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Preface

What This Book Is About

Uncertainties are ubiquitous: measurement results are, in general, somewhat different
from the actual values of the corresponding quantities, and expert estimates are usually
even less accurate. It is therefore important to take these uncertainties into account
when processing data. Techniques traditionally used for this purpose in science and
engineering assume that we know the probability distributions of measurement and
estimation errors—or at least that we know the type of these distributions (e.g., we
know that the distributions are normal). In practice, we often have only partial
information about the distributions or about the corresponding class. For example, we
may only know the upper bound on the corresponding measurement/estimation
errors—this is the case of interval uncertainty. Alternatively, the only information that
we may have about the measurement/estimation errors is an expert information
described by using imprecise (“fuzzy”) words from natural language, such as “much
smaller than 0.1” or “about 0.1”—this is the case of fuzzy uncertainty.

This book is about going beyond traditional probabilistic data processing tech-
niques, to interval, fuzzy, etc. methods—how to do it and what are the applications
of the resulting nontraditional approaches.

Dedication

This book is dedicated to our colleague and friend Vladik Kreinovich on the
occasion of his 65th birthday.

His short bio is provided at the end of this preface, and his short self-description
of this work—largely adapted from his presentation at getting an honorary doctoral
degree at the University of Ostrava, Czech Republic—starts this volume.
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Who This Book Is for

This volume includes papers on constructive mathematics, fuzzy techniques,
interval computations, uncertainty in general, and neural networks.

We believe that anyone interested in uncertainty will find something of interest
in this volume.

Enjoy!

Acknowledgements

We want to thank all the authors for their interesting contributions, all the
anonymous referees for their hard work, Dr. Janusz Kacprzyk, editor of the book
series, for his encouragement, and the Springer staff for their help.

Short Biography of Vladik Kreinovich

Vladik Kreinovich received his MS in Mathematics and Computer Science from
St. Petersburg University, Russia, in 1974, and Ph.D. from the Institute of
Mathematics, Soviet Academy of Sciences, Novosibirsk, in 1979. From 1975 to
1980, he worked with the Soviet Academy of Sciences; during this time, he worked
with the Special Astrophysical Observatory (focusing on the representation and
processing of uncertainty in radio astronomy). For most of the 1980s, he worked on
error estimation and intelligent information processing for the National Institute for
Electrical Measuring Instruments, Russia. In 1989, he was a Visiting Scholar at
Stanford University. Since 1990, he has worked in the Department of Computer
Science at the University of Texas at El Paso. In addition, he has served as an
Invited Professor in Paris (University of Paris VI), France; Hannover, Germany;
Hong Kong; St. Petersburg, Russia; and Brazil.

His main interests are the representation and processing of uncertainty, espe-
cially interval computations and intelligent control. He has published 7 books,
20 edited books, and more than 1400 papers. He is a member of the editorial board
of the international journal “Reliable Computing” (formerly “Interval
Computations”) and several other journals. In addition, he is the co-maintainer
of the international Web site on interval computations http://www.cs.utep.edu/
interval-comp.

Vladik is Vice President for Publications of IEEE Systems, Man, and
Cybernetics Society, Vice President for Publicity of the International Fuzzy Systems
Association (IFSA), Vice President of the European Society for Fuzzy Logic
and Technology (EUSFLAT), Fellow of International Fuzzy Systems Association
(IFSA), and Fellow of Mexican Society for Artificial Intelligence (SMIA);

vi Preface

http://www.cs.utep.edu/interval-comp
http://www.cs.utep.edu/interval-comp


he served as President of the North American Fuzzy Information Processing
Society 2012–14, is a foreign member of the Russian Academy of Metrological
Sciences, was the recipient of the 2003 El Paso Energy Foundation Faculty
Achievement Award for Research awarded by the University of Texas at El Paso,
and was a co-recipient of the 2005 Star Award from the University of Texas
System.

December 2018 Olga Kosheleva
Department of Teacher Education

University of Texas at El Paso
El Paso, TX, USA

e-mail: olgak@utep.edu

Sergey P. Shary
Institute of Computational Technologies SB RAS

Novosibirsk, Russia
e-mail: shary@ict.nsc.ru

Gang Xiang
Applied Biomathematics

Setaukets, NY, USA
e-mail: gxiang@sigmaxi.net

Roman Zapatrin
Department of Informatics
The State Russian Museum

Saint Petersburg, Russia
e-mail: roman.zapatrin@gmail.com

Preface vii

mailto:olgak@utep.edu
mailto:shary@ict.nsc.ru
mailto:gxiang@sigmaxi.net
mailto:roman.zapatrin@gmail.com


Contents

Symmetries Are Important . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Vladik Kreinovich

Constructive Mathematics

Constructive Continuity of Increasing Functions . . . . . . . . . . . . . . . . . . 9
Douglas S. Bridges

A Constructive Framework for Teaching Discrete Mathematics . . . . . . 21
Nelson Rushton

Fuzzy Techniques

Fuzzy Logic for Incidence Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Rafik Aliev and Alex Tserkovny

Interval Valued Intuitionistic Fuzzy Sets Past, Present and Future . . . . 87
Krassimir Atanassov

Strengths of Fuzzy Techniques in Data Science . . . . . . . . . . . . . . . . . . . 111
Bernadette Bouchon-Meunier

How to Enhance, Use and Understand Fuzzy Relational
Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Nhung Cao, Martin Štěpnička, Michal Burda and Aleš Dolný

Łukasiewicz Logic and Artificial Neural Networks . . . . . . . . . . . . . . . . . 137
Antonio Di Nola and Gaetano Vitale

Impact of Time Delays on Networked Control of Autonomous
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Prasanna Kolar, Nicholas Gamez and Mo Jamshidi

Intervals and More: Aggregation Functions for Picture Fuzzy Sets . . . . 179
Erich Peter Klement and Radko Mesiar

ix



The Interval Weighted Average and Its Importance to Type-2 Fuzzy
Sets and Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Jerry M. Mendel

Fuzzy Answer Set Programming: From Theory to Practice . . . . . . . . . . 213
Mushthofa Mushthofa, Steven Schockaert and Martine De Cock

Impact and Applications of Fuzzy Cognitive Map Methodologies . . . . . 229
Chrysostomos D. Stylios, Evaggelia Bourgani and Voula C. Georgopoulos

Interval Computations

Rigorous Global Filtering Methods with Interval Unions . . . . . . . . . . . . 249
Ferenc Domes, Tiago Montanher, Hermann Schichl and Arnold Neumaier

On the Computational Complexity of the Range Computation
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Peter Hertling

An Overview of Polynomially Computable Characteristics of Special
Interval Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Milan Hladík

Interval Methods for Solving Various Kinds of Quantified
Nonlinear Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Bartłomiej Jacek Kubica

High Speed Exception-Free Interval Arithmetic, from Closed
and Bounded Real Intervals to Connected Sets of Real Numbers . . . . . 329
Ulrich W. Kulisch

Guaranteed Nonlinear Parameter Estimation with Additive
Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
J. Nicola and L. Jaulin

Influence of the Condition Number on Interval Computations:
Illustration on Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Nathalie Revol

Interval Regularization for Inaccurate Linear Algebraic Equations . . . . 375
Sergey P. Shary

Uncertainty in General and its Applications

Probabilistic Solution of Yao’s Millionaires’ Problem . . . . . . . . . . . . . . 401
Mariya Bessonov, Dima Grigoriev and Vladimir Shpilrain

Measurable Process Selection Theorem and Non-autonomous
Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Jorge E. Cardona and Lev Kapitanski

x Contents



Handling Uncertainty When Getting Contradictory Advice
from Experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Evgeny Dantsin

Characterizing Uncertainties in the Geophysical Properties of Soils
in the El Paso, Texas Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Diane I. Doser and Mark R. Baker

Why Sparse? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Thongchai Dumrongpokaphan, Olga Kosheleva, Vladik Kreinovich
and Aleksandra Belina

The Kreinovich Temporal Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Alexander K. Guts

Bilevel Optimal Tolls Problems with Nonlinear Costs: A Heuristic
Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Vyacheslav Kalashnikov, José Guadalupe Flores Muñiz
and Nataliya Kalashnykova

Enhancement of Cross Validation Using Hybrid Visual and Analytical
Means with Shannon Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Boris Kovalerchuk

Conditional Event Algebras: The State-of-the-Art . . . . . . . . . . . . . . . . . 545
Hung T. Nguyen

Beyond Integration: A Symmetry-Based Approach to Reaching
Stationarity in Economic Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Songsak Sriboonchitta, Olga Kosheleva and Vladik Kreinovich

Risk Analysis of Portfolio Selection Based on Kernel Density
Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
Junzo Watada

Minimax Context Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
Roman Zapatrin

Neural Networks

Why Rectified Linear Neurons Are Efficient: A Possible
Theoretical Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
Olac Fuentes, Justin Parra, Elizabeth Anthony and Vladik Kreinovich

Quasiorthogonal Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
Paul C. Kainen and Věra Kůrková

Integral Transforms Induced by Heaviside Perceptrons . . . . . . . . . . . . . 631
Věra Kůrková and Paul C. Kainen

Contents xi



Symmetries Are Important

Vladik Kreinovich

Abstract This short article explains why symmetries are important, and how they
influenced many research projects in which I participated.

What are symmetries? Why symmetries? Looking back, most of my research has
been related to the ideas of symmetry. Why symmetry? And what is symmetry?

Everyone is familiar with symmetry in geometry: if you rotate a ball around its
center, the shape of the ball remains the same. Symmetries in physics are similar.

Indeed, how dowe gain knowledge? How dowe know, for example, that a pen left
in the air will fall down with the acceleration of 9.81 meters per square second? We
try it once, we try it again, it always falls down. You can shift or rotate, it continues
to fall down the same way. So, if we have a new situation and it is similar to the
ones in which we observed the pen falling, we predict that the pen will fall in a new
situation as well.

At the basis of each prediction is this idea: that we can perform some symmetry
transformations like shift or rotation, and the results will not change.

Sometimes the situation is more complex. For example, we observe Ohm’s law
in one lab, in another lab, etc.—and we conclude that it is universally true.

When mainstream use of symmetries in science started. Because of their impor-
tance, symmetries have always been studied by philosophers—and sometimes, they
helped scientists as well. However, the mainstream use of symmetries in science
started only in the beginning of the 20 century, with Einstein’s relativity principle.
Relativity principle means that unless we look out of the window, we cannot tell
whether we stay or move with a constant velocity.

Einstein did not invent this principle: it was first formulated by Galileo when he
travelled on a ship in still waters. But what Einstein did for the first time was used
this principle to motivate (and sometimes even derive) exact formulas for physical
phenomena. This was his Special Relativity Theory.

V. Kreinovich (B)
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2 V. Kreinovich

And he used another symmetry—that a person in a falling elevator experiences
the same weightlessness as an astronaut in space—to motivate his General Relativity
Theory; see, e.g., [4, 29].

Symmetries after Einstein. In Special Relativity, in addition to the symmetries,
Einstein used many other physical assumptions. Later, it turned out that many of
these assumptions were not needed—until my former advisor, a renowned geometer
Alexander Danilovich Alexandrov proved in 1949 that the relativity principle is
sufficient to derive all the formulas of special relativity [1, 2] (see also [24, 32]).

This was one of the results that started the symmetry revolution in physics. Until
then, every new theory was formulated in terms of differential equations. Starting
with the quark theory in the early 1960s, physicists rarely propose equations—they
propose symmetries, and equations follow from these symmetries [4, 29].

The beginning of my research. When I started working under Alexandrov, I fol-
lowed in his footsteps. First, I tried to further improve his theorem—e.g., by showing
that it remains true even in the realistic case when symmetries are only approximate;
see, e.g., [12, 13, 15–17, 30] and references therein.

But then I started thinking further: OK, new theories can be uniquely deter-
mined by their symmetries, what about the old ones? We eventually proved that
not only Special Relativity—equations of General Relativity, quantum physics,
electrodynamics—all can be derived from the symmetries only, without the need
for additional physical assumptions; see, e.g., [7, 8, 14, 18].

Symmetries can also explain phenomena. Symmetries can help not only to explain
theories, but to explain phenomena as well.

For example, there are several dozens theories explaining the spiral structure of
many galaxies—including our Galaxy.We showed that all possible galactic shapes—
and many other physical properties—can be explained via symmetries.

Namely, after the Big Bang, the Universe was uniform. Because of gravity, uni-
formity is not stable: once you have a part which has slightly higher density, other
particles will be attracted to it, and we will have what is called spontaneous symme-
try violations. According to statistical physics, violations are most probable when
they retain most symmetries—just like when heated, solid body usually first turns
into liquid and only then to gas. This explains why first we get a disc, and then a
spiral—and then Bode’s law, where planets’ distances from the Sun form a geometric
progression [5, 6, 22].

Symmetries beyond physics. Similarly, symmetries can be helpful in biology—
where they explain, e.g., Bertalanffy equations describing growth, in computer
science—when they help with testing programs, and in many other disciplines [25].

Symmetries in engineering and data processing. Symmetries not only explain,
they can help design.

For example, we used symmetries (including hidden non-geometric ones) to find
an optimal design for a network of radiotelescopes [20, 21]—and to come up with
optimal algorithms for processing astroimages; see, e.g., [10, 11].
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Need for expert knowledge. These applications were a big challenge, because we
needed to take into account expert opinions, and these opinions are rarely described
in precise terms.

Experts use imprecise linguistic expressions like “small”, “close”, etc., especially
in non-physical areas like biology. Many techniques have been designed for process-
ing such knowledge—these techniques are usually known as fuzzy techniques; see,
e.g., [3, 9, 23, 27, 28, 31].

Because of the uncertainty, experts’ words allow many interpretations. Some
interpretations work better in practice, some do not work so well. Why?

Symmetries help in processing expert knowledge as well. Interestingly, it turned
out that natural symmetries can explain which methods of processing expert knowl-
edge work well and which don’t; see, e.g., [19, 25, 26].

There are still many challenges ahead. Was it all smooth sailing? Far from it. There
are still many important open problems—which is another way of saying that we
tried to solve them and failed. And I hope that eventually symmetry ideas can solve
them all.

Summarizing. I love symmetries. Physicists, chemists, biologists usually do not
need to be convinced: they know that symmetries are one of the major tools in
science. Computer scientists also start being convinced.

To the rest: try to find and use symmetries, they may help. And while we are
exploring the idea of symmetries, let us look for new exciting ideas that will lead us
to an even more exciting future.

Many thanks. I am very grateful for this book. I am grateful to the editors, I am
grateful to Springer, and I am grateful to all the authors. I am glad that I have so
many talented friends and colleagues.

I myself enjoyed reading the papers from this volume, and I am sure the readers
will enjoy reading them too.

Thanks you all!
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Constructive Continuity of Increasing
Functions

Douglas S. Bridges

For Vladik Kreinovich, on the occasion of his 65th birthday.

Abstract Let f be an increasing real-valued function defined on a dense subset
D of an interval I. The continuity of f is investigated constructively. In particular,
it is shown that for each compact interval [a, b] which has end points in D and is
contained in the interior of I, and for each ε > 0, there exist points x1, . . . , xM of
[a, b] such that f (x+) − f (x−) < ε whenever x ∈ (a, b) and x �= xn for each n. As
a consequence, there exists a sequence (xn)n≥1 in I such that f is continuous at each
point of D that is distinct from each xn .

Keywords Constructive · Increasing · Continuity
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• intuitionistic logic, which both clarifies distinctions of meaning and allows results
to have a wider range of interpretations than counterparts proved with classical
logic; and

• an appropriate set- or type-theoretic foundational system, such as Constructive
Zermelo-Fraenkel Set Theory, Myhill’s Constructive Set Theory, Constructive
Morse Set Theory, or Martin-Löf Type Theory [1, 2, 17, 18].

In addition, we allow dependent choice in our proofs (some mathematicians, notably
Richman [19], prefer to do their mathematics constructively without even count-
able choice). Thus the framework of our paper is that of Bishop-style constructive
mathematics, BISH; see [5, 6, 10].

Note that we do not make any restriction to some class of constructive objects,
whatever they might be; as far as the reader is concerned, we could be using intu-
itionistic logic to deal with the normal objects of mathematics.

An advantage of working solely with intuitionistic logic is that all our work can be
interpreted in a wide variety of models, including Brouwerian intuitionism, recursive
mathematics, and classical mathematics. Of particular significance for the computer
scientist—indeed, for anyone concerned with questions of computability—is the
fact that all our constructive results can, to the best of our belief, be interpreted
mutatis mutandis within not just the recursive model but any model of computable
mathematics, such as Weihrauch’s Type II Effectivity Theory [22, 23]; for more on
the connections between BISH and the latter model, see [3, 4].

A constructive proof of the existence of an object x with a property P(x) provides
very high level algorithms for the construction of x and for the verification that P(x)
holds. But the proof provides much more: it verifies that the algorithm meets its
specification. Not surprisingly, several groups of computer scientists in various uni-
versities have extracted algorithms from constructive proofs as part of their research
into theorem-proving expert systems (see, for example, [12, 14, 20]).

To understand this paper, the reader will require almost no technical background
in constructive mathematics (the concepts, such as continuity and set of measure
zero, are all elementary) but some appreciation of why certain mathematical moves
are constructively permissible and others are not. The early chapters of [5, 6, 9, 10,
21] are sources of the relevant information.

We first prove that the set of points of continuity of an increasing function f
defined on a dense subset D of an interval I is dense in I. We then improve that
result to prove that the points of discontinuity of f form a set of Lebesgue measure
0. Finally, we prove a highly technical lemma, Lemma 6, that leads to our main
result1:

1Theorem 1 appears as Problem 14 on page 180 of [5], in the context of positive measures. Pre-
sumably the intended approach to its proof was to apply the preceding problem on page 180 to
the Lebesgue-Stieltjes measure associated with the increasing function f. Our approach to the
continuity of f does not require the full development of the measure theory underlying Bishop’s
one.
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Theorem 1 Let f be an increasing function defined on a dense subset D of a proper
interval I in R. There exists a sequence (xn)n≥1 in I such that if x ∈ D and x �= xn
for each n, then f is continuous at x.

Note that when x, y are real numbers, ‘x �= y’ means ‘|x − y| > 0’, which, inBISH,
is a stronger statement than ‘¬(x = y)’.

Throughout the paper, we interpret an inequality of the form

f (y+) − f (x−) < ε, (1)

applied to an increasing function f, as a shorthand for ‘there exist x ′, y′ such that
x ′ < x ≤ y < y′ and f (y′) − f (x ′) < ε’. This interpretation of (1) does not require
that x, y belong to the domain of f, or that the one-sided limits

f (x−) = lim
t→x−

f (t),

f (y+) = lim
t→y+

f (t)

exist; but if x, y belong to the domain and the limits exist, then our interpretation is
equivalent to the usual one. Likewise, we interpret the inequality

f (y+) − f (x−) > ε

to mean that for each δ > 0 there exist x ′ ∈ (x − δ, x) and y′ ∈ (y, y + δ) such that
f (y′) − f (x ′) > ε.
Our proof of Theorem 1 via Lemma 6, unlike the standard classical proof, is

not trivial. It has the advantage of providing a method for finding a sequence that
contains—perhaps among other points—all the discontinuities of f. Theorem 1 sub-
sumes some of the earlier results in the paper; but we believe that the individual
proofs of the earlier ones are sufficiently interesting in their own right, and embody
algorithms that, though proving weaker results, are simpler than that in the proof of
Lemma 6, to justify their inclusion en route to our main theorem.

Since every real-valued function defined throughout a compact interval is uni-
formly continuous in Brouwer’s intuitionistic mathematics, we cannot prove con-
structively that there exists an increasing function defined throughout an interval and
having even one point of discontinuity. On the other hand, since classical mathe-
matics also provides a model for constructive mathematics, we cannot prove con-
structively that every increasing function is everywhere continuous throughout an
interval. So even for increasing functions defined throughout an interval, Theorem
1 is the best we can hope for in a constructive setting, and lies right on the bor-
der separating various models of constructive mathematics. For example, if we add
Church’s Thesis as a hypothesis, then we can prove that every increasing function on
a compact interval is uniformly continuous; this follows from a famous theorem of
Čeitin-Kreisel-Lacombe-Shoenfield [11, 15] and one of Mandelkern [16]. If, instead
of Church’s Thesis, we take the law of excluded middle as a hypothesis, then we can
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prove that there exists an increasing function on [0, 1] with countably many points
of discontinuity.

2 Continuity

First, we must clarify our definitions. Let I be a proper interval in R, and f a
real-valued mapping defined on a dense subset D of I. We say that f is

• nondecreasing if
∀x,y∈D (x < y ⇒ f (x) ≤ f (y)) ,

• increasing if2

∀x,y∈D ( f (x) < f (y) ⇒ x < y) ,

and

• strictly increasing if

∀x,y∈D ( f (x) < f (y) ⇔ x < y) .

An increasing function is nondecreasing, and is strongly extensional in the sense
that if f (x) �= f (y), then x �= y. For more on the relation between increasing and
nondecreasing, see [8].

Lemma 2 Let I be a proper interval inR, let f be an increasing real-valued function
defined on a dense subset D of I, and let a ∈ I ◦ ∩ D. Then f is continuous at a if
and only if f (a+) − f (a−) < ε for each ε > 0.

Proof Since ‘only if’ is routine, we deal only with ‘if’. Given ε > 0, choose x1, x2
such that x1 < a < x2 and f (x2) − f (x1) < ε. Since f is nondecreasing, we have
f (x1) ≤ f (a) ≤ f (x2); whence

f (x2) − f (a) ≤ f (x2) − f (x1) < ε

and similarly f (a) − f (x1) < ε. If x ∈ D and

|x − a| < min {a − x1, x2 − a} ,

then x1 < x < x2 and so

f (a) − ε < f (x1) ≤ f (x) ≤ f (x2) < f (a) + ε;

whence | f (x) − f (a)| < ε. �

2Mandelkern [16] calls this notion antidecreasing.
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Proposition 3 Let I be a proper interval in R, and f an increasing real-valued
function defined on a dense subset D of I. Then f is continuous on a dense subset
of I.

Proof Fixing a ∈ I ◦ and ε > 0, pick a0, b0 in D with a − ε < a0 < b0 < a + ε. Let

I0 = [a0, b0] and c = 1 + f (b0) − f (a0),

and note that, as f is nondecreasing, 0 < c. We construct, inductively, sequences
(an)n≥1 and (bn)n≥1 in D such that for each n,

• an < bn , and In ≡ [an, bn] is a subinterval of the interior of In−1 with endpoints
in D,

• |In| < 2−n |I0|, and
• f (bn) − f (an) < 2−nc.

Suppose that for some n ≥ 1 we have found In = [an, bn] with the applicable prop-
erties. Pick α,β, τ in D such that

an + 1
4 (bn − an) < α < τ < β < an + 3

4 (bn − an).

Then
f (bn) − f (τ ) + f (τ ) − f (an) = f (bn) − f (an) < 2−nc,

so either f (bn) − f (τ ) < 2−n−1c or f (τ ) − f (an) < 2−n−1c. In the first case, set
an+1 = τ and bn+1 = β; in the second, set an+1 = α and bn+1 = τ . Then In+1 ≡[
an+1, bn+1

]
is a subinterval of the interior of In ,

|In+1| < 1
2 |In| < 2−n−1 |I0| ,

and (since f is increasing) f (bn+1) − f (an+1) < 2−n−1c. This completes the induc-
tion.

Now,
⋂

n≥1 In consists of a single point x in [a0, b0]. Clearly, |x − a| < ε. For
each n ≥ 1 we have an < an+1 ≤ x ≤ bn+1 < bn and f (bn) − f (an) < 2−nc, so
f (x+) − f (x−) ≤ 2−nc. Hence, by Lemma 2, f is continuous at x . �

Proposition 4 Let f be an increasing real-valued function defined on a dense sub-
set D of a proper bounded interval I. For all ε, ε′ > 0 there exist finitely many
subintervals I1, . . . , Im of I, of total length < ε′, that cover the set

Sε = {
x ∈ I ◦ ∩ D : f (x+) − f (x−) > ε

}
.

Proof Since there are points of D arbitrarily close to the end points of I, we may
assume that I = [a, b] is a proper compact interval of length 1 whose end points
belong to D. Given ε, ε′ > 0, choose a positive integer m such that
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12 ( f (b) − f (a))

mε
< ε′.

Next choose points a = x0 < x1 < · · · < xm = b of D such that

xk+1 − xk <
3

2m
(0 ≤ k ≤ m − 1) .

Partition {0, 1, . . . ,m − 2} into two subsets P, Q such that

� if k ∈ P, then f (xk+2) − f (xk) > ε/2, and
� if x ∈ Q, then f (xk+2) − f (xk) < ε.

Given x ∈ Sε, choose k (0 ≤ k ≤ m − 2) such that x ∈ [xk, xk+2]. Since f is increas-
ing and x ∈ Sε, f (xk+2) − f (xk) > ε; so k /∈ Q and therefore k ∈ P. It follows that

Sε ⊂
⋃

k∈P

[xk, xk+2].

Since

ε

2
(#P) ≤

∑

k∈P

( f (xk+2) − f (xk)) ≤
m−2∑

k=0

( f (xk+2) − f (xk))

= f (xm) + f (xm−1) − f (x1) − f (x0) ≤ 2 ( f (b) − f (a)) ,

we see that the total length of the intervals
[
xk, xk+2

]
(k ∈ P) covering Sε is

∑

k∈P

(xk+2 − xk) <
∑

k∈P

3

m
= (#P)

3

m
≤ 12 ( f (b) − f (a))

mε
< ε′.

The proof is complete. �

Corollary 5 Let f be an increasing real-valued function defined on a dense subset
D of a proper bounded interval I. Then the points of discontinuity of f form a set of
(Lebesgue) measure zero.

Proof As in the proof of Proposition 4, we may assume that I = [a, b]. It follows
from that proof that Sε has measure zero for each ε > 0. The set of discontinuities
of f in (a, b) is a subset of

⋃∞
n=1 S1/n, and therefore also has measure zero. Thus

for each t > 0 the set of discontinuities of f in D is covered by a family of intervals
consisting of

[
a, a + t

4

]
,
[
b − t

4 , b
]
, and countably many intervals of total length

< t
2 ; it is therefore covered by countably many intervals of total length < t . �

Classically, it is simple to prove that if f is increasing on I = [a, b] , then the set
S of discontinuities of f is countable: we just observe that for each ε > 0 the set

Sε = {
x ∈ I ◦ : f (x+) − f (x−) > ε

}
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contains at most ε−1 ( f (b) − f (a)) points, and hence that S = ⋃∞
n=1 S1/n is count-

able. This argument does not suffice to prove the same result constructively, since
it does not enable us to enumerate (effectively) the set S. We can, however, modify
the argument slightly to prove that if x1, . . . , xN are distinct points of I ◦, where
N > ε−1 ( f (b) − f (a)) , then f (x+

k ) − f (x−
k ) < ε for some k ≤ N . To show this,

assume without loss of generality that x1 < x2 < · · · < xN . Choosing points

a < ξ1 < x1 < η1 < ξ2 < x2 < η2 < · · · < ξN < xN < ηN < b,

we have
N∑

k=1

(ε − ( f (ηk) − f (ξk))) ≥ Nε − ( f (b) − f (a)) > 0,

so ε − ( f (ηk) − f (ξk)) > 0, and therefore f (x+
k ) − f (x−

k ) < ε, for some k ≤ N .

Observe that when D = I, Theorem 1 is classically equivalent to the statement
that the set of discontinuities of an increasing function on an interval is countable.
We now move towards a proof of the constructive counterpart of that statement.

Given a (finite, possibly empty) binary string e = e1 · · · en of length n ≥ 0, we
denote the two possible extensions of e to a binary string of length n + 1 by e ∗ 0 ≡
e1 · · · en0 and e ∗ 1 ≡ e1 · · · en1. We also denote the empty binary string by ( ), and
the length of the string e by |e|.

This brings us to a highly technical lemma whose proof is based on the one on
pp. 239–240 of [6].

Lemma 6 Let f be an increasing function defined on a dense subset D of an interval
I in R, let [a, b] be a proper compact interval which has end points in D and is
contained in the interior of I , and let ε > 0. There exists a finitely enumerable3 set
{x1, . . . , xM } of points of [a, b] such that if x ∈ (a, b) and x �= xn for each n, then
f (x+) − f (x−) < ε.

Proof Choose a positive integer M such that f (b) − f (a) < (M + 1) ε. With each
binary string e we associate a nonnegative integer Me, a proper compact interval
Ie = [ae, be], with end points in D, such that the following hold:

(i) If e = ( ) is the empty string, then Me = M and Ie = [a, b] .
(ii)

∑
{e:|e|=n} Me = M for each natural number n.

(iii) 0 ≤ f (be) − f (ae) < (Me + 1) ε.
(iv) |Ie| <

(
2
3

)|e|
(b − a) .

(v) Ie∗0 ⊂ Ie, Ie∗1 ⊂ Ie, and Me∗0 + Me∗1 = Me.

(vi) If e, e′ are distinct binary strings of the same length, then Ie ∩ Ie′ has empty
interior.

(vii)
⋃

{e:|e|=n} Ie is dense in [a, b] .

3A set S is finitely enumerable if there exist a natural number n and a mapping s of {1, . . . , n} onto
S. Constructively, this is a weaker notion than finite, which requires the mapping s to be one-one.
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The first step of the inductive construction is taken care of by condition (i). Assuming
that for all binary strings e with |e| ≤ n we have constructed Me, and Ie with the
applicable properties, consider any binary string e with |e| = n. There exists x ∈
(ae, be) ∩ D such that

max {be − x, x − ae} < 2
3 |Ie| .

Then
f (be) − f (x) + f (x) − f (ae) = f (be) − f (ae) < (Me + 1)ε,

so by Lemma (4.5) on page 238 of [6], there exist nonnegative integers Me∗0 and
Me∗1 such that f (x) − f (ae) < (Me∗0 + 1) ε, f (be) − f (x) < (Me∗1 + 1) ε, and
Me∗0 + Me∗1 = Me. Setting

Ie∗0 = [ae, x] , Ie∗1 = [x, be] , ae∗0 = ae, be∗0 = x = ae∗1, and be∗1 = be,

we see that
Ie∗0 ∪ Ie∗1 is dense in Ie, (2)

I ◦
e∗0 ∩ I ◦

e∗1 is empty, and

|Ie∗k | < 2
3 |Ie| <

(
2
3

)n+1
(b − a) (k = 0, 1).

Now consider two distinct binary strings e+, e′+ of length n + 1. By the foregoing,
there exist strings e, e′ of length n, and j, k ∈ {0, 1}, such that e+ = e ∗ j and e′+ =
e′ ∗ k. If e = e′, then one of Ie+ , Ie′+ is Ie∗0 and the other is Ie∗1, so the intersection
of their interiors is empty. If e is distinct from e′, then since Ie+ ⊂ Ie and Ie′+ ⊂ Ie′ ,
the hypothesis (vi) ensures that I ◦

e+ ∩ I ◦
e′+

⊂ I ◦
e ∩ I ◦

e′ = ∅. Finally, since

⋃
{e:|e|=n+1} Ie = ⋃

{e:|e|=n}(Ie∗0 ∪ Ie∗1),

we see from (2) and hypothesis (vii) that
⋃

{e:|e|=n+1} Ie is dense in [a, b]. This com-
pletes the inductive construction of Me and Ie.

For each e let xe be themidpoint of Ie. Setting x1,0 = x2.0 = · · · = xM,0 = x( ), we
construct sequences sm = (xm,n)n≥0 (1 ≤ m ≤ M) in [a, b] such that the following
properties hold:

(viii) For each applicable (m, n) there exists (a unique) e such that |e| = n, Me > 0,
and xm,n = xe.

(ix) For each e with |e| = n there are exactly Me values of m for which xm,n = xe.
(x) If xm,n = xe, then either xm,n+1 = xe∗0 or xm,n+1 = xe∗1.

Having constructed xm,n for all n ≤ N and all m (1 ≤ m ≤ M), consider any e
with |e| = N . There are exactly Me values of m with xm,N = xe. For Me∗0 of these
values, set xm,N+1 = xe∗0; for the remaining Me∗1 values of m (note (v) above),
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set xm,N+1 = xe∗1. Clearly, if xm,N+1 = xe∗k , then Me∗k > 0. This completes the
inductive construction of the sequences sm .

By (v) and (x), if xm,n = xe, then xm,n+1 ∈ Ie and therefore, by (iv),

∣∣xm,n − xm,n+1

∣∣ <
(
2
3

)n
(b − a) (n ≥ 1).

Hence, for j < k,

∣∣xm, j − xm,k

∣∣ ≤
k−1∑

i= j

∣∣xm,i − xm,i+1

∣∣ <
∞∑

i= j

(
2
3

)i
(b − a) < 3

(
2
3

) j
(b − a).

It follows that sm is a Cauchy sequence [a, b] which converges to a limit xm ∈ [a, b]
such that ∣∣xm,n − xm

∣∣ ≤ 3
(
2
3

)n
(b − a) (n ≥ 1) .

Consider any x ∈ (a, b) such that x �= xm for each m (1 ≤ m ≤ M). Choose a
positive integer ν such that for 1 ≤ m ≤ M ,

|x − xm | > 4
(
2
3

)ν
(b − a)

and therefore

∣∣x − xm,ν

∣∣ ≥ |x − xm | − ∣∣xm − xm,ν

∣∣ >
(
2
3

)ν
(b − a) .

Since, by (viii), xm,ν is the midpoint of an interval Ie with |e| = ν and Me > 0, we
see from (v) that x is bounded away from such an interval. As

⋃
{e:|e|=ν} Ie is dense

in [a, b], it follows that

⋃
{Ie : |e| = ν, Me = 0} is dense in [a, b] . (3)

For each e with |e| = ν and Me = 0, we have f (be) − f (ae) < ε, and so

0 < te = 1
2 (ε − f (be) + f (ae)).

Since [a, b] ⊂ I ◦, there exist a′
e, b

′
e in D such that a′

e < ae < be < b′
e and

f (ae) − te < f (a′
e) ≤ f (ae) ≤ f (be) ≤ f (b′

e) < f (be) + t;

whence

f (b′
e) − f (a′

e) < f (be) + te − ( f (ae) − te) = f (be) − f (ae) + 2te < ε.

Let
re = min{ae − a′

e, b
′
e − be}
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and
r = min

{re
2

: |e| = ν,Me = 0
}
> 0.

By (3), there exists e such that |e| = ν, Me = 0, and ρ(x, Ie) < r < re. Then x ∈
(a′

e, b
′
e) and therefore f (x+) − f (x−) < ε, as we required. �

It remains to provide the proof of Theorem 1:

Proof Let f be an increasing function defined on a dense subset D of the proper
interval I ⊂ R. Let J be any proper compact subinterval of I ◦ with endpoints a, b in
D. By Lemma 6, for each positive integer k there exists a finitely enumerable subset
F J
k of J such that f (x+) − f (x−) < 2−k whenever x ∈ (a, b) and x �= y for each

y ∈ F J
k . Thus if x ∈ J is distinct from each point of the countable set

E J ≡ {a, b} ∪ ⋃∞
k=1F

J
k ,

then f (x+) − f (x−) < 2−k for each k, and so, by Lemma 2, f is continuous at x .
Now, there exist compact intervals J1 ⊂ J2 ⊂ · · · such that I ◦ = ⋃∞

n=1 Jn . It is
straightforward to show that if x ∈ I ◦ is distinct from each point of the countable
set E ≡ ⋃∞

k=1E
Jn , then f is continuous at x . This completes the proof when I is an

open interval. In the contrary case, to complete the proof we expand E by adding to
it those endpoints of I that belong to I . �

The conclusion of Theorem 1 also holds when we replace the increasing function
f by one that has a variation on I —that is, one for which the set of all finite sums
of the form

n−1∑

i=1

| f (xi+1) − f (xi )| , (*)

where the points xi belong to I and x1 ≤ · · · ≤ xn , has a supremum. This comment
is justified by the expression of such a function as a difference of two increasing
functions [7] (Theorem 4).

Finally, for related work on continuity we refer the reader to Sect. 5 of [13].
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A Constructive Framework for Teaching
Discrete Mathematics

Nelson Rushton

Abstract The currently orthodox foundation of mathematics is a first order theory
known as Zermelo-Fraenkel Set Theory with Choice (ZFC), which is based on the
informal set theory of Cantor. Here, the axioms of ZFC are explained and illustrated
for a general math and computer science audience. Consequences of, and historical
objections to the axioms are also discussed. It is argued that the currently orthodox
framework has some substantial drawbacks for the purpose of mathematical peda-
gogy. An alternative framework, language P is defined and its properties discussed.
Though P contains terms denoting infinite sets, constructive semantics are given for
P , in terms of a direct definition of its truth predicate by transfinite induction.

Keywords Set theory · Constructive mathematics · Math education · Computer
science education

1 Introduction

By a foundational framework for mathematics, we mean an essentially philosoph-
ical position the questions of what mathematics is about (if anything), and what
its methodological assumptions should be. While everyone who teaches or learns
mathematics operates within some foundational framework, we seldom talk about
foundations in the course of mathematics education. That is to say, in the study of
mathematics, most of us cannot say exactly what we are doing.

Part I of this paper discusses the foundational framework that is currently orthodox
in mathematics, namely, Cantorian set theory as realized in the formal system ZFC.
The discussion is geared toward a general audience in math and computer science,
and may be of some interest to colleagues who teach mathematics and computer
science but are not experts in set theory or other fields of meta-mathematics.
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Part II of the paper discusses some issues that are argued to make ZFC a less than
ideal framework for teaching mathematics. An alternative framework is described,
language P , which has been used in discrete math courses with some success at
Texas Tech by myself and others.

Part 1. Set Theory and ZFC

2 Cantorian Set Theory

The theory of infinite sets that now serves as the default foundation of mathematics
is relatively new, originating in the late 1800s with the pioneering work of German
mathematician Georg Cantor (1845–1918). The novel aspect of Cantor’s work was
that he unreservedly viewed infinite sets, such as the set of all integers, as definite
objects with the same status and properties as finite collections. While readers edu-
cated in the contemporary mathematics might be surprised that this was ever not the
prevailing view, it was in fact a bold break with tradition, which was viewed with
serious skepticism in the late 19’th and early 20’th centuries, and which is accepted
only with reservations, if at all, even by many scholars today.

Around the timeCantor wasworking out the theory of infinite sets, fellowGerman
Gottlob Frege made groundbreaking discoveries in formal logic that would enable
the methodological consequences of Cantor’s theory (and many others) to be stated
with absolute precision. The confluence of Cantor’s and Frege’s work culminated in
Zermelo’s 1908 paper [1] describing a formal system capable of encoding almost
all ordinary mathematical work up to that time—where by “ordinary”, we mean
mathematics outside of set theory itself.

By 1921, Abraham Fraenkel had discovered useful modifications to Zermelo’s
theory that yielded Zermelo-Fraenkel Set Theory with Choice, or ZFC. The language
and axioms of ZFC was capable of formalizing not only all of ordinary mathemat-
ics at that time, but also early 20’th century set theory. Subsequently, Cantorian set
theory, as made precise by ZFC, has become the default foundational framework for
mathematical reasoning. It is now the default in the usual sense: unless stated other-
wise, mathematical discourse at the professional level is presumed to be carried out
in ZFC. This is notwithstanding the fact that, perhaps surprisingly, most mathemati-
cians cannot state the axioms of ZFC. However, for those who can state the axioms
and understand their consequences, ZFC is thought to provide the best available the-
ory to explain the behavior of mathematicians in their research and teaching. This
paradigm is now passed down from one generation to the next implicitly, through a
methodology that acts out the assumptions codified in ZFC.

ZFC is a theory that speaks only of sets, and encoding mathematics within ZFC
requires objects of intuitively different sorts to be encoded as sets, and thus embedded
within the Cantorian universe. The requirements to successfully embed a system
within set theory are that (1) Each object in the system is represented by at least
one set, and (2) the operations normally defined on objects of the system, including
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equality, are definable in terms of operations on the corresponding sets, in such a
way that the usual axioms about them are satisfied. For example,

• The natural numbers are modeled as sets by identifying 0 with the empty set, and
for each positive natural number n, identifing n with the set of its predecessors.
Thus, the less-than relation on integers can be translated into set theory as the
membership relation ∈ on sets. Equality of natural numbers is identified with set
equality; addition can be defined recursively in terms of the successor function
(λn · n + 1), and so on for the familiar operations on natural numbers.

• John Von Neumann suggested that the ordered pair (x, y) can be modeled as the
set {x, {x, y}}. If u is the Von Neumann pair {x, {x, y}}, the first coordinate of u
is the object that is both a member of u and a member of a member of u, and the
second coordinate of u is the object that is a member of a member of u but is not
a member of u. Equality among ordered pairs is then identified with set equality.

• The integers may be modeled by identifying each natural number n with the pair
(1, n) and each negative integer −n with (0, n).

• The rational number x may be identified with the pair (m, n) where m and n are
integers, n > 0, and x = m/n in lowest form. Equality of rational numbers is then
equivalent to equality of pairs, which is again set equality. Operations on rationals
can be modeled in terms of integer operations on their canonical numerator and
denominator, which are integers.

• If A and B are sets, a function from A to B is identified with a subset F of A × B,
such that for each x ∈ A there is exactly one y ∈ B with (x, y) ∈ F .

• If A is a set, a relation R on A is identified with the subset of A whose members
are the objects satisfying R.

• The real numbers can be modeled as Cauchy-convergent sequences of rational
numbers, where a sequence is identified as a function (qua set of pairs) from
natural numbers (qua sets) to rationals (qua sets).

• The Euclidean space R2, also known as the Cartesian plane, is identified with the
set of all ordered pairs of real numbers, where both real numbers and ordered pairs
are realized as sets, as described above.

Formostmathematicians who embrace ZFC, the importance of the embeddings of
mathematical objects in set theory is not that, e.g., rational numbers are supposed to
really be sets of a particular kind. It is rather that, since, e.g., the rational numbers can
be modeled as sets within ZFC, it is safe to postulate a set with the usual operations
satisfying the usual axioms of rational arithmetic. No one, as a rule, argues about
exactly how to encode mathematical objects within the universe of sets, because no
one, as a rule, cares exactly how they are embedded. The crucial issue is they can be
embedded—again, in such a way that the usual axioms (as correspondingly encoded)
are satisfied.

The nine axioms of ZFC are stated informally below (the axioms of Separation
and Replacement are technically axiom schemas).
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1. Axiom of Infinity: There is a set whose elements are the natural numbers
{0, 1, 2, . . . }. Technically, as noted above the members of this set are assumed to
be the sets {∅, {∅}, {∅, {∅}}, . . . }.

2. Axiomof Separation: If P is a unary relationdefinable in termsof the set operations
= and ∈, along with operators of first order logic, and A is a set, then there is a
set {x ∈ A | P(x)} whose members are the members of A satisfying P .

3. Axiom of Unordered Pairs: If x and y are sets, then there exists a set {x, y} whose
only members are x and y.

4. Axiom of Unions: If A is a set of sets, then there exists a set
⋃

x∈A x , whose
members are all of the members of members of A. Intuitively, this is simply the
union of the members of A.

5. Axiom of Replacement: If P is a binary relation definable in terms of the set
operations = and ∈, along with operators of first order logic, A is a set, and for
every member x of A there is a unique y such that P(x, y) holds, then there is a
set {y|∃x ∈ A · P(x, y)}, whose members are those objects for which P(x, y) is
satisfied by some x in A. Intuitively, if A is a set and F is a function on A, then
the range of F is a set.1

6. Axiom of Choice: If A is a set of nonempty sets, then there exists a setC containing
exactly one member of each member of A.

7. Power Set Axiom: If A is a set, there exists a set P(A) whose members are all of
the subsets of A.

8. Axiom of Extensionality: If A and B are sets, then A = B if and only if every
member of A is a member of B and every member of B is a member of A.

9. Axiom of Regularity Every non-empty set A contains a member y such that A
and y are disjoint. The intuitive content of this is that the universe of sets is well
ordered by the partial order of setmembership; that is, there is no infinite sequence
A1, A2, A3, . . . of sets such that A2 ∈ A1, A3 ∈ A2, . . ..

Most of the axioms, the first seven out of nine, guarantee the existence of certain
sets, or, in other words, that the universe of sets is “rich enough”. This is natural
since the job of ZFC is to guarantee the existence of mathematical systems satisfying
domain-specific axioms for various branches of mathematics, such as the axioms of
the real numbers, or the axioms of Euclidean (and non-Euclidean) geometry. Equality
on sets is defined by the Axiom of Extensionality. The final axiom, the Axiom of
Regularity, is a constraint on the universe of sets that rules out certain anomalies,
and is seldom used outside of set theory itself.

Cantor’s conception gives rise to a particular universe of sets. One of the curious
properties of this universe is that some infinite sets havemoremembers than others—
in essentially the same sense that a guitar has more strings than a violin. To wit, we
say that set B is at least as numerous as set A, written |A| ≤ |B|, if there is an injective
(aka, one to one) function from A to B. For example, the set {1, 2, 3, 4, 5, 6} is at
least as numerous as {1, 2, 3, 4}, as witnessed by the function that maps eachmember

1This intuitive restatement uses a generalized concept of “function”, where functions are defined
by formulas of ZFC, rather than being sets of pairs; otherwise, the axiom would yield no new sets!.
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of the latter to itself. On the other hand , {1, 2, 3, 4} is not at least as numerous as
{1, 2, 3, 4, 5, 6}, since there is no injection from the latter to the former. In this B is
at least as numerous as A but not vice-versa, we say that B is strictly more numerous
than A, and write |A| < |B|.

An interesting fact about Cantor’s universe of sets is now given by a well known
theorem:

Theorem 1 (Cantor’s Theorem) For every set A, |A| < |P(A)|.

Thus, the universe sets, under the assumptions of ZFC, contains an infinite sequence
of infinite sets N,P(N),P(P(N)), . . ., each of which (after the first) is strictly more
numerous than its predecessor. Another enlightening feature of the Cantorian uni-
verse is given by

Theorem 2 (V /∈ V ) There is no set of which every set is a member, that is, no “set
of all sets”.

Proof Suppose, for the sake of contradiction, there is a set of all sets, and call it V .
The Power Set Axiom and Cantor’s theorem give us |V | < |P(V )|, which is to say
there is no one to one function from P(V ) to V . But P(V ) is a set of sets, and hence
is a subset of V , so the identity function from P(V ) to V must be an injection. This
is a contradiction. �

Since the universe of sets cannot be a set, we will think of it as a class, that is, a
kind of thing, as opposed to a collection of things. The difference between classes
and sets is a subtle one, and the axioms that distinguish classes from sets can vary
from one context to another, depending on the foundational framework one adopts.
Intuitively, however, the distinction can illustrated by the difference between the
concept bear and the concept Jim’s stamp collection. Both the class of bears and the
set of Jim’s stamps can be said to have members, at least in mathematical parlance.
But the essence bearhood is most naturally associated with the intrinsic properties
that qualify a thing to be a bear—as opposed to a supposed roster of all bears, or any
mental construct that would lead us to imagine such a roster. On the other hand, the
essence of Jim’s stamp collection is most naturally given by an exhaustive account of
its members—as opposed to any intrinsic properties that would supposedly qualify a
stamp to be included in Jim’s collection. This is not a perfect illustration, but it may
help.

3 Skepticism About Cantorian Set Theory and ZFC

Cantor’s theory of sets and its formalization in ZFC were (and are) viewed with sus-
picion by many mathematicians, including prominent scholars such as Leupold Kro-
necker, Luitzen Brouwer, Hermann Weyl, Henri Poincaré, Thoralf Skolem, Andrey
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Markov Jr., and, initially, Karl Weierstrass (though Weierstrass would later change
his position to be favor of Cantor). Themajor objections are to the axioms of Replace-
ment, Choice, Power Set, and Infinity. This section will discusses important objec-
tions that have been raised to each of these axioms.

Before discussing the objections, wewill give some background by discussing the
categorization ofmathematical propositions in to computational facts, computational
laws, and abstract propositions.

3.1 Computational Facts and Laws

For purposes of this discussion, we can divide mathematical propositions into three
categories:

1. Computational facts: statements that can be observed to be true or false by direct
computation, e.g., 6 is a perfect number, and 7 is not.2

2. Computational laws: statements that (merely) make predictions about an infinite
class of mathematical facts, and thus, in case they are false, have at least one
counterexample in the form of a mathematical fact. For example, there are no
odd perfect numbers.

3. Abstract propositions: those statements that are neither computational facts nor
computational laws. For example, for every natural number n, there is a prime
greater than n.

It is worth discussing why the example abstract proposition in #3 is not a compu-
tational law. What would it be like to observe the proposition to be false? We would
have in hand a particular natural number n, and directly observe that every number
greater than n failed to be prime, is impossible. It is not that we cannot write the
proof of the proposition; it is that we cannot imagine what it would be like to directly
observe that our proof had been unsound—hence the name abstract proposition.

Interestingly, the standard proof of our sample abstract proposition reveals a
related computational law. For any natural number k, let σ(k) be the set of primes
less than or equal to k, and let G(k) be the greatest prime factor of k. Euclid’s proof
that there are infinitely many primes reveals the following lemma: for every natural
number n, G(

∏
i∈σ(n) +1) is a prime number greater than n. This lemma is a compu-

tational law: it can be tested by direct computation for each natural number, and, in
case it were false, could be observed to be false by a counterexample in the form of
a computational fact. The lemma also formally entails our abstract proposition, that
for every natural number n there is a prime greater than n. The abstract proposition
could thus be viewed as a partial restatement of a computational law, with certain
particulars abstracted away.

2A positive integer is perfect if it is the sum of its positive, proper divisors. For example, 6 is perfect
since 6 = 1 + 2 + 3.
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3.2 Skepticism About Replacement

Objections to the Axiom of Replacement amounts to skepticism about ZFC at its
most abstract fringes. The sets asserted to exist by Replacement are generally no
less plausible than those already guaranteed by the other axioms; the issue is that the
assumption of their existence may not be relevant, even indirectly, to engineering,
physics, or even mathematics outside of set theory itself. If, indeed, the Axiom of
Replacement is predictably entirely irrelevant to any endeavor outside of set theory,
then the study of its consequences is of questionable value. As W. V. O. Quine put it,

I recognize indenumerable infinities only because they are forced on me by the simplest
systematizations of more welcome matters. Magnitudes in excess of such demands,…I look
upon only as mathematical recreation and without ontological rights. [2]

Paul Cohen has indicated at least some sympathy for Quine’s position [3].
The Replacement Axiom is used to prove the existence of exquisitely large sets.

Recall the sequence of sets whose members are N,P(N),P(P(N)), . . .. We will
call this sequence H. According to [4], ordinary mathematics (that is, mathemat-
ics outside set theory, probably including all applied mathematics) only ever speaks
of the first few (say, 5 or so) members of H. However, if we accept the first few
members ofH as sets, it is natural to consider the repeated application of the power
set operation indefinitely, generating the entire range of H . H is the extent of the
universe guaranteed to exist in Zermelo’s original 1908 formalization of set the-
ory, which omitted the Replacement Axiom. The first job of Replacement, and its
original motivation, is that once we accept Zermelo’s axioms and the mathemati-
cal worldview behind them, Fraenkel argued there is no reason not to accept (and
set theorists were already implicitly accepting) the sequence H as an individual
object. The Axiom of Replacement says that we can do this, since H is the range
of a function on the set N. Essentially, Replacement allows us to transition from
the indefinite, open-ended sequence N,P(N),P(P(N)), . . . to the individual object
〈N,P(N),P(P(N)), . . . , 〉. This “transition” sounds purely philosophical until one
considers that we can then apply the Axiom of Union to H to obtain the set called
V2ω , which cannot be proven to exist in Zermelo’s original theory. Roughly speaking,
V2ω is the set of all sets we would ever come across by iterating the operations done
in ordinary mathematics today. That is, it could be considered the universe of dis-
course of ordinary mathematics, to the extent that ZFC is the foundation of ordinary
mathematics.

Quine’s argument against Replacement is this: Replacement makes the universe
of ordinary mathematics a set, but mathematics does not need its universe to be a
set. Set theory is mathematics (or is n’t it?), and the universe of set theory fails to
be a set with or without Replacement (by Theorem 2, which holds in either case).
Fraenkel says there is no reason not to accept Replacement, but there is no good
reason to accept it either, and thus it should be discarded in the interest of obtaining
the simplest theory.

There is at least one line of positive response to Quine’s argument. ZFC proves the
consistency of Zermelo set theory, a statement about proofs as finite mathematical
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objects that can be stated even in first order arithmetic, but cannot be proven in either
arithmetic or in Zermelo set theory. This makes it plausible that the Replacement
Axiom could play a role in arguments that lead to applications outside of set theory.

But there is at least one response to this response.While the consistencyofZermelo
set theory is a formal theorem if ZFC, anyone who actually doubted the consistency
of Zermelo set theory would be at least as doubtful of ZFC—that is, suspicious
that some of the formal theorems of ZFC, interpreted as real propositions about
finite sets, may be demonstrably false. In this sense, we still have no examples of
Replacement playing an essential role in the proof (qua coming to know the truth)
of a real proposition.

3.3 Skepticism About Choice

The Axiom of Choice is unique among the set existence axioms of ZFC. All of the
other six axioms postulate unique sets, and thus can be associated with function
symbols or other constructs for giving names to sets. The Axiom of Choice uniquely
postulates the existence of a set without giving a means to write an expression that
defines it. In fact, while Choice postulates the existence of a set K containing exactly
one member of each set in P(R) − {∅}, the set of all nonempty sets of real numbers,
it is provably impossible to show that any particular set definable in ZFC is equal
to K . Thus, not only does Choice not provide names for the things it postulates to
exist, it asserts the existence of objects that we cannot possibly get our hands on—in
the only sense one can get their hands on a mathematical object, which is to write an
expression for it. The sense in which these sets exist, if they indeed exist, must be
highly abstract, even as mathematical objects go.

The case for the Axiom of Choice was strengthened when Kurt Godel showed
that if the ZF (Zermelo-Fraenkel Set Theory Without Choice) is itself consistent,
then so is the system ZFC obtained by adjoining the Choice Axiom. In light of this,
Choice cannot be “responsible” for proving false real statements in ZFC. The only
harm the axiom can do is to allow us to abstractly prove the existence of things that
may not really “exist”, depending on what it means to exist. While asserting false
or meaningless statements ought to be avoided on general principles, the existence
statements proved using Choice have at least one practical application: they prevent
the wasted effort of trying to prove the given objects do not exist!

For example, the Axiom of Choice can be used to prove the existence of a subset
of R that is not Lebesgue measurable. While it is also known that ZFC can never be
used to distinctly identify a single unmeasurable set, the question of whether they
exist is central to a major branch of mathematics, and might have consumed large
parts of the careers of many researchers had it not been proven (using the Choice
Axiom) that such a set “existed”. Even those who believe the Axiom of Choice is
literally false must hail as progress the information that there is no proof in ZF that
all sets are measurable and using the Axiom of Choice to prove existence of an
unmeasurable set is the most straightforward path to this useful knowledge.
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Finally, the fact that existence proved by the Choice Axiom is a little shady is
acknowledged in ordinary mathematical practice, which ameliorates the potential
problem that we are simply lying when we use the axiom. Proofs that use the Choice
Axiom are normally labeled as such, and it is generally considered an improvement
if a proof that relies on Choice is superseded by one that does not use it. In this
sense, Choice is only marginally included, or perhaps not included, in the default
foundations ofmathematics. It is as if mathematicians acknowledge the special status
of such an abstract sense of existence, perhaps as good for nothing but calling off
the search for proofs of non-existence!

3.4 Skepticism About Power Sets

More serious objections to ZFC consist in skepticism about the Power Set Axiom.
As opposed to Replacement or Choice, which might be considered to be the abstract
fringes of ZFC, to doubt the Power Set Axiom is to doubt the critical mass of Can-
torian Set Theory. Such doubts have been expressed by notable mathematicians
including Henri Poincare and Hermann Weyl.

Since ZFChas become orthodox, the Power Set axiomhas been used routinely and
implicitly in ordinary mathematics. By implicit use, we mean that most authors do
not even mention their use of the Power Set Axiom; they simply write P(A), for any
set A, taking for granted that there is such a thing. My observation of contemporary
students is that they are perfectly comfortable with the Power Set Axiom as well,
perhaps because they have some faith in their teachers, who use it unquestioningly,
until they encounter Cantor’s Theorem that P(N) is more numerous than N. At that
point it is not uncommon for students to ask, one way or another, even if only by
the looks on their faces, “is this some sort of game?” I remember asking myself
that question several times over the course of my mathematical education. However,
I thought better than to ask aloud in class. The question casts shadows of doubt
on the value of an exalted enterprise, and, if I am not mistaken, would have been
uncomfortably unwelcome in any form, no matter how diplomatic. As we shall see,
however, it is a question on which the jury is still out.

Aside from the visceral strangeness of some infinite sets being “bigger” than
others, there is a substantive reason to question the Power Set Axiom uniquely, that
was put forward notably by Henri Poincaré. Recall that the supposed “set of all sets”
is paradoxical. This is by no means obvious; indeed, the fact was only recorded
by Cantor in 1899, after 25years of research in set theory, and it completely evaded
Gottlob Frege, father ofmodern logic, as he composed hismagnumopusFoundations
of Arithmetic. Now, paradoxes arise from carefully working out the consequences of
subtly contradictory assumptions, which in turn arise from poorly articulated or ill
conceived intuitions. It is worth asking what ill conceived intuitions are expressed
in the supposed “set of all sets”—for if we cannot answer this, then we cannot
distinguish them categorically from the intuitions we are currently using, and we
have no right to expect to be free from future paradoxes. Notice also that the “set of
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all sets of natural numbers” comes at least superficially close to “the set of all sets”.
The question is how deep the resemblance may be.

The transition from pre-Cantorian thinking to Cantorian set theory can be visual-
ized in terms of an infinite being, who can perform infinitely many operations upon
sets in a finite time. For such a being, infinite sets could be traversed, and each of
their elements operated on in some way, just like finite sets. It is not important that
we need believe such a being actually exists; what matters is that perhaps the idea
of what he could do, if he were to exist, is a coherent abstraction. This intuition,
if accepted, lends support to the Axioms of Infinity, Separation, Union, Unordered
Pairs, and Choice. This is because in forming a new set X using each of the afore-
mentioned axioms, we gather its members from other sets that are already in the
conversation, and hence already understood or “built” in some way. In other words,
the “search space” for members of the new set is restricted to sets we already have,
and their members. Consider the axioms one by one:

1. Themembers of the setN, formed according to the Axiom of Infinity, are familiar,
finite objects.

2. In forming the set {x, y} from given sets x and y, its members are already named,
and their members presumably accounted for.

3. In applying theAxiomof Separation to a given set A to form the set {x ∈ A| P(x)},
all members of the new set are members of A, which we already had in hand.

4. In forming
⋃

x∈A x from the given set A by the Axiom of Unions, all of its
members are members of members of A.

5. Axiom of Choice: Given a set A , the set claimed to exist by the axiom of choice
is a set of members of members of A.

This same intuition arguably justifies the Axiom of Replacement, though in a
weaker way: In forming the set {y|∃x ∈ A · P(x, y)} from A by the Axiom of
Replacement, every member of the new set takes the form f (x) for some given
function f and some member x of the set A. Even if f (x) is not a member of any
set already mentioned in the conversation, we have an expression for it.

The Power Set alone is a different story. The members of, say, P(N), do not
need to be members of any set defined before applying the axiom, and need not
be written in any particular form related to such a set or its members. They could
be anything in the universe. Perhaps we can imagine an infinite being traversing a
universe bigger than any set, if we imagine that universe is already clearly laid out
ready to be traversed. On the other hand, if we imagine the universe being constructed
by a transfinite process, then when we begin to buildP(N), we must search the entire
universe for its members—and the entire universe is still under construction, since,
in particular P(N) is still under construction. So, however we imagine constructing
the universe that satisfies the power set axioms, there is a delicate issue involved.
The problem is not that the construction has “too many steps” (or at least this is not
the only problem); the problem is that P(N) must be constructed before we finish
constructing the universe, and yet the universe must be constructed we build P(N),
because the universe is the search space for its members. The same applies to the
power set of every infinite set, and applies to them all at once, mutually recursively.
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The situation was described by Russel [5] as follows: Whatever involves all of a
collection must not be one of the collection …We shall call this the “vicious-circle
principle,”. Russel believed that violation of the vicious-circle principle was the
conceptual misstep in postulating a “set of all sets”, and that the Power Set Axiom
runs afoul of the same principle, since the power set of a given set involves all of
the universe of sets (as the search space for its members, so to speak), and is also a
member of the universe of sets.

So, the intuition that justifies all of the other axioms oF ZFC may not justify the
Power Set Axiom. Now if the sets of the Cantorian universe are real objects, that
were here before we were and will be here after we are gone, then it does not need to
be “constructed”, and we are OK. This view, known as mathematical Platonism was
famously taken by Kurt Gödel. On the other hand, if sets (and other mathematical
objects) are more like characters in a story that we are inventing, then there is a
circular dependency among our conceptions power sets and the universe itself, of a
sort that is liable to leaves things ill-defined.

My own position, one that is rarely taken in the literature, is as follows. Even
if Gödel is right, and the sets of the Cantorian universe are real objects existing
independently of our mental activity, the Power Set axiom is still suspicious on
account of the vicious circle. In mathematics, we do not give something a name until
we have identified it unambiguously, and that unambiguous naming of things must
be properly ordered. For example, for any integer n let

f (n) =
{
1 if n is odd

0 if n is even

and

g(n) =
{
n if n is odd

0 if n is even

We may now define integers a and b by the equations a = g(4) and b = f (a),
and we may do this because the definitions can be (trivially) ordered so that the
right hand side of each equation only uses previously defined symbols. On the other
hand, we cannot define integers a and b by the equations a = f (b) and b = g(a),
because they cannot be so ordered (in this case both a = b = 0 and a = b = 1 are
both solutions of the system). The problem in the failed attempt to specify a and b
is not that the integers are not “real”, but that we have tried to identify and name
entities in a circular fashion. Individually, each of our equations makes sense, but as
a system, they fail to name particular objects.

By analogy, we have no right to say that “P(N)” is the name of a particular set—
since that object is intuitively defined in terms of the universe of sets, which is either
not an object at all (since it is a proper class), or depends on the value of “P(N)”.
Even under strong Platonism, “P(N)” is at best something like variable in a system of
equations that may have one solution, many solutions, or no solution. It is not merely
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that the axioms of ZFC are incomplete (as they mus be, by Gödel’s Incompleteness
Theorems); it is that the conception on which they are based is inherently circular.

In summary, if the sets of Cantor are invented, as opposed to discovered, then
“P(N)” is under suspicion of being an inherently vague concept, by the vicious
circle principle. If, on the other hand, sets are real (but abstract) objects that exist in
nature, then perhaps God can unambiguously identify the collection of all subsets of
N and give it a name; but that does not mean that we can, because we do not have a
clear enough picture of the universe—and we never will, if it is supposed to contain
things like P(N).

3.5 Skepticism About Infinity

The final class of objections regards skepticism about the Axiom of Infinity. Reject-
ing this axiom yanks the rug clean out from under Cantorian set theory, and many
mathematicians did and do reject it, including, most famously, Leupold Kronecker,
Luitzen Brouwer, Erret Bishop, Andrey Markov Jr., and Thoralf Skolem.

The casual acceptance of infinite collections as individual objects was not cus-
tomary before Cantor. For example, while it is well known that Euclid showed that
there is an inexhaustible supply of primes, it is less well known that his statement
of this theorem reads, “Prime numbers are more than any assigned multitude [Greek
ochlos] of prime numbers” [6]. That is, there is no collection whose members are all
of the primes. Evidently, Euclid implicitly rejected the notion of infinite collections.
Carl Frederich Gauss expressed a similar position more explicitly, claiming that sup-
posed infinite collections are merely figures of speech, and should not be regarded
as completed totalities [7].

The position rejecting the Axiom of Infinity is known as finitism, and has strong
weak versions. Weak finitism claims that mathematical statements and arguments
that do not rely on the Axiom of Infinity are of central importance in mathematics.
Mathematics as a whole leans to weak finitism, in the sense that finitist results (which
usually provide an algorithm for computing anyobjects they claim to exist) are readily
publishable evenwhere a corresponding non-finitist result has already been obtained.
In its strongest version, finitism claims that statements and proofs that rely on the
Axiom of Infinity should not even be contemplated. This was the position of Luitzen
Brouwer (famous for Brouwer’s Fixed Point Theorem in topology) as well as Erret
Bishop. There is an intermediate view that statements and proofs that make prima
facie use of Infinity are admissible if they can be viewed as shorthands for others
that do not.

Finitism does not claim that one cannot talk about, say, the natural numbers—
a proposition that would make mathematical life quite peculiar. Instead, it asserts
the natural numbers constitute a proper class, that is, a kind of thing as opposed
to an individual thing. The substantive consequence of finitism is that computa-
tional laws are categorically different from computational facts, and that abstract
propositions are categorically different again, and that our language and reasoning
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should directly respect the difference.Mathematics that proceeds under ZFCdoes not
directly respect the difference: in the language of ZFC, these three sorts of statements
are interchangeable, in the sense that one may occur anywhere the others may.

The basic argument for finitism is straightforward: supposedly infinite objects are
suspiciously abstract on their face, and so, out of respect for economy and simplicity,
we should not talk about them if we do not have to. The response usually given to
finitism is equally simple: we have to—in the sense that engineering needs science,
science needs mathematics, and mathematics needs Infinity. Feferman has pointed
out, however, that this response, as most famously given by Quine and Putnam,
naively omits the details of which parts of mathematics are needed by science, and
which parts of ZFC are needed by mathematics. Remember, most mathematicians
are not able to state the axioms of ZFC, let alone are they consciously aware of the
applying the axioms as they work. So just because mathematics can be modeled in
ZFC does not mean it cannot bemodeled in weaker systems. If not all of mathematics
can be accounted for without infinite sets and power sets, then at least perhaps the
parts used by science can. Sol Feferman has conjectured that this is indeed possible,
and verified the hypothesis to a substantial degree by carrying out core parts of
measure theory and functional analysis in a formal system that does not use the
Axioms of Power Set or Infinity [4].

4 The Foundational Crisis and the Rise of ZFC

4.1 Hilbert’s Support for ZFC

Most notable among the advocates of Cantor/ZFC, and indeed most notable of all
mathematicians working at the time, was David Hilbert. Regarding resistance to
Cantor’s theory, Hilbert famously proclaimed, “No one shall expel us from the Par-
adise that Cantor has created” [8]. (It is interesting that Hilbert chose that phrasing.
Not being expelled from paradise has a famously shaky track record, particularly on
account of aspiring to be like God.) In any case, the following paragraphs summarize
Hilbert’s argument.

Hilbert regarded computational facts and computational laws as Echte sätze (real
sentences), because he recognized that they have the same status as experimentally
falsifiable laws of the physical world, such as Newton’s Law of Universal Gravi-
tation, or the laws of thermodynamics. In particular, each computational law, like
a physical law, makes a concrete prediction about every experiment in some cate-
gory of experiments. Hilbert also noted that computational facts and laws have a
particular logical form: using a vocabulary of symbols for computable functions and
relations, computational facts are those sentences that can be written without quanti-
fiers, and computational laws are those that can be written using only initial universal
quantifiers, i.e., ∀x1 : . . . ∀xn : p, where p is quantifier-free.
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What is real about our “real sentences” is not merely philosophical, but also
practical. To see this, consider what it looks like to “apply a theorem”: It means to
rationally say, I believe, or hypothesize, that this system will behave within certain
constraints because, among other things, this theorem is true. For example, imagine
we launch a rocket straight upward with a given measured thrust, weight, and drag
coefficient. We then expect the rocket to rise to certain heights at certain times, as
described by a certain definite integral. The integral is defined by a limit, which
we can compute numerically within any desired tolerance. If we do proceed this
way, by brute force, then we will have used certain computational facts obtained
by brute force, together with the knowledge that a certain computational system
systematically mirrors the behavior of a certain physical system. If this were the only
way mathematics were used, then pure mathematicians would be out of business, or
in a business entirely divorced from physical applications.

On the other hand, if the function being integrated is of a friendly sort, as it
sometimes is, then we can apply the Fundamental Theorem of Calculus, which says
roughly that integration and differentiation are inverses, along with theorems about
what is the anti-derivative of what, obtain an exact analytic solution to the integral.
Now that is applying a theorem.

Now imagine we apply theorems of calculus to obtain a value for the integral, and,
contrary to our expectations, our measurements are outside the bounds of what we
expect, even though our physical assumptions are correct. How could this happen? It
could happen if the supposed theorem were false. This would mean that the integral
predicted by the theorems failed to be equal to the limit that defines the integral.
If the two are not equal, then they must be unequal by some positive amount, and
this can be demonstrated numerically by computing a close enough approximation
of the integral from its definition. We describe this counterfactual scenario because
the contents of the theorems is precisely that will never happen. In turn, concretely
understanding the contents of the theorems of integral calculus reveals that they,
like any theorem that is applied in similar fashion, must ultimately be computational
laws, at least in the cases in which they actually are applied. Moreover, I have tried
to imagine, or discover in literature, a different fashion in which a theorem could be
applied to make a prediction about a physical system, and come up empty. Thus, I
infer that most, and plausibly all direct applications of mathematics consist of the
application of computational facts and laws, or what Hilbert called “real sentences”.

With an understanding of role of real sentences, we can state Hilbert’s philosophy
of mathematics, and explain how it led him to embrace Cantorian set theory. For
Hilbert, the job of a foundational framework is to (1) enable the proofs of true real
sentences while (2) not enabling the proofs of false real sentences. If, on the way
to these objectives, we make highly abstract claims about highly abstract objects,
then those objects exist, or at least ought to be thought to ought to be thought to
exist, because they were part of a larger system that achieved (1) and (2). This is also
Quine’s position, as given earlier.
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4.2 Der Grundlagenkrise

Now the acceptance of Cantorian set theory and ZFC by the mathematical commu-
nity happened in this way. Over the course of the late 19th and 20th century, math-
ematics became unprecedentedly sophisticated and subtle. Fields such as measure
theory, functional analysis, and set theory saw serious discussions ofwhat counted as
mathematics, not just at the philosophical level, but with respect to whether certain
mathematical work was admissible. To put it bluntly, there was no clear meeting of
minds within the profession as to what mathematics was about, or what its method-
ological assumptions should be—especially regarding the question of when are we
entitled to say that a mathematical object, described in a certain way, exists. The
ambiguities and disagreements involved not only the upper reaches of the abstract
Cantorian universe, but the most seemingly elementary and utile of all mathematical
systems: the arithmetic of the real numbers. Hermann Weyl would call the situation
the Grudnlagenkrise der Mathematik—the crisis at the foundations of mathematics.

Cantorian set theory, if one were willing to swallow it philosophically (or simply
ignore philosophy), offered a clear methodological solution to the crisis. ZFC had
the comfortable property that the entire body of mathematics accepted up to that
point could be smoothly codified within it. Summarizing the conventional wisdom,
no competing framework at the time enjoyed this property; and so, despite cor-
porate philosophical reservations, the mathematical community adopted Cantorian
Set theory, as precisely realized in ZFC, as the default foundational framework for
mathematical research and teaching.

In the period since the Grundlagenkrise, three things have happened. First, since
most people absorb what they are taught by the authorities—especially when it
comes to paradigms we teach within, as opposed to propositions we teach about—
the misgivings of early 20’th century mathematicians about ZFC were generally not
passed down. Today, the issue of whether or not ZFC ought to be the foundation
of mathematics gets very scarce attention within mathematics. Second, less abstract
alternatives to ZFC have matured to the point that, as pointed out earlier, it is plau-
sible that all scientifically applicable mathematics can be carried out within them.
Finally, it emerged from the work of Gödel [9] and Cohen [3] that the natural, easily
posed question of how many real numbers there are is provably undecidable within
ZFC, and no consensus has been reached on any additional axioms that would settle
the issue. This is somewhat alarming: the language of mathematics can ask simple
questions that the methods of mathematics cannot answer. This indicates that the
intuitions supposedly formalized by ZFC may, after all, be inherently ambiguous, or
at least not yet shared clearly. The confluence of these events, paradoxically, is that
Cantorian Set theory is more comfortably orthodox today than it was 70 year ago,
even though it is now known to be both more flawed and less necessary than it was
then.
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Part 2. Pedagogy and the Foundations of Fathematics

5 Pedagogical Issues

There are some issues that obtain in the currently orthodox foundational framework,
that I believe are substantial drawbacks of it. The remarks of this section apply most
directly to discrete math courses taught in the computer science curriculum, which
is the place most students are supposed to learn mathematical reasoning.

In a typical discrete math course, students learn a bit of formal logic, and are
then introduced to the fundamental concept of set. They learn that familiar sorts
of objects can have their members collected together to form sets. They then learn
that a function from A to B is a subset F of A × B such that for each x ∈ A there
is exactly one y ∈ B with (x, y) ∈ F . Similarly, they learn that a relation on A is
simply a subset of A. These concepts of set, function, and relation thus give elegant
systematicity to the taxonomy of mathematical concepts. For example, the concepts
triangle and real number are identified with a sets; the concept area is identified
with a function from triangles to real numbers, and the concept isosceles is identified
with a relation on triangles. Many of the students’ mathematical concepts, both old
and new, can be sorted into the categories of set, function, and relation, and then
discussed with a clean, systematic terminology. So far, so good.

Students soon learn about operations on sets. For example, if A and B are sets,
then A ∪ B is the set of objects that are members of A or members of B, or both.
Now, this binary union operator must be a function from V × V to V ,where V is the
set of all sets, right? Wrong! We have seen that the supposed “set of all sets” would
be paradoxical. Standard textbooks, such as [10] do not broach topic of what kind
of thing binary set union is, but it applies to terms to form terms. From the students’
perspective it looks, swims, and quacks like a function, and the students scarcely have
the wherewithal to know better. We can infer that students either incorrectly assume
it is a function, or that they have ceased to independently exercise the concepts of
set and function within a month of their being taught.

Moving on, students soon learn that a graphG is connected if, for any two vertices
x and y of G, there is a path in G from x to y. Since each graph is either connected
or not connected, connected must be a relation on graphs, right? Wrong!

Theorem 3 The class of graphs is not a set.

Proof Assume the class of graphs is a set, and call it G. By the Axiom of separation,
there is a set S ⊂ G, whose members are all graphs with no edges and a single vertex.
For any graph g in S, let F(g) be the sole vertex of g.

Now, for every set x there is a graph with no edges, whose only vertex is x ; thus,
the range of F is the entire universe. But by the Axiom of Separation, since S is a
set and F is a function on S, the range of F must be a set. This is a contradiction,
since the universe is not a set. �
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Note that it would not help to restrict our attention to finite graphs; the same proof
shows that there is no set whose members are all of the finite graphs.

Similar remarks apply to a many of the concepts taught in the course, and so this
is the first problem with the orthodox foundational framework: the supposedly fun-
damental concepts of set, function, and relation fail to cover their apparent instances.
This is more important than it first appears. The first steps toward mathematical
maturity is distinguishing sense from nonsense. Students who have not yet taken
this step will use terms of art incorrectly, writing things like “vertex x is connected
to vertex y”. Almost all such nonsense stems from students applying technical ter-
minology denoting functions and relations to the wrong numbers and/or kinds of
arguments. I have found a very effective solution m is to require students to learn
signatures for functions and relations (e.g., “em connected is a relation on graphs”).
This knowledge of signatures, in frameworks where it is possible, gives a vocabulary
for identifying nonsense, and goes a long way toward correcting it. The problem is
that to say “connected’ is a relation on graphs” is itself nonsense in ZFC!

The final issue regards concealing the foundational debate from students, and
effectively brainwashing them to repeat what may be serious mistakes of the past.
Perhaps, as Kurt Gödel believed, ZFC is a collection of assertions that constitute
genuine knowledge about the real subject matter of mathematics. On the other hand,
if ZFC is some sort of game, then perhaps, asDavidHilbert believed, it is a thoroughly
beautiful, important, and useful game; or perhaps, as Hermann Weyl believed, it is
a game full of wasteful nonsense that is in need of serious revision. There is a lively
debate among these three positions, that I an not in a position to settle. What I believe
is dishonest, however, is to carry on teaching within ZFC, rather than about it, as if
there are no viable alternatives, and without informing students that they are not in
bad company if they are skeptical.

6 Language K

In this chapter we will describe a formal language K (named in honor of Leopold
Kronecker, 1823–1891), which includes constant symbols, functions, and relations
for talking about rational arithmetic and finite sets and tuples. Unlike, for example,
ZFC and Feferman’s system W , language K has a large and logically redundant
set of primitives. This is because K , unlike most formal languages, is meant to be
used rather than studied. That is, it is more important that students be able to write
actual formal definitions in K than to prove theorems about K . The main purpose
of this section is to share a well tried set of primitives, that can (1) only includes
standard mathematical objects, operations, and notations (2) can be covered in one
or two lectures, and (3) is expressive and flexible enough to be used as a language for
problem solving and modeling, for an interesting range of examples and exercises.

K will be defined by giving an informal grammar and denotational semantics for
its constant symbols and operators. All functions definable in K are effectively com-
putable, and K can be implemented as a functional programming language. Viewed



38 N. Rushton

as a functional programming language, What is distinctive about K is that its syntax
and semantics are simply a small, effectively computable fragment of the language
of informal mathematics. Its constructs are those of rational arithmetic, finite sets
and tuples, computable functions and relations, standard logical connectives and
quantifiers, and aggregates such as summation, product, set union (bigcup) and set
intersection (bigcap). The purpose of the language for students to begin acquiring
these constructs as a language of thought for modeling and problem solving.

6.1 Universe of Discourse

The universe of discourse of K is the unique minimal set D satisfying the following:

1. Every rational number is a member of D.
2. Every lambda expression of language K is a member of D.
3. Every finite set of members of D is itself a member of D.
4. Every finite n-tuple of members of D, n/ge2, is a member of D.

Wemay also define D explicitly by induction. Let D0 be the set of rational numbers
and lambda expressions of K , and E0 be the set of all finite sets and n-tuples, where
n ≥ 2, of members of D0. Next, for i > 0, let Di = Di−1 ∪ Ei−1, and let Ei bes the
set of all finite sets and tuples of members of Di . Now, D = ⋃∞

i=0 Di . Members of
D will be called objects.

6.2 Arithmetic in K

Numerals are defined as follows:

• An integer numeral is a sequence of one or more digits 0–9.
• A terminating decimal fraction is a decimal point (.), followed by one or more
digits 0–9.

• A repeating block is a left parenthesis, followed by one or more digits, followed
by three periods, followed by a right parenthesis. For example, the following are
repeating blocks: (0…), (06…), (10293…)

• A decimal fraction is either a terminating decimal fraction, a decimal point fol-
lowed by a repeating block, or a terminating decimal fraction followed by a repeat-
ing block.

• A numeral is either a decimal fraction, or an integer numeral followed by a decimal
fraction. For example, “84”, “0.89(32…)”, and “005.178” are numerals.

Every numeral is a constant symbol of K , denoting a rational number in the usual
way. Repeating blocks are used to write repeating decimals; for example 0.80(35…)
is written for 0.80353535….
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IF x and y are rational numbers and m and n are integers, then

• x + y denotes the sum of x and y.
• x − y denotes the difference of x and y.
• +x denotes x .
• −x denotes the additive inverse of x .
• x · y denotes the sum of x and y.
• if y = 0 then x/y denotes the quotient of x by y.
• |x | denotes the absolute value of x .
• �x� denotes the least integer that is greater than or equal to x .
• �x� denotes the greatest integer that is less than or equal to x .
• xn denotes x raised to the nth power. We adopt the convention that 00 = 1.
• If n > 0 then mmod n = m − n · �m/n�.
• x < y holds if x is less than y.
• x > y holds if x is greater than y.
• x ≤ y holds if x is less than or equal to y.
• x ≥ y holds if x is greater than or equal to y.

Addition and subtraction associate together from the left and have lowest prece-
dence among the function symbols. Multiplication, division, and modulus associate
together from the left and have next lowest precedence. The unary prefixes + and −
have next lowest precedence, and exponentiation is right associative and has highest
precedence.As usual, functional operators in K always have precedence over relation
symbols. As usual, parentheses may be used to override precedence and association,
or to clarify expressions.

6.3 Tuples

We may write an n-tuple, n ≥ 2, by writing its members, separated by commas and
enclosed in parentheses. If n ≥ 2, u is an n-tuple, and 1 ≤ i ≤ n, then we may write
ui for the i th coordinate of u.

6.4 Sets and Set Operations

Wemay write any finite set of objects by writing its members, separated by commas
and enclosed in braces. In particular, we may write {} for the empty set. We may
also write ∅ for the empty set. If A and B are sets, x is an object, and m and n are
integers, we may write

• x ∈ A to mean that x is a member of A.
• A ⊆ B to mean that A is a subset of, or equal to B.
• A ∪ B for the union of A and B.
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• A ∩ B for the intersection of A and B.
• A − B for the set difference of A and B, that is, for the set of all members of A
that are not in B.

• A × B for the cross product of A and B.
• |A| for the cardinality of A, that is, the number of members in A.
• {m . . . n} for the set of all integers that are greater than or equal to m and less than
or equal to n.

Binary intersection and cross product associate together from the left and, have
precedence over binary union and set subtraction. Binary union and set subtraction
associate together from the left.

6.5 Equality

The equality operator is a relation on all pairs of objects as follows:

• Equality of rational numbers is defined in the usual way.
• If n ≥ 2 and u and v are n-tuples then u = v if and only if u.i = v.ifor each
i ∈ {1 . . . n}.

• If A and B are sets, then A = B if and only if every member of A is a member of
B and every member of B is a member of A.

• x = y is false in all cases not covered in above In other words, x = y is false in
all of the following cases:

– x is a rational number and y is a set or tuple,
– x is a tuple and y is a set or rational number,
– x is a set and y is a tuple or rational number,
– x is an m-tuple, y is an n-tuple, and m = n

6.6 Logical Operators

The standard Boolean connectives are written in K as follows: If p and q are propo-
sitions, we may write

• p ∧ q for the conjunction of p and q,
• p ∨ q for the conjunction of p and q,
• ¬p for the negation of p,
• p ⇒ q for p implies q,
• p ⇔ q for equivalence between p and q.

A variable is a string of letters and digits, beginning with a letter. If A is a set, v is a
variable, and p is a statement in which v occurs free, then wemay write ∃v ∈ A . . . p
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to mean there is an x ∈ A such that p is true when v is interpreted as x . We write
∀v ∈ A · p as a shorthand for ¬∃v ∈ A.¬p.

Negation has the highest precedence among the Boolean connectives, followed
by conjunction, disjunction, implication, and then equivalence. Conjunction and dis-
junction are left associative, while implication and equivalence are right associative.

6.7 Aggregates and Set Comprehension

Basically, a statement will be said to be “bounded” if it is a conjunction of literals
(that is, atomic sentences and negated atomic sentences), in which every variable is
restricted some set before it occurs free in any other way.

Before precisely defining the bounded statements, we state some definitions. An
interpretation is a mapping from variables to objects. If p is a sentence and s is an
interpretation, we write ps for the statement obtained from p by interpreting v as
s(v) for each variable v in the domain of s. Finally, a solution of p is an interpretation
whose domain is the set of variables occurring free in p, and such that ps is true.
Now, a statement is bounded if it can be shown to be bounded by the finitely many
applications of the following rules:

1. Every proposition is bounded.
2. Every equation of the form v = t where v is a variable or tuple of variables and

t is a well defined term, is bounded.
3. Every statement of the form v ∈ A, where v is a variable or tuple of variables and

A is a term denoting a set, is bounded.
4. If p is bounded, and qs is bounded for every solution s of p, then p ∧ q is bounded.

Bounded statements the properties they are easy to learn to identify, and that all
of their solutions can be obtained by a simple brute force algorithm. For example,
the following are bounded:

• x ∈ {1, 2, 3} ∧ x + 2 < 4
• x ∈ {1 . . . 100} ∧ y ∈ {1, 2, 3} ∧ x · y > 20

and the following are not bounded

• x > 20
• x + y ∈ {1 . . . 10} ∧ x = 4

Now, if p is a bounded statement, t is a term, and ts denotes a number for each
solution s of p, we may write

• ∑
p t for the sum of the values of ts as s varies over the solutions of p, and

• ∏
p t for the product of the values of ts as s varies over the solutions of p, and

Similarly, if p is a bounded statement, t is a term, and ts denotes a set for each
solution s of p, we may write
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• ⋃
p t for the union of the values of ts as s varies over the solutions of p, and

• if p has at least one solution, we may write
⋂

p t for the intersection of the values
of ts as s varies over the solutions of p, and

As usual, for a variable i and terms r and s, we may write
∑s

i=r in place of∑
i∈{r ...s}, and similarly for the other aggregate operators.
Finally, if ts is a well defined term for each solution s of statement p wemay write

• {t | p} for the set of all values of ts as s ranges over the solutions of p
For example, {x + y | x ∈ {1, 2} ∧ {y ∈ {10, 20}} = {11, 12, 21, 21}.

6.8 Lambda Terms

If t is a term and v is a variable, then λv . . . t is a lambda term. If r is a well defined
term and the term obtained from t by interpreting v as the value of r is also well
defined, then eval(λv · t, r is a well defined term denoting this value. For example,
the term eval(λn · n + 1, 5) has a value of 6. Note here that in language K , lambda
expressions do not have denotation in themselves, and in particular do not denote
functions. It is only the eval function that triggers beta reduction.

If t1, . . . tn are terms, p1, . . . , pn are statements, exactly one of the pi ’s is true,
say pk , and tk is well defined, then the expression

p1 if p1; . . . ; tnifpn
is a well defined term, denoting the value of tk . For example, the expression

1if 1 < 0; 2 if 2 < 0; 3 if 2 = 2

is a well defined term with a value of 3. This construct is called the conditional
construct and only occurs in the body of lambda expressions, to achieve the effects
of piecewise definition.

Lambda terms corresponding to relations are defined similarly to those for func-
tions.

6.9 Fine Points

The denotational semantics of K is given by the constants and operators defined
above, in light of the following:

1. The expressions of K are of two sorts: terms and statements. Terms are formed
from constants, variables, function symbols, and aggregates, while statements are
formed by relation symbols and logical symbols.



A Constructive Framework for Teaching Discrete Mathematics 43

2. A term that is given a denotation by the rules above is said to be well defined. All
other terms are known as error terms.

3. Any atomic sentencewith an argument that is an error term is taken to be false. This
is somewhat nonstandard (such terms are in practice excluded from the language
of informal mathematics), but makes the syntax simpler (in fact, decidable as
opposed to undecidable), the semantics simpler, and allows the use of classical,
two-valued logic for connectives.

4. The language is untyped. This means that eval(λv . . . t, r) is an error term in
most cases, that is, all cases except those in which would be well-typed in a typed
variant of the language.

Type systems for K simple enough for pedagogical use (viz., able to be covered
in a 45min lecture) are still under development.

While functions are technically supposed to be written using lambda terms, in
practice we write function and relation definitions the usual way, e.g.,

n! :=
{
1 if n = 0

n · (n − 1)! otherwise

divisor(i, n) ≡ n = 0 ∨ (¬i = 0 ∧ n mod i = 0

prime(n) ≡ n > 1 ∧ (∀i ∈ {2 . . . n − 1} · ¬divisor(i, n))

6.10 Typical Exercises

Language K can be used to give examples and exercises that help students get their
sea legs doing mathematical modeling and problem solving using numbers, sets, and
tuples, functions, relations, and logical operators. A typical exercise is as follows:

Imagine the squares of the tic-tac-toe board numbered 1–9, with 1 being the upper
left corner and 9 being the bottom right corner as in the diagram (diagram omitted
here). A player is 1 (representing x) or 0 (representing o). A move is a pair (p, c)
where p is a player and c is a cell, representing a move by player p in cell c. A state
is a set of moves, representing the moves that have been made at a certain point in
the game. For example, if x moves in the upper left corner and then o moves in the
middle, the resulting state is {(1, 1), (0, 5)}. Let S be the current state of the game.
Write statements in K that intuitively mean each of the following:

1. The center cell is occupied by x .
2. The upper left corner is occupied.
3. At least one corner is occupied.
4. x has three in a row, vertically.
5. Every cell on the board is occupied.
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Similarly, each of these exercises may be cast as an exercise requiring a function
or relation definition to be written. For example, students might be asked to write
formal relation definitions over , per f and con satisfying the following:

1. over(S) if a game of tic tac toe is over in state S
2. per f (n) if n is a perfect number.
3. con(G) if the (finite) graph G is connected.

7 Language P

This section defines Language P , an extension of K that can be used to define the
functions and relations encountered in a typical discrete math course (and to classify
them accurately as functions and relations).

7.1 Language Definition and Properties

Every function and relation definable in K is computable on its domain, and the
propositions of K are decidable except in case of nonterminating recursion (as
deployed through the use of a strict y-combinator of lambda calculus). Thus, K
is not capable of expressing interesting theorems, even of arithmetic and computer
science, much less calculus. We can change this, however, by the addition of a single
constant symbol. Let P (for Poincaré) be the language obtained from K by adding
a constant symbol N denoting the set of natural numbers. The universe of P , which
we will call VP , is taken to be the countable set of all objects denoted by terms of P .
We will speak, for now, as if we assume a universe in which these objects exist—but
we will return to this issue later.

In P we can now write expressions for some other infinite sets

Z := N ∪ {n‖n ∈ N}

Q := {m/n | m ∈ Z ∧ n ∈ N ∧ n > 0}

Even the definition of the universe of K , given in Sect. 5.1, can be formalized in P .
In fact the universe of P is a model for the axioms of ZFC except for Power Set and
Choice, and the sets of VP actually constitute the minimal standard model of these
axioms (though VP itself contains other other objects as well, viz., numbers, tuples,
and lambda terms).

Almost all mathematics that only references countable, explicitly definable sets
can be carried out in P . The exceptions arise when, for example, we diagonalize
over the terms of P , or otherwise mention all of the objects that can be defined in
P or some equally strong language. But P can formalize the contents of a typical
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discrete math course, including the theory of countably infinite graphs and discrete
probabilities—and one cannot really venture outside of what is expressible in P by
accident.

Some technical points on P are as follows:

1. P is an interpreted formal language, not a first order theory like ZFC. P has no
particular axiom system, and in particular no axiom of induction; but all instances
of the first order induction schema for P are evidently true in P .

2. The true sentences of P are not decidable, or even recursively axiomatizable
(proof: P is syntactically a superset of first order arithmetic, and so the true
statements of first order arithmetic are statements of P . Since the former are not
recursively axiomatizable, neither are the latter).

We identify functions in P with lambda terms, and the domains of these functions
are sets, but they are not necessarily sets that are members of the universe VP . For
example, the domain of the binary set union operator of P is SP × SP , where SP is
the set of all sets that are members of VP . In a typed variant of P , currently being
researched, we will give names to types that, while not members of VP , are subsets
of VP , which will allow us to write signatures for functions much as in a typed
programming language. The “trick” that allows things that look like functions to
actually be functions, is to carry out the discussion relative to a fixed universe of
discourse, big enough to hold all the objects we wish to talk about, but which is itself
an explicitly definable, countable set. In case we need to talk about objects that are
not in that universe, we will define a bigger one; but we give up on the idea of a
single universe once and for all. This is the cost of things that look, swim, and quack
like functions actually being functions.

7.2 Finitist Semantics for P

Language P is constructive in the sense defined in [11], namely that each object in
its universe is represented by a finite string of symbols. On its face, P does not fit into
a finitist philosophy, because it contains terms for infinite sets (and, indeed, infinite
sets of infinite sets). However, it is possible to give semantics for P by defining the
true sentences of P directly transfinite induction, without positing the existence of
abstract sets, numbers, tuples that its terms supposedly denote. Viewed in this way, P
falls within a finitist philosophy, because its truth relation can be seen as an explicitly
definable relation on finite strings of symbols. Thus, the talk of infinite collections
in P can, in principle, be viewed as shorthand for statements that do not mention
infinite sets. The definition of P’s truth predicate relies on transfinite ordinals, but
for practical purposes very small ones, which we can think of as ordinal notations
rather than infinite objects.

The primary difficulty in constructing the truth predicate for P by induction is
determining when a statement of the form ∃v ∈ A · p(v) is false—since at any stage
of the construction, truths of the form t ∈ Amay be undiscovered until later stages, in
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particular when the set A occurs in the definition of t (which could certainly happen,
e.g., min(N) ∈ N). The solution is to limit our attention to particular “canonical”
terms for members of the given infinite set. Infinite sets can only be written using
the constant symbol N, set comprehension, or set union. Of course the canonical
terms for members of N are numerals, and this is the base case. The canonical
terms for members of {t | p} are defined by induction on the level of nesting of set
comprehensions in t and p in a straightforward way, and similarly for set union.

The semantics of P will be defined in levels indexed by ordinals. Intuitively, an
expression is defined at level r if it is given a value at level r , either true or false
in the case of statements, or an object in the case of terms. Expressions that are
defined at level 0 are the propositions and well defined terms of K . These are already
undecidable; but they would be decidable in terms of an oracle to decide statement
of the form ∃n ∈ N · p(x) where p is decidable.

Now for any ordinal r > 0, E is a defined at level r if one of the following
conditions holds:

1. E is defined at level some level less than r ;
2. the proper subexpressions of E are defined at levels less than r , and the value of

E can be obtained from these by applying the semantics of its principal operator,
given in Sect. 5 (this covers everything but quantification over infinite sets);

3. E is of the form ∃v ∈ A · p(v), and statements of the respective forms p(x) and
x ∈ A are true at some level less than r (in which case E is true);

4. E is of the form ∃v ∈ A · p(v), and every statement of the form p(t) where t is
a canonical member of A is false at some level less than r (in which case E is
false).
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Fuzzy Logic for Incidence Geometry

Rafik Aliev and Alex Tserkovny

Abstract The article presents the fuzzy logic for formal geometric reasoning with
extended objects. Based on the idea that extended objects may be seen as location
constraints to coordinate points, the geometric primitives point, line, incidence and
equality are interpreted as fuzzy predicates of a first order language. An additional
predicate for the “distinctness” of point like objects is also used. Fuzzy Logic [1] is
discussed as a reasoning system for geometry of extended objects. A fuzzification
of the axioms of incidence geometry based on the proposed fuzzy logic is presented.
In addition we discuss a special form of positional uncertainty, namely positional
tolerance that arises from geometric constructions with extended primitives. We also
address Euclid’s first postulate, which lays the foundation for consistent geometric
reasoning in all classical geometries by taken into account extended primitives and
gave a fuzzification of Euclid’s first postulate by using of our fuzzy logic. Fuzzy
equivalence relation “Extended lines sameness” is introduced. For its approximation
we use fuzzy conditional inference, which is based on proposed fuzzy “Degree of
indiscernibility” and “Discernibility measure” of extended points.
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1 Introduction

In [2–4] it was mentioned that there are numerous approaches by mathematicians
to restore Euclidean Geometry from a different set of axioms, based on primitives
that have extension in space. These approaches aim at restoring Euclidean geometry,
including the concepts of crisp points and lines, starting from different primitive
objects and relations. An approach, aimed at augmenting an existent axiomatization
of Euclidean geometry with grades of validity for axioms (fuzzification) is also
presented in [2–4]. It should be mentioned, that in [2–4] the Lukasiewicz Logic was
only proposed as the basis for “fuzzification” of axioms. And also for both fuzzy
predicates and fuzzy axiomatization of incidence geometry no proofswere presented.
The goal of this article is to fill up above mentioned “gap”. In addition we use fuzzy
logic, proposed in [1] for all necessary mathematical purposes.

2 Axiomatic Geometry and Extended Objects

2.1 Geometric Primitives and Incidence

Similarly to [2–7] we will the following axioms from [8]. These axioms formalize
the behaviour of points and lines in incident geometry, as it was defined in [2].

(I1) For every two distinct point p and q, at least one line l exists that is incident with
p and q.
(I2) Such a line is unique.
(I3) Every line is incident with at least two points.
(I4) At least three points exist that are not incident with the same line.

The uniqueness axiom I2 ensures that geometrical constructions are possible.
Geometric constructions are sequential applications of construction operators. An
example of a construction operator is

Connect: point × point → line.
Taking two points as an input and returning the line through them. For connect

to be a well-defined mathematical function, the resulting line needs always to exist
and needs to be unique. Other examples of geometric construction operators of 2D
incidence geometry are

Intersect: line × line → point,
Parallel through point: line × point → line
The axiomsof incidence geometry formaproper subset of the axiomsofEuclidean

geometry. Incidence geometry allows for defining the notion of parallelism of two
lines as a derived concept, but does not permit to express betweenness or congruency
relations, which are assumed primitives in Hilbert’s system [8]. The complete axiom
set of Euclidean geometry provides a greater number of construction operators than
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incidence geometry. Incidence geometry has very limited expressive power when
compared with the full axiom system.

The combined incidence axioms I1 and I2 state that it is always possible to connect
two distinct points by a unique line. In case of coordinate point a and b, Cartesian
geometry provides a formula for constructing this unique line:

l = {a + t (b − a)|t ∈ R}

As it was shown in [2–4], when we want to connect two extended geographic
objects in a similar way, there is no canonical way of doing so. We cannot refer
to an existing model like the Cartesian algebra. Instead, a new way of interpreting
geometric primitives must be found, such that the interpretation of the incidence
relation respects the uniqueness property I2.

Similarly to [2–4] we will refer to extended objects that play the geometric role of
points and lines by extended points and extended lines, respectively. The following
chapter “A Constructive Framework for Teaching Discrete Mathematics” gives a
brief introduction in proposed fuzzy logic and discusses possible interpretations
of fuzzy predicates for extended geometric primitives. The Fuzzy logic from [1]
is introduced as a possible formalism for approximate geometric reasoning with
extended objects and based on extended geometric primitives a fuzzification of the
incidence axioms I1–I4 is investigated.

3 Fuzzification of Incidence Geometry

3.1 Proposed Fuzzy Logic

Let ∀p, q ∈ [0, 1] and continuous function F(p, q) = p − q, which defines a
distance between p and q. Notice that F(p, q) ∈ [−1, 1], where F(p, q)min = −1
and F(p, q)max = 1. When normalized the value of F(p, q) is defined as follows

F(p, q)norm = F(p, q) − F(p, q)min

F(p, q)max − F(p, q)min
= F(p, q) + 1

2
= p − q + 1

2
; (3.1)

It is clear that F(p, q)norm ∈ [0, 1]. This function represents the value of “close-
ness” between two values (potentially antecedent and consequent), defined within
single interval, which therefore could play significant role in formulation of an
implication operator in a fuzzy logic. Before proving that I (p, q) defined as

I (p, q) =
{
1 − F(p, q)norm, p > q;
1, p ≤ q,

(3.2)
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Table 1 Proposed fuzzy
logic operators

Name Designation Value

Tautology P I 1

Controversy PO 0

Negation ¬P 1 − P

Disjunction P ∨ Q
⎧⎨
⎩

p + q

2
, p + q < 1,

1, p + q ≥ 1

Conjunction P ∧ Q
⎧⎨
⎩

p + q

2
, p + q > 1,

0, p + q ≤ 1

Implication P → Q
⎧⎨
⎩

1 − p + q

2
, p > q,

1, p ≤ q

Equivalence P ↔ Q
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − p + q

2
, p > q,

1, p = q,

1 − q + p

2
, p < q

Pierce arrow P ↓ Q
⎧⎨
⎩ 1 − p + q

2
, p + q < 1,

0, p + q ≥ 1

Shaffer stroke P ↑ Q
⎧⎨
⎩ 1 − p + q

2
, p + q > 1,

1, p + q ≤ 1

and F(p, q)norm is from (3.1), let us show some basic operations in proposed fuzzy
logic. Let us designate the truth values of logical antecedent P and consequent Q
as T (P) = p and T (Q) = q respectively. Then relevant set of proposed fuzzy logic
operators is shown in Table 1. To get the truth values of these definitions we use well
known logical properties such as p → q = ¬p ∨q; p ∧q = ¬(¬p ∨¬q) and alike.

In other words in [1] we proposed a new many-valued system, characterized by
the set of base union (∪) and intersection (∩) operations with relevant complement,
defined as T (¬P) = 1 − T (P). In addition, the operators ↓ and ↑ are expressed as
negations of the ∪ and ∩ correspondingly. For this matter let us pose the problem
very explicitly.

We are working in many-valued system, which for present purposes is all or some
of the real interval � = [0, 1]. As was mentioned in [1], the rationales there are
more than ample for our purposes in very much of practice, the following set {0, 0.1,
0.2 … 0.9, 1} of 11 values is quite sufficient, and we shall use this set V 11 in our
illustration. Table 2 shows the operation implication in proposed fuzzy logic.
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3.2 Geometric Primitives as Fuzzy Predicates

It is well known, that in Boolean predicate logic atomic statements are formalized
by predicates. Predicates that are used in the theory of incidence geometry may be
denoted by p(a) (“a is a point”), l(a) (“a is a line”), and inc(a, b) (“a and b are
incident”). The predicate expressing equality can be denotes by eq(a, b) (“a and b
are equal”). Traditionally predicates are interpreted by crisp relations. For example,
eq: N × N → {0, 1} is a function that assigns 1 to every pair of equal objects and
0 to every pair of distinct objects from the set N. Of course, predicates like p(.) or
l(.), which accept only one symbol as an input are unary, whereas binary predicates,
like inc(.) and eq(.), accept pairs of symbols as an input. In a fuzzy predicate logic,
predicates are interpreted by fuzzy relations, instead of crisp relations. For example,
a binary fuzzy relation eq is a function eq: N × N → [0, 1], assigning a real number
λ ∈ [0, 1] to every pair of objects from N. In other words, every two objects of N are
equal to some degree. The degree of equality of two objects a and b may be 1 or 0
as in the crisp case, but may as well be 0.9, expressing that a and b are almost equal.
In [2–4] the fuzzification of p(.), l(.) inc(.) and eq(.) predicates were proposed.

Similarly to [2–4] we define a bounded subset Dom ⊆ R2 as the domain for our
geometric exercises. Predicates are defined for two-dimensional subsets A, B, C..,
of Dom, and assume values in [0, 1]. We may assume two-dimensional subsets and
ignore subsets of lower dimension, because every measurement and every digitiza-
tion introduces a minimum amount of location uncertainty in the data [3]. For the
point-predicate p(.) the result of Cartesian geometric involve a Cartesian point does
not change when the point is rotated: Rotation-invariance seems to be a main char-
acteristic of “point likeness” with respect to geometric operations: It should be kept
when defining a fuzzy predicate expressing the “point likeness” of extended subsets
of R2. As a preliminary definition let [9]

θmin(A) = min
t

|ch(A) ∩ {c(A) + t • Rα • (0, 1)T |t ∈ �}|
θmax(A) = max

t
|ch(A) ∩ {c(A) + t • Rα • (0, 1)T |t ∈ �}| (3.3)

be the minimal and maximal diameter of the convex hull ch(A) of A ⊆ Dom, respec-
tively. The convex hull regularizes the sets A and B and eliminates irregularities.
c(A) denotes the centroid of ch(A), and Rα denotes the rotation matrix by angle α

(Fig. 1a) [2–4].
Since A is bounded, ch(A) and c(A) exist. We can now define the fuzzy point-

predicate p(.) by

p(A) = θmin(A)/θmax(A). (3.4)

ForA ⊆ Dom p(.) expresses the degree towhich the convexhull of aCartesian point
set A is rotation-invariant: If p(A) = 1, then ch(A) is perfectly rotation invariant; it is
a disc. Here, θmax(A) �= 0 always holds, because A is assumed to be two-dimensional.
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Fig. 1 a Minimal and
maximal diameter of a set A
of Cartesian points. b Grade
of distinctness dc(A, B) of A
and B

Converse to p(.), the fuzzy line-predicate

I (A) = 1 − p(A) (3.5)

Let’s express the degree to which a Cartesian point set A ⊆ Dom is sensitive to
rotation. Since we only regard convex hulls, l(.) disregards the detailed shape and
structure of A, but only measures the degree to which A is directed.

A fuzzy version of the incidence-predicate inc(.,.) is a binary fuzzy relation
between Cartesian point sets A, B ⊆ Dom: [9]

inc(A, B) = max(|ch(A) ∩ ch(B)|/|ch(A)|, |ch(A) ∩ ch(B)|/|ch(B)|) (3.6)

measures the relative overlaps of the convex hulls of A and B and selects the greater
one. Here |ch(A)| denotes the area occupied by ch(A). The greater inc(A, B), “the
more incident” are A and B: If A ⊆ B or B ⊆ A, then inc(A, B) = 1, and A and B are
considered incident to degree one.

Conversely to inc(.,.), a graduated equality predicate eq(.,.) between the bounded
Cartesian point sets A, B ⊆ Dom can be defined as follows:

eq(A, B) = min(|ch(A) ∩ ch(B)|/|ch(A)|, |ch(A) ∩ ch(B)|/|ch(B)|) (3.7)

eq(A, B) measures the minimal relative overlap of A and B, whereas ¬eq(A, B) = 1
− eq(A, B) measures the degrees to which the two point sets do not overlap: if eq(A,
B) ≈ 0, then A and B are “almost disjoint”.

The following measure of “distinctness of points”, dp(.), of two extended objects
tries to capture this fact (Fig. 1b). We define
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dp(A, B) = max(0, 1 − max(θmax(A), θmax(B))/θmax(ch(A ∪ B))) (3.8)

dp(A, B) expresses the degree to which ch(A) and ch(B) are distinct: The greater
dp(A, B), the more A and B behave like distinct Cartesian points with respect to
connection. Indeed, for Cartesian points a and b, we would have dp(A, B) = 1. If the
distance between the Cartesian point sets A and B is infinitely big, then dp(A, B) =
1 as well. If max(θmax(A), θmax(B)) > θmax(ch(A ∪ B))) then dp (A, B) = 0.

3.3 Formalization of Fuzzy Predicates

To formalize fuzzy predicates, defined in Sect. 3.2 both implication → and
conjunction operators are defined as in Table 1:

A ∧ B =
⎧⎨
⎩

a + b

2
, a + b > 1,

0, a + b ≤ 1
(3.9)

A → B =
⎧⎨
⎩

1 − a + b

2
, a > b,

1, a ≤ b
(3.10)

In our further discussions we will also use the disjunction operator from the same
table.

A ∨ B =
⎧⎨
⎩

a + b

2
, a + b < 1,

1, a + b ≥ 1
(3.11)

Now let us re-define the set of fuzzy predicates (3.6)–(3.8), using proposed fuzzy
logic’s operators.

Proposition 1 If fuzzy predicate inc(…) is defined as in (3.6) and conjunction
operator is defined as in (3.9), then

inc(A, B) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a + b

2a
, a + b > 1 & a < b,

a + b

2b
, a + b > 1 & a > b,

0, a + b ≤ 1

(3.12)

Proof Let’s present (3.6) as follows:

inc(A, B) = |A ∩ B|
min(|A|, |B|) , (3.13)
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And given that

min(|A|, |B|) = a + b − |a − b|
2

, (3.14)

from (3.6) and (3.9) we are getting (3.12). (Q.E.D.).

It’s important to notice that for the case when a + b > 1 in (3.12), the value of
inc(A, B) >= 1, which means that (3.12) in fact reduced into the following

inc(A, B) =
{
1, a + b > 1 & a = b & a > 0.5 & b > 0.5,

0, a + b ≤ 1
(3.15)

Proposition 2 If fuzzy predicate eq(…) is defined as in (3.7) and disjunction operator
is defined as in (3.11), then

eq(A, B) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a + b

2b
, a + b > 1 & a < b,

a + b

2a
, a + b > 1 & a > b,

0, a + b ≤ 1

(3.16)

Proof Let’s re-write (3.7) in the following way:

eq(A, B) = min(A ∩ B/A, A ∩ B/B), (3.17)

Let’s define
P = A ∩ B/A and Q = A ∩ B/B and given (3.9) we have got the following

P =
⎧⎨
⎩

a + b

2a
, a + b > 1,

0, a + b ≤ 1
, Q =

⎧⎨
⎩

a + b

2b
, a + b > 1,

0, a + b ≤ 1
(3.18)

Therefore, given (3.14), we
Let’s use (3.18) in the expression of min (3.14) and first find the following:

P + Q =
⎧⎨
⎩

a + b

2a
+ a + b

2b
, a + b > 1,

0, a + b ≤ 1
=

⎧⎨
⎩

(a + b)2

2ab
, a + b > 1,

0, a + b ≤ 1
(3.19)

In a meantime we can show that the following is also taking place

P − Q =
⎧⎨
⎩

a + b

2a
− a + b

2b
, a + b > 1,

0, a + b ≤ 1
=

⎧⎨
⎩

b2 − a2

2ab
, a + b > 1,

0, a + b ≤ 1
(3.20)
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From (3.20) we are getting

|P − Q| =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b2 − a2

2ab
, a + b > 1 & b > a,

a2 − b2

2ab
, a + b > 1 & a > b,

0, a + b ≤ 1

(3.21)

But from (3.17) we have the following:

eq(A, B) = min(P, Q) = P + Q − |P − Q|
2

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a + b)2 − b2 + a2

2ab
, a + b > 1 & b > a,

(a + b)2 − a2 + b2

4ab
, a + b > 1 & a > b,

0, a + b ≤ 1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a + b

2b
, a + b > 1 &a < b,

a + b

2a
, a + b > 1 & a > b,

0, a + b ≤ 1

(Q.E.D.). (3.22)

Corollary 1 If fuzzy predicate eq(A, B) is defined as (3.22), then the following type
of transitivity is taking place

eq(A, C) → eq(A, B) ∧ eq(B, C), (3.23)

where A, B, C ⊆ Dom, and Dom is partially ordered space, i.e. either A ⊆ B ⊆
C or wise versa. (Note: both conjunction and implication operations are defined in
Table 1).

Proof From (3.16) we have

eq(A, B) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a + b

2b
, a + b > 1 & a < b,

a + b

2a
, a + b > 1 & a > b,

0, a + b ≤ 1

and

eq(B, C) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b + c

2c
, b + c > 1 & b < c,

b + c

2b
, b + c > 1 & b > c,

0, b + c ≤ 1
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then

eq(A, B) ∧ eq(B, C) =
⎧⎨
⎩

eq(A, B) + eq(B, C)

2
, eq(A, B) + eq(B, C) > 1,

0, eq(A, B) + eq(B, C) ≤ 1
(3.24)

Meanwhile, from (3.16) we have the following:

eq(A, C) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a + c

2c
, a + c > 1 & a < c,

a + c

2a
, a + c > 1 & a > c,

0, a + c ≤ 1

(3.25)

Case 1 a < b < c
From (3.24) we have:

(eq(A, B) ∧ eq(B, C))/2 = a + b

2b
+ b + c

2c
= ac + 2bc + b2

4bc
(3.26)

From (3.25) and (3.26) we have to proof that

a + c

2c
→ ac + 2bc + b2

4bc
(3.27)

But (3.27) is the same as
2ab+2bc

4bc → ac+2bc+b2

4bc , from which we get the following 2ab → ac + b2

Fromdefinition of implication in fuzzy logic (3.10) and since for a<b<c condition
the following is taking place

2ab < ac + b2, therefore 2ab → ac + b2 = 1.(Q.E.D.).

Case 2 a > b > c
From (3.24) we have:

(eq(A, B) ∧ eq(B, C))/2 = a + b

2a
+ b + c

2b
= ac + 2ab + b2

4ab
(3.28)

From (3.25) and (3.28) we have to proof that

a + c

2a
→ ac + 2ab + b2

4ab
(3.29)

But (3.29) is the same as
2ab+2bc

4ab → ac+2ab+b2

4ab , from which we get the following 2bc → ac + b2.
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Fromdefinition of implication in fuzzy logic (3.10) and since for a>b>c condition
the following is taking place

2bc < ac + b2, therefore 2bc → ac + b2 = 1.(Q.E.D.).

Proposition 3 If fuzzy predicate dp(…) is defined as in (3.8) and disjunction operator
is defined as in (3.11), then

dp(A, B) =

⎧⎪⎨
⎪⎩
1 − a, a + b ≥ 1 & a ≥ b,

1 − b, a + b ≥ 1 & a < b,

0, a + b < 1

(3.30)

Proof From (3.8) we get the following:

dp(A, B) = max{0, 1 − max(A, B)

A ∪ B
} (3.31)

Given that max(A, B) = a+b+|a−b|
2 , from (3.31) and (3.8) we are getting the

following:

dp(A, B) =

⎧⎪⎨
⎪⎩
max{0, 1 − a + b + |a − b|

a + b
}, a + b < 1,

max{0, 1 − a + b + |a − b|
2

}, a + b ≥ 1,
(3.32)

1. From (3.32) we have:

max{0, 1 − a + b + |a − b|
2

} = max{0, 2 − a − b − |a − b|
2

}

=
{
1 − a, a + b ≥ 1& a ≥ b,

1 − b, a + b ≥ 1& a < b
(3.33)

2. Also from (3.32) we have:

max{0, 1 − a + b + |a − b|
a + b

} = max{0,−|a − b|
a + b

} = 0, a + b < 1. (3.34)

From both (3.33) and (3.34) we have gotten that
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dp(A, B) =

⎧⎪⎨
⎪⎩
1 − a, a + b ≥ 1 & a ≥ b,

1 − b, a + b ≥ 1 & a < b,

0, a + b < 1

(Q.E.D.). (3.35)

3.4 Fuzzy Axiomatization of Incidence Geometry

Using the fuzzy predicates formalized in Sect. 3.3, we propose the set of axioms as
fuzzy version of incidence geometry in the language of a fuzzy logic [1] as follows:

I1′ : dp(a, b) → sup
c

[l(c) ∧ inc(a, c) ∧ inc(b, c)]
I2′ : dp(a, b) → [l(c) → [inc(a, c) → [inc(b, c) → l(c′)

→ [inc(a, c′) → [inc(b, c′) → eq(c, c′)]]]]]
I3′ : l(c) → sup

a,b
{p(a) ∧ p(b) ∧ ¬eq(a, b) ∧ inc(a, c) ∧ inc(b, c)}

I4′ : sup
a,b,c,d

[p(a) ∧ p(b) ∧ p(c) ∧ l(d) → ¬(inc(a, d) ∧ inc(b, d) ∧ inc(c, d))]

In axioms I1′–I4′ we also use a set of operations (3.9)–(3.11).
Proposition 4 If fuzzy predicates dp(…) and inc(…) are defined like (3.35) and
(3.12) respectively, then axiom I1′ is fulfilled for the set of logical operators from a
fuzzy logic [1]. (For every two distinct point a and b, at least one line l exists that is
incident with a and b.)

Proof From (3.15)

inc(A, C) =
{
1, a + c > 1 & a = c & a > 0.5 & c > 0.5,

0, a + c ≤ 1

inc(B, C) =
{
1, b + c > 1 & b = c & b > 0.5 & c > 0.5,

0, b + c ≤ 1

inc(A, C) ∧ inc(B, C) = inc(A, C) + inc(B, C)

2
≡ 1, (3.36)

sup
c

[l(c) ∧ inc(a, c) ∧ inc(b, c)] and given (3.36) sup
c

[l(c) ∧ 1] = 0∧ 1 ≡ 0.5.

From (3.35) and (3.9) dp(a, b) ≤ 0.5 we are getting

dp(a, b) ≤ sup
c

[l(c) ∧ inc(a, c) ∧ inc(b, c)](Q.E.D).

Proposition 5 If fuzzy predicates dp(…), eq(…) and inc(…) are defined like (3.35),
(3.16) and (3.15) respectively, then axiom I2′ is fulfilled for the set of logical operators
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from a fuzzy logic [1]. (For every two distinct point a and b, at least one line l exists
that is incident with a and b and such a line is unique)

Proof Let’s take a look at the following implication:

inc(b, c′) → eq(c, c′) (3.37)

But from (3.25) we have

eq(C, C ′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c + c′

2c′ , c + c′ > 1 & c < c′,

c + c′

2c
, c + c′ > 1 & c > c′,

0, c + c′ ≤ 1

(3.38)

And from (3.15)

inc(B, C) =
{
1, b + c > 1 & b = c & b > 0.5 & c > 0.5,

0, b + c ≤ 1
(3.39)

From (3.38) and (3.39) we see, that inc(B, C) ≤ eq(C, C ′), which means that

inc(b, c′) → eq(c, c′) ≡ 1,

therefore the following is also true

inc(a, c′) → [inc(b, c′) → eq(c, c′)] ≡ 1 (3.40)

Now let’s take a look at the following implication inc(b, c) → l(c′). Since
inc(b, c) ≥ l(c′), we are getting inc(b, c) → l(c′) ≡ 0. Taking into account (3.40)
we have the following

inc(b, c) → l(c′) → [inc(a, c′) → [inc(b, c′) → eq(c, c′)]] ≡ 1 (3.41)

Since from (3.15), inc(a, c) ≤ 1, then with taking into account (3.41) we’ve gotten
the following:

inc(a, c) → [inc(b, c) → l(c′) → [inc(a, c′) → [inc(b, c′) → eq(c, c′)]]] ≡ 1
(3.42)

Since l(c) ≤ 1, from (3.42) we are getting:

l(c) → [inc(a, c) → [inc(b, c) → l(c′) → [inc(a, c′) → [inc(b, c′)
→ eq(c, c′)]]]] ≡ 1
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Finally, because dp(a, b) ≤ 1 we have

dp(a, b) ≤ {l(c) → [inc(a, c) → [inc(b, c) → l(c′)
→ [inc(b, c′) → eq(c, c′)]]]]}(Q.E.D.).

Proposition 6 If fuzzy predicates eq(…) and inc(…) are defined like (3.16) and
(3.15) respectively, then axiom I3′ is fulfilled for the set of logical operators from a
fuzzy logic [1]. (Every line is incident with at least two points.)

Proof It was already shown in (3.36) that

inc(a, c) ∧ inc(b, c) = inc(a, c) + inc(b, c)

2
≡ 1

And from (3.16) we have

eq(A, B) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a + b

2b
, a + b > 1& a < b,

a + b

2a
, a + b > 1& a > b,

0, a + b ≤ 1

The negation ¬eq(A, B) will be

¬eq(A, B) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b − a

2b
, a + b > 1 & a < b,

a − b

2a
, a + b > 1 & a > b,

1, a + b ≤ 1

(3.43)

Given (3.36) and (3.43) we get

¬eq(A, B) ∧ 1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[1 + b − a

2b
]/2, a + b > 1 & a < b,

[1 + a − b

2a
]/2, a + b > 1 & a > b,

1, a + b ≤ 1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3b − a

4b
, a + b > 1 & a < b,

3a − b

4a
, a + b > 1 & a > b,

1, a + b ≤ 1
(3.44)

Since ¬eq(A, B) ∧ 1 ≡ 0.5|a = 1, b = 1, from which we are getting

sup
a,b

{p(a) ∧ p(b) ∧ ¬eq(a, b) ∧ inc(a, c) ∧ inc(b, c)} = 1 ∧ 0.5 = 0.75.

And given, that l(c) ≤ 0.75 we are getting
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l(c) → sup
a,b

{p(a) ∧ p(b) ∧ ¬eq(a, b) ∧ inc(a, c) ∧ inc(b, c)} ≡ 1 (Q.E.D.).

Proposition 7 If fuzzy predicate inc(…) is defined like (3.15), then axiom I4′ is
fulfilled for the set of logical operators from a fuzzy logic [1]. (At least three points
exist that are not incident with the same line.)

Proof From (3.15) we have

inc(A, D) =
{
1, a + d > 1 & a = d & a > 0.5 & d > 0.5,

0, a + d ≤ 1

inc(B, D) =
{
1, b + d > 1 & b = d & b > 0.5 & d > 0.5,

0, b + d ≤ 1

inc(C, D) =
{
1, c + d > 1 & c = d & c > 0.5 & d > 0.5,

0, c + d ≤ 1

But from (3.36) which we have

inc(A, D) ∧ inc(B, D) = inc(A, D) + inc(B, D)

2
≡ 1

(inc(a, d) ∧ inc(b, d) ∧ inc(c, d)) = 1 ∧ inc(c, d) ≡ 1, from where we have
¬(inc(a, d) ∧ inc(b, d) ∧ inc(c, d)) ≡ 0. Since l(d) ≡ 0|d = 1 we are getting
l(d) == ¬(inc(a, d) ∧ inc(b, d) ∧ inc(c, d)), which could be interpreted like
l(d) → ¬(inc(a, d) ∧ inc(b, d) ∧ inc(c, d)) = 1, from which we finally get the
following

sup
a,b,c,d

[p(a) ∧ p(b) ∧ p(c) ∧ 1] ≡ 1(Q.E.D.).

3.5 Equality of Extended Lines Is Graduated

In [10] it was shown that the location of the extended points creates a constraint on
the location of an incident extended line. It was also mentioned, that in traditional
geometry this location constraint fixes the position of the line uniquely. And therefore
in case points and lines are allowed tohave extension this is not the case.Consequently
Euclid’s First postulate does not apply: Fig. 2 shows that if two distinct extended
points P and Q are incident (i.e. overlap) with two extended lines L and M, then L
and M are not necessarily equal.

Yet, in most cases, L and M are “closer together”, i.e. “more equal” than arbitrary
extended lines that have only one or no extended point in common. The further P
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Fig. 2 Two extended points
do not uniquely determine
the location of an incident
extended line

and Q move apart from each other, the more similar L and M become. One way to
model this fact is to allow degrees of equality for extended lines. In other words, the
equality relation is graduated: It allows not only for Boolean values, but for values
in the whole interval [0, 1].

3.6 Incidence of Extended Points and Lines

As it was demonstrated in [10], there is a reasonable assumption to classify an
extended point and an extended line as incident, if their extended representations
in the underlying metric space overlap. We do this by modelling incidence by the
subset relation:

Definition 1 For an extended point P, and an extended line L we define the incidence
relation by

Rinc(P, L) := (P ⊆ L) ∈ {0, 1}, (3.45)

where the subset relation ⊆ refers to P and L as subsets of the underlying metric
space.

The extended incidence relation (3.45) is a Boolean relation, assuming either the
truth value 1 (true) or the truth value 0 (false). It is well known that since a Boolean
relation is a special case of a graduated relation, i.e. since {0, 1} ⊂ [0, 1], we will be
able to use relation (3.45) as part of fuzzified Euclid’s first postulate later on.

3.7 Equality of Extended Points and Lines

As stated in previous chapters, equality of extended points, and equality of extended
lines is a matter of degree. Geometric reasoning with extended points and extended
lines relies heavily on the metric structure of the underlying coordinate space.
Consequently, it is reasonable to model graduated equality as inverse to distance.
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3.7.1 Metric Distance

In [10] was mentioned that a pseudo metric distance, or pseudo metric, is a map
d : M2 → �+ from domain M into the positive real numbers (including zero),
which is minimal, symmetric, and satisfies the triangle inequality:

∀p, q ∈ [0, 1] ⇒

⎧⎪⎨
⎪⎩

d(p, p) = 0

d(p, q) = d(q, p)

d(p, q) + d(q, r) ≥ d(p, r).

(3.46)

d is called a metric, if additionally holds:

d(p, q) = 0 ⇔ p = q, (3.47)

Well known examples of metric distances are the Euclidean distance, or the Manhat-
tan distance. Another example is the elliptic metric for the projective plane defined
in (46) [10]. The “upside-down-version” of a pseudo metric distance is a fuzzy
equivalence relation w.r.t. a proposed t-norm. The next chapter introduces the logi-
cal connectives in a proposed t-norm fuzzy logic. We will use this particular fuzzy
logic to formalize Euclid’s first postulate for extended primitives in chapter “Interval
Valued Intuitionistic Fuzzy Sets Past, Present and Future”. The reason for choosing
a proposed fuzzy logic is its strong connection to metric distance.

3.7.2 The T-Norm

Proposition 8 In proposed fuzzy logic the operation of conjunction (3.9) is a t-norm.

Proof The function f (p, q) is a t-norm if the following

1. Commutativity: p ∧ q = q ∧ p
2. Associativity: (p ∧ q) ∧ r = p ∧ (q ∧ r)

3. Monotonity: p ≤ q, p ∧ r ≤ q ∧ r
4. Neutrality: 1 ∧ p = p
5. Absorption 0 ∧ p = 0

Commutativity:

f (p, q) = P ∩ Q =
⎧⎨
⎩

p + q

2
, p + q > 1

0, p + q ≤ 1
and f (q, p) = Q ∩ P =

⎧⎨
⎩

q + p

2
, q + p > 1

0, q + p ≤ 1
, therefore

f (p, q) = f (q, p) (Q.E.D.).
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Associativity:
Case: f (p, q) ∧ r

f (p, q) = p + q

2
, p + q > 1 ⇒ f (p, q) ∧ r =

⎧⎨
⎩

f (p, q) + r

2
, f (p, q) + r > 1

0, f (p, q) + r ≤ 1

=

⎧⎪⎨
⎪⎩

p + q + 2r

4
,

p + q

2
+ r > 1

0,
p + q

2
+ r ≤ 1

From where we have that

f1(p, r) =
⎧⎨
⎩

p + q + 2r

4
, p + q + 2r > 2

0, p + q + 2r ≤ 2
(3.48)

In otherwords f1(p, r) ⊆ (0.5; 1]|p+q+2r > 2 and f1(p, r) = 0|p+q+2r ≤ 2.
For the case: p ∧ f (q, r) we are getting similar to (3.48) results

f2(p, r) =
⎧⎨
⎩

q + r + 2p

4
, q + r + 2p > 2

0, q + r + 2p ≤ 2
(3.49)

i.e. f2(p, r) ⊆ (0.5; 1]|q + r + 2p > 2 and f2(p, r) = 0|q + r + 2p ≤ 2 .

f1(p, r) ≈ f2(p, r) (Q.E.D.)

.
Monotonity:

If p ≤ q ⇒ p ∧ r ≤ q ∧ r then given

p ∧ r =
⎧⎨
⎩

p + r

2
, p + r > 1

0, p + r ≤ 1
and q ∧ r =

⎧⎨
⎩

q + r

2
, q + r > 1

0, q + r ≤ 1
we are getting

the following
p+r
2 ≤ q+r

2 ⇒ p + r ≤ q + r ⇒ p ≤ q|p + r > 1 and q + r > 1. Whereas for
the case p + r ≤ 1 and q + r ≤ 1⇒ 0 ≡ 0 (Q.E.D.).
Neutrality:

1 ∧ p =
⎧⎨
⎩

1 + p

2
, 1 + p > 1

0, 1 + p ≤ 1
=

⎧⎨
⎩

1 + p

2
, p > 0

0, p ≤ 0
=

⎧⎨
⎩

1 + p

2
, p > 0

0, p = 0
, from

which the following is apparent
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1 ∧ p =
⎧⎨
⎩

1 + p

2
, p ∈ (0, 1)

p, p = 0, p = 1
(Q.E.D.).

Absorption:

0 ∧ p =
⎧⎨
⎩

p

2
, p > 1

0, p ≤ 1
, but since p ∈ [0, 1] ⇒ 0 ∧ p ≡ 0 (Q.E.D.).

3.7.3 Fuzzy Equivalence Relations

As mentioned above, the “upside-down-version” of a pseudo metric distance is a
fuzzy equivalence relation w.r.t. the proposed t-norm ˆ. A fuzzy equivalence relation
is a fuzzy relation

e : M2 → [0, 1] on a domain M, which is reflexive, symmetric and ˆ—transitive:

∀p, q ∈ [0, 1] ⇒

⎧⎪⎨
⎪⎩

e(p, p) = 1

e(p, q) = e(q, p)

e(p, q) ∧ e(q, r) ≤ e(p, r).

(3.50)

Proposition 9 If Fuzzy Equivalence Relation is defined (Table 1) as the following

e(p, q) = P ↔ Q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − p + q

2
, p > q,

1, p = q,

1 − q + p

2
, p < q

(3.51)

then conditions (3.50) are satisfied.

Proof

1. Reflexivity: e(p, p) = 1 comes from (3.51) because p ≡ p.
2. Symmetricity: e(p, q) = e(q, p).

e(p, q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − p + q

2
, p > q,

1, p = q,

1 − q + p

2
, p < q

, but e(q, p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − q + p

2
, q > p,

1, q = p,

1 − p + q

2
, q < p

, therefore

e(p, q) ≡ e(q, p) (Q.E.D.).

3. Transitivity: e(p, q) ∧ e(q, r) ≤ e(p, r)|∀p, q, r ∈ L[0, 1]-lattice.
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From (3.51) let

F1(p, r) = e(p, r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − p + r

2
, p > r,

1, p = r,

1 − r + p

2
, p < r

(3.52)

and e(q, r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − q + r

2
, q > r,

1, q = r,

1 − r + q

2
, q < r

, then

F2(p, r) = e(p, q) ∧ e(q, r) =
⎧⎨
⎩

e(p, q) + e(q, r)

2
, e(p, q) + e(q, r) > 1

0, e(p, q) + e(q, r) ≤ 1
(3.53)

But

F2(p, r) = e(p, q) + e(q, r)

2
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 − p + q

2
+ 1 − q + r

2

)
/2, p > q > r,

1, p = q = r,(
1 − q + p

2
+ 1 − r + q

2

)
/2, p < q < r

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 − p + r

4
, p > q > r,

1, p = q = r,

2 − r + p

4
, p < r < r

(3.54)

Now compare (3.54) and (3.52). It is apparent that ∀r > p ⇒ 2−p+r
4 <

1−p+r
2 ⇔

r − p < 2(r − p). The same is true for ∀p > r ⇒ 2−r+p
4 <

1−r+p
2 ⇔ p −

r < 2(p − r). And lastly e(p,q)+e(q,r)

2 ≡ e(p, r) ≡ 1, when p = r . Given that
F2(p, r) = e(p, q)∧ e(q, r) ≡ 0, e(p, q)+ e(q, r) ≤ 1, we are getting the proof of
the fact that F2(p, r) ≤ F1(p, r) ⇔ e(p, q) ∧ e(q, r) ≤ e(p, r)|∀p, q, r ∈ L[0, 1]
(Q.E.D.).

Note that relation e(p, q) is called a fuzzy equality relation, if additionally sepa-
rability holds: e(p, q) = 1 ⇔ p = q. Let us define a pseudo metric distance d(p, q)

for domain M, normalized to 1, as

e(p, q) = 1 − d(p, q) (3.55)
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From (3.51) we are getting

d(p, q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + p − q

2
, p > q,

0, p = q,

1 + q − p

2
, p < q

=
⎧⎨
⎩

1 + |p − q|
2

, p �= q

0, p = q
(3.56)

3.7.4 Approximate Fuzzy Equivalence Relations

In [11] itwasmentioned, thatgraduated equality of extended lines compelsgraduated
equality of extended points. Figure 3a sketches a situation where two extended lines
L and M intersect in an extended point P. If a third extended line L′ is very similar
to L, its intersection with M yields an extended point P′ which is very similar to P.
It is desirable to model this fact. To do so, it is necessary to allow graduated equality
of extended points.

Figure 3b illustrates that an equality relation between extended objects need not
be transitive. This phenomenon is commonly referred to as the Poincare paradox. The
Poincare paradox is named after the famous French mathematician and theoretical
physicist Henri Poincare, who repeatedly pointed this fact out, e.g. in [12], referring
to indiscernibility in sensations and measurements. Note that this phenomenon is
usually insignificant, if positional uncertainty is caused by stochastic variability. In
measurements, the stochastic variability caused by measurement inaccuracy is usu-
ally much greater than the indiscernibility caused by limited resolution. For extended
objects, this relation is reversed: The extension of an object can be interpreted as
indiscernibility of its contributing points. In the present paper we assume that the
extension of an object is being compared with the indeterminacy of its boundary.
Gerla [13] shows that for modelling the Poincare paradox in a graduated context
transitivity may be replaced by a weaker form [12]:

e(p, q) ∧ e(q, r) ∧ dis(q) ≤ e(p, r) (3.57)

Fig. 3 a Graduated equality of extended lines compels graduated equality of extended points.
b Equality of extended lines is not transitive



Fuzzy Logic for Incidence Geometry 71

Here dis : M → [0, 1] is a lower-bound measure (discernibility measure) for the
degree of transitivity that is permitted by q. A pair (e, dis) that is reflexive, symmetric
and weakly transitive (3.57) is called an approximate fuzzy ∧—equivalence relation.
Let us rewrite (3.57) as follows

F2(p, r) ∧ dis(q) ≤ F1(p, r) (3.58)

where F2(p, r), F1(p, r) are defined in (3.54) and (3.52) correspondingly. But

∀p, q, r |p < q < r ⇒ F2(p, r) ∧ dis(q)

=

⎧⎪⎪⎨
⎪⎪⎩

(
2 − r + p

4
+ dis(q)

)
/2,

2 − r + p

4
+ dis(q) > 1

0,
2 − r + p

4
+ dis(q) ≤ 1

(3.59)

And

∀p, q, r |p > q > r ⇒ F2(p, r) ∧ dis(q)

=

⎧⎪⎪⎨
⎪⎪⎩

(
2 − p + r

4
+ dis(q)

)
/2,

2 − p + r

4
+ dis(q) > 1

0,
2 − p + r

4
+ dis(q) ≤ 1

(3.60)

From (3.59) and (3.60) in order to satisfy a condition (3.58) we have
∀p, q, r |p < q < r ⇒ dis(q) > 1 − 2−r+p

4 and ∀p, q, r |p > q > r ⇒ dis(q) >

1 − 2−p+r
4

i.e. we have

dis(q) ∼=
⎧⎨
⎩

2 + |p − r |
4

, r �= p

0, r = p
(3.61)

By using (3.61) in both (3.59) and (3.60) we are getting that ∀p, q, r ∈ [0, 1] ⇒
F2(p, r) ∧ dis(q) ≡ 0.5. Since from (3.52) we are getting ∀p, r ∈ [0, 1] ⇒
F1(p, r) ∈ [0.5, 1] and subsequently inequality (3.58) holds.

In [11] it was also mentioned that an approximate fuzzy ∧—equivalence relation
is the upside-down version of a so-called pointless pseudo metric space (δ, s):

δ(p, p) = 0

δ(p, q) = δ(q, p)

δ(p, q) ∨ δ(q, r) ∨ s(q) ≥ δ(p, r) (3.62)
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Here, δ : M → �+ is a (not necessarily metric) distance between extended regions,
and s : M → �+ is a size measure and we are using an operation disjunction (3.11)
also shown in Table 1. Inequality δ(q, r) ∨ s(q) ≥ δ(p, r) is a weak form of the
triangle inequality. It corresponds to the weak transitivity (3.57) of the approximate
fuzzy ∧—equivalence relation e. In case the size of the domain M is normalized to
1, e and dis can be represented by [13]

e(p, q) = 1 − δ(p, q), dis(q) = 1 − s(q) (3.63)

Proposition 10 If a distance between extended regions δ(p, q) from (3.62) and
pseudo metric distance d(p, q) for domain M, normalized to 1 be the same, i.e.
δ(p, q) = d(p, q), then inequality δ(p, q)∨ δ(q, r) ∨ s(q) ≥ δ(p, r) holds.

Proof From (3.56) we have:

δ(p, q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + p − q

2
, p > q,

0, p = q,

1 + q − p

2
, p < q

, δ(q, r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + q − r

2
, q > r,

0, q = r,

1 + r − q

2
, q < r

(3.64)

Given (3.64)

δ(p, q) ∨ δ(q, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + p − q

2
+ 1 + q − r

2

)
/2, δ(p, q) + δ(q, r) < 1, p > q > r,

1, δ(p, q) + δ(q, r) ≥ 1,

0, p = q = r,(
1 + q − p

2
+ 1 + r − q

2

)
/2, δ(p, q) + δ(q, r) < 1, p < q < r

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2 + p − r

4
, δ(p, q) + δ(q, r) < 1, p > q > r,

1, δ(p, q) + δ(q, r) ≥ 1,

0, p = q = r,

2 + r − p

4
, δ(p, q) + δ(q, r) < 1, p < q < r

=

⎧⎪⎨
⎪⎩

2+|p−r |
4 , δ(p, q) + δ(q, r) < 1, p �= q �= r,

1, δ(p, q) + δ(q, r) ≥ 1,
0, p = q = r,

(3.65)

but
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δ(p, r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + p − r

2
, p > r,

0, p = r,

1 + r − p

2
, p < r

(3.66)

From (3.65) and (3.66) the following is apparent:

δ(p, q) ∨ δ(q, r) ≤ δ(p, r) (3.67)

Now we have to show that size measure s(q) > 0. From (3.61) we have

s(q) = 1 − dis(q) =
⎧⎨
⎩

2 − |p − r |
4

, r �= p

1, r = p
(3.68)

It is apparent that s(q) ∈ (0.25, 1]|∀r, p, q ∈ [0, 1], therefore from (3.66), (3.67)
and (3.68) δ(p, q)∨δ(q, r) ∨ s(q) ≥ δ(p, r) holds (Q.E.D.).

Note, that δ(p, r) from (3.66) we have ∀r, p ∈ [0, 1]⇒ δ(p, r) = 1+|p−r |
2 ∈

[0, 1]. But as it was mentioned in [10], given a pointless pseudo metric space (δ, s)
for extended regions on a normalized domain, Eq. (3.63) define an approximate
fuzzy ∧—equivalence relation (e, dis) by simple logical negation. The so defined
equivalence relation on the one hand complies with the Poincare paradox, and on the
other hand retains enough information to link two extended points (or lines) via a
third. For used fuzzy logic an example of a pointless pseudo metric space is the set
of extended points with the following measures:

δ(P, Q) := inf{d(p, q)|p ∈ P, q ∈ Q}, (3.69)

s(P) := sup{d(p, q)|p, q ∈ P}, (3.70)

It is easy to show that (3.68) and (3.69) are satisfied, because from (3.56) d(p, q) ∈
[0, 1]|∀r, p, q ∈ [0, 1]. A pointless metric distance of extended lines can be defined
in the dual space [10]:

δ(L , M) := inf
{

d(l
′
, m

′
)|l ∈ L , m ∈ M

}
, (3.71)

s(L) := sup
{

d(l
′
, m

′
)|l, m ∈ L

}
, (3.72)
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3.7.5 Boundary Conditions for Granularity

As it was mentioned in [10], in exact coordinate geometry, points and lines do not
have size. As a consequence, distance of points does not matter in the formulation of
Euclid’s first postulate. If points and lines are allowed to have extension, both, size
and distance matter. Figure 4 depicts the location constraint on an extended line L
that is incident with the extended points P and Q.

The location constraint can be interpreted as tolerance in the position of L. In
Fig. 4a the distance of P and Q is large with respect to the sizes of P and Q, and
with respect to the width of L. The resulting positional tolerance for L is small. In
Fig. 4b, the distance of P and Q is smaller than it is in Fig. 4a. As a consequence
the positional tolerance for L becomes larger. In Fig. 4c, P and Q have the same
distance than in Fig. 4a, but their sizes are increased. Again, positional tolerance of L
increases. As a consequence, a formalization of Euclid’s first postulate for extended
primitives must take all three parameters into account: the distance of the extended
points, their size, and the size of the incident line.

Fig. 4 Size and distance matter

Fig. 5 P and Q are
indiscernible for L
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Figure 5 illustrates this case: Despite the fact that P and Q are distinct extended
points that are both incident with L, they do not specify any directional constraint
for L. Consequently, the directional parameter of the extended lines L and L′ in Fig. 5
may assume its maximum (at 90°). If we measure similarity (i.e. graduated equality)
as inverse to distance, and if we establish a distance measure between extended lines
that depends on all parameters of the lines parameter space, then L and L′ in Fig. 5
must have maximum distance. In other words, their degree of equality is zero, even
though they are distinct and incident with P and Q.

The above observation can be interpreted as granularity: If we interpret the
extended line L in Fig. 5 as a sensor, then the extended points P and Q are indis-
cernible for L. Note that in this context grain size is not constant, but depends on the
line that serves as a sensor.

Based on above mentioned a granularity enters Euclid’s first postulate, if points
and lines have extension: If two extended points P and Q are too close and the
extended line L is too broad, then P and Q are indiscernible for L. Since this relation
of indiscernibility (equality) depends not only on P and Q, but also on the extended
line L, which acts as a sensor, we denote it by e(P, Q) [L], where L serves as an
additional parameter for the equality of P and Q.

In [10] the following three boundary conditions to specify a reasonable behavior
of e(P, Q) [L] were proposed:

1. If s(L) ≥ δ(P, Q) + s(P) + s(Q), then P and Q impose no direction constraint
on L (cf. Fig. 5), i.e. P and Q are indiscernible for L to degree 1: e(P, Q) [L] = 1.

2. If s(L) < δ(P, Q)+s(P)+s(Q), thenP andQ impose some direction constraint
onL, but in general do not fix its location unambiguously.Accordingly, the degree
of indiscernibility of P and Q lies between zero and one: 0 < e(P, Q) [L] < 1.

3. If s(L) < δ(P, Q) + s(P) + s(Q) and P = p, Q = q and L = l are crisp, then
s(L) = s(P) = s(Q) = 0. Consequently, p and q determine the direction of l
unambiguously, and all positional tolerance disappears. For this case we demand
e(P, Q) [L] = 0.

In this paper we are proposing an alternative approach to one from [10] to model
granulated equality.

Proposition 11 If Fuzzy Equivalence Relation e(P, Q) is defined in (3.51) and the
width s(L) of extended line L is defined in (3.72), then e(P, Q) [L]—the degree of
indiscernibility of P and Q could be calculated as follows:

e(P, Q)[L] ≡ e(P, Q) ∧ s(L), (3.73)

and would satisfy a reasonable behavior, defined in 1–3. Here ∧ is conjunction
operator from Table 1.

Proof From (3.9), (3.73) and (3.51) we have:
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e(P, Q)[L] ≡ e(P, Q) ∧ s(L) =
⎧⎨
⎩

e(P, Q) + s(L)

2
, e(P, Q) + s(L) > 1,

0, e(P, Q) + s(L) ≤ 1
(3.74)

but from (3.51)

e(P, Q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − p + q

2
, p > q,

1, p = q,

1 − q + p

2
, p < q

, (3.75)

therefore we have the following:

1. If P and Q impose no direction constraint on L which means that s(L) = 1 and
δ(P, Q) = 0 ⇒ e(P, Q) = 1, then e(P, Q) [L] = 1 (proof of point 1).

2. If P and Q impose some direction constraint on L, but in general do not fix its
location unambiguously, then from (3.74) and (3.75) we are get

e(P, Q)[L] = e(P, Q)[L]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − p + q + 2 × s(L)

4
,
1 − p + q

2
+ s(L) > 1,

0,
1 − |p − q|

2
+ s(L) ≤ 1,

1 + s(L)

2
, p = q,

1 − q + p + 2 × s(L)

4
,
1 − q + p

2
+ s(L) > 1

∈ (0, 1)(proof of point 2).

3. If P = p, Q = q and L = l are crisp, which means that values of p and q are either
0 or 1 and since s (L) = 0, then e(P, Q) [L] = 0 (proof of point 3).

4 Fuzzification of Euclid’s First Postulate

4.1 A Euclid’s First Postulate Formalization

In previous chapter we identified and formalized a number of new qualities that enter
into Euclid’s first postulate, if extended geometric primitives are assumed. We are
now in the position of formulating a fuzzified version of Euclid’s first postulate. To
do this, we first split the postulate

′′T wo distinct points determine a line uniquely.′′ (4.1)
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into two sub sentences:

′′Given two distinct points, there exists at least one line that passes through them.′′
(4.2)

′′ I f more than one line passes through them, the yare equal.′′ (4.3)

These sub sentences can be formalized in Boolean predicate logic as follows:

∀p, q, ∃l, [Rinc(p, l) ∧ Rinc(q, l)] (4.4)

∀p, q, l, m[¬(p = q)] ∧ [Rinc(p, l) ∧ Rinc(q, l)] ∧ [Rinc(p, m) ∧ Rinc(q, m)] → (l = m)

(4.5)

A verbatim translation of (4.4) and (4.5) into the syntax of a fuzzy logic we use yields

inf
P,Q

sup
L

[Rinc(P, L) ∧ Rinc(Q, L)] (4.6)

inf
P,Q,L ,M

{[¬e(P, Q)] ∧ [Rinc(P, L) ∧ Rinc(Q, L)] ∧ [Rinc(P, M) ∧ Rinc(Q, M)] → e(L , M)},
(4.7)

where P, Q denote extended points, L, M denote extended lines. The translated
existence property (4.6) can be adopted as it is, but the translated uniqueness property
(4.7) must be adapted to include granulated equality of extended points:

In contrast to the Boolean case, the degree of equality of two given extended points
is not constant, but depends on the extended line that acts as a sensor. Consequently,
the term ¬e(P, Q) on the left hand side of (4.7) must be replaced by two terms,
¬e(P, Q)[L] and ¬e(P, Q)[M}, one for each line, L and M, respectively:

inf
P,Q,L ,M

{[¬e(P, Q)[L] ∧ ¬e(P, Q)[M]]
∧ [Rinc(P, L) ∧ Rinc(Q, L)]
∧ [Rinc(P, M) ∧ Rinc(Q, M)] → e(L , M)} (4.8)

We have to use weak transitivity of graduated equality. For this reason the discerni-
bility measure of extended connection P̄ Q̄ between extended points P and Q must
be added into (4.8)

inf
P,Q,L ,M

{[¬e(P, Q)[L] ∧ ¬e(P, Q)[M] ∧ dis(P̄ Q̄)]
∧ [Rinc(P, L) ∧ Rinc(Q, L)]
∧ [Rinc(P, M) ∧ Rinc(Q, M)] → e(L , M)} (4.9)

But from (3.74) we get
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¬e(P, Q)[L] =
⎧⎨
⎩

2 − e(P, Q) − s(L)

2
, e(P, Q) + s(L) > 1,

1, e(P, Q) + s(L) ≤ 1
(4.10)

and

¬e(P, Q)[M] =
⎧⎨
⎩

2 − e(P, Q) − s(M)

2
, e(P, Q) + s(M) > 1,

1, e(P, Q) + s(M) ≤ 1
(4.11)

By using (4.10) and (4.11) in (4.9) we get

¬e(P, Q)[L] ∧ ¬e(P, Q)[M]

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4 − 2 × e(P, Q) − s(L) − s(M)

4
,
4 − 2 × e(P, Q) − s(L) − s(M)

2
> 1, e(P, Q) + s(L) > 1, e(P, Q) + s(M) > 1,

0,
4 − 2 × e(P, Q) − s(L) − s(M)

2
≤ 1, e(P, Q) + s(L) > 1, e(P, Q) + s(M) > 1,

1, e(P, Q) + s(L) ≤ 1, e(P, Q) + s(M) ≤ 1

(4.12)

Since from (3.74)wehave [Rinc(P, L)∧Rinc(Q, L)]∧[Rinc(P, M)∧Rinc(Q, M)] ≡
1, then (4.9) could be rewritten as follows

inf
P,Q,L ,M

{[¬e(P, Q)[L] ∧ ¬e(P, Q)[M] ∧ dis(P̄ Q̄)] ∧ 1 → e(L , M)} (4.13)

It means that the “sameness” of extended lines e(L,M) depends on [¬e(P, Q)[L] ∧
¬e(P, Q)[M] ∧ dis(P̄ Q̄)] only and could be calculated by (4.12) and (3.61)
respectively.

4.2 Fuzzy Logical Inference for Euclid’s First Postulate

In a contrary to the approach, proposed in [10], which required a lot of calcula-
tions, we suggest to use the same fuzzy logic and correspondent logical inference to
determine the value of e(L, M). For this purpose let us represent a values of follow-
ing E(p, q, l, m) = ¬e(P, Q)[L] ∧ ¬e(P, Q)[M] from (4.12) and D(p, q) =
dis(P̄ Q̄)] from (3.61) functions. Note, that values from both E(p, q, l, m) ∈
[Emin, Emax] and D(p, q) ∈ [Dmin, Dmax]. In our case E(p, q, l, m) ∈ [0, 1],
D(p, q) ∈ [0, 0.75]. We represent E as fuzzy set forming linguistic variables
described by triplets of the form E = {<Ei , U, Ẽ>}, Ei ∈ T (u),∀i ∈ [0, CardU ],
where Ti (u) is extended set term set of the linguistic variable “degree of indis-
cernibility “from Table 3, Ẽ is normal fuzzy set represented by membership func-
tion μE : U → [0, 1], where U = {0, 1, 2, . . . , 10}—universe set and CardU
is power set of the set U. We will use the following mapping α : Ẽ → U |ui =
Ent[(CardU − 1) × Ei ]|∀i ∈ [0, CardU ], where



Fuzzy Logic for Incidence Geometry 79

Table 3 Term set of the linguistic variable degree of indiscernibility

Value of variable ui , v j ∈ U, vk ∈ V
∀i, j, k ∈ [0, 10]“degree of

indiscernibility”
“discernibility
measure”

“extended lines
sameness”

Lowest Highest Nothing in common 0

Very low Almost highest Very far 1

Low High Far 2

Bit higher than low Pretty high Bit closer than far 3

Almost average Bit higher than
average

Almost average
distance

4

Average Average Average 5

Bit higher than
average

Almost average Bit closer than
average

6

Pretty high Bit higher than low Pretty close 7

High Low Close 8

Almost highest Very low Almost the same 9

Highest Lowest The same 10

Ẽ =
∫
U

μE (u)/u (4.14)

To determine the estimates of themembership function in terms of singletons from
(4.14) in the formμE (ui )/ui |∀i ∈ [0, CardU ]we propose the following procedure.

∀i ∈ [0, CardU ],∀Ei ∈ [0, 1], μ(ui ) = 1 − 1

CardU − 1
× |ui − Ent[(CardU − 1) × Ei ]|,

(4.15)

We also represent D as fuzzy set forming linguistic variables described by triplets
of the form D = {<D j , U, D̃>}, D j ∈ T (u),∀ j ∈ [0, CardU ], where Tj (u) is
extended set term set of the linguistic variable “discernibility measure” from Table 3,
D̃ is normal fuzzy set represented by membership function μD : U → [0, 1].

We will use the following mapping β : D̃ → U |v j = Ent[(CardU − 1) ×
D j ]|∀ j ∈ [0, CardU ], where

D̃ =
∫
U

μD(u)/u (4.16)

On the other hand to determine the estimates of the membership function in terms
of singletons from (4.16) in the form μD(u j )/u j |∀ j ∈ [0, CardU ] we propose the
following procedure.



80 R. Aliev and A. Tserkovny

∀ j ∈ [0, CardU ], ∀D j ∈ [0, 0.75], μ(u j ) = 1 − 1

CardU − 1
× |u j − Ent[(CardU − 1) × D j /0.75]|,

(4.17)

Let us represent e(L,M) as fuzzy set forming linguistic variables described by
triplets of the form, where Tk(w) is extended set term set of the linguistic variable
“extended lines sameness” from Table 3. S = {<Sk, V, S̃>}, Sk ∈ T (v),∀k ∈
[0, CardV ] is normal fuzzy set represented by membership function μS : V →
[0, 1], where V = {0, 1, 2, . . . , 10}—universe set and CardV is power set of the set
V.Wewill use the followingmapping γ : S̃ → V |vk = Ent[(CardV −1)×Sk]|∀k ∈
[0, CardV ], where

S̃ =
∫
V

μs(v)/v (4.18)

Again to determine the estimates of themembership function in termsof singletons
from (4.18) in the form μS(wk)/vk |∀k ∈ [0, CardW ] we propose the following
procedure.

∀k ∈ [0, CardV ],∀Sk ∈ [0, 1], μ(vk) = 1 − 1

CardV − 1
× |vk − Ent[(CardV − 1) × Sk ]|,

(4.19)

To get an estimates of values of e(L,M) or “extended lines sameness”, represented
by fuzzy set S̃ from (4.18) given the values of E(p, q, l, m) or “degree of indiscerni-
bility” and D(p, q)—“discernibility measure”, represented by fuzzy sets Ẽ from
(4.14) and D̃ from (4.16) respectively, we will use a Fuzzy Conditional Inference
Rule, formulated by means of “common sense” as a following conditional clause:

P = ′′ I F(S is P1) AN D (D is P2), T H E N (E is Q)′′ (4.20)

In other words we use fuzzy conditional inference of the following type:

Ant 1 : If s is P1 and d is P2 then e is Q
Ant 2 : is P1′ and d is P2′

− − − − − − − − − − − − −−,

Cons: e is Q′ .

(4.21)

where P1, P1, P2, P2′′ ⊆ U and Q, Q1 ⊆ V .
Now for fuzzy sets (4.14), (4.16) and (4.18) a binary relationship for the fuzzy

conditional proposition of the type (4.20) and (4.21) for fuzzy logic we use so far is
defined as

R(A1(s, d), A2(e)) = [P1 ∩ P2 × U ] → V × Q
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=
∫

U×V

μP1(u)/(u, v) ∧ μP2(u)/(u, v) →
∫

U×V

μQ(v)/(u, v) =

=
∫

U×V

([μP1(u) ∧ μP2(u)] → μQ(v))/(u, v). (4.22)

Given (3.10) expression (4.22) looks like

[μP1(u) ∧ μP2(u)] → μQ(v)

=
⎧⎨
⎩

1 − [μP1(u) ∧ μP2(u)] + μQ(v)

2
, [μP1(u) ∧ μP2(u)] > μQ(v),

1, [μP1(u) ∧ μP2(u)] ≤ μQ(v).
(4.23)

where [μP1(u) ∧ μP2(u)] is min[μP1(u), μP2(u)]. It is well known that given a
unary relationship R(A1(s, d)) = P1′ ∩ P2′ one can obtain the consequence
R(A2(e)) by applying compositional rule of inference (CRI) to R(A1(s, d)) and
R(A1(s, d), A2(e)) of type (4.22):

R(A2(e)) = P1′ ∩ P2′ ◦ R(A1(s, d), A2(e))

=
∫
U

[μP1′(u) ∧ μP2′(u)]/u ◦
∫

U×V

[μP1(u) ∧ μP2(u)] → μQ(v)/(u, v) =

=
∫
V

⋃
u∈U

{[μP1′(u) ∧ μP2′(u)] ∧ ([μP1(u) ∧ μP2(u)] → μQ(v))}/v.

(4.24)

But for practical purposes we will use another Fuzzy Conditional Rule (FCR)

R(A1(s, d), A2(e)) = (P × V → U × Q) ∩ (¬P × V → U × ¬Q)

=
∫

U×V

(μP (u) → μQ(v)) ∧ ((1 − μP (u)) → (1 − μQ(v)))/(u, v).

(4.25)

where P = P1 ∩ P2 and

R(A1(s, d), A2(e)) = (μP(u) → μQ(v)) ∧ ((1 − μP(u)) → (1 − μQ(v)))

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − μP(u) + μQ(v)

2
, μP(u) > μQ(v),

1, μP(u) = μQ(v),

1 − μQ(v) + μP(u)

2
, μP(u) < μQ(v).

(4.26)
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The FCR from (4.26) gives more reliable results.

4.3 Example

To build a binary relationship matrix of type (4.25) we us use a conditional clause
of type (4.20):

P = ′′IF
(
S is ′′lowest′′) AND (D is ′′highest ′′),THEN(E is ′′nothing in common′′)′′

(4.27)

To build membership functions for fuzzy sets S, D and E we use (4.15), (4.17)
and (4.19) respectively.

In (4.27) the membership functions for fuzzy set S (for instance) would look like:

μs(
′′lowest ′′) = 1/0 + 0.9/1 + 0.8/2 + 0.7/3 + 0.6/4 + 0.5/5 + 0.4/6 + 0.3/7 + 0.2/8 + 0.1/9 + 0/10

(4.28)

Same membership functions we use for fuzzy sets D and E.
From (4.26) we have R(A1(s, d), A2(e)) from Table 4.
Suppose from (4.12) a current estimate of E(p, q, l, m) = 0.6 and from

(3.61)D(p, q) = 0.25. By using (4.15) and (4.17) respectively we got (see Table 3.)

μE (′′bit higher than average′′) = 0.4/0 + 0.5/1 + 0.6/2 + 0.7/3 + 0.8/4 + 0.9/5 + 1/6 + 0.9/7 + 0.8/8 + 0.7/9 + 0.6/10

μD(′′pretty high′′) = 0.7/0 + 0.8/1 + 0.9/2 + 1/3 + 0.9/4 + 0.8/5 + 0.7/6 + 0.6/7 + 0.5/8 + 0.4/9 + 0.3/10

It is apparent that:

R(A1(s
′, d ′) = μE (u) ∧ μD(u)

= 0.4/0 + 0.5/1 + 0.6/2 + 0.7/3 + 0.8/4 + 0.8/5 + 0.7/6 + 0.6/7 + 0.5/8 + 0.4/9 + 0.3/10

By applying compositional rule of inference (CRI) to R(A1(s ′, d ′)) and
R(A1(s, d), A2(e)) from Table 4

R(A2(e′)) = R(A1(s ′, d ′) ◦ R(A1(s, d), A2(e) we got the following:

R(A2(e
′)) = μE (u) ∧ μD(u)

= 0.4/0 + 0.5/1 + 0.6/2 + 0.7/3 + 0.8/4 + 0.8/5 + 0.7/6 + 0.6/7 + 0.5/8 + 0.4/9 + 0.3/10)

It is obvious that the value of fuzzy set S is laying between terms “almost average
distance” and “average distance” (see Table 3.), which means that approximate
values for e(L, M) are e(L , M) ∈ [0.5, 0.6].
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5 Conclusion

In [2–4] it was shown that straight forward interpretations of the connection of
extended points do not satisfy the incidence axioms of Euclidean geometry in a
strict sense. Yet, the approximate geometric behaviour of extended objects can be
described by fuzzy predicates. Based on these predicates, the axiom system of
Boolean Euclidean geometry can be fuzzified and formalized in the language of
proposed fuzzy logic. As a consequence, the derived truth values allow for the pos-
sibility to warn users, in case a geometric constellation of extended objects is not
sufficiently well-posed for a specific operation. The use of fuzzy reasoning trades
accuracy against speed, simplicity and interpretability for lay users. In the context of
ubiquitous computing, these characteristics are clearly advantageous. In addition we
discussed a special form of positional uncertainty, namely positional tolerance that
arises from geometric constructions with extended primitives. We also addressed
Euclid’s first postulate, which lays the foundation for consistent geometric reason-
ing in all classical geometries by taken into account extended primitives and gave a
fuzzification of Euclid’s first postulate by using of our fuzzy logic. Fuzzy equivalence
relation “Extended lines sameness” is introduced. For its approximationwe use fuzzy
conditional inference, which is based on proposed fuzzy “Degree of indiscernibility”
and “Discernibility measure” of extended points.
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Interval Valued Intuitionistic Fuzzy Sets
Past, Present and Future
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Abstract The basic definitions of the concept of interval-valued intuitionistic fuzzy
set and of the operations, relations and operators over it are given. Some of ita most
important applications are described. Ideas for future development of the theory of
interval-valued intuitionistic fuzzy sets are discussed.

Keywords Interval-valued intuitionistic fuzzy set · Intuitionistic fuzzy set

1 Introduction

The idea for defining of the Interval-Valued Intuitionistic Fuzzy Set (IVIFS) appeared
in 1988, when Georgi Gargov (1947–1996) and the author read Gorzalczany’s paper
[46] for Interval-ValuedFuzzySet (IVFS).By thatmoment, the author had introduced
the Intuitionistic Fuzzy Set (IFS), named so by G. Gargov. Obviously, IVIFS are a
blead of the ideas that had generated IFS and IVFS. The idea of IVIFSwas announced
in [5] and extended in [6, 10], where the proof that IFSs and IVIFSs are equipollent
generalizations of the notion of fuzzy set, is given.

Here, in Sect. 2, we give the basic definitions of the concept of the IVIFS and of the
operations, relations and operators over it, and someof its geometrical interpretations.
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In Sect. 3, some of the most important theoretical results and applications of IVIFS
are described. Finally, if Sect. 4, ideas for future development of the IVIFS theory
are discussed.

2 Past: Interval Valued Intuitionistic Fuzzy Sets—A
Definition, Operations, Relations and Operators over
Them

Below we present the notion of IVIFS, an extension of both IFS and IVFS, and
discuss its basic properties.

An IVIFS A over E is an object of the form:

A = {〈x,MA(x), NA(x)〉 | x ∈ E},

where MA(x) ⊂ [0, 1] and NA(x) ⊂ [0, 1] are intervals and for all x ∈ E :

supMA(x) + sup NA(x) ≤ 1.

This definition is analogous to the definition of IFS. It can be however rewritten to
become an analogue of the definition from [7]—namely, ifMA and NA are interpreted
as functions. Then, an IVIFS A (over a basic set E) is given by functions

MA : E → I NT ([0, 1]) and NA : E → I NT ([0, 1])

and the above inequality.

Fig. 1 First geometrical
interpretation of an IVIFS
element
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IVIFSs have geometrical interpretations similar to, but more complex than these
of the IFSs (Figs. 1, 2 and 3, 4).

For any two IVIFSs A and B the following relations hold:

A ⊂
,inf B iff (∀x ∈ E)(inf MA(x) ≤ inf MB(x)),

Fig. 2 Second geometrical
interpretation of an IVIFS
element
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Fig. 3 Third geometrical
interpretation of an IVIFS
element
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Fig. 4 Fourth geometrical
interpretation of an IVIFS
element
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A ⊂
,sup B iff (∀x ∈ E)(supMA(x) ≤ supMB(x)),

A ⊂♦,inf B iff (∀x ∈ E)(inf NA(x) ≥ inf NB(x)),

A ⊂♦,sup B iff (∀x ∈ E)(sup NA(x) ≥ sup NB(x)),

A ⊂ B iff A ⊂
,inf

B & A ⊂
,sup

B,

A ⊂♦ B iff A ⊂♦,inf B & A ⊂♦,sup B,

A ⊂ B iff A ⊂ B & B ⊂♦ A,

A = B iff A ⊂ B & B ⊂ A,

For any two IVIFSs A and B the following operations hold:

A = {〈x, NA(x),MA(x)〉 | x ∈ E},
A ∩ B = {〈x, [min(inf MA(x), inf MB(x)),min(supMA(x), supMB(x))],

[max(inf NA(x), inf NB(x)),max(sup NA(x), sup NB(x))]〉 | x ∈ E},
A ∪ B = {〈x, [max(inf MA(x), inf MB(x)),max(supMA(x) supMB(x))],

[min(inf NA(x), inf NB(x)),min(sup NA(x), sup NB(x))]〉 | x ∈ E}
A + B = {〈x, [inf MA(x) + inf MB(x) − inf MA(x). inf MB(x),

supMA(x) + supMB(x) − supMA(x). supMB(x)],
[inf NA(x). inf NB(x), sup NA(x). sup NB(x)]〉 | x ∈ E}

A.B = {〈x, [inf MA(x). inf MB(x), supMA(x). supMB(x)],
[inf NA(x) + inf NB(x) − inf NA(x). inf NB(x),

sup NA(x) + sup NB(x) − sup NA(x). sup NB(x)]〉 | x ∈ E}
A@B = {〈x, [(inf MA(x) + inf MB(x))/2, (supMA(x) + supMB(x))/2],

[(inf NA(x) + inf NB(x))/2, (sup NA(x)〉 + sup NB(x))/2] | x ∈ E}
A$B = {〈x, [√inf MA(x). inf MB(x),

√
supMA(x). supMB(x)],

[√inf NA(x). inf NB(x),
√
sup NA(x). sup NB(x)]〉 | x ∈ E}

A#B = {〈x, [ 2. inf MA(x). inf MB(x)
(inf MA(x) + inf MB(x))

,
2. supMA(x). supMB(x)
(supMA(x) + supMB(x))

]

[ 2. inf NA(x). inf NB(x)
(inf NA(x) + inf NB(x))

,
2. sup NA(x). sup NB(x)
(sup NA(x) + sup NB(x))

]〉 | x ∈ E}

A ∗ B = {〈x, [ inf MA(x) + inf MB(x)
2.(inf MA(x). inf MB(x) + 1)

,
supMA(x) + supMB(x)

2.(supMA(x). supMB(x) + 1)
],

[ inf NA(x) + inf NB(x)
2.(inf NA(x). inf NB(x) + 1)

,
sup NA(x) + sup NB(x)

2.(sup NA(x). sup NB(x) + 1)
]〉 | x ∈ E}
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By the moment, only the first six operations have been practically used in real
applications.

Let A be an IFS over E1 and B be an IFS over E2. We define:

A ×1 B = {〈〈x, y〉, [inf MA(x). inf MB(y), supMA(x). supMB(y)],
[inf NA(x). inf NB(y), sup NA(x). sup NB(y)]〉 | x ∈ E1, y ∈ E2}

A ×2 B = {〈〈x, y〉, [inf MA(x) + inf MB(y) − inf MA(x). inf MB(y),

supMA(x) + supMB(y) − supMA(x). supMB(y)],
[inf NA(x). inf NB(y), sup NA(x). sup NB(y)]〉 | x ∈ E1, y ∈ E2}

A ×3 B = {〈〈x, y〉, [inf MA(x). inf MB(y), supMA(x). supMB(y)],
[inf NA(x) + inf NB(y) − inf NA(x). inf NB(y), sup NA(x)

+ sup NB(y) − sup NA(x). sup NB(y)]〉 | x ∈ E1, y ∈ E2}

A ×4 B = {〈〈x, y〉, [min(inf MA(x), inf MB(y)),

min(supMA(x), supMB(y))],
[max(inf NA(x), inf NB(y)),

max(sup NA(x), sup NB(y))]〉 | x ∈ E1, y ∈ E2}

A ×5 B = {〈〈x, y〉, [max(inf MA(x), inf MB(y)),

max(supMA(x), supMB(y))],
[min(inf NA(x), inf NB(y)),

min(sup NA(x), sup NB(y))]〉 | x ∈ E1, y ∈ E2}

Let α, β ∈ [0, 1] be fixed numbers for which α + β ≤ 1, and let

N 1
α(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & inf MA(x) ≥ α},

Nβ
1 (A) = {〈x,MA(A), NA(x)〉 | x ∈ E & sup NA(x) ≤ β},

N 1
α,β(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & inf MA(x) ≥ α & sup NA(x) ≤ β},
N 2

α(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & supMA(x) ≥ α},
Nβ
2 (A) = {〈x,MA(A), NA(x)〉 | x ∈ E & inf NA(x) ≤ β},

N 2
α,β(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & supMA(x) ≥ α & inf NA(x) ≤ β},
N 3

α(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & inf MA(x) ≤ α},
Nβ
3 (A) = {〈x,MA(A), NA(x)〉 | x ∈ E & sup NA(x) ≥ β},

N 3
α,β(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & inf MA(x) ≤ α & sup NA(x) ≥ β},
N 4

α(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & supMA(x) ≤ α},
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Nβ
4 (A) = {〈x,MA(A), NA(x)〉 | x ∈ E & inf NA(x) ≥ β},

N 4
α,β(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & supMA(x) ≤ α & inf NA(x) ≥ β},

We will call the above sets sets of level (α,β) generated by A.
From the above definitions it directly follows that for all IVIFS A and for all

α,β ∈ [0, 1], such that α + β ≤ 1:

Ni
α,β(A) ⊂ Ni

α(A) ⊂ A

Ni
α,β(A) ⊂ Nβ

i (A) ⊂ A

for i = 1, 2, 3 and 4, where “ ⊂ ” is a relation in the set-theoretical sense.
Moreover, for all IVIFS A and for all α,β ∈ [0, 1]:

Ni
α,β(A) = Ni

α(A) ∩ Nβ
i (A) for i = 1, 2, 3 and 4,

A = Ni
α(A) ∪ Ni+2

α (A)

= Nβ
i (A) ∪ Nβ

i+2(A)

= Ni
α,β(A) ∪ Ni+2

α,β (A) for i = 1 and 2.

The above operations and level-operators have analogues in the IFS theory. Now
we will define one more operation, which is a combination of the ∪ and ∩ operations
defined over IVIFS:

A ◦ B = {〈x, [min(inf MA(x), inf MB(x)),
min(max(supMA(x), supMB(x)), 1 − max(sup NA(x), sup NB(x)))],
[min(inf NA(x), inf NB(x)),
min(max(sup NA(x), sup NB(x)), 1 − max(supMA(x), sup NB(x)))]〉
| x ∈ E}

This operation has the following properties:

(a) A ◦ B = B ◦ A,

(b) A ◦ B = A ◦ B,
(c) A ∩ B ⊂ A ◦ B ⊂ A ∪ B.
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Operators of modal type are defined similarly to those, defined for IFSs:

A = {〈x,MA(x), [inf NA(x), 1 − supMA(x)]〉 | x ∈ E},
♦A = {〈x, [inf MA(x), 1 − sup NA(x)], NA(x)〉 | x ∈ E},

Dα(A) = {〈x, [inf MA(x), supMA(x) + α.(1 − supMA(x) − sup NA(x))],
[inf NA(x), sup NA(x) + (1 − α).(1 − supMA(x) − sup NA(x))]〉
| x ∈ E},

Fα,β(A) = {〈x, [inf MA(x), supMA(x) + α.(1 − supMA(x) − sup NA(x))],
[inf NA(x), sup NA(x) + β.(1 − supMA(x) − sup NA(x))]〉
| x ∈ E}, for α + β ≤ 1,

Gα,β(A) = {〈x, [α. inf MA(x),α. supMA(x)], [β. inf NA(x),β. sup NA(x)]〉
| x ∈ E},

Hα,β(A) = {〈x, [α. inf M(x),α. supMA(x)], [inf NA(x), sup NA(x)

+β.(1 − supMA(x) − sup NA(x))]〉 | x ∈ E},
H∗

α,β(A) = {〈x, [α. inf MA(x),α. supMA(x)], [inf NA(x), sup NA(x)

+β.(1 − α. supMA(x) − sup NA(x))]〉 | x ∈ E},
Jα,β(A) = {〈x, [inf MA(x), supMA(x) + α.(1 − supMA(x)

− sup NA(x))], [β. inf NA(x),β. sup NA(x)]〉 | x ∈ E},
J ∗
α,β(A) = {〈x, [inf MA(x), supMA(x) + α.(1 − supMA(x)

−β. sup NA(x))], [β. inf NA(x),β. sup NA(x)]〉 | x ∈ E},

where α,β ∈ [0, 1].
Obviously, as in the case of IFSs, the operator Dα is a partial case of Fα,β .
For example, for every IVIFS A and for all α,β ∈ [0, 1]:

(a) Hα,β(A) = F0,β(A) ∩ Gα,1(A),
(b) Jα,β(A) = Fβ,0(A) ∪ G1,α(A),
(c) H∗

α,β(A) = F0,β(Gα,1(A)),
(d) J ∗

α,β(A) = Fβ,0(G1,α(A)).

Now, we can extend these operators to the following (everywhere α,β, γ, δ ∈
[0, 1] such that α ≤ β and γ ≤ δ):
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Fα,β,γ,δ(A) = {〈x, [inf MA(x) + α.(1 − supMA(x) − sup NA(x)),

supMA(x) + β.(1 − supMA(x) − sup NA(x))],
[inf NA(x) + γ.(1 − supMA(x) − sup NA(x)),

sup NA(x) + δ.(1 − supMA(x) − sup NA(x))]〉 | x ∈ E}
where β + δ ≤ 1;

Gα,β,γ,δ(A) = {〈x, [α. inf MA(x),β. supMA(x)],
[γ. inf NA(x), δ. sup NA(x)]〉 | x ∈ E};

Hα,β,γ,δ(A) = {〈x, [α. inf MA(x),β. supMA(x)],
[inf NA(x) + γ.(1 − supMA(x) − sup NA(x)),

sup NA(x) + δ.(1 − supMA(x) − sup NA(x))]〉 | x ∈ E};
H

∗
α,β,γ,δ(A) = {〈x, [α. inf MA(x),β. supMA(x)],

[inf NA(x) + γ.(1 − β. supMA(x) − sup NA(x)),

sup NA(x) + δ.(1 − β. supMA(x) − sup NA(x))]〉 | x ∈ E};
Jα,β,γ,δ(A) = {〈x, [inf MA(x) + α.(1 − supMA(x) − sup NA(x)),

supMA(x) + β.(1 − supMA(x) − sup NA(x))],
[γ. inf NA(x), δ. sup NA(x)]〉 | x ∈ E};

J
∗
α,β,γ,δ(A) = {〈x, [inf MA(x) + α.(1 − δ. supMA(x) − sup NA(x)),

supMA(x) + β.(1 − supMA(x) − δ. sup NA(x))],
[γ. inf NA(x), δ. sup NA(x)]〉 | x ∈ E}.

For every two IVIFSs A and B, and for all α,β, γ, δ ∈ [0, 1], such that α ≤ β,
γ ≤ δ and β + δ ≤ 1:

(a) Fα,β,γ,δ(A ∩ B) ⊆ Fα,β,γ,δ(A) ∩ Fα,β,γ,δ(B),
(b) Fα,β,γ,δ(A ∪ B) ⊆ Fα,β,γ,δ(A) ∪ Fα,β,γ,δ(B),
(c) Fα,β,γ,δ(A + B) ⊂ Fα,β,γ,δ(A) + Fα,β,γ,δ(B),
(d) Fα,β,γ,δ(A.B) ⊇ Fα,β,γ,δ(A).Fα,β,γ,δ(B),
(e) Fα,β,γ,δ(A@B) = Fα,β,γ,δ(A)@Fα,β,γ,δ(B).

Also, for every IVIFS A and for all α,β, γ, δ,α′, β′, γ′, δ′ ∈ [0, 1], such that
α ≤ β, γ ≤ δ,α′ ≤ β′, γ′ ≤ δ′,β + δ ≤ 1 and β′ + δ′ ≤ 1 :

Fα,β,γ,δ(Fα′,β′,γ′,δ′)(A)

= Fα+α′−α.β′−α.δ′,β+β′−β.β′−β.δ′,γ+γ′−γ.β′−γ.δ′,δ+δ′−δ.β′−δ.δ′(A).
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The operators over IVIFSs of the first type have the following representation by
the operators of the second type for all IVIFS A and for all α,β, γ, δ ∈ [0, 1] such
that α ≤ β, γ ≤ δ:

(a) Fα,β(A) = F0,α,0,β(A), for α + β ≤ 1,
(b) Gα,β(A) = Gα,α,β,β(A),
(c) Hα,β(A) = Hα,α,0,β(A),
(d H∗

α,β(A) = H
∗
α,α,0,β(A),

(e) Jα,β(A) = J 0,α,β,β(A),
(f) J ∗

α,β(A) = J 0,α,β,β(A).

We defined the following operators for α,β ∈ [0, 1] and α + β ≤ 1:

Pα,β(A) = {〈x, [max(α, inf MA(x)),max(α, supMA(x))],
[min(β, inf NA(x)),min(β, sup NA(x))]〉 | x ∈ E},

Qα,β(A) = {〈x, [min(α, inf MA(x)),min(α, supMA(x))],
[max(β, inf NA(x)),max(β, sup NA(x))]〉 | x ∈ E}.

The next two operators are extensions of the last two:

Pα,β,γ,δ = {〈x, [max(α, inf MA(x)),max(β, supMA(x))],
[min(γ, inf NA(x)),min(δ, sup NA(x))]〉 | x ∈ E},

Qα,β,γ,δ = {〈x, [min(α, inf MA(x)),min(β, supMA(x))],
[max(γ, inf NA(x)),max(δ, sup NA(x))]〉 | x ∈ E},

for α,β, γ, δ ∈ [0, 1],α ≤ β, γ ≤ δ and β + δ ≤ 1.
For each IVIFS A and for all α,β, γ, δ,α′, β′, γ′, δ′ ∈ [0, 1], such that α ≤ β,

γ ≤ δ, α′ ≤ β′, γ′ ≤ δ′, β + δ ≤ 1 and β′ + δ′ ≤ 1 it is true that:

(a) Pα,β,γ,δ(A) = Qγ,δ,α,β(A),
(b) Pα,β,γ,δ(Qα;,β′,γ′,δ′(A)) = Qmax(α,α′),max(β,β′),min(γ,γ′),min(δ,δ′)(Pα,β,γ,δ(A)),
(c) Qα,β,γ,δ(Pα;,β′,γ′,δ′ (A)) = Pmin(α,α′),min(β,β′),max(γ,γ′),max(δ,δ′)(Qα,β,γ,δ (A)).
(d) Pα,β,γ,δ(A ∩ B) = Pα,β,γ,δ(A) ∩ Pα,β,γ,δ(B),
(e) Pα,β,γ,δ(A ∪ B) = Pα,β,γ,δ(A) ∪ Pα,β,γ,δ(B),
(f) Qα,β,γ,δ(A ∩ B) = Qα,β,γ,δ(A) ∩ Qα,β,γ,δ(B),
(g) Qα,β,γ,δ(A ∪ B) = Qα,β,γ,δ(A) ∪ Qα,β,γ,δ(B).

Analogues of the two IFS topological operators from [6, 7], can also be defined
here. They will have the following forms for each IVIFS A:

C(A) = {〈x, [K ′
inf , K

′
sup], [L ′

inf , L
′
sup]〉 | x ∈ E},

I (A) = {〈x, [K ′′
inf , K

′′
sup], [L ′′

inf , L
′′
sup]〉 | x ∈ E},
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where:
K ′

inf = sup
x∈E

inf MA(x),

K ′
sup = sup

x∈E
supMA(x),

L ′
inf = inf

x∈E inf NA(x),

L ′
sup = inf

x∈E sup NA(x),

K ′′
inf = inf

x∈E inf MA(x),

K ′′
sup = inf

x∈E supMA(x),

L ′′
inf = sup

x∈E
inf NA(x),

L ′′
sup = sup

x∈E
sup NA(x).

Following [6], we will introduce new operators that have no analogues among the
above ones. They will map an IFS to an IVIFS and an IVIFSs to an IFS. Thus, these
operators will give a relation between the two types of sets.

Four operators can be defined as follows.
Let A be an IVIFS. Then we will define:

∗1A = {〈x, inf MA(x), inf NA(x)〉 | x ∈ E},
∗2A = {〈x, inf MA(x), sup NA(x)〉 | x ∈ E},
∗3A = {〈x, supMA(x), inf NA(x)〉 | x ∈ E},
∗4A = {〈x, supMA(x), sup NA(x)〉 | x ∈ E}.

Therefore, for all IVIFS A:

∗2A ⊂ ∗1A,

∗4A ⊂ ∗3A,

∗1A ⊂ ∗4A,

∗4A ⊂♦ ∗1A.

Theorem 1 For every two IVIFSs A and B and for 1 ≤ i ≤ 4:

(a) ∗i (A ∩ B) = ∗i A ∩ ∗i B,
(b) ∗i (A ∪ B) = ∗i A ∪ ∗i B,
(c) ∗i (A + B) = ∗i A + ∗i B,
(d) ∗i (A.B) = ∗i A. ∗i B,
(e) ∗i (A@B) = ∗i A@ ∗i B,
(f) ∗i (A ×1 B) = ∗i A ×1 ∗i B,
(g) ∗i (A ×2 B) = ∗i A ×2 ∗i B,
(h) ∗i (A ×3 B) = ∗i A ×3 ∗i B,
(i) ∗i (A ×4 B) = ∗i A ×4 ∗i B,
(j) ∗i (A ×5 B) = ∗i A ×5 ∗i B.
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Theorem 2 For each IVIFS A:

(a) ∗1 A = ∗1A,

(b) ∗2 A ⊆ ∗2A,

(c) ∗3 A = ∗3A,

(d) ∗4 A ⊆ ∗4A,

(e) ∗1♦A = ∗1A,

(f) ∗2♦A = ∗2A,

(g) ∗3♦A ⊇ ∗3A,

(h) ∗4♦A ⊇ ∗4A,

(i) ∗1A = ∗1A,

(j) ∗2A = ∗3A,

(k) ∗3A = ∗2A,

(l) ∗4A = ∗4A.

Theorem 3 For each IVIFS A and for α,β, γ, δ ∈ [0, 1]:
(a) ∗1Fα,β(A) = ∗1A, for α + β ≤ 1,
(b) ∗2Fα,β(A) ⊂ ∗2A, for α + β ≤ 1,
(c) ∗3Fα,β(A) ⊇ ∗3A, for α + β ≤ 1,
(d) ∗4Fα,β(A) = ∗4A, for α + β ≤ 1,
(e) ∗1Fα,β,γ,δ(A) = ∗1A, for β + δ ≤ 1,
(f) ∗2Fα,β,γ,δ(A) ⊇ ∗2A, for β + δ ≤ 1,

(g) ∗2Fα,β,γ,δ(A) ⊂♦ ∗2A, for β + δ ≤ 1,
(h) ∗3Fα,β,γ,δ(A) ⊇ ∗3A, for β + δ ≤ 1,

(i) ∗3Fα,β,γ,δ(A) ⊂♦ ∗3A, for β + δ ≤ 1,
(j) ∗4Fα,β,γ,δ(A) = ∗4A, for β + δ ≤ 1.

Theorem 4 For each IVIFS A, for every two α,β ∈ [0, 1] and for 1 ≤ i ≤ 4:

(a) ∗iGα,β(A) = Gα,β(∗i A),
(b) ∗1Gα,β,γ,δ(A) = Gα,γ(∗1A),
(c) ∗2Gα,β,γ,δ(A) = Gα,δ(∗2A),
(d) ∗3Gα,β,γ,δ(A) = Gβ,γ(∗3A),
(e) ∗4Gα,β,γ,δ(A) = Gβ,δ(∗4A).

We must note that the G-operators from left hand side in the above relations are
operators over IVIFSs and the operators from right hand side are operators over IFSs.
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Theorem 5 For each IVIFS A, for every two α,β ∈ [0, 1] and for 1 ≤ i ≤ 4:

(a) ∗i Hα,β(A) ⊂ ∗i A,
(b) ∗i H∗

α,β(A) ⊂ ∗i A,
(c) ∗i Hα,β,γ,δ(A) ⊂ ∗i A,
(d) ∗i H∗

α,β,γ,δ(A) ⊂ ∗i A,
(e) ∗i Jα,β(A) ⊇ ∗i A,
(f) ∗i J ∗

α,β(A) ⊇ ∗i A,
(g) ∗i Jα,β,γ,δ(A) ⊇ ∗i A,
(h) ∗i J ∗

α,β,γ,δ(A) ⊇ ∗i A.

Theorem 6 For each IVIFS A, for every two α,β ∈ [0, 1] and for 1 ≤ i ≤ 4:

(a) ∗i Pα,β(A) = Pα,β(∗i A),
(b) ∗i Qα,β(A) = Qα,β(∗i A).

Let A be an IFS. Then the following operators can be defined:

��1 (A) = {B | B = {〈x,MB(x), NB(x)〉 | x ∈ E} &
(∀x ∈ E)(supMB(x) + sup NB(x) ≤ 1) &

(∀x ∈ E)(inf MB(x) ≥ μA(x) & sup NB(x) ≤ νA(x))}
��2 (A) = {B | B = {〈x,MB(x), NB(x)〉 | x ∈ E} &

(∀x ∈ E)(supMB(x) + sup NB(x) ≤ 1) &

(∀x ∈ E)(supMB(x) ≤ μA(x) & inf NB(x) ≥ νA(x))}

Theorem 7 For each IFS A:

(a) ��1 (A) = {B | A ⊂ ∗2B} ⊂ {B | A ⊂ ∗1B},
(b) ��2 (A) = {B | ∗4B ⊂ A} ⊂ {B | ∗3B ⊂ A}.

Theorem 8 For each IFS A:

(a) ��1 (A) is a filter,
(b) ��2 (A) is an ideal.

The following norms can be defined over elements of IVIFSs:

σA,inf(x) = inf MA(x) + inf NA(x),

σA,sup(x) = supMA(x) + sup NA(x),

σA(x) = supMA(x) − inf MA(x) + sup NA(x) − inf NA(x),

δA,inf(x) = √
inf MA(x)2 + inf NA(x)2,

δA,sup(x) = √
supMA(x)2 + sup NA(x)2.
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The functions below are analogous to the IFS’ π-function:

πA,inf(x) = 1 − supMA(x) − sup NA(x),

πA,sup(x) = 1 − inf MA(x) − inf NA(x).

Here the Hamming metrics have the forms:

hA,inf(x, y) = 1
2 (| inf MA(x) − inf MA(y) | + | inf NA(x) − inf NA(y) |)

hA,sup(x, y) = 1
2 (| supMA(x) − supMA(y) | + | sup NA(x) − sup NA(y) |)

hA(x, y) = hA,inf(X,Y ) + hA,sup(X,Y )

and the Euclidean metrics are:

eA,inf(x, y) =
√

1
2 ((inf MA(x)− inf MA(y))2 + (inf NA(x)− inf NA(y))2)

eA,sup(x, y) =
√

1
2 ((supMA(x)− supMA(y))2 + (sup NA(x)− sup NA(y))2)

eA(x, y) =
√

1
2 (eA,inf(x, y)

2 + eA,sup(x, y)2

There exist different versions of the Hamming’s distances:

Hinf(A, B) = 1
2

∑

x∈E
(| inf MA(x) − inf MB(x) | + | inf NA(x) − inf NB(x) |)

Hsup(A, B) = 1
2

∑

x∈E
(| supMA(x) − supMB(x) | + | sup NA(x) − sup NB(x) |)

H(A, B) = Hinf(A, B) + Hsup(A, B),

H(A, B) = 1
2

∑

x∈E
(| (supMA(x) − inf MA(x)) − (supMB(x) − inf MB(x)) |
+ | (sup NA(x) − inf NA(x)) − (sup NB(x) − inf NB(x)) |)

and of the Euclidean distances:

Einf(A, B) =
√

1
2

∑

x∈E
((inf MA(x) − inf MA(y))2 + (inf NA(x) − inf NA(y))2))

Esup(A, B) =
√

1
2

∑

x∈E
((supMA(x) − supMA(y))2 + (sup NA(x) − sup NA(y))2))

E(A, B) = √
Einf(A, B)2 + Esup(A, B)2.

Of course, other distances can be also defined.
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All these results were published by 1999 by me. In the period 1989–2000 I know
only 7 publications of other authors—Bustince and Burillo [18–23] and Hong [49],
that will mentioned in the next section.

3 Present: Interval Valued Intuitionistic Fuzzy
Sets—Theory and Applications

In the new centure, more than 100 papers over IVIFSs were published. The biggest
part of them are related to some IVIFS-applications. The theoretical research has
been focused the following areas:

– definitions of new operations and relations over IVIFSs - [2, 17, 19, 20, 33, 38,
65, 85, 90, 94, 100–102, 109];

– distances and measures over IVIFSs - [1, 22, 23, 49, 88, 93, 99, 104–106, 108];
– extension principle of Zadeh for IVIFSs - [14, 38, 55].

Below, a part of L. Atanassova’s results from [14] will be given, because they are
not well known, but they are the most general ones compated to similar research in
other papers.

Let X,Y and Z be fixed universes and let f : X × Y → Z . Let A and B be
IVIFSs over X and Y , respectively. Then we can construct the sets Di = A ×i B,
where i = 1, 2, ..., 5 and can obtain the sets Fi = f (Di ).

For the IVIFS-case, the extension principle has the following 15 forms.
Optimistic forms of the extension principle are:

Fopt
1 = {〈z, [ sup

z= f (x,y)
(inf MA(x). inf MB(y)), sup

z= f (x,y)
(supMA(x). supMB(y))],

[ inf
z= f (x,y)

(inf NA(x). inf NB(y)), inf
z= f (x,y)

(sup NA(x). sup NB(y))]〉

|x ∈ E1&y ∈ E2},

Fopt
2 = {〈z, [ sup

z= f (x,y)
(inf MA(x) + inf MB(y) − inf MA(x). inf MB(y)),

sup
z= f (x,y)

(supMA(x) + supMB(y) − supMA(x). supMB(y))],

[ inf
z= f (x,y)

(inf NA(x). inf NB(y)), inf
z= f (x,y)

(sup NA(x). sup NB(y))]〉

| x ∈ E1, y ∈ E2},

Fopt
3 = {〈z, [ sup

z= f (x,y)
(inf MA(x). inf MB(y)), sup

z= f (x,y)
(supMA(x). supMB(y))],
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[ inf
z= f (x,y)

(inf NA(x) + inf NB(y) − inf NA(x). inf NB(y)),

inf
z= f (x,y)

(sup NA(x) + sup NB(y) − sup NA(x). sup NB(y))]〉|x ∈ E1, y ∈ E2},

Fopt
4 = {〈z, [ sup

z= f (x,y)
(min(inf MA(x), inf MB(y))),

sup
z= f (x,y)

(min(supMA(x), supMB(y)))],

[ inf
z= f (x,y)

(max(inf NA(x), inf NB(y))),

inf
z= f (x,y)

(max(sup NA(x), sup NB(y)))]〉 | x ∈ E1, y ∈ E2},

Fopt
5 = {〈z, [ sup

z= f (x,y)
(max(inf MA(x), inf MB(y))),

sup
z= f (x,y)

(max(supMA(x), supMB(y)))],

[ inf
z= f (x,y)

(min(inf NA(x), inf NB(y))),

inf
z= f (x,y)

(min(sup NA(x), sup NB(y)))]〉|x ∈ E1, y ∈ E2}.

Pessimistic forms of the extension principle are:

F pes
1 = {〈z, [ inf

z= f (x,y)
(inf MA(x). inf MB(y)), inf

z= f (x,y)
(supMA(x). supMB(y))],

[ sup
z= f (x,y)

(inf NA(x). inf NB(y)), sup
z= f (x,y)

(sup NA(x). sup NB(y))]〉

|x ∈ E1&y ∈ E2},

F pes
2 = {〈z, [ inf

z= f (x,y)
(inf MA(x) + inf MB(y) − inf MA(x). inf MB(y)),

inf
z= f (x,y)

(supMA(x) + supMB(y) − supMA(x). supMB(y))],

[ sup
z= f (x,y)

(inf NA(x). inf NB(y)), sup
z= f (x,y)

(sup NA(x). sup NB(y))]〉

| x ∈ E1, y ∈ E2},

F pes
3 = {〈z, [ inf

z= f (x,y)
(inf MA(x). inf MB(y)), inf

z= f (x,y)
(supMA(x). supMB(y))],
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[ sup
z= f (x,y)

(inf NA(x) + inf NB(y) − inf NA(x). inf NB(y)),

sup
z= f (x,y)

(sup NA(x) + sup NB(y) − sup NA(x). sup NB(y))]〉|x ∈ E1, y ∈ E2},

F pes
4 = {〈z, [ inf

z= f (x,y)
(min(inf MA(x), inf MB(y))),

inf
z= f (x,y)

(min(supMA(x), supMB(y)))],

[ sup
z= f (x,y)

(max(inf NA(x), inf NB(y))),

sup
z= f (x,y)

(max(sup NA(x), sup NB(y)))]〉 | x ∈ E1, y ∈ E2},

F pes
5 = {〈z, [ inf

z= f (x,y)
(max(inf MA(x), inf MB(y))),

inf
z= f (x,y)

(max(supMA(x), supMB(y)))],

[ sup
z= f (x,y)

(min(inf NA(x), inf NB(y))),

sup
z= f (x,y)

(min(sup NA(x), sup NB(y)))]〉 | x ∈ E1, y ∈ E2}.

Let

α = 1

card(E1 × E2)
,

where card(Z) is the cardinality of set Z .
Average forms of the extension principle are:

Fave
1 = {〈z, [α

∑

z= f (x,y)

inf MA(x). inf MB(y),α
∑

z= f (x,y)

supMA(x). supMB(y)],

[α
∑

z= f (x,y)

inf NA(x). inf NB(y),α
∑

z= f (x,y)

sup NA(x). sup NB(y)]〉|x ∈ E1&y ∈ E2},

Fave
2 = {〈z, [α

∑

z= f (x,y)

(inf MA(x) + inf MB(y) − inf MA(x). inf MB(y)),

α
∑

z= f (x,y)

(supMA(x) + supMB(y) − supMA(x). supMB(y))],
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[α
∑

z= f (x,y)

(inf NA(x). inf NB(y)),α
∑

z= f (x,y)

(sup NA(x). sup NB(y))]〉

|x ∈ E1 y ∈ E2},

Fave
3 = {〈z, [α

∑

z= f (x,y)

(inf MA(x). inf MB(y)),α
∑

z= f (x,y)

(supMA(x). supMB(y))],

[α
∑

z= f (x,y)

(inf NA(x) + inf NB(y) − inf NA(x). inf NB(y)),

α
∑

z= f (x,y)

(sup NA(x) + sup NB(y) − sup NA(x). sup NB(y))]|x ∈ E1 y ∈ E2},

Fave
4 = {〈z, [α

∑

z= f (x,y)

(min(inf MA(x), inf MB(y))),

α
∑

z= f (x,y)

(min(supMA(x), supMB(y))]),

[α
∑

z= f (x,y)

(max(inf NA(x), inf NB(y))),

α
∑

z= f (x,y)

(max(sup NA(x), sup NB(y)))]〉|x ∈ E1 y ∈ E2},

Fave
5 = {〈z, [α

∑

z= f (x,y)

(max(inf MA(x), inf MB(y))),

α
∑

z= f (x,y)

(max(supMA(x), supMB(y)))],

[α
∑

z= f (x,y)

(min(inf NA(x), inf NB(y))),

α
∑

z= f (x,y)

(min(sup NA(x), sup NB(y)))]〉|x ∈ E1 y ∈ E2}.

In the next section, wewill discuss other possible forms of the extension principle.
The IVIFSs are used in some areas of mathematics:

– logic: [16, 77];
– algebra: [4, 15, 47];
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– information and entropy: [18, 21, 26, 34–36, 45, 49, 50, 61, 74, 75, 87, 89, 92,
95, 98, 103, 107, 111, 112];

– topology: [68];
– comparing methods, correlation analysis and discriminant analysis, probability
theory: [34, 39, 40, 42, 48, 71, 86, 87, 98, 108];

– linear programming: [56–58].

The largest areas of applications of the IVIFSs are related t0 the Artificial Intel-
ligence. They are used in:

– approximate reasoning: [104, 106];
– learning processes: [28, 29, 91, 98, 99, 101–103, 110, 111];
– decision making: [24–27, 30–32, 34, 35, 41, 43, 51–54, 60–63, 65–67, 69–72,
75, 76, 78, 79, 81–84, 86–89, 92, 93, 97–99, 101–103, 110, 111].

I will not discuss in more details the publications of the colleagues, because
probably they will do this, soon.

4 Future: Interval Valued Intuitionistic Fuzzy Sets—Open
Problems and Ideas for Next Research

During the last ten years, a lot of operations, relations and operators are defined over
IFSs [7] and Intuitionistic Fuzzy Logics (IFLs, see [9]). All of them can be modified
and defined over IVIFSs. In particular, now there are 53 different negations and 189
different implications over IFSs that can obtain IVIFS-analogues. As it is discussed
in [9], each of the implications can be a basis for defining of three different types of
conjunctions and disjunctions. Therefore, a lot of new operations can be generated
in near future. In the case of IFSs, a lot of negations do not satisfy De Morgan Laws
and the Law of the Excluded Middle. Probably, similar will be the situation with the
IVIFS. On the other hand, new operations that are combinations of existing ones, can
be defined. The open problem is to determine which of these possible new operations
are the most suitable and what properties will they have.

The situation with the operators that can be defined over IVIFS is more complex.
Each of the existing types can obtain IVIFS-form. Really, the operators Fα,β , etc and
Fα,β,γ,δ , etc., are an example for this. But a lot of other operators can be defined that
will transform the region from Fig. 1 in different ways. The operators, descussed in
Sect. 2 are from the first type. In the IFS-case, they are extended in some directions
and the IVIFS-operators can be extended similarly. But, probably, for them, other
directions for modifications will exist. Now, in IFS-theory there are some other types
of modal operators, that by the moment do not have IVIFS-analogues.

The problem for existing of other geometrical interpretations of the IVIFSs is
also open. In Sect. 2 and in a part of the papers, cited in Sect. 3, different norms and
metrices over IVIFSs are discussed, but now, in IFS-theory there are now norms and
metrices without IVIFS-analogues, that can be introduced.
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Interval-Valued Intuitionistic Fuzzy Logics (IVIFSs) can be developed also by
analogy of the results from [9]. Essentially more different types of quantifiers can
be defined for IVIFLs that for IFLs.

By analogy with intuitionistic fuzzy pairs 〈a, b〉 for which a, b, a + b ∈ [0, 1]
(see [13]), we can define Interval-Valued Intuitionistic Fuzzy Pairs (IVIFPs). They
will have the form 〈M, N 〉, where M, N ⊆ [0, 1] and supM + sup N ≤ 1.

As an application of the IFSs and IFLs, some types of Intuitionistic Fuzzy Index
Matrices (IFIMs) were described in [8] and their properties were studied. Future
research in this direction will be also interesting for the IVIFS-case. IFIMs are one
of the bases of research related to so called intercriteria analysis [8, 12]. It also can
be developed for the IVIFS-case.

In [11], it is shown the possibility for intuitionistic fuzzy interpretation of interval
data. It will be interesting to construct a similar interpretation for the IVIFS-case,
too.

5 Conclusion

In near future, the author plans to extend the results from the present paper to a book.
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Strengths of Fuzzy Techniques in Data
Science

Bernadette Bouchon-Meunier

Abstract We show that many existing fuzzy methods for machine learning and data
mining contribute to providing solutions to data science challenges, even though
statistical approaches are often presented as major tools to cope with big data and
modern user expectations of their exploitation. The multiple capacities of fuzzy
and related knowledge representation methods make them inescapable to deal with
various types of uncertainty inherent in all kinds of data.

Keywords Data science · Fuzzy technique · Uncertainty · Fuzzy knowledge
representation · Linguistic summary · Similarity

1 Introduction

Data science is progressively replacing data mining in the realm of big data analysis,
at the crossroad of statistics and computer science. In the latter, machine learning has
been one of the main components of data mining for several decades, together with
statistics and databases. The modern massive amounts of data have clearly requested
more advanced methods than in the past, in terms of efficiency, scalability, visualisa-
tion, and also with regard to their capacity to cope with flows of data, huge time series
or heterogeneous types of data. To extract information from big data is nevertheless
not sufficient to satisfy the final user expectations, more and more demanding not
only rough information but also understandable and easily manageable knowledge.
Criteria such as data quality, information veracity and relevance of information have
always been important but they are now playing a crucial role in the decision support
process pertaining to data science.

The acronym VUCA (volatility, uncertainty, complexity, ambiguity), commonly
used in strategic management, can also characterise the system to which data science
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is applied. It seems clear that it is not sufficient to consider the only data, and the
technical and final users must also be put in the loop. The sources of data should also
be regarded, as well as their interactions in some cases, as their mutual effects may
influence information quality. It is therefore necessary to have a systemic approach of
data science, taking into account globally sources, data and users, andmanaging their
characteristics to come to an effective knowledge able to support decisions (Fig. 1).
This is why it is important to address the four characteristics we mentioned. The first
characteristic is the volatility of information and it corresponds to the variability of
the context, inherent in any evolving world, but made more significant in a digital
environment in which data are produced and evolve constantly and quickly, for
instance on the web, on social networks or when they are generated continuously by
sensors. Uncertainty is the second characteristic and it refers to the handling of data
subject to a doubt on their validity or being linked with forecasting or estimation,
for instance in risk assessment under specific hypotheses. The third characteristic is
the complexity of the real world about which data are available, only known through
perceptions, measurements and knowledge representation, natural language being
the most common. In addition, the complexity of human beings involved in the
system must not be underestimated. The last characteristic of the considered system
is the ambiguity of information which can result from the use of natural language,
from conflicting sources or from incomplete information.

It is always possible to cope with these characteristics in data science by the
only use of statistics and statistical machine learning. But are we sure that we don’t
lose substantial information and that we choose the most appropriate way to provide
knowledge to the users? Can we consider alternative solutions or at least can we
reinforce the existing ones by complementary approaches when appropriate? Such
are the questions we would like to try to answer, looking at the existing methods
proposed in data science.

Fig. 1 Description of the system
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It is interesting to compare these four characteristics of the whole system involved
in data science to the commonly used Four V’s introduced by IBM (volume, velocity,
variety, veracity) to characterise the efficiency of solution proposed in Big Data,
volume, velocity and variety corresponding to the capacity to manage huge amounts
of data with a swiftness of the solution adapted to the volatility of data we mentioned
earlier and taking into account heterogeneous data. We can remark that volume,
velocity and variety are parts of the complexity of the system. Veracity of data is
related to the concept of uncertainty described above.

A proven means to deal with ambiguity, uncertainty, complexity and incomplete-
ness in a system is to use a knowledge representation based on fuzzy modelling.
In [1], the question of the need of fuzzy logic in machine learning is asked. If we
extend this question to data science, wemust ask if fuzzy logic is useful at the various
levels of the process: in the representation of objects involved in the system, in the
technique used to mine data regarding objects, in the presentation of results to the
users, in the decision process resulting from the data analysis. We propose to see the
methods already proposed at these levels for machine learning, data mining or data
science. Our purpose is not to prepare a survey on fuzzy approaches to data science,
which should have a considerable extension going far beyond the size of this article,
given the variety of works existing on this topic, but to point out the diversity of tools
available to cope with imperfect information.

In this paper, we propose to analyse the capacity of fuzzy set modelling to provide
solutions to copewith these characteristics of the system, inwhat concerns knowledge
representation in the first section and in data analysis techniques in the second one.
Our purpose is not to provide an exhaustive state of the art of works on these two
domains, which would require a complete book, but to draw the attention of the user
to solutions which can cooperate with statistical or symbolic methods in order to
solve the mentioned problems.

2 Knowledge Representation

We must first remark that fuzzy sets, at the root of fuzzy modelling, are nothing else
than a means to represent knowledge, as are natural numbers, percentages, words
or images. There is obviously no fuzzy object in the real world, as there is no crisp
object, and it is only our perception of the real world, our information or knowledge
about it and the purpose of our task which can lead to a fuzzy or crisp representation.
For instance, can a forest be regarded as a crisp object? Sure, it has a name and it
is well identified by crisp boundaries on a map. On the other hand, can a forest be
regarded as a fuzzy object? Of course, as to define the limit of the forest on the earth
depends on the compatibility between the cadastral plans and the requested level of
precision and it is difficult to claim that a bush at the limit of the forest is inside or
outside. We can draw a precise map of the forest because an approximation is done
and the scale of the map does not enable us to see significant difference between the
possible limits of the forest. If we now consider an artefact such as a spot detected
on a mammogram, expert analyses show that it does not have precise limits [2] and it
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is better represented as a fuzzy object, whose attributes are automatically evaluated
by means of fuzzy values.

The existence of fuzzy objects is one reason to justify the use of fuzzy modelling
in data science.We can always decide to ignore the fuzziness of an object but wemust
note that some utilisations of the objects may require a crisp representation of them
while some others take advantage of preserving a flexible description of the object.
Another reason is the existence of non standard methods in the framework of fuzzy
modelling, enriching the toolbox of data scientists. Fuzzy knowledge representation
is multiple and, even though the use of fuzzy sets to represent approximate values or
imprecisely defined objects is itsmost common aspect, wemust not ignore associated
methods to represent data, information and knowledge. First of all, there exist many
knowledge representation methods classic in artificial intelligence which have been
extended to or replaced by fuzzy ones in specific environments. It is the case of
ontologies, description logic or causal networks for instance. In addition, related
methods based on possibility and necessitymeasures correspond to the representation
of uncertainty rather than imprecision associated with the available information. We
should also mention other methods in the fuzzy modelling family such as rough
sets, intuitionistic fuzzy sets, or type-2 fuzzy sets that have their specificity and
propose to manage more complex aspects of imprecision and uncertainty. Another
important knowledge representation method in the fuzzy framework corresponds to
linguistic summaries of time series, based of fuzzy description of variables and fuzzy
quantifiers. Last but not least, fuzzy modelling includes similarity measures, be they
used to compare fuzzy or crisp objects.

2.1 Fuzzy Sets and Possibility Degrees

Speaking of fuzzy modelling to cope with information ambiguity, it is immediate to
refer to the representation of linguistic terms by fuzzy sets as an interface between
numerical and symbolic data taking their imprecision into account, such as “big” or
the representation of approximate numerical values such as “approximately 120”,
through a membership function lying on the universe of discourse and taking values
in [0, 1], with a core corresponding to membership degrees equal to 1 associated
with elements of the universe belonging absolutely to the fuzzy set, and a support
out of which the elements of the universe do not belong at all to the fuzzy set. Many
solutions exist to definemembership functions, from psychometric ones to automatic
ones by means of machine learning methods. Such fuzzy sets are used in the more
elaborate fuzzy models described in the next three subsections.

We should nevertheless not forget the option to represent subjective uncertainty
by means of possibility distributions associated with fuzzy or crisp sets. Possibility
degrees correspond to the consideration of a doubt on the validity of a piece of
information and the dual necessity degrees represent the certainty on such a piece
of information. They have for instance been used in the evaluation of data quality to
deal with the uncertainty in the system and veracity of available data we mentioned
in the first section [3, 4].
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2.2 Rule Bases

Even though Hüllermeier [1] claims that the interpretability of fuzzy models is a
myth, the expressiveness of fuzzy models is certainly one of their most interesting
qualities. Fuzzy rules such as “i f V 1 is A1 and V 2 is A2 and... then W is B”
have long been considered as the most common fuzzy knowledge representation tool
because it was considered as an easy way to elicit knowledge from experts. They are
extensively used in decision-making support, more than in data science where they
mainly appear in the interpretation of decision trees. Many criteria have been pro-
posed to evaluate their interpretability [5] and, more generally their appropriateness
to establish an interface between the system and the user, on the basis of compactness,
completeness and consistency of a collection of rules, as well as coverage, normality
and distinguishability of fuzzy modalities used in the rules [6]. It is well recognized
that a too complex system of fuzzy rules makes it lose its interpretability capacity,
and a trade off must be found between understandability of the system and accuracy
of the provided information.

2.3 Linguistic Summaries

The concept of interpretability itself is difficult to define, depending on the domain
and the category of users. However, among other interesting fuzzymodels, we would
like to focus on linguistic summaries [7, 8], that combine the understandability of
simplified natural language and the capacities of automatic learning and quality
checking, the quality being understood in various senses. Their purpose is to sum
up information contained in large volumes of data into simple sentences and the
interpretability is at the core of the process [9]. The most generally used sentences,
called protoforms, are of the form “Q B x ′s are A”, where Q is a fuzzy quantifier
representing a linguistic quantifier such as “most” or “a majority of”, or, in the case
of time series, a temporal indication such as “often” or “regularly”, B is a fuzzy
qualifier of elements x of the dataset to be summarised, sometimes omitted, and
A is a fuzzy description of these elements called a summariser. Examples of such
protoforms are “Most of the cold days are windy” or “Approximately every day, the
amount of CO2 is high”.

Fuzzy linguistic summaries can be compared to other methods to extract infor-
mation from large datasets such as temporal series. Since their main quality is
their expressiveness, it looks pertinent to compare them with linguistic summaries
obtained by means of natural language generation. Even if the latter is naturally
semantically richer, the information provided by fuzzy linguistic summaries has the
advantage of not requiring any expert knowledge as it is generally the case for natural
language generation-based summaries. It is also made of simple sentences, the form
of which depends on the needs of the user, in adequacy with the context. A degree
of truth is calculated from the dataset for each protoform. Either the user is directly
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provided with a collection of protoforms as a summary of the dataset or he/she uses
queries to obtain information regarding summarizers and qualifiers of interest for
him/her [10]. In a general environment, the number of sentences generated by a list
of quantifiers, qualifiers and summarisers may be big and the most interesting ones
can be selected automatically on the basis of their level with regard to a chosen
criterion, for instance the degree of focus, specificity or informativeness [11]. In the
case of queries, various interactive solutions have been proposed to enable the user
to easily find appropriate answers to his queries [12]. The number of sentences can
also be reduced by taking into account properties of inclusion between quantifiers or
summarizers, for instance. Another consideration enabling to reduce the number of
protoforms is the management of oppositions in order to ensure the consistency of
the collection of protoforms proposed to the user [13], eliminating contradictions and
exploiting duality and antonymy. Constraints on membership degrees can be taken
into account [14] to analyse the coherence of fuzzy descriptions. In the particular case
of the summarisation of temporal series, which has given rise to many methods in
statistical learning, the diversity of sentences used in the summaries must be pointed
out, going beyond the usual protoforms. Trends are often taken into consideration
[15], as well as fuzzy temporal propositions [16], detection of local changes [17], to
cite but a few examples.

We focus on the analysis of periodicity of time series, which can obviously
be approximative or described imprecisely, for instance of the form “Many x ′s
are A most o f the time” [18]. To analyze the regularity of high and low values,
the periodicity of such behaviors and their approximate duration can for instance be
achieved through an efficient scalable and robust method [19] requesting neither any
hypothesis on the data nor any tuning of parameters, automatically detecting groups
of high and low values and providing simple natural language descriptions of the
periodicity.

2.4 Fuzzy Ontologies

Ontologies are an important knowledge representation tool used in many aspects
of information or image retrieval and semantic web to manage concepts and their
relationships in a structured environment. Description logic is an efficientway to con-
struct ontologies in order to manage concepts, roles and individuals. If we assume
that most concepts are imprecise and their relations as well, there is a clear need of
fuzzy ontologies which have been extensively studied and applied. Fuzzy descrip-
tion logics have been proposed [20] to construct fuzzy ontologies in the case where
concepts and relations are imprecise, in the framework of fuzzy logic. They can cor-
respond to the idea of unclear boundaries of concepts or relationships, or imperfect
knowledge about individuals, which goes far beyond taking into account synonymy
or forms of words like plural or tense, as commonly managed by natural language
processing, or even misprint correction. It is not the style of descriptions which is
addressed but their content itself. A number of works [21, 22] have extended the
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Web Ontology Language (OWL) based on Description Logic to construct fuzzy
ontologies. Among the most recent ones, fuzzyDL is an ontology reasoner support-
ing fuzzy logic reasoning tasks such as concept satisfiability, concept subsumption or
entailment [23]. An alternative to fuzzy description logic when the available knowl-
edge is uncertain consists of possibilistic description logic [4, 24], dealing with
uncertain roles and individuals. It is based on possibilistic logic, managing gradual
and subjective uncertainties and assigning confidence degrees to pieces of infor-
mation. Fuzzy ontologies have been extensively used in medical applications, in
ubiquitous learning, in sentiment analysis on social media sites or in information
retrieval and in particular semantic similarity, for instance. Possibilistic logics have
been used in military intelligence services and for the semantic web.

2.5 Similarity Measures

Similarity pertains to knowledge representation as it contributes to the construction of
categories or classes representing the available knowledge. In addition, similarity can
be viewed as away to represent knowledge on relations between elements in a system
observed in data science, for instance. It is a complex concept, much investigated
in psychology from psychometrical and cognitive points of view. It is involved in
categorization to reduce the amount of available information and cognitive categories
have been pointed out to be fuzzy, for instance by Rissland [25]. who considers that
many concepts have “grey areas of interpretation” with a core and a boundary region.
Similarities are then useful to construct categories.

They have been used in data science in a restrictive approach, which could be
used with more diversity and richness than it is, especially considering a fuzzy envi-
ronment. In data science, similarity is often regarded as the dual of a distance, which
requires a metrical space; another commonly used similarity measure is the cosine of
the angle between two vectors, but such similarity measures neglect conceptual and
perceptual aspects of similarities. Considering that two objects are similar clearly
depends on the point of view: images of bats and squirrels can be regarded as similar
with regard to the concept of mammals; images of bats and owls can be regarded as
visually similar because they represent animals flying in the night. The concept of
animal flying in the night itself is fuzzy, since squirrels partly belong to it because of
the existence of flying squirrels for instance. The similarity between two elements
clearly depends on the purpose of the analysis being performed. We must note that
similarities can be symmetrical or not, according to Tversky’s seminal work [26].
For instance, if one of the elements serves as a reference, appearing in a query or
being the prototype or the representative of a category to which an unknown element
is compared, then the similarity is not necessarily symmetrical. In the case when
elements to compare are fuzzy, similarities take into account membership functions
describing them. Classes of measures of similarity have been exhibited [27], includ-
ing (non-symmetrical) satisfiability measures, (symmetrical) resemblance mea-
sures, inclusion measures involved in the comparison of categories, for instance.
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The richness of the available classes of similarity measures provides appropriate
solutions to all utilisations of similarities related to fuzzy knowledge representation:
to find relevant answers to database queries, taking into account the term fuzziness
as well as a flexible matching between terms and fuzzy ontology-based similarity
between terms [28], for missing data imputation [29]. An utilization of similarities of
particular interest is the construction of prototypes of categories. Again on the basis
of psychological studies [30], fuzzy prototypes can be defined as representatives of
an imprecisely characterized class, the most similar to all members of the class and
the most dissimilar to members of other classes [31].

3 Conclusion

We have pointed out various reasons to use fuzzy techniques to cope with all char-
acteristics of data pertaining in data science, in particular volatility, uncertainty,
complexity, ambiguity, incompleteness, heterogeneity. The major problems of data
and information quality have not yet been enough tackled in data science, but it is
clear that some already existing fuzzy and possibilistic methods are promising and
should give rise to efficient solutions in the future.
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How to Enhance, Use and Understand
Fuzzy Relational Compositions

Nhung Cao, Martin Štěpnička, Michal Burda and Aleš Dolný

Abstract This article focuses on fuzzy relational compositions, that unquestionably
played a crucial role in fundamentals of fuzzy mathematics since the very beginning
of their development. We follow the original works aiming at medical diagnosis,
where the compositions were actually used for a sort of classification and/or pattern
recognition based on expert knowledge stored in the used fuzzy relations.We provide
readers with short repetition of theoretical foundations and two recent extensions of
the compositions and then, we introduce how they may be combined together. No
matter the huge potential of the original compositions and their extensions, if the
features are constructed in a certain specific yet very natural way, some limitations
for the applicability may be encountered anyhow. This will be demonstrated on a
real classification example from biology. The proposed combinations of extensions
will be also experimentally evaluated and they will show the potential for further
improvements.
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1 Introduction and Preliminaries

1.1 Introduction

Since Bandler and Kohout had firstly studied fuzzy relational compositions in the
late 70 s, the topic attracted numerous researchers and its development wasmarked in
various aspects and directions so that nowadays, it unquestionably constitutes one of
the crucial topics in fuzzymathematics [2, 4, 12]. The areas of application of the topic
cover medical diagnosis [1], systems of fuzzy relational equations [11, 14, 27, 30]
and consequently fuzzy inference systems [24, 25, 28, 34, 36] including modeling
monotone fuzzy rule bases [33, 37], fuzzy control [22], in flexible query answering
systems [13, 17, 29] and many other areas, see [20]. Furthermore, there is a very
close relationship between fuzzy relational compositions and other areas such as the
fuzzy concept analysis [5], fuzzy mathematical morphology and image processing
[32] and associativememories [31].Moreover, the fuzzy relational compositions still
get the attention of the wide scientific community including the authors, who partly
contributed to the recent extensions of the compositions, namely to the incorpora-
tion of excluding features [6, 8] and to the employment of generalized quantifiers
[9, 10, 35].

This contribution provides an investigation stemming from the two above men-
tioned recent directions of the research. The positive impact of both of them is the
potential to reduce a number of false suspicions provided by the basic composi-
tion without losing the possibly correct suspicion that often happens when we use
Bandler-Kohout (BK) products. Though we have made the exhaustive experimental
evaluations of the proposed approaches and the result were very convincing, we still
see some potential for further development. In this contribution, we introduce one
of such directions that is based on an appropriate partitioning of the features space
(grouping features) and application of the BK products on these groups of features.
As wewill show, this approach naturally allows to involve the generalized quantifiers
as well to strengthen its performance.

1.2 Fuzzy Relational Compositions

Let us fix some underlying setting and notation for the whole paper, in particular, let
the underlying algebraic structure be a residuated lattice L = 〈[0, 1],∧,∨,⊗,→
0, 1〉 and let the set of all fuzzy sets on a given universe U be denoted by F (U ).
Furthermore, we will consider be non-empty finite sets X, Y and Z as universes
of objects (samples), features and classes, respectively. In the context of medical
diagnosis [1], elements of these universeswould be particular patients, symptoms and
diseases however, we may abstract from this nowadays classical yet very illustrative
setting. Finally, let fuzzy relations R ∈ F (X × Y ) and S ∈ F (Y × Z) encode the
information on the relationship between objects and features and between features
and classes, respectively.
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Definition 1 The basic composition ◦, BK-subproduct �, BK-superproduct � and
BK-square product � of R and S are fuzzy relations on X × Z defined as follows:

(R ◦ S)(x, z) =
∨

y∈Y

(R(x, y) ⊗ S(y, z)) ,

(R � S)(x, z) =
∧

y∈Y

(R(x, y) → S(y, z)) ,

(R � S)(x, z) =
∧

y∈Y

(R(x, y) ← S(y, z)) ,

(R � S)(x, z) =
∧

y∈Y

(R(x, y) ↔ S(y, z)) ,

for all x ∈ X and z ∈ Z .

The value (R ◦ S)(x, z) expresses up to which degree it is true, that patient x has
at least one symptom belonging to disease z. The BK products provide a sort of a
strengthening of the initial suspicion provided by the basic composition. The value
(R � S)(x, z) expresses up to which degree it is true, that all symptoms of patient x
belong to disease z; the value (R � S)(x, z) expresses up towhich degree it is true that
patient x has all symptoms belonging to disease z; and finally, the value (R � S)(x, z)
expresses up to which degree it is true that patient x has all symptoms of disease z
and also all the symptoms of the patient belong to the disease, which is nothing else
but the conjunction of both triangle products. Obviously, the basic composition is
based on the existential quantifier and the BK products on the universal quantifier,
and the quantifiers are mirrored in the external operations of the compositions, i.e.,
in the used infima and suprema, respectively.

1.3 Compositions Based on Fuzzy Quantifiers

Aswehavementioned above, one of the recent extension of fuzzy relational composi-
tions aims at the use of fuzzy quantifiers, namely at the use of generalized quantifiers
determined by fuzzy measures [18]. These extension were published mainly in the
following works [9, 10, 35] but they stem from much older works, for example from
[16], and it is worth noticing, that the practical use of this concept in flexible query
answering systems and fuzzy relational databases was also set up earlier [13, 17, 29]
than the recent development of theoretical fundamentals.

The use of fuzzy quantifiers may be easily motivated by the need to fill in the
big gap between basic composition ◦, based on the existential quantifier, and the BK
products based on the universal quantifier. The use of generalized quantifiers such
as Most, Majority or A Few has been provided in detail especially in [10].

Definition 2 [10] Let U = {u1, . . . , un} be a finite universe, let P(U ) denotes
the power set of U . A mapping μ : P(U ) → [0, 1] is called a fuzzy measure on
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U if μ(∅) = 0 and μ(U ) = 1 and, if for all C, D ∈ P(U ), C ⊆ D then μ(C) ≤
μ(D). Fuzzy measure μ is called symmetric if for all C, D ∈ P(U ) : |C | = |D| ⇒
μ(C) = μ(D) where | · | denotes the cardinality of a set.

Example 1 Fuzzy measure μrc(C) = |C |/|U | is called relative cardinality and it
is symmetric. Let f : [0, 1] → [0, 1] be a non-decreasing mapping with f (0) = 0
and f (1) = 1 then μ f defined as μ f (C) = f (μrc(C)) is again a symmetric fuzzy
measure. Note that all fuzzy sets modeling the evaluative linguistic expressions [26]
of the type Big (e.g. Very Big, Roughly Big, not Very Small etc.) are
non-decreasing functions on [0, 1] that fulfill the boundary conditions.

Example 2 Another very appropriate function modifying the relative cardinality is
a step function. Consider the fuzzy measure μ50%

rc on U defined as follows:

μ50%
rc (A) =

{
1 i f μ50%

rc (A) ≥ 1
2

0 otherwise

for any A ∈ P(U ). Such measure is used to construct a quantifier “at least half ”.
Analogously, one can define a measure “at least x %” for any x ∈ [0, 100] or directly
in absolute values “at least x”.

Definition 3 [10] A mapping Q : F (U ) → [0, 1] defined by

Q(C) =
∨

D∈P (U )\{∅}

((
∧

u∈D

C(u)

)
⊗ μ(D)

)
, C ∈ F (U )

is called fuzzy (generalized) quantifier determined by μ.

If μ is a symmetric fuzzy measure then the quantifier can be rewritten into a
computationally cheaper form:

Q(C) =
n∨

i=1

C(uπ(i)) ⊗ μ({u1, . . . , ui }), C ∈ F (U ) (1)

where π is a permutation on {1, . . . , n} such that C(uπ(1)) ≥ C(uπ(2)) ≥ · · · ≥
C(uπ(n)).

Definition 4 [10] Let Q be a quantifier on Y determined by a fuzzy measure μ.
Then, the compositions R@Q S where @ ∈ {◦,�,�, �} are defined as follows:

(R@Q S)(x, z) =
∨

D∈P (Y )\{∅}

⎛

⎝

⎛

⎝
∧

y∈D

R(x, y) � S(y, z)

⎞

⎠ ⊗ μ(D)

⎞

⎠

for all x ∈ X , z ∈ Z and for � ∈ {⊗,→,←,↔} corresponding to the composition.



How to Enhance, Use and Understand Fuzzy Relational Compositions 125

By (1), the compositions can be rewritten into a computationally cheaper form:

(R@Q S)(x, z) =
n∨

i=1

((
R(x, yπ(i)) � S(yπ(i), z)

) ∗ f (i/n)
)

. (2)

where π is a permutation on {1, . . . , n} such that

R(x, yπ(i)) � S(yπ(i), z) ≥ R(x, yπ(i+1)) � S(yπ(i+1), z) .

1.4 Excluding Features in Fuzzy Relational Compositions

The incorporation of excluding features was motivated by the existence of excluding
symptoms for some particular diseases in the medical diagnosis problem [6]. For
example, the symptom of severe upper back pain excludes the appendicitis from
the suspicious diseases despite of many other symptoms potentially linking to the
appendicitis. Indeed, this concept may be much more general and not restricted only
to the medical diagnosis. The excluding features, may be equally useful in many
other expert classification tasks and we have presented its successful application to
the taxonomical classification of Odonata (dragonflies) in biology [8]. We follow
this works and recall fundamental definitions.

Additionally to the above introduced notation, let us consider a fuzzy relation
E ∈ F (Y × Z) that will encode the information on between features and classes.
The value E(y, z) is supposed to express the degree up to which it is true that feature
y is excluding for the class z.

Definition 5 Let X, Y, Z be non-empty finite universes, let R ∈ F (X × Y ), S, E ∈
F (Y × Z). Then the composition R ◦ S�E ∈ F (X × Z) is defined:

(R ◦ S�E)(x, z) =
∨

y∈Y

(R(x, y) ⊗ S(y, z)) ⊗ ¬
∨

y∈Y

(R(x, y) ⊗ E(y, z)) .

The definition provided abovemay be rewritten into the following comprehensible
form:

(R ◦ S�E)(x, z) = (R ◦ S)(x, z) ⊗ ¬(R ◦ E)(x, z)

which builds one composition from two simpler ones.
There are two other ways to define the composition incorporating the excluding

features which, in the case of the classical relation, coincide. The equivalence of all
the three definitions for the fuzzy relational structures has been studied especially in
[6, 8] and it turnedout that ifwe restrict our focus on suchunderlying algebras, that are
either MV-algebras or whose negation ¬a = a → 0 is strict and the multiplications
⊗ has no zero divisors, the three definitions coincide. The importance of the result
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is obvious, as the most usual algebras (Łukasiewicz algebra, Gödel algebra and
the product algebra) do fall into the above restricted class of residuated lattices.
Therefore, we refer interested readers to the relevant above cited sources and here,
we freely focus on other aspects of the incorporation of the excluding features.

The properties preserved by the basic composition incorporating excluding fea-
tures are deeply studied in [8] and we recall only few of them.

Theorem 1 [8] Let ∪ and ∩ denote the Gödel union and intersection, respectively.
Then

R ◦ (S1 ∪ S2)
�E = (R ◦ S1

�E) ∪ (R ◦ S�
2E), (3)

R ◦ S�(E1 ∪ E2) = (R ◦ S�E1) ∩ (R ◦ S�E2), (4)

R ◦ (S1 ∩ S2)
�E = (R ◦ S1

�E) ∩ (R ◦ S�
2E), (5)

R ◦ S�(E1 ∩ E2) = (R ◦ S�E1) ∪ (R ◦ S�E2). (6)

2 Dragonfly Classification Problem

Let us demonstrate the use of the fuzzy relational compositions, incorporation of
excluding features into the basic composition, fuzzy relational compositions based
on fuzzy quantifiers, and finally, the combination of the fuzzy relational compositions
based on fuzzy quantifiers with the incorporated excluding features. The demonstra-
tion will be provided on a real taxonomic classification of Odonata (dragonflies) that
was calculated using the “Linguistic Fuzzy Logic” lfl v1.4 R-package [3].

As we will show, the application will demonstrate, that for some types of features,
even any of the above proposed approaches, although very powerful and potentially
very promising, do not have to be the most appropriate choices or, they may still
preserve some weaknesses caused by the origin of the features.

2.1 Taxonomical Classification—Setting up the Problem

The density-distribution of dragonflies plays a crucial role for biodiversity and it
is influenced by distinct ecological factors [19], which rises reasons for monitoring
their occurrence. Luckily, odonatology may strongly rely on the phenomenon of
citizen science and on a strong support of volunteer biologists working in terrain. On
the other hand, the collected data are often incomplete, imprecise, vague or possibly
containing mistakes as only the Czech Republic, there are dozens of species of
dragonflies and males and females of the same species have often rather different
look [15].

The goal of the application is to develop an expert system classifying a given
dragonfly into one of 70 species (140 classes incl. sex) based on features inserted by
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a volunteer biologist working in terrain. The features to be collected and used for the
classification are as follows:

• Colors – 6 colors encoded as follows: 1 – surely has; 0.5 – may have; 0 – cannot
have. Often more than a single color is assigned a non-zero.

• Altitudes – 14 intervals of altitudes of usual occurrence of the species encoded
using 6 intensities: 0, 0.2, 0.4, 0.6, 0.8 and 1.

• Decades – 36 decades in the year of usual occurrence of the species encoded using
6 intensities: 0, 0.2, 0.4, 0.6, 0.8 and 1.

• Morphological categories–4categories as combinations ofAnisoptera/Zygoptera
and the size (small/big).

An odonatologist constructed matrices S and E with 60 rows (features) and 140
columns (classes) expressing the relationships between features and classes. The
classification performance was tested on real data which consisted in total of 105943
observation records. That dataset was divided by a stratified random split into two
parts: training (53003 records) and testing (52940 records). The performance of
compositions was tested on testing data, i.e., they were encoded into a single matrix
R with 52940 rows (samples of dragonflies) and 60 columns (measured or observed
features of the particular samples). For the demonstrative purposes, we have chosen
the Gödel algebra as the underlying residuated lattice.

Furthermore, we provide readers with the comparisons to a very powerful data-
driven Random forest technique implemented in the R-package randomForest
version 4.6–12 (see [23]) with fully automatic parameter tuning done by the caret
package version 6.0–73 (see [21]). We have used the training data mentioned above
to create that model.

Each method provides a value of a different type. The random forest determines
the probability of the tested sample to be the given dragonfly species. The fuzzy
relational products provide users with numbers that express the truth degree of the
predicate expressing the semantics of the given fuzzy relational composition. And as
the predicates use quantifiers, even the value 0 does not mean that the given sample
cannot be a given dragonfly and vice-versa, the value 1 does not necessarily mean
that the sample is the given dragonfly. Indeed, in the case of the basic composition
◦ the value expresses the truth degree of the predicate “there exists a feature that
belongs to the given dragonfly and the feature is observed at the given sample”which
even in the degree 1 does not ensure anything. And analogously, in the case of the
BK-superproduct � the value expresses the truth degree of the predicate “all the
features of the given dragonfly species are carried by the given dragonfly sample”
which even in the value 0 does not exclude anything.

Obviously, the assigned numbers are not directly comparable and therefore, the
following appropriate comparison measures were employed:
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• rank – for a given sample, it is the number of dragonfly species with assigned
number greater or equal than the number assigned to the correct species;

• rankM – the arithmetic mean of the rank numbers;
• rankGr – for a given sample, it is the number of dragonfly species with assigned
number strictly greater than the number assigned to the correct species;

• rankGrM – the arithmetic mean of the rankGr numbers over the testing set;
• corrMax – assigns 1 if the assigned value to a given sample is maximal for the
correct species, otherwise 0;

• #corrMax – the number corrMax values equal to 1 in the testing set;
• max – the maximal number assigned to the given sample;
• maxM – the arithmetic mean of the max numbers;
• corr – the number assigned to the correct species;
• corrM – the arithmetic mean of the corr numbers.

2.2 Results of the Taxonomic Classification and Discussion

The results of the classification problem are provided in Table1. The basic compo-
sition ◦ provides too rough information as on average, there are 132.14 dragonfly
species that are assigned the values as high as the correct species, which, no matter
that the correct species were always assigned the value 1, makes this approach for the
given problem useless. Even less useless, of course in this case, not in general, is the
BK-superproduct. It provides matrices full of zeros, which brings no information.
Consequently, the same result is obviously provided by the BK-square product.

The other approaches provided narrower results in terms of rankM. According to
the rankGrM value equaling to 3.03 in the case of the random forest (on average, 3
dragonfly species were assigned values higher than the correct dragonfly species); to
1.82 for the BK-subproduct; and 0.08 for the (R ◦ S�E); the latter one seems to be
the most promising one as such low value means, that this approach nearly always
contained the correct class in the set of the guessed ones. This is confirmed also by
very high number of #corrMax measure (52384 out of 52940 samples, which equals
to the 98.95% success score). Random forest as well as BK-subproduct providemuch
weaker results from this point of view.

Table 1 Results of the dragonfly classification problem

Method rankM rankGrM #corrMax maxM corrM

rf 23.07 3.03 18801 (35.51%) 0.61 0.30

R ◦ S 132.14 0.00 52940 (100.00%) 1.00 1.00

R � S 10.96 1.82 35468 (67.00%) 0.92 0.77

R � S 140.00 0.00 52940 (100.00%) 0.00 0.00

R ◦ S� E 20.42 0.08 52384 (98.95%) 0.99 0.98
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3 Combinations of Fuzzy Quantifier and Excluding
Features

As we might have noticed from Sect. 2, the basic composition obviously determines
too wide sets which may be narrowed by the BK products, but they may be lowering
the assigned values too much. Indeed, the BK-superproduct resulted into a 52940
× 140 matrix that was full of 0’s only. The concept of excluding features may be
helpful, but sometimes not narrowing the results enough.

The “failure” of the BK-superproduct is not surprising in this case, having inmind
that there were many features in certain groups (intervals of altitude or decades)
where each sample may occur only in one of such features in the group (sample is
observed in one particular decade in one particular altitude interval) while the BK-
superproduct “expects” all features to be carried by the given sample. Therefore, the
application of the universal quantifiers necessarily leads to the zero result.

These observations lead to a natural idea of combining the use of fuzzy quantifiers
with the concept of excluding features. This may be done either directly or with a
intermediate step of grouping features. In the first case, we may, for example, still
work with the basic composition with excluding features, which probably provided
the best results in the experiment, but we may enhance the basic composition by
fuzzy quantifiers requiring, e.g., at least two, three of four features to be carried
by an investigated sample. The second case consists in grouping features into sets
forming a partition of the universe Y and, consequently, applying the BK-products
on these groups of features. In such a way, we may construct products that would
give us, for example, pairs of objects and classes (x, z) such that x carries at least one
feature belonging to every group of features constituting the set Y . In other words,
such approach would not “expect” all features to be carried by the given sample but
all groups of features to be carried by the given sample. Moreover, the excluding
features may be employed as well.

3.1 Direct Combination of Fuzzy Quantifier and Excluding
Features

Both approaches recalled in Sects. 1.3 and 1.4 above may be combined together and
it is worth mentioning that the first steps in this direction have been provided in [7].
We will again recall only the main definitions and refer the interested readers to the
original source.

Definition 6 Let X, Y, Z be non-empty finite universes, let R ∈ F (X × Y ), S, E ∈
F (Y × Z). Let Q be a quantifier on Y determined by a fuzzy measure μ. Then,
(R ◦Q S�E), (R �Q S�E), (R �Q S�E), (R �Q S�E) are fuzzy relations on X × Z
defined as follows:
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(R ◦Q S�E)(x, z) = (R ◦Q S)(x, z) ⊗ ¬(R ◦ E)(x, z), (7)

(R �Q S�E)(x, z) = (R �Q S)(x, z) ⊗ ¬(R ◦ E)(x, z), (8)

(R �Q S�E)(x, z) = (R �Q S)(x, z) ⊗ ¬(R ◦ E)(x, z), (9)

(R �Q S�E)(x, z) = (R �Q S)(x, z) ⊗ ¬(R ◦ E)(x, z), (10)

for all x ∈ X and z ∈ Z .

Similarly to the case of the incorporation of excluding features into the basic
composition described in [8] and recalled in Sect. 1.4, the compositions may be
defined in two alternative ways, that coincide under the same restrictions of the
underlying algebraic structures [7].

3.2 Fuzzy Relational Compositions Using Grouping
of Features

Let us set up preliminaries for the grouping of features. Let X, Y, Z be non-empty
finite universes of cardinalities I , J and K , respectively, i.e., let X = {x1, x2, . . . , xI },
Y = {y1, y2, . . . , yJ } and Z = {z1, z2, . . . , zK }. Thus, |X | = I , |Y | = J and |Z | =
K . Let R ∈ F (X × Y ) and S, E ∈ F (Y × Z). Assume that Y can be divided into
M disjoint sets:

Y = G1 ∪ · · · ∪ G M

such that each set contains all features of the same “type” (colors, decades, altitudes,
etc.).

Now let us define M fuzzy relations Sm ∈ F (Y × Z) by:

Sm(y, z) =
{

S(y, z), y ∈ Gm

0, otherwise

and we may clearly see that S = ⋃M
m=1 Sm .

Now, as we intend to define BK products on the subsets of features Gm in order to
express the semantics of the predicates such as “samples carries all types of features
belonging to the given class”, we will define a new universe of features of some
types. Let us denote it by YZ :

YZ = {y11 , y21 , . . . , yK
1 , y12 , . . . , yK

2 , . . . , y1M , . . . , yK
M },

inwhich the subscript of each element stands for the groupnumber and the superscript
of each element stands for the class number.

Example 3 In the above introduced application for dragonfly classification, the
newly defined universe YZ would contain 4 × 140 elements, first 140 elements
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would relate to the feature subsets of colors and each element yk
1 would express how

much it is true, that any of the colors carried by a given sample relates to the kth
class of dragonflies. Analogously, yk

2 would express the relation between altitudes
and the k-th class etc.

Furthermore, let us define the fuzzy relation R′ ∈ F (X × YZ ) as follows:

R′(xi , yk
m) = (R ◦ S�

m E)(xi , zk)

and the fuzzy relation S′ ∈ F (YZ × Z) as follows:

S′(yk1
m , zk2) =

{
1, k1 = k2,
0, otherwise.

So, in the matrix form, the fuzzy relation R′ is a matrix of the type I × M · K
that looks as follows:

R′ = ( [R ◦ S�
1E] · · · [R ◦ S�

M E] )

and the fuzzy relation S′ may be represented in a matrix form as a matrix of the type
M · K × K that is constituted by M diagonal identity matrices of the type K × K
ordered vertically above each other:

S′ = ( [Id1K×K ] · · · [IdM
K×K ] )T

Then the composition R′ � S′ ∈ F (X × Z) is correctly defined and it has the
following natural semantics. The value (R′ � S′)(x, z) expresses the degree of truth
of the predicate: “object x carries all groups of features that relate to class z and at
the same time, it carries no features that would be excluding for the class z”. With
respect to the above described application, it means, that x has (at least one) color
related to z, it was observed in one of the altitudes related to the occurrence of z,
it was observed in one of the decades related to the occurrence of z and, it has the
proper combination of morphological type and size belonging to z.

Now, let us formulate a simple yet interesting proposition showing, that the con-
cept we have introduced above may be calculated simply as an intersection of the
basic compositions (with the incorporation of excluding features) of the fuzzy rela-
tion R with fuzzy relations Sm .

Proposition 1 Let ∩ denotes the Gödel intersection. Then

R′ � S′ =
M⋂

m=1

(R ◦ S�
m E) (11)

Proof The proof stems from the definitions of R′ and S′. Indeed, for arbitrary fixed
pair (xi , zk)
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(R′ � S′)(xi , zk) =
K∧

s=1

(R′(xi , ys
1) ← S′(ys

1, zk) ∧ · · · ∧
K∧

s=1

(R′(xi , ys
M ) ← S′(ys

M , zk)

= (1 → R′(xi , yk
1 )) ∧ (1 → R′(xi , yk

2 )) ∧ · · · ∧ (1 → R′(xi , yk
M ))

= (R ◦ S�
1E)(xi , zk) ∧ (R ◦ S�

2E)(xi , zk) ∧ · · · ∧ (R ◦ S�
M E)(xi , zk)

=
M⋂

m=1

(R ◦ S�
m E)(xi , zk).

��
Proposition 1 states, that we may calculate the compositions based on groups of

features simply as an intersection of compositions (R ◦ S�
m E). Based on Theorem 1,

we may easily recall the fact that the union of (R ◦ S�
m E) would give us a fuzzy

relation that would be equivalent to the fuzzy relation (R ◦ S�E) so, actually we
may decompose the original one into a union of M other fuzzy relations. And our
approach based on grouping features is, due to Proposition 1, an intersection of the
same fuzzy relations and thus, necessarily has to narrow the results, which was our
goal.

On the other hand, the danger of narrowing too much, similarly to the use of BK-
superproduct directly on the features is partly eliminated but still somehow present.
Even in grouping features, a mistake of a volunteer biologist may cause, that some
feature will be missing (e.g. wrongly determined morphological category). As the
intersection of the fuzzy relations is not arbitrarily or heuristically chosen but a con-
sequence of Proposition 1, we may stem from it again. We may apply an appropriate
fuzzy quantifier Q to the left hand side of (11) and determine the following fuzzy
relation R′ �Q S′ that relaxes one missing (group of) feature(s).

3.3 Experiments

For the experimental evaluation, we have used only the simple fuzzy quantifiers Q
of the type “at least x%” (or “at least x”) presented in Example 2. These quanti-
fiers were used for both, the direct combination of the use of fuzzy quantifier with
excluding features as well as in order to soften the impact of the BK-superproduct
used in R′ �Q S′.

Although the results provided in Table2 are somehow self-explanatory, let us
comment them briefly. As we may see, using the intersection-based approach of
grouped features provided by fuzzy relation R′ � S′ narrows the guessed set sig-
nificantly (from 20.42 in the case of original incorporation of excluding features to
11.45) with obvious and expected decrease of the accuracy however, still keeping
the accuracy above the random forest, R � S. This trade-off between narrowing the
results in order to get them more specific and getting robust accuracy is perfectly
demonstrated on the use of the fuzzy quantifier. For the approach working on group-
ing features and encoded in the fuzzy relation R′ �Q4 S′, we used the quantifier “at
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Table 2 Results of the dragonfly classification problem by proposed approaches. The used quan-
tifiers are as follows: Q1 = “at least 2 features”, Q2 = “at least 3 features”, Q3 = “at least 4
features”, Q4 = “at least 75%”

Method rankM rankGrM #corrMax maxM corrM

Direct combinations

R ◦Q1 S� E 20.15 0.09 52353 (98.89%) 0.99 0.98

R ◦Q2 S� E 17.46 0.30 51210 (96.73%) 0.99 0.97

R ◦Q3 S� E 12.50 1.23 43199 (81.60%) 0.97 0.88

Grouping features

R′ � S′ 11.45 1.55 39015 (73.70%) 0.95 0.83

R′ �Q4 S′ 16.87 0.37 50723 (95.81%) 0.99 0.97

least 75%” requiring to meet at least 3 out of 4 feature groups. The results may be
represented as very positive. There, the loss of the accuracy was very low or even
non-significant, but still bringing some narrowing effect decreasing the average size
of the guessed set from 20.42 to 16.87.

The direct combination of the fuzzy quantifiers and excluding features provided
comparable results. Let us note, that the fuzzy relation R ◦Q1 S�E actually brought
results with only negligible difference to the original employment of excluding fea-
tures by R ◦ S�E provided in Table1. Indeed, the difference between one or two fea-
tures was not making a significant difference in this application. The fuzzy relation
R ◦Q2 S�E thatwas based on the quantifier“at least 3 features” already brought a sig-
nificant shift in the results thatwas interestingly very similar to the results provided by
the grouping feature approach and encoded in R′ �Q4 S′. Indeed, R ◦Q2 S�E provides
slightly more accurate results than R′ �Q4 S′ which is on the other hand naturally
compensated by slightly wider guessed set. Finally, the fuzzy relation R ◦Q3 S�E
based on the requirement to meet at least 4 features brings results that are actually
getting very close to the results provided by the pure intersection of compositions on
grouped features provided by R′ � S′.

4 Conclusion and Future Work

We have recalled previous studies on two extensions of fuzzy relational composi-
tions and motivated combinations of both approaches. We provided readers with the
approaches how to employ the combination, one was a direct way, the other one was
based on a inter-mediate step consisting in grouping features into several sets forming
a partition of the feature universe. Experimental evaluation on a real classification
problem supplemented the main contribution of the article.

Based on the experimental evaluation and the whole construction of the method,
one may easily deduce that the combinations provided unquestionably promising
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results. It seems, that further significant improvement may be obtained only with
adding more features, e.g., the visual appearance of dragonflies (e.g. striped) that
jointly with the color could have been the right way how to add features with a
potential to get more accurate and still robust results.

In general, the choice of the appropriate approach will be always significantly
dependent on every single application problem, the origin of the features and their
potential to group them. Another crucial point, from our perspective, seems to be the
determinationof the appropriate fuzzymeasure determining the used fuzzyquantifier.
A sort of data-driven approach and optimization of hyper-parameters on the training
set seems to be the point to focus on in the next phase. This approach, would shift
the expert fuzzy relational compositions closer to data-driven approaches such as
decision trees or random forest.

Such a combination of expert approach and possibility of data tuning might join
the advantages of both. And it brings another potential advantage compared to purely
data-driven approaches that may be explained again on the dragonfly classification
problem. Purely data-driven approach cannot be used in all situation as the required
data do not have to be always at disposal. Recall, that we were working on data
collected in theCzechRepublic,where the amount volunteer odonatologists provided
the data is very high and allowed us to use such a database. However, this is not the
case all over the world and at many even European countries, there are no such
complex data-sets at all. In such cases, no data-driven approach may be used, as the
model based on geographically different data could never work (different families of
dragonflies, different dependencies on features etc.). However, if we use the semi-
data-driven approach on the accessible data (e.g. from the Czech Republic), we may
expect, that the crucial information that may be inherited from this approach to other
regions is not in the fuzzy relations, but in the found most appropriate quantifiers.
Indeed, one may assume that, e.g., the numbers of features used for the correct and
robust determination of dragonfly families will not differ so much over regions. Such
experimentally chosen quantifiers and particular models (with or without grouping,
particular compositions etc.) may be used also in other regions to work on other
fuzzy relations, that were purely expertly determined.
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Łukasiewicz Logic and Artificial Neural
Networks

Antonio Di Nola and Gaetano Vitale

Abstract In this paper we analyze connections between artificial neural networks,
in particular multilayer perceptrons, and Łukasiewicz fuzzy logic. Theoretical results
lead us to: connect Polynomial completeness and the study of input selection; use
normal form of Łukasiewicz formulas to describe the structure of these multilayer
perceptrons.

1 Introduction

Łukasiewicz logic was introduced in [23] and it is a forerunner of fuzzy sets and
fuzzy logic introduced by Zadeh in [36]. Starting from its introduction, fuzzy logic
had huge developments and many applications; in this paper we focus on connec-
tions between Łukasiewicz logic (ŁL) and artificial neural networks, in particular
multilayer perceptrons.

It iswell-known that truth functions ofŁLcanbe seen as piecewise linear functions
with integer coefficients (see [24]) or, more in general, as piecewise functions (see
[11]); moreover there exists a strong relation between ŁL and polyhedra (e.g. see
[6]). We remember to the reader that piecewise functions play a fundamental role in
modeling, optimization and functional approximation (e.g. see [2–4, 14–16, 30]).

Boolean algebras and circuits are strictly related (see [35]); their relations pro-
duced many advantages in the arrangement of relays and in Boolean algebra prob-
lems. In analogous way, many researchers tried to associate a purely algebraic struc-
ture to artificial neural networks (ANNs). ANNs are widely studied and applied, as
shown in literature, e.g. see [8, 19, 20, 25, 26, 28, 32, 34, 37]. Fuzzy logic seems
to be suitable as theoretical counterpart of ANN, e.g. see [9, 21, 27, 29, 31, 33]; in
particular, ŁL is successfully applied [1, 13, 22].
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The paper is structured as follows. In Sect. 2 preliminary results and definitions
are presented. In Sect. 3 Łukasiewicz equivalent neural network are defined, recalling
some facts of [10]. InSect. 4.1weexplain relations betweenpolynomial completeness
and and input selection. In Sect. 4.2 we describe a possible structure of the network,
via normal form of formulas.

Main results are:

• the existence of a minimal set of point to evaluate to compute a piecewise linear
function (Theorem 2);

• the existence of a minimal set of point to evaluate to compute a piecewise non-
linear function (Theorem 3);

• a description of proposed neural networks (Sect. 4.2).

2 Preliminary

In this section we want to help readers appreciate and easily understand the forth-
coming results in the paper; we recall some definitions and previous results which
will be useful in the sequel.

2.1 Łukasiewicz Logic and MV-Algebras

MV-algebras are the algebraic structures, in the form (A,⊕,∗ , 0), corresponding to
Łukasiewicz many valued logic, as Boolean algebras correspond to classical logic.
The standard MV-algebra is the real unit interval [0, 1], where the constant 0 is the
real number 0 and the operations are

x ⊕ y = min(1, x + y)

x∗ = 1 − x

for any x, y ∈ [0, 1]. A further class of examples of MV-algebras are Mn (for each
n ∈ N), where the elements are the continuous functions from the cube [0, 1]n to
the real interval [0, 1] which are piecewise linear with integer coefficients. These
functions are called McNaughton functions and a major result in MV-algebra theory
states that Mn is the free MV-algebra with n generators. For more details on the
theory of the MV-algebras see [7].

Here we recall the definition of rational Łukasiewicz logic, an extension of
Łukasiewicz logic, introduced in [17]. Formulas are built via the binary connec-
tive ⊕ and the unary ones ¬ and δn in the standard way. An assignment is a function
v : Form → [0, 1] such that:

• v(¬ϕ))1 − v(ϕ)
• v(ϕ ⊕ ψ) = min{1,ϕ + ψ}
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• v(δnϕ) = v(ϕ)
n

For each formula ϕ(X1, . . . , Xn) it is possible to associate the truth function
T F(ϕ, ι) : [0, 1]n → [0, 1], where:
• ι = (ι1, . . . , ιn) : [0, 1]n → [0, 1]n

• T F(Xi , ι) = ιi

• T F(¬ϕ, ι) = 1 − T F(ϕ, ι)
• T F(δnϕ, ι) = T F(ϕ,ι)

n

Note that in most of the literature there is no distinction between a McNaughton
function and a MV-formula, but it results that, with a different interpretation of
the free variables, we can give meaning to MV-formulas by means of other, possi-
bly nonlinear, functions (e.g. we consider generators different from the canonical
projections π1, . . . ,πn , such as polynomial functions, Lyapunov functions, logistic
functions, sigmoidal functions and so on).

2.2 Multilayer Perceptrons

Artificial neural networks are inspired by the nervous system to process information.
There exist many typologies of neural networks used in specific fields. We will focus
on feedforward neural networks, in particular multilayer perceptrons, which have
applications in different fields, such as speech or image recognition. This class of
networks consists of multiple layers of neurons, where each neuron in one layer has
directed connections to the neurons of the subsequent layer. If we consider a multi-
layer perceptron with n inputs, l hidden layers, ωh

i j as weight (from the j th neuron
of the hidden layer h to the i th neuron of the hidden layer h + 1), bi real number
and ρ an activation function (a monotone-nondecreasing continuous function), then
each of these networks can be seen as a function F : [0, 1]n → [0, 1] such that

F(x1, . . . , xn) = ρ

⎛
⎝

n(l)∑
k=1

ωl
0,kρ

(
. . .

(
n∑

i=1

ω1
l,i xi + bi

)
. . .

)⎞
⎠ .

The following theorem explicits the relation between rational Łukasiewicz logic
and multilayer perceptrons.

Theorem 1 (See [1, Theorem III.6]) Let the function ρ be the identity truncated to
zero and one.

• For every l, n, n(2), . . ., n(l) ∈ N, and ωh
i, j , bi ∈ Q, the function F : [0, 1]n → [0, 1]

defined as

F(x1, . . . , nn) = ρ

⎛
⎝

n(l)∑
k=1

ωl
0,kρ

(
. . .

(
n∑

i=1

ω1
l,i xi + bi

)
. . .

)⎞
⎠
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is a truth function of an MV-formula with the standard interpretation of the free
variables;

• for any f truth function of an MV-formula with the standard interpretation of the
free variables, there exist l, n, n(2), . . ., n(l) ∈ N, and ωh

i, j , bi ∈ Q such that

f (x1, . . . , nn) = ρ

⎛
⎝

n(l)∑
k=1

ωl
0,kρ

(
. . .

(
n∑

i=1

ω1
l,i xi + bi

)
. . .

)⎞
⎠ .

3 Łukasiewicz Equivalent Neural Networks

In this section we present a logical equivalence between different neural networks,
proposed in [10].

Whenwe consider a surjective function from [0, 1]n to [0, 1]n we can still describe
non-linear phenomena with an MV-formula, which corresponds to a function which
can be decomposed into “regular pieces”, not necessarily linear (e.g. a piecewise
sigmoidal function) (for more details see [11]).

The idea is to apply, with a suitable choice of generators, all the well established
methods of MV-algebras to piecewise non-linear functions.

Definition 1 We call ŁN the class of the multilayer perceptrons such that:

• the activation functions of all neurons from the second hidden layer on is ρ(x) =
(1 ∧ (x ∨ 0)), i.e. the identity truncated to zero and one;

• the activation functions of neurons of the first hidden layer have the form ιi ◦ ρ(x)
where ιi is a continuous function from [0, 1] to [0, 1].
An example of ι(x) could be LogSigm, the logistic sigmoid function “adapted”

to the interval [0, 1], as showed in the next figure.
The first hidden layer (which we will call interpretation layer) is an interpretation

of the free variables (i.e. the input data) or, in some sense, a change of variables.
Roughly speaking we interpret the input variables of the network x1, . . . , xn as

continuous functions from [0, 1]n to [0, 1]; so, from the logical point of view, we
have not changed the formula which describes the neural network but only the inter-
pretation of the variables.
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Definition 2 Given a network in ŁN , the rational MV-formula associated to it is the
one obtainedfirst by replacing ι ◦ ρwithρ, and then building the rationalMV-formula
associated to the resulting network in N .

Definition 3 We say that two networks of ŁN are Łukasiewicz Equivalent iff the
two networks have logically equivalent associated MV-formulas.

Examples of Łukasiewicz Equivalent Neural Networks

Let us consider some examples. A simple one-variable example of MV-formula
could be ψ = x̄ 	 x̄ . Let us plot the functions associated with this formula when the
activation functions of the interpretation layer is respectively the identity truncate
function to 0 and 1 and the LogSigm (Fig. 1).

In all the following example we will have (a), (b) and (c) figures, which indicate
respectively these variables interpretations:
(a) x and y as the canonical projections π1 and π2;
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ϕ(x̄) := id(x) ϕ(x̄) := LogSigm(x)

Fig. 1 ψ(x̄) = x̄ 	 x̄
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Fig. 2 ψ(x̄, ȳ) = x̄ 	 ȳ

(b) both x and y as LogSigm functions, applied only on the first and the second
coordinate respectively, i.e. LogSigm ◦ ρ(π1) and LogSigm ◦ ρ(π2);

(c) x as LogSigm function, applied only on the first coordinate, and y as the cubic
function π3

2.

The 	 Operation
We can consider the two-variables formula ψ(x̄, ȳ) = x̄ 	 ȳ, which is represented
in the following graphs (Fig. 2).
The Łukasiewicz Implication
As in classical logic, also in Łukasiewicz logic we have implication (→Ł), a propo-
sitional connective which is defined as follows: x̄ →Ł ȳ = x̄∗ ⊕ ȳ (Fig. 3).

Chang Distance
An important MV-formula is (x̄ 	 ȳ∗) ⊕ (x̄∗ 	 ȳ), called Chang Distance, which is
the absolute value of the difference between x and y (in the usual sense) (Fig. 4).
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Fig. 3 ϕ(x̄, ȳ) = x̄ →Ł ȳ

4 Function Approximation Problems

4.1 Input Selection and Polynomial Completeness

The connection between MV-formulas and truth functions (evaluated over particular
algebras) is analyzed in [5], via polynomial completeness. It is showed that in general
twoMV-formulasmay not coincide also if their truth functions are equal. This strange
situation happens when truth functions are evaluated over a “not suitable” algebra,
as explained hereinafter.

Definition 4 An MV-algebra A is polynomially complete if for every n, the only
MV-formula inducing the zero function on A is the zero.

Proposition 1 [5, Proposition 6.2] Let A be any MV-algebra. The following are
equivalent:

• A is polynomially complete;
• if two MV-formulas ϕ and ψ induce the same function on A, then ϕ = ψ;
• if two MV-formulas ϕ and ψ induce the same function on A, then they induce the

same function in every extension of A;
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Fig. 4 ψ(x̄, ȳ) = (x̄ 	 ȳ∗) ⊕ (x̄∗ 	 ȳ)

Proposition 2 [5, Corollary 6.14] If A is a discrete MV-chain, then A is not poly-
nomially complete.

Roughly speaking an MV-algebra A is polynomially complete if it is able to
distinguish two different MV-formulas. This is strictly linked with back-propagation
and in particular with the input we choose; in fact Proposition 2 implies that an
homogeneous subdivision of the domain is not a suitable choice to compare two
piecewise linear functions (remember that Sn , the MV-chain with n elements, has
the form Sn = { i

n−1 | i = 0, . . . , n − 1}).
So we have to deal with finite input, trying to escape the worst case in which

the functions coincide only over the considered points. Next results guarantee the
existence of finitely many input such that the local equalities between the piecewise
linear function and the truth function of an MV-formula is an identity.

Proposition 3 Let f : [0, 1] → [0, 1] be a rational piecewise linear function. There
exists a set of points {x1, . . . , xm} ⊂ [0, 1], with f derivable in each xi , such that if
f (xi ) = T F(ϕ, (π1))(xi ) for each i and T F(ϕ, (π1)) has the minimum number of
linear pieces then f = T F(ϕ, (π1)).

Proof Let f be a rational piecewise linear function and I1, . . . , Im be the standard
subdivision of [0, 1] such that f j := f |I j is linear for each j = 1, . . . ,m. Let us
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consider x1, . . . , xm irrational numbers such that x j ∈ I j ∀ j . It is a trivial obser-
vation that f is derivable in each xi and that { f j } j=1,...,m are linear components of
T F(ϕ, (π1)) if f (xi ) = T F(ϕ, (π1))(xi ); by our choice to consider the minimum
number of linear pieces and by the fact that f = T F(ψ, (π1)), for some ψ, we have
that f = T F(ϕ, (π1)).

Now we give a definition which will be useful in the sequel.

Definition 5 Let x1, . . . , xk be real numbers and z0, z0, . . . , zk be integers. We say
that x1, . . . , xk are integral affine independent iff z0 + z1x1 + · · · + zk xk = 0 imply
that zi = 0 for each i = 0, . . . , k.

Note that there exists integral affine independent numbers. For example log2(p1),

log2(p2), . . . , log2(pn), where p1, . . . , pn are distinct prime number, are integral
affine independent; it follows by elementary property of logarithmic function and by
the fundamental theorem of arithmetic.

Lemma 1 Let f and g be affine functions fromR
n toRwith rational coefficients. We

have that f = g iff f (x̄) = g(x̄), where x̄ = (x1, . . . , xn) and x1, . . . , xn are integral
affine independent.

Proof It follows by Definition 5.

Integral affine independence of coordinates of a point is, in some sense, a weaker
counterpart of polynomial completeness. In fact it does not guarantee identity of two
formulas, but just a local equality of their components.

Theorem 2 Let f : [0, 1]n → [0, 1] be a rational piecewise linear function (QMn).
There exists a set of points {x̄1, . . . , x̄m} ⊂ [0, 1]n, with f differentiable in each x̄i ,
such that if f (x̄i ) = T F(ϕ, (π1, . . . ,πn))(x̄i ) for each i and T F(ϕ, (π1, . . . ,πn))

has the minimum number of linear pieces then f = T F(ϕ, (π1, . . . ,πn)).

Proof It follows by Lemma 1 and the proof is analogous to Proposition 3

By the fact that the function is differenziable in each x̄i , it is possible to use
gradient methods for the back-propagation.

As shown in [11] and in Sect. 3 it is possible to consider more general functions
than piecewise linear ones as interpretation of variables in MV-formulas. Let us
denote by M (h1,...,hn)

n the following MV-algebra

M (h1,...,hn)
n = { f ◦ (h1, . . . , hn) | f ∈ Mn

and hi : [0, 1] → [0, 1] ∀i = 1, . . . , n}.

Likewise in the case of piecewise linear functions we say that g ∈ M (h1,...,hn)
n is

(h1, . . . , hn)-piecewise function, g1, . . . , gm are the (h1, . . . , hn)-components of g
and I1, . . . , Ik , connected sets which form a subdivision of [0, 1]n , are (h1, . . . , hn)-
pieces of g, i.e. g|Ii = g j for some j = 1, . . . ,m.

Now we give a generalization of Definition 5 and an analogous of Theorem 2.
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Definition 6 Let x1, . . . , xk be real numbers, z0, z1, . . . , zk integers and h1, . . . , hk

functions from [0, 1] to itself. We say that x1, . . . , xk are integral affine (h1, . . . , hk)-
independent iff z0 + z1h1(x1) + · · · + zkhk(xk) = 0 imply that zi = 0 for each i =
0, . . . , k.

For instance let us consider the two-variable case (h1, h2) = (x2, y2); we trivially
have that

√
log2(p1),

√
log2(p2) are integral affine (x2, y2)-independent.

Theorem 3 Let (h1, . . . , hn) : [0, 1]n → [0, 1]n be a function such that hi : [0, 1]
→ [0, 1] is injective and continuous for each i . Let g : [0, 1]n → [0, 1] be an ele-
ment of M (h1,...,hn)

n . There exists a set of points {x̄1, . . . , x̄m} ⊂ [0, 1]n such that if
g(x̄i ) = T F(ϕ, (h1, . . . , hn))(x̄i ) for each i and T F(ϕ, (h1, . . . , hn)) has the mini-
mum number of (h1, . . . , hn)-pieces then g = T F(ϕ, (h1, . . . , hn)).

Proof It is sufficient to note that injectivity allows us to consider the functions h−1
i , in

fact if h1, . . . , hn are injective functions then there exist integral affine (h1, . . . , hn)-
independent numbers and this brings us back to Theorem 2.

4.2 On the Number of Hidden Layers

One of the important features of a multilayer perceptron is the number of hidden
layers. In this section we show that, in our framework, three hidden layers are able
to compute the function approximation.

We refer to [12] for definition of simple McNaughton functions. As natural exten-
sion we have the following one.

Definition 7 We say that f ∈ QMn is simple iff there is a real polynomial g(x) =
ax + b, with rational coefficients such that f (x) = (g(x) ∧ 1) ∨ 0, for every x ∈
[0, 1]n .

Proposition 4 Let us consider f ∈ QMn and x̄ = (x1, . . . , xn) a point of [0, 1]n

such that x1, . . . , xn are integral affine independent. If f (x̄) /∈ {0, 1} then there exists
a unique simple rational McNaughton function g such that f (x̄) = g(x̄).

Proof It is straightforword by definition.

Every rational McNaughton function can be written in the following way:

f (x̄) =
∧

i

∨
j

ϕi j (x̄)

where ϕi j are simple QMn . By this well-known representation it is suitable to con-
sider the following multilayer perceptron:
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...

...

ϕ1(x̄1)

ϕ2(x̄2)

ϕ3(x̄3)

ϕk(x̄k)

f

Input
layer

Max-Out
layer

Min-Out
layer

where ϕi are the linear components of f and x̄i are points as described before. Note
that these networks are universal approximators (see [18]).

5 Conclusion

To sum up we:

• strengthen the relation between artificial neural networks (multilayer perceptrons)
and a formal logic (Łukasiewicz logic);

• provide the existence of a minimal set of point to evaluate to compute a piecewise
linear function (Theorem 2);

• provide the existence of a minimal set of point to evaluate to compute a piecewise
non-linear function (Theorem 3);

• give a description of proposed neural networks (Sect. 4.2).
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Impact of Time Delays on Networked
Control of Autonomous Systems

Prasanna Kolar, Nicholas Gamez and Mo Jamshidi

Abstract Large scale autonomous systems comprised of closed-loop networked
subsystems need new scalable communication, control and computation techniques
to interact with humans. In order to be stable and work efficiently, these systems
need to have a feed-back loop which considers the networked communication. In this
chapter (1) a control system to perform simulated experiments incorporating practical
delays and the effects encountered when the subsystems communicate amongst each
other is modeled. The simulations show the effects of time delays and the resulting
instability from large delays. (2) The time delay systems (TDS) are modeled for both
communication and computation in a system of multiple heterogeneous vehicles. (3)
Openproblems in the delay systems althoughmostly in the linear space, decentralized
control framework for networked control systems has been researched. (4) Finally,
an input observer based system for networked control system is reviewed.

1 Introduction

Autonomous system architectures contain networked systems that communicatewith
each other, within the same network and/or other networks. Delays are present in
most if not all these systems, and they can be stochastic, deterministic, real-time,
sequential, random, etc. [1–3].While trying to model systems, one typically assumes
that future behaviors and properties of systems are dependent only on the present state
of a system. This theory is used in the mathematical description of many physical
systems and can be represented using a finite set of ordinary differential equations
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(ODEs) and is satisfactory for some classes of physical systems. However, on some
systems that have ‘time-delays’ involving material or information transformation
or transportation and heredity or computation, the ODEs will not be sufficient. As
mentioned, any interconnection of systems that handle transfer of material, energy
or information is subject to delays [4–7]. The delays deteriorate the performance and
stability of the system. Inmany cases, if the system has a delay beyond a certain limit,
the system becomes unstable. Some more information on delays and their effects on
a system will be studied next. Montestruque et al. demonstrate this in their works [8]
by reducing the network usage by utilizing the dynamics of the plant. This is achieved
by designing a controller that uses an explicit plant model which approximates the
dynamics and enables the system to function in a stable manner even under network
delays.

1.1 Delays and Their Impact on Systems

As discussed previously, almost all the networked systems, are influenced by delays,
especially time based delays. These time-delays occur both in linear and non linear
systems. The linear systems have passive time-delays [6, 7, 9]. These time delay
systems represent a class of infinite dimensional systems. In communication sys-
tems, data transmission is always accompanied by a non-zero time parameter that
rests between the time the communication was started and the time the communica-
tion was received at the destination. In systems dealing with economics, the delays
appear naturally due to the decision and effect combinations, for instance, in com-
modity market evolution, trade cycles and similar systems. It is observed that the
above systems share a distinguishing feature; their evolution rate can be described
by differential equations including information on the past history, selective memory
information, or no memory at all [6, 10]. Engineering areas like communication and
information technology are networked system of systems since they use network
subsystems, actuators, sensors, which are involved in feedback loops and introduce
such delays. Typically delays and their effects are underestimated, and are often
neglected or poorly approximated in systems since:

• design becomes more complicated than the initial delay models because models
are taken from higher order rational approximations

• engineers prefer to keep the approximations at first or second order
• lack of effective analysis and control design methodology while using such sys-
tems.

These simplified approximations of the delays will often lead to inaccurate sys-
tems modeling and unsatisfactory analyses and simulations, especially if one deals
with large scale systems are required. Hence it is advisable to keep into account the
phenomena of delays in such systems. These systems also show a distinguishable
feature which is described by differential equations that includes selective or com-
plete information with their past history [6, 11].
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The modeling of the physical control processed, classically uses the hypothesis that
the future behavior of a deterministic system can be accounted for using the present
state only. However, in the case of ODEs the state is an n-vector x(t) that moves
in a Euclidean space Rn . Thus ẋ = −x(t − h) would be more practical due to the
inclusion of the system’s time history, a consequence of a delay. This equation has
several solutions that achieve the same outcome at an infinite number of instants.
Another distinction with ODEs arises from the Cauchy problem which, for func-
tional differential equations (FDEs) [12], has the “usual” properties only forward
in time. Before carrying on to develop this distinction, it is recommended that the
following notions of solution and backward continuation be understood (Figs. 1
and 2). Networked control systems (NCS) are present in many systems namely, pas-
senger cars, trucks, buses, aircraft and aerospace electronics, factory automation,
industrial machine control, medical equipment, mobile sensor networks, and many
more [13]. These modern systems, which include sensors and actuators that are con-
trolled via a centralized or decentralized controllers, are connected by using a shared

Fig. 1 Comparison of delays; h = 1 solid line, h = 0.5 dotted line [11]

Fig. 2 Linear plant used in
delayed networked control
system [8]
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communication medium. This type of real-time networks is called NCS [14]. NCS
can potentially increase system reliability, reduce weight, space, power, and wiring
requirements, due to shared resources across machines. Even though NCS give us
these benefits, there are constraints that limit the application of this system [14]. The
limitations arise due to delays, multiple-packet transmission, data packet dropouts,
and finite bandwidth, that is, only one node can access the shared medium at a time.
Conventional theories are being re-visited and revised constantly to overcome these
limitations. The problem of decentralized control can be viewed as designing local
controllers for subsystems comprising a given system. Unlike centralized control,
the decentralized control can be robust and scalable. The main feature of decen-
tralized control is that it uses only local information to produce control laws [15].
Monstruque and Antsaklis [8], designed a plant wherein the continuous linear plant
has the linear actuators connect to the state sensors via a networked system. They
demonstrate the possibility of controlling the plant even under network delays. They
present necessary and sufficient conditions for the system stability [8].

Elmahdi et al. [15] have developed a decentralized networked control system
(DNCS) wherein they chose two design methods presented in the literature of decen-
tralized control for non-networked systems as a base for the design of a controller
for the networked systems, the first method is an observer-based decentralized con-
trol, while the second was the Luenberger combined observer-controller. During
this study they observe that DNCS system is better than centralized systems, since
they are more practical, less complex and less expensive. They use observer based
decentralized system design which uses a closed loop networked system [15]. They
reference decentralized designs given in [16–18]. Delays are seen in both Centralized
and Decentralized control systems. Taha et al. [15] propose a system that is related
to previous work comprising of a Linear Time Invariant (LTI) System, such that the
dynamics of the overall plant can be derived and the exchanged signals needed for
observer based controllers to generate plants’ states are available locally or globally
without any disturbance. Taha et al. [15] proposed a system that considers the dis-
turbance or perturbation. They also propose a system that has unknown inputs as
given in Fig. 3. This system consists of a swarm of UAVs that have unknown inputs.
They propose a TDS wherein the time delay and the signal perturbations of the net-
work are discussed. Overall this chapter highlights the design of systems that are
perturbed due to different source(s) of disturbances or delays. The contributions of
this chapter are to study the effect of communication network on state estimations for
plant-observers that have unknown inputs, design of unknown input for networked
systems like a swarm of autonomous systemswith sensory inputs such that the effects
of higher delay terms and unknown input on the state estimation is minimized, bound
derivations based on the stability of the networked unknown input system wherein
the network effect is purely time-delay based, a single input single output linear
time invariant system and demonstrating the application and feasibility of the results
obtained [19]. They illustrate that it is very important to determine the upper bound
of a time-delay NCS as early as possible, in order to select a favorable sampling
period. This is because the stability is questionable and not guaranteed when the
time-delay in the system is greater than the sampling period. Moreover, the design
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Fig. 3 Decentralized swarm of UAVs and UGVs with unknown inputs

of the controller and observer would improve greatly if the perturbation bounds are
determined so that the overall system performance according to expectations.

Large scale autonomous systems that contain closed loop communication net-
works are more common these days due to the cheap availability of many of the
control, communication, sensory and actuator systems. Some examples are These
large scale autonomous systems (LSAS) can contain a variety of systems that utilize
a time-delayed feedback control system [20]. Its applications can be found in chem-
istry, biology, physics, engineering and also in medicine. Typically these systems
do not require a reference system and needs a minimum a priori system knowledge.
Gallardo et al. [21] have presented a formation control systemwith hardware of three
UGVs and a UAV based on the leader-follower premise and a ‘virtual’ leader on a
Parrot Bebop drone and three Kobuki Turtlebot vehicles.

Timedelay systemshave also beenused to control unstable periodic orbits, provide
a tool to stabilize unstable steady states [22]. Hovel and Schull [23] also applied time-
delayed feedback to different classes of dynamic systems. This enables dynamic and
ultrafast systems as in optics and electronics, to utilize this control method [24]. In
such systems the data is communicated, i.e., sent and received across a wide range
of network, sensory, actuator and control systems. Sensors measure, process and
communicate values across the network to the control/computation nodes, which in
turn process them and communicate the values over to the actuator systems. The
actuator nodes receive these new values and apply them to the process input. A
control algorithm calculates the signals that are needed to be sent to the actuator
nodes. An ideal system will perform all these instantaneously, but such systems are
few and far in between since the LSAS systems are normally distributed in nature
and delays are associated with such systems and these are the inter-system delays or
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latency. Latency is a time delay between the cause and the effect of some physical
change in the system being observed or more technically is a time interval between
the stimulation and response. In fact delays are encountered even if the system is
not distributed, due to delays in communication within the same system’s sensor,
control and actuator nodes. These are the intra-system delays. Models to mimic such
intra-system and inter-system delays have been developed as part of this research.
Research demonstrates that time-delayed feedback control system is a tool that is
powerful and can be efficiently used in the areas of mobile robotics involving an
unmanned ground and aerial vehicles (UGV and UAV’s respectively).

There are several factors that affect the delay in a system. These are mainly depen-
dent on the type of the module namely sensors, controllers, computers, actuators.
Sensor delays are dependent on how fast a sensor can read (measured) the input data
and/or process it and send it to the computer/controller. The delay in the computer is
dependent on how efficient and capable it is, i.e., how efficiently can it process the
information it is given. It also depends on the efficiency of the algorithm that is imple-
mented and then communicated to the controller. The delay in the controller depends
on how quickly it can apply the required control algorithms and send the processed
control signals to the actuators. The delays in the actuators can be attributed to the
efficient processing of the control signals. There are broadly two types of delays
namely communication and computation. A system can have a combination of these
2 delays. The delays have a time dependency defined in steps of k.

• Computational delay in the controller τ c
k• Communication delay between the sensor and the controller τ sc

k• Communication delay between the controller and the actuator τ ca
k

The complete system will have a total control delay for each time step k

τk = τ c
k + τ sc

k + τ ca
k

The delays typically occur in a random manner, but they can be listed as follows

• Random delay without correlation or stochastic delay
• Random delay with probabilistic correlation
• Constant delay

If these systems are real-time, it is beneficial tomodel the systemwith timestamps.
A new method to analyze different control schemes was presented by Nilsson et al.
[1, 2], wherein they compared their schemes versus the previous schemes.

2 Motivation

Delays are encountered in almost all control systems and for the most part the pertur-
bations due to the delays are a hindrance in the effective functioning In general time
delay systems are also after-effect systems, dead-time systems or hereditary sys-
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tems. They are equations with deviating argument or differential-difference equa-
tions. They belong to the class of functional differential equations (FDEs) which
are infinite dimensional, as opposed to ordinary differential equations (ODEs). Re-
work of the great number of monographs devoted to this field of active research a
lot of people have been working on this field since 1963), is out of scope of this
chapter; Please refer survey information as given in [11], like: Tsoi (1978, Chap.5),
Watanabe, Nobuyama, and Kojima (1996), Niculescu, Verriest, Dugard, and Dion
(1997, Chap.1), Conte and Perdon (1998), Kharitonov (1998), Loiseau (1998),
Olbrot (1998), Richard (1998), Kolmanovskii, Niculescu, and Gu (1999a), Mirkin
and Tadmor (2002) Special-issues such as: Loiseau and Rabah (1997), Richard and
Kolmanovskii (1998). Dion, Dugard, and Niculescu (2001), Niculescu and Richard
(2002), Fridman and Shaked (2003).

3 Delay Modeling

It is important to note that the delay modeling is dependent on the type of the system.
For instance, the characteristics of network delays have dependency on the hardware
and related software. The analysis of control systems requires modeling the network
with delays. These delays vary due to the load, policies of the network failures the
multiple network agents, etc. The time delayed feedback system in its original form
as introduced in [4, 25] is as follows (Fig. 4):

d

dt
x(t) = f (x(t), u(t))

x is a state vector of the nth dimensional state space while u of mth dimension is the
control inputs of the system,

Fig. 4 Control system with induced time delays
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Fig. 5 Time delay feedback
control by Hovel [23]

x ∈ �n → �n with f : x �−→ f (x) (1)

from the state vector x ∈ �n , the control signal u ∈ �m can be estimated via a
function g : �n → �m

g : x �−→ f (x)

This measures the state x to create a control signal in the m-dimensional signal
space. τ is considered as the time delay. This control signal could be for instance, a
single component of the state vector x. The main part of Pyragas [25] control is to
generate a control force, F , that consists of the difference between the current signal
u(t) and a time delayed counter part u(t − τ). In summary, it is found that there are
several advantages to utilize a time-delayed feedback system. Some advantages are
that there is no need to utilize a reference signal. The other advantages are the mini-
mum knowledge of the investigated system and easy experimental implementation.
The reference signal is not needed since the time-delayed feedback system itself gen-
erates the reference signal from the delayed time series of the system under control.
As mentioned before, systems that have delays can be broadly modeled based on the
block diagram given in Fig. 5:

1. Random delays without correlation or stochastic delay
2. Random delay with probabilistic correlation
3. Constant delay

Let us briefly look into these systems:

1. Randomness in network delays are observed most of the time. The sources for
these delays could be the wait time for system availability, during transmission
errors, due to collisions, or while waiting for pending transmissions. None of
these have dependencies. These activities are not synchronized with each other
and the delays mentioned above are random. To model these delays a proba-
bilistic distribution can be utilized. Delays between systems like UAV and UGV
share a dependency amongst each other. However, while modeling random delays
between a UAV and a UGV, initially, the system can be simplified by keeping the
transfer times independent of each other, thereby making them random.
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2. Dependencies within samples can be modeled by letting the distribution of the
network delays be governed by the state of a Markov Chain. e.g.: by doing a
transition every time a transfer is done in the communication network. Jump
systems use this approach. It may be noticed that each jump will model have a
probabilistic distribution.

3. Constant delays are the simplest to implement. They can be attributed to concepts
like hardware performance and they can be modeled to incorporate timed buffers
after each transfer. Make the buffers longer than the worst delay time case, and
constant delay is obtained. This was suggested by Luck and Ray [26].

4 Environment

The test environment consists of vehicle models and system simulations. Both these
environments are presented in detail in subsections Simulation and Implementation.
The simulation environment is a software environment using Matlab, Simulink, and
TrueTime [27].

Simulation: The simulation will be completed in a Windows environment using
programming software like Matlab, TrueTime, simulink and plotting. All these
together are used to render the processing and execution of the code graphically.
The results section contains more details. This environment is executed on a laptop
comprising of at least 4GBRAM, 200GBHarddisk andQuadcore processing power.

TrueTime: This software environment is an additional package for Matlab/
Simulink and has been used to simulate hardware components like a router, wireless
network and computational delays. This versatile tool has given us an opportunity
to simulate in the truest sense the hardware components. This usage will remove
any doubts about the accuracy of the simulation compared to the hardware. True-
Time is a Matlab/Simulink-based simulator for real-time control systems. TrueTime
facilitates co-simulation of controller task execution in real-time kernels, network
transmissions, and continuous plant dynamics [27].

UGV hardware: The controller will be executed on a Raspberry PI, which is a
single board computer (SBC) [28]. This is a Linux machine—flavor Ubuntu, that
contains Robotics Operating System (ROS), which by itself is a stable and powerful
repository for several Robotics tasks. ROS packages control the UGVs and com-
municate with UAVs via wireless networking, take sensory input from the various
sensors like gyroscope, magnetometer, accelerometer, optical camera, thermal cam-
era (if needed), are also being developed. A sensor fusion system that takes these
inputs and integrate with the controller for stable and seamless integration with the
entire system.
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Fig. 6 Graphics image of the multi UGV and UAV system

4.1 Implementation

An autonomous system of three vehicles is shown in Fig. 6. In the depiction, a UAV
drone is searching for any point of interest. Once it finds the point, here a vehicle
on fire, the drone relays the coordinate position to the UGVs so they can provide
assistance to the burning vehicle. This system is the basis behind the simulation
modeling and results that follow.

Two goals were analyzed through simulation in Simulink

1. Analysis of time-delays in a single vehicle system
2. A system of systems with two vehicles coordinating together

For the initial simulation, a differential drive UGV was modeled in Simulink [29].
A differential drive, much like a car, cannot move laterally due to the nonholo-
nomic constraint [30] derived from the dynamic equations shown in Eq. (2). The
control/input variables are chosen the be the linear and angular velocities, v and ω,
respectively.

ẋ = v cos(x)

ẏ = v sin(x)

θ̇ = ω

(2)
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Fig. 7 Simulinkmodel of a singleUGVwithDelayswithoutUAV.Reference trajectory is generated
randomly

Due to these constraints of no lateral movement and for simplicity, a three part
controller was created to control the UGV from the distance and angle to a desired
coordinate point. Given the initial position of the rover (x0, y0) and a desired point
(xre f , yre f ), the UGV can be transformed from the states x, y, θ to the polar system
shown in Eq. (3), where β is the required angle to face the desired position, d is the
absolute distance to the final position, and α is the final orientation to face once the
position has been reached.

β = tan−1 Δy

Δx

d = 2
√

Δx2 + Δy2

α = β − θ

(3)

For the two angular states (β and α), ω is the only input that must be controlled,
while v is the only input required for distance, d. After the transformation to the
new states, each variable can be controlled in a cascading fashion with three separate
state feedback controllers. The proportional control law u = −Kx is sufficient to
successfully control the UGV to reach a desired point. This same UGV is used in
the second simulation as well.

The model of the UGV is shown in Fig. 7 with two transport delays. The first
delay would correspond to the delay in transporting the transformed states from a
microcontroller to the microcomputer where the control takes place. The second
delay situated from the controller to the plant dynamics simulates the computational
delay while applying the controller to determine the required system inputs. Multiple
delays were analyzed by the time required to reach the desired reference point to find
a time where the system becomes unstable. The results are shown in the following
section.

A second controller was created from the transformed system from Eqs. (2) and
(3) and is used to create a model based networked control system akin to Fig. 2.

⎡

⎣
ρ̇

α̇

β̇

⎤

⎦ =
⎡

⎣
− cosα 0

sin α
ρ

−1
− sin α

ρ
0

⎤

⎦
[
v
ω

]
(4)
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Using the state feedback matrix:

[
v
ω

]
=

[
kρ 0 0
0 kα kβ

] ⎡

⎣
ρ

α

β

⎤

⎦ (5)

the system in Eq. (4) and the small angle approximation, the final linear closed loop
equation for the differential drive becomes:

⎡

⎣
ρ̇

α̇

β̇

⎤

⎦ =
⎡

⎣
−kρ 0 0
0 kρ − kα −kβ

0 −kρ 0

⎤

⎦

⎡

⎣
ρ

α

β

⎤

⎦ (6)

Given the full state feedback system in Eq. (6) and a controller model with

Â =
⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦ B̂ =
⎡

⎣
0 0
0 0
0 0

⎤

⎦ , (7)

the system can be described by its states and error, e = x − x̂ , as follows:

[
ẋ
ė

]
=

[
A + BK −BK

A − Â + BK − B̂K Â + BK − B̂K

] [
x
e

] [
x(tk)
e(tk)

]
=

[
x(tk)
0

]
, (8)

∀t ∈ [tk, tk+1), tk+1 = h + tk

This system can be redefined as ż = Λz as shown in [8]. The plant sends infor-
mation about the states across the network every h seconds which updates the model
every tk seconds. Since the system is updated every h seconds, the system is contin-
uous during each interval. Abstracting one step higher, the system updates discretely
every h seconds which can be seen experimentally in the results. Every update time
the system’s error changes to 0, and the model is updated with the most recent value
of the state matrices. Due to this discrete nature, the system is globally exponentially
stable around

z =
[
0
0

]
if the eigenvalues of

[
I 0
0 0

]
eΛh

[
I 0
0 0

]
are inside the unit circle.

With the UGV already modeled, a subsequent model for a quadrotor UAV was
developed in Simulink. The UAV is a highly nonlinear system with three linear and
three angular degrees of freedom. For this topic, the control of the UAV was limited
to hovering above the working space of the UGV sending coordinates to the ground
rover through a wireless network modeled with TrueTime [27].
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Fig. 8 TrueTime model of the two vehicle system with wireless communication between the two
vehicles

The 12 states of the UAV are shown below:

• φ, θ, ψ : The pitch, roll, and yaw angles, respectively
• x, y, z: The coordinates with respect to the earth’s reference frame
• u, v, w: The linear velocities in the UAV’s inertial frame
• p, q, r: The angular velocities in the UAV’s frame

Also, there are 4 inputs to the quadcopter that control the value of each of the 12
states:

• u1 = Vertical Thrust
• u2 = Angular velocity along the X direction
• u3 = Angular velocity along the Y direction
• u4 = Angular velocity along the Z direction

To model a hovering UAV, the dynamics were linearized around an operating point
where all states are zero with the exception of x, y, z coordinates. With the lineariza-
tion of the UAV, the system can be modeled in state-space format (Fig. 8).

ẋ = Ax + Bu

y = Cx
(9)

The linearized model can be controlled with a state feedback matrix as well.
A linear quadratic regulator (LQR) controller was used to determine the feedback
matrix to successfully control the hovering of the UAV [31]. The controller created
will bring the linearized UAV to a hovering point from resting position and hold the
position while reading the image data for any points of interest to send to the UGV.
Luck and Ray [26] proposed a system of LQR-optimal controller that handles control
delays that are longer than the sampling periods. A disadvantage of this system is
that it causes longer delays and these have serious consequences [2].

Figure9a, b show the UAV simulation moving to the correct position in 3D coor-
dinate space as well as the time it takes to move for each coordinate to be reached.
The reference coordinate the UAV moves to is (3, 1, 8) taking close to 16 s to reach
the desired height. With both systems modeled, the goal is to connect them together
as a system of systems [32] with time delays between their communication systems.
The UAV and UGV communicate with each other through a wireless network (IEEE
802.11b) while the UGV communicates between its controller and actuators through
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(a) UAV coordinates

(b) UAV coordinates in 3-Dimensional Space

Fig. 9 UAV moving from rest to coordinates (3, 1, 8)
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a wired Ethernet network. This system is shown in Fig. 8 with one UAV and one
UGV. With TrueTime, the wireless system can be modeled with a physical distance
between nodes.

Within the system shown in Fig. 8, there are three separate communication delays
modeled.

1. The wireless network between the UAV to UGV and UGV to UAV
2. Ethernet network within the UGV emulating a microcontroller to microcomputer

system on the UGV
3. Computational delay in the state feedback controller of the UGV

Different combinations of these three network delays were considered in the
results section. The wireless network has a 50 Kbps data rate, and the Ethernet
network was given a 1 Gbps data rate for the simulations. Finally the computational
delay for the UGV controller was 0.5 s.

5 Results

UGV simulation results

With one system, therewas nowireless communication andTrueTimewas not used to
model the delays. The delays in Fig. 7 are modeled with transport delay blocks where
it functions as a wait below the data is passed to the next simulation step. For the
system, the two delays are considered to be constant for this scenario and the results
are shown in Fig. 10 for the location coordinates and the orientation respectively.

A notable occurrence is, the 75 ms delays reach the desired trajectory faster
than the system with no delays. When a delay is introduced, the control signals are
carried out for a longer time. Consequently, the system may reach the desired point
quicker, but there will be either a higher overshoot as seen in the orientation. This
is very apparent when you have more than 100 ms delays. For a single point, the
system can tolerate delays smaller than 100 ms and still reach the desired trajectory
within 10s. The higher the delay the more the system will create overshoot and
longer destination times. If obstacles were introduced into the system, the delays
could create collision problems because the controller cannot send the correct input
in time before the previous caused a problem. Additional delays create a choppier
path towards the goal. Obviously the system cannot account for sharp turns if a new
obstacle presented itself during the operation. The UGV begins to break down when
two delays at 150 ms are introduced especially in the angle orientation. The system
begins to oscillate more violently and never reaches the desired angle or position in
10 seconds and drive the system towards instability.

From Eqs. (6)–(8) the UGV now has some semblance of compensation for a net-
worked delay. Figure11 shows the magnitude of the largest eigenvalue for different
update times. Again, the system will be stable when the eigenvalues are inside the
unit circle. The highest update time, h, the system can tolerate is 1.7 s. As long as the
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(a) UGV linear movement with different delays

(b) UGV angular movement with different delays

Fig. 10 Results with delays of 0, 75, 100, and 150 ms
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Fig. 11 UGV angular movement with different delays in single UGV simulation

delay from the network is less than the update time of the system, the UGV should
tolerate the delay and still reach its desired destination. In Figs. 12, 13 and 14, the
response of the UGV is shown for varying update times. The system is defined by the
distance and angle required to reach the destination, so when the UGV’s states reach
zero, the system has reached its destination. When the update time is low, h ≤ 0.5 s,
the UGV reaches its destination by 10s. The higher update times will take more than
10 seconds but still drive the system to its destination. When the update time reaches
close to its upper bound, the system begins to oscillate, and it becomes unstable past
the upper bound. The benefit of this model based NCS is it gives a simulation where
the tolerance of time delays is over 10 times larger than not accounting for delays as
shown above.

UAV and UGV multi system simulation

Figures15, 16 and 17 depict the movement of the UGVwhich is given its destination
coordinates by the UAV. Subsequently, the UGV sends a signal back to the UAV
when it requires another destination. This system communication ismodeled through
a wireless communication module between the two vehicles. As stated before, there
are three different time delays associated with the system, and five different models
were tested where different delays were considered.

• Wireless network delay between vehicles only
• Ethernet based delay within the UGV only
• Computational Delay for UGV controller only
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(a) UGV Response with h = 0.1 s

(b) UGV Response with h = 0.5 s

Fig. 12 UGV response with applicable response times
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(a) UGV Response with h = 1.1 s

(b) UGV Response with h = 1.65 s

Fig. 13 UGV response with applicable response times



170 P. Kolar et al.

(a) UGV Response with h = 1.7 s

(b) UGV Response with h = 1.8 s

Fig. 14 UGV response with applicable response times
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• All 3 delays together
• No delays

The simulation is set up in such a way that data is only sent when needed from
the UAV to UGV. Therefore, the wireless network is not saturated with information
continuously and the delay associated is so small the systemmodels very close to the
original simulation without time delays. In Fig. 15 the dotted lines show the effect
of just the wireless communication delay, which is very similar to the simulation
with no delays. When the wireless network is not being continuously used, the delay
propagation is small.

When communication delay for the UGV from its controller to the plant is consid-
ered, also shown in Fig. 15, the system reaches the trajectory faster, but themovement
is much choppier. Interestingly, when the communication delay is small much like
in the first results, the new input magnitudes lag and the higher magnitudes move the
UGV closer than anticipated. This results in it reaching the desired trajectory faster.
An issue will occur if the delays are too big and the system begins to overshoot the
goal.

For the first two delays separately, there is not a big change compared to the
delay-less system. These systems, however can be pushed to instability with higher
delays in either system.

Figure16 depicts two systems, onewith the computational delaywithin theUGV’s
controller and another with all three of the previous delays together.

The computational delay was stated to be 0.5 s long for the UGV controller, which
again shows the same effect as the communication delay inside the UGV. The system
moves faster to the position, but the angular movement oscillates and doesn’t reach
its desired point. The computational delay creates an instability in the controller at
0.5 s.

The final simulation results stem from the system with all three of the previous
delays included. The simulation here should mimic a real-time system the closest.
For this system, the trajectory of the UGV takes longer to begin moving and trav-
els less smoothly than the previous simulations. While the UGV still reaches the
desired trajectory, it does not reach the required angular orientation. The oscillations
increase much more than the system with just a computational delay. For the system
overall, it can be concluded the delays associated with a 1 Gbps wired connection
will decrease the settling time of a system when used continuously. A 50 Kbps wire-
less network affects the system minimally when only used to transmit data sparingly
when needed, but it can be postulated to degrade the system considerable if used
continuously. With all three delays, the system will still reach the desired endpoint
with more time and less smooth movement. Figure17a, b show the trajectory of a
UGV that’s following the path of a UAVwith delays of 1.2 and 1.3 s respectively. In a
Simulation environment, 2 Cars (UGVs) and 1 Helicopter (UAV) were simulated for
stable and unstable Fig. 18 conditions. This simulation seems close to reality when
communication breaks down between Aerial and Ground systems. In this case, due
to the delay the ground vehicles have unsteady paths, wherein the systems went in
circles.
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(a) Movement in the X coordinate of UGV

(b) Angular motion for each delay

Fig. 15 UGV and UAV simulation with different types of delays



Impact of Time Delays on Networked Control of Autonomous Systems 173

(a) Movement in the X coordinate of UGV

(b) Angular motion for each delay

Fig. 16 UGV and UAV simulation with different types of delays
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(a) Stable system with 1.2 seconds of delay.

(b) Unstable system with 1.3 seconds of delay.

Fig. 17 UGV trajectory following a UAV. The big dot represents the desired endpoint
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(a) Stable system simulations

(b) Unstable system simulations

Fig. 18 UGV (Cars) following a UAV
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6 Conclusions

Given amulti-vehicle system, the simulation results show the system reaching a state
of partial equilibrium under various delay times. The ground vehicles successfully
reach the planned destination with multiple delays, but it does not reach the correct
angular position when computational delays in the controller are considered. For
the fully delayed system does not reach the required angular orientation as well,
oscillating around the final point. The simulations show the effect of time delays in
a multi-agent system with wireless and wired network components. For the given
networks with sufficient bandwidth, the system can reach its desired trajectory.

Next steps are to find the bounds of each time delay before the system becomes
unstable. Each delay should have a bound before it causes instability in the control
loop, and then an analysis can be made to determine the magnitude each delay
can have before the system fails [33]. Once achieved, the control can be placed on
hardware systems to examine the validity in a real-time situation.

Faced with the wide number of results connected with delay systems, it is hoped
that this overview has provided some enlightenment to the matter. To conclude, let
us stress some of the main points [6, 11]:

1. In what concerns robust stability, the main Lyapunov-based tools have to be used
in combination with model transformations, the development of which is still in
progress.

2. The behavior features and the structural characteristics of delay systems are par-
ticular enough to justify specific techniques. Delay systems constitute a good
compromise between the two simple models with infinite dimension and the
great complexity of PDEs.

3. In the branch of robust control, results can be broadly divided into two classes:

a. Systems with input or output delays
b. State delays

The intersection of the two classes is still to be addressed.
4. Many complex systems with after-effect are still inviting further investigation:

This is the case, for instance, of delay systems with strong nonlinearities, as well
as time-varying or state-dependent delays.

7 Future Work

In the present system, a time-delay system was modeled, designed and simulated.
Efforts are underway to implement this technology on a heterogeneous swarm of
UAVs and UGVs, to facilitate a communication between the UAV(s) and UGV(s).
As part of the future work, methods of detecting and predicting delays in control
systems using initially conventional methods and then machine learning technology,
are proposed. Time varying systems typically introduce random delays. Control
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systems are affected by these time varying delays or other forms of delays like
constant delays. Using adaptive Smith Predictor time delays, vast improvements can
be realized in the NCS since the delays can be controlled in advanced. Machine
Learning can be useful here since they are a known concept for prediction and
detection.

A simple feed-forward system of a single hidden layer was proposed by Huang
et al. [34]. This system converts the traditional neural network parameters used
for training into a system to solve linear equations and the training process can be
implemented without iterations. This was termed as ExtremeNeural Networking and
when compared with the traditional systems, Extreme Neural Networking improves
the training speed vastly. This speed improvement gives rise to usage in the appli-
cations [35, 36]. Such extreme neural networking can also be implemented in such
time-delay impacted control systems.
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Intervals and More: Aggregation
Functions for Picture Fuzzy Sets

Erich Peter Klement and Radko Mesiar

Abstract Picture fuzzy sets, recently introduced by B. C. Cuong and V. Kreinovich,
are a special case of L-fuzzy sets. We discuss the set of truth values for these fuzzy
sets as well as aggregation functions for these truth values, paying special attention to
t-norms and t-conorms. The important role of representable t-norms and t-conorms
is emphasized.

1 Introduction

Some early attempts to consider more general truth values than true and false
(usually represented by the Boolean algebra {0, 1}) can be found in the work of
Łukasiewicz [104, 105] and others [79, 91, 107].

In his paper on fuzzy sets [134], L. A. Zadeh suggested the use of the unit interval
[0, 1] as set of truth values. This led to the introduction and study of various fuzzy
logics [76, 89], most of them being based on (left-)continuous triangular norms [6,
98, 106, 113–115].

In a further generalization, Goguen [80] used an abstract set L as set of truth
values and considered L-fuzzy subsets of a universe. In most papers dealing with
L-fuzzy sets (see, e.g., [58, 92, 93, 108, 109, 120]), L was required to be a bounded
lattice [27].

A prominent example of a complete lattice is based on the set I([0, 1]) of closed
subintervals of the unit interval [0, 1] (seeExample 2.1 (v))which is isomorphic to the
lattice basedonL∗ = {(x1, x2) ∈ [0, 1]2 | x1 + x2 ≤ 1}described inExample2.1 (iii).
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In [12, 20] and in many other papers the name intuitionistic fuzzy sets has been
used for L∗-fuzzy sets, a terminology which has been criticized in [72] (for a reply
see [9]) because of its lack of relationship with the original idea of intuitionism [28]
in the beginning of the 20th century.

As a consequence, in this chapter we shall use either the name L∗-fuzzy sets or,
synonymously, internal-valued fuzzy sets. Note that for an L∗-fuzzy set we have both
a degree of membership and a degree of non-membership, their sum being bounded
from above by 1.

In Cuong and Kreinovich [54] a further generalization of interval-valued fuzzy
sets, the so-called picture fuzzy sets, was proposed. They are based on the set D∗ ⊆
[0, 1]3 given in (5), and they consider the degree of positive membership, the degree
of neutral membership, and the degree of negative membership in the picture fuzzy
set under consideration. As a matter of fact, picture fuzzy sets can be viewed as
special cases of neutrosophic sets (see [117–119]).

As mentioned earlier, many fuzzy logics (with [0, 1] as set of truth values) are
based on triangular norms, i.e., associative and commutative binary operations on
[0, 1] which are monotone non-decreasing and have 1 as neutral element (observe
that these are special binary aggregation functions). Some aspects of the structure
of a triangular norm on an abstract bounded lattice were discussed in [110] (for the
special case L∗ compare [60, 65, 69], and for the case D∗ see [53, 55, 56]).

In Sect. 2 we present the necessary preliminaries on fuzzy sets, lattice theory and
triangular norms. This includes a description of some bounded lattices used in the
literature such as L∗ (and lattices isomorphic to it) and D∗. We also briefly mention
the controversial discussion about the term intuitionistic fuzzy sets, and we give a
short overview of the historical development of triangular norms (which were first
mentioned as a tool to generalize the classical triangle inequality to the case of
statistical metric spaces [106]).

The following Sect. 3 is devoted to aggregation functions on intervals. We em-
phasize that the question whether a function is an aggregation function on the set of
closed subintervals of [0, 1]may depend on the order on the set of closed intervals. In
particular, we give a sufficient condition for a function to be an aggregation function
both with respect to both the standard cartesian order and the lexicographic order.

Finally, in Sect. 4 we deal with aggregation functions on fuzzy picture sets. We
give sufficient conditions for special functions to be aggregation functions. Using
this, and after a slight modification of the definition, we also give conditions under
which, starting from a t-norm on L∗ and a t-norm on [0, 1], a triangular norm on D∗
can be obtained.

2 Some Generalizations of Fuzzy Sets—An Overview

In Zadeh’s seminal paper [134], the unit interval [0, 1] (equipped with the standard
linear order ≤) was proposed as set of truth values in a natural extension of the
Boolean case where the two-element set {0, 1} plays this role, and a fuzzy subset A of
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a universe of discourseX was described by itsmembership functionμA : X → [0, 1],
a straightforward generalization of the characteristic function 1A : X → {0, 1} of a
crisp (or Cantorian) subset A of X .

In a further generalization, Goguen [80] suggested to use an abstract set L as set
of truth values and to consider L-fuzzy subsets A of X , described by membership
functions μA : X → L. In [80], several important examples for L were discussed,
such as complete lattices or complete lattice-ordered semigroups, and there is an
extensive literature dealing with various aspects of L-fuzzy sets (see, e.g., [58, 92,
93, 108, 109, 120]).

In most cases the authors consider a bounded lattice [27], i.e., a non-empty set L
equipped with a partial order such that there exist a bottom (smallest) element 0L
and a top (greatest) element 1L and such that each finite subset has a meet (greatest
lower bound) and a join (least upper bound). If, additionally, each arbitrary subset
has a meet and a join then the lattice is called complete.

For two bounded lattices (L1,≤L1) and (L2,≤L2), a function ϕ : L1 → L2 is
called a lattice homomorphism if it preserves the monotonicity and the bottom and
top elements as well as meets and joins, i.e., if ϕ(a) ≤L2 ϕ(b) whenever a ≤L1 b,
ϕ(0L1) = 0L2 , ϕ(1L1) = 1L2 , and for all a, b ∈ L2

ϕ(a ∧L1 b) = ϕ(a) ∧L2 ϕ(b),

ϕ(a ∨L1 b) = ϕ(a) ∨L2 ϕ(b).

A lattice homomorphism ϕ : L1 → L2 is called an embedding if it is injective,
and an isomorphism if it is bijective. In the case of an embedding ι : L1 → L2, the
set {ι(x) | x ∈ L1} (equipped with the partial order inherited from (L2,≤L2)) is a
bounded sublattice of (L2,≤L2). Conversely, if (L1,≤L1) is a sublattice of (L2,≤L2)

then (L1,≤L1) can be embedded into (L2,≤L2) (the identity function idL1 provides a
canonical embedding).

Example 2.1 The following are well-known examples of complete lattices:

(i) ({0, 1},≤) and ([0, 1],≤), where ≤ ist the standard order on the real num-
bers, with bottom and top elements 0{0,1} = 0[0,1] = 0 and 1{0,1} = 1[0,1] = 1,
respectively. Obviously, ({0, 1},≤) is a sublattice of ([0, 1],≤).

(ii) If (L,≤) is a bounded lattice with bottom and top elements 0L and 1L, respec-
tively, then the cartesian product L2 can be equipped with two partial orders:
with the cartesian order ≤cart given by

(x1, x2) ≤cart (y1, y2) if and only if x1 ≤ y1 and x2 ≤ y2, (1)

and with the lexicographic order ≤lexi given by

(x1, x2) ≤lexi (y1, y2) if and only if x1 < y1 or
(
x1 = y1 and x2 ≤ y2

)
. (2)

Both (L2,≤cart) and (L2,≤lexi) are bounded lattices with with bottom and top
elements (0L, 0L) and (1L, 1L), respectively.
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Observe that (x1, x2) ≤cart (y1, y2) implies (x1, x2) ≤lexi (y1, y2), i.e., the lexi-
cographic order ≤lexi is a refinement of the cartesian order ≤cart on L2.

(iii) (L∗,≤L∗)where the set L∗ = {(x1, x2) ∈ [0, 1]2 | x1 + x2 ≤ 1} is equipped with
the order ≤L∗ given by

(x1, x2) ≤L∗ (y1, y2) if and only if x1 ≤ y1 and x2 ≥ y2, (3)

with bottom and top elements 0L∗ = (0, 1) and 1L∗ = (1, 0), respectively.
(iv) (Δ,≤cart), where the upper left triangleΔ = {(a, b) ∈ [0, 1]2 | 0 ≤ a ≤ b ≤ 1}

in [0, 1]2 (with vertices (0, 0), (0, 1) and (1, 1)) is equipped with the cartesian
order≤cart as in (1), with bottom and top elements 0Δ = (0, 0) and 1Δ = (1, 1),
respectively. Obviously, (Δ,≤cart) is a sublattice of ([0, 1]2,≤cart).

(v) (I([0, 1]),≤I) where the set I([0, 1]) = {[x1, x2] | [x1, x2] ⊆ [0, 1]} of closed
subintervals of the unit interval [0, 1] is equipped with the order ≤I given by

[x1, x2] ≤I
[
y1, y2

]
if and only if x1 ≤ y1 and x2 ≤ y2 (4)

with bottom and top elements 0I([0,1]) = [0, 0] and 1I([0,1]) = [1, 1], respec-
tively.

Obviously, the lattices (L∗,≤L∗), (Δ,≤Δ) and (I([0, 1]),≤I)given inExample 2.1
(iii)–(v) are mutually isomorphic to each other: ϕ : L∗ → Δ and ψ : L∗ → I([0, 1])
given by ϕ(x1, x2) = (x1, 1 − x2) and ψ(x1, x2) = [x1, 1 − x2] are isomorphisms.
On a semantic level, for an L∗-fuzzy set we have both a degree of membership and a
degree of non-membership, their sum being bounded from above by 1.

Clearly, the unit interval ([0, 1],≤) can be embedded into each of three isomorphic
lattices (L∗,≤L∗), (Δ,≤Δ) and (I([0, 1]),≤I) in Example 2.1 (iii)–(v): for example,
ι : [0, 1] → L∗ given by ι(x) = (x, 1 − x) is an embedding.

The philosophy of intuitionism and intuitionistic logic goes back to the work of
the Dutch mathematician L. E. J. Brouwer who proposed and discussed (for the first
time 1912 in his inaugural address at the University of Amsterdam [28]) a foundation
of mathematics independent of the law of excluded middle (see also [29–36]). This
original concept of intuitionistic logic was extended to the fuzzy case by Takeuti and
Titani in [123] (see also [23, 47, 82, 83, 90, 124]).

In [12, 20], K. T. Atanassov called each element (x1, x2) ∈ L∗ an intuitionistic
value, and he proposed the name intuitionistic fuzzy sets for L∗-fuzzy sets. In many
papers, Atanassov’s concept and terminology were adopted and further developed
(see, e.g., [10, 11, 13–19, 21, 22, 24, 37–41, 59, 65, 66, 121, 122, 132]).

However, the use of the name intuitionistic fuzzy sets in [12, 20] (and in other
papers) has been criticized in [72] (for Atanassov’s reply see [9]) and in [44, 87,
88] because of its lack of relationship with the original intuitionism in the sense of
Brouwer (see also [45, 46]).

As a consequence, in this chapter we shall avoid the term intuitionistic fuzzy set.
Instead (based on the isomorphism between the lattices (L∗,≤L∗) and (I([0, 1]),≤I)

of closed subintervals of [0, 1]) in Example 2.1 (iii) and (v), we will use the names
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L∗-fuzzy sets and interval-valued fuzzy sets synonymously, as it has been done in
several other publications [46, 50, 51, 60–64, 67–70, 72, 130, 131] (compare also
some earlier papers on interval-valued fuzzy sets, e.g., [75, 81, 126–129]).

Cuong and Kreinovich [54] proposed a further generalization of interval-valued
fuzzy sets based on the set

D∗ = {(x1, x2, x3) ∈ [0, 1]3 | x1 + x2 + x3 ≤ 1}, (5)

the so-called picture fuzzy sets A being characterized by their membership functions
μA : X → D∗ [52–56, 125]. We only mention that they can be viewed as particular
cases of neutrosophic sets introduced and studied by Smarandache [117–119].

In the original proposal [54] the order ≤P on D∗ was defined componentwise, but
not exactly in the usual way (in the third component the order is reversed):

(x1, x2, x3) ≤P (y1, y2, y3) if and only if x1 ≤ y1, x2 ≤ y2 and x3 ≥ y3. (6)

For each triplet (x1, x2, x3) ∈ D∗, its first coordinate x1 represents the degree of pos-
itive membership, its second coordinate x2 the degree of neutral membership, and its
third coordinate x3 the degree of negative membership.

It is immediate that the set {(x1, x3) ∈ [0, 1]2 | (x1, 0, x3) ∈ D∗} coincides with
the set L∗ in Example 2.1 (iii) and that we have

(x1, x2, x3) ≤P (y1, y2, y3) if and only if (x1, x3) ≤L∗ (y1, y3) and x2 ≤ y2.

The pair (D∗,≤P) is a lattice with bottom element 0D∗ = (0, 0, 1), but it is not
a bounded lattice since it has two incomparable maximal elements (1, 0, 0) and
(0, 1, 0), none of which can be a top element of (D∗,≤D∗). Therefore it is impossible
to introduce logical operations such as t-norms or t-conorms [98] and, in general,
aggregation functions [84] on (D∗,≤P).

As a consequence, the lattice structure onD∗ was changed and the partial order≤D∗

(which is a type of lexicographic order) was considered [54, 55]:

(x1, x2, x3) ≤D∗ (y1, y2, y3)

if and only if (x1, x3) <L∗ (y1, y3) or
(
(x1, x3) = (y1, y3) and x2 ≤ y2

)
. (7)

It is easy to see that (D∗,≤D∗) is a bounded lattice with bottom element
0D∗ = (0, 0, 1) and top element 1D∗ = (1, 0, 0). This allows aggregation functions
(as studied on the unit interval [0, 1], see [26, 43, 84–86]) to be introduced on
(D∗,≤D∗).

Set-theoretic operations onL-fuzzy sets are often based on the so-called triangular
norms (or t-norms for short).

The concept of t-norms originated in K. Menger’s concept of statistical met-
rics [106], where he considered probability distributions rather than real numbers
to describe the distance between the elements of the space under consideration, and
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where the triangular norms served as a tool to generalize the classical triangle in-
equality. Consequently, t-norms were studied in the context of statistical or (as they
finally were called) probabilistic metric spaces [116], most notably by the group of
Schweizer and Sklar [111, 112, 115]. Later on, t-norms appeared to be solutions of
several functional equations [1–4, 6, 49, 78, 102] and operations in some abstract
semigroups [48, 77, 102, 113, 114]. Early traces of special t-norms in the context of
many-valued logics can be found in [79, 91, 104, 105, 107], as well as in Zadeh’s
first paper [134].

The general use of t-norms as logical connectives on the unit interval [0, 1] and as
operations of fuzzy sets (with [0, 1]-valued membership functions) started in some
seminars of Alsina and Trillas [5, 7, 8] in Spain and, following some suggestions
of U. Höhle, at the first Linz Seminars on Fuzzy Set Theory [71, 73, 74, 92, 94,
95]. For a detailed presentation of the many facets of triangular norms see, e.g., the
monographs [6, 98], the position papers [99–101] and the edited volume [97]. The
important role of continuous t-norms in fuzzy logics was studied and presented by
Hájek in the monograph [89] (for the case of left-continuous t-norms see [76]).

Essentially keeping the axioms of t-norms on [0, 1], i.e., commutativity, associa-
tivity, monotonicity and boundary conditions, triangular norms on bounded lattices
(L,≤L) were studied, e.g., in [53, 55, 56, 60, 65, 69, 110], and the extension of
t-norms (and other logical connectives) on (L,≤L) to operations on L-fuzzy sets is
done component-by-component (for L = [0, 1] this was shown the only categorically
sound way in [96, 103]).

3 Aggregation Functions on Intervals

In the last decade, aggregation functions on the unit interval [0, 1] have been studied
extensively. For an overview see the monographs [26, 84], the edited volume [43]
and the position papers [85, 86]. Also this concept has been generalized to bounded
lattices (see, e.g.,[42, 62, 64, 65, 69, 133]).

Given a bounded lattice (L,≤) with bottom element 0L and top element 1L, then
an (n-ary) aggregation function on (L,≤) is an order preserving homomorphism
A : Ln → L (see [57]), where the partial order ≤cart on the product set Ln is obtained
from ≤ component-by-component. This means that A satisfies the two boundary
conditions A(0L, . . . , 0L) = 0L and A(1L, . . . , 1L) = 1L, and that it is monotone non-
decreasing: A(x1, . . . , xn) ≤ A(y1, . . . , yn) whenever (x1, . . . , xn) ≤cart (y1, . . . , yn).
Therefore, the question whether a function A : Ln → L is an aggregation function or
not depends on the order on L.

Example 3.1 Let I([0, 1]) be the set of all closed subintervals of [0, 1] as considered
in Example 2.1 (v).

(i) The function A1 : I([0, 1])2 → I([0, 1]) given by

A1([x1, x2] ,
[
y1, y2

]
) = [ x1+x2

2 , x1+x2
2 ∨ y1+y2

2 ]
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is an aggregation function if I([0, 1]) is equipped with the partial order ≤I given
in (4) (which can be seen as a cartesian order). If we consider the lexicographic
order ≤lexi on I([0, 1]) given in (2), then [0, 1] <lexi

[
1
5 ,

1
5

]
and

A1([0, 1], [1, 1]) = [ 12 , 1] >lexi [ 15 , 1] = A1([ 15 , 1
5 ], [0, 1]),

showing that A1 is not monotone with respect to ≤lexi.
(ii) The function A2 : I([0, 1])2 → I([0, 1]) given by

A2([x1, x2] ,
[
y1, y2

]
) = [ x1+y1

2 ,
2|x1−y1|+x2+y2

2 ∧ 1]

is an aggregation function if the set I([0, 1]) is equipped with the lexico-
graphic order ≤lexi. On the other hand, we have A2([0, 0] , [ 12 , 1

2 ]) = [ 14 , 3
4 ] and

A2([ 12 , 1
2 ], [ 12 , 1

2 ]) = [ 12 , 1
2 ], showing that A2 is not monotone with respect to the

order ≤I on I([0, 1]).
The following provides a sufficient condition for A : I([0, 1])2 → I([0, 1]) to be

an aggregation function with respect to both the standard cartesian order ≤I and the
lexicographic order≤lexi.Note that the functionA : I([0, 1])2 → I([0, 1])given in (8)
is called a representable aggregation function (see [62, 64, 65, 69]) on (I([0, 1]),≤I).

Theorem 3.2 Let A1,A2 : [0, 1]n → [0, 1] be aggregation functions on [0, 1] such
thatA1 ≤ A2 andA1 is strictly increasing, i.e.,A1(x1, . . . , xn) < A1(y1, . . . , yn)when-
ever (x1, . . . , xn) ≤cart (y1, . . . , yn) and (x1, . . . , xn) 
= (y1, . . . , yn). Then the func-
tion A : I([0, 1])2 → I([0, 1]) given by

A(
[
x1, y1

]
, . . . ,

[
xn, yn

]
) = [

A1(x1, . . . , xn),A2(y1, . . . , yn)
]

(8)

is an aggregation function on I([0, 1]) with respect to both the standard cartesian
order ≤I and the lexicographic order ≤lexi.

Proof In [65] it was shown that A is an aggregation function on (L([0, 1],≤I). To
check the monotonicity of A with respect to the lexicographic order ≤lexi consider
first [u1, v1],

[
x1, y1

]
, …,

[
xn, yn

] ∈ I([0, 1]) such that
[
x1, y1

] ≤lexi [u1, v1]. Then
we have either x1 < u1, which implies A1(x1, x2, . . . , xn) < A1(u1, x2, . . . , xn) and

A(
[
x1, y1

]
,
[
x2, y2

]
, . . . ,

[
xn, yn

]
) ≤lexi A([u1, v1] ,

[
x2, y2

]
, . . . ,

[
xn, yn

]
), (9)

or x1 = u1 and y1 ≤ v1. In the latter case, A1(x1, x2, . . . , xn) = A1(u1, x2, . . . , xn)
and A2(y1, y2, . . . , yn) ≤ A2(v1, y2, . . . , yn), again implying the validity of (9). The
monotonicity of A in the other coordinates is shown in complete analogy. �

Remark 3.3 There exist representable aggregation functions on (L([0, 1]],≤I) as
given in (8) which are not aggregation functions on (L([0, 1]],≤lexi). In particular,
if A1 is not strictly increasing then A may not be monotone with respect to ≤lexi.
Consider, for instance, the function A : I([0, 1])2 → I([0, 1]) given by
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A(
[
x1, y1

]
,
[
x2, y2

]
) = [

max(x1 + y1 − 1, 0),min(x2 + y2, 1)
]

which obviously is an aggregation function on (I([0, 1]),≤I). However, we have
[0, 1] <lexi [ 12 , 1

2 ] and A([0, 1], [0, 0]) = [0, 1] >lexi [0, 1
2 ] = A([ 12 , 1

2 ], [0, 0]),
showing that A is not monotone on (L([0, 1]),≤lexi).

4 Aggregation Functions for Picture Fuzzy Sets

Coming back to picture fuzzy sets, recall that the pair (D∗,≤P) given by (5) and (6),
respectively, is a lattice with bottom element 0D∗ = (0, 0, 1), but not a bounded
lattice, as noted in Sect. 2. Indeed, it has no top element ((1, 0, 0) and (0, 1, 0) are
two incomparable maximal elements of (D∗,≤D∗)), so it is impossible to introduce
aggregation functions [84] on (D∗,≤P).

Replacing the order ≤P on D∗ by the order ≤D∗ given in (7), we have seen that
(D∗,≤D∗) is a bounded lattice with bottom element 0D∗ = (0, 0, 1) and top element
1D∗ = (1, 0, 0).

Using similar arguments as in Theorem 3.2 we have the following result:

Theorem 4.1 Let A1 : L∗n → L∗ and A2 : [0, 1]n → [0, 1] be aggregation functions
on (L∗,≤L∗) and ([0, 1],≤), respectively, such that A1 is strictly increasing and for
all (x1, y1), . . . , (xn, yn) ∈ L∗ we have

A1((x1, y1), . . . , (xn, yn)) + A2(1 − x1 − y1, . . . , 1 − xn − yn) ≤ 1. (10)

Then the function A : D∗n → D∗ given by

A((x1, y1, z1), . . . , (xn, yn, zn)) = (x, y, z) (11)

where (x, z) = A1((x1, z1), . . . , (xn, zn)) and y = A2(y1, . . . , yn), (12)

is an aggregation function on the lattice (D∗,≤D∗).

Note that several aggregation functions on the bounded lattice (L∗,≤∗
L) were

introduced and studied in detail (see, e.g., [62, 64, 65, 69]), including t-norms and
t-conorms.

For t-norms and t-conorms on (D∗,≤D∗) the following observations and defini-
tions will be crucial.

Lemma 4.2 Consider functions A1,A2,A3 : [0, 1]2 → [0, 1] such that the function
A : D∗2 → D∗ given by

A((x1, y1, z1), (x2, y2, z2)) = (A1(x1, x2),A2(y1, y2),A3(z1, z2))

is a binary aggregation function on (D∗,≤D∗). Then neither the bottom element
(0, 0, 1) nor the top element (1, 0, 0) of D∗ can be a neutral element of A.
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Proof Suppose, to the contrary, that the top element (1, 0, 0) of D∗ is a neutral
element of A. Then A((1, 0, 0), (0, y, 0)) = (0, y, 0), i.e., A2(0, y) = y for all y ∈
[0, 1]. Similarly, A2(y, 0) = y, i.e., 0 is a neutral element of A2. On the other hand,
the monotonicity of A and the boundary condition A((0, 0, 1), (0, 0, 1)) = (0, 0, 1)
imply that (0, 0, 1) is an annihilator of A, i.e., A((0, 0, 1), (0, y, 0)) = (0, 0, 1) and,
therefore, A2(0, y) = 0 for all y ∈ [0, 1]. Similarly we get A2(y, 0) = 0, i.e., 0 is an
annihilator of A2, which is a contradiction.

The proof for the bottom element (0, 0, 1) is completely analogous. �

As a consequence of Lemma 4.2, we need to modify the definition of the neutral
elements of t-norms and t-conorms on (D∗,≤D∗):

Definition 4.3 Let A : D∗2 → D∗ be a commutative and associative binary aggre-
gation function on (D∗,≤D∗). Then the function A is called a

(i) t-norm on (D∗,≤D∗) if we have A((1, 0, 0), (x, y, z)) = (x, u, z) ∈ D∗ for all
(x, y, z) ∈ D∗, where u ∈ [0, 1 − x − z];

(ii) t-conorm on (D∗,≤D∗) if we have A((0, 0, 1), (x, y, z)) = (x, u, z) ∈ D∗ for all
(x, y, z) ∈ D∗, where u ∈ [0, 1 − x − z].

Based on Theorem 4.1 we have the following result which we formulate for
the case of t-norms only (if the functions A1 : L∗2 → L∗ and A2 : [0, 1]2 → [0, 1]
in Theorem 4.4 below are t-conorms and if A1 is strictly increasing on (L∗ \ {1L∗ })2
then, obviously, the function A : D∗2 → D∗ given by (13) and (14) will be a t-conorm
on (D∗,≤D∗)):

Theorem 4.4 LetA1 : L∗2 → L∗ be a t-normon (L∗,≤L∗)which is strictly increasing
on (L∗ \ {0L∗ })2 and A2 : [0, 1]2 → [0, 1] a t-norm on ([0, 1],≤) such that A1 and A2

satisfy the conditions in Theorem 4.1. Then the function A : D∗2 → D∗ given by

A((x1, y1, z1), (x2, y2, z2)) = (x, y, z), (13)

where (x, z) = A1((x1, z1), (x2, z2)) and y = A2(y1, y2), (14)

is a t-norm on (D∗,≤D∗).

Note that the strict monontonicity of A1 : L∗2 → L∗ on the set (L∗ \ {0L∗ })2 in
Theorem 4.4 is crucial for the monotonicity of the function A : D∗2 → D∗. Indeed,
consider the function T : D∗2 → D∗ (see [55, item 7 in Example 2.4]) given by

T ((x1, y1, z1), (x2, y2,z2))

=(max(x1 + x2 − 1, 0),max(y1 + y2 − 1, 0),min(z1 + z2, 1))

which is not monotone because of (0.2, 0.8, 0) <D∗ (0.3, 0.2, 0) and

T ((0.2, 0.8, 0), (0.3, 0.7, 0)) = (0, 0.5, 0) >D∗ (0, 0, 0) = T ((0.3, 0.2, 0), (0, 0.5, 0)),
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i.e., T is not an aggregation function on (D∗,≤D∗) (although it has all the other
properties of a t-norm on (D∗,≤D∗): it is commutative, associative and satisfies
the boundary conditions). This is caused by the fact that the representable t-norm
A1 : L∗2 → L∗ given by

A1((x1, z1), (x2, z2)) = (max(x1 + x2 − 1, 0),min(z1 + z2, 1))

is not strictly monotone on the set (L∗ \ {0L∗ })2.
Example 4.5 Let F : [0, 1]2 → [0, 1] be a strict Frank t-norm (see [78, 98, 100])
and G : [0, 1]2 → [0, 1] its dual Frank t-conorm given by

G(x, y) = 1 − F(1 − x, 1 − y) = x + y − F(x, y).

Then the functions T , S : D∗2 → D∗ given by

T ((x1, y1, z1), (x2, y2, z2)) = (F(x1, x2),F(y1, y2),G(z1, z2),

S((x1, y1, z1), (x2, y2, z2)) = (G(x1, x2),G(y1, y2),F(z1, z2))

are a t-norm and a t-conorm on (D∗,≤D∗), respectively. This fact follows directly
from Theorem 4.4. Note that the strict monotonicity of F and G on ] 0, 1 ]2 implies
the strict monotonicity of the aggregation functions A1, (A1)

d : L∗2 → L∗ given by

A1((x1, z1), (x2, z2)) = (F(x1, x2),G(z1, z2)),

(A1)
d ((x1, z1), (x2, z2)) = (G(x1, x2),F(z1, z2))

on the set (L∗ \ {0L∗ })2. Finally, note that condition (10) inTheorem4.1 holds because
of the superadditivity of the Frank t-norms.

5 Concluding Remarks

We presented sufficient conditions under which a combination of aggregation func-
tions on [0, 1] yields an aggregation function on L∗ (Theorem 3.2), and under which
a combination of aggregation functions on L∗ and [0, 1] yields an aggregation func-
tion onD∗ (Theorem 4.1). Also, the condition in Theorem 4.4, where a t-norm on L∗
and a t-norm on [0, 1] are combined, is only a sufficient one. The problem to find
necessary and sufficient conditions for these constructions is still open.

Consider the function τ : D∗ → [0, 1]3 given by τ(x1, x2, x3) = (x1, x1 + x2, 1 −
x3). Since for each (x1, x2, x3) ∈ D∗ we have 0 ≤ x1 ≤ x1 + x2 ≤ 1 − x3 ≤ 1, τ is a
bijection between the setsD∗ andΔ3 = {(a1, a2, a3) ∈ [0, 1]3 | a1 ≤ a2 ≤ a3}. Note
that fuzzy sets with membership values inΔn = {(a1, . . . , an) ∈ [0, 1]n | a1 ≤ · · · ≤
an} were discussed, e.g., in [25].
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Obviously, Δ2 coincides with Δ as given in Example 2.1 (iv). Note that Δn

equipped with the cartesian order ≤cart is a complete distributive lattice with top
element (1, . . . , 1) and bottom element (0, . . . , 0). Triangular norms on (Δn,≤cart)

were also studied in [25].
Due to the bijection τ : D∗ → Δ3 and its inverse τ−1 : Δ3 → D∗ given by

τ−1(x1, x2, x3) = (x1, x2 − x1, 1 − x3), one can introduce a new order ≤3 on D∗
such that the lattices (Δ3,≤cart) and (D∗,≤3) are isomorphic. Clearly, we obtain
(x1, x2, x3) ≤3 (y1, y2, y3) if and only if x1 ≤ y1, x1 + x2 ≤ y1 + y2 and x3 ≥ y3, i.e.,
if (x1, x3) ≤L∗ (y1, y3) and x1 + x2 ≤ y1 + y2. The top element of the lattice (D∗,≤3)

is (1, 0, 0), and its bottom element is (0, 0, 1), similarly as in the lattice (D∗,≤D∗).
Based on (D∗,≤3), a new look on picture fuzzy sets is offered and a deeper inves-

tigation, especially in relation to (D∗,≤D∗)-based picture fuzzy sets, is an interesting
topic for further research.
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The Interval Weighted Average and Its
Importance to Type-2 Fuzzy Sets
and Systems

Jerry M. Mendel

Abstract Type-reduction (TR) is a widely used operation for internal and
general type-2 fuzzy sets and systems. It maps a general type-2 fuzzy set (GT2
FS) into a type-1 fuzzy set (T1 FS), and an interval type-2 (IT2) FS into a T1 inter-
val fuzzy number. This is chapter is about the interval weighted average (IWA) and
demonstrates that it is the underlying basic operation for all kinds of TR, and also
explains how the IWA can be used and computed for centroid TR and centre-of-sets
TR for both IT2 and GT2 FSs and systems.

1 Introduction

Type-reduction (TR) is a widely used operation for interval and general type-2 fuzzy
sets. It maps a general type-2 fuzzy set (GT2 FS) into a type-1 fuzzy set (T1 FS),
and an interval type-2 (IT2) FS into a T1 interval fuzzy number. After TR, it is then
very easy to map its resulting T1 FS into a crisp number, something that is needed
when GT2 or IT2 FSs are used in fuzzy systems.

Type-reduction originated in Karnik and Mendel [5, 6]. Their approach began by
defining the centroid of a general T2 FS (GT2 FS) using the Extension Principle and
what later became known as the Wavy Slice Representation Theorem of a GT2 FS
[22] (which states that a GT2 FS can be represented as the set theoretic union of its
embedded T2 FSs), and by then computing the centroid for each embedded T2 FS.
Numerical procedures were then stated that required the exhaustive enumeration of
all such embedded T2 FSs.

It was already known in Karnik and Mendel [5, 6] and Mendel [16, 20] that
exhaustive enumeration was unnecessary for IT2 FSs. They developed the first iter-
ative algorithms for performing TR that are now called KM Algorithms. It was not
until [11] that exhaustive enumeration was no longer necessary for type-reduction of
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a GT2 FS. The horizontal-slice (also known as the “α−plane” [11] or “zSlice” [28]
representation of a GT2 FS) made this possible.

However, the path to almost all of this work was still the wavy-slice representation
of a T2 FS, which in retrospect, and in the opinion of this author, arguably tends to
obfuscate the underlying basic operation for all kinds of TR. This chapter is about the
interval weighted average (IWA), which, as we shall demonstrate, is the underlying
basic operation for all kinds of TR. It is very fitting that the IWA be included in
this tribute book to Prof. Vladik Kreinovich, since he has for so many years been a
champion of interval mathematics.

2 Formulation of the IWA

Consider1 the following arithmetic weighted average:

y =
∑n

i=1 xiwi
∑n

i=1 wi
(1)

In (1) let (i = 1, . . . , n)

xi ∈ [ai , bi ] (2)

where xi may be a positive or negative real number, and

wi ∈ [ci , di ] (3)

where wi must be a positive real number, or some but not all wi may be 0. Sets Xi

and Wi , referred to as intervals, are associated with (2) and (3), respectively.
When at least onewi in (1) is modeled as in (3), and the remainingwi are modeled

as crisp numbers, all of which are subject to the constraints that are stated below (3),
then the resulting weighted average is called an interval weighted average (IWA).

The IWA, YIW A, is evaluated over the Cartesian product space

DX1 × DX2 × · · · × DXn × DW1 × DW2 × · · · × DWn ,

and is a closed interval of real numbers, that is completely defined by its two end-
points, yl and yr , i.e.2:

YIW A =
∑n

i=1 XiWi
∑n

i=1 Wi
= [yl , yr ] (4)

1The material in this section is taken from Mendel and Wu [23, pp. 147–148].
2In (4),

∑n
i=1 XiWi

/∑n
i=1 Wi is an expressive way to summarize the IWA, but it is not a way to

compute it.
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Because xi (i = 1, . . . , n) appear only in the numerator of (1), the smallest (largest)
value of each xi is used to find yl(yr ), i.e.:

yl = min∀wi∈[ci ,di ]

∑n
i=1 aiwi

∑n
i=1 wi

(5)

yr = max∀wi∈[ci ,di ]

∑n
i=1 biwi

∑n
i=1 wi

(6)

These are the two fundamental optimization problems that are associated with the
IWA.

3 Computing the IWA3

Readers who are familiar with interval arithmetic may suspect that closed-form
expressions can be obtained for yl and yr . For example, in [7] the following formula
is given for the division of two interval sets:

[a, b]/[d, e] = [a, b] × [1/e, 1/d]
= [min(a/d, a/e, b/d, b/e),max(a/d, a/e, b/d, b/e)] (7)

so, it would seem that this result could be applied to determine yl and yr . Unfortu-
nately, this cannot be done because the derivation of (7) assumes that a, b, d and e
are independent (non-interactive). Due to the appearance of wi in both the numera-
tor and denominator of

∑n
i=1 aiwi

/∑n
i=1 wi and

∑n
i=1 biwi

/∑n
i=1 wi , the required

independence is not present; hence, (7) cannot be used to compute the IWA.
The obvious next approach is to try calculus. Because

∑n
i=1 aiwi

/∑n
i=1 wi and∑n

i=1 biwi
/∑n

i=1 wi have a similar structure, let

y(w1, . . . ,wn) ≡
∑n

i=1 xiwi
∑n

i=1 wi
(8)

When y(w1, . . . ,wn) is differentiated with respect to any one of the n wi , say wk , it
follows that:

∂y(w1, . . . ,wn)

∂wk
= xk − y(w1, . . . ,wn)

∑n
i=1 wi

(9)

Equating ∂y
/

∂wk to zero, and using (8), one finds:

3The material in this section is adapted from Mendel [20, Sect. 8.2.2].
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(y(w1, . . . ,wn) = xk) ⇒
(∑n

i=1 xiwi
∑n

i=1 wi
= xk

)

⇒
(∑n

i=1
xiwi = xk

∑n

i=1
wi

)

⇒
(∑n

i=1,i �=k
xiwi = xk

∑n

i=1,i �=k
wi

)
(10)

Observe that wk no longer appears in the final expression in (10), so that the direct
calculus approach does not work.

As a last resort, we examine the nature of ∂y(w1, . . . ,wn)/∂wk . Because4∑n
i=1 wi > 0, it is easy to see from (9) that

∂y(w1, . . . ,wn)

∂wk

{≥ 0 if xk ≥ y(w1, . . . ,wn)

< 0 if xk < y(w1, . . . ,wn)
(11)

This equation gives the directions in which wk should be changed so as to either
increase or decrease y(w1, . . . ,wn), i.e.:

⎧
⎪⎪⎨

⎪⎪⎩

If xk > y(w1, . . . ,wn)

y(w1, . . . ,wn) increases (decreases) aswk increases (decreases)
If xk < y(w1, . . . ,wn)

y(w1, . . . ,wn) increases (decreases) aswk decreases (increases)

(12)

Observe, from (3), that the maximum value that wk can attain is dk and the min-
imum value that it can attain is ck . Consequently, (12) implies that y(w1, . . . ,wn)

attains its minimum value, yl , if:

wk =
{
ck ∀k such that xk > y(w1, . . . ,wn)

dk ∀k such that xk < y(w1, . . . ,wn)
(13)

Similarly, it can be deduced from (12) that y(w1, . . . ,wn) attains its maximum value,
yr , if:

wk =
{
dk ∀k such that xk > y(w1, . . . ,wn)

ck ∀k such that xk < y(w1, . . . ,wn)
(14)

When xk are in increasing order there are only two possible choices for wk in (13)
or (14); hence, to compute yl (yr ) wk switches only one time between ck and dk ;
consequently, yl and yr in (5) and (6) are given by [for yl , xk in (13) is ak , whereas
for yr , xk in (14) is bk]:

4This is where the constraints that wi must be a positive real number, or some but not all wi may
be 0, are needed.
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yl = min
k=1,2,...,n

yl(k) = min
k=1,2,...,n

∑k
i=1 aidi + ∑n

i=k+1 aici
∑k

i=1 di + ∑n
i=k+1 ci

=
∑L

i=1 aidi + ∑n
i=L+1 aici

∑L
i=1 di + ∑n

i=L+1 ci
≡ yl(L) (15)

yr = max
k=1,2,...,n

yr (k) = max
k=1,2,...,n

∑k
i=1 bici + ∑n

i=k+1 bidi
∑k

i=1 bici + ∑n
i=k+1 bidi

=
∑R

i=1 bici + ∑n
i=R+1 bidi

∑R
i=1 ci + ∑n

i=R+1 di
≡ yr (R) (16)

In (15) and (16), ai and bi (i = 1, . . . , n) have been put in increasing orders, i.e.,
a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn [so that it is easy to perform the tests
in (13) and (14)], L and R are called5 switch points, and it is these switch points that
remain to be determined. In (15), when i = L + 1, observe that wi switches from
the right end-points of [ci , di ] to its left end-points, whereas in (16) just the opposite
occurs.

In general R �= L , and no closed-form formulas are known for L and R. Instead,
each is computed by means of an iterative algorithm. Before discussing some of
these algorithms, it is very instructive to examine the properties of the IWA.

4 Properties of the IWA

The following three properties are for computing yl in the IWA and appeared first in
Liu and Mendel [12] (comparable properties for yr , and proofs of the properties, are
found in that paper and in Mendel [20, Chap. 8, Appendix 1]).

Location Property for yl(L) in (15):

aL ≤ yl(L) = yl < aL+1 (17)

In (17), it is assumed that aL+1 �= aL . If, however, aL+1 = aL , then change the
right-end of (17) to: “the first value of i such that ai �= aL”.

This property locates yl(L) either between two specific adjacent values of ai , or
at the left end-point of these adjacent values.

Shape Property for yl(k) in (15): yl(k) lies above the line y = ak when ak is
less than yl and lies below the line y = ak when ak is larger than yl , i.e.

{
yl(k) > ak when ak < yl
yl(k) < ak when ak > yl

(18)

5Actually, it is aL and bR that are the switch points, for which L and R are the corresponding
indices. Because calling L and R “switch points” is so entrenched in the type-2 literature, this article
continues to use the same terminology.
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The Shape Property explains the shape of yl(k) [on a plot of yl(k) vs. the ai ] both
to the left and right of its minimum point; yl(k) moves downward to the left of yl
and upward to the right of yl .

Monotonicity Property of yl(k) in (15): It is true that:

{
yl(k − 1) ≥ yl(k) when ak < yl
yl(k + 1) ≥ yl(k) when ak > yl

(19)

TheMonotonicity Property also helps us to understand the shape of yl(k). When
yl(k) is going in the downward direction it cannot change that direction before
ak = yl ; and, after ak = yl , when it goes in the upward direction it cannot change
that direction.

From knowledge of the shapes of yl(k) and yr (k), it should be clear to readers
who are familiar with optimization theory that the two optimization problems in (5)
and (6) are easy. Each problem has only one global extremum and there are no local
extrema. Regardless of how one initializes any algorithm for finding the extremum,
convergence will occur, i.e. it is impossible to become trapped at a local extremum
because of how each algorithm is initialized. It is also obvious, from the shape of yl(k)
[and yr (k)] that the algorithm that computes yl(L) [and yr (R)] will converge very
quickly. In fact, the shape of yl(k) [and yr (k)] suggests that quadratic convergence
should be possible.

5 Algorithms for Finding the Switch Points

Many iterative algorithms have been developed for computing L and R, and subse-
quently yl and yr (see Mendel [17] for a very complete treatment of this). The first
such algorithms were developed in Karnik and Mendel [6], and are now known as
KM algorithms. They are still the most widely used algorithms for computing yl and
yr , even though other algorithms are faster (e.g., require fewer iterations), arguably
because they are very easy to derive.

The enhanced KM (EKM) algorithms [32] start with the KM algorithms and
modify them in three ways: (1) A better initialization is used to reduce the number
of iterations; (2) the termination condition of the iterations is changed to remove
an unnecessary iteration; and (3) a subtle computing technique is used to reduce
the computational cost of each algorithm’s iterations. Extensive simulations have
shown that on average the EKM algorithms can save about two iterations, which
corresponds to a more than 39% reduction in computation time.

It is important for the reader to appreciate that the word “enhanced” in “EKM” is
a synonym for “better”, which means that one should no longer use KM algorithms,
and should instead use EKM algorithms. This is mentioned because many papers
still show results for both the KM and EKM algorithms, which this author feels is
unnecessary.
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Table 1 EIASC for computing the end-points of an IWA

Step EIASC for yl (L)

yl (L) = min∀wi∈[ci ,di ]
(∑n

i=1 aiwi
/∑n

i=1 wi
)

EIASC for yr (R)

yr (R) = max∀wi∈[ci ,di ]
(∑n

i=1 biwi
/∑n

i=1 wi
)

1 Initialize
a = ∑n

i=1 ai ci b = ∑n
i=1 ci

L = 0

Initialize
a = ∑n

i=1 bi ci b = ∑n
i=1 ci

R = n

2 Compute
L = L + 1
a = a + aL (dL − cL )

b = b + (dL − cL )

yl (L) = a/b

Compute
a = a + bR(dR − cR)

b = b + (dR − cR)

yr (R) = a/b
R = R − 1

3 If yl (L) ≤ aL+1, stop, otherwise go to
Step 2

If yr (R + 1) ≥ bR , stop, otherwise go to
Step 2

Note that a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn [33]

Even faster than the EKM algorithms are the EIASC algorithms (Enhanced Itera-
tive Algorithm + Stopping Condition) [33] which are enhanced versions of the IASC
algorithms in Melgerejo [15] and Duran et al. [2]. Extensive Monte Carlo simula-
tions (Wu and Nie [33] and repeated by Wu, as explained in Mendel [20, Example
8.5]), have shown that the EIASC algorithms outperform the EKM algorithms, for
n < 1300. The EIASC algorithms are in Table 1.

When an iterative algorithm is used to solve an optimization problem, it is impor-
tant to know whether or not it converges to the correct solution. The KM, EKM and
EIASC algorithms all converge to the correct solution (i.e., the global minimum or
maximum) and this occurs in a finite number of iterations. KM and EKM algorithms
are quadratically convergent; but, even so, the EIASC, which are very different kinds
of algorithms than the KM or EKM algorithms, converge faster (for n < 1300).

6 Centroid Type-Reduction of an IT2 Fuzzy Set

Centroid type-reduction can only be applied when one is given the entire IT2 FS.
Consequently, in this section no connection is made for IT2 FS Ã to an IT2 fuzzy
system. This connection is made in Sect. 7A.

The centroid CÃ(x) of IT2 FS Ã is the union of the centroids, c(Ae), of all its
embedded T1 FSs Ae, and associated with each of these numbers is a membership
grade of 1, because the secondary grades of an IT2 FS are all equal to 1. This means
[6, 20, Chap. 8]:

CÃ(x) = 1

/
⋃

∀Ae

cÃ(Ae) = 1

/
⋃

∀Ae

∑N
i=1 xiμAe(xi )

∑N
i=1 μAe(xi )
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= 1
/

{cl( Ã), . . . , cr ( Ã)} ≡ 1
/

[cl( Ã), cr ( Ã)] (20)

where N is the number of samples of the support of the UMF of Ã, and

cl( Ã) = min∀Ae

cÃ(Ae) = min
∀wi∈

[
μ

Ã
(xi ),μ̄ Ã(xi )

]

∑N
i=1 xiwi

∑N
i=1 wi

(21)

cr ( Ã) = max∀Ae

cÃ(Ae) = max
∀wi∈

[
μ

Ã
(xi ),μ̄ Ã(xi )

]

∑N
i=1 xiwi

∑N
i=1 wi

(22)

Theorem 1 (Mendel [20], Sect. 8.3.1) [cl( Ã), cr ( Ã)] is an IWA in which yl = cl( Ã),
yr = cr ( Ã), n = N , ai = bi = xi , ci = μ

Ã
(xi ) and di = μ̄ Ã(xi ), so that:

cl( Ã) =
∑L

i=1 xi μ̄ Ã(xi ) + ∑N
i=L+1 xiμ Ã

(xi )
∑L

i=1 μ̄ Ã(xi ) + ∑N
i=L+1 μ

Ã
(xi )

(23)

cr ( Ã) =
∑R

i=1 xiμ Ã
(xi ) + ∑N

i=R+1 xi μ̄ Ã(xi )
∑R

i=1 μ
Ã
(xi ) + ∑N

i=R+1 μ̄ Ã(xi )
(24)

Proof Compare (21) and (22) to (5) and (6), respectively, and subsequently (23) and
(24) to (15) and (16), respectively.

In (20), CÃ(x) is shown as an explicit function of x because the centroid of each
embedded type-1 fuzzy set falls on the x-axis. Note that it is customary in the IT2
FS literature to call [cl( Ã), cr ( Ã)] the centroid of Ã, ignoring the uninformative
membership function grade of 1, and CÃ is sometimes used instead of CÃ(x).

As a result of Theorem 1, it is easy to compute CÃ(x) by algorithms such as the
EIASC.

7 Type-Reduction in IT2 Fuzzy Systems

A block diagram of an IT2 fuzzy system [10] that uses TR is depicted in Fig. 1 (some
IT2 fuzzy systems bypass TR and go directly from IT2 FSs to a crisp number, but
they are outside of the scope of this chapter). Different kinds of TR are possible in
an IT2 fuzzy system; however, as we demonstrate below, all can be computed using
an IWA. The three most popular kinds of TR are centroid, height and center of sets
(COS). In practice, centroid TR and COS TR are the most widely used (height TR
and COS TR are very similar); hence, only those two kinds of TR are discussed here.
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IT2 Fuzzy System

=
=

Fig. 1 IT2 fuzzy system with TR + defuzzification. T1 IFN is short for “Type-1 interval fuzzy
number.” (Mendel [20]: © 2017, Springer)

Fig. 2 Granules located at [cil , cir ]. Granules do not have to appear in chronological order.μB̃(y|x′)
is a construct (Mendel [20]: © 2017, Springer)

A. Centroid TR

When an input x = x′ is applied to an IT2 rule (a rule whose fuzzy sets are modeled
as IT2 FSs) it leads to a firing interval [ f l(x′), f̄ l(x′)] which can then be combined

with the entire consequent of that rule, G̃l , by means of the meet operation, leading
to an IT2 fired-rule output FS, B̃l . Then, all of the IT2 fired rule output FSs can be
combined by means of the join operation, producing one combined IT2 fired rule
output fuzzy set, B̃, which can then be type-reduced by computing its centroid to
give CB̃ , by means of Theorem 1, in which Ã is replaced by this B̃. So, Theorem 1
applies directly to centroid TR in an IT2 fuzzy system.

B. COS TR

The COS type-reducer6 replaces each rule consequent IT2 FS, G̃i , by the domain
of its centroid, [cl(G̃i ), cr (G̃i )], and assigns a secondary MF of 1/[ f i (x′), f̄ i (x′)]
to it where [ f i (x′), f̄ i (x′)] is the firing interval for the ith rule. Formulas for f i (x′)
and f̄ i (x′) are not needed here and can be found in many places, such as Mendel
[20, Chap. 9]. This procedure is summarized in Fig. 2 [in which cl(G̃i ) is shortened
to cil and cr (G̃i ) is shortened to cir ]. Observe that the shaded rectangles in Fig. 2

6The material in this section is adapted from Mendel [20, Sect. 8.3.4].
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are granules and, although not shown on Fig. 2, these granules may overlap. If this
happens then each granule is still treated as a separate entity for COS type-reduction.

Let YCOS(x′) denote the COS type-reduced set, where

YCOS(x′) = 1

/ ∑M
i=1 yiwi

∑M
i=1 wi

(25)

in which (i = 1, . . . , M)

yi ∈ [cl(G̃i ), cr (G̃
i )] (26)

wi ∈ [ f i (x′), f̄ i (x′)] (27)

Each of the firing intervals [ f i (x′), f̄ i (x′)] and [cl(G̃i ), cr (G̃i )] can be discretized,

after which, in (25),
∑M

i=1 yiwi

/∑M
i=1 wi can be computed a multitude of times,

each time using one discrete point from each of these intervals. Clearly, doing this
will again lead to an interval of real numbers [yCOSl (x′), yCOSr (x′)], where:

yCOSl (x′) = min
wi∈[ f i (x′), f̄ i (x′)], yi∈[cl (G̃i ),cr (G̃i )]

∑M
i=1 yiwi

∑M
i=1 wi

(28)

yCOSr (x′) = max
wi∈[ f i (x′), f̄ i (x′)], yi∈[cl (G̃i ),cr (G̃i )]

∑M
i=1 yiwi

∑M
i=1 wi

(29)

so that

YCOS(x′) = 1/[yCOSl (x′), yCOSr (x′)] (30)

Theorem 2 (Mendel [20, p. 415]) [yCOS
l (x′), yCOS

r (x′)] is an IWA in which yl =
yCOSl (x′), yr = yCOSr (x′), n = M , ai = cl(G̃i ), bi = cr (G̃i ), ci = f i (x′) and

di = f̄ i (x′), so that

yCOSl (x′) =
∑L

i=1 cl(G̃
i ) f̄ i (x′) + ∑M

i=L+1 cl(G̃
i ) f i (x′)

∑L
i=1 f̄ i (x′) + ∑M

i=L+1 f i (x′)
(31)

yCOSr (x′) =
∑R

i=1 cr (G̃
i ) f i (x′) + ∑M

i=R+1 cr (G̃
i ) f̄ i (x′)

∑R
i=1 f i (x′) + ∑M

i=R+1 f̄ i (x′)
(32)

Proof Compare (28) and (29) to (5) and (6), respectively, and subsequently (31) and
(32) to (15) and (16), respectively.

Observe that to compute YCOS(x′) one must first compute the centroid of each
rule’s IT2 consequent set, [cl(G̃i ), cr (G̃i )], which can be done by using Theorem 1,
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and that this only has to be done once after an IT2 fuzzy system has been designed,
because those centroids do not depend upon the input x = x′ to the fuzzy system.

8 Remarks7

A. Other Type-Reduction Algorithms

For readers who want to learn a lot about other algorithms for type-reduction, see
Wu [30] and Mendel [17]. Wu’s section on “Enhancements to the KM TR algo-
rithms” and Mendel’s sections on “Improved KM algorithms,” “Understanding the
KM/EKM algorithms, leading to further improved algorithms,” and “Eliminating the
need for theKMalgorithms:Non-KMalgorithms/methods that preserve the ability to
approximate the centroid or type-reduced set,” contain the algorithms or information
about them.

The following are papers with other algorithms or modified algorithms that lead
to a centroid type-reduced set (given in chronological order): Niewiadomski et al.
[24], Melgarejo [15], Duran et al. [2], Li et al. [9], Starczewski [25], Liu and Mendel
[13], Hu et al. [3, 4], Liu et al. [14], Wu et al. [34], Ulu et al. [26] and Chen et al. [1].

The KM, EKM and EIASC algorithms are arguably the simplest to derive and
explain. Some of the other algorithms require either that ai = bi ≡ xi and are
therefore less general than the KM, EKM and EIASC algorithms, or have derivations
that are very complicated, or are restricted in other ways (e.g., to certain kinds of
MFs or FOUs).

B. Computation Time as a Metric

Many papers about new or improved algorithms (including this author’s) provide
separate simulation results for both the number of iterations required for their con-
vergence and overall computation time. The former does not change as computers
or hardware (or even the programming language) change or improve, but the lat-
ter does; hence, a more meaningful metric would be computation time per iteration.
This number will, of course, become smaller and smaller as computers become faster
and faster, something that always seems to occur. One may conjecture that, at some
not-to-distant future time, computation time per iteration will be so small that it
will not matter which new or improved algorithm is used, because the differences
in overall computation time will be imperceptible to a human. Although this is true
for a human, it is very important to realize that when the type-reduction algorithms
are implemented in hardware, then the faster they can be performed frees up the
hardware to perform other computations, something that can be very important for
real-world applications. Consequently, it is important to perform the type-reduction
calculations as quickly as possible, which is why there has been extensive work on

7The material in this section is taken from Mendel [20, pp. 418–420].
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improving type-reduction algorithms. And so, evaluating new type-reduction algo-
rithms in terms of computing time/iteration is a meaningful metric, even when this
is done outside of the context of an application of a fuzzy system.

C. Accuracy as a Metric

When only sampled values are given for LMF( Ã) and UMF( Ã), then the KM,
EKM, and EIASC algorithms (and the other algorithms that are referenced in Section
A) give exact results. Of course, when the sampling rate is changed, so that the
sampled values change, then different numerical centroid or type-reduced sets will
be obtained, but all of these are still exact results.

If, on the other hand, one begins with formulas for LMF( Ã) and UMF( Ã), and
wishes to use them to compute the centroid of Ã, then continuous EKM (CEKM)
algorithms [13, 20, Chap. 8] can be used. Those algorithms require numerical inte-
grations, which again require some sort of sampling of LMF( Ã) and UMF( Ã),
unless the integrals can be worked out by hand, in which case infinite precision is
possible. Approaching infinite precision is also possible by using,8 e.g. EIASC or
EKM algorithms and very fine sampling of LMF( Ã) and UMF( Ã).

In the opinion of this author, studies that focus on “accuracy” as a metric for a
centroid algorithm, and that evaluate accuracy by using the “exact” centroid, where
the “exact” centroid is the infinite precision result, are of limited value, because if
centroid type-reduction is used in a T2 fuzzy system, it is not this kind of “accuracy”
that is important. Instead, it is achieving acceptable application-related performance
metrics that is important. For a more critical discussion about this, see Mendel [19,
Sect. 3].

Although some people still insist on obtaining the so-called “exact results” by
enumerating a very large number of embedded sets, this is unnecessary, and was and
is probably due to the appearance of the procedures inMendel [16] that required this.
It is also probably due to the fact that the IWA was unknown when Mendel [16] was
written, and it took some time for the connections between it and centroid and type-
reduction computations to become clear. Liu and Mendel [12] was the first article
where such connections were made; however, because its title does not include the
words “centroid” or “type-reduction” and instead uses9 “fuzzy weighted average,”
this article arguably went unnoticed by the type-2 community. Further connections
between the IWA, the centroid and type-reduction methods appear in Mendel and
Wu [23, Chap. 6], Mendel [17, Sect. VII.A, 18, Sects. VI.A, B], and Mendel et al.
[21, Chap. 3].

8In theory, infinite precision is also possible by using an extremely large number of embedded sets,
which makes this approach impractical.
9A fuzzy weighted average (FWA) is a weighted average in which at least one wi in (1) is modeled
as a T1 FS, and the remaining wi are modeled either as intervals or crisp numbers. There is even a
linguistic weighted average (LWA) [23, Chap. 5] in which at least one wi in (1) is modeled as an
IT2 FS, and the remaining wi are modeled either as T1 FSs, intervals or crisp numbers.
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9 Centroid Type-Reduction for GT2 FSs

One challenge to TR in a GT2 fuzzy system is the fact that there are four mathemat-
ically equivalent ways to represent a GT2 FS, namely (1) collection of points, (2)
union of vertical slices; (3) union of wavy slices, and (4) fuzzy union of horizontal
slices. To-date, it is only the horizontal-slice representation that is being used in a
GT2 fuzzy system, mainly because each horizontal slice can be interpreted as an IT2
fuzzy system at level α, so that everything that has been learned about an IT2 fuzzy
system can also be used for a GT2 fuzzy system.

The horizontal-slice representation for a GT2 FS is:

Ã =
⋃

α∈[0,1]
α/ Ãα = sup

α∈[0,1]
α/ Ãα (33)

where Ãα is an α-plane, i.e.:

Ãα =
∫

x∈X
Ã(x)α/x =

∫

x∈X
[aα(x), bα(x)]/x (34)

In (34) Ã(x)α is the α-cut of the secondary MF Ã(x).
Regardless of the kind of TR (centroid, height or center-of-sets), the following

is always true [20, p. 422]: TR for a GT2 FS (or for more than one GT2 FS) can
be viewed as a non-linear function of the primary variable (or variables) of the set
(or sets), and so it can be computed as the fuzzy union of that non-linear function
applied to α−planes.

Theorem 3 (Liu [11]) The centroid of a closed10 GT2 FS Ã,CÃ(x), is a type-1 fuzzy
set that can be computed using the horizontal-slice representation of Ã, as:

CÃ(x) =
⋃

α∈[0,1]
CRÃα

(x) =
⋃

α∈[0,1]
α/[cl(RÃα

), cr (RÃα
)] ≡

⋃

α∈[0,1]
α/[cl(α), cr (α)]

(35)

where CRÃα
(x) is the centroid of the horizontal slice Ãα at level α, RÃα

.

EIASCorEKMalgorithms can be used to compute eachCRÃα
(x), as inTheorem1;

however, to-date the fastest way to compute CÃ(x) is to use the monotone centroid
flow (MCF) algorithms [8, 20, pp. 429–430] that begin at α = 1, move down to
α = 1 − δ, and continue in this way to α = δ.

Centroid type-reduction for a GT2 FS can only be applied when one is given the
entire GT2 FS (or its α−planes). Consequently, in this section no connection has
been made for GT2 FS Ã to a GT2 fuzzy system. This connection is made next in
Sect. 10.

10A closed GT2 FS is one whose horizontal slices are closed for α ∈ [0, 1].
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Fig. 3 WH GT2 fuzzy system is the aggregation of horizontal-slice IT2 fuzzy systems (Mendel
[20]: © 2017, Springer)

10 Type-Reduction in a GT2 Fuzzy System

The block diagram for aGT2 fuzzy system looks exactly like the block diagram for an
IT2 fuzzy system that is in Fig. 1. To-date, it is only the horizontal-slice representation
that is being used in a GT2 fuzzy system, mainly because each horizontal slice can
be interpreted as an IT2 fuzzy system at level α, so that everything that has been
learned about an IT2 fuzzy system can also be used for a GT2 fuzzy system.

The idea of aggregating horizontal-slice fuzzy systems was proposed originally
in11 Wagner and Hagras [27–29], and was expounded upon in Mendel [18]. It is
based on the horizontal-slice decomposition of a GT2 FS and the fact that: α−planes
of a function of GT2 FSs equal that function applied to the α−planes of those GT2
FSs. It is referred to in Mendel [20, Chap. 11] and here as theWHGT2 fuzzy system,
so as to distinguish it from other kinds of GT2 fuzzy systems that may be developed
in the future. More specifically: A horizontal-slice fuzzy system is analogous to an
IT2 fuzzy system where all of the IT2 FS computations occur for each horizontal
slice; and, aWH GT2 fuzzy system is an aggregation of kmax horizontal-slice fuzzy
systems, as in Fig. 3, where TR is performed for each horizontal slice, after which
the type-reduced results are aggregated across all of the horizontal slices occurs by
means of defuzzification.

Horizontal-slice TR [20, p. 630] is TR applied to horizontal-slice quantities, the
result being a horizontal-slice type-reduced set. Different kinds of TR use different
horizontal-slice quantities. Here we only explain horizontal-slice centroid and COS
TR.

11In the Wagner and Hagras references, the term “zSlice” is used instead of horizontal-slice.
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A. Horizontal-Slice Centroid TR for a WH GT2 Mamdani Fuzzy System12

When an input x = x′ is applied to a general type-2 rule (i.e., a rule that looks just like
a type-1 rule except that some or all of its fuzzy sets are GT2 FSs) it leads to a type-1
fuzzy firing set F(x′) which may then be combined with the entire GT2 consequent
of that rule, G̃l , by means of the meet operation, leading to a fired-rule output GT2
FS, B̃l . Then, all of the fired rule output GT2 FSs may be combined by means of
the join operation, producing one combined fired rule GT2 output fuzzy set, B̃. B̃ is
then type-reduced by computing its centroid to give Yc(x′), which is computed as
explained in Sect. 9. So, Theorem 3 applies directly to centroid type-reduction in a
GT2 fuzzy system.

B. Horizontal-Slice COS TR for a WH GT2 Mamdani Fuzzy System13

Center-of sets (COS) type-reduction for a WH GT2 fuzzy system is performed sep-
arately for each horizontal slice. To begin, one must compute the centroids of theM
GT2 rule consequent GT2 FSs, i.e. (l = 1, . . . , M):

CG̃l = sup
∀α∈[0,1]

CG̃l
α

(36)

CG̃l
α

= α
/[

cl(G̃
l
α), cr (G̃

l
α)

]
(37)

where CG̃l
α
is the centroid of α−plane G̃l

α raised to level-α. After the design of the
WH GT2 fuzzy system has been completed, these centroids can be computed one
last time and then stored because they do not depend upon x′.
Theorem 4 (Mendel [20, pp. 631–632]) The M CG̃l

α
are used, along with the firing

intervals at level—α, Fl
α(x′), to compute

YCOS,α(x′) = α/[yCOS
l,α (x′), yCOS

r,α (x′)] (38)

In (38), yCOS
l,α (x′) and yCOS

r,α (x′) are computed as explained in Theorem 2, as:

yCOS
l,α (x′) =

∑L
i=1 cl(G̃

l
α) f̄ iα(x′) + ∑M

i=L+1 cl(G̃
l
α) f i

α
(x′)

∑L
i=1 f̄ iα(x′) + ∑M

i=L+1 f i
α
(x′)

(39)

yCOS
r,α (x′) =

∑R
i=1 cr (G̃

l
α) f i

α
(x′) + ∑M

i=R+1 cr (G̃
l
α) f̄ iα(x′)

∑R
i=1 f i

α
(x′) + ∑M

i=R+1 f̄ iα(x′)
(40)

In (39) and (40), f i
α
(x′) and f̄ iα(x′) are the end-points of the firing interval at level-α

for the ith rule. It follows, then that

12The material in this section is taken from Mendel [20, Sect. 8.4.2].
13The material in this section is taken from Mendel [20, Sect. 11.6.2].
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YWH−COS(x′) =
⋃

α∈[0,1]
YCOS,α(x′) =

⋃

α∈[0,1]
α/[yCOS

l,α (x′), yCOS
r,α (x′)] (41)

EIASC or EKM algorithms can be used to compute yCOS
l,α (x′) and yCOS

r,α (x′), both
of which are located on the y-axis. TheMCF algorithms cannot be used here because
they begin with one GT2 FS, whereas COS TR for a WH GT2 fuzzy system does
not.

11 Conclusions

This article has explained the IWA and has shown how it is the underlying basic
operation for all kinds of TR. For more discussions about TR for IT2 FSs and fuzzy
systems, see Mendel [20, Chaps. 8 and 9], and TR for GT2 FSs and fuzzy systems,
see Mendel [20, Chaps. 8 and 11].

One final comment: When TR is performed for a real-time application of an IT2
fuzzy system, at ti+1 > ti the TR algorithms should be initialized by using the
previously computed type-reduced set at ti and not by the initial conditions that are
given in Table 1 [20, p. 411, 33]. Similarly, when COS TR is performed for a real-
time application of a WH GT2 fuzzy system, at ti+1 > ti the TR algorithms should
be initialized by using the previously computed type-reduced set at ti for each α j

and not by the initial conditions that are given in Table 1.
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Abstract In this chapter, we give an introduction to Fuzzy Answer Set Program-
ming (FASP), as well as a description of a state-of-the-art FASP solver and its use
in practice. FASP is an extension of Answer Set Programming (ASP), a well known
declarative language that allows users to specify combinatorial search and optimiza-
tion problems in an intuitive way. By combining ASP with fuzzy logic, FASP is
capable of expressing continuous optimization problems. In the chapter, we provide
a high-level explanation of how ASP is typically used for solving problems, and the
role that an extension to FASP can play in applications. We present the syntax and
semantics of FASP, and describe how FASP programs are used to encode problems.
We subsequently explain how our solver finds the answer sets of a FASP program,
and we illustrate the whole workflow using an application for modeling of gene
regulatory networks.
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1 Introduction

Fuzzy Answer Set Programming (FASP) is a declarative programming framework
aimed at solving combinatorial search/optimization problems in continuous domains
[6, 32]. It extends Answer Set Programming (ASP [4, 26]), a well known declarative
language that allows users to specify combinatorial search and optimization problems
in an intuitive way. ASP stands out among other logic-based programming frame-
works by being more purely declarative (compared to, e.g., Prolog), allowing for a
more concise and intuitive encoding, while at the same time being highly expressive.
The availability of efficient solvers, which are able to solve hard real-world problems,
has also significantly contributed to the popularity of this modeling language. In the
wake of ASP’s extensive development over the last decades [1], FASP has recently
been gaining more attention as well, including the development of FASP solvers
that enable the use of FASP for real-world problem solving beyond toy examples.
In [2], the authors developed a prototype FASP solver using the method of fuzzy set
approximations. They improved the solver further by using a translation to Satisfi-
ability Modulo Theory (SMT) [3], which increased the performance of their solver
significantly on many test instances. We have also developed our own FASP solver,
based on the idea of a translation to ASP, and making use of currently available ASP
solvers [27, 28].

In general, the workflows used for problem solving with FASP or ASP are quite
similar, and can be summarized as follows (Fig. 1): (1) first we encode the problem
as a (fuzzy) logic program, containing all the required facts, rules and/or constraints
required to define the conditions of the problem; (2) we then call a (F)ASP solver,
which will generate (any/all) answer sets from the specified program; and (3) finally
we decode the answer sets to obtain the solutions.

In this chapter, we give an introduction to FASP, as well as a description of a
state-of-the-art FASP solver and its use in practice. The remainder of this chapter
is structured as follows. In the next section, we provide a high-level explanation of
how ASP is typically used for solving problems, and the role that an extension to
FASP can play in applications. In Sect. 3, we present the syntax and semantics of
FASP, and explain how FASP programs can be used to encode problems. Section4
subsequently explains how our solver finds the answer sets of a FASP program.
Finally, in Sect. 5, we illustrate the whole workflow using an application of FASP to
model gene regulatory networks.

Fig. 1 Work flow for
solving problems using
(F)ASP



Fuzzy Answer Set Programming: From Theory to Practice 215

2 Modeling Problems as Logic Programs

Declarative programming allows one to solve problems by encoding/expressing
them, usually in a rule-based logical language, allowing the programmer to spec-
ify the problem in an intuitive manner, without having to explicitly say “how” to
solve the problem. It is then the task of the “solver” (which is an algorithm, or its
implementation) to find the solutions in accordance with the problem specification.
For example, the well-known Graph 3-coloring problem can be tackled in ASP using
the following encoding:

col(X, red) ∨ col(X, green) ∨ col(X, blue)← node(X) (1)

← col(X, c), col(Y, c), edge(X,Y )

(2)

As is common in logic programming, rules are written in the form α ← β with
β the antecedent (body) of the rule and α the consequent (head). When the con-
sequent of a rule is false, it is left empty, as in the second rule above, enforcing
that the antecedent of the rule must be false for the overall rule to be satisfied.
Rule (1.1) intuitively expresses that we wish to find all possible 3-colorings of the
nodes in a graph; the predicates node/1 and col/2 are used to encode the nodes
available in the graph and the colors assigned to them, respectively. The second
rule, which is a “logical constraint”, eliminates all the coloring schemes in which
two nodes X and Y sharing an edge receive the same color c. Given the above
program and a set of inputs representing all the nodes and edges of the graph, an
ASP solver, such as clasp [18] or DLV [25] then searches the answer sets of the
program, representing the possible solutions to the problem. For example, given
a graph in Fig. 2, we can encode the input to the program using the set of facts
{node(a), . . . , node(d), edge(a, b), edge(a, c), edge(a, d), edge(b, c)}. An ASP
solver will then compute the answer sets, each of which corresponds to a solution.
For example, one answer set will contain the atoms col(a, red), col(b, blue),
col(c, green) and col(d, blue), which indeed corresponds to a valid coloring of
the given graph.

Fig. 2 Example graph
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The declarative nature of the syntax of ASP and the efficiency of its solvers makes
ASP a popular approach for solving combinatorial search problems. ASP has found
applications in a wide range of areas, including cryptography [11], hardware design
[15], data mining [20], the space shuttle decision system [20], bioinformatics [13,
19, 29] and many others [14, 26].

FASP extends the expressiveness of ASP by allowing the use of fuzzy logic in
place of Boolean logic. The use of fuzzy logic in FASP means that predicates can
have a continuum of possible truth degrees (usually taken from [0, 1]), rather than
the discrete choices false and true. This enables the use of an ASP-like declarative
specification of problems involving continuous variables. As a simple toy example,
consider the problem of deciding whether to give a generous tip in a restaurant,
depending on the quality of the food and service, as follows:

good_food ← not bland (3)

generous ← good_food ⊗ good_service (4)

Here, it can be more natural to express criteria such as bland and good_service as
gradual properties. The truth degree of e.g. bland then expresses to what extent the
property is satisfied. These truth degrees can them be combined using fuzzy logic
operators.

3 Syntax and Semantics of FASP

Several different variants of FASP have been considered by different authors. Here
we will focus on the variant studied in [8], whose semantics is based on Łukasiewicz
logic. Similar to ASP, FASP assumes the availability of a set of propositional atom
symbols, BP . Alternatively, we can also consider a first-order syntax with predicate
symbols, in which case, BP is the set of ground atoms obtained from the available
predicate and constant symbols.Grounding is essentially the process of replacing the
variables occurring in any predicate symbols with the available constant symbols. A
(classical) literal is either a constant symbol c where c ∈ [0, 1] ∩ Q, an atom a or a
classical negation literal ¬a. An extended literal is a classical literal l or a negation-
as-failure (NAF) literal not l. Intuitively, classical negation differs from NAF in that
the former expresses our knowledge about something being not true, whereas the
latter expresses our inability to prove that something is true.

A head/body expression is a formula defined recursively as follows:

• any classical literal is a head expression;
• any extended literal is a body expression;
• if α and β are head (resp. body) expressions, then α ⊗ β, α ⊕ β, α � β and α � β

are also head (resp. body) expressions.

A FASP program is a finite set of rules of the form:
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α ← β

where α is a head expression (called the head of the rule) and β is a body expression
(called the body of the rule). As in classical ASP, we write H(r) and B(r) to denote
the head and body of a rule r , respectively. A FASP rule of the form a ← c for a
classical literal a and a constant c is called a fact.

A FASP rule of the form c ← β, with c ∈ [0, 1] ∩ Q is called a constraint. A
rule which does not contain any application of the operator not is called a positive
rule. A rule which has at most one literal in the head is called a normal rule. A
FASP program is called [positive, normal] if it only contains [positive, normal] rules,
respectively. Conversely, a [rule/program] which is not normal is called a disjunctive
[rule/program].Apositive normal programwhich has no constraints is called a simple
program.

The semantics of FASP is usually defined in relation to a chosen truth lattice
L = 〈L ,≤L〉 [7]. We consider two types of truth lattices: the infinitely valued lattice
L∞ = 〈[0, 1],≤〉 and the finitely valued lattices Lk = 〈Qk,≤〉, for an integer k ≥ 1,
where Qk = { 0k , 1

k , . . . ,
k
k }. Such a choice is usually determined by the nature or the

goal of the application. If each proposition can only take a finite number of different
truth levels, then using the Lk would be more appropriate. In this case, FASP is
used for modeling discrete problems, and thus remains very close to classical ASP.
For modeling continuous problems, or if we do not want to fix the number of truth
degrees in advance, we need to use the semantics based on L∞.

For any choice of lattice L (among the considered possibilities L∞ or Lk), an
interpretation of a FASP programP is a function I : BP → Lwhich can be extended
to expressions and rules as follows:

• I (c) = c, for a constant c ∈ L
• I (α ⊗ β) = max(I (α) + I (β) − 1, 0)
• I (α ⊕ β) = min(I (α) + I (β), 1)
• I (α � β) = max(I (α), I (β))

• I (α � β) = min(I (α), I (β))

• I (not α) = 1 − I (α)

• I (α ← β) = min(1 − I (β) + I (α), 1)

for appropriate expressions α and β. Here, the operators not, ⊗, ⊕,�,� and ←
denote the Łukasiewicz negation, t-norm, t-conorm, maximum, minimum and impli-
cation, respectively.

An interpretation I is consistent iff I (l) + I (¬l) ≤ 1 for each l ∈ BP .We say that
a consistent interpretation I of P satisfies a FASP rule r iff I (r) = 1. This condition
is equivalent to I (H(r)) ≥ I (B(r)). An interpretation is amodel of a programP iff it
satisfies every rule of P . For interpretations I1, I2, we write I1 ≤ I2 iff I1(l) ≤ I2(l)
for each l ∈ BP , and I1 < I2 iff I1 ≤ I2 and I1 �= I2. We call a model I of P a
minimal model if there is no other model J of P such that J < I .

For a positive FASP program P , a model I of P is called a fuzzy answer set
of P iff it is a minimal model of P . For non-positive programs, a common way
to define the answer set semantics, in the case of classical ASP is to the so-called
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Gelfond-Lifschitz (GL) reduct to transform the program into a positive one, given a
guess of which atoms are true. For a non-positive FASP program P , a generalization
of the GL reduct was defined in [10, 23] as follows: the reduct of a rule r w.r.t. an
interpretation I is the positive rule r I obtained by replacing each occurrence of not a
by the constant I (not a). The reduct of a FASP program P w.r.t. an interpretation I
is then defined as the positive program P I = {r I | r ∈ P}. A model I of P is called
a fuzzy answer set of P iff I is a fuzzy answer set of P I . The set of all the fuzzy
answer sets of a FASP program P is denoted byANS(P). A simple FASP program
has exactly one fuzzy answer set. A positive FASP program may have no, one or
several fuzzy answer sets. In particular, disjunctive rules can generate many fuzzy
answer sets, in general. A FASP program is called consistent iff it has at least one
fuzzy answer set, and inconsistent otherwise.

Example 1 Consider the FASP program P1 which has the following rules:

{a ← not c, b ← not c, c ← a ⊕ b}

It can be seen that under both the truth-lattice L3 and L∞, the interpretation I1 =
{(a, 1

3 ), (b,
1
3 ), (c,

2
3 )} is a minimal model of P I1

1 , and hence it is an answer set of
P1. However, the program admits no answer sets under any Lk , where k is a positive
integer not divisible by 3.

Once a problem has been specified, or encoded, as a FASP program, the next main
steps are (1) to automatically determine the answer sets of the FASP program, and
(2) to map them back to solutions of the original problem. These steps are explained
in the following sections.

4 Solving FASP Programs

In this section, we describe the method we proposed in [27, 28] for finding the
answers sets of a FASP program. Given that there are already several quite mature
ASP solvers, such as clasp [18] and DLV [25], a natural strategy is to reduce the
problem of evaluating a FASP program (i.e., finding its answer sets) to the problem of
evaluating one or more classical ASP programs. The overall structure of our method
is summarized in Fig. 3.

The first step is to rewrite the FASP program into a more standardized form,
which simplifies the subsequent steps. The strategy then depends on whether the
program is disjunctive or not. Non-disjunctive programs are generally easier and
more efficient to evaluate. In this case, we simply perform the translation to ASP and
then utilize an ASP solver to find answer sets of the translated program, which in turn
correspond to the fuzzy answer sets of the original program. In the case of disjunctive
programs, two different cases are considered, as we explain below. Interested readers
are invited to read [27, 28] for more details about the proposed FASP solver. The
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Fig. 3 Overall structure of the proposed solver

proposed approach has been implemented and is available at https://github.com/
mushthofa/ffasp.

4.1 Non-disjunctive Programs

We start by simplifying the syntax of a FASP program into a simpler form where
there is at most one application of a connective ∗ from {⊗,⊕,�,�} in any rule.
Intuitively, this can be done by substituting a compound expression in the rule with
a fresh atom symbol, and then defining a rule for the new atom symbol accordingly.
For example, the rule

a ← b ⊕ (c ⊗ not d)

can be substituted by the following set of rules

a ← b ⊕ p

p ← c ⊗ r

r ← not d

It can be shown [27] that we can always transform a FASP program P into the
required form, and that the size of the rewritten program is O(n · m), where n is the
number of rules in P and m is the maximum number of atom occurrences per rule
in P .

https://github.com/mushthofa/ffasp
https://github.com/mushthofa/ffasp
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As mentioned previously, the main idea we proposed for evaluating FASP pro-
grams is to reduce the problem of finding the answer set of of FASP programs into
that of finding the answer sets of ASP programs, which in turn can be performed
efficiently using currently available solvers. For finding the answer sets of FASP
programs in a truth lattice Lk , for a given k, we have proposed a method to translate
any non-disjunctive FASP program (that has been rewritten into the simple form
described above) into an ASP program such that the answer sets of the ASP program
correspond to the answer sets of the FASP program inLk . For the finding answer sets
of FASP programs in L∞, we employ the following strategy: perform the translation
and evaluation using ASP by considering different values of k until an answer set is
found, or until a certain stopping criteria is met. In this case, we need only to consider
the values of k which are compatible with the constants found in the program (e.g.,
if a constant 1

3 appears in the program, then it would be reasonable to choose only
the values of k which are divisible by 3).

The translation procedure from FASP to ASP for a given k can be explained as
follows (interested readers can obtainmore information in [27]). First, for every atom
a in the FASP program, we create up to k atom symbols ai , 1 ≤ i ≤ k in the ASP
program to denote the fact that atom a has a truth value of at least i

k . Then, given a
FASP rule, we create a (set of) ASP rule(s) that “simulate” the rule at different truth
values 1, . . . , k. For example, a simple FASP rule of the form

a ← c

with c ∈ (0, 1] can be translated into a single rule

a j ←

where j = k ∗ c. A FASP rule of the form

a ← b ⊕ c

can be translated into the set of ASP rules

{ai ← b j ∧ ck− j+i | 1 ≤ i ≤ k, i ≤ j ≤ k}

which can be intuitively understood as enforcing that the truth value of a should be
at least as large as the sum of the truth values of b and c. The full translation scheme
is given in [27]. To complete the translation, we must add the set of rules

{ai ← ai+1 | 1 ≤ i ≤ k − 1}

for every atom a in the original FASP program to ensure that the atoms ai are
consistent with the interpretation that the truth value of a is at least i

k . We can show
that the resulting ASP program produces answer sets which correspond to the answer
sets of the original non-disjunctive FASP program [27].
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4.2 Disjunctive Programs

The approach proposed above to evaluate FASP works well for non-disjunctive pro-
grams, i.e., programs without any applications of the operator ⊕ in the head of the
rules. For disjunctive FASP programs, the approach can still be applied to find all
answer sets with rational truth values (i.e., it is complete). However, this method may
result in more than just the answer sets (i.e., it is not sound), as shown in the example
below.

Example 2 Consider the following program, {a ⊕ b ← 1, a ← b, b ← a}. The
finite-valued answer set obtained by applying the translation method to this pro-
gram using k = 1 is A1 = {(a, 1), (b, 1)}. In this case, it is true that A1 is an answer
set of the program under L1. However, A1 is not an answer set of this program under
L∞. In fact, the only answer set of the program in L∞ is A2 = {(a, 0.5), (b, 0.5)},
which can be obtained using k = 2.

The example shows that, given a FASP programP , the translationmethod can poten-
tially produce an answer set of P in Lk , for a certain k, which is not necessarily an
answer set of P n L∞. The problem, as illustrated by the example, is that the trans-
lation method may return “answer sets” which are not minimal under L∞. We can
see that A2 < A1 in Example 2, and at the same time, A2 is a model of the reduct
of the program w.r.t. A1, and thus A1 is not minimal. In [28], it was shown that it is
sufficient to add an extra step to check for the minimality of any answer sets obtained
from the translation method.

Since this extra check of minimality may be costly, we try to avoid it as best as
possible by identifying cases where we can transform a disjunctive program into a
non-disjunctive one. InASP there is an operation called “shifting”, which can be used
to transform certain disjunctive programs into equivalent non-disjunctive programs
[5, 12]. In [28], we describe a similar transformation for FASP programs, which
works for a class of programs called Self-Reinforcing Cyclic-Free (SRCF) programs.
Essentially, SRCF means that we can stratify the “support” in each derived atoms,
and that there is no cycle of support for these atoms. For such programs, we can then
perform the “shifting” operations, as illustrated in the following example.

Example 3 Consider program P2 = {a ⊕ b ←, a ← b, b ← a}. It can be checked
that P2 is equivalent with the program shi f t (P2) as follows:

a ← not b

b ← not a

a ← b

b ← a

and both have the answer set {(a, 0.5), (b, 0.5)}. However, the program P2 ∪ {a ←
a ⊕ a} is not equivalent to shi f t (P2) ∪ {a ← a ⊕ a}, because the former has the
answer set {(a, 1), (b, 1)}, while the latter does not have any answer sets.
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5 An Application of FASP in Biological Network Modeling

In this section, we illustrate an application of FASP in the domain of computational
biology, specifically in modeling the behavior of Boolean and multi-valued gene
regulatory networks and computing their attractors. In biological systems, many
phenotypic traits are coordinated by a set of genes interacting with each other. For
simplicity, we can regard each gene as a switch that can be either turned on or turned
off, representing the condition that the genes can be either expressed or not expressed.
Furthermore, each gene may regulate the states of some other genes, forming a so-
called Gene Regulatory Network (GRN). To understand the underlying mechanism
of a certain phenomenon of a biological system, one often needs tomodel theGRN(s)
that may contribute to it.

One of the formal tools used tomodel the behavior of suchGRNs is calledBoolean
network. Informally, a Boolean network is a set of nodes, representing the genes,
and a set of edges between the nodes, representing the interactions between the
genes. Each node is a Boolean variable, while the interactions between the genes
are usually described as a Boolean function over a set of nodes, usually called the
activation function. The activation function of a node determines what value a node
should take, given the values of all the nodes that regulate it.

The state of the network is the set of values that each node takes. Given a Boolean
network with n nodes, obviously there are exactly 2n possible states. If the Boolean
network is currently on state Si , then by applying all the activation functions in the
network, we get a new state for the network, say Sj . Such a process is called a state
transition of the network.Weusually consider twomodes of transition: a synchronous
transition, where all nodes are updated simultaneously, and an asynchronous transi-
tion, where nodes are update sequentially. A graph that shows all the possible states
of a network and all the transitions between these states is called a State Transition
Graph (STG). Since the number of states are finite, after a finite number of transitions
(e.g., k), the network returns to the initial state, i.e., the trajectory of the network is
always of the following form: S1 → S2 → · · · → Sk where Sk = S1. An attractor is
a set of states 〈S1, S2, . . . , Sk〉 such that there is a series of transitions of the form
S1 → S2 → · · · → Sk where Sk = S1 and such that Sk = S1. The number of k − 1 is
called the size of the attractor. An attractor of size 1 is also called a steady state. We
refer to [22, 24, 30, 31] for a more thorough discussion regarding Boolean networks.

In some cases, representing the state of a genewithBoolean values is not enough to
fully capture the important behavior of a biological system [16, 21]. A multi-valued
network is a natural extension of Boolean networks where we allow the nodes to
have a range of possible values, intuitively capturing the levels of expression of each
gene. Consider the following example.

Example 4 We describe the multi-valued network regulating the production of
mucus in Pseudomonas aeruginosa as mentioned in [21]. The network has two
nodes, namely x and y, with x having three possible values: 0, 1 or 2, and y having
only two values: 0 or 1. The node x is negatively-regulated by node y and positively
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Table 1 Regulatory relationship in the P. aeruginosa mucus development network

No. x(t) y(t) x(t + 1) y(t + 1)

1 0 0 1
2 0

2 0 1 0 0

3 1
2 0 1

2 1

4 1
2 1 0 1

5 1 0 1 1

6 1 1 1 1

Fig. 4 State transition graph
for the network of P.
aeruginosa using the
synchronous update

by itself, while y is positively-regulated by x . The input-output relationships between
the two nodes, as given in [21], are shown in Table1.

Based on the regulatory relationships between the nodes, the state transition graph
of this network is as shown in Fig. 4. From the state transition graph, we see that the
network has one steady state, namely 〈1, 1〉, and one cyclic attractor of size 4.

Similar as for Boolean networks, for multi-valued networks, we are mainly inter-
ested in the steady states and the attractors of the network. In [29], ASP was used to
encode the problem of finding the steady states and attractors of Boolean networks.
Naturally, FASP can be used to encode the problem of finding the steady states and
attractors of multi-valued networks.We first tackle the easy case of finding the steady
states of a multi-valued network. As it turns out, the steady states of a Boolean/multi-
valued network under synchronous and asynchronous update are exactly the same
[9, 17], and hence, the following approach works for both cases. First, for every
node in the network, we consider two fuzzy propositional atoms px and p′

x . The
former represents a possible “guess” on a the activation level of node x , while the
latter represents the inferred activation level after taking into account the regulatory
interaction between the nodes. Intuitively, if both values are equal for all the nodes,
then the guessed state is a steady state. First, we write the following rules:

px ⊕ nx ←
0 ← px ⊗ nx

Intuitively, these rules generate the guess for all the possible states in the network,
by generating all possible guesses of the truth values of px . The proposition nx is
just used to generate all the possible values as the complement of px .
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We then encode the interaction between nodes by creating a rule for every node
x , where the head of the rule is the propositional atom p′

x associated with the node,
while the body corresponds to the direct translation of the fuzzy logic function for
the update rule of x , replacing the occurrences of the negation symbol¬with FASP’s
default negation not. The following example illustrates the method.

Example 5 Consider the network of P. aeruginosa given in Example 4. Since the
network consists of two nodes, x and y, the initial guessing rules for the nodes’
values can be written as

x ⊕ nx ← 1

0 ← x ⊗ nx

x ⊕ ny ← 1

0 ← y ⊗ ny

Since we need y to be Boolean, we add the following rule:

y ← y ⊕ y

The regulatory relationships between the nodes x and y in the network (as given by
Table1) can be captured by the following update functions expressed in Łukasiewicz
formulas:

f1(x, y) = (max(x, 1
2 ) ⊗ ¬y) ⊕ z

z = (x ⊗ 1
2 ) ⊕ (x ⊗ 1

2 )

f2(x, y) = x ⊕ x

where z is an auxiliary variable.1 We thus construct the following FASP rules to
represent the update on each node.

x ′ ← (max(x, 1
2 ) ⊗ not y) ⊕ z

z ← (x ⊗ 1
2 ) ⊕ (x ⊗ 1

2 )

y′ ← x ⊕ x

Finally, we add the following constraints to find only steady-states:

0 ← x ′ ⊗ not x

0 ← x ⊗ not x ′

0 ← y′ ⊗ not y

1 The variable z is an auxiliary variable only intended to allowus to present amore concise expression
here.
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0 ← y ⊗ not y′

It can be verified that the resulting program has exactly one answer set which contains
{(x, 1), (y, 1)}, corresponding to the only steady state 〈1, 1〉 of the network.

For finding attractors of size≥2,we need to explicitly “simulate” time steps during
the transitions. We can do this by turning the atoms px and nx considered previously
into predicate symbols with a variable parameter T , denoting the time steps. We can
then search for attractors up to certain size (say s) by simulating the transition from
T = 0 up to T = s and check for any repeated states. Details are provided in [33].
Consider the following example.

Example 6 For the network in Example 4, finding the cyclic attractors of size up to
4 can be performed as follows. First, generate a guess for the initial state.

x(0) ⊕ nx(0) ← 1

y(0) ⊕ ny(0) ← 1

0 ← x(0) ⊗ nx(0)

0 ← y(0) ⊗ ny(0)

Since we want node y to be Boolean, we add the following rule:

y(T ) ← y(T ) ⊕ y(T )

We then simulate the updating in each node using the following rules:

x(T + 1) ← time(T ) ⊗ (max(x(T ), 1
2 ) ⊗ not y(T )) ⊕ z(T ))

z(T ) ← (x(T ) ⊗ 1
2 ) ⊕ (x(T ) ⊗ 1

2 )

y(T + 1) ← time(T ) ⊗ (x(T ) ⊕ x(T ))

We then add the following rules for all i = 1, . . . , 4:

ai ← x(0) ⊗ not x(i)

ai ← x(i) ⊗ not x(0)

ai ← y(0) ⊗ not y(i)

ai ← y(i) ⊗ not y(0)

0 ← min(a1, a2, a3, a4)

Intuitively, each ai becomes true if the state at time T = i is equal to the guessed
initial state, which means that we have found an attractor of size i .
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One can check that the resulting programhas exactly five answer sets. One of these
answer sets encodes the static transitions of the steady-state 〈1, 1〉, by having the same
values for x(0), . . . x(4) and y(0), . . . y(4). The other four answer sets encode the
cyclic attractor 〈0, 0〉 ↪→ 〈 12 , 0〉 ↪→ 〈 12 , 1〉 ↪→ 〈0, 1〉 ↪→ 〈0, 0〉, with each answer set
encoding the different initial conditions.

6 Conclusion

In this chapter, we have provided a brief introduction to recent developments in Fuzzy
AnswerSet Programming (FASP),which is an extensionofAnswerSet Programming
(ASP), a well-known declarative programming paradigm for encoding and solving
combinatorial search and optimization problems. FASP extends ASP by allowing
fuzzy/many-valued predicates in its programs, making it more suitable to encode
problems in continuous domains. Despite the promising theoretical aspects of FASP,
it is still lacking behind in terms of applicability, in comparison toASP. This ismainly
because of the—until recently—limited availability of efficient methods to evaluate
FASP programs, whereas efficient solvers for ASP have been around for quite some
time.

Our recent work contributes to reducing the gap by proposing new methods to
efficiently evaluate FASP programs. We first described how non-disjunctive FASP
programs can be efficiently translated into ASP programs whose answer sets corre-
spond to answer sets of the original FASP programs. This opens up the possibility
of using current ASP solvers to evaluate FASP programs. We then showed that dis-
junctive FASP programs can subsequently be evaluated by adding an extra step of
checking the minimality of candidate answer sets returned by the translation method.
We also showed how this minimality check can be performed by encoding the prob-
lem into a MIP problem that can be solved by off-the-shelf MIP solvers. Finally,
we described an application of FASP in the biological domain, namely modeling
and computing the trajectory of multi-valued networks to study the behavior of gene
regulatory networks. The availability of our solver paves the way for the use of
FASP to tackle other real life combinatorial search problems in continuous domains,
thereby taking the work on FASP from a study of its theoretical foundations into the
development of practical applications.
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Impact and Applications of Fuzzy
Cognitive Map Methodologies

Chrysostomos D. Stylios, Evaggelia Bourgani and Voula C. Georgopoulos

Abstract Since their introduction in 1986, Fuzzy Cognitive Maps (FCMs) have
been comprehensively studied, applied, and extended with growing interest and are
still expanding in use. This chapter discusses the impact of Fuzzy Cognitive Maps
as a knowledge acquisition, knowledge reasoning and modeling methodology, on
its own, and in synergy with other soft computing, computational intelligence and
knowledge-based methodologies. It discusses the general structure and development
of FCMs and their topologies as well as extensions to fill specific problem needs. The
extensive application areas are also presented along with future research directions.

Keywords Fuzzy · Fuzzy cognitive maps · Soft computing

1 Introduction

In the real world, despite people’s preference for precision and accuracy, informa-
tion, variables and values are frequently estimated and they are characterized either
as fuzzy or belonging to an interval [22]. Much attention is put on handling the
characterization of a variable and not its precise value, in order to reach a conclu-
sion, which has led to approaches such as Internal Analysis, Fuzzy Cognitive Maps
(FCM) and others. Here, we focus on Fuzzy CognitiveMapsmethodologies and their
contribution in facing real world problems and cases [7, 8].

Fuzzy cognitive maps use fuzzy logic, a form of multi-valued logic in which
the truth values of variables may be any real number between a range of numbers.
This “logic” is closer to human representation since linguistic variables are often
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used when describing quantities of variables [47]. Thus, the values of such variables
incorporate all the parameters that a characterization of a situation can have. It is
employed to handle the concept of partial truth, where the truth value may range
between completely true and completely false [23].

FCMs have gained considerable research interest due to their ability in repre-
senting structured knowledge and in modeling complex systems. Many researchers
have carried out extensive studies on different aspects of FCMs. Generally speak-
ing, Fuzzy Cognitive Maps (FCMs) is a soft computing technique used for causal
knowledge acquisition and causal knowledge reasoning. FCMs’ modeling approach
resembles human reasoning; it relies on human expert knowledge for a domain, mak-
ing associations in terms of generalized relationships between domain descriptors,
concepts and conclusions [25]. FCMs model any real world system as a collection
of concepts and causal relation among concepts.

We have gathered and illustrated the main keyword appearance in article titles,
abstracts and keywords based on frequency of their reference. Based on that, Fig. 1
was inferred. It illustrates the main labeling and characteristics found in published
Fuzzy Cognitive Maps related papers. The size of words shows the frequency of the
corresponding keywords.

Figure 2 illustrates a more detailed representation of the main attributes referred
to FCMs, which is the result of excluding the words of fuzzy cognitive maps and
cognitive maps, as their presence frequency is omnipresent in existing papers, being
so great, that do not let the remaining keywords be visible enough.

If someone examines Fig. 2, they will infer interesting conclusions about Fuzzy
Cognitive Maps: (a) what are the most essential characteristics of this theory, (b)
what kind of approach it is, (c) what is the research field that it belongs to, (d) with
which other approaches it is complementary, (e) which is its main contribution, and
(f) where it has been applied. Figure 2 could be considered as having high entropy
because the names and the strength of the presented keywords have a great amount
of information for the reader.

Fig. 1 Graphic presentation of keywords that characterize fuzzy cognitive maps according to their
frequency presence
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Fig. 2 A detailed Fig. 1, by excluding the words “fuzzy cognitive maps” and “cognitive maps”

In this chapter, we present information for the evolution of FCM methodology
in order to review and discuss it critically. Actually, it describes the FCMs from
its roots till today, it presents all the different FCMs methodologies that have been
proposed and a comparison and evaluation of them. The ambition of this study
is to inaugurate a further adoption and usage of Fuzzy Cognitive Maps and their
extensions. We firstly refer to the increasing need for adaptable and efficient FCM
approaches. Section 2 describes the generic structure of FCMs and then Sect. 3
presents designing of FCMs based on experts and improving FCM by learning. The
main direction on generalizing FCMs is presented regarding topology/structure in
Sect. 4. Section 5 presents synergies with other technologies while Sect. 6 discusses
the extended applicability and usefulness of FCMs since their inception in various
areas. Finally Sect. 7 concludes this chapter and proposes future research directions.

2 Generic Structure of FCM and Its Development

Fuzzy Cognitive Map (FCM) is a soft computing modeling technique, which orig-
inated from the combination of Fuzzy Logic and Neural Networks. At first, Axel-
rod [2] introduced Cognitive maps as a formal way of representing social scientific
knowledge and modeling decision making in social and political systems. Later on
Kosko [19] enhanced cognitive maps considering fuzzy values for them, introducing
partial causality among concepts that allows degrees of causality and not the usual
binary logic. A Fuzzy Cognitive Map describes a system in a one-layer network
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whose interconnected nodes are assigned concept meanings and the interconnection
weights represent cause and effect relationship among concepts. The FCM approach
is used for causal knowledge acquisition and representation; it supports the causal
knowledge reasoning process and belongs to neuro-fuzzy systems that aim at solving
decision making problems, modeling and control problems.

FCM is an illustrative causative representation for the description andmodeling of
any system. FCMs are dynamical, fuzzy signed directed graphs, permitting feedback,
where the weighted edge wij from causal concept Ci to affected concept Cj describes
the kind and amount by which the first concept influences the latter, as is illustrated in
Fig. 3. Experts design and develop the structure of the system, including the “nodes”
(i.e., concepts) that correspond to variables, states, factors and other characteristics
that are used to model and describe the behavior of the system. They determine the
network’s interconnections, using linguistic variables to describe the relationships
among concepts. Then all the proposed influences from experts are combined and
aggregated and thus, the initial weights are determined. Next learning methods are
introduced so that to ensure that the FCM will converge to an equilibrium point.

The weight of the arc between one concept and another could be positive (Wi j >

0), which means that an increase in the value of first concept leads to the increase of
the value of the interconnected concept; and a decrease in the value of first concept
leads to the decrease of the value of latter concept. When there is negative causality
(Wi j < 0) an increase in the value of the first concept leads to the decrease of
the value of the latter concept and vice versa. Finally, there may be no causality
(Wi j = 0).

The value Ai of concept Ci expresses the degree of its corresponding physi-
cal value. FCMs are used to model the behavior of systems; during the simulation
step, the value Ai of a concept Ci is calculated by computing the influence of the
interconnected concepts C j ’s on the specific concept Ci following the calculation
rule:

A(k+1)
i = f

⎛
⎜⎜⎝

N∑
j �=i
j=1

A(k)
j · wji

⎞
⎟⎟⎠ (1)

Fig. 3 The general FCM
model
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where A(k+1)
i is the value of concept Ci at simulation step k + 1, A(k)

j is the value
of concept C j at simulation step k, wji is the weight of the interconnection from
concept C j to concept Ci and f is the sigmoid threshold function:

f = 1

1 + e−λx
(2)

where λ > 0 is a parameter that determines its steepness. The sigmoid function is
selected since the values Ai of the concepts have to in the interval [0, 1], where
concepts take values.

Equation (1) does not take into consideration the possiblememoryof each concept,
so the value Ai for each concept Ci is finally calculated by the following rule:

A(k+1)
i = f

⎛
⎜⎜⎝Ak

i wii +
N∑
j �=i
j=1

A(k)
j · wji

⎞
⎟⎟⎠ (3)

It is mentioned that the model presented in Eq. 3 and illustrated in Fig. 4, is
characterized by high memory abilities, especially in the case that wii = 1, because
at every running step k + 1 it is considered the total value of concept A(k)

i at step
k. Especially, in the case that all the concepts have self-weights then the value of
concepts is just slightly updated by the interconnected concepts.

One of the main strengths of Fuzzy Cognitive Maps was the introduction of
linguistic variables. That means, the influence between concepts is described with
linguistic weights, which according to the construction methodology are aggregated
so that at the end a linguistic weight is inferred to describe the influence of one
concept to the other. The overall linguistic weight using a defuzzification method is
transformed into a numerical weight in the interval [−1, 1] [32].

Learning algorithms have been proposed for training and updating FCMsweights.
Adaptation and unsupervised learning methodologies are used to adapt the FCM

Fig. 4 The FCM including
concept memory
characteristics
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model and adjust its weights. Kosko and Dickerson suggested the Differential Heb-
bian Learning (DHL) to train FCM, but without a detailed mathematical formulation
or implementation at a specific problem [10].

The Differential Hebbian Learning (DHL) proposed unsupervised learning for
the case of bivalent FCMs. The DHL law correlates the changes of two concepts,
if value of concept Ci changes at the same direction with value of concept C j (e.g.
Ci increases when C j increases), the edge strength wi j between the two concepts is
increased; otherwise the edge strength is decreased. At each time step t, the value for
weight wi j , the linkage between concept Ci and concept C j , is given by the discrete
version of the DHL law:

w(k+1)
i j = w(k)

i j + μt (�C (k)
i · �C (k)

j − w(k)
i j ) (4)

where �Ci is the change in the value of i-th concept, in other words �C (k)
i =

C (k)
i − C (k−1)

i . The learning coefficient μk decreases slowly over time, with the
following equation [20]:

μk = 0.1

[
1 − k

1.1N

]
(5)

where the positive constant N ensures that the learning coefficientμk never becomes
negative.

Then many researchers followed the same path and adapted Hebbian Learning
algorithms for FCMs. A first attempt was the introduction of DHL approach [17],
called Balanced Differential Algorithm (BDA). BDA seemed to work better in learn-
ing patterns and modeling a given domain than the classical DHL approach, but it
worked only to binary FCMs.

Activation Hebbian Learning (AHL) and Nonlinear Hebbian Learning (NHL)
are two unsupervised weight adaptation techniques that were applied on the basic
FCM model [30, 31]. Both AHL and NHL have been introduced to fine-tune FCM
causal linkages among concepts. Both algorithms successfully updated FCMs and
led to establish FCMs as a robust technique that could further improve the good
knowledge of a given system or process. They updated the initial information and
experts’ knowledge achieving to keep the values of output conceptswithin the desired
bounds for the examining problem. These learning techniques contributed to the
establishment of FCM as a robust technique, that can efficiently update the cause–
effect relationships among FCM concepts and their effectiveness in real modeling
problems [32]. New advanced algorithms have been proposed for FCM training
with successful results as proved for the applications in different areas. Learning
algorithms have been based on the basic Hebbian algorithm or come from other
fields, such as genetic algorithms, swarm intelligence and evolutionary computation
[27, 34].
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3 Design FCMs Based on Experts

Initially,whenAxelrod introduced cognitivemaps in the 1970s for representing social
scientific knowledge, he presented the adjacency matrix representation of cognitive
maps. As cognitivemapswere too binding for knowledge-based building, Kosko pro-
posed Fuzzy Cognitive Maps introducing fuzziness for the general causality [19].
The knowledge acquisition is inherent in the approach of building cognitive maps but
the fuzziness of the combined knowledge rises to the level of the fuzziest knowledge
source. It presented the difference between the expert systems and the non-linear
dynamical nature of FCMs. Kosko introduced the combining fuzzy knowledge net-
works and proposed the augmented FCMs, which comes from the combination of
particular FCMs from different experts [20], while at the same time he proposed
the unsupervised Hebbian learning for training FCMs. Knowledge base quality is
hard to quantify and guidelines are elusive. In 1991 a new approach was proposed to
take under consideration the credibility weight [47], where every expert has his own
knowledge, experience and way of solve different problems.

A significant contribution on structuring Fuzzy CognitiveMaps, investigating and
proposing a set of developing methodologies for FCMs based on human experts who
use fuzzy rules to explain the cause and effect among concepts were introduced in the
late 90’s [42, 43, 45]. Newmathematical descriptions of FCMswere also investigated
along with their implementation for modeling and control complex systems [44, 46].
This put the Soft Computing technique of Fuzzy Cognitive Maps in the center of
interest of a wide audience and thrust FCMs’ investigation and application in a wide
range [26].

A Fuzzy Cognitive Map (FCM) could be built by a group of experts, using an
interactive procedure of knowledge acquisition. Every expert is asked to define the
main concepts that should be present at the FCM based on his knowledge and expe-
rience on the operation of the system. A concept can be a characteristic, a state or a
variable or input or an output of the system. An expert has in his mind a conceptual
model of the system, which consisted of the main factors that are crucial for the
modeling of the system and he represents each one by a concept. In addition to this,
he has a subjective understanding on which elements of the system influence other
elements; by which kind and to what degree. So he is able to infer regarding the
negative, positive or zero effect of one concept on the others. Moreover, he is able to
assign a linguistic value for each interconnection, since it is assumed that there is a
fuzzy degree of causality between concepts.

To acquire the knowledge and experience of a group of experts the following
methodology is applied. All experts are polled together and they determine the rel-
evant factors, the main characteristics of the system and thus the concepts consist-
ing the Fuzzy Cognitive Map. Then, each expert individually determines the struc-
ture of the FCM using fuzzy conditional statements to describe the relationship of
one concept to the other. Every expert uses an IF-THEN rule to justify the cause
and effect relationship among two concepts and infer a linguistic weight for each
interconnection.
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A fuzzy rule of the following form is assumed, where X, Y, Z are linguistic
variables:

IF an X change occurs in the value of concept Ci THEN a Y change is caused in
the value of concept C j . Thus, influence of concept Ci to concept C j is Z.

Thus, every expert is forced to infer a rule and to assign a linguistic value (weight)
for the relationship between the two concepts. So the causal relationship is described
by a fuzzy rule, which gives the grade of causality between concepts and so the
corresponding weight is inferred. Then, the set of weights of each interconnection
are integrated and a defuzzification method is used to produce a numerical weight
for the interconnection. In fuzzy logic literature many methods for defuzzification
have been proposed, such as the popular method of Center of Area, which is used
here and the produced numerical weight will belong to the interval [−1, 1].

As an example, the case where experts describe the relationship among two con-
cepts is depicted at Fig. 5. Every expert describes the relationship among twoconcepts
using a fuzzy rule and he infers a linguistic variable for the corresponding weight
that then are all aggregated to describe the specific relationship resulting in the whole
structure.

Novel integrated approaches on developing Fuzzy Cognitive Maps by combining
human expert knowledge with existing recorded information and historical data have
been proposed [41]. They combine the extraction of information from unstructured
data, which is transformed into knowledge as a FCM along with exploiting the
knowledge and expertise of experts by providing them with more information and
supportive data, in the form of particular evidence-based information available in the
literature in order to better justify their selections [26].

Fig. 5 The procedure to
develop FCM structure
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4 Generalization of FCM Topology and Design

The primary FCM model introduced by Kosko has been used as a basis, but new
FCM generalized structures aiming to more computational effectiveness and objec-
tiveness have been developed. It has been combinedwith other approaches to produce
effective models that achieve better results for various applications in different areas.
Additionally, computational methods and algorithms have been introduced that take
advantage of historical data to create more dynamic FCMs models. Semi-automated
methods require a relatively limited human intervention, whereas fully automated
approaches are able to compute the FCM solely based on the historical data, that is,
without human input [38, 39].

There are two main extensions, the first one includes the models that have been
developed with interference to the basic FCM structure and are oriented to enhance
the characteristics that affect the final result. They also use fuzzy sets and/or similar
approaches and they can calculate new weights and elements and/or they try to
measure the uncertainty and hesitancy. In addition to this, hybrid models have been
developed that combine different technologies from different areas and they manage
to make a more effective and realistic model, improving the characteristics of the
basic FCM model [24]. A second generalization approach includes the basic FCM
structure and the use of training algorithms to change and update their weights,
leading to better and/or faster results.

4.1 Enhancement, Generalization of Individual Units
and New Topologies (Architectures)

There is a series of enhancements and extensions to FCMs mainly based on various
artificial intelligence techniques:

RuleBased FuzzyCognitiveMap (RBFCM) is a standard rule based fuzzy system,
where someone can add feedback and mechanisms to deal with causal relations [5,
6]. It consists of fuzzy nodes and fuzzy rules, which relate and link concepts. Each
concept is permitted to have many membership functions that they represent either
the concept’s possible values or possible values of its change. The evolution of the
system is iterative. The RB-FCM is an approach for modeling the evolution and
stability of the entities that compound a domain of study. The RB-FCM simulates
the system’s dynamics from a qualitative and causal perspective.

The main characteristic of the RBFCM methodology is that it introduces a fuzzy
operation, the Fuzzy Carry Accumulation (FCA), which accumulates the inferences
to each concept from the other concepts and then based on the calculated result of
effects allows the introduction or removal of rules among concepts in the existing
model, making the system dynamic [5, 6, 9].

Dynamical Cognitive Network (DCN) is another extension to FCMs. Miao et al.
introduced a mechanism that can quantify the description of concepts with the
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required precision and the strength of the causality among concepts [28]. This is
the first model that separates the three fundamental elements of a causal system:
the cause, the causal relationship and the effect. DCN was designed to enhance the
dynamic aspect of the system as causal inference systems are dynamic in nature.

DCNs take into account the direction of the causal relationship, the strength of the
cause, and the degrees of the effect. A general DCN describes not only the strength
of causes, impacts, and effects, but also the dynamics of how the impacts are built
up. DCNs tried to overcome the lack of time for FCMs by introducing the temporal
concept. Miao et al. introduced the dynamic functions for the arcs to represent the
dynamic and temporal effects of causal relationships. Later on, they referred to the
transformation and succeeded equivalence between DCNs and FCMs, which makes
easier the way that a designer familiar with FCM can use the simplified DCN [29].

Competitive Fuzzy Cognitive Maps (CFCMs) were introduced [11] for the use of
FCMs in decision support. In CFCMs there are factor nodes (those that contribute to
the decisions and interact with other factor nodes) and the decision nodes that accept
inputs from factor nodes and “compete”with the other decisionnodes using inhibitory
(negative-valued feedback) in order to reach a single decision. These networks have
been extensively used in medical decision support [40] when decisions are mutually
exclusive, either in diagnosis or intervention planning.

Fuzzy Cognitive Networks (FCNs) introduced as an extension to the traditional
FCMs [21]. The framework for this model consists of the representation level (the
cognitive graph), the updating mechanism, which receives feedback from the real
system and the storage of the acquired knowledge throughout the operation. Every
node has its one label and they are characterized as control, reference, output, simple
and operation nodes. But, it is possible a node to have more than one label. FCN
reaches always an equilibrium point because it uses direct feedback from the node
values and the limitations imposed by the reference nodes. The nodes of FCN take
as input the desired values, which represent the goals that set for the system. Experts
convey information related to the structure and the corresponding initial weights, thus
the FCN system reaches an equilibrium point. The extracted decisions are applied to
the real system and the feedback of the real system is transferred to the FCN model.

Intuitionistic FCMs (IFCMs) are based on Intuitionistic Fuzzy Sets (IFS), which
enhance the FCM methodology by the introduction of hesitancy factors into the
edge weights. IFS can be viewed as a generalization of fuzzy sets that may better
model imperfect information as Intuitionistic Fuzzy Set (IFS) provides a mathemat-
ical model suitable for modeling the imprecision which is inherent to the real world
problems. IFS is an extension of fuzzy sets introducing an additional degree, which
is the degree of hesitancy (uncertainty). IFSs are comprised of elements character-
ized by memberships and non-memberships values [1]. IFCMs utilize intuitionistic
fuzzy sets and reasoning for handling experts’ hesitancy for decision making [18].
IFCMs use the intuitionistic reasoning, which adds the degree of hesitancy in the rela-
tionships defined by experts. In this way, the experts not only express the influence
between two concepts, but also their hesitancy to express that influence.

Granular Fuzzy Cognitive Maps have been introduced by Pedrycz and Homenda
[35] aiming to better capture the experimental data and facilitate the procedure of
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developing a Fuzzy Cognitive Maps utilizing several sources of knowledge. In these,
the idea of granular connections that are updated following a supervised gradient
based approach was introduced. They are characterized by the dynamic pattern of
states and their propagation of information granularities. Also, a methodology to
develop an overall aggregated Granular Fuzzy Cognitive Map was introduced.

A new extension was the introduction of time series in order to make the FCM a
fully automated and autonomous system [36, 37]. This approach refers to the use of
techniques ofGranular Computing, such as fuzzy clustering to form concepts ofwell-
articulated semantics. Pedrycz et al. introduced a mechanism which uses granules to
represent numeric time series which in turn will give rise to the correspondent nodes
of the FCM.

4.2 Timed Fuzzy Cognitive Maps

Often in modeling systems, phenomena, problems etc., time is a parameter that may
play a vital role in the evolution of the outcome [49]. Timed Fuzzy Cognitive Map
(T-FCM) includes the idea of time and bases the evolution of the cognitive map out-
come on previous time units. This is different from the step by step convergence of a
FCM; it actually inserts the concept of time parameter within the FCM itself taking
into consideration how each parameter may change over time, both in value, as well
as in importance to the outcome. The T-FCM also permits the user intervene on the
overall procedure, by changing values during the time units, while the intermedi-
ate results illustrate the evolution of a case during the time. In order to define the
weights between each interconnection and each time unit, the experts who design the
T-FCM need to recall the progression of the phenomenon being simulated during the
time. They should define the initial weights, denoting which concepts’ dependencies
(weights) have lower or higher influence during the progression of the case. The
direction of this change depends on the contribution of the additional parameters
that may be active or inactive during the progression of a case. That is, during the
time the interdependencies among some factors have different degrees of influence
compared to others and this change depends on both time and the additional param-
eters; interconnections can become weaker or stronger, while some of concepts may
be deactivated and others activated. Therefore, a set of discriminator factors mk are
defined based on the activation or not of parameters. The learning method of the
model is based on the basic FCM training with enhancements, in order to take into
account the time unit and the individual characteristics of the under investigation
model. Thus, in T-FCM the concept of time in the calculation of the next concept
value was inserted and this time unit plays a significant role during the training.
For the T-FCM the interconnections between concepts dtm,t,wij

are dependent on the
weight wij, the case mk and the corresponding time unit t [3].

Specifically, the value Ai of the concept Ci expresses the degree of its correspond-
ing physical value. At each simulation step, the value Ai of a concept Ci is calculated
by computing the influence of other concepts Cj’s on the specific concept Ci on a
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specific time unit for a specific discrimination factor following the calculation rule
(6). Thus,

Ak+1
i (t) = f

⎛
⎜⎜⎝Ak+1

i (t − 1) +
t−1∑
t=1

n∑
j �=i
j=1

Ak
j (t − 1)(dt

m,t,wi j
),m

⎞
⎟⎟⎠ (6)

where Ak+1
i (t) is the value of concept Ci at simulation step k + 1 for a time unit,

Ak
j (t − 1) the value of the interconnected concept Cj at simulation step k, dtm,t,wij

is the weight of the interconnection between concept Cj and Ci, and f is a sigmoid
threshold function.

5 Synergies of FCMs with Other Methods for Improved
Efficiency

Even though there have been a wide variety of statistical, soft computing and knowl-
edge based methods used in synergy with FCMs for learning and convergence, there
are situations where FCMs do not reach a distinct outcome, in models where a single
outcome should result. In this section, two examples of extensions of FCM models
presented in Sect. 4 using synergies with Case Based Reasoning and HiddenMarkov
Models are presented.

5.1 Competitive Fuzzy Cognitive Maps with Case Based
Reasoning

As mentioned in Sect. 4 Competitive Fuzzy Cognitive Maps (CFCMs) have been
used for Decision Support when decisions are mutually exclusive, which is often
the case in medical diagnosis support [14]. However, there are situations where the
CFCM does not converge to clearly distinct outcomes. This is the case when two or
more outcomes in the CFCM converge to final values that do not differ by at least
10%. Since it is of critical importance to have a high degree of confidence in the
decision reached, Case Based Reasoning (CBR) can be used to find cases that are
similar to the particular case [12, 13].

Figure 6 diagrammatically shows the CBR enhanced CFCM Decision Support
Model for medical applications. Here the relevant patient data is input to the CFCM
and the factor concepts take their initial values from this input data. Patient informa-
tion are experimental results, test results, physical examinations and other descrip-
tions of symptoms and measurements of physical qualities. This information can be
described either in numerical values or in fuzzy linguistic weights which are then
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Fig. 6 CBR CFCM algorithm for improved convergence of MDSS

transformed into a numerical weight in the range [0, 1], i.e., the allowable values
for the CFCM concepts. The CFCM runs according to the algorithm described in
[11] and when an equilibrium region is reached the CFCM ceases to interact. Then
the values of the decision/diagnosis concepts are examined to determine if there is
a distinct decision/diagnosis or not. A distinct outcome is inferred, if the value of
a decision concept is surpassing the others by at least 10%, in this case the leading
competitive node is the suggested decision. Otherwise, when the percent difference
between the two leading competitive nodes is less than 10%, then the comparison
made in the “Distinct Outputs” box leads to a “NO” result, activating the CBR com-
ponent. The patient data is then input into the CBR leading to a nearest neighbor
search between the patient data and stored cases. Once a case is found with the mini-
mum distance from the patient case, its decision is used to update the CFCMweights
and the CFCM is run again until convergence is reached with distinct outcomes, as
defined above.

5.2 Timed Fuzzy Cognitive Maps with Hidden Markov
Models

In Timed Fuzzy Cognitive Maps (T-FCMs), when the difference between the values
of decisions concepts is not sufficient to identify a distinct outcome concept, Hidden
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Markov Models (HMM) can be used. A HMM represents probability distributions
over sequences of observations [4]. A sequence of observationsO=O1, O2,…,ON is
set to correspond to the concepts-factor values at the time that system has reached to
the final state. If the results do not show a clear decision, HMMs are called in order
to calculate the probability of the observation sequence given the T-FCM model.
Therefore, FCM in synergy with HMMwill take action in order to indicate the most
probable state for the decision-concept. The synergy with HMM will always reach
to a decision based on the most likely state sequence that produced the observation
in the model. Using HMM, the system will select the most probable state given the
T-FCM model and the sequence of observations. Therefore, this method will lead to
select the most probable decision.

6 Applications Areas

Since the introduction of Fuzzy Cognitive Maps there has been an explosion of
application domains in which they have been utilized from to modeling of social and
behavioral phenomena [19] to process control systems [43] or to medical decision
support [15, 16] and many more.

Figure 7 shows a graph of the number of publications per year from 1985 until
2019 (the last complete year prior to this report) using the Scopus database key-
word search. It shows that from 1995 there has been a rapid growth in the number
of publications. Scopus, has been chosen since it is considered one of the largest
abstract and citation database of peer-reviewed literature: scientific journals, books
and conference proceedings.

Fig. 7 The exponential growth on FCM publications
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Fig. 8 Number of publications per specific application area based on Scopus database

Figure 8 shows the main application areas based on keywords on published works
available in Scopus database. Actually, the general keywords of Computer Science,
Mathematics and Engineering have been excluded, even though they dominate the
number of publications, since they are, by definition, mathematical, computer sci-
ence and engineering methodologies. It is clear that FCMs have been applied to
solve problems in a wide variety of critical areas including business, social sciences,
medicine, agriculture, biology, environment and many more.

7 Main Future Directions

FuzzyCognitiveMaps have proven to be a significantmethodology for causal knowl-
edge acquisition and causal knowledge reasoning. Through synergy of Fuzzy Cog-
nitive Maps with other soft computing, computational intelligence and knowledge-
based methodologies various learning and convergence algorithms have been devel-
oped making them extremely versatile in their use. This is apparent from the expo-
nential growth of publications and the ever-increasing application areas. Two future
directions that are expected to drive the growth of FCMs and applications. The first
is derivation of analytical mathematical models of Fuzzy Cognitive Map learning
and convergence. This will result in improved system dynamics. The second is the
inclusion of time in more FCM architectures will deem FCMs an important tool in
modeling of phenomena and processes where time evolution is of key importance.
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Rigorous Global Filtering Methods
with Interval Unions

Ferenc Domes, Tiago Montanher, Hermann Schichl and Arnold Neumaier

Abstract This paper presents rigorous filtering methods for constraint satisfaction
problems based on the interval union arithmetic. Interval unions are finite sets of
closed and disjoint intervals that generalize the interval arithmetic. They allow a
natural representation of the solution set of interval powers, trigonometric functions
and the division by intervals containing zero. We show that interval unions are useful
when applied to the forward-backward constraint propagation on directed acyclic
graphs (DAGs) and can also replace the interval arithmetic in the Newton operator.
Empirical observations support the conclusion that interval unions reduce the search
domain even when more expensive state-of-the-art methods fail. Interval unions
methods tend to produce a large number of boxes at each iteration. We address
this problem by taking a suitable gap-filling strategy. Numerical experiments on
constraint satisfaction problems from the COCONUT show the capabilities of the
new approach.
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1 Introduction

1.1 Context

Let F : Rn → R
m. Nonlinear systems of equations can be written as

F(x) = 0 (1)

and play a central role in several areas of scientific computing and numerical analysis.
A point x∗ ∈ R

n satisfying (1) is called a root of the system. The task of finding one
or all roots of F under certain conditions is the subject of an extensive literature on
numerical analysis.

If one or more parameters of F are not known exactly but belong to some set
(typically an interval or the finite union of intervals), then we say that the nonlin-
ear system is uncertain. Traditional methods for nonlinear systems are usually not
suitable to tackle uncertainty. Kreinovich gives a pedagogical introduction to this
subject in [13]. He also considered uncertain problems in awide range of applications
like decision making [12, 14], data fitting [17], indirect measurements [11], outlier
detection [16], geophysical tomography [8] among others. We dedicate this paper to
his contributions to uncertain problems

Constraint satisfaction problems (CSPs) generalize nonlinear systems of equa-
tions and ask for one or all admissible solutions of nonlinear equalities or inequalities.
For example,

find x (2)

s.t. [1.0, 1.1]x1 + x2 = 1 (3)

0 ≤ (x1 − [0.5, 1.5]x2)2 ≤ 1 (4)

x1 ≥ 0 (5)

x2 ∈ R (6)

is a constraint satisfaction problem. In the CSP framework, relations (3) and (4) are
called constraints while (5) and (6) are bound constraints. The word find in this
example and throughout the paper denotes the task of finding one solution of the
CSP. However, the methods in this paper can also be used to find enclosures for all
solutions of a CSP.

The point x∗ ∈ R
n is calledweakly feasible if it satisfies all constraints and bound

constraints for at least one configuration of the parameters.We say that x∗ is strongly
feasible if the constraints hold for any choice of parameters. For example, if one fix
the unknown parameters in (3) and (4) to 1.0 and 1

2 respectively, then the column
vector ( 12 ; 1

2 ) satisfies all constraints and bound constraints. Therefore it is a weakly
feasible point for (2) but not a strong one. The problem is infeasible if it has no weak
solution.
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Neumaier [21] classifies the algorithms to solveCSPs into four groups, according
to the degree of rigor. Incomplete methods use intuitive heuristics to find approx-
imate feasible points. Asymptotically complete procedures reach a solution with
probability one if allowed to run indefinitely. Complete methods solve the problem
with certainty, assuming exact computations. Rigorous methods solve CSPs with
mathematical certainty and within given tolerances even in the presence of rounding
errors.

Interval arithemtic methods are commonly used to solve CSPs from a rigor-
ous perspective. Interval arithmetic is a tool from numerical analysis introduced by
Moore in his Ph.D. thesis [19] to automatically evaluate the errors involved in com-
plex calculations. The concept was later extended to prove computational fixed point
theorems (see, for example, [20] and the references therein) and found applications
in several areas. For a survey of interval arithmetic methods, see [21].

This paper considers only factorable functions. The function F is factorable if
one canwrite it as a finite sequence of arithmetic operations and elementary functions.
If the function is factorable then it can be represented in a directed acyclic graph
(DAG) as discussed in [23]. Directed acyclic graphs denote each variable and simple
mathematical operation as a node.

Filtering stands formethods to reduce the search domain in constraint satisfaction
problems. Constraint propagation is a class of filtering that takes the structure
of each constraint into account. Two examples of constraint propagation methods
applied to factorable functions are the forward and backward procedures [23]. In the
forward mode, we propagate the uncertainty through each node of the DAG, starting
from the variables until it reaches each constraint node. The forward procedure is used
to obtain enclosures of the range for each constraint and to reduce the uncertainty in
the parameters of F . In the backward mode, we propagate the uncertainty reversely,
i.e., we walk the graph from the constraints nodes to the variables. The backward
mode is used to reduce the search domain.

The interval Newton operator is a filtering method extensively studied in the
last 40years. It uses first order information of the function F in a rigorous algorithm
that resembles the improvement step of the classical Newton operator. See [20].

1.2 Interval Unions and Related Work

Interval unions are finite sets of closed and disjoint intervals, introduced by [22]
and used to enclose all solutions of linear systems under uncertainty in [18]. Interval
unions extend the interval arithmetic and provide a natural representation of the
solution set of interval power, trigonometric functions, and the division by intervals
containing zero. For example, the solution set of x2 ∈ [4, 9] in the interval space is
[−3, 3]. However, taking the interval union arithmetic into account, we obtain the
better enclosure [−3,−2] ∪ [2, 3].
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Multi-intervals are sets of closed intervals that are not necessarily disjoint [26].
They were introduced byYakovlev [27] and Telerman (see Telerman et al. [25]).
Parallel algorithms for interval and multi-interval arithmetic are the subject of [15].
We review the literature of multi-intervals and their applications in [18].

Another variant of interval unions are the discontinuous intervals by Hyvönen
[9]. They are disjoint unions of closed, half-open, or open intervals. In our opinion,
the extra bookkeeping effort to distinguish between closed and open endpoints is not
warranted in most applications.

1.3 Contribution

This paper presents rigorous filteringmethods based on the interval union arithmetic.
In particular, we discuss the forward-backward constraint propagation and the New-
ton method using interval unions. The central issue associated with interval unions
is the exponential growth in the number of boxes produced after each computation.
We introduce a normalized-gap-filling strategy to handle this difficulty.

We integrate the new methods into GloptLab [1, 2], a rigorous solver for con-
straint satisfaction problems. On the other hand, one can easily implement the algo-
rithms discussed here on any system where an interval library is available. We inte-
grate the newmethods with several state-of-the-art filtering procedures such as linear
and quadratic contraction [4, 5], feasibility verification [6] and constraint aggrega-
tion [7].

Numerical experiments on CSPs from the COCONUT test set [24] indicate that
interval union methods can reduce the search domain even when more sophisticated
approaches fail. The test set consists of 233 small instances, where the number of
variables and constraints are not bigger than 9, and 38 cases medium-sized where
at least one between the number of variables and constraints belongs to the range
[10, 50].

The interval union constraint propagation with no-gap-filling is 15% faster than
the interval method on small and medium-sized problems on average. The difference
rises to 20% if one considers only the last class of instances.

The interval unionNewtonmethodwith the normalized-gap-filling strategy is 10%
faster than the interval one in small instances on average. We found no significant
difference between both arithmetics on theNewton operator applied tomedium-sized
problems.

We conclude from the experiments that the interval union constraint propaga-
tion with no-gap-filling is the best option for small and medium-sized problems. If
one has access to first-order information of the constraints, then the interval union
Newton method with normalized-gap-filling should be the method of choice for
low-dimensional instances.

Weoutline the paper as follows. Section2 introduces the required basics of interval
unions, while Sect. 3 presents the new enhancements for CSPs. Section4 gives an
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overview of GloptLab used in our tests. Numerical experiments are presented in
Sect. 5. We present a supplementary material containing auxiliary Algorithms, and
detailed descriptions of the test problems in:
http://www.mat.univie.ac.at/~montanhe/publications/iucpSup.pdf.

1.4 Notation

This paper employs aMatlab like notation for indices. We write 1 : k to denote the
set of indices {1, . . . , k}. The number of elements in an index set N is given by |N |.

For vectors and matrices, the relations =, ≤, ≥ and the absolute value |A| of the
matrix A are interpreted component-wise. The n-dimension identity matrix is given
by I , the transpose of A ∈ R

n×m is given by AT and A−T is a short for (AT )−1.
We assume familiarity with the fundamentals of the interval arithmetic. For a

comprehensive approach to this subject, see [20]. The interval notationmostly follows
[10].

Let a, a ∈ R with a ≤ a then a = [a, a] denotes an interval with inf(a) :=
min(a) := a and sup(a) := max(a) := a. The set of nonempty compact real intervals
is given by

IR := {[a, a] | a ≤ a, a, a ∈ R}.

The extremes of the intervals can assume the ideal points −∞ and ∞. We define IR
as the set of closed real intervals. Formally, it can be written as

IR := {[a, a] ∩ R | a ≤ a, a, a ∈ R ∪ {−∞,∞}}.

The width of an interval a is defined by wid(a) := a − a. For any set S ⊆ R, the
smallest interval containing S is called the interval hull of S and denoted by ��S. The
notions of elementary operations between intervals and inclusion properties are the
same as presented in [20].

A box (or interval vector) x = [x, x] is the Cartesian product of the closed real
intervals xi := [xi, xi] ∈ IR. We denote the set of all interval vectors of dimension n
by IR

n
. We indicate interval matrices by bold capital letters (A, B,…) and the set of

all m × n interval matrices is given by IR
m×n

.

2 Interval Unions

This section reviews the fundamentals of interval unions. A comprehensive descrip-
tion of the arithmetic is the subject of [22].

http://www.mat.univie.ac.at/~montanhe/publications/iucpSup.pdf
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Definition 1 An interval union uuu of length l(uuu) := k is a finite set of k disjoint
intervals. We denote the elements of uuu by ui and write

uuu = (u1, . . . ,uk) with
ui ∈ IR ∀ i = 1 : k,

ui < ui+1 ∀ i = 1 : k − 1.
(7)

We denote the set of all interval unions of length ≤ k by Uk . The set of all interval
unions is given by U := ⋃

k≥0 Uk where U0 := ∅ and U1 := IR.

Definition 2 Let S be a finite set of intervals, the union creator U(S) is defined as
the smallest interval union uuu that satisfies a ⊆ uuu for all a ∈ S.

It is clear from the definition of union creator that the inclusion isotonic property
holds. Formally, S ⊆ S ′ =⇒ U(S) ⊆ U(S ′).

Definition 3 The set of all interval union vectors of dimension n is given by Un. In
the same wayUn×m denotes the sets of all interval union matrices of size n × m. The
usual operations between matrices and vectors extend naturally to interval unions.
We denote interval union matrices by capital bold calligraphic letters like AAA or BBB
and interval union vectors by lower case bold calligraphic letters like xxx or yyy.

Letuuu ∈ Uk \ {∅} be an interval union, we denote the interval-wise midpoint ofuuu
by ǔuuiw := (ǔ1, . . . , ǔk) whenever −∞ < u1 ≤ uk < ∞.

Definition 4 Let uuu := (u1, . . . ,uk) and sss := (s1, . . . sk) be interval unions of the
same length and let ◦ ∈ {+,−} then the interval-wise interval union operation cor-
responding to ◦ applied to uuu and sss is given by

uuu ◦iw sss := u1 ◦ s1 ∪ . . . ∪ uk ◦ sk .

Definition 5 An interval union function f : Un → U is said to be inclusion iso-
tone ifuuu′ ⊆ uuu ⇒ f(uuu′) ⊆ f(uuu). Moreover, we say f : Un → U is the interval union
extension of f : D ⊆ R

n ⇒ R in uuu ∈ Un if

f(x) = f (x) for x ∈ D ∩uuu, and f (x) ∈ f(uuu) for all x ∈ D ∩uuu.

3 Interval Union and CSPs

This section applies the interval union arithmetic to constraints satisfaction prob-
lems. We start with the formal definition of a CSP under the interval union frame-
work. Section3.1 gives one example of the interval union arithmetic in the forward-
backward constraint propagation procedure. Section 3.2 presents the interval union
Newton operator. Section 3.3 describes the gap-filling strategy adopted to avoid the
exponential growth of intervals in an interval union.
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Let F : Un → Um be a factorable function, xxx ∈ Un andFFF ∈ Um then

find x (8)

s.t. F(x) ∈ FFF, x ∈ xxx,

is a constraint satisfaction problem. We also denote constraint satisfaction problems
by the triple (F,FFF,xxx).

3.1 The Forward-Backward Constraint Propagation

Schichl andNeumaier [23] show that the constraint propagationmethod in directed
acyclic graphs is useful for both, complete and rigorous global optimization. An
advantage of the DAG is that it is independent of data types, which means that the
same representation can handle intervals or interval unions. Therefore theAlgorithms
in [23] can be applied to interval unions without any modification. The approach by
Schichl andNeumaier consists of performing constraint propagation in the forward
and backward modes.

This subsection illustrates how the interval union arithmetic in the forward-
backward constraint propagation produces better results than its interval counterpart.
Consider the following example

find x (9)

s.t. cos(2πx1) + cos(2πx2) ≥ 1, (10)

x2 − x21 ≤ 0, (11)

x1 ∈ [−2, 2], x2 ∈ [−1, 1]. (12)

Figure1 gives a possible DAG for (9). The nodes x1 and x2 denote the decision
variables with the indicated initial bounds given by (12). Dashed circles denote the
constraints (10) and (11), with their respective right hand sides in the interval form.
Parameters 2π and −1 are multiplicative constants defined on each constraint. We
identify intermediate nodes with labels Ti and constraints with labels Ci.

In the forwardmode, the uncertaintyflows from the variable nodes to the constraint
nodes. In this example, T1, T2 and T3 are given by

T1 = cos(2π[−2, 2]) = [−1, 1],

T2 = [0, 4] and T3 = [−1, 1]

and
T3 = cos(2π[−1, 1]) = [−1, 1],
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Fig. 1 Directed acyclic
graph for the CSP (9)

respectively. To evaluate the range at the constraint nodes, we also take the bounds
given by the right hand side of (9) into account to obtain

C1 = (T1 + T3) ∩ [1,∞] = [1, 2]

and
C2 = (x2 − T2) ∩ [−∞, 0] = [−5, 0].

Since the parameters are exactly determined, the forward mode does not update
them. The backward mode propagates the uncertainty from the constraint nodes to
the variable nodes. Let the arc-cosine of an interval union be defined as

arccos(aaa) := {x ∈ R | cos(x) = a, ∀a ∈ aaa}

and define the square root of interval unions in the same way. We denote by T −1
i the

reverse operation of the intermediate node Ti. In this case, we have

T−1
1 = arccos((C1 − T3) ∩ T1) ∩ [−4π, 4π].

The interval [−4π, 4π] in the expression above is the inflow of the node T1 in the
forward mode. The values of C1, T1 and T3 also come from the forward evaluation.
Note that T−1

1 is an interval union since the arc-cosine function produces several
gaps. In particular, we have

T1 = U([−12.57, −10.99], [−7.85, −4.71], [−1.58, 1.58], [4.71, 7.85], [10.99, 12.57]).

In the same way, we have

T−1
2 = √

(x2 − C2) ∩ T2 ∩ [−2, 2]
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and
T−1
3 = arccos((C1 − T1) ∩ T3) ∩ [−2π, 2π].

Applying the reverse operation to x1, we obtain

x1 = T−1
1

2π
∩ x1 and x1 = T−1

2 ∩ x1.

Therefore, the search domain for x1 reduces to the interval union

xxx1 = U([−2,−1.75], [−1.25,−0.75], [−0.25, 0.25], [0.75, 1.25], [1.75, 2]).

The search domain for x2 reduces to

xxx2 = U([−2,−1.75], [−0.25, 0.25], [1.75, 2]).

In the interval arithmetic approach, we lose the gaps produced by the arc-cosine in
T −1
1 and T −1

3 . In this case the search domain is not updated.

3.2 The Interval Union Newton Operator

This subsection presents the interval union Newton operator. We mostly follow and
adjust the theory of the interval Newton method given by [20].

Let F : Rn → R
m and xxx ∈ Un. We are interested in finding a rigorous enclosure

of the solution set
S := {x ∈ xxx | F(x) = 0}.

LetA ∈ IR
m×n be a bounded interval matrix and F : xxx ⊆ R

n → R
m be a function

such that
F(x̃) − F(ỹ) = Ã(x̃ − ỹ) (13)

for every x̃, ỹ ∈ xxx and some Ã ∈ A. We call A a Lipschitz matrix of F .
In particular, if the functionF is continuously differentiable, well defined on every

point x ∈ xxx and we denote the interval extension of the Jacobian matrix of F by J
then, A := J(��xxx) is a Lipschitz matrix for F .

An interval union linear system with coefficientsAAA ∈ Um×n and bbb ∈ Um is the
family of linear equations

Ax = b (A ∈ AAA, b ∈ bbb). (14)

The solution set of (14) is defined by

Σ(AAA,bbb) := {x ∈ R
n | Ax = b for some A ∈ AAA, b ∈ bbb}. (15)
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Let aaa,bbb,xxx ∈ U then the univariate interval union Gauss-Seidel operator is
given by

�(aaa,bbb,xxx) := bbb

aaa
∩xxx. (16)

It is clear from the definition that Σ(aaa,bbb) ∩xxx ⊆ �(aaa,bbb,xxx). The interval union
Gauss-Seidel operator can be extended to linear systems with higher dimension
assuming the form

yyy := �(AAA,bbb,xxx)

where
yyyi := �

(
AAAii,bbbi −

∑

j �=i

AAAijyyyj,xxxi

)
for i = 1 : n. (17)

Let F and A be a function and an interval matrix satisfying (13). The interval
union Hansen-Sengupta operator is given by

H (xxx, x̄xx) := x̄xx + �(CA,−CF(x̄xx),xxx −iw x̄xx) (18)

where C ∈ R
n×m is a preconditioner matrix and x̄xx is called the expansion point.

The typical choice for C is the pseudo-inverse of the mid-point of A (C = Ǎ−1). A
better alternative based on the Gauss-Jordan decomposition is presented in [18]. In
this paper, we consider the expansion point as the interval-wise midpoint of xxx, i.e.,
x̄xx := x̌xxiw.

Proposition 1 Let F : xxx ⊆ R
n → R

m be Lipschitz continuous on xxx and let A ∈
IR

m×n be a Liptschitz matrix for F on xxx. Then

1. S ⊆ H (xxx, x̄xx).
2. If H (xxx, x̄xx) ∩xxx = ∅ then S is empty.

Proof Let x∗ ∈ S. By applying (13) with ỹ = x∗ we have

−F(x̃) = F(x∗) − F(x̃) = Ã(x∗ − x̃) for some Ã ∈ A.

Therefore

x∗ ∈ (x̃ + Σ(A,−F(x̃))) ∩xxx = x̃ + (Σ(A,−F(x̃))) ∩ (xxx −iw x̌xxiw) ⊆ H (xxx, x̌xxc).

Hence x∗ ∈ H (xxx, x̌xxc) for any x∗ ∈ S and the result follow. �

Operator (18) requires the solution of a linear system of equations with interval
union uncertainties. We can solve it with the interval union Gauss-Seidel procedure
[18]. The supplementary material gives a detailed description of the interval union
Gauss-Seidel procedure. This paper considers the procedure as a black box algorithm
with the input and output given by the Algorithm 1.
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Algorithm 1 Interval union Gauss-Seidel: enclose all solutions of an interval union
linear system.
Input: The interval union matrixAAA and interval union vectors bbb and xxx. The absolute and relative

tolerances εAbs > 0 and εRel > 0. The maximum number of iterations K .
Output: The interval union vector yyy such that Σ(AAA,bbb) ∩xxx ⊆ yyy ⊆ xxx and a flag indicating one of

the following termination status:
1: The problem is infeasible;
2: The absolute or relative gain of yyy over xxx do not satisfy the tolerances εAbs or εRel ;
3: The absolute and the relative gains of yyy over xxx satisfy the tolerance parameters.

The internal union Newton methods is then given by the Algorithm 2.

Algorithm2 Interval unionNewtonmethod: this algorithm applies the interval union
Gauss-Seidel procedure to the linearized system until the termination criteria is met
Input: The nonlinear system of equations F , the initial interval union vector xxx0, the absolute and

relative tolerances εAbs and εRel , the maximum number of iterations K for the Gauss-Seidel
procedure and the maximum number of iterations for the Newton method T

Output: The interval union vector yyy ⊆ xxx0 such that S ⊆ yyy.
1: xxx ← xxx0;
2: for t = 1 : T do
3: x̌xx ← x̌xxiw;
4: A ← F(��xxx);
5: C ← Precondition(A);
6: A ← CA;
7: bbb ← −CF(xxx);
8: yyy ← Gauss-Seidel(A,bbb,xxx −iw x̌xx, εAbs, εRel , K);
9: if Gauss-Seidel termination status is infeasible then
10: return ∅;
11: end if
12: yyy ← (x̌xx + yyy) ∩xxx;
13: if Gauss-Seidel termination status is not enough gain then
14: return yyy;
15: end if
16: xxx ← yyy;
17: end for
18: return xxx;

3.3 Gap Filling

The number of boxes produced with the interval union arithmetic may increase
exponentially depending on the structure of the constraints. This problem can be
solved by applying gap-filling strategies. A gap-filling is a mapping g : Uk → Uk

satisfying xxx ⊆ g(xxx) and ��xxx ≡ ��g(xxx) for any xxx ∈ Uk .
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Two trivial gap-filling strategies are the hull-gap-filling defined by g(xxx) := ��xxx
and the no-gap-filling where g(xxx) := xxx. This subsection presents the normalized-
gap-filling, a non-trivial gap-filling strategy for interval union scalars and vectors.

Letxxx ∈ U be an interval union and let xi, xi+1 ∈ xxx. The open interval gi between
the intervals xi and xi+1 is called the ith gap of xxx and is defined as

gi = (xi, xi+1). (19)

We say that gi � gj if

gi � gj ⇔
( wid(gi)

xi+1 + xi

<
wid(gj)

xj+1 + xj

)
∨

( wid(gi)

xi+1 + xi

= wid(gj)

xj+1 + xj

∧ C(xi, xj)
)

(20)
where

C(x1, x2) ⇔ (〈x1〉 > 〈x2〉 ∨ (〈x1〉 = 〈x2〉 ∧ x1 < x2)).

Intuitively, (20) orders the gaps of the interval union according to its normalized
width w.r.t ��(xi, xi+1). Algorithm 3 describes the normalized-gap-filling strategy.

Algorithm 3 Norm-gap-filling
Input: The interval union vector xxx with dimension n, the maximum number of gaps in an interval

union scalar p and the maximum number of gaps in the interval union vector q.
Output: The vector yyy such that xxx ⊆ yyy, l(yyyi) ≤ p,

∏n
i=1 l(yyyi) ≤ q and ��xxx ≡ ��yyy.

1: if l(xxxi) ≤ p for i = 1 : n and
∏n

i=1 l(xxxi) ≤ q then
2: return xxx;
3: end if
4: yyy ← xxx;
5: while l(yyyi) > p for i = 1 : n or

∏n
i=1 l(yyyi) > q do

6: Find the smallest gap in yyy according to (20) and call it ggg;
7: yyy ← yyy ∪ ggg;
8: end while
9: return yyy;

4 GloptLab

This section gives a short overview of the rigorous solver GloptLab [1, 2], a con-
figurable framework for global optimization and constraint satisfaction problems.
GloptLab implements several state-of-the-art methods for rigorous computations
as, for example, linear and quadratic filtering methods [4, 5], feasibility verification
[6] and constraint aggregation [7]. We review the basic solver and discuss how the
new methods from Sect. 3 are used to improve its efficiency.
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TheGloptLab solver consists of an optimizer carrying out a branch-and-bound
process and amemory supporting this process. The optimizer calls a preprocessor
properly initializing the memory, then alternates calls to the reducer, the problem
selector and the splitter, until a termination criterion is met.

Each bold expression in the last paragraph denotes a configurable module in the
system.Themethods presented in this paper are useful for the reducer,which employs
strategies to reduce the search domain. Algorithm 4 defines a simple, rigorous branch
and bound procedure which embeds the reducer.

Algorithm 4 Simplified solver
Input: TheCSP (F,F, x) of form (8), the tolerance parameter εx and the listM of rigorousmethods

used to reduce the search domain.
Output: The box y such that wid(y) < εx and the certificate that y contains a feasible point of

(F,F, x) or the certificate that the problem is infeasible.
1: Run a local solver to obtain the candidate solution y∗ ∈ x;
2: Run the feasibility verification methods described in [6] to the box y of width εx built around

y∗;
3: if y is verified then
4: Return y;
5: end if
6: Run the forward-backward constraint propagation procedure to (F,F, x) to reduce the search

domain x; Save the reduced domain in y;
7: if y is proved to be infeasible then
8: Return ∅;
9: end if
10: Start the memory with (F,F, y);
11: while memory is not empty do
12: Run the problem selector to obtain the subproblem (F,F, x);
13: i ← 1
14: while i ≤ |M| do
15: Run the strategy Mi on (F,F, x) to obtain (F,F, y);
16: (F,F, x) ← (F,F, y);
17: if y is significantly smaller than x then
18: i ← 1;
19: continue;
20: end if
21: i ← i + 1;
22: end while
23: if x is verified and wid(x) ≤ εx then
24: Return x;
25: end if
26: Run the splitter and stack all subproblems in the memory;
27: end while
28: Return ∅;

The inner loop of the Algorithm 4 (lines 14–22) describes the reducer. The signif-
icant gain (Line 17) in the algorithm depends on the chosen strategy.We consider the
feasibility verification methods as black boxes that receive a subproblem (F,F, x)
and return true only if it can prove that x contains a feasible solution of the problem.
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Table 1 The finite state machine implemented in the inner loop of the Algorithm 4

Current state Next state Condition

Constraint propagation
Feasibility verification

Constraint propagation
Feasibility verification

GRel(xxx,yyy) ≥ εCP
otherwise

Feasibility verification Linear contraction true

Linear contraction Constraint propagation
Quadratic relaxation

GRel(xxx,yyy) ≥ εLC
otherwise

Quadratic contraction Constraint propagation exit GRel(xxx,yyy) ≥ εCA
otherwise

Note that the inner loop restarts whenever a method produces significant contrac-
tion of the input box. In practice, we sort the listM in ascending order according to
the computational effort required to run each method. Therefore, cheaper methods
are always performed first. The inner loop can also be posed as a finite state machine.
Table1 shows the state machine currently implemented in GloptLab.

The interval union forward-backward constraint propagation described on Sect. 3
can be used in both the first state of Table1 and in the step 2 of the Algorithm 4. The
interval union Newton operator is a linear contraction method and therefore can be
used in the second step of the state machine.

5 Numerical Experiments

5.1 The COCONUT Test Set

This section performs numerical experiments on constraint satisfaction problems
from the COCONUT test set [24] to evaluate the capabilities of the interval union
filtering methods. The COCONUT test set contains 306 constraint satisfaction prob-
lems. Using the TestEnvironment [3], we selected all instances with the number of
variables and constraints in the range [1, 50] to obtain 271CSPs.We obtained 3 linear
problems (i.e., all constraints are linear), 86 quadratics (all constraints are linear or
quadratic polynomials), 121 polynomial, 24 rational, 31 smooth, and 6 non-smooth
instances. The supplementary material gives a detailed description of the selected
problems.

We also selected a subset of medium-sized problems from the set of 271 instances
resulting in 38 cases with more than 9 variables and constraints. Again, the supple-
mentary material gives detailed descriptions of the tested problems.
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5.2 Forward-Backward Constraint Propagation

We run the Algorithm 4 with the state machine defined by the Table1 and the
linear contraction described by Domes and Neumaier in [5] (also referred sim-
ply as relaxation in the remainder of this section) to compare the interval union
forward-backward constraint propagation with its interval counterpart. We test the
normalized-gap-filling strategy as described by the Algorithm 3 with p = 5 and
q = 32. We also consider the no-gap-filling and the hull-gap-filling strategies in our
experiments.

We limit the execution time of the Algorithm 4 to 60 s for each test problem. All
parameters in the Table1 are set to 0.1. We ran the experiment in a core i7 processor
with frequency of 2.6 GHz, Windows 10 and JVM 1.8.021.

Figures2 and 3 show that the interval union constraint propagation with no-gap-
filling is always better than thehull or normalized strategies. Itmeans that the forward-
backward constraint propagation does not generate an excessive number of intervals
at each iteration. On average, the no-gap-filling strategy is 15% faster than the hull-
gap-filling one in the full set of instances and the difference rises to 20% if we
consider only medium-sized problems.

Fig. 2 Time performance profile for the Algorithm 4 with the linear constraction described in [5]
and three gap-filling strategies for the forward-backward constraint propagation. All 271 instances
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Fig. 3 Time performance profile for the Algorithm 4 with the linear constraction described in
[5] and three gap-filling strategies for the forward-backward constraint propagation. Medium-sized
instances

5.3 Interval Union Newton Method

We ran the Algorithm 4 with the Newton operator as the linear contraction method,
under the same conditions as given in the last subsection. For the Algorithm 2, we
set εAbs = 10−4, εRel = 0.1, K = 10 and T = 5. Figures4 and 5 show the results of
the experiment

Figures4 and 5 show that the interval union Newton method with no gap-filling
strategy can solve fewer problemswithin the one-minute time limit than their hull and
normalized counterparts. This behavior is due to the cost of each function evaluation
which increases proportionally with the number of gaps. The normalized-gap-filling
presents better results in small problems and is competitive with the hull-gap-filling
strategy on medium-sized problems.
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Fig. 4 Time performance profile for the Algorithm 4 with three different gap-filling strategies
for the forward-backward constraint propagation and the interval union Newton method. All 271
instances

The experiment also shows that the interval union Newton method with the
normalized-gap-filling strategy is 10% faster than the interval one in the full test
set on average. In this case, the number of gaps produced during the linearization is
significant, and the simple application of the interval union Newton method (with-
out gap-filling strategies) can be catastrophic. We also note that for the test set of
38 medium-sized problems, the interval Newton operator outperforms the interval
union counterpart even with the normalized-gap-filling strategy.
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Fig. 5 Time performance profile for the Algorithm 4 with three different gap-filling strategies for
the forward-backward constraint propagation and the interval union Newton method. Medium-
sized problems
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On the Computational Complexity
of the Range Computation Problem

Peter Hertling

Abstract The approximate range computation problem is one of the basic problem
of interval computations. It is well known that this problem and even some special
cases of it are at least as hard as any NP-problem. First, we show that the general
approximate range computation problem is not harder than NP-problems. Then we
show that the computional complexity of some further variants of this problem is
closely related to somewell-known open questions from structural complexity theory
that seem to be slightlyweaker than the famous open questionwhether the complexity
class NP is equal to the complexity class P, namely to the question whether NE is
equal toE, to the questionwhetherNEXP is equal toEXP and, finally, to the question
whether every NP-real number is polynomial time computable.

1 Introduction

The following problem is one of the basic problems of interval computations: given a
function f of n real variables and given n intervals xi = [xi , xi ], compute the range

f (x1 × · · · × xn) = { f (x1, . . . , xn) | x1 ∈ x1, . . . , xn ∈ xn}

of f over the box of intervals x1 × · · · × xn at least up to some precision ε.
Gaganov [2, 3] considered the case where the input function f is a polynomial given
by its coefficients and showed that this problem is at least as hard as anyNP-problem.
Kreinovich et al. [8] analysed the computational complexity of many further variants
of this problem. In this article, first we show that the general problem is not harder
than NP-problems. Then we consider some variants that were left open in [8]. We
consider variants where for each n a quadratic polynomial fn(x1, . . . , xn) and a box
of intervals x1 × · · · × xn are fixed and where the sequence of these polynomials
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and the sequence of these boxes can be computed in polynomial time. We show
that the complexity of these variants is closely connected to some well-known open
questions from structural complexity theory that seem to be slightly weaker than the
famous open question in structural complexity theory whether the complexity class
NP is equal to the complexity class P or not.

In the following section we first introduce some notation and set up the frame-
work for speaking about computational problems and their complexity. We intro-
duce the necessary notions from complexity theory. In particular, we define the six
following well known complexity classes P, NP, E, NE, EXP, and NEXP and the
the two slightly less well known complexity classes PR and NPR of real numbers
and describe the known relations between all these complexity classes. In Sect. 3 we
give a precise formulation of the range computation problem considered in inter-
val analysis, and we describe some of the known complexity results described or
obtained in [8] concerning various variants of this problem. In the following section
we observe that the general approximate range computation problem is not harder
than NP-problems. In Sect. 5 we consider the case of a fixed sequence of quadratic
polynomials fn(x1, . . . , xn). First, we describe a result due to Ferson et al. [1, 9]
concerning this case. Then we formulate our new observations concerning the case
when also a sequence of boxes of intervals is fixed and both sequences, the sequence
of polynomials and the sequence of boxes, can be computed in polynomial time. On
the one hand, we show that if PR = NPR then the corresponding approximate range
computation problem can be solved in polynomial time. On the other hand, we show
that if the corresponding approximate range computation problem can be solved in
polynomial time for any fixed polynomial time computable sequences of polynomi-
als and of boxes then E = NE. Furthermore, we show that there exists a particular
polynomial time computable sequence of quadratic polynomials fn(x1, . . . , xn) such
that the following holds true: if there exists a polynomial time algorithm that solves
the approximate range computation problem for this sequence ( fn(x1, . . . , xn))n , for
a fixed, very simple sequence of boxes of intervals, and for a certain fixed positive
output precision ε then the two complexity classes EXP and NEXP are equal. As
this is considered to be highly unlikely, it is very likely that even this restricted
approximate range computation problem cannot be solved in polynomial time.

2 How Can One Measure the Complexity of Computation
Problems?

In this section, first we introduce some notation. Thenwe discuss how one can encode
the input and the output of arbitrary computation problems by finite strings so that
one can make use of the precise complexity theoretic notions based on the Turing
machine model. Finally, we introduce the needed notions from complexity theory.
More details can be found in any textbook on complexity theory, for example in [10].
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2.1 Some Notation

Let N = {0, 1, 2, . . .} be the set of non-negative integers. We call them natural num-
bers. Let Z = {. . . ,−2,−1, 0, 1, 2, . . .} be the set of integers, and let R be the set
of real numbers.

By an alphabet we always mean a finite nonempty set. If X is an arbitrary
nonempty set and n a natural number then Xn is the set of all vectors (also called
strings) of length n over X . The set X∗ := ⋃

n∈N Xn is the set of all finite strings
over X . For example, in case Σ = {0, 1},

Σ∗ = {λ, 0, 1, 00, 01, 10, 11, 000, . . .},

where λ is the empty string. For a string x , we denote its length by |x |.

2.2 Encoding the Input and Output of Computation
Problems by Strings

In computational complexity theory one wishes to classify computational problems
according to howmuch time or working space one needs for solving them. Of course,
in the real world the time needed by a computer for solving a particular problem
depends heavily on the actual computer used. Since in complexity theory one wishes
to obtain statements that give insight into the problems, not into particular real world
computers, in complexity theory one uses a theoretical computer model, the deter-
ministic multitape Turing machine model; see [10]. Such a Turing machine always
works with a fixed input/output alphabet Σ . For simplicity we will always assume
0, 1 ∈ Σ . In the cases considered by us, the input of a Turing machine is always a
finite string over Σ , that is, an element of Σ∗. After finitely many steps the machine
is supposed to have produced its output, again a finite string over Σ , and then it
should stop. Thus, a Turing machine with input/output alphabet Σ computes a func-
tion f : Σ∗ → Σ∗ that maps finite strings to finite strings. Actually, in the end also
digital computers in the real world work only with binary strings. Thus, in order to
make use of digital computers or of Turing machines in order to solve a computation
problem, one should encode the input and the output of the computation problems by
binary strings, or, slightlymore generally, by strings over a suitable finite alphabetΣ .

We are mostly concerned with numerical computation problems. Rather than
considering arbitrary real numbers for the input or output, for the input and output
we will use only binary-rational or dyadic numbers. These are numbers of the form
z/2d with z ∈ Z and d ∈ N. They will be assumed to be given in fixed-point binary
form, for example 0.011 stands for 3/8, and −11.0101 stands for −53/16. Let D

denote the set of binary-rational numbers. While integers in Z will be encoded in
binary form as well, natural numbers n ∈ N will usually be encoded not in binary
notation, but in unary notation, that is, the number n will be encoded by the string 1n
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(consisting of exactly n ones). This is in particular the case when the natural number
is an exponent in some polynomial or when it is a parameter like the dimension of the
computation problem, that is, the number of variables. When we wish some natural
numbers to be encoded in binary notation then we will explicitly say so.

2.3 Some Discrete Complexity Classes

If t : N → N is a function and M a deterministic Turing machine then we say that
M works in time t if for any string x ∈ Σ∗ on input x the machine stops after at
most t (|x |) computation steps. For such a function t the function complexity class
FTIME(t) is defined to be the set of all those functions f : Σ∗ → Σ∗ (where Σ

is an arbitrary alphabet) such that there exist a multitape Turing machine M and a
constant c such that M computes the function f and works in time c · t + c. We
say that a function f : Σ∗ → Σ∗ is computable in polynomial time if there exists a
univariate polynomial q such that f ∈ FTIME(q).

Of particular importance are decision problems. These are problems where one
whishes to decide whether some given input object has a certain property or not. In
order to solve such problems by a computer or by a Turing machine, first one should
encode the objects by finite strings over some alphabet Σ . Then the problem can be
formulated as the subset L ⊆ Σ∗ containing all the encodings of those objects that
have the considered property.

Example 1 Let x1, x2, . . . be Boolean variables. Then a literal is a formula of the
form xi or¬xi , that is, it is either a Boolean variable or a negated Boolean variable. A
clause is a disjunction of literals. A 3-CNF formula is a conjunction of clauses each
of which contains at most three literals, for example, (x1 ∨ ¬x2 ∨ x5) ∧ (¬x3 ∨ x5).
In a standard description of a 3-CNF formula the indices of variables are written in
binary. For example, the standard description of the previous 3-CNF formula is (x1 ∨
¬x10 ∨ x101) ∧ (¬x11 ∨ x101). Finally, a 3-CNF formula F is called satisfiable
if there exists a valuation of the variables in F with truth values 0 or 1 such that for
this valuation the truth value of F is 1. The satisfiability problem 3-CNF-SAT for
3-CNF formulas can now formally be defined as the set of all standard descriptions
of satisfiable 3-CNF formulas. Note that this is a subset of the set Σ∗ of all finite
strings over the alphabet Σ containing the seven symbols 0, 1, (, ),¬,∨,∧.

For a subset L ⊆ Σ∗, the characteristic function χL : Σ∗ → {0, 1} is defined by

χL(w) :=
{
1 if x ∈ L ,

0 if x /∈ L ,

for w ∈ Σ∗. For a function t : N → N the complexity class DTIME(t) of decision
problems is defined to be the set of all those sets L ⊆ Σ∗ (where Σ is an arbitrary
alphabet) such thatχL ∈ FTIME(t). Based on this, we can define the following three
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complexity classes

P :=
⋃

k∈N
DTIME(nk),

E :=
⋃

c∈N
DTIME(2c·n)

EXP :=
⋃

c∈N
DTIME(2(nc))

of decision problems that can be solved in polynomial time respectively in linearly
exponential time respectively in exponential time.

Example 2 For example, the problem3-CNF-SAT introduced inExample 1 is clearly
in E. Indeed, given a 3-CNF formula F with m variables, one can check for each
of the 2m possible valuations of the m variables with truth values 0 and 1 whether
for this valuation the truth value of the formula is true or not. In this way one can
check whether F is satisfiable or not. Note that if n is the length of the formula then
m ≤ n. Hence, this algorithm works in linearly exponential time. But is the problem
3-CNF-SAT even in P? This is not known.

The last question in the previous example is closely connected to the most famous
open question in complexity theory: to the question whether the complexity classes
P and NP are identical or not. For the definition of the class NP one uses nondeter-
ministic Turing machines. For the detailed definition of such machines the reader is
referred to textbooks on complexity theory; see for example [10]. These machines
are generalizations of deterministic multitape Turing machines. The main difference
is that in some computation steps there may be several possibilities how the machine
may proceed. Thus, for an input string x ∈ Σ∗ there may be several computation
paths. We say that a nondeterministic Turing machine solves a decision problem
given by a set L ⊆ Σ∗ if for any x ∈ Σ∗ we have: x ∈ L if, and only if, there is
a computation path of the machine on input x on which the machine accepts x ,
for example by producing the output 1. And we say that a nondeterministic Turing
machine M works in time t : N → N if any possible computation of M on any pos-
sible input string x takes at most t (|x |) steps. The complexity class NTIME(t) is
defined to be the set of all those sets L ⊆ Σ∗ (whereΣ is an arbitrary alphabet) such
that there exist a nondeterministic Turing machine M and a constant c such that M
solves L and works in time c · t + c. Based on this, we can define the following three
complexity classes

NP :=
⋃

k∈N
NTIME(nk),

NE :=
⋃

c∈N
NTIME(2c·n)

NEXP :=
⋃

c∈N
NTIME(2(nc))
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of decision problems that can be solved nondeterministically in polynomial time
respectively in linearly exponential time respectively in exponential time.

Example 3 The problem 3-CNF-SAT is easily seen to be an element of NP: given a
3-CNF formula F , guess truth values 0 or 1 for the variables in F and check whether
for this valuation the truth value of the formula is 1 or not.

The following inclusions are well known:

P � E � EXP and NP � NE � NEXP.

Furthermore, it is well known that NP ⊆ EXP. The following three inclusions are
obvious:

P ⊆ NP, E ⊆ NE, and EXP ⊆ NEXP.

It is not knownwhether any of these last four inclusions is proper or not. In particular,
we do not know the answer to any of the following three questions:

1. Is P = NP or P � NP?
2. Is E = NE or E � NE?
3. Is EXP = NEXP or EXP � NEXP?

Although we do not know the answer to any of these questions, we know that these
questions form a hierarchy with respect to their strength. It is well known that there
are the following implications between them.

Proposition 4

1. If P = NP then E = NE.
2. If E = NE then EXP = NEXP.

This is proved by padding arguments. See, e.g., [10, Theorem 20.1] for a proof of
the statement that P = NP implies EXP = NEXP. Most researchers in complexity
theory seem to expect that all three inclusions are proper. But, at present, we cannot
exclude the possibility that on the one hand P � NP and on the other hand E = NE
and EXP = NEXP or that, on the one hand P � NP and E � NE and on the other
hand EXP = NEXP.

The questionwhetherP = NP or not is presumably themost famous openquestion
in complexity theory. It is one of the Millennium Problems, and there is an award of
US$1 million allocated to its solution; see:
http://www.claymath.org/millennium-problems.

The complexity class NP has turned out to be of great importance for the classifi-
cation of the complexity of computation problems. One says that a decision problem
L2 ⊆ Σ∗ isNP-hard if for any decision problem L1 ⊆ Σ∗ with L1 ∈ NP there exists
a polynomial time computable function f : Σ∗ → Σ∗ such that for all x ∈ Σ∗

x ∈ L1 ⇐⇒ f (x) ∈ L2.

http://www.claymath.org/millennium-problems
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Such a function f is said to reduce the problem L1 to the problem L2. If there
happens to be a polynomial time algorithm g for solving the problem L2 then by
first applying f and then g one obtains a polynomial time algorithm for L1. Thus,
if the problem L2 can be solved in polynomial time then also the problem L1 can
be solved in polynomial time. We conclude that an NP-hard problem can be solved
in polynomial time if, and only if, P = NP. Finally, a decision problem is called
NP-complete if it is in NP and NP-hard. For example, the problem 3-CNF-SAT is
well known to be NP-complete.

2.4 Polynomial Time Computable Real Numbers
and NP-Real Numbers

We wish to define two more complexity classes. They have been introduced in con-
nection with real number computation and are complexity classes of real numbers.

Let us call a sequence (wn)n of strings wn ∈ {0, 1}n a rapid Cauchy-sequence for
a real number x ∈ [0, 1] if |x − 0.wn| < 2−n , for all n. A real number x is called
polynomial time computable if there exists a polynomial time computable rapid
Cauchy sequence for x − �x�. The set

PR := {x ∈ R | x is polynomial time computable}

is an important class of real numbers. It is a real closed subfield of the field of
real numbers. A real number x is called an NP-real number if there exists a rapid
Cauchy-sequence (wn)n for x − �x� such that the set

L :=
⋃

n∈N
{u ∈ {0, 1}n | 0.u ≤ 0.wn}

is in NP. We define:

NPR := {x ∈ R | x is an NP-real number}.

The importance of theNP-real numbers stems from the fact that a real number x is an
NP-real number if, and only if, there exists a polynomial time computable function
f : [0, 1] → R such that x = max f ([0, 1]). This was shown be Ko [6, 7].
It is clear that every polynomial time computable real number is an NP-real

number, that is, PR ⊆ NPR. It is not known whether this inclusion is proper or not.
For us it is important how this question fits in between two other questions that were
mentioned in the previous section.

Proposition 5

1. If P = NP then PR = NPR.
2. If PR = NPR then E = NE.
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For the proof the reader is referred to [7]. The implications between the questions
whether the considered deterministic complexity classes are proper subsets of their
nondeterministic counterparts or not can be summarized in the following line:

P = NP ⇒ PR = NPR ⇒ E = NE ⇒ EXP = NEXP

We will use this hierarchy of conditions in order to at least roughly classify the
computational complexity of several variants of the range computation problem for
polynomial functions.

3 Some of the Known Results Concerning the Complexity
of the Range Computation Problem for Polynomials

In this section, first we formulate precisely the general version of the range computa-
tion problem for polynomials considered in interval analysis. Then we consider the
computational complexity of several variants of this problem. We formulate known
upper bounds for the special cases when only linear polynomials are allowed and
when the dimension of the problem, that is, the number of variables, is fixed. Thenwe
present Gaganov’s result [2, 3] concerning theNP-hardness of the problem; actually
we present the version formulated in [8].

3.1 The General Range Computation Problem
for Polynomials

Let n be a natural number. For any vector i = (i1, . . . , in) ∈ N
n we will abbrevi-

ate the monomial xi11 · . . . · xinn in the n variables x1, . . . , xn by xi . A polynomial
f (x1, . . . , xn) in at most n variables can be written as a sum of monomials. For any
finite subset C ⊆ N

n × R we define the polynomial fC in n variables by

fC(x1, . . . , xn) :=
∑

(i,ai )∈C
ai x

i =
∑

(i1,...,in ,a(i1 ,...,in ))∈C
a(i1,...,in)x

i1
1 · . . . · xinn .

Note that for any real numbers x1, x1, . . ., xn , xn satisfying xi ≤ xi for i = 1, . . . , n
the product x1 × · · · × xn of the intervals xi := [xi , xi ] (we will call this a box of
intervals) is a nonempty, compact, connected subset of R

n . Hence, the range

fC(x1 × · · · × xn) := { fC(x1, . . . , xn) | x1 ∈ x1, . . . , xn ∈ xn}

is a nonempty, compact, connected subset of R, that is, the range is an nonempty
closed interval.
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Definition 6 The general approximate range computation problem for polynomials
is given by the following input data and desired output data.
Input data:

• An upper bound n ∈ N for the number of variables. This is usually written in unary
notation, that is, it is given by the string 1n , see Sect. 2.2.

• The desired output precision ε ∈ D with ε > 0. This binary-rational number is
written in binary; see Sect. 2.2.

• A finite set C ⊆ N
n × D containing the exponents of the monomials appearing

in the input polynomial and the coefficients of the monomials. The elements of
C should be given in lexicographic order of the components in N

n . The compo-
nents in N

n , the exponents of the monomials, are given in unary notation, and the
coefficients in D are binary-rational numbers and are given in binary notation.

• The left and right endpoints x1, x1, . . ., xn , xn ∈ D of the input intervals xi :=
[xi , xi ]. These are binary-rational numbers written in binary. Of course, they must
satisfy xi ≤ xi .

Desired output data:

• Binary-rational numbers y and y written in binary and satisfying

|y − min( fC(x1 × · · · × xn))| ≤ ε and |y − max( fC(x1 × · · · × xn))| ≤ ε.

An algorithm that produces such output data will be said to compute the range
fC(x1 × · · · × xn) with precision ε.

The analogous problem with ε = 0 (then ε is, of course, not part of the input
anymore) will be called the exact range computation problem.

We are interested in the complexity of this computation problem. But we will be
content with a rather rough analysis: we will only ask whether for this problem or
for some restrictions of it there exists a polynomial time algorithm or not, that is,
whether there exists a deterministic multitape Turing machine that, given such input
data, computes some desired output data within polynomial time. In the following
sections we formulate some known results for this problem and for some restrictions
of it.

3.2 Linear Functions

A polynomial fC(x1, . . . , xn) is a linear function if it has the form

fC(x1, . . . , xn) = a(0,...,0) + a(1,0,...,0)x1 + a(0,1,0,...,0)x2 + · · · + a(0,...,0,1)xn.

As was observed in [8, Sect. 5.1] the range computation problem restricted to linear
functions can be solved in polynomial time. Indeed, in this case we define
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y1 :=
{
x1 if a(1,0,...,0) ≥ 0,

x1 if a(1,0,...,0) < 0,
, and z1 :=

{
x1 if a(1,0,...,0) ≥ 0,

x1 if a(1,0,...,0) < 0,
,

and we define y2, . . . , yn and z2, . . . , zn accordingly, and obtain

min( fC(x1 × · · · × xn)) = a(0,...,0) + a(1,0,...,0)y1 + · · · + a(0,0,...,1)yn,

max( fC(x1 × · · · × xn)) = a(0,...,0) + a(1,0,...,0)z1 + · · · + a(0,0,...,1)zn.

These numbers can clearly be computed in polynomial time. Thus, in this case even
the exact range computation problem (with ε = 0) can be solved in polynomial time.

3.3 Polynomials with a Fixed Number of Variables

In [8, Sect. 4.1] it is shown that the following restriction of the approximate range
computation problem can be solved in polynomial time:

• for a fixed number n of variables (that means that this number is not part of the
input, but fixed in advance),

Thus, for any n ∈ N, there exists an algorithm which, on input

ε ∈ D with ε > 0, a finite set C ⊆ N
n × D, and x1, x1, . . . , xn, xn ∈ D with xi ≤ xi ,

computes the range fC(x1, . . . , xn) with precision ε in polynomial time; see Defini-
tion 6. This algorithm is based on an algorithm due to Grigor’ev and Vorobjov [4]
for checking whether a system of polynomial inequalities with integral coefficients
has a real solution.

3.4 The Lower Complexity Bound of Gaganov

A polynomial f (x1, . . . , xn) is a quadratic polynomial if it has the form

f (x1, . . . , xn) = aλ +
n∑

i=1

ai xi +
n∑

i=1

n∑

j=i

ai, j xi x j .

Gaganov [2, 3] has shown that even a certain restriction of the approximate range
computation problem is as hard as any NP-problem. The following problem is the
version considered in [8]:
Restricted Approximate Range computation Problem RARP: Given

• an upper bound n ∈ N for the number of variables, written in unary notation,
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• a finite set C ⊆ N
n × Z such that the polynomial fC(x1, . . . , xn) is a quadratic

polynomial with integer coefficients (where the numbers in N
n are written in

unary notation, and the numbers in Z are written in binary notation),

compute the range fC([0, 1]n) with precision 1.
Note that this means that

• the number ε > 0 is not part of the input but has been fixed in advance to ε := 1,
• the set C must describe a quadratic polynomial with integer coefficients,
• the intervals x1, . . . , xn are not part of the input, but have been fixed in advance to
xi := [0, 1].
The following lemma is the central observation for the version of Gaganov’s

result that is presented in [8, Sect. 3] (and that was inspired by Vavasis [12]). Note
that Sahni [11] already showed that the exact quadratic programming problem is as
hard as any NP-problem. A slightly different proof was given by Vavasis [12].

Lemma 7 There exists an algorithm which on input

• a standard description of a 3-CNF formula F with n variables and k clauses

computes in polynomial time

• a finite set C ⊆ N
n+k × Z

such that the polynomial fC(x1, . . . , xn+k) is quadratic and has the following prop-
erties:

1. If F is satisfiable then min( fC([0, 1]n+k)) = 0.
2. If F is not satisfiable then min( fC([0, 1]n+k)) ≥ 3.

For the proof the reader is referred to [8, Sect. 3]. The algorithm whose existence
is stated in this lemma can be considered as a reduction of the NP-hard problem
3-CNF-SAT to the above-mentioned restriction RARP of the range computation
problem. One may say that the restriction RARP of the range computation problem
described above is at least as hard as the satisfiability problem for 3-CNF formulas.
And this is well known to be NP-hard (even NP-complete). Indeed, the lemma has
the following consequence.

Corollary 8 If the restricted approximate range computation problem RARP can
be solved in polynomial time then P = NP.

Proof Let us assume that there is a polynomial time algorithm A that solves the
restricted versionRARP of the approximate range computation problem. Then, given
as input a 3-CNF formula F , we could first apply the reduction algorithm from
Lemma 7, then this polynomial time algorithm A, and finallywe could checkwhether
the computed 1-approximation y of min( fC([0, 1]n+k)) is smaller or larger than 1.5.
In the first case we would know that F is satisfiable, and in the second case we
would know that F is not satisfiable. Thus, we could solve the problem 3-CNF-
SAT in polynomial time. But as this problem is NP-hard then we could solve any
NP-problem in polynomial time, thus, we would have P = NP. �
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Note that in the Restricted Approximate Range Computation Problem the nth
interval box is fixed to be [0, 1]n . Ferson et al. [1] have shown that another restricted
approximate range computation problem is as hard as any NP-problem as well.
In their problem, the intervals can be chosen freely, but for each n a polynomial
fn(x1, . . . , xn) is fixed. We will describe their result in Sect. 5.3.
By using a suitable definition of reduction functions for computation problems

that are not decision problems one might extend the formal NP-hardness notion that
was defined at the end of Sect. 2.3 for decision problems to computation problems
that are not decision problems. Actually, there are many different possible notions
of reduction functions; see, e.g., [5].

4 An Upper Bound for the Complexity of the Approximate
Range Computation Problem

In Sect. 3.4 we stated the result by Gaganov [2, 3] that even a certain restricted
approximate range computation problem is as hard as any NP-problem. Here we
observe that even the general approximate range computation problem is not harder
than NP-problems. This leads to the following equivalence of open questions.

Theorem 9 The following three conditions are equivalent:

I P = NP.
II The approximate range computation problem (see Definition 6) can be solved in

polynomial time.
III The restricted approximate range computation problem RARP (introduced in

Sect.3.4) can be solved in polynomial time.

The proof will be given in Sect. 6.

5 On the Complexity of the Range Computation Problem
for a Fixed Sequence of Polynomials

In this section,we consider the restriction to the casewhere a sequence of polynomials
fn(x1, . . . , xn) is fixed in advance. Firstwe shortly discuss the casewhen the sequence
of coefficients of the polynomials fn is not computable. In the rest of the section we
will only consider the case when the sequence of coefficients of the polynomials
fn is polynomially time computable. We will consider the case of a sequence of
linear functions. Then we will consider the case of a fixed sequence of quadratic
functions where the input intervals are not fixed. Finally, we consider the case when
both a polynomial time computable sequence of polynomials and a polynomial time
computable sequence of intervals are fixed.
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5.1 Noncomputable Sequences Versus Polynomial Time
Computable Sequences

In Sect. 3.3 we mentioned that the restriction of the approximate range computation
problem to any fixed number n of variables can be solved in polynomial time. Thus,
if one wishes to investigate other restrictions of the approximate range computation
problem that are not automatically polynomial time solvable due to this result, the
number n of variables should not be fixed but should be part of the input. Then one
might consider for each n just one polynomial fn(x1, . . . , xn) or just one interval
box x1 × · · · × xn , and one might fix the desired output precision. These changes
seem to be restrictions that make the problem easier. But one has to be careful with
this! For example, the first change means that one fixes a sequence ( fn(x1, . . . , xn))n
of polynomials. But if this sequence is not computable, then also the approximate
range computation problem can be unsolvable, as we will see now.

A set B ⊆ N is called undecidable if there is no algorithm that computes the
characteristic function χB of B defined by

χB(n) :=
{
1 if n ∈ B,

0 if n /∈ B,

that is, if there is no algorithm which, on input k ∈ N, decides whether k ∈ B or
k /∈ B. Let B ⊆ N be an undecidable set of natural numbers. Let gB,n(x1, . . . , xn)
be the linear polynomial defined by

gB,n(x1, . . . , xn) := χB(n)

n
· x1 + · · · + χB(n)

n
· xn.

Then

gB,n([0, 1]n) =
{ [0, 1] if n ∈ A,

{0} if n /∈ A.

Thus, if we could solve the following approximate range computation problem: given
n, compute the range gB,n([0, 1]n) with precision 1/4, then by checking wether for
n ∈ N the computed 1/4-approximation y for the upper bound max(gB,n([0, 1]n))
is smaller or larger than 1/2, we could decide whether n ∈ B or not. But the set
B is undecidable. We conclude that this approximate range computation problem is
unsolvable. Thus, it does notmake sense to allow arbitrary sequences of polynomials.
Similarly, it does not make sense to allow arbitrary sequences of boxes of intervals.

Instead, in the following sections we will concentrate on polynomial time com-
putable sequences. LetΣ be an alphabet.We call a sequence (wn)n of stringswn ∈ Σ∗
polynomial time computable if there exists a multitape Turing machine which, given
n in unary form, computes wn within polynomial time. That means that there must
exist a polynomial p(n) whose coefficients are natural numbers such that, given
n as input, the Turing machine computes wn within at most p(n) steps. We call a
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sequence ( fn(x1, . . . , xn))n of polynomials with binary-rational coefficients polyno-
mial time computable if the sequence of representations (as in Definition 6) of the
sets Cn ⊆ N

n × D with fn(x1, . . . , xn) = fCn (x1, . . . , xn) is polynomial time com-
putable. In a similar way we define polynomial time computability for a sequence
(x1 × · · · × xn)n of boxes of intervals with binary-rational endpoints.

5.2 The Problem for a Fixed Sequence of Linear Functions

Since the general approximate range computation problem restricted to linear func-
tions can be solved in polynomial time (see Sect. 3.2), the same holds true if a
polynomial time computable sequence of linear functions is fixed. One can simply
first, given n, compute the nth linear function fn(x1, . . . , xn) of this sequence and
then apply the polynomial time algorithm from Sect. 3.2 to this polynomial and to
the other input data.

5.3 The Problem for a Fixed Sequence of Polynomials
of Degree at Least 2

Ferson et al. [1], see also [9, Chap. 14], have shown that the approximate range
computation problem for a certain simple and polynomial time computable sequence
of quadratic polynomials with integer coefficients and for ε = 1 is as hard as any
NP-problem. In fact, the nth polynomial in this sequence can simply be chosen to
be a sufficiently large multiple (without proof we remark that the additional factor
4 · n2 suffices) of the variance

1

n
·

n∑

i=1

x2i −
(
1

n
·

n∑

i=1

xi

)2

.

of x1, . . . , xn under uniform distribution. This shows that Condition V in the follow-
ing theorem implies Condition I. It is clear that IV implies V. And it follows from
Theorem 9 that I implies IV.

Theorem 10 The following conditions I and IV are equivalent. And there exists a
polynomial time computable sequence (gn(x1, . . . , xn))n of quadratic polynomials
with integer coefficients such that also the following condition V is equivalent to
them.
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I P = NP.
IV For any polynomial time computable sequence ( fn(x1, . . . , xn))n of polynomials

with binary-rational coefficients the following approximate range computation
problem can be solved in polynomial time: Given as input

• a binary-rational number ε > 0 in binary notation,
• a natural number n in unary notation, and
• binary-rational numbers x1, x1, . . ., xn, xn satisfying xi ≤ xi .

compute the range fn(x1 × · · · × xn) with precision ε.
V The following approximate range computation problem can be solved in poly-

nomial time: Given as input

• a natural number n in unary notation, and
• binary-rational numbers x1, x1, . . ., xn, xn satisfying xi ≤ xi .

compute the range gn(x1 × · · · × xn) with precision 1.

5.4 The Problem for a Fixed Sequence of Polynomials
and a Fixed Sequence of Interval Boxes

The result stated in Sect. 3.4 says that the approximate range computation problem
is at least as hard as any NP-problem, even if for any dimension n the interval box is
fixed to be simply [0, 1]n . In the previous two subsections we considered the other
case, namely the case when a sequence of polynomials is fixed but the interval boxes
can still be chosen freely. We observed that the approximate range computation
problem for a polynomial time computable sequence of linear functions is easy and
that it can be as hard as anyNP-problem for a polynomial time computable sequence
of quadratic polynomials or polynomials of higher degree, if the interval boxes can
still be chosen freely. In view of this, the case that still needs be considered is the case
when both a polynomial time computable sequence of polynomials and a polynomial
time computable sequence of interval boxes are fixed. In the following theorem we
consider two variants of this case, the general variant and a rather restricted version
of this problem. We give an upper bound and a lower bound for their complexity.

Theorem 11 The following conditions VI, VII, VIII, IX satisfy the following impli-
cations: (a) VI ⇒ VII, (b) VII ⇒ VIII, (c) VIII ⇒ IX.

VI PR = NPR.
VII For every polynomial time computable sequence ( fn(x1, . . . , xn))n of polyno-

mials and every polynomial time computable sequence (x(n)
1 × · · · × x(n)

n )n of
boxes of intervals there exists an algorithm that solves the following range
computation problem in polynomial time: Given as input a natural number
n in unary notation and a binary-rational number ε > 0, compute the range
fn(x

(n)
1 × · · · × x(n)

n ) with precision ε.
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VIII For every polynomial time computable sequence ( fn(x1, . . . , xn))n of quadratic
polynomials with integer coefficients there exists an algorithm that solves the
following range computation problem in polynomial time: Given as input a nat-
ural number n in unary notation, compute the range fn([0, 1]n) with precision
1.

IX E = NE.

The proof will be given in Sect. 6. Finally, one may ask whether there exist

• a particular polynomial times computable sequence of polynomials and
• a particular polynomial time computable sequence of boxes of intervals

such that the corresponding range computation problem is hard. The following the-
orem shows that the answer to this question is very likely to be yes as otherwise the
two complexity classes EXP and NEXP would be identical.

Theorem 12 There exists a polynomial time computable sequence ( fn(x1, . . . , xn))n
of quadratic polynomials with integer coefficients such that the following condition
X implies the following condition XI:

X The following range computation problem can be solved in polynomial time:
Given as input a natural number n in unary notation, compute the range
fn([0, 1]n) with precision 1.

XI EXP = NEXP.

The proof will be given in Sect. 6.

5.5 Summary

The known implications between the conditions considered in the previous theorems
are summarized in the following diagram:

II III

IV V VII VIII X

I VI IX XI

While the conditions I, VI, IX, and XI in the second line express well known open
complexity-theoretic questions, the other conditions express questions related to
the approximate range computation problem. Note that in V and X a certain fixed
sequence of polynomials is considered. As even the weakest condition considered
here, XI, which is the equality EXP = NEXP, is conjectured to be false, it is likely
that none of the considered versions of the approximate range computation problem
can be solved in polynomial time.
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6 Proofs

In the proof of Theorem 9 we use the following lemma.

Lemma 13 The following decision problem is in NP: Given as input

• a natural number n > 0 in unary notation, a natural number k in unary notation,
a finite subset C ⊆ N

n × D, and 2n binary rational numbers x1, x1, . . ., xn, xn
satisfying x1 ≤ x1, . . ., xn ≤ xn (so, essentially the same input data as for the
approximate range computation problem, with the restriction that ε is of the form
1/2k),

• a binary-rational number y, written in binary notation,

decide whether there exist integers z1, . . . , zn ∈ Z with xi ≤ zi
2k ≤ xi , for

i = 1, . . . , n, and with

fC
( z1
2k

, . . . ,
zn
2k

)
≤ y.

Proof Note that the length of the input is at least as large as k and as the length
of the binary representations of the numbers x1, x1, . . ., xn , xn . Therefore, one can
in polynomial time guess binary representations of n arbitrary integers z1, . . . , zn
satisfying xi ≤ zi

2k ≤ xi for i = 1, . . . , n. In a second step, one can in polynomial
time compute the number fC

( z1
2k , . . . ,

zn
2k

)
(note that this is a binary-rational number

as well) and check whether fC
( z1
2k , . . . ,

zn
2k

) ≤ y or not. �

Proof (of Theorem 9) It is clear that Condition II implies Condition III. The fact
that Condition III implies Condition I is exactly the content of Corollary 7. We still
need to show that Condition I implies Condition II. So, let us assume that P = NP.
We are going to show that under this assumption, given input data as for the general
approximate range computation problem as in Definition 6, thus,

• a natural number n, given in unary notation,
• the desired output precision ε ∈ D with ε > 0, given in binary notation,
• a finite set C ⊆ N

n × D, given in the notation explained in Definition 6,
• binary-rational numbers x1, x1, . . ., xn , xn satisfying xi ≤ xi ,

one can in polynomial time compute a binary-rational number y with |y −
min( fC(x1 × · · · × xn)| ≤ ε. In a similar way one can show that under this assump-
tion one can compute in polynomial time a binary-rational number y with |y −
max( fC(x1 × · · · × xn)| ≤ ε.

How can one compute such a number y? This is done by bisection and by
using a deterministic polynomial time algorithm A for the NP-problem described in
Lemma 13 (remember that we assume P = NP).

First, we need an interval that contains the range fC(x1 × · · · × xn) in order to
start the bisection procedure. This can be obtained as follows. Let

xabs := max(|x1|, |x1|, . . . , |xn|, |xn|).
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Let | fC |(x1, . . . , xn) be the polynomial obtained from the polynomial fC (x1, . . . , xn)
by replacing all the coefficients of the monomials in fC(x1, . . . , xn) by their absolute
values. It is clear that the binary-rational number xabs and the coefficients of the
polynomial | fC |(x1, . . . , xn) can be computed in polynomial time. Let B be the
smallest natural number with

| fC |(xabs, . . . , xabs) ≤ 2B .

Then, clearly, fC(x1 × · · · × xn) ⊆ [−2B, 2B]. One can compute the unary repre-
sentation of B and, hence, the binary representation of 2B , in polynomial time. The
interval [−2B, 2B] is our starting interval for the bisection algorithm.

Secondly, the function fC is Lipschitz continuous on the box of intervals x1 ×
· · · × xn , and we will need a Lipschitz constant for it (with respect to the maximum
normonR

n). Let ∂| fC |
∂xi

(x1, . . . , xn) be the partial derivativewith respect to the variable
xi of the polynomial | fC |(x1, . . . , xn). Let D be the smallest natural number with

n∑

i=1

∂| fC |
∂xi

(xabs, . . . , xabs) ≤ 2D.

Then for any two points s = (s1, . . . , sn) ∈ x1 × · · · × xn and t = (t1, . . . , tn) ∈
x1 × · · · × xn ,

| fC(s) − fC(t)| ≤ 2D · n
max
i=1

|si − ti |. (1)

It is clear that the unary representation of the number D can be computed in poly-
nomial time.

Finally, let E be the smallest natural number with ε ≥ 2−E , and let k := D + E .
It is clear that the unary representation of the number k and, hence, the binary
representation of the number 2k , can be computed in polynomial time.

Now we start the bisection algorithm with y
0

:= −2B and y0 := 2B . Then for
i = 0, . . . , B + E we do the following bisection step. We set

yi := y
i
+ yi
2

.

Then we apply the polynomial time algorithm A for the decision problem described
in Lemma 13 to the input data

n, k, C, x1, x1, . . . , xn, xn, and yi .

If the algorithm answers yes then we set

y
i+1

:= y
i

and yi+1 := yi ,

if it answers no then we set
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y
i+1

:= yi and yi+1 := yi .

At the end, the output of the algorithm is the binary representation of the binary-
rational number

y := y
B+E+1

.

This ends the description of the algorithm.
It is clear that each bisection step can be done in polynomial time. As there are

exactly B + E + 1 bisection steps, the whole algorithm works in polynomial time.
We have to show that the computed number y has the desired property, that is, that
it satisfies

|y − min( fC(x1 × · · · × xn))| ≤ ε.

Actually, we claim that for each i ∈ {0, . . . , B + E + 1}

y
i
− 2−E < min( fC(x1 × · · · × xn)) ≤ yi . (2)

This will be shown by induction. Once we have shown this, for i = B + E + 1 we
obtain

y
B+E+1

− 2−E < min( fC(x1 × · · · × xn)) ≤ yB+E+1.

Remember that we have started the bisection algorithm with an interval [y
0
, y0]

satisfying y0 = y
0
+ 2B+1. Since in each bisection step the currently considered

interval is being halved, that is, the interval [y
i+1

, yi+1] is only half as long as the

interval [y
i
, yi ], we obtain yB+E+1 = y

B+E+1
+ 2−E . Thus, we obtain

y
B+E+1

− 2−E < min( fC(x1 × · · · × xn)) ≤ y
B+E+1

+ 2−E ,

hence,
|y − min( fC(x1 × · · · × xn))| ≤ 2−E ≤ ε.

We come to the proof of (2). For i = 0 it is clear that

y
0
− 2−E = −2−B − 2−E < −2−B ≤ min( fC(x1 × · · · × xn)) ≤ 2B = y0.

For the induction step, let us assume that (2) is true for some i ∈ {0, . . . , B + E}.
We show that then it is true for i + 1 as well. We distinguish two cases:

First Case: y
i+1

:= y
i
and yi+1 := yi . Then the estimate min( fC(x1 × · · · × xn))

≤ yi+1 is certainly true because there exists some point z ∈ x1 × · · · × xn with
fC(z) ≤ yi . And the other estimate, y

i+1
− 2−E < min( fC(x1 × · · · × xn)), is

true by induction hypothesis.
Second Case: y

i+1
:= yi and yi+1 := yi . Then the estimate min( fC(x1 × · · · ×

xn)) ≤ yi+1 is true by induction hypothesis. We also need to show:
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y
i+1

− 2−E < min( fC(x1 × · · · × xn)).

Let (s1, . . . , sn) ∈ x1 × · · · × xn be a point with fC(s1, . . . , sn) = min( fC(x1 ×
· · · × xn)). Then there are integers z1, . . . , zn with xi ≤ zi

2k ≤ xi and with

∣
∣
∣si − zi

2k

∣
∣
∣ ≤ 2−k,

for i = 1, . . . , n. On the one hand, as we are currently treating the Second Case,
we have

yi < fC
( z1
2k

, . . . ,
zn
2k

)
.

On the other hand, the Lipschitz continuity of fC gives us

∣
∣
∣min( fC (x1 × · · · × xn)) − fC

( z1
2k

, . . . ,
zn
2k

)∣
∣
∣ =

∣
∣
∣ fC (s1, . . . , sn) − fC

( z1
2k

, . . . ,
zn
2k

)∣
∣
∣

≤ 2D · 2−k = 2−E .

By putting these estimates together, we obtain

y
i+1

− 2−E = yi − 2−E < min( fC(x1 × · · · × xn)).

That was to be shown.

We have finished the proof of (2) by induction. �

Proof (of Theorem 11) The implication “VII ⇒ VIII” is obvious.
Next, we show the implication “VI ⇒ VII”. Let us fix a polynomial time com-

putable sequence ( fn(x1, . . . , xn))n of polynomials and a polynomial time com-
putable sequence (x(n)

1 × · · · × x(n)
n )n of boxes of intervals. We have to show that

under the assumption PR = NPR there exists an algorithm that solves the follow-
ing range computation problem in polynomial time: Given as input a natural num-
ber n in unary notation and a binary-rational number ε > 0, compute the range
fn(x

(n)
1 × · · · × x(n)

n ) with precision ε. We are going to show that under the assump-
tion PR = NPR and given an n ∈ N in unary notation and a binary-rational num-
ber ε > 0, one can compute in polynomial time a binary-rational number y with
|y − max fn(x

(n)
1 × · · · × x(n)

n )| ≤ ε. It is clear that in a similar way one can com-
pute a binary-rational number y with |y − min fn(x

(n)
1 × · · · × x(n)

n )| ≤ ε.
First, given a number n ∈ N in unary form and a binary-rational number ε > 0,

we compute in polynomial time the uniquely determined set Cn ⊆ N
n × D with

fn(x1, . . . , xn) = fCn (x1, . . . , xn) and the binary rational numbers x1, x1, . . . , xn, xn
with x(n)

1 = [x1, x1], . . . , x(n)
n = [xn, xn]. For simplicity, in the following we write

x1 × · · · × xn instead of x(n)
1 × · · · × x(n)

n . Then, in the same way as in the proof of
Theorem 9, in polynomial time we determine natural numbers Bn, Dn, E such that

• fn(x1 × · · · × xn) ⊆ [−2Bn , 2Bn ],



On the Computational Complexity of the Range Computation Problem 289

• for any two points s = (s1, . . . , sn) ∈ x1 × · · · × xn and t = (t1, . . . , tn) ∈ x1 ×
· · · × xn ,

| fn(s) − fn(t)| ≤ 2Dn · n
max
i=1

|si − ti |,

• and ε ≥ 2−E .

Then we set ln := Bn + E and kn := Dn + E . Let Ln ⊆ {0, 1}ln be defined by

Ln :=
{
u ∈ {0, 1}ln

∣
∣
∣
(
∃z1 ∈ Z ∩

[
2kn · x1, 2kn · x1

])
· · ·

(
∃zn ∈ Z ∩

[
2kn · xn, 2kn · xn

])

2E ·
(
fn

(
z1
2kn

, . . . ,
zn
2kn

)
+ 2Bn

)
≥ u

}
.

We define a string vn ∈ {0, 1}ln by

vn := max{u | u ∈ Ln}

(where we identify a binary string with its numerical value in binary representation).
Let x be the real number with the infinite binary representation 0.v00v10v20 · · · . Let
wm be the prefix of length m of the infinite binary sequence v00v10v20 · · · . Then the
sequence (wm)m is a rapid Cauchy sequence for x . From the definition of Ln and of
νn it is straightforward to conclude that the set

L :=
⋃

m∈N
{u ∈ {0, 1}m | 0.u ≤ 0.wm}

is in NP. Hence, the real number x is an NP-real number. Now, we can apply our
assumption VI, that is, the assumption that PR = NPR. It implies that x is a poly-
nomial time computable real number. We claim that this implies that the sequence
(vn)n is computable in polynomial time.

Since x is a polynomial time computable real number there exists a polynomial
time computable sequence (w̃n)n of strings w̃n ∈ {0, 1}n such that |x − 0.w̃n| < 2−n ,
for all n. Let

g(n) := n + 1 +
n∑

i=0

li .

Then also the sequence (w̃g(n))n is a polynomial time computable sequence. Let y′
n be

the string of length g(n) − 1 obtained from w̃g(n) by deleting its last digit. We claim
that y′

n = wg(n)−1. Let d be the last digit of w̃g(n). Note that wg(n) = ν00ν10 · · · νn0.
Hence, the last digit of wg(n) is 0. We obtain

x ∈ [0.wg(n)−1, 0.wg(n)−1 + 2−g(n)[ ∩ ]0.y′
n + d · 2−g(n) − 2−g(n), 0.y′

n + d · 2−g(n) + 2−g(n)[.

But these last two intervals have nonempty intersection only in case y′
n = wg(n)−1.

Hence, y′
n = wg(n)−1. As the string vn is just the string formed of the last ln digits of

wg(n)−1, we conclude that the sequence (vn)n is computable in polynomial time.
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Finally, in polynomial time we can compute a binary-rational number yn with

yn = (νn + 1) · 2−E − 2Bn .

We claim that it has the desired property |yn − max fn(x1 × · · · × xn)| ≤ ε. This is
shown as follows. On the one hand, there exist some z1 ∈ Z ∩ [

2kn · x1, 2kn · x1
]
, . . .

zn ∈ Z ∩ [
2kn · xn, 2kn · xn

]
with 2E · (

fn
( z1
2kn , . . . , zn

2kn

) + 2Bn
) ≥ νn , hence, with

fn
( z1
2kn

, . . . ,
zn
2kn

)
≥ νn · 2−E − 2Bn = yn − 2−E .

We conclude
max fn(x1 × · · · × xn) ≥ yn − 2−E ≥ yn − ε.

On the other hand, let (s1, . . . , sn) ∈ x1 × · · · × xn be a point with fn(s1, . . . , sn) =
max( fn(x1 × · · · × xn)). Then there are integers z1, . . . , zn with xi ≤ zi

2kn ≤ xi and
with ∣

∣
∣si − zi

2kn

∣
∣
∣ ≤ 2−kn ,

for i = 1, . . . , n. The Lipschitz continuity of fn gives us

∣
∣
∣max( fn(x1 × · · · × xn)) − fn

( z1
2kn

, . . . ,
zn
2kn

)∣
∣
∣ =

∣
∣
∣ fn(s1, . . . , sn) − fn

( z1
2kn

, . . . ,
zn
2kn

)∣
∣
∣

≤ 2Dn · 2−kn = 2−E .

We obtain
max fn(x1 × · · · × xn) ≤ fn

( z1
2kn

, . . . ,
zn
2kn

)
+ ε

The definition of νn implies 2E · (
fn

( z1
2k , . . . ,

zn
2k

) + 2Bn
)

< νn + 1, hence,

fn
( z1
2k

, . . . ,
zn
2k

)
< (νn + 1) · 2−E − 2Bn = yn.

By putting these estimates together, we obtain

max fn(x1 × · · · × xn) < yn + ε.

This ends the proof of the implication “VI ⇒ VII”.
Finally, we show the implication “VIII⇒ IX”. Let us assume that Condition VIII

is satisfied. We have to show that this implies E = NE. As E ⊆ NE is true anyway,
we only have to show NE ⊆ E. Let us fix an arbitrary set L ⊆ Σ∗ (where Σ is an
alphabet; as usual, we assume 0, 1 ∈ Σ) with L ∈ NE. We wish to show L ∈ E. In
order to show this we perform several reduction steps.

First, we define a function h1 : Σ∗ → Σ∗ via the length-lexicographic ordering
of Σ∗. This is defined as follows: Order all strings in Σ∗ according to their length
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and strings of equal length alphabetically (where some fixed linear order on Σ is
used). If, for example, Σ = {0, 1}, then the length-lexicographic ordering of Σ∗ is
the following linear order:

λ, 0, 1, 00, 01, 10, 11, 000, 001, . . .

(remember that λ is the empty string). Let h1 : Σ∗ → Σ∗ be the function that maps
the nth element in this linear ordering (where the empty word λ is the 0th element)
to the unary string 1n , for any n ∈ N. It is clear that there exist constants c1, c2 such
that f can be computed in at most c1 · 2c2n + c1 steps (where n is the length of the
input string).

As L ∈ NE there exist a nondeterministic TuringmachineM and natural numbers
c3, c4 such that the Turing machine M solves the problem L and, for any input string
x ∈ Σ∗, on each computation path it stops after at most c3 · 2c4·|x | + c3 steps. We
define a new problem L ′ ⊆ Σ∗ by:

L ′ := {h1(x) | x ∈ L}.

Using the nondeterministic Turing machine M , it is easy to construct a nondetermin-
istic Turing Machine M ′ that solves L ′ and that works in polynomial time (note that
for any string x , the string h1(x) is linearly exponentially longer than x). This shows
L ′ ⊆ NP. Note that for any x ∈ Σ∗

x ∈ L ⇐⇒ h1(x) ∈ L ′.

And note also that L ′ is a unary language, that is, L ′ ⊆ {1}∗.
Secondly, it is well known that the satisfiability problem 3-CNF-SAT for 3-CNF

formulas is NP-complete. Therefore, the problem L ′ can be reduced in polynomial
time to 3-CNF-SAT. There exists a polynomial time computable function h2 such
that for any string y ∈ Σ∗, the string h2(y) is a standard description of a 3-CNF
formula and

y ∈ L ′ ⇐⇒ h2(y) is a standard description of a satisfiable 3-CNF formula.

In the third step, we use a polynomial time algorithm as described in Lemma 7.
Let us call this algorithm h3. We define a sequence of quadratic polynomials gn with
integer coefficients by

gn := h3(h2(1
n)).

The only problem with this sequence of polynomials is that the polynomial gn may
have more than n variables. In order to correct this, we observe that there exists a
strictly increasing univariate polynomial p(n) with coefficients in N such that the
string h2(1n) has length at most p(n). Then h3(h2(1n)) has certainly not more then
p(n) variables. Therefore we define a sequence ( fn(x1, . . . , xn))n of polynomials
by:
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fn := gmax{i∈N | p(i)≤n}.

Then, the polynomial fn has at most the n variables x1, . . . , xn . The sequence ( fn)n
is a polynomial time computable sequence of quadratic polynomials with integer
coefficients. Note that f p(n) = gn .

Finally, since we assume that Condition VIII is satisfied, there exists a polynomial
time algorithm h4 which, given m in unary notation, computes within polynomial
time the range fm([0, 1]m) with precision 1. Similarly as in the proof of Corollary 8,
this algorithm can be used to decide wether any given string x ∈ Σ∗ is an element
of L or not. In order to decide that, given x ∈ Σ∗, we proceed as follows:

1. Compute the unary string h1(x). Let n be the natural number with h1(x) = 1n .
Note that n ≤ c1 · 2c2|x | + c1 and that 1n can be computed in c1 · 2c2n + c1 steps.

2. Using h2, h3, p, and h4 compute a binary-rational number y with

|y − min( f p(n)([0, 1]p(n)))| ≤ 1.

This can be done in time polynomial in n.
3. If y < 1.5, output “yes”, if y > 1.5, output “no”.

This algorithm says either “yes” or “no”, and it says “yes” if, and only if, x ∈ L .
It works in time polynomial in n, thus polynomial in c1 · 2c2|x | + c1, thus in time
c5 · 2c6·|x | + c5 for some constants c5, c6. This shows that L ∈ E. We have shown
that Condition VIII implies E = NE. �

Proof (of Theorem 12) First, we note that one can define the notion of an NEXP-
hard problem in the same way as the notion of anNP-hard problem: in the definition
of NP-hardness (see Sect. 2.3) just replace NP by NEXP. Due to Theorem 20.2 and
Lemma 20.1 in [10] there exists anNEXP-hard problem L that is actually an element
of NE. Let L ⊆ Σ∗ be such a problem. We define a sequence ( fn(x1, . . . , xn))n of
quadratic polynomialswith integer coefficients in exactly the sameway as in the proof
of the implication “VIII⇒ IX” in Theorem 11. Then this sequence ( fn(x1, . . . , xn))n
is polynomial time computable. This is the sequence whose existence is claimed in
Theorem 12.

Now the assumption that Condition X is satisfied for this sequence leads to L ∈ E
in exactly the sameway as in the proof of the implication “VIII⇒ IX” in Theorem11.
Of course, thenwe have L ∈ EXP aswell.We claim that this impliesEXP = NEXP.
As EXP ⊆ NEXP is true anyway, we only have to show NEXP ⊆ EXP. Let us
consider an arbitrary L ′ ∈ NEXP. Due to the NEXP-hardness of L , the problem L ′
can be reduced in polynomial time to L . As the complexity classEXP is closed under
polynomial time reduction, we conclude L ′ ∈ EXP, hence, NEXP ⊆ EXP. �
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An Overview of Polynomially
Computable Characteristics of Special
Interval Matrices

Milan Hladík

Abstract It is well known that many problems in interval computation are
intractable, which restricts our attempts to solve large problems in reasonable time.
This does not mean, however, that all problems are computationally hard. Identifying
polynomially solvable classes thus belongs to important current trends. The purpose
of this paper is to review some of such classes. In particular, we focus on several
special interval matrices and investigate their convenient properties. We consider
tridiagonal matrices, {M, H, P, B}-matrices, inverse M-matrices, inverse nonnega-
tive matrices, nonnegative matrices, totally positive matrices and some others. We
focus in particular on computing the range of the determinant, eigenvalues, singular
values, and selected norms. Whenever possible, we state also formulae for determin-
ing the inverse matrix and the hull of the solution set of an interval system of linear
equations. We survey not only the known facts, but we present some new views as
well.

Keywords Interval computation · Computational complexity · Tridiagonal
matrix · M-matrix · H-matrix · P-matrix · Inverse nonnegative matrix

1 Introduction

Many problems in interval computation are computationally hard; see the theoretic
complexity surveys in [21, 27]. Nevertheless, matrices arising in practical problems
are not random, but satisfy some special properties and have specific structures.
Utilizing such particularities is often very convenient and can make tractable those
problems that are hard in general. In this paper, we review such special matrices and
easily computable characteristics.
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General notation

For a symmetric matrix A ∈ R
n×n , we denote its eigenvalues as λmax(A) = λ1(A) ≥

· · · ≥ λn(A) = λmin(A). For any matrix A ∈ R
n×n , we use ρ(A) for the spectral

radius, and σmin(A) and σmax(A) the smallest and the largest singular values, respec-
tively. Further, diag(z) stands for the diagonal matrix with entries z1, . . . , zn , the
symbol In is for the identity matrix of size n, and e = (1, . . . , 1)T for an all-ones
vector of convenient dimension. The i th row and the j th column of a matrix A are
denoted by Ai∗ and A∗ j , respectively. Throughout the text, inequalities between vec-
tors andmatrices aswell as the absolute values andmin/max functions are understood
entrywise.

The regularity radius [17, 27, 35] of a nonsingularmatrix A ∈ R
n×n is the distance

to the nearest singular matrix in the Chebyshev norm (componentwise maximum
norm) and denoted

r(A) := min{δ ≥ 0; ∃ singular B ∈ R
n×n : |ai j − bi j | ≤ δ ∀i, j}.

This value can be expressed as r(A) = 1/‖A−1‖∞,1, where

‖M‖∞,1 := max‖x‖∞=1
‖Mx‖1

is the matrix norm induced by the vector ∞- and 1-norms. Computing this norm is,
however, an NP-hard problem on the set of symmetric rational M-matrices [12, 39].
The best known approximation is by means of semidefinite programming [16].

Interval notation

An interval matrix is defined as

A := {A ∈ R
m×n; A ≤ A ≤ A},

where A and A, A ≤ A, are given matrices. The corresponding midpoint and the
radius matrices are defined respectively as

Ac := 1

2
(A + A), AΔ := 1

2
(A − A).

The set of allm × n interval matrices is denoted by IRm×n , and intervals and interval
vectors are considered as special cases of intervalmatrices. For interval arithmetic,we
refer the reader, e.g., to Neumaier [31]. GivenA ∈ IR

n×n with Ac and AΔ symmetric,
wedenote byAS := {A ∈ A; A = AT } the corresponding symmetric intervalmatrix.

For a bounded set S ⊂ R
n , the interval hull �S is the smallest enclosing interval

vector, or more formally, �S := ∩{v ∈ IR
n; S ⊆ v}.

Consider an interval system of linear equations Ax = b, where A ∈ IR
m×n and

b ∈ R
m . Its solutions set Σ is traditionally defined as the union of all solutions of

realizations of interval coefficients, that is
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Σ := {x ∈ R
n; ∃A ∈ A, ∃b ∈ b : Ax = b}.

Consider any matrix propertyP. We say that an interval matrixA satisfiesP is every
A ∈ A satisfiesP. This applies in particular to regularity (every A ∈ A is nonsingu-
lar), positive definiteness, M-matrix property, nonnegativity and others. Recall that
checking whether an interval matrix is regular is a co-NP-hard problem [12, 27, 35].

For a real function f : Rm×n → R and an interval matrix A ∈ IR
m×n , the image

of the interval matrix under the function is

f (A) = { f (A); A ∈ A}.

In general, f (A) needn’t be an interval, but it is the case provided f is continuous.
Thus, for instance, det(A) gives the range of determinant of A or λmax(AS) gives the
range of the largest eigenvalues of the symmetric interval matrix AS .

2 Tridiagonal Matrices

Tridiagonal interval matrices have particularly nice properties and some NP-hard
problems become polynomial in this class. Let T ∈ IR

n×n be a tridiagonal interval
matrix, that is, Ti j = 0 for |i − j | > 1. Checking regularity of T can be performed
in linear time (Bar-On et al. [5]). Computing the exact range for the determinant is
also a polynomial-time problem provided T is a tridiagonal H-matrix [22]. However,
there are still some open problems. Are polynomially solvable the following tasks?

• computing the exact range for the determinant,
• tight enclosure of the solution set of an interval linear system Tx = b,
• computing the eigenvalue sets of a symmetric tridiagonal interval matrix,
• computing ‖T‖∞,1.

3 M-matrices and H-matrices

Interval M-matrices and H-matrices are particularly convenient in the context of
solving interval linear equations Ax = b. Recall that A ∈ R

n×n is an M-matrix if
ai j ≤ 0 for every i �= j and A−1 ≥ 0. The condition A−1 ≥ 0 can be equivalently
formulated as any of the following conditions [23]

• all real eigenvalues are positive,
• real parts of all eigenvalues are positive,
• there is v > 0 such that Av > 0.

Due to the statement below fromBarth andNuding [6], intervalM-matrices constitute
an easily verifiable regular interval matrices.
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Theorem 1 An interval matrix A ∈ IR
n×n is an M-matrix if and only if A is an

M-matrix and Ai j ≤ 0 for all i �= j .

A matrix A ∈ R
n×n is called an H-matrix, if the so called comparison matrix 〈A〉

is an M-matrix, where 〈A〉i i = |aii | and 〈A〉i j = −|ai j | for i �= j . Special subclasses
of H-matrices were discussed, e.g., in Cvetković et al. [10].

Also interval H-matrices are easy to characterize; see Neumaier [31]. We have
that A ∈ IR

n×n is an H-matrix if and only if 〈A〉 is an M-matrix, where the notion
of the comparison matrix is extended to interval matrices as follows

〈A〉i i = mig(ai i ) = min {|a|; a ∈ ai i },
〈A〉i j = −mag(ai i ) = −max {|a|; a ∈ ai j }, i �= j.

Each diagonally dominant matrix is an H-matrix. So we do not investigate diago-
nally dominant matrices in particular since what we show for H-matrices holds for
diagonally dominant matrices as well.

Each M-matrix is also an H-matrix, so the following results apply to both. By
Alefeld [2], for an H-matrix A, the interval Gaussian elimination can be carried out
without any pivoting and does not fail. Moreover, for any H-matrix A we always
find an LU decomposition [2]. That is, there are lower and upper triangular interval
matrices L,U ∈ IR

n×n such that the diagonal of L consists of ones, and A ⊆ LU.
Provided that A is an M-matrix, and one of 0 ∈ b, b ≥ 0, or b ≤ 0 holds true,

then the interval Gaussian elimination yields the interval hull of the solution set, i.e.,
�Σ ; see [6, 7] and Sect. 4 for a more general result. For a general H-matrix, this
needn’t be true, however, for any H-matrix A, the interval hull of the solution set is
polynomially solvable by the so called Hansen–Bliek–Rohn–Ning–Kearfott method;
see, e.g., [12, 32, 33].

A link between regularity and H-matrix property was given by Neumaier [31,
Prop. 4.1.7].

Theorem 2 Let Ac be anM-matrix. ThenA is regular if and only if it is an H-matrix.

Notice that the assumption cannot be weakened to the assumption that Ac is an
H-matrix. For example, the interval matrix

A =
( [0, 10] 1

−1 10

)

is regular and its midpoint is an H-matrix. However, A itself is not an H-matrix,
failing for the realization when the top left entry vanishes.

As a consequence, we have a result related to positive definiteness. Checking
positive definiteness of interval matrices is co-NP-hard [27, 37], so polynomial rec-
ognizable sub-classes are of interest.

Theorem 3 Let A ∈ IR
n×n be an H-matrix and Ac positive definite. Then A is pos-

itive definite.
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Proof By [27, 38], positive definiteness of Ac and regularity of A implies positive
definiteness of A. �

Theorem 4 Let Ac be a (symmetric) positive definite M-matrix. Then A is positive
definite if and only if it is an H-matrix.

Proof By [27, 38], under the assumption of positive definiteness of Ac, we have
that A is positive definite if and only if it is regular, which is equivalent to H-matrix
property by Theorem 2. �

Theorem 5 Let A ∈ IR
n×n be an M-matrix. Then det(A) = [det(A), det(A)].

Proof The derivative of the determinant det(A) is det(A)A−T . For anM-matrix both
the determinant and the inverse are nonnegative, so the determinant is a nondecreasing
function in each component. �

Since each M-matrix is inverse nonnegative, Theorems 9 and 10 from Sect. 4
below are valid also for interval M-matrices.

4 Inverse Nonnegative Matrices

Besides the generalization to H-matrices, M-matrices can also be extended to inverse
nonnegative matrices, that is, matrices A ∈ R

n×n such that A−1 ≥ 0. Interval inverse
nonnegativity is still easy to characterize just by reduction to two point matrices A
and A only; see Kuttler [28].

Theorem 6 An interval matrix A ∈ IR
n×n is inverse nonnegative if and only if

A−1 ≥ 0 and A
−1 ≥ 0.

For inverse nonnegative matrices we can easily determine the range of their

inverses. The theorem below says that �{A−1; A ∈ A} = [A−1
, A−1].

Theorem 7 If A is inverse nonnegative, then A
−1 ≤ A−1 ≤ A−1 for every A ∈ A.

When an interval matrix A ∈ IR
n×n is inverse nonnegative, then interval systems

Ax = b are efficiently solvable. The interval hull of the solution set reads

• �Σ = [A−1
b, A−1b] when b ≥ 0,

• �Σ = [A−1b, A
−1
b] when b ≤ 0,

• �Σ = [A−1b, A−1b] when 0 ∈ b.

In the other cases, �Σ is still polynomially computable, but has no such an explicit
formulation; see Neumaier [31].

For symmetric inverse nonnegative matrices we have also a simple formula for
its smallest eigenvalue. Notice that for the largest eigenvalue an analogy is not valid
in general.
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Theorem 8 Let A be inverse nonnegative and both AΔ and Ac symmetric. Then
λmin(AS) = [λmin(A), λmin(A)].
Proof Let A ∈ AS . Then by the Perron theorem and theory of nonnegative matrices,
λmin(A) = λ−1

max(A
−1) ≥ λ−1

max(A
−1) = λmin(A), and similarly for the upper bound.

�

Analogously, we obtain:

Theorem 9 If A is inverse nonnegative, then σmin(A) = [σmin(A), σmin(A)].
Theorem 10 IfA is inverse nonnegative, then det(A) = [min(D),max(D)], where
D = {det(A), det(A)}.
Proof Analogously to the proof of Theorem 5 we use the fact that the derivative of
the determinant det(A) is det(A)A−T . The determinant must have a constant sign,
and A−T ≥ 0, so the minimal and maximal determinants are attained for A or A. �

The above theorem can simply be extended to sign stablematrices, which are those
interval matrices A ∈ IR

n×n satisfying |A−1| > 0; see Rohn and Farhadsefat [40].
The signs of the entries say if the determinant is nonincreasing or nondecreasing.
Therefore, the left/right endpoint of det(A) is attained for a matrix A ∈ A defined as
ai j = ai j if (A−1)i j ≥ 0 and ai j = ai j otherwise.

For the regularity radius, we have:

Theorem 11 If A is inverse nonnegative, then r(A) = [r(A), r(A)].

Proof Let A ∈ A. By Theorem 7, r(A) = 1/‖A−1‖∞,1 ≤ 1/‖A−1‖∞,1 = r(A), and
similarly from below. �

5 Totally Positive Matrices

A matrix A ∈ R
n×n is totally positive if the determinants of all submatrices are

positive. Despite the definition, checking this property is a polynomial problem; see
Fallat and Johnson [11].

LetA ∈ IR
n×n . First we show a correspondence between total positivity ofA and

inverse nonnegativity. Denote s := (1,−1, 1,−1, . . . )T of a convenient length.

Theorem 12 If A is totally positive, then diag(s)A diag(s) is inverse nonnegative.

Proof The inverse of A can be expressed as A−1 = det(A)−1 adj(A), where the
entries of the adjugate matrix are defined as adj(A)i j = (−1)i+ j det(A ji ), and A ji

arises from A by removing the j th row and the i th column. Thus A is inverse sign
stable corresponding to the checkerboard order, and therefore diag(s)A diag(s) is
inverse nonnegative. �
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From the above theorem, we can easily derive many useful properties of totally
positive interval matrices based on the results presented in Sect. 4.

Also total positivity of an interval matrixA ∈ IR
n×n can be verified in polynomial

time just by reducing the problem to two vertexmatrices defined by the checkerboard
order. Define ↓ A,↑ A ∈ A as follows

↓ A := Ac − diag(s)AΔ diag(s), ↑ A := Ac + diag(s)AΔ diag(s).

In relation to Theorem 12, these matrices can also be expressed as

↓ A = diag(s)(diag(s)A diag(s)) diag(s),

↑ A = diag(s)(diag(s)A diag(s)) diag(s).

Then we have all ingredients to state the result by Garloff [14]:

Theorem 13 A is totally positive if and only if ↓ A and ↑ A are totally positive.

A generalization to nonsingular totally nonnegative matrices was carried out by
Adm andGarloff [1]. As consequences of the above theorem,we obtain the following
properties.

Corollary 1 If A is totally positive, then σmin(A) = [σmin(↓ A), σmin(↑ A)] and
σmax(A) = [σmax(A), σmax(A)].
Proof The formula for σmin(A) follows from Theorems 9 and 12. The formula for
σmax(A) will be shown in Theorem 21 under weaker assumptions; notice thatA here
is componentwisely nonnegative. �

Corollary 2 If A is totally positive, then det(A) = [min(D),max(D)], where
D = {det(↓ A), det(↑ A)}.
Proof It follows from Theorems 10 and 12. �

Corollary 3 If A is totally positive, then r(A) = [r(↓ A), r(↑ A)].
Proof It follows from Theorems 11 and 12. �

Totally positivematrices havedistinct positive eigenvaluesλ1,> · · · > λn > 0 the
properties of which enable us to compute the eigenvalue ranges of interval matrices.
The lower bound of λn(A) and the upper bound of λ1(A) come from Garloff [13].

Theorem 14 If A is totally positive, then λn(A) = [λn(↓ A), λn(↑ A)] and
λ1(A) = [λ1(A), λ1(A)].
Proof Let A ∈ A and let x, y be the right and left eigenvectors of A corresponding
to the smallest eigenvalue λn(A) and normalized such that xT y = 1. By Fallat and
Johnson [11], the signs of both vectors x and y alternate, so we can assume that
both have the sign vector given by s defined above, that is, sgn(x) = sgn(y) = s.



302 M. Hladík

The derivative of λn(A) with respect to ai j is xi y j , so the maximum is attained for
aci j + si s j aΔ

i j = (↑ A)i j and similarly for the minimum.
The second formula follows from the Perron theory of eigenvalues of nonnegative

matrices. For each A ∈ A we have λ1(A) = ρ(A) ≤ ρ(A) = λ1(A), and similarly
of the lower bound. �

Even more, we can easily compute the eigenvalue sets λi (A) for any other
i ∈ {1, . . . , n}. By Fallat and Johnson [11], the signs of both left and right eigenvec-
tors corresponding to λi (A) are constant for every A ∈ A (eigenvalues of principal
submatrices of size n − 1 strictly interlace eigenvalues of A, so no eigenvector has
a zero entry). Therefore, we can proceed as follows. Let x and y, xT y = 1, be the
eigenvectors corresponding to λi (Ac). Then λi (A) = [λi (A1), λi (A2)], where A1

and A2 are defined as

A1 = Ac − diag(sgn(x))AΔ diag(sgn(y)),

A2 = Ac + diag(sgn(x))AΔ diag(sgn(y)).

Consider now an interval system Ax = b with A totally positive. Denote
↓ b := bc − diag(s)bΔ and ↑ b := bc + diag(s)bΔ. Denote by ≥∗ the checkerboard
order, that is, u ≥∗ v iff diag(s)u ≥ diag(s)v. Eventually, the interval vector [v1, v2]∗
with v1 ≤∗ v2 induced by the checkerboard order is defined as

[v1, v2]∗ := diag(s)[diag(s)v1, diag(s)v2].

Then the interval hull of the solution set reads (see Garloff [13], where the result is
stated for a more general class of nonsingular totally nonnegative interval matrices)

• �Σ = [(↑ A)−1(↓ b), (↓ A)−1(↑ b)]∗ when ↓ b ≥∗ 0,
• �Σ = [(↓ A)−1(↓ b), (↑ A)−1(↑ b)]∗ when ↑ b ≤∗ 0,
• �Σ = [(↓ A)−1(↓ b), (↓ A)−1(↑ b)]∗ when 0 ∈ b.

For an extension of totally positive matrices to the so called sign regular matrices
with a prescribed signature; see Garloff et al. [15].

Notice that totally positive matrices are componentwisely nonnegative, so all
results from Sect. 8 are valid for totally positive matrices, too.

6 P-Matrices

A square real matrix is a P-matrix if all its principal minors are positive. The problem
of checking whether a given matrix is a P-matrix is co-NP-hard [9, 27]. Fortunately,
there are several effectively recognizable sub-classes of P-matrices, such as positive
definite matrices, totally positive matrices, (inverse) M-matrices or more generally
H-matrices with positive diagonal entries. By Białas and Garloff [8], an interval
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matrix A ∈ IR
n×n is a P-matrix if and only if Ac − diag(z)AΔ diag(z) is a P-matrix

for each z ∈ {±1}n .
Positive definiteness is easily verifiable for real matrices, but for interval ones it is

co-NP-hard [27, 37], so they do not constitute a polynomial sub-class of interval P-
matrices. On the other hand, totally positive matrices,M-matrices or H-matrices with
positive diagonal are such a sub-class, as we already observed above. The following
result shows that as long as the midpoint matrix Ac of an interval P-matrix is an
H-matrix, then A itself must be an H-matrix.

Theorem 15 Let Ac be an M-matrix. Then A is a P-matrix if an only if it is an
H-matrix.

Proof “If.” It is obvious. Notice that every matrix in Amust have positive diagonal.
“Only if.” Since Ac is an M-matrix and A is regular, the interval matrix A must

be an H-matrix in view of Theorem 2. �
In Hladík [19], it was shown that an interval matrix P with either Ac or AΔ

diagonal is a P-matrix if and only if A is a P-matrix. This reduces the problem to just
one case, which is however still hard to check in general.

Let us mention one more polynomially decidable subclass of interval P-matrices.
A matrix A ∈ R

n×n is a B-matrix if

n∑
j=1

ai j > 0 and
1

n

n∑
j=1

ai j > aik ∀i �= k.

Any B-matrix is a P-matrix; see Peña [34]. For an interval matrix A ∈ IR
n×n , B-

matrix property is easily checked by adapting the above characterization.

Theorem 16 A ∈ IR
n×n is a B-matrix if and only if

n∑
j=1

ai j > 0 and
∑
j �=k

ai j > (n − 1)aik ∀i �= k.

7 Diagonally Interval Matrices

We say that an interval matrix A ∈ IR
n×n is diagonally interval if AΔ is diagonal.

These matrices are still intractable from many viewpoints. As shown in Rump [41],
checking P-matrix property, which is co-NP-hard, can be reduced to checking regu-
larity of an interval matrixA ∈ IR

n×n with AΔ = In . Therefore, checking regularity
of a diagonally interval matrix is co-NP-hard as well. Similarly, there will be hard
many problems related to solving interval linear equations.

On the other hard, regularity turns out to be tractable as long as Ac is symmetric.
Moreover, we can effectively determine all eigenvalues ofA. The following theorem
extends the result from Hladík [18].
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Theorem 17 LetA ∈ IR
n×n be diagonally interval and Ac symmetric. Then λi (AS)

= [λi (A), λi (A)] for every i = 1, . . . , n.

Proof By the Courant–Fischer theorem we have for every A ∈ A

λi (A) = max
S:dim(S)=i

min
x∈S, ‖x‖=1

xT Ax ≤ max
S:dim(S)=i

min
x∈S, ‖x‖=1

xT Ax = λi (A),

and similarly for the lower bound. �
As a simple consequence, we have:

Corollary 4 LetA ∈ IR
n×n bediagonally interval and Ac symmetric. Thenρ(AS) =

max{λ1(A),−λn(A)}.
Since the upper bounds for the eigenvalues intervals are attained for the same

matrix A and analogously for the lower bounds, we get as a consequence a simple
formula for the range of the determinant provided Ac is positive semidefinite. This
is not the case for a general diagonally interval matrix.

Corollary 5 Let A ∈ IR
n×n be diagonally interval and Ac symmetric positive

semidefinite. Then det(A) = [det(A), det(A)].
InKosheleva et al. [26], it was shown that computing the cube of an intervalmatrix

is an NP-hard problem. Here, we show that it is a polynomial problem provided A ∈
IR

n×n is diagonally interval. The cube is naturally defined as A3 := {A3; A ∈ A}. It
needn’t be an interval matrix, so the problem practically is to determine the interval
matrix �A3.

We will compute the cube entrywise. Let i, j ∈ {1, . . . , n} and suppose that i �=
j ; the case i = j is dealt with analogously. Then the problem is to determine the
range of A3

i j = ∑
k,� aikak�a�j on akk ∈ akk , k = 1, . . . , n. This function is linear

in akk for k �= i, j , so we can fix the values of these parameters on the lower or
upper bounds, depending on the signs of the corresponding coefficients. Thus the
function A3

i j reduces to a quadratic function of variables aii and a j j only. This can
be resolved by brute force by binary search or by utilizing optimality criteria from
mathematical programming—notice that we minimize/maximize quadratic function
on a two-dimensional rectangle.

Therefore, we have:

Theorem 18 Computing �A3 is a polynomial problem for A diagonally interval.

8 Nonnegative Matrices

For a (componentwisely) nonnegative matrix A ∈ R
n×n , the Perron theory says that

its spectral radius ρ(A) is attained as the eigenvalue. Let A ∈ IR
n×n . Obviously, it

is nonnegative if and only if A ≥ 0. In some situations, however, it is not necessary
to assume that all matrices in A are nonnegative, but it is sufficient to assume that
Ac ≥ 0. First, we consider the spectral radius.
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Theorem 19 We have:

(i) If Ac ≥ 0, then ρ(A) = ρ(A).
(ii) If A is nonnegative, then ρ(A) = [ρ(A), ρ(A)].
Proof For every A ∈ A, |A| ≤ Ac + AΔ = A, whence ρ(A) ≤ ρ(A). If in addition
A ≥ 0, then ρ(A) ≤ ρ(A) for every A ∈ A. �

Analogously, we obtain:

Theorem 20 We have:

(i) If Ac ≥ 0, then λmax(A) = λmax(A).
(ii) If A is nonnegative, then λmax(A) = [λmax(A), λmax(A)].
Theorem 21 If A is nonnegative, then σmax(A) = [σmax(A), σmax(A)].

Recall that a matrix norm is monotone if |A| ≤ B implies ‖A‖ ≤ ‖B‖. This is
satisfied for most of the norms used. For instance, any induced p-norm, ‖ · ‖∞,1

norm, Frobenius norm or the Chebyshev norm are monotone.

Theorem 22 For every monotone matrix norm we have

(i) If Ac ≥ 0, then ‖A‖ = ‖A‖.
(ii) If A is nonnegative, then ‖A‖ = [‖A‖, ‖A‖].
Proof For every A ∈ A, we have |A| ≤ A, and therefore ‖A‖ ≤ ‖A‖. If in addition
A ≥ 0, then ‖A‖ ≤ ‖A‖ for every A ∈ A. �

Nonnegative matrices are also useful for computing high powers of them. Recall

that by definition, Ak = {Ak; A ∈ A}. Notice that not every matrix in [Ak, A
k] is

achieved as the kth power of some A ∈ A, so Ak is not an interval matrix.

Theorem 23 If A is nonnegative, then �Ak = [Ak, A
k].

Proof Obviously, for every A ∈ A, we have Ak ≤ Ak ≤ A
k
. �

9 Inverse M-matrices

A matrix A ∈ R
n×n is an inverse M-matrix [25] if is nonsingular and A−1 is an M-

matrix. This represents another easily recognizable sub-class of P-matrices. Recall
that a vertex matrix of A is a matrix A ∈ A such that ai j ∈ {ai j , ai j } for all i, j .
Johnson and Smith [24, 25] showed that A is an inverse M-matrix if and only if
all vertex matrices are. This reduces the problem to 2n

2
real matrices. Neither a

polynomial reduction is know, nor NP-hardness was proved. So the computational
complexity of checking whether an interval matrix A ∈ IR

n×n is an inverse M-
matrix is an open problem. It is also worth mentioning the result by Poljak and Rohn
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[12, 35], who showed that checking regularity of an interval matrix [A − eeT , A +
eeT ] is co-NP-hard even when A is a symmetric inverse M-matrix.

Since an inverse M-matrix is nonnegative, all results from Sect. 8 are valid in this
context, too.

For the componentwise range of inverse matrices, we have the following obser-
vation reducing the problem to 2n2 real matrices.

Theorem 24 If A is an inverse M-matrix, then

min
A∈A

A−1 = min
{
(Ac + diag(zi )AΔ diag(z j ))−1; i, j = 1, . . . , n

}
,

max
A∈A

A−1 = max
{
(Ac − diag(zi )AΔ diag(z j ))−1; i, j = 1, . . . , n

}
,

where the minimum is understood componentwisely and zi := (1, . . . , 1,−1, 1, . . . ,
1)T has −1 in the i th entry and 1 elsewhere.

Proof The derivative of the inverse is ∂(A−1)i j
∂ak�

= −(A−1)ik(A−1)�j , or in a matrix

form, ∂(A−1)i j
∂A = −(A−T )∗i (A−T ) j∗. It has constant signs, so the minimum value of

(A−1)i j is attained for the matrix Ac + diag(z j )AΔ diag(zi ), and analogously the
maximum. �

This characterization leads us to the open problem:

Conjecture 1 A is an inverse M-matrix if and only if Ac ± diag(zi )AΔ diag(z j )),
i, j = 1, . . . , n, are inverse M-matrices.

It is also an open question whether interval systems of linear equations Ax = b
can be solved efficiently provided A is an inverse M-matrix. Anyway, we can state a
partial result concerning the interval hull of the solution set.

Theorem 25 If A is an inverse M-matrix, then �Σ i is attained for b := bc +
diag(zi )bΔ, and �Σ i is attained for b := bc − diag(zi )bΔ.

Proof Let A ∈ A, b ∈ b and x := A−1b. Then

xi = A−1
i∗ b =

n∑
j=1

(A−1)i j b j ≥ (A−1)i i b j +
∑
j �=i

(A−1)i j b j = A−1
i∗ (bc + diag(zi )bΔ).

Similarly for the upper bound. �
Theorem 26 If A is an inverse M-matrix, then det(A) = [det(A1), det(A2)], where

A1
i j =

{
Aii if i = j,

Ai j if i �= j,
A2
i j =

{
Aii if i = j,

Ai j if i �= j.

Proof Similar to the proof of Theorem 5. The derivative of the determinant det(A)

is det(A)A−T . The determinant itself is positive, the diagonal of A−T is positive, and
its offdiagonal is nonpositive. �
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10 Parametric Matrices

A parametric matrix extends the notion of an interval matrix to a broader class of
matrices. A linear parametric matrix is a set of matrices

A(p) =
K∑

k=1

A(k) pk,

where A(1), . . . , A(K ) ∈ R
n×n are fixedmatrices and p1, . . . , pK are parameters vary-

ing respectively in p1, . . . ,pK ∈ IR. In short, we will denote it as A(p).
Sincemany problems are intractable for standard interval matrices, handling para-

metric matrices is much more difficult task. On the other hand, there are several
tractable cases, which we will be concerned with now.

By Hladík [20], we have:

Theorem 27 A(p) is positive definite if and only if A(p) is positive definite for each
p such that pk ∈ {p

k
, pk} ∀k.

This reduced the problem to checking positive definiteness of 2K real matrices.
Provided K is fixed, we arrived at a polynomial method for checking positive defi-
niteness of A(p).

Consider now a parametric system of linear equations

A(p)x = b(p),

where b(p) = ∑K
k=1 b

(k) pk is a linear parametric right-hand side vector. The corre-
sponding solution set is defined as

Σ p := {x ∈ R
n; ∃p ∈ p : A(p)x = b(p)}.

In contrast to ordinary interval linear systems, characterizing this solution set is a
tough problem [3, 4, 29] even for some particular linear systems. Nevertheless, there
are some easy-to-handle situations. By Mohsenizadeh et al. [30], under a rank one
assumption, we have a reduction to 2K real systems, which is tractable for a fixed
number of parameters.

Theorem 28 If rank(A(k)) ≤ 1 for every k = 1, . . . , K, and there are no cross
dependencies between the constraint matrix A(p) and the right-hand side b(p)

(i.e., A(k) �= 0 ⇒ b(k) = 0), then the extremal values of Σ p are attained for
pk ∈ {p

k
, pk}, k = 1, . . . , K.

Another reduction to 2K real linear systems can be performed based on the result
by Popova [36].
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Theorem 29 If each parameter is involved in one equation only, then Σ p is
described by

|A(pc)x − b(pc)| ≤
K∑

k=1

pΔ
k |A(k)x − b(k)|.

Let z ∈ {±1}K and consider the restriction of Σ p to the set described by
zk(A(k)x − b(k)) ≥ 0, k = 1, . . . , K . This restricted set has simplified description

A(pc)x − b(pc) ≤
K∑

k=1

pΔ
k zk(A

(k)x − b(k)),

−A(pc)x + b(pc) ≤
K∑

k=1

pΔ
k zk(A

(k)x − b(k)),

zk(A
(k)x − b(k)) ≥ 0, k = 1, . . . , K .

This is a system of linear inequalities, which is efficiently processed via linear pro-
gramming.Again,wegot a reduction to 2K linear subproblems,which is a polynomial
case provided K is fixed.

11 Conclusion

In this paper, we briefly surveyed interval versions of selected special types of matri-
ces and their useful properties. In particular, we highlighted the properties and char-
acteristics that are efficiently computable even in the interval context. We were moti-
vated by the fact that matrices appearing in applications are not general, but usually
have some special structure. Utilizing this special form may in turn radically reduce
computational complexity of problems involving the matrices.

Acknowledgements The author was supported by the Czech Science Foundation Grant P403-18-
04735S.
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Interval Methods for Solving Various
Kinds of Quantified Nonlinear Problems

Bartłomiej Jacek Kubica

Abstract The paper surveys the investigations, performed by both the author and
other researchers, on interval branch-and-bound-type methods. It is devoted to con-
sidering several theoretical and some implementational issues of such algorithms.
Specifically, the paper emphasizes the two-phase structure of many versions of such
algorithms and tries to explain it. It shows how this structure is related to quantifier
elimination and to computing Herbrand expansions, that are used as approximations
of quantified formulae. The paper tries to clear some confusion in notions used in
the community, also. Furthermore, the role of heuristics in branch-and-bound-type
methods is considered. Some important heuristics are briefly reviewed.

Keywords Interval computations · Decision making · First-order logic ·
Herbrand expansion · Branch-and-bound method · Heuristics
1 Introduction

In [26], the author stated that interval methods are well suited to solve problems of
the form:

Find allx ∈ X such that P(x) is fulfilled, (1)

where P(x) is a formula with a free variable x and X ⊆ R
n; often X is a single

box x(0) (the standard notation from [18] is adopted). The referred paper described
several details, e.g., what can be computed for such a problem, how can the solutions
be represented, etc.

It is worth noting that Problem (1) has some variants, e.g.:

• Find a single solution point x ∈ X such that P(x).
• Find the inner approximation of the solution set, i.e., a box x ⊆ X such that for
all x ∈ x we have P(x).
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• Find the outer approximation of the solution set, i.e., a box x such that all x ∈ X
for which P(x) satisfy x ∈ x.

Above problems, often being solved, e.g., for interval linear equations, are not
going to be considered in this paper.

As for problems of type (1) in its original form, in [26] we formulated a gen-
eral meta-algorithm to solve them. It is the branch-and-bound-type method (B&BT
method); we call it generalized branch-and-bound method, also.

This meta-algorithm has several well-known instances for solving various prob-
lems. In particular, we have:

• classical B&B methods, used in optimization (e.g., [17]), but also other problems
(e.g., [33, 34]);

• branch-and-prune methods (B&P)—for systems of equations and/or inequalities
[11, 16];

• partitioning parameter space (PPS)—for interval linear systems [49];
• SIVIA (Set Inversion Via Interval Analysis)—for various constraint satisfaction
problems (CSPs) [16];

• …

All these algorithms differ in some significant details, but also they have several
similarities:

• they are based on subsequent subdivision of the search domain, i.e., they are
instances of the so-called divide-and-conquer approach (which is an inexact trans-
lation of the Latin phrase divide et impera);

• they bound values of some functions on obtained subboxes, using the interval
calculus;

• they use the samekindof tools to process subboxes, e.g., intervalNewtonoperators,
consistency enforcing operators, linear relaxations, initial exclusion phases, etc.
(see, e.g., [16, 17]);

• they can be parallelized in a similar manner;
• they face similar problems in storing results, load balancing, etc. [26].

Actually, there is some confusion in naming the algorithms: for instance, Kearfott
in his classical book [17] calls “a branch-and-bound method” the procedure that is
called “branch-and-prune” by other researchers (see, e.g., [11, 15]). It seems useful
to indicate actual common features and differences between these algorithms.

Various versions of B&BT algorithms compute two sets of solutions, usually: ver-
ified and possible ones. The paper [26] discusses what—depending on the problem
under consideration—an be the shape of the solution set (cf. also [2]), and conse-
quently a few related questions:

• What are the verified solutions? Boxes containing a single solution point, boxes
containing a segment of solutions, boxes from the interior of the solution set or
yet something different?

• How are the solutions stored?
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• What specific tools are used to verify boxes that contain solutions or discard these
that do not?

• …

Obviously, this all depends on predicate P . Many details are described in [26], some
are going to be discussed below.

In any case, “possible” solutions are small boxes (usually their diameter is smaller
than some predefined accuracy parameter ε; cf. Algorithm 2, line 16) that have not
been proved either to contain a solution(s) or not to contain any.

Also, it was stated in [26] that often B&BT algorithms consist of two phases, but
this fact was not elaborated there. We shall do this in the present paper. Firstly, let us
consider a few examples.

Global optimization There are several versions of such algorithms, starting from
the so-called Moore-Skelboe algorithm—for several versions of constrained and
unconstrained problems; see, e.g., [12, 16, 43, 49].

In all cases, we need to compute an upper bound on the globalminimum y∗ (unless
we know it a priori) to distinguish global optima from local ones. In the first phase,
we seek critical points and also we update y∗, decreasing it gradually, when better
approximations get found. The second phase is simple: we scan the list(s) of critical
boxes and discard these for which the lower bound on the objective y > y∗.

Please note, that if we want to make sure the selected points are not local optima,
the second face is inevitable, unless the value of the global minimum was known in
advance.

Seeking all ε -optimal solutions Fernandez and Toth [9] consider an algorithm to
find {x ∈ X | f (x) ≤ y∗ + ε, where (∀t ∈ X)( f (t) ≥ y∗)}.

In the first phase, they obtain the value of y∗, creating two lists. In one of them,
they store boxes that may contain the global minimum; in the other one—boxes that
cannot contain it, but might contain points for which f (x) ≤ y∗ + ε. In the second
phase, they create the lists of (verified and possible) solutions: boxes satisfying
f (x) ≤ y∗ + ε.

Approximating Pareto-optimal sets In the series of papers by Kubica andWoźniak
[33, 35, 37–39], an algorithm is considered that creates the approximation of the
Pareto frontier in the criteria space; this is done in the first phase. Then, in the second
phase, the frontier is inverted to the decision space.

Seeking solutions of non-cooperative games The papers by Kubica and Woźniak
[32, 34, 36, 40], describe an algorithm to obtain (strong) Nash points of a continuous
non-cooperative game.

In the first phase, we isolate all points satisfying some first-order necessary con-
ditions.

Then, in the second phase,we verify that no player (resp. no coalition) can improve
their situation—this verification requires executing separate B&BT procedures for
each potential solution (see [40]).
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Why and when do we need the second phase?
What happens in both phases of the algorithm? As we could see, this varies, but, in
general, we can distinguish two objectives of the first phase:

• removing boxes that do not satisfy some necessary conditions of P (see Sect. 4),
• computing some quantities that will be necessary for solutions verification, in the
second phase; they will be called shared quantities in the remainder (see Sect. 3.2).

The importance of these two objectives varies, depending on the specific problem
being addressed; as we shall see, for some problems one of these tasks might even
be irrelevant.

For global optimization, most of the work is performed in the first phase—we
check first-order necessary conditions of optimality (usually: Fritz John conditions
[17]) and also we check if y > y∗, where the upper bound on the global minimum
y∗ is successively improved.

Hence, for the problem of approximating the whole ε-optimality region, we can
discard few boxes in the first phase. ε-optimal points do not have to satisfy any
first-order necessary conditions (they are solutions of an inequality!) and y∗ is still
overestimated in this phase.

The main objective of the first phase of the algorithm solving this problem, is—
actually—to compute y∗ as precisely as possible; boxes will be rejected in the second
phase.

For other problems, we have to compute much more complicated quantities for
use in the second phase: e.g., for a multicriteria problem, we have to obtain a set of
boxes representing the Pareto frontier (see [39] and references therein). These boxes
are inverted in the second phase, using another B&BT procedure.

An analogous situation is encountered for computing (strong) Nash equilibria of
a game [40].

Obviously, for many B&BT methods the second phase is not necessary. For what
problems is it the case and why?

We get back to that question and also to the topic of what is performed in both
phases in Sect. 3. Now, let us present the general schema of the generalized B&B
method.

2 Generic Algorithm

The generic algorithm to solve problem (1)—the B&BT method—can be expressed
by the pseudocode, presented in Algorithm 1.

This algorithm consists of two phases: the actual B&BT method (Algorithm 2)
and the second phase, when the results are checked (if it is necessary; Algorithm 3).

Operations “push” and “pop” in Algorithm 2 mean inserting and removing ele-
ments to/from the set (independent of the representation of the set—it can be a stack,
a queue or a more sophisticated data structure). This depends on the problem under
consideration and other features of the specific implementation.
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Algorithm 1 The overall algorithm
Require: L , P
1: perform the essential B&BT method (i.e., Algorithm 2) for (L , P), storing the results in Lver ,

L pos , Lcheck
2: {The second phase}
3: perform the verification (i.e., Algorithm 3) for Lver , Lcheck , P
4: perform the verification (i.e., Algorithm 3) for L pos , Lcheck , P

Algorithm 2 The essential generalized branch-and-bound method
Require: L , P
1: Lver = L pos = Lcheck = ∅
2: x = pop (L)
3: loop
4: process the box x, using the rejection/reduction tests
5: update the shared quantities (if any; see explanation in Sect. 3.2)
6: if (x does not contain solutions) then
7: if CHECK(P , x) then
8: push (Lcheck , x)
9: discard x
10: else if VERIF(P , x) then
11: push (Lver , x)
12: else if (the tests resulted in two subboxes of x: x(1) and x(2)) then
13: x = x(1)

14: push (L , x(2))
15: cycle loop
16: else if (x is small enough) then
17: push (L pos , x)
18: if (x was discarded or x was stored) then
19: x = pop (L)
20: if (L was empty) then
21: return Lver , L pos , Lcheck
22: else
23: bisect (x), obtaining x(1) and x(2)

24: x = x(1)

25: push (L , x(2))

Algorithm 3 Verification of solutions
Require: Lsol , Lcheck , P
1: for all (x ∈ Lsol ) do
2: discard x if it does not contain any point x ∈ x, satisfying P(x)
3: {details of the verification depend on P , but the shared quantities and, possibly, the boxes

from Lcheck are useful there; cf. Section 3}

The following notation is used in the algorithms:

• L—the list/set of initial boxes, often containing a single box x(0);
• P(x)—the predicate formula, defining the problem under consideration;
• the lists/sets of solutions: Lver—verified solution boxes and L pos—possible solu-
tion boxes;
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• Lcheck—the list/set of boxes (possibly, with some additional information) that can
be used in the second phase to verify boxes from Lver and L pos , if needed; for
examples see Sect. 3.3 or [40], where seeking strong Nash equilibria is considered;

• VERIF(P , x) states that the box x has been verified to contain a solution/a point
satisfying some necessary conditions to be a solution, i.e., a point x satisfying
P(x);

• CHECK(P , x) states that the box x does not contains a solution, yet it can be useful
to verify P for some other box in the second phase.

In general, CHECK and VERIF are predicates in a second-order logic, i.e., functions
of a formula. Obviously, it might be pretty difficult to develop them for a specific P
(cf., e.g., [26, 34, 40] for examples). In the remainder, we discuss this issue in more
details.

Remark 1 A comment is necessary about subdividing a box. In lines 13–14 and
24–25 of Algorithm 2 it is implied that we always store one of the resulting boxes
and process the other one in the next step.

Often, this is so, but there may be exceptions to this rule. There might be various
policies for box selection and for some algorithm versions, we might push both
boxes x(1) and x(2) and pop the new value of x. Actually, such a formulation might
be considered more general to what is presented in Algorithm 2.

Nevertheless, such a situation is—according to the author’s experience—relatively
rare and, for several algorithm versions (in particular, for multithreaded implemen-
tations), it is crucial to reduce the number of push/pop operations. So, the author
considers the above presentation to be proper, even if requiring this comment.

Remark 2 For some algorithms, we might need bisection in the second phase, as
well as in the first one. This is the case, e.g., for some algorithms computing the
Pareto-sets, e.g., [37]; precisely, this may happen when the computation of shared
quantities does not require exhaustive search of X .We do not reflect this possibility in
the pseudocode of Algorithm 3; such situations seem rare, but the possibility requires
mentioning.

Remark 3 As we have been able to formulate a generic algorithm to solve problems
of type (1), it follows that, under some technical assumptions about P , such problems
are computable (see also [10, 21] and references therein). Probably, they are often
NP-hard (cf., e.g., [20, 22, 24, 47] and, especially, the book of Kreinovich et alii
[23]), but we are still able to devise proper heuristics [50]. We shall get back to that
in Sect. 6.
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3 The Second Phase—Quantifier Elimination

Let us get back to the question, why and when do we need the second phase. As
already stated, for some problems (equations systems, CSPs) the first phase suffices,
but for other ones (e.g., global optimization) the second phase is inevitable. Please
note that for solving equations or inequalities systems, formula P is non-quantified.

Actually, solving equations and inequalities is the task best suited for interval
methods. Using classical interval tools (including the Newton operator), we can
verify boxes containing the solutions—in both cases; and for too wide boxes, we can
subdivide them.

But how do we apply interval methods for problems of type (1) with quantified
P? What we need there is quantifier elimination and the partition of Algorithm 1
into two phases is related to this task. To the best knowledge of the author, this fact
has not been recognized before.

In other words, in the first phase (apart from discarding boxes that do not satisfy
necessary conditions), we need to obtain some quantities that would allow to verify
P(x) for boxes x 	 x , using equations and inequalities, only. We shall refer to them
as shared quantities as they are stored independently of the boxes and often they can
be used to verify several of these boxes.

For instance, in global optimization, we need to compute a single shared quantity
in the first phase: an upper bound on the global minimum. In the problems of Pareto
sets or seeking Nash equilibria, we extract more shared quantities in the first phase
(the set of approximate Pareto-optimal points, etc.).

But what shared quantities are necessary to verify a specific predicate P?
To give a general answer to this, we have to introduce the notion of obtaining the

Herbrand expansion of P; see, e.g., [6] and references therein; see also [1].

3.1 Herbrand Expansion

Let us consider formula P from (1), having the form either P(x) ≡ (∀t ∈ X) P ′(x, t)
or P(x) ≡ (∃t ∈ X) P ′(x, t).

If the quantifier is universal, we have to verify that for all values in the domain a
property holds. If the quantifier is existential, we have to find a value for which the
property holds.

This is related to obtaining the Herbrand expansion of the quantified formula P ,
i.e., transforming it to a non-quantified alternative (or conjunction) of formulae for
specific values t1, t2, …, tk . Formula “∃t such that P ′(t)” can be transformed into a
Herbrand disjunction: “P ′(t1) ∨ P ′(t2) ∨ . . . ∨ P ′(tk)”. Hence formula “∀t we have
P ′(t)” can be transformed into a Herbrand conjunction: “P ′(t1) ∧ P ′(t2) ∧ · · · ∧
P ′(tk)”.

In the original theorem of Jacques Herbrand, these expansions have been used
to determine the provability of a formula (see, e.g., [6]). Yet, they can be used
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to approximate the formulae, also. Actually, as these Herbrand expansions are not
equivalent to the original formulae, they can provide good approximations, if the
values t1, . . . , tk are chosen properly.

What are these “proper” values of t1, . . . , tk and how many of them do we need
(i.e., what is k)? This strongly depends on the problem. Please note that, in general,
the ti ’s depend on x ; we have t1(x), . . . , tk(x) and we seek:

x ∈ X such that P ′(x, t1(x)
) ∧ P ′(x, t2(x)

) ∧ · · · ∧ P ′(x, tk(x)
)
. (2)

The above conjunction is obtained for the universal quantifier; for an existential
one, we would use a disjunction.

For specific problems, the structure of (2) might get pretty simple; in particu-
lar values of ti might be independent on x , ti (x) = ti . A good example is global
optimization, where a single value t (the approximate global minimizer) is sufficient
(actually, we need to store y∗ = f (t), only); for other problems more ti ’s are needed.
We get back to this topic in Sect. 3.2. Now, let us consider the relation between the
original formula and its non-quantified form.

Relation between a formula and its Herbrand disjunction/conjunction As it was
already mentioned, a quantified formula is not (in a general case) equivalent to its
Herbrand form. Actually, the relations are as follows:

∀t P ′(t) =⇒ P ′(t1) ∧ P ′(t2) ∧ · · · ∧ P ′(tk) ,
∃t P ′(t) ⇐= P ′(t1) ∨ P ′(t2) ∨ · · · ∨ P ′(tk) .

What does that mean?
For a universal quantifier, the transformed formula is weaker than the initial one.

We are not able to verify the initial problem strictly, but a weaker one, e.g., solving
a global optimization problem, actually, we seek ε-optimal points, satisfying some
necessary optimality conditions (see also [10, 21]). It is up to us to choose points
t1, . . . , tk so that weakening of the original problem is as small as possible.

Hence, for an existential quantifier, the transformed formula is stronger than the
initial one. We can verify the initial formula directly—at least for some points—but
values of t1, . . . , tk have to be chosen carefully, so that as many solutions could be
verified, as possible.

What can be the structure of formula P?Up to now,wehave considered computing
the Herbrand expansion of the formula P starting with a universal or existential
quantifier. Also, we know that for a non-quantified P , computing the Herbrand
expansion is not necessary; we can consider such P its own Herbrand expansion.

What about other cases? Can P start with a non-quantified sub-formula, but con-
tain quantifiers in the remainder? In general, it could, but we can assume P to be in
the prenex normal form, i.e., a sequence of quantifiers followed by a non-quantified
expression.
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This case is sufficient, as all first-order formulae can be transformed to such form
(see, e.g., [1], Theorem 7.1.9). So, we only need to consider P in the prenex normal
form (cf. [21]).

3.2 Shared Quantities

Now, let us explain the notion of shared quantities, which we used before. Actually,
to verify a box to contain (or not to contain) a solution, we need the values t1, . . . , tk
for the Herbrand conjunction/disjunction.

So, these values can be considered the shared quantities fromAlgorithm 2. Please
note, these values can be stored in the list Lcheck , mentioned in Algorithms 2 and 3.
Yet, not necessarily should these values be represented explicitly.

For several problems, it is some function of ti ’s, and not them themselves, that
we are interested in. The simplest example is global optimization. The Herbrand
representation of this problem would be as follows:

Find all x ∈ X such that
(
f (x) ≤ f (t)

)
,

where t is the approximate global optimizer, i.e., the best point found. But what
we actually need for verification is y∗ = f (t) and not t itself; y∗ can be computed
from t , but it takes time and is unnecessary.

Obviously, the same applies to the problem of seeking Pareto-optimal solutions
of a multicriteria problem; just we have several shared quantities.

Hence, for seeking (ordinary or strong) Nash equilibria of a game, ti ’s have to be
represented directly: verification of an equilibrium requires comparison of its values
with values at specific points of the domain (see [34, 40], for details).

To sum up, we can state that:

• In theory, the shared quantities can always be represented by the list Lcheck .
• In practice, this list is rarely used.
• Somemore specific quantities are kept instead of the list Lcheck , formost problems,
e.g., the values of (or bounds on) some function of points from boxes that would
be stored in Lcheck .

What quantities should be used for a specific problem? It seems, this has to be
decided for each problem individually (cf. also Sect. 7 of [26]). Also, finding the
proper formulation can hardly be automated.

Investigating general conditions for simplification of the Herbrand form, might
be an interesting subject of future investigations.
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3.3 Existentially Quantified Formulae

All well-known problemsmentioned so far, had P startingwith a universal quantifier.
Problems with existential quantifiers:

Find all x ∈ X such that (∃t ∈ X) P ′(x, t) is fulfilled ,

are less frequently encountered.
As an example—possibly an artificial one—let us consider seeking all points from

the domain of function f , such that the function values are identical as in some other
point, i.e., points where f is not an injection:

Find all x ∈ X such that (∃t ∈ X) (t �= x)
(
f (x) = f (t)

)
.

How to solve it? Certainly, we need two phases: in phase 1 we partition X into
several boxes x ⊆ X and we compute for each of them both inner and outer approx-
imations of f(x). The twins arithmetic might be convenient here (see, e.g., [44]). The
place where we store boxes x, together with inner and outer approximations of f(x),
is the aforementioned set Lcheck .

In the second phase, we try to verify each box x to have or have not a counterpart
x′ such that: (

x ∩ x′ = ∅)
and

(
f(x) ∩ f(x′) �= ∅)

. (3)

It is worth noting that we do not really have to assemble lists Lver and L pos :
information they contain would be redundant with this already contained in Lcheck .

Furthermore, it is worth investigation, how to store the records in Lcheck to find
pairs of boxes that satisfy (3). Possibly, an interval tree would be appropriate here
(cf. [26]), but it is not a panacea. A detailed discussion is out of the scope of this
paper.

3.4 When Is the Second Phase Not Necessary?

We do not need such Herbrand expansions (and hence the second phase) at least in
the following cases:

• formula P is non-quantified, itself—e.g., for equations systems and constraint
satisfaction problems;

• formula P can be transformed to a non-quantified form symbolically, without the
necessity of computing specific values—we have such a situation for computing
all local minima of a function, a problem discussed in Sect. 5;

• the quantifier(s) in formula P ranges over other domains than X—it is a so-called
quantified constraint problem (see, e.g., [4, 13, 45]); in this case we do not need
any second phase, but a “nested” B&BT method in phase one—to process all
feasible values of the parameter.
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Obviously, in some cases we have quantifiers ranging over both: X and some other
domain. Then, we might need the second phase, but some of the quantifiers will not
be removed in it; a good example is solving the min-max problem (e.g., [52]).

As already mentioned, for global optimization of a smooth function, we seek
points that fulfill the first-order necessary conditions (∇ f (x) = 0 for the uncon-
strained case or Fritz John conditions otherwise) and f (x) ≤ y∗ + ε. We could
replace the latter by f (x) = y∗, but it would be pretty ill-conditioned and hard
to verify.

A similar example will be encountered in the Sect. 5.

4 Necessary Conditions

Earlier, we stated that determining how many shared quantities t1, . . . , tk should be
computed andwhat is their adequate representation is hard to be automated; probably
it has to be done by a human expert. Possibly, it is related to the fact that CHECK
from Algorithm 2 is not a formula in first-order logic, but in the second (or even
higher) order one.

What is more, there is another very important feature of each B&BT algorithm
that can hardly be provided by an algorithm: determining the necessary conditions
of P , to be used in the first phase. Indeed, the predicate VERIF, as well as CHECK,
goes beyond the first-order logic, certainly.

The necessary conditions of P can be classified in a few categories:

• 0th-order conditions: check the Herbrand expansion of P for current estimates of
t1, . . . , tk .

• 1st-order conditions, e.g., checking if the gradient is equal to zero for unconstrained
global optimization, Fritz John conditions for constrained global optimization or
analogous conditions for Pareto-optimal points [37], or game solutions, e.g., [34,
40].

• 2nd-order conditions, e.g., checking the eigenvalues (or simply diagonal elements;
cf., e.g., [17]) of the Hesse matrix for unconstrained global optimization; see, e.g.,
[17].

• Higher-order conditions, rarely used, so far.

It is worth noting that some pretty similar problems may have quite different nec-
essary conditions. A good example is the dissimilarity between thewell-known prob-
lem of global optimization and the problem of seeking ε-optimal solutions, which
we already mentioned. In the latter, solutions are points satisfying the inequality
f (x) ≤ y∗ + ε, thus there are no 1st-order necessary conditions, like the Fritz John
ones.

Hence, for another pretty similar problem of seeking local optima, the 1st-order
conditions are of high importance. This problem is discussed in the next section.
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5 Seeking Local Optima of a Function

The problem of finding all local minima of a function is very specific, it has inter-
esting properties and—in contrast to, e.g., global optimization or seeking ε-optimal
solutions—rarely has it been considered (exceptions include [8, 41, 51]). Let us
formulate the problem as follows—find all elements of the set:

{x ∈ [x, x] ⊆ R
n | (∃ε > 0) (∀t ∈ [x, x] and d(x, t) < ε) ( f (x) ≤ f (t)} . (4)

The formulation is very similar to the global optimization problem, but the features
are very different:

• the local optimization problem requires, as the name says, only local information;
specifically we do not need to process the objective’s values, only derivatives;

• consequently, there is no global information stored in the B&BT algorithm: no
shared quantities;

• also, the order of processing boxes is irrelevant, while it was quite important for
global optimization (cf., e.g., [17, 42, 43]);

• finally, no second phase is needed for Problem (4), while for global optimization
it was necessary to distinguish global optima from local ones.

The main difference is that for Problem (4), quantifiers in the formula can be
removed symbolically, without performing “numerical removing” (i.e., without com-
puting any shared quantities) in the two phases of Algorithm 1. To be succinct: all
necessary information is local, so no shared quantities are needed.

How to produce the non-quantified formulation of (4)? Let us consider the case
of smooth functions.

For unconstrained optimization, we can formulate the problem as follows:

{x ∈ [x, x] | (∇ f (x) = 0) and (Hesse matrix of f (x) has no (5)

negative eigenvalues )} .

Please note, that—also for this problem—formula (5) is not equivalent to (4), but
weaker. If an eigenvalue of the second derivatives matrix is equal to zero, the point
may or may not be a local minimum.

Actually, a local minimum can be singular and have arbitrarily many derivatives
equal to zero, e.g., function f (x) = x2·n , where n ≥ 2 and x ∈ [−10, 10]. If we do
not know n in advance, we cannot determine how many derivatives to compute and
check.

A more precise formulation than (5) is possible; for the univariate case, it can go
as follows:

{
x ∈ [x, x] ⊆ R | ( f ′(x) = 0) and

(
( f ′′(x) > 0) or (6)

( f ′′(x) = 0 and f ′′(·) has a local minimum at x)
)}

.
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Such a formulation allows to verify local minima of an arbitrary f , provided it
has no plateau, i.e., it is not constant. If f was constant in one of its subregions, no
numerical algorithm would be able to verify it in a finite number of steps; at least
not in the general case.

Also, formulation (6) is impractical, even for a problem with no plateau. Com-
puting higher derivatives is difficult, both, from the theoretical (tensor algebra) and
practical (lack of interval automatic differentiation libraries, with higher derivatives)
points of view.

Solving Problem (4) for a function with a plateau seems hard, indeed. We can
check if |f′(x)| is lower than some threshold value, but it does not allow to distinguish
a constant function and a function changing slowly on some region (or even having
a local minimum there!).

The situation changes if we state a related but different problem:

{x ∈ [x, x] ⊆ R
n | (∃ε > εmin) (∀t ∈ [x, x] and d(x, t) < ε) ( f (x) ≤ f (t)} .

(4′)
It is the problem of seeking “significant” local optima, i.e., optima that become

global in a “sufficiently large” subdomain. The threshold value of the subdomain
radius is εmin. Now, checking |f′(x)| becomes a useful tool.

By the way, please note, as quite different tools occur useful for pretty similar
problems. Although, the same meta-algorithm can be applied for several problems,
choosing proper tools (and heuristics to parameterize them) is pretty hard. It does
not seem, this decision can be automated—only a human can choose proper tools
and heuristics to make the algorithm efficient for a specific class of problems.

Finally, let us note that formulation 5might be better for practical applications than
(4). And the problem of enclosing all local optima of a function is of high interest as
it can find several practical applications, i.a., in the game theory (so-called potential
games [48]), NMR (nuclear magnetic resonance) spectroscopy or radio-astronomy
[51].

6 Example Heuristics

What tools should we use to process boxes in the B&BT algorithm? Details depend
on the specific problem, obviously, but interval analysis provides us a variety of
common tools, in particular:

• various interval Newton operators for solving equations (or inequalities) systems,
• various local consistency notions (hull-consistency, box-consistency,
bound-consistency, etc.) and methods for their enforcing,

• other specific tests, e.g., checking monotonicity of a function, positive definiteness
of a matrix, etc.

Which of these tools should be used for a specific problem (and a specific box)?
How to apply them? How to parameterize them?
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There are no general answers to these questions. Instead, we have to rely on some
heuristics, tailored for a specific class of problems.

Many such heuristics for various problems have been developed—both, by the
author (e.g., [28, 30, 31, 35, 39]) and by other researchers (e.g., [14, 15, 17, 46, 49]).

Someof these heuristicsmight be applied not directly during theB&BTalgorithm,
but prior to it. This is the case, in particular, for initial exclusion phases, proposed,
e.g., in Caprani et alii [7], Kolev [19] and a fewpapers of the author [27, 29, 31]. Also,
prior to Algorithm 1 we can perform some symbolic preprocessing of the problem;
for instance the Gröner basis theory can be applied here.

In the remainder of this section, let us concentrate on heuristics for box subdivi-
sion.

Bisection The most common form of box subdivision in the B&BT process is its
bisection (in one of the coordinates). Some researchers (e.g., [5]; see also [17],
Paragraph5.1.2) suggest usingmultisection, but according to the author’s experiences
(see [25]), it does not seem worthwhile.

It is likely (and demanded) that in the future, heuristicswill be developed to choose
between bi- and multisection for specific classes of problems.

And which of the variables to bisect? A common idea is to bisect the longest edge
of the box; it is called the maximal diameter bisection. Several other approaches have
been proposed to choose the variable for bisection; see [3, 17, 49] and, in particular,
[46]. Most of them work good for some problems, but fail for other ones. How to
obtain more universal heuristics?

In [28] the author observed that the proper approach is to create boxes suitable
for reduction by the used rejection/reduction tools.

For optimization problems (at least unconstrained ones) minimizing the diameter
of objectives on resulting boxes is proper, usually.

But, e.g., for the problem of solving nonlinear systems, the main rejection/
reduction tool is some version (or versions) of the interval Newton operator and
proper heuristics should be tuned to produce boxes suitable for this procedure. Such
heuristics are proposed, i.a., by the author in [28, 31].

For the problem of Pareto sets seeking the situation is yet different. The procedure
to process a box ismore sophisticated (themultiobjective version of themonotonicity
test [33], consistency checking of the criteria [35], etc.) and the proper heuristic to
choose the variable for bisection has to be adequate to these features. It is described
in [39].

Remark Some authors, devising the heuristics for bisection, try to minimize the
diameter of objectives on resulting boxes; this approach is used, in particular in [3].
In the author’s opinion, this approach is in general wrong, as it does not have to lead
to producing boxes suitable for further processing.

The difference is particularly important for higher problem dimensions. Please
note, Rn for n >> 2 can have properties much different than these of R or R2.
Distances are higher in such space and bisecting a single component of a box does
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not result in changing these distances significantly. In such spaces, bisections should
beused to separate different solutionpoints andnot to reduce the rangeof the function,
which would require an outrageous amount of bisections.

7 Conclusions

In this paper,we have considered interval branch-and-bound-type algorithms as a tool
for solving awide class of problems, described using a formula in the first-order logic.
Similarities and differences between various instances of this type of algorithms have
been discussed. We have tried to clear some confusion in the terminology used in
the area.

We have shown, how the necessity of quantifier elimination forces splitting some
versions of these algorithms into two phases. The quantifier elimination process has
been linked to obtaining the Herbrand expansion of the formula.

It has been stated that, although, Algorithm 1, for solving problems of type (1),
is pretty general, adapting it for a specific problem and tuning to be efficient is
a difficult process, hard (or impossible) to be automated. Probably, at least three
features have to be determined by a human: the number and nature of the shared
quantities used by the algorithm, their adequate representation and heuristics used
by the rejection/reduction tests.

Similar problems might need quite different heuristics and an expert’s knowledge
is necessary to choose and tune them. Artificial intelligence and self-tuning methods
might be of some use, but in general, these details have to be designed by a human.

8 Further Studies

This paper has not discussed, or has discussed only very briefly, several important
implementational issues of B&BT algorithms. One of them are data structures neces-
sary to store lists/sets L , Lver , L pos and Lcheck . Also, all B&BT algorithms are natural
candidates for parallelization. Not only is their parallelization relatively simple, but
they are usually slow and memory-demanding; so, a parallel implementation may
improve their performance dramatically.

These issues are going to be discussed in a separate paper.
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35. B.J. Kubica, A. Woźniak, Optimization of the multi-threaded interval algorithm for the Pareto-
set computation. J. Telecommun. Inf. Technol. 1, 70–75 (2010)
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High Speed Exception-Free Interval
Arithmetic, from Closed and Bounded
Real Intervals to Connected Sets of Real
Numbers

Ulrich W. Kulisch

Abstract This paper gives a brief sketch of the development of interval arithmetic.
Early books consider interval arithmetic for closed and bounded real intervals. It was
then extended to unbounded real intervals. Considering−∞ and+∞ only as bounds
but not as elements of unbounded real intervals leads to an exception-free calculus.
Formulas for computing the lower and the upper bound of the interval operations
including the dot product are independent of each other. On the computer high speed
can and should be obtained by computing both bounds in parallel and simultaneously.
Another increase of speed and accuracy can be obtained by computing dot products
exactly. Arithmetic for closed real intervals even can be extended to open and half-
open real intervals, to connected sets of real numbers. Also this leads to a calculus
that is free of exceptions.

1 Remarks on the History of Interval Arithmetic

In early books on Interval Arithmetic by Moore [1], Alefeld and Herzberger [2,
3], Hansen [4], and others interval arithmetic is defined and studied for closed and
bounded real intervals. Frequent attempts to extend it to unbounded intervals [5–7]
led to inconsistencies again and again. If −∞ and +∞ are considered as elements
of a real interval, unsatisfactory operations like ∞ − ∞, 0 · ∞, ∞/∞ occur and are
to be dealt with.

The books [8, 9] eliminated these problems. Here interval arithmetic just deals
with closed and connected sets of real numbers. Since −∞ and +∞ are not real
numbers, they can not be elements of a real interval. They only serve as bounds for
the description of real intervals. In real analysis a set of real numbers is called closed,
if its complement is open. So intervals like (−∞, a] or [b,+∞) with real numbers
a and b nevertheless are closed real intervals.
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Formulas for the operations for unbounded real intervals can nowbe obtained from
those for bounded real intervals by continuity considerations. Obscure operations as
mentioned above do not occur in the operations for unbounded real intervals. For a
proof of this assertion see Sect. 4.10 in [9]. This result also remains valid for floating-
point interval arithmetic. For details and proof see Sect. 4.12 in [9]. Fortunately,
this understanding of arithmetic for unbounded real and floating-point intervals was
accepted by IEEE 1788 [10].

Early books on interval arithmetic asmentioned in thefirst paragraph justmakeuse
of the four basic arithmetic operations add, subtract, multiply, and divide (+,−, ·, /)
for real and floating-point intervals. The latter are provided with maximum accuracy.
Later books [5, 6, 8, 9, 11–13] in addition provide and make use of an exact dot
product.

2 High Speed Interval Arithmetic by Exact Evaluation of
Dot Products

Since 1989 major scientific communities like GAMM and the IFIP Working Group
on Numerical Software repeatedly required [14–17] exact evaluation of dot products
of twofloating-point vectors on computers. The exact dot product (EDP) brings speed
and accuracy to floating-point and interval arithmetic.

Solution of a system of linear equations is a central task of Numerical Analysis.
A guaranteed solution can be obtained in two steps. The first step computes an
approximate solution by some kind of Gaussian elimination in conventional floating-
point arithmetic. A second step, the verification step, then computes a highly accurate
enclosure of the solution.

By an early estimate of Rump and Kaucher [18] the verification step can be done
with less than 6 times the number of elementary floating-point operations needed for
computing an approximation in the first step.

The verification step just consists of dot products. For details see Sect. 9.5 on
Verified Solution of Systems of Linear Equations, pp. 333–340 in [9]. Hardware
implementations of the EDP at Karlsruhe in 1993 [19, 20] and at Berkeley in 2013
[21] show that it can be computed in about 1/6th of the time needed for computing a
possibly wrong result in conventional floating-point arithmetic! So the EDP reduces
the computing time needed for the verification step to the one needed for computing
an approximate solution by Gaussian elimination. In other words: A guaranteed
solution of a system of linear equations can be computed in twice the time needed
for computing an approximation in conventional floating-point arithmetic.

The time needed for solving a system of linear equations can additionally be
reduced if theEDP is already applied duringGaussian elimination in thefirst step. The
inner loop here just consists of dot products. The EDP would reduce the computing
time and additionally increase the accuracy of the approximate solution.
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Using a software routine for a correctly rounded dot product as an alternative for
a hardware implemented EDP leads to a comparatively slow process. A correctly
rounded dot product is built upon a computation of the dot product in conventional
floating-point arithmetic. This is already 5 to 6 times slower than an EDP. High
accuracy then is obtained by clever and sophisticated mathematical considerations
which all together make it slower than the EDP by more than one magnitude. High
speed and accuracy, however, are essential for acceptance and success of interval
arithmetic.

The simplest and fastest way computing a dot product is to compute it exactly.
The unrounded products are accumulated into a modest fixed-point register on the
arithmetic unit with no memory involvement. By pipelining this can be done in the
time the processor needs to read the data, i.e., no other method can be faster, pp.
267–300 in [9, 22]. Rounding the EDP, if necessary, is done only once at the very
end of the accumulation.

A frequent argument against computing dot products exactly is that it needs an
accumulator of about 4 thousand bits. This, however, is not well taken. The 4 thou-
sand bits are a consequence of the huge exponent range of the IEEE 754 arithmetic
standard. It aims for reducing the number of under- and overflows in a floating-point
computation. There is no under- and overflow, however, in interval arithmetic. Inter-
val arithmetic does not need an extreme exponent range of 10±308 or 2±1023. If in an
interval computation a bound becomes −∞ or +∞ the other bound still is a finite
floating-point number. In a following operation this interval can become finite again.

Floating-point and interval arithmetic are distinct calculi. Floating-point arith-
metic as specified by IEEE 754 is full of complicated constructs, data and events
like rounding to nearest, overflow, underflow, +∞, −∞, +0, −0 as numbers, or
operations like ∞ − ∞, ∞/∞, 0 · ∞. All these constructs do not occur in inter-
val arithmetic. In contrast to this, reasonably defined interval arithmetic leads to an
exception-free calculus. It is thus only reasonable to keep the two calculi strictly
separate.

Program packages for interval arithmetic for the IBM /370 architecture developed
by different commercial companies like IBM, Siemens, Hitachi, and others in the
1980s provide and make use of an exact dot product [23–26]. See also [27].

3 From Closed Real Intervals to Connected Sets of Real
Numbers

For about 40years interval arithmetic was defined for the set of closed and bounded
real intervals. The books [8, 9] extended it to unbounded real intervals. The book
The End of Error by Gustafson [28] finally shows that it can even be extended to
just connected sets of real numbers. These can be closed, open, half open, bounded
or unbounded. The book shows that arithmetic for this expanded set is closed under
addition, subtraction, multiplication, division, also square root, powers, logarithm,
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s exponent e fraction f u

Fig. 1 The floating-point number format

exponential, and many other elementary functions needed for technical computing,
i.e., arithmetic operations for connected sets of real numbers always lead to a con-
nected set of real numbers. The calculus is free of exceptions. It remains free of
exceptions if the bounds are restricted to a floating-point screen. John Gustafson
shows in his book that this extension of interval arithmetic opens new areas of appli-
cations.

A detailed description and analysis of this expanded interval arithmetic for con-
nected sets of real numbers including an exact dot product is given in [29].

In accordance with [28] we choose a floating-point number format as shown in
Fig. 1. It consists of a sign s, an exponent and a fraction part followed by a particular
bit. We call this bit the ubit, u for short. A ubit u = 0 represents a closed and a ubit
u = 1 an open interval bracket.

Figure1 shows the format of a floating-point number.
So the ubit u allows to distinguish between open and closed interval bounds. A

bound of the result of an interval operation can only be closed, if both operands are
closed interval bounds. So in the majority of cases the bound in the result will be
open.

4 Computing Dot Products Exactly

Wenow consider a general floating-point number system F = F(b, f, emax, emin),
with base b, f bits of the fraction, greatest and least exponent emax and emin,
respectively.

Let a = (ai ), b = (bi ) be two vectors with n components which are floating-point
numbers ai , bi ∈ F(b, f, emax, emin), for i = 1(1)n. We compute the sum s :=∑n

i=1 ai · bi = a1 · b1 + a2 · b2 + · · · + an · bn, ai · bi ∈ F(b, 2 f, 2emax,
2emin), for i = 1(1)n, where all additions and multiplications are the operations
for real numbers.

Then a register of

L = k + 2 · emax + 2 f + 2 · |emin|

bits suffices for computing dot products exactly. Here k denotes a number of guard
digits for counting intermediate overflows of the register. It is important to note that
the size of this register only depends on the data format. In particular it is independent
of the number n of components of the two vectors to be multiplied.
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2f |emin|

2|emin|
emax

k 2emax

Fig. 2 Complete register for exact scalar product accumulation

All summands can be taken into a fixed-point register of length 2 · emax + 2 ·
f + 2 · |emin| without loss of information. We call it a complete register, CR for
short (Fig. 2).

If the register is built as an accumulator with an adder, all summands could be
added in without loss of information. To accommodate possible overflows, it is
convenient to provide a few, say k, more digits of base b on the left, allowing bk

accumulations to be computed without loss of information due to overflow. k can be
chosen such that no overflows of the complete register will occur in the lifetime of
the computer.

We now roughly analyze the number of bits for the register L for four different
data formats. Since most computers nowadays use the IEEE 754 arithmetic standard
we begin our discussion with this case I. However, we mention here already that for
practical realizations the cases II, III, and IV are the more attractive.
I. A 64-bit floating-point arithmetic related to IEEE 754 double precision.
II. A 64-bit floating-point arithmetic with a binary exponent range of about ±256.
III. A 64-bit floating-point arithmetic with a binary exponent range of about ±128.
IV. A 32-bit floating-point arithmetic with a binary exponent range of about ±128.

I. We begin with the IEEE 754 format double precision. One bit is needed for the
representation of the ubit. Sowe shrink the exponent part from11 to 10 bits only. Then
we have b = 2; word length 64 bits; 1 bit sign; 10 bits for the exponent; f = 53 bits;
emin = −511, emax = 512.The entire unit consists of L = k + 2 · emax + 2 · f +
2 · |emin| = k + 1024 + 106 + 1022 = k + 2152. With k = 24 we get L = 2176
bits. It can be represented by 34 words of 64 bits. L is independent of n.

Figure3 informally describes the implementation of the EDP. The complete reg-
ister (here represented as a chest of drawers) is organized in words of 64 bits. The
exponent of the products consists of 11 bits. The leading 5 bits give the address of
the three consecutive drawers to which the summand of 106 bits is added. The low
end 6 bits of the exponent are used for the correct positioning of the summand within
the selected drawers. A possible carry (or borrow in case of subtraction) is absorbed
by the next more significant word in which not all bits are 1 (or 0 for subtraction).
For fast detection of this word two flags are attached to each register word. One of
these is set 1 (resp. 0) if all bits of the word are 1 (resp. 0). This means that a carry
will propagate through the entire word. In the figure the flag is shown as a red (dark)
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Fig. 3 Illustration for computing the exact dot product

point. As soon as the exponent of the summand is available the flags allow selecting
and incrementing the carry word. This can be done simultaneously with adding the
summand into the selected positions. Figure4 shows a sketch for the parallel accu-
mulation of a product into the complete register. Possible carries can be eliminated
simultaneously with the addition. For more details see [8, 9].

By pipelining, the accumulation of a product into the complete register can be
done in the time the processor needs to read the data. Since every other method of
computing a dot product also has to read the data this means that no such method
can exceed computing the EDP in speed.

For the pipelining and other solutions see [8] or [9]. Rounding the EDP into a
correctly rounded dot product is done only once at the very end of the accumulation.
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CR

Fig. 4 Parallel accumulation of a product into the CR

In [8] and [9] three different solutions for pipelining the dot product computation
are dealt with. They differ by the speed with which the vector components for a
product can be read into the scalar product unit. They can be delivered in 32- or
64-bit portions or even at once as one 128 bit word. With increasing bus width and
speed more hardware has to be invested for the multiplication and the accumulation
to keep the pipeline in balance.

The hardware cost needed for the EDP is modest. It is comparable to that for a
fast multiplier by an adder tree, accepted years ago and now standard technology
in every modern processor. The EDP brings the same speedup for accumulations at
comparable costs.

In a floating-point computation an overflow in general means a total breakdown
of the accuracy, not so in interval arithmetic. Intervals bring the continuum on the
computer. An overflow of the upper bound of an interval leads to an unbounded real
interval but not to a total breakdown of the accuracy, since in any case the lower
bound is a finite floating-point number. For the next operation the result can already
be a finite interval again.
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II. A 64-bit floating-point arithmetic with a binary exponent range of about ±255.
For interval arithmetic an exponent range between −77 and +77 in decimal seems
to be more reasonable. This is a huge range of numbers.1 It is 1/4th of the exponent
range of the IEEE 754 floating-point format double precision. Then 9 bits suffice for
the representation of the exponent. So in comparison with the 11 bits of the IEEE
754 number representation two bits are left for other purposes. We use one of these
bits for extending the number of fraction bits by one from 53 to 54 and the other
bit to indicate whether the interval bracket is open or closed. So in case of a 64-bit
interval bound, one bit is used for the sign s, 9 bits are used for the exponent, 53 bits
for the fraction and one bit for the ubit u. As usual the leading bit of the fraction
of a normalized binary floating-point number is not stored, so the fraction actually
consists of 54 bits. For the exponent emin subnormal numbers with a denormalized
mantissa are permitted.

For this data format with f = 54, emax = |emin| = 255, and k = 24, we get
for L = 24 + 510 + 108 + 510 = 1152 bits. This register can be represented by 18
words of 64 bits.

As justification for the exponent range of emax = |emin| = 255 we just mention
that the data format long of the IBM /370 architecture covers a range of about 10−75

to 1075. This architecture dominated the market for more than 25 years and most
problems could conveniently be solved with machines of this architecture within
this range of numbers. We mention once more that there is no under- and overflow
in interval arithmetic.

In Numerical analysis, in general, the dot product is a stable arithmetic opera-
tion with a modest exponent range. So assuming an excessive exponent range for
implementing the EDP appears unappropriate. Reducing the exponent range simpli-
fies the implementation of the EDP significantly. In case of an exponent overflow a
corresponding software routine could be called.
III. A 64-bit floating-point arithmetic with a binary exponent range of about ±127.
A reduction of the exponent range to 8 bits with emax = |emin| = 127 would allow
an extension of the fraction by one more bit to f = 55 bits. This leads to a register of
L = k + 2emax + 2 f + 2|emin| = k + 254 + 110 + 254 = k + 618 bits and with
k = 22 to 10 words of 64 bits.
IV. A 32-bit floating-point arithmetic with a binary exponent range of about ±127.
For the data format single precision with a word length of 32 bits the size L of the
register for computing dot products exactly even shrinks to 9 words of 64 bits: 1 bit
is used for the sign, 8 bits are used for the exponent, 23 bits for the fraction, one
bit is used for the ubit u, emax = 127, and emin = −127. So with k = 22 we get
L = k + 2emax + 2 f + 2|emin| = 22 + 254 + 46 + 254 = 576 bits. This register
can be represented by 9 words of 64 bits.

1The number of atoms in the universe is less than 1080.
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The formulas for computing the lower and the upper bound of an interval operation
are independent of each other. This also holds for the EDP. So on the computer the
lower and the upper bound of the result of an interval operation can and should be
computed simultaneously in parallel. This allows performing any interval operation
at the speed of the corresponding floating-point operation. For details see Sect. 7.3 in
[9], or [29]. High speed is essential for acceptance and success of interval arithmetic.

5 Early Super Computers

It is interesting that the technique for computing dot products exactly is not new at all.
It can be traced back to the early computer by Leibniz (1675). Also old commercial
mechanic calculators added numbers and products of numbers into a wide fixed-
point register, Fig. 5. It was the fastest way to use the computer. So it was applied
as often as possible. No intermediate results needed to be written down and typed
in again for the next operation. No intermediate roundings or normalizations had to
be performed. No error analysis was necessary. As long as no underflow or overflow
occurred, which would be obvious and visible, the result was always exact. It was
independent of the order in which the summands were added. Rounding was only
done, if required, at the very end of the accumulation.

This extremely useful and fast fifth arithmetic operation was not built into the
early floating-point computers. It was too expensive for the technologies of those
days. Later its superior properties had been forgotten. Thus floating-point arithmetic
is still comparatively incomplete.

The two lower calculators in Fig. 5 are equipped with more than one long result
register. In the previous section it was called a complete register CR. It is an early
version of a recommended new data format complete, [9].

In summary it can be said: The technique of speeding up computing by accumulat-
ing numbers and products of numbers exactly into a wide fixed-point register is as old
as technical computing itself. It proves an excellent feeling of the oldmathematicians
for efficiency in computing.

Also early super computers (until ca. 2005) got their high speed by pipelining the
dot product (vector processing). They provided so-called compound operations like
accumulate or multiply and accumulate. The second computes the sum of products,
the dot product of two vectors. Advanced programming languages offered these
operations. Pipelining made them really fast. A vectorizing compiler filled them into
a users program as often as possible. However, the accumulationwas done in floating-
point arithmetic by the so-called partial sum technique. This altered the sequence of
the summands and caused errors beyond the conventional floating-point errors. So
finally this technique was abolished.
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Fig. 5 Mechanical computing devices equipped with the desired capability: Burkhart Arith-
mometer, Glashütte, Germany, 1878; Brunsviga, Braunschweig, Germany, 1917; MADAS,
Zürich, Switzerland, 1936; (Mult., Automatic Division, Add., Subtr.) MONROE, New Jersey,
USA, 1956

6 Conclusion

Fixed-point accumulation of the dot product, as discussed in the previous section, is
simpler and faster than accumulation in floating-point arithmetic. In a very natural
pipeline the accumulation of the unrounded products is done in the time that is
needed to read the data into the arithmetic unit. This means that no other method of
computing a dot product can be faster, in particular not a conventional computation
in double or quadruple precision floating-point arithmetic. Fixed-point accumulation
is error free! It is high speed vector processing in its perfection.

Acknowledgements The author owes thanks to Goetz Alefeld and Gerd Bohlender for useful
comments on the paper.
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Guaranteed Nonlinear Parameter
Estimation with Additive Gaussian Noise

J. Nicola and L. Jaulin

Abstract In this paper we propose a new approach for nonlinear parameter esti-
mation under additive Gaussian noise. We provide an algorithm based on interval
analysis and set inversion which computes an inner and an outer approximation of
a set enclosing the parameter vector with a given probability. The principle of the
approach is illustrated by examples related to parameter estimation and range-only
localization.

Keywords Interval analysis · Set-estimation · Probabilistic estimation ·
Parameter estimation · Localization
AMS subject classifications: 65-00

1 Introduction

Parameter set estimation deals with characterizing a set (preferably small) which
encloses the parameter vector p of a parametric model from a finite set of data col-
lected on the system. In a bounded-error context [22, 26, 31] the measurement errors
are assumed to be bounded and computing the feasible set for p can be described
as a set inversion problem [14] for which interval methods [24] are particularly effi-
cient, even when the model is nonlinear. In a probabilistic context, the error is not
anymore described by membership intervals, but by probability density functions
(pdf) instead. The correspondence between the two approaches has been studied by
Vladik Kreinovich [17, 20]. In this context, Vladik showed that the interval esti-
mation problem was intractable [19], even in a linear context when experimental
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factors are uncertain [18]. He also provided some links with a fuzzy representation
of uncertainties [21] and how to deal with outliers [29].

In a Bayesian context, the Bayes rule makes it possible to get the posterior pdf for
p (see, e.g., [8]). The set to computed becomes the credible set [2] and corresponds
to the minimal volume set, in the parameter space, which contains p with a given
probability η. This problem cannot be cast into a set inversion problem but existing
interval methods can still be used [10]. Unfortunately, the approach is limited to few
parameters (typically less than 3) and few measurements (typically less than 10).

Recently, an original approach [3] named Sign-Perturbed Sums (SPS) has pro-
posed to construct non-asymptotic confidence regions which are guaranteed to con-
tain the true parameters with a given probability η. This approach has been used for
nonlinear models to compute confidence regions [5] which have not a minimal vol-
ume (at least in the Gaussian case). Interval analysis has also been considered to deal
with the SPS method [16] to compute guaranteed confidence regions. Other methods
such as [6] or [11] are also able to compute guaranteed confidence regions using
interval analysis, but the computed set is not of minimal volume and it is difficult to
evaluate the resulting pessimism.

There exist other approaches that combine bounded-error estimation with proba-
bilistic estimation [1, 9, 25, 32] or use other frameworks such as random sets [23,
28, 33] or fuzzy-sets [7, 30], but all these methods do not solve a problem which is
expressed only in terms of probabilities only and can thus not be used to compute
confidence regions.

This paper considers a problemwhich can be considered as classic in probabilistic
parameter estimation: compute a set which encloses the parameter vector with a fixed
probability η. Our main contribution is to be able to solve this problem in a reliable
way in the case where the error is Gaussian and the model is nonlinear.

Section2 recalls the principle of set-inversion for the specific case where the noise
is Gaussian and proposes different shape for the set to be inverted. Section 3 recalls
the principle of the linear Gaussian estimation that will be used for comparison.
Section4 illustrates the proposed approach on three simple simulated examples and
gives a comparison with a classical linear Gaussian estimator. Section5 concludes
the paper.

2 Set Inversion for Nonlinear Gaussian Estimation

This section recalls the principle of set inversion and considers the special case where
the set to be inverted is a confidence region of aGaussian probability density function.
Consider the following parameter estimation problem

y = ψ(p) + e, (1)
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Fig. 1 Several realizations of the random vector y ∼ N
(
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)T
,� =

(
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))
and their

images x = �−1/2 (y − μ)

where ψ is the model, y ∈ R
n is the vector of all measurements (which is known)

and e is the error vector. Without loss of generality we assume that e : N (0, In).

Remark As illustrated by Fig. 1, a random variable y following a normal distribution
N (μ,�) can always be whitened into a random variable x distributed as N (0, In)
by the affine transform x = �−1/2 (y − μ).

Definition Define the function f (p) = y − ψ (p) corresponding to the error e and
a set Eη containing e with a probability η. The probabilistic set associated to Eη is
defined as

P̂Eη
= f−1

(
Eη

)
. (2)

It contains p with a prior probability of η [11]. As a consequence, a probabilistic set
estimation can be viewed as a set inversion problem for which guaranteed interval
techniques could be used. Now, there exists several methods to choose such a set Eη.
We compare two different types of sets: a sphere (which is a confidence region of
minimal volume) and a box, which is a good representation for interval methods.

Let us now recall [27] some results useful to get a set which encloses the normal
error e with a given probability η.

Theorem The minimal volume confidence region of probability η associated with
e : N (0, In) is the centered n-dimensional sphere Sη of radius α, where (α, η) are
linked by the relation

η =
∫ α2

0

z(
n
2 −1)e− z

2

2
n
2 �e

(
n
2

) · dz (3)
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Table 1 α(η) for n = 1, 2 and n � 1

n α(η)

1 α = √
2erf−1(η)

2 α = √−2 · log (1 − η)

n � 1 α �
√
n + 2

√
n · erf−1

(
2η + erf

(−√
n

2

))

where �e the Euler function. Recall that for n ∈ N the Euler function satisfies

�e (n) = (n − 1)! (4)

Proof The random variable z = eT · e follows a χ2 distribution with n degrees of
freedom whose probability density function is

π(z, n) = z(
n
2 −1) · e− z

2

2
n
2 �e

(
n
2

) . (5)

The minimal volume confidence region Sη is the set of all e such that

z = eT · e ≤ α2 (η) (6)

and the probability η to have e ∈ Sη is

η =
∫ α2

0
π (z, n) · dz =

∫ α2

0

z(
n
2 −1)e− z

2

2
n
2 �e

(
n
2

) · dz. (7)

For n = 1, n = 2 or n large, from the integral in Eq. (3), we can have an expression
of the radius α(η) [2] as recalled in Table1.

In our context, the dimension of e is large and we can consider that the formula
corresponding to n � 1 is correct.

Theorem With n � 1, the probability φη to have e : N (0, In) inside, the box-hull[
Sη

]
of Sη is

φη = erf

⎛
⎝

√
√
n · erf−1

(
2 · η + erf

(
−

√
n

2

))
+ n

2

⎞
⎠

n

. (8)
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Proof From Table1 with n 9 1, for a given confidence η, the radius α of Sη is

α =
√

2 · √
n

[
erf−1

(
2η + erf

(
−

√
n

2

))]
+ n. (9)

Now,
[
Sη

]
is the Cartesian product of n intervals [ei ] of length 2α:

[
Sη

] = [e1] × [e2] × · · · × [en] . (10)

From Table1 with n = 1, we know that the probability to have ei ∈ [ei ] is

Pr (ei ∈ [ei ]) = erf

(
α√
2

)
. (11)

Therefore

Pr
(
e ∈ [

Sη

]) =
n∏

i=1

Pr (ei ∈ [ei ]) = erf

(
α√
2

)n

. (12)

By combining (9) with (12), we get (8).

Remark ∀η > 0, limn→+∞ Pr
(
e ∈ [

Sη

]) = 1. It means that even for low values of
η the probability Pr

(
e ∈ [

Sη

])
increases dramatically fast with the dimension of e.

Therefore when n is large inverting
[
Sη

]
yields too much pessimism as illustrated by

Fig. 2.

Theorem The minimal volume box Bη which encloses e : N (0, In) with a proba-
bility η is the centered cube with half-width
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α = √
2erf−1

(
n
√

η
)
. (13)

Proof The symmetry of the problem implies that Bη should be centered. Since the
ei are independent, we have:

η = Pr (∀i, ei ∈ [−α, α]) = ∏n
i=1 Pr (ei ∈ [−α, α])

= ∏n
i=1 erf

(
α√
2

)
=

(
erf

(
α√
2

))n (14)

i.e., α = √
2erf−1

(
n
√

η
)
.

Theorem We have

lim
n→∞

vol
(
Sη

)
vol

(
Bη

) = 0. (15)

Proof Since the volume of a n-dimensional sphere Sη of radius α is

Vn = π
n/2αn

�e (n/2 + 1)
,

we have:

ρ
η
(n) = vol

(
Sη

)
vol

(
Bη

) =
π
n/2·

√
n+2

√
n·erf−1

(
2η+erf

( −√
n

2

))n

�e(n/2+1)(
2
√
2erf−1

(
n
√

η
))n

The Stirling formula �e (n + 1) = n! ∼ √
2πn

(
n
e

)n
implies that

ρ
η
(n) ∼

π
n/2 ·

√
n + 2

√
n · erf−1

(
2η + erf

(−√
n

2

))n

√
2π n

2

(
n
2e

) n
2 ·

(
2
√
2erf−1

(
n
√

η
))n .

Now, 2η + erf
(−√

n
2

)
∼ 2η − 1. Therefore

ρ
η
(n) ∼ π

n/2 · √
n + 2

√
n · erf−1 (2η − 1)

n

√
πn

(
n
2e

) n
2 ·

(
2
√
2erf−1

(
n
√

η
))n
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Fig. 3 Idealized
representation for
Sη,Bη,

[
Sη

]

Since, n + 2
√
n · erf−1 (2η − 1) ∼ n, we get:

ρ
η
(n) ∼ π

n/2·√nn√
πn( n

2e )
n
2 ·(2

√
2erf−1( n√η))

n

= π
n/2·n n

2 ·(2e) n
2√

nn
n
2 ·(2

√
2erf−1( n√η))

n

∼ (eπ)
n
2

(2erf−1( n√η))
n =

( √
eπ

2erf−1( n√η)

)n

which converges to zero.

Figure3 illustrates the configuration for the sets Sη,Bη,
[
Sη

]
that are used to

approximate the error vector e. Both Sη,Bη contain e with a probability η.

3 Linearization Method

To compute a set which encloses the parameter vector e with a probability η, the
previous section proposed to compute the probabilistic set P̂Eη

associated to Eη,
the set which contains e with a probability η. This set can be expressed as the set
inversion problem P̂Eη

= f−1
(
Eη

)
where f (p) = y − ψ (p). For a comparison, we

recall the classical theMaximum Likelihood approach to estimate such a confidence
set by a linearization of the model. Unfortunately, the linearization error cannot be
quantified in a reliable way.
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The linearization method searches for the parameter vector p̂ which maximizes
the likelihood function

L (yi | p) =
∏
i

π (yi | p) ∝
∏
i

e−(ψi (p)−yi )
2
. (16)

This is equivalent to minimizing

λ (p) = − log L (yi | p) =
∑
i

(ψi (p) − yi )
2 (17)

which is corresponds to a non-linear least-square minimization problem. It seems
reasonable to assume that the true value for p is closed to the minimizer p̂ and that
λ (p) can be approximated by a second order Taylor development of Eq.17 around
p̂. Since the gradient of λ at p̂ is zero, we get

λ (p) ∼ λ
(
p̂
) + 1

2
· (
p − p̂

)T · Hλ

(
p̂
) · (

p − p̂
)

(18)

where Hλ is the Hessian matrix of λ. Now eT · e ≤ α (η)2 ⇔ λ (p) = ∑
i (ψ (p) −

yi )
2 ≤ α2 (η). As a consequence, a confidence ellipsoid which contains p with a

probability η is:

λ
(
p̂
) + 1

2
· (
p − p̂

)T · Hλ

(
p̂
) · (

p − p̂
) ≤ α2 (η) .

Note that Hλ

(
p̂
)
corresponds to the observed Fisher information matrix at p̂ [2,

31] which is the inverse of the covariance matrix �p̂ for the estimated maximum
likelihood parameter p̂. Note also that the linearization method provides on ellipsoid
associated to the probability η but this ellipsoid cannot be considered as reliable: the
probability that it contains p is most of the time far from η.

4 Test-Cases

To illustrate our method, we consider here three illustrative test-cases involving
parameter estimation under white, additive Gaussian noise.
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Fig. 4 Measurements y(t)
for Test-case 1
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4.1 Test-Case 1

Consider the following model

y(t) = p2 · e−p1·t + p1 · e−p2·t + w(t) (19)

where t ∈ {0, 0.01, 0.02, . . . , 12} and w(t) is a white centred Gaussian noise with a
variance σ 2 = 1. Figure4 represents the collected data y(t).

Figure5 represents the three sets P̂0.99 obtainedby an inversionof [S0.99] , B0.99 and
S0.99. This comparison confirms that the box-hull inversion P̂[S0.99] is too pessimistic.
Figure6 illustrates a situation where P̂S0.99 �⊂ P̂B0.99 . From Theorem 2 we could have
expected an inclusion. Now, this example is quite atypical: the parametric model is
not globally identifiable, i.e., p1 and p2 can be interchanged without any effect on
the output. Figure6 also represents the confidence ellipsoid generated by the linear
estimator. Due to the non identifiability problem, we have two global minimizers.
We have chosen to draw the ellipsoid centred around the minimizer corresponding
to the true parameter vector p∗. Otherwise, the 0.99 ellipsoid would not contains p∗.

4.2 Test-Case 2

Consider the following model studied in [15]

y(t) = 20 · e−p1·t − 8 · e−p2·t + w (20)
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Fig. 5 P̂[S0.99] (top left), P̂B0.99 (top right), P̂S0.99 (bottom). The black star is the true parameters
vector

which is similar to the model of Test-case 1 but the model is now identifiable. Again,
w(t) is a centred normal noise with a unit variance.We collected 1000measurements
for y(t) at different times t ∈ [0, 25] as represented on Fig. 7.

Figure8 shows that the inversion P̂S0.99 of the confidence sphere S0.99 is more pre-
cise than the inversion of [S0.99] and B0.99. The set P̂S0.99 has two disjoint components
at a confidence level η = 0.99. Figure9 shows that the linear estimator was able to
capture the correct parameters vector.

Remark Figure8 shows that the proposed approach suffers from an important pes-
simism: the border of the computed set is quite thick, and the generated subpaving
is not minimal. This is due to the multiple-occurences in the parameter variables in
the expression of the inequalities describing Sη. Interval methods are sensitive to this
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Fig. 6 Superposition of
P̂[S0.99] (light gray),
P̂B0.99 (gray), P̂S0.99 (dark
gray), and the 0.99
confidence ellipse obtained
with a linear estimator. The
black star is the true
parameter vector p∗

Fig. 7 Collected data y(t)
for Test-case 2
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type of situation which adds pessimism in the propagation of uncertainties [13]. To
limit this phenomena, linear approximations such as the centered or affine forms of
the constraints could be used.
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Fig. 8 P̂[S0.99] (top left), P̂B0.99 (top right), P̂S0.99 (bottom). The black star is the true parameter
vector p∗

4.3 Test-Case 3

In this example, a lost underwater vehicle tries to get its position by gathering range-
only measurements to three beacons [4, 12]. The position x j = (

x j y j z j
)
of the

j th beacon is precisely known from a previous survey of the area, as well as the
altitude zm of the robot, thanks to a pressure sensor. The three beacons are almost
aligned, which causes a bad conditioning. The robot is assumed to be static during
the acquisition. For each measurement d̃i to the beacon j we have

d̃i j =
√(

x j − xm
)2 + (

y j − ym
)2 + (

z j − zm
)2 + w (21)
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Fig. 9 Superposition of
P̂[S0.99] (light gray),
P̂B0.99 (gray), P̂S0.99 (dark
gray), and the 0.99
confidence ellipse obtained
with a linear estimator

Fig. 10 Range signals
received from the three
beacons
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where w is a white centred Gaussian noise, whose variance is given by the sensor
for each measurement. The signals associated to the three beacons are pictured in
Fig. 10 (Fig. 11).

From Fig. 12, we observe that P̂S0.99 ⊂ P̂B0.99 ⊂ P̂[S0.99], which confirms that the
P̂S0.99 is more precise than the two other confidence regions. Figure13 is the superpo-
sition of P̂S0.99 , P̂B0.99 , P̂[S0.99] and the 0.99 confidence ellipse (flat and horizontal) of
a linear estimator. While the linear estimator gives an estimate that is consistent (it
contains the true solution), it is obvious that it doesn’t fully capture the underlying
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Fig. 11 An underwater
robot stays fixed on the
seafloor and gathers range
measurements from 3
beacons whose positions are
known, in order to estimate
its position

banana-shaped probability density function, which is more accurately seized by our
nonlinear methods.

Table2 compares the time it takes to compute P̂[S0.99], P̂B0.99 , P̂S0.99 on a classical
laptop for the three test-cases. As it could have been anticipated, it is clear that
inverting boxes, which are convenient representations for interval methods, takes
much less time than inverting a sphere.

5 Conclusion

In this paper, we have presented a new approach for parameter estimation of nonlinear
models with additive Gaussian noise. The resulting method makes it possible to
compute a set which contains the parameter vector with a given probability. The
main contribution of this paper is that the results are guaranteed, which is not the
case for existing approaches. Indeed, although if existing methods are also able to
provide an estimation of such a confidence region of probability η, they perform
some linearizations without quantifying the corresponding error. Three simulated
test-cases were presented and compared to existing and linear methods.
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Fig. 12 P̂[S0.99] (top left), P̂B0.99 (top right), P̂S0.99 (bottom). The black star represents p∗
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Fig. 13 Superposition of
P̂[S0.99] (light gray), P̂B0.99

(gray), P̂S0.99 (dark gray), and
the 0.99 confidence ellipse of
the linear estimator (black).
The black star represents p∗

Table 2 Computation times for Test-cases 1, 2 and 3

Computation time (s) Test-case 1 Test-case 2 Test-case 3

P̂[S0.99] 35 s 1 s 26s

P̂B0.99 62 s 6 s 45s

P̂S0.99 839s 89s 510s
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Influence of the Condition Number
on Interval Computations: Illustration
on Some Examples

Nathalie Revol

Abstract The condition number is a quantity that is well-known in “classical”
numerical analysis, that is, where numerical computations are performed using
floating-point numbers. This quantity appearsmuch less frequently in interval numer-
ical analysis, that is, where the computations are performed on intervals. The goal
of this paper is twofold. On the one hand, it is stressed that the notion of condition
number already appears in the literature on interval analysis, even if it does not bear
that name. On the other hand, three small examples are used to illustrate experi-
mentally the impact of the condition number on interval computations. As expected,
problemswith a larger condition number are more difficult to solve: this means either
that the solution is not very accurate (for moderate condition numbers) or that the
method fails to solve the problem, even inaccurately (for larger condition numbers).
Different strategies to counteract the impact of the condition number are discussed
and experimented: use of a higher precision, iterative refinement, bisection of the
input. More strategies are discussed as a conclusion.

1 Introduction

Condition number is a quantity that is commonly used in “classical” numerical analy-
sis, that is, numerical analysiswhere computations are performed usingfloating-point
arithmetic. Condition number is used to predict, or to explain, whether a problem is
difficult to solve accurately or not. More precisely, the condition number indicates
how sensitive the solution is to a perturbation of the input. If there is uncertainty on
the input, or a small error such as a rounding error, this error is very likely to be
amplified by a factor at most, but often close to, the condition number. This is known
as the rule of thumb in [5, Sect. 1.6, p. 9].
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In our experience with interval computations, we have noticed a similar behavior:
problems with small condition number were easy to solve and problems with large
condition number were not that easy—in a sense that we will comment on. However,
the condition number is not a quantity one encounters frequently in works on interval
computations. We will detail in Sect. 2 the formulas for the condition number and for
a theorem given in [8]: these two formulas use a similar quantity as the amplification
factor for the uncertainty in both contexts. Actually, one rather uses the condition
number as the amplification factor for relative errors in classic numerical analysis
and a quantity that is closer to the sensitivity as the amplification factor for absolute
errors in interval computations. We will still use the denomination condition number
for both, throughout the paper.

The goal of this paper is to put into light, through three small illustrative examples,
the impact of the condition number on interval computations. These examples are
first, the summation of n numbers, then the solution of a linear system of dimension
n and eventually the solution of a univariate, but nonlinear, equation. These examples
are chosen among the most classical problems discussed in numerical analysis, still
they exhibit interesting features. They are introduced here in increasing order of
difficulty. Indeed, summation involves only addition, and each variable is used only
once. Linear system solving involves also multiplication and division, and variables
are used more than once, which is relevant for interval computations, where the so-
called dependency problem is one of the main causes of overestimation. The last
problem is not only nonlinear, it also involves more elaborate functions (such as the
logarithm in our example). In Sect. 3,wewill detail the vectorswith varying condition
number for the summation problem, and the accuracy of their sum, depending on this
condition number. In Sect. 4, wewill describe themethod used to solve linear systems
and we will present experimentally the influence of the condition number, either on
the accuracy of the solution or on the ability of the method to solve the problem.
In Sect. 5, we will introduce an example of ill-conditioned (for the determination of
zeros) nonlinear equation and, again, illustrate experimentallywith intervalNewton’s
method, what happens when the condition number increases.

In all three cases, the impact of the condition number is visible and as expected.
In all three cases, we experimented some strategies to counteract this impact. For the
linear problems, the use of a higher precision can obviate the impact of the condition
number. For the summation problem, an increase of the computing precision is tested.
Regarding the solution of linear systems: we will illustrate how combining the use
of iterative refinement with the choice of the computing precision allows one to get
a fully accurate solution…when the method succeeds in computing the solution.
The key point is to restrict the higher precision to the most sensitive parts of the
computation. For nonlinear systems, again it is not difficult to target the parts that
are most sensitive to the computing precision, but it is not always obvious to so
without resorting to a dedicated library for high precision arithmetic. In this case,
our experiments focus instead on another, naive but always applicable, strategy: the
bisection of the input interval to get a narrower enclosure of the sought zero as output.
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For the summation and the nonlinear equation solving, our experiments were per-
formed using the interval package of Octave, version 2.1.0 [4]. The linear system
solving algorithms and experiments are taken from Nguyen’s Ph.D. thesis [10], they
have been conducted using IntLab in Matlab.

2 Condition Number and Interval Computations

Let us start by recalling the notion of condition number of a problem in classic
numerical analysis in Sect. 2.1. How an error on the input is amplified, how it results
in an error on the output, gives rise to this notion of condition number: it is the
amplification factor of the relative errors. In Sect. 2.2, computations are performed
using interval arithmetic. A similar study on the effect, on the output, of an error on
the input gives rise to a theorem about the amplification factor in this case. Section2
also contains the definitions and notations used in this paper. The main references for
this section are Higham [5, Sect. 1.6, p. 9] for Sect. 2.1 and Neumaier [8, Sect. 2.1]
for Sect. 2.2.

2.1 Condition Number of a Problem

Let us denote by x ∈ R the input and by y = f (x) ∈ R the solution of a considered
problem, or its output. We are interested in the variations of x and y: when the
variation of the input is Δx , the output of the new problem is y + Δy = f (x + Δx)
and the variation of the output is Δy. If f is twice continuously differentiable,

y + Δy = f (x + Δx) = f (x) + f ′(x)Δx + O(Δx2)
⇒ Δy = f (x + Δx) − f (x) = f ′(x)Δx + O(Δx2).

If Δx is an error on x , then Δy is the error on the solution, due to this error on the
input. The absolute error Δx on the input is amplified by a factor close to | f ′(x)|:

Δy � f ′(x)Δx ⇒ |Δy| � | f ′(x)|.|Δx |. (1)

The amplification factor for absolute errors is sometimes referred to as sensitivity,
especially for multidimensional inputs.

The relative error on the output is Δy/y if y �= 0, or |Δy|/|y|. The previous
equality yields

Δy

y
= f ′(x)Δx

f (x)
+ O(Δx2)

and, if x �= 0, the ratio of the relative error on the output by the relative error on the
input is
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Δy/y

Δx/x
= f ′(x)Δx/ f (x)

Δx/x
+ O(Δx/x) = x f ′(x)

f (x)
+ O(Δx/x) � x f ′(x)

f (x)
.

The amplification factor of the relative error is thus

c f (x) =
∣
∣
∣
∣

Δy/y

Δx/x

∣
∣
∣
∣
= | f ′(x)|.|x |

| f (x)| . (2)

The quantity c f (x) is called the condition number of the problem f at x .
For problems with higher dimensions: x ∈ R

n , y ∈ R
m , a similar reasoning yields

Δy = f (x + Δx) − f (x) = J f (x).Δx + O(‖Δx‖2x )

where J f (x) is the Jacobian of f in x and the norm ‖.‖x applies to vectors in R
n .

In what follows, the norm ‖.‖y applies to vectors in R
m and the matrix norm ‖.‖x,y

is the matrix norm induced by these vector norms. The ratio of the relative error on
the output, if y �= 0, on the relative error on the input, if x �= 0, satisfies

‖Δy‖y/‖y‖y

‖Δx‖x/‖x‖x ≤ ‖ |J f (x)|.|x | ‖y

‖ f (x)‖y
≤ ‖J f (x)‖x,y .‖x‖x

‖ f (x)‖y
.

Again, the condition number c f (x) of the problem f at x is an upper bound on the
amplification factor of the relative error:

c f (x) = ‖ |J f (x)|.|x | ‖y

‖ f (x)‖y
or c f (x) = ‖J f (x)‖x,y .‖x‖x

‖ f (x)‖y
. (3)

2.2 Amplification Factor for Interval Computations

Let us denote again by x ∈ R the real input of the problem and y = f (x) ∈ R the
real output. Let us assume that f is smooth enough: being C 1 (or sometimes C 2)
usually suffices.

Let us now consider the case of interval computations. Intervals are denoted in
boldface, as in x, y. Let x vary in an interval x, the output varies in an interval f (x)
the range of f over x. Let us assume that f is given by an arithmetic expression and
that f is Lipschitz-continuous in x (in the sense defined in [8, Sect. 2.1, p.33]). The
evaluation of f over x using interval arithmetic usually does not produce f (x), but
a larger (in the sense of inclusion) interval that will be denoted by f(x).

Similarly, the evaluation of f ′(x) using the arithmetic expression for f and the
rules for the derivation of each operation, such as the chainrule for the derivation of
a product, without any simplification, yields f ′(x) ⊃ f ′(x). Let us denote by λ f (x)
the Lipschitz constant in the definition of f being Lipschitz-continuous in x, λ f (x)
is obtained in a similar way to the evaluation of f ′(x), by taking absolute values at
each step. Thus λ f (x) ≥ | f ′(x)|.
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The distinction between λ f (x) and | f ′(x)|, that is, between the interval evaluation
of λ f (x) over x using inductively the arithmetic expression for f , and the maximal
absolute value in the range of the real function f ′ over x, becomes clear in the
following example. If a function contains (usually in a hidden form) a subexpression
of the form f (x) = x − x , then the interval evaluation f(x), when x = [x, x], is [x −
x, x − x] that contains 0 but not only, and that is twice as large as x: wid(f(x)) = (x −
x) − (x − x) = 2(x − x) = 2wid(x). The value of λ f (x) is obtained as follows:

• the derivative of each occurrence of x is 1 and so is the corresponding Lipschitz
constant;

• theLipschitz constant of a sumor difference of two terms is the sumof theLipschitz
constants of these terms (there is a sign error in the formula for the subtraction
in [8, Table2.1], but not in the proof of it: the Lipschitz constants must be added,
never substracted).

Thus the Lipschitz constant for f (x) = x − x is 2. It corresponds to the fact that the
width of f(x) is twice the width of x.

This example is a specific case of a general statement: Theorem2.1.1 in [8] applied
to { f (x)} and to f(x) yields

wid(f(x)) ≤ λ f (x)wid(x). (4)

Equation (4) is analogous to Eq. (1), as long as we keep in mind the distinction
between | f ′(x)| and λ f (x).

As it can be difficult to define what is the value of interest in an interval, it is
difficult to define a notion of relative error that corresponds to all contexts: should
rad(x)

|mid(x)| be used, or rad(x)
|x| , that yields the smallest possible value, or rad(x)

mig(x) where
mig(x) = min{|x | : x ∈ x}, that yields the largest possible value? As there is no
universal notion of relative error in interval computations, we will not proceed any
further in our attempt to mimic and adapt the definition of condition number for
interval computations. In the experiments below, only the width of the output will
be observed.

We will thus stick to Eq. (4) and this bound λ f (x) on the amplification factor
for the error on the input. As | f ′(x)| is less than λ f (x), only | f ′(x)|, or the usual
condition number of the problem will vary in our experiments, and the effect of this
condition number on the width of the output will be observed.

3 Summation

The first problem considered in this paper is the summation of n real numbers
x1, . . . , xn: if x = (x1, . . . , xn) ∈ R

n , the problem is to compute

s(x) =
n

∑

i=1

xi .
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In our experiments, the xi are chosen as tiny intervals around a given real value:
xi = [RD(xi ),RU(xi )]. The sum s is computed using interval addition and from left
to right. In Octave this is done as

s = infsup (0.0);

for i = 1:n, s = s + x(i); end;

Let us apply the first of the two possible formulas in Eq. (3) to determine the
condition number of this problem. (This is exercice 4.1 in [5, Chap. 4, p.91].) The
Jacobian of s at any x is

Js(x) =
(

∂s

∂x1
(x),

∂s

∂x2
(x) . . .

∂s

∂xn
(x)

)

= (1, 1, . . . 1).

Thus |Js(x)| |x | = ∑n
i=1 |xi | and thus

cs(x) =
∑n

i=1 |xi |
| ∑n

i=1 xi |
.

From this expression, it is clear that the summation problem is ill-conditioned
when

∑n
i=1 |xi | is much larger than |∑n

i=1 xi |: inputs x that correspond to ill-
conditioned problems are problems where heavy cancellations occur.

Our tests use the following vector x , of odd dimension n, parametrized by c:

• x1, . . . x� n
2 �−1 are positive,

• x� n
2 �+1, . . . xn are negative, equal to −x1, . . . − x� n

2 �−1 so that cancellations occur,
• x� n

2 � = 1 thus the sum of the xi is 1,
• the xi vary greatly in magnitude, so that cancellations occur for every order of
magnitude, however the sum of their absolute value is large and thus the condition
number is large; we use the successive powers of 10 in a round-robin way: we set
x1 = 101, x2 = 102 . . . xc = 10c and then again xc+1 = 101, xc+2 = 102 . . ..

The formulas for x and x are

• from x1 to x�n/2�−1,

xi = 10(i−1 mod c)+1, xi = [RD(10(i−1 mod c)+1),RU(10(i−1 mod c)+1)],

• from x�n/2� + 1 to xn ,

xi = −10(i−�n/2�−1 mod c)+1,

xi = [RD(−10(i−�n/2�−1 mod c)+1),RU(−10(i−�n/2�−1 mod c)+1)],

• x�n/2� = 1, x�n/2� = 1.
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Fig. 1 Result of the interval
sum of the vector x(c) of
dimension 1011: on the
x-axis, the value of the
parameter c, which
corresponds to the number of
decimal digits of the
condition number; on the
y-axis, the radix-10
logarithm of the width of the
sum s

If n > 2c, the sum
∑n

i=1 |xi | = n
c

∑c
i=1 10

i � n
c 10

c and the condition number
cs(x) � n

c 10
c: the radix-10 logarithm of the condition number, which is the number

of decimal digits of cs(x), is close to c.
In the experiments presented here, the dimension n of the vector x was fixed to

1011 and the parameter c varied between 1 and 500. Figure1 shows on the x-axis
the value of the parameter c and on the y-axis log10wid(s).

One can observe a perfect straight-line with slope 1: the width of the sum is
multiplied by 10 when c increases by 1, as predicted by the theory. The difference
between c and log10 wid(s) is 16, which is the number of decimal digits of the
double-precision floating-point numbers used in the computations. The curve stops
at c = 308 as the width of s becomes infinite after that point. This corresponds to the
limit of the range of floating-point numbers: 10308 can be represented by a bounded
interval with floating-point endpoints, however 10309 overflows and thus the right
endpoint of x309 is infinite. The sum thus becomes equal to R, its width becomes
infinite and the plotting command does not plot it.

To improve the numerical quality of a sum, a first heuristic consists in modifying
the algorithm, and in this case in modifying the order in which the operands are
summed, see [5, Sect. 4.2, pp. 81–83]. We did not observe any improvement: this
heuristic improves the result and not the condition number of the problem. A condi-
tion number corresponds to the worst case of propagation of errors and interval arith-
metic also computes results which correspond to the worst case. Interval computa-
tionsmay thus bemore closely correlatedwith the condition number than the summa-
tion with a well-chosen order. Another classical technique, that improves worst-case
error analysis, is the so-called compensated summation, see [7, Sect. 6.3, pp.208–
218]. It relies on the TwoSum routine that transforms two floating-point numbers x
and y into a pair of floating-point numbers s and e such that s + e = x + y exactly
and s = RN(x + y) is the floating-point sum of x and y. Our Pichat-Neumaier-like
version for the summation of intervals is given below in Octave syntax:
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Fig. 2 Result of the interval
sum of the vector x(c) of
dimension 1011: on the
x-axis, the value of the
parameter c, which
corresponds to the number of
decimal digits of the
condition number, and on the
y-axis, the radix-10
logarithm of the width of the
sum: in blue, the sum as
previously, in red, the
compensated sum

sH=0.0; sL=infsup(0.0);

for i=1:n,

m=mid(x(i));

[sH,tmp]=TwoSum(sH,m);

sL=sL+tmp+(x(i)-m);

end;

The results are tighter than for the summation without compensation, as can be
seen on Fig. 2: the width of the compensated sum, in red, is less than the width of
the original sum, in blue: 2.5 decimal digits are gained through this technique.

4 Solving Linear Systems

The second problem is the solution of a linear system. Every result presented in this
Section is taken from Nguyen’s PhD thesis [10]. Let A be a n × n real matrix and b
a real n-vector, the problem is to solve Ay = b. It is well-known (see [5, Chap. 7]
for an introduction and references) that the condition number of this problem with
respect to perturbations of A is ‖A−1‖ ‖A‖.

For the numerical computations, the solution is obtained via the MATLAB com-
mand x=A\b. For interval computations, the employed algorithm is based on the
classical iterative refinement technique, which is given below in a MATLAB-like
syntax. For details about the following algorithm, seeWilkinson [13] for the original
algorithm and Higham [5, Chap. 12] for its analysis and further references.
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Algorithm: linear system solving using iterative refinement
Input: A ∈ R

n×n , b ∈ R
n

y = A\b % in practice: factorization LU of A
% and solving of two triangular linear systems

while (not converged)
r = b − Ay
e = A\r
y = y + e

Output: y

Regarding the interval computations: we consider A and b to be floating-point
matrix and vector respectively, andA and b to be equal to A and b, with interval type
to contaminate further computations. The algorithm to solve this systemwith interval
coefficients is given below. The first step,y = A\b, is computed using floating-point
arithmetic: the LU-factorization of A is done with floating-point arithmetic and if
L and U are the factors of A, they are kept for subsequent computations. Interval
arithmetic is used in the iterative refinement loop only.

Algorithm: linear system solving using iterative refinement, interval version
Input: A ∈ R

n×n , b ∈ R
n

y = A\b
while (not converged)

r = [b − Ay] % b − Ay is computed using interval arithmetic
e = A\r % e is computed using interval arithmetic
y = y + e

Output: y

A difficulty is to solve e = A\r. The LU factorization of A is used to prepare
the system. One solves U−1.L−1r = U−1.L−1.Ae. The underlying principle is that
U−1.L−1.A is close to the identity matrix, thus it is diagonally dominant, so that the
Gauss-Seidel iterative method is contractant. However, for this contractant method
to be applicable, one needs an initial enclosure of e. Rump [12] was the first to
offer a function, called verifylss in the IntLab library [12], implementing a
method by Neumaier [9]: he gives a heuristic to determine an initial enclosure for
e. Nguyen proposes a different heuristic in [10] and the corresponding function is
called certifylss. A third function, called certifylss_relaxed, imple-
ments some tricks to improve the execution time but it has no effect on the accuracy
of the solution. The results of these functions are very similar, as can be seen on
Fig. 3.

The matrix A is generated using MATLAB command randsvd(n, cond),
where n is the dimension and cond is the expected condition number for this matrix.
The vector b is chosen as A(1, 1, . . . 1)t . On Fig. 3, the x-axis gives the value of
cond, varying between 25 and 250, in radix-2 logarithmic scale. The y-axis indi-
cates the number of correct bits of the solution, it corresponds to the maximal width
of the components of the solution: − log2 maxwid(xi ). The pink curve corresponds
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Fig. 3 Solution of a linear system: on the x-axis, the condition number with a radix-2 logarithmic
scale, on the y-axis, the accuracy in bits of the solution

to MATLAB solution A\b: MATLAB always returns an answer, however its accu-
racy decreases as the condition number increases. No iterative refinement is applied,
otherwise the accuracy would be comparable to the next three curves. The three
other curves correspond to Rump’s verifylss and to Nguyen’s certifylss
and certifylss_relaxed. All three are able to compute accurately (thanks
to iterative refinement) the solution for small condition numbers, up to 237 in this
experiment. Then the three methods return less and less accurate solutions as the
condition number increases but remains moderate, up to 245, and then, for large con-
dition numbers, they all fail to return an answer because their heuristics to determine
an initial enclosure of the error fail.

Nguyen in [10] proposed several modifications to increase the accuracy of the
result. Schematically, his algorithm is as follows:

Algorithm: linear system solving using iterative refinement, interval version 2
Input: A ∈ R

n×n , b ∈ R
n

y = A\b
modifications, including a floating-point matrix R and an interval matrixK ⊃ RA
while (not converged)

r = [R(b − Ay)] % computed in doubled precision
e = K\r
y = y + e % computed in doubled precision

Output: y

The first version is called certifylssx and reaches full precision for the
problems it can solve. The secondversion is called certifylssxs: it usesKwhich
enlarges RA, and thus it degrades the accuracy on e. However, solving e = K\r is
faster than in the previous version and y remains as accurate, as shown on Fig. 4.

For the problem of solving a linear system, the impact of the condition number
can be seen on the accuracy of the solution, but also on the fact that the methods fail
to solve the linear system for large enough condition numbers. Nguyen also put in
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Fig. 4 Solution of a linear system: on the x-axis, the condition number with a radix-2 logarithmic
scale, on the y-axis, the accuracy in bits of the solution

evidence the effect of the condition number on the execution time in [10]: as long as
the method succeeds in computing an enclosure of the solution with full accuracy,
the computing time increases with the condition number.

5 Univariate Nonlinear Equations

The last problem used in these experiments is the determination of the zeros of a
nonlinear equation in one variable, using Newton method. Usually, the problem is
introduced in the following form: determine z such that a given function F vanishes
at z. As we want to vary the condition number of the problem, we need a parameter
upon which the condition number depends. The problem considered in this Section
is thus: for a given d, determine z = f (d) such that F( f (d), d) = 0, where

F : R
2 → R

(z, d) �→ F(z, d).

What is the condition number of this problem? Let us differentiate both sides of
the equality F( f (d), d) = 0:

f ′(d).
∂F

∂z
( f (d), d) + ∂F

∂d
( f (d), d) = 0,

and thus, if ∂F
∂z ( f (d), d) �= 0, we get

f ′(d) = −
∂F
∂d ( f (d), d)

∂F
∂z ( f (d), d)

.
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If we replace f ′(d) by this expression in Eq. (2), one gets

c f (d) =
∣
∣
∣
∣
∣

∂F
∂d ( f (d), d)

∂F
∂z ( f (d), d)

∣
∣
∣
∣
∣
.

|d|
| f (d)| .

For our experiments, the chosen function F is F(z, d) = log d
z − 1. For a given

d∗, the corresponding zero is z∗ = log d∗. The condition number of this problem in
d is determined as follows. Let us compute the partial derivatives of F :

∂F

∂d
(z, d) = 1

dz
and

∂F

∂d
(log d, d) = 1

d log d
,

∂F

∂z
(z, d) = − log d

z2
and

∂F

∂z
(log d, d) = −1

log d
,

thus

c f (d
∗) =

∣
∣
∣
∣
∣

1
d∗ log d∗

−1
log d∗

∣
∣
∣
∣
∣
.

|d∗|
| log d∗| = 1

| log d∗| .

When d∗ → 1, c f (d∗) � 1
|d∗−1| → ∞.

In the experiments, the solution is computed using the fzero routine of the
interval package in Octave [4]. The initial interval, in which the zeros of the
function are sought, is [−100, (log d)/2] when d < 1 and [(log d)/2, 100] when
d > 1. One observes the proportionality, predicted by the theory, between the condi-
tion number and the accuracy of the enclosure. The non-monotonic behavior of the
accuracy, or the “steps” that can be observed on the curve on Fig. 5, corresponds to
the different cases d < 1 and d > 1: the condition numbers are such that the results
for d = 1 − 10−i and d = 1 + 10−i are interleaved. These two different cases are
presented separately on Fig 6.

Increasing the computing precision would certainly improve the accuracy of the
sought zeros. However, in this case, one would need to resort to a dedicated library
for increased precision, as operations and functions more elaborate than additions
and multiplications need to be evaluated with a large precision. This makes it more
cumbersome than in the previous experiments. Instead, we resorted to a simple but
usually efficient technique, classically used in interval computations, which is a
direct consequence of Eq. (4): bisection of the input intervals. Alas! we split the
input interval in 50 subintervals of equal length and a (slight) gain in accuracy could
be observed only for well-conditioned inputs. This is easily explained: splitting the
input interval beforehand created many subintervals containing no zero, and thus
these subintervals were rapidly discarded. This was of no use to the algorithm, which
is able to do so by construction. The same observation has beenmade for Branch-and-
Bound algorithms for global optimization [11]: splitting the initial domain does not
improve the search, as most initial subintervals are discarded very rapidly. Bisecting
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Fig. 5 Solution of the nonlinear equation F(z, d) = (log d)/z − 1 for varying d. The x-axis corre-
sponds to the radix-10 logarithm of the condition number of the problem and the y-axis corresponds
to the radiz-10 logarithm of the width of the enclosure of the zero

Fig. 6 Solution of the nonlinear equation F(z, d) = (log d)/z − 1 for varying d. On the x-axis:
radix-10 logarithm of the condition number of the problem, on the y-axis: radiz-10 logarithm of
the width of the enclosure of the zero. On the left: d < 1, on the right: d > 1

the search interval should be done only by the algorithm itself (in case of Branch-
and-Bound algorithms) or during the last steps (in case of Newton algorithm).

6 Conclusion and Future Work

The relation between the amplification factors of the errors for numerical and interval
computations has been studied: both use the derivative of the computed function,
however in the interval context, an interval evaluation—thus, with overestimation—
of the derivative has to be used. The influence of the usual condition number on some
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interval computations has been observed. When the condition number is small, the
computed result is accurate, in the sense that its width is small. This width increases
as the condition number increases, unless more efforts are put in the computations
to preserve the accuracy, at the expense of the computing time. When the condition
number gets large, either the computed result is the whole set of real numbers, which
conveys no useful information, or the method fails, which is the case for the linear
or nonlinear system solving. As the fundamental theorem of interval arithmetic is
sometimes called the Thou shalt not lie commandment, this means that interval
computations remain silent about the result, instead of “lying” and returning an
incorrect result, that is, a result that does not contain the exact result.

Some possible solutions to obviate the impact of the condition number come to
mind, some have been experimented. First, an increase of the computing precision
usually yields an increase of the accuracy. How the computing precision should
be increased has been dealt with in [6] for the general case: they recommend the
choice of a precision that corresponds to doubling the execution time. For specific
problems, thorough studies can lead to a more hand-tailored choice, where the pre-
cision is increased only for the most sensitive computations, as it has been observed
for the iterative refinement method, for solving linear systems in Sect. 4 and with a
more detailed study in [1–3, 10]. Another classical approach in interval algorithms
is to bisect the input interval, so as to reduce the width of the output interval. In
our experiments, bisection is useless if it is performed too early, except maybe on
well-conditioned problems. Bisection should occur only when the algorithm has
difficulties refining the output, but not too early during the computations. A more
promising approach is the design of ad hoc algorithms, such as the iterative refine-
ment of Sect. 4. It must however concentrate on the interval algorithm and not be a
mere adaptation of existing techniques, such as the reordering of the operands for
the summation.
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Interval Regularization for Inaccurate
Linear Algebraic Equations

Sergey P. Shary

Abstract In this paper, we consider the solution of ill-conditioned systems of linear
algebraic equations that can be determined inaccurately. To improve the stability of
the solution process,we “immerse” the original inaccurate linear system in an interval
system of linear algebraic equations of the same structure and then consider its
tolerable solution set. As the result, the “intervalized” matrix of the system acquires
close and better conditioned matrices for which the solution of the corresponding
equation system is more stable. As a pseudo-solution of the original linear equation
system, we take a point from the tolerable solution set of the intervalized linear
system or a point that provides the largest tolerable compatibility (consistency). We
propose several computational recipes to find such pseudo-solutions.

1 Problem Statement

In our work, we consider using methods of interval analysis for the solution of ill-
conditioned systems of linear algebraic equations that can be specified inaccurately.
We are developing a procedure for regularization of such problems, i. e., for improv-
ing stability of the process of solving them, which is called “interval regularization”.

Let us be given a system of linear algebraic equations of the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,
...

...
. . .

...
...

am1x1 + am2x2 + . . . + amnxn = bm,

(1)

with coefficients ai j and right-hand sides bi , or, in concise form,
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Ax = b (2)

where A = ( ai j ) is an m × n-matrix and b = ( bi ) is a right-hand side m-vector. In
our paper, we mainly consider the square case m = n, but some of our constructions
are more general and they can be applied to rectangular linear systems with m �= n.

In the linear system (1)–(2), the matrix Amay be ill-conditioned or even singular.
The systemmay have no solutions at all in the classical sense. Also, it can be specified
inaccurately, with some measure of inaccuracy given. Our task is to find a solution
or a pseudo-solution (its substitute defined in a reasonable sense) for the system of
equations (1)–(2) in a stable way.

Since we are going to use methods of interval analysis in our work, the inaccuracy
in specifying the systems of linear algebraic equations will be described using the
interval concepts too. In accordance with the informal international standard [6]
which is used throughout this work, we designate intervals and interval values in
bold, while usual non-interval (point) objects are not marked in any way. So, instead
of the systemof equations (1)–(2), we shall have an interval systemof linear algebraic
equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,
...

...
. . .

...
...

am1x1 + am2x2 + . . . + amnxn = bm,

(3)

with interval coefficients ai j and interval right-hand sides bi , or, in concise form,

Ax = b, (4)

where A = ( ai j ) is an interval matrix and b = ( bi ) is an interval right-hand side
m-vector. The major part of our constructions below is insensitive to such a change
in the object under study. The interval linear system (3)–(4) is then considered as a
family of point linear systems of the form (1)–(2) which are equivalent to each other
to within a prescribed accuracy specified by the intervals in A and b.

2 Idea of the Solution

We are going to rely on the following fact from matrix theory. Let A be an n × n-
matrix and its condition number cond(A) = ‖A‖ · ‖A−1‖, defined for a subordinate
norm ‖ · ‖, satisfies cond(A) > 1. Then, in any neighbourhood of the matrix A, there
are matrices Ã having better condition number cond ( Ã) < cond (A). This follows
from that the condition number does not have local minima, except for the global
one—namely, cond(A) = 1 for subordinate norms.
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As a result, one naturally arrives at the following idea: we can replace the solution
of the original system Ax = b by the solution of the system Ãx = b with close, but
better conditioned matrix Ã. Under favorable circumstances, the solution to the new
system will be close to the desired solution of the original system (1)–(2).

The idea we have just formulated is not new. There exists the Lavrentiev regular-
ization method [9, 10] (see also [4, 37]), a popular regularization technique for the
integral equations of the first kind and similar operator equations, and its essense is
almost the same as the above stated idea. Imposing a small perturbation on the oper-
ator involved in the equation, we shift its small eigenvalues from zero and, hence,
the operator moves away from singularity. This improves stability of the solution.

The Lavrentiev regularization method also applies to systems of linear algebraic
equations of the form (1)–(2). In the simplest case, when the matrix A is, e. g.,
symmetric and positive semidefinite, we should solve

(A + θ I ) x = b

instead of the equation system (1)–(2), where I is the identity matrix and the real
number θ > 0 is a shift parameter. If λ(A) are eigenvalues of A, then the eigenvalues
of A + θ I becomes λ(A) + θ , and the condition number with respect to the spectral
norm is

cond (A + θ I ) = λmax(A) + θ

λmin(A) + θ
.

It obviously decreases in comparison with cond (A) = λmax(A)/λmin(A) since the
function

f (x) = b + x

a + x
= 1 + b − a

a + x

is evidently decreasing for x > 0 under b > a ≥ 0.
The Lavrentiev regularization is widely used for various equations and systems

of equations, when the properties of A are a priori known, and the most important of
them is information on how the spectrum of A is located. In general, when we know
nothing about the properties of the matrix A, the choice of the parameter θ , i. e., the
direction of the shift and its magnitude, is not evident.

Turning to our idea, themain question is how to choose a better conditionedmatrix
Ã near A? In other words, where and how to move the matrix A, if we do not know
its properties?

The unexpected implementation of our idea in the casewhen no information about
A is available may be to perform a shift of A “in all directions” at the same time. Then
there is certainly a suitable direction among our shifts, and it will provide desirable
regularization and improvement of the matrix.

Within the framework of traditional data types used in calculus and numerical
analysis, it is hardly possible to put into practice such an exotic recipe, but relevant
tools have been already created in interval analysis (see, for example, [2, 3, 12–14,
33]). With their help, our idea gets an elegant embodiment.
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x1

x1

x2

x2

Fig. 1 Displacement in all directions and all distances simultaneously is equivalent to covering
a neighborhood of the initial point

In order to reach, with guarantee, the matrix Ã no matter where it is, we shift the
original matrix A in all directions and to all possible distances that do not exceed a
predetermined value θ (see Fig. 1) in a specified norm. This is equivalent to enclosing
an entire neighborhood of the matrix A.

In interval terms,we “inflate” thematrix A, thus turning it into an intervalmatrixA.
To cover all possible shift directions of the matrix A, we assign

A = A + θE,

where E = ([−1, 1]) is the matrix, of the same size as A, made up of the intervals
[−1, 1], and θ is the parameter of the “inflation” value. In general, instead of the
equation system (1)–(2), we come to the need to “solve” the interval system of linear
algebraic equations

Ax = b, (5)

having the form (3)–(4), and the solution process must be stable. In particular, it is
desirable to base the solution process on well-conditined matrices within A.

Notice that our construction is more general and, possibly, more flexible than the
Lavrentiev regularization, since we use the matrix A + θE instead of just A + θ I ,
that is, we can perturbate off-diagonal elements of A too.

Example 1 As an example demonstrating the evolution of the condition number after
a point matrix inflates to an interval one, we consider the matrix

A =
(
99 100

98 99

)

.
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With respect to the spectral matrix norm ‖A‖ = √
λmax(A�A), the condition number

of the matrix is cond (A) = 3.92 · 104, and it is not hard to show that this is the
maximum for regular 2 × 2-matrices with positive integer elements ≤ 100.

Let us “intervalize” the matrix A by adding [−1, 1] to each element. We get

A =
(

[98, 100] [99, 101]
[97, 99] [98, 100]

)

.

The new interval matrix acquires a singular point matrix

(
98 99

98 99

)

and many more singular matrices. The condition numbers of the “endpoint matrices”
of the intervalized matrix A are equal to

3.84 · 104, 197.02, 201.12, 1.31 · 104,
197.02, 98.76, 1.31 · 104, 195.12,

197.0, 3.92 · 104, 99.26, 199.02

3.92 · 104, 199.00, 199.02, 4.0 · 104.

Wecan see that, among 16 endpointmatrices, onematrix has larger condition number
4.0 · 104, two matrices have the same condition number, and one matrix is slightly
better conditined. However, 10 matrices of 16 have considerably smaller condition
numbers ≤ 200. A more thorough numerical test shows that the condition number
98.76, attained at the endpoint matrix

(
100 99

97 100

)

,

is really minimal among all the condition numbers of the point matrices from A. We
will further discuss this phenomenon in Sect. 4.

Another observation is that not only well-conditioned point matrices fall into the
intervalmatrixA after intervalization of A. Ill-conditioned and even singularmatrices
also appear in A. Our task is to construct the solution process in such a way that it
relies mainly on well-conditioned matrices from A.
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3 Implementation of the Idea

In modern interval analysis, the concept of “solution” of an interval equation or a
system of equations can be understood in various ways which are very different
from each other. As a rule, the solutions to interval problems are estimates (most
often, also interval ones) of some “solution sets” arising in connection with the
interval problem statement. In its turn, the “solution sets” are usually determined
from solutions to separate point problems forming the interval problem under study,
but that can be done in various ways depending on the types of uncertainty that the
input data intervals express.

The fact is, the interval data uncertainty has, in its essence, a dualistic and ambiva-
lent character [31, 33]. In the formal setting of any interval problem, we need to
distinguish between the so-called uncertainties of the A-type and E-type, or, briefly,
A-uncertainty and E-uncertainty:

• the uncertainty of the A-type (A-uncertainty) corresponds to the application of the
logical quantifier “∀” to the interval variable, that is, when the condition “∀x ∈ x”
enters the definition of the solution set;

• the uncertainty of the E-type (E-uncertainty) corresponds to the application of the
logical quantifier “∃” to the interval variable, that is, when the condition “∃x ∈ x”
enters the definition of the solution set.

Sometimes, in connection with the properties expressed by interval A-uncertainties
and E-uncertainties, the terms strong property and weak property are used.

As a consequence, different solution sets for interval systems of equations and
other interval problems can be defined by various combinations of these quantifiers
applied to interval parameters. The simplest and most popular among the solution
sets is the set obtained by collecting all possible solutions of non-interval (point)
equations or systems of equations which we get by fixing the parameters of the
system within specified intervals. This is the “united solution set”.

Definition 1 For the interval system of linear algebraic equations (3)–(4), the set

Ξuni(A, b)
def= {

x ∈ Rn | (∃A ∈ A)(∃b ∈ b)(Ax = b)
}

= {
x ∈ Rn | (∃A ∈ A)(Ax ∈ b)

}
.

is called united solution set.

The above definition is organized according to the separation axiom from the for-
mal set theory (which is also known as “axiom schema of specification” or “subset
axiom scheme”): “Whenever the propositional function P(x) is definite for all ele-
ments of a set M , there exists a subset M ′ in M that contains precisely those elements
x of M for which P(x) is true” (see, e. g., [1]). The united solution set corresponds
to the situation when M = Rn , P(x) is a predicate with the existential quantifiers
“∃” applied to all interval parameters of the system of equations. The equivalent
set-theoretical representation of the united solution set is
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Ξuni(A, b) =
⋃

A∈A

⋃

b∈b

{
x ∈ Rn | Ax = b

}

=
⋃

A∈A

{
x ∈ Rn | Ax ∈ b

}
, (6)

where { x ∈ Rn | Ax ∈ b } is, in fact, the solution set to the “partial” equations system
Ax = b.

The united solution set carefully takes into account the contributions of all point
equation systems forming an interval system, bymeans of uniting their separate solu-
tions together. Accordingly, the united solution set is subject to variability in the same
extent as this variability is inherent to solutions of the individual point systems from
the interval system under study. If the interval system of linear equations includes
ill-conditioned or singular point systems, for which the solution varies greatly as the
result of data perturbations, then the united solution set includes all these variations
andwill not play any stabilizing role. This will inevitably happen after intervalization
of system (1)–(2) in case it is ill-conditioned.

Overall, the united solution set is not really suitable for a stable solution of the
system Ax = b: its stability is determined by solutions of the most unstable systems
due to representation (6). Working with the united solution set requires an additional
regularization procedure, e. g., such as that proposed by A. N. Tikhonov in [38]. We
are going to develop another approach that relies on good properties of a specially
selected solution set.

First of all, we require that the solution set of an interval system should be con-
structed from the most stable solutions of point systems forming the interval system
of equations. What is this solution set?…Wewill not intrigue the reader and immedi-
ately announce the answer: among the solution sets for interval systems of equations,
the “most stable” and, as a consequence, themost suitable for regularization purposes
is the so-called tolerable solution set.

Definition 2 For the interval linear algebraic system (3)–(4), the set

Ξtol(A, b)
def= {

x ∈ Rn | (∀A ∈ A)(∃b ∈ b)(Ax = b)
}
, (7)

is called tolerable solution set.

The tolerable solution set is composed of all such vectors x ∈ Rn that the product
Ax falls into the interval of the right-hand side b for anymatrix A ∈ A. The definition
(7) can also be rewritten in the equivalent form

Ξtol(A, b) = {
x ∈ Rn | (∀A ∈ A)(Ax ∈ b)

}
.

The presence of the condition “∀A ∈ A” with the universal quantifier in the defini-
tion of the tolerable solution set results in the fact that the set-theoretic representation
of Ξtol(A, b) uses the intersection over A ∈ A rather than the union, as was the case
with Ξuni (A, b). Therefore, instead of (6), we get
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Ξuni(A, b) =
⋂

A∈A

⋃

b∈b

{
x ∈ Rn | Ax = b

}

=
⋂

A∈A

{
x ∈ Rn | Ax ∈ b

}
. (8)

The representation (8) shows that the tolerable solution set is the least sensitive to
changes in the matrix among all the solution sets of interval linear systems, since it
is not greater than the “most stable” solution sets

{
x ∈ Rn | Ãx ∈ b

}
determined by

the matrix Ã with the best condition number from A. Although some point matrices
from A may be poorly conditioned or even singular, their effect is compensated by
the presence, in the same interval matrix, of “good” point matrices that make the
tolerable solution set bounded and stable as a whole.

The principal difference between the tolerable solution set and united solution set
is expressed, in particular, in the fact that when the interval matrix A widens, the
united solution set of the system Ax = b expands too, while the tolerable solution
set shrinks, i. e., decreases in size.

To sum up, for the interval system of linear algebraic equations obtained after
“intervalization” of the initial ill-conditioned system, we shall consider the tolerable
solution set Ξtol(A, b). We are interested in points from it or its estimates. The prob-
lem of studying and estimating the tolerable solution set for interval linear systems of
equations is called the interval linear tolerance problem [29, 32, 33]. We, therefore,
need its solution, perhaps a partial one, which will be taken as a pseudo-solution to
the original equation system (1)–(2) or (3)–(4) instead of the ideal solution that may
be unstable or even non-existing.

At this point, we are confronted with a specific feature of the tolerable solution
set to interval systems of equations: it is often empty, which can happen even for
ordinary data. For system (3)–(4), this is the case when the intervals of the right-hand
sides bi are “relatively narrow” in comparison with intervals in the matrix A. Then
the range of all possible products of Ax for A ∈ A exceeds the width of the “corridor”
of the right-hand side b into which this product should fit.

For example, the tolerable solution set is empty for the one-dimensional interval
equation [1, 2] x = [3, 4]. On the one hand, zero cannot be in the tolerable solution
set, since [3, 4] �� 0. On the other hand, a non-zero real number t cannot be in the
tolerable solution set too, since the numbers from the range of [1, 2] t can differ by
a factor of two, whereas the right-hand side [3, 4] can take only the difference of
numbers by a factor of 4/3.

In order to make the tolerable solution set non-empty, we can artificially widen
the right-hand side of the interval linear equation system, for example, uniformly
with respect to the midpoints of the interval components. It is not difficult to realize
that, with the help of such an expansion, we can always make the tolerable solution
set non-empty.
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An alternative way is to consider not the tolerable solution set itself, but a quan-
titative measure of the solvability of the linear tolerance problem, and the points at
which the maximum of this measure is reached will be declared pseudo-solutions.
This approach is developed in Sect. 5 of the present work.

4 Tolerable Solution Set for Interval Linear Systems
of Equations

The tolerable solution set was first considered in [15] under the name of restricted
solution set, which is possibly due to the fact that this set is usually much smaller
than the common and well-studied united solution set. Both the united and tolerable
solution sets are representatives of an extensive class of the so-called AE-solution
sets for interval systems of equations (see [31, 33]). It is not difficult to show that
the AE-solution sets are polyhedral sets, i. e., their boundaries are made up of pieces
of hyperplanes. But the tolerable solution set for interval linear systems has even
better properties: it is a convex polyhedral set in Rn (see [25, 29, 33]), i. e., it can be
represented as the intersection of finite number of closed half-spaces of Rn .

Example 2 Let us consider the interval linear system

⎛

⎜
⎝

2.8 [0, 2] [0, 2]
[0, 2] 2.8 [0, 2]
[0, 2] [0, 2] 2.8

⎞

⎟
⎠ x =

⎛

⎜
⎝

[−1, 1]
[−1, 1]
[−1, 1]

⎞

⎟
⎠ , (9)

proposed in [18] and later studied in [14].
For the value of the diagonal elements 3.5 in the matrix of (9), its united solution

set is depicted at the jacket of the book [14]. In our specific case, when the diagonal
elements are equal to 2.8, the interval matrix of (9) contains singular point matrices,
and the united solution set becomes unbounded.

Nevertheless, both united solution set and tolerable solution set for the interval sys-
tem (9) can be visualized with the use of the free software package IntLinInc3D
[27], and their pictures are presented at Figs. 2 and 3. The unbounded united solution
set infinitely extends beyond the boundaries of the drawing area through the light
trimming faces at Fig. 2. However, the tolerable solution set to the system (9) is
bounded and quite small (see Fig. 3). The reduction of the solution set, the pruning
of its infinite parts, illustrates how efficiently the transition to the tolerable solution
set “regularizes” the singular interval system (9).

There exists several results that provide us with analytical descriptions of the
tolerable solution sets to interval linear systems of equations.
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Fig. 2 Unbounded united
solution set to the interval
system (9)
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Fig. 3 Tolerable solution set
to the interval system (9)
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1
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0

1

x3
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1

Theorem 1 (the Rohn theorem [19, 20, 33])A point x ∈ Rn belongs to the tolerable
solution set of the interval m × n-system of linear algebraic equationsAx = b if and
only if x = x ′ − x ′′ for some vectors x ′, x ′′ ∈ Rn that satisfy the following system
of linear inequalities ⎧

⎪⎨

⎪⎩

Ax ′ − Ax ′′ ≤ b,

−Ax ′ + Ax ′′ ≤ −b,

x ′, x ′′ ≥ 0,

(10)
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where A, A, b, b denote lower and upper endpoint matrices and vectors for A and b
respectively.

Theorem 2 (Irene Sharaya’s theorem [25]) LetAi : be the i th row of the interval m ×
n-matrix A, and vert Ai : denotes the set of vertices of this interval vector, i. e., the set{
(ãi1, . . . , ãin) | ãi j ∈ {ai j , ai j }, j = 1, 2, . . . , n }. For an interval system of linear

algebraic equations Ax = b, the tolerable solution set Ξtol(A, b) can be represented
in the form

Ξtol(A, b) =
m⋂

i=1

⋂

a∈vertAi :

{ x ∈ Rn | ax ∈ bi }, (11)

i. e., as the intersection of hyperstrips { x ∈ Rn | ax ∈ bi }. If |M | means cardinality
of a finite set M, then the number of hyperstrips in the intersection (11) does not
exceed

∑m
i=1 | vert Ai :| and, a fortiori, does not exceed m · 2n.

Each of the inclusions ax ∈ bi for a ∈ Ai : is equivalent to a two-sided linear
inequality

bi ≤ ai1x1 + ai2x2 + . . . + ainxn ≤ bi ,

which really determines a hyperstrip in Rn , i. e., a set between two parallel hyper-
planes. Therefore, Irene Sharaya’s theorem gives a representation of the tolerable
solution set as the set of solutions to a finite system of two-sided linear inequalities
whose coefficients are endpoints of the interval elements from Ai :, i = 1, 2, . . . ,m.
The remarkable fact is that the number of inequalities implied by the representation
(11) is considerably less than the overall number of “endpoint inequalities” of the
interval linear system which is equal to 2m(n+1).

Example 3 For the interval linear equation system

⎛

⎜
⎜
⎝

−2 1
1 1
1 0

−1 2

⎞

⎟
⎟
⎠

(
x1
x2

)

=

⎛

⎜
⎜
⎝

[−8, 4]
[4, 13]
[1, 7]

[−1, 19]

⎞

⎟
⎟
⎠ , (12)

the tolerable solution set can be constructed in the way depicted at Fig. 4 which is
borrowed from [25].

As far as the solution of a systemof linear inequalities is computable in polynomial
time depending on the size of the problem (see, e. g., [7, 23]), the Rohn theorem
implies that, in general, the recognition of whether the tolerable solution set is empty
or not empty is a polynomially solvable problem too.

Over the last decades, several approaches have been developed to study the tol-
erable solution set and to compute its estimates. These are:

• Application of systems of linear inequalities from theorems of Jiri Rohn and Irene
Sharaya.
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Fig. 4 Constructing the tolerable solution set according to Irene Sharaya’s theorem

• Formal algebraic approach. Estimation of the tolerable solution set reduces to com-
puting so-called formal (algebraic) solutions for a special interval linear system
of the same form.

• Themethod of the recognizing functional. The tolerable solution set is represented
as a level set of a special function called recognizing functional, and we study the
problem by using the functional, its values and their sign.

Following the author’s earlier ideas, a technique based on correction and further
solution of the system of linear inequalities (10) has been developed in [17]. In our
paper, we are going to elaborate the second and the third approaches which use purely
interval technique and work directly with the interval system of equations.

5 Recognizing Functional and Its Application

To go further andmake our article self-sufficient, we need to recall some fundamental
concepts and facts from interval analysis.

The main instrument of interval analysis is so-called interval arithmetics, alge-
braic systems that formalize common operations between entire intervals of the real
line R or other number fields. In particular, the classical interval arithmetic IR is an
algebraic system formed by intervals x = [ x, x ] ⊂ R so that, for any arithmetic
operation “�” from the set { + ,− , · , / }, the result of the operation between the
intervals is defined “by representatives”, i. e., as
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x � y = {
x � y | x ∈ x, y ∈ y

}
.

The above formula ismainly of a theoretical nature, being hardly applicable for actual
computations. Expanded constructive formulas for the interval arithmetic operations
are as follows [12–14, 33]:

x + y = [
x + y, x + y

]
, x − y = [

x − y, x − y
]
,

x · y = [
min{x y, x y, x y, x y}, max{x y, x y, x y, x y} ]

,

x/y = x · [
1/y, 1/y

]
for y �� 0.

We start our consideration from the following characterization result for the points
from the tolerable solution set (see [29, 32, 33]): for an interval system of linear
algebraic equations Ax = b , the point x ∈ Rn belongs to the solution set Ξtol(A, b)
if and only if

A · x ⊆ b, (13)

where “ · ” means the interval matrix multiplication. The validity of this character-
ization follows from the properties of interval matrix-vector multiplication and the
definition of the tolerable solution set. We are going to reformulate the inclusion (13)
as an inequality, in order to be able to apply results of the traditional calculus.

If A = (ai j ), then, instead of (13), we can write

n∑

j=1

ai j x j ⊆ bi , i = 1, 2, . . . ,m,

due to the definition of the interval matrix multiplication. Next, we represent the
right-hand sides of the above inclusions as the sums ofmidpointsmid bi and intervals[−rad bi , rad bi

]
which are symmetric with respect to zero (“balanced”):

n∑

j=1

ai j x j ⊆ mid bi + [−rad bi , rad bi
]
, i = 1, 2, . . . ,m.

Then, adding (−mid bi ) to both sides of the inclusions, we get

n∑

j=1

ai j x j − mid bi ⊆ [−rad bi , rad bi
]
, i = 1, 2, . . . ,m.

The inclusion of an interval into the balanced interval
[−rad bi , rad bi

]
can be

equivalently rewritten as the inequality on the absolute value:
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∣
∣
∣
∣
∣
∣

n∑

j=1

ai j x j − mid bi

∣
∣
∣
∣
∣
∣

≤ rad bi , i = 1, 2, . . . ,m,

which implies

rad bi −
∣
∣
∣
∣
∣
∣

n∑

j=1

ai j x j − mid bi

∣
∣
∣
∣
∣
∣

≥ 0, i = 1, 2, . . . ,m.

Therefore,

Ax ⊆ b ⇐⇒ rad bi −
∣
∣
∣
∣
∣
∣
mid bi −

n∑

j=1

ai j x j

∣
∣
∣
∣
∣
∣
≥ 0 for each i = 1, 2, . . . ,m.

Finally, we can convolve, over i , the conjunction of the inequalities in the right-hand
side of the logical equivalence obtained:

Ax ⊆ b ⇐⇒ min
1≤i≤m

⎧
⎨

⎩
rad bi −

∣
∣
∣
∣
∣
∣
mid bi −

n∑

j=1

ai j x j

∣
∣
∣
∣
∣
∣

⎫
⎬

⎭
≥ 0.

We have arrived at the following result

Theorem 3 Let A be an interval m × n-matrix, b be an interval m-vector. Then the
expression

Tol (x,A, b) = min
1≤i≤m

⎧
⎨

⎩
rad bi −

∣
∣
∣
∣
∣
∣
mid bi −

n∑

j=1

ai j x j

∣
∣
∣
∣
∣
∣

⎫
⎬

⎭

defines a mapping Tol : Rn × IRm×n × IRm → R, such that the memebership of
a point x ∈ Rn in the tolerable solution set Ξtol(A, b) of the interval system of linear
algebraic equation Ax = b is equivalent to that the mapping Tol is nonnegative in
the point x, i. e.

x ∈ Ξtol(A, b) ⇐⇒ Tol (x,A, b) ≥ 0.

The tolerable solution setΞtol(A, b) to an interval linear equations systems is thus
a “level set” {

x ∈ Rn | Tol (x,A, b) ≥ 0
}

of the mapping Tol with respect to the first argument x under fixed A and b. We
will call this mapping recognizing functional of the tolerable solution set, since the
values of Tol are in the real line R and their sign “recognizes” the membership of a
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point in the setΞtol(A, b). Below, we outline briefly the properties of the recognizing
functional, and their detailed proofs can be found in [29, 32, 33].

First of all, the functional Tol is continuous function of its arguments, which
follows from the form of the expression that determines Tol. Moreover, Tol is con-
tinuous in a stronger sense, namely, it is Lipschitz continuous. At the same time,
the functional Tol is not everywhere differentiable due to the operation “min” in its
expression and “non-smooth” character of interval arithmetic operations.

The functional Tol (x,A, b) is polyhedral, that is, its hypograph is a polyhedral
set, while its graph is composed of pieces of hyperplanes.

The functional Tol is concave in the variable x over the entire space Rn . Finally,
the functional Tol (x,A, b) attains a finite maximum over the whole space Rn .

Example 4 Figure5 shows the graph of the recognizing functional for the tolerable
solution set to the interval equation system

⎛

⎜
⎜
⎝

[−2, 0] [−4, 2]
[−3, 2] [2, 3]
[3, 4] [4, 5]
[3, 5] [−2, 2]

⎞

⎟
⎟
⎠

(
x1
x2

)

=

⎛

⎜
⎜
⎝

[1, 2]
[−2, 0]
[0, 4]

[−2, 3]

⎞

⎟
⎟
⎠ (14)

Polyhedral structure and nonsmoothness of the functional Tol are clearly seen at the
picture. Also, polygons in the plane 0x1x2 at Fig. 5 are level sets for various values
of the level.

If Tol (x,A, b) > 0, then x is a point of the topological interior int Ξtol(A, b) of
the tolerable solution set. It make sense to clarify that an interior point is a point that
belongs to a set together with a ball (with respect to some norm) centered at this
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Fig. 5 Graph of the recognizing functional of the tolerable solution set to the interval system (9)



390 S. P. Shary

point. Therefore, interior points remain within the set even after small perturbations,
and this fact may turn out important in practice.

The converse is also true. Let an interval m × n-system of linear algebraic equa-
tions Ax = b be such that, for every index i = 1, 2, . . . ,m, there exists at least one
nonzero element in the i-th row of the matrix A or the respective right-hand side
interval bi does not have zero endpoints. Then the membership x ∈ int Ξtol(A, b)
implies the strict inequality Tol (x,A, b) > 0.

As a consequence of the above results, we are able to perform, using the recog-
nizing functional, a study of whether the tolerable solution set to an interval linear
system is empty/nonempty. This can done according to the following procedure. For
the interval system Ax = b , we solve an unconstrained maximization problem for
the recognizing functional Tol (x,A, b), that is, we compute maxx∈Rn Tol (x,A, b).
Let T = max Tol , and it is attained at the point τ ∈ Rn . Hence,

• if T ≥ 0, then τ ∈ Ξtol(A, b) �= ∅, i. e., the tolerable solution set to the system
Ax = b is not empty and τ lies inside it;

• if T > 0, then τ ∈ intΞtol(A, b) �= ∅, i. e., the tolerable solution set has nonempty
interior and the point τ is an interior one;

• if T < 0, then Ξtol(A, b) = ∅, i. e., the tolerable solution set to the interval equa-
tions system Ax = b is empty.

Example 5 For the tolerable solution set to the interval linear system (14), the graph
of the recognizing functional (Fig. 5) does not reach the zero level, all its values are
negative. Hence, the tolerance problem is not solvable.

Using the program tolsolvty (see below), one can compute more specific
results:

max Tol = −1, arg max Tol = (−0.21294, 0)�.

A more thorough investigation shows that, around the maximum of the functional,
there is an entire small plateau of the constant level −1 (one can discern it in Fig. 5),
and the maximization method can converge to different points of this plateau from
different initial approximations.

Even if the tolerable solution set is empty, the maximal value of the recognizing
functional, T = maxx∈Rn Tol (x,A, b), can serve as a measure of unsolvability of the
tolerance problem for the interval linear system. At the same time, the argument that
delivers maximum to Tol is the “most promising” point with respect to the tolerance
solvability or, in other words, it is the “least unsolvable”. Let us clarify this assertion.

First of all, note that widening the right-hand side vector leads to expansion of
the tolerable solution set, i. e., it increases the solvability of the tolerance problem,
while narrowing the right-hand side leads to reduction of the tolerable solution set,
i. e., decreases the solvability of the interval tolerance problem. Consequently, the
value of the coordinated contraction of the right-hand sides to the point at which the
tolerable solution set becomes empty can be taken as a solvability measure for the
interval linear tolerance problem. Conversely, the minimal value of the coordinated
expansion of the intervals in the right-hand sides, under which the tolerable solution
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set becomes nonempty, characterizes an “unsolvability measure” of the tolerance
problem. Similar natural considerations are widely used in interval data fitting (see,
e. g., [42, 43]). The “coordinated” expansion or narrowing of the data intervals is
usually understood as uniform expansion or contraction relative to their centers.

The point (or points) that first appears in non-empty tolerable solution set during
the uniform expansion of the right-hand side intervals is of special interest to us, since
it delivers the smallest “incompatibility” to the interval tolerance problem. So, this
point (or points) can be taken as a pseudo-solution of the original equation system.

The remarkable fact is that the argument of max Tol is the first point that appears
in the non-empty tolerable solution set after uniform, with respect to its midpoint,
widening of the right-hand side vector. To substantiate it, let us look at the expression
for the recognizing functional Tol:

Tol (x,A, b) = min
1≤i≤m

⎧
⎨

⎩
rad bi −

∣
∣
∣
∣
∣
∣
mid bi −

n∑

j=1

ai j x j

∣
∣
∣
∣
∣
∣

⎫
⎬

⎭
.

The quantities rad bi enter as addons in all subexpressions over which we take
min1≤i≤m when calculating the final value of the functional. Therefore, if we denote

e = ([−1, 1], . . . , [−1, 1])�
,

i. e., the symmetric interval vector with the radii of all components equal to 1, then
the system Ax = b + Ce has the widened right-hand sides and their radii become
rad bi + C , i = 1, 2, . . . ,m. We thus have

Tol (x,A, b + Ce) = Tol (x,A, b) + C.

Consequently,

max
x

Tol (x,A, b + Ce) = max
x

Tol (x,A, b) + C,

which proves our assertion.
We can see that the values of the recognizing functional at a point give a quantita-

tive measure of the compatibility of this point with respect to the tolerable solution
set of a given interval linear system. Consequently, the argument of the maximum
of the recognizing functional, no matter whether it belongs to a nonempty tolerable
solution set or not, corresponds to the maximum tolerance compatibility for a given
interval linear system. That is why we regard it as a pseudo-solution of the original
system of linear algebraic equations, to which interval regularization is applied.

Next, we consider the interesting question of what result will be produced by
interval regularization for the case when the matrix of the system and its right-hand
side vector are specified exactly, without errors and uncertainty.
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If the matrix A of the linear system and its right-hand side vector b are point
(non-interval), i. e. A = A = (ai j ) and b = b = (bi ), then

rad bi = 0, mid bi = bi , ai j = ai j

for all i, j . The recognizing functional of the solution set then takes the form

Tol (x, A, b) = min
1≤i≤m

⎧
⎨

⎩
−

∣
∣
∣
∣ bi −

n∑

j=1

ai j x j

∣
∣
∣
∣

⎫
⎬

⎭
= − max

1≤i≤m

∣
∣
∣
∣ bi −

n∑

j=1

ai j x j

∣
∣
∣
∣

[3mm] = − max
1≤i≤m

∣
∣
(
Ax)i − bi

∣
∣

[3mm] = −‖Ax − b ‖∞.

Through ‖ · ‖∞, we denote the Chebyshev norm (∞-norm) of a vector in the finite-
dimensional space Rm , which is defined as ‖y‖∞ = max1≤i≤m |yi |. Then

max Tol (x) = max
x∈Rn

(−‖Ax − b ‖∞
) = − min

x∈Rn
‖Ax − b ‖∞,

insofar as max (− f (x)) = −min f (x). In this particular case, the maximization
of the recognizing functional is equivalent, therefore, to minimizing the Chebyshev
norm of defect of the solution, very popular in data processing.

In practice, the maximization of the recognizing functional can be performedwith
the use of nonsmooth optimization methods that have been greatly developed in the
last decades. The author used for this purpose the so-called r -algorithms, invented by
Naum Shor [34] and later elaborated in V. M. Glushkov Institute of Cybernetics of
the National Academy of Sciences of Ukraine [35, 36]. Based on the computer code
ralgb5 created by Petro Stetsyuk, a free program tolsolvty has been written
for Scilab and Matlab, available at [3]. Our computational experience shows that
tolsolvtyworks satisfactorily for the linear systems having the condition number
which is not large. One more possibility of implementation of the approach can be
based on the separating planes algorithms of non-smooth optimization, proposed in
[16, 39–41].

To summarize, in the interval regularization method for the system of linear alge-
braic equations (1)–(2), the matrix A “inflates” by a small value to result in an
interval matrix A. In particular, if the equation system is determined imprecisely,
then the intervalization of A to A can be carried out based on the information of
the accuracy to which the elements of A and b are given. We thus get an inter-
val system of linear algebraic equations Ax = b with A � A and b � b. Then we
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compute numerically unconstrained maximum, with respect to x , of the recognizing
functional Tol (x,A, b) of the tolerable solution set for the interval linear system
Ax = b. The argument of the maximum value of Tol is the sought-for pseudosolu-
tion to the equation system (1)–(2).

6 Formal (algebraic) Approach

Yet another way of estimating the tolerable solution set to interval systems of equa-
tions is the formal approach (sometimes called algebraic). It consists in replacing
the initial estimation problem with the problem of computing the so-called formal
(algebraic) solution for a special interval equation or a system of equations. Based on
the formal approach, we can propose one more version of the interval regularization
procedure.

Definition 3 An interval (interval vector, matrix) is called a formal solution to the
interval equation (system of equations, inequalities, etc.) if substituting this interval
(interval vector, matrix) into the equation (system of equations, inequalities, etc.) and
executing all interval arithmetic, analytic, etc., operations result in a true relation.

The formal solutions correspond, therefore, to the usual general mathematical
concept of a solution to an equation. Introduction of a special term for them in
connection with interval equations has, rather, historical causes. Formal solutions
turn out to be very useful in estimating various solution sets for interval systems of
equations (see, e. g., [21, 22, 30, 31, 33]). The simplest result of this kind applies to
the tolerable solution set and looks as follows:

Theorem 4 If an interval vector x ∈ IRn is the formal solution to the interval linear
system Ax = b, then x ⊆ Ξtol(A, b), that is, x is an inner interval estimate of the
tolerable solution set Ξtol(A, b).

Proof Let us recall that the point x̃ ∈ Rn lies in the tolerable solution set Ξtol(A, b)
of an interval system of linear algebraic equations Ax = b, if and only if A · x̃ ⊆ b.

If the interval vector x ∈ IRn if the formal solution to the interval linear system
Ax = b, then, for any point x ∈ x,

Ax ⊆ Ax = b

due to inclusion monotonicity. Hence, we can assert the membership x ∈ Ξtol(A, b)
for every such x ∈ x, which implies x ⊆ Ξtol(A, b).

It is worth noting that the result of Theorem 4 is, in fact, a particular case of a very
general results on inner estimation of the so-called AE-solution sets for interval
systems of equations [22, 31, 33]. A remarkable property of the formal approach to
the inner estimation of the solution sets to interval linear systems is that it produces
interval estimates maximal with respect to inclusion [24, 31, 33].
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Example 6 The formal solution to the interval linear system of equations (9) is the
interval vector ⎛

⎝
[−0.147059, 0.147059]
[−0.147059, 0.147059]
[−0.147059, 0.147059]

⎞

⎠ . (15)

We can see that it really provides an inner box within the tolerable solution set for
the system (9).1 It is even inclusion maximal in the sense that there do not exist
interval boxes being inner estimates of the tolerable solution set and including (15)
as a proper subset at the same time.

Computation of formal solutions for interval linear systems of equations is well
developed in modern interval analysis. Over the past decades, several numerical
methods have been designed that can efficiently compute formal solutions. These
are various stationary single-step iterations [8, 11, 22, 33] and the subdifferential
Newton method [30, 33]. Most of these methods work in the so-called Kaucher
complete interval arithmetic (see, e. g., [5, 31, 33]) which consists of usual “proper”
intervals [x, x] with x ≤ x as well as “improper” intervals [x, x] with x > x . The
Kaucher interval arithmetic has better algebraic properties than the classical interval
arithmetic and, in addition, it allows to work adequately with interval uncertainties
of various types [31, 33].

Example 7 The interval equation [1, 2] x = [3, 4] does not have proper formal solu-
tions, while its formal solution in Kaucher interval arithmetic is improper interval
[3, 2]. It cannot be interpreted as an inner interval estimate of the tolerable solution
set according to Theorem 4. The situation is explained by the fact that the tolerable
solution set is empty in this case.

Let us turn to the interval regularization for a system of linear algebraic equations
Ax = b. We intervalize it and thus get an interval linear system Ax = b. Next, we
compute its formal solution x∗. As a pseudo-solution of the original linear system
Ax = b, we can take the middle of the vector x∗, that is, the point x∗ ∈ Rn with the
coordinates

x∗
i = mid x∗

i
def= 1

2

(
x∗
i + x∗

i

)
, i = 1, 2, . . . , n. (16)

If the formal solution x∗ is proper, then themotivation for such a choice of the pseudo-
solution is clear. In view of Theorem 4 and further results, x∗ is the maximal, with
respect to inclusion, inner interval boxwithin the tolerable solution set. Therefore the
middle point of x∗ is really one of the “most representative” points from the tolerable
solution set. But if the formal solution x∗ is improper (as in Example 7), then the
choice of x∗ in the form of (16) requires explanation.

If the formal solution of the intervalized system of equations Ax = b is improper,
then its tolerable solution set is most likely empty. But the choice of a pseudo-
solution in the form of (16) ensures an “almost minimal” measure of the “tolerance

1The formal solutions may be computed, e. g., using the code subdiff available at http://www.
nsc.ru/interval/shary/Codes/progr.html.

http://www.nsc.ru/interval/shary/Codes/progr.html
http://www.nsc.ru/interval/shary/Codes/progr.html
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unsolvability” of this point in the sense that it requires the smallest widening of the
right-hand side b to obtain a non-empty tolerable solution set.

We recall that, for interval linear systems of the form Ax = b with a point square
matrix A, a unique formal solution exists if and only if thematrix satisfies the absolute
regularity property [11, 30, 31, 33]. Among several equivalent formulation of this
property, the simplest one is that both A and thematrix |A| (composed of themodules
of the elements) should be nonsingular [11, 31, 33].2

If the point matrix A is absolutely regular and b is a proper interval vector, then
it is easy to substantiate that the formal solution to the linear system Ax = b is
also proper. In addition, the point (16), i. e., the midpoint of the inner interval box
for Ξtol(A, b) provides the maximum value of the recognizing functional Tol. From
continuity reasons, it follows that the same holds true for sufficiently narrow interval
matrices A � A too. Hence, the formal solutions to such interval linear systems are
proper, they can be interpreted as inner interval boxes for the corresponding tolerable
solution sets, and the instruction (16) makes good sense.

For slightly wider, but still sufficiently narrow interval matrices for which the
interval linear systems has formal solutions that are not entirely proper, the same
continuity reasons imply that the recipe (16) gives us points which are not far from
the optimal point arg max Tol.

It is worthwhile to note that, inflating the right-hand side vector, we can always
make the point (16) fall into a non-empty tolerable solution set. Indeed, let x∗ be a for-
mal solution to the interval equation systemAx = b and e = ([−1, 1], . . . , [−1, 1])�
is the n-vector of all [−1, 1]’s. If x∗ is improper in some components, then we take
the vector x∗ + te. It satisfies mid (x∗ + te) = mid x∗, and all the components of
x∗ + te become proper for t ≥ t∗, where

t∗ def= 1
2

∣
∣
∣min

i
(x∗

i − x∗
i )

∣
∣
∣.

Also, the point (16) belongs to x∗ + te, i. e.

mid x∗ ∈ x∗ + te (17)

for such t ≥ t∗. We can assert that then

A(mid x∗) ⊆ A(x∗ + te) ⊆ Ax∗ + A(te) = b∗ + tAe (18)

due to (17), inclusion monotonicity of the interval arithmetic operations and subdis-
tributivity of multiplication with respect to addition for proper A. As a consequence,
the point mid x∗ lies in the non-empty tolerable solution set of the interval linear
system

Ax = b + t∗Ae

2This property was also called “complete regularity” and “ι-regularity” in earlier works.
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with the uniformly widened right-hand side vector. In fact, the exact equality
A(x∗ + te) = Ax∗ + A(te) holds true instead of inclusion, since both te and A(te)
are balanced intervals (symmetric with respect to zero). This makes our estimate in
(18) even sharper.

Conclusion

The work proposes a new approach to regularization of ill-conditioned and inaccu-
rate systems of linear algebraic equations based on interval analysis methods, and we
call it interval regularization. Its essence is the “immersion” of the original system of
equations into an interval system of the same structure for which the so-called toler-
able solution set is studied, the most stable of the solution sets. As a pseudo-solution
of the original system of equations, we assign a point from the tolerable solution
set (if it is not empty) or a point providing the largest “tolerable” compatibility (if
this solution set is empty). To find such a point, one can apply numerical methods
for computing formal (algebraic) solutions of interval systems or, alternatively, algo-
rithms of non-smooth optimization for computing the maximum of the recognizing
functional of the tolerable solution set.

The interval regularization has two strengths. First, for the system of linear equa-
tions Ax = b, it depends on the properties of the matrix A significantly less than in
other approaches. The properties of A are taken into account as if automatically, by
the method itself. Second, information about the data uncertainty, both in the matrix
A and right-hand side vector b, is taken into account very simply and naturally. One
only need to further “inflate” the interval matrix and/or the right-hand side vector
according to the known accuracy level.

An interesting open question is the choice of the extent to which we should
“inflate” the matrix A of the original system (1)–(2). The wider the interval matrix A
of the system of equations (3)–(4) or (5), the more well-conditioned matrices are in
it, the more stable the tolerable solution set according to (8) and, hence, the better the
general regularization of the problem. On the other hand, for a wider interval matrix
A, much different from the original point matrix A, the solution of the regularized
problem can be strongly distorted in comparison with the solution of the original
system. Consequently, how should we choose optimally the widths of the elements
of the interval matrix A � A? If the original system (1)–(2) is specified inaccurately,
as an interval equations system (3)–(4) with a predetermined accuracy level, then the
question is solved naturally. In the general case, an additional study is necessary.

A certain drawback of the new approach stems from the fact that, in order to con-
struct the desired pseudo-solution, we may have to process some of (or even many)
“endpoint” linear systems of the regularized interval equation system, and some of
these endpoint systems can have worse conditionality than the original system. How-
ever, the reality of this danger depends on the way the interval regularization method
is implemented. Therefore, technological issues related to the implementation of
the corresponding numerical methods are very important, but their development is
beyond the scope of our article.
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Millionaires’ Problem

Mariya Bessonov, Dima Grigoriev and Vladimir Shpilrain
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Abstract We offer a probabilistic solution of Yao’s millionaires’ problem that gives
correct answer with probability (slightly) less than 1 but on the positive side, this
solution does not use any one-way functions.

1 Introduction

The “two millionaires problem” introduced by Yao in [5] is:

Alice has a private number a and Bob has a private number b, and the goal of the two
parties is to solve the inequality a ≤ b? without revealing the actual values of a or b, or more
stringently, without revealing any information about a or b other than a ≤ b or a > b.
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We note that all known solutions of this problem (including Yao’s original solution)
use one-way functions one way or another. Informally, a function is one-way if it
is efficient to compute but computationally infeasible to invert on “most” inputs.
One problem with those solutions is that it is not known whether one-way functions
actually exist, i.e., the functions used in the aforementioned solutions are justassumed
to be one-way. Also, solutions that use one-way functions inevitably use assumptions
of limited computational power of the parties, and this assumption is arguably more
“physical” than “mathematical” in nature, although there is a mathematical theory of
computational complexity with a (somewhat arbitrary) focus on distinction between
polynomial-time and superpolynomial-time complexity of algorithms.

Speaking of physics, in our earlier papers [3, 4] we offered several solutions
of Yao’s millionaires’ problem without using one-way functions, but using real-life
procedures (not implementable on a Turing machine). What is important is that some
of these solutions can be used to build a public-key encryption protocol secure against
a computationally unbounded (passive) adversary, see [3].

Here wemake an assumption that both private numbers a and b are uniformly dis-
tributed on integers in a public interval [1, n]. This assumption may be questionable
as far as the millionaires’ problem itself is concerned, but we keep in mind potential
applications to cryptographic primitives, in which case the above assumption could
be just fine. We also note that this assumption can be relaxed to a and b being iden-
tically (not necessarily uniformly) distributed on integers in [1, n] because in that
case, a monotone function F can be applied to both a and b so that F (a) and F (b)
become uniformly distributed (on a different interval though), see [2, Sect. 2.2.1].
This is called the inverse transform method.

We also note that our solution of the millionaires’ problem has a “symmetric” as
well as “asymmetric” version. In the “asymmetric” version, only one of the two par-
ties ends up knowing whether a < b or not, even if the other party is computationally
unbounded. (Of course, she can then share this information with the other party if
she chooses to.) This implies that a third party (a passive observer) will not know
whether a < b either, and this is the key property for building a public-key encryp-
tion protocol secure against a computationally unbounded (passive) adversary, see
[3] for details.

The way our solution in this paper works is roughly as follows. Alice applies a
randomized function F to her private number a and obtains the result A = F(a)

that she either keeps private (“asymmetric” version) or makes public (“symmetric”
version). Bob applies a randomized function G to his private number b and obtains
the result B = G(b) that he makes public. Then Alice, based on a, A and B, makes a
judgementwhethera < b or not. Specifically, in our protocol in Sect. 2, she concludes
that a < b if and only if A < B. We show in Sect. 3 that, with appropriate choice
of parameters, this judgement is correct with probability converging to 1 as n (the
interval length) goes to infinity. Computer simulations suggest (see Sect. 4) that this
convergence is actually rather fast.
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2 Protocol

Recall that in a simple symmetric randomwalk, a point on a horizontal linemoves one
unit left with probability 1

2 or one unit right with probability
1
2 . Below is our protocol

for a probabilistic solution of Yao’s millionaires’ problem, under the assumption that
both private numbers a and b are uniformly distributed on integers in a public interval
[1, n].
1. Alice’s private number a is the starting point of her random walk. Alice does

a simple symmetric random walk with f (n) steps, starting at a. Let A be the
end point of Alice’s random walk. Alice either keeps A private (“asymmetric”
version) or makes it public (“symmetric” version).

2. Bob’s private number b is the starting point of his random walk. Bob does a
simple symmetric random walk with g(n) steps, starting at b. Let B be the end
point of Bob’s random walk. Bob makes B public.

3. Alice concludes that a < b if and only if A < B.
4. In case Alice has published her A (“symmetric” version), Bob, too, concludes

that a < b if and only if A < B.

We emphasize that in the “asymmetric” version, only Alice ends up knowing
(with significant probability) whether or not a < b. Neither Bob nor a third party
observer end up knowing this information unless Alice chooses to share it.

In this paper, we focus on the arrangement where f (n) = g(n), i.e., the parties
do the same number of steps. Other arrangements are possible, too; in particular,
as we remark in Sect. 3.1, Alice can (slightly) improve the probability of coming to
the correct conclusion on a < b? if she does not walk at all, i.e., if f (n) = 0. This
arrangement is “highly asymmetric” but it is useful to keep in mind for future work.

3 Probabilities

We start with the following

Remark 1 If a and b are independent random variables and each is uniformly dis-
tributed on {1, 2, . . . , n}, then the expected value of |a − b| is E(|a − b|) = (n2−1)

3n ,
which is asymptotically equal to n

3 .

Indeed, note that |a − b| = max(a, b) − min(a, b). By symmetry,

E(max(a, b)) = n + 1 − E(min(a, b)),

hence
E(|a − b|) = n + 1 − 2E(min(a, b)).

Now direct computation gives
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E(min(a, b)) =
n∑

k=1

k ·
(
2

n
· n − k

n
+ 1

n2

)
= n + 1 + (n + 1)(1 − 4n)

6n
.

Then

E(|a − b|) = n + 1 − 2E(min(a, b)) = (n2 − 1)

3n
.

Remark 2 If t is a positive integer and a and b are independent and uniformly
distributed on {1, 2, . . . , n}, then P(|a − b| < t) < 2t/n.

To see this,

P(|a − b| < t) =
n∑

j=1

P ({|a − b| < t} ∩ {a = j})

<

n∑

j=1

P (b ∈ { j − (t − 1), j − t + 2, . . . , j + t − 1} ∩ a = j)

=
n∑

j=1

P (b ∈ { j − t + 1, j − t + 2, . . . , j + t − 1}) P(a = j)

= 2t

n
· 1
n

· n = 2t

n

Thus, a and b are likely to be sufficiently far apart, which explainswhy the probability
that our solution is correct is sufficiently high.

Recall that the probability of our solution being correct is the conditional proba-
bility P(a < b | A < B). It depends on the functions f (n) and g(n), and we consider
a couple of cases here, focusing on the case where f (n) = g(n). First we recall

Theorem 1 (see [1, Theorem 2.2 and Remark 2.6]) Let Sm be the location of the
simple symmetric random walk on Z after m steps with S0 = 0. Let 1/2 < α < 1.
Then

lim
m→∞m1−2α log P (Sm > xmα) = − x2

2
(1)

That is, for large enough m,

P (Sm > xmα) ≈ e− x2m2α−1

2 → 0 as m → ∞,

for x = 1,

P (Sm > mα) ≈ e− m2α−1

2 → 0 as m → ∞,

so the probability that the displacement from the starting point is greater than O(
√
m)

tends to 0.
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If g(n) = O(n2−2ε), n is fixed, and ε → 0, then P(a < b|A < B)will not be close
to 1 since the typical displacement is O(n1−ε). This probability P(a < b|A < B)

will tend to 1 for any fixed ε > 0 and n → ∞.
For m fixed and α ∈ [1/2, 1], one has

P(Sm ≥ mα) = P
(
eSmm

α−1 ≥ em
2α−1

)

≤ exp
(−m2α−1

)
E

(
exp

(
Smm

α−1
))

= exp
(−m2α−1

) (
E

(
e(Xm

α−1)
))m

= exp
(−m2α−1 + m ln

(
cosh(mα−1)

)) ≤ exp

(
−m2α−1

2

)
,

where X is a random variable taking on 1 and −1 with equal probability (the step
distribution of the simple symmetric random walk). The first inequality is an appli-
cation of Markov’s inequality and the last inequality holds because ln cosh(x) ≤ x2

2
for all x ∈ R.

It will follow that if there arem = nλ steps in Alice’s and in Bob’s random walks,
then for any

α ∈ (1/2,min{1, ln (n/2) /λ ln(n)}),

one has

P(a < b|A < B)

≥
(
1 − exp

(
−m2α−1

2

))2 (
(n − 2mα + 1)(n − 2mα)

n2 − n

)(
1 − 1

n

)
, (2)

which approaches 1 in the limit as n → ∞.
To see why (2) is true, consider

P(a < b|A < B) = P ({a < b} ∩ {A < B})
P(A < B)

= P(A < B|a < b)P(a < b)

P(A < B)
. (3)

The denominator of (3), P(A < B) < 1/2. Indeed, given that Alice’s and Bob’s ran-
dom walks have the same number of steps and are denoted Ak and Bk , the difference
between their random walks Yk = Bk − Ak for k = 0, 1, . . . ,m is a lazy symmetric
random walk with probability 1/2 of staying in place and probabilities 1/4 each of
moving two steps to the left or to the right. Since the random walks are symmetric
and the starting points a and b are selected uniformly and independently of each
other on the same interval, by symmetry,

P(A < B) = P(Ym > 0) = P(Ym < 0) = P(A > B),

and P(A = B) = P(Ym = 0) = O(1/
√
m).
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Then, P(a < b) = n2−n
2n2 since a and b are chosen independently and uniformly

at random on {1, 2, . . . , n}. There are n2 different ordered pairs (a, b), n of which
have a = b, and half of the remaining n2 − n ordered pairs have a < b.

For the other term in the numerator of (3), let E be the event that b − a ≥ 2mα

and assume α is such that 2mα is an integer. Then

P(A < B|a < b) ≥ P({A < B} ∩ E |a < b) (4)

= P
(
A < B|{b − a ≥ 2mα} ∩ {a < b}) · P (

b − a ≥ 2mα |a < b
)

= P
(
A < B|b − a ≥ 2mα

) · P (
b − a ≥ 2mα |a < b

)
.

For the second term in (4), recall that there are n2−n
2 ordered pairs (a, b) with

a < b, each ordered pair equally likely. Thus, we have

P (b − a ≥ 2mα|a < b) =
n−1∑

j=2mα

P (b − a = j |a < b)

= (n − 2mα) + (n − 2mα − 1) + · · · + 1
n2−n
2

= 2 · (n−2mα+1)(n−2mα)

2

n2 − n

= (n − 2mα + 1)(n − 2mα)

n2 − n
.

If m = nβ , this expression is greater than 0 when α <
ln(n/2)
λ ln n .

Let Fα be the event that each of Alice’s and Bob’s randomwalks traveled distance
no more than mα . Each random walk has probability less than e−m2α−1/2 of traveling
more than mα from its starting point. Thus, since the distance traveled of each walk
is independent of the starting points and since the random walks are independent of
each other,

P (A < B|b − a ≥ 2mα) ≥ P(Fα|b − a ≥ 2mα) = P(Fα)

≥
(
1 − exp

(
−m2α−1

2

))2

.

Then (2) follows.
An improvement to the lower bound on P(a < b|A < B) for smaller values of n

can be obtained by improving the bound in (4)

P(A < B|a < b) = P({A < B} ∩ E |a < b) + P({A < B} ∩ Ec|a < b) (5)

For the second term on the right of (5),
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P({A < B} ∩ Ec|a < b) = P
(
A < B|0 < b − a < 2mα

) · P (
b − a < 2mα |a < b

)
(6)

> (1/2) ·
(
1 − (n − 2mα + 1)(n − 2mα)

n2 − n

)
,

where we use

P (A < B|0 < b − a < 2mα) = P(Ym > 0|0 < Y0 < 2mα) > 1/2,

since Yk is a symmetric random walk. Then, combining (3), (4), (5), and (6),

P(a < b|A < B)

≥
(
1 − exp

(
−m2α−1

2

))2 (
(n − 2mα + 1)(n − 2mα)

n2 − n

) (
1 − 1

n

)
(7)

+ (1/2) ·
(
1 − (n − 2mα + 1)(n − 2mα)

n2 − n

) (
1 − 1

n

)
.

3.1 What if Alice Does Not Walk?

If Alice does not walk and makes a judgement based on her point a and the terminal
point B of Bob’s walk, then the probability in question is P(a < b|a < B). The
(somewhat informal) argument below shows that this probability is, in fact, greater
than P(a < b|A < B), although computer simulation shows that the difference is
rather small. Thus, for the purpose of solving the millionaires problem itself, it is
preferable to use f (n) = 0 and g(n) = n

4
3 for the number of steps in Alice’s and

Bob’s random walk, respectively. However, if one has in mind a possible conversion
of such a solution to an encryption scheme, then having f (n) = 0 is not optimal
from the security point of view. We leave this discussion to another paper though,
while here we explain why P(a < b|a < B) > P(a < b|A < B).

Note that if Alice does not walk, the difference betweenBob’s andAlice’s position
is a simple symmetric random walk, Xk , with probability 1/2 each of moving to the
right or left 1 step.

On the other hand, if both walk, then the difference between Bob’s and Alice’s
position is a lazy random walk, Yk , with probability 1/2 of staying in place and 1/4
each of moving to the right or left 2 steps. Then

P(a < b|a < B) > P(a < b|A < B) ⇐⇒ P(X0 > 0|Xm > 0) > P(Y0 > 0|Ym > 0).

It is well known that the mean squared displacement is greater for the lazy walk. Specifi-
cally, in our situation,

E(X2
m) = m, E(Y 2

m) = 2m.

Based on this, we indeed have P(X0 > 0|Xm > 0) > P(Y0 > 0|Ym > 0), so

P(a < b|a < B) > P(a < b|A < B).
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3.2 The Case of n
4
3 Steps in Random Walks

UsingMaple, we found the maximum over α ∈ (1/2, ln(n/2)
λ ln n ) of (7) for several values of n,

with n4/3 steps in both Alice’s and Bob’s random walks (see Table1).
We emphasize that these are lower bounds; the actual speed of convergence to 1 appears

to be faster. For example, computer simulations suggest that already for n = 1000, P(a <

b|A < B) is about 0.9. If n = 2000, then P(a < b|A < B) is about 0.99.

3.3 The Case of n
5
3 Steps in Random Walks

The maximum over α ∈ (1/2, ln(n/2)
λ ln n ) of (7) for several values of n in this case is given in

Table2.
Again, the actual speed of convergence to 1 appears to be faster. Computer simulations

suggest that for n = 1000, P(a < b|A < B) is about 0.75 in this case.

Table 1 Case of n4/3 steps

n P(a < b|A < B) α

103 ≥ 0.586 ≈ 0.574

104 ≥ 0.743 ≈ 0.574

105 ≥ 0.859 ≈ 0.568

106 ≥ 0.927 ≈ 0.563

107 ≥ 0.963 ≈ 0.557

108 ≥ 0.982 ≈ 0.553

109 ≥ 0.991 ≈ 0.549

Table 2 Case of n5/3 steps

n P(a < b|A < B) α

103 ≥ 0.453 ≈ 0.500

104 ≥ 0.466 ≈ 0.517

105 ≥ 0.514 ≈ 0.526

106 ≥ 0.586 ≈ 0.529

107 ≥ 0.667 ≈ 0.530

108 ≥ 0.743 ≈ 0.530

109 ≥ 0.807 ≈ 0.529
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3.4 The Probability to Guess the Other Party’s Number

Another probability that we are interested in is the probability for Alice to correctly guess
Bob’s private number b based on the public B. The most likely position of the point b is b = B
(assuming that g(n) is even), and the probability for that to actually happen is (using Stirling’s

formula) approximately
√

2
πg(n)

. Thus, we have:

1. For f (n) = g(n) = n, Alice’s best guess for b has probability about
√

2
πn to be correct.

2. For f (n) = g(n) = n
4
3 , Alice’s best guess for b has probability about

√
2

πn
4
3

=
√
2

n
2
3
√

π

to

be correct.

3. For f (n) = g(n) = n
5
3 , Alice’s best guess for b has probability about

√
2

πn
5
3
to be correct.

These probabilities can be compared to the a priori probability for either party to guess the
other party’s number correctly (with or without knowing the probability distribution), which
is

1

n

n∑

k=1

1

k
≈ ln n

n
. (8)

Indeed, if the range for a and b is [N1, N2], and Bob’s integer b happens to be equal to N1,
then, after having found out that a ≤ b, Bob knows that Alice’s integer is a = N1. Then, if
b = N1 + 1, the information a ≤ b tells Bob that either a = N1 or a = N1 + 1, so he can
guess a correctly with probability 1/2. Thus, in the “ideal” situation where an oracle just tells
Bob that, say, a ≤ b, the total probability for Bob to guess a correctly is (8).

As another point of comparison, we mention a very simple solution of the millionaires’
problem from [3]:

1. Alice begins by breaking the set of n integers from the interval [1, n] into approximately√
n subintervals with approximately

√
n integers in each, in such a way that her integer a

is an endpoint of one of the subintervals.
2. Alice then sends the endpoints of all the subintervals to Bob. (Alternatively, she can send

just a compact description of the endpoints.)
3. Bob tells Alice in which subinterval his integer b is. By the above property of Alice’s

subintervals, all elements of the subinterval pointed at by Bob are either less than (or equal
to) a or greater than a, so Alice now has a solution of the inequality a ≤ b?.

It is obvious that the probability for Bob to guess Alice’s integer a correctly, as well as the
probability for Alice to guess Bob’s integer b correctly, is approximately 1√

n
.

As a side remark, we note that in this solution Alice ends up with exactly the same informa-
tion about Bob’s number b as a third party observer does, and this information is deterministic,
so Alice does not get any advantage over a third party in case she is thinking of using this solu-
tion to send encrypted information to Bob. See [3] for details on situations where a solution
of the millionaires’ problem can be used to build a public-key encryption scheme.



410 M. Bessonov et al.

4 Suggested Parameters for Practical Use and
Experimental Results

We recommend selecting an interval of length n = 8000 and selecting n
4
3 = 160, 000 steps

in the parties’ random walks. If a and b are uniformly distributed on integers in an interval
[1, N ]with N < n, then they are identically (although not uniformly) distributed on integers in
[1, n], in which case one can use the inverse transform methodmentioned in our Introduction
to reduce to the case of the uniform distribution on [1, n]. If N > n, then the parties can
represent their private numbers in the form

∑
ckn

k with ck < n and compare the coefficients
ck , starting with the largest k.

With n = 8000 and m = 160, 000 steps, the probability for Alice to guess Bob’s private

number b is
√
2

n
2
3
√

π

≈ 0.002 (see our Sect. 3.4) and, according to computer simulations, P(a <

b|A < B) ≈ 0.99.
With these parameters, simulation of a random walk takes 0.05 s on a regular desktop

computer.

5 Conclusions

Recall that n is the length of an interval from which the two parties’ private integers are
selected.

• We see that, when choosing nλ steps of the parties’ random walks, λ should be less than
2 for P(a < b|A < B) to converge to 1 as n → ∞. If λ ≥ 2, then P(a < b|A < B) does
not converge to 1 as n → ∞.

• In choosing a particular λ < 2, there is a trade-off between the probability for Alice to
correctly solve a ≤ b? and the the probability for Alice to guess Bob’s private number b.
More specifically, the closer the number of steps of the parties’ random walks is to n2, the
slower is the convergence of P(a < b|A < B) to 1, but at the same time, the bigger the
spread of the public point B around the private point b is, thus reducing the probability for
Alice to guess Bob’s number b.

• We choose n
4
3 steps as the “equilibrium” in this trade-off. Lower bounds for P(a < b|A <

B) in this case, as computed in our Sect. 3.2, can make an impression that our method is
very inefficient since n has to be very large for P(a < b|A < B) to become close to 1.
However, the actual speed of convergence to 1 appears to be faster. For example, computer
simulations suggest that already for n = 1000, P(a < b|A < B) is about 0.9 in that case.

• Our recommendation for the choice of parameters is: n = 8000, and the number of steps in

the parties’ random walks is n
4
3 = 160, 000. With these parameters, P(a < b|A < B) ≈

0.99, and the probability for Alice to guess Bob’s private number b is about
√
2

n
2
3
√

π

≈ 0.002.

• In this paper, the focus is on the arrangement where Alice and Bob do the same number
of steps in their random walks. Other arrangements are possible, too; in particular, as we
remark in Sect. 3.1, Alice can (slightly) improve the probability of coming to the correct
conclusion on a ≤ b? if she does not walk at all. This arrangement is “highly asymmetric”
but it is nevertheless useful to keep in mind.



Probabilistic Solution of Yao’s Millionaires’ Problem 411

References

1. P. Eichelsbacher, M. Löwe, Moderate deviations for I.I.D. random variables, ESAIM: Probab.
Stat. 7, 209–218 (2003)

2. P. Glasserman, Monte Carlo Methods in Financial Engineering (Stochastic Modelling and
Applied Probability) (Springer, 2003)

3. D. Grigoriev, L.B. Kish, V. Shpilrain, Yao’s millionaires’ problem and public-key encryption
without computational assumptions. Int. J. Found. Comp. Sci. 28, 379–389 (2017)

4. D. Grigoriev, V. Shpilrain, Yao’s millionaires’ problem and decoy-based public key encryption
by classical physics. Int. J. Found. Comp. Sci. 25, 409–417 (2014)

5. A.C. Yao, Protocols for secure computations (Extended Abstract), in 23rd Annual Symposium
on Foundations of Computer Science (Chicago, Ill., 1982) (IEEE, New York, 1982), pp. 160–
164



Measurable Process Selection Theorem
and Non-autonomous Inclusions

Jorge E. Cardona and Lev Kapitanski

To dear friend Vladik on the occasion of his 65th birthday.

Abstract A semi-process is an analog of the semi-flow for non-autonomous dif-
ferential equations or inclusions. We prove an abstract result on the existence of
measurable semi-processes in the situations where there is no uniqueness. Also, we
allow solutions to blow up in finite time and then obtain local semi-processes.

1 Introduction

Let
du

dt
= f (u) (1)

be an archetypical autonomous differential equation. Autonomous refers to the struc-
ture of the equation and means that the independent variable, t , does not appear
explicitly (independently) in the equation. Because of that, (1) is invariant under
the time shift (translation) θτ : t �→ t + τ , and if u(·) is a solution of (1), then
θτu(·) = u(· + τ ) is a solution as well. Suppose (1) describes evolution/dynamics
on some set X (which could be a finite- or infinite-dimensional vector space or
manifold). Given an a ∈ X , let u(t, a), t ∈ [0,+∞) be a solution of (1) starting at
u(0, a) = a (let us assume that global solutions exist forward in time). If v(·, u(t1, a))
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is a solution of (1) starting (at t = 0) from the point u(t1, a), we can splice u and v

and obtain a (possibly new) solution w = u ��
t1

v starting at a:

w(t) = u ��
t1

v(t) =
{
u(t, a) , if 0 ≤ t ≤ t1,

v(t − t1, u(t1, a)) , if t ≥ t1 .
(2)

If solutions are unique (for every a ∈ X there is a unique solution u(t, a)), then
v(t, u(t1, a)) = u(t + t1, a). In general, in the case of uniqueness, the solutions of
(1) enjoy the semigroup property, i.e., for every a ∈ X , u(0, a) = a and

u(t2, u(t1, a)) = u(t1 + t2, a) , ∀t1, t2 ≥ 0 . (3)

This allows us to define the semigroup U (t) : X → X by the formula U (t)(a) =
u(t, a).

For non-autonomous differential equations the situation is similar and different.
Consider an archetypical non-autonomous equation

du

dt
= g(t, u) . (4)

Now, in addition to the initial position/state a ∈ X , it is important to specify the initial
moment of time, t0. The solution(s) will depend on a and t0; we write u(t; t0, a) to
denote a solution of (4) for t ≥ t0 that equals a when t = t0. If we follow the solution
u(t; t0, a) until the moment t = t1 and then follow a solution v(t; t1, u(t1; t0, a)) that
starts at the point u(t1; t0, a) at the moment t1, we obtain a spliced solution of (4),

w(t; t0, a) = u ��
t1

v(t) =
{
u(t; t0, a) , if t0 ≤ t ≤ t1,

v(t; t1, u(t1; , t0, a)) , if t ≥ t1 .
(5)

If the solutions of Eq. (4) are unique, we have the following analog of the semigroup
property:

u(t0; t0, a) = a and u(t2; t1, u(t1; t0, a)) = u(t2; t0, a) , ∀a ∈ X ∀t2 ≥ t1 ≥ t0 ≥ 0 .

(6)
Also, we can define the transition map U (t1; t0) that maps X into X by assigning to
every a ∈ X the value u(t1; t0, a) of the solution u(t; t0, a). This transition map has
the properties

U (t; t) = idX , ∀t ≥ 0 (7a)

U (t2; t1) ◦U (t1; t0) = U (t2; t0) , ∀t2 ≥ t1 ≥ t0 ≥ 0 . (7b)

A family of maps U (t1; t0) with the properties (7) will be called a process (see, e.g.,
[1, 2]). To the autonomous case correspond homogeneous processes characterized by
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time invariance: U (t1 − τ ; t0 − τ ) = U (t1; t0) for all (admissible) τ (and therefore
U (t) = U (t; 0) is the semigroup).

It may be advantageous to think of solutions of the autonomous equation (1) as
integral curves (trajectories) in X , i.e., view solutions as continuous (infinite one-
sided) paths in X . If there is no uniqueness, the solutions/integral curves starting at
the point a form an integral funnel, S(a), a subset of all paths starting at a. (Analysis
of integral funnels for ODEs was initiated by H. Kneser in the 1920s, [3].) Denote
by � the space of all continuous (infinite, one-sided) paths in X . Then the map
a �→ S(a) is a set-valued map (other names: multifunction, correspondence) from
X into 2�. It has the (already mentioned) properties: if the path w is in S(a), then its
shift, θτw is in S(w(τ )), and if u ∈ S(a) and v ∈ S(u(t1)), then u ��

t1
v ∈ S(a).

An interesting and important question is whether it is possible to select a solution
u(·, a) from every funnel S(a) in such a way, that u(t, a) has the semigroup property
(3). In other words, is it possible to define a semigroup (semiflow) U (t) so that, for
every a ∈ X , u(t, a) = U (t)(a), t ≥ 0, is a path in S(a)? In [4, 5], we show that
the answer is yes under some very general assumptions. Moreover, we show that the
selection a �→ u(·, a) ∈ S(a) is measurable. This is a new type of selection theorems
(for measurable selection results see, e.g., [6, Sect. 18.3], [7], and the surveys [8, 9]).
Our results were motivated by the Markov selection theorems, see [10–13].

Here, we extend the semiflow selection theorem of [4, 5] to non-autonomous
equations and processes. If there is no uniqueness for (4), but the solutions to the
initial-value problem exist forward in time, we have the integral funnels S(t0, a)

formed by all the solution u(t; t0, a), t ≥ t0, such that u(t0; t0, a) = a. The question
we ask is whether there exists a measurable selection (t0, a) �→ u(·; t0, a) ∈ S(t0, a)

such that u(t; t0, a) satisfies (6). The answer again is yes under the right assump-
tions. After our previous work [5], this is not surprising if we are concerned with
solutions of the non-autonomous equation (4): one could replace (4) with the equiv-
alent autonomous system

du

ds
= g(t, u) ,

dt

ds
= 1 . (8)

Then, if we apply our results from [4, 5] and obtain a semigroup Ũ (s), s ≥ 0, on
X × [0,+∞) corresponding to (8), themapsU (t1, t0)(a) = Ũ (t1)(a, t0)would form
a process corresponding to (4). However, if we are in a more general setting and deal
with integral funnels, their autonomisation is not clear. Thus, in the next section we
present the precise statement and the proof of the existence of a measurable process.
After that, in Sect. 3 we study the existence of local processes. These apply to the
situations, where in addition to non-uniqueness we allow solutions to blow up in
finite time. [In the 1960–70s there was some interest in abstracting the dynamical
and semi-dynamical systems and processes, see, e.g., [14–16]. Our approach involves
funnels and is different.] An example on the semi-process selection is presented in
Sect. 4.
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A different and important point of view on non-autonomous dynamics involves
the skew-product construction, see, e.g., [17, 18]. The skew-product set-up is very
convenient for the study of the long term behavior of non-autonomous systems.
However, for the measurable processes selection, we believe our direct approach is
more natural. We should mention that our abstract results apply not only to non-
autonomous ordinary differential equations, but to partial differential equations, to
differential and difference inclusions, and to other situations where integral funnels
make sense.

2 Global Processes

Let X be a separable complete metric space with metric ρ, which we assume to
be bounded: ρ(x, y) ≤ 1 for all x, y ∈ X . Denote by BX the Borel σ-algebra of X .
Let � be the space of all continuous infinite one-side paths in X equipped with the
compact-open topology. The elements of� are continuous maps u : [0,+∞) → X ,
and convergence in � is the uniform convergence on every compact time interval.
The space � is Polish; we fix a complete bounded metric on � by setting

d(u, v) =
∞∑

�=1

2−� sup
t∈[0,�]

ρ(u(t), v(t)) [1 + sup
t∈[0,�]

ρ(u(t), v(t))]−1 . (9)

Sometimes it is convenient to view the paths parametrized by s ∈ [τ ,+∞). We
denote by�τ the space of continuous maps from [τ ,+∞) into X . It can be identified
with the image of � under the (past erasing) map στ : if u(t), t ≥ 0, is a path in �,
then the path στu : [τ ,+∞) → X is defined as στu(t) = u(t) for t ≥ τ . On the
other hand, �τ can be viewed as a subset of � if we extend the paths v(t) in �τ to
[0, τ ) as staying at v(τ ):

�τ : �τ → �, (�τv)(t) =
{

v(τ ) when 0 ≤ t < τ ,

v(t) when t ≥ τ .

We will also use the notation �τ
a for all the paths in �τ starting at the point a, i.e.,

v(τ ) = a if v ∈ �τ
a . On occasion, it will be convenient to specify τ and a in the

notation for a path, e.g., v(t; τ , a).
The integral funnels S(t0, a) will be subsets of the set �t0

a . Denote by Pcl[�] the
space of all (bounded) closed subsets of � endowed with the Vietoris topology (=
exponential topology), see [6, 19, 20] for details on set-valued maps, their properties
and, in particular, measurability. In this presentation, all set-valuedmaps from X to�

will have non-empty closed values and will be viewed as maps from the measurable
space (X,BX ) to Pcl[�] with the Vietoris topology. If � is such a map and A ⊂ �,
define

�−(A) = {x ∈ X : �(x) ∩ A �= ∅} .
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For historical reasons, there are several confusingly similar notions of measurability
of set-valuedmaps. Amap� : X → Pcl[�] isweaklymeasurable if�−(G) ∈ BX for
every open set G ⊂ �. � is measurable if �−(F) ∈ BX for every closed set F ⊂ �.
Since � is metric, if � is measurable, it is weakly measurable, [6, Lemma 18.2].
Since� is in addition separable, if � is compact-valued and weakly measurable, it is
measurable, [6, Theorem 18.10]. Thus, in our setting, for compact-valued � : X →
Pcl[�], there is no difference between weak measurability and measurability.

The fundamental result of Kuratowski and Ryll-Nardzewski, [21, Theorem 1, p.
398], implies that if � : X → Pcl[�] is weakly measurable, then � has a measurable
selection, i.e., there exists a single-valued map γ : X → � such that γ(x) ∈ �(x)
for all x ∈ X and γ is (BX ,B�)-measurable: for every Borel set A ⊂ �, γ−1(A) is
a Borel set in X .

We introduce now abstract integral funnels S(t0, a) that have the properties
prompted by the properties of integral funnels of solutions of equation (4).

Definition 1 S(t0, a), where t0 ∈ [0,+∞) and a ∈ X , is a family of abstract integral
funnels on the space X if, for every t0 ≥ 0, S(t0, ·) : X → Pcl[�] is a set-valued map
with the following properties.

S1 For every a ∈ X , S(t0, a) is a non-empty compact subset of �t0
a . Every path u

in S(t0, a) is parametrized as u(t; t0, a), where t ≥ t0.
S2 Each map S(t0, ·) is measurable, i.e., for every closed set C ⊂ �t0 ,

{x ∈ X : S(t0, x) ∩ C �= ∅} ∈ BX .

S3 If u ∈ S(t0, a), then στu ∈ S(t0 + τ , u(t0 + τ )).
S4 If u ∈ S(t0, a) and v ∈ S(t0 + τ , u(t0 + τ )), then the spliced path w = u ��

t0+τ
v,

defined as in (5), belongs to the funnel S(t0, a).

Theorem 1 Every family of abstract integral funnels S(t0, a), t0 ≥ 0, a ∈ X, has,
for every t0, a measurable selection a → u(·; t0, a) ∈ S(t0, a) with the semigroup
property (6). As a corollary, there is a Borel measurable (semi)process U (t1, t0) :
X → X whose orbits are U (t1, t0)(a) = u(tl; t0, a), for all t1 ≥ t0 ≥ 0 and for all
a ∈ X.

Proof Wemodify our proof for the autonomous case from [5]. The plan is to succes-
sively reduct each funnel S(t0, a) while preserving the properties S1 - S4 and so that
the limiting funnel would contain just one path; property S3 for the limiting funnel
then spells (6). The reduction of the funnels is based on an idea from optimization
theory that was used by N. V. Krylov in his proof of the Markov selection theorem,
[12].

Let ϕ : X → [0, 1] be a continuous function and let λ be a positive real number.
For t0 ≥ 0 and a ∈ X , define the functional ζ on S(t0, a) via the formula

ζ(w) =
∞∫
0

e−λtϕ(w(t0 + t)) dt . (10)
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This is a continuous functional and it attains itsmaximumon the compact set S(t0, a).
Denote this maximum by mζ(t0, a),

mζ(t0, a) = max
w∈S(t0,a)

ζ(w) (11)

[The function mζ(t0, ·) : X → R is called the value function.] Define

Vζ [S(t0, a)] = {v ∈ S(t0, a) : ζ(v) = mζ(t0, a)} . (12)

By the so-called measurable maximum theorem, [6, Theorem 18.19], Vζ [S(t0, a)] is
a non-empty compact subset of S(t0, a), and the set-valued map a �→ Vζ [S(t0, a)]
is measurable. Thus, the family of sets Vζ [S(t0, a)] has properties S1 and S2 of the
abstract funnels. Let us check that it has the remaining two properties S3 and S4.
Suppose u ∈ Vζ [S(t0, a)] and consider the shifted path στu. By property S3 of the
family S, στu ∈ S(t0 + τ , u(t0 + τ )). We have to show that στu maximizes ζ in the
set S(t0 + τ , u(t0 + τ )). Pick any path v in S(t0 + τ , u(t0 + τ )) and consider the
spliced path w = u ��

t0+τ
v, which, by property S4, belongs to the funnel S(t0, a).

Since u maximizes ζ over S(t0, a), ζ(u) ≥ ζ(w), i.e.,

∞∫
0

e−λtϕ(u(t0 + t)) dt ≥
∞∫
0

e−λtϕ(w(t0 + t)) dt .

But

∞∫
0

e−λtϕ(w(t0 + t)) dt =
τ∫

0

e−λtϕ(u(t0 + t)) dt +
∞∫

τ

e−λtϕ(v(t0 + t)) dt =

τ∫
0

e−λtϕ(u(t0 + t)) dt + e−λτ

∫ ∞

0
e−λtϕ(v(t0 + τ + t)) dt ,

while

∞∫
0

e−λtϕ(u(t0 + t)) dt =
τ∫

0

e−λtϕ(u(t0 + t)) dt + e−λτ

∞∫
0

e−λtϕ(u(t0 + τ + t)) dt .

Hence,
∞∫
0

e−λtϕ(u(t0 + τ + t)) dt ≥
∞∫
0

e−λtϕ(v(t0 + τ + t)) dt ,
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which means στu is a maximizer in S(t0 + τ , u(t0 + τ )). To check property S4
for Vζ [S], pick u ∈ Vζ [S(t0, a)] and v ∈ Vζ [S(t0 + τ , u(t0 + τ ))] and consider the
spliced path w = u ��

t0+τ
v. We have to show that w maximizes ζ over S(t0, a) and

hence belongs to Vζ [S(t0, a)]. This follows from a simple calculation that takes
into account what we have just shown, that ζ(στu) = mζ(t0 + τ , u(t0 + τ )). If v ∈
Vζ [S(t0 + τ , u(t0 + τ ))], then ζ(v) = mζ(t0 + τ , u(t0 + τ )) as well. Thus,

∞∫
0

e−λtϕ(w(t0 + t)) dt =
τ∫

0

e−λtϕ(u(t0 + t)) dt +
∞∫
τ

e−λtϕ(v(t0 + t)) dt =

τ∫
0

e−λtϕ(u(t0 + t)) dt + e−λτ ζ(v) =
τ∫

0

e−λtϕ(u(t0 + t)) dt + e−λτ ζ(στu) = ζ(u) ,

i.e., ζ(w) = mζ(t0, a), i.e., w ∈ Vζ [S(t0, a)]. To summarize, for any functional ζ of
the form (10), Vζ [S(t0, a)] is a family of abstract integral funnels.

Now, choose a countable family � of continuous functions ϕ : X → [0, 1] that
strongly separates the points of X , see [22]. Choose some enumeration (λn,ϕn) of
the countable set of pairs (λ,ϕ), where λ runs through positive rational numbers
and ϕ runs through �. To each pair (λn,ϕn) corresponds the functional ζn via (10).
Define recursively the shrinking families of abstract integral funnels

S0(t0, a) = S(t0, a), Sn(t0, a) = Vζn [Sn−1(t0, a)], n = 1, 2, . . . .

For each (t0, a), Sn(t0, a) is a sequence of nested compacta in �t0 . The intersection,

S∞(t0, a) =
∞⋂
n=0

Sn(t0, a) ,

is not empty and compact. In fact, S∞(t0, a) is an abstract family of integral funnels.
Indeed, it is easy to see that properties S1,S3, andS4, are satisfied. As the intersection
of compact-valued maps into a Polish space, S∞(t0, ·) is measurable by [6, Lemma
18.4].

It turns out that each funnel S∞(t0, a) is a singleton. Indeed, if u, v ∈ S∞(t0, a),
then, for every ϕ ∈ �,

∞∫
0

e−λtϕ(u(t0 + t)) dt =
∞∫
0

e−λtϕ(v(t0 + t)) dt , ∀λ ∈ Q+ .

By the uniqueness of the Laplace transform, ϕ(u(t0 + t)) = ϕ(v(t0 + t)) for all
t ≥ 0. Because this is true for every ϕ ∈ � and the family � separates the points of
X , we obtain u(t0 + t) = v(t0 + t) for all t ≥ 0, i.e., u = v as paths.



420 J. E. Cardona and L. Kapitanski

For u ∈ S∞(t0, a), we will use the notation u(t; t0, a), where t ≥ t0. If t1 > t0,
then (σt1−t0u)(t) = u(t; t1, u(t1; t0, a)) for t ≥ t1, by property S3. Thus, if t2 > t1,
(σt1−t0u)(t2) = u(t2; t1, u(t1; t0, a)). On the other hand, (σt1−t0u)(t2) = u(t2; t0, a)

by the definition of the shift operator στ . This establishes the semigroup property of
the measurable selection u(t; t0, a).

Once the (measurable) selection u is found, we define the processU (t1, t0) : X →
X for t1 ≥ t0 ≥ 0, by the formulaU (t1, t0)(a) = u(t1; t0, a). As we have shown, the
map a �→ {u(·; t0, a)} from X to 2� is measurable and singleton-valued. By the
Kuratowski-Ryll-Nardzewski selection theorem the map a �→ u(·; t0, a) from X to
�t0 is (BX ,B�)-measurable. The map U (t1, t0) : X → X is the composition of the
map a �→ u(·; t0, a) and the evaluation map πt1 : �t0 � w → πt1(w) = w(t1) ∈ X ,
which is continuous. Consequently, U (t1, t0) is Borel measurable. This completes
the proof. ��

3 Local Processes

Let X be a separable complete metric space as in the previous section. The integral
funnels S(t0, a) will now be local. This means that to every initial state a ∈ X and
every initial moment t0 corresponds a strictly positive number T (t0, a), the terminal
time. The paths in the funnel S(t0, a) form a subset in C([t0, t0 + T (t0, a)) → X).

Definition 2 A family S(t0, a), t0 ∈ [0,+∞), a ∈ X , will be called a family of
abstract local integral funnelswith terminal times T (t0, a) if they satisfy the following
conditions.

TT T (t0, a) is a lower semi-continuous function on [0,+∞) × X , i.e., if (tn, an)
→ (t0, a), then T (t0, a) ≤ lim inf T (tn, an).

LS1 Every set S(t0, a) is a non-empty compact in the spaceC([t0, t0 + T (t0, a)) →
X) with the topology of uniform convergence on every closed subinterval
[α,β] of [t0, t0 + T (t0, a)). Every path w(·; t0, a) ∈ S(t0, a) is a continuous
map from [t0, t0 + T (t0, a)) into X , and w(t0; t0, a) = a.

LS2 For every t0 ≥ 0, the set-valuedmapa �→ S(t0, a) ismeasurable in the follow-
ing sense. Each path w in S(t0, a) can be re-parametrized as w̃(s) = w(t0 +
s(T (t0, a) − t0)) and then viewed as an element of the space �̃ = C([0, 1) →
X). Denote by S̃(t0, a) the set S(t0, a) after such re-parametrization. We say
that the map a �→ S(t0, a) is measurable if, for any closed subset F of �̃

(with the compact-open topology),

{a ∈ X : S̃(t0, a) ∩ F �= ∅} ∈ BX .

LS3 If u ∈ S(t0, a) and τ < T (t0, a), then T (t0 + τ , u(t0 + τ ; t0, a)) = T (t0, a)

− τ and στu ∈ S(t0 + τ , u(t0 + τ ; t0, a)).
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LS4 If u ∈ S(t0, a), τ < T (t0, a), and v ∈ S(t0 + τ , u(t0 + τ ; t0, a)), then the
spliced path w = u ��

t0+τ
v, defined by analogy with (5), belongs to the funnel

S(t0, a).

Theorem 2 Every family of local abstract integral funnels S(t0, a), t0 ∈ [0,+∞),
a ∈ X, with terminal times T (t0, a), has a selection u(·; t0, a) with the following
properties.

(a) For every t0 ≥ 0, the map X � a �→ u(·; t0, a) ∈ C([t0, t0 + T (t0, a)) → X) is
measurable.

(b) u(t0; t0, a) = a,
(c) u(t2; t1, u(t1; t0, a)) = u(t2; t0, a) for all t1 ∈ [t0, t0 + T (t0, a))and t2 ∈ [t1, t0 +

T (t0, a)).

Proof We mimic the proof of Theorem 1 with a few modifications. Let ϕ : X →
[0, 1] be a continuous function and let λ be a positive real number. For t0 ≥ 0 and
a ∈ X , define the functional ζ on S(t0, a) via the formula

ζ(w) =
T (t0,a)∫
0

e−λtϕ(w(t0 + t)) dt . (13)

This is a continuous functional and it attains itsmaximumon the compact set S(t0, a).
Denote this maximum by mζ(t0, a),

mζ(t0, a) = max
w∈S(t0,a)

ζ(w) (14)

and define
Vζ [S(t0, a)] = {v ∈ S(t0, a) : ζ(v) = mζ(t0, a)} . (15)

The way we treat measurability by re-parametrizing the paths (see property LS2),
allows us to apply the measurable maximum theorem, [6, Theorem 18.19], and
conclude that Vζ [S(t0, a)] is a non-empty compact subset of S(t0, a), and the set-
valued map a �→ Vζ [S(t0, a)] is measurable. This shows that the family of sets
Vζ [S(t0, a)] has propertiesLS1 andLS2. Suppose u(·; t0, a) ∈ Vζ [S(t0, a)] and con-
sider the shifted path στu. By property LS3, στu ∈ S(t0 + τ , u(t0 + τ ; t0, a)). Let
us show that στu maximizes ζ in the set S(t0 + τ , u(t0 + τ ; t0, a)). Pick any path
v in S(t0 + τ , u(t0 + τ ; t0, a)) and consider the spliced path w = u ��

t0+τ
v, which,

by property LS4, belongs to the funnel S(t0, a). Since u maximizes ζ over S(t0, a),
ζ(u) ≥ ζ(w), i.e.,

T (t0,a)∫
0

e−λtϕ(u(t0 + t; t0, a)) dt ≥
T (t0,a)∫
0

e−λtϕ(w(t0 + t; t0, a)) dt .
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Now compute

T (t0,a)∫
0

e−λtϕ(w(t0 + t; t0, a)) dt =

τ∫
0

e−λtϕ(u(t0 + t; t0, a)) dt +
T (t0,a)∫
τ

e−λtϕ(v(t0 + t; t0 + τ , u(t0 + τ ; t0, a)) dt =

τ∫
0

e−λtϕ(u(t0 + t; t0, a)) dt + e−λτ

T (t0,a)−τ∫
0

e−λtϕ(v(t0 + τ + t; t0 + τ , u(t0 + τ ; t0, a))) dt ,

and

T (t0,a)∫
0

e−λtϕ(u(t0 + t; t0, a)) dt =

τ∫
0

e−λtϕ(u(t0 + t; t0, a)) dt + e−λτ

∫ T (t0,a)−τ

0
e−λtϕ(u(t0 + τ + t; t0, a)) dt .

Hence,

ζ(στu) =
T (t0,a)−τ∫

0

e−λtϕ(u(t0 + τ + t; t0, a)) dt ≥

T (t0,a)−τ∫
0

e−λtϕ(v(t0 + τ + t; t0 + τ , u(t0 + τ ; t0, a))) dt = ζ(v),

which means στu is a maximizer in S(t0 + τ , u(t0 + τ ; t0, a)). With similar mod-
ifications, following the proof of Theorem 1, one verifies property LS4 for Vζ [S].
Thus, for any functional ζ of the form (13), Vζ [S(t0, a)] is a family of abstract local
integral funnels.

Choose a countable family� of continuous functionsϕ : X → [0, 1] that strongly
separates the points of X , and choose some enumeration (λn,ϕn) of the countable set
of pairs (λ,ϕ), whereλ runs through positive rational numbers andϕ runs through�.
To each pair (λn,ϕn) corresponds the functional ζn via (13). Define recursively the
shrinking families of abstract integral funnels S0(t0, a) = S(t0, a), and Sn(t0, a) =
Vζn [Sn−1(t0, a)], n = 1, 2, . . . . Again, the intersection,

S∞(t0, a) =
∞⋂
n=0

Sn(t0, a) ,
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is an abstract family of local integral funnels. To show that each funnel S∞(t0, a) is
a singleton, assume u, v ∈ S∞(t0, a) Then, for every ϕ ∈ �,

T (t0,a)∫
0

e−λtϕ(u(t0 + t; t0, a)) dt =
T (t0,a)∫
0

e−λtϕ(v(t0 + t; t0, a)) dt , ∀λ ∈ Q+ .

By the uniqueness of the Laplace transform,ϕ(u(t0 + t; t0, a)) = ϕ(v(t0 + t; t0, a))

for all t ∈ [0, T (t0, a)). Because this is true for every ϕ ∈ � and the family
� separates the points of X , we obtain u(t0 + t; t0, a) = v(t0 + t; t0, a) for all
t ∈ [0, T (t0, a)), i.e., u = v as paths.

For the unique path in the funnel S∞(t0, a), let us use the notation u(t; t0, a).
If t0 < t1 < T (t0, a), then (σt1−t0u)(t) = u(t; t1, u(t1; t0, a)) for t1 ≤ t < T (t0, a),
by property LS3. Thus, if t2 > t1, (σt1−t0u)(t2) = u(t2; t1, u(t1; t0, a)). On the other
hand, (σt1−t0u)(t2) = u(t2; t0, a) by the definition of the shift operator στ . This estab-
lishes the semigroup property of the measurable selection u(t; t0, a). The fact that
the maps X � a �→ u(·; t0, a) ∈ C([t0, T (t0, a)) → X are measurable is established
by an argument with the distance function similar to the one in the end of the proof
of Theorem 1. This completes the proof. ��
Remark 3 There are differential equations for which not all initial conditions
x(t0) = x0 are possible: there is a proper subset C ⊂ (−∞,+∞) × X of allowed
initial conditions. This is often the case, i.e., for the Clairaut equations. We discuss a
particular, illustrative example in the next section. However, it is not hard to see that
Theorems 1 and 2 can be adapted for such situations.

Remark 4 We can introduce the local process maps U (t1, t0) as in the previous
section: U (t1, t0)(a) = u(t1; t0, a). However, now U (t1, t0) may not be defined on
all of X and, for every a, the range of admissible t1 will be different. If we restrict
t0 to a compact set [α,β] ⊂ [0,+∞) and a to a compact set K ⊂ X , then, thanks
to assumption TT, the infimum of T (t0, a) over [α,β] × K is strictly positive, and
this gives a non-trivial admissible interval for t1 when (t0, a) ∈ [α,β] × K . At the
moment we do not see any benefits in constructing an abstract theory of such local
(semi)-processes.

4 Example

The Clairaut equation is a scalar ODE of the form

x = t ẋ + ψ(ẋ) (16)

with some function ψ. The standard method of solution is as follows. Differentiate
(16),
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ẋ = ẋ + t ẍ + ψ′(ẋ) ẍ ,

and simplify the result to obtain

ẍ
(
t + ψ′(ẋ)

) = 0 .

This offers two possibilities:
ẍ = 0 (17)

and/or
t + ψ′(ẋ) = 0 . (18)

Solve each of the equations with the initial condition x(t0) = x0. The first equation
implies

x(t) = x0 + c (t − t0) (19)

with a constant c. Substitute this into the original equation (16):

x0 + c (t − t0) = t c + ψ(c) .

This yields the equation for the possible value(s) of c:

x0 = ct0 + ψ(c) . (20)

Assuming c(t0, x0) is a solution of (20) (there may be many solutions), we can
re-write the solution (19) as follows:

x(t) = ψ(c(t0, x0)) + c(t0, x0) t . (21)

The second equation (18) requires some kind of invertibility of the function ψ′ (the
simplest case is when ψ′′ �= 0, i.e., ψ is convex or concave). Assuming the inverse
function (ψ′)−1 makes sense, we obtain

ẋ = (ψ′)−1(−t) . (22)

After integration,

x(t) = x0 +
t∫

t0

(ψ′)−1(−s) ds . (23)

Substitute this expression into (16):

x0 +
t∫

t0

(ψ′)−1(−s) ds = t (ψ′)−1(−t) + ψ
(
(ψ′)−1(−t)

)
(24)
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Notice that
d

ds

[
s (ψ′)−1(−s) + ψ

(
(ψ′)−1(−s)

)] = (ψ′)−1(−s)

Thus, equation (24) can be simplified to

x0 − [
t0 (ψ′)−1(−t0) + ψ

(
(ψ′)−1(−t0)

)] = 0 (25)

It is useful to introduce the following version of the Legendre transform of the
function ψ:

ψ̃(t∗) = inf
t

[ t∗ · t + ψ(t) ] . (26)

Then Eq. (25) can be written in the form

x0 = ψ̃(t0) , (27)

and the solution (23) takes the form

x(t) = x0 + ψ̃(t) − ψ̃(t0) .

In view of (27), we obtain
x(t) = ψ̃(t) . (28)

This is the so-called singular solution. We see that the singular solution corresponds
to the value of c = c(t0, x0) in (21) that minimizes [c · t + ψ(c)].

Consider the special case ψ(s) = s2, i.e., consider the equation

x = t ẋ + (ẋ)2 . (29)

The corresponding Eq. (20) has two solutions for c,

c±(t0, x0) = − t0
2

±
√
t20
4

+ x0 , (30)

provided x0 + t20 /4 > 0, has one solution when x0 + t20 /4 = 0, and has no solutions
when x0 + t20 /4 < 0. Since ψ̃(t∗) = −t2∗/4, the singular solution is

x(t) = − t2

4
. (31)

Thus, the region C ⊂ (−∞,+∞) × R of the allowed initial data (t0, x0) is the
parabola x = −t2/4 and the points above it:

C = {(t, x) : x ≥ − t2

4
} .
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The parabola is the envelope of the straight lines (19) or, equivalently, (21):

x(t) = c2 + c t . (32)

Through every point (t0, x0) in the interior of C pass two straight lines (solutions)
corresponding to c+(t0, x0) and c−(t0, x0). It is useful to notice that one of the lines
(32) touches the parabola in the past (at some moment t = tp(t0, x0) < t0) and the
other touches the parabola in the future (at some moment t = t f (t0, x0) > t0). Let
us denote these lines (solutions) xp(t; t0, x0) and x f (t; t0, x0), respectively. They are
defined for all t ∈ R. The integral funnel S(t0, x0) contains the rays xp(t; t0, x0) and
x f (t; t0, x0) for t ≥ t0. In addition, it contains infinitely many solutions that branch
off x f (t; t0, x0): once the line touches the parabola at t = t f (t0, x0), the trajectory
may continue along the parabola forever, or, at any time r > t f (t0, x0) it may take
off along the tangent line.

To every point (t0, x0) on the boundary ofC (on the parabola) correspond infinitely
many solutions of (29) that can be divided into three categories: (1) there is the
singular solution (31); (2) there is a ray tangent to the parabola:

xp f (t; t0,− t20
4

) = − t0
2
t + t20

4
, t ≥ t0 ; (33)

(3) there is a one-parameter family of solutions that follow the parabola for some
time and then get off on the tangent line:

xr (t) =
{

− t2

4 for t0 ≤ t ≤ r

− r
2 t + r2

4 for t ≥ r .
(34)

All these solutions form the funnel S(t0, x0) when (t0, x0) is on the parabola.
It is not hard to see that the trajectories that stay on the parabola for some time

and then leave it cannot be part of the semi-process. Thus, there are three choices of
a semi-process corresponding to Eq. (29). The first choice is completely determined
by the initial conditions on the parabola: for (t∗, x∗) ∈ ∂C ,

u(t; t∗, x∗) = − t∗
2
t + t2∗

4
∀t ≥ t∗ . (35)

When the point (t∗, x∗) slides along the parabola clockwise, the corresponding rays
xp f (t; t∗, x∗) = u(t; t∗, x∗) sweep the interior of C . For every point (t0, x0) in the
interior of C , there is a unique point (t∗, x∗) (with t∗ = tp(t0, x0)) on the parabola
such that u(t0; t∗, x∗) = x0. As a consequence, u(t; t0, x0) = u(t; t∗, x∗) describes
the ray-solution starting at (t0, x0).

The second choice of the semi-process coincides with the first one on the interior
of C , while on the parabola we pick the singular solution: u(t; t0,−t20 /4) = −t2/4.

The third choice is to select the trajectories (rays) that touch the parabola in the
future and then continue along the parabola. In other words,
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u(t; t0, x0) = − t2

4
if x0 = − t20

4
, (36)

and, if (t0, x0) is in the interior of C , then

u(t; t0, x0) =
{
x f (t; t0, x0) t0 ≤ t ≤ t f (t0, x0) ,

− t2

4 t > t f (t0, x0) .
(37)

All three semi-processes are Borel measurable. Depending on the choice of a count-
able family � of continuous bounded functions that separate the points of X = R,
the maximization procedure described in the proof of Theorem 1 will pick out one
of the three semi-processes.
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Handling Uncertainty When Getting
Contradictory Advice from Experts

Evgeny Dantsin

Abstract Suppose you want to solve a computational problem � for an instance x ,
but your computational power is not sufficient to compute �(x). You communicate
with experts in � who claim to know the value of � for every instance. However,
when you ask them about �(x), their answers turn out to be different. How can
you determine which of the answers are correct? A possible approach is to apply
selectors recently introduced in [11]. Selectors use the interactive proof techniques
and downward self-reducibility to identify errors in multi-oracle computations. This
paper is a brief survey of complexity-theoretic concepts and results that underlie
applications of selectors for handling uncertainty with expert advice.

1 Introduction

There are various ways to model and analyze situations where a problem is being
solved using advice from experts. In this survey, such situations are modeled in terms
of theory of computation: a computational problem � is being solved with an oracle
algorithm that queries multiple oracles. Each of the oracles is supposed to be an
oracle for �, but it is not known for sure. The following example illustrates this
modeling.

Example. When playing a combinatorial game like chess, you try to determine
whether you have a win from a given position x , no matter what moves the other
player makes. Your computational power is not sufficient to solve this problem but,
fortunately, the rules of the game allow you to communicate with experts in the game
(humans, computer programs, magicians, aliens, etc.) who claim to know the winner
for each position. You ask them whether x is a winning position for you or not. In
a perfect world, where everyone who claims to be an expert is really an expert, all
answers to your question would be identical but you have received both “yes” and
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“no”. This could be caused by various reasons. For example, some experts are not
sufficiently knowledgeable and skillful in the game, contrary to their claims.Or, some
experts are dishonest. Or, there can be errors in software or failures in hardware. Or,
there were errors in communications when you asked your questions or received the
answers. Whatever the reasons are, how can you determine which of the two answers
is correct?

This example is modeled as follows. The computational problem to be solved is
a decision problem where inputs are positions. For example, if the game is chess on
an n × n board and you are playing White, then the problem is: given a position x ,
determine whether x is a winning position forWhite. This problem isEXP-complete
[7] and, hence, any algorithm requires exponential time to solve it. As usual, we re-
state this decision problem in terms of languages: decide the language L consisting
of all winning positions for White. We want to decide L with an oracle algorithm
that has k oracles for languages L1, . . . , Lk , where k is the number of experts. For
all i = 1, . . . , k, the oracle for Li is a black box that answers every question of the
form: whether or not y ∈ Li where y is a position. Each language Li is supposed
to be L , but it is not known for sure. Under what conditions on L , L1, . . . , Lk does
such an oracle algorithm exist?

Selectors. The notion of a selector was introduced by Shuichi Hirahara in [11] in
connection with non-uniform probabilistic computation. Loosely speaking, a selec-
tor for a language L is a polynomial-time multi-oracle Turing machine S with the
following property:

for all languages L1 and L2, if at least one of them is L , then the machine SL1,L2 decides L .

As we will see below, if L has a selector, then there is a polynomial-timemulti-oracle
Turing machine M with a stronger property:

for all languages L1, . . . , Lk , if at least one of them is L , then the machine ML1,...,Lk

decides L ,

where k is a constant or, more generally, a polynomial in the instance size. The
machine M simulates S and, thus, a selector for L can be used to decide L using
polynomially many arbitrary oracles among which at least one is perfect.

Also, we will see below that the winning-position problem for n × n chess in the
example has a selector. Therefore, this problem can be solved by an efficient multi-
oracle algorithm where at least one of the oracles answers all questions correctly.

The term “selector” refers to selection among two contradictory answers to the
question about an input x : one oracle answers x ∈ L , the other answers x /∈ L . Note
that this selection identifies an imperfect oracle: namely, an oracle for Li is imperfect
if Li (x) �= L(x), where i is 1 or 2. However, the selection does not guarantee that
the oracle answering the question correctly is perfect. The fact that Li (x) = L(x)
does not mean that Li agrees with L on all other strings.

There are deterministic and probabilistic selectors. Deterministic selectors are
used to decide languages that have the downward self-reducibility property [1]. Infor-
mally, this property means that an answer for an instance of size n can be obtained
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from answers for instances of size less than n. A natural example of a downward
self-reducible language is TQBF, the set of true quantified Boolean formulas. All
downward self-reducible languages have deterministic selectors.

Probabilistic selectors are based on the techniques used in interactive proof sys-
tems [2, 3, 9, 15, 17]. In particular, probabilistic selectors can be easily obtained
from program checkers [5] which are based on the interactive proof techniques as
well. For example, a program checker for the n × n chess winning-position prob-
lem yields a probabilistic selector for this problem. All languages that have program
checkers also have probabilistic selectors.

Languages that have selectors. A working tool to characterize languages that have
selectors is Beigel’s theorem for selectors, see Sect. 2: for all languages A and B
such that they are polynomial-time Cook reducible to each other, A has a selector if
and only if B has a selector. Thus, designing a selector for an individual language,
we obtain selectors for a large class of languages. Here are examples of languages
with selectors, see Sects. 3 and 4 for more examples:

• every PSPACE-complete language has a deterministic selector;
• every language complete for either NP, or coNP, or for some other level of the
polynomial hierarchy has a deterministic selector;

• every EXP-complete language has a probabilistic selector.

Many of these languages are very well known and they are not mentioned here.
Note only that the above example of n × n chess is typical for combinatorial games:
the winning-position problems for most of them are either PSPACE-complete or
EXP-complete [10].

Uncertainty expressedwith probabilities. We use selectors to handle contradictory
advice from oracles if we know that at least one of them is perfect. Can we use
selectors if we are uncertain about this condition? Suppose that we can express our
uncertainty as probabilities: for every oracle, we know the probability that this oracle
is perfect. That is, given a language L and languages L1, . . . , Lk , we know numbers
p1, . . . , pk where pi is the probability that Li = L . We also assume that the events
Li = L , where i = 1, . . . , k, are independent. Then the probability q that at least
one of the oracles is perfect is given by

q = 1 −
k∏

i=1

(1 − pi ).

If L has a selector, then there is a polynomial-time multi-oracle Turing machine M
such that ML1,...,Lk decides L if at least one of the oracles for L1, . . . , Lk is perfect.
Thus, the probability that this machine indeed decides L is at least q. Note that if
pi ≤ p for all i then

q ≥ 1 − e−pk

which shows that q is close to 1 when k grows and p is ω(1/k). This inequality also
shows how q depends on the expected number of perfect oracles.
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2 Definition of Selectors

The reader is assumed to be familiar with the basics of complexity theory, including
Turing machines, polynomial-time reducibility, basic complexity classes, etc. Most
of the notation used in this survey is the same as in [1]. In particular, a language is
identified with its indicator function and both are denoted by the same symbol: if
L is a language and x is a string, then x ∈ L and x /∈ L are equivalent to L(x) = 1
and L(x) = 0 respectively. All languages considered in the paper are languages over
{0, 1}.
Oracle machines. Informally, an oracle for a language L is a black box that takes a
binary string x as input and outputs L(x). An oracle machine M is a deterministic or
probabilistic Turing machine that has a special oracle tape and three special states
squery, syes, and sno. When M enters the state squery, the string x written on the oracle
tape is viewed as a query to an oracle. Depending on the answer, M moves either
into the state syes or into the state sno, not changing the symbols in the cells and the
positions of the tape heads. The machine obtained from M by specifying its oracle
to be an oracle for a language L is denoted by ML ; we say that ML has oracle access
to L .

Access to multiple oracles. There are several ways to define a machine that has
oracle access to more than one language. For example, a multi-oracle machine can
be defined as a Turing machine equipped with multiple oracle tapes [16]. We use
the definition from [13] where an oracle machine with one oracle tape is used to
communicate with more than one oracle.

Let M be an oracle machine that we want to use for communications with oracles
for languages L1, . . . , Lk . To query the i th oracle whether x ∈ Li where x ∈ {0, 1}∗,
themachineM writes the following query string on its oracle tape. The string consists
of two parts with a delimiter between them: the first part is the integer i in unary; the
second part is x , and 0 is used as a delimiter. More formally, we define a language
A that “represents” the languages L1, . . . , Lk :

A =
k⋃

i=k

{
1i 0 x | x ∈ Li

}
.

The question of whether x ∈ Li is equivalent to the question of whether the string
1i 0 x belongs to A. Therefore, M can “translate” queries about membership in
L1, . . . , Lk into queries about membership in A. We view MA as a machine that has
oracle access to L1, . . . , Lk and we denote it by ML1,...,Lk . Note that k may depend
on the input to M ; if M runs in polynomial time, then M can access polynomially
many oracles.

What is a selector? Consider a language L and two languages L1, L2 such that at
least one of them is L , but we do not knowwhich one. Is it possible to decide L using
oracle access to L1 and L2? If L has a selector, then the answer to this question is
yes, it is possible.
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Definition 1 A polynomial-time deterministic oracle machine S is a deterministic
selector for L if for all languages L1 and L2 such that at least one of them is L and
for all x ∈ {0, 1}∗, we have

SL1,L2(x) = L(x).

Definition 2 A polynomial-time probabilistic oracle machine S is a probabilistic
selector for L if for all languages L1 and L2 such that at least one of them is L and
for all x ∈ {0, 1}∗, we have

Pr
[
SL1,L2(x) = L(x)

] ≥ 2/3

where the probability is taken over random bits of S.

The constant 2/3 in the second definition is chosen following the tradition in the
literature on probabilistic computation, see for example [1], and it can be replaced
by any number strictly between 1/2 and 1. Using repetitions, the success probability
can be increased to 1 − 2−|x |c for every constant c > 0.

We use the term “selector” to refer to either variant of selectors, a deterministic
selector or a probabilistic one. It is not clear from the definitions that selectors exist
at all. They do exist and we will see examples of selectors in Sects. 3 and 4.

Number of oracles. According to the definitions, selectors are 2-oracle machines.
Theorem 1 states that, equivalently, we could define them as k-oracles machines
where k ≥ 2.

Theorem 1 ([11]) A language L has a deterministic (probabilistic) selector if and
only if there exists a polynomial-time deterministic (probabilistic) oracle machine
M with the following property: for all k ≥ 2, for all languages L1, . . . , Lk such that
at least one of them is L, and for all x ∈ {0, 1}∗, we have

ML1,...,Lk (x) = L(x)

for the deterministic case, or

Pr
[
ML1,...,Lk (x) = L(x)

] ≥ 2/3

for the probabilistic case.

Sketch of proof. A nontrivial part is to prove that if L has a selector then L has an oracle
machine M with the required properties. We consider only the probabilistic case (the
deterministic one is easier). Let S be a probabilistic selector for L with probability
of success at least 1 − 1/3k. We will describe a probabilistic oracle machine M such
that ML1,...,Lk decides L with probability at least 2/3.

Let L1, . . . , Lk be arbitrary languages such that at least one of them is L . On
input x , the machine ML1,...,Lk queries its oracles about values L1(x), . . . , Lk(x). As
a result, the set of indexes from 1 to k is divided into two subsets K0 and K1:
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K0 = {i | Li (x) = 0}
K1 = {i | Li (x) = 1}

If one of these subsets is empty, ML1,...,Lk outputs the answer corresponding to
the nonempty subset and halts. Otherwise, the machine picks two arbitrary indexes
m ∈ K0 and n ∈ K1. One of the languages Lm and Ln agrees with L on x , the other
does not. The machine ML1,...,Lk determines which of them disagrees with L by
simulating S and computing SLm ,Ln (x). Its index is removed from the corresponding
subset. This procedure is repeated until either K0 or K1 becomes empty. If K0 = ∅,
the machine ML1,...,Lk outputs 1, otherwise it outputs 0. Each run of S has probability
of error atmost 1/3k and there are atmost k runs. Therefore,ML1,...,Lk has probability
of error at most k · (1/3k) = 1/3. �	

Note that k in the theorem can be a constant as well as a polynomially bounded
function of |x |.
Selectors and Cook reducibility. In the next sections, we will characterize lan-
guages that have selectors and we will use Theorem 2 below as the main tool for
this characterization. The theorem shows that the class of languages with selectors
is closed under polynomial-time Cook reducibility. Its proof in [11] is essentially
the same as the proof of Beigel’s theorem in [5] that states the same property for the
class of languages with program checkers, see Sect. 4.

We say that a language A is polynomial-time Cook reducible to a language B
if there exists a polynomial-time oracle machine R such that RB decides A. This
reducibility is sometimes also called Turing reducibility.

Theorem 2 (Beigel’s theorem for selectors) Suppose that languages A and B are
polynomial-time Cook reducible to each other. Then A has a deterministic (proba-
bilistic) selector if and only if B has a deterministic (probabilistic) selector.

Idea of proof. Let SA be a selector for A. Let RAB and RBA be oracle machines such
that RAB reduces A to B and RBA reduces B to A. We want to construct a selector SB
for B using all thesemachines. On input x andwith oracle access to languages L1 and
L2, the selector SB computes SL1,L2

B (x) by simulating RA
BA(x). The reduction RBA

makes queries to A and they are answered using the selector SA. Namely, for a query
string y, the value A(y) is computed by running SL1,L2

A (y). During this computation,
the selector SA makes queries to L1 and L2. To answer them, the reduction RAB is
used: for a query string z, the value Li (z) is computed as RLi

AB(z). If Li = B then we
have

RLi
AB(z) = RB

AB(z) = A(z).

Thus, if L1 = B or L2 = B, then the machine SL1,L2
B decides B. �	
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3 Deterministic Selectors and Downward Self-Reducibility

Downward self-reducibility. Informally, a language L is downward self-reducible
if the question of x ∈ L is reducible in polynomial time to questions of the form
y ∈ L where |y| < |x |. A formal definition is given in terms of oracle machines. We
call an oracle machine M downward if it has the following property: for every query
that M makes on input x , the query string has length at most |x | − 1. A language L
is called downward self-reducible if there exists a deterministic oracle machine M
such that

• M is polynomial-time and downward;
• for all binary strings x , we have ML(x) = L(x).

A natural example of a downward self-reducible language is TQBF, the set of true
quantified Boolean formulas (QBFs). Indeed, consider a QBF F of the form

Q1x1 Q2x2 . . . , Qnxn φ(x1, x2, . . . , xn)

where each Qi is either ∀ or ∃. Let F0 and F1 be two QBFs obtained from F by
removing the first quantifier Q1 and substituting 0 and 1 respectively for the variable
x1. Clearly, QBFs can be encoded in such a way that the encodings of F0 and F1 are
shorter than the encoding of F . The question of whether F is true can be reduced to
the questions about F0 and F1. Namely,

• if Q1 = ∀, then F is true if and only if both F0 and F1 are true;
• if Q1 = ∃, then F is true if and only if at least of one of F0 and F1 is true.

Theorem 3 ([11]) If a language L is downward self-reducible, then L has a deter-
ministic selector.

Sketch of proof. We describe a deterministic selector S for L . Let L1 and L2 be
languages such that at least one of them is L . On input string x , the machine SL1,L2

computes L(x) as follows.
First, SL1,L2 queries the oracles about L1(x) and L2(x) and compares the received

values. The case that L1(x) = L2(x) is easy: since L1 = L or L2 = L , we have

L1(x) = L2(x) = L(x)

and the machine SL1,L2 simply outputs the received value as L(x). Consider the case
of L1(x) �= L2(x), which shows that only one of the equalities L1 = L and L2 = L
is true. If the machine SL1,L2 could determine which of them is true, the computation
of L(x) would be trivial: if L1 = L then output L1(x); otherwise output L2(x).

To determine which of L1 and L2 is equal to L , the machine SL1,L2 uses the
downward self-reducibility of L . Let M be a downward oracle machine that reduces
L to itself. The machine SL1,L2 simulates the computations of ML1 and ML2 on x ;
then it compares the results. If ML1(x) = ML2(x) then we have
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ML1(x) = ML2(x) = L(x)

because at least one of the languages L1 and L2 is L . In this case, the machine SL1,L2

can determine which of the languages L1 and L2 is L by comparing L(x) with two
different values L1(x) and L2(x). Otherwise, in the case of ML1(x) �= ML2(x), there
exists a query on which the oracles for L1 and L2 disagree. Let y be a query string
in the first such query; we have |x | > |y| and A(y) �= B(y). On this shorter string y,
the machine SL1,L2 repeats what it did with x :

• compute ML1(y) and ML2(y);
• if ML1(y) = ML2(y), then compare this value with different values L1(y) and

L2(y); the comparison shows which of the equalities L1 = L or L2 = L is true;
• if ML1(y) �= ML2(y), then find a query string z on which the oracles for L1 and

L2 disagree; take this string z as input for the next iteration.

The iteration process continues until L(w) is computed for some query string w

(either as a result of ML1(w) = ML2(y) or by brute force when |w| is sufficiently
small). Since the lengths of the query strings decrease, the number of iterations is at
most |x |.

Note that this proof gives an explicit construction of the selector S from the
downward oracle machine M . �	
Corollary 4 Suppose a language L is complete for PSPACE or for some level of
the polynomial hierarchy, i.e., for some of the classes

�
p
1 (= NP), �

p
1 (= coNP), �

p
2 , �

p
1, . . . .

Then L has a deterministic selector.

Proof. If L isPSPACE-complete, then L is Cook equivalent to TQBF, which means
that there are Cook reductions from L to TQBF and from TQBF to L . Since TQBF is
downward self-reducible (see above), it has a deterministic selector by Theorem 3.
Then L has a deterministic selector by Beigel’s theorem for selectors.

Suppose L is�
p
i -complete or�p

i -complete for some i . Then L is Cook equivalent
to TQBF restricted to the set of QBFs with i alternating blocks of quantifiers and
beginning with ∃ or ∀ respectively. The self-reduction applied to TQBF above works
for these restrictions as well. They are downward self-reducible and, hence, they
have deterministic selectors by Theorem 3. Then, by Beigel’s theorem for selectors,
L has a deterministic selector. �	
Remark Corollary 4 could be extended by adding the complexity class P#P which
is between the polynomial hierarchy PH and PSPACE. However, a proof that every
P#P-complete language has a deterministic selector requires more general defini-
tions and theorems than those above. Selectors and downward self-reducibility are
defined above for languages and they have to be generalized for functions. Theo-
rems 2 and 3 have to be proved for these general notions. Then the existence of
deterministic selectors for P#P-complete languages follows from the fact that the
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problem of computing the permanent of an n × n matrix is both #P-complete and
downward self-reducible [12, 18].

Upperbound for deterministic selectors. How large is the class of all languages that
have deterministic selectors?Aswehave seen, this class includesPSPACE-complete
languages. Are there languages with deterministic selectors beyond PSPACE? Note
that we cannot use Theorem 3 for languages beyond PSPACE because it is known
that all downward self-reducible languages belong to PSPACE [1]. The following
theorem states that PSPACE is a tight upper bound on the class of languages with
deterministic selectors.

Theorem 5 ([11]) If a language L has a deterministic selector, then L is in
PSPACE.

Idea of proof. Let S be a deterministic selector for L . The computation of S on input
string x can be viewed as the following game played by two players called Oracle 1
and Oracle 2. The purpose of Oracle 1 is to convince the selector that x ∈ L , while
Oracle 2 tries to convince S that x /∈ L . When S makes a query to the i-th oracle
(i = 1, 2), then Oracle i makes its move by answering this query. Clearly, x ∈ L
if and only if Oracles 1 has a winning strategy. This strategy is simple: for every
query string y, answer “yes” if y ∈ L and answer “no” otherwise. Thus, the problem
of whether or not x ∈ L is equivalent to the problem whether or not Oracle 1 has
a winning strategy on x . The latter problem can be solved by a polynomial-time
alternating Turing machine and, hence, this problem is in PSPACE. �	

4 Probabilistic Selectors for Languages Beyond PSPACE

Theorem 5 says that languages beyondPSPACE do not have deterministic selectors.
In this section, we will see that such languages can have probabilistic selectors.
First, we describe how probabilistic selectors can be obtained from program checkers
introduced byManuel Blum and Sampath Kannan in [5]. Thenwe consider examples
of languages that have selectors and do not have program checkers.

Program checkers. Suppose you want to solve a computational problem � for an
instance x . You have a program P claimed to solve �, but you are not sure that P
correctly solves � on all instances. Can you compute �(x) correctly, running P not
only on x but also on other instances? Informally, a program checker for � is an
efficient probabilistic oracle algorithm C such that for every instance x and for every
program P used as an oracle,

• if P correctly solves� on all instances, thenCP(x) accepts with high probability;
• if P(x) �= �(x), then CP(x) rejects with high probability.

The program P can also be viewed as an expert claiming to be an expert in �. In
this scenario, program checkers can be useful if you want to solve� communicating
with such an expert.
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Since we consider program checkers in connection with selectors, the formal
definition below defines program checkers only for languages. In this setting, we
have a program P claimed to decide a language L . Such a program P can be thought
of as an oracle for a language claimed to be equal to L . We use the same symbol P
to denote both the program and the corresponding language.

Definition 3 Let L be a language over {0, 1}. A polynomial-time probabilistic oracle
machine C is a program checker (sometimes also called an instance checker) for L
if for every binary string x and for every language P , the following holds:

• If P(y) = L(y) for all binary strings y (which means that an oracle for P is an
oracle for L as claimed), then CP(x) accepts with probability at least 2/3.

• If P(x) �= L(x) (which means that x is a counterexample for the claim that an
oracle for P is an oracle for L), then CP(x) rejects with probability at least 2/3.

The probability is taken over random bits of the oracle machine C .

Note that, despite the name, a program checker does not determine whether P is a
correct program for L or not. Even if CP(x) accepts, this does not certify that P
agrees with L on all instances.

Example. As an example of a program checker, we sketch a program checker C for
the graph isomorphism problem: given two graphs G0 and G1, determine whether
they are isomorphic (denoted G0

∼= G1) or not (G0 � G1). The checker C is an
adaptation of a zero-knowledge interactive proof protocol for graph isomorphism
[8]. Let L be the language consisting of all pairs 〈G0,G1〉 such that G0

∼= G1 and
let P be a language claimed to be L . On input 〈G0,G1〉, the oracle machine CP

performs as follows.

• If an oracle for P says that G0
∼= G1 then CP finds a permutation that maps G0

to G1. This can be done in polynomial time using an oracle for P; the idea is
based on downward self-reducibility of the graph isomorphism problem. Having
the permutation, CP checks whether G0 and G1 are indeed isomorphic. If so, CP

accepts; otherwise, CP rejects.
• If an oracle for P says that G0 � G1, then CP repeats the following twice:

1. Choose i ∈ {0, 1} at random and choose a random permutation of Gi to H .
2. Ask the oracle whether G0 is isomorphic to H . Check whether the answer

returned by the oracle is consistent with G0 � G1. That is, check whether this
answer is G0

∼= H in the case of i = 0 or the answer is G0 � H in the case of
i = 1.

If the oracle gives correct answers in both repetitions, thenCP accepts. Otherwise,
CP rejects.

We need to make sure that CP satisfies the conditions on probabilities in Def-
inition 3. If the oracle correctly answers every query about graph isomorphism,
then CP accepts with probability 1. Indeed, on input 〈G0,G1〉 where G0

∼= G1, the
checker accepts because CP can find the required permutation. On input 〈G0,G1〉
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where G0 � G1, the checker accepts because the oracle correctly answers in both
repetitions. Consider the case that the oracle gives an incorrect answer to the query
about the input 〈G0,G1〉. If the oracle says G0

∼= G1 but the graphs are actually
non-isomorphic, then CP rejects with probability 1 because no permutation maps
G0 to G1. If the oracle says G0 � G1 but the graphs are actually isomorphic, then
CP accepts only if the random choices of i agree with the oracle’s answers in both
repetitions, which occurs with probability 1/4. Therefore, in this case, CP accepts
with probability less than 1/3, as required in Definition 3.

Selectors obtained from program checkers. As noted above, program checkers
can be used if you want to decide a language L communicating with a single expert
claiming to be an expert in L . Can they also be used if there are multiple experts?
The following theorem gives a positive answer to this question.

Theorem 6 ([11]) If a language L has a program checker, then L has a probabilistic
selector.

Proof. The language L has the following selector S. Let C be a program checker
for L . Let L1 and L2 be languages such that at least one of them is L . On input string
x , the machine SL1,L2 simulates C to compute CL1(x). If CL1(x) accepts, the oracle
machine SL1,L2 outputs L1(x). Otherwise, SL1,L2 outputs L2(x).

To see why S is indeed a selector for L , consider two cases: L1 = L and L1 �= L .
If L1 = L , then CL1 accepts with probability at least 2/3 and therefore we have

Pr
[
SL1,L2 = L(x)

] ≥ 2/3. (1)

If L1 �= L , then CL1 rejects with probability at least 2/3 and SL1,L2 outputs L2(x)
with the same probability. Since L2 = L , inequality (1) holds. �	

Program checkers are based on the same ideas that are used in protocols for
interactive proof systems with a single prover or with multiple provers. The key
ideas are self-reducibility and arithmetization (Boolean formula are represented as
polynomials). It was shown in [5] that a language L has a program checker if and only
if L has a variant of interactive proof systems called a function-restricted interactive
proof system. Carsten Lund showed in [14] that every EXP-complete language has
a function-restricted interactive proof system and, hence, it has a program checker.
Therefore, we have the following corollary of Theorem 6.

Corollary 7 If a language is EXP-complete, then L has a probabilistic selector.

Proof. This follows from Theorems 6 and the result that every EXP-complete lan-
guage has a program checker [5, 14]. �	

Selectors for languages without program checkers. The class of languages with
program checkers is contained in the class of languages with probabilistic selectors.
It follows from the results by Shuichi Hirahara in [11] that this containment is strict
(under a plausible complexity-theoretic assumption).
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Theorem 8 ([11]) If a language L is EXPNP-complete, then L has a probabilistic
selector.

Proof techniques. Combination of many techniques used in interactive proof
systems, including multi-linearity tests [3] and the self-correction of low-degree
polynomials [4]. �	
Corollary 9 Unless NEXP = EXPNP, there are languages that have probabilistic
selectors and do not have program checkers.

Proof. This follows from Theorem 4 and the result that all languages with program
checkers are in NEXP [6]. Note that the containment NEXP ⊆ EXPNP is believed
to be strict. �	
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Characterizing Uncertainties
in the Geophysical Properties of Soils
in the El Paso, Texas Region

Diane I. Doser and Mark R. Baker

Abstract Developing reliable methods to estimate the uncertainties in the geophys-
ical properties of materials has wide applications across the field of geophysics.
Uncertainty estimates aid in helping to devise geophysical sampling schemes, apply-
ing inversion techniques to geophysical data and to assess how operator expertise,
instrumentation or other factors influence survey accuracy. In this study we evaluate
closely spaced geophysical data collected from magnetic, conductivity and gravity
surveys over a range of soils deposited in the river valley of the Rio Grande. Our
results indicate strong relations between agricultural soil classification and geophys-
ical property variability. They also suggest that power-law processes are of limited
usefulness in explaining variability. In addition we found no useful bivariate corre-
lations that would allow us to use a rapid, dense measurement as a proxy for more
difficult surveys.

1 Introduction

Soils in the Rio Grande valley of the El Paso region were formed by a variety of
river processes. These processes lead to variability in the grain size, porosity and
mineral content of the soils that influence their material properties and uses. For
example, optimum soils for agriculture should drain well enough to prevent the soil
from becoming water logged, but be able to retain enough moisture to provide plants
with water between precipitation events or irrigation cycles. At construction sites the
presence of significant amounts of clay in a soil not only leads to drainage problems,
but increases the plasticity of the soil, making it subject to failure during increased
loading of building structures or road traffic loads.
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The U.S. Department of Agriculture has mapped soil properties on a coarse scale
in the river valleys surrounding El Paso by using aerial photography combined with
limited ground truth provided by coring or excavation of soils in select regions.
These maps often are not adequate to predict soil variation in a smaller region. In the
past, invasive coring or sampling has been required to determine soil properties at a
higher level of detail, requiring considerable time and effort for analysis. We have
been testing the ability of geophysical methods to rapidly characterize changes in
soil properties and the uncertainties inherent in these techniques.

In this paper we present a series of geophysical studies we have conducted over a
variety of soils in the El Paso region (Figs. 1 and 2) to determine the distribution and
bounds of the soils’ geophysical properties. In a previous study [4], we explored an
application of power-law description of geophysicalmeasurement variability to iden-
tify classes of agricultural soils using electrical conductivity, the total magnetic field
strength, and the vertical gravity field. The power-law process described a significant
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Fig. 1 Google Earth image with superimposed soil map of study area located in the southern
Canutillo, Texas water well field. The inset map shows location of the site with respect to west
Texas. Earth filled levees (LVS) that restrict the migration of the Rio Grande were built in the
1930s. Prior to this time the river migrated freely across the flood plain. The active channels of the
Rio Grande are indicated by label. Lines indicate where geophysical data were collected. See Table
1 and text for summary of surveys conducted at site. The soils map is taken from Natural Resources
Conservation Service [8]. Doser et al. [5] have related soil types to the fluvial Rio Grande system as
shown in Fig. 4. Mg (made ground) represents material used to build the earth filled levees that was
partly imported, and partly dredged from the river. W indicates where standing water was observed
when soil types were originally mapped from aerial photographs
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Fig. 2 Google Earth image of alfalfa field study area. Soil types are explained in Fig. 4 and in text.
Blue line indicates magnetic survey line (line 8). Red box outlines region of a manhole cover and
other man-made metallic objects that gave data unrelated to soil types. BPC is a type of soil found
on terraces located above the river valley

portion of the observed variability, but only over a narrow range of distances. This
basic observation, coupled with expected depositional controls on soil property vari-
ability, points to the initial conclusion that power-law processes are not appropriate
under these conditions.

Developing a reliable relation of geophysical properties to soil classification has
three major applications. First, projects requiring detailed shallow characterization
can use geophysical surveys to confirm soil map accuracy. Second, the mapped soil
classes let us estimate the “noise” from shallow subsurface properties in geophysi-
cal characterization of deeper structures from widely spaced samples. This can also
assist with geophysical survey design in constraining sampling to achieve a desired
observation accuracy. Finally, uncertainty analysis offers a tool to estimate the influ-
ence of observer training/expertise on the accuracy of geophysical surveys. An initial
driver to study the shallow soil variations in the Canutillo well field were when we
found it necessary to estimate daily/seasonal resistivity changes in the upper 5 m to
map multi-year trends in aquifer salinity at 200–300 m depths [1].
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2 Background

Soils in Rio Grande Valley of El Paso are primarily influenced by river processes.
Figure 3 (modified from [7]) shows themajor processes that influence soil formation.
Deposition of material is influenced by proximity to an active river channel. The
coarsest material (i.e., sand and gravel) is deposited in or near the river channel
(river channel complex, Fig. 3). During periods of high water a river overtops its
banks and carries water and sediment into the river’s flood plain (crevasse splays,
Fig. 3). Closest to the river the crevasse splay deposits that form are similar to deltas,
with the coarsest material (sand) found nearest the river bank and finer material (silt
and clay) transported farther from the bank. During a large flooding event much of
the region surrounding the river valley is under water and very fine sediment (clay)
will settle in regions distant from the main river channel (flood plain, Fig. 3).

The grain size and mineral type of the sediment will affect its geophysical
response. In the El Paso area we have found that coarse river sands contain consider-
able magnetite (up to 10% by weight; [11]), a heavy mineral derived from bedrock
located several 100 km to the north, and thus have a highermagnetic response. Coarse
material in river channel deposits often has a lower density as there will be more air
or water between its grains than in a finer grained material. Electrical conductivity,

Fig. 3 Cartoon illustrating major features of an active river system. Sand size material (0.0625–
2 mm in diameter) is shown by dots, silt size material (diameter of 0.0039–0.0625 mm) by series
of dashes and dots, and clay (<0.0039 mm in diameter) by dashes. Crevasse splay deposits are a
mix of materials, predominantly fine sand and silt. Bold dashed lines indicate a raised natural levee
formed by the river system. Crevasse splays breach the natural levee during flooding events
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however, is affected by both salinity, moisture content (i.e., higher moisture content
produces higher conductivity) and grain size (i.e., finer grained material has a higher
conductivity due to its increased surface area and ability to conduct electricity). How-
ever, in many parts of the valley the saturated zone is deep enough that the primary
effect on conductivity is due to grain size variation.

A series of coupled geophysical and geological studies in the river valley near El
Paso, including sampling and grain size analysis of soil cores, have shown that the
major soil typesmapped by theU.S. Department of Agriculture can be related to their
age and distance from the river at the time they formed ([5]; Fig. 4). Geophysical
data collected for our uncertainty analysis study were located over a Vinton loamy
sand (derived from a river channel complex), Harkey loam and Harkey clay loam
(derived from the proximal part of a crevasse splay deposit), and Glendale silty clay,
Sanelli clay loam and Tigua silty clay (all derived from flood plain deposits). Loam
is a fluffy, fine grained material deposited by wind, water and biological activity after
river deposition ceases. Figure 4 illustrates that the grain size of materials in soils
decrease with distance from the position of the river at the time the soil material was
deposited.

The majority of the geophysical data analyzed in this study was collected in
the Canutillo water well field, one of the two major water sources for the City of
El Paso, located about 25 km north-northeast of the city center. Figure 1 shows
locations of the data collection lines overlain on a map of soil types derived from the
Natural Resources Conservation Service [8]. Lines 1–6 showwheremeasurements of
gravitational accelerationwere collected by an experienced equipment operator using
a La Coste-Romberg model G gravity meter. Lines 1–3 were located in compacted
soil along well-access tracks. Lines 4–6 were collected parallel to lines 1–3, but far
enough off the dirt tracks to not be affected by compaction. Line 7 was collected
parallel to lines 1 and 4 by a different operator in an attempt to determine how
variations in operators would affect the readings. The well-field has been mowed
occasionally, but to our knowledge has not been plowed or used for farming.

Conductivity data were collected along lines 4–6 using an EM-31 ground conduc-
tivity meter operated in both horizontal (Qh) and vertical (Qv) loop mode. Operation
in horizontal mode provides an average conductivity of the upper ~3 m of soil and
vertical mode provides an average conductivity of the upper ~6 m of soil.

Magnetic data were also collected along lines 4–6 with a Geometrics proton
precessionmagnetometer, but distinctly nonrandomoperator error led to the rejection
of data collected along line 5. Table 1 and Fig. 5 summarize the geophysical surveys
analyzed in this study. Note that lines 1, 4 and 7 were collected in Vinton loamy sand
(Vn, river channel complex), lines 3 and 6 in Harkey loam (Ha, proximal crevasse
splays), line 2 in Sanelli clay loam (Sa, flood plain) and 5 in Sa and Glendale silty
clay (Gs, flood plain).

The second geophysical site was located in an alfalfa field in southeast El Paso
County ~22 km from the city center Fig. 2. Data were collected at this site as part of
a study of the geology, geophysics and geochemistry of an agricultural field where
only the southwest portion of the field produced a suitable alfalfa crop at the time of
the surveys. Magnetic data were collected along line 8 (Fig. 2) that crosses between
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Table 1 Geophysical surveys analyzed in this study

Location/Environment Line Soil condition Types of surveys

Wellfield/Vinton
loamy sand (Channel)

1 Compacted Gravity

Wellfield/Vinton
loamy sand (Channel)

4 Undisturbed Gravity, magnetics,
conductivity

Wellfield/Vinton
loamy sand (Channel)

7 Undisturbed Gravity, different
equipment operator
than all other
gravity lines

Wellfield/Sanelli clay
loam (Flood plain)

2 Compacted Gravity

Wellfield/Sanelli clay
loam (Flood plain)

5 (stations
500–534)

Undisturbed Gravity,
conductivity

Wellfield/Glendale
silty clay (Flood
plain)

5 (stations
536–550)

Undisturbed Gravity,
conductivity

Well field/Harkey
loam (Proximal
crevasse splay)

3 Compacted Gravity

Well field/Harkey
loam (Proximal
crevasse splay)

6 Undisturbed Gravity, magnetics,
conductivity

Alfalfa field/Harkey
clay loam (Proximal
crevasse splay)

8 (stations
1–180)

Disturbed/plowed Magnetics

Alfalfa field/Sanelli
clay loam (Flood
plain)

8 (stations
180–300 and
360–400)

Disturbed/plowed
Cultural disturbance
(drain/manhole cover
between stations 310 and
350)

Magnetics

Alfalfa field/Tigua
silty clay (Flood
plain)

8 (stations
400–480)

Disturbed/plowed Magnetics

Harkey clay loam (Hk, proximal crevasse splay), Sanelli clay loam (Sa, flood plain
deposit) and Tigua silty clay (Tg, flood plain deposit). This field has been actively
plowed and farmed for decades.

Minimal processing was applied to the geophysical data. Gravity readings were
drift corrected (to account for tidal and instrument effects) and dial corrected. Mag-
netic data were drift corrected to account for diurnal changes in the Earth’s magnetic
field strength.
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Fig. 5 Comparison of geophysical data collected at the Canutillo well field. Vertical bars indicate
relative scale.Qv andQh indicate ground conductivity readings from instrument operating in vertical
and horizontal loop mode, respectively. See Table 1 and text for details. a Data collected in soils
derived from a river channel complex (Vn). b Data collected in soils derived from a crevasse splay
complex (Ha). c Data collected in soils derived from a flood plain (Sa and Gs)
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3 Analysis of Magnetic Data

We will start the discussion of geophysical property variability using magnetic field
measurements for several reasons. First, measurement of total field strength is quick
and simple, and the recent increase in ease of drone-based surveys offer immediate
potential benefits from improved data-density. Second, the total magnetic field vari-
ation has been described using a power-law (e.g., [2, 9, 10]) process. In addition,
the underlying magnetic permeability that gives rise to the observed field anomaly
has been independently identified as following a power-law process [6]. Third, mag-
netic field properties are far less sensitive than electrical conductivity and gravity to
seasonally dependent variations in water table and salinity documented in this area
[5].

Figure 6 shows a total magnetic field measurement along a 470 m section (line 8,
Fig. 2) that traverses three soil types. This surveywasmade using a proton-precession
magnetometer on a 2.4 m high pole. The primary station spacing was 10 m, with
offset measurements made inline, and perpendicular to the main survey, at 0.5 m
offsets. Duplicate measurements were made at each location, while a base station
recorded temporal changes in magnetic field strength. Each station shows the local
gradient both along (crosswith solid line) and perpendicular to the line (red dot, green
triangle). The base station recording is shown in Fig. 7, along with the absolute value
of change in base station readings over a 2 min interval. The survey line crosses a
mapped boundary between the Harkey clay loam (Hk) and the Sanelli clay loam (Sa)
at about 120 m, and a second mapped boundary between the Sa and Tigua Clay (Tg)
at 420 m. The observer also noticed a nearby steel manhole cover at about the 340 m
station, and since this magnetic signature dominates the response, the graph is scaled
to emphasize soil responses.

Fig. 6 Magnetic field measurements in the alfalfa field (line 8) shown in Fig. 2. Each station at
a10 m spacing has two repeats at five locations within a 1 m square: three locations are in line, and
two locations perpendicular to the line. The survey line crosses mapped soil boundaries at positions
indicated above the graph. Crevasse splay (Hk) soils show substantially more variability than flood
plain (Sa) soils. Measurements near a steel manhole cover have been excised
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Fig. 7 Time variation of the earth’s magnetic field at a continuously recording base station near
the alfalfa field survey (bottom), with a graph of its change over the time period of a typical station
measurement (top) show in Fig. 6. The field data of Fig. 6 is corrected for this time variation in the
magnetic field. This level of signal variation also implies we can expect no better than a 0.2–0.6 nT
precision in the repeated observations of Fig. 6

The time variation of the earth’s field is on the order of 0.2–0.8 nT during the
survey, and is smaller than the spatial variability seen in Fig. 6. In particular the Hk
soil type shows 10 nT variation over a 1 m area, while the Sa and Tg units vary
2 nT over the same area. This is consistent with the expected depositional controls
on magnetite distribution. The dense magnetite particles can only be carried in faster
water velocities, and will tend to deposit in association with the larger grains in
channel deposits. Only the smallest magnetite grains can be carried any distance
with the clay-sized particles into the flood plain deposits of the Sa. The Hk channels
might typically be less than 1 m thick, and consequently on the order of 10 m wide.
The last two stations at 450 and 460 m show character similar to the Hk stations, and
appear to be in area of rapid transition back to crevasse channel deposits located very
close to a mapped contact between Tg and Ga (Gila sandy loam, a distal crevasse
splay deposit).

Figure 8 shows the log-log plot of the change in magnetic field intensity with
distance for the data of Fig. 6. Separate curves are computed for theHk soil (triangle),
the Sa soil (square), and the composite response (dot) for the data set. None of
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Fig. 8 Log-log plot of magnetic field changes with distance for the data from Fig. 6. The variation
calculations are made for the crevasse splay (Hk), and flood plain (Sa) soils, as well as a composite
curve for the entire survey line. The linear behavior expected for a power-law description to be valid
is not apparent. The Hk soil plateaus at several meters distance, consistent with splay channels being
less than ameter thick and several meters wide. The Sa soil shows a vague power-law approximation
at 10 m and larger distances. The undifferentiated curve reflects the average of the two soils. The
variations at 0.1 m distances are computed from repeats at the same soil location, but reflect the
difficulty the operator may have in holding the 2.4 m pole with heavy sensor head in a vertical
position

these three curves inspires confidence that a power-law process is an appropriate
approximation. The Hk soil curve shows a distinct maximum plateau at distances
larger than several meters, which would be consistent with the scale of the channel
deposits that control magnetite deposition. The Sa soil curve contains more samples,
and has statistics that might optimistically be viewed as consistent with a power-law
process. However, the scale of soil deposits visible on the map, and expected from
the depositional environment, lead to the expectation we will not see exponentially
greater magnetic fields or magnetic permeability changes at greater distances from
some given point.

Clauset et al. [3] point out that a power-law equation can fit many datasets that are
sampled from other distributions, either through small sample sets or by sampling
densely only over a small range of the independent variable. They point out that fitting
a linear section of a log-log-plot is not a reliable indicator of a power-law process,
and that power-law processes have their greatest utility in dealing with large-tailed
distributions.

Our dataset, as well as many published examples (e.g. [9], magnetics; [12], topog-
raphy, earthquake magnitude-frequency distributions), reach a limit in the upper
value. The magnetic field will be no larger than that from pure magnetite, elevations
will be no higher thanMt. Everest, and earthquakes can be no larger than that limited
by rigid crustal thickness.



454 D. I. Doser and M. R. Baker

Let us look at the magnetic data from the various viewpoints of Figs. 6 through 8.
Our very basic, smallest uncertainty is the instrumental precision and time variation
of the earth’smagnetic field at the level of roughly 0.2 nT. The next contribution at the
level of 0.4–0.8 nT is associated with the location precision/repeatability observed
at repeated stations, and is probably a measure of just how vertical the operator
maintained the pole the magnetometer sensor was placed upon. This noise level is
larger in areas of high field variability, as in theHk soil. At the larger end of variability
we can expect a maximum plateau value with a spatial limit specific to a particular
depositional environment and measured response specific to a magnetite level. It is
the region in between these two limits where identifying a distribution underlying
the spatial variability becomes the open issue.

Figure 9a shows a selection of frequency distribution curves for several distance
offsets for the Sa soil. Figure 9b shows the means and standard deviations for all of
the offsets for the Sa soil. The curve shapes and the near-proportionality between
mean and standard deviation point in the general direction of the gamma distribution
as a likely description for the variability. Since we designed our survey expecting a
power-lawdistribution, the observations left us a poor design to identify anunderlying
distribution, and the question thus remains open.

The various contributions to the observed magnetic field variability have analogs
in both electrical conductivity and gravity measurements. The diurnal variation in
magnetic field strength due to Sun activity seen in Fig. 7 is analogous to perturbation
in gravity field measurements with daily Earth and Sun tides. A diurnal variation in
electrical conductivity occurs, but is indirectly driven by daily temperature changes,
soil wetting/drying, or tide driven water table variations. The next level of operator-
related position and measurement accuracy is comparatively small for conductivity
measurements, but plays amajor role in gravity observations. Leveling the gravimeter
and acquiring a consistent procedure for dealing with backlash in the measurement
screw and system friction require both experience and skill to get precise measure-
ments. The upper bound to variation is very different for gravity and conductivity.
Gravity variation is controlled by soil density variations which may be fairly small in
the original depositional environment, but show stronger modification by later com-
paction, clay or carbonate deposition in soil-forming processes, or rooting density.
We can be very certain that soil densities will never exceed 2.7 gm/cc for a complete
replacement by a carbonate. The soil conductivity upper is practically limited by the
conductivity of salt water.

Figure 10 compares the log-log plot of magnetic variation for the Hk proximal
crevasse splay soil classification at the alfalfa field (Fig. 2) and the Ha distal splay
deposit in the well field (Fig. 1). These sites are sufficiently far apart (~45 km) that
the river crosses very different terrains and we should some expect independence in
river slope and sediment sources. Both the minimum and maximum limits appear
consistent at the two sites andwould agreewith the underlying constant noise sources,
and the maximum magnetite content contained in the channel deposits of similar
size. The coefficients that might be used to fit a power-law curve to the zone of
variation are very different at the two sites, and would be consistent with the differing
sediment supplies and the degree of channel development in the Hk versus Ha. A
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Fig. 9 a Frequency distribution of magnetic field variation at 1, 10, and 20m distances. b Summary
graph of mean and standard deviation at all distances for the Sa soil from data shown in Fig. 6.
Frequency curves in (a) do not show long-tail behavior, while the near proportionality between
mean and standard deviation in (b) imply a gamma (or similar) distribution to be a better summary
of behavior than a power-law distribution

second underlying cause is that we expect crevasse splay channels to have a strong
directionality, and the alfalfa field line is measured perpendicular to the channels,
while the well field line is measured parallel to the channels. The magnetic line of
Fig. 6 shows a visual grain in the Hk soil that is quantified in Fig. 10 by the point
labelled “OL” at the 0.5 m distance. This point is computed solely on variations
observed orthogonal to the survey line, and shows much lower variation than the
value computed at 0.5 m for all directions. There may also be a difference in soil
homogenization at the two sites related to recent plowing in the alfalfa field.
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Fig. 10 Log-log plot of magnetic field changes with distance for the Ha and Vn soil types in the
well field Fig. 1 with the Hk soil in the alfalfa field Fig. 2. The two sites are about 45 km apart, and
should have different sediment sources. The point labeled OL is the variation at a 0.5 m spacing for
the alfalfa field data computed only in the direction orthogonal to the survey line, quantifying the
expected difference in orientation to water flow direction. The Vn channel deposition shows larger
variability and larger maximum changes expected from the larger channels and larger magnetite
grains that can be carried in the deeper channel

Figures 10 and 11 summarize a comparison of log-log plots for geophysical mea-
surements on the three major soil types at the well field. Figure 10 shows the mag-
netic field comparison for Ha and Hk soil, and the Vn—channel deposit soil. The
Vn channel deposits are larger-scale, deeper channels, and consequently show both
larger magnitude and longer scale variations. A maximum, limiting value would be
predicted, if measurements were made parallel to the river flow, rather than perpen-
dicular to flow. Figure 11 shows horizontal (Qh, shallow averaging, ~3m) and vertical
(Qv, deeper averaging, ~6 m) electrical conductivity variations, along with vertical
gravity (gz) variations. The Vn channel soil shows low conductivity variation, low
gravity/density variation, and large magnetic variation, consistent with large, well-
sorted grain sizes forming the soil. The Sa/Gs flood plain soils show a higher conduc-
tivity variation, a low gravity/density variation, and we would expect a low magnetic
variation from the alfalfa field measurements. The high conductivity variation and
low density variation is consistent with the smaller, less well-sorted grain-size dis-
tribution, and a stronger influence from adsorbed water in the capillary fringe. The
Ha soil shows the highest conductivity variation, highest gravity/density variation,
and intermediate magnetic variation, consistent with large property variation over
the smaller physical scales.
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Fig. 11 Log-log plots of variability in thewell field for themajor soil types. Qh (a) is the horizontal-
loop electrical conductivity with shallow investigation depth (~3 m), Qv (b) is the vertical-loop
electrical conductivity with deeper averaging (~6 m), and c is the gravity field measurement. The
lower variation in conductivity on the Vn soil corresponds with the lower conductivity expected
in the larger-grained unsaturated channel deposits. The Ha crevasse splay soils show the highest
variability, with the Gs/Sa flood plain soils showing intermediate conductivity variations at larger
distances

Figure 12 summarizes two additional confounding factors on log-log plots for
gravity variations. Figure 12a shows variation for the Ha soil measured on a com-
pacted, vegetation-free well-access road, and a parallel line on an undisturbed (only
mowed) line. The compacted road survey shows lower spatial variation than the
undisturbed line. Figure 12b shows variation for the Vn soil on the same well-access
road where the compacted survey shows more variation than the undisturbed sur-
vey. This observed difference in the behaviors of the two soils was unexpected, but
would be consistent with behavior at critical failure stress under wheel load with
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on the Ha soil type, and is of a different magnitude and direction than seen in (b) for the Vn soil
type on the same access road. c Shows a comparison of variability within the Vinton soil for two
different operators
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the finer grained soil showing less failure with the moisture content contributing to
uniform compaction and the coarser soil failing with dilation. Figure 12c compares
the gravity variability associated with data collection by two different operators on
two different days. Line 4 on the Vn soil shows a higher level of variability than that
of Line 7. The lower limit of about 0.06 mGal in the gravity variations corresponds
to an equivalent density change of 0.4 gm/cc, or to an elevation uncertainty of 0.2 m,
if not attributed to operator consistency.

We found it was not possible to correlate easily-measured parameters like mag-
netics and conductivity for use as a proxy for the more labor intensive gravity mea-
surement. At this scale of measurement, we found no useful bivariate correlations
between Qv, Qh, magnetic field, or gravity measurements or spatial differences, in
any combinations. The desert conditions where evaporation rate exceeds rainfall and
infiltration leaves even Qv and Qh uncorrelated: distribution of salt content, and
osmotic pressures arising from the salt concentrations controlling capillary fringe
height can overwhelm the normal grain-size controls.

4 Conclusions

There have typically been useful quantitative and qualitative relations between agri-
cultural soil classification and electrical conductivity based on the controls of surface
area, grain size, and adsorbed moisture content. This localized study in Rio Grande
soils points towards a useful quantitative relation between soil type and the spatial
variability of conductivity, gravitational, and magnetic measurements.

Magnetic field variations appear to be most diagnostic due to the concentration of
magnetite in fast water deposits like channel sands and crevasse splay deposits.
Crevasse splay deposits show higher spatial variability at short distance scales,
and lower maximum changes in comparison with main-channel sands. Flood plain
deposits show very low spatial variability, and smaller maximum changes due to
lower magnetite content.

Electrical conductivity and gravity observations are consistent with a more com-
plex set of controls on spatial variability. Electrical conductivity showed low levels
of spatial variability in unsaturated channel deposits consistent with their very low
overall conductivity. Crevasse splay deposits show a similar level of average vari-
ation in comparison to flood plain deposits, but appear to reach the limiting value
at larger distances consistent with the physical scale of the deposits. Gravity field
observations show some variability related to soil type for crevasse splay deposits,
but are nearly equally influenced by compaction and operator differences.

Power-law characterization of property variability appears to be possible, but of
very limited overall utility in these soils. We expect and observe a lower bound on
variations based on relatively objective attributes of equipment precision, equipment
accuracy, time variations, and spatial location accuracy. We observe a lower mea-
surement accuracy bound based on difference in operator for gravimeters. We expect
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and observe an upper bound on variation based on both the physical scale of the
deposits and on the physical limits of the properties that control the measurements.

We implicitly select these upper bounds in defining a problem domain. If we lump
all valley soil types for analysis of spatial variation, we could expect to see power-law
approximations hold over the larger spatial scale. By lumping multiple soil types,
we also will see correlations develop that allow us to use one geophysical technique
as a proxy for a second measurement. However, we then lose both diagnostic and
predictive utility if we substitute a statistical approximation for known underlying
physical controls.

With the advent of drone-based dense geophysical measurements, analysis of
spatial variability of properties becomes much simpler. When limited by plodding,
ground-based measurements, proper experiment design of surveys is needed to tease
out azimuthal dependence of spatial variability, as well as whether there is an appro-
priate underlying distribution to any of these properties. For pragmatic reasons,
a power-law description with upper and lower bounds seems the simplest way to
continue these studies.
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Why Sparse?

Thongchai Dumrongpokaphan, Olga Kosheleva, Vladik Kreinovich
and Aleksandra Belina

Abstract In many situations, a solution to a practical problem is sparse, i.e.,
corresponds to the casewhenmost of the parameters describing the solution are zeros,
and only a few attain non-zero values. This surprising empirical phenomenon helps
solve the corresponding problems—but it remains unclearwhy this phenomenonhap-
pens. In this paper, we provide a possible theoretical explanation for this mysterious
phenomenon.

1 Formulation of the Problem

Need to reconstruct a function. In many practical situations, we are interested in a
function: e.g., we want to reconstruct a signal s(t) based on the noisy measurements,
or we want to reconstruct the original image I (x, y) from the observed noisy one.

General functions can be described via an appropriate basis. Many algorithms
for determining a function are based on the fact that every function—under certain
restrictions like continuity—can be represented as an infinite sum
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f (x) =
∞∑

i=1

ci · ei (x),

where:

• the functions e1(x), e2(x), …, are fixed (the set of these functions is known as a
basis), and

• different functions f (x) correspond to different values of the coefficients c1, c2,
…

For example:

• smooth functions can be represented by Taylor series, with e1(x) = 1, e2(x) = x ,
e3(x) = x2, …,

• general functions on a given interval can be represented as Fourier series, with
e1(x) = sin(ω · x), e2(x) = cos(ω · x), e3(x) = sin(2ω · x), e4(x) = cos(2ω · x),
…

In all these cases, the fact that the function is a limit of a convergent sum means that
the size of the terms cn · en(x) tends to 0 as n increases.

In practice, it is sufficient to determine a finite number of coefficients. To rep-
resent arbitrary functions exactly, we need infinitely many coefficients. However, in
most practical problems, it is sufficient to represent the functions with some accu-
racy. For such a representation, we can safely ignore small terms corresponding to
large values n. Thus, in practical problems, it is sufficient to use only a fixed number
of terms in the corresponding representation, i.e., to consider approximations of the
type

f (x) ≈
k∑

i=1

ci · ei (x).

Sparsity: a mysterious empirical fact. Somewhat surprisingly, in many practical
situations, the desired reconstructed function, in an appropriate basis, is sparse, in
the sense that most coefficients ci are equal to 0, and only a few are non-zeros.

This sparsity helps design more efficient algorithms for reconstructing the desired
function (see, e.g., [2–6, 8–11, 15–17, 20, 21]), butwhy this happens in the realworld
remains largely a mystery. To the best of our knowledge, the only theoretical expla-
nation so far is an explanation based on formalizing an intuitive idea that all values
be small [7]. The problem with this explanation is that it is somewhat subjective. It
is desirable to have an objective—i.e., expert-independent—explanation.

What we do in this paper. In this paper, we provide a possible objective theoretical
explanation for this mysterious empirical phenomenon.



Why Sparse? 463

2 Main Idea

Informal reformulation of the problem. Measurement uncertainty means that,
based on themeasurement results, we cannot uniquely determine the desired function
f (x). In other words, there exist several different functions which are all consistent
with all the measurement results. Out of all these functions, we would like to select
(prefer) one which is, in some reasonable sense, the most appropriate.

How to formalize this description. According to decision theory (see, e.g., [12–14,
18, 19]), preferences of a rational decisionmaker (forwhompreferences are transitive
and antisymmetric) can be described by a real-valued function called utility, so that:

• between several alternative,
• the decision maker always selects the one which has the largest value of the utility.

Thus, to describe user’s preferences, we need to know his/her utility function.
In our case, different alternatives are different functions f (x), i.e., equivalently,

different values of the coefficients c1, . . . , ck . Thus, to describe the user’s preferences,
we need to know how the user’s utility u depends on the values c1, . . . , ck , i.e., we
need to know the dependence u(c1, . . . , ck).

Let us analyze what are the reasonable properties of this dependence.

First reasonable property: coefficients ci are independent. In most practical sit-
uations, coefficients ci are independent in the following sense: for each of these
coefficients, there are some preferred values, so that if we have two tuples with the
same values of all other coefficients and different values ci �= c′

i , then, if select ci in
one such case, we should select ci and not c′

i in all such cases, irrespective of what
are the other values c1, . . . , ci−1, ci+1, . . . , ck .

For example, for quadratic Taylor series f (x) = c1 + c2 · x + c3 · x2, if we con-
sider a linear dependence more reasonable, then between two functions differing
only by their coefficients c3 �= c′

3, we should select a one for which the value of |c3|
is the smallest—irrespective of the values c1 = c′

1 and c2 = c′
2.

Similarly, for Fourier series, ifwebelieve that nonlinear effects—leading to double
frequencies—are small, then between the two functions differing only by the double
frequency terms c3 and c4, we should prefer functions for which these coefficients
are smaller—irrespective of the values of c1 and c2.

It is known (see, e.g., [13]) that under this independence assumption, the utility

function has either the form u(c1, . . . , ck) =
k∑

i=1
ui (ci ) or the form u(c1, . . . , ck) =

k∏
i=1

Ui (ci ) for some functions ui (ci ) or Ui (ci ).

Maximizing the product
k∏

i=1
Ui (ci ) is equivalent to maximizing its logarithm

k∑
i=1

ui (ci ), where we denoted ui (ci )
def= ln(Ui (ci )). Thus, without losing generality,

we can assume that we select alternatives for which the sum
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k∑

i=1

ui (ci ) (1)

attains the smallest possible value—among all the combinations (c1, . . . , ck) for

which the function f (x) =
k∑

i=1
ci · ei (x) is consistent with all the measurement

results.
Thus, we arrive at the following definition.

Definition 1

• By a criterion for selecting coefficients, we mean a tuple

u = (u1(c1), . . . , uk(ck))

of k smooth functions ui (ci ), 1 ≤ i ≤ k.
• Let u be a criterion for selecting coefficients. We say that a tuple c = (c1, . . . , ck)
is u-better than a tuple c′ = (c′

1, . . . , c
′
k) (and denote it c > c′) if

k∑

i=1

ui (ci ) >

k∑

i=1

ui (c
′
i ).

• We say that a tuple c = (c1, . . . , ck) is of the same u-quality as a tuple c′ =
(c′

1, . . . , c
′
k) (and denote it c ≡ c′) if

k∑
i=1

ui (ci ) =
k∑

i=1
ui (c′

i ).

Second reasonable property: scale-invariance. Numerical values of a physical
quantity depend on our choice of a measurement unit, and this choice is rather
arbitrary. For example, if we originallymeasured the signal in Volts, and then decided
to switch to milliVolts, the signal remains the same but all its numerical values
s(t) gets multiplied by a 1000: s(t) → 1000 · s(t). In general, if we change the
original measuring unit to a new one which is λ times smaller, all the values of the
corresponding function f (x) get multiplied by λ: f (x) → f1(x) = λ · f (x).

From the fact that f (x) =
k∑

i=1
ci · ei (x), we conclude that

f1(x) = λ · f (x) = λ ·
(

k∑

i=1

ci · ei (x)
)

=
k∑

i=1

(λ · ci ) · ei (x).

Thus, in terms of the coefficients ci , multiplying all the values f (x) by a constant λ
is equivalent to multiplying all the coefficients ci by the same coefficient λ:

ci → c′
i = λ · ci .
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It is reasonable to require that the relative quality of two different functions—i.e.,
equivalently, of two different tuples (c1, . . . , ck)—should not change if we simply
multiply all the coefficients by the same positive number λ.

Up to now, we only consider functions f (x)—like images – which are described
by non-negative functions.

In some situations—e.g., if we process signals—the values f (x) can be both
positive and negative. The selection of the sign is usually also arbitrary: e.g.:

• we consider the current positive if all electrons move in one direction, but
• we could as well call this direction negative.

So, it is reasonable to require that nothing should change if we simply change the
sign of all the values f (x)—or, equivalently, that we change the signs of all the
coefficients ci .

Together with invariance with respect to multiplying by any positive number, we
can now conclude that the user’s preference is invariant with respect to multiplying
by any real number.

Thus, we arrive at the following definition.

Definition 2 We say that a criterion u is scale-invariant if for every λ �= 0, the
following two conditions are satisfied:

• if a tuple c = (c1, . . . , ck) is u-better than a tuple c′ = (c′
1, . . . , c

′
k), then the tuple

λ · c def= (λ · c1, . . . , λ · ck) is u-better than λ · c′ = (λ · c′
1, . . . , λ · c′

k);• if a tuple c = (c1, . . . , ck) is of the same u-quality as a tuple c′ = (c′
1, . . . , c

′
k),

then the tuple λ · c def= (λ · c1, . . . , λ · ck) has the same u-quality as the tuple

λ · c′ = (λ · c′
1, . . . , λ · c′

k).

3 Main Result: Formulation and Discussion

Proposition Every scale-invariant criterion is equivalent to optimizing the sum
k∑

i=1
ai · |ci |p for some constants p, a1, . . . , ak.

Discussion By replacing ci with c′
i = |ai |1/p · ci and ei (x)with e′

i (x) = ei · |ai |−1/p,

we conclude that the optimized sum has a simplified form
k∑

i=1
|c′

i |p, where f (x) =
k∑

i=1
c′
i · e′

i (x).

So, in general, we optimize the sum of the pth powers:

• for p = 2, we get the usual least squares method of minimizing
∑

c2i ;• for p = 1, we get a robust �1-method of minimizing the sum
∑ |ci |;
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• for p → ∞, since optimizing
∑ |ci |p is equivalent to maximizing ‖c‖p

def=(∑ |ci |p
)1/p

, we minimize the limit lim
p→∞ ‖c‖p = max |ci |, i.e., we minimize the

largest coefficient;
• finally, when p → 0, |ci | → |ci |0 = 1 when ci �= 0 and |ci |p = 0 → 0 if ci =
0; thus, when p tends to 0, the sum

∑ |ci |p tends to the number of non-zero
coefficients ci .

In the last case, minimizing the sum becomes minimizing the number of non-zero
elements—which is exactly what sparsity is about.

Thus, we have the desired explanation of why sparsity naturally appears in many
practical problems.

4 Proof

1◦. If we subtract the same constant from all the values of the objective function,
the relative quality of different tuples does not change. In particular, if instead of the

original functions ui (c), we consider new functions ũi (c)
def= ui (c) − ui (0) for which

u′
i (0) = 0, the new sum

∑
i
ũi (ci ) differs from the old sum by a constant

∑
i
ui (0).

Thus, without losing generality, we can safely assume that ui (0) = 0 for all i .

2◦. Let us first prove that the functions ui (ci ) do not change value is we simply
change the sign of the coefficient, i.e., that ui (−ci ) = ui (ci ) for all ci .

Indeed, let us consider the tuple c = (0, . . . , 0, ci , 0, . . . , 0) in which only the
i-th element is different from 0.

If c is better than −c, i.e., if c > −c, then, due to invariance under multiplying
by −1, we conclude that −c > c, i.e., that −c is better than c—a contradiction.

Similarly, if −c is better than c, i.e., if −c > c, then, due to invariance under
multiplying by −1, we conclude that c > −c, i.e., that c is better than −c: also a
contradiction.

The only remaining case is c ≡ −c, which means that

u(c) =
∑

j

u j (c j ) = ui (ci ) = u(−c) =
∑

j

u j (−c j ) = ui (−ci ).

Thus, we have ui (−ci ) = ui (ci ) for all i and ci , i.e., equivalently, ui (ci ) = ui (|ci |).
So, it is sufficient to determine the values of the functions ui (ci ) for positive values
ci > 0.

3◦. Let us now consider the case when two values ci and c j differ from 0, and all
others are equal to 0. For such tuples, the objective function has the form

ui (ci ) + u j (c j ).
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For such functions, scale-invariance means, in particular, that if

ui (ci ) + u j (c j ) = ui (c
′
i ) + u j (c

′
j ),

then for every λ > 0, we have

ui (λ · ci ) + u j (λ · c j ) = ui (λ · c′
i ) + u j (λ · c′

j ).

4◦. Let us consider the case when:

• c′
i is close to ci , i.e., when c′

i = ci + Δc for a small value Δc, and
• c′

j is close to c j , i.e., c
′
j = c j + k · Δc + o(Δc) for an appropriate k.

Substituting these values c′
i and c′

j into the above equality, we get

ui (ci ) + u j (c j ) = ui (ci + Δc) + u j (c j + k · Δc).

Here,
ui (ci + Δc) = ui (ci ) + u′

i (ci ) · Δc + o(Δc),

where f ′, as usual, denotes the derivative of a function f .
Similarly,

u j (c j + k · Δc) = u j (c j ) + u′
j (c j ) · k · Δc + o(Δc),

so the above equality implies that

u′
i (ci ) · Δc + u′

j (c j ) · k · Δc + o(Δc) = 0.

Diving both sides by Δc and taking Δc → 0, we get

u′
i (ci ) + u′

j (c j ) · k = 0,

hence

k = − u′
i (ci )

u′
j (c j )

.

The condition

ui (λ · ci ) + u j (λ · c j ) = ui (λ · c′
i ) + u j (λ · c′

j )

similarly takes the form

u′
i (λ · ci ) + u′

j (λ · c j ) · k = 0,

i.e.,



468 T. Dumrongpokaphan et al.

u′
i (λ · ci ) − u′

j (λ · c j ) · u′
i (ci )

u′
j (c j )

= 0.

Thus,

u′
i (λ · ci ) = u′

j (λ · c j ) · u′
i (ci )

u′
j (c j )

.

By moving all the terms related to ci to the left-hand side and all other terms to the
right-hand side, we get

u′
i (λ · ci )
u′
i (ci )

= u′
j (λ · c j )
u′
j (c j )

for all λ, ci , and c j .

This means that the ratio
u′
i (λ · ci )
u′
i (ci )

= u′
j (λ · c j )
u′
j (c j )

does not depend on ci or c j , it

only depends on λ:
u′
i (λ · ci )
u′
i (ci )

= F(λ)

for some function F(λ).
For λ = λ1 · λ2, we have

F(λ) = u′
i (λ · ci )
u′
i (ci )

= u′
i (λ1 · λ2 · ci )

u′
i (ci )

=

u′
i (λ1 · (λ2 · ci ))
u′
i (λ2 · ci ) · u

′
i (λ2 · ci )
u′
i (ci )

= F(λ1) · F(λ2),

i.e.,
F(λ1 · λ2) = F(λ1) · F(λ2).

It is known (see, e.g., [1]) that every continuous function satisfying this property has
the form F(λ) = λq for some real number q.

The condition
u′
i (λ · ci )
u′
i (ci )

= F(λ) now takes the form

u′
i (λ · ci ) = u′

i (ci ) · F(λ) = u′
i (ci ) · λp.

In particular, for ci = 1, we get

u′
i (λ) = Ai · λq ,

where Ai
def= u′

i (1). In other words, u
′
i (ci ) = Ai · cqi .
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We have an expression for the derivative u′
i (ci ) of the desired function ui (ci ). To

get ui (ci ), we therefore need to integrate this derivative. For this integration, we have
two different formulas: for q = −1 and for all other q.

Let us show that the value q = −1 is impossible. Indeed, if q = −1, we get
ui (ci ) = Ai · ln(ci ) + const, which contradicts to the above requirement that
ui (0) = 0.

Thus, we have q �= −1. Therefore, integration leads to

ui (ci ) = Ai

q + 1
· cq+1

i + const.

The condition ui (0) = 0 now implies that ui (ci ) = Ai

q + 1
· cq+1

i for ci ≥ 0.

Since, according to Part 2 of this proof, we have ui (ci ) = ui (|ci |), we thus get

ui (ci ) = Ai

q + 1
· |ci |q+1 for all ci . Therefore,

u(c) =
k∑

i=1

ui (ci ) =
k∑

i=1

Ai

q + 1
· |ci |q+1.

This is exactly the desired form, with ai = Ai

q + 1
and p = q + 1. The proposition

is proven.
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The Kreinovich Temporal Universe

Alexander K. Guts

Abstract In this article the memories about Vladik Kreinovich, three his theorems
which are concerning of causal axiomatical theory of relativity, describing of work
of time machine and demonstration of antigavitation action are given.

1 Vladik Kreinovich and His Wife. Autumn, 1986

In the autumn of 1986, I flew on business to Leningrad. It was necessary somewhere
to spend the night, but I could not find a place in the hotel. So I called Vladik
Kreynovich and asked if he would let me in for the night.

“Oh sure! Come.”
When I got to Vladik’s apartment, he announced to me that for the evening he

had invited his friends and they wanted to listen to me on any topic.
It was very unexpected, but I thought about it and chose the topic of the report,

the content of which I do not remember.
The listeners were of different ages, and one of them was a laureate of the Lenin

Prize, which in theUSSRwas very prestigious, and the author of the book on celestial
mechanics, which I read. His name was Brumberg.

Then we drank tea. When the guests left, Vladik and I went to the kitchen to wash
the dishes. I must say that Vladik lived in a communal apartment, where there was
one kitchen and five rooms, each of which had another family. Looking ahead, I want
to say that I was bedded behind a closet that divided Vlad’s room into two parts.

I served cups. Vladik washed them and told me about his scientific plans. There
were a lot of them. I have never met such people. Now, in 30years, I know Vladik
as the author of more than 1000 articles. I am glad that, apparently, he manages to
bring many of his ideas to the printed word.
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When I woke up, Vladik went to work, and his wife Olga began to give me tea
and enthusiastically talk about the “Book of Changes” she was reading. The book
was in English. Olga showed me hexograms and spoke about Yin and Yang.

The roomhad a very high ceiling, 5meters. Accordingly, thewindowwas 4meters
high.

“How do you wash the window?”, I asked Olga.
“We take the ladder from the house’s commandant.”
I think, then subconsciously I thought about anti-gravity, by means of which it

would be possible to wash high windows without a ladder, just hovering in the air.
Now, typing on the computer these memories of the wonderful people of Vladik

and Olga, I regret that I do not have the time machine through which I would now
transfer in 1986 toLeningrad, and again Iwould talkwith a beautiful younghospitable
couple.

If I did not attempt to deal with the effect of antigravitation in 1986 (although the
thought of this already lived in me), then the problem of constructing a time machine
was already very well known to me. Moreover, this was the theme of my thesis work,
I already wrote a couple of articles about it.

The theme of the time machine as a scientific research was proposed to me in
1969 by the great geometer of the 20th century Alexander Danilovich Alexandrov.
I note that A. D. Alexandrov was the scientific supervisor for the Ph.D. Dissertation
both for me and for Vladik.

The first scientific advisor of Vladik was R. P. Pimenov, a pupil of A. D. Alexan-
drov. However, Pimenov at the time of Vladik graduation from University was in
political exile, because he was an opponent of Soviet communist power.

In those years, Vladik and I were engaged in the axiomatic justification of the
special theory of relativity. Both of us were participants of the “Chronogeometry”
seminar at the Novosibirsk State University, headed by Alexandrov [1]. However, at
different times.

2 The Kreinovich Articles on Chronogeometry

The first theme of the Vladik Kreinovich scientific articles was Chronogeometry, or
more exactly, causal axiomatic theory of Partial Relativity.

Here I tell about three wonderful results on causal theory of Partial Relativity (two
papers were printed in Russian journal in which Vladik is one of editors and his wife
is co-author).

2.1 Observable Causality Implies Lorentz Group

In the Minkowski space-time of special relativity, a space-time event is described by
a pair (t, x), where t ∈ IR is a moment of time and x′ ∈ IR3 is a spatial location. In
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this space, the causality relation is described as follows: an event (t, x) can influence
an event (t ′, x′) if and only if a signal starting at location x at moment t and traveling
at a speed not exceeding the speed of light c, can reach the location x′ at a moment
t ′. The speed which is needed to cover the distance d(x, x′) between the two spatial
locations in time t ′ − t is equal to d(x,x′)

t ′−t ; therefore, the causality condition takes the

form d(x,x′)
t ′−t ≤ c, or, equivalently,

(t, x) � (t ′, x′) ⇔ c(t ′ − t) ≥ d(x, x′).

It is easy to check that this causality relation is preserved under several coordinate
transformations: parallel translations, rotations in 3-space, Lorentz transormations
and similarity.

Definition 1 By a region, wemean a closure of a bounded open set in theMinkowski
space.

Definition 2 We say that a set A causally precedes a set B – and denote it A � B –
if there exist events a ∈ A and b ∈ B for which a � b.

Definition 3 We say that a continuous 1–1 mapping f of the Minkowski space onto
itself preserves observable causality if for every two regions A and B, A � B if and
only if f (A) � f (B).

Theorem 1 Every mapping which preserves observable causality belongs to the
Lorentz group [2].

2.2 Approximately Measured Causality Implies the Lorentz
Group

For two points a = (a1, a2, a3, a4) and b = (b1, b2, b3, b4) in space IR4 we write
a ≺ b, if

b4 > a4 b4 − a4 ≥
√

(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2.

Let
δ(a, b) =

√
(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2 + (b4 − a4)2.

Definition 4 Let be h : (0,+∞) → (0,+∞) such that h(t) → 0, when t → +∞.
We say, that a set C ⊂ IR4 × IR4 is measured causality, if the following conditions
are hold:

(1) if (a, b) ∈ C , then there exists b′ such that a ≺ b′ δ(b, b′) ≤ h(δ(a, b));
(2) if (a, b) /∈ C , then there existsb′ such that¬(a ≺ b′) and δ(b, b′) ≤ h(δ(a, b)).
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Theorem 2 Let C ⊂ IR4 × IR4 is measured causality, f : IR4 → IR4 is continuous
bijection such that f −1 is also continuous one and (a, b) ∈ C if and only if, when
( f (a), f (b)) ∈ C. Then f is affine transformation. Moreover, f is composition of
Lorentz transformation, parallel translation and similarity [3].

2.3 Stochastic Causality is Inconsistent with the Lorentz
Group

Definition 5 By stochastic causality, we mean a continuous function p : IR4 ×
IR4 → [0, 1] for which, for some point e′ on the border of the future cone of e,
we have p(e, e′) > p(e, e′′), where e′′ = e − (e′ − e) is the symmetric point on the
border of the past cone of e.

Definition 6 We say that a stochastic causality function is Lorentz invariant if
p(T e, T e′) = p(e, e′) for each Lorentz transformation T and for all possible events
e and e′.

Theorem 3 Stochastic causality cannot be Lorentz-invariant [4].

3 Past Does Not Restore

When in 1986 I was guest Vladik, his son Misha was a little boy. Now he is a
mathematician and got an interesting result, showing that historians are engaged in
a hopeless case, trying to accurately describe the past [5].

MishaKoshelev,Alefeld andMeyer [6] showed that the problemof the description
of the last insoluble. They considered the simplest case of relation between the past
and the future is linear. It turned out that even with such a simplified scheme:

• predicting the future from the perspective of computational complexity requires
O(n2) steps;

• restoration of the past is among the so-called intractable computational task, i.e.,
is more complex.

4 Time Machine

I have write above about dream to have a time machine. How can this machine be
constructed?

There exist some constructions of time machine. One class of time machine uses
the Gödel idea of using of smooth closed timelike curves (timelike loops). Another
class uses quantum mechanics. These time machines are non-Gödelean one [7].
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In 1949 Kurt Gödel opened us the theoretical principle of the Time Machine
Construction. But the practical questions of realization of this theoretical possibility
require to solve a number of problems.

4.1 A Natural Time Machine in Simply-Connected
Space-Time can Exist only in Extremal Conditions

Let’s assume that the closed time-like smooth curve L is an analytical Jorgan’s curve
and one lies on an simply-connected surface F ⊂ D, L is border of F , and L is
contained in the space which is filled a dust matter with density ρ.

Then the Zelmanov’s chronometric invariant time τ(L) of living among the world
line L can be estimate as it follows:

τ(L) = 1

c

∮

L

g0i dxi√
g00

∼
√
8πGρ

c2
σ(F), σ (F) =

∫∫

F

dS (1)

From (1), if we allow “Euclidean” relation σ(F) ∼ π−1[l(L)]2, where

l(L) =
∮

L

3∑

i,k=1

√(
−gik + g0i g0k

g00

)
dxidxk

is spatial length of loop L and σ(F) is “Euclidean” area of a surface of F , it follows
that

τ(L) ∼ 2 · 10−24√ρ · [l(L)]2(sec). (2)

From this formula it is visible that causal chains exist or in extremal physical condi-
tions, or have the sizes of galactic scale [8].

4.2 Time Machine Construction Using Resilient Leaf in
5-Dimensional Hyperspace M5

In [9] we suggested project of time machine using a 4-dimensional wormhole. This
time machine is 4-dimensional wormhole which connects two events (at present and
at past) after the transformation of space-time M4 into a resilient leaf (or dense one)
in 5-dimensional spacetime M5.
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Fig. 1 A possible transition
on time-like curve L to past
b of event a for resilient leaf
M4 in foliation F

Fig. 2 A resilient
space-time M4 in
5-dimensional space-time
M5

Let < M4, gαβ > be a leaf of an orientable foliation F of codimension 1 in the
5-dimensional Lorentz manifold < M5, g(5)

AB >, g = g(5) |M4 , A, B = 0, 1, 2, 3, 5.
Foliation F is defined by the differential 1-form γ = γAdx A. If the Godbillon-Vey
class GV (F ) �= 0 then the foliation F has a resilient leaves.

We suppose that real global space-time M4 is a resilient one, i.e. is a resilient leaf
of some foliationF . Hence there exists an arbitrarily small neighborhood Ua ⊂ V 5

of the event a ∈ M4 such thatUa ∩ M4 consists of at least two connected components
U 1

a and U 2
a (see Fig. 1).

Remove the 4-dimensional balls Ba ⊂ U 1
a , Bb ⊂ U 2

a , where an event b ∈ U 2
a ,

and join the boundaries of formed two holes by means of 4-dimensional cylinder.
As result we have a 4-wormhole C , which is a Time machine if b belongs to the
past of event a (see Figs. 2, 3). The past of a is lying arbitrarily nearly. The distant
Past is more accessible than the near Past. A movement along 5th coordinate (in the
direction γ A) gives the infinite piercing of space-time M4 at the points of Past and
Future. It is the property of a resilient leaf.
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Fig. 3 Transition to past in
resilient space-time M4

through 4-wormhole C

If σ is the characteristic 2-dimensional section of the 3-dimensional domain D0

that one contains the 4-wormhole, than we have for the mean value of energy density
jump which one is required for creation of 4-wormhole C the following formula [9]:

〈δε〉 ∼ c4

4πG

1

σ
, (3)

where c is the light velocity, G is the gravitational constant.

4.2.1 Transformation Spacetime to Resilient Leaf

When does a foliation have a resilient leaf? For example, ifF be a codimension one
transversely oriented, transversely affine foliation on a closed manifold, then affine
foliation cannot have a medium complexity—it is either so complicated as to contain
resilient leaves or so simple as to be almost without holonomy.

If foliation F has no a resilient leaf we transform F into foliation F ′ with
resilient leaves with the help of non-integrable deformationFt , t ∈ [0, 1],F0 = F ,
F1 = F ′.

The value of energy density jump that one need for this deformation F → F ′

(with g(5)
AB → (g′)(5)AB) is equal to
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δε ∼ πc4

G

[
l(ξ ′)

vol ′(M5)
[−2β ′

1(M
5) + β ′

2(M
5)] − l(ξ)

vol(M5)
[−2β1(M

5) + β2(M
5)]

]
,

where βi (M5) are the Betti’s numbers, l(ξ) is the trajectory length of some vector
field ξ on M5 [10].

We can declare that our local power actions in space-time are capable to recon-
struct its placement in Hyperspace.

The Gidbillon-Vey class is characteristic class of foliation, which is connected
with scalar and electromagnetic fields. In the case of foliation of codimension 3 the
characteristic classes are connected with electromagnetic field Ai and gluons A(3)i
and A(9)i .

4.2.2 Using of Dense Leaves

Another method of the time travel is an using of the dense leaves. If M4 is a dense
leaf in F , then in a dense leaf there is there is a possibility to make transition in
the past, having left in Hyperspace and having passed rather small distance. It is a
question: in what moment and from what point of dense leaf such trip is possible?
But we see that the possibility of such travel exists. If all leaves of the foliation are
dense, i.e. the foliation is minimal one, than the travel to the past is possible from of
any leaf.

4.2.3 Natural Time Machine in Expanding Universe

Inaba and Tsuchiya [11] proved that the expanding foliation of codimension 1 in
closed manifold has a resilient leaf, that are dense.

Therefore, in Expanding 5-dimensional Universe we have good conditions for the
creation of timelike loops, and hence, time machine is common space phenomenon.

Note that the quantum fluctuations of 5-metrics g(5) and the topology (the forma-
tion of 4-handles) in a 5-dimensional space-time

Δg(5) ∼ L∗

L

√
T

L0
, (4)

where L∗ ∼ 10−33 cm is the Planck’s constant and L4 × L0 is the characteristic size
5-dimensional domain, T cm is a constant associated with the 5th dimension [?], can
have macroscopic character and hence the probability to detect spontaneous bridges
into the past in the form of 4-wormhole is extremely high.
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5 Antigravitation

I wrote above that antigravitation can be used for washing of high windows.
Can we somehow describe antigravity today?
Let’s consider [10] 5-metrics

dS2 =
[
1 + 1

6
(κc2ρ2a − 2Λ1)ar

2

]
dx0

2 −
[
1 − (κc2ρ2a + Λ1)

3
· r2a

]−1

dr2−

−r2dΩ2 − da2, dΩ2 = dθ2 + sin2 θdϕ2,

where κ, ρ2,Λ1 = const . Gravitational force, operating on a trial body, in 4-
dimensional space-time < M4

a , ds
2 >=< (x0, r, θ, ϕ), dS2|a=const >, is possible to

calculate on a formula from [12, p. 327]:

fα = mc2
√

1 − v2

c2

{
− ∂

∂xα
ln

√
g00 + √

g00

[
∂

∂xβ

(
g0α
g00

)
− ∂

∂xα

(
g0β
g00

)]
vβ

c

}
.

We have

fr = − mc2

6
√
1 − v2/c2

[
κc2ρ2a − 2Λ1

]
ar

[
1 + 1

6
(κc2ρ2a − 2Λ1)ar

2

] , fϕ = fθ = 0.

In this case, it is obvious that it is possible to find the functions Λ = Λ1a, ρ = ρ2a2

so that ρ2 > 0, and fr changes a sign in a = 0 and a = 2Λ1/(κc2ρ2) in extensive
spatial area with radius r < c

√
6κρ2/|Λ1| (Inequality is received as a condition of

positivity of a denominator in a formula for fr for every a.), i.e. the attraction to the
center of r = 0 is replaced by the repulsion from center r = 0.

Transition through a = 0 changes a sign of “the cosmological constant” Λ, and
observable change of gravitation on antigravitation can be regarded as manifesta-
tion of the cosmological repulsion. But upon transition through a = 2Λ1/(κc2ρ2)

“the cosmological constant” keeps a sign, and it means that we have other type of
antigravitation.

If r > c
√
6κρ2/|Λ1|, then denominator of fr is remained positive under

a > a+(r) = 1

κc2ρ2
[Λ1 +

√
Λ2

1 − (6κc2ρ2/r2)] or a < a−(r) =

= 1

κc2ρ2
[Λ1 −

√
Λ2

1 − (6κc2ρ2/r2)].
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IfΛ1 > 0, thenwehavea+(r) < 2Λ1/(κc2ρ2). Hence, for every r > c
√
6κρ2/Λ1

when the parameter a is changed in some small interval

(2Λ1/(κc
2ρ2) − ε(r), 2Λ1/(κc

2ρ2) + ε(r)),

the function fr changes a sign, i.e. the attraction is replaced by the repulsion. Under
Λ1 < 0 we have 2Λ1/(κc2ρ2) < a−(r). Hence, for every r > c

√
6κρ2/Λ1 gravita-

tiomal force fr changes sign, when the parameter a is changed in the same interval.
Thus, when we are moving in 5-dimensional bulk, i.e. when a is changed, the

geometry of 4-brane M4
a is changed so that gravitation (attraction) is replaced with

antigravitation (repulsion).
Of course, our result does not give any hope that we will soon use antigravity in

the household, but I soon tried to imitate to Vladik Kreinovich everywhere to see the
scientific problems that can be solved.

References

1. A.K. Guts, Chronogeometry: Axiomatic Relativity Theory. OOO “UniPack”, Omsk (2008)
2. O. Kosheleva, V. Kreinovich, Observable causality implies Lorentz group: Alexandrov-

Zeeman-type theorem for space-time regions. Math. Struct. Nodelling 2(30), 4–13 (2014)
3. V. Kreinovich, Approximately measured causality implies the Lorentz group: Alexandrov-

Zeeman result made more realistic. Inter. J. Theor. Phys. 33, 1733–1747 (1994)
4. O. Kosheleva, V. Kreinovich, Stochastic causality is inconsistent with the Lorentz group.Math.

Struct. Model. 2(28), 15–20 (2013)
5. A.K. Guts, Mani-Variant History of Russia (AST publ, Moscow, 2000)
6. G. Alefeld, M. Koshelev, G. Mayer, Fixed future and uncertain past: theorems explain why it

is often more difficult to reconstruct the past than to predict the future, in Proceedings of the
NASA URC (University Research Center), Technical Conference, February 16–19, pp. 23–27.
Al-buquerque, NM (1997)

7. A.K. Guts, Geometry of historical epoch, the Alexandrov’s problem and non-Gödel quantum
time machine. e-Print archive: 1608.08532 (2016). http://arxiv.org/abs/1608.08532v2

8. A.K. Guts, Closed timelike smooth curves in the general relativity theory. Sov. Phys. J. 16,
1215–1217 (1975)

9. A.K. Guts, The Elements of Time Theory (Dialog-Sibir publ., Omsk, Nasledie, 2004)
10. A.K. Guts, Physics of Reality (KAN publ, Omsk, 2012)
11. N. Inaba, N. Tsuchiya, Expansive foliations. Hokkaido Math. J. 21, 39–49 (1992)
12. L. Landau, E. Lifshits, Theory of Field (Nauka, Moscow, 1973)

http://arxiv.org/abs/1608.08532v2


Bilevel Optimal Tolls Problems with
Nonlinear Costs: A Heuristic Solution
Method
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Abstract We consider a bilevel programming problem modeling the optimal toll
assignment as applied to an abstract network of toll and free highways. A public
governor or a private lease company run the toll roads andmake decisions at the upper
levelwhen assigning the tollswith the aimofmaximizing their profits. The lower level
decision makers (highway users), however, search an equilibrium among themwhile
trying to distribute their transportation flows along the routes that would minimize
their total travel costs subject to the satisfied demand for their goods/passengers. Our
model extends the previous ones by adding quadratic terms to the lower level costs
thus reflecting the mutual traffic congestion on the roads. Moreover, as a new feature,
the lower level quadratic costs aren’t separable anymore, i.e., they are functions of
the total flow along the arc (highway). In order to solve the bi-level programming
problem, a heuristic algorithm making use of the sensitivity analysis techniques
for quadratic programs is developed. As a remedy against being stuck at a local
maximum of the upper level objective function, we adapt the well-known “filled
function” method which brings us to a vicinity of another local maximum point. A
series of numerical experiments conducted on test models of small and medium size
shows that the new algorithm is competitive enough.
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1 Introduction

The previous centurymodel of locatingmanufacturing enterprises as near as possible
to the potential consumers has given way to others mainly due to the impressively
rapid development of the modern transportation tools. Nowadays, producers aren’t
restricted too much by large distances from the markets and can compete mainly in
the areas of technologies thus enhancing the sales volumes.

However, due to the newly appearing bothers about ecology, safe transportation of
hazardousmaterials, the complexity of themodern distribution and supply chains, the
logistics costs has grown astronomically. According to the recent IMF (International
Monetary Fund) estimates, logistics expenditures are responsible on average for 12%
of the gross national product (GNP), while scaling 5–30% of the total costs at the
enterprise level.

Currently, in many countries, both governmental bodies and private companies
participate in gross efforts aimed at the enlargement and improvement of the trans-
portation network’s infrastructure and facilities in order to achieve the higher grade of
involvement in the global economy. There are bodies engaged in the enhancement of
transference andmovement facilities, investment in new technologies bringing about
better reliability and durability of highways and other transportation infrastructure
objects. For instance, in Mexico, it is common that non-governmental (leasing) com-
panies, non-federal (state) structures, as well as various financial institutions (like
banks, holdings, etc.), are contracted with the aim of picking up the toll payments
from the highway users.

Since recently it has become clear that certain flexibility in the assignment of
tolls on the crucial highways attracts more vehicles to use them and thus relaxing
the heavy traffic along the free roads. Hence, a natural question arises how to eval-
uate the appropriate tolls for each of the toll thoroughfares. In other words, the toll
optimization problem (TOP) is a crucial element of an efficient management of the
transportation infrastructure.

Here, we consider the TOP as the problem of assigning optimal tolls to the arcs
of a multi-commodity transportation network. The latter is usually stated as a bilevel
mathematical problem (see, e.g., [6]), in which the upper level is controlled by a
leasing company (or a public administrator) who raises profits from the tolls assigned
to (some) arcs of the network, while the lower level deals with an array of drivers
(transportation companies) riding the cheapest paths. The problem then reads as
follows: Find equilibrium among the toll values that provide high revenues being yet
attractive enough to the users.

The problem in question has been examined by many prominent researchers. It
suffices to mention only a few high-level publications that have dealt with the TOP.
Indeed, Magnanti and Wong [19] provided a comprehensive theoretical base for the
decision makers both at the upper and lower levels of the problem making use of
the integer programming techniques. Their approach proposed how to unify network
design models and the ways of developing network design algorithms.
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Marcotte [20] noted that the network design problem (NDP)mainly deals with the
optimal balance either of the transportation, investment, or maintenance costs of the
networks subject to congestion. The network users behave according to Wardrop’s
first principle of traffic equilibrium. Marcotte [20] also supposed that the NDP could
be modeled as a multi-level mathematical program.

Dempe and Starostina [5] contributed to the solution of TOP by designing “fuzzy”
algorithms. A bit earlier, Lohse and Dempe [18] studied TOP based on the analysis
of an optimization problem that is a kind of reverse to TOP. At the same time, Didi-
Biha et al. [8] developed an algorithm for calculation of lower and upper bounds in
order to determine the maximum gain from the tolls on a subset of arcs of a network
transporting various commodities.

The bilevel programming offers a convenient framework modeling the toll opti-
mization problem as it allows one to make use of the user’ behavior explicitly. In
contrast to the previous works mentioned above, Labbé et al. [17] handles TOP as a
sequential game involving the owners of the highway network (the leaders) and the
users (the followers) as the players, which follows exactly the structure of a bi-level
program. Such a structure has also been examined by Brotcorne [2] for the problem
of fixing tariffs on load trucks running the highways. In the latter case, the leader
is played by a group of competing companies, and their revenues are formed by the
gross profits from the tolls, while the follower is a carrier who seeks to lower its
travel expenditures, given the toll values dictated by the leader(s).

A simple TOP was studied in Kalashnikov et al. [14], where a motorway admin-
istrator (the leader) decides the tolls on a subset of arcs of the network, whereas the
users (followers) seek the shortest paths (in generalized time units) connecting the
origin and destination nodes for their goods. The aim of the leader in this setting is
to maximize the toll revenue. The problem could be formulated as a combinatorial
program comprising NP-hard tasks, such as the Traveling Salesman Problem (see,
Labbé et al. [16], for a reduction method). By means of the already known NP-
hardness proofs, Roch et al. [22] obtained new results concerning the computational
complexity of some existing algorithms.

Brotcorne et al. [3] treatedTOPunder other assumptions: they allowed the network
to be subsided, thus the toll values can be arbitrarily large. The authors proposed an
algorithm constructing paths and then forming columns in order to find the optimal
tariff values for the current path (the lower bound). On the next stage, they updated
the profit upper bound and finally, implemented a diversification step. They also
tested their numerical procedure on various examples of the problem in question
to conclude that the presented method performed well for networks with a limited
number of toll arcs. The authors continued their work on the same problem later
in Brotcorne et al. [4] by making use of a tabu search algorithm: the latter helped
them to report that their heuristics produced better results than other combinatorial
approaches.

Dempe and Zemkoho [7] also explored the TOP and reformulated it with aid of
the optimal-value-function technique. This reformulation is advantageous as com-
pared to such making use of the Karush-Kuhn-Tucker (KKT) optimality conditions
because the former accumulates information about the congestion in the network.
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They deduced the optimality conditions appropriate for this reformulation and exam-
ined certain related theoretical properties.

In the majority of the above-mentioned works, the TOP in question had linear
lower level problems. The aim of the present chapter is to develop an algorithm
making use of the allowable ranges to stay basic (ARSB) deduced with the aid of
sensitivity analysis applied to the lower level quadratic problem; cf., Boot [1], Jansen
[11], Hadigheh et al. [10]. This efficient tool helps determine allowable variations of
the coefficients of the objective function that do not ruin the optimality of a solution.
Also, it makes one able to trace the variations in the optimal solution whenever
the parameters get values beyond the ARSB. This work has been motivated by the
previous attempts described in Roch et al. [22].

Apart from making use of the allowable ranges, the proposed algorithm also
exploits the techniques of the “filled functions”; cf., Renpu [21], Wu et al. [24], Wan
et al. [23]. The latter is quite efficient when a local maximum has been run into. In
that case, the “filled function” procedure allows us either to jump into a neighborhood
of another local maximum, which can happen to be better, or otherwise to conclude
with the high probability that the best feasible optimal solution has been found. The
stopping point is selected based upon certain tolerance criterion.

The validity, robustness, and the efficiency of the proposed heuristics are con-
firmed by the results of numerical experiments with test examples used to compare
the developed approach against the other well-known algorithms.

The chapter is arranged as follows: Sect. 2 provides the statement of the model
together with the involved parameters. Section3 presents the reformulation of the
Toll Optimization Problem as a Linear-Quadratic Bilevel Programming Problem.
Section4 presents the theoretical background of the proposed algorithms while
Sect. 5 deals with the algorithms’ description. In Sect. 6, the results of numerical
experiments with several toll optimization test problems are presented. Section7
comprises conclusions and the targets for future research. The acknowledgments
and the list of references finish the paper.

2 The Toll Optimization Problem

In this section, we extend the classical formulation of the Toll Optimization Problem
(TOP) by introducing the capacity upper bounds and reflecting the traffic conges-
tion by new terms depending quadratically on the commodity flows along the arcs
of the transportation network. As usual, we frame TOP as a leader-follower game
that turns up on a multi-commodity network G = (K , N , A) defined by a set of
commodities K = {1, 2 . . . , κ}, a set of nodes N = {1, 2 . . . , η}, and a set of arcs
A = {1, 2 . . . , M}. We split the latter into a subset A1 ⊂ A of toll arcs and a com-
plementary subset A2 = A \ A1 of toll-free arcs, where |A1| = M1, |A2| = M2 and
|A| = M1 + M2 = M . Every arc a ∈ A is endowed with a fixed travel delay ca and
a capacity upper bound qa . In addition, a (nonnegative) factor dk,�

a,e = d�,k
e,a reflects the

congestion generated by the reciprocal influence of commodity k moving along arc
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a and commodity � shipped along arc e. If the two commodities k, � ∈ K , k �= �,
do not reveal any influence on one another (for example, when they are shipped via
arcs georaphically very far from each other), then the congestion factor dk,�

a,e is set
to zero. Each toll arc a ∈ A1 is provided with a toll value ta to be determined. In
order to preserve consistency, the travel costs, the congestion factors, and the tolls are
measured in the same units. The toll vector t = {ta | a ∈ A1} is bounded from above
by the vector tmax = {tmax

a | a ∈ A1} and it is nonnegative. The shipping demand for
a commodity group k ∈ K between the origin node o(k) and the destination node
δ(k) is denoted by nk . Therefore, the shipping demand for each commodity k ∈ K
at every node i is given as follows:

bk
i =

⎧
⎪⎨

⎪⎩

−nk, if i = o(k),

nk, if i = δ(k),

0, otherwise.

(1)

Now, let xk = {xk
a | a ∈ A} denote the set of flows of commodity k ∈ K along

the arcs a ∈ A, i+ ⊂ A being the subset of arcs having i as their head node and i−
the set of arcs boasting i as their tail node. Then the TOP can be specified as the
(optimistic) bilevel program:

maximize
t,x

F(t, x) =
∑

k∈K

∑

a∈A1

ta xk
a , (2)

subject to ta ≤ tmax
a , ∀a ∈ A1, (3)

ta ≥ 0, ∀a ∈ A1, (4)

and xk ∈ Ψk(t, x−k), ∀k ∈ K , (5)

where x−k = {x1, . . . , xk−1, xk+1, . . . , xκ}, and

Ψk(t, x−k) = Argmin
xk

fk(xk) =
∑

a∈A1

ta xk
a +

∑

a∈A

ca xk
a +

∑

k �=�∈K

∑

a∈A

∑

e∈A

dk,�
a,e xk

a x�
e

+
∑

a∈A

∑

e∈A

1

2
dk,k

a,e xk
a xk

e ,

(6)

subject to
∑

a∈i+
xk

a −
∑

a∈i−
xk

a = bk
i , ∀i ∈ N , (7)

xk
a +

∑

k �=�∈K

x�
a ≤ qa, ∀a ∈ A, (8)

xk
a ≥ 0, ∀a ∈ A. (9)

In the above (optimistic) setting, the leader’s objective function (2) represents
its desire of maximizing its profit given by the sum of all the toll values times the
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flow in their respective arcs. Constraints (3) and (4) bound the toll values to be
nonnegative and not to exceed values that are still attractive enough to the users. The
lower level variables xk provide solution to the Nash equilibrium (5) described by the
quadratic program (5)–(9). The payoff functions (6) reflect the followers’ objective of
minimizing the “transportation costs” given by the sumof the distance costs, the tolls,
and the congestion terms. Notice that in the payoff function (6) for the commodity
k ∈ K , the terms xk

a x�
e are linear (because x�

e are fixed for � �= k), whereas the terms
xk

a xk
e are quadratic. The followers’ constraints (7) are the “flow conservation” rules

for the respective commodities. Finally, (8) and (9) are the capacity and nonnegativity
restrictions for the followers’ strategies xk .

In order to rule out contradictions, the following assumptions have been made
similar to those in [8]:

1. There is no profitable vector that induces a negative cost cycle in the network.
This condition is clearly satisfied if all the distance traveled costs and congestion
factors are non-negative.

2. For each commodity, there exists at least one path composed solely of toll-free
arcs.

3 Linear-Quadratic Bilevel Program Reformulation

Unlike the previous linear settings of the TOP, the lower level programming problems
aren’t separable anymore since the flows of all the commodities are involved in the
followers’ objective functions. However, if the matrices Dk,� = {dk,�

a,e | a, e ∈ A} and
D = {dk,�

a,e | a, e ∈ A; k, � ∈ K } of the coefficients corresponding to the products
xk

a x�
e appearing in the lower level objective functions (6) are positive semi-definite,

we can use the Karush-Kuhn-Tucker (KKT) conditions to prove that the lower level
Nash equilibriumproblem (5)–(9) can still be replacedwith a quadratic programming
problem given by:

x ∈ Ψ (t), (10)

where

Ψ (t) = Argmin
x

f (x) =
∑

k∈K

∑

a∈A1

ta xk
a +

∑

k∈K

∑

a∈A

ca xk
a

+
∑

k∈K

∑

�∈K

∑

a∈A

∑

e∈A

1

2
dk,�

a,e xk
a x�

e ,

(11)
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subject to
∑

a∈i+
xk

a −
∑

a∈i−
xk

a = bk
i , ∀i ∈ N , ∀k ∈ K , (12)

∑

k∈K

xk
a ≤ qa, ∀a ∈ A, (13)

xk
a ≥ 0, ∀a ∈ A, ∀k ∈ K . (14)

Here, thematrix D is a κ × κ-blockmatrix whose block components are thematrices
Dk,� (thus, D ∈ R

Mκ×Mκ ).
In the latter reformulation, constrains (12)–(14) imply that all the followers’ con-

straints (7)–(9) must be met. However, the lower level objective function (11) is not
the sum of all the followers’ objective functions (6) since for k, � ∈ K , k �= �, the
coefficient of the term xk

a x�
e in (11) is (1/2)dk,�

a,e rather than dk,�
a,e as in (6).

Theorem 1 The Nash equilibrium problem (5)–(9) and the quadratic programming
problem (10)–(14) are equivalent.1

4 The Heuristic Algorithms

In order to find a solution of our TOP, we propose two heuristic algorithms process-
ing the linear-quadratic bilevel programming problem (2)–(4), (10)–(14). The main
ideas of these algorithms are the use of the allowable ranges to stay basic (ARSB,
described in Hadigheh et al. [10] for the followers’ decision variables (which are
analogous to the allowable ranges to stay optimal, ARSB, for quadratic programs)
and the development of a projected gradient method for the leader’s objective func-
tion. The latter methods make use of sensitivity analysis (SA) applied to the lower
level quadratic program.

The ARSBs are evaluated in a similar way as in Kalashnikov et al. [13, 14]. For
an upper level feasible solution t , we solve the lower level quadratic program with
the aid of the Wolfe-Dual algorithm in order to get the ARSBs {Δ−

a ,Δ+
a } for each

leader’s decision variable ta , a ∈ A1. If the flow along the arc a ∈ A1 isn’t zero,
we increase the value of ta by the lowest maximum allowable increase Δ+

a (as the
consequence of that, the flow on the arc a may drop but not down to zero since
the basic variables xk

a , k ∈ K , will stay basic, so it would lead to a better objective
function’s value). Otherwise, i.e., if the flow on the arc a ∈ A1 is zero, it may mean
that the toll assigned to this arcs is too high, so we decrease the value of ta by the
greatest allowable decrease Δ−

a , so that the new toll might become attractive to the
users.2

As for the projected gradient method, we first compute the Jacobian matrix dx/dt
(as described in Boot [1]) at the latest feasible solution t . Then the vector of the fastest
increase for the upper level objective function (2) can be found using the chain rule.

1The proof of Theorem 1 is exported to Appendix 1.
2The procedure for computing the ARSB is presented in the Appendix 2.1.
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The components of the gradient for the leader’s objective function are given as
follows:

∂ F

∂ta
(t, x(t)) =

∑

k∈K

(

xk
a + t · dxk

a

dt

)

, a ∈ A1. (15)

The new approximation for the global optimum is

t̂a = ta + γ
∂ F

∂ta
(t, x(t)), a ∈ A1, (16)

where γ > 0 is the stepsize.3

If the SA techniques do not allow further increases (or decreases) for the toll
variables, it may mean that the current solution provides a local maximum point for
the leader’s objective function. In this case, we resort to the use of the filled function
(FF) method first proposed in Renpu [21], then developed in Wu et al. [24], Wan et
al. [23], then adapted for maximization and widely discussed in Kalashnikov et al.
[13, 15], and Flores-Muñiz et al. [9]. The filled function transformations smoothen
the original function (2) allowing one to make a “jump” to a neighborhood of another
possible local maximum point (if the latter exists).

Once we have updated the toll vector, we proceed to solve the problem of the
followers and apply our heuristics again. If that does not allow further improvements,
we launch the FF procedure once more. This technique can provide for an increase
(or decrease) of the toll values if the next local maximum of the leader’s objective
function is higher; otherwise, after several fruitless attempts in a row, we stop the
algorithm and accept the latest solution as an approximation of the global optimum
solution.4

In this work, apart from the explicit capacity constraint (13), the traffic congestion
affects the transportation cost, too. The latter is exposed in the linear (not necessarily
constant) marginal cost:

da(xk
a ) = ca xk

a +
∑

k �=�∈K

∑

e∈A

dk,�
a,e xk

a x�
e +

∑

e∈A

1

2
dk,k

a,e xk
a xk

e , (17)

for each good k ∈ K transported along the arc a ∈ A, which clearly conduces to the
quadratic cost terms appearing in (6) and (11). Therefore, the lower level program
is quadratic but not linear as it was assumed in all previous papers referred to in the
Introduction.

3The procedure for computing the Jacobian ∂x/∂t is presented in the Appendix 2.2.
4The procedure for the FF method is presented in the Appendix 3.1.
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5 Description of the Algorithms

In this section, we describe the proposed procedures in more detail.

5.1 Algorithm 1

The first algorithm is implemented solely with the ARSB and the FF method:

Step 0: Set m = 0, F0 = 0 and t1a ∈ [0, tmax
a ], a ∈ A1.

Step 1: For the toll vector tm+1 = {tm+1
a | a ∈ A1} solve the lower level quadratic

program (10)–(14), thus finding an optimal response xm+1 = x(tm+1). Whenever the
optimal solution of the lower level problem is not unique, we accept the optimistic
version, that is, we select the one that maximizes the upper level objective function
F . Calculate the leader’s objective function’s new value Fm+1 = F(tm+1, xm+1) and
go to Step 2.

Step 2:Compare Fm+1 = F(tm+1, xm+1) to that obtained at the current iteration (m).
If Fm+1 > Fm , update m := m + 1 and go to Step 3; otherwise, go to Step 4.

Step 3: Find the ARSBs provided by the SA techniques applied to the quadratic pro-
gramming problem (10)–(14) corresponding to the toll vector tm , i.e., the maximum
increase and decrease parameters Δ+

a and Δ−
a , respectively, for the toll-arc variables

ta , a ∈ A1. Define the subset of indices:

A+
1 =

{

a ∈ A1

∣
∣
∣
∣

∑

k∈K

xk
a (tm) > 0

}

. (18)

For the new toll vector tm+1, we increase the current toll value for the basic toll-
arcs by the allowable increment Δ+

a , a ∈ A+
1 , and decrease the current toll value for

the nonbasic toll-arcs by the allowable decrement Δ−
a , a ∈ A1 \ A+

1 (of course, not
permitting that the toll value tm+1

a exceeds the upper bound tmax
a nor drops below

zero). More precisely, we set:

tm+1
a =

{
min{tmax

a , tm
a + Δ+

a }, if a ∈ A+
1 ,

max{0, tm
a − Δ−

a }, if a /∈ A+
1 ,

, ∀a ∈ A1. (19)

Next, if tm+1
a �= tm

a for at least one a ∈ A1, return to Step 1 to minimize the lower
level aggregate objective function with the updated toll values. Otherwise, i.e., if no
toll value has been changed, go to Step 4.

Step 4: The present set of toll values {tm+1
a | a ∈ A1} apparently provides a local

maximum of the leader’s objective function. In order to jump to some other local
maximum solution, apply the FFmethod adapted formaximization; see, Kalashnikov
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et al. [13]. If this FF technique improves the value of the leader’s objective function F ,
return to Step 1 and minimize the lower level aggregate objective function under the
updated toll values. Otherwise, if we fail to increase the leader’s objective function
for 10 attempts in a row, go to Step 5.

Step 5: It seems to be impossible to increase the leader’s objective function’s value,
hence stop the algorithm and report the current vectors tm and xm as an approximate
(global) optimum solution.

5.2 Algorithm 2

For the second algorithm, we need the matrix D = {dk,�
a,e | a, e ∈ A; k, � ∈ K } of the

coefficients of the quadratic terms appearing in the lower level objective function (11)
to be positive definite, in order to compute the Jacobian matrices of the followers’
payoff functions. Then, we just replace the Step 2 of Algorithm 1 with the following
step:

Step 2: If Fm+1 < Fm , go to Step 3 of Algorithm 1. Otherwise, i.e., if Fm+1 >

Fm , update m := m + 1. Find the Jacobian matrix dx/dt (corresponding to the
vector c + tm), provided by the SA techniques applied to the quadratic programming
problem (10)–(14), and compute the gradient vector d F/dt at the point (tm, xm),
given by (15). Then update the toll vector tm+1 by shifting the current toll vector in
the direction of the gradient with a step size γ without violating constraints (3) and
(4). More exactly, calculate

tm+1
a = max

{

0,min

{

tmax
a , tm

a + γ
∂ F

∂ta
(tm, xm)

}}

, a ∈ A1, (20)

and return to Step 1. If no toll value is updated nor the leader’s objective function’s
value is improved, we reduce (by half) the step size γ and compute the new toll
vector tm+1 again. If after having reduced the stepsize for 10 attempts in a row the
leader’s objective function’s value does not improve, go to Step 3 of Algorithm 1.
Steps 3 through 5 of Algorithm 2 are identical to those of Algorithm 1.

In this second algorithm, we use the gradient method as a first attempt to improve
the leader’s objective function’s value because the SA tools required to compute
the Jacobian matrix are computationally faster than the ones needed to calculate the
ARSBs (the ARSB requires to solve between 2 and M1 + 1 linear programming
problems, meanwhile the Jacobian matrix requires 10 matrix operations). Even so,
we do not replace the Step 3 of Algorithm 1 with this Step 2 of Algorithm 2 since
the gradient method by itself can’t deal with the regions where the objective function
does not change.
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5.3 The Algorithm for Calculating the ARSBs

Here, we describe how we obtain the needed allowable ranges to stay basic (ARSB)
estimates. Let {ta | a ∈ A1} satisfy (3) and (4).

Step 1: Solve the quadratic program (QP) (10)–(14) and find the lower level optimal
response x(t) = {xk

a | a ∈ A, k ∈ K }. Next, define x0
a = qa − ∑

�∈K
x�

a , for all a ∈ A

(notice that x0
a ≥ 0, ∀a ∈ A).

Step 2: To obtain a complementary solution (x, y, s) for the Wolfe-Dual of the QP
(10)–(14), we solve the following linear program:

maximize
y,s

ψ(y, s) =
∑

k∈K

∑

i∈N

bk
i yk

i −
∑

a∈A

qas0a , (21)

subject to

∑

i∈a+
yk

i −
∑

i∈a−
yk

i − s0a + sk
a =

ta + ca +
∑

�∈K

∑

e∈A

dk,�
a,e x�

e , ∀a ∈ A1, ∀k ∈ K ,
(22)

∑

i∈a+
yk

i −
∑

i∈a−
yk

i − s0a + sk
a =

ca +
∑

�∈K

∑

e∈A

dk,�
a,e x�

e , ∀a ∈ A2, ∀k ∈ K ,
(23)

sk
a ≥ 0, ∀a ∈ A, ∀k ∈ K ∪ {0}, (24)

where y = {yk
i ∈ R | i ∈ N , k ∈ K }, s = {sk

a ∈ R | a ∈ A, k ∈ K ∪ {0}}, and for
any a ∈ A, the subsets a+ and a− of A are defined as follows: a+ = {i ∈ N | a ∈ i+}
and a− = {i ∈ N | a ∈ i−}.
Step 3: Make the partition of the index set I = {(a, k) | a ∈ A, k ∈ K ∪ {0}} as
follows:

B = {(a, k) | xk
a > 0, a ∈ A, k ∈ K ∪ {0}}, (25)

N = {(a, k) | sk
a > 0, a ∈ A, k ∈ K ∪ {0}}, (26)

T = I \ (B ∪ N ). (27)

Step 4: For all â ∈ A+
1 , find the optimal solutions λ+

u of the linear programming
problem:
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maximize
λ,x,y,s

λ+
u (λ) = λ, (28)

subject to
∑

a∈i+
xk

a −
∑

a∈i−
xk

a = bk
i , ∀i ∈ N , ∀k ∈ K , (29)

∑

k∈K

xk
a + x0

a = qa, ∀a ∈ A, (30)

∑

i∈a+
yk

i −
∑

i∈a−
yk

i − s0a + sk
a −

∑

�∈K

∑

e∈A

dk,�
a,e x�

e

− λ = ta + ca, ∀a ∈ A+
1 , ∀k ∈ K ,

(31)

∑

i∈a+
yk

i −
∑

i∈a−
yk

i − s0a + sk
a −

∑

�∈K

∑

e∈A

dk,�
a,e x�

e =

ta + ca, ∀a ∈ A1 \ A+
1 , ∀k ∈ K ,

(32)

∑

i∈a+
yk

i −
∑

i∈a−
yk

i − s0a + sk
a

−
∑

�∈K

∑

e∈A

dk,�
a,e x�

e = ca, ∀a ∈ A2, ∀k ∈ K ,
(33)

xk
a ≥ 0, ∀(a, k) ∈ B, (34)

xk
a = 0, ∀(a, k) ∈ N ∪ T , (35)

sk
a ≥ 0, ∀(a, k) ∈ N , (36)

sk
a = 0, ∀(a, k) ∈ B ∪ T , (37)

λ ∈ R, (38)

and for each â ∈ A \ A+
1 , find the optimal solutions λâ

� of the linear programming
problem:

minimize
λ,x,y,s

λâ
�(λ) = λ, (39)

subject to
∑

a∈i+
xk

a −
∑

a∈i−
xk

a = bk
i , ∀i ∈ N , ∀k ∈ K , (40)

∑

k∈K

xk
a + x0

a = qa, ∀a ∈ A, (41)

∑

i∈â+
yk

i −
∑

i∈â−
yk

i − s0â + sk
â −

∑

�∈K

∑

e∈A

dk,�

â,e x�
e

− λ = tâ + câ, ∀k ∈ K ,

(42)

∑

i∈a+
yk

i −
∑

i∈a−
yk

i − s0a + sk
a −

∑

�∈K

∑

e∈A

dk,�
a,e x�

e =

ta + ca, ∀â �= a ∈ A1, ∀k ∈ K ,

(43)
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∑

i∈a+
yk

i −
∑

i∈a−
yk

i − s0a + sk
a

−
∑

�∈K

∑

e∈A

dk,�
a,e x�

e = ca, ∀a ∈ A2, ∀k ∈ K ,
(44)

xk
a ≥ 0, ∀(a, k) ∈ B, (45)

xk
a = 0, ∀(a, k) ∈ N ∪ T , (46)

sk
a ≥ 0, ∀(a, k) ∈ N , (47)

sk
a = 0, ∀(a, k) ∈ B ∪ T , (48)

λ ∈ R. (49)

Step 5: Finally, set Δ+
â = λ+

u , â ∈ A+
1 , and Δ−

â = −λâ
� , â ∈ A\A+

1 , as the maximum
allowable increase and decrease limits, respectively, for the tolls.

5.4 The Procedure for Finding the Jacobian Matrices

Let {ta | a ∈ A1} satisfy (3) and (4).

Step 1: Solve the QP (10)–(14) and find the lower level optimal response
x(t) = {xk

a | a ∈ A, k ∈ K }.
Step 2: Let Ceq , Cin , be the matrices and deq , din the vectors such that Ceq x = deq is
the set of equality restrictions given by (12), and Cin x ≤ din is the set of inequality
restrictions given by (13) and (14). Now, find the sub-matrix C∗

in composed of the
rows ofCin corresponding to the inequality constraints (13) and (14) that are satisfied
as exact equalities by the solution vector x(t).

Step 3: With the rows of Ceq and C∗
in form a new matrix C =

[
Ceq

C∗
in

]

and find its

sub-matrix C ∗ given by removing all the linearly dependent rows of C .
Step 4: Compute the Jacobian matrix dx/dt as follows:

dx

dt
= −D−1 + D−1C ∗T

(C ∗ D−1C ∗T
)
−1
C ∗ D−1; (50)

here, the matrix D is the same κ × κ-block matrix whose block components are the
matrices Dk,� (thus, D ∈ R

Mκ×Mκ ) defined in Sect. 3.
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5.5 Filled Function Algorithm

Now we describe the steps related to the filled function (FF) method applied at Step
4 of Algorithms 1 and 2. The description of these auxiliary steps denoted as FFSteps
are resembling those in Kalashnikov et al. [13].

FFStep 0: Assume that the present toll values {tm
a | a ∈ A1} are such that formulas

(19) and (20) permit no changes. The latter may mean that the toll vector t∗ = tm

provides for a localmaximum for the upper level objective function u(t) = F(t, x(t))
defined by (2) over the polyhedron described by constraints (3)–(4). Go to FFStep 1.

FFStep 1: Let ρ = 2. Find a (local) maximum point of the following auxiliary filled
function problem:

maximize
t

Qρ,t∗(t) = − exp(−‖t − t∗‖2)g 2
5 u(t∗)(u(t)) − ρs 2

5 u(t∗)(u(t)), (51)

subject to ta ≤ tmax
a , ∀a ∈ A1, (52)

ta ≥ 0, ∀a ∈ A1, (53)

where the functions gb(v) and sb(v) are defined by formulas (142) and (143), found
in Appendix 3.1. Go to FFStep 2.

FFStep 2: If the local maximizer t̃ of (51)–(53) provides a new initial point
tm+1 = t̃ to problem (2) subject to (3)–(4) and (10)–(14) with
u(t̃) = F(tm+1, xm+1) > F(tm, xm) = u(t∗), then, return to the main algorithm’s
(Algorithm 1 or Algorithm 2) Step 1. Otherwise, go to FFStep 3.

FFStep 3: If the local maximizer t̃ of problem (51)–(53) is a vertex, we need to
increase the parameter ρ (e.g., by doubling it) and return to FFStep 1 to solve (51)–
(53) again. Otherwise, go to FFStep 4.

FFStep 4: The FF’s slope was too sharp hence we need to decrease the parameter ρ

(e.g., by dividing it by two) and return to FFStep 1 to solve (51)–(53) again. If this
loop of returning to FFStep 1 from FFStep 3 or FFStep 4 occurs more than 10 times,
then, go to the main algorithm’s Step 5.

Finally, we illustrate the algorithms’ flow chart as follows:
As shown in Fig. 1, we begin by assigning an arbitrary toll vector. After solving

the QP problem of the followers to determine the flows along the arcs and obtaining
the corresponding value of the leader’s objective function, SA is performed taking
into account only toll-arc variables. Having listed the ARSB for the coefficients of
the followers’ objective function or the gradient vector of the upper level objective
function, we try to update the toll vector. When changes in tolls cannot be obtained
nor improve the leader’s objective functions value anymore based on SA, apply the
FF procedure. Once a new toll vector is successfully generated, go to Step 1 and
close the loop. The algorithm stops if the FF method fails to provide a better value
for the leader’s objective function after several (say, seven to ten) attempts in a row,
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Fig. 1 Flow chart of the proposed algorithms

whichwouldmean that an approximate global optimumhas been reached. Themulti-
commodity flows corresponding to the final toll values give the approximate optimal
solutions for the followers, too.

6 Numerical Results

With the aim to test the algorithms, numerical experiments on two different graphs
with five different instances each were conducted. Also, each instance was tested
with two different sets (matrices) of congestion’s factors. To compare the efficiency
and computational time of the proposed algorithms, the numerical experiments were
reported and conducted as in Kalashnikov et al. [13, 14], together with the four
different algorithms presented in Kalashnikov et al. [12] and adapted to the lower
level quadratic program. However, since some of the latter algorithms are intended
for the (local) maximization, the FF procedure was added as an extra step for these
locally maximizing algorithms.5

To test the algorithms a personal computer was used. The characteristics of the
computer equipment for the development and implementation of the algorithmswere:
Intel(R) Core(TM) i3-3220 CPU with a speed 3.30GHz and 6.00 GB of RAMmem-
ory. The coding was written in MATLAB R2017a. This software was employed due
to its LP and QP tools in the “Optimization Toolbox”. One of the functions used
was “quadprog” because the lower level equilibrium problem of the TOP can be
equivalently transformed into a standard quadratic program.

The main parameters of the problems are the ones that define the size of the
network; i.e., the number of nodes η, of arcs M , of toll-arcs M1, and of commodities
κ . The travel costs ca and the factors dk,�

a,e representing the congestion, were generated
pseudo-randomly. The capacity upper bounds qa were set high enough not to interfere
with the followers’ decisions but are also taken into account by the algorithms. The
problems involved in this report are of the small and medium size, with two and three
commodities, respectively (Figs. 2, 3 and Tables1, 2).

5The algorithms are presented in the Appendix 3.2.
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Fig. 2 Network 1 with 7 nodes, 12 arcs where 7 are toll arcs

Fig. 3 Network 2 with 20 nodes, 35 arcs, where 15 are toll arcs

Table 1 Parameters of the instances for TOPs on Network 1

Instance Parameters

1 c = (1, 2, 5, 4, 3, 3, 2, 7, 4, 3, 8, 12), K = {(1, 6), (2, 7)}, n = (10, 9)

2 c = (3, 4, 2, 2, 3, 3, 4, 9, 9, 5, 6, 15), K = {(1, 6), (2, 7)}, n = (15, 5)

3 c = (4, 3, 2, 1, 1, 3, 2, 5, 6, 3, 1, 5), K = {(1, 6), (2, 7)}, n = (5, 8)

4 c = (1, 3, 1, 2, 3, 1, 1, 5, 4, 2, 4, 13), K = {(1, 6), (2, 7)}, n = (5, 12)

5 c = (3, 4, 5, 3, 3, 6, 2, 7, 7, 8, 10, 9), K = {(1, 6), (2, 7)}, n = (10, 9)
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Table 2 Parameters of the instances for TOPs on Network 2

Instance Parameters

1 c = (1, 3, 4, 2, 1, 2, 2, 2, 2, 2, 4, 5, 1, 7, 9, 2, 4, 8, 7, 4, 4, 10, 12, 11, 11, 12, 9, 4, 10, 9,
13, 16, 12, 10, 13), K = {(1, 15), (3, 18), (3, 20)}, n = (12, 24, 30)

2 c = (9, 3, 7, 1, 5, 3, 4, 4, 4, 9, 1, 4, 6, 5, 6, 1, 6, 7, 7, 4, 6, 5, 2, 4, 7, 7, 8, 6, 10, 6,
5, 3, 8, 6, 11), K = {(1, 15), (3, 18), (1, 20)}, n = (31, 41, 120)

3 c = (4, 8, 1, 7, 3, 9, 5, 5, 2, 7, 6, 6, 4, 9, 5, 5, 9, 5, 1, 4, 9, 5, 1, 4, 9, 3, 9, 1, 8, 4,
6, 3, 9, 1, 1), K = {(3, 19), (3, 18), (1, 15)}, n = (48, 50, 31)

4 c = (1, 5, 2, 6, 3, 5, 2, 3, 7, 2, 5, 1, 6, 9, 3, 1, 3, 8, 1, 1, 10, 8, 9, 11, 6, 9, 10, 7, 7, 7,
6, 9, 10, 6, 10), K = {(1, 20), (3, 18), (3, 20)}, n = (84, 45, 71)

5 c = (4, 3, 6, 4, 4, 3, 2, 3, 3, 2, 7, 3, 4, 5, 7, 1, 6, 4, 4, 5, 7, 3, 5, 10, 10, 9, 10, 10, 10, 7,
7, 8, 11, 10, 10), K = {(1, 20), (3, 19), (3, 20)}, n = (10, 6, 8)

The matrices corresponding to the congestion’s factors were two pseudo-random
35 × 35matriceswith 2-norms 2.50 × 10−4 and 0.250, for the small size commodity,
and two pseudo-random 105 × 105 matrices with 2-norms 2.86 × 10−4 and 0.286,
for the medium size commodity (Matrix 1 and Matrix 2, respectively, for both com-
modities). These matrices are too big to be shown here.

Each algorithmwas executed several times startingwith a random toll vector close
to zero. The results for each example can be seen in the tables below. We put the best
solution obtained by the algorithms for the leader’s objective function and an average
value for the rest of the data presented in the tables (to have a better measure of the
efficiency of the algorithms). The first column (ARSB+FF) corresponds toAlgorithm
1 described in Sect. 5.1 while the second column (Grad+ARSB+FF) exposes the data
obtained by Algorithm 2 presented in Sect. 5.2. The remaining three columns show
the results obtained after having emulated the algorithms proposed in Kalashnikov
et al. [12], which are the Quasi-Newton (plus FF, Q-N), the Sharpest Ascent (plus
FF, S-A), and the Nelder-Mead (NM) methods. The best result for each instance is
typed in bold.

Tables3, 4, 5 and 6 shows that our algorithms perform better when the matrix
of the quadratic coefficients is farther from zero, i.e, when the problem is “more”
quadratic than linear. Moreover, when the norm of the quadratic coefficients’ matrix

Table 3 Leader’s objective function values for Network 1 and Matrix 1

N1 ARSB+FF Grad+ARSB+FF Q-N S-A NM

1 162.73 161.76 159.33 161.85 162.96

2 266.65 272.25 266.84 271.08 274.96

3 49.72 53.66 53.19 57.95 58.98

4 170.98 168.58 168.55 170.76 171.95

5 123.26 135.96 134.35 129.88 136.96



498 V. Kalashnikov et al.

Table 4 Leader’s objective function values for Network 1 and Matrix 2

N1 ARSB+FF Grad+ARSB+FF Q-N S-A NM

1 128.55 128.73 22.02 22.02 128.73

2 235.37 236.09 256.68 237.81 235.64

3 41.10 41.20 41.09 41.09 41.09

4 131.32 131.70 70.08 70.02 131.72

5 106.42 106.42 98.71 98.71 105.93

Table 5 Leader’s objective function values for Network 2 and Matrix 1

N1 ARSB+FF Grad+ARSB+FF Q-N S-A NM

1 720.89 657.98 1077.81 751.99 1079.07

2 1055.66 1094.94 1249.41 1197.81 1622.89

3 426.19 341.22 992.17 437.44 999.00

4 759.38 879.67 2073.27 1851.44 2083.42

5 110.25 116.90 69.39 158.62 257.86

Table 6 Leader’s objective function values for Network 2 and Matrix 2

N1 ARSB+FF Grad+ARSB+FF Q-N S-A NM

1 731.34 741.56 315.86 384.52 707.44

2 3661.37 3722.27 2651.38 2651.38 3631.20

3 1038.97 1062.88 731.45 751.16 989.17

4 2976.14 2868.29 2109.50 2109.26 2807.17

5 213.67 228.41 107.90 108.27 185.56

is larger, for the medium size commodity, the other algorithms find solutions that are
quite worse than the one found by our algorithms.

Tables3 also shows the robustness of our model in the sense that when quadratic
coefficients’ matrix of the lower level tends to zero, the solutions given by the algo-
rithms converge to the solutions for the linear bi-level program reformulation of the
TOP presented in Kalashnikov et al. [13], i.e., the optimal solution of our model is
well-defined (“continuous”).

Now, we are going to analyze the performance of our algorithms for the small
size commodity with the second matrix (the one farther from zero). We choose these
settings because the best solutions found by the algorithms are quite similar.

One of the possible ways of measuring the algorithms efficiency is to compare,
first, the number of iterations required for each algorithm to reach an approximate
solution for a given tolerance value, and second, estimate the average computational
cost (the number of iterations necessary on average) to decrease the error by one
decimal order. This metric is calculated by the following formula:
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Table 7 The number of iterations required to solve the TOP for Network 1 and Matrix 2

N1 ARSB+FF Grad+ARSB+FF Q-N S-A NM

1 249.00 109.40 110.40 117.60 207.00

2 281.20 126.20 156.40 142.60 230.60

3 249.80 103.00 149.40 147.40 245.60

4 243.40 178.80 115.40 116.00 240.20

5 296.80 118.60 142.00 108.40 190.20

Table 8 The average number of iterations needed to reduce the error for Network 1 and Matrix 2

N1 ARSB+FF Grad+ARSB+FF Q-N S-A NM

1 29.19 6.79 3.69 2.97 27.05

2 63.87 8.55 19.92 13.74 29.88

3 51.20 4.69 20.78 13.65 55.94

4 30.30 13.57 5.36 2.84 34.76

5 55.36 8.85 8.41 2.05 28.53

Costiter = #iterationsm

log10(ε0) − log10(εm)
, (54)

where m denotes the number of iterations needed to reach the desired tolerance
εm > 0 and ε0 is the initial error computed as the difference between the initial
leader’s objective function value and the final one reached by the algorithm, that is,
ε0 = |F(t0, x(t0)) − F(tm, x(tm))|.

Table7 illustrate that the number of iterations needed, for the algorithms
Grad+ARSB+FF, Q-N and S-A, to reach the approximately optimal solutions have
quite the same order. The ARSB+FF and NM algorithms needed more iterations to
find the optimal solutions.

Table8 shows again that the Grad+ARSB+FF, Q-N and S-A algorithms require
less iterations to reduce the error than the other algorithms, however, the Q-N and
S-A algorithms could not find a good solution for instances 1 and 4.

In the next four tables, we also measured the number of values of the upper level
objective function calculated during the performance of the algorithms, and the aver-
age computational cost (measured in the number of objective functions evaluations
necessary to reduce the error by one decimal order). The evaluation formula used is:

CostObj Fun = #bjective Functionsm

log10(ε0) − log10(εm)
, (55)

where m is the number of the leader’s objective function values calculated to reach
the desired tolerance εm > 0.



500 V. Kalashnikov et al.

Table9 show that the Grad+ARSB+FF algorithm needed less evaluations of the
objective function compared with the other algorithms in almost all the instances.

According to Table10, with respect to the average cost in the number of values
of the leader’s objective function calculated to reduce the order of error by 1 dec-
imal, the Grad+ARSB+FF algorithm performed at a quite high level of efficiency
compared to the other algorithms, which is a promising feature. Such robustness of
the procedure may help when dealing with real-life problems, which are usually of
higher dimensions.

The last measure we checked in order to compare the algorithms’ performance
is the computational time they needed to reach a good approximate solution. It is
important to mention that we emulated the benchmark algorithms, so the required
time is going to be valid because we have run all the experiments on the same
computer. Tables11 present the time (in seconds) used for each instance.

Table 9 The number of objective function evaluations to solve the TOP for Network 1 and Matrix
2

N1 ARSB+FF Grad+ARSB+FF Q-N S-A NM

1 580.80 274.00 1875.40 361.40 383.40

2 607.60 326.40 2721.20 855.20 418.00

3 561.80 247.60 3273.20 763.60 453.60

4 555.60 566.00 1477.20 863.80 432.60

5 723.80 253.20 2709.40 507.60 355.60

Table 10 The average number of objective function evaluations needed to reduce the error for
Network 1 and Matrix 2

N1 ARSB+FF Grad+ARSB+FF Q-N S-A NM

1 67.25 8.19 173.38 13.47 60.19

2 127.56 12.98 503.86 110.79 62.81

3 115.38 7.35 869.42 88.12 163.17

4 66.61 38.84 221.92 29.62 75.56

5 127.64 11.61 348.70 19.86 62.69

Table 11 Required computational time to solve the TOP for Network 1 and Matrix 2

N1 ARSB+FF Grad+ARSB+FF Q-N S-A NM

1 25.79 7.64 27.96 5.85 4.39

2 27.24 6.43 36.67 10.41 4.22

3 36.09 5.55 43.68 11.58 6.60

4 17.33 10.33 18.08 15.28 5.57

5 41.94 6.07 26.52 9.34 4.02
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The last Table11 show that the NM algorithm is the fastest algorithm for all the
instances, however, it is known to be quite slow, being a derivative-free algorithm,
for bigger size problems. The rest of the algorithms compete for the second place
among all the instances for both networks. Indeed, excluding the NM method, the
Grad+ARSB+FF algorithm did not lag behind, even leading the other methods in
almost all the instances. Finally, the Grad+ARSB+FF algorithm turned out to be
faster than the ARSB+FF algorithm. This could be due to the lower number of
operations required by the Grad+ARSB+FF algorithm to compute a new toll vector,
in comparison with the ARSB+FF algorithm (as we mentioned earlier).

7 Conclusions

The paper proposes and tests two versions of the heuristic algorithm to solve the Toll
Optimization Problem (TOP) with quadratic congestion terms based upon sensitivity
analysis for quadratic programming problems. The algorithm also makes use of the
“filled function” technicalities in order to reach the global optimum when “jammed”
near some local optimum.

Numerical experiments with a series of small and medium dimension test prob-
lems show the proposed Algorithm 2 being robust and boasting decent convergence
characteristics. It is remarkable that the higher the dimension of the test example the
better is the performance of the proposed new method as compared to that of the
other algorithms applied to the solution of the tested instances when the matrix of
the quadratic coefficients is farther from zero.

In our future research, we are going to expand the above-described technique to
the more complicated TOP problem with larger size and several objective functions.

Acknowledgements The authors’ research activity was financially supported by the SEP-
CONACYT (Mexico) grants CB-2013-01-221676 and FC-2016-01-1938.

Appendix 1: Proof of Theorem 1

Proof We are going to show that the Nash equilibrium problem (5)–(9) and the
quadratic programming problem (10)–(14) are equivalent. In order to do that we
first state the latter problems in their matrix form. Let {ta | a ∈ A1} satisfy (3) and
(4), then, we can consider the vector z ∈ RM whose ath component is given by ca

if a ∈ A2 and by ta + ca if a ∈ A1. Thus, the Nash equilibrium problem (5)–(9) is
given as follows:

xk ∈ Ψk(t, x−k), ∀k ∈ K ; (56)
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where

Ψk(t, x−k) = Argmin
xk

fk(xk) = zT xk +
∑

k �=�∈K

xk T
Dk,�x� + 1

2
xk T

Dk,k xk, (57)

subject to Bk xk = bk, (58)

xk ≤ q −
∑

k �=�∈K

x�, (59)

xk ≥ 0. (60)

Here, for k, � ∈ K , the components of thematrix Dk,� ∈ R
M×M are the congestion

factors dk,�
a,e , a, e ∈ A, the matrix Bk ∈ R

η×M and the vector bk ∈ R
η corresponds to

the equality constraints (7), and the vector q ∈ R
M has the capacity upper bounds

qa , a ∈ A, as its components. Using the above notation, the quadratic programming
problem (10)–(14) is given by:

x ∈ Ψ (t); (61)

where

Ψ (t) = Argmin
x

f (x) =
∑

k∈K

zT xk + 1

2
xT Dx, (62)

subject to Bk xk = bk, ∀k ∈ K , (63)
∑

�∈K

x� ≤ q, (64)

x ≥ 0. (65)

The matrix D is a κ × κ block matrix whose block components are the matrices
Dk,� (thus, D ∈ R

Mκ×Mκ ). Since the value dk,�
a,e = d�,k

e,a , then, Dk,� = D�,k T
, for all

k, � ∈ K ;moreover,without loss of generalitywe can suppose that thematrices D and
Dk,�, k, � ∈ K , are symmetric (and positive semi-definite aswe have assumed). Then,
the programs appearing in (56)–(60) and program (61)–(65) are differentiable and
convex (with linear constraints) quadratic programming problems, so these problems
can be equivalently transformed into a nonlinear system of equations and inequalities
using the KKT conditions. Therefore, in order to show the equivalence of problems
(56)–(60) and (61)–(65), it suffices to demonstrate that the KKT conditions of one of
the problems lead to a solution for the KKT conditions of the other problem with the
same solution vector x . The KKT condition for problem (56)–(60) are as follows:

d fk

dxk
+ μk + Bk T

λk = z +
∑

�∈K

Dk,�x� + μk + Bk T
λk ≥ 0, (66)

Bk xk = bk, (67)
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xk ≤ q −
∑

k �=�∈K

x�, (68)

μk

(
∑

�∈K

x� − q

)

= 0, (69)

xk, μk ≥ 0, (70)

where μk ∈ R
M and λk ∈ R

η; for all k ∈ K . And the KKT conditions for problem
(61)–(65) are:

∂ f

∂xk
+ μ + Bk T

λk = z +
∑

�∈K

Dk,�x� + μ + Bk T
λk ≥ 0, ∀k ∈ K , (71)

Bk xk = bk, ∀k ∈ K , (72)
∑

�∈K

x� ≤ q, (73)

μ

(
∑

�∈K

x� − q

)

= 0, (74)

x, μ ≥ 0, (75)

where μ ∈ R
M and λk ∈ R

η, k ∈ K . Now we prove that the KKT conditions (66)–
(70), for all k ∈ K , and (71)–(75) are equivalent. Let xk, μk ∈ R

M and λk ∈ R
η,

k ∈ K , satisfy (66)–(70) for all k ∈ K . Now, let’s choose a new vector μ ∈ R
M as

follows:
μa = max

k∈K
{μk

a}, a ∈ A. (76)

Then, μ ≥ μk for all k ∈ K , and so:

z +
∑

�∈K

Dk,�x� + μ + Bk T
λk ≥

z +
∑

�∈K

Dk,�x� + μk + Bk T
λk ≥ 0, ∀k ∈ K ,

(77)

which satisfy (71). It’s easy to see that condition (68) is the same for any k ∈ K and
equivalent to condition (73). Moreover, let a ∈ A. If

xk
a < qa −

∑

k �=�∈K

x�
a, (78)

then, ∑

�∈K

x�
a − qa < 0, (79)
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and hence, μk
a = 0 for all k ∈ K , so μa = 0 and therefore:

μa

(
∑

�∈K

x�
a − qa

)

= 0. (80)

On the other hand, if
xk

a = qa −
∑

k �=�∈K

x�
a, (81)

then, ∑

�∈K

x�
a − qa = 0, (82)

and so

μa

(
∑

�∈K

x�
a − qa

)

= 0. (83)

Therefore,

μa

(
∑

�∈K

x�
a − qa

)

= 0, ∀a ∈ A, (84)

so condition (74) is satisfied. Finally, conditions (67) and (70) for all k ∈ K , imply
that conditions (72) and (75). Therefore, the vectors xk, μ ∈ R

M andλk ∈ R
η, k ∈ K ,

satisfy (71)–(75). Conversely, let xk, μ ∈ R
M and λk ∈ R

η, k ∈ K , satisfy (71)–(75).
Then, for a fixed k ∈ K , we have that:

z + ∑

�∈K
Dk,�x� + μ + Bk T

λk ≥ 0, (85)

Bk xk = bk, (86)

xk ≤ q −
∑

k �=�∈K

x�, (87)

μ

(
∑

�∈K

x� − q

)

= 0, (88)

xk, μ ≥ 0. (89)

Therefore, the vectors xk, μ ∈ R
M and λk ∈ R

η satisfy (66)–(70), for all
k ∈ K . �

Appendix 2.1: The Procedure for Computing the ARSB

Let’s consider the primal quadratic programming (QP) problem:

minimize
x

ϕ(x) = cT x + 1

2
xT Qx, (90)
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subject to Ax = b, (91)

x ≥ 0, (92)

where Q ∈ R
n×n is a symmetric positive semi-definite matrix, A ∈ R

m×n , c ∈ R
n

and b ∈ R
m are fixed data, and x ∈ R

n is the unknown vector. The Wolfe-Dual of
the latter QP problem is given by:

maximize
u,y,s

ψ(u, y, s) = bT y − 1

2
uT Qu, (93)

subjected to AT y + s − Qu = c, (94)

u, s ≥ 0, (95)

where u, s ∈ R
n and y ∈ R

m are unknown vectors.
The feasible regions of (90)–(92) and (93)–(95) are denoted by QP and QD ,

and their associated optimal solutions sets areQP∗ andQD∗, respectively. It is well
known that for any optimal solution of (90)–(92) and (93)–(95) we have Qx = Qu
and sT x = 0, which is equivalent to xi si = 0, for all i ∈ {1 . . . , n} (since x, s ≥ 0).
It is obvious that there are optimal solutions with x = u. Since we are only interested
in the solutions where x = u, u will henceforth be replaced by x in the dual problem.
It is easy to show that for any two optimal solutions (x∗, y∗, s∗) and (x̃, ỹ, s̃) of
(90)–(92) and (93)–(95) it holds that Qx∗ = Qx̃ , cT x∗ = cT x̃ and bT y∗ = bT ỹ and
consequently, x̃ T s∗ = s̃T x∗ = 0.

The optimal partition of the index set I = {1, . . . , n} is defined as:

B = {i ∈ I | xi > 0 for an optimal solution x ∈ QP∗}, (96)

N = {i ∈ I | si > 0 for an optimal solution (x, y, s) ∈ QD∗}, (97)

T = I \ (B ∪ N ), (98)

and denoted by π = (B,N ,T ). The support set of a vector v is defined as σ(v) =
{i ∈ I | vi > 0}. An optimal solution (x, y, s) is called maximally complementary
if it possesses the following properties:

xi > 0 if and only if i ∈ B, (99)

si > 0 if and only if i ∈ N . (100)

For any maximally complementary solution (x, y, s) the relations σ(x) = B and
σ(s) = N hold. The existence of a maximally complementary solution is a direct
consequence of the convexity of the optimal sets QP∗ and QD∗. It is known that
the interior point methods (IPM) find a maximally complementary solution as the
limit solution.
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The perturbed QP problem is:

minimize
x

ϕλ(x) = (c + λΔc)T x + 1

2
xT Qx, (101)

subject to Ax = b, (102)

x ≥ 0, (103)

where Δc ∈ R
n is a nonzero perturbation vector and λ is a real parameter (in our

Algorithms 1 and 2, Δc = ei , where ei is the element of the canonical base corre-
sponding to the i th arc). The optimal value function φ(λ) denotes the optimal value
of (101)–(103) as a function of the parameter λ. Thus, we define the dual perturbed
problem corresponding to (93)–(95) as follows:

maximize
x,y,s

ψλ(x, y, s) = bT y − 1

2
xT Qx, (104)

subject to AT y + s − Qx = c + λΔc, (105)

x, s ≥ 0. (106)

LetQPλ andQDλ denote the feasible sets of problems (101)–(103) and (104)–
(106), respectively. Their optimal solution sets are analogously denoted by QP∗

λ

and QD∗
λ.

Let us denote the domain of φ(λ) by:

Λ = {λ ∈ R | QPλ �= ∅ and QDλ �= ∅}. (107)

Since it is assumed that (90)–(92) and (93)–(95) have optimal solutions, it follows
that Λ �= ∅.

For λ∗ ∈ Λ, let π = π(λ∗) denote the optimal partition. We introduce the follow-
ing notation:

O(π) = {λ ∈ Λ | π(λ) = π}, (108)

Sλ(π) =
{

(x, y, s)

∣
∣
∣
∣

x ∈ QPλ, (x, y, s) ∈ QDλ, xB > 0,

xN ∪T = 0, sN > 0, sB∪T = 0

}

, (109)

S λ(π) =
{

(x, y, s)

∣
∣
∣
∣

x ∈ QPλ, (x, y, s) ∈ QDλ, xB ≥ 0,

xN ∪T = 0, sN ≥ 0, sB∪T = 0

}

, (110)

Λ(π) = {λ ∈ Λ | Sλ(π) �= ∅}, (111)

Λ(π) = {λ ∈ Λ | S λ(π) �= ∅}. (112)

Here O(π) denotes the set of parameter values for which the optimal partition
π is constant. Further, Sλ(π) is the primal-dual optimal solution set of maximally
complementary optimal solutions of the perturbed primal and dual QP problems for
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the parameter value λ ∈ O(π). Next, Λ(π) denotes the set of parameter values for
which the perturbed primal and dual problems have an optimal solution (x, y, s)
such that σ(x) = B and σ(s) = N . Finally,S λ(π) is the closure ofSλ(π) for all
λ ∈ Λ(π) and Λ(π) is the closure of Λ(π).

Theorem 2 Let λ∗ ∈ Λ(π) and let (x∗, y∗, s∗) be a maximally complementary solu-
tion of (101)–(103) and (104)–(106) with the optimal partition π = (B,N ,T ).
Then the left and right extreme points of the closed interval Λ(π) = [λ�, λu] that
contains λ∗ are obtained by minimizing and maximizing λ over S λ(π), respectively,
i.e., by solving:

minimize
λ,x,y,s

λ�(λ) = λ, (113)

subject to Ax = b, (114)

xB ≥ 0, (115)

xN ∪T = 0, (116)

AT y + s − Qx − λΔc = c, (117)

sN ≥ 0, (118)

sB∪T = 0, (119)

and

maximize
λ,x,y,s

λu(λ) = λ, (120)

subject to Ax = b, (121)

xB ≥ 0, (122)

xN ∪T = 0, (123)

AT y + s − Qx − λΔc = c, (124)

sN ≥ 0, (125)

sB∪T = 0. (126)

Appendix 2.2: The Procedure for Computing the Jacobian Matrix

Let’s consider the quadratic programming problem:

minimize
x=(ξ1,...,ξn)

ϕ(x) = aT x + 1

2
xT Bx

⎛

⎝
n∑

i=1

αiξi + 1

2

n∑

i=1

n∑

j=1

βi, jξiξ j

⎞

⎠ , (127)

subject to Cx ≤ d

(
n∑

i=1
γh,iξi ≤ δh, h ∈ {1, . . . , t}

)

. (128)
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To guarantee the existence of a unique global solution, we will assume that the
symmetric matrix B is positive definite.6 7

Suppose that we know the subset S ⊂ {1, . . . , t} out of the t constrains (128) such
that, when we minimize (127) subject to the constrains belonging to S taken as exact
equalities we get the vector x S that solves (127) and (128). For any set S �= ∅, x S

is defined as the vector minimizing (127) subject to the constraints that belong to
S taken as exact equalities. The actual minimization process is carried out with the
help of Lagrangians as follows. Differentiate

aT x + 1

2
xT Bx + (uS)T (CS x − dS), (129)

with respect to x and uS , and equate the resulting expressions to zero, to get:

a + Bx + CS
T uS = 0, (130)

CS x = dS. (131)

Solving for x S and uS we find consecutively:

x S = −B−1a − B−1CS
T uS, (132)

uS = −(CS B−1CS
T )

−1
(CS B−1a + dS), (133)

and hence,

x S = −B−1a + B−1CS
T (CS B−1CS

T )
−1

(CS B−1a + dS). (134)

It is to be noticed that (CS B−1CS
T )

−1
will always exist whenCS has full row-rank;

this will be assumed. If the set S contains m elements, as we will assume throughout,
this implies m ≤ n. Notice that all expressions are continuous in the elements of a.

The quadratic programming theory has established the necessary and sufficient
conditions for x S to solve (127) and (128). These conditions are:

x S is feasible: Cx S ≤ d, (135)

and
uS ≥ 0. (136)

To begin, we will exclude the case of degeneracy, which, (by definition), occurs
when either (135) holds with a strict equality for a constraint not in S (in S, say,
where S ∩ S = ∅ and S ∪ S = {1, . . . , t}) or (136) holds with a strict equality for

6The proof of Theorem 2 can be found in Hadigheh et al. [10].
7In Boot [1], the QP problem is presented as a maximization problem.
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some constraint (by necessity) in S. Excluding degeneracy implies thatwe can rewrite
condition (135) and (136) as follows:

CS x S = dS, CS x S < dS, (137)

uS > 0. (138)

It will be clear that (in the absence of degeneracy) infinitesimal changes in the
elements of a do not affect the set S with the property that maximizing (127) subject
to CS x = dS produces the solution vector to the problem (127) and (128). For if
uS > 0 originally, they will remain so for infinitesimal changes; and if CS x S < dS
originally, they will remain so for infinitesimal changes; also the row-rank of CS

will remain m. On the other hand, infinitesimal changes in the elements of a will, of
course, influence x S , the solution vector.

This changes can be derived by differentiating (134) with respect to a. Thus, we
find:

∂x S

∂a
= −B−1 + B−1CS

T (CS B−1CS
T )

−1
CS B−1, (139)

the desired Jacobian matrix.

Appendix 3.1: The Procedure for the FF Method

Let u = u(t) be a differentiable function defined over a polyhedral set T ⊂ R
n .

For simplicity purpose, we assume that any local maximumpoint of the later function
provides a positive value.

Definition 1 Let t0, t∗ ∈ T satisfy t0 �= t∗ and u(t0) ≥ (4/5)u(t∗). A continuously
differentiable function Qt∗ = Qt∗(t) is said to be a filled function (FF) for the max-
imization problem

maximize
t

u(t), μ (140)

subject to t ∈ T, (141)

at the point t∗ ∈ T with u(t∗) > 0, if:

1. t∗ is a strict local minimizer of Qt∗ = Qt∗(t) on T .
2. Any local maximizer t of Qt∗ = Qt∗(t) on T satisfies u(t) > (8/5)u(t∗), or t is

a vertex of T .
3. Any local maximizer t̂ of the optimization problem (140)–(141) with

u(t̂) ≥ (9/5)u(t∗) is a local maximizer of Qt∗ = Qt∗(t) on T .
4. Any t̃ ∈ T with ∇Qt∗ = 0 implies u(t̃) > (8/5)u(t∗).

Now, to construct a typical FF in the sense of Definition1, define two auxiliary
functions as follows.
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For arbitrary t and t∗ ∈ T , denote b = u(t∗) > 0 and v = u(t), define:

gb(v) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if v ≤ 2

5
b,

5 − 30

b
v + 255

4b2
v2 − 125

4b3
v3, if

2

5
b ≤ v ≤ 4

5
b,

1, if v ≥ 4

5
b,

(142)

and

sb(v) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v − 2

5
b, if v ≤ 2

5
b,

5 − 8

5
b +

(

8 − 30

b

)

v − 25

2b

(

1 − 9

2b

)

v2

+ 25

4b2

(

1 − 5

b

)

v3,

if 2
5b ≤ v ≤ 4

5b,

1, if
4

5
b ≤ v ≤ 8

5
b,

1217 − 2160

b
v + 1275

b2
v2 − 250

b3
v3, if

8

5
b ≤ v ≤ 9

5
b,

2, if v ≥ 9

5
b.

(143)

Now, given a point t∗ ∈ T such that u(t∗) > 0 we define the following FF:

Qρ,t∗(t) := − exp(−‖t − t∗‖2)g 2
5 u(t∗)(u(t)) − ρs 2

5 u(t∗)(u(t)), (144)

where ρ > 0 is a8 parameter.
Based on Wu et al. [25] we have the following theorem:

Theorem 3 Assume that the function u = u(t) is continuously differentiable and
there exists a polyhedron T ⊂ R

n and a point t0 ∈ T such that u(t) ≤ (4/5)u(t0) for
any t ∈ R

n \ Int(T ). Let t0, t∗ ∈ T , t0 �= t∗, satisfy the inequality
u(t∗) − u(t0) ≤ (2/5)u(t∗). Then:

1. There exists a value ρ1
t∗ ≥ 0 such that when ρ > ρ1

t∗ , any local maximizer t of the
problem

maximize
t

Qρ,t∗(t), (145)

subjected to t ∈ T, (146)

obtained via the search starting from t0, satisfies t ∈ Int(T ).
2. There exists a value ρ2

t∗ > 0 such that when 0 < ρ < ρ2
t∗ , then, for any stationary

point t̃ ∈ T with t̃ �= t∗ of the function Qρ,t∗(t), the following estimate holds:

8This FF proposed in Kalashnikov et al. [13] is the one used in our algorithms.
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u(t̃) >
8

5
u(t∗). (147)

Appendix 3.2: The Benchmark Algorithms to Compare With

The Derivative-Free Quasi-Newton Algorithm

Step 0: Define e = {ea | a ∈ A1} as the set of the canonic vectors. Let τ, ε > 0 and
j = 0. Set an arbitrary toll vector t j and minimize the objective function f (x) of the
lower level quadratic programming problem (10)–(14), in order to obtain the optimal
response x(t j ), and compute the leader’s objective function’s value Ψ (t j , x(t j )) =
F(t j , x(t j )).

Step 1: For the toll variables compute the following approximation

ϕ j
a = ∂Ψ

∂ta
(t j , x(t j ))

≈ Ψ (t j + eaτ, x(t j + eaτ)) − Ψ (t j − eaτ, x(t j − eaτ))

2τ
,

(148)

where a ∈ A1. Now, obtain the approximation of the gradient vector as follows:

∇Ψ (t j , x(t j )) ≈

⎛

⎜
⎜
⎜
⎜
⎝

ϕ
j
1

ϕ
j
2
...

ϕ
j
M1

⎞

⎟
⎟
⎟
⎟
⎠

= φ j . (149)

Step 2: For j = 0, set B j as the identity M1 × M1 matrix and compute the direction
s j = B jφ as the search direction at the current iteration. Setting i as a counter starting
from i = 0, establish αi = 1 as the step size and computeΨ (t j + αi s j , x(t j + αi s j ))

in order to obtain the best αi value. In the case when j > 0, B j is computed as is
specified in Step 5.

Step 3: We can separate this step in two stages:

Stage 1: IfΨ (t j , x(t j )) + εαiφ
T s j < Ψ (t j + αi s j , x(t j + αi s j )) starting fromαi =

1 we increase its value in the following way: αi+1 = 1.5αi . Continue increasing the
αi value and i := i + 1 until Ψ (t j , x(t j )) + εαiφ

T s j ≥ Ψ (t j + αi s j , x(t j + αi s j ))

or t j + αi s j ≥ tmax; select the corresponding penultimate αi value as the best one,
this is, for i := i − 1 compute t j+1 := t j + αi s j . Go to Step 4.

Stage 2: Otherwise, in the case when considering αi = 1 and if the inequality
Ψ (t j , x(t j )) + εαiφ

T s j ≥ Ψ (t j + αi s j , x(t j + αi s j )) holds, we start to decrease αi

by αi+1 = αi/1.5, compute Ψ (t j + αi s j , x(t j + αi s j )) and continue decreasing αi ,
and stop when the desired inequality is achieved:
Ψ (t j , x(t j )) + εαiφ

T s j < Ψ (t j + αi s j , x(t j + αi s j )).Under this scheme,we select
the last αi value as the best one.
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Step 4: Using the values t j+1 := t j + αi s j , x(t j+1) = x(t j + αi s j ), and
Ψ (t j+1, x(t j+1)) = Ψ (t j + αi s j , x(t j + αi s j )) find the approximation to the gra-
dient for t j+1 as in Step 1, that is, φ j+1 ≈ ∇Ψ (t j+1, x(t j+1)) and compute

d j = t j+1 − t j , (150)

y j = φ j+1 − φ j , (151)

and

λ j = Ψ (t j+1 − d j , x(t j+1 − d j )) + Ψ (t j+1 + d j , x(t j+1 + d j ))

− 2Ψ (t j+1, x(t j+1)).
(152)

Step 5: Finally, determine the updated matrix

B j+1 = B j − B j d j d j
T B j

d j
T B j d j

+ λ j y j y j
T

(d j
T y j )

2 , (153)

and use it to find the next direction. Update iteration counter j as j := j + 1 and go
to Step 2. Keep iterating until

‖Ψ (t j+1, x(t j+1)) − Ψ (t j , x(t j ))‖ ≤ ε. (154)

Select t j+1 and x(t j+1) correspondingly as the tolls and flows approximate solu-
tion vectors to the TOP, and the objective function value Ψ (t j+1, x(t j+1)) as an
acceptable problem’s solution.

The Sharpest-Ascent Algorithm
In this algorithm, we make use again of the Jacobian matrix dx/dt , so we require
again that the matrix D = {dk,�

a,e | a, e ∈ A; k, � ∈ K } is positive definite.
Step 0: Let δ, ε > 0 and j = 0. Set an arbitrary toll vector t j and minimize the
lower level quadratic programming problem (10)–(14), in order to obtain the optimal
response x(t j ). Compute the leader’s objective functionΨ (t j , x(t j )) = F(t j , x(t j )).

Step 1: For the toll variables, using the Jacobian matrix dx/dt , compute the partial
derivatives

∂Ψ

∂ta
(t j , x(t j )) =

∑

k∈K

(

xk
a (t j ) + t j · dxk

a

dt
(c + t j )

)

, (155)

where a ∈ A1. Now, obtain the objective function’s gradient:



Bilevel Optimal Tolls Problems with Nonlinear Costs … 513

φ j = ∇Ψ (t j , x(t j )) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Ψ

∂t1
(t j , x(t j ))

∂Ψ

∂t2
(t j , x(t j ))

...
∂Ψ

∂tM1

(t j , x(t j ))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (156)

Step 2: Starting from j = 0; assign d j = φ as the derivative in the current iteration,
set i as a counter starting from i = 0, establish αi = 1 as the step size and compute
Ψ (t j + αi d j , x(t j + αi d j )) in order to obtain the best step size (i.e. the bestαi value).

Step 3: First, compare the expressions Ψ (t j , x(t j )) + δαiφ
T d j against

Ψ (t j + αi d j , x(t j + αi d j )). If the following inequality does not holds: directly go
to Step 4. But, if the following inequality is valid continue in this step.

Ψ (t j , x(t j )) + δαiφ
T d j < Ψ (t j + αi d j , x(t j + αi d j )). (157)

Starting from αi = 1 we increase its value in the following way: αi+1 = 1.5αi .
Continue increasing the αi value and i := i + 1 until
Ψ (t j , x(t j )) + δαiφ

T d j ≥ Ψ (t j + αi d j , x(t j + αi d j )) or t j + αi d j ≥ tmax; select
the corresponding penultimate αi value as the best one, this is, for i := i − 1. Go to
Step 5.

Step 4: In this case, consider αi = 1 and if the inequality
Ψ (t j , x(t j )) + δαiφ

T d j ≥ Ψ (t j + αi d j , x(t j + αi d j )) holds, we start to decrease
αi by αi+1 = αi/1.5, compute Ψ (t j + αi d j , x(t j + αi d j )) and continue decreas-
ing αi , and stop when the following inequality is valid: Ψ (t j , x(t j )) + δαiφ

T d j <

Ψ (t j + αi d j , x(t j + αi d j )).

Step 5: Consider the values t j+1 = t j + αi d j , x(t j+1) = x(t j + αi d j ), and
Ψ (t j+1, x(t j+1)) = Ψ (t j + αi d j , x(t j + αi d j )) as the current ones and return to
Step 1. Keep iterating until

‖Ψ (t j+1, x(t j+1)) − Ψ (t j , x(t j ))‖ ≤ ε. (158)

Conclude by selecting the vectors t j+1 and x(t j+1) correspondingly as the tolls
and flows approximate solution vectors to the TOP, and the objective function value
Ψ (t j+1, x(t j+1)) as an acceptable problem’s solution.

The Nelder-Mead Algorithm

Unlike the previous algorithms, the Nelder-Mead algorithm is intended for global
optimization. First, note we are interested in solving the following problem:

maximize
x

f (x), (159)

subject to x ∈ R
n, (160)
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where f : Rn → R is not necessarily continuous.9 At the beginning from at iteration
we consider a non-degenerate simplex in R

n and finishes with other simplex in R
n

different from the previous one. Define a non-degenerate simplex inRn as the convex
polyhedron formed by the n + 1 non-coplanar points x1, x2, . . . , xn+1 ∈ R

n , this is
that not all those points are over the same hyper-plane of Rn . Let’s suppose that the
initial simplex’s vertex are ordered in such way as:

f1 ≥ f2 ≥ · · · ≥ fn+1, (161)

where fi = f (xi ), i ∈ {1, 2, . . . , n}.
Since we are looking for the maximizing of f , we consider x1 as the best vertex

and xn+1 as the worst. We define the diameter of a simplex S as

diam(S) = max
1≤i, j≤n+1

‖xi − x j‖. (162)

The parameters ρ, δ, γ and σ are used at each iteration and must satisfy that:

δ > 1, 0 < ρ < δ, 0 < γ < 1, and 0 < σ < 1. (163)

The default values commonly used are:

ρ = 1, δ = 2, γ = 1

2
, and σ = 1

2
. (164)

The kth iteration of the Nelder-Mead algorithm is described as follows:

Step 1 (Assort): Order the n + 1 vertex of the simplex as in (161).

Step 2 (Reflect): Calculate the centroid of the n best points:

x̂ =
n∑

i=1

xi

n
. (165)

Compute the reflection point:

xr = x̂ + ρ(x̂ − xn+1) = (1 + ρ)x̂ − ρxn+1. (166)

Calculate fr = f (xr ). If f1 ≥ fr > fn , accept xr as the new simplex vertex,
eliminate the worst vertex and finish the iteration.

Step 3 (Expand): If fr > f1 compute the expansion point

xe = x̂ + δ(xr − x̂) = x̂ + ρδ(x̂ − xn+1) = (1 + ρδ)x̂ − ρδxn+1, (167)

9In Kalashnikov et al. [12] the optimization problem is presented as a minimization problem.
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and evaluate fe = f (xe). If fe > fr accept xe, eliminate the worst vertex and finish
the iteration. In the other case ( fe ≤ fr ), accept xr , eliminate the worst vertex and
finish the iteration.

Step 4 (Contract): If fr ≤ fn realize a contraction between x̂ and the best point of
xn+1 and xr .

4.a (External contraction): If fn ≥ fr ≥ fn+1, calculate

xec = x̂ + γ (xr − x̂) = x̂ + ργ (x̂ − xn+1) = (1 + ργ )x̂ − ργ xn+1, (168)

and evaluate fec = f (xec). If fec ≥ fr , accept xec, eliminate the worst vertex and
finish the iteration. In the other case, go to Step 5.

4.b (Internal contraction): If fr ≤ fn+1, calculate

xic = x̂ − γ (x̂ − xn+1) = (1 − γ )x̂ + γ xn+1, (169)

and evaluate fic = f (xic). If fic ≥ fn+1, accept xic, eliminate the worst vertex and
finish the iteration. In the other case, go to Step 5.

Step 5 (Shrink): Evaluate f in the n points yi = x1 + σ(xi − x1), i ∈ {2, 3, . . . , n +
1}. The new vertex of the simplex for the next iteration will be x1, y2, . . . , yn+1.

The algorithm stops when diam(S) < ε, for some ε > 0, and x1 is taken as the
best point for f .
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Enhancement of Cross Validation Using
Hybrid Visual and Analytical Means
with Shannon Function

Boris Kovalerchuk

Abstract The algorithm of k-fold cross validation is actively used to evaluate and
comparemachine learning algorithms. However, it has several important deficiencies
documented in the literature along with its advantages. The advantages of quick
computations are also a source of its major deficiency. It tests only a small fraction
of all the possible splits of data, on training and testing data leaving untested many
difficult for prediction splits. The associated difficulties include bias in estimated
average error rate and its variance, the large variance of the estimated average error,
and possible irrelevance of the estimated average error to the problem of the user.
The goal of this paper is improving the cross validation approach using the combined
visual and analytical means in a hybrid setting. The visual means include both the
point-to-pointmapping and a newpoint–to-graphmapping of the n-Ddata to 2-Ddata
known as General Line Coordinates. The analytical means involve the adaptation of
the Shannon function to obtain theworst case error estimate. Themethod is illustrated
by classification tasks with simulated and real data.

Keywords k-fold cross validation · Machine learning · Visual analytics ·
Visualization · Multidimensional data · Shannon function · Worst case · Error
estimate · Error rate · General line coordinates · Linear classifier · Hybrid
algorithm · Interactive algorithm

1 Introduction

1.1 Preliminaries

Cross validation (CV) hold out estimate is a common way to evaluate the perfor-
mance of classifiers in machine learning. In k-fold cross validation data are split into
k equal-sized folds. Each fold is a validation/test set for evaluating classifiers learned
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on the remaining k − 1 folds. The error rate is computed as the average error across
the k tests and is considered as an estimate of the error expectation. The empirical
error on a test set in CV often is a more reliable estimate of the generalization error
than the observed error on the training set [3]. The k-fold cross validation reduces
the computation of a simple CV method known as leave-one-out cross validation
[38]. Several variations of the k–Fold Cross Validation (KCV) for the Support Vec-
tor Machine (SVM) classification are compared experimentally in [1]. Parametric
methods for comparing the performance of two classification algorithms evaluated
by k-fold cross validation are proposed in [35] and strategy to find the global mini-
mumCV error as a function of two SVM parameters in [10]. Selection of k for k-fold
validation under some assumptions is explored in [2].

Four cross validation schemes are presented in [29], which are summarized below:

(1) Standard stratified cross validation (SCV) places an equal number of samples of
each class on each partition to keep the same class distributions in all partitions.

(2) Distribution-balanced stratified cross validation (DB-SCV) keeps data distri-
bution as similar as possible between the training and validation folds and
maximizes the diversity on each fold to minimize the covariate shift.

(3) Distribution-optimally-balanced stratified cross-validation (DOB-SCV) is DB-
SCV with the additional information used to choose in which fold to place each
sample.

(4) Maximally-shifted stratified cross validation (MS-SCV)creates the folds that are
as different as possible from each other. It tests the maximal influence partition-
based covariate shift on the classifier performance by putting the maximal shift
on each partition.

Here covariate shiftmeans different distributions on the training and test sets [32],
e.g., a unimodal distribution on the training set and a two-modal distribution on the
testing/validation set.

This paper provides a justification for the use of the worst case estimates and
Shannon Functions. The case studies show the examples of visual ways of worst
case estimates in the data of different dimensions in combination with the analytical
methods. This paper is organized as follows. Section 1 contains preliminaries, k-
fold Cross validation challenges and process. Section 2 describes the method that
includes the adaptation of the Shannon function (Sect. 2.1), discussion of alternative
algorithms (Sect. 2.2), and the interactive hybrid algorithm (Sect. 2.3). Section 3
provides three case studies: on linear SVMand simplified Fisher Linear Discriminant
Analysis (LDA) on modeled data in 2-D to illustrate the hybrid algorithm (Sect. 3.1);
on LDA and visual classification in 4-D on Iris data (Sect. 3.2), and on GLC-AL
and simplified LDA algorithms in 9-D on Wisconsin Breast Cancer Diagnostic data
(Sect. 3.3). Section 4 contains discussion and conclusion.
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1.2 Challenges of k-Fold Cross Validation

Challenges of cross validation have been analyzed for a long time. The representative
publication is [7] where four sources of random variation in cross validation are
identified.

• Selection of validation data to evaluate learning algorithmsA andB. On a randomly
selected validation data A can outperform B, though, on the whole, population A
and B can be identical.

• Selection of training data to evaluate learning algorithms A and B. On a randomly
selected training data A can outperform B, though on average A and B can be
identical. Decision trees suffer from such instability even with adding or deleting
few points.

• Internal randomness of the algorithm. Neural networks initiate random weights.
The algorithm GLC-AL that we use in this paper randomly initiates coefficients.

• Randomly mislabeled a fraction of validation data. It is hard to expect that the
algorithm will get fewer errors than this fraction.

Below we summarize more challenges specific for k-fold cross validation that are
relevant to this paper.

Selecting k. The first question is how to select k for k-fold split. The larger k can
lead to models with fewer errors on validation data due to larger training data. For
instance, for k= 10, 90%of data are in training sets and only 10%are in the validation
set in each training-validation pair. In contrast, smaller k can lead to models with
more errors on validation data due to the smaller training data, e.g., for k = 2 we have
50%:50% split between training and validation data. The lower k can give a higher
confidence in accuracy of the model on the validation data due to the larger number
of cases in the validation set, but less confidence in accuracy of the model on the
training data due to smaller training data. For k = 2 we have only two alternatives
for a given split: (1) using the first half for training and second half for validation, or
(2) vice versa.

Multiple k. Running k-fold cross validation for multiple k increases computation
load, and still may not justify selection of a specific k when performance for different
k varies significantly.

Selecting a split (partitioning). There are multiple ways to split data to k bins
(folds). For instance, for k = 2 it is a number of combinationC(m,m/2)=m!/(m/2)!2,
where m is the number of given n-D points. For a very small training set with m =
100 we have C(100, 50) > 1029. This number of splits grows exponentially with m.
The question is how to select a particular split out of these 1029 splits for m = 100.
If we select only a single split out of these 1029 splits the accuracy of classification
in this split may or may not be representative for the given dataset.

Multiple splits. Selecting multiple splits of data is computationally expensive
with exponential grows with m. The question is how many splits to make and what
k to keep. The use of the statistical criteria to evaluate the statistical significance of
the accuracy of the result in a single split or a few splits can be questioned from
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multiple viewpoints [7]. This is especially challenging for high-dimensional data.
For instance, 100 points in 100-D space hardly represent the 100-D probability
distribution function (pdf). Note that for images 100-D is just a way to represent a
tiny image with 10 × 10 pixels in a gray scale.

Multiple criteria of accuracy. The question ishow to select a criterion to estimate
the error on both training and validation data. The estimate of the expected (average)
error E(e) used in k-fold cross validation may not be the best one for the user’s task
such as the tasks with high cost of individual errors. The alternatives are max error,
min max error, weighed error and others.

In summary the main problems with k-fold are that:

(i) many splits that are difficult for prediction on the verification data will not be
tested [7],

(ii) estimated average errors can be biased [7],
(iii) estimated variance of average errors can be large and/or biased [6, 7],
(iv) estimates of the average error and its variance in (ii) and (iii) can be insufficient

or even irrelevant to the supervised learning problem that is of user’s interest.

The first three problems are well documented in the literature on statistical
machine learning. The theoremproved in [6] states that there exists no universal (valid
under all distributions) unbiased estimator of the variance of k-fold cross validation.
Multiple attempts have been made to address k-fold problems under different addi-
tional assumptions. The examples include a modification of k-fold known as 5x2CV
cross validation to decrease the bias and improve t-statistics used for evaluation [7]
and unbiased variance estimates under restrictive assumptions on the distribution of
cross-validation residuals [9]. Other more recent studies are listed in Sect. 1.1. To the
best of our knowledge much less was done for the problem (iv) in both probabilistic
and deterministic settings.

The problem (iv) is considered in this paper with the use of the Shannon function.
This problem is related to the Maximally-shifted stratified cross validation (MS-
SCV) listed above as schema (4). It is found in extensive experiments on real data in
[29] that: (1) MS-SCV produces a much worse accuracy than all other partitioning
strategies, and (2) cross validation approaches that limit the partition-induced covari-
ate shift (DOB-SCV, DB-SCV) are more stable when running a single experiment,
and need a lower number of iterations to stabilize. These results illustrate well the
problem. We can limit the covariate shift in cross validation to get a more stable
result on validation data. However, nobody can guaranty us that on new unseen data
the covariance shift will be limited or limited in the same way. It is simply out of our
control in many real world tasks.

Therefore, the stable result under such limits on the partition-induced covariate
can be biased showing a lower error rate than it can be on the real test data. If a user
will get estimates of expected error rate in schemas that:

• limit the partition-induced covariate shift (“average” case) and
• do not limit them, but are looking for the bounds for “worst” and “best” cases,
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then the risk of using a given learning algorithmwith “average” case will be balanced
by more complete information. This is the ultimate goal of this paper.

1.3 k-Fold Cross Validation Process

In this section we define the k-fold cross validation algorithm and its challenges. Let
D be a set that consists of m1 samples of class 1 and m2 samples of class 2 with each
sample is an n-D point and let k be a number of folds (bins) used to split data. Table 1
illustrated k-fold cross validation algorithm for k = 10 and 1000 samples (500 from
class 1 and 500 from class 2). Assume that the first 500 n-D records inD are samples
of class 1 already randomly ordered. Assume that the second 500 records in D are
samples of class 2 that are also randomly ordered. For k = 10 in each of 10 pairs
(training data, validation data) 90% of data are in the training dataset and 10% are
in the validation dataset.

Below we describe steps of k-fold algorithm in general terms with comments
on alternatives that it does not explore when run for a given k:

(1) Select the number of bins equal to k. Commonly k is between 2 and 10. The
given k is only one of these alternatives,

(2) Select a way to split D into k bins with about m1/k and m2/k samples of classes
1 and 2, respectively in each bin with the total of about m/k points in each bin.
The term “about” is used here to reflect the fact that m1/k and m2/k may not be
integers and need to be adjusted to be integers. The k-fold algorithm uses the
random split as the way to split D. It produces one split of D to k bins out of
the many possible splits that can be produced randomly or non-randomly.

Table 1 Example of k-fold cross validation algorithm for k = 10

Step 1 Assign k = 10

Step 2 Form k bins (folds)
Bin 1:
Bin 11: samples 1–50 from class 1, Bin 12: samples 1–50 from class 2
Bin 2:
Bin 21: samples 51–100 from class 1 Bin 22: samples 51–100 from class 2
…..
Bin k:
Bin k1 samples 451–500 from class 1, Bin k2: samples 451–500 from class 2

Step 3 Form training validation pair P(i) = <Tr(i), Val(i)>
For every i: 1, 2, … k, Val(i) = Bin(i) and all other bins are in Tr(i)
For instance, in <Tr(1). Val(1)> Val(1) = Bin1 and all other bins are in Tr(1)

Step 4 For every i compute the error e(i) on Val(i) obtained by the algorithm Algj trained on
Tr(i)
Compute average of all e(i) as an estimate of the expectation E of e, E(e) and
estimate its statistical significance relative to another algorithm or random prediction
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(3) Form k pairs (training data, validation data) with about (k − 1) m/k training
samples and about m/k validation samples in each pair by using a split of D to
k-bins from (2). Validation data for different pairs do not overlap. Other splits on
(3) would generate other pairs. Moreover, even for the given split, these k pairs
are a part of a much larger set of training, validation pairs with j m/k samples
for training and (k − j) m/k samples for validation. For instance, for k = 10
and j = 3 the pair contains 70% of D in the training data and 30% of D in the
validation set. The reason for using only k pairs in the k-fold ensures that the
test data do not overlap. 10-fold does not test more challenging pairs 70%:30%,
but only 90%:10% split pairs.

(4) Select the function to estimate prediction error and compute this function using
all k pairs from (3). The standard k-fold selects the estimate of expected (average)
error E(e) as described in Table 1. The alternatives are max error, min max error
and others.

2 Method

2.1 Shannon Function

Below we formalize a way to evaluate the worst case as a compliment to k-fold
estimates of the average error. It is done by adaptation of the minimax Shannon
function [30] originally proposed for analysis of the complexity of switching circuits
as Boolean functions. The Shannon function measures the complexity of the most
difficult function. It was used in the evaluation of complexity of computation of
Boolean functions by analog circuits [33]. The complexity L(f ) of a function f is the
lower bound of the complexity of circuits realizing f. The function L(n), equal to the
maximum complexity of functions of n arguments is called a Shannon function [13].
In particular, this function was applied to find an algorithm Aj that restores the worst
(most complex) monotone Boolean function of n-variables for the smallest number
of queries [11, 16].

Consider a labeled dataset D and a set of machine learning algorithm {Aj}j∈J .
Let {Di}i∈I , 1 = {1, 2, …, m} be a set of splits of D to <Training data, Validation
data> pairs. k-fold cross validation split is one of them. Each Di is a pair of training
and validation data, Di = (Tri, Vali). Ajv(Di) is the error rate on validation data Vali
produced by Aj when Aj is trained on the training data Tri fromDi. The adaptation of
the Shannon function S(I, J) to supervised learning problem is defined as follows

S(I, J ) = min
j∈J

max
i∈I A jv(Di ) (1)

The algorithm Ab is called S-best algorithm if
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S(I, J ) = min
i∈I Abv(Di ) (2)

In other words, the S-best algorithm produces fewer errors on validation data on
its worst k-fold splits among {Di} than other algorithms on their worst k-fold splits
among {Di}.

LetDa = {Di:i∈ Ia} be a set of all passible k-fold splits for given k and dataD, i.e.,
k − 1 folds (bins) with the training data and one fold (bin) with the validation data.
In contrast with the standard k-fold validation, here the validation sets for different
Di can overlap. Let DT = {Di:i ∈ T} is some set of splits.

Statement. If DT = {Di:i ∈ T} ⊆ Da then S(Ia, J) ≤ S(IT , J)
This statement follows directly from definitions of these terms. For instance, if

S(IT , J) = 0.2 then adding more splits can give us a better split Dr in Da such that
A jv(Dr ) < 0.2 for some Aj.

In other words, for eachDT the value of S(Ia, J) provides a low bound for S(IT , J).
Similarly, for Da the value of S(IT , J) provides an upper bound for S(Ia, J). A
standard k-fold split DK = {Di:i ∈ K} is one of DT . How close the bounds are to
the actual worst case depends on the specific DT and Da. At least the average error
rate for DK can be computed quickly enough. Computing error rates for multipleDK

produced by random or non-random splits of data into folds will give several bounds.
Asymptotically this will lead to the actual Shannon worst case,

Dw = arg(min
j∈J

max
i∈I A jv(Di )) (3)

Split Dw is called the worst case split for S-best algorithm Ab.

Dw = arg(max
i∈I Abv(Di ) (4)

Informally, the worst case split is a split, which is most difficult for the S-best
algorithm which produces fewer errors on validation data than other algorithms on
their worst splits from {Di}.

Split Db is called the best case split for S-best algorithm Ab

Dh = arg(min
i∈I A jv(Di ) (5)

Informally, the best case split is a split, which is easiest for the S-best algorithm
which produces fewer errors on the validation data than the other algorithms on their
worst splits from {Di}.

Split Dm is called the median split for S-best algorithm Ab,

Dh = arg(median
i∈I

(
A jv(Di )

)
(6)

Informally, the median split for the S-best algorithm produces the error rate that
is close to the average error rate among {Di} for Ab algorithm.
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The worst and best estimates (4) and (5) compliment (6) and the traditional k-fold
expectation estimate evaluated by the t-test statistics. This is especially useful when
the expectation has a high variance. Both the worst case and best case estimates
provide the “bottom line” of the expected errors. As we mentioned above, for the
tasks with a high cost of individual error, it is very important.

2.2 Alternative Algorithms

This section analyzes options for algorithms to find worst, best and median splits
defined above. The options are:

• brute force algorithms,
• specialized automatic algorithms that exploit known structural information about
data,

• interactive algorithms that exploit 2-D visual representation of n-D data, and
• hybrid algorithms that combine automatic and interactive visual algorithms.

Thebrute force algorithms require explorationof the number of alternatives,which
grow exponentially with the size of D. Therefore, such algorithms are of practical
interest only for very small datasets. Specialized algorithms must be developed for
each type of structural information about data. Thus, the approach based on the
structural information is labor intensive and not scalable. Interactive and hybrid
algorithms are most promising and will be explored in this paper. We focus on
the hybrid algorithms as this allows combining the advantages of automatic and
interactive visual algorithms.

There are twomajor types of 2-D visualizations of n-D data available in the hybrid
approach:

(1) each n-D point is mapped to a 2-D point (we denote this mapping as P-P), and
(2) each n-D point is mapped to a 2-D structure such as a graph (we denote this

mapping as P-G).

Principal Component Analysis (PCA) [12, 36], Multidimensional Scaling (MDS)
[25], Self-Organizedmaps (SOM) [14], RadVis [31] are examples of (1), and Parallel
Coordinates (PC) [15], and General Line Coordinates (GLC) [18–20] are examples
of (2). The P-P representations (1) are not reversible (lossy), i.e., in general there is
no way to restore the n-D point from its 2-D representation. In contrast PC and GLC
graphs are reversible [19].

Thenext issue is preservingn-Ddistance in 2-D.While suchP-P representations as
MDS and SOMare specifically designed tomeet this goal, in fact, they onlyminimize
the mean difference in distance between the points in n-D and their representations
in 2-D. PCA minimizes the mean-square difference between the original points and
the projected ones [36]. For individual points the difference can be quite large. For a
4-D hypercube SOM and MDS have Kruskal’s stress values Ssom = 0.327 and Smds
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= 0.312, respectively, i.e., on average the distances in 2-D differ from distances in
n-D over 30% [8].

Such high distortion of n-D distances (loss of the actual distance information)
can lead to misclassification, when such corrupted 2-D distances are used for the
classification in 2-D. This problem is well known and several attempts have been
made to address by controlling and decreasing it, e.g., for SOM in [36]. In medical
and engineering diagnostic tasks, as well as defense object classification tasks with
high cost of error, it can lead to disasters and loss of life.

In contrast, the distance between graphs in 2-D can be defined to preserve the
distancebetween all n-Dpoints not onlyminimize the averagedifference of distances.
Below we explain it.

Let A* and B* be graphs for n-D points A = (a1, a2, …, an) and B = (b1, b2, …,
bn). In PC, each ai and bi of A and B is represented as a node of the graph. If the
distance between ai and bi is e, |ai − bi | = e then the distance between nodes a*i
and b*i in PC is the same, |a*i − b*i | = e due to design of PC. Thus, D(A*, B*) is
defined as

D
(
A∗, B∗) = ||A − B|| = (

n∑

i=1

(ai − bi )
2)1/2

The same is true for other General Line Coordinates that map each ai to a graph’s
node a*i. For those GLC that map each pair (ai, ai+1) to a graph’s node a*i,i+1 and
each pair (bi, bi+1) to a graph’s node b*i,i+1 the distances between these nodes is
a standard Euclidian distance in 2-D, D(a*i,i+1, b*i,i+1) = ((ai − bi)2 + (ai+1 −
bi+1)2)1/2. The squared distance between graphs D2(A*, B*) is defined as the sum of
all squared D2(a*i,i+1, b*i,i+1). Thus, D(A*, B*) is as before, D(A, B) = ||A − B||, just
it is computed using pairs,

D
(
A∗, B∗) = ||A − B|| =

(
n/2∑

i=1

(D(a∗
i,i+1, b

∗
i,i+1)

2

)1/2

Note that if n is odd, the last coordinate xn is repeated to get the even n. The
formula above assumes such even n. Informally if n-D points A and B are close to
each other, then the graphs A* and B* in GLC are also close to each other. In P-P
representations it is not guaranteed. For this reason, the visual means that we use are
based on the General Line Coordinates.

In the hybrid approach below the visualization guides both:

(1) getting the information about the structure of data, and
(2) finding theworst, best andmedian split of data into the training–validation pairs.

In current machine learning practice, 2-D representation is commonly used for
illustration and explanation of the ideas of the algorithms such as SVM or LDA,
but much less for actual discovery of n-D rules due to the difficulties to adequately
represent the n-D data in 2-D, which we discussed above.
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2.3 Interactive Hybrid Algorithm

Belowwe propose non-randomheuristic ways to generate spits to get better estimates
of worst, best, and median case error estimates. While there are always counterex-
amples for heuristic ideas these ideas are more successful for finding worst, best,
and median cases than random splits used in typical cross validation. The first step is
setting up a threshold for samples from opposing classes to be considered as closely
located.

Worst case heuristic is to include closely located points of opposing classes to
validation data Val, but not to training data Tr. The intuition behind it is that closely
located points from opposing classes have higher chance to be misclassified if not
included to training data.

Best case heuristic is to include closely located points of opposing classes to
training data Tr, but not to validation data Val. The intuition behind it is that difficult
for classification closely located points from opposing classes have higher chance to
be classified correctly if used for training the classifier.

Median case heuristic. Worst and best splits described above are mixed pro-
portionally with the splits that do not have Tr and Val from worst and best splits.
Alternatively, none from best and worst splits are included.

Other heuristics to decrease computations are building best and worst cases using
only points that are located on the frames of the convex hulls of opposing classes
and only inside of convex hulls for the average cases.

If classes are separable (convex hulls do not overlap), and the distance between
closest points of convex hulls is large (say, comparable with the length of the convex
hulls), then it is likely that the worst, best, and median cases will produce error-free
discriminant functions for multiple classification algorithms. In this situation, all
these algorithms will be S-best algorithms, and the cross validation exploration can
be minimized.

In contrast, when the classes are closely located or overlap, extensive cross vali-
dation is required. This includes a situation when a search for the worst case splits
led to a split with a large error rate on validation data. If the further exploration
produced only a single much better split, then it must be justified beyond its high
accuracy before using it for prediction. Such justifications can be establishing that
the discovered model is explainable, which adds the confidence.

The steps of first part of the interactive hybrid algorithm for the S-best
algorithm, which is discovering the data structure are as follows:

(S1) Visualize n-D data in 2-D.
(S2) Select border points of each class, color them in different colors.
(S3) Outline classes by constructing envelopes in the form of a convex or a non-
convex hull.
(S4) Outline (a) overlap areas L for overlapped classes or (b) select closest areas C
for separable classes.
(S5) Compute the size of the overlap areas L or areas C of the closest samples.
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(S6) Set up ratio of training-validation data, |Tr||/|Val|, e.g. 90%:10% with (|Tr|| +
|Val|)/|Val| = k.

The steps of second part of the interactive hybrid algorithm for the worst case
(IH-W) of S-best algorithm are:

(W1) Form Val as areas L or C.
(W2) Adjust (increase or decrease) L or C to make |L| = |Val|, or |C| = |Val|.
(W3) Form training data Tr = D\Val and pair <Tr, Val>.
(W4) Apply each Algorithm Aj to Tr to construct discrimination function F.
(W5) Apply F to Val to get error rate Ajv(Val).
(W6) Record Ajv(Val) and find max(Ajv(Val)), j ∈ J.
(W7) Repeat (W1)–(W6) to get values {max Ajv(Vali)} i ∈ I for a set of training-
validation pairs {Di}.
(W8) Find the Shannon worst case split, mini∈I maxj∈J (Ajv(Vali)) and algorithm Ab

that provides this split.

The interactive algorithm for the best case (IH-B) of S-best algorithm is:

Use algorithm Ab from step W8 to get mini∈I (Abv(Vali)).

The interactive algorithm for the median case (IH-A) of S-best algorithm is:

Use algorithm Ab from step W8 to get mediani∈I (Abv(Vali))

Note: norm |X| can be computed as the actual number of cases from D in the area
X or as size of the area X depending on the density of the points of calluses in the
areas.

3 Case Studies

The problem in n-D space is that we do not see n-D data, and need visual tools to
represent n-D data in 2-D space. Figures below, in case studies, show how the visual
means support finding worst and best cases of splits with the use of the interactive
hybrid algorithm presented in this section.

3.1 Case Study 1: Linear SVM and LDA in 2-D on Modeled
Data

In this section, we assume a point-to-point (P-P) representation of n-D data in 2-D
such as PCA, MDA, and SOM. The interactive hybrid algorithm is demonstrated for
the search of the worst case estimates in cross validation for the two classification
algorithms. These two algorithms are the linear SVMand the simplified Fisher Linear
Discriminant Analysis (LDA). First we illustrate both algorithms with the examples
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in Figs. 1 and 2. For the linear SVMwe use its geometric interpretation [4, 5], which
is based on the closest support vectors of the two classes.

In Fig. 1a linear SVM uses line Lsv(A, B) that connects two closest support
vectors (SV) A and B from opposing classes (blue and grey pentagons that constitute
data D). The line Lsv(A, B) is used to build a discrimination line LD. Line LD bisects
line Lsv(A, B) in the middle and is orthogonal to Lsv(A, B).

In Fig. 1b simplified Fisher LDA uses the average points for each class (points
A and B), connects them with line Lap. Then the orthogonal line LD bisects line Lap

in the middle. The line LD serves as the discrimination line.
In Fig. 1, both algorithms produce the same green discrimination line, which is

error free before any cross validation splits of these data. Figure 2 shows the results
of linear SVM and simplified LDA for one of 10-fold splits Di of the data D in the
cases of wide and narrow margins between the classes (pentagons). In both pictures,
the two violet triangles form a test set (total 10% of both pentagons). The remaining

(a) The red line connects the closest support vectors and green line 
bisects it in the middle to serve as a SVM linear classifier

(b) The red line connects centers and green line bisects it in the 
middle to serve as a LDA linear classifier.

Lsv LD

A B

LD

A B

Lep

Fig. 1 Two separable classes with wide margin classified by linear SVM and simplified LDA. All
points of each class are in the respective convex hulls (blue and grey pentagons)

(a) Linear SVM: wide margin case (b) Linear SVM: Narrow margin case

(c) Simplified LDA wide margin case (d) Simplified LDA: narrow margin case

A
B

Fig. 2 Two separable classes with wide and narrowmargin classified by linear SVM and simplified
LDA. InSVMthe red line connects closest support vectors fromopposing classes. InLDAit connects
centers of training data of classes. The green lines that bisect these lines in the middle serve as a
SVM and LDA linear classifiers, respectively. In the case of the narrow margin both classifiers are
not error free
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parts of the pentagons are the training data of this Di pair. Figure 2a, c shows that
in the case of the wide margins both the algorithms SVM and LDA are also error-
free, while producing different discrimination, functions. Thus, Fig. 2a, c provides
examples of the best case of the split for these algorithms.

In contrast, Fig. 2b, d show the errors in the case of a narrow margin with a larger
error for the linear SVM than for the LDA. We cannon state that these figures show
the worst case for any of these algorithms, but the smaller error for LDA can serve a
bound for S-best algorithm among these two algorithms. Other splits can have larger
errors.

Nowwewill show how these examples are related to the first part of the interactive
algorithm—visual discovery of the data structure. The results of steps S1–S5 are
shown in all parts of Fig. 2, Steps S3 are shown in Fig. 2b in addition to steps S1–S5.

Worst case. For the worst case, the steps W1–W5 are also illustrated in these
examples. In Sect. 2.3 we outlined a heuristic for finding a worst case split, which is
finding closely located points of opposing classes to be included to validation data
Val. The violet areas in Fig. 2 satisfy this heuristic. They were selected by visual
analysis of classes in Fig. 1.

Figure 3 illustrates the nextW steps of the interactive algorithm, where the adjust-
ment is starting from W7 to adjust/modify the validation data. Figure 3 shows the
result of the modification, which generates more errors than the split in Fig. 2, pro-
viding a stronger bound for the worst error. The general idea of designing such
stronger estimates is modifying visually the current split.

In Fig. 3 the green areas form the validation data (5% of the blue pentagon and
5% of the grey pentagon). The points A and B on the edge of the green areas belong
to the training data, but all other points of those inner edges belong to the validation
data. These edges are segments of the perimeters of the circles of equal radiuses
with centers in A and B. Thus points A and B are the closest support vectors of the
training data from opposing classes.

The green linear SVM discrimination line, produced using these A and B, has
significant error in both training and validation data, because A and B are located
asymmetrically (A higher than B). In Fig. 2b, A and B are at the same height. It is

(a) Linear SVM (b) Simplified LDA

Lsv
LD

A

B

Lep LD

A B

Fig. 3 Modification of validation area from Fig. 2b
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visible from the picture that larger difference in height leads to more errors in these
data.

The analytical part of the stepW2 at this stage uses a binary search with substeps:
(W21) finding the middle point on the pentagon edge where the point A is located.
Substep W22 is finding radius R such that the circle with R cuts a green area in the
grey pentagon equal to the 5% of that pentagon area. It is done by several iterations.
SubstepW23 is getting a candidate for the point B in the crossing of the grey pentagon
and the circle. Substep W24 is drawing a circle of radius R from B, and computing
the green area in the grey pentagon. Substep W25 is checking if this area is greater
than the 5% of the pentagon area, and moving point A to the right on its edge to the
middle of that half of that edge, otherwise A is moved to the middle of the left half of
the edge. Now substeps W22–W25 are repeated with binary splits of the edge until
the difference from 5% will be small enough to stop.

How to ensure that this process will converge? Step 2 will find the required area
for every location of point A. If B gives more than 5%, point A is moved to the right.
If new B still gives more than 5%, point A is moved further to the right. If finally B
gives less than 5%, point A is moved back until 5% is reached within the required
accuracy. For the case when B gives less than 5%, the sequence is similar.

Statement. Figure 3a is the worst case for linear SVM, when the two closest SV
of the two full pentagons shown in Fig. 1 are removed from the training data and
placed into the validation data.

Proof. Any split of the pentagons in Fig. 3 into the training and validation data
that keeps the closest SV in the training set produces the same discrimination line
(the green line in Fig. 1). This line is the optimal one because it provides error-free
discrimination of the pentagons. Thus, to get a line with errors we need to remove at
least one of the points A and B from the training data. Figure 3a shows such a case
when both original A and B from Fig. 1a are removed from the training data and the
new closest support vectors A and B are identified.

Let for a given point B a classifier with more errors than in Fig. 3a exists; it must
have its own SV in class 1 that is closest to B. Denote it as C. With this C no training
data from the blue pentagon can be in the green area other than point C, because
these points are closer to point B than C. Otherwise, C is not the closest SV to B.
This green area without C must be outside of the training data and must belong to the
validation data. In the 10-fold design for pentagons, the validation data must be no
greater than 5% of the pentagon area. Point A is selected at exactly 5% of the blue
pentagon area. Thus, point C cannot differ from A. Therefore, Fig. 3a is the worst
case when both original SV A and B are removed from the training data.

Figure 3b shows the result of the simplified LDA for the same validation data. This
result is the best case for the simplified LDA because this pair Di is error-free (see
green discrimination line in Fig. 3b). For this Di we have AvSVM(Di) > AvLDA(Di) =
0. Thus, LDA is the winner as the S-best algorithm for thisDi. For the previousDi in
Fig. 2 we also have AvSVM(Di) > AvLDA(Di), but AvLDA(Di) > 0. DenoteDi from Fig. 2
as D2 and from Fig. 3 and D3. In this notation, AvSVM(D2) > AvLDA(D3). Therefore,
LDA is the winner as the S-best algorithm for both D2 and D3 in comparison with
linear SVM.
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Generalization for arbitrary convex hulls. The example above with two pen-
tagons at specific locations shows that knowing the specific structural information
about the data it is possible to derive the exact worst case split for the given k, and
for simplified LDA and linear SVM. This approach can be generalized to any convex
hull not only equal pentagons at the specific locations. Figure 4 illustrates this for two
arbitrary convex hulls. It uses the same way of designing the worst case validation
data (selecting closest areas of two classes) for linear SVM as in Fig. 3. In Fig. 4
there are two closest SV B1 and B2 in the grey hexagon to point A, which is in the
blue rectangle. The SVM discriminant line for B1 is error-free, but the discriminant
line for LDA in Fig. 4c is not. Linear SVM is a winner for Di in Fig. 4 that we
denote as D4, AvLDA(D4) > AvSVM(D4). In this example, we build the discriminant
lines only for two closest SV from two classes. We do not consider the case when a
single discriminant line is constructed for several closest SVs while it can be done
similarly.

Discussion. What is important in the examples in this case study? It is not the
existence of the k-fold cross validation where one algorithm is better than another. It
is a fact that it was fund visually. The probability of this discovery is very low under
the blind random assigning of data to bins in the k-fold algorithm. The following
numerical example shows this.

Assume that we have 1000 samples of the two classes in the two pentagons in
Fig. 3. Thus, each bin (fold) in 10-fold will contain 100 samples. Also assume that
in each (Tr, Val) pair Di, training data contain 900 samples and the validation data
contain remaining 100 samples (50 samples from class 1 and 50 cases from class 2).
Each pentagon has only 5 nodes. We assume that all of them are among 500 samples
in the dataset D. With the random selection the probability to get the training or
validation set with one specific node from blue pentagon (denoted as node A) is
equal to 1/500. Respectively the probability p to get training or validation data with
two specific nodes A and B is low (1/500)2.

(a) Linear SVM  best case. (b) Linear SVM worsened case (c) Simplified LDA case

A

B1

A

B2

Fig. 4 Linear SVM and simplified LDA with different error rates for arbitrary convex hulls. Green
areas are the verification data
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Moreover, in Fig. 2b points A and B not only belong to training data, but are
closest support vectors from two opposing classes. The probability of this is even
lower under the random process of putting samples to the bins. It means that getting
a case Di that we have in Fig. 3 is unlikely by a random process. This case is one
of the worst cases for linear SVM in these data. In general, it means that if we are
not able to discover such Di then the k-fold will not allow us to see the difference
between these algorithms.

Next, even if such Di is included, the difference between average error estimates
for two algorithms will likely be statistically insignificant if both algorithm equally
accurate on the remaining nine training-validation pairs. This is a motivation for
using the Shannon function and for search of the worst cases or at least estimates the
bounds of the worst cases.

Why is it important to search for such rare worst training-validation pairsDi? The
ultimate goal ofmachine learning is generalization beyond the given dataD to unseen
data. The existence of worst training–validation pairs with large error indicates that
the algorithm Aj does not capture a generalization pattern in some situations on
given data D.

This increases the chances ofmisclassification on unseen data too. In the taskswith
the high cost of an individual error (e.g., in medicine and defense) such situations
must be traced and analyzed before use in real applications. For instance, if the S-best
algorithm defined in terms of the Shannon function on a set of selected splits {Di}
is not error-free then the areas where those errors occurred can be treated differently
than the error-free areas; It can be:

(1) refusal to classify data from those areas,
(2) use other machine learning algorithms,
(3) adding more data and retraining on extended data,
(4) cleaning existing data,
(5) modifying features,
(6) use other appropriate means including manual classification by experts.

The case study in this section uses 2-D modeled 2-D data of a given structure.
As was pointed out at the beginning of this section, to make it useful for real n-D
machine learning tasks 2-D data can be obtained from real n–D data by PCA, MDS,
SOM and other point-to-point matching visualization algorithms.

3.2 Case Study 2: LDA and Visual Classification in 4-D
on Iris Data

The case study in this section is based on the graph representation of n-D samples
in 2-D, not on a single 2-D point representation of n-D points considered in case
study 1. This graph representation is called Parametrized Shifted Paired Coordinates
(PSPC) [19, 20]. In PSPC a 4-D data points (x1, x2, x3, x4) is represented in 2-D as
arrows where the beginning of the arrow is point (x1, x2) in coordinates (X1, X2) and
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the end in the point (x3, x4) in coordinates (X3, X4). In Fig. 5, both coordinate systems
are shown. The example of such an arrow in an orange arrow defined by pairs (x1m,
x2m) and (x3m, x4m) in Fig. 5a. This point is the mean of all 4-D points of class 2 that
we will call the center of class 2. The mean of all 4-D points of class 1 is another
arrow. However, the location of coordinates pairs (X1, X2) and (X3, X4) on 2-D plain
is selected in PSPC in such a way that this arrow is collapsed to a single point. This
single point is shown as a black dot in the middle of the red blob that represents class
1. This parametrization of the location is described in [19]. For an n-D point with
n > 4, the arrow will be transformed into a sequenced of arrows (directed graph). For
an n-D point that is used as an anchor for the parametrization, this graph collapses
into a single 2-D point in the same way as described above for the 4-D.

In Fig. 5, Iris 4–D data [24, 26] of two classes are shown as arrows in PSPC
anchored in the center of class 1. Then two linear classification algorithms are applied.
Figure 5a shows the simplified LDA classifier (green line) and a visually constructed
classier (thin black line) for the 4-D data. For comparison, Fig. 5b shows the result
of applying the simplified LDA (dark green line) if data in those convex hulls would
be 2-D data. The visually constructed discriminant line is the same thin black line as
in Fig. 5a. In this case black dots in Fig. 5b are 2-D centers of classes 1 and 2. The
simplified LDA algorithm in Fig. 5b is the same as the one used in case study 1. It
produced a larger error than the visually constructed discriminant (thin black line),
which is error-free.

In contrast, for the 4-D case in Fig. 5a, the centers are arrows, not points, and the
middle of them is not a single point, but the line that connects the two green points.
The linear classifier (green line) is the extension of that line with a very small error.

What is important in the example in Fig. 5a? It is the abilities to build a visual
classifier (black line), to build visually a simplified LDA (green line), and be able
to compare the level of error visually without extensive computation. It also allows
the chopping visually of parts of the blobs to set up them as new validation data and
build new visual discrimination lines, compare the errors, and find worst and best

(a) Simplified LDA discriminant for 4-D data in PSPC  (dark green 
line) and visually constructed discriminant (thin black line). The 

orange arrow is the middle 4-D point of class 2.

(b) Simplified LDA discriminant (dark green line) for 2-D data and 
visually constructed discriminant (thin black line). Black dots are 2-D 

centers of classes 1 and 2.

LLDA

LVisual

X3

X4

X1

X2

(x1m,x2m)

(x3m,x4m)

LVisual

X4

X3

X2

X1

Fig. 5 Iris data in parametrized shifted paired coordinates (PSPC) anchored in class 1
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splits similarly to shown in case study 1. Purely computationally, it would require
massive combinatorial computations, and we still may not find the worst cases.

3.3 Case Study 3: GLC-AL and LDA in 9-D on Wisconsin
Breast Cancer Diagnostic Data

The case study in this section is also based on the graph representation of the n-D
samples in 2-D, not on a single 2-D point representation of an n-D point. For this
study, Wisconsin Breast Cancer Diagnostic (WBC) dataset was used [24, 26] with
9 attributes for each record and the class label which was used for classification.
The samples without missing values include 444 benign cases and 239 malignant
samples. Figure 6 shows the samples of screenshots,where these data are interactively
visualized, and classified with a linear classifier using GLC-L algorithm [20], and
GLC-AL algorithms [22] with the accuracy over 95% on these data. The malignant
cases are drawn in red andbenign in blue. For convenience of reading these algorithms
are presented in the appendix.

Below we show a way to get a worst case for the linear GLC-AL algorithm. The
comparison with the other algorithms is conducted by developing and using the 2-D

(a) Two thresholds are set for selecting the overlapping 
cases. 

(b) Overlapping cases from the interval between the two 
thresholds from (a).

Fig. 6 9-D Wisconsin breast cancer data in lossless GLC-L visualization and classification by
algorithm GLC-AL by an algorithm
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versions of the linear SVM and LDA in the GLC-L visualization. Here we w use the
convex hulls in 2-D not in n-D. We also use the interactive GLC-IL algorithm [22],
where the training process includes adjusting a threshold without finding the new
coefficients. In Fig. 6, the number of samples in the overlap area from both classes
is small (5.6%), and therefore can be visually analyzed quickly.

In Fig. 6a, the GLC-AL linear classifier misclassified 31 samples with all of them
from class 1 when all data (444 benign cases and 239 malignant samples) were used
for training. The selected overlap area contains 38 samples (4.5%, with 28 samples
from class 1, and 10 samples from class 2).

According to step W1 of the algorithm IH-W, we form the validation set Val as
a set of samples in the overlap area L. We keep Val equal to L without adjustment,
skipping the step W2. Next we use a shortcut for steps W2–W5, which allows us to
get a bound for the error rate Ajv(L), where Ajv is the GLC-L algorithm applied to
Val = L trained on Tr. The result of this shortcut is presented in Fig. 6b. It shows the
overlapping cases L, selected in Fig. 6a and the accuracy of classification of samples
from L, when all of them and only them are used as training data. At the first glance,
running GLC-L on L as training data, not validation data, contradicts steps W2-W5,
which require to running L as validation data. The trick is that, training GLC-L on
L as training data, we expect to get a smaller error rate on L than running the linear
model on L, constructed by GLC-L on training data Tr without any data from L in
Tr.

In Fig. 6b, the accuracy is 73.68% (error rate 0.2632) with L as training data. The
error rate 0.2632 is the upper bound for the error rate Ajv(L), Ajv(L) ≤ 0.2632. We
cannot get a bound with the larger number of errors than 0.2632 for the algorithm
GLC-L, ifwe continue to runGLC-Lon the overlap area L formore epochs. It follows
from the design of GLC-L. GLC-L keeps coefficients with the current lowest error
rate. Having the error rate equal to 0.2632 GLC-AL will update it only by finding a
smaller error rate, not a larger one.

This conclusion was made under assumption that we use L as Tr. Now we need to
explore what will happen with the other splits when L is only a part of Tr, not equal
to Tr. Can we get another error rate r for GLC-L, say r = 0.3, which is greater than
0.2632 for these other splits and respectively another upper bound for Ajv(L)? If such
greater r exists our previous claim, that we cannot get more errors with GLC-L, will
be wrong.

We cannot get such greater r for the same reason as above. The design of GLC-L
will not allow it. We already have a linear model in Fig. 6a that classified all samples
from Tr=D\L with zero error rate, where D is the total given dataset. Thus GLC-AL
algorithm trained on Tr data that include L will only keep linear models that classify
L better because for samples outside L GLC-AL already obtained models with zero
error rate.

This shortcut can be applied for anyGLC-L data. If such upper bound is a tolerable
error rate, then we can apply the coefficients found by GLC-AL on TR\L as training
data for classification of new data. Thus, steps W2–W5 of the algorithm IH-W for
GLC-L can be simplified.
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To compare the bound for GLC-Lwith the bounds for linear SVM and LDA steps,
W4–W6 must be run for these algorithms. The algorithm with the smallest bound
will be a candidate for the S-best algorithm on these data. In addition to this analytical
option, an interactive option exists for the modified and simplified versions of linear
SVM and LDA algorithms that work with 2-D GLC-L visual representations of n-D
data. Both algorithms follow the steps used in case study 1 with two differences: (1)
convex hull constructed by GLC-L algorithm are used, and (2) the overlap area is
defined by the location of the last node of the graph (marked by black squares). This
way to identify the overlap area was used in Fig. 6.

Linear SVM in GLC-L visualization uses closest support vectors (SV) from two
classes in GLC-L. For overlapping convex hulls of two classes we use the overlap
area that is identified by a user interactively using two thresholds (see green lines in
Fig. 6a). Two closest nodes of graphs from two different classes in the overlap area
are called closest support vectors. If the overlap area is empty (the case of linearly
separable classes) then two closest nodes of the frames of two convex hulls are called
closest support vectors. Having two closest support vector A and B we build a line
that connects them and a line that bisects than in the middle and orthogonal to the
first line. The closest nodes are defined in the projection line of the last point to the
horizontal line (see yellow line in Fig. 6b).

For the LDA we compute A as an average point in the projection on the point of
class 1 to the horizontal line and point B the same for the class 2. Then the middle
point C between A and B is used to construct the discrimination line. It is shown in
Fig. 6a as a grey line.

What is important in the example in Fig. 6 is the same as in case studies 1 and
2—the abilities to build a visual classifiers (in this case for 9-D), and be able to
compare error rates visually. It also allows chopping visually overlapping parts by
setting up thresholds interactively and using these folds to construct validation data
for the worst case.

4 Discussion and Conclusion

While cross validation is very useful, it needs to be improved to deal with its defi-
ciencies such as leaving untested many potentially difficult-for-accurate-prediction
splits. It is challenging due to a need to keep its advantage of faster computation. This
paper had shown a hybrid way to improve cross validation by using combined visual
and analytical means. We use both the well-known point-to-point and new point-to-
graph mapping of n-D data to 2-D data. The main benefit of this hybrid approach is
leveraging the abilities of the human visual system to guide the discovery of patterns
in 2-D. This includes discovering splits of n-D data in 2-D visualization of these data.
This approach creates an opportunity to avoid a blind computational search of worst
splits among the exponential number of alternatives that can be the case in the pure
computational analytical approach. In essence, the visual approach brings additional
information about the n-D data structure that the pure computational approach lacks.
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Adding such information from the visual channel can be viewed as a way to addmore
features and relations to the data, sometimes called privileged information [34], or
prior domain knowledge [27, 28]. The difference is that both privileged information
and domain knowledge typically are assumed to not be present in the original data.
In contrast, the visual channel makes the hidden information already present in n-D
data be readily available via the interactive process.

While this visual opportunity exists, it requires the relatively simple visualization
for humans to be able to discover a pattern in them, i.e., within the abilities of the
human visual channel. The ways to simplify the visual patterns in the General Line
Coordinates are proposed in [20]. Such ways should be applied before in concert
with the interactive search for worst case splits in cross validation.

The focus on worst case splits and adaptation of the Shannon function bring a
new formal validation task that covers both validation with or without cross splits
depending on a set of split used. Three cases studies illustrate the proposed approach
for different dimensions.

The main justification for the use of worst case estimates and Shannon Functions
is three-fold:

(1) Existence of the tasks with a high cost of individual errors (e.g., medicine and
defense);

(2) Existence of the tasks with a relatively low cost of individual error and a low
average error rate, but the high error rate for the worst case splits;

(3) Abilities to limit the application of the algorithm in the worst folds avoiding the
risky predictions.

In (1) and (2) the use of the average error rate can be too optimistic and risky
where the worst case estimate serves as warning, while (3) allows preventing risky
decisions. We may have two algorithms A and B with the average error rates with a
statistically insignificant difference, butA hasmuch smallerworst case error rate than
B. This can be a reason to prefer A for the classification of new samples, because A
was able to discover better difficult patterns than B showing stronger generalization
ability. In addition while error rate for A is better than for B in the worst case, in
some worst folds it can be too big. The prediction in these folds can be blocked for
both A and B.

In Sect. 1 we listed the several challenges for k-fold cross validation. These chal-
lenges are related to: (1) selecting the number of folds k and running multiple k,
(2) selecting data split, running multiple splits and missing multiple splits that left
untested, (3) large variance of error rates, (4) bias in estimated average errors and its
variance, and (5) insufficiencyor irrelevanceof estimated average errors (multiplicity
of criteria of accuracy).

The proposed hybrid approach allows dealing with these challenges as follows.
First k = 2 is used to provide an upper bound of the worst error rate for all the other
k for the given algorithm A. Then we increase k until the worst case bound will be
below threshold Tworst selected by a user for the given task. This k and k above it
are considered acceptable. On the other extreme, with k = m (leave-one-out split),
wherem is the number of samples, we consider another threshold Tbest, and decrease
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k until the best error rate will be still below Tbest. Assume that we find k that satisfies
both the Tworst and Tbest. Such k ensures that we have fewer errors in both the worst
and best cases, than the allowed thresholds for them. For instance, we can find that
for k= 8 the worst error rate is bounded by 0.18 and the best error rate is bounded by
the error rate 0.05, with average error rate as 0.12 with its variance ±0.02. In other
words, we have a wider interval [0.05, 0.18] than the average interval [0.10, 0.14].

The computational support of visual exploration and visual support of analytical
computations are important parts in this hybrid approach to avoid brute force search.
It is important that in the examples in the case studies, the bounds for the worst splits
were found by visual exploration without blind brute force computational search,
despite rarity of these splits. This includes a quick visual judgment that the error rate
in one split is greater than in another one. A user can find visually a large overlap
area of two classes and chop it to form several validation folds, e.g., getting 10-fold
cross validation splits. This confirms our main statement that brute force search is
not mandatory and is avoidable using an appropriate visualization.

The future studies are towardmakinghybrid interactionsmore efficient andnatural
in the computational and visual aspects, but not limited by them going to more
general data science approaches [21]. This includes adding speech recognitions to
interactions allowing a user to give oral commands such as “decrease slightly the
overlap area”, “shift the overlap area to the right”, “make an about 5% area on the
top of the convex hull” and so on. This will require formalization of the linguistic
variables involved in these commands in the spirit of the Computing with Words
(CWW) approach [17, 37]. More complex commands such as “decrease slightly the
overlap area, and shift the overlap area to be close to the envelope frame” will require
more sophisticated uncertainty aggregation techniques [23] from probability theory,
fuzzy logic and interval analysis.

Appendix

For convenience of reading this article, the appendix below presents the GLC-L
algorithm from [20] and GLC-AL algorithm from [22], which are used in Sect. 3.3.

Appendix 1: Base GLC-L Algorithm

Let K = (k1, k2, …, kn+1), ki = ci/cmax, where cmax = |maxi=1:n+1(ci)|, and G(x) =
k1x1 + k2x2 + · · · + knxn + kn+1. Here all ki are normalized to be in [−1, 1] interval.
The following property is true for F and G: F(x) < T if and only if G(x) < T /cmax.
Thus F and G are equivalent linear classification functions. Below we present the
steps of the base visualization algorithm called GLC-L for a given linear function
F(x) with the given coefficients C = (c1, c2, …, cn+1).
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Step 1: Normalize C = (c1, c2,…, cn+1) by creating as set of normalized parameters
K = (k1, k2, …, kn+1): ki = ci/cmax. The resulting normalized equation yn = k1x1 +
k2x2 + · · ·+ knxn + kn+1 with the normalized rule: if yn < T /cmax, then x belongs to
class 1 else x belongs to class 2, where yn is a normalized value, yn = F(x)/cmax. Note
that for the classification task, we can assume cn+1 = 0 with the same task generality.
For regression we also deal with all the data normalized, e.g., if actual yact is known,
then it is normalized too, yact /cmax for comparing with yn.
Step 2: Compute all angles Qi = arccos(|ki|) of absolute values of ki and locate
coordinates X1 − Xn in accordance with these angles as shown in Fig. 7 relative to
the horizontal lines. If ki < 0 then coordinate X i is oriented to the left, otherwise X i

is oriented to the right (see Fig. 7). For a given n-D point x = (x1, x2, …, xn) draw
its values as vectors x1, x2, …, xn in respective coordinates X1–Xn (see Fig. 7).
Step 3. Draw vectors x1, x2, …, xn one after another, as shown on the left side of
Fig. 7. Then project the last point for xn onto the horizontal axis U (see a red dotted
line in Fig. 7). To simplify visualization axis U can be collocated with the horizontal
lines that define the angles Qi as shown in Fig. 8.
Step 4.
Step 4a. For regression and linear optimization tasks repeat step 3 for all n-D points
as shown in the upper part of Fig. 8.
Step 4b. For the two-class classification task, repeat step 3 for all the n-D points of
classes 1 and 2 drawn in different colors. Move points of class 2 by mirroring them
to the bottom with axis U doubled as shown in Fig. 8. For more than two classes,
Fig. 1 is created for each class, and m parallel axes Uj are generated next to each
other similar to Fig. 8. Each axis Uj corresponds to a given class j, where m is the
number of classes.

Fig. 7 4-D point A = (1, 1, 1.2, 1.2) in GLC-L coordinates X1–X4 with angles (Q1, Q2, Q3, Q4)
and vectors xi shifted to be connected one after another, and the end of last vector projected to the
black line. X1 is directed to the left due to negative k1. Always, the coordinates for negative ki are
directed to the left
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Fig. 8 Result with axis X1
starting at axis U and
repeated for the second class
below it

U

Step 4c. For the multi-class classification task, conduct step 4b for all n-D points of
each pair of classes i and j drawn in different colors, or draw each class against all
other classes together.

This algorithm uses the property that cos(arccos k) = k for k ∈ [−1, 1], i.e.,
projection of vectors xi to axisU will be kixi and with consecutive location of vectors
xi, the projection from the end of the last vector xn gives a sum k1x1 + k2x2 + · · · +
knxn on axis U. It does not include kn+1. To add kn+1, it is sufficient to shift the start
point of x1 on axis U (in Fig. 7) by kn+1. Alternatively, for the visual classification
task kn+1 can be omitted by subtracting kn+1 from the threshold.

Appendix 2: Algorithm GLC-AL for Automatic Discovery
of Relation Combined with Interactions

The GLC-AL algorithm differs from the Fisher Linear Discrimination Analysis
(FDA), Linear SVM, and Logistic Regression algorithms in the criterion used for
optimization. The GLC-AL algorithm directly maximizes accuracy,

A = (TP + TN)/(TP + TN + FP0 + FN),

which is equivalent to the optimization criterion used in the linear perceptron]
and Neural Networks in general. In contrast, the Logistic Regression minimizes
the Log-likelihood. Fisher Linear Discrimination Analysis maximizes the ratio of
between-class to within-class scatter. The Linear SVM algorithm searches for a
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hyperplane with a large margin of classification, using the regularization and the
quadratic programming.

For the practical, GLC-AL uses a simple random search algorithm that starts from
a randomly generated set of coefficients ki, computes the accuracy A for this set, then
generates another set of coefficients ki again randomly, computes A for this set, and
repeats this process m times. This is Step 1 of the algorithm shown below. A user
runs the process m times more if it is not satisfactory.

Step 1: 

Step 1: 
best_coefficients = []
while n > 0

coefficients <- random(−1, 1)
all_lines = 0 
for i data_samples:

line = 0
for x data_dimensions:

if coefficients[x] < 0:
line = line – data_dimensions[x]*cos(acos(coefficients[x]))

else:
line = line + data_dimensions[x]*cos(acos(coefficients[x]))

all_lines.append(line)
//update best_coefficients

  n-- 
Step 2: Projects the end points for the set of coefficients that correspond to the highest A value (in the same 
way as in Figure 4) and prints off the confusion matrix, i.e., for the best separation of the two classes.

Step 3: 
Step 3a:

1: User moves around the class separation line.
2:  A new confusion matrix is calculated.

Step 3b:
1: User picks the two thresholds to project a subset of the dataset.
2: n-D points of this subset (between the two thresholds) are projected.
3: A new confusion matrix is calculated.
4: User visually discovers patterns from the projection.

Step 4: User can repeat Step 3a or Step 3b to further zoom in on a subset of the projection or go back to   
Step 1.

Validation process. In the current implementation, GLC-AL uses 10 different
70–30% splits, with 70% for the training set, and 30% for the validation set in each
split. Thus GLC-L has the same 10 tests of accuracy as in the typical 10-fold cross
validation, but 70–30% splits are more challenging than the tasks with 90–10% splits
in 10-fold cross validation.

These 70–30% splits are selected by using the permutation of data. The splitting
process is as follows:

(1) indexing all m given samples from 1 to m, w = (1, 2, …, m),
(2) randomly permuting these indexes, and getting a new order of indexes, π(w).
(3) picking up the first 70% of indexes from π(w),
(4) assigning the samples with these indexes to be the training data,
(5) assigning the remaining 30% of samples to be validation data.
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This splitting process also can be used for a 90–10% split, or other splits.
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Abstract We review the fundamentals of Conditional Event Algebras (CEA),
provide an overview of current research surrounding CEA, and offer insights into
future research inspired from CEA, including quantum logic.

Keywords Boolean ring · Conditional event algebra · Data fusion · Expert
systems · Imprecise probability · Logic of conditionals · Product space approach ·
Quantum logic · Rule based systems · Three valued logic

1 Introduction

This is an overview of the state-of-the-art of the topic known as Conditional Event
Algebra (CEA). For a history of CEA, the reader is referred to the excellent paper
by Milne with [31], see also Nguyen and Walker [34]. However, to bring the topic
to a larger audience, we will be somewhat tutorial in this overview.

The main motivation for writing this paper is this. It could be said that the topic of
CEA took a definite turn in 1988 when Goodman and Nguyen [24] systematically
investigated themathematical problem ofmodeling conditional rules consistent with
conditional probability. This work has immediately triggeredmany follow-up works,
e.g., Chrzastowski-Wachtel et al. [6], Flaminio et al. [14], Gilio and Sanfilippo [17],
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Milne [31, 32], Pearl [37], Pelessoni and Vicig [39], in various areas. But what is
interesting is that the impact of the fundamentals of CEA is still spread out in various
areas until today. As such, it seems appropriate to provide a return to source together
with a summary of current research interests surrounding CEA.

The paper is organized as follows. First, as for any new topic, we should start
out in the best pedalogical order: What is a conditional event? Why do we need
conditional events? and How to use conditional events? Next, we summarize the
established theory of conditional events from two different approaches, a Boolean
structure and a product space setting. The rest of the paper is devoted to a survey
of recent related works, as well as an open window on connections with quantum
probability and logic.

2 What is a Conditional Event and Why?

Let (Ω,A, P) be a probability space. Subsets ofΩ which belong the the σ− fieldA
are events and their probabilities are determined by P(.), i.e.,A is the domain of the
measure P(.). For A, B ∈ A with P(B) > 0, the conditional probability of A given
B (or conditioned on B) is denoted as P(A|B) and is taken to be P(A∩B)

P(B)
. When such

B is fixed, and we are essentially interested in various A ∈ A, this formulation can
be written as a restrictive probability space (Ω,A, PB) where PB(.) : A →[0, 1]
is the probability measure A → P(A|B). Thus, as far as the antecedent B is fixed,
conditional probabilities are expressed in standard probability theory framework.
Note that the notation P(A|B) should be understood in this sense P(A|B) = PB(A):
the argument of P in it is only A, and not B. More specifically, as we will see later in
applicationmotivations, canwe “talk” about an event of the form A|B which could be
read as “A if B”, as a bonafide event, so thatwe could have P((A|B)) = P(A|B)?Put
it differently, for any A, B ∈ A, is there A|B ∈ A such that P((A|B)) = P(A|B) =
P(A∩B)

P(B)
when P(B) > 0? It turns out that the answer is negative in the sense that

only in few trivial (special) cases that a conditional event A|B can be taken as an
element of the Boolean ring A whose probability can be equated to its conditional
probability. This is known as the Lewis Triviality Result [30].

Remark. The triviality result of Lewis, as an opposition to the so-called “Stal-
naker’s thesis” in Boolean logic (that “probabilities of conditionals are conditional
probabilities”) seems not to be known in the quantum logic community, let alone our
work on CEA that we recall shortly, resulting in publications such as Redei [40].

On the surface, it sounds like the paper by Redei [40] is “Lewis’ triviality result
in quantum logic”. In fact, it is not so, since “conditional if...then...” (implication
relation, semantic entailment) in quantum logic is taken as the counterpart of “subset
inclusion order relation” and not “material implication” in Boolean logic. See e.g.
Hardegree [27, 28]. We are going to elaborate on related works in quantum logic in
sufficient details later.
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Thus, is there any hope to define (measure-free) conditional events A|B which
need not be in the Boolean ringA and yet we can equate P((A|B)) = P(A|B), i.e.,
consistent with conditional probability evaluations, so to speak?

Not also that if we relate Boolean algebras to (two-valued) logic, and view the
mathematical entity A|B as the measure-free material implication “if B then A”,
i.e., B ⇒ A = Ac ∪ B, then its uncertainty P(Ac ∪ B) �= P(A|B), so that B ⇒ A
is not a solution!

Well, first of all, if suchmeasure-free conditional events A|B exist, they are outside
the domain A of P(.), and hence P((A|B)) does not make sense! Thus, what we
really have inmind is, once a bona fidemathematical entity A|B is rigorously defined,
to model the uncertainty of it as P(A|B), in a well defined way.

In summary, the mathematical question we ask is this. Given a probability
space (Ω,A, P), can we define mathematical entities (A|B) for A, B ∈ A (called
conditional events) whose uncertainties are evaluated as conditional probabilities
P(A|B) = P(A∩B)

P(B)
, for P(B) > 0?

Note that the above questionwas never asked in probability theory, perhaps there is
no motivation for it, and since, in statistical applications (such as the Bayes rule), the
concept of conditional probability is useful, and there is no need to even talking about
“conditionals”, let alone “probabilities of conditionals”! However, see a pioneering
work of De Finetti [9] where he talked about conditional events.

So why we are interested in conditional events and their uncertainty assessments?
or more specifically, why a rigorous theory of conditional events is needed?

While the motivation for evoking conditionals and their uncertainty assessments
started in the philosophy of science, especially in relation of logics, e.g., Stalnaker
[42], Adams [1], Lewis [30], Van Fraasen [43], a more pragmatic motivation is the
invention of expert systems in the field of Artificial Intelligence. Specifically, rules in
ruled-based systems are expressed as conditional statements, involving events, and
are uncertain. The problem of data fusion is essential: given a set of rules (in a ruled-
based system), not only we need to quantify uncertainties of each rule, but also how
to combine these rule uncertainties to execute the system? To execute this program,
we need to combine the rules first and then derive the uncertainty quantification of
the combined rule. Thus, the need to formulate mathematically conditionals and their
uncertainties becomes appearent. A potential need to consider conditionals in data
fusion is spelled out in Goodman et al. [23].

In the next section, we will summary the mathematical analysis of the theory
of conditional events and their probabilistis uncertainty assignments. Each time we
define conditional events, we will proceed to provide ways to combine them, just
like (logical) Boolean operations among sets (or in a more general setting), leading
to what we call an algebra (a conditional event algebra).
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3 Two Main Approaches to Defining Conditional Events

Various mathematical approaches to defining conditional events are available in
the literature, e.g., Schay [41], Calabrese [5]. Here, we emphasize only our two
approaches: a non-Boolean and a Boolean CEA.

3.1 A Non Boolean Structure for Conditional Events

Let (Ω,A, P) be a probability space. Since elements ofA are called events, we con-
tinue to call a conditional of the form “If B then A”, denoted as (A|B), a conditional
event, noting that in general, (A|B) is not in A, i.e., not an event per se, in view of
the so-called Lewis’ triviality result (1976).

We seek to define mathematical entities (A|B)whose uncertainty can be assigned
as P(A|B). Previous attempts by other researchers, e.g., De Finetti [9], Calabrese
[5], Schay [41], Van Fraasen [43] did not investigate the problem from an axiomatic
setting. Below is the summary of our axiomatic derivation of conditional events [22].

Mathematically speaking, we are looking for a mapping f which transforms each
pair of events (A, B) into an object f (A, B) having characteristics of a conditional
“if B then A”, and in such a way that, for any probability P on A, it is possible to
assign the conditional probability P(A|B) to f (A, B) without ambiguity. The range
S of such a map f , i.e., S = f (A × A), will be then the space of conditional events,
and logical operations on it will constitute our conditional event algebra.

Our axiomatic setting is conveniently carried out in a simple algebraic framework.
It suffices to view A as a Boolean ring with multiplication . being the Boolean
intersection∩, and addition+being the symmetric difference, i.e. AB = A ∩ B, A +
B = ABc ∪ AcB, so that we use the Boolean ringA(.,+) for our general setting. A
Boolean ringA(+, .) is a ringwith unit, denoted as 1 (hereΩ), the zero of R is denoted
as 0 (here the empty set), in which every element is idempotent, i.e., for any A ∈ A,
we have A.A = A2 = A. Note that any abstract Boolean ringA(.,+) is isomorphic
to a ring of subsets of some set (Stone’s representation theorem). Two additional
logical operations on a Boolean ring are disjunction A ∨ B = A + B + AB, and
negation A′ = 1 + A. A partial order on a Boolean ring is A ≤ B iff AB = A.

Our investigation led to the following. The mapping f maps each pair (A, B) ∈
A × A into the coset A + AB ′, i.e., f (A, B) = A + AB ′.

Thus, let A(.,+) be a Boolean ring. Then for A, B ∈ A, the “conditional event”
A given B, denoted as (A|B), is the coset A + AB ′ = {A + x B ′ : x ∈ A} ⊆ A. The
range S of such f is denoted as A|A = ∪B∈AA/AB ′, with A/AB ′ denoting the
quotient ring A with respect to the principal ideal AB ′. A conditional event is in
general not an element of A, but a collection of elements of A (a subset of A).

It is interesting to note that (A|B) = A + AB ′ is in fact a “closed interval” in
the Boolean ring A. Indeed, a closed interval in A is a subset of the form {x ∈
A : A ≤ x ≤ B}, denoted as [A, B] (A ≤ B). It is easy to check that (A|B) = A +
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AB ′ = [AB, B ′ ∨ A]. Also, [A, B] = (A|B ′ ∨ A). If we identify A with [A, A],
then A ⊆ A|A.

The assignment of conditional probabilities to conditional events is well-defined
since A + AB ′ = C + AD′ if and only if B = D and AB = CD, so that P(A|B) =
P(C |D).

The so-called Goodman-Nguyen-Walker (GNW) algebra of conditional events
consists of the algebraic structure of the conditional event space A|A which we
summarize now.

As stated before, one of the reason to consider conditional implications as con-
ditionals, i.e., measure-free mathematical objects, is that they are uncertain rules in
production systems, and as such, we need to be able to “combine” them in order to
derive their uncertainties from component rules.

Remark. Since the space of conditional events is A|A is identified as the space
of all closed interval in the Boolean ringA, logical operations on conditional events
can be derived from operations on intervals, by analogy with intervals on the reals.

Here, for ease of exposition, we study the algebraic structure of A|A from an
algebraic viewpoint.

A|A = ∪B∈AA/AB is a disjoint union of quotient rings. On each quotient ring,
we have standard operations for its elements (conditional events with the same
antecedent). What is needed (for combining difference sources of “evidence”) are
operations combining cosets (conditional events) from different quotient rings (con-
ditional events with different antecedents), which is not a standard ring theory oper-
ation!

In the following, operations on A|A will be extended ones from A component-
wise. From the coset representation of conditional events, it is not hard to check that
A|A is closed under all (associated) set operations (.)′,+, .(or∧) and∨, so thatA|A
is an algebra. We are going to elaborate on this algebra, mentioning that it is not a
Boolean algebra (ring).

The basic operations on A|A are obtained as

(A|B)′ = (A′|B)

(A|B) ∧ (C |D) = (AC |A′B ∨ C ′D ∨ BD)

(A|B) ∨ (C |D) = (A ∨ C |AB ∨ CD ∨ BD)

noting that (0|1) is the zero, and (1|1) is the multiplicative identity of A|A.
Multiplication does not distribute over ∨, and ∨ over multiplication, so thatA|A

is not a ring.
A partial order on A|A is extended from the partial order on A:

(A|B) ≤ (C |D) iff (A|B) = (A|B)(C |D)

With this partial order, it turns out that (A|A,∧,∨) is bounded lattice. But it is not
complemented: the operation (.)′ on A|A is not a complementation operation (with



550 H. T. Nguyen

respect to ∧,∨) so that A|A is non-Boolean. It is however pseudo-complemented,
namely (A|B)∗ = (A′B|1), i.e., A′B. In fact, A|A is a Stone algebra (a distributive
pseudo-complemented (bounded) lattice satisfying Stone identity: for all (A|B),
(A|B)∗ ∨ (A|B)∗∗ = (1|1)).

Remark. Conditional events as cosets are in one-to-one correspondence with
Schay’s generalized indicator function representation: (A|B) : Ω → {0, u, 1}

(A|B)(Ω) =
⎧
⎨

⎩

1 if Ω ∈ A ∩ B
0 if Ω ∈ Ac ∩ B
u if Ω ∈ Bc

a “tri-event” in DeFinetti’s terminology, i.e., in the context of three-valued logic [45].
This is so, since generalized indicator functions specify the subsets B and A ∩ B,
and conversely.

In fact, the connections of A|A (syntax) with three-valued logic (semantic) is
clear. In the setting of Boolean rings, each conditional event (A|B) has one of three
possible truth values, (0|1) (false), (1|1) (true) and (0|0) (undecided, denoted as
u). Specifically, if t denotes a truth evaluation on A, then, using the same symbol
on A|A, the truth value t (A|B) of (A|B) is “true” when t (AB) = 1, “false” when
t (A′B) = 1 and “undecided” when t (B ′) = 1.

The above algebraic structure of the space of conditional events (as cosets in
Boolean rings), being a Stone algebra, represents, from a logical viewpoint, a depar-
ture from classical logic, and possibly from quantum logic. However, we will elabo-
rate, in Sect. 4, on a surprising connection of GNW Conditional Event Algebra with
quantum logic (due to Foulis et al. [15]).

A complete theory of this non-Boolean approach is contained in Goodman et al.
[22]. See again Milne [31] for an extensive review of this theory.

3.2 The Product Space Approach to Conditional Events

It turns out that it is possible to extend the (σ ) Boolean algebraA, in the probability
space (Ω,A, P), to a (σ ) Boolean algebra A∗ to house another boolean-type of
conditional events, i.e., conditional objects so defined are bona fide “events” being
members of a σ− field of subsets of some set. In fact, the whole probability space
(Ω,A, P) is extended. This was accomplished in Goodman and Nguyen [21]. See
also Goodman et al. [23], Goodman [20]. This is a boolean conditional event algebra.

The essentials of this boolean approach to conditional events compatible with
conditional probability evaluations are contained in the following theorem.
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Theorem. Let (Ω,A) be a measurable space. There exist a measurable space
(Ω∗,A∗) and a map T : A × A → A∗ such that, for any probability measure P on
(Ω,A), there exists a probabilitymeasure P∗ on (Ω∗,A∗) such that P∗(T (A, B)) =
P(A|B), for any A, B ∈ A with P(B) > 0.

Proof TakeΩ∗ to be the infinite, but countable, (cartesian) product space
∏

n≥1
Ωn ,

where Ωn = Ω for all n. Next, equip this product space with the usual product σ−
field A∗, i.e., the σ− field of subsets of Ω∗ generated by cylinders, i.e., subsets of
A∗ of the form

A1 × A2 × · · · × An × Ω × Ω × Ω × · · ·

for any n ≥ 1, and A1, A2, . . . An in A.

Now define T : A × A → A∗ as follows.

T (A, B) = ∪n≥o(B
c × Bc × · · · Bc(n times) × (A ∩ B))

where ∪ denotes union among subsets of Ω∗, and the term A ∩ B is the standard
shorthand for A ∩ B × Ω × Ω × · · · which is a subset of Ω∗, and for n = 0, the
first term is simply A ∩ B.

For a probability measure P onA, we let P∗ to be the infinite product probability
measure on A∗with identical components P , i.e., P∗ is constructed from

P∗ (A1 × A2 × · · · × An × Ω × Ω × Ω × · · · ) =
n∏

i=1

P(Ai )

Now, the subsets (of Ω∗) Bc × Bc × · · · Bc(n times) × (A ∩ B), for n ≥ 0, are
pairwise disjoint (in Ω∗), so that

P∗(T (A, B)) = P∗[∪n≥o(B
c × Bc × · · · Bc(n times) × (A ∩ B))] =

∞∑

n=0

P∗[(Bc × Bc × · · · Bc(n times) × (A ∩ B))] =

∞∑

n=0

P(A ∩ B)[P(Bc)]n = P(A ∩ B)

∞∑

n=0

[P(Bc)]n =

P(A ∩ B)

1 − P(Bc)
= P(A ∩ B)

P(B)
= P(A|B)

Remark Thus, there exists a canonical probability space (Ω∗,A∗, P∗) associated
with (or extending) (Ω,A, P)which houses conditional events T (A|B) ∈ A∗ whose
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probabilistic uncertainties are conditional probabilities P∗(T (A|B)) = P(A|B). The
entity T (A|B) is an element of the Boolean algebra A∗, i.e., a bona fide “event”.
However, it should be noted that Lewis’ triviality result does not apply here (see
Goodman et al. [23]).

4 Implications of Conditional Event Algebras

Weproceed to bring outmajor implications of CEA in various theoretical and applied
areas.

(i) The coset or interval (in Boolean rings) representation of conditionals provides
a connection with rough sets [36] and belief function modeling of uncertainty [35].
See also Nguyen [33], Goutsias et al. [25], Nguyen and Walker [34], Milne [32].
Specifically, with (A|B) = [A ∩ B, Bc ∪ A], each rough set is identified as a condi-
tional event, so that the set of rough sets is a sub-Stone algebra of the Stone algebra of
conditionals. This surprising connection is developed further in Gehrke and Walker
[16]. On the other hand, from a quantitative viewpoint, since rough sets are approxi-
mations of events of interest (say, inAI problems), their uncertaintymodeling is taken
as upper or lower probabilities which can be modeled as belief functions. Thus, other
non-additive measures of uncertainty can be defined on conditionals. With respect
to reasoning with belief functions, see Pearl [37].

Related to the above, Weber [46] has considered the setting of MV-algebras from
the basics of CEA. See Goodman et al. [22] for background on MV-algebras. See
also Hohle and Weber [29], Dubois and Prade [11, 12], Goodman and Kramer [19].

(ii)Another “pleasant surprise” connection iswith quantum logic [15]. Essentially,
this is due to the representation of conditionals by intervals in partially ordered
structures, such as (Stone) unigroups. It was shown that “using Stone unigroups,
we obtain perspicuous representations for certain multivalued logics, including the
three-valued logic of conditional events utilized by Goodman, Nguyen, and Walker
in their study of logic for expert systems”. See some applied aspects of CEA in
Goodman et al. [18]. Foulis et al. [15] concluded their paper by saying “The algebra
of conditional events is critical for dealing with “if-then” rules in expert systems. It
comes as a pleasant surprise to see that there is a connection between this algebra
and quantum logic”. see also Walker [44].

(iii) The framework of non-Boolean CEA was extended to imprecise probability
theory, as well as to conditional random numbers by Pelessoni and Vicig [38, 39].
Note that some implications of CEA for precise conditional probabilities have been
studied in Coletti et al. [7], Coletti and Scozzafava [8], and Milne [31]. Other works
using CEA are Flaminio et al. [14], Pelessoni and Vicig [38], Chrzastowski-Wachtel
et al. [6], Baratgin [3], Douven and Verbrugge [10].



Conditional Event Algebras: The State-of-the-Art 553

5 Related Research Issues

Among various directions of research inspired from our CEA in Boolen logic men-
tioned above, it seems interesting to single out quantum logic. First, recall that the
primitive motivation for developing CEA is to represent mathematically “if-then”
rules in, say, expert systems, to quantify their probabilistic uncertainties, and, more
importantly, to be able to combine these rules with their associated uncertainties
(using standard rules of computing probabilities of events). Now, if we turn to quan-
tum logic, then it appears that the same problem can be considered. Recognizing
that “if-then” rules (semantic entailments) in any logic are in the “metalanguage”
(and not in the “object language”), the so-called Stalnaker conditionals was discussed
within the quantum logic community (e.g., Hardegree [27]), see alsoHardegree [28]).
However, the main problem of defining conditionals compatible with quantum logic
seems open. See, however, Redei [40]. A systematic investigation of conditionals in
quantum logic (say, as orthomodular lattices) compatible with quantum probability
(see, Gudder [26]) seems lacking. See also Durham [13], Bell [4].

As noted early, there is a nice connection between CEA and quantum logic men-
tioned in the work of Foulis et al. [15]. This could be a starting point to explore
to possibility to investigate conditional quantum logic, expanding classical logics. It
should be noted that quantum uncertainty (i.e., nonadditive probabilitymeasures) has
been emphasized by “econophysicists” as useful in econometrics, among other fields
of application, exemplified by Baaquie [2]. Thus, it seems appropriate to consider
expert systems in the context of quantum physics!
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Beyond Integration: A Symmetry-Based
Approach to Reaching Stationarity in
Economic Time Series

Songsak Sriboonchitta, Olga Kosheleva and Vladik Kreinovich

Abstract Many efficient data processing techniques assume that the corresponding
process is stationary. However, in areas like economics, most processes are not sta-
tionery: with the exception of stagnation periods, economies usually grow. A known
way to apply stationarity-based methods to such processes—integration—is based
on the fact that often, while the process itself is not stationary, its first or second
differences are stationary. This idea works when the trend polynomially depends
on time. In practice, the trend is usually non-polynomial: it is often exponentially
growing, with cycles added. In this paper, we show how integration techniques can
be expanded to such trends.

1 Formulation of the Problem

Need to reach stationarity. Many efficient statistical techniques are based on the
assumption that the corresponding random process is stationary, i.e., that its charac-
teristics do not change in time.

In many real-life applications, stationarity is indeed a reasonable assumption.
However, in economics, stationarity means stagnation. This may have been true in
middle ages, but definitely not now—all over the world, economies are growing.
However, very few statistical tools exist for such non-stationary processes as eco-
nomic growth.

So, sincewe cannot directly apply stationarity-based techniques tomost economic
variables, it is desirable to come up with ideas on how to apply such techniques indi-
rectly, i.e., how to reach stationarity based on the original non-stationary process xt .
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Integration: a widely used approach to reach stationarity. The economy-related
variables xt—such as the prices or stock market index—usually contain a slowly
changing trend Tt , on top of which we have random fluctuations ft :

xt = Tt + ft . (1)

The fluctuations usually are stationary—at least for a certain reasonable period of
time, what is non-stationary is the trend Tt .

The simplest possible trend is when we have a linear growth Tt = a + b · t . In
this case,

xt = a + b · t + ft . (2)

In this case, as one can easily see, first differencesΔxt
def= xt − xt−1 form a stationary

process; namely,

Δxt = xt − xt−1 = (a + b · t + ft ) − (a + b · (t − 1) + ft−1)

= b + ft − ft−1. (3)

Here, b is a constant, and since ft is stationary, the difference ft − ft−1 is station-
ary as well. So, while the original random process is not stationary, we can apply
stationarity-based techniques to the differences Δxt . This procedure is known as
integration of order 1; see, e.g., [1, 3].

The procedure of first-order co-integration is based on the assumption that the
trend is uniformly increasing. In practice, the trend may accelerate or decelerate. To
describe such acceleration or deceleration, we can—similarly to how we take into
account acceleration or deceleration in mechanics—add terms which are quadratic
in time to our description of the trend. In this case, Tt = a + b · t + c · t2 and thus,

xt = a + b · t + c · t2 + ft . (4)

For such more complicated trend, first differences are no longer stationary:

Δxt = xt − xt−1

= (a + b · t + c · t2 + ft ) − (a + b · (t − 1) + c · (t − 1)2 + ft−1)

= b + 2c · t − c + ft − ft−1.

(5)

Good news, however, is that the form (5) is exactly the form (2), in which the new
trend is linear. Thus, we can use the same idea to reach stationarity: namely, we can
take the first difference of Δxt and consider the new times series Δ2xt = Δ(Δxt ) =
Δxt − Δxt−1. For this time series,

Δ2xt = Δxt − Δxt−1

= (b + 2c · t − c + ft − ft−1) − (b + 2c · (t − 1) − c + ft−1 − ft−2)

= 2c + ft − 2 ft−1 + ft−2.

(6)
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The resulting time series is clearly a stationary process. This is known as integration
of order 2.

If we want to make our model even more accurate and take into account that the
acceleration also changes with time, we can add terms cubic in time to the trend, in

which case the time series Δ3xt
def= Δ(Δ2xy) = Δ2xt − Δ2xt−1 are stationary, etc.

This has become a standard procedure in analyzing economic data: first, we check
if after the integration of appropriate order, we get a stationary process, and then we
apply stationarity-based statistical methods to the resulting stationary process.

Need to go beyond integration. Integration works well when the trend is a polyno-
mial function of time. From the mathematical viewpoint, on a reasonably short time
interval, any smooth dependence Tt can be expanded in Taylor series and thus, well
approximated by a polynomial. So, locally, integration works well.

However, in economics, we are often interested in long-term trends. And for long-
term trends, polynomial approximation does not always work well. Let us give two
simple examples.

An ideal regime of an economics is a growth at constant rate, when the GDP in
the next year is larger that the GDP of the previous year by the same factor 1 + q. In
this case, the growth is described by a geometric progression Tt = T0 · (1 + q)t . This
is a simple and natural function—but it is not a polynomial. As a result, no matter
how many times we apply the finite difference operator Δ, we will never reach a
stationary process.

Ideally, we should have a consistent growth, but in reality, on top of this growth,we
also have business cycles: periods of faster growth are followed by periods of slower
growth, then faster growth resumes, etc. A simple description of such a cycle is a
sinusoid, when Tt = T0 · (1 + q)t + A · sin(ω · t + ϕ). Amore adequate description
iswhenwe take into account that the size of the sinusoidal fluctuations is not constant,
but growth when the economy’s level grows, i.e., that

Tt = T0 · (1 + q)t + A · (1 + q)t · sin(ω · t + ϕ).

It is therefore desirable to come up with techniques that would enable us to reach
stationary for such non-polynomial trends as well.

What we do in this paper. In this paper, we explain, in the most general setting,
how to reach stationarity.

2 Analysis of the Problem

Let us describe the class of possible trends Tt . To come up with such a general
scheme, let us describe the class of possible time series Tt describing trend.

The class of possible trends must not change if we change a measuring unit.
The numerical value of each economic quantity depends on the unit that we use to
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measure it. For example, if we measure the Thailand GDP in Baht, we get a different
number than if we measure it in US dollars. In general, if we replace the original
measuring unit with a new unit which is λ times smaller than the original one, all
numerical values get multiplied by this value λ. So, instead of the original time series
Tt , we get a new time series λ · Tt .

The new time series describes the exact same phenomenon as the original one—
the only difference is that it uses different measuring units. So, if the original time
series Tt was reasonable, the new time series λ · Tt should be reasonable as well.

In mathematical terms, the class S of reasonable time series should be closed
under multiplication by a constant.

The class of possible trends should be closed under addition. Many economic
characteristics are obtained by adding up several others. For example:

• the GDP of a country is equal to the sum of GDPs of the region,
• a stockmarket index is equal to a linear combination of the stock prices of different
stocks, etc.

Thus, if Tt and T ′
t are possible trends, it is reasonable to assume that their sum

Tt + T ′
t is a possible trend as well.

Inmathematical terms, thismeans that the classC of reasonable time series should
be closed under addition.

First conclusion: the class of possible trends should form a linear space. Since
the class C is closed under addition and under multiplication by a constant, with
each set Tt , T ′

t , T
′′
t , …, and for all possible values c, c′, c′′, …, the linear combination

c · Tt + c′ · T ′
t + c′′ · T ′′

t + · · · should also belong to this class.
Inmathematical terms, this means that the class S of reasonable time series should

form a linear space.

The class of possible trends should be closed under time shift. From the economic
viewpoint, there is nothing special about any year, be it year 0 in theWestern calendar
or year 0 in Thai calendar. If a time series Tt is possible, then a similar time series

T ′
t

def= Tt+t0 but starting a year earlier (when t0 = 1) or a year later (when t0 = −1)
should also be possible.

In mathematical terms, this means that the class of possible trends should be
closed under time shifts Tt → T ′

t = Tt+t0 .
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Examples.

• The class of all polynomials of a given order is clearly closed under the shift.
• The class of geometric progressions Tt = T0 · (1 + q)t is also shift-invariant:
namely,

Tt+t0 = t0 · (1 + q)t+t0 = T0 · (1 + q)t0 · (1 + q)t = T ′
0 · (1 + q)t ,

where T ′
0

def= T0 · (1 + q)q0 .

• Simple cycles A · (sin(ω · t + ϕ) can be equivalently represented as

c1 · sin(ω · t) + c2 · cos(ω · t).

By using the formulas for the sine and cosine of the sum, one can easily check that
this class is also shift-invariant.

• Similarly, one can prove that the above classes

Tt = T0 · (1 + q)t + A · sin(ω · t + ϕ)

and
Tt = T0 · (1 + q)t + A · (1 + q)t · sin(ω · t + ϕ)

are shift-invariant.

The class of possible trends should depend on finitely many parameters. The last
reasonable requirement is that it should be possible to uniquely determine a possible
trend by using only finitely many parameters—and ideally, not a very large number
of parameters.

Indeed, our goal is to determine the trend based on the observations. Each obser-
vation leads to one equation for determining the parameters. Thus, to determine all
the parameters, we have a system of finitely many equations—as many equations as
we have observations.

In general, to be able to solve a system of equations, we need to have at least as
many equations as there are unknowns—otherwise, we will not be able to uniquely
determine all the unknowns. Thus, to be able to—at least in principle—determine
the trend based on the observations, we need to make sure that the number of param-
eters describing the trend is finite—less than or equal to the number of possible
observations.

We know that the class S of all possible trends is a linear space. It is known that
in a linear space, we can always select the maximum set of linearly independent
elements—known as basis—so that each element of a linear space can be described
as a linear combination of elements from the cases. Thus, to uniquely determine
an element of a linear space, we need to describe as many parameters as there are
elements in the basis—this number is known as the dimension of the linear space.
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So, we can conclude that the linear space S of all possible trends is finite-
dimensional.

Now, we are ready to describe our main result.

3 A General Approach to Reaching Stationarity

Towards a matrix formulation. Since the linear space S of all possible trends is
finite-dimensional, it has a basis e1,t , . . . , ed,t where d is the dimension of this space.
Thus. every possible trend Tt ∈ S can be represented as a linear combination of the
basis elements:

Tt =
d∑

j=1

c j · e j,t . (7)

In particular, each of the basic sequences ei,t is possible. Since the class of possi-
ble sequences is invariant under shift, the shifted sequence ei,t+1 is also possible.
Since this sequence is possible, it can be represented in the form (7) for appropriate
coefficients:

ei,t+1 =
n∑

j=1

ci, j · e j,t . (8)

This equality can be naturally described in matrix terms: namely, if, for each moment
t , we consider the vector Et consisting of the elements e1,t , . . . , ed,t , then the equation
(8) takes the form

Et+1 = CEt , (9)

where C is a d × d matrix with coefficients ci, j , and CEt means multiplying the
matrix C and the vector Et . In these terms, the formula (7) takes the form

Tt = cTEt , (10)

where c is the vector consisting of the coefficients c1, . . . , cd .
From (9), we can conclude that Et+2 = CEt+1 = C(CEt ) = C2Et , and similarly,

that
Et+t0 = Ct0Et . (11)

Towards the resulting formula for T t . It is known—this statement is known as the
Cayley-Hamilton theorem (see, e.g., [2])—that each matrix C satisfies a polynomial
equation: namely, if we consider its characteristic polynomial

χ(λ)
def= det(C − λ) = anλ

n + an−1λ
n−1 + · · · + a1 · λ + a0,
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and then plug in the matrix C into this polynomial, we get 0:

an · Cn + an−1 · Cn−1 + · · · + a1 · C + a0 · I = 0, (12)

where I denotes a unit matrix, with 1s on diagonal and 0s elsewhere.
Multiplying both sides of (12) by Et , we get

an · CnEt + an−1 · Cn−1Et + · · · + a1 · CEt + a0 · Et = 0, (13)

i.e., due to (11):

an · Et+n + an−1 · Et+(n−1) + · · · + a1 · ET+1 + a0 · Et = 0. (13)

Multiplying both sides by cT and taking into account the formula (1), we conclude
that for each trend Tt from the family S, we have the following equality:

an · Tt+n + an−1 · Tt+(n−1) + · · · + a1 · Tt+1 + a0 · Tt = 0. (14)

Final result: how to reach stationarity. If we now apply the same linear operator
to the signal xt = Tt + ft , then, due to (14), the effect of the trend disappears, and
thus, only the f -result remains:

an · xt+n + an−1 · xt+(n−1) + · · · + a1 · xt+1 + a0 · xt =
an · ft+n + an−1 · ft+(n−1) + · · · + a1 · ft+1 + a0 · ft .

(15)

Since the process ft is stationary, the right-hand side of the formula (15) is also
stationary.

Thus, for each process, by considering an appropriate linear combination of this
process xt and its shifts xt+1, xt+2, etc., we can get a stationary process. So, to be
able to apply stationary-based techniques, we must find the values ai for which the
linear combination

an · xt+n + an−1 · xt+(n−1) + · · · + a1 · xt+1 + a0 · xt (16)

is stationary.

How can we find such coefficients? To find the corresponding coefficients, we can
use well-developed co-integration techniques (see, e.g., [3]) or, better yet, the newly
developed techniques of stationary subspace analysis (see, e.g., [4] and references
therein). These techniques find stationary linear combinations of non-stationary pro-
cesses. In our case, we need to apply this technique to the original series xt and to
the time-shifted series xt+1, xt+2, etc.
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Risk Analysis of Portfolio Selection Based
on Kernel Density Estimation

Junzo Watada

Abstract In economic or finance field, one of the most studied issues is to get the
best possible return with the minimum risk. The objective of the paper is to select the
optimal investment portfolio from SP500 stock market and CBOE Interest Rate 10-
Year Bond to obtain the minimum risk in the financial market. For this purpose, the
paper consists of the following three points: (1) The marginal density distribution of
the two financial assets is described with kernel density estimation to get the “high-
picky and fat-tail” shape; From it, it is obvious to tell the advantage of this method
compared with the assumption that return rate submits to normal distribution, (2)
After the marginal distribution of variables is confirmed, the unknown parameter of
Copula function could be evaluated with maximum likelihood estimation. Therefore,
the relation structure of assets could be studied with the chosen copula function to
describe the correlation of financial assets form a nonlinear perspective. And (3)
value at Risk (VaR) is computed through the combination of the optimal Copula
function, which is judged by minimum variance test and Monte Carlo simulation
to measure the possible maximum loss better of the portfolio. At the same time, it
shows the advantage through contrast with the traditional analytical methods based
on Gaussian distribution.

1 Introduction

Since 1970s, significant change has happened in the globe financial system. During
the time, as market pricing system has been formed in the fluctuation of financial
market, financial risk has been the most important issue in the field and brought into
the front.
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Financial risk mainly derives from the price fluctuation of financial tools, which
is the basic property in the financial market.With the diversification of financial tools
and their derivatives, the accompanying uncertainty factors are more and more grad-
ually. Meanwhile, the relation among financial market becomes more complicated
and fickle, which presents the nonlinear and asymmetry characteristics. It is the fre-
quent happening of financial volatility and even crisis that highlights the importance
of polymerized risk management and the dependence relationship analysis among
financial markets, especially after the accident happened such as the closing down
of Barings Bank and the bankrupt of Enron Corp.

Frankly speaking, many factors can trigger the risk of financial market including
interest rate, stock price, exchange rate, the change of index and so on. In mar-
ket, these factors are related closely and interact each other, like transform, offset,
conduct and combine. The constantly changing conditions in market decide on the
unpredictability of risk. If these risks couldn’t be recognized or measured accurately,
it is impossible to avoid it.

Stock and bond markets make globe economic relationship be tighter. For exam-
ple, the increasing of long interest rate mainly embodies the up of bond price and vice
versa. For another thing, the influence of interest rate on stock market has showed
more and more obviously. Moreover, the interconnectedness and linkage between
the two markets is stronger and intensified. For instance, the change in bond market
can arouse the movement in stock market and the wave of stock market also arouses
the fluctuation of bond market.

In this context, more and more financial institution began to measure the stock
trading risk with the basic thought of value at risk (VaR). But the concept of VaR was
firstly proposed, which was in the Group of 30 in 1993 [18]. In 1994, Morgan [27]
issued the developed Risk-metrics system, which was aimed to build up a standard
VaRmethod. In 1996, it is recognized that financial institution utilizedmature internal
risk model to make market risk computation in Basel agreement and VaR method
was highly recommended to the member countries banks.

From now on, VaRmethod has been quickly and widely adopted and applied, and
developed further in the practice, which is the mainstream way to manage financial
market risk. At the same time, various risk management systems based on VaR
method are rolled out, which further pushed the promotion and application of VaR
in the aspects of risk control, information report, performance evaluation and asset
allocation.

1.1 Research Process

For the conventional methods, person coefficient is used to measure the correlation
of variables and Risk metrics are common ways to calculate VaR. However, due to
the assumption of the methods are based on normal distribution, the methods deviate
from the real situation more or less.
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Therefore, it is necessary to propose a new assets allocation method to evaluate
the risk of portfolio in the financial market. Following is the research flow chart.

1.2 The Chapter Structure

The paper is organized as follows. Section2 provides the literature review and basic
concepts; Sect. 3 discusses VaR. Section4 explains the portfolio selection with VaR.
Section5 is the empirical experiment based on the above methodology to make com-
parison of the results of the past and present one, respectively. Section6 concludes,
which includes the discussions of the above solutions, the conclusions of the thesis
and prospect to the future research.

2 Literature Review and Basic Concepts

2.1 Kernel Smoothing

Smoothing is one of the most fundamental techniques in nonparametric function
estimation. Smoothing arose first from spectral density estimation in time series.
In a discussion of the seminal paper by Barlett [1], Daniels [10] suggested that a
possible improvement on spectral density estimation could be made by smoothed
period graph. The theory and techniques were then systematically developed by
Bartlett [1].

Pitman [24] answered the problemabout the efficiency of non-parametric statistics
method relative to parametric one;Huber andHampel [21] proposed the new criterion
to measure the stability of estimators from the perspective of computing technology
in 1970s and 1980s; Silverman and Fan [7] introduced the research and application
to the field of non-parametric regression and density estimation in 1990s.

2.2 Copula Method

Through the hibernation for fifty years, finally in the 21th century, the application of
Copula theory has been made great headway as the opportunity of the high develop-
ment of computer technology is caught.

In 1998, after Nelsen [20] firstly formulated the theory of Copula function in «An
Introduction to Copula» [20], it aroused the huge curiosity from the field. Later on,
Embrechts [6] introduced the conception of Copula function based on it and fitted
the relation structure between multi-joint distribution and built variables using many
specific examples.
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With the development of this theory and application, the complete system has
been gradually built up. Joe [12] introduced the parameter family of Copula function
in detail and presented its features from the perspective of relevance analysis and
multi-variant modeling. Especially, due to the pioneering works of Frees, Valdez
[30], McNeil and Straumann [18], it has been a tide that Copula method is applied in
the risk management field. Nowadays, Copula function is almost a kind of standard
as the analysis and model of relation structure.

Secondly, from Embrechts [6], based on figuring out the marginal density distri-
bution of financial assets, the study of relation structure between two financial assets
is an important step in the asset allocation and risk management. In the premise
of normal distribution, Pearson correlation is a common option to describe the lin-
ear relationship. However, some defects such as restricted variance, and easy to be
distorted show its bounded-ness in the nonlinear application.

Therefore,Copula functionwas proposed in [27],which is to link between the joint
distribution of random variables and their respective marginal distribution. Through
Copula function, risk could be divided into the risk of single financial assets and the
risk from portfolio selection, where the former could be described by their marginal
distribution and the latter could be portrayed by Copula function, which provides the
foundation of applying Copula theory into the risk analysis of portfolio.

Especially recently, with the finance globalization, creativity and market devel-
opment, conventional methods based on linear correlation has not been adapted into
the need. However, as a statistical theory to study nonlinear and asymmetrical cor-
relation, Copula function has been rapidly applied in the aspects of multi-variant
financial time series, related mode between stock market and so on, which shows
more flexible and convenient.

2.3 Value at Risk (VaR)

Since «Derivatives practices and principles» was issued by Group of 30 [8] in 1993,
there have been three basic methods to compute VaR: historical simulation, Monte
Carlo simulation and Variance-covariance method.

Based on them, some improvements are made. For instance: Danielsson [13]
proposed a new semi-parametric method to evaluate VaR; Pichler and Selisch [28]
have the new way to calculate the VaR value of portofolio including option with
two-order Taylor expansion and Corish-Hishe expansion.

Thirdly, after better fitting the joint distribution and describing the relation struc-
ture, we can obtain the value in risk of portfolio return more accurately, which has
become main qualitative technology in risk degree.

VaR integrates the influence on the change of price when the changes of unfa-
vorable circumstances happen, so it is the risk statistic to measure the potential loss.
Beside interest rate, the applicability of VaR is in handling with the risk of exchange
rate, commodity and stock and it has consistency. Moreover, correlation and lever-
age, which will be considered when VaR is used, are very important in involving the
analysis of large-scale financial derivatives portfolio.
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Table 1 The comparison of the conventional and burgeoning methodologies

Distribution Theory Relation structure Risk at value

Conventional Normal
distribution

Central limit
theorem

Person coefficient Risk metrics

Burgeoning High-picky;
fat-tail

Kernel density
estimation

Copula function Monte Carlo
simulation

From the definition of Jorion [23], Value at Risk (VaR) is aimed to compute the
expected maximum loss of financial assets using distribution function in a certain
holding period and confidence level c. If z and VaR indicate the value of financial
assets and the risk value irrespectively, then

P(z ≤ VaR) = 1 − c (1)

HereMonteCarlo simulation is applied to reckon the yield distribution of portfolio
risk factors, hence the gains and losses could be constructed in the portfolio and the
risk value is estimated in the light of given confidence level.

2.4 Comparison

To sum up, the comparison of the conventional and burgeoning methodologies fol-
lows Table 1.

Recently, from Perignon and Smith [3], Fantazzini [4] and Shim et al. [11], the
burgeoning methodology has an obvious effect on analyzing the risk of portfolio
selection in the financial market.

2.5 Kernel Density Estimation

Firstly, Kernel density estimation (KDE), as the one of the most famous non-
parametric way, is to estimate the probability density function of a random variable.
Besides, it is a fundamental data-smoothing problem where inferences about popu-
lation are made based on a finite data sample. In econometrics, it is also termed the
Parzen-Rosenblatt window method, after Emanuel Parzen and Murray Rosenblatt
[5, 19], who are usually credited with independently creating it in its current form.

From Fig. 1, we can read that the actual distribution of SPX returns is obvious
different from the normal distribution, which is just the assumption of random walk
theory: (1) skewed to the right; (2) shows a much larger frequency of returns around
the mean (where x = 0) but a correspondingly smaller frequency of returns between
1 and 2 standard deviations from mean; (3) more frequent very large positive or
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Fig. 1 The comparison of Kernel density estimation and normal distribution

negative returns Therefore, it is necessary to transit from the linear model to non-
parametric technique.

According toMarkowitz [17],Mills 2002 [29], the assumption that the distribution
of assets return rate submits normal distribution always neglects the happening of
extreme conditions, which results in lack of precaution and huge losses in the end.
Meanwhile, lots of experiments have indicated the return curve presents “high-picky”
and “fat-tail”. So it is necessary to estimate the probability distribution density of
asset return as shown in Fig. 1 with kernel smoothing under a wide precondition.

3 Computation of Value at Risk

In order to solve various problems that couldn’t be solved by conventional risk
measurement method, Value at Risk (VaR), which could measure the market risk of
complicated security portfolio overall, is proposed.

VaR was invented by JP Morgan Company, where everyday a report is made to
illustrate how much the potential asset loss is in the future 24 hours. Hence, VaR as
a simple risk measurement method, was developed, which integrate different trading
and industries into one criterion.
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3.1 Definition

The implication of VaR is “the value at the risk” Beatriz andRafael [2], whichmeans
the maximum possible loss value of portfolio selection in the normal volatility of
market. Theoretically, it is defined as themaximumpossible loss of a certain portfolio
under the confidence level c in the future:

P(z ≥ VaR) = 1 − c (2)

where z is the loss of portfolio selection in the holding time is under the confidence
level c. The two factors are important to affect VaR.

• Holding time
It is the whole time span based on the given the volatility of return rate and the
observation of correlation and the timing span of calculating VaR. Because of
the positive correlation between volatility and length, VaR will increase with
holding time increases. Usually holding time is seen as one or ten days, which is
a subjective factor when it is chosen.
The four factors will be considered usually when the holding time is chosen:
liquidity; requirement of normal distribution; position adjustment; the limitation
of data: the shorter holding time is, the more possibility of amounts of sample data
is obtained.

• Confidence level
The selection of confidence level demonstrates that the aversion degree of finan-
cial institution to extreme event. The more VaR value is, the more capital is
needed to compensate extra losses. Meanwhile, financial regulatory authority will
require that financial institution set a higher confidence level to keep the stability
of financial system.

Suppose a certain security, P0 is the initial value and R′ is return on investment.
Then, the value of portfolio at the end of holding time could be indicated that:
P

′ = P0(1 + R
′
) . Under a certain confidence level, the maximum possible loss of

portofolio in the future could be defined as the VaR relative to the mean value of
asset, which is the relative VaRR :

VaRR = E(P) − P ′ = −P0(R
′ − μ) (3)

If standard is not the mean value of portfolio selection, the absolute VaRR could be
defined:

VaRA = P0 − P ′ = −P0R
′ (4)
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3.2 Delta Normal Model

Suppose the value function of portfolio is taken as first approximation, and market
factors submit to multi-variant normal distribution. Meanwhile, the return rate of
portfolio selection submits to single normal distribution. P(t, xn×1) is the value
function of portfolio, where t is time, x is the n-dimensional market factor vector.
Then, take first derivative to the independent variables of P(t, xn×1):

θt = ∂P(t, xn×1)

∂t
, δ′

n×1 =
[
∂P(t, xn×1)

∂x1
,
∂P(t, xn×1)

∂x2
, . . . ,

∂P(t, xn×1)

∂xn

]
(5)

Suppose Rt ∼ Nn(μ,
∑1R

t ), the element in
∑1R

t is:

σ =
√√√√ 1

N

N∑
k=1

(Ri, j−k − μi )(R j,i−k, μi ) i, j = 1, 2, . . . , n (6)

where Ri,t = Xi,t+Δt−Xi,t

Xi,t
, i = 1, 2, . . . , n; μi is the mean value of the ith yields

Make ΔXt = Xt+Δt − Xt , and then ΔXt = XT
t Rt , so: Δ ∼ Nn(μ,

∑l
t ), where∑l

t = XT
t

∑l R
t Xt

According to the definition of VaR, VaR could be transferred into the quintiles of
ΔP distribution, which is the change of portfolio selection. From Taylor expansion:

P(t, Xt ) = P(t0, X0) + θt (t − t0) + δT (Xt − X0) + O(2)

= P(t0, X0) + θtΔt + δTΔXt + O(2)
(7)

P(t0, X0) is the value of portfolio in t0, O(2) is the error including higher derivative.

ΔP(Δt,ΔXt ) = P(t, Xt ) − P(t0, X0) ≈ θtΔt + δTΔXt (8)

Furthermore, because of ΔXt Nn(μ,
∑1

t ), the approximate is:

ΔP(Δt,ΔXt ) N (δTμ, θtΔt, δT
l∑
t

δ) (9)

The expected value and variance of ΔP(Δt,ΔXt ) respectively are:

E(ΔP(Δt,ΔXt )) = E(θtΔt + δ′Δx) = θtΔt

V ar(ΔP(Δt,ΔXt )) = Var(θtΔt + δ′Δx) = δ′Var(Δx)δ = δ′
l∑

δ

(10)
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If the confidence level is c, according to the calculation formula of VaR, the above
one could be written as:

Prob

⎛
⎝ΔP − θtΔt√

δ′ ∑l
δ

<
VaR − θtΔt√

δ′ ∑l
δ

⎞
⎠ = 1 − c (11)

The value of VaR is:

VaR = θtΔt + α

√
δ′

∑l

t
δ (12)

Over a short time horizon, such as a day, it is reasonable to assume that the portfolio’s
forecasted return equals to its current return. In such cases, VaR is calculated:

VaRα = Z1−α

√
δT

∑l

t
δ (13)

where Z1−α is the α—quantile in normal distribution.

3.3 Monte Carlo Simulation

Monte Carlo simulation is also called “random simulation method”, and the basic
principle is: when a problem is a probability of an accident or the expected value of
some random variables, some results could be obtained through some “experiment”
as the solution of the problem.

Monte Carlo is a numerical simulation experiment through capturing statistics
characteristics of variables and using mathematical methods. The result could be
regarded as the approximate solution according to the process described by the prob-
ability model and simulation.

There are three main steps in Monte Carlo simulation:

• Structure or describe probability process: build up a statistics probability model
that is easy to achieve, which make the solution be the probability distribution of
the model, and calculate the parameter using historical data. That is to say, the
problem that has no random property is transferred into one that has the random
property.

• Achieve sampling from known probability distribution: sampling method is built
up according to random variables in the model and the simulation experiment is
conducted, and then the obtained distribution function of asset yields generates
the pseudo random numbers that submit to the corresponding distribution so as to
simulate the future possible scenario of market factors or asset yields.

• Build up various estimation values: it is aimed to analyze the simulation results
and solution of problem is obtained from it.
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4 Solving Portfolio with VaR

4.1 Analytical Method

AnalyticalMethods such as Variance-Covariance Approach offer an instinctive com-
prehension of the driving factors of risk in a portfolio selection, which derives from
the risk metrics and obeys the normal distribution. When there are only two assets,
the portfolio variance is: ([9, 22]).

Portfolio could be defined as the combination of some different asset types, which
constitute position, based on a certain basic currency. If these positions are fixed
in a given investment period, the return rates of portfolio selection is the linear
combination of the return rates of its related assets and the weights are decided by
the relative amounts of various assets, the VaR value of portfolio could be obtained
through the combination including various assets

The return rate of portfolio selection from t to t + 1 is defined as:

Rp,t+1 =
N∑
i=1

Wi Ri,t+1 (14)

where N is the asset amount, Ri,t+1 is the return rate of asset i , wi is its weight.
It could be demonstrated as matrix, which means that a series of numbers is

replaced by a vector:

Rp = w1R1 + w2R2 + · · · + wN RN = [w1w2 . . .wN ]

⎛
⎜⎜⎝

R1

R2

. . .

RN

⎞
⎟⎟⎠ = w′R (15)

where w′ is the transposed vector of weight coefficient or called “level vector”; R is
the column vector including the column vector of single return rate.

The expected return rate of portfolio is:

E(Rp) = μp =
N∑
i=1

wiμi (16)

The variance is:

V (Rp) = σ 2
P =

N∑
i=1

w2
i σ

2
i +

N∑
i=1

N∑
j=1, j �=i

wiw jσi j =
N∑
i=1

w2
i σ

2
i + 2

N∑
i=1

N∑
j<1

wiw jσi j

(17)
The formula not only describes the single security risk σ 2

i , but also includes the all
covariance and there are N (N − 1)/2 items together.
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With the increasing of asset amounts, it is convenient to express the all covariance
items with matrix form:

σ 2
p = [w1 . . .wN ]

⎛
⎜⎝

σ 2
1 · · · σ1N
...

. . .
...

σN1 · · · σ 2
N

⎞
⎟⎠

⎛
⎝w1

. . .

wN

⎞
⎠ (18)

Define
∑

as covariance matrix, and then the variance of portfolio return rate could
be simplified as: σ 2

p = w′ ∑w .
When the every return rate of single security submits to normal distribution,

the portfolio return rate also submits to normal distribution because it is the linear
combination of joint normal random variables.

Based on it, the confidence level c could be transferred into normal standard
variance α and then the probability of observing that a loss is more than −α is c.

Make W be the initial value of portfolio, the VaR of portfolio selection is:

VaR = VaRp = ασpW = α

√
x ′

∑
x (19)

From the above derivations, it demonstrates that the VaR of portfolio selection is
dependent on variance, covariance and the amount of assets. Covariance is tomeasure
the degree of jointly linear movement of two variables, which could be showed as:

ρ12 = σ12/(σ1σ2) (20)

Through analyzing the equation, we can see that a low correlation coefficient is
helpful to spread the risk of portfolio selection. Suppose there are only two financial
assets in a portfolio, then the variance of diversified portfolio selection:

σ 2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2ρ12σ1σ2 (21)

And the portfolio V AR is then:

VaRp = ασpW = α

√
w2
1σ

2
1 + w2

2σ
2
2 + 2w1w2ρ12σ1σ2W

α: quantile of confidencs;w:weight; σ : the variance of assets
ρ: correlation coefficient;W : the original value.

(22)

4.2 VaR Computation Based on Copula Model

When Copula model is applied to compute the VaR of portfolio selection, it is
difficult to deduce the expression of VaR. So it is necessary to apply Monte Carlo
simulation to compute VaR additionally.
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For Monte Carlo simulation based on Copula-VaR, on the one hand, Copula
function has the advantage of depicting nonlinear and asymmetric correlation coeffi-
cient and especially capturing the tail dependence; on the other hand, an abundance
of random data that conform to historical distribution is generated to simulate the
behavior of the return rate of financial assets by Monte Carlo method.

In the application of portfolio selection VaR computation, several assets submit
to a joint distribution. Therefore, random numbers couldn’t be only generated from
the marginal distribution of variables but be generated from the joint distribution of
several assets.

For assets X , Y , the marginal distributions of their asset yields RX , RY are
F(•),G(•), and the related structure between asset yields is confirmed by Cop-
ula function C(∗, ∗), so the random number pair (RX , RY ) C(F(RX ),G(RY )) is
obtained by Monte Carlo simulation.

In fact, make u = F(RX ), v = G(RY ), and then u v both submit to (0, 1) uniform
distribution. Only if random number pair (u, v) C(u, v) could be generated, the
expected random number pair (RX , RY ) is obtained through the inverse computation
of marginal distribution function.

Cv(u) = ∂
∂v (u, v), Cu(v) = ∂

∂u (u, v) are in the interval (0, 1). Frankly, Cv(u) and
Cu(v) submit to (0, 1) uniform distribution. Therefore, using the conditional distri-
bution of variables, the random number pair (u, v), which submits to the specified
Copula function, could be obtained.

Make Fu(v) demonstrate the conditional distribution function under the given
U = u:

Fu(v) = P[V ≤ v|U = u] (23)

Then:

Fu(v) = P[V ≤ v|U = u] = P[U = u, V ≤ v]
P[U = u]

= lim
Δlt→0

P[U ≤ u + Δu, V ≤ v] − P[U ≤ u, V ≤ v]
P[U ≤ u + Δu] − P[U ≤ u]

= lim
Δlt→0

C(u + Δu, v) − C(u, v)

Δu
= ∂

∂u
C(u, v)

(24)

Namely:
Fu(v) = Cu(v) (25)

Obviously, u submits to (0, 1) uniform distribution, and make w = Cu(v), hence w
also submits to (0, 1) uniform distribution. If u, w are known, the value of v is easy
to compute. Meanwhile, (u, v) submits to C(u, v) distribution and u, v are called as
“pseudo random numbers”.

Make RX , RY be the return rate of assets X ,Y . Following is the process of portfolio
VaR of two assets X and Y based on Copula model and Monte Carlo simulation
according to the given portfolio weight: [25, 26].
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• The copula model is chosen to describe the marginal distribution of assets and
related structure C(∗, ∗);

• The parameter of Copula model is estimated according to the historical data of
return rate of asset X and Y , and hence the distribution function of assets return
F(∗), G(∗) and C(u, v) that are to demonstrate the relation structure between
assets could be confirmed. Thereinto, u = F(Rx), v = G(Ry), which submit to
(0, 1) even distribution;

• Two independent random numbers u and v, which submit (0, 1) even distribution,
are generated. u is the first simulated pseudo random numbers (PRN). For another
thing, Cu(v) = w, another PRN v could be calculated through the reversion func-
tion of Cu(v) : v = C−1

u (w);
• The values of corresponding assets return RX = F−1(u), RY = G−1(v) are
obtained according to the distribution function of assets return F(.), G(.) and
u, v;

• The weight w is given in the portfolio selection and the return Z of portfolio is
calculated: z = wRX + (1 − w)RY , which provides a possible perspective to the
future yield of the portfolio selection;

• (3)–(5) steps are repeated through K times, which means the k kinds of possible
scenarios of the future yield of the portfolio are generated through simulation,
which is aimed to obtain the empirical distribution of the future return of the
portfolio. For the given confidence 1 − α, the VaR in the portfolio is confirmed
from P[Z < VaRα] = α.

4.3 Back Testing

Back testing is aimed to make comparison of market risk metering method or the
evaluation of model and the actual happening of loss in order to test the accuracy
and reliability of model.

Here, a likelihood ratio test proposed byKupiec [15] is applied. The every extreme
circumstance where actual return rates are more than the VaR estimation value is
regarded as some independent Bernoulli’s experiment.

Suppose the forehand confidence level is 1 − α the actual observation day is T ,
the invalid day (extreme day) is N , and then the invalid frequency is f = N/T and
the expected value of invalid ratio is α . So testingwhether the VaR estimationmodel
is effective is transformed into the problem of whether resting failure f is obviously
equal to α :

H0 : α = f H1 : α �= f

The likelihood ratio test statistics are

LR = 2 ln[(1 − f )T−N · f N ] − 2 ln[(1 − α)T−N · αN ] (26)
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Fig. 2 The time series of SP500 return rate

Fig. 3 The time series of CBOE internet rate 10-year bond return rate

In the former condition, LR χ2
(1); 95% is chosen as the testing confidence level, and

at that time the critical value is 3.84. When LR < 3.84, the 0 hypothesis is accepted,
and the model is effective. Otherwise, the model is invalid.

5 Numerical Experiment

5.1 Normality Test and Correlation Analysis

In the empirical experiment, it is assumed that the portfolio selection just includes
stock and bond. The analyzed data of the two selected financial assets is from Stan-
dard&Poor’s 500 and CBOE Internet Rate 10-Year Bond (2008.7.1–2012.7.3), and
the following is the graph of return rate r :

rAt = log

(
PAt

PAt−1

)
(27)

Then, the time series of SP500 return rate and 10-year return rate are shown in Figs.
2 and 3, respectively.

Table 2 shows the statistical characteristic of the two return series (Table 2).
Skew-ness coefficient is used to measure whether the distribution is symmetric.

If the distribution is normal, the pattern is symmetric and the skew-ness is 0. The
bigger positive value indicates the distribution has a longer tail in right side and the
larger negative one indicates there is a longer tail in left side.
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Table 2 The statistical characteristic of the two return series

N Mean Standard
deviation

Variance Skewness Kurtosis

SP500 1010 0.000029 0.0077 0.00006 −0.26433 6.4375

10-year
bond

1010 −0.000385 0.011384 0.00013 −0.27413 2.3542

Kurtosis coefficient is to measure the degree of center aggregation. Under the
circumstance of normal distribution, the value is 0. The positive coefficient shows
the observation value is more concentrated and the distribution has longer tail than
normal distribution. The negative one shows the distribution is not concentrated and
the distribution has a shorter tail than normal one.

From the practical situation, the negative skew-ness indicates that there are more
trading days when the return rate is less than the mean value. And the high kurtosis
shows the extreme value of the conditional variance is more and volatility is stronger.

Next, Kolmogorov-Smirnov test is used to make the test of normality in SPSS,
which shows they don’t satisfy normality; Augmented Dickey-Fuller (ADF) unit
root test is aimed to demonstrate whether it is the stationary time series data, which
demonstrates the time series are the stationary ones.

5.2 Augmented Dickey-Fuller (ADF) Unit Root Test

In statistics and econometrics, an augmented Dickey-Fuller test is a test for a unit
root, which is a feature of processes that evolve through time that can cause problems
in statistical inference if not adequately dealt with, in a time series sample. Generally,
the statistic is a negative number. The more negative it is, the stronger the rejection
of the hypothesis that there is a unit root at some level of confidence.

A stochastic process has a unit root if 1 is a root of the process’s characteristic
equation. Such a process is non-stationary. If the other roots of the characteristic
equation lie inside the unit circle, that is, have a modulus (absolute value) less than
one, then the first difference of the process will be stationary.

To sum up, the condition of stationary is that the every characteristic root is
required to locate within the unit circle. So the main purpose is to examine the
stationary of time series data.

From Table3 from Eviews, ADF Test statistic is less than DW marginal value
(−26.05 < −3.9 < −3.4 < −3.1), which means Ho is rejected, and then it demon-
strates that it is the stationary time series data. That is to say, the time series variables
don’t present a tendency of being a constant or a linear function and its statistical
property doesn’t change with time.
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Table 3 Augmented Dickey-Fuller (ADF) unit root test

Null Hypothesis: SERQ01 has a unit root .

Exogenous: Constat Linear Trend

Lag ength: 1 (Automatic Based on SIC, MAXLAG = 21)

Augmented Dickey-Fuller test statistic −26.04602 0.0000

Test critical values: 1% level −3.967178

5% level −3.414278

10% level −3.129257

*MacKinnon {1996} one-sided p-values

Table 4 Tests of normality

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Stock 0.110 1010 0.000 0.904 1010 0.000

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Bond 0.043 1010 0.000 0.981 1010 0.000

Note a Kolmogorov-Smirnov test, https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

5.3 Normality Test

Normality test is used to determinewhether the observed values arewellmodeled by a
normal distribution or not through hypothesis testing. Suppose alternativeHypothesis
Ho: the data obeys normal distribution; H1: the data doesn’t obey normal distribution.
Then it could be achieved by SPSS.

Table4 shows that the hypothesis of normal distribution is rejected (approximate
Sig. < p value = 0.05).

Following graphical tool for assessing normality is the normal probability plot, a
quantile-quantile plot (QQ plot) of the standardized data against the standard normal
distribution (Fig. 4).

Here the correlation between the sample data and normal quintiles (a measure of
the goodness of fit) measures how well the data is modeled by a normal distribution.
For normal data the points plotted in the QQ plot should fall approximately on a
straight line, indicating high positive correlation. These plots are easy to interpret
and also have the benefit that outliers are easily identified (Fig. 4).

Given the above the testing of normal probability graph, the up and down tails
deviates badly from the straight line, which doesn’t satisfy normality. Through the
analysis, the following Table5 shows the summary of the above analysis.

https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
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Fig. 4 Q-Q plot of return rate of SP500 stock and 10-year bond

Table 5 The summary of ADF and normality test

Method Result

Kolmogorov-Smirnov test The distribution of return rate doesn’t satisfy normality

Augmented Dickey-Fuller (ADF) The time series are the stationary ones.

5.4 Evaluation of Marginal Distribution and Copula
Parameter

According to the bandwidth selection section, the bandwidths of SP500 and 10-year
bond are 0.0012 and 0.0024 from “rule of thumb”, and the bandwidth is 0.001 and
0.002 respectively from plug-in bandwidth selection by R language. Through the
two bandwidth selection methods, the results are similar.

Through the optimal bandwidth and default Gaussian kernel function, the den-
sity function and cumulative distribution function of the financial assets could be
estimated through invoking KSdensity function in Matlab.
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Fig. 5 Frequency histogram, kernel density estimation and normal distribution density of the yield
of SP500 stock and 10-year bond

After the bandwidth is confirmed and normal kernel is adopted, the kernel density
function of return rate from stock and bond markets could be obtained:

ˆfstock = 1

1010 × 0.001 × √
2π

n∑
i=1

exp

[
−1

2
×

(
x − xi
0.001

)2
]

ˆfbond = 1

1010 × 0.002 × √
2π

n∑
i=1

exp

[
−1

2
×

(
x − xi
0.002

)2
] (28)

In matlab, ksdensity function is called to estimate the distribution of sample with
kernel smoothing. The following is the comparison of kernel density estimation,
frequency histogram and normal distribution density (Fig. 5).

The sample empirical distribution function could be obtained by ecdf function
and the population distribution could be estimated by kernel smoothing method.
The following is the comparison of the empirical, estimated and theoretical normal
distribution function under the same conditions (Fig. 6).

From the above cumulative distribution, it could be seen that the distribution
curves called by ecdf and ksdensity function are not the same completely, but the
difference is not obvious.

On the basis of the kernel density estimation to the unknown marginal density of
the two financial assets, the parameter of copula model could be estimated.

5.5 The Selection of Optimal Copula

After confirming the marginal distribution of random variables X and Y , then the
optimal Copula function could be chosen according to the shape of binary histogram.
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Fig. 6 Empirical, estimated and theoretical normal distribution function graph of the return rate of
SP500 and 10-year bond

Fig. 7 Binary histogram

At the same time, it could be regarded as the estimation of the joint density function
of (U, V ), which also means Copula density function (Fig. 7).

Through theMaximum likelihood, the parameter of variousCopula function could
be obtained by calling copulafit function (Table 6).

By Minimum test method Kendall and Stuart [14], Mardia [16], the following
table shows the result (Table 7).

Var(α̂) ∼= 4

n
α3/2(1 + √

α)2 (29)

By calculation, the results of Clayton Copula and Gumbel Copula are relatively
less, and then it is appropriate to describe the relevance between SP500 stock market
and 10-year bond market.
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Table 6 The parameter of various Copula function

Copula class Gumbel Clayton Frank

Parameter 1.4173 0.7515 3.2831

Table 7 The Var value of various Copula function

Copula class Gumbel Clayton Frank

Var 0.032064 0.008993 0.18628

Moreover, the nonlinear Kendall rank correlation coefficient could be used to ver-
ify the above results. By calling corr function, Kendall ranking correlation coefficient
could be obtained directly, which is 31.26%.

The correlations of stock and bond could be obtained from function relationship
between Kendall and Copula parameter:

ρT = 1 − α−1 = 29.44% and ρT = α

(2 + α)
= 27.3% respectively (30)

Obviously, the numbers fromKendall andCopula function are similar, which demon-
strates that the Copula method based on Kernel density estimation is suitable to
describe the relation structure between stock and bond market.

Further, we can evaluate Gumbel and Clayton Copula model with empirical Cop-
ula function, which is the introduced concept here.

Suppose (xi , yi )(i = 1, 2, . . . , n) is the sample from two dimensional population
(X,Y ) and note that the empirical distribution functions of X , Y are Fn(X),Gn(y),
so the empirical Copula of sample is:

Ĉn(u, v) = 1

n

n∑
i=1

I[Fn(xi )≤u] I[Gn(yi )≤v], u, v ∈ [0, 1] (31)

where I[•] is indicator function, where Fn(xi ) ≤ u, I[Fn(xi )≤u] = 1, Otherwise
I[Fn(xi )≤u] = 0.

After having empirical Copula function Ĉn(u, v), we can discuss the squared
Euclidean distance between CopulaCGumbel(u, v), CopulaCClayton(u, v) and
empirical Copula:

d2
Gumbel =

n∑
i=1

|Ĉn(ui , vi ) − ĈGumbel(ui , vi )|2

d2
Clayton =

n∑
i=1

|Ĉn(ui , vi ) − ĈClayton(ui , vi )|2
(32)

where ui = Fn(xi ) , vi = Gn(yi )(i = 1, 2, . . . , n).



Risk Analysis of Portfolio Selection Based on Kernel Density Estimation 585

Fig. 8 Empirical Copula
distribution function

Here, the squared distance indicate the condition of fitting into the original data,
and the Copula model that has the shorter squared Euclidean distance will be more
suitable.

Following is the drawing graph of empirical Copula and the calculation of squared
Euclidean distance through Matlab (Fig. 8).

And the squared Euclidean distances respectively are:

d2
Gumbel = 0.1303, d2

Clayton = 0.0998 (33)

So it could be thought that Clayton model can better express the observation data of
stock and bond market.

Conventionally, Person correlation coefficient is written in the following:

ρxy = cov(x, y)

(σxσy)
=

∑
(x − x̄)(y − ȳ)√∑

(x − x̄)2i
∑

(y − ȳ)2
(34)

It assumes the variables follow to the multi-variant normal distribution. Then, the
correlation coefficient of SP500 and 10-year bond is 41.97%.

5.6 Tail Dependence Research

After the parameter in Copula function, the Copula density function and distribution
function value could be calculated through calling copulapdf and copulacdf function,
and the Copula density function and distribution function graph could be drawed
(Figs. 9 and 10).

From the above graphs, Gumbel copula function has a strong ability to capture
the dependence in up tail, and Clayton copula function has a strong ability to capture
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Fig. 9 The density function and distribution function of binary Gumbel Copula

Fig. 10 The density function and distribution function of binary Clayton Copula

the dependence in down tail. Therefore, the combination of Gumbel and Clayton is
better used to study the tail dependence.

Then, through the parsing expression of the correlation coefficient in tail, the
correlation coefficient in Gumbel and Clayton are described:

Gumbel:λup = 2 − 21/α = 0.37

Clayton:λlo = 2−1/α = 0.4
(35)

The VaR value could be computed by the combination of copula model and Montel
Carlo simulation.

5.7 Value at Risk Calculation

For the analyticalmethod, the assumption is that c = 95%(a = 1.65) and the original
value W is set to 1:
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Table 8 VaR of different portfolios

W1 (stock weight) W2 (bond weight) VaR

0 1 0.0191

0.1 0.9 0.0178

0.2 0.8 0.0165

0.3 0.7 0.0154

0.4 0.6 0.0143

0.5 0.5 0.0135

0.6 0.4 0.0128

0.7 0.3 0.0124

0.8 0.2 0.0123

0.85 0.15 0.0122

0.9 0.1 0.0123

1 0 0.0126

Fig. 11 Stock weight-VaR

When W1 = W2 = 0.5(c = 95%, a = 1.65) VaR value is equal to 0.01336;
(36)

When VaR is minimum, the proportion of W1 SP500 and W2 10-year bond is
respectively equal to 80.5 and 19.5%, and VaR is 0.000055.

According to the Monte Carlo simulation (1)–(6),

When W1 = W2 = 0.5 from Gumble or Clayton model: VaR = 0.0135; (37)

From the following graph (Fig. 11), it is concluded that when the ratio of stock and
bond reaches 85–15%, the value at risk reaches its minimum, which is about 0.0122
(Table 8).

The result could be tested to verify whether the model is effective. The following
Table 8 is the testing based on the Monte Carlo simulation and the analytical method
(Fig. 12) when the proportion of stock investment is 0.85 and the proportion of bond
is 0.15.
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Fig. 12 Bond weight-VaR

Table 9 The comparison of Monte Carlo simulation and Analytical method

Method Confidence
level

VaR The valid days The valid
proportion
(%)

LR

Monte Carlo
simulation

95% 0.0122 38 3.76 3.54

Analytical
method

95% 0.000055 71 7.03 7.82

From Table 9, we can see that the analytical method underestimated the risk
compared with Monte Carlo simulation method, which results in that the valid days
are more.

Under the confidence level of 95%, the LR value of Monte Carlo simulation is
less than χ2

(1)(0.05) = 3.841, which passed the test of Kupiec failiure ratio, which
demonstrates that the VaR value from Monte Carlo simulation can accurately mea-
sure the market risk of portfolio selection.

6 Conclusion

• From the time series graph Figs. 2 and 3, the volatility of the two return rate series
have the obvious “cluster” phenomenon, which means big fluctuations follow big
ones and small fluctuation follow small ones, and there is a certain similarity
between them, which shows some interaction exists in it.
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From Fig. 5, we can get the negative skewness and high kurtosis, which demon-
strates falling days are less than rising days, but the falling average range is higher
than the rising one and return rate happen near the separate average value. So
compared with normal distribution, kernel density estimation is a better way to
describe the feature of “fat tail and high picky” in the real situation.

• Through the comparison between result 5.4 and 5.8, the value of Person correlation
coefficient is higher than the one of copula model and Kendall correlation, which
shows that the former overestimates the relation between stock market and bond.
Contrary to the inability to capture the relevance in tail from linear perspective,
the correlation coefficient in tail well describes the consistency possibility of bond
when the exception situations happen in stock market such as boom or slump.

• The formula (36) and (37) imply that 50% stock-50% bond portfolio has a 95%
chance of losing the maximum value 0.01336 and 0.0135 under the above two
methods when 1 is invested.
Through the contrast of the VaR results from analytical method and Monte Carlo
simulation, it is found that the VaR value in assumption of the normal distribution
is less than the one by Monte Carlo, which means the former underestimates the
financial risk easily.
Meanwhile, to obtain the safest asset security, it is a wise strategy for a robust
investor to allocate 80–85% capital to stock market and 15–20% one to 10-year
bond theoretically according to Table 8.

In the analysis of portfolio selection, there is an importance in the study of relation
structure between financial assets, which results in how to capture the principal of
change between them especially in the tail with better correlation model.

In this paper, through kernel density estimation maximum likelihood two steps,
Gumbel and Clayton copula model is adopted to model the correlation between
stock and bond. Then, VaR is analyzed based on it and the optimal allocation in the
portfolio could be confirmed by Montel Carlo simulation.

By comparison between the present methods introduced in this paper and the
conventional methods which is based on the normal distribution, it is concluded that
the latter one always underestimate the happening of risk and the value of risk, which
should bring to the forefront.

Because of the limitation of ability and time, there are many other works, which
could be studied further.

• In this research, just the relatively suitable copula function types are picked up to
measure the relation structure of stock market and bond market. In order to obtain
the better effective, the hybrid Copula function model could be constructed, which
is more flexible, and applied in the financial market.

• From the dimension perspective, the research is just adopted single parameter and
two-dimensional Copula function to fit into random variables. In the further study,
the multi-parameter and multi-dimensional Copula is used to construct the joint
distribution function of multi-dimensional variables.

• For the other fields about financial issues, Copula function can also describe the
relationship between random variables. So it has the broader application perspec-
tive, such as multi-variant option pricing, defaults correlation and so on.
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Minimax Context Principle

Roman Zapatrin

Abstract I show how space-like structures emerge within the topos-based approach
to quantum mechanics. With a physical system, or, more generally, with an opera-
tionalistic setup a context category is associated being in fact an ordered collection
of contexts. Each context, in turn, is associated with certain configuration space.
The minimax context principle is put forward. Its basic idea is that among various
configuration spaces the ‘physical space’ is the configuration space of a structureless
point particle. In order to implement it, two order relations on contexts are introduced
being analogs of inner and outer daseinisation of projectors. The proposed minimax
context principle captures two characteristic features of physical space: maximal
with respect to refining the accuracy, and minimal by getting rid of extra degrees of
freedom.

A Foreword

The main goal of this paper is to explore new options, which are provided by topos
approach to quantummechanics. This approachwas initially aimed to bring objectiv-
ity to quantum mechanics. Its further development made it more general, applicable
to a broad class of operationalistic theories, and it was named “Topos foundation
for theories of physics” [1–3], denoted in the sequel by TFTP. In this essay I try to
show that within TFTP we can describe how physical space is created as a result of
measurements. Why ‘created’ rather than ‘explored’? In brief, the reason is exactly
the same as the reason why the value of the spin of a polarized particle emerges as a
result of experiment; I illustrate it by a toy model of ‘topologimeter’.

Begin with a conventional paradigm: we are living in a physical spacetime M .
The first step outwards is to state that the spacetime is something pre-existing and
we are trying to measure it in whatever sense. ‘To measure’ means to learn its
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structure. Moving towards operationalistic viewpoint, we adopt that our devices
are not of absolute precision and, with respect to the idealistic spacetime manifold
we are dealing with its partition—some events become indistinguishable, this is
called coarse-graining. If we are given a manifold, all its coarse-grainings form a
partially ordered set C , and the initial spacetime M is the maximal element of C ,
corresponding to ideal precision.

On the other hand, we may explore many-particle systems, each such system has
a configuration space which is, roughly speaking, like a Cartesian power of M . The
configuration space (perhaps coarse-grained, TFTP is flexible enough) of n-particle
system is embedded into that of (n + 1)-particle system. We consider the set C
containing all available configuration spaces to those associated with multipartite
systems and the resulting space now bears two partial orders: one associated with
coarse-graining (called it precision order �), and the other associated with ignoring
extra degrees of freedom (called redundancy order �). From this we observe how
the initial spacetime is positioned among the available configuration spaces: it is
maximal with respect to precision and minimal with respect to redundancy. This is
how it looks in classical mechanics.

However, in a more general operationalistic setting we do not consider the above
mentioned configuration spaces as primary objects. One of the basic ingredients of
TFTP is the notion of context category. For a physical system, or, more general,
for an operationalistic environment, the context category is a family of commutative
subalgebras of observables treated as operationalistic ‘snapshots of reality’. Due
to Ge’fand transform (which associates to a given commutative algebra V a set
Σ(V )—its spectrum), they are treated as factory of configuration spaces. In the
classical case that we considered above, context category is the extended space C
with a natural ordering being simply the set inclusion. These order relations treated
as arrows make C category. However, there are two more partial orders on contexts,
which are induced by daseinisation procedure, turning TFTP into a factory producing
configuration spaces. Let us consider all this in more details restarting from the
classical case.

1 Contexts and Their Supports in Classical Realm

Supposewe are dealingwith a classical physical systemS , letM be its configuration
space. That means, each point of M bears the information about the results of all
queries addressed toS . Observables ofS are functions on M , denote the set of all
observables by V . The set V is a commutative algebra as its elements are functions,
which are multiplied pointwise. We may, instead, consider V as a primary object,
just a collection of elements, which can be added and multiplied by each other or by
a number. The important result is that M is recovered from V , and this is the essence
of Gel’fand transform:

V �→ Σ(V ) (1)
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where Σ(V ) is by definition the set of all multiplicative linear functionals on V .
So, given a commutative algebra, Gel’fand transform always return a set, which we
interpret as a configuration space. In the language of TFTP approach, the algebra
V is called context and the resulting set Σ(V ) is called the support of the context
V . Configuration spaces are supports of contexts, that is why context category are
‘factories of configuration spaces’.

2 Device Resolution Order

For various reasons we may consider different algebras V associated with the same
system. First,wemay set up certain threshold of accuracy, so that somemeasurements
will be no longer available. That means, a smaller algebra V ′ is considered being
a subset of V . Due to the duality, the associated configuration space Σ(V ′) is a
quotient of Σ(V ), it is called a coarse-graining ofΣ(V ). If we consider a collection
of subalgebras of V , we have a partially ordered set with the greatest element V , and
dually, we have a family of coarse-grainings of Σ(V ) ordered by projection, where
Σ(V ) itself is the greatest element. Let us call it resolution order, it orders contexts
by the resolution of available measuring devices, denote it

V ′ � V ⇒ Σ(V ) → Σ(V ′) (2)

The order � on context means that every statement (query) Q, which can be formu-
lated in V ′ can also be formulated in V and has the same truth value (Fig. 1).

Fig. 1 Device resolution
order (weaker � stronger)
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Fig. 2 Redundancy order
(less redundant � more
redundant)

3 Redundancy Order

On the other hand, a systemmay possess internal degrees of freedom, or may consist
of several particles. In this case we may disregard some of the extra degrees of
freedom within the initial algebra V . The resulting algebra V ′ in this case is the
quotient of the initial algebra V . Dually, the appropriate configuration spaces are
ordered by set inclusion

V ′ � V ⇒ Σ(V ) ⊆ Σ(V ′) (3)

So, the most simplified configuration space is associated with the minimal algebra
with respect to passing to quotient (Fig. 2).

Let us call the order (3) redundancy order, it orders contexts by the possibility of
getting rid of redundant degrees of freedom. In terms of queries, that means that each
query formulated in V can be translated into a query in V ′ by disregarding redundant
data.

4 Minimax Context Principle for Classical Systems

Now let us figure out how the initial configuration space is positioned among all
these spaces. It is the finest among coarse-grainings and in the same time it is the
least informative. In terms of algebras of observables that means that the algebra
related to what we could call ‘physical space’ is maximal with respect to resolution
order � (2) and minimal with respect to redundancy order � (3).

There are two important observations. First, both orders are not a part of classi-
cal mechanics, they are imposed by the model. For instance, the redundancy order
does not make difference between internal degrees of freedom of a single particle
and multipartite system. Second, the resolution order is imposed by extra assump-
tion about the accuracy of available devices, it directly reflects the operationalistic
approach. As a consequence, even within the classical setting we have a variety of
configuration spaces of the same system.
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At first sight, two orders are the same, both they are formulated as set inclusions.
However, they are of different nature: the resolution order � is associated with the
outer daseinisation, while the redundancy order is produced by the inner daseinisa-
tion, both are formulated in TFTP, let us dwell on it in a more detail.

5 TFTP and Daseinisation

Nowadays topos approach to quantum mechanics is a well-developed paradigm. I
will only outline its ingredients, which are relevant for this essay. For details the
Reader is referred to a review [5] or lecture notes [4].

One of the achievements of TFTP is merging the idea of realism with the math-
ematical machinery of quantum mechanics. The rôle of the set of states, or a gen-
eralized configuration space is played by a topos rather than by a set. I do not even
want to provide the definition of topos here, only present it explicitly. This topos,
the core ingredient of TFTP is formed as follows. Given a ‘big’ in a sense quantum
system with the state space H , the collection of all its abelian subalgebras of the
von Neumann algebraB(H ) of all bounded operators onH is called context cate-
gory. In fact, the category V (H ) is a partially ordered set ordered by set inclusion.
This category is very important in the formulation of quantum theory in terms of
topos theory. But effectively we need only the partial order onB(H ). Each context
contains idempotent elements, they are referred to as queries.

The next important notion of TFTP is daseinisation. Given a query P (a projec-
tion operator in quantum mechanics) and given a context V , the daseinisation aims
to reconcile them. If P belongs to the context, there is nothing to reconcile and
the daseinisation procedure returns P itself. If P /∈ V , then there are two kinds of
destinations—outer and inner one.

• The outer daseinisation returns a minimal projector δo(P̂)V ∈ V , which contains
P—in language terms, the most detailed query in V , which follows from P . So,

δo(P̂)V =
∨

{Q | P � Q}

• The inner daseinisation, in contrast returns the maximal projector δi (P̂)V ∈ V ,
which is contained in P—in language terms, the least detailed query in V , from
which P follows.

δi (P̂)V =
∧

{Q | Q � P}
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6 Minimax Principle in General TFTP Operationalistic
Models

The elements (objects, strictly speaking) of context category are commutative alge-
bras. For them, the Gel’fand duality is considered. With each commutative subal-
gebra V of B(H ) its Gel’fand spectrum Σ(V ) (1) is associated. Then we proceed
exactly in the same way as we did in the classical realm. But now, from the very
beginning there is no ‘true’ space underlying the whole scope of the observations.
Therefore, each minimax context can be treated as a physical space: there is no indi-
cation within TFTP what is more and what is less ‘real’, or physical. Being applied
to quantum mechanical systems, the algebraB(H ) is the von Neumann algebra of
bounded operators on the Hilbert spaceH associated with the system. The structure
analogous to the state space of the overall system is the spectral presheaf SetsV (H ).

Themachinery itself, the basic ideas of TFTP aremore general than just a reformu-
lation of quantum mechanics. They may be applied to any operationalistic environ-
ment. In general, it looks like a dialog of anObserverwith anExternal Environment—
whatever it be: a display, a control center or a storage of datasheets. Anyway, the
methodology remains: the Observer inputs queries and then receives replies. After a
series of queries an appropriate datasheet is formed. From it, the algebra of observ-
ables is inferred. The algebra of observables is in general a non-commutative algebra
B(H ). To link it with spatial structures, we consider its commutative sub-algebras.1

I emphasize that it is not necessary to take all commutative sub-algebras into account.
Only available ones, that is, generated by available observables subalgebras are con-
sidered.

From the algebraic point of view, the central point of minimax principle is that
two new partial orders are introduced on V (H ), each being weaker than the initial
one. These are the resolution order (2) and the redundancy order (3).

7 A Toy Model of ‘Topologimeter’

Suppose we have an Observer, who is given a lot of data, yet unordered. Each query
provides a datasheet of, say 10000 entries. The first step for the observer to somehow
structure the data is to employ, say, factor analysis. Suppose it is done, and the
result is that each datasheet can be represented as a 100 × 100 table of numbers.
There are very many such tables, and the observer, in order to simplify the model,
approximates it by functions of two real variables, each datasheet is now treated as
a function f (x, y) (Fig. 3).

1A more general construction, employed in quantum gravity [6], exists for non-commutative alge-
bras, where points are reconstructed as irreducible representations, which makes it possible to
endow finite sets with non-trivial (that is, non-discrete as it always takes place for Gel’fand trans-
form) topology. This is beyond consideration in this essay.
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Fig. 3 The minimax
principle

From now on we are going to treat overall results as observations over particles on
a configuration space. First of all, let us consider commutative algebra A generated
by the obtained functions f (x, y). Then form the von Neumann algebra of matrices
whose entries are the elements of A, supposed they are treated as available (as it was
emphasized in Sect. 6.

V =
{(

a11(x, y) a12(x, y)
a21(x, y) a22(x, y)

)}

with a21 = a12. Define two its maximal commutative subalgebras. The first is

V1 =
{(

f (y) g(y)
g(y) f (y)

)}
(4)

The second is

V2 =
{(

p(x) 0
0 q(x)

) ∣∣∣∣ p(x) = p(x + 2π)

}
(5)

It is easy to check by direct calculation that both V1, V2 are commutative andmaximal
subalgebras of V . Calculate the appropriate Gel’fand spaces for them. For V1 we have
the disjoint sum of domains of the function f and g, that is, two disjoint straight
lines. For V2 we have the disjoint sum of a circle (because all functions p(x) are
periodical) and a line (since q(x) has no restrictions). Speculating with this, we may
state that the context V1 does not admit topology change, while V2 may be treated as
‘topologimeter’.
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Note that the subalgebras (4), (5) are maximal subalgebras of V . However, V
itself may be a subalgebra of a bigger algebra A . Within this bigger algebra, V has
the form

V =
{(

a11(x, y) a12(x, y)
a21(x, y) a22(x, y)

) ⊗
I

}

where I stands for the unit operator. Operationally that means that all extra degrees
of freedom are swept away.

Why do I call it ‘topologimeter’? If we choose the context V1 and perform all
measurements within it, we reconstruct the configuration space being a straight lie
(more precisely, a disjoint sum of straight lines, but they have the same topology). So,
the result of a measurement within the context V1 always produces a physical space
with the topology of line. If, instead, we choose the context V2, then the situation
changes. The resulting post-measurement state if associated either with the ‘top-
left’ subalgebra of periodic functions, or with a ‘bottom-right’ subalgebra, whose
Gel’fand space is a line. This means, that the result of a measurement within the
context V2 yields different physical spaces having either the topology of a line, or
that of a circle.

So What?

What I tried to do in this essay, is to present a framework based on the Topos founda-
tion for theories of physics (TFTP) to treat physical space itself and its topology as
observables, to demonstrate that, like the values of momentum or spin, they emerge
in the act of measurement. For that, the formalism of TFTP was used. I introduce an
additional minimax context principle, which generalizes TFTP’s daseinisation pro-
cedure from projectors to whole contexts. Loosely speaking, I describe a factory of
configuration spaces and a procedure making happy those who wish to perceive the
reality in terms of clocks and rulers.

I consider these ideas vital, because, in the light of new technologies the very
notion of experiment broadens, the bounds between real and virtual smear out and
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virtually emerging spaces are to greater and greater extent observed in experiment.
This essay is a part of a general research program, inspired by the idea that the ‘real
world’ is gradually moving towards virtualization: a nowadays researcher is a miner
of Big Data rather than a ‘locksmith’.
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Why Rectified Linear Neurons Are
Efficient: A Possible Theoretical
Explanation

Olac Fuentes, Justin Parra, Elizabeth Anthony and Vladik Kreinovich

Abstract Traditionally, neural networks used a sigmoid activation function. Re-
cently, it turned out that piecewise linear activation functions are much more
efficient—especially in deep learning applications. However, so far, there have been
no convincing theoretical explanation for this empirical efficiency. In this paper, we
provide such an explanation.

1 Rectified Linear Neurons: Formulation of the Problem

Why neural networks: a brief reminder. One of the main objectives of designing
computers is that they would solve intelligent tasks, tasks that we normally solve by
using our brains. It is therefore reasonable, when designing computational devices,
to emulate how our brain works.

In the brain, signals come from the special sensor cells in the eyes, ears, etc., and
are processed by other cells called neurons. The signals from the sensors come as
series of electric spikes. The intensity of the corresponding signal is reflected by the
frequency of the spikes.

Signal processing cells—neurons—usually:

• take inputs from several cells (sensor cells or other data processing neurons),
• process the summary input signal, and
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• send the resulting signal to other neurons—or to the cells that perform some
activities (e.g., move a finger, close an eye, slow down the heart rate, etc.).

To be more precise, when a neuron gets signals x1, . . . , xn from different inputs:

• these signals are first aggregated into a linear combination

x = w1 · x1 + · · · + wn · xn + w0,

and then
• an appropriate transformation y = s0(x) is applied to the aggregated signal x.

As a result, we get the output

y = s0(w1 · x1 + · · · + wn · xn + w0). (1)

The corresponding function s0(x) is known as the activation function; see, e.g., [2].
This is exactly how the standard artificial neural networks—that emulate biolog-

ical neural networks—work:

• we feed the inputs xi into one or more neurons, then
• we feed these neuron’s outputs into other neurons, etc.

We can have simple networks, in which inputs go into the intermediate layer, and
the outputs of the intermediate layer are collected by neurons from the final layer.
We can have neural networks with more layers. Interestingly, it turns out that deep
learning neural networks—i.e., networks with a large number of layers—are the
most efficient ones; see, e.g., [3].

Which activation functions are most effective. In the past, most neural networks

used the sigmoid activation functions s0(x) = 1

1 + exp(−k · x) , the activation func-

tion which provides the most adequate description of data processing in biological
neurons.

However, recently, it was shows that we can make neural networks more efficient
if instead, we use rectified linear neurons, with piecewise linear activation function
s0(x) = max(x, 0), i.e.:

• s0(x) = x when x ≥ 0, and
• s0(x) = 0 for x < 0.

Such neurons are especially efficient in deep learning [3].
In particular, we successfully used rectified linear neurons to predict volcanic

eruptions based on preceding seismic activity; see, e.g., [9, 10].

Comment. It is easy to prove that 3-layer neural networkswith rectified linear neurons
are universal approximators for continuous functions on a bounded domain. Indeed:

• each function can be represented as a difference of two convex functions (see, e.g.,
[13]), and
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• each convex function is a maximum of all tangent linear functions—and thus, can
be well approximate if we take finitely many tangent linear functions [13].

Why are rectified linear neurons efficient: an open question. While empirical ev-
idence shows that rectified linear neurons work best, there seems to be no convincing
theoretical explanation for this empirical success. Without such an explanation, it is
not clear whether these neurons are indeed the best—or maybe some other activation
function would lead to even more efficient computations?

What we do in this paper. In this paper, we provide a theoretical explanation of
why rectified linear activation functions are empirically successful.

2 Our Explanation

What do we mean by optimal? We are interested in finding optimal activation
functions, i.e., functions which are the best according to some optimality criterion.

In general, what do we mean by an optimality criterion, i.e., by a criterion that
allows us to select one of many possible alternatives? In many cases, we have a well-
defined objective function F(a)—i.e., we have a numerical value F(a) attached to
each alternative a.We then select the alternative a for which this value is—depending
on what we want—either the largest or the smallest.

For example, when we look for the shortest path:

• we assign, to each path a, its length F(a), and
• we select the path for which this length is the smallest possible.

When we look for an algorithm for solving problems of given size, often:

• we assign, to each algorithm a, the worst-case computation time F(a) on all inputs
of this size, and

• we select the algorithm a for which this worst-case time F(a) is the smallest
possible.

However, an optimality criterion can be more complicated. For example, we may
have several different shortest paths a for a car to go from one city location to another.
In this case, it may be reasonable to select, among these shortest paths, a path a
along which the overall exposure to pollution G(a) is the smallest. The resulting
optimality criterion can no longer be described by a single objective function, it is
more complicated: we prefer a to a′ if:

• either F(a) < F(a′)
• or F(a) = F(a′) and G(a) < G(a′).

Similarly, if we have two different algorithms a with the same worst-case compu-
tation time F(a), we may want to select, among them, the one for which the average
computation time G(a) is the smallest possible. In this case too, we prefer a to a′ if:
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• either F(a) < F(a′),
• or F(a) = F(a′) and G(a) < G(a′).

The optimality criterion can be even more complicated. However, no matter how
many different objective functions we use, we do need to have a way to compare
different alternatives. Thus, we can define a general optimality criterion as an order
� on the set of all possible alternatives, so that a � a′ means that the alternative a′
is better (or of the same quality) than the alternative a.

In our case, we want to select the best activation function. Thus, by an optimality
criterion, we would mean an order on the set of all possible objective functions.

In these terms, a function s0(x) is optimal if is better (or of the same quality)
than all other possible activation functions, i.e., if s � s0 for all possible activation
functions s(x).

The optimality criterion must be useful. We want an optimality criterion to be
useful, i.e., we want to use it to select an activation function. Thus, there should be
at least one activation function which is optimal according to this criterion.

What if several different functions are optimal according to the given criterion?
In this case, we can use this non-uniqueness to optimize something else. For exam-
ple, if on a given class of benchmarks, neurons that use several different activation
functions have the same average approximation error, we can select, among them,
the function with the smallest computational complexity. This way, instead of the
original optimality criterion, we, in effect, use a new criterion according to which s0
is better than s if:

• either it has the smaller average approximation error
• or it has the same average approximation error and smaller computational com-
plexity.

If, based on this modified criterion, we still have several different activation functions
which are equally good, we can use this non-uniqueness to optimize something else:
e.g., worse-case approximation accuracy, etc.

Thus, every time the optimality criterion selects several equally good activation
functions, we, in effect, replace it with a modified criterion, and keep modifying it
until finally we get a criterion for which only one activation function is optimal. So,
we arrive at the following definition.

Definition 1

• By an optimality criterion, we mean a (partial) order� on the set of all continuous
functions of one variable.

• We say that a function s0 is optimal with respect to the optimality criterion � if
s � s0 for all functions s.

• We say that an optimality criterion is final if there exists exactly one function
which is optimal with respect to this optimality criterion.
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Numerical values depend on the measuring unit. Which optimality criterion
should we use? In selecting the optimality criterion, we should take into account
that when we measure a physical signal, the resulting numerical value depends on
what measuring unit we use in this measurement. For example, when we measure
the height in meters, the person’s height is 1.7. However, if we measure the same
height in centimeters, we get a different numerical value: 170.

In general, if instead of the original measuring unit, we use a different unit which
us λ times smaller than the previous one, then all the numerical values get multiplied
by λ; e.g., if we replace meters by centimeters, all numerical values get multiplied
by λ = 100.

This is important for neural networks, even though inputs are usually normal-
ized. In the neural networks, inputs are usually normalized, so, at first glance, there
seems to be no need to such re-scaling x → λ · x. However, normalization of param-
eters may change if we get new data.

For example, often, normalization means that the range of possible values of
some positive quantity is linearly re-scaled to the interval [0, 1]—by dividing all
inputs by the largest possible value of the corresponding quantity. When we add
more data points, we may get values which are somewhat larger than the largest of
the previously observed value. In this case, the normalization based on the enlarged
data set leads to re-scaling of all previously normalized values—i.e., in effect, to a
change in the measuring unit.

Scale-invariance. It is therefore reasonable to require that the quality of an activation
function does not depend on the choice of the measuring unit.

Let us describe this requirement in precise terms.
Suppose that in some selected units, the activation function has the form s(x). If

we replace the original measuring unit by a new unit which is λ times larger that the
original one, then the value x in the new units is equivalent to λ · x in the old units. If
we apply the old-unit activation function to this amount, we get the output of s(λ · x)
of old units—which is equivalent to λ−1 · s(λ · x) new units.

Thus, after the change in units, the transformation described, in the original units,
by an activation function s(x) is described, in the new units, by a modified activation
function λ−1 · s(λ · x). So, the above requirement takes the following form:

Definition 2 We say that an optimality criterion� is scale-invariant if for every two
functions s and s′ and for every λ > 0, the relation s � s′ is equivalent to Tλ(s) �
Tλ(s′), where we denoted (Tλ(s))(x)

def= λ−1 · s(x).

Now, we are ready to formulate our result.

Proposition 1 A function s0(x) is optimal with respect to some final scale-invariant
optimality criterion if and only if it has the following form:

• s0(x) = c+ · x for x ≥ 0 and
• s0(x) = c− · x for x < 0.
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Comment 1 One can easily check that each such function has the form

s0(x) = c− · x + (c+ − c−) · max(x, 0).

Thus, if c+ �= c−, i.e., if the corresponding activation function is not linear, then
the class of functions represented by s0-neural networks coincides with the class of
functions represented by rectified linear neural networks

So, we have a theoretical justification for the success of rectified linear activation
functions.

Comment 2 It is important to emphasize that our result is not based on selecting a
single optimality criterion: it holds for all optimality criteria that satisfy reasonable
properties—such as being final and being scale-invariant.

Proof of Proposition 1

1◦. For every function s0(x) of the above type,we can easily find a final scale-invariant
optimality criterion for which this function is optimal: namely, we can take the order
� in which s � s0 for all continuous functions s(x).

One can easily check:

• that this relation is final and scale-invariant, and
• that the given function s0(x) is the only function which is optimal with respect to
this criterion.

2◦. Vice versa, let us assume that a function s0(x) is optimal with respect to some final
scale-invariant optimality criterion. Under this assumption, we need to prove that the
function s0(x) has the desired form. To prove this, let us prove that this function is
scale-invariant in the sense of Definition 1.

In terms of the transformationTλ, scale-invariancemeans that s0 = Tλ(s0) for all s.
To prove that Tλ(s0) = s0, let us prove that the function Tλ(s0) is optimal. Then, the
desired equality will follow from the fact that the optimality criterion is final—and
thus, there is only one optimal function.

To prove that the function Tλ(s0) is optimal, we need to prove that s � Tλ(s0) for
all s. Due to scale-invariance of the optimality criterion, this condition is equivalent
to Tλ−1(s) � s0—which is, of course, always true, since s0 is optimal. Thus, Tλ(s0)
is also optimal, hence Tλ(s0) = s0 for all λ.

In other words, for all x and all λ > 0, we have λ−1 · s0(λ · x) = s0(x), thus

s0(λ · x) = λ · s0(x).

Let us show that this property leads to the desired conclusion.

3◦. Every input x is either equal to 0, or positive, or negative. Let us consider these
three cases one by one.

4◦. Let us first consider the case of x = 0.
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For x = 0 and λ = 2, scale invariance means that if y = s0(0), then 2y = s0(0).
Thus, 2y = y, hence y = s0(0) = 0.

5◦. Let us now consider the case of positive values x.

Let us denote c+
def= s0(1). Then, by using scale-invariance with:

• x instead of λ,
• 1 instead of x, and
• c+ instead of s0(1),

we conclude that for all x > 0, we have s0(x) = x · c+.
For positive values x, the desired equality is proven.

6◦. To complete the proof of this result, we need to prove it for negative inputs x.

Let us denote c−
def= −s0(−1). In this case, s0(−1) = −c. Thus, for every x < 0,

by using scale-invariance with:

• λ = |x|,
• x = −1, and
• s0(−1) = −c−,

we conclude that

s0(x) = s0(|x| · (−1)) = |x| · s0(−1) = |x| · (−c−) = c− · x.

The proposition is proven.

3 Auxiliary Arguments in Favor of Rectified Linear
Neurons

We have proved that for every reasonably optimality criterion, the optimal activation
function corresponds to rectified linear neurons. To make this mathematical result
more intuitively convincing, let us provide some informal arguments explaining the
advantages of such activation functions.

3.1 Symmetry-Based Argument

Numerical values depend on the measuring unit. As we have mentioned in the
previous section, when we measure a physical signal, the resulting numerical value
depends onwhatmeasuring unit we use in thismeasurement. The choice of ameasur-
ing unit is rather arbitrary, it does not change the physical situation. It is reasonable to
require that the results of applying the corresponding non-linear activation function
not change is we simply change the measuring unit.
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In precise terms, this means that if we have y = s0(x), then for any λ > 0, we
should have y′ = s0(x′), where we denoted x′ = λ · x and y′ = λ · y. Let us see what
we can derive based on this requirement.

Definition 3 We say that a function s0(x) is a scale-invariant if, for every x, y, and
λ > 0, y = s0(x) implies that λ · y = s0(λ · x).
Proposition 2 A function s0(x) is scale-invariant if and only if it has the following
form:

• s0(x) = c+ · x for x ≥ 0 and
• s0(x) = c− · x for x < 0,

for some constants c+ and c−.

Proof this result was, in effect, provenwhenwe proved Proposition 1—see Parts 3–6
of this proof.

Comment 1 It should be mentioned that it is well known—and very easy to check—
that the activation function corresponding to rectified linear neurons is scale-
invariant. What we prove is slightly more complex: namely, we also show that
rectified linear functions are the only scale-invariant activation functions.

Comment 2 It is also important to emphasize that neither this informal argument
(nor two other arguments that we present next) replace the formal proof. Their only
purpose is to make the result of the above mathematical proof more intuitive and
thus, more convincing.

3.2 Complexity-Based Argument

Idea. To speed up computations, we need to make sure that the activation function
is as fast to compute as possible.

This idea leads to another intuitive argument in favor of rectified linear neurons.
Inside the computer, every numerical operation is implemented as a composition of
the basic hardware-supported operations. These operations include the basic arith-
metic operations:

• addition a + b,
• subtraction a − b,
• multiplication a · b,
• division a/b,

and the operations min(a, b) and max(a, b).
Of these operations:

• the functions min and max are the fastest,
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• addition + and subtraction − are next fastest,
• followed by multiplication (which involves several additions) and
• division (which involves several multiplications);

see, e.g., [11].
The fastest-to-compute activation function is the one that uses only one hardware

supported basic operation.
We are interested in non-linear activation functions (since linear transformation

are already taken care in the aggregation procedure, before we invoke the activation
function). Out of the above operations, the corresponding functions s0(a) = a + a0,
s0(a) = a − a0, s0(a) = a0 − a, s0(a) = a · a0, and s0(a) = a/a0 are linear. Theonly
non-linear operations aremax(a, a0),min(a, a0), and a0/a. Of these three operations,
the fastest are piecewise linear operations min and max.

Thus, the computational complexity-based analysis indeed leads to yet another
argument in favor of piecewise linear activation functions.

Comment 1 This complexity-based argument is very simple and straightforward.We
want to once again emphasize that the fact that rectified linear activation functions
are fast-to-compute does not entail that will lead to accurate learning. However,
this fact does—at least in our opinion—make our theoretical result somewhat more
intuitively convincing.

Comment 2 A similar argument can be made if we are thinking about a hardware
implementationof artificial neural networks. Indeed, in this case, a linear combination
is straightforward: just place several currents together.

The simplest nonlinear element of an electric circuit is a diode that transmits current
only in one direction. For the diode, the output is equal to x if x ≥ 0 and to 0 otherwise,
i.e., it is exactly the rectified linear activation function—which is thus the easiest to
implement in hardware.

3.3 Fuzzy-Based Argument

Need to use fuzzy techniques. When we use neural network technique to learn a
phenomenon, we generate a neural network that provides a good approximation to
this phenomenon. In particular, when we use the neural network technique to provide
a solution to a problem—e.g., to provide an appropriate control—we thus produce a
neural network that generates the corresponding solution.

In human reasoning, we try our best not only to provide good solutions to real-life
problems, but also to provide a clear justification for these solutions.

It is therefore reasonable to look for activation functions forwhich the correspond-
ing solution makes direct sense, i.e., for which this solution can be interpretable in
human-understandable natural-language terms.
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The need for translating imprecise (“fuzzy”) expert knowledge into precise (and
thus, computer-understandable) form has beenwell recognized since the early 1960s.
Techniques that provide such a translation are known as fuzzy techniques; see, e.g.,
[1, 4, 6, 7, 14].

In terms of these techniques, the above idea can be reformulated as follows: we
want to select an activation function for which all the functions representing the
corresponding neural networks are directly interpretable in fuzzy terms.

Which functions can be interpretable in fuzzy terms. It is known that if we use
1 − a as negation, min(a + b, 1) as an “or”-operation and max(a + b − 1, 0) as an
“and”-operation, then functions that can be represented as compositions of logical
operations are exactly piece-wise linear functions with integer coefficients [5, 8, 12].

To these operations, we can add more subtle operations. For example, it is natural
to interpret “somewhat A” as A ∨ A—which, in the above logic, leads to 2a (or, to
be more precise, to min(2a, 1)). It is therefore reasonable to define an inverse hedge
“very A” as the statement B for which “somewhat B” is equivalent to A. In the above
logic, this would mean defining our degree of confidence in “very A” as a/2, where
A is our degree of confidence in the original statement A.

We can iterate this “very” hedge, thus getting values a/4, a/8, etc. By combining
these hedges and logical operations, we can get any piecewise linear functions with
binary-rational coefficients.

This leads to anewargument in favor of piecewise linear activation functions.We
want a neural network to be interpretable. For the neural network to be interpretable,
we need to make sure that all the data processing algorithms performed by a neural
network can be described in fuzzy terms. Since implies that all such algorithms must
be piecewise-linear.

This conclusion means, in particular, that the activation function should be piece-
wise linear. Thus, we indeed get one more argument in favor of using piecewise
linear activation functions in neural networks.

Comment. Similarly to the previous two arguments, this argument is not, by itself, a
substitute for the proof: the results of neural network training are usually not easy to
understand and interpret anyway. However, as with the previous two arguments, this
argument hopefully make our formal proof somewhat more intuitively convincing.
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Quasiorthogonal Dimension

Paul C. Kainen and Věra Kůrková

Abstract An interval approach to the concept of dimension is presented. The
concept of quasiorthogonal dimension is obtained by relaxing exact orthogonality so
that angular distances between unit vectors are constrained to a fixed closed symmet-
ric interval about π/2. An exponential number of such quasiorthogonal vectors exist
as the Euclidean dimension increases. Lower bounds on quasiorthogonal dimension
are proven using geometry of high-dimensional spaces and a separate argument is
given utilizing graph theory. Related notions are reviewed.

1 Introduction

The intuitive concept of dimension has many mathematical formalizations. One ver-
sion, based on geometry, uses “right angles” (in Greek, “ortho gonia”), known since
Pythagoras. The minimal number of orthogonal vectors needed to specify an object
in a Euclidean space defines its orthogonal dimension.

Other formalizations of dimension are based on different aspects of space. For
example, a topological definition (inductive dimension) emphasizing the recursive
character of d-dimensional objects having d − 1-dimensional boundaries, was pro-
posed by Poincaré, while another topological notion, covering dimension, is associ-
ated with Lebesgue. A metric-space version of dimension was developed by Haus-
dorff, Besicovitch, and Mandelbrot; the new concept of fractal dimension can take
nonintegral values.
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This chapter presents a geometric concept of dimension, using an interval
approach. We define as in [31, 32, 38], the ε-quasiorthogonal dimension of Rn ,

dimε(n) := max{|X | : X ⊂ Sn−1, x �= y ∈ X ⇒ |x · y| ≤ ε} (1)

to be the maximum number of unit vectors in R
n with pairwise-dot-products in the

interval [−ε, ε] or, equivalently, the maximum number of nonzero vectors whose
pairwise angles lie in the interval [arccos(ε), arccos(−ε)] centered at π/2.

Interval analysis was introduced by Moore [51] and replaces real numbers by
intervals. Kreinovich contributed substantially to its modern reformulation as inter-
val computation (see Kearfott and Kreinovich [35]), and has been the creator and
maintainer of the Interval Computation website [37].

Replacing a “crisp” number by a nontrivial (closed) interval has a profound impact
on orthogonal dimension. There are exactly n pairwise-orthogonal nonzero vectors
in Rn , but for fixed ε > 0, dimε(n) grows exponentially with n.

Quasiorthogonality has found numerous applications, includingword-spacemod-
els for semantic classification (Hecht-Nielsen [28], Kaski [33]), selection of input
parameters for neural networks (Gorban et al. [22]), estimates of covering num-
bers (Kůrková and Sanguineti [39]), and prediction of consumer financial behavior
(Lazarus [40]).

The chapter is organized as follows. In Sect. 2 quasiorthogonal dimension is
defined and its growth is estimated via geometrical properties of high-dimensional
spaces. Section3 presents a graph theory approach and includes some new results. In
Sect. 4, quasiorthogonal vectors inHamming cubes are examined. Section5 describes
concrete constructions utilizing sparse ternary vectors. The application of qua-
siorthogonality to context vectors and computational semantics is in Sect. 6. The
final section includes a number of classical and recent generalizations which are
related to quasiorthogonality in other domains.

2 Orthogonal and Quasiorthogonal Geometry

Let Rn denote the n-dimensional Euclidean space, Sn−1 := {h ∈ R
n : ‖h‖ = 1} is

the unit sphere in Rn , and x · y := ∑n
i=1 xi yi is the inner product of x, y ∈ R

n .
Hecht-Nielsen introduced prior to 1991 (see [21]) the concept of what was later

called a quasiorthogonal set (Kůrková and Hecht-Nielsen [38]). For ε ∈ [0, 1), a
subset T of Sn−1 is an ε-quasiorthogonal set if

x �= y ∈ T ⇒ |x · y| ≤ ε.

A set of nonzero vectors is ε-quasiorthogonal if and only if the corresponding set of
normalized vectors is ε-quasiorthogonal.
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Thus, the ε-quasiorthogonal dimension of Rn , dimε(n), is the maximum cardi-
nality of an ε-quasiorthogonal subset ofRn . We consider the two cases: (i) ε “small”
or (ii) ε “large” w.r.t. arcsin(1/n) ∼ 1/n.

In thefirst case (i),when all pairwise angularmeasurement errors are small (strictly
less than arcsin(1/n)), it was shown (Kainen [31], Kainen and Kůrková [32]) that
quasiorthogonal dimension equals orthogonal dimension n.

To have a quasiorthogonal set with more than n members in n-dimensional
Euclidean space, some pair of the vectors must be at an angle which deviates from
π/2 by at least arcsin(1/n). For instance, for n = 2, at least one of the measurements
must be in error by at least 30◦, corresponding to 1/12th of a circle. Hence, one can
trust an estimate of orthogonal dimension made in a fixed finite-dimensional space if
the error is small enough; i.e., precise accuracy in orthogonal dimension is achieved
when angular error is sufficiently small.

In the second case (ii), assume that ε ∈ (0, 1) is fixed and n increases. It was
conjectured in [28, 38] that ε-quasiorthogonal dimension grows exponentially as n
increases. We proved the existence of such exponentially large quasiorthogonal sets
using geometry of high-dimensional Euclidean spaces [31] and graph theory [32]),
giving the same lower bound on the rate of growth.

We will review both of these approaches, starting with the geometric one. Let
E be any set and F any family of subsets of E ; F is a packing if its elements are
pairwise-disjoint and F is a cover if its union is E .

For real-valued f and g, we write f (n) � g(n) and f (n) ∼ g(n) to mean

lim
n→∞ f (n)/g(n) ≥ 1 and lim

n→∞ f (n)/g(n) = 1.

A simple argument for the existence of large quasiorthogonal sets comes from pack-
ing spherical caps into the surface of Sn−1. The caps consist of all points on the
sphere within a fixed angular distance from some center point.

More precisely, let g ∈ Sn−1 and let ε > 0. Put

C(g, ε) := {h ∈ Sn−1 | 〈h, g〉 ≥ ε}.

ThenC(g, ε) is the set of all unit vectors within angular distance α = arccos(ε) from
g (see Fig. 1), i.e., the α-ball in the angular metric. As ε → 0+, arccos(ε) approaches
π/2 from below; that is, the cap is nearly a hemisphere.

Fig. 1 Spherical cap
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Theorem 1 Let 0 < ε < 1. Then for all integers n ≥ 2,

dimε(n) ≥ enε2/2.

Proof Let μ be the rotationally symmetric uniform probability measure on Sn−1

obtained by normalizing Lebesgue measure. Determining the area of a cap in
Lebesgue measure is well-known (Ball [4, p.11])

μ(C(g, ε)) ≤ exp
(

− nε2/2
)
. (2)

Hence, any family of such caps which covers Sn−1 has at least enε2/2 members. Kol-
mogorov and Tikhomorov [36] showed that the cardinality of a minimum covering
by balls of radius r bounds from below the size of a maximum packing by balls of
radius r/2 but the latter equals dimε(n) [31, Theorem 2.3]. �

These properties of quasiorthogonality were already implicit in earlier literature
on packing spherical caps (Rankin [53] and Wyner [63]) as described in [31] which
includes a few other early references not given here.

The upper bound in (2) is quite counter-intuitive since for any fixed ε, the bound
becomes very small as n increases. Hence, in high dimension, most of the area of
the sphere lies very close to its “equator”.

This is a special case of the phenomenon of concentration of measure, which
states that for large dimensions most of the values of Lipschitz continuous functions
concentrate closely around their medians (see, e.g., Matousek [47, p. 337]).

Due originally to Lèvy [42] and Schmidt [60], see also Boucheron, Lugosi, and
Massart [7, p. 4], concentration of measure had remained obscure for two decades
until it was used by Milman in 1971 to prove a theorem of Dvoretzky which led
to the development of the asymptotic theory of normed linear spaces (Milman and
Schechtman [49], Ball [4, pp. 41, 47]).

Quasiorthogonality is also a special case of the Johnson-Lindenstrauss Lemma
[30] on linear projections from spaces of high dimensions to lower-dimensional
subspaces that approximately preserve distance on a given finite set.

A function f from R
D to R

d is called an ε-isometry w.r.t. a subset A ⊆ R
D if

for all a, a′ ∈ A, f changes square-distances by a multiplicative factor of at most
1 ± ε; i.e., for all a, a′ ∈ A, with ‖ · ‖ denoting Euclidean norm,

(1 − ε)‖a − a′‖2 ≤ ‖ f (a) − f (a′)‖2 ≤ (1 + ε)‖a − a′‖2

One has the following result from [7, pp. 39–42].

Lemma 1 (Johnson–Lindenstrauss) Let A be an n-element subset ofRD with ε, δ ∈
(0, 1). Suppose a random linear mapping W : RD → R

d is constructed by choosing
the dD entries of the standard representing matrix to be normal random variables,
centered at zero with variance 1. Then with probability at least (1 − δ), the function
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W changes the pairwise distances between distinct members of A by a multiplicative
factor of at most 1 ± ε (that is, W is an ε-isometry w.r.t. A) provided that

d ≥ κε−2 log
(
nδ−1/2

)
.

The result is essentially sharp and κ is a universal constant which is not larger
than 20 [7, p. 41]. Lemma 1 implies that, with high probability, any orthonormal
basis of RD will be projected to an η-quasiorthogonal set, where η = ε(2 + ε). So
in particular dimη(d) ≥ D.

A slightly stronger result was given by Dasgupta and Gupta [11], who showed
that the following lower bound suffices to guarantee the existence of a linear mapW
which is an ε-isometry w.r.t. a set of cardinality n.

d ≥ 4(ε2/2 − ε3/3)−1 log(n). (3)

They also cited other short proofs of the Johnson–Lindenstrauss Lemma and noted
a result of N. Alon [2] showing that (3) is essentially best-possible. Bourgain gave a
similar result [9] related to embeddings in Hilbert space. A connection with graphs
was exploited by Linial et al. [44] to obtain bounds on multicommodity flow.

Although the original arguments are nonconstructive, Engebert et al. [15, Lemma
2] obtain projections by a deterministic algorithm and show that when S ⊂ Sn−1, the
image of S under the random projection W is an ε-orthogonal set if the projection
does not decrease distances in S.

To project, as in Lemma 1, from a high to low-dimensional space, we used a
matrix. If the matrix is nearly orthogonal, then distances will be nearly preserved. As
quasiorthogonal sets are very common, one can choose the matrix randomly—e.g.,
with each entry determined by a Gaussian distribution (centered at zero). However,
Achlioptas [1] proposed replacing the Gaussian by a discretized distribution taking
values {−1, 0, 1}with probabilities (1/6, 2/3, 1/6); Bingham andMannila [6] found
that such sparse random projection is more efficient, but continues to approximately
preserve distance. Li et al. [43] recommend using amuch sparser form of Achiloptas’
construction where probabilities for each nonzero value are much smaller, and claim
a substantial boost to efficiency. For the latest comparisons, see Knoll’s thesis [34, p.
46] which considers the similar problem of norm-preservationwithin amultiplicative
factor of 1 ± ε.

3 Graph Theoretic Aspects of Quasiorthogonality

A graph G is a symmetric, irreflexive relation (called adjacency) on a nonempty set
V ; equivalently, G = (V, E), where V = V (G) is the set of vertices and E = E(G)

is the set of edges. See, e.g., Harary [27] orDiestel [13] for basic graph theory. For any
graph G, a clique is a maximal complete subgraph of G and the clique number ω(G)
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is the largest number of vertices in any clique. If G is connected, then the number
of edges in a shortest v-w-path in G defines a distance on V (G). The diameter
diam(G) of a connected graph G is the greatest distance between any pair of points.
The degree of a vertex is the number of adjacent vertices. A graph is r-regular if all
vertices have degree r .

Quasiorthogonality defines a graph by letting adjacency of vertices correspond to
quasiorthogonality of vectors. Indeed, let ∅ �= V ⊆ Sn−1 and let ε ∈ [0, 1). Define
the ε-orthogonality graph G(V, ε) by requiring that

∀v,w ∈ V = V (G(V, ε)), vw ∈ E(G(V, ε)) ⇐⇒ |v · w| ≤ ε.

Call H an orthogonality graph if H is isomorphic to some G(V, ε).
What are the basic properties of orthogonality graphs? We provide several such

properties below and also show how orthogonality graphs both resemble and differ
from random graphs. The first result is in [31] and follows from the strict orthogo-
nality case ε = 0, where it holds by linear algebra—hence the condition on n. Let
Γ (n, ε) := G(Sn−1, ε). Then ω(Γ (n, ε)) = dimε(n).

Theorem 2 If n ≥ 3, then Γ (n, ε) has diameter 2.

If |V | is finite, the diameter-2 condition may not hold. Typically, one would expect
the diameter to be quite small [31] but if one chose V to be a finite set of points all
very close to a fixed point, then V would induce an edgeless graph.

For any r -regular graph G with p vertices, let

ζ := ζ(G) := r/(p − 1),

which is the frequency with which any vertex v is adjacent to the other vertices; ζ
is the density of the graph. The same notion of density also applies to the orthogo-
nality graph Γ with vertex-set Sn−1 by setting ζ(Γ ) := μ(W ), where W is the set
of neighbors of v and μ is the probability measure on Sn−1 obtained by normalizing
the Lebesgue measure. By Eq. (2), we have

Theorem 3 Let ε ∈ (0, 1). Then for η := exp(−nε2/2),

ζ(Γ (n, ε)) ∼ 1 − 2η. (4)

In fact, the same density bound holds for the orthogonality graph induced by the
bipolar n-vectors from 0 to {−1,+1}n; see Theorem 6

Given a positive integer n and ζ ∈ (0, 1), let R(n, ζ) denote the randomgraphwith
n vertices in which the existence of edge vw occurs independently with probability
ζ for each distinct pair v,w in V . How close is the n-vertex random graph with
probability ζ = 1 − 2η to an orthogonality graph?

By Theorem 2, orthogonality graphs have diameter equal to 2 in many cases and
otherwise small. The following result says that a random graph of the same density
has very small probability of point-pairs at distance at least 3.
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Theorem 4 Let v �= w ∈ V (R(n, ζ)) where ζ = 1 − ϑ with ϑ ∼ 0. Then

Prob(dist(v,w) ≥ 3) = ϑ(2ϑ)n−2.

Proof To have distance at least 3 in R, v andw must already be non-adjacent, which
has probability ϑ. If u is any vertex other than v and w, then to prevent the existence
of a path vuw, not both of vu ∈ E and uw ∈ E can hold, which has probability
1 − (1 − ϑ)2 ∼ 2ϑ. Further, this must hold for every such vertex u. As edges occur
independently, we get the result. �

Thus, orthogonality graphs are rather like dense random graphs in terms of diam-
eter. But orthogonality graphs don’t fit the random graph model since adjacency
becomes more probable as n increases. One might then expect that with the same
number of vertices and the same density, clique number for orthogonality graphs
should be larger than for random graphs. However, the next result is in the opposite
direction.

Matula [48] proved (in 1976) a very strong clique-size concentration result for
random graphs (see also Spencer [61, p. 51]): the clique number is one of two con-
secutive integer values. In the formulation of Bollobas and Erdős [8], the size ω of
a maximum clique in any random graph on n vertices with density ζ is

ω(R(n, ζ)) ∼ 2 log(n)/ log(1/ζ). (5)

Theorem 5 For ζ = 1 − 2η and η = e−nε2/2,

ω(R(n, ζ)) � log(n) dimε(n).

Proof We evaluate log(1/ζ). As ζ = 1 − 2η, 1/ζ ∼ 1 + 2η. But log(1 + t) ∼ t for
t ∼ 0. Hence, the denominator in (5) is ∼ 2η. Therefore, one has

ω(R(n, ζ)) ∼ 2 log(n)/2η = log(n)enε2/2 ≤ log(n) dimε(n);

the last inequality is Theorem 1. But f (n) ∼ g(n) ≤ h(n) ⇒ f (n) � h(n). �

4 Quasiorthogonal Sets in Hamming Cubes

Hamming, a founder of information theory, noted that random sets of bipolar vectors
(i.e., entries in {−1,+1}) are almost surely orthogonal [26, p. 188]:

“For sufficiently large n, there are almost 2n almost perpendicular lines.”

Hamming may have meant that the vectors from the origin to the set of all bipolar
vectors in n-space form a probabilistic clique of size 2n in the sense that

With probability ∼ 1, any pair of bipolar vectors is almost orthogonal.
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Hecht-Nielsen and Kůrková, in 1992, conjectured [38] that exponential growth
holds for the maximum size of a strict clique in which all pairs of distinct vectors
are approximately orthogonal and introduced the phrase “quasiorthogonal sets”.

A proof for exponential growth in the number of pairwise ε-quasiorthogonal vec-
tors in the Hamming cube Hn := {−1, 1}n , including its rate, was given in 1993 [32].
The argument, sketched after the proof of Theorem 6, uses the Hajnal-Szemeredi
Theorem [24] and further guarantees the existence of a large family of such qua-
siorthogonal sets. Also Theorem 6 follows from Theorem 1.

Recall the notion of graph complement. If H is a graph, then the complement H
is the graph on the same set of vertices as H in which two distinct vertices determine
an edge in H iff they are not adjacent in H , so H and H partition the edges of the
complete graph on VH . Under graph complement, cliques correspond to independent
sets of vertices in which no two vertices are adjacent. Let β(H) denote the largest
cardinality of any independent set in a graph H so β(H) = ω(H). Note also that

H = H ; that is, complement is an involution.
A lower bound on β(H) follows from elementary facts about graph coloring

as we now show. A vertex coloring of a graph H is a partition of its vertices into
independent sets. The chromatic number χ(H) of G is the smallest number of parts
in such a partition; equivalently, χ(H) is the least number of “colors” which can be
assigned to the vertices of H in such a way that no two vertices of the same color
are adjacent.

Recall that for 0 ≤ ε < 1, let G(n, ε) and Γ (n, ε) denote the orthogonality graph
determined by V = Hn = {±1}n and V = Sn−1, resp. If dimε(n) ∼ enε2/2, then both
inequalities below are asymptotic equalities.

Theorem 6 dimε(n) = ω(Γ (n, ε)) ≥ ω(G(n, ε)) � enε2/2.

Proof (Sketch) The equality is by definition and the first inequality follows from
monotonicity of clique number. The second inequality is asymptotic.

For any graph H it is well-known that χ(H) ≤ 1 + Δ(H), where Δ(H) denotes
the maximum degree of any vertex of H . As the p vertices of H are partitioned into
χ(H) independent sets, at least one of these independent sets has≥ �p/(1 + Δ(H))�
vertices.

We apply this to the complement of the bipolar orthogonality graph, H :=
G(n, ε), where independent sets of vertices correspond to quasiorthogonal sets of
Hamming vectors. For any two vertices, v andw, there is an isomorphism of H send-
ing v to w so all vertices have the same degree. So we can take v = (1, 1, . . . , 1)
and in the non-orthogonality graph, the degree of v is a sum of binomial coefficients,
which can be evaluated by a classical result in information theory (Ash [3, p. 114])
and is ∼ 2nH, whereH is the entropy function. Using Taylor’s theorem, one gets the
result. See [32] for the details. �

Several refinements to this logic can be made.
Let β′(G) denote the minimum size of a maximal independent set of a graph G.

Clearly, β(G) ≥ β′(G). A theorem of Berge [5, p. 278] states that β′(G) ≥ �p/(1 +
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Δ(G))�. So any greedy algorithm which finds a maximal quasiorthogonal set will
necessarily produce one of size at least �p/(1 + Δ(G))�.

In another generalization, Erdős conjectured [5, p. 280] and Hajnal-Szemeredi
proved [24] that one can arrange for each of the 1 + Δ(G) independent sets in the
coloring to have cardinality either �p/(1 + Δ(G))� or �p/(1 + Δ(G))�. This is
called an equitable coloring as color classes differ in size by at most one.

For Hn with ε = 1/5, there are 2s, s ≈ 0.97n pairwise-disjoint maximal cliques
of size 2t , t ≈ 0.03n. Is it possible to use this abundance of cliques?

5 Construction of Sparse Ternary Quasiorthognal Sets

In spite of the large number of elements in a quasiorthognal set, one might prefer a
specific construction, even of polynomial cardinality, especially if it is an efficient
procedure. We will sketch a simple method to achieve this.

A vector is sparse if most of its coordinates are zero; we call a vector ternary
if its entries are −1, 0, and +1. The weight of a ternary vector is the number of
nonzero entries. Sparse ternary vectors are used in studying the co-occurrence of
words in models of text semantics. Another application for sparse ternary vectors
is in recommender systems, where each vector consists, e.g., of a particular user’s
ratings of movies which are mostly neutral (zero) with a few being +1 or −1.

A vector in R
n is said to have length n and is called an n-vector. Given any

k-element subset T of [n] := {1, . . . , n} (briefly, k-set in [n]), if 2 ≤ � < k is an
integer, let τ (T, �) be a maximum size family of ternary n-vectors which are nonzero
exactly in the k coordinates in T such that |v · w| ≤ � − 1 if v �= w ∈ τ (T, �). Let
t (k, �) := |τ (T, �)|. If T = {1, 2, 3}, � = 2 and n = 6, then (cf. [31])

τ (T, �) = {(1, 1, 1, 0, 0, 0), (−, 1, −, 0, 0, 0), (1, −, −, 0, 0, 0), (−,−, 1, 0, 0, 0)},

where “−” denotes “−1”.
Start with a maximum family M of k-sets contained in [n] such that each �-set

is in at most one k-set, supposing 2 ≤ � < k < n; equivalently, no two members of
M overlap in more than � − 1 elements. Letm(n, k, �) denote the cardinality ofM.
According to a 1963 conjecture of Erdős and Hanani [16] which was proved by Rődl
[55], for k > � ≥ 2 fixed, as n → ∞,

m(n, k, �) ∼
(
n

�

)/(
k

�

)

. (6)

As in [31], let T (n, k) denote the set of all length-n ternary vectors of weight k.
Let T (n, k, �) be the ε-orthogonality graph with vertex set T (n, k) and ε = �−1

k .
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Theorem 7 Let 2 ≤ � < k be integers. For ε = k/(� − 1),

dimε(n) ≥ ω(T (n, k, �)) ≥ t (k, �)

(
n

�

)/(
k

�

)

.

Proof As k−1/2 T (n, k, �) ⊂ Γ (n, ε), the first inequality holds. The second inequal-
ity follows from (6). Indeed, for M as above, put W := ⋃

T∈M τ (T, �). Then W is
a clique in T (n, k, �) and has the given number of elements. �

For concreteness, letF be the family consisting of all 10-sets contained in [1000];
|F | ≈ 2.63 × 1023. A subfamilyM0 of F in which the 10-sets are pairwise disjoint
(� = 1) contains atmost 100 elements by the Pigeonhole Principle. But using k = 10,
� = 3, according to (6), a maximum subfamily M2 ⊆ F with pairwise overlaps of
at most 2 elements has over one million elements.

There exists a 12 × 12 Hadamard matrix, so t (10, 3) ≥ 12. Replacing each 10-
set by t (10, 3) sparse ternary vectors, M2 generates a clique containing more than
16.6 × 106 vectors whose pairwise normalized dot products do not exceed 1/5
(hence, the pairwise-angles are between 78 and 102◦).

6 Vector Space Models of Word Semantics

The following is a very brief and incomplete account of one of the first scientific
areas to utilize quasiorthogonality.

The problem of analyzingword-meaning has taken new significance in the current
environment where large amounts of textual information is available online along
with powerful computational engines capable of handling a billion-word corpus
(Pennington et al. [52]). A conceptual paradigm, with philosophical roots going
back toWittgenstein, is to group words by their common neighbors. Awidely quoted
version is “You shall know a word by the company it keeps,” due to Firth, a British
linguist [18].

In order to construct an abstract space, where words can live and in which they can
be distributed, vector space (“word space”) models with angular distance have been
widely used since the SMART (System for theMechanical Analysis and Retrieval of
Text) information retrieval system was developed at Cornell University in the 1960s;
see Manning et al. [46].

Other possibilities could certainly be considered for the analysis ofword streams—
includinggraphs, hypergraphs, category-theoretic diagrams, andprobabilisticmetric-
space models—but the vector space approach dominates.

Underlying word-space models is the Distributional Hypothesis (cf. Sahlgren
[58]),Words are similar in meaning if their normalized context vectors are close.

Context vectors can be formed based on the family of all other words (other than
very common and uninformative words such as “and” or “the”) or context vectors
may utilize multi-word segments (e.g., documents).
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Ifw denotes the number of words and c the number of contexts, then the informa-
tion structure required is thew × c co-occurrencematrixwhose entries can be counts
of co-occurrence or normalized frequencies (e.g., how often two words appeared
together).

Different techniques can be used to reduce column-dimensionality such as singu-
lar value decomposition (SVD), principle components analysis (PCA), or indepen-
dent component analysis (ICA). However, Sahlgren [57] notes three disadvantages
of such techniques: (i) they tend to be computationally infeasible for larger examples,
(ii) they need to be repeated each time new data is encountered, and (iii) the initial
very-large co-occurrence matrix must still be constructed.

In Random Indexing, one assigns sparse ternary vectors to each context and then
the context vectors are summed for each context in which a word appears. This might
have significance for classification problems if the nonzero coordinates correspond
to some attribute which is either strongly positive or strongly negative. For instance,
if the attribute were “connected with animals”, then “puppy” would get a +1 while
“rock” gets −1.

Random projection, as in the Johnson–Lindenstrauss Lemma, has also been used
in machine learning and gave results slightly inferior to SVD but with much less
effort (Fradkin and Madigan [20] and Li et al. [43]).

7 Some Variants of Orthogonality

The relation of “orthogonality” is important in various fields of mathematics—for
example, in combinatorics and functional analysis—not just in geometry.

For n a positive integer, an n × n array of elements all taken from some fixed
n-element set is called a Latin Square if each row and each column contains no
repeated element. Two order-n Latin Squares A, B are called (LS)orthogonal if the
ordered superposition

{(A(i, j), B(i, j)) | i, j = 1, . . . , n}

contains n2 distinct elements. Note that A and B may utilize different n-sets for their
elements. See, e.g., Dénes and Keedwell [12] and Ryser [56].

Orthogonal Latin Squares were first used for the design of efficient statistical
experiments. The largest number of order-n pairwise-orthogonal LS is n − 1 and,
further, the upper bound is achieved when n ≥ 3 is a prime power; this is also related
to the existence of projective planes [56, pp. 79–89].

Anotion of “almost orthogonal”LS is described byMohan in [50]which notes that
Horton [29] found two 6 × 6 Latin Squares whose ordered superposition contains
34 distinct pairs. As Tarry has proved Euler’s claim that no pair of order-6 LS is
orthogonal, 36 is not achievable. Other ways to weaken orthogonality of LS might
also be formulated; see also [12].
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Quite different applications of orthogonality and its generalizations occur within
analysis. Twomeasurable functions mapping a measure space (S,μ) to the real num-
bers are called orthogonal if the μ-integral over S of their pairwise-products is zero.
As orthogonality implies linear independence, sets of pairwise-orthogonal functions
form highly convenient bases for function spaces and are essential to analysis.

Typically, one takes S = R
n and defines μ by means of a weighting function. For

example, the vector space of polynomials defined on the real line has, in addition to
the usual basis of powers,

{1 = x0, x, x2, x3, . . .},

a much more useful basis, the Hermite polynomials Hn , which are pairwise-
orthogonal with respect to the Gaussian function; that is, for a �= b ∈ N+,

∫ ∞

−∞
Ha(x)Hb(x) exp(−x2)dx = 0;

see, e.g., Lebedev [41, p. 65].
A notion of quasiorthogonality exists in the case of polynomial functions and was

introduced byM.Riesz in 1923.Weakening the condition of orthogonality for infinite
sets may still permit partial satisfaction of certain special properties of orthogonal
sets of polynomials such as existence of 3-term recursions and locations of zeros.
See Brezinsky et al. [10].

An application of quasiorthogonality in information theory to space-time block
codes involves concepts simultaneously related to both of the above types of orthog-
onality; see Farkhani [17] and Su and Xia [62].

A notion of “almost orthogonal” in normed linear spaces is due to Yoshida [65,
p. 84], attributed there to F. Riesz in 1918. Let ‖x − A‖ := infa∈A ‖x − a‖.
Theorem 8 Let (X, ‖ · ‖) be a normed linear space with M �= X a closed linear
subspace. Then ∀ε ∈ (0, 1), ∃x ∈ X with ‖x‖ = 1 and ‖x − M‖ ≥ 1 − ε.

Yoshida calls x “nearly orthogonal” to M . As a consequence, he gives a short argu-
ment for compactness of unit balls in finite dimensional normed linear spaces pro-
vided the induced metric is complete in the Cauchy sense, i.e., when (X, ‖ · ‖) is a
Banach space.

In a Hilbert space (X, ·), with a real inner product, there always exists an orthonor-
mal basis, and every such basis has the same cardinality Schaefer and Wolff [59, p.
44], so vector space dimension (largest size of a linearly independent set) equals
orthogonal dimension (largest size of a set of pairwise-orthogonal nonzero vectors).
Indeed, pairwise-orthogonal sets of nonzero vectors are independent Deutsch [14, p.
8], while the Gramm-Schmidt orthogonalization procedure [14, pp. 51–52] shows
that any linear basis can be converted to an orthonormal basis, so linear and orthog-
onal dimension coincide.

However, there is a finite quasiorthogonal dimension for the Hilbert sphere due to
Rankin [54] in 1955. He proved that one can pack only finitely many spherical caps
of radius ρ ∈ (π/4,π/2) into the set of unit-norm points in Hilbert space; Rankin
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gives an explicit formula for their number. For a more general approach, applying
to Banach spaces, see, e.g., Yan [64]. We conjecture that these packing constants
supply bounds on computation which are independent of input dimension.

Following the spherical cap-packing formulation, Zhang [66] uses quasiorthog-
onality to “develop a fast detection method for a low-rank structure in high-
dimensional Gaussian data without using the spectrum information.” He bounds
spurious correlation which occurs when explanatory variables greatly outnumber
observations. This situation, where a fixed finite set of data is mapped into increas-
ingly high dimension hypothesis space, is claimed to typically fit a geometric model
where data points are vertices of a simplex, which however may be rotated in differ-
ent ways; see Hall et al. [25]. As a concrete instance, one may have a small number of
patient-derived samples which are tested against a large family of genetic hypotheses
(Fan et al. [19]).
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Integral Transforms Induced
by Heaviside Perceptrons

Věra Kůrková and Paul C. Kainen

Abstract We investigate an integral transform with kernel induced by perceptrons
with the Heaviside activation function. Representation theorems are given express-
ing sufficiently smooth functions as “infinite Heaviside perceptron networks.” The
representation is exploited to obtain estimates of rates of approximation of these
functions by networks with increasing numbers of units.

1 Introduction

Integral transforms play an important role in many branches of applied science such
as medical imaging, astronomy, seismology, material science, turbulence, multiscale
segmentation (see, e.g., [1], [2, pp. 567–569, pp. 591–593]). In addition to these
traditional applications, the mathematical theory of neurocomputing utilizes them
as a powerful tool to investigate function approximation by networks. An important
class of integral operators has the form

TK (w)(x) :=
∫

A

w(a)K(x, a)da, (1)

where K is a function of two variables, the kernel, and w is a weight function.
The term “kernel,” derived from the German word “kern,” was introduced by

Hilbert in 1904 [3, p. 291]. Many well-known kernels are named for the mathemati-
cians who introduced them—e.g., Weierstrass, Abel, Laplace, Poisson, Szegő.
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Functions computable by units used in neurocomputing also depend on two vector
variables, an input vector and a parameter vector, and thus formally they can be con-
sidered as kernels. Note that for each appropriate choice of a kernel K , TK is a linear
operator on some normed linear space of functions. Artificial neural networks were
introduced as multilayer computational models, but later one-hidden-layer architec-
tures became dominant in applications of feedforward networks (see, e.g., [4, 5]
and the references therein). Networks with one hidden layer of computational units,
called shallow, compute finite linear combinations of functions from parameterized
families called dictionaries of computational units. Deep networks with several hid-
den layers are mentioned in the last section.

A network with one hidden layer of computational units from the dictionary

GK := {K(., a) | a ∈ A}

and a single linear output computes input-output functions of the form

n∑
i=1

wiK(x, ai), (2)

where wi are output weights and n is the number of hidden units.
One can view an integral ∫

A

f (a)K(x, a)da

as an “infinite shallow neural network” with units from the dictionary GK and output
weights f (a). Thus operatorsTK map “infinite output-weight vectors” to input-output
functions. On the other hand, quadratures of integral with kernels corresponding to
computational units generate one-hidden-layer networks.

Originally, computational units, called perceptrons, were inspired by a simpli-
fied model of a neuron [6]. A perceptron applies an activation function (typically
sigmoidal) to a weighted sum of its inputs to which is added a bias. So mathemati-
cally, it can be described as the composition of an activation function applied to an
affine function. Geometrically, functions computable by perceptrons have the form
of plane waves which are very useful in mathematical physics, as noted by Courant
and Hilbert [7, p. 676]:

...representations as linear functionals of the data not only lead to many attractive formal
relations, but, what is perhaps more important, they allow a study of specific properties. They
are based on the decomposition of solutions, and, for that matter, other arbitrary functions,
into plane waves. But always the use of plane waves fails to exhibit clearly the domains of
dependence and the role of characteristics. This shortcoming, however, is compensated by
the elegance of explicit results.

Later, alternative types of computational units were introduced due to their good
mathematical properties. Some of these units compute spherical waves and can be
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highly localized. Nevertheless, perceptrons still remain widely used computational
units because of their conceptual and practical advantages.

In this chapter, we explore the analogy between neural networks and integral
transforms and show how this provides a conceptual tool for the analysis of shal-
low networks, which, moreover, can be applied, layer by layer, to deep networks
with several layers of computational units. We describe an integral representation of
smooth-enough functions in the form of infinite Heaviside perceptron networks that
we derived jointly with Vladik Kreinovich [8].

Proof of the theorem was based on Vladik’s original idea to employ the derivative
of the Heaviside activation function, which is the Dirac delta function, and to express
the d -dimensional delta function with d odd as an integral of one-dimensional delta
functions.

In the 20 years since our collaboration with Vladik on the topic of integral formu-
las, neural networks, and the Heaviside function, we have learned a few additional
facts and extended the formula and method to cover even dimensions as well. Fur-
ther, we substantially weakened some of the constraints. Together with A. Vogt in
[9], we proved a version of the integral representation which includes all our previous
versions as well as other related work by Ito [10] and Carroll and Dickenson [11].
We review these extensions and sketch their proof techniques.

Further, we review applications of integral representations in the form of infinite
networks to estimates of complexity of networks needed for a given accuracy of
approximation of functions represented by integral formulas.Wedescribe the concept
of variational norm tailored to computational units.Applying the representation in the
form of Heaviside plane waves, we derive upper bounds on variation with respect to
half-spaces, which plays a role of a critical factor in estimates of network complexity.

The chapter is organized as follows. Section2 contains an exposition of basics
and notation, including distribution theory. Section3 begins with a brief summary
of the proof outline and describes an integral representation for sufficiently smooth
functions in the form of Heaviside plane waves. It sketches an argument based on the
integral representation of thed -dimensionalDirac delta function. InSect. 4, extension
towider classes of functions aswell as evendimensions are given. Section5 is devoted
to applications of integral representations to network complexity and Sect. 6 contains
some concluding remarks.

2 Preliminaries

Computational units (such as perceptrons, radial or kernel units) compute functions
of two vector variables representing inputs and parameters (e.g., weights, biases,
centroids). So formally computational units can be described as mappings

K : X × A → R,

where X ⊆ R
d is a set of variables and A ⊆ R

s is a set of (inner) parameters. Let
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GK = GK (A) = GK (X ,A) := {K(., a) | a ∈ A}

denote the parameterized set of functions on X induced by K. We use the shorter
notation GK or GK (A) when the sets X or A are clear from the context. The set
GK (X ,A) is called a dictionary of computational units.

If b ∈ R and v ∈ R
d and σ : R → R is any function, then the perceptron with

activation function σ is the function Kσ : Rd × R
d+1 → R defined for (x, (v, b)) ∈

R
d × (Rd × R) = R

d × R
d+1 by

Kσ(x, (v, b)) := σ(v · x + b). (3)

Typically, activation functions are assumed to be sigmoidals - that is, to bemonotonic
with limits 0 and 1, resp., as the input goes to −∞ or +∞. However, the univer-
sal approximation property holds for shallow networks with perceptrons with any
sufficiently smooth nonpolynomial activation function [12].

An important type of activation function is the indicator function for the nonneg-
ative reals, called the Heaviside function ϑ : R → R defined as ϑ(t) = 0 for t < 0
and ϑ(t) = 1 for t ≥ 0. (This function is named for Oliver Heaviside (1850–1925),
who used it to construct a quite sophisticated, though heuristic, theory of analysis
which has turned out to be accurate. Heaviside’s scientific contributions included an
explanation for anomalies in radio transmission; he hypothesized an ionized layer in
the Earth’s atmosphere which is now known to exist.)

A function f : Rd → R is called a plane wave if it can be represented as f (x) =
α(v · x), whereα : R → R is any function of one variable and v ∈ R

d is any nonzero
vector. Plane waves are constant along hyperplanes

Hv,b := {x ∈ R
d | v · x = −b}.

Perceptrons with an activation function σ compute plane waves of the form σb(v · x),
where σb(t) = σ(t + b). If σ = ϑ, then Kϑ(·, (v, b)) is the indicator function of the
half-space {x ∈ R

n | v · x + b ≥ 0}. Let Sd−1 denote the unit sphere inRd . We denote

Gϑ = Gϑ(S
d−1 × R,X ) := {ϑ(e · − + b) : X → R | e ∈ Sd−1, b ∈ R},

the dictionary of perceptrons with the Heaviside activation function.
A shallow network with a single linear output and with n computational units

from a dictionary GK (A) computes input-output functions from the set

spannGK (A) :=
{

n∑
i=1

wiK(·, ai) | wi ∈ R, ai ∈ A

}
.

A network unit computing a function K : X × A → R induces an integral oper-
ator. The operator depends on a measure μ on A. For a function w : A → R in a
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suitable space of functions on A such that for all x ∈ X the integral (4) exists, we
denote by TK,μ the operator defined as

TK,μ(w)(x) :=
∫

A

w(a)K(x, a)dμ(a). (4)

When μ is the Lebesgue measure, we drop μ from the notation. Metaphorically,
the integral on the right-hand side of the equation (4) can be interpreted as a one-
hidden-layer neural network with infinitely many units computing functions from the
dictionary

GK := {K(., a) | a ∈ A}.

So the operator TK,μ transforms output-weight functions w : A → R of infinite net-
works with units from the dictionary GK to input-output functions

TK,μ(w) : X → R.

Recall (see e.g., [13]) that for a unit vector e ∈ Sd−1 and a real-valued function f
on Rd , the directional derivative of f in the direction e is defined by

(Def )(y) := lim
t→0

f (y + te) − f (y)

t

and the k-th directional derivative is inductively defined by

(D(k)
e f )(y) = De(D

(k−1)
e f )(y).

It is well-known (see e.g., [13, p. 222]) that

(Def )(y) = e · ∇f (y),

where ∇ = (∂1, . . . , ∂d ) is the vector of partial derivatives w.r.t. the variables. The
k-th order directional derivative is a weighted sum of the corresponding k-th order
partial derivatives, where the weights are polynomials in the coordinates of e multi-
plied by multinomials (see e.g., [14, p. 130]). Hence existence and continuity of the
partials ∂i implies the same for directional derivatives.

By Cd (Rd ) we denote the space of continuous functions on R
d with continuous

derivatives up to order d , while C∞(Rd ) denotes the space of continuous functions
on Rd with continuous derivatives of all orders. The Schwartz class S(Rd ) consists
of all functions from C∞(Rd ) which, together with all their derivatives, are rapidly
decreasing [15, p. 251]).

LetD := D(Rd ) denote the linear space of test functionswhich is the intersection
of C∞(Rd ) and the linear space of compactly supported functions on Rd . The space
D is nonempty; see, e.g., [16], for the definition of the topology on D.
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A distribution is a continuous linear functional on the space of test functions. Let
D′ := D′(Rd ) denote the space of all distributions. The Dirac delta function δd is
the distribution on R

k given by evaluation at zero

δd (φ) := φ(0).

When d = 1, we merely write δ.
A function f on Rd is called locally integrable if the integral

∫
C f (x)dx exists for

any compact C ⊂ R
d . Every locally integrable function f then defines a distribution

Tf whose value on the test function φ is

〈Tf ,φ〉 :=
∫

Rd

f (x)φ(x)dx.

The convolution f ∗ g of a compactly supported f and a distribution g on R
d , is

defined by

(f ∗ g)(x) :=
∫

Rd

f (y)g(x − y)dy.

The distributional derivative T ′ of a distribution T is defined by the equation

〈T ′,φ〉 := −〈T ,φ′〉. (5)

As 〈ϑ′,φ〉 = −〈ϑ,φ′〉 = −
∞∫

−∞
ϑ(x)φ′(x)dx = −φ(∞) + φ(0) = 〈δ,φ〉, ϑ′ = δ

(see, e.g., [16, p.47]. Thus, δ is the distributional derivative of ϑ.

3 Infinite Heaviside Perceptron Networks

In this section, we give a representation of compactly supported functions from
Cd (Rd ), with d odd, as infinite Heaviside perceptron networks, which we found with
Kreinovich [8] and published in 1997. Quoting from the abstract:

We estimate variation with respect to half-spaces in terms of “flows through hyperplanes”.
Our estimate is derived from an integral representation for smooth compactly supportedmul-
tivariable functions proved using properties of the Heaviside and delta distributions. Conse-
quently we obtain conditions which guarantee approximation error rate of order O(n1/2) by
one-hidden-layer networks with n sigmoidal perceptrons.

While our understanding has improved, with 20years of additional work, we may
use the abstract as an outline. Our goal was to find an upper bound on the rate of
neural-network approximation.
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TheMaurey-Jones-Barron Theorem (see Sect. 5, just before Theorem3) translates
a geometric parameter called “variation with respect to half-spaces” (Sect. 5), for a
suitable target function f , into an upper bound on the least number of Heaviside
units used in a one-layer approximation of f (its “rate of approximation”). Variation
of f can in turn be estimated using an integral formula expressing f as an integral
combination of Heaviside functions. The weighting function for the integral formula
(4) corresponds to the “outer” (i.e., linear) outputweights in the neural network,while
the “inner” variables determine the parameters of the Heaviside units. The weight
functions turn out to be the numeric integrals of iterated directional derivatives across
the hyperplanes defining the Heavisides.

We derive our representation by exploiting the distributional derivative of the
Heaviside function, which is the Dirac delta function. We express a test function of
d variables as its convolution with the d -dimensional delta function, which can be
written as an integral of derivatives of 1-dimensional delta functions.

For a positive integer d , δd is the identity w.r.t. convolution; that is, every f ∈
D(Rk) satisfies the following equation (e.g., [16])

f (x) = (f ∗ δd )(x) :=
∫

Rd

f (z)δd (x − z)dz. (6)

For d odd, the delta distribution δd can be expressed as an integral over the unit
sphere of the d − 1-st distributional derivatives δ1

(d−1) of δ1 in the form

δd (x) = ad

∫

Sd−1

δ(d−1)
1 (e · x) de, (7)

where
ad := (−1)(d−1)/2(1/2)(2π)1−d (8)

see, e.g., [7, p. 680]. For e ∈ Sd−1 and b ∈ R, we denote hyperplanes and half-spaces
by

He,b := {y ∈ R
d | e · y + b = 0}, and H−

e,b := {y ∈ R
d | e · y + b ≤ 0}, (9)

resp. The following theorem from [17] describes an integral representation of a
smooth compactly supported function as an uncountably infinite neural network
with Heaviside perceptrons.

Theorem 1 Let d be an odd integer and f ∈ Cd (Rd ) be compactly supported. Then
for all x ∈ R

d

f (x) =
∫

Sd−1×R

wf (e, b)ϑ(e · x + b) de db,

where wf (e, b) = ad
∫
He,b

(D(d)
e f )(y) dy and ad is as in (8).
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Proof The proof is based on the relationship between the Heaviside threshold func-
tion ϑ and the Dirac delta distribution δ1. We prove the statement for a test function
f . Extension to all compactly supported functions with continuous partial derivatives
of order d follows from a basic result of distribution theory: each continuous com-
pactly supported function can be uniformly approximated on R

d by a sequence of
test functions (see e.g., [16, p. 3]).

First, we replace the d -dimensional delta distribution with its integral represen-
tation in terms of one-dimensional delta distributions as in (7),

δd (x − z) = ad

∫

Sd−1

δ1
(d−1)(e · x − e · z)de.

One then obtains from (6) and an application of Fubini’s theorem

f (x) = ad

∫

Sd−1

∫

Rd

f (z)δ1
(d−1)(x · e − z · e)dzde.

Rearranging the inner integration, we get for the Lebesgue measure dH on He,b

f (x) = ad

∫

Sd−1

∫

R

∫

He,b

f (y)δ1
(d−1)(x · e + b)dHy db de.

Setting u(e, b) = ad
∫
He,b

f (y)dHy, we obtain

f (x) =
∫

Sd−1

∫

R

u(e, b)δ1
(d−1)(x · e + b)db de. (10)

By definition of the distributional derivative, for every e ∈ Sd−1 and x ∈ R
d ,

∫

R

u(e, b)δ1
(d−1)(e · x + b)db = (−1)d−1

∫

R

∂d−1u(e, b)

∂bd−1
δ1(e · x + b)db.

Using integration by parts on the right-hand integral, as d is odd and the distribu-
tional derivative of ϑ is δ1, it follows that for every e ∈ Sd−1 and x ∈ R

d

∫

R

u(e, b)δ1
(d−1)(e · x + b)db = −

∫

R

∂du(e, b)

∂bd
ϑ(e · x + b)db.

Differentiating w.r.t. b is orthogonal to hyperplane He,b and so it is in the direction
e. Hence,
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∂du(e, b)

∂bd
= ad

∂d

∂bd

∫

He,b

f (y)dy = ad

∫

He,b

D(d)
e f (y)dy.

From (10) we obtain the integral representation of f in the form

f (x) = ad

∫

Sd−1×R

( ∫

He,b

(
D(d)

e f
)
(y)dy

)
ϑ(e · x + b) db de. �

4 Generalizing the Integral Formula

In this section, we explain howone canweaken the conditions for the integral formula
to hold and include all dimensions, odd and even.

This entails some additional concepts regarding distributions and analysis. As test
functions onRn are infinitely differentiable in each of n coordinates, we use operator
notation

∂i
r :=

( ∂

∂xr

)i
.

For multi-index α ∈ (N0)
n,α = (α1, . . . ,αn), the differential operator

∂α := ∂α1
1 . . . ∂αn

n

indicates differentiating αi ≥ 0 times w.r.t. xi, for i = 1, . . . , n.
The definition of derivative of a distribution is the same adjoint relationship

described in (5). So if T is a distribution in D′(Rn) and φ is a test function, then

〈∂α(T ),φ〉 := (−1)|α|〈T , ∂αφ〉.

where |α| := α1 + · · · + αn, which is the total number of differentiations.
A linear differential operator L is a linear combination of the form

a∂α + b∂β + c∂γ + · · · .

A particularly useful example, the Laplacian operator, is given by

Δ := ∂2
1 + · · · + ∂2

n .

It turns out that a key step in our generalization involves finding integral formulas
for (iterated) Laplacian operators.
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We need the notion of a Green’s function. A Green’s function associated with a
linear operator L is a function G such that L(G) = δ. For example, in dimension 1,
differentiation is a linear operator; the Heaviside function is a Green’s function for
differentiation.

If T is a compactly supported distribution, having a Green’s functionG for L, one
can find a distribution S satisfying the equation

L(S) = T .

Indeed, by letting S be the convolution of T and G, S := T ∗ G, and using the fact
that differentiation can be applied to either factor of a convolution, we have

L(S) = 〈L,T ∗ G〉 = T ∗ LG = T ∗ δ = T .

To define the large class of functions for which our most general integral formula
holds, we need one more technical notion. A real-valued function f on Rd vanishes
to order r ∈ R (at ∞), f (x) = o (‖x‖−r), if

lim‖x‖→∞ f (x)‖x‖r = 0.

The order of g, ord f , is the supremum of the set of all r ∈ R such that f vanishes
to order r.

Put kd := 2� d+1
2 �, so kd = d + 1 for d odd and kd = d + 2 for d even. A function

f : Rd → R is of controlled decay if both of the following hold:

(i) f is kd -times continuously differentiable, and

(ii) ∀ multi-index α with |α| ≤ kd , ord
(
∂αf

)
> |α|.

The functions of controlled decay include almost all suitably differentiable,
“rapidly vanishing” functions and, in particular, those of compact support. Let

α(u) := −u log(|u|) + u

for u �= 0, with α(0) = 0. For f of controlled decay and d a positive integer, let

wf (e, b) := ad

∫

Rd

(
ϑ(−e · y − b)

)rd (
α(e · y + b)

)1−rd (
Δ

(kd )

2 f
)
(y)dy, (11)

where e ∈ Sd−1, b ∈ R
d , and the various functions of d are defined below. We can

now express every function of controlled decay by an integral formula.

Theorem 2 Let d be a positive integer and let f be a function of controlled decay
on Rd . Then for the measure d(e, b) induced by Lebesgue measure on R

d+1
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f (x) =
∫

Sd−1×R

wf (e, b)ϑ(e · x + b)d(e, b). (12)

To define the (0/1) exponent rd and the real number ad , which appear in (11), we
introduce several functions which depend on d :

r := rd := d − 2�(d/2)� =
{
1, if d is odd,

0 if d is even;

s := sd := 2�(d/2)� − 2 =
{
(d − 1)/2, if d is odd,

(d − 2)/2 if d is even;

t := td := 2 − kd =
{
1 − d, if d is odd,

−d if d is even.

Then for all positive integers d

ad := (1/2)r(−1)s(2π)t =
{

(−1)(d − 1)/2(1/2)(2π)1−d , if d is odd,

(−1)(d − 2)/2(2π)-d if d is even;
(13)

The ϑ term is present in wf iff d is odd, while the α term is present iff d is even.
Hence, for d odd, in wf one integrates an iterated Laplacian of f over the negative
half-space H−

e,b defined in (9) while for d even, one integrates an iterated Laplacian
of f , multiplied by the factor α(e · y + b), over all y in Rd . See [9] where it is shown
that Theorem 2 implies previous results some of which hold under slightly different
conditions: For d odd, f : Rd → R is of weakly controlled decay [9] if

(i) f is d -times continuously differentiable,
(ii) for all α with |α| < d , ord (∂αf ) ≥ |α|, and
(iii) for all α with |α| = d , ord (∂αf ) > d + 1.

Note that weakly controlled decay is a different notion of “nice” function than
controlled decay. The first condition (i) is weaker but the second and third conditions
(ii) and (iii) are stronger than for controlled decay. However, controlled decay is
defined for even d as well (see [9]).

In the following, we briefly outline the proof, from [9], of the general version of
the integral representation in terms of Heaviside perceptron networks.

Wefirst show that both ‖x‖ and log(‖x‖) are integrals of planewaves. If de denotes
the measure on Sd−1 induced by Lebesgue measure on R

d and ωd is value of the
measure of the sphere Sd−1, then one has the following key lemmas:
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‖x‖ = sd

∫

Sd−1

|e · x|de; where sd := 2ωd−1/(d − 1), d ≥ 3, x ∈ R
d (14)

log(‖x‖) = bd + (1/ωd )

∫

Sd−1

log |e · x|de; d ≥ 1, x ∈ R
d , x �= 0, (15)

where bd is a constant. There is an explicit role for the Laplacian:

log(‖x‖) = bd + (1/ωd )Δ
( ∫

Sd−1

β(e · x)de
)
; d ≥ 1, x ∈ R

d , x �= 0, (16)

whereβ(u) := (1/2)u2 log |u| − (3/4)u2 for u �= 0,β(0) := 0. Thenβ′(u) = −α(u)
for all u and β′′(u) = log |u| for u �= 0. The argument for (16) uses calculus.

The theorem is then proved by writing a function of controlled decay as the
convolution of its iterated Laplacian with a Green’s function, which is in turn rep-
resented as an integral combination of plane waves, which are expressed as integral
combinations of characteristic functions of half-spaces.

Using Lebesgue dominated convergence,wf is shown to be both well-defined and
continuous. We then find Green’s functions for the iterated Laplacians in both the
odd and even cases, and the integrability of wf is also proved for both cases. Finally,
we show that the integral formula (12) does hold.

An integral formula involves real-valued functions on ameasure space. In [18] this
was generalized to functions with values in a Banach space. In this setting, Bochner
integrals replace Lebesgue integration. See, e.g., [19] or [20]. We proved in [18] that
the Bochner integral

∫
wΦ is convergent if w is in L1 and Φ is essentially bounded.

Bochner integrals may allow approximation of nonlinear operators as in [21–23].

5 Network Complexity

In this section, we derive the consequences of Theorem 1 for the number of compu-
tational units needed to approximate with a given accuracy smooth functions.

The same integral representation as the one presented in Theorem1was derived by
Ito [10]. He used a different proof technique based on the inverse Radon transform.
Discretizing the integral representation, he proved that smooth functions can be
approximated with an arbitrary accuracy by Riemann sums in the form of finite
linear combinations of perceptrons. Thus he proved that shallow perceptron networks
have the universal approximation property. As with all universality type results, this
approximation capability of shallow perceptron networks is obtained assuming that
the number of units in the approximating network is potentially infinite.
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In practical applications, various constraints on numbers and sizes of network
parameters limit feasibility of implementations. Thus it is important to describe
classes of functions which can be computed or sufficiently well approximated by
networks with reasonably bounded numbers of units.

Let

f =
m∑
i=1

wigi (17)

be a representation of a function f as an input-output function of a shallow network
with units from a dictionary G. The “l0-pseudonorm” of a vector w ∈ R

m, denoted
‖w‖0, is the number of nonzero entries in the vector (see, e.g., [24–26]). So if a
neural network with m hidden units calculates f as in (17), then ‖w‖0 is the number
of computational units with a nonzero output weight. Thus, one can measure the
sparsity of a neural network by the “l0-pseudonorm” of its output weight vector.

However, “l0-pseudonorm” is neither a normnor even a pseudonorm. The quantity
‖w‖0 is always an integer and thus ‖ · ‖0 does not satisfy the homogeneity property
of a norm (‖λx‖ = |λ|‖x‖ for all λ). Moreover, the “unit ball” {w ∈ R

n | ‖w‖0 ≤
1} is nonconvex and unbounded as it is equal to the union of all one-dimensional
subspaces of Rm. For any r > 0, the ball of radius r is equal to spankR

m, where k =
�r�. Minimization of “l0-pseudonorm” of the vector of output weights is a difficult
nonconvex optimization task which, for some dictionaries, is NP-hard [27].

In neurocomputing, instead of “l0-pseudonorm”, l1 and l2-norms of output weight
vectors w = (w1, . . . , wm) have been minimized in weight-decay regularization
techniques [4]. In particular, l1-norm plays an important role, as solutions with small
l1-norms can be well approximated by networks with small “l0-pseudonorms; see,
e.g., [25].

The l1-norms of output-weight vectors of all networks with units from a dictionary
G are minimized by a norm tailored to G. This norm, called G-variation, is defined
for bounded subsets G of normed linear spaces (X , ‖.‖) as

‖f ‖G := inf

{
c ∈ R+

∣∣∣ f

c
∈ clX conv (G ∪ −G)

}
. (18)

In (18) “clX ” denotes closure with respect to the topology induced by the norm
‖ · ‖X , “conv” is the convex hull, and “−G” means {− g | g ∈ G}. It was shown in
[28] that in the definition of G-variation, inf can be replaced with min.

A special case of variational norm is variation with respect to Heaviside percep-
trons, also called variation with respect to half-spaces as Heaviside perceptrons are
the indicator functions for (closed affine) half-spaces. It was introduced by Barron
[29] and extended to general dictionaries by Kůrková [30].

Ause forG-variation is to estimate the rate of approximationby a shallownetwork.
The next upper bound is a reformulation of a theorem by Maurey [31], Jones [32],
Barron [33] in terms of G-variation (see [30, 34]).



644 V. Kůrková and P. C. Kainen

Theorem 3 Let (X , ‖.‖X ) be a Hilbert space, G its bounded nonempty subset,
sG = supg∈G ‖g‖X , f ∈ X , and n be a positive integer. Then

‖f − spannG‖2X ≤ s2G‖f ‖2G − ‖f ‖2X
n

.

It was shown in [35] that for every n, the set spannGϑ([0, 1]d ) of input-output
functions of a shallow network with n Heaviside perceptrons is “approximatively
compact” (see below for a definition) and hence best approximations (i.e., as close
as possible) always exist in spannGϑ([0, 1]d ) to any suitably nice function f . In
particular, by Theorem 3, for every function f ∈ L2([0, 1]d ) there exists a function
fn computable by a shallow network with n Heaviside perceptrons with

‖f − fn‖L2([0,1]) = ‖f − spannGϑ([0, 1]d )‖L2([0,1]) ≤ ‖f ‖Gϑ([0,1]d )√
n

. (19)

So accuracy of approximation of functions from L2([0, 1]d ) by networks with
n Heaviside perceptrons depends on their variations with respect to half-spaces. It
follows from the definition that, for d = 1, variation with respect to half-spaces is,
up to a constant, equal to the concept of total variation [14, 36] (see Fig. 1).

To estimate variation with respect to half-spaces, we employ the integral repre-
sentation of smooth functions as infinite Heaviside perceptron networks. It is easy
to see [28, p. 164] that for each f ∈ spanG

‖f ‖G ≤ min

{
‖w‖1

∣∣∣ f =
m∑
i=1

wigi

}
. (20)

So G-variation equals the minimum of the l1-norms of the output-weight vectors w

over all shallow networks (with units from G) which compute f .
A similar upper boundonGK -variation holds for functionswhich can be expressed

as

f (x) = TK,μ(w) =
∫

A

w(a)K(x, a)dμ(a).

Fig. 1 Variation with
respect to half-spaces and
total variation
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Under mild conditions on K [23, 28], the following upper bound holds

‖f ‖GK,μ(A) ≤ ‖w‖L1(A,μ) (21)

Note that for every continuous sigmoid σ (i.e., a non decreasing σ : R → R with
limt→−∞ σ(t) = 0 and limt→∞ σ(t) = 1)

‖.‖Gϑ(Ω) = ‖.‖Gσ(Ω),

in Lp(Ω) with p ∈ (1,∞) and Ω compact [8]. Hence, estimates of variation with
respect to half-spaces apply also to variation with respect to perceptrons with any
continuous sigmoidal function.

Theorem 2 provides an integral representations in terms of infinite Heaviside
networks for functions of controlled decay. This class consists of all functions onRd

which have sufficiently many continuous derivatives and which vanish sufficiently
rapidly at infinity and it contains both the compactly supported functions fromCd (Rd )

and the Schwartz class S(Rd ). As the Gaussian function belongs to the Schwartz
class, it is of controlled decay.

The following corollary estimates rates of approximation of smooth functions by
shallow perceptron networks. The value of ad is as in (8).

Corollary 1 Let d be an odd positive integer,Ω ⊂ R
d have finite Lebesgue measure

λ(Ω), σ : R → R be a continuous sigmoidal function, and f ∈ Cd (Rd ) be a function
of weakly controlled decay. Then for all n,

‖f |Ω − spannGσ(Ω)‖L2(Ω) ≤ λ(Ω)‖wf ‖L1(Sd−1×R)√
n

,

where wf (e, b) = a(d)
∫

He,b

(D(d)
e (f ))(y)dy and a(d) = (−1)(d−1)/2(1/2)(2π)1−d .

Another consequence is the following upper bound on the half-space variation of
the d -dimensional Gaussian γd (x) := exp(−‖x‖2); see [17, Cor. 6.2].
Corollary 2 Let d and n be positive integers with d odd. If Ω ⊂ R

d has finite
measure λ, then

‖γd − spannGϑ(Ω)‖L2(Ω) ≤ (2πd)3/4λ1/2/
√
n.

Note that versions of the above results hold in sup norm [9, 17].
We now recall some concepts related to best approximation as mentioned above.

Let M ⊂ X , where (X , ‖ · ‖) is a normed linear space. For the following concepts,
see, e.g., [37]. Let 2M denote the set of all subsets of M . The mapping

PM : X → 2M
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is called the metric projection of X to M if, for all g ∈ PM (f ), ‖f − g‖ = ‖f −
M ‖. The subset M is proximinal if PM (f ) is nonempty for all f ∈ X . Thus, M is
proximinal iff every element in X has at least one best approximant inM .

If f ∈ X and the sequence (gi)∞i=1 ⊂ M satisfies

‖f − M ‖ = lim
i→∞ ‖f − gi‖,

then (gi) is called a distance-minimizing sequence for f in M . The subset M is
approximatively compact if, for each f ∈ X and each distance-minimizing sequence
(gi) for f in M , there is a subsequence (gi′) which converges to some g0 ∈ M .
For subsets, approximatively compact ⇒ proximinal ⇒ closed. A closed convex
subset of a Banach space is approximatively compact. For Hilbert space, unique best
approximation to a closed linear subspace is obtained via orthogonal projection to
such a subspace.

A function β from X to M is called a continuous best approximation if β is
continuous and for every f ∈ X , β(f ) ∈ PM (f ). For ε > 0, β is a continuous ε -
near-best approximation if β is continuous and for all f ∈ X ,

‖f − β(f )‖ ≤ ‖f − M ‖ + ε.

ABanach space is strictly convex if the line segment joining any two distinct points on
the unit sphere intersects the sphere only in its endpoints. For instance, X = Lp(Ω)

is strictly convex iff 1 < p < ∞. The following theorem is from [38].

Theorem 4 Let X be strictly convex. If M is either not closed or not convex, then
there does not exist a continuous best approximation from X to M .

As spann G is not convex for n > 1, it is not possible to continuously choose
a best approximation from L2(Ω) to the input-output functions given by a neural
network, no matter what type of units are employed for the computation. This result
is strengthened in [39], [40] to show that it is not even possible to find an ε-near-best
approximation.However, a noncontinuous andnonunique choice of best approximant
does exist when M = spann Gϑ [35] as implied by the following.

Theorem 5 For n, d positive integers and every p ∈ [1,∞), spann Gϑ is an approx-
imatively compact subset of (Lp([0, 1]d ), ‖ · ‖).

This theorem can be extended to any compact convex subset of Rd (not just
the unit cube [0, 1]d ). Another interesting question is how to find, for a given f
in L2([0, 1]d ), some choice of g1, . . . , gn ∈ Gϑ such that the linear subspace they
determine contains a best L2-approximant to f in spannGϑ, which must then be the
orthogonal projection of f onto this subspace.
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6 Discussion

One-hidden-layer networks with many common types of computational units are
capable of emulating any reasonable function; i.e., they have the so-called “universal
approximation” property. Recently, deep networks with several convolutional and
pooling layers have become state of the art in computer vision and speech recogni-
tion tasks largely due to progress of hardware (computers with graphic processing
units strongly accelerate computation, see the survey article [41] and the references
therein). But shallow (one-hidden-layer) networks are still widespread and in some
cases can perform the same tasks as deep ones with the same numbers of parameters
[42]. Theoretical analysis, complementing the experimental evidence, obtained by
some comparisons of deep and shallow networks solving the same tasks, is still in its
early stages. While there do exist particular problems where multilayer designs out-
perform single-layer nets with similar numbers of computational units [43], cost per
unit might be lower in shallow architectures. In particular, training or learning ismore
difficult with more layers as responsibilities become blurred. Another advantage of
shallow networks is that the computation might be implementable via physics-based
operators, for example, in photonic and quantum computers.
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