Q°, an accuracy tolerance ¢, for the phase crossover frequency, and an
accuracy tolerance 45 for the gain margin.

Output: The set GlE of all gain margins along with the set nglg of all phase crossover
frequencies, computed to their respective accuracy tolerances.

Note: The algorithm is to be executed in the order given below, except when otherwise
indicated.

BEGIN Algorithm

1. (Initialization part) From the expressions for the magnitude, phase, and phase crossover

functions, construct natural inclusion functions Giuag, Gphase, and F.

2. Construct initial boxes and lists:

(a) Following section 3.2.1, construct an initial search box Q0 that encloses the phase

crossover frequency set Py. Next, construct the work box X° = (2°,Q°).

(b) Set k «+ 0 and initialize lists £5% < {}, £ + {X°}.
3. (Iterative part) Start a new iteration:

(a) Set k < k+ 1 and [, < length of L.
(b) Pick all boxes X;), i = 1,2,...,; from £ and delete their entries from L.
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4. Test phase using an interval zero exclusion test:

(a) Evaluate F (X;)),i = 1,2, ..., 1.
(b) (Interval zero exclusion test): IF 0 ¢ F (X(;) THEN discard X3, i = 1,2, ..., ;.

(c) If no more X ;) remain, go to step 8.
5. Solution set:

(a) For each remaining X;), evaluate w (X(i)) and w (Gmag (X(Z-))). IF w (X(i)) < €y
and w (Gmag (X(i))) < €48 THEN enter the pair (X(i), — Gmag (X(i))) in £

and discard X;y from further processing.

(b) If no more X ;) remain, go to step 8.

6. Subdivision phase:

For each remaining box X(;), find a coordinate direction k; parallel to which X ;) has
an edge of greater length. Subdivide X;) in direction k; getting subboxes X%Z.) and X%i)

such that X;) = X%i) U X%i). Enter the subboxes X%i) U X%Z.) in L.

7. End current iteration: Return to step 3.

8. (Termination part) Construct the sets

Pafe U Q0 Gfe U~ G (X))
Q(i)e[’sol X(i)E[,s"l

output nglg and g;‘nlg, and EXIT.

END Algorithm.

Remark 3.1 We require the continuity of the magnitude and phase functions in w in or-
der that the natural inclusion functions Greg and Gppase be continuous. The latter property
ensures that the widths of the intervals evaluations Gy (X) and F (X) tend to zero as the

width of X tends to zero, so that in turn, convergence and arbitrary accuracy can be achieved.

Remark 3.2 Suppose that a phase crossover frequency ezists in a box 2. If this box is used
as an enclosure of the phase crossover frequency, then clearly, the error can be no greater

than the width of the bozx itself. Therefore, we use the domain accuracy tolerance condition
w(X) < gy (3.3)

where, €., is a prescribed domain tolerance. Moreover, the magnitude function gma.g may be
flat, with unknown flatness, near a phase crossover frequency. To deal with such cases, we use

the range accuracy tolerance condition on the magnitude (and hence, on the gain margin):

w (Grag (X)) < €4B (3.4)
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where, €4 1s a prescribed range tolerance. A box is accepted as a solution box only when both

the domain and range accuracy tolerances are satisfied for that bozx.

3.3 Fixed parameters

The problem of computation of gain margins and crossover frequencies for fized parameter
systems is a problem of interest in its own right, for instance, in classical like approaches to
control system design. In this case, the parameter box Q° reduces to a fixed real parameter
vector q, as there is no uncertainty. The algorithm for computing the gain margins for fized
parameter systems can then obtained from the above algorithm for uncertain parameter

systems, by making the following simplifications.

e In step 2a: Replace the uncertain parameter vector Q° in X° = (QO, QO) with the fixed

parameter vector q°.

e In step 6: For fixed parameter case, the only interval quantity in the definition of box

X(i) 18 £2(;), so subdivision needs to be done only for ;. It is also not

e In step 2a: Replace the uncertain parameter vector Q in X° = (QO, QO) with the fixed

parameter vector q'.

e In step 6: For fixed parameter case, the only interval quantity in the definition of box
X ;) is £2(;), so subdivision needs to be done only for ;. It is also not required to find
the subdivision direction, since €2(;) is unidimensional. Thus, the current statement in

this step can be replaced with the following one:

For each remaining box X(;), subdivide £2(; to get subboxes X%Z.) and X%z.) such that

X = X%Z.) U X%Z.). Enter the subboxes X%i) U X%Z.) in L.

3.4 Properties

We next investigate the various properties of the proposed algorithm for robust gain margin.
The properties of the proposed algorithm for the system with fized parameters readily follow
as a special case, and hence are not given here.

First, we give a result that justifies the interval zero exclusion test in step 4b in the

algorithm.

Lemma 3.1 Let X €1 (XO) be a subboz, where X° is as in step 2a of the algorithm. If 0 ¢
F(X) then X can be discarded in the algorithm.

Proof. By inclusion property in Theorem I.1

{f(w,q):weR,qeQ}=:f(2,Q) CF(,Q)
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Since, by hypothesis 0 ¢ F(X), we have 0 ¢ F(X) = 0 ¢ f(X). Therefore, X is irrelevant in
the search for phase crossover frequency points, and can be discarded.
The following result justifies step 8 to determine the non-existence of phase crossover

frequency, in which case, the gain margin is infinite.
Lemma 3.2 If £5% = () in step 8 of the algorithm, then no phase crossover frequency exists.

Proof. At any iteration, a part or the whole of a box X is discarded only in the interval zero
exclusion test Step 4b. By Lemma, 3.1, no crossover frequency points are lost in the discarding
process of this step. Therefore, at any iteration, all (if any) phase crossover frequency points
are either in list £ or £%°, but are never lost. When the algorithm reaches Step 8, the list
L is empty, so all (if any) crossover frequencies must now be in £%. However, if £ is also
empty at this step, then, clearly, no crossover frequencies exist. Hence, the gain margin can
be set to infinity. W

3.4.1 Convergence

To study the convergence properties of the proposed algorithm, we assume that the tolerance
criterion can never be satisfied, i.e., €, 4 = 0, and that list sizes are not a limitation. Fur-
ther, to avoid trivial cases, we assume in this subsection that at least one crossover frequency

exists in QY.

Definition 3.1 Let L, denote the list L present at the start of kth iteration of the algorithm,
and denote the ith box of this list as Xy;. Define the unions

U= J % V= U QU W= U Xu (3.5)

Qpi€Ly Qri €L Xk €L

Note that U = QO,Vl = QO,Wl = X0,
Lemma 3.3 The unions Uy, Vi, Wy are compact sets at any k.

Proof. At a given k, Uy, is a collection of all boxes €2; present in list L. Clearly, each box
Q4; is closed and bounded, i.e., is compact. As the finite union of compact sets is compact,
Uy, is compact. Similarly for Vi, W,. R

oo
Lemma 3.4 Pcf - n Uk
k=1

Proof. It is sufficient to show that P.; C U}, for any k. The assertion of the lemma then
follows. Consider the algorithm with k& = 1. Since, U; = Q°, we have Py € U;. By Lemma
3.1, the discarding process using the interval zero exclusion test in step 4b does not delete any
point in Q° that belongs to P, - Moreover, none of these points can be lost in the subsequent

subdivision step 6, because every box is replaced by both its subboxes in the list £. Thus, at
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the end of first iteration, all the points in P are retained in Uy, i.e., P,y C Uz. By induction

o
on k, we have Py C Uy for any k = Py C (| Uy,. B
k=1

Lemma 3.5 The sequence {Uy}r., has the property
Uy D Us D Us...

Proof. In the first iteration (k = 1) of the algorithm, the box X is picked from the list L,
and then is subdivided; the boxes resulting from the subdivision then replace X° in £;, giving
Ly (the state of the list at k¥ = 2). Hence, Us C U;. The proof is completed by induction on
k. m

Lemma 3.6 Let wy denote the mazimum width of the boxes X, of the kth list L computed
by the algorithm. Then,
w =0 ask >

Proof. Follows from the lemma in Ratschek [59]. W

Lemma 3.7
w(F(X)) =20 asw(X)—=0

Proof. By Theorem 1.3, all natural inclusion functions have first order convergence. So,

there is a constant « > 0 independent of the box X such that
w(F(X)) —w(f(X)) < a w(X) (3.6)

or

w(F(X)) —w(f(X)) = 0 as w(X) = 0 (3.7)

Since, by Assumption 3.1, f is continuous in x, w(f(X)) — 0 as w(X) — 0. Together with
(3.7) this leads to the assertion of the lemma. H

o0
Lemma 3.8 ﬂ Uk - Pcf.

k=1
Proof. Let x =(w,q) € Wk, for all k. Note that this in turn assumes that the corresponding
w belongs to Uy, for all k. We first show that f (x) = 0. Now, since by hypothesis x € W}, for
all k, it follows that for any k, an item X'(k) must occur in the list £ such that x € X'(k).
That is,

X € X,(k) € Ly, for all k (3.8)

By Lemma 3.6,
w(X{y) =0 ask— oo (3.9)

o
From (3.8), (3.9) and Definition 1.8 it follows that the se(;[uence{X'(k)}IF1 tends to x :

X'(k) —x ask— o0 (3.10)
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Since f is continuous by Assumption 3.1, this gives

f(X'(k)) - f(x) ask— o0
By the inclusion property in Theorem 1.1,

f (%) € F(X[y) € F(X},) for any k (3.11)

Moreover, from (3.9) and Lemma 3.7

w (F(Xy)) =0 ask— oo (3.12)
From (3.11), (3.12), and Definition 1.8

F ( '(k)) = f(x) ask— o0 (3.13)

Further, since X'(k) is not yet discarded

0 € F(X{y) foranyk (3.14)
From (3.12), (3.14)
F (X’(k)) 50 ask — oo (3.15)
Comparing (3.13) and (3.15) gives
fx)=0

or w € P.s. That is, we have shown that if w belongs to Uy, for all k then w belongs to the
phase crossover frequency enclosure set P.;. This completes the proof. W

The following theorem summarizes the convergence property of the proposed algorithm.
Theorem 3.9 The following hold:

1. The collection of solution bozes €2 generated in the list L of the algorithm converges to

the set Py of all phase crossover frequencies.
2. The above convergence is such that the collection always encloses Py at any iteration.

3. The collection of magnitude bozes (—Gpqq (X)) generated in the list L of the algorithm
converges to set G, of all gain margins. Moreover, this convergence is such that the

collection always encloses G, at any iteration.
Proof. of part 1: By Lemma 3.5, the unions i}, form a chain
Uy DUy D Us... (3.16)

By Lemmas 3.4 and 3.8
o0
Per = [ Us (3.17)
k=1
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Now, (3.16) and (3.17) together imply that the unions U}, converge to Py.
of part 2: follows from Lemma 3.4 which implies that P.; C U}, for any k.
of part 3: Follows from the results of parts 1, 2, and the assumed continuity of g,.g in w

and q as given by Assumption 3.1. H

3.4.2 Termination

We show that, for a prescribed accuracy, the proposed algorithm terminates in a finite number
of iterations. We also give an upper bound on the number of iterations required by the

proposed algorithm.

Theorem 3.10 The algorithm terminates in at most (n+ 1)~y iterations, where v is given

e () (22

where, « is a (Lipschitz) constant for the function gmeg in equation (I.1) in the Appendiz.

Further, the mazimum total number of subdivisions is given by 2(27 — 1).

Proof. First, note that as X is a (n + 1) — dim box, after (n + v) successive subdivisions,
where v is some positive integer, we obtain w(X) < w(X%)/2¥. Thus, in at most (n + 1)+’
successive subdivisions, where 7' := log, (w(X%)/e,) + 1, we obtain w(X) < &, and the
domain (crossover frequency) accuracy tolerance is satisfied for that subbox.

Next, by Theorem 1.3, all natural inclusion functions have first order convergence. So, there

is a constant « > 0 independent of the box X such that
W (Gmag(X)) = w(Gmag (X)) < aw(X)

As widths of intervals are never negative, w(gmag (X)) > 0. Therefore,
w(X) < gqp/a = W (Gmag(X)) < €aB

and the range (gain margin) accuracy condition is satisfied for that subbox. Proceeding as
above, we find that in at most (n + 1) " successive subdivisions, where v := log, (o - w(X°)/eqp5)+
1, the range accuracy condition is satisfied for that subbox.

The processing of a subbox is completed when both the accuracy conditions are satisfied,
and from above arguments, this is achieved in at most (n + 1) 7y successive subdivisions, where
v = max (7/,7"). The first part of the theorem is therefore proved.

To prove the second part of the theorem, note that the algorithm produces a binary tree
whose nodes are the regions obtained through successive subdivisions. The root of this tree
is the node corresponding to the initial region X°. The maximum total number of iterations
is equal to the depth v of this tree, where v is as given above. Further, the maximum total
number of subdivisions occurs for a balanced tree, and from [15] equals 2 - (27 — 1). This

completes the proof. W
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Theorem 3.11 The following hold:
1. Pop CPYE
2. Gm C Gin®

Proof. of part 1: Let £, denote the list £%° at the end of the (k — 1)th iteration of the

algorithm. Proceeding as in the proof of Lemma 3.4, we can show that

Py C U Q; U U, at any iteration k
Qieﬁi"_ll

By Theorem 3.10, for given €., 45 > 0, the algorithm terminates at a finite iteration number,
denoted here as 8. Now, when the algorithm terminates at iteration k = (3, the list £ is empty.
Hence,
Py C U Q, = nglg
Q.ecy

of part 2: Follows from the inclusion property in Theorem 1.1 and the result of part 1. W

3.4.3 Reliability

We say that a computed crossover frequency set resp. gain margin set is reliable, if it has been
computed taking into account all kinds of computational errors, such as roundoff, truncation,
and approximation errors. To account for all kinds of computational errors, machine interval
arithmetic (MIA) [38] can be used. MIA can provide mathematically rigorous results from
floating point operations on computers, see [48].

The below theorem shows the reliability of the results computed by a MIA implementation
of the proposed algorithm.

Theorem 3.12 (Reliability ) Let P8 and G*'® . denote the set of all crossover fre-

cf,mia m,mia
quencies and the set of all gain margins as computed by a MIA implementation of the algo-
rithm. Then,
Per CPof® CPotbiai Gm COMECGRE

cf,mia’

Proof. Follows from Theorem 3.11 and the inclusion property of MIA given in [38]. W

3.5 Computing phase margins

The set G, of gain crossover frequencies and set Py, of phase margins over Q are defined as

gcf = {w : gmag(waq) =0dB,q € Q}a P = {f (w,q) TwE gcfa a € Q}
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To reliably compute G.f and Py, to a prescribed accuracy, we can use the above proposed
algorithm with obvious changes. Then, all the results of the previous section carry over to

this case. The details are omitted.

3.6 Illustrative examples

First, in section 3.6.1 we demonstrate the proposed algorithm on two nonrational examples
with fixed parameters. Then, in section 3.6.2 we demonstrate the proposed algorithm to com-
pute the robust margins on a nonrational example with nonlinear parametric dependencies.
Note that existing techniques are not readily applicable to compute the margins and crossover

frequencies in these nonrational examples, unless some rational approximation is used.

3.6.1 Fized parameters

Example 3.1 Consider a multimodal plant typically found in nuclear reactor control systems

[14]:

q1

14 qos — %) (1+ Q4S)2

9(s,q) =
(

where, g1 = 16.11,q9 = 0.24,q3 = 1.2, ¢4 = 5,95 = 9.3. Suppose a proportional controller with
a gain of 6 dB is used in a negative unity feedback structure to control this plant. We wish
to compute (all) the gain margins, phase margins, and crossover frequencies to a prescribed

accuracy of 0.01.

We use a PC Pentium IIT 650 MHz 256 MB RAM machine for all computations.

Conventional gridding approach: We first compute the required quantities using the
widely used control systems toolbox of MATLAB [46], [27]. A routine allmargin is available
in this toolbox for computing all margins, crossover frequencies, etc. However, the allmargin
routine can deal only with rational transfer functions. For nonrational transfer functions, a
good rational approximation has to be found and supplied to this routine.

First order Pade approzimation: We approximate the time delay term with the well known
first order Pade approximation [16], and apply the allmargin routine to the resulting rational
transfer function. The obtained results are given in column 3 of Table 3.1. The allmargin
routine finds one gain and one phase crossover frequency, and the gain margin is found to
be ~ 13 dB while the phase margin is ~ 26 deg. The conclusion based on these results is
that the feedback system is stable for the given proportional controller gain of 6 dB, with
adequate stability margins.

Second order Pade approzimation: We next use a second order Pade approximation for the
time delay term, and apply the allmarginroutine. The obtained results are given in column 4 of

Table 3.1. The allmargin routine finds again one gain and one phase crossover frequency, and
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the gain margin is found to be ~ —6.8 dB while the phase margin is ~ —23 deg. The conclusion
based on these results is that the feedback system is unstable for the given proportional
controller gain of 6 dB.

Proposed algorithm: We next implement a machine interval arithmetic version of the
proposed algorithm using the interval arithmetic toolbox INTLAB [61] of MATLAB. Execut-
ing the algorithm, we obtain the initial search box for crossover frequencies as Q° = [0.01, 10]
rads/sec, and all margins and crossover frequencies are obtained in 36 iterations and 1 second.
The results of the proposed algorithm are shown in the last column of Table 3.1.

The proposed algorithm finds 5 phase crossover frequencies and 3 gain crossover frequen-
cies, along with the corresponding gain and phase margins. Some of these gain margins are
negative, with the worst case one being about —22 dB. Likewise, some phase margins are also
negative, with the worst case one being about —29deg. A gain decrease of ~ 0.58 dB or a
gain increase of ~ 5.39 dB leads to system instability. The conclusion based on these results
is that the feedback system is conditionally stable.

The controller gain needs to be adjusted to get absolute stability with satisfactory margins.
For instance, a decrease of the controller gain by about 29.4 dB gives absolute stability, with
satisfactory gain and phase margins of 5 dB and 60 deg.

Summary: The findings of the proposed algorithm are verified through intense gridding
and careful analysis of the magnitude and phase plots around the obtained crossover fre-
quencies, and found to be correct. That is, the closed loop system is actually conditionally
stable, in contrast to the findings of the allmargin routine based on first and second order

Pade approximations to the time delay term.
Example 3.2 The heat exzchanger system [56]:

q1(1 — goe™B%)
(gas+1)(gss + 1)

9(s,9) =

where, g1 = 1, go = 0.5,q3 = 10, q4 = 40 and g5 = 15. Suppose a proportional controller with
a gain of 74 dB is used in a negative unity feedback structure to control this plant. We wish
to compute (all) the gain margins, phase margins, and crossover frequencies to a prescribed

accuracy of 0.01.

Conventional gridding approach: We use first and second order Pade approximations
to the time delay term, and apply the allmargin routine to the resulting transfer functions.

First order Pade approximation: With a first order Pade approximation, the allmargin
routine finds one gain and no phase crossover frequency, and the gain margin is found to be
oo dB while the phase margin is about 4 deg. The conclusion is that the feedback system is
stable for the given proportional controller gain of 74 dB, but with a poor phase margin.

Second order Pade approzimation: With a second order Pade approximation, the allmargin

routine finds one gain crossover and one phase crossover frequency. The gain margin is about
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—35 dB while the phase margin is about —21 deg. The conclusion is that the feedback system
is unstable for the given proportional controller gain.

Proposed algorithm: We next execute the proposed algorithm. The proposed algorithm
takes 32 iterations and 0.5 seconds to compute the required quantities to the prescribed
accuracy. It finds 5 gain crossover frequencies in the range [2.4, 3.5] rads/sec. Some of the phase
margins are negative, with the worst case one being about —26 deg. It also finds 31 phase
crossover frequencies in the range [0.4,9.74] rads/sec. Some gain margins are also negative,
with the worst case one being about —37 dB. Clearly, the feedback system is conditionally
stable.

Summary: As before, we verify the findings of the proposed algorithm through intense
gridding and careful analysis of the magnitude and phase plots around the obtained crossover
frequencies, and found them to be correct. That is, the closed loop system is actually condi-
tionally stable, in contrast to the findings of the allmargin routine based on first and second

order Pade approximations to the delay term.

3.6.2 Uncertain parameters

Example 3.3 Consider the same multimodal plant given in Example 3.1

QN
14 gos — 16;2531) (1+ Q4S)2

9(s,q) =
(

but this time with parametric uncertainty
g1 = 16.11, g2 € [0.22,0.26], g3 € [1.18,1.22],q4 = 5, g5 € [9.2,9.4]

Suppose a proportional controller with a gain of 6 dB is used in a negative unity feedback
structure to control this plant. We wish to compute (all) gain margins, phase margins, gain
crossover frequencies, and phase crossover frequencies over the given uncertainty range of the

plant parameters.

Note that existing techniques are not readily applicable to compute the robust margins
and crossover frequencies for this example, due to its nonrational nature.

Conventional gridding approach: We first generate the family of fixed transfer functions
by gridding the parameter box Q using a grid of (8 x8x8) points. We then apply the allmargin
routine in [27] to each transfer function in this family. However, the allmargin routine is
applicable only to rational transfer functions. To handle nonrational transfer functions, some
rational approximation is to be found and supplied to the routine.

First order Pade approzimation: We approximate the time delay term with the well known
first order Pade approximation [16], and apply the allmargin routine to the resulting ra-
tional transfer function. The obtained results are given in column 3 of Table 3.2. The all-

marginroutine finds one gain and one phase crossover frequency for each member transfer
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function, and the robust gain margin is found to be ~ [12,14] dB while the robust phase
margin is ~ [26,27]deg . The conclusion based on these results is that the feedback system
is robustly stable for the given proportional controller gain of 6 dB, with adequate stability
margins over the given uncertainty range. See also the Nichols plot in Fig. 3.1.

Second order Pade approzimation: We next use a second order Pade approximation for the
time delay term, and apply the allmargin routine. The obtained results are given in column
4 of Table 3.2. The allmarginroutine finds again one gain and one phase crossover frequency
for each member transfer function, and the robust gain margin is found to be ~ [-7, —6] dB,
while the robust phase margin is ~ [—25, —21] deg. The conclusion based on these results is
that the uncertain feedback system is unstable for the given proportional controller gain of 6
dB over the given uncertainty range. See also the Nichols plot in Fig. 3.2.

Proposed algorithm: We next implement a machine interval arithmetic version of the
proposed algorithm using the interval arithmetic toolbox INTLAB [61] of MATLAB. The
prescribed accuracy tolerances are chosen as 0.001. Executing the algorithm, we obtain the
initial search box for crossover frequencies as Q2 = [0.1,10] rads/sec, and all robust margins
and crossover frequencies are computed in 48 iterations and 3 minutes. The results of the
proposed algorithm are shown in the last column of Table 3.2.

The proposed algorithm finds 5 intervals of phase crossover frequencies and 3 intervals of
gain crossover frequencies, along with the corresponding intervals of gain and phase margins.
Some of these gain margins are negative, with the worst case one being about —27 dB.
Likewise, some phase margins are also negative, with the worst case one being about —31deg.
We conclude that the uncertain feedback system is conditionally stable.

Summary: The results of the proposed algorithm are verified through intense gridding
and careful analysis of the Nichols plots around the obtained crossover frequencies shown in
Fig. 3.3 and found to be correct. That is, the closed loop system actually shows multiple sta-
bility margin bands. In contrast, with the conventional gridding approach based on the Pade
approximation and the allmargin routine, the computed results are considerably erroneous,

and lead to incorrect conclusions about the system stability.

3.7 Conclusions

We have presented an algorithm to compute the robust margins and crossover frequencies for
a very general class of transfer functions and parametric dependencies, where the magnitude
and phase functions need to be only bounded and continuous in frequency and parameters,
and the crossover frequencies be bounded. We emphasize the main features of the proposed
algorithm: its provision of guarantees that the computed robust margins and crossover fre-
quencies are reliable and accurate, that all margins and crossover frequencies are found, and

that, for a prescribed accuracy, all the margins and crossover frequencies are computed in a
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finite number of iterations. The merits of the proposed algorithm over existing methods have

been shown through several practical examples.
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FIGURE 3.1. Nichols plot of the frequency response of the uncertain nuclear reactor system in Example
3.3. The frequency responses of the uncertain system are obtained using Pade approximation of first
order. A grid of (8 x 8 x 8) is set up for the parameter box Q.
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FIGURE 3.2. Nichols plot of the frequency response of the uncertain nuclear reactor system in Example
3.3. The frequency responses of the uncertain system are obtained using Pade approximation of second
order. A grid of (8 x 8 x 8) is set up for the parameter box Q.
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FIGURE 3.3. Nichols plots for the uncertain nuclear reactor system in Example 3.3, obtained using

intense gridding of the parameter space.



50 3. Gain and phase margins

TABLE 3.1. Performance comparison of the proposed algorithm with that of allmargin routine of

MATLAB in Example 3.1.

Item

allmargin routine of MATLAB

Using First Order

Pade Approx.

Using Second order

Pade Approx.

Proposed
Algorithm

[0.6074, 0.6074
[0.8354, 0.8355
[1.2198,1.2198
[1.5719,1.5720
[1.8234,1.8234]

]
]
]
]

Gm

13.05

[—22.4225, —22.4184]
[—0.5829, —0.5813]
[—4.9237, —4.9208]

[9.4110,9.4118]
[5.3924, 5.3943

gcf

0.8569

[0.8546,0.8549

[1.2931,1.2932

26.4611

—22.8089

]
]
[1.0834, 1.0836]
]
]

[3.7046, 3.7866
[40.1203, 40.1680)]
[—29.3510, —29.3286]
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TABLE 3.2. Performance comparison of the proposed algorithm with that of allmargin routine of
MATLAB in Example 3.3.

No.

Item

MATLAB'’s allmargin routine

First order

Pade approx.

Second order

Pade approx.

Proposed
Algorithm

[2.0767,2.2931]

[1.1046, 1.1608]

[0.6003,0.6143
[0.8250, 0.8463
[1.2075,1.2324
[1.5526,1.5919
[1.8051, 1.8421]

]
]
]
]

Gm

[12.3338, 13.8343]

[—7.2973, —6.2670]

[—26.7275, —20.1984]
[—0.8953, —0.2647]
[—6.1979, —3.8678]

[9.1494, 9.6747
[4.6213, 6.0769)

gcf

[0.8597,0.8641]

[1.3915, 1.4275]

[0.8498, 0.8596]
[1.0607, 1.1067]

[25.6709,27.2518]

[—24.8456, —20.6741]

[1.2794,1.3073]
[1.7230, 5.8824]
[38.7525, 41.6816]
[—30.9688, —27.2496]
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4

Spectral sets - polytopic case

4.1 Introduction

Consider a polytopic family of real nth order polynomials {p(z,q),q € Q°} where, z € C is
the complex variable, q € R” is a vector of system parameters occurring affine linearly in the

coefficients of polynomial p, and Q° C R” is a bounding box for q given as
Q':={qec®r" :q; <q; <q;, whereg,,g; €R, i =1,2,...,n}

For this polytope of polynomials, we address the problem of computing the spectral set
defined as
S:={z€C:p(z,q) =0,for some q € Q°}

The spectral set is of considerable interest, for example, in robustness analysis of control
systems having real parametric uncertainty, see [8]. As mentioned in section 1.1.3, Barmish
and Tempo [4] and Cerone [12] have recently proposed techniques to compute S for a polytope
of polynomials. A feature of these techniques is that they involve only a 2 — dim gridding of
a bounded subset of C rather than a n — dim gridding of the parameter box Q. The feature
is attractive as it circumvents a potential combinatoric explosion in computations with an
increase in the number of parameters.

In this chapter, we present a novel algorithm to compute the spectral set S of a polytope
of polynomials. We develop the proposed algorithm using tools of interval analysis [48]. The
proposed algorithm retains the attractive feature of requiring subdivision of only a 2 — dim
bounded subset of C instead of the n — dim box Q. In addition, it has several important

advantages over existing techniques:

1. An important requirement from a robust stability analysis and synthesis viewpoint

is that no actual points should be absent in the computed spectral set. The existing
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techniques are based on gridding, and a well known drawback of all gridding based
techniques is that they compute underbounds of the actual sets, because of the very
nature of the grid process. Therefore, with existing methods potentially critical points

could be absent in the computed spectral sets.

On the other hand, the proposed algorithm guarantees that the computed spectral set
always encloses the actual set, and moreover, this is the case irrespective of the accuracy

prescribed, see Theorem 4.15 below.

2. Existing techniques lack the ability to compute spectral sets to a prescribed accuracy.

In particular,

(a) It is a priori unknown how fine the user selected grid must be, in order to achieve

a prescribed accuracy, and

(b) It is a posteriori unknown how accurate is the computed set, for a selected fineness
of the grid.

In contrast, the proposed algorithm can compute the spectral set to arbitrary accuracy,

see Theorem 4.12 below.

3. The computational complexity of the existing techniques is O (nz), whereas with the

proposed algorithm it is of O (n), see Theorem 4.16 below.

4. Existing techniques do not provide any guarantee on the reliability (i.e., trustworthi-
ness) of the computed results in the face of various computational errors. The proposed
algorithm, when implemented on an interval arithmetic compiler, computes spectral

sets that are reliable despite all kinds of computational errors, see Theorem 4.17 below.

5. For a given accuracy, the proposed algorithm computes the spectral set in a finite
number of iterations. Moreover, an upper bound on the number of iterations required

by the proposed algorithm can be given, see Theorem 4.14 below.

The rest of this chapter is organized as follows. In section 4.2, we present the proposed
algorithm for computing the spectral set of a polytope of polynomials. In section 4.3, we
study the theoretical and computational properties of the proposed algorithm. In section 4.4,
we present a few illustrative examples taken from the literature. Lastly in section 4.5, we give

the conclusions of the chapter.
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4.2 Proposed algorithm

4.2.1 Initial search box

Several results are available in the literature to find an initial region that contains all roots of
a given polynomial. The result of Henrici in [29] states that all roots of a polynomial p(z, q)

are contained in the disk with center at the origin and radius

1
Anfk k
An

7
T, = 2 max
1<k<n

where, A is the real vector of polynomial coefficients. It readily follows from Theorem I.1 that

all the roots of the family are contained in the disk with center at the origin and radius

1
3

Aﬂ—k
Ay

rp = 2 max
1<k<n

where, A is the corresponding vector of interval coefficients. The spectral set S is therefore
enclosed by the above described disk, which we call as the interval Henrici disk. For the
purpose of interval computations, however, it is convenient to choose a box like initial region.

An initial box Z° which encloses the interval Henrici disk is clearly

70 := ([~rn, 7], [~7hs7h])

Further, since the coefficients of p are assumed to be real, any complex roots of p must occur
as conjugate pairs. We may therefore restrict the initial search box to enclose the upper half

of interval Henrici disk, so that

Z°= ([—7h,74],[0,71])

We shall assume in the sequel that the proposed algorithm is applied to compute the spectral
set with this restricted Z°, and that the rest of the spectral set containing any roots lying in

the lower half of the Henrici disk is subsequently obtained using complex conjugacy.

4.2.2  Algorithm

In the proposed algorithm, the given polynomial p is represented in the Horner’s form, see,
for instance, [15]. The evaluation of the corresponding natural inclusion function P is done
using complex interval arithmetic. For a thorough treatment of complex interval arithmetic,
see [1].

The proposed algorithm is essentially a binary search algorithm based on a geometrical
subdivision process and a zero exclusion test. Starting with an initial box Z° that is guaran-
teed to enclose the actual spectral set S, the proposed algorithm produces subboxes through
successive subdivisions of Z°, such that the subboxes are disjoint, each point of S is in one

of the subboxes, and no point of § is in more than one subbox.
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The search process in the proposed algorithm is speeded up by concurrently processing all
the subboxes present in the given iteration. Concurrent processing is possible through the use
of vectorized interval operations for function evaluations, subdivisions, width checks, etc., see
[51] for details.

We next present the algorithm.

Algorithm (Spectral Set Computation Algorithm)

Input: The Horner’s form expression for the polynomial p(z,q), the parameter box QU,
and accuracy tolerances €,, €, for the domain and range (see below), respectively.

Output: The computed spectral set S* 5

Note: The algorithm is to be executed in the order given below, except when otherwise
indicated.

BEGIN Algorithm

1. From the Horner’s form expression for p(z,q), find the natural inclusion function

P(z,Q°).

2. (Initialization phase)

(a) Following section 4.2.1 construct an initial search box Z° that encloses the spectral
set S.

(b) Set k <+ 0 and initialize lists £ < {}, £ + {Z°}.
3. (Start a new iteration)

(a) Set k + k+ 1 and I, + length of L.
b) Pick all boxes Z;), ¢ = 1,2, ...,1, from £ and delete their entries from L.
(@)

4. (Test phase)

(a) Using complex interval arithmetic, evaluate P(Z;, Q%),i = 1,2, ..., 1.
(b) IF 0 ¢ P(Z(;), Q%) THEN discard Z;, i = 1,2, ..., ,.

(c) If no more Z;) remain, go to step 8.
5. (Solution set)
(a) For each remaining box Z;), evaluate
ez = w(Z)) (4.1)

epi = w(P(Z, Q%) —w (P (2,Q°%), %€ Zg (4.2)

IF (ep;; < €p) and (e;; < €,) THEN enter Z; in £5°" and discard Z;y from further

processing.
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(b) If no more Z;y remain, go to step 8.

6. (Subdivision phase)

For each remaining box Z;), find a coordinate direction k; parallel to which Z; has
an edge of greater length. Subdivide Z;) in direction k; getting subboxes Z%Z.) and Z%Z.)
such that Zg;) = Z%i) U Z%z.). Enter the subboxes Z%Z.) U Z%i) in L.

7. (End current iteration) Return to step 3.

8. Construct 8™ « U  Z), output S"'® and EXIT.
Z(i)ELSOl

END Algorithm.

We next explain the termination conditions used in the proposed algorithm.

4.2.3 Termination conditions

The processing of the subbox is terminated in step 5 when both the domain and range
accuracy tolerances are satisfied for that subbox. To compute a root of p(z,q) = 0, for some

q € Q°, we use a domain accuracy tolerance of the form
w(Z) < g, (4.3)

where, £, is a prescribed domain tolerance. Moreover, p(z,q) may be flat (with unknown
flatness) near a root, for some q € Q. For such cases, an accuracy tolerance ||p(z,q)| < &,
on the range is appropriate, where ¢, is a prescribed range tolerance. In the interval case, the

corresponding range accuracy tolerance condition is
w(P(Z,Q°)) < & (4.4)

However, as shown in Lemma 4.13 below, a more effective range tolerance condition than
(4.4) is

w(P(Z,Q°)) —w(P(2,Q°) <&, 2€Z (4.5)
Condition (4.5) is more effective as it avoids some unnecessary subdivisions resulting from
(4.4).

4.3 Properties

We next investigate the various properties of the proposed algorithm. First, we give a result

that justifies step 4b in the algorithm.

Lemma 4.1 LetZ € 1 (ZO) be a subboz, where Z° is as in step 2a of the algorithm. If 0 ¢
P(Z,Q°) then Z can be discarded in the algorithm.
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Proof. By hypothesis 0 ¢ P(Z, Q). By inclusion property in Theorem I.1

{p(2,q) : z € Z,q € Q°} =: p(Z,Q°) C P(Z,Q°)

Therefore, 0 ¢ P(Z,Q%) = 0 ¢ p(Z, Q%) = ZNS = ). Since Z does not contain any points
of §, it can be discarded. W

Lemma 4.2 Let z € Z. Then, P(z,Q%) = p(z, Q).

Proof. In the expression for p(z,q), the variable q occurs affine linearly. That is, each
variable q; occurs only once in the polynomial expression. Therefore, by a result of Moore
[48], the interval evaluation of P(z, Q°) at any point z gives the range of p(z,q) at point z
as q varies over Q". That is, P(z,Q") = p(z,Q°%). W

Lemma 4.3 Let z € Z. If 0 € P(2,Q°) then z € S.

Proof. By Lemma 4.2, P(z, Q%) = p(z, Q"). Therefore, 0 € P(z,Q°) = 0 € p(2,Q°) = z €
S. n

4.8.1 Convergence

To study the convergence properties of the proposed algorithm, we assume that the tolerance
criterion can never be satisfied (i.e., €p,e, = 0). We also assume that list sizes are not a

limitation.

Definition 4.1 Let L denote the list L present at the start of kth iteration of the algorithm,
and denote the ith box of this list as Zy;. Define the union

Uy = U Zy; (4.6)
Zyi€Ly,

Note that U = Z°.

Lemma 4.4 Let Uy be as in (4.6). Then,
(e o]
SC(\th
k=1

Proof. Similar to the proof of Lemma 3.4. B
Lemma 4.5 S is a compact set in C.

Proof. The box QU is closed and bounded, i.e., it is compact. The roots of p are continuous
on QC. As the image of a continuous mapping on a compact set is compact, so the root set

is compact, i.e. S is compact. H
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o

Lemma 4.6 The union Uy is a non-empty compact set at any k. Further, (| Uy is a non-
k=1

empty set.

Proof. The first part of the Lemma follows from lemma 3.3. We prove the second part.
From the proof of Lemma 4.4, Uy, is non-empty. Further, since S is non-empty, by Lemma

o0
4.4, (N U is non-empty. W
k=1

Lemma 4.7 The sequence {Uy}r-, has the property
Uy DUy D Us...

Proof. In the first iteration (k = 1) of the algorithm, the box Z° (which is the same as
U,) is picked from the list £, checked for the zero enclosure and widths, and is subdivided
into two subboxes. The boxes resulting from the subdivision then replace Z° in £, giving
Lo (the state of the list at £k = 2). Hence, Uy = U;. In the kth iteration of the algorithm,
the boxes Zy; (whose union is Uy) are picked from Ly, (some) irrelevant boxes discarded in
Step 4b, and the remaining are subdivided further in Step 6. The subboxes resulting from the
subdivision process then form the union Uy 1. Hence, U1 C Ug. The proof is now completed

by induction on k. W

Lemma 4.8 Let wy denote the mazimum width of the bozes Z;, of the kth list Ly, generated
by the algorithm. Then,
wp — 0 as k — oo

Proof. As in Lemma 3.6, the proof follows from the Lemma of Ratschek [59]. W
Lemma 4.9 Let z € Z. Then,
w(P(Z,Q°)) —w(p(Z, Q%) = 0, asw(Z) =0

Proof. By hypothesis, z € Z and w(Z) — 0. By Definition 1.8 this implies that Z — z as

w(Z) — 0. As p is continuous in z, this in turn implies
p(Z,Q°%) = p(2,Q°) as w(Z) — 0 (4.7)

By Theorem 1.3, all natural inclusion functions have first order convergence. So, there is a

constant a > 0 independent of the box Z such that

w(P(Z,Q%) — w(p(Z, Q")) < a w(Z) (4.8)

or

w(P(Z, Q%) — w(p(Z, Q%) — 0 as w(Z) — 0

From (4.7),
w(P(Z, Q%) —w(i(z,Q’)) — 0 as w(Z) — 0

which is the assertion of this lemma. H
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o0
Lemma 4.10 (U C S
k=1

Proof. Let z € U, for all k. We are to show that z € S. Since z € U, for all k, it follows
first that for any k, an item Zj must occur in the list £, such that z € Zj. That is,

2 €2y €Ly, forallk (4.9)

By Lemma 4.8
w(Zy) — 0 as k — oo (4.10)

From (4.9), (4.10) and Lemma 4.9
w(P(Z}, Q%)) — w(p(z,Q%)) = 0 as k — oo (4.11)
By the inclusion property in Theorem 1.1
p(2,Q°) C P(Z;, Q") for any k (4.12)
From (4.11), (4.12) and Definition 1.8
P(Z},,Q°%) — p(z,Q°) as k — oo (4.13)
Further, as Zj, is not yet discarded in the algorithm
0 € P(Z,,Q°) for any k (4.14)

From (4.9), (4.13) and (4.14)
0 € p(2,Q°) (4.15)

As p is continuous in q

0 € p(z,Q% = Isome q € Q’ s.t. p(z,q) =0
That is, z € S. This completes the proof. B
Lemma 4.11 d(U,S) — 0 as k — oo.

Proof. By Lemma 4.7, the unions U form a chain

Uy DUy O Us... (4.16)

From Lemmas 4.4 and 4.10 -
S= (U (4.17)

k=1

Now, (4.16) and (4.17) together imply that the unions Uy converge to S. By Definition 1.8
this means that d(U,S) — 0 as k — oo. This proves the lemma. W

The following theorem summarizes the convergence property of the proposed algorithm.
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Theorem 4.12 The collection of solution boxes Z generated in the list L of the algorithm
converges to the spectral set S. Moreover, this convergence is such that the collection always

encloses S at any iteration.

Proof. Let A, B be any two non-empty compact sets. From Definition 1.7, d(.A, B) = 0 only
if A= B. From Lemma 4.11, U}, converges to S via the Hausdorff metric d. The second part
of the theorem follows from Lemma 4.4 which implies that S C U, for any k. B

4.3.2  Termination

We first examine the effectiveness of the range tolerance condition.

Lemma 4.13 LetZ € 1 (ZO) and z € Z. Let e, denote the marimum error in estimating

the range of p on Z x Q° using the natural inclusion function P(Z,Q°). Then,
ep <w(P(Z,Q%) —w(p(Z,Q")) < w(P(Z,Q°%) —w(P(z,Q")) <w(P(Z,Q°)  (4.18)

Proof. The proof of the first inequality in (4.18) follows readily from a result of Moore
[48]. We therefore prove only the latter inequalities in (4.18). As z € Z, (2, Q%) C p(Z, Q).
Hence, w(p(z,QP)) < w(p(Z, QP)). Subtract both sides from w(P(Z, Q%)), and use the result
w(P(z, Q%) = w(p(Z, Q%)) of Lemma 4.2 to get

w(P(Z, Q%) —w(p(Z, Q%) < w(P(Z, Q") —w(p(z,Q°)) = w(P(Z,Q°)) — w(P(z Q")
(4.19)
This proves the second inequality in (4.18). To show the last inequality in (4.18), note that

as the width of any interval is always non-negative, w(P(z, Q%)) > 0. Hence,
w(P(Z,Q°)) — w(P(2,Q") < w(P(Z,Q")) (4.20)
This concludes the proof. W

Remark 4.1 We see from Lemma 4.13 that the mazimum error e, in the range can be kept

within a prescribed range tolerance e, by ensuring that
w(P(Z,Q°)) —w(P(2,Q°)) < &

Further, the fact that range tolerance condition (4.5) is more effective than the one in (4.4)
follows from right most inequality in (4.18).

We next show that the proposed algorithm terminates in a finite number of iterations. We

also give an upper bound on the number of iterations required.

Theorem 4.14 The algorithm terminates in at most 2 iterations, where

e (427) (2557
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and where, o is a (Lipschitz) constant given in (4.8). Further, the mazimum total number of

subdivisions is given by 2(27 — 1).

Proof. First, note that Z € C is a 2 — dim box, so that after 2 - v successive subdivisions,
where v is some positive integer, we will obtain w(Z) < w(Z°)/2°. Thus, in at most 2v,
successive subdivisions, where, v, := log, (w(Z%)/e,) + 1, we will have w(Z) < ¢, and the
termination condition on e, in (4.1) will be satisfied.

Next, from Lemma 4.2 and (4.8),

w(P(Z,Q°%)) - w(P(2,Q°) < a- w(Z) (4.21)
whereas the termination condition on e, in (4.2) is
w(P(Z,Q°%)) - w(P(2,Q°%) < & (4.22)

From (4.21) and (4.22), we see that if w(Z) < ¢,/a then the termination condition on e,
is satisfied. Proceeding as above, we find that in at most 2+, successive subdivisions, where
7, = logy (a - w(Z°)/ep) + 1, the termination condition on &, will be satisfied.

The processing of a subbox is completed when both the termination conditions are sat-
isfied. From the above arguments, this is achieved in at most v := max (7Z,fyp) successive
subdivisions.

The algorithm produces a binary tree whose nodes are the regions obtained through suc-
cessive subdivisions. The root of this tree is the initial search box Z°. The maximum total
number of subdivisions occurs for a balanced tree, and from [15] equals 2 - (27 — 1). The
maximum total number of iterations is equal to the depth « of this tree, where « is as given

above. This completes the proof. B

alg

Theorem 4.15 S C S

Proof. Similar to the proof of Theorem 3.11 H

4.3.3 Computational complexity

Theorem 4.16 The number of elementary operations in the algorithm when considering a

single box Z € C is O (n), where n is the degree of the polynomial p.

Proof. Consider the number of operations required for processing of a single box Z € C in

the various steps of the algorithm:

e In Step 4a, evaluation of Horner’s form of P(Z, Q) requires n complex interval arith-

metic additions and n complex interval arithmetic multiplications, see [15, pg. 778].

e In Step 4b, checking the condition 0 ¢ P(Z, Q") requires at most 2 comparisons.
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e In Step 5, determination of the terms w( ( (Z QO)) requires 4 real subtractions

and 2 comparisons. Evaluation of the term w ( ( ,QO)) requires, firstly, 2n real in-
terval arithmetic operations to evaluate P (z, QO) (using Horner’s form) and then 2
real subtractions plus 1 comparison to find the width. The term e, equals w(Z) so
needs no extra operations, whereas the term e, = w(P(Z, Q%)) — w(P(2, Q")) needs
1 real subtraction. Finally, checking the conditions (e, < ¢p) and (e, < €,) requires 2

comparisons.

e In Step 6, finding a coordinate direction k parallel to which Z has an edge of greater
length requires 2 real subtractions and 1 comparison. Subdividing Z in direction k

getting subboxes Z' and Z? requires 1 real addition and 1 real division.

Thus, Step 4 needs a maximum of 2n complex interval arithmetic operations and 2 com-
parisons, Step 5 needs a total of 2n real interval arithmetic operations, 7 real subtractions,
and 5 comparisons, and Step 6 needs a total of 4 real arithmetic operations and 1 comparison.

Therefore, totally, 2n complex interval arithmetic operations, 2n real interval arithmetic
operations, 11 real arithmetic operations, and 8 comparisons are needed. Clearly, the number

of elementary operations in the algorithm is linear in n. W

4.3.4  Reliability

The below theorem shows the reliability of the spectral results computed by a MIA imple-

mentation of the proposed algorithm.

Theorem 4.17 (Reliability of spectral set) Let S’ & genote the spectral set computed by

mea

a MIA implementation of the algorithm. Then,
Scslsc sl

maa

Proof. Similar to the proof of Theorem 3.12. B

4.4 Tllustrative examples
We demonstrate the proposed algorithm on two examples considered by Cerone [12].
Example 4.1 The polytopic family

P (5,a) = Ao(@) + Ar(@)s + Az2(@)s” + As(@)s” + Aa(q) s*

where, @ = [q1,...,q4], Ai(Q) = (14+¢;), fori =0,...,3 and Ay(q) = (5+q4). Each parameter
gi varies over the interval [—0.85,0.85].
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Example 4.2 The polytopic family

p(s,a) = Xo(@) + M (@)s + Xa(q)s® + ... + Ao(q) s°

where, @ = [q1,.-.,99], Ai(q) = (14+¢;), fori =0,...,8 and Ag(q) = (5+q9). Each parameter

gi varies over the interval [—0.4,0.4].

In Cerone’s algorithm, there is no accuracy parameter which can be prescribed, whereas
in the proposed algorithm, we can specify the domain and range accuracy tolerances. We set
the domain and range accuracy tolerances as €,,&, = 0.01.

We implement a machine interval arithmetic version of the proposed algorithm in INTLAB
[61] on a PC Pentium IIT 650 MHz 256 MB RAM machine.

In Example 4.1, we find the initial box enclosing the interval Henrici disk to be Z° =
[—1.6343,1.6343), while in Example 4.2 it is Z° = [~1.7524,1.7524]2. To compute S*'&(P),
the proposed algorithm takes 23 and 27 iterations, respectively, and the computed spectral
sets are shown in Figs. 4.1 and 4.2.

We observe in both examples that S%!8(P) indeed encloses the spectral sets reported by
Cerone [12]. Moreover, we find it reassuring to see that in both examples S%'8(P) also en-
closes all the roots (computed using roots routine of MATLAB) of approximately 10° fixed
polynomials selected randomly from the respective polytopic family.

We stress that the proposed algorithm guarantees that the computed spectral set is reliable,
and that no actual points would be missing. Further, the proposed algorithm guarantees also
that the spectral set is computed to the prescribed domain and range accuracy tolerances.
Such guarantees are not available with the algorithms of Cerone [12] and Barmish and Tempo
[4]. Therefore, the spectral sets computed by these method are not guaranteed to include all
the points in the actual spectral set, and, moreover, the accuracy of their results remains

unknown.

4.5 Conclusions

We have presented an algorithm to compute the spectral set for the special class of polytopic
polynomials. The only requirement is that polynomial coefficients be continuous in the un-
certain parameters. We recall the main features of the proposed algorithm are its provision
of several guarantees: that the computed spectral set is reliable and accurate, that all actual
spectral points are included in the computed set, and that the spectral set can be computed in
a finite number of iterations for a prescribed accuracy. Further, the computational complexity
of the proposed algorithm is O (n), in contrast to O (n?) for existing algorithms, where n is

the degree of the polynomial.
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FIGURE 4.1. Spectral set of Example 4.1 computed using the proposed algorithm. The domain and
range accuracy tolerances are €.,¢, = 0.01. Only the outer boundary boxes of the computed set are
shown. For comparison, the spectral set of 10° fixed polynomials picked randomly from the polynomial
family are computed using roots routine of MATLAB. These are the inner points shown as light shaded
area in the plot.
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FIGURE 4.2. Spectral set of Example 4.2 computed using the proposed algorithm. The domain and
range accuracy tolerances are €.,¢, = 0.01. Only the outer boundary boxes of the computed set are
shown. For comparison, the spectral set of approximately 10° fixed polynomials picked randomly from
the polynomial family are computed using roots routine of the MATLAB. These are the inner points
shown as light shaded area in the plot.
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Spectral sets - general case

5.1 Introduction

Consider a family of real nth order polynomials {p(z, q),q € QO} where, z € C is the complex
variable, q € R" is a vector of system parameters occurring nonlinearly in the coefficients of

p, and Q° C R” is a bounding box for q given as
Q':={qe®r" ¢, <q; <q;, whereg,,g; €R, i =1,2,...,n}
For this polynomial family, we address the problem of computing the spectral set defined as
S:={z€C:p(z,q) =0, for some q € Q°} (5.1)

As seen in section 1.1.3 and in the previous chapter, the spectral set is of considerable interest
in robustness analysis of linear systems having real parametric uncertainty. However, there
is a lack of techniques in the literature to compute the spectral set for polynomials whose
coefficients have nonlinear dependencies on the parameters q.

In this work, we aim to address this issue by presenting an algorithm to compute the
spectral set S of a family of polynomials with nonlinear parametric dependencies. We develop
the proposed algorithm using tools of interval analysis [48]. The proposed algorithm has

several useful features:

1. The proposed algorithm is applicable to nonlinear parametric dependencies of a very
general class where the polynomial coefficients need to be only continuous in the pa-

rameters.

2. The proposed algorithm guarantees that the computed spectral set contains all points
of the actual spectral set, see Theorem 5.13 below. This guarantee meets an important

requirement in robust stability analysis and synthesis of control systems.
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3. It guarantees that the spectral set is computed to a prescribed accuracy, see Theorem
5.11 below.

4. It computes spectral sets that are reliable despite all kinds of computational errors, see
Theorem 5.14 below.

5. It computes the spectral set in a finite number of iterations, for a prescribed accuracy.
Moreover, an upper bound on the number of algorithmic iterations is given, see Theorem
5.12 below.

The rest of this chapter is organized as follows. In section 5.2, we present the proposed
algorithm for computing the spectral set. In section 5.3, we study the theoretical and com-
putational properties of the proposed algorithm. In section 5.4, we demonstrate the proposed
algorithm on an illustrative example. Lastly, in section 5.5, we give the conclusions of the

chapter.

5.2 Proposed algorithm

Let z:=rel?,  y:=(r,0). Define the functions

fre(,@) : =Re{p(z=re’,Q)}; fim(y.a) =Im{pz=re’,q)}  (5.2)
f (yaq) L= (.fRe (yaq) ’fIIn (yaq))

Then, the spectral set S in (5.1) can be expressed as

S ={y: f(y,q) = 0,for some q € Q"}
We will assume the following throughout this chapter.

Assumption 5.1 The polynomial p (and thereby the function f) are continuous in the pa-

rameters q on the domain Q.
Remark 5.1 As p is a polynomial in z, it follows that f is continuously differentiable ev-

erywhere in y.

5.2.1 Initial search box

The result of Henrici in [29] states that all roots of a polynomial p(z,q) are contained in the

disk with center at the origin and radius

n—k

!
T, = 2 max
1<k<n

n
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where, A is the real vector of polynomial coefficients. For the family of polynomials under
consideration, it readily follows from Theorem 1.1 that all the roots of the family are contained

in the disk with center at the origin and radius

1
3

Ank
An

TR = 2 max
1<k<n

where, A is the corresponding vector of interval coefficients. The spectral set S is therefore
enclosed by the above described disk, which we call as the interval Henrici disk. Recalling

that y : = (r,0), an initial search box Y° equivalent to the interval Henrici disk is clearly
Y= ([07 'rh]a [Oa 27!'])

Further, since the coefficients of p are assumed to be real, any complex roots of p must
occur as conjugate pairs. We may therefore restrict the initial search box to enclose the upper

half of interval Henrici disk, so that
YO = ([Oa lrh]a [07 ﬂ'])

We shall assume in the sequel that the proposed algorithm is applied to compute the
spectral set in this restricted Y, and that the rest of the spectral set containing any roots
lying in the lower half of the Henrici disk is subsequently obtained using complex conjugacy.

For brevity, in the sequel we refer to a point belonging to the spectral set as ‘a spectral

point’.

5.2.2  Algorithm

The proposed algorithm can be briefly described as a binary search algorithm based on a
geometrical subdivision process, root exclusion test, and the Generalized Krawczyk operator.
It consists of three parts: an initialization part, an iterative part, and a termination part.

In the initialization part, a natural inclusion function F is constructed for f, and, following
section 5.2.1, an initial box Y that encloses the actual spectral set is also constructed. Next,
the two lists that are needed in the algorithm are initialized here: a working list £ that
contains boxes for processing is initialized with the box X° = (YO, QO), and the list £
that contains solution boxes having spectral points is initialized to the empty list. Then, the
algorithm branches to the iterative part.

In the iterative part, all boxes X;) present in the working list £ are chosen, and a branch
and bound strategy is applied to discard irrelevant parts (or the whole) of these boxes using
the zero exclusion test, the Generalized Krawczyk test, and subdivisions.

A box is accepted as a solution box if its width does not exceed a prescribed domain
accuracy tolerance £;, see Remark 5.3. For all such boxes, Y ;) is deposited in the solution

list £5°'. The remaining boxes are subdivided along their longest directions, and the resulting
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subboxes are put in £. The entire iterative part is repeated till no more boxes are left in £
for processing. Then, the algorithm branches to the termination part.

In the termination part, the spectral set S®'8 is constructed as the union of all boxes Y
present in £5%. The algorithm now exits.

The entire process is greatly speeded up by concurrently (rather than sequentially) process-
ing all the subboxes present in a given iteration. Concurrent processing is possible through
the use of vectorized interval operations for function evaluations, subdivisions, width checks,
etc., see [51] for details.

We next present the proposed algorithm.

Algorithm (Spectral set computation algorithm)

Input: An expression for the function f in (5.2), the parameter box Q°, and the domain
accuracy tolerance ¢;.

Output: The computed spectral set S*'8.

Note: The algorithm is to be executed in the order given below, except when otherwise
indicated.

BEGIN Algorithm

1. (Initialization part) From the expression for f, find a natural inclusion function F.

2. Construct initial boxes and lists:

(a) Following section 5.2.1, construct an initial search box Y that encloses the spectral
set S, and then construct X% := (Y?, Q).

(b) Set k < 0 and initialize lists £5% « {}, £ «+ {X°}.
3. (Iterative part) Start a new iteration:

(a) Set k + k+ 1 and [, « length of L.
(b) Pick all boxes X(;y = (Y1), Q)% = 1,2,...,Ir from £ and delete their entries

from L.
4. Test phase using an interval zero exclusion test and Generalized Krawczyk test:

(a) Evaluate F(X(;)),i = 1,2, ..., 1.
(b) (Interval zero exclusion test): IF 0 ¢ F(X(;) THEN discard X(;, i = 1,2, ..., ;.
(c) (Generalized Krawczyk test): For each remaining X(;y = (Y(;), Q(3)), do the fol-
lowing:
i. Find a natural inclusion function Fj for the derivative f;, and set C' <
{m (Fé)}f1 Evaluate the Generalized Krawczyk operator K (X(i)) defined
in (1.2) as

K (X@) =5@—CF (X)) HI-CF (X@)} (Yo —3@): Fu =m (Y)
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ii. Find Y{; = K (X)) N Y
iii. IF Y7,
(@)

(d) If no more X ;) remain, go to step 8.

— @, THEN discard X;) ELSE set X;) « (Ygi), Q(,-)).

5. Solution set:

(a) For each remaining X;), evaluate w(X(;). IF w(X(;)) < e, THEN enter Y(;) in

£5° and discard X ;) from further processing.

(b) If no more X ;) remain, go to step 8.

6. Subdivision phase:

For each remaining box X(;), find a coordinate direction k; parallel to which X ;) has
an edge of greater length. Subdivide X ;) in direction k; getting subboxes X%i) and X%Z.)

such that X;) = X%i) U X%Z.). Enter the subboxes X%i) U X%Z.) in L.

7. End current iteration: Return to step 3.

8. (Termination part) Construct spectral set as S8 « | Y;), output ¢ 18 and
Y(i) gLsol
EXIT.

END Algorithm.

Remark 5.2 (See Remark 3.1) We require the continuity properties of f in q in order that
the corresponding natural inclusion function be continuous. The latter property ensures that
the width of the interval evaluation F (X) tends to zero as the width of X tends to zero, so

that in turn, convergence and arbitrary accuracy can be achieved.

Remark 5.3 (See Remark 3.2) Suppose a spectral point ezists in a boz. If this box is used as
an enclosure of the spectral point, then clearly, the error can be no greater than the width of
the box itself. Therefore, the processing of a subboz is terminated in the algorithm when the

domain accuracy tolerance of the form
w(X) < ez (5.3)

1s satisfied for that subbozx.

5.3 Properties

We next investigate the various properties of the proposed algorithm.
First, we give a result that justifies the interval zero exclusion test in step 4b in the

algorithm.



72 5. Spectral sets - general case

Lemma 5.1 Let X €1 (XO) be a subboz, where X° is as in step 2a of the algorithm. If 0 ¢
F(X) then X can be discarded in the algorithm.

Proof. Similar to the proof of Lemma 3.1. W

The next result justifies the Generalized Krawczyk test in step 4c in the algorithm.

Theorem 5.2 Let X € I (X%). Then,
1. (Non-existence test for spectral points):

If K (X) nY = (), then there are no spectral points in' Y  (for any q € Q)

2. (Existence test for spectral points):

If K(X) CY, then at least one spectral point exists in Y for every q € Q

Proof. Consider a fixed but arbitrary q € Q. Define the function g as

9(y;q) =y—-Cf(y,q), foryeY (5.4)

where, C € %! is an arbitrary nonsingular real matrix. Since f is continuous by Assumption
5.1, g is also continuous. Further, the nonempty search box Y is clearly convex and compact.

Then, by the well-known Brouwer’s fixed point theorem
*

g (Y,q) CY implies the existence of some y* € Y :g(y*,q) =y

Moreover, as C is nonsingular by hypothesis, this further implies f (y*,q) = 0. That means,

for a nonsingular C,
g(Y,q) CY implies the existence of a spectral point in Y (5.5)
By the mean value theorem [48, chapter 6],

fy,@Q ef(Fa+F(Y,q(Y-9), foralyeyY

where § = m (Y). Substituting the above in (5.4) gives

9(y;a) =y—-Cf(y,q)
cey-C{f(F,9+F,(Y,q)(Y-3)}
Ey—Cf(S’,Q)_CFZ;(Y,Q)(Y_S’), forallyEY

Therefore, by Theorem 1.1

9(Y,qQ) CY-Cf(3,q9) - CF,(Y,q) (Y —9)
Cy-Cf(F,9 +{I-CF (Y, @)} (Y -9)
CK(Y,q)
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From (5.5) it follows that K (Y,q) C Y implies the existence of at least one spectral point
inY.

Further, if there is a point y* € Y for which f (y*,q) = 0, then from (5.4), g (y*,q) = y"*.
Hence, y* € g(Y,q) C K£(Y,q). In other words, any spectral point in Y is also in £ (Y, q).
Therefore, if £(Y,q) ()Y = 0 then there are no spectral points in Y.

The arguments above are given for a fixed but arbitrary q € Q. The assertions of the
theorem for the (entire) parameter box Q follow readily by repeating the same arguments

forevery qe Q. B

Remark 5.4 If condition (1) in Theorem 5.2 is satisfied, then we can discard X in the search
for spectral points. We note that this exclusion test based on Generalized Krawczyk operator

1s 1n addition to the interval zero exclusion test in step 4b.

Remark 5.5 As proven above, any spectral point in'Y is also in K (X). So if C(X)NY # 0,
we can replace the box X with the smaller box X' := (K (X)NY,Q) and continue with the

algorithm, without losing any spectral points that may be present in X.

5.3.1 Convergence

To study the convergence properties of the proposed algorithm, we assume that the tolerance

criterion can never be satisfied (i.e., €, = 0). We also assume that list sizes are not a limitation.

Definition 5.1 Let Ly denote the list L present at the start of kth iteration of the algorithm,
and denote the ith bozx of this list as Xy;. Define the unions

U= U Yo e= U Qs W= |J Xu (5.6)

Yri€Lk Qri€Lx Xpi€Lk
Note that #; =YY, V; = Q°, W, = X°.
Lemma 5.3 S is a compact set in R2.

Proof. The parameter box QU is closed and bounded, i.e., compact. Now, as is well-known,
the roots of a polynomial are continuous in its coefficients. Further, by Assumption 5.1, the
coefficients of polynomial p are continuous on Q. Therefore, the roots of p are continuous
on QC. As the image of a continuous mapping on a compact set is compact, so the root set

is compact, i.e., S is compact. W
Lemma 5.4 The unions Uy, Vi, Wy are compact sets at any k.
Proof. Similar to the proof of Lemma 3.3. W

[ee]
Lemma 5.5 S C ) U
k=1
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Proof. It is sufficient to show that S C Uy, for any k. The assertion of the lemma then follows.
Consider the algorithm with k£ = 1. Firstly, note that by construction, all spectral points in S
are contained in Y. Since, i; = Y, we have S C ;. By Lemma 5.1, the discarding process
using the interval zero exclusion test in step 4b does not delete any point in Y° that belongs
to S. Further, by Theorem 5.2 (see also Remarks 5.4 and 5.5), the Generalized Krawczyk
test in Step 4c also does not delete any point in YV that belongs to S. Moreover, none of
these points can be lost in the subsequent subdivision step 6, because every box is replaced
by both its subboxes in the list £. Thus, at the end of first iteration, all the points in S are

[e.e]
retained in Uy, i.e., S C Us. By induction on k, we have S C Uy for any k = S C [ U. A
k=1

Lemma 5.6 The sequence {Uy}rey has the property
Uy D Us D Us...

Proof. Similar to the proof of Lemma 4.7, with additional Step 4c where the Generalized

Krawczyk test is used to delete some irrelevant portion of each X;). W

Lemma 5.7 Let wy denote the mazimum width of the bozes X, of the kth list Ly, generated
by the algorithm. Then,

wp — 0 as k — oo

Proof. As in Lemma 3.6, the proof follows from the lemma in Ratschek [59]. W

Lemma 5.8
w(F(X)) =20 asw(X)—=0
Proof. Similar to the proof of Lemma 3.7. B

o0
Lemma 5.9 U, CS
k=1

Proof. Similar to the proof of Lemma 3.8. W
Lemma 5.10 d(Uy,S) — 0 as k — oo.

Proof. Similar to the proof of Lemma 4.11. B

The following theorem summarizes the convergence property of the proposed algorithm.

Theorem 5.11 The collection of solution boxes Y generated in the list L of the algorithm
converges to the spectral set S. Moreover, this convergence is such that the collection always

encloses S at any iteration.

Proof. Similar to the proof of Theorem 4.12. W
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5.3.2 Termination

We show that the proposed algorithm terminates in a finite number of iterations. We also

give an upper bound on the number of iterations required by the proposed algorithm.

Theorem 5.12 The algorithm terminates in at most (n + 2)~y iterations, where v is given

by
e ()

Further, the mazimum total number of subdivisions is given by 2(27 — 1).

Proof. First, note that X is a (n + 2) — dim box, so that after (n + 2) - v successive sub-
divisions, where v is some positive integer, we will obtain w(X) < w(X°%)/2Y. Thus, the
processing of a subbox is completed in at most (n + 2)y successive subdivisions, where
:= log, (w(X%)/e;) + 1, because then w(X) < ;. The algorithm produces a binary tree
whose nodes are the regions obtained through successive subdivisions. The root of this tree
is the node corresponding to the initial region X°. The maximum total number of iterations
is equal to the depth v of this tree, where y is as given above. Further, the maximum total
number of subdivisions occurs for a balanced tree, and from [15] equals 2 - (27 — 1). This

completes the proof. W
Theorem 5.13 S C S%18.

Proof. Similar to the proof of Theorem 3.11. B

5.3.3 Reliability

The below theorem shows the reliability of the spectral results computed by a MIA imple-

mentation of the proposed algorithm.

Theorem 5.14 (Reliability of spectral set) Let S%8 denote the spectral set computed by

mea

a MIA implementation of the algorithm. Then,

S C Salg C Salg

mia

Proof. Similar to the proof of Theorem 3.12. W

5.4 Illustrative example

We demonstrate the proposed algorithm on the following examples with nonlinear parametric
dependency. We implement a MIA version of the proposed algorithm in INTLAB [61] on a PC
Pentium IIT 850 MHz 512 MB RAM machine. Note that existing techniques are not readily

applicable to compute the spectral set in these examples.
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Example 5.1 Consider the characteristic polynomial of the standard second order mechan-

ical system of mass, spring and damper, with nonlinear parametric dependency:

p(s,a) = Xo(@) +(Q)s+s% q=[q,4]
M@ = &, M) =2qg

where, g1 € [0.2,0.8],q2 € [1,5]. We set the domain accuracy tolerance as €5 = 0.01.
The initial box enclosing the interval Henrici disk is obtained as
Y? = ([0, 1.6343], [0, 27))

The proposed algorithm takes 25 iterations to compute the spectral set plotted in Fig. 5.1.
Next, we validate the obtained results as follows. We pick 2500 fixed polynomials randomly
from the polynomial family, and compute analytically the spectral set using the formula for
finding the roots of a quadratic equation. The analytically found spectral set is also plotted in
the same figure. We observe from this figure that the spectral set computed with the proposed

algorithm fairly tightly encloses the analytically found spectral set.

Example 5.2 Consider the characteristic polynomial of the third order system with nonlinear

parametric dependency:

p(s,a) = Xo(@) +Ai(Q)s + Xa(q)s® +5°, a=[q1,q,q]
M@ = Va2, Mi(q) =cos(g3+qig2), and Aa(q) = e?' In(qg3)

where, g1 € [0.9,1.1], g2 € [18,22], and g2 € [9,11]. We set the domain accuracy tolerance as
g, = [0.01,0.005].

The initial box enclosing the interval Henrici disk is obtained as
Y? = ([0, 14.4074] , [0, 27))

The proposed algorithm takes 28 iterations to compute the spectral set plotted in Fig. 5.2.

Next, we validate the obtained results as follows. We pick 1331 fixed polynomials randomly
from the polynomial family, and compute the spectral set using the widely used roots routine
of MATLAB [46]. The spectral set computed as above is also plotted in the same figure. We
observe from this figure that the spectral set computed with the proposed algorithm fairly
tightly encloses the analytically found spectral set.

5.5 Conclusions

We have presented an algorithm to compute the spectral set for a very general class of

uncertain polynomials where the polynomial coefficients need to be only continuous in the
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parameters. We recall the main features of the proposed algorithm are its provision of several
guarantees: that the computed spectral set is reliable and accurate, that all actual spectral
points are included, and that the spectral set can be computed in a finite number of iterations,

for a prescribed accuracy.
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FIGURE 5.1. Spectral set of Example 5.1 computed using the proposed algorithm. Only the outer
boundary boxes of the computed set are shown. For comparison, the analytically found spectral set of
2500 fixed polynomials picked randomly from the polynomial family are also plotted. These are the
inner points shown as light shaded area in the plot.
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FIGURE 5.2. Spectral set of Example 5.2 computed using the proposed algorithm. The outer boundary
of the plots show the midpoints of the solution boxes generated with the proposed algorithm. For
comparison, the spectral set computed using roots routine of MATLAB over 1331 randomly chosen

fixed polynomials is also shown. These are the inner points shown as light shaded area in the plot.
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6

Limit cycles

6.1 Introduction

For uncertain nonlinear systems, the popular describing function approach [3], [26] can be
used to compute the so-called limit cycle locus. The limit cycle locus for a given uncertain
parameter is the locus of the limit cycle points as the parameter varies over its given range.
The uncertain parameter may belong to the linear or nonlinear element in the system. Indeed,
the concept of limit cycle locus is inspired by the well known tool of root locus [21] in linear
control system analysis and design.

The limit cycle locus can be useful in a variety of situations in nonlinear system analysis

and design, for instance, in

1. obtaining graphical insight: The limit cycle locus graphically illustrates the variation
of a system’s limit cycle behavior as a function of each uncertain parameter. This
information is useful in identifying those uncertain parameters of the system which
have strong influence on the limit cycle behavior. Variations in such parameters can

then be restricted according to the desired limit cycle behavior.

2. tuning a given controller: If we assume a fixed structure controller, such as an amplifier,
lag, lead, or PID controller, to be present in the linear part of the system, then the effects
of the various controller parameters on the limit cycle behavior can be observed by
computing the limit cycle locus for each of them. The obtained locus can be subsequently
used to tune the controller for obtaining a prescribed limit cycle behavior or to overcome

an existing one.

Though the concept of limit cycle locus is evidently useful, to our knowledge it does not

exist yet in the literature. Perhaps, it has been hitherto found difficult to construct and use
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it. The conventional graphical technique [26] for finding the limit cycle locus becomes quite
tedious when uncertainties are present in the system parameters, because the method requires
plotting a number of polar plots and describing function curves, depending on the parameters
involved and their ranges.

Next, consider the more general problem of computing limit cycle sets for uncertain non-
linear systems. In section 1.2.2, we saw that there is a lack of methods in the literature to
readily compute limit cycle sets, for the large and important class of uncertain nonlinear

systems comprising of

e 3 linear part represented by a nonrational transfer function with coefficients having

nonlinear parametric dependencies, and

e 3 nonlinear part represented by a nonrational describing function with nonlinear para-

metric uncertainty structures.

Such nonlinear systems are commonly found, for instance, in chemical process control -
in heat exchanger systems [11], and distillation columns [58], and in nuclear reactor control
systems [32].

In this chapter, we propose two tools of limit cycle analysis applicable to the above described

class of uncertain nonlinear control systems:

1. The tool of limit cycle locus, and

2. An algorithm to compute the limit cycle locus as well as the limit cycle set. The al-
gorithm for computing the limit cycle locus is actually a special case of the one for
computing the limit cycle set, and is obtained from the latter simply by restricting the

number of uncertain parameters to those of interest, see Remark 6.1.

The proposed algorithm is developed using tools of interval analysis [48], and has several

useful features:

1. The proposed algorithm is readily applicable to a very general class of uncertain non-
linear systems, with the only requirement being that the transfer function of the linear
element and the describing function of the nonlinear element should be continuous
in the parameters and continuously differentiable in the amplitude and frequency of
the periodic input signal to the nonlinear element'. No rational approximation of any

nonrational term is required in the algorithm.

1Subject to this requirement, the uncertain linear element can be a rational or nonrational transfer function having
parametric dependencies such as, interval, affine linear, multilinear or nonlinear. The nonlinear element can also have
a describing function that is nonrational with nonlinear parametric uncertainty structure, and be frequency dependent

or independent, with or without memory.
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2. The proposed algorithm guarantees that all limit cycles are found, see Theorem 5.13.
This guarantee meets an important requirement in stability analysis and synthesis of
nonlinear control systems. Existing techniques, on the other hand, are unable to provide

this important guarantee.

3. The proposed algorithm guarantees that the limit cycles are computed to a prescribed
accuracy, see Theorem 5.11. Existing techniques lack the ability to compute the limit

cycles to a prescribed accuracy.

4. If no limit cycle point exists, then the proposed algorithm determines this fact with a

mathematical and computational guarantee, see Lemma, 6.1 below.

5. The proposed algorithm computes limit cycles values that are reliable?, despite all
kinds of computational errors, see Theorem 5.14. Existing techniques do not provide
any guarantee on the reliability (i.e., trustworthiness) of the computed results in the

face of various computational errors.

6. For a prescribed accuracy, the proposed algorithm computes the enclosures of the limit
cycle points in a finite number of iterations. Moreover, an upper bound on the number

of algorithmic iterations required is also computable, see Theorem 5.12.

The rest of this chapter is organized as follows. In section 6.2, we present an algorithm
for computing the limit cycles for uncertain nonlinear systems. In section 6.3, we examine
the theoretical and computational properties of the proposed algorithm. In section 6.4, we
demonstrate the proposed algorithm on several challenging examples. In section 6.5, we give

the conclusions of the chapter.

6.2 Proposed algorithm

Consider the closed loop system of Fig. 6.1, where g (s,qg) denotes the transfer function of
the linear element with parameter vector qg, h (a,w,qs) denotes the describing function of
the nonlinear element with parameter vector qy, and a, w denote the amplitude and frequency
of the periodic input signal to nonlinear element. Let y := (a,w) € R%, q := (qq,qn) € R™
Then, under certain assumptions [3], the nonlinear system exhibits a limit cycle if there exists

a solution y* to the characteristic equation f (y,q) = 0, where f (y,q) is defined as

.f(yaq) : :(fRe(y,q),fIm(y,q)) (61)
fre (y;9) : =Re{l+h(a,w,an)g(jw,q9)}; fim (v,q) :=Im{l + h(a,w,qn) g (jw,qg)}

2However, the proposed method will retain any errors in the limit cycle computations due to the approximate nature

of the describing function method itself.
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—O— h(a,w,qn) 9(w,qg)

FIGURE 6.1. Uncertain nonlinear system

The solution y* is called a limit cycle point, and the corresponding a* and w* are called the
limit cycle amplitude and frequency, respectively.
Now, suppose there is parametric uncertainty in the system such that the parameter vector

q varies over a bounding box Q¥ € I (R") given by
Q':={qe®r" ¢, <q; <q;, whereg,,g; €R, i =1,2,...,n}

The parametric uncertainty gives rise to an uncertain nonlinear system. We address the

problem of computing the set of limit cycle points for this system given by

Lc (£,Q°) == {y €eR*: f(y,q) = 0,for some q € Q°}
The following assumption is made throughout the work.

Assumption 6.1 The transfer function g and the describing function h are continuous in
q and continuously differentiable in y. Subject to this assumption, the functions g and h can
be described by any sequence of arithmetic expressions involving y and q using +, —, *, /,

/) €XD, log, power, trigonometric functions, inverse trigonometric functions, etc.

6.2.1 Initial search box

In the proposed algorithm, we need to construct an initial search box Y that contains all (if
any) limit cycle points. We can construct this box as follows. The amplitude a and frequency
w are nonnegative, so Y0 € T (§R2+) . On a computer, we can set Y0 < [O,realmax]2 where
realyax is the largest machine representable number on the computer. Further, we sometimes
know the ranges in which limit cycle amplitudes and frequencies occur in a particular problem.

If so, we can bound Y to enclose these ranges. Finally, we can construct an initial search
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box in which all limit cycle points are guaranteed to lie by adopting a procedure of Moore
[48, chapter 6].

6.2.2 Algorithm

The proposed algorithm for the limit cycle computation is identical to the algorithm for
spectral set computation given in the chapter 5, except for some changes in the termination
part.

In the termination part, the obtained solution list £ is first examined. If £5° is found
empty, then the algorithm exits with the message — ‘no limit cycle point exists’. Else, the
limit cycle set /.%lg is constructed as the union of all boxes Y ;) present in L9 and following
[3, 26], the limit cycle stability for each solution box is assessed, and the obtained information
is displayed. The algorithm now exits.

We next present the proposed algorithm.

Algorithm (Limit cycle computation algorithm)

Input: An expression for the function f in (6.1), the parameter box QU, and the prescribed
domain accuracy tolerance &,.

Output: The message “no limit cycle point exists”, or the computed limit cycle set [félg.

BEGIN Algorithm

The algorithm arises from the one given in chapter 5, by modifying Step 8 and adding a

new Step 9 as follows:

8. (Termination part) Determine non-existence of limit cycles or construct limit cycle

set:

(a) IF £%°! = () THEN print “no limit cycle point exists ” and EXIT algorithm.

(b) IF £ # ( THEN Construct £5® = | Y, and output £3%.
Lsol
9. Determine stability of limit cycle boxes: for each Y ;) € £%° do the following: deter-
mine Y ;) as a stable, unstable, or indeterminate box as per known methods for fixed

parameter systems in [3, 26], display the stability information, and EXIT algorithm.
END Algorithm.

Remark 6.1 When the limit cycle locus w.r.t. an uncertain parameter q; is sought, then
the parameter box QU reduces to the interval over which the parameter varies. The other
parameters are kept at some fized values, such as their nominal ones. However, in a more
general situation we may want to compute the limit cycle locus when more than one uncertain
parameter varies simultaneously - see Ezample 6.3 below that concerns controller tuning. To
allow the proposed algorithm to compute the limit cycle locus in such situations, we consider

a parameter box instead of a single parameter interval in the sequel.
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6.3 Properties

The convergence, termination, and reliability properties of the algorithm have already been
proven in Chapter 5.
The following result justifies step 8a that determines the non-existence of a limit cycle

point.
Lemma 6.1 If £°% = () in step 8a, then no limit cycle point exists.

Proof. At any iteration, a part or the whole of a box X is discarded only in the interval
zero exclusion test Step 4b or in the Generalized Krawczyk test Step 4c. By Lemma 5.1 and
Theorem 5.2 (see also Remark 5.4), no limit cycle points are lost in the discarding process
of these steps. Therefore, at any iteration, all (if any) limit cycle points are either in list £
or £, but are never lost. When the algorithm reaches Step 8a, list £ is empty, so all (if
any) limit cycle points must now be in £5%. However, if £5% is also empty at this step, then,

clearly, no limit cycle point exists. Wl

6.4 Illustrative examples

We implement the proposed algorithm using the interval arithmetic toolbox INTLAB [61] on
a PC Pentium-IIT 850 MHz machine with 256 MB RAM. We first demonstrate the proposed
algorithm for computing the limit cycle locus in section 6.4.1, and then for computing the

more general limit cycle set in section 6.4.2.

6.4.1 Limat cycle locus

Example 6.1 This ezample demonstrates the applicability of the proposed algorithm to non-
rational transfer functions having general nonlinear parametric dependency, and nonlineari-
ties of memory type. We emphasize that this example cannot be readily solved using existing
techniques, due to the nonrational nature of the transfer function and nonlinear form of the
parametric dependencies. The proposed algorithm readily solves this problem, and no rational
approzimation of any nonrational term in the transfer function is required.

The linear element is a low pass nonrational transfer function having nonlinear parametric
dependencies

(1 _I_ /q1q3)8)6_q2q35

In(g3)s? 4 6 cos(5% + q1g2)s + 1

9(s,q) =

where, q1 € [0.1,0.2], g2 € [0.2,0.3], g3 € [13,17].
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The nonlinear element is of memory type in the form of a relay with hysteresis. The de-

scribing function of the nonlinear element is also nonrational and is given by

o) = 20 (i (%) =5 (%)) 0

where, the relay output q@ = F1 and the hysterisis has uncertainty varying over interval
g5 € [0.3,0.4].

We choose the nominal parameter values as ¢; = 0.15, g2 = 0.25,93 = 15, g4 = 1, g5 = 0.35,
the initial search box for limit cycle points as Y° = ((0.3,10],[0.1, 10]), and set the prescribed
domain accuracy tolerance to €; = 0.001.

The proposed algorithm computes a set of 562,3140,11673, and 628 boxes enclosing the
limit cycle loci. The algorithm takes 33, 36, 38, and 33 iterations and approximately 155, 124, 374,
and 57 seconds for the parameters g1, g2, g3 and g5, respectively. The results are shown in
Fig. 6.2, along with the nominal limit cycle points shown as crossmarked circles.

For each parameter, a single branch of the limit cycle locus corresponding to the stable
limit cycle points is observed. The frequency of the limit cycle increases with the parameter
q1, but decreases with the parameters go and g5. Whereas, the limit cycle amplitude increases
with each of the parameters ¢1, g2, and ¢5. However, the limit cycle frequency and amplitude

both first decrease and then increase with the parameter gs.

Example 6.2 This example demonstrates the ready applicability of the proposed algorithm
to frequency dependent nonlinearities.
The linear element is a low pass transfer function given by

q1

= € (10,20|,92 € [1,2],q3 € |5,10],q4 € [1,2
125° + @35 + 0a q €| l,q2 € [1,2],93 € [5,10], g4 € [1,2]

9(s,q)

The nominal parameter values are taken as q1 = 15,92 = 1.5,q3 = 7.5, and g4 = 1.5. The
nonlinear element is a Clegg integrator having a frequency dependent describing function

h(a,w,q) = 4 (1—jz)

TWw 4

The Clegg integrator is a nonlinear integrator that can be used as a more efficient compensator
than a linear integrator, see [26, pp 79 - 81]. Note that the describing function of a Clegyg
integrator is dependent on the frequency but not on the amplitude of the input signal.

We choose the initial search boz for limit cycle points as Y° = ([1,1],]0.1,10]), and set the

prescribed domain accuracy tolerance to e, = 0.001.

Applying the proposed algorithm, we obtain the result that £5° = (. By Lemma, 6.1, we
have a mathematical guarantee that no limit cycle point exists in the considered search box.
Since a MIA implementation of the proposed algorithm is used, by Theorem 5.14 we also

obtain a computational guarantee of the same.
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Example 6.3 This example is selected from [24] and demonstrates how the proposed algo-
rithm can be used to tune a controller for achieving a prescribed limit cycle behavior.

The linear element comprises of the plant g(s,q) and the controller c(s,q) given by

q1 q4
c(s,q)

S, = ), = —_
9(a) 24+ qas+q3 d g5 + g6s + 1

while the nonlinear element is saturation with output £q; and unity relay gain gg. The non-

rational describing function of the nonlinear element is

s = 2 (s (2) 4 (%) - (2)')

The parameter intervals are

Q1 € [Olal()]a q2 € [0'1a10]7Q3 € [0'1a10]7q41 € [07 50]a
g5 € [0.005,0.015], g6 € [0.01,0.2],¢7 € [0,2], g5 = 1

We choose the nominal parameter values as
q = 1>Q2 = 141 q3 = 1aq4 = 205 g5 = OOlaQﬁ = 0'17q7 = 17

the initial search box for limit cycle points as Y° = ((0,100],[0.01, 100]), and set the prescribed

domain accuracy tolerance to €, = 0.01.

The proposed algorithm computes for each parameter, a set of approximately 1040 boxes
enclosing the limit cycle locus, in about 34 iterations and 7 seconds. all limit cycles are found
to be stable. The obtained results are plotted in Fig. 6.3.

We observe from this figure that the limit cycle disappears for
g1 < 0.407, g2 < 2.9327,q4 < 9.375, g6 < 0.034492, ¢; < 0.6172

when these parameter values are changed individually, with all other parameters fixed at
their nominal values.
We next consider tuning of the controller in order to achieve a prescribed limit cycle

behavior. We designate the following cases, see [24]:

e Case-1: the prescribed limit cycle amplitude and frequency are (2.46, 3.16)

e Case-2: the prescribed limit cycle amplitude and frequency are (1.2,6.2)

We can readily apply the proposed algorithm and find the controller parameter values
to achieve the prescribed limit cycle behavior for both cases. For this, in the algorithm we
restrict the search box Y? for limit cycle points to the prescribed limit cycle amplitude and

frequency - that is, the search box Y° now becomes a degenerate box, or a point. Further,
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we also specify the parameter vector q as the controller parameter vector (g4, g5, gs), and the
parameter box Q° as the initial search region in the controller parameter space. Accordingly,
we take Q" = ([0, 50],[0.005,0.015], [0.01,0.2]), and set Y equal to the prescribed limit cycle
amplitude and frequency in each case. The proposed algorithm then gives the results shown
in Fig. 6.4.

Fig. 6.4 shows that instead of single set of controller parameter values, in each case there
is a band of controller parameter values that can achieve the prescribed limit cycle behavior.
The designer can therefore choose the most appropriate combination of controller parameter
values from this set, based on some specified criterion, such as minimum control effort. For
comparison purposes, we also show in Fig. 6.4 the controller parameter values found by
Ferreres and Fromion [24] using the y - analysis approach. We see that the latter values are

indeed enclosed within the bands generated by the proposed algorithm.

6.4.2 Limit cycle set

We next demonstrate the proposed algorithm to find the limit cycle set for Example 6.1.
We stress that existing techniques are unable to readily compute the limit cycle set for this
example, due to the nonrational nature of the transfer and describing functions and nonlinear
form of parametric dependencies. The proposed algorithm readily solves this problem, without

requiring any rational approximation of the nonrational terms.

Example 6.4 : Consider the same uncertain nonlinear system given in Example 6.1. We
now choose the initial search box for limit cycle points as Y° = ((0.4,100],[0.01,100]), and

set the prescribed domain accuracy tolerance to e, = 0.1.

To compute the limit cycle set, all uncertain parameters are varied over their respective
ranges in the proposed algorithm. The proposed algorithm then takes 26 iterations to compute
the limit cycle set comprising of 14,997 boxes The results are plotted in Fig. 6.5.

We next proceed to compare these results versus those obtained with the graphical method
and nonlinear simulations. We pick randomly a few combinations of parameter values from
the given parameter ranges, and designate them as follows.

Case 1: ¢1=0.1,¢2=0.2, g3 =13,94 = 1, g5 = 0.3.

Case 2: ¢ =0.15, g0 = 0.25,q93 = 15, g4 = 1, g5 = 0.35.

Case3: ¢q1=0.2,99=03,93=17,q4 =1, g5 = 0.4.

For these fixed parameter cases, the proposed algorithm computes the limit cycle amplitude
and frequencies shown in Table 6.1, column 3. The stability property of each limit cycle is

also found by the algorithm, and is given in column 6 of the same Table.

Graphical method: As stated earlier in section 6.1, the graphical method [26] for finding

the limit cycle points becomes rather tedious and unsuitable when the values of system
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parameters vary over given ranges. However, for the few selected cases of fixed parameters
given above, we can apply the graphical method without much difficulty. Accordingly, the
limit cycle points are found graphically as the intersections of the polar plots of g (jw,qy)
and —1/h (a,w, qp)shown in Fig. 6.6 for the various cases, and reported in Table 6.1, column
4. In all cases, we find the results of the proposed algorithm to be nearly identical to those

of the graphical method.

Nonlinear simulations: Closed loop nonlinear simulations for the various cases are per-
formed using the SIMULINK toolbox of MATLAB [46], and the simulation results are plotted
in Fig. 6.7.

From the figure, we record the limit cycle amplitudes and frequencies, and report them in
Table 6.1, column 5. The Table shows some minor differences between the results of nonlinear
simulations and the proposed algorithm. However, such minor differences are perhaps to be

expected, due to the approximate nature of the describing function method itself.

6.5 Conclusions

We introduced the tool of limit cycle locus for uncertain nonlinear systems. Through several
examples, we demonstrated its usefulness in gaining insight into the effect of each uncertain
parameter on the limit cycle behavior of the system. We also showed through an example
how the locus can be used to tune the parameters of a controller, to suppress an existing
limit cycle or achieve a new prescribed one. Based on the experience gained in our studies,
we believe that it may be worthwhile preparing charts of limit cycle locus for various sets of
controller tuning, and supply them to plant operators.

We also proposed an interval analysis based algorithm to compute the set of limit cycle
points for a very wide class of linear and nonlinear elements, including those represented
by nonrational functions with interval, affine linear, multilinear, or nonlinear parametric de-
pendencies, and nonlinearities that are memoryless, with memory, frequency independent, or
frequency dependent. The proposed algorithm requires the characteristic function to be only
continuous in the parameters and continuously differentiable in the amplitude and frequency
of the periodic input signal to the nonlinear element.

The main features of the proposed algorithm are its provision of guarantees that the com-
puted limit cycles are reliable and accurate, that all actual limit cycles are found, and that,
for a prescribed accuracy, all limit cycles are found in a finite number of iterations. We suc-
cessfully demonstrated the proposed algorithm to compute all limit cycles on a challenging
nonrational example with nonlinear parametric dependencies. This example cannot be solved

with any of the existing techniques.
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Finally, it must be noted that any errors in the limit cycle locus results, due to the approx-

imate nature of the describing function method itself, will remain.
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FIGURE 6.2. Limit cycle locus for (a) parameter ¢, (b) parameter g2, (¢) parameter ¢z, and (d)
parameter g5 in Example 6.1. The nominal limit cycle is shown as cross marked circles.
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FIGURE 6.3. Limit cycle locus for (a) plant gain ¢;, (b) plant parameter ¢, (c) plant parameter
g3, (d) controller gain g4, (e) controller parameter gs, (f) controller parameter gg, and (g) saturation
output g7 in Example 6.3. The nominal limit cycle for Case-1 is shown as cross marked circle. All

limit cycle points are found to be stable.
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FIGURE 6.6. Polar plots of g(jw, q¢) shown as curves, and the describing function plots —1/h (a,w, qn)
shown as horizontal lines, for the three cases in Example 6.4. These plots are used to graphically obtain
the limit cycle points for the three cases, serving as a cross-check for the results obtained with the
proposed algorithm. The results of the proposed algorithm are shown by a region of circles plotted
at the midpoints of the limit cycle boxes. (Case-1: thick solid line, Case-2: thin solid line, Case-3:
dash-dot line).
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TABLE 6.1. Comparison of limit cycle points obtained using three methods for three cases in Example

6.4.

Case | Variable Prop. Alg. Graphical | Simulation | Property

Case-1 | Amplitude-1 | [0.8111,0.8126] 0.8113 0.8715 Stable
Frequency-1 | [0.6766,0.6777] 0.6771 0.6867

Case-2 | Amplitude-1 | [0.5781.0.5787] 0.5784 0.6793 Stable
Frequency-1 | [0.4494,0.4497] 0.4494 0.4304

Case-3 | Amplitude-1 | [0.7760,0.7774] 0.7768 0.8135 Stable
Frequency-1 | [0.3802,0.3808] 0.3805 0.3891
Amplitude-2 | [0.4182.0.4184] 0.4183 — Unstable
Frequency-2 | [1.4124,1.4128] 1.4126 —
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Conclusions and future scope

We proposed reliable and accurate algorithms based on interval analysis of Moore [48] for
the analysis of the linear and nonlinear, fixed and uncertain parameter systems. Specifically,

we proposed algorithms for

1. computation of the Bode, Nyquist and Nichols frequency response plots for the class of

nonrational transfer functions,

2. computation of gain and phase margins for the class of uncertain nonrational transfer

functions with nonlinear parametric dependencies,

3. computation of the spectral set of uncertain polynomials with affine, multilinear, or

nonlinear parametric dependencies, and

4. computation of limit cycles for uncertain nonlinear systems covering a large class of
nonrational linear and nonlinear elements with nonlinear parametric dependencies. We
also proposed a novel tool called limit cycle locus for the analysis of uncertain nonlinear

systems.

The main properties of all the proposed algorithms are in terms of provision of various

guarantees:

e guarantee that the computed results are reliable and accurate,

e guarantee that the computed solution set always encloses the actual solution set, with-

out missing any of the solution points,

e guarantee that for a prescribed accuracy, the algorithms converges to the solution set

in a finite number of iterations.
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We proved theoretically all these properties for each proposed algorithm. We have also
demonstrated the proposed algorithms on several real life examples. In most cases, these
examples cannot be satisfactorily solved by currently available methods.

Some directions in which the present work can be extended are as follows.

1. Throughout this work, we used the natural inclusion function form to compute enclo-
sures of the function ranges. However, various higher order convergence forms, such
as mean value forms [48], Taylor forms [6], and Taylor-Bernstein forms [42] can in-
stead be employed as inclusion function forms to obtain further improvements in the

computational efficiency of the algorithms.

2. Throughout this work, we considered the parametric type of uncertainties. The work can

be extended to address uncertain systems with the nonparametric type of uncertainties.

3. The work on frequency response plots can be extended to address linear systems with
parametric uncertainties. One then obtains alternate algorithms for computation of the

frequency response envelopes to the existing techniques, see [41].

4. The work on robust gain and phase margins can be extended to address the case of

parametric stability margins, see [8].

5. The work on limit cycle analysis can be readily extended to address nonlinear systems

with multiple nonlinear elements, see [7].

6. The performance of each proposed algorithm can be considerably improved by imple-
menting it on parallel processing machines, or on application specific hardware systems
[5], [9], [19].
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Appendix I

Interval Analysis

A real interval X is a closed and bounded set X :=[z,7] = {z € R : z < z < 7}, where z
and z are called the lower and upper endpoints of the interval X. Two intervals are equal if
their corresponding endpoints are equal. The intersection of two intervals X and Y is empty,
if either z >4 or Z < y . Else, the intersection of X and Y is again an interval X N'Y =
[max(z,y), min(Z,7)]. A set inclusion X C Y is true only when y <z and § > Z.

An interval vector is a vector whose elements are intervals. Let n be the number of elements
of the real vector x = (z1,z2,...,2,) € R™. Then, X denotes the n — dim interval vector
(X1,Xo,...,X,). We use the term boz as a synonym for an interval vector, and rectangle for
a 2 — dim interval vector.

Let I (X) be the set of all boxes contained in X. The width of an interval X is defined as
w(X)=z—-zif X € I(R), and as w(X) = max{w(Xy),...,w(X,)}, if X € I (R").
The midpoint of an interval X is defined as m (X) = (z+z)/2 if X € I(R), and as
m(X) = {m(Xy),...,m(X,)}, if X € I (R"). The relations €,=, C,N,U are all defined

componentwise.

[.1 Natural inclusion functions and properties

Definition I.1 Let f : R" — R™ be a function defined over a box X € I (R"). Then, the
range of f over X is denoted as f(X), i.e., f(X) := {f(x): x € X}.

Definition I.2 (Inclusion function) We call a function F : I(X) — I (R™) an inclusion
function for f, if f(Y) C F(Y) for all Y € I (X).

Definition 1.3 (Inclusion monotonicity) An inclusion function F is said to be inclusion
monotonic if Z CY = F(Z) CF(Y) for all Z,Y € I (X).
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Definition I.4 (Natural inclusion function) If f is a function computable as an expres-
sion, algorithm, or computer program involving four elementary arithmetic operations inter-
spersed with evaluations of unary functions, then a natural inclusion function of f, whose
value over a box X is denoted by F(X), is obtained by the replacing each occurrence of each
component x; of x by the corresponding interval component X; of X, by executing all oper-
ations according to standard interval arithmetic rules, and by computing the exact ranges of

all the unary functions.

Remark 1.1 For instance, if f (x) = 1-5z1+1/3z3+5, then F (X) = 1-5X1+1/3X3+5 is a
natural inclusion function of f on X. As another example, if f (x) = z1 sinzy—xz3log zo, then
F(X) =X, *x ISIN (X3) —X3xILOG (X5) is a natural inclusion function of f on X, where
ISIN and ILOG are the pre-declared interval sin and log functions in some programming

language. A natural inclusion function is usually the simplest to construct inclusion function.

Definition I.5 (Convergence order) An inclusion function F for f is said to have a con-

vergence order m if

w(F(Y))—w(f (Y)) = ow (Y)™ (I.1)
for all'Y € I (X), where a and m are positive constants.
Some key properties of a natural inclusion function are given by Moore [47] :
Theorem 1.1 (Inclusion property ) f(X) C F (X)

Theorem 1.2 (Inclusion monotonicity) Natural inclusion functions are inclusion mono-

tonic.

Theorem 1.3 Natural inclusion functions have first order convergence.

[.2 Generalized Krawczyk operator

Let f : " — ®™ be a function defined over the box X = (Y,Q), where Y € T (éRl)
is the box of unknowns and Q € I (R") is the box of parameters. Suppose f is (Gateaux)
differentiable with respect to y, and let fé denote the derivative of f with respect to y. Let
F and Fy' denote respectively the natural inclusion functions of f and f; on X. Let y €Y
and let C € R*! be any nonsingular real matrix. Then, the Krawcayk operator introduced

in [39] can be generalized to cover the parameter dependent case, as follows.

Definition 1.6 The Generalized Krawczyk operator K (X) is defined as

K(X):=3—-CF(X)+{I-CF,(X)}(Y -¥) (1.2)
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Remark 1.2 The nonsingular matriz C € R*! in above equation is used as a preconditioning
matriz, so as to achieve better numerical properties using the Krawczyk operator. A typical
choice is to set C' as the inverse of the midpoint matriz of Fy, i.e., C = {m (Fé)}_1 For

details of preconditioning matrices, see [36].

[.3 Interval topology

Definition 1.7 (Hausdorff distance) Let A, B be compact, non-empty subsets of R" and
x € R™. Define do(x, B) := Ibléiél | x — blly; do(A, B) := max do(a,B); d(A, B) := max{dy(A, B),dy(B,.A)}.
a

The Hausdorfl-distance d is a metric for the sets of compact non-empty subsets of R™.
With this metric, a topology is defined, and convergence, etc., can be defined in the usual

manner. In particular, the following definition can be made:

Definition 1.8 A sequence {X(’C)}Zi1 of interval vectors Xy € I (R") is said to converge
to a point x € R", if d(X (1), x) — 0 as k — oo.
[.4 Complex interval arithmetic

The above concepts are readily extended to the field of complex numbers and complex inter-

vals. For an introduction to complex interval arithmetic, the reader is referred to [38, 57].
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