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PREFACE

Targeted audience

Specialists in numerical computations, especially in numerical optimiza-
tion, who are interested in designing algorithms with automatic result ver-
ification, and who would therefore be interested in knowing how general
their algorithms can in principle be.

Mathematicians and computer scientists who are interested in the theory of
computing and computational complexity, especially computational com-
plexity of numerical computations.

Students in applied mathematics and computer science who are interested
in computational complexity of different numerical methods and in learning
general techniques for estimating this computational complexity. The book
is written with all explanations and definitions added, so that it can be
used as a graduate level textbook.

What this book is about

Data processing. In many real-life situations, we are interested in the value
of a physical quantity y that is difficult (or even impossible) to measure directly.
For example, it is impossible to directly measure the amount of oil in an oil
field or a distance to a star. Since we cannot measure such quantities directly,
we measure them indirectly, by measuring some other quantities xi and using
the known relation between y and xi’s to reconstruct y. The algorithm that
transforms the results x̃i of measuring xi into an estimate ỹ for y is called data
processing.

Error estimation for data processing: interval computations. The
input data for data processing algorithms come from measurements and are,
therefore, not precise: the measured value x̃i is, in general, different from the
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x Complexity of interval computations

(unknown) actual value xi of the measured quantity. In some cases, we know
the probabilities of different measurement errors ∆xi = x̃i − xi, but in many
other practical situations, we only know the upper bound ∆i for this error. In
such situations, the only information that we have about the (unknown) actual
value xi is that |xi − x̃i| ≤ ∆i, i.e., that the value xi belongs to the interval
xi = [x̃i −∆i, x̃i + ∆i].

Since the input data of the data processing algorithm are not precise, the result
ỹ of data processing is also not precise: it may differ from the (unknown)
actual value y of the estimated quantity. It is, therefore, necessary that the
data processing algorithm return not only the numerical estimate ỹ itself, but
also the bound ∆ of the possible inaccuracy of this estimate, so that we will be
able to deduce the interval y = [ỹ −∆, ỹ + ∆] of possible values of the desired
quantity y.

For example, if our estimate of an oil deposit is ỹ = 100 mln. tons, it may
mean 100± 10, in which case it is reasonable to start exploiting this well,
or100± 100, in which case additional measurements are in order.

In other words, we need data processing methods that produce not just ap-
proximate results but results with automatic result verification. Such interval-
processing algorithms are called interval computations.

Interval computations: from Archimedes to success. Interval compu-
tations can be traced to Archimedes who produced two-sided estimates for π,
i.e., an interval that is guaranteed to contain π. In this century, basic interval
methods were pioneered as early as 1914 by Norbert Wiener, the future father
of cybernetics, in his analysis of measurement accuracy. The real boom started
with the space age. In 1959, Ramon E. Moore, a young Stanford student
working for Lockheed Missiles and Space Co., published a technical report in
which he developed a new technique called interval computations and applied
this technique to the problem of computing the trajectory of an Earth-Moon
spaceship (a problem for which errors can indeed be disastrous). After Moore’s
1966 pioneer book, interval computations started to actively flourish. Methods
with automatic results verification were developed for numerous computational
problems, and these methods were applied to areas ranging from manufacturing
to economy to quantum physics to space exploration.

Interval computations: problems. In spite of numerous success stories,
there were also many problems in which all known algorithms either produced
unrealistically overestimated bounds, or required unrealistically long computa-
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tions. In 1981, A. A. Gaganov, a student from St. Petersburg (then, Leningrad)
University, proved that some of these problems are indeed computationally in-
tractable (in some precise sense). Since then, many other intractability re-
sults appeared. It turned out (somewhat unexpectedly) that even for the sim-
plest data processing algorithms (e.g., quadratic or piecewise-linear), the above-
described problem of estimating accuracy of the results of data processing (i.e.,
interval computations) is, in general, computationally intractable.

It is important to know what problems are feasible. Since these in-
tractability results occur even for simple algorithms, it is extremely important
for algorithm developers to know which classes of problems are solvable, and
which are intractable, so that they will be able to concentrate on the classes of
problems for which feasible general algorithms exist.

A gap. Unfortunately, there has been, so far, no book specifically devoted
to computational complexity (feasibility and intractability) of interval com-
putations. There are several good books that describe interval computations
techniques, and applications of interval computations. These books mention
some computational complexity results; however, in general, these results are
mainly scattered in various journal papers and monographs, and finding out
whether a given problem is known to be feasible or intractable is often very
difficult.

The main goal of this book is to fill this gap.

Our main goal

This book describes classes of problems for which interval computations (i.e.,
data processing with automatic results verification) are feasible, and when they
are intractable.

This book is not only a comprehensive survey of known results; many of the
results published in this book have never been published before.
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1
INFORMAL INTRODUCTION:

DATA PROCESSING, INTERVAL
COMPUTATIONS, AND

COMPUTATIONAL COMPLEXITY

This introduction starts with material aimed mainly at those readers who are
not well familiar with interval computations and/or with the computational
complexity aspects of data processing and interval computations. It provides
the motivation for the basic mathematical and computational problems that
we will be analyzing in this book. Readers who are well familiar with these
problems can skip the bulk of this chapter and go straight to the last section
that briefly outlines the structure of the book.

In brief, this chapter’s analysis starts with the the following problem (that is
considered one of the basic problems of interval computations): given a function
f(x1, ..., xn) of n real variables, and n intervals xi = [xi, xi], compute the range

y = f(x1, ...,xn) = {f(x1, ..., xn)|x1 ∈ x1, ..., xn ∈ xn}.

A typical application of this problem is: from the measurements, we know
the approximate values x̃i of physical quantities xi, and we know the guaranteed
accuracy ∆i of each measurement. As a result, we know that xi belongs to the
interval xi = [x̃i−∆i, x̃i +∆i]. We also know the algorithm f(x1, . . . , xn) that
transforms the values xi into the value of the desired quantity y. We want to
know the set of possible values of y. For a continuous function f(x1, . . . , xn),
this set is an interval (we will denote it by y = [y, y]). So, the question is: can
we compute the endpoints y and y of this interval y in reasonable time?

1



2 Chapter 1

1.1. Data processing: what is it and why we
need it

In many real-life situations, we are interested in the value of a physical quantity
y that is difficult (or even impossible) to measure directly.

For example, it is difficult to directly measure the amount of oil in a well,
the distance to a quasar, or the mass of an elementary particle.

Since we cannot measure these quantities directly, we have to measure them
indirectly; in other words, instead of directly measuring y, we do the following:

First, we measure some other (easier-to-measure) quantities x1, . . . , xn that
are related with y by a known relation y = f(x1, . . . , xn).

Then, we use the results x̃1, . . . , x̃n of measuring xi and the known function
f(x1, . . . , xn) to compute the estimate ỹ = f(x̃1, . . . , x̃n) of the desired
quantity y.

For example, to estimate the amount of oil in a well, we perform
several measurements of density, conductivity, and sound velocity,
and use the results of these measurements to reconstruct y.

The two-stage procedure that we have just described is called indirect measure-
ment (see, e.g., Rabinovich [332]):

The first stage of this procedure, on which we actually measure xi, is called
direct measurements. The results x̃i of these direct measurements will be
used for computations and are therefore called data.

The second stage, on which we use the measurement data x̃1, . . . , x̃n to
compute the desired estimate ỹ, is called data processing.

1.2. Error estimation for indirect measure-
ments: an important practical problem

Measurements are never absolutely accurate; as a result, the actual value xi of
the measured quantity may differ from the measured value x̃i. The resulting
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measurement errors ∆xi = x̃i − xi cause our estimate ỹ = f(x̃1, . . . , x̃n) to
differ from the actual value y = f(x1, . . . , xn) of the desired quantity.

In many cases, it is extremely important to know how different the actual value
y can be from our estimate. For example, if our estimate for the amount of oil
in a well is 100 million ton, then our actions will be depend on how accurate
this estimate is:

If the estimate is reasonably accurate, e.g., if the actual value is 100±10
million ton, then we should probably start commercially exploiting this
well.

On the other hand, if the estimate is not accurate, and the error ∆y = ỹ−y
can be as large as ±100, then, in spite of the optimistic estimate ỹ, it is
quite possible that the actual amount of oil y is close to 0, i.e., that there
is no commercial amount of oil at all. This means that the measurements
that we have performed so far do not give us enough information to decide
on what to do, and so, we must perform further measurements.

Hence, it is not sufficient to have the estimate ỹ; we also need to know the
accuracy of this estimate, i.e., in other words, we need to know what values of
the error ∆y = ỹ − y are possible.

1.3. Interval computations: what they are and
why we need them

The problem of error estimation of the results of indirect measurements and
data processing occurs in many different areas of science and engineering. Tra-
ditional engineering methods of solving this problem are based on the assump-
tion that we know the probabilities of different possible values of measurement
errors ∆xi = x̃i − xi.

These probabilities can be determined, e.g., by a calibration of the correspond-
ing measuring instrument, in which:

First, we measure, in a laboratory, several different quantities
x(1), . . . , x(K) by two measuring instruments:
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– the instrument that we want to calibrate, and
– a more precise instrument (e.g., an instrument using a regional or

national standard for the corresponding unit).

Since the second measuring instrument is much more accurate than the first
instrument (which we are calibrating), we can neglect the measurement
errors of this second instrument, and take the results of measuring the
values x(k) by this instrument as the actual values of the measured quantity.
In this case, for each “double” measurement, the difference ∆x(k) = x̃(k)−
x(k) between the two measurement results becomes a good estimate for
the measurement error of the calibrated instrument.

As a result of several tests, we get a sample of values ∆x(1), . . . , ∆x(K). We
can now use the standard methods of mathematical statistics to reconstruct
the probability distribution for the errors ∆x.

First probability-based error estimation methods were proposed by Gauss in the
very beginning of the 19th century. During the following two centuries, many
probability-based algorithms have been designed, perfected, and thoroughly
analyzed (see, e.g., Wadsworth [421], Rabinovich [332]). Of course, there still
are open problems, but in most practical cases in which we know the probabilities
of measurement errors, the existing methods work reasonably well.

The problem is that in many practical situations, we do not know the probabil-
ities. This happens for two different reasons:

In fundamental physics and in other types of cutting-edge research, the
measurements that we are dealing with are the most accurate that we can
get. There is simply no more accurate measuring instrument that we could
use for calibration, and therefore, we cannot determine the probabilities.

In many manufacturing situations, calibration is, in principle, possible,
but the cost of calibrating every sensor makes it economically unrealis-
tic. Most manufacturing processes use mass-produced and therefore (rel-
atively) cheap sensors, and individual calibration would prohibitively sky-
rocket their cost.

In both types of situations, we do not know the probabilities of different values
of the measurement error ∆xi. At best, we know the upper bound ∆i on
the possible values of measurement error (i.e., we know that |∆xi| ≤ ∆i).
This guaranteed upper bound is usually supplied by the manufacturer of the
measuring instrument.
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If no bound is known for the error, this means that the actual value xi

of the measured quantity can be arbitrarily different from the measure-
ment result x̃i, and therefore, even after this “measurement”, arbitrarily
large and arbitrarily small values of xi are possible. In other words, such
“measurements” give us no information about xi and are, therefore, of no
use.

In such non-probabilistic situations, after we have measured the quantity xi and
obtained the measured result x̃i, the only information that we get about the
actual (unknown) value xi of the measured quantity is that this value belongs
to the interval xi = [x̃i − ∆i, x̃i + ∆i]. (Strictly speaking, we have a closed
non-empty bounded interval. In this book, when we say “interval”, we will
always mean an interval of this type.)

In this setting, the problem of estimating errors of data processing takes the
following form:

From the measurements, we know the approximate values x̃i of the physical
quantities xi.

We also know the guaranteed accuracy ∆i of each measurement.

As a result, we know that the actual value of xi belongs to the interval
xi = [x̃i −∆i, x̃i + ∆i].

We know the algorithm f(x1, . . . , xn) that transforms the values xi into
the value of the desired quantity y.

We want to know the set of possible values of y.

This range of possible values of y = f(x1, . . . , xn) is equal to

y = f(x1, . . . ,xn) = {f(x1, . . . , xn)|x1 ∈ x1, . . . , xn ∈ xn}.

For continuous functions f(x1, . . . , xn), this range is also an interval. Because
of this, we must compute an interval y based on the intervals xi. Computing
intervals based on interval data is usually called interval computations; so, the
above range estimation problem is one of the problems of interval computations.
(Due to the practical importance of this problem, it is considered one of basic
problems of interval computations.)
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1.4. Interval computations: approximate meth-
ods, traditional optimization techniques, naive
interval computations, and more sophisticated
interval methods (in brief)

Approximate methods. In many engineering applications, we do not neces-
sarily need to know the exact endpoints y and y of the interval y = [y, y]. It
is quite sufficient to get approximate values for these endpoints. One way to
get such approximate estimates is to linearize the function f(x1, . . . , xn), i.e.,
represent xi as xi = x̃i −∆xi, expand the resulting expression

f(x1, . . . , xn) = f(x̃1 −∆x1, . . . , x̃n −∆xn)

in Taylor series in ∆xi, and neglect quadratic and higher order terms in this
expansion. As a result, we get an approximate formula

f(x1, . . . , xn) ≈ a0 + a1 ·∆x1 + . . . + an ·∆xn,

where a0 = f(x̃1, . . . , x̃n) = ỹ and

ai = − ∂f

∂xi
(x̃1, . . . , x̃n).

For the resulting (approximate) linear function, the desired range y = [y, y]
(over all possible values ∆xi for which |∆xi| ≤ ∆i) is easy to compute:

y = ỹ − |a1| ·∆1 − . . .− |an| ·∆n;

y = ỹ + |a1| ·∆1 + . . . + |an| ·∆n.

Numerous engineering and physical situations, in which this linearization tech-
niques have been successfully used, are described, e.g., in Rabinovich [332].

In many practical situations, approximate methods do not work: we
need guaranteed estimates. The linearization method works well if two
conditions are met:

1) first, quadratic and higher order terms that we neglected are really small;
and,

2) second, no big harm is done if we slightly overestimate or underestimate
the values y and y.
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The first condition, i.e., the possibility to neglect the terms

∂2f

∂xi∂xj
·∆xi ·∆xj ,

means, in its turn, that:

1a) first, the measurement errors ∆xi are (relatively) small;

1b) second, that the function f(x1, . . . , xn) is smooth enough so that the second
(and higher order) derivatives are not too large;

1c) third, that there are not too many quadratic (and higher order) terms (i.e.,
not too many variables), because otherwise, while each of these terms is
small and quite negligible, their sum may add up to a large and non-
negligible value.

Alas, in many practical problems, these conditions are not always met:

1a) Measurement errors are sometimes relatively large, so that their squares
cannot be safely neglected.

In applications to fundamental physics, this low accuracy may be the
best we can achieve, while in manufacturing applications, the low
accuracy may be the best we can afford.

1b) The function f(x1, . . . , xn), that describes the relation between the directly
measured quantities xi and the desired quantity y, may be non-smooth.

For example, many detectors of elementary particles (bubble cameras,
etc.) use phase transitions to amplify (and thus, detect) small signals.
The very fact that phase transition processes drastically amplify small
differences means exactly that the derivatives of the corresponding
data processing function f(x1, . . . , xn) are huge and therefore, even
for small measurement errors ∆xi, the resulting quadratic terms may
not be negligible.

1c) Many data processing algorithms process lots of values, e.g., when they
process the values measured at different moments of time.

For example, to determine the parameters of a quasar, we must ana-
lyze the radio signal coming from this quasar. On a typical centimeter
wavelength, the signal frequency is in Giga Hertz (billions of cycles per
second), and so, even a short (e.g., second-long) observation means
that we get billions of values to process.
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For n ≈ 109, there are so many quadratic terms that their sum is no longer
negligible.

2) Finally, there are many problems in which we need a guaranteed estimate,
because mis-estimation can be disastrous.

For example, when we plan a mission to another planet, it is not
enough to prove that we will approximately get into this planet: we
must guarantee that we get there and not miss it. When we control
a nuclear power plant, it is not sufficient to say that, according to
approximate computations, we seem to be in the safe zone: we must
guarantee that we are safe and that the reactor will not explode.

In all such situations, approximate methods are not sufficient, we must have
guaranteed estimates for the range y.

Traditional optimization techniques and why they are not always
applicable. From the mathematical viewpoint, the problem of finding the
endpoints for the range is a typical optimization problem: the lower endpoint
y is the solution of the minimization problem

f(x1, . . . , xn) → min

under the conditions
xi ≤ xi ≤ xi, 1 ≤ i ≤ n

(where xi = x̃i −∆i and xi = x̃i + ∆i), and the upper endpoint is the solution
to the maximization problem

f(x1, . . . , xn) → max

under the conditions
xi ≤ xi ≤ xi, 1 ≤ i ≤ n.

For a smooth function f(x1, . . . , xn), these are simple optimization problems
of the type solved in the first calculus courses. Let us recall the corresponding
method and explain why it is not always practically useful. (We urge the reader
to read through this explanation, because we do not simply repeat well known
things from calculus, but we repeat them in such a way that leads us straight
into the computational complexity aspects of data processing problems.)

Let us start with the simplest case of one input (n = 1). In this case, the
maximum (or minimum) of a function of one variable f(x1) on an interval
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x1 = [x1, x1] is attained either at one of the endpoints x1 and x1, or inside this
interval. If the maximum is attained at some point x1 inside the interval, then
the derivative df/dx1 must be equal to 0 at this point. Therefore, to find the
maximum, it is sufficient:

to find the point at which the derivative is equal to 0 (or all such points if
there are several such points on the interval x1),

to compute the value f(x1) for all such “candidate” points and for all the
endpoints, and

to find the largest of the values of f(x1) for all these points; this largest
value is the desired maximum (correspondingly, the smallest of these values
f(x1) is the desired minimum).

Of course, if the function f(x1) is very complicated, then the equation df/dx1 =
0 is also very complicated and therefore, difficult to solve, but for reasonably
simple functions f(x1), this method is very efficient. So, whether this method
is useful for our problems, depends on what functions f(x1) we are interested
in.

The main reason why we started looking for new methods is that linearization,
that is based on approximating an arbitrary function by linear terms from
its Taylor series, does not always work. If a linear approximation does not
work, then the next approximation is quadratic. For quadratic functions, the
derivative is linear and therefore, the equation df/dx1 = 0 is easy to solve. So,
at least for quadratic functions f(x1), this method (borrowed from calculus
textbooks) works pretty well.

A similar textbook method can be used to find a maximum of a func-
tion f(x1, . . . , xn) of several variables x1, . . . , xn on a box (parallelepiped)
x1 × . . . × xn. This method is based on the following idea: When the func-
tion f(x1, . . . , xn) attains its maximum at some point ~x opt = (xopt

1 , . . . , xopt
n ),

this means that if we change the values of some (or all) of the variables, we
get a smaller (or equal) value of f(x1, . . . , xn). In particular, if we change the
value of only one variable xi, we get a smaller (or equal) value of f(x1, . . . , xn).
Thus, each of the functions fi(xi) = f(xopt

1 , . . . , xopt
i−1, xi, x

opt
i+1, . . . , x

opt
n ) attains

its maximum at xi = xopt
i . Therefore, either this maximum is attained at one

of the endpoints xi or xi of the interval xi = [xi, xi], or it is attained at the in-
ternal point, in which case, the corresponding partial derivative much be equal
to 0: ∂f/∂xi = 0. Therefore, at each optimum point ~x opt, each of n variables
xi falls into one of the three groups:
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variables for which xopt
i = xi;

variables for which xopt
i = xi;

variables for which ∂f/∂xi = 0.

Hence, we can find the maximum of a function f(x1, . . . , xn) on a given box as
follows:

We consider all possible partitions P of the set {1, . . . , n} into three subsets
{1, . . . , n} = L ∪R ∪ I.

For each partition P = 〈L,R, I〉, we:

– take xPi = xi for all i ∈ L,

– take xPi = xi for all i ∈ R, and

– solve the system of equations

∂f

∂xi
(x1, . . . , xn) = 0, for all i ∈ I

(with the selected values xi = xPi for i 6∈ I) to find the remaining
values xPi ;

and then compute fP = f(xP1 , . . . , xPn ).

Finally, we find the largest of the values of fP and produce this largest
value as the desired maximum (correspondingly, the smallest of these val-
ues fP is the desired minimum).

For quadratic functions f(x1, . . . , xn), each partial derivative is a linear expres-
sion and therefore, the corresponding system of linear equations is easy to solve.
Thus, for small n, it is a reasonable and efficient method.

We said “for small n”, because we have to analyze all possible partitions, and
the number of partitions (3n) grows very fast with n. Of course, we cannot use
this method for n = 109, but even for a reasonable number of inputs n ≈ 300,
the resulting computations require at least 3300 computational steps. How large
is this number? Even if assume that each step takes as short a time as possible,
i.e., each step takes the time that is necessary for light to pass through the
smallest elementary particle, the resulting computation time will exceed the
lifetime of the Universe. This is clearly not computationally feasible.
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Of course, the above method is just the simplest possible, there exist numer-
ous faster optimization methods (see, e.g., Pardalos [323], Horst et al. [156],
Kearfott [174]), but still, all the methods that guarantee the result, require (in
some cases) exponential time.

Naive interval computations: why and what. Traditional optimization
techniques work very well for small n, and only for large n, these methods
become non-feasible. Before the computer age, when data were processed by
hand, it was extremely difficult even to process large amounts of data; es-
timating errors was an unrealistic dream. For example, practically no error
estimation was done for extensive computations used in the design of the first
atomic bombs. With the advent of (reasonably) fast computers in the 1950s,
it became possible not only to process huge amounts of data, but also to try to
estimate errors of the resulting data processing. At first, mainly linearized er-
ror estimation methods were used, but at the end of the 50s, there appeared an
important class of real-life computation-intense problems for which linearized
methods were not applicable: the problems of space exploration. Indeed, for
these problems, not just one of the conditions (for applicability of linearization)
is not met, but all of them:

1a) First of all, since we are sending a mission into the unknown, we have
only very crude estimates of the values of many relevant quantities. For
example, when planning a mission to the Moon, we had to rely on Earth-
based (and therefore, inaccurate) measurements of the Moon terrain. Since
measurement errors are large, quadratic terms cannot be safely neglected.

1b) Second, many processes that we try to control are highly unstable. A
minor change in an angle with which the spaceship enters the atmosphere
can mean a difference between a safe return and a disaster. Thus, the data
processing algorithms f(x1, . . . , xn) are very sensitive to the errors in the
input data.

1c) The success of a space flight depends on lots of factors, and many of these
factors are dynamic (i.e., rapidly changing); in terms of computations, this
means that we have to process huge amount of measurements (mainly, sent
by telemetry).

2) Finally, the consequences of an error can be truly disastrous, so, we need
guaranteed estimates.

For these problems, there was a clear need for new error estimation methods,
and these methods were invented in 1959 by Ramon E. Moore and published
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in two technical reports [287, 288] of Lockheed Missiles and Space Co. (Moore
also coined the very terms “interval analysis”, “interval computations”, etc.)

Moore’s innovative idea was very natural: since it is difficult to design an algo-
rithm that solves the error estimation problem for all functions f(x1, . . . , xn),
let us use an incremental approach: first solve this problem for simple functions
f(x1, . . . , xn), and then modify the resulting algorithm so that it will be applica-
ble to more and more complicated functions f(x1, . . . , xn). The very possibility
to use an incremental approach comes from the fact that inside a computer,
every algorithm is performed as a sequence of elementary operations (usually,
hardware supported) such as arithmetic operations addition x1+x2, subtraction
x1−x2, multiplication x1 ·x2, and division x1/x2, and (sometimes) applications
of elementary functions such as exp(x), log(x), sin(x), cos(x), tan(x), cot(x),
arcsin(x), etc. So, it is reasonable to start with computing the range for these
simple functions, and then extend the resulting error estimation methods to
arbitrarily complex algorithms (consisting of multiple elementary operations).

For the simplest case when f(x1, x2) coincides with one of the arithmetic oper-
ations, Moore immediately obtained explicit formulas for the resulting interval
y = [y, y] = f(x1,x2) = f([x1, x1], [x2, x2]):

[x1, x1] + [x2, x2] = [x1 + x2, x1 + x2];

[x1, x1]− [x2, x2] = [x1 − x2, x1 − x2];

[x1, x1] · [x2, x2] =

[min(x1 · x2, x1 · x2, x1 · x2, x1 · x2),max(x1 · x2, x1 · x2, x1 · x2, x1 · x2)];

1/[x1, x1] = [1/x1, 1/x1] if 0 6∈ [x1, x1];

[x1, x1]/[x2, x2] = [x1, x1] · (1/[x2, x2]).

These interval computation formulas for arithmetic operations are called for-
mulas of interval arithmetic. Similar formulas exist for elementary functions as
well: e.g., since exp(x) and log(x) are monotonically increasing functions, we
have

exp([x, x]) = [exp(x), exp(x)];

log([x, x]) = [log(x), log(x)].

Sometimes the square function x2 is also hardware supported. For such cases,
we can compute the range f(x) of the function f(x) = x2 on an interval x =
[x, x] as follows:
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[x, x]2 = [x2, x2] if 0 ≤ x;

[x, x]2 = [x2, x2] if x ≤ 0; and

[x, x]2 = [0,max(x2, x2)] if x < 0 < x.

These (and similar) formulas can be combined to compute the range of an ar-
bitrarily complex algorithmic function f(x1, . . . , xn): Indeed, e.g., the formula
for the sum means that if x1 ∈ x1 = [x1, x1] and x2 ∈ x2 = [x2, x2], then
x1 + x2 ∈ x1 + x2 = [x1 + x2, x2 + x2]. Therefore, if we, e.g., apply multipli-
cation to this result (i.e., take f(x1, x2, x3) = (x1 + x2) · x3), then from the
fact that x3 ∈ x3 = [x3, x3] and x1 + x2 ∈ x1 + x2, we can conclude that
(x1 + x2) · x3 ∈ (x1 + x2) · x3.

In general, if we have an arbitrary data processing algorithm f(x1, . . . , xn), and
we want to find a range y = f(x1, . . . ,xn) for given intervals x1, . . . ,xn, then
we can do the following:

represent the algorithm f(x1, . . . , xn) as a sequence of elementary steps;

This representation is automatically produced by a compiler from any
“high-level” programming language, i.e., programming language that
allows arithmetic expressions.

replace each numerical operation by an interval one, and

apply this new interval algorithm to the inputs x1, . . . ,xn.

As a result, we get an interval Y that is guaranteed to contain the desired
value y, i.e., an interval that is guaranteed to contain (“enclose”) the range
f(x1, . . . ,xn) of the function f(x1, . . . , xn). Such an interval is called an enclo-
sure. This enclosure Y contains the interval y, but does not necessarily coincide
with y.

For example, suppose that we are interested in the range y = f(x1) of the
function f(x1) = x1 − x2

1 on the interval x1 = [0, 1]. In the computer, a
function f(x1) = x1 − x2

1 is computed as follows:

first, we compute the intermediate result r1 = x1 · x1;

then, we compute y = x1 − r1.
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If we replace each arithmetic operation with numbers by a corresponding op-
eration with intervals, we get the following:

first, we compute the interval

r1 = x1 · x1 = [0, 1] · [0, 1] =

[min(0 · 0, 0 · 1, 1 · 0, 1 · 1), max(0 · 0, 0 · 1, 1 · 0, 1 · 1)] = [0, 1]

that is guaranteed to contain r1;

then, we compute the interval

Y = x1 − r1 = [0, 1]− [0, 1] = [0− 1, 1− 0] = [−1, 1]

that is guaranteed to contain y.

Using the textbook calculus method, we can easily find out that the actual
range y is equal to [0, 0.25]. Thus, the enclosure Y = [−1, 1] indeed encloses
the range y, but it does not coincide with the range.

More sophisticated interval methods. The main problem of naive interval
computations is that this method often drastically overestimates. To get better
estimates, we need more sophisticated interval techniques.

One possibility to improve the results of naive interval computations comes
from the fact that for one and the same function, there are usually several
different algorithms for computing it. So, instead of simply applying naive
interval computations to an algorithm, we may try to:

first, find a better algorithm for computing the same function (better in
the sense that it leads to narrower interval estimates), and then

apply naive interval computations to this better algorithm.

Let us give a simple example. The function f(x1, x2) = x2
1−x2

2 can be computed
in two different ways:
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A standard compiler will translate this expression into a natural sequence
of computations: first, we first compute r1 = x1 ·x1, then r2 = x2 ·x2, and
finally, y = r1 − r2.

On the other hand, an optimizing compiler may try to rearrange the func-
tion in the form y = (x1 − x2) · (x1 + x2). In this case, we first compute
r1 = x1 − x2, then r2 = x1 + x2, and finally, y = r1 · r2.

In a computer, the first computation requires two multiplications and one sub-
tractions, while the second one requires one subtraction, one addition, and
one multiplication. Both algorithms require the same total number of arith-
metic operations (three), with the only difference that where the first algorithm
contained an extra multiplication, the second algorithm contains an addition.
Since addition is much faster than multiplication (actually, multiplication of
binary numbers is performed as a sequence of additions), an optimizing com-
piler would definitely prefer the second algorithm. However, from the interval
viewpoint, the first algorithm is often better; for example, for x1 = x2 = [0, 1],
we get the following:

If we use the first algorithm, we get Y = x1 · x1 − x2 · x2 = [0, 1] · [0, 1]−
[0, 1] · [0, 1] = [0, 1] − [0, 1] = [−1, 1]; this enclosure happens to coincide
with the exact range.

If we use the second algorithm, we get Y = (x1 − x2) · (x1 + x2) =
([0, 1]− [0, 1]) · [0, 1] + [0, 1]) = [−1, 1] · [0, 2] = [−2, 2]. This enclosure is a
drastic overestimation of range y = [−1, 1].

Many other ideas of improving interval computations have been proposed, such
as a centered form that leads to asymptotically optimal enclosures Ratschek et
al. [335]. Some of these more sophisticated methods were described already in
Moore’s 1966 pioneer monograph [289], other methods are described, e.g., in
Moore [290], Alefeld et al. [10], Hammer [139], and Kearfott [174].

Interval computations have many successful applications. Sophisti-
cated interval methods have been applied to various areas ranging from man-
ufacturing to control to robotics to geophysics to economics etc.; see, e.g.,
Kearfott et al. [208, 175].



16 Chapter 1

1.5. Computational complexity and feasibility
of interval computations: the problem and first
results

Problems. In spite of all the success stories, there were still problems with
interval computations, the main problem being that the existing methods often
return an enclosure Y that overestimates the desired range y: y ⊆ Y and
y 6= Y. Why is overestimation a serious problem?

For example, suppose that in oil exploration, the estimate is ỹ = 100 mln.
ton, and the actual range y of the corresponding data processing function is
y = [90, 110].

If we knew the exact range, we would be able to make a reasonable decision:
to start exploiting the well.

However, in reality, instead of the actual range, we get an enclosure Y ⊃ y.
It is not un-typical for the enclosure to be ten times wider than the range
itself, so we can have an enclosure Y = [0, 200]. Based on this enclosure,
we are not even sure whether there is any commercially viable amount of
oil at all. Thus, based on this enclosure, we would recommend that further
measurements are done.

These very costly and time-consuming measurements could have been avoided
if we had a better enclosure in the first place.

This example illustrates a typical drawback of an overestimation: it leads to a
waste of resources on further measurements. These measurements are usually
very costly and time-consuming (if they were cheap and fast, we would have
done them in the first place). Thus, if we can spend a little more time and
money and compute a better enclosure, we would be able to save a lot of time
and money by not performing unnecessary further measurements.

In view of this desirability, researchers have been trying to develop algorithms
that lead to the smallest possible overestimation, ideally, to the optimal enclo-
sure, i.e., to the enclosure that coincides with the desired range.

The original optimism soon turned into a doubt. Originally, some re-
searchers believed that it will be possible to develop algorithms that produce
optimal enclosures in reasonable computation time. This optimism was justi-
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fied by the fact that algorithms did become faster and faster and the resulting
enclosures did become better and better. However, even for the simplest (poly-
nomial) functions f(x1, . . . , xn), all algorithms that have been proposed were:

either computing a non-optimal enclosure,

or computing the optimal enclosure, but (sometimes) in un-realistic expo-
nential time (like the above textbook algorithm).

So the natural question appeared: can we have an “ideal” (fast and optimal)
algorithm at all?

First negative result: in general, computing the exact range is com-
putationally intractable. The question of whether an “ideal” algorithm is
possible was formulated, among others, by Yuri Matiyasevich, known for his
(negative) solution of Hilbert’s 10th Problem [275] (see also Matiyasevich [276]
and Davis et al. [85]).

Matiyasevich’s solution of Hilbert’s problem (one of the 23 problems that
the 19th century mathematics presented as a challenge to the 20th century,
Hilbert [151]) was that no algorithm can check whether a given polynomial
f(x1, . . . , xn) with integer coefficients has integer roots, i.e., check whether
0 belongs to the range f(Z, . . . , Z) of the polynomial f(x1, . . . , xn) on
integer inputs xi (i.e., inputs from the set Z of all integers).

Matiyasevich, therefore, conjectured that, similarly, no feasible algorithm
can find the range of a polynomial on interval inputs.

This conjecture was confirmed by Matiyasevich’s student A. A. Gaganov who
proved, in 1981, that the problem of computing the range of a given polynomial
on given intervals is indeed computationally intractable in some precise sense
(called NP-hard) [114, 115].

Follow-up research. Crudely speaking, Gaganov’s result means that no fea-
sible algorithm can solve all instances of this problem. On the other hand,
there exist feasible algorithms that compute the optimal enclosures for some
problems. A natural question is: How general can these feasible algorithms be?

This question is very important for algorithm designers, because an answer to
this question enables them to avoid useless attempts of trying to find a general
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solution for a class for which no general algorithm is possible, and to concentrate
on classes of problems for which such an algorithm has been proven to exist.

Lots of effort went into answering this question, and the answers did not come
easily: e.g., for quadratic polynomials, NP-hardness was proven ten years after
the original Gaganov’s result (in 1991), and NP-hardness of the problem of
solving a system of interval linear equations was proven even later: only in
1993.

State-of-the-art and the main goal of this book. As of now (1997),
although some open problems still remain, these open problems are more of
a technical than fundamental type. The big picture is now clear: we have a
pretty good understanding which classes of problems are feasible and which
are intractable. There are a few surveys (see, e.g., Rohn et al. [351, 352, 208,
223, 357]), but these surveys are short, somewhat sketchy, and far from being
comprehensive. It is therefore time to present the big picture to the interested
readers. This is what this book intends to do.

1.6. The structure of the book

The main goal of this book is to present the results about feasibility and in-
tractability of different problems of interval computations. To be able to prove
results about feasibility and intractability, we must use the formal definitions
of these notions. Since not all potential readers of this books are well familiar
with these definitions, we start our book with a short tutorial in which these
definitions are given and explained. This tutorial forms Chapter 2.

Chapter 3 starts with the basic problem: given a function f(x1, ..., xn) of n real
variables, and n intervals xi, compute the range

y = f(x1, ...,xn) = {f(x1, ..., xn)|x1 ∈ x1, ..., xn ∈ xn}.

Usually, these intervals xi have rational endpoints. The question is: Is this
basic problem of interval, computations feasible or intractable?

If the function f(x1, . . . , xn) is itself difficult to compute, then the answer to
this question is easy: it is difficult to compute the endpoints of the interval y
even for degenerate input intervals xi = [xi, xi]. To avoid this trivial situation,
in this book we will mainly restrict ourselves to the simplest possible functions:
functions that can be obtained by finitely many applications of the basic arith-
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metic operations (addition +, subtraction −, multiplication ·, and division /),
i.e., to rational functions with rational coefficients.

Let us describe this restriction in more precise terms. We have mentioned
that in a computer, for every set of inputs, every algorithm is implemented
as a sequence of arithmetic operations and applications of elementary func-
tions.

– Most of the problems that we will analyze turn out to be NP-hard
already for rational functions (even for polynomials). For such prob-
lems, there is no need to analyze the computational consequences of
adding other elementary functions (or if–then statements): the result-
ing more general problem will, of course, still be intractable.

– In a few cases in which the computational problem for rational func-
tions turns out to be feasible, we analyze what will happen if we allow
elementary functions in addition to arithmetic operations.

Chapter 3 contains Gaganov’s 1981 result, that the main problem is computa-
tionally intractable even for polynomials f(x1, . . . , xn).

Gaganov’s result means that if we allow polynomials with arbitrarily many vari-
ables, of arbitrary degree, with arbitrary rational numbers for coefficients, and
arbitrary intervals xi, then the problem is computationally intractable. A nat-
ural question is: what if we restrict some or all of these “arbitrary” parameters?
E.g., what will happen if we only consider polynomials with bounded number
of variables? of bounded degree? with bounded coefficients? with bounded
(or even fixed) data intervals? These restrictions are explicitly described and
analyzed, one-by-one, in Chapters 4–9.

Of all analyzed classes of polynomials, only for linear functions the basic prob-
lem has a simple and feasible algorithm. Since we cannot extend this result
to more general polynomials, it is natural to extend it for different functions.
For fractionally linear functions, the problem is still feasible (Chapter 10); for
a more general class of functions described by systems of linear equations, the
problem is again NP-hard (Chapters 11–12). This NP-hardness can be traced
on practically meaningful problems of prediction in physics and signal process-
ing (Chapters 13–14).

At first glance, it seems that all the above NP-hardness results paint a gloomy
picture of computational intractability of data processing. The reality is, hope-
fully, not so gloomy: in Chapter 15, we show that these results can actually
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help to apply interval heuristics to other hard problems (see also Appendix F),
and in Chapter 16, we show that in spite of the worst-case complexity, some
good heuristic algorithms are feasible in almost all cases.

In addition to the above-mentioned problems in which input is known with in-
terval uncertainty, interval computations are also used to get guaranteed inter-
val estimates for problems with purely numerical inputs, such as optimization,
solving systems of equations, approximation, etc. The computational complex-
ity and feasibility of such problems is overviewed in Chapters 17–20.

In Chapters 3–20, we analyze the complexity of the problems in which the main
goal is to compute a number (or an interval). In many practical situations,
however, we are not interested in the exact value of this number; all we need to
know is whether a certain property is true or not: e.g., whether a given control
is stable, etc. The computational complexity and feasibility of such checking
problems is analyzed in Chapters 21–22.

Finally, in Chapters 23–26, we analyze the computational complexity and feasi-
bility of the problems with non-interval uncertainty (as described by ellipsoids,
multi-intervals, probabilities, etc.).

Several related computational complexity and feasibility results are presented
as Appendices. In Appendix A, we describe the computational complexity of the
problem of finding the simplest representative of an interval. In Appendix B, we
consider the case when the function f(x1, . . . , xn) is known only approximately.
In this case, the error estimation problem becomes exponentially hard even for
linear functions f(x1, . . . , xn). In Appendix C, we consider another natural
generalization of interval computations: to modal mathematics.

One of the main objectives of theoretical computational complexity is to ex-
plain the empirically observed difference in computer time required for solving
different problems. If one of the problems is feasible and the other is NP-hard,
then, in general, solving the first problem will require less time than solving
the second one. But what if both compared problems are NP-hard? In Appen-
dix D, we consider such an example when we have to go beyond NP-hardness,
and show that in some cases, we can successfully rank different NP-hard prob-
lems by their complexity. In the process of ranking these problems, we get a
philosophical by-product: foundations for optimism.

This optimism may be even more justified if some new physical device would
enable us to solve intractable (NP-hard) problems in reasonable time. Such
possibilities are briefly mentioned in Appendix E.
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We conclude the book with a special Appendix G in which we challenge the
reader to explain why the feasibility results for data processing are often
counter-intuitive.

Proofs. For reader’s convenience, in each chapter, all the proofs are concen-
trated in the special (last) Proofs section, so that a reader who is only interested
in the results will be able to easily skip the corresponding proofs.

We tried to present as many proofs as possible, and we present proofs for all
major results. However, we also wanted this book to be as comprehensive
as possible. There are many computational complexity and feasibility results
about interval computations and related data processing problems, and if we
included the proofs of all these results, we would not fit into a single book.
Therefore, for some auxiliary results whose proofs are published in easily ac-
cessible journals, we had to restrict ourselves to presenting references to the
proofs and not the proofs themselves.

Notations: boldface letters, possibly with indices, like a, bi, will indicate inter-
vals; their endpoints will be denoted by underline and overline: e.g., a and a
are endpoints of the interval a; bi and bi are endpoints of the interval bi, etc.





2
THE NOTIONS OF FEASIBILITY

AND NP-HARDNESS: BRIEF
INTRODUCTION

The main goal of this book is to analyze computational complexity and feasibil-
ity of data processing and interval computations. In Chapter 1, we defined the
basic problems of data processing and interval computations. In this chapter,
we give a brief introduction to the notions related to feasibility and computa-
tional complexity.

2.1. When is an Algorithm Feasible?

2.1.1. What Does “Feasible” Mean? The Main Idea

Some algorithms are not feasible. In theory of computation, it is well
known that not all algorithms are feasible (see, e.g., Garey et al. [120], Lewis
et al. [250], Martin [273]): whether an algorithm is feasible or not depends on
how many computational steps it needs.

For example, if for some input x of length len(x) = n, an algorithm requires
2n computational steps, then for an input of a reasonable length n ≈ 300, we
would need 2300 computational steps. Even if we use a hypothetical computer
for which each step takes the smallest physically possible time (the time dur-
ing which light passes through the smallest known elementary particle), we
would still need more computational steps than can be performed during the
(approximately 20 billion years) lifetime of our Universe.

A similar estimate can be obtained for an arbitrary algorithm whose running
time t(n) on inputs of length n grows at least as an exponential function, i.e.,

23
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for which, for some c > 0, t(n) ≥ exp(c·n) for all n. As a result, such algorithms
(called exponential-time) are usually considered not feasible.

Comment. The fact that an algorithm is not feasible, does not mean that it
can never be applied: it simply means that there are cases when its running
time will be too large for this algorithm to be practical; for other inputs, this
algorithm can be quite useful.

Some algorithms are feasible. On the other hand, if the running time grows
only as a polynomial of n (i.e., if an algorithm is polynomial-time), then the
algorithm is usually quite feasible.

Existing definition of feasibility: the main idea. As a result of the above
two examples, we arrive at the following idea: An algorithm U is called feasible
if and only if it is polynomial-time, i.e., if and only if there exists a polynomial
P (n) such that for every input x of length len(x), the computational time tU (x)
of the algorithm U on the input x is bounded by P (len(x)): tU (x) ≤ P (len(x)).

In most cases, this idea works. In most practical cases, this idea adequately
describes our intuitive notion of feasibility: polynomial-time algorithms are
usually feasible, and non-polynomial-time algorithms are usually not feasible.

This idea is not perfect, but it is the best we can do. Although in most
cases, the above idea adequately describes the intuitive notion of feasibility, the
reader should be warned that this idea is not perfect: in some (very rare) cases,
it does not work (see, e.g., Garey et al. [120], Lewis et al. [250], Martin [273]):

Some algorithms are polynomial-time but not feasible: e.g., if the running
time of an algorithm is 10300 · n, this algorithm is polynomial-time, but,
clearly, not feasible. (Other examples of such algorithms, examples that
are directly related to data processing and interval computations, will be
given in Chapter 4.)

Vice versa, there exist algorithms whose computation time grows, say, as
exp(0.000 . . . 01·len(x)). Legally speaking, such algorithms are exponential
time and thus, not feasible, but for all practical purposes, they are quite
feasible.

It is therefore desirable to look for a better formalization of feasibility, but as
of now, “polynomial-time” is the best known description of feasibility.
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In view of this, in the following text, we will use the terms “feasible” and
“polynomial-time” interchangingly, and we will specifically mention the rare
cases when these two notions differ.

2.1.2. How Can We Formalize the Main Idea?

How can we formalize the main idea? The above idea of polynomial-time
algorithms is based on the following two fundamental notions: the length of
the input and the computation time. So, to formalize the notion of feasible
algorithms, we must formalize the notions of input length and computation
time.

First try: computer-specific measures of input length and computa-
tion time. At first glance, these seems to be no problem with formalizing the
notions of input length and computation time: if we fix a computer and if we
fix a programming language, then we can define the length of the input, e.g., as
the number of symbols on it, and the computation time as the actual (physical)
time from the start of the program to the moment when it produces the results.

To make computer-independent conclusions about feasibility of al-
gorithms, we need computer-independent measures of input length
and computation time. The above-described “computer-specific” approach
to defining input length and computation time is not perfect:

Different languages use different symbols to describe the same data; as
a result, the length of the input may drastically change if we change the
language.

Similarly, different computers require different times to perform different
operations. Even on one and the same computer, the computation time
for one and the same operation may change from time to time, depending,
e.g., on whether the registers are currently available, whether any periodic
automatic maintenance operations are currently being performed, etc.

As a result, the dependence of the computation time on the input length
may drastically change from one computer to another. Hence, if we use the
computer-specific measures of input length and computation time, we will be
able to show that some algorithms are polynomial-time, but it will be very
difficult to prove that some problems are not polynomial-time: Indeed, we can
only show that the algorithm is not polynomial-time on a given computer, but



26 Chapter 2

it is very difficult to argue that it will not become polynomial-time on some
other computer.

If we want computer-independent results, we must, therefore, be able to describe
computer-independent measures of input length and time complexity.

2.1.3. First Step Towards Formalization of Feasibil-
ity: Computer-Independent Notion of the Input Length
(Number of Bits)

General idea. It is easy to come up with a computer-independent notion of
the input length. Indeed, although computers use different hardware, most of
them use the same way of representing all their data: each element of data is
represented by a sequence of 0’s and 1’s. Thus, we can always measure the
length of each input by the number of binary units (also called bits), i.e., by
the number of 0’s or 1’s, that are needed to represent it.

Integers. In particular, inside the computer, integers are usually represented
in their binary form. Therefore, the input length of an integer can be naturally
defined as the number of bits in its binary expansion: e.g., the number 810 =
10002 requires 4 bits, while 2610 = 110102 requires 5 bits.

Binary-rational numbers. Similarly, binary-rational numbers, i.e., num-
bers of the type p/2q, are usually represented in their fixed-point binary form:
e.g., 3/810 = 0.0112 takes 4 bits, while 19/1610 = 1.00112 requires 5 bits.
So, e.g., if we say that “there is a polynomial-time algorithm that, for every
binary-rational number ε, computes . . .”, we mean, in particular, that for the
values εn = 0.0 . . . 012 = 2−n of length n, the running time of this algorithm is
bounded by a polynomial of n.

General rational numbers. A general rational number m/n, where m and
n are integers, can be naturally represented as a pair of integers m and n;
therefore, we take the total length of the binary representations of m and n as
the input length: e.g., 5/710 = 101/1112 requires 6 bits to describe.

Fixed-point and floating point numbers: a comment. In most comput-
ers, there is no special rational data type, there is a type real which actually
describes binary rational numbers. In most computers, there are two different
representations of these “real” numbers: in addition to the above-described
fixed-point real numbers, there are also floating-point real numbers, in which a



Feasibility and NP-Hardness: Brief Introduction 27

binary rational number is represented as m · 2e, where m is a fixed-point real
number (usually, with only zero before the binary point) and e is an integer.

In this book, we describe the input length in terms of the fixed point representa-
tion. Most of our results about computational complexity and feasibility of data
processing and interval computations, both positive (that some problems can
be solved by feasible algorithms) and negative (that for some other problems
no feasible algorithm is possible) are true for floating point numbers as well:
e.g., since every fixed point number is at the same time a floating point num-
ber (with e = 0), negative results about fixed point inputs are automatically
transformed into negative results about the floating point inputs.

However, to avoid potential confusion, we decided, in this book, not to mention
the floating point representation versions of our results at all. The reason why
such a confusion can occur is that with floating point representation, there are
some negative results that are caused not by a complexity of the problem, but
by a peculiarity of this representation. Let us give a simple example of this
peculiarity:

For fixed-point binary-rational numbers x and y, exactly computing their
sum x + y is easy: the standard bit-after-bit addition requires linear time.

However, for floating point binary-rational numbers, this same addition
problem requires exponential time: e.g., if we take x = 1 and y = 1 · 2e

with e = −2n = −10 . . . 02 (n zeros), with the total length ≈ n, then the
exact description of x + y = 1.0 . . . 01 (2n zeros) requires exponentially
many bits, so generating these bits would require exponentially long time.

This example does not mean that floating point representation is in any way
inferior and bad: it is known to be very useful, and the above difficulty with
addition can be easily overcome if we require that the result be known with
a given accuracy. However, this example clearly shows that floating-point for-
mulations require extra accuracy and complexity that appears even for such
simple operations as addition. In other words, floating-point formulations con-
tain extra complexity that is unrelated to the complexity of data processing
and interval computations; thus, if we try to reformulate our results in terms
of floating point numbers, the resulting combination of two complexities would
make the corresponding results very un-intuitive.
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2.1.4. Second Step Towards Formalization of Feasi-
bility: Computer-Independent Notion of Computation
Time

General idea. On each computer, every algorithm, every program consists
of a sequence of elementary steps, i.e., hardware-supported simple operations
such as operations with bits, or addition, etc. We can estimate the computation
time by simply counting the number of these elementary steps, and multiplying
this number by the average time of each step. (We may also want to take into
consideration that different elementary steps take different times.) Then, if we
have a similar computer, with similar (but faster) elementary steps, we can
estimate the running time on a new computer if we already know the number
of steps needed to run the algorithm.

This is the general idea behind different computer-independent estimates.

The situation is not so easy as it may seem. The actual estimates are
somewhat more difficult to get because different computers may have different
elementary steps. Let us give two examples:

First computers only had hardware-supported fixed-point operations, so
a floating-point operation had to be implemented as several fixed-point
ones, and thus, was counted as several steps. In most modern computers,
floating-point operations are also directly hardware supported and thus,
each such operation can be counted as one step.

In many modern computers, computing the element-wise sum ci ← ai + bi

of two vectors (a1, . . . , an) and (b1, . . . , bn) means n additions, i.e., n ele-
mentary steps. On the other hand, in computers with a math co-processor,
the entire addition is directly hardware supported and therefore, can be
counted as a single elementary step.

To get a computer-independent definition, we have to consider different types
of computers and corresponding definitions.

Turing machines, and a standard complexity measure. Most textbooks
on complexity theory and theory of computation start with the simplest possible
“computer”, that was designed by Turing long before the actual computers.
This toy computer (called Turing machine) consists of a potentially infinite
tape divided into sequentially located cells, and a head that moves along this
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tape, from one cell to another (the reader can see that Turing machine probably
resembles a tape recorder more than it resembles a modern computer).

To specify a Turing machine, we must describe three things:

The first thing we must describe is the (finite) set of all possible symbols
that it can place in each cell. This set (called alphabet) can simply consist
of two possible symbols 0 and 1, in which case, each cell can be in one
of the three states: nothing is written in this cell, 0 is written, and 1 is
written. We can also consider Turing machines with a larger alphabet: e.g.,
cells can simulate bytes (i.e., 8-bit sequences), in which case, the alphabet
consists of 28 = 256 possible symbols: 0000 0000, 0000 0001, . . .,
1111 1111.

Second, we must describe the possible state of the head. In more precise
terms, we must describe another finite set, whose elements will be called
states (or states of the head). There must be two special states: starting
state (in which we start computations) and the halting state, on reaching
which the computer stops.

Finally, we must describe the action of the computer. Namely, for every
state s of the head and for every symbol σ in the cell to which the head
is currently pointing, we must describe what this computer will do. It can
do one of the three things:

– It can overwrite the symbol σ with some other symbol σ′ that, in
general, depends on s and σ (σ′ = σ′(s, σ)), and at the same time
change its state into the some other state s′ = s′(s, σ);

– It can, instead, move one step to the right.

– It can also move one step to the left.

We start in the starting state, with the input written on this tape, and then
apply the computer’s action again and again until we reach the halting state.
When this happens, the tape should contain the result of the computations.

Let us give a very simple example of a Turing machine, that adds 1 to a binary
number. Since we are dealing with binary numbers, we only need the alphabet
{0, 1}. The machine starts at the end of the input binary number, and proceeds
as follows:
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If it is in the starting state s0, and it sees 0, it changes it to 1 and gets
into the halting state h (and stops).

If it is in the starting state s0, and it sees 1, it changes it to 0 and gets
into the state s1 (“ready to move, carrying a carry”).

If it is in the state s1, then, no matter what it sees, it moves one step to
the left and gets into the state s2 (“I have a carry”).

If it is in the state s2, and it sees 0, then it changes 0 to 1 and halts.

If it is in the state s2 and it sees 1, it changes 1 to 0 and goes into the
state s1.

Finally, if it is in the state s2 and sees an empty cell, it changes the contents
of this cell to 1 and halts.

For Turing machines, we have clearly defined steps, so we can define com-
putational complexity tU (x) of an algorithm U on an input x as the number
of the corresponding steps. This is the standard definition of computational
complexity in theory of computing.

Turing machine is a very primitive computer, on which a simple operation
that is hardware supported on a normal computer can take a very long time.
So, the Turing machine-based complexity is a rather poor estimate for the
actual computation time of an algorithm on a real computer. If we use more
sophisticated computer models, we can get much better estimates.

What makes Turing machine-based complexity standard and widely used is
the fact that although the actual computation time changes from one type
of computer to another, but whether the algorithm is polynomial-time or not
does not depend on our choice of the computer. Thus, whatever reasonable
class of computers we consider, a problem can be solved in polynomial-time
on computers of this class if and only if we can solve it in polynomial time on
a Turing machine (for details, see, e.g., Emde Boas [99]). Thus, if all we are
interested in is whether an algorithm is feasible or not, Turing machines are
quite sufficient.

Since we are also interested in more realistic estimates of computation time, we
will use more realistic computer models.
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RAM and bit complexity. In Turing machines, if we are currently facing
cell 1, and we want to use the contents of cell n, we actually have to move
step-by-step, and spend n computation steps just to reach this new cell. This is
definitely not realistic. In real computers, if we know the number of the cell, we
immediately go there. In other words, we can go to an arbitrarily (“randomly”)
chosen cell in a single step. If we add this ability to the Turing machine, we get
the so-called RAM (Random Access Memory) computers. For the particular
case when cells can only contain 0 and 1, the number of computational steps
on RAM is sometimes called bit complexity.

Algebraic complexity. RAM is slightly more realistic than a Turing ma-
chine, but it is still not very realistic. In real-life computers, in addition to
operations with bits, we have a hardware support for elementary arithmetic
operations such as addition and multiplication of two integers. It is therefore
reasonable, given an input of length n, to assume that we can perform addition
and multiplication of integers of length C ·n (for some reasonable C) in a single
step. The number of computational steps on such machine is called algebraic
complexity.

Algebraic complexity is the closest to the actual computation time and there-
fore, we will use this complexity measure in the book. To be more precise:

When we claim that something is polynomial-time, this claim (as we have
already mentioned) will be independent on the choice of complexity mea-
sure. But:

If we claim something more specific, like linear time (i.e., tU (n) ≤ C · n)
or quadratic time (i.e., tU (n) ≤ C · n2), we will mean exactly linear time
(correspondingly, quadratic time) in the sense of algebraic complexity.

Comment. The relation between algebraic and bit complexity is analyzed, e.g.,
in Pan [321].

A remark about BSS complexity. To go from bit complexity to algebraic
complexity, we counted each arithmetic operation with numbers of fixed length
as a single computation step. We can go further and count each operation
with binary-rational numbers of arbitrary length (or even with arbitrary real
numbers, not necessarily rational) as a single computation step. This definition
was, in effect, proposed by Blum, Shub, and Smale [49] and is called BSS
complexity (see also Smale [397], Cucker et al. [81, 80], Meer [280], Grädel et
al. [132], Lickteig et al. [254]).
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For our problems, BSS complexity is very useful in proving negative results:
If a problem is difficult according to this BSS complexity, then it will be even
more difficult if we only allow a narrower class of operations, i.e., it will be
difficult according to algebraic complexity as well.

On the other hand, if a problem is easy in the sense of BSS complexity, it
often means that this problem is actually easy, but sometimes, it can become
difficult if we only allow operations with bounded numbers; examples of such
difference between BSS and algebraic complexity are given, e.g., in Meer [279,
281]. Because of this difference, in this book, we will not use BSS complexity.

2.1.5. Formal Definition of Feasibility

Now, we are ready for the precise definition:

Definition 2.1. An algorithm U is called feasible if there exists a polynomial
P (n) such that for every input x, the running time tU (x) of this algorithm does
not exceed P (len(x)), where by len(x), we denoted the length of the input x
(i.e., the number of bits that form this input).

2.2. When is a Problem Tractable?

2.2.1. Ideal Solution is not yet Possible

What would be an ideal solution. At first glance, now, that we have a
definition of a feasible algorithm, we can describe which problems are tractable
and which problems are intractable: If there exists a polynomial-time algorithm
that solves all instances of a problem, this problem is tractable, otherwise, it is
intractable.

Sometimes, this ideal solution is possible. In some cases, this ideal solu-
tion is possible, and we either have an explicit polynomial-time algorithm, or
we have a proof that no polynomial-time algorithm is possible.

Alas, for many problems, we do not know. Unfortunately, in many cases,
we do not know whether a polynomial-time algorithm exists or not. This does
not mean, however, that the situation is hopeless: instead of the missing ideal
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information about intractability, we have another information that is almost as
good:

What we have instead of the ideal solution. Namely, for some cases,
we do not know whether the problem can be solved in polynomial time or
not, but we do know that this problem is as hard as practical problems can
get: if we can solve this problem easily, then we would have an algorithm that
solves all problems easily, and the existence of such universal solves-everything-
fast algorithm is very doubtful. We can, therefore, call such “hard” problems
intractable.

In order to formulate this notion in precise terms, we must describe what we
mean by a problem, and what we mean by the ability to reduce other problems
to this one.

2.2.2. How Can We Define a General Practical Prob-
lem?

What is a practical problem: informal idea. What is a practical problem?
When we say that there is a practical problem, we usually mean that:

we have some information (we will denote its computer representation by
x), and

we know the relationship R(x, y) between the known information x and
the desired object y.

In the computer, everything is represented by a binary sequence (i.e., sequence
of 0’s and 1’s), so we will assume that x and y are binary sequences.

Two examples of problems. In this section, we will trace all the ideas on two
examples, one taken from mathematics and one taken from physics. Readers
who do not feel comfortable with one of the example (say, with a physical one)
are free to simply skip it.

(Example from mathematics) We are given a mathematical statement x.
The desired object y is either a proof of x, or a “disproof” of x (i.e., a
proof of “not x”). Here, R(x, y) means that y is a proof either of x, or of
“not x”.
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(Example from physics) x is the results of the experiments, and the desired
y is the formula that fits all these data. Imagine that we have a series
of measurements of voltage and current: e.g., x consists of the following
pairs (x(k)

1 , x
(k)
2 ), 1 ≤ k ≤ 10: (1.0, 2.0), (2.0, 4.0), . . . , (10.0, 20.0); we want

to find a formula that is consistent with these experiments (e.g., y is the
formula x2 = 2 · x1).

Solution must be checkable. For a problem to be practically meaningful,
we must have a way to check whether the proposed solution is correct. In
other words, we must assume that there exists a feasible algorithm that checks
R(x, y) (given x and y). If no such feasible algorithm exists, then there is no
criterion to decide whether we achieved a solution or not.

Solution must not be too long. Another requirement for a real-life problem
is that in such problems, we usually know an upper bound for the length len(y)
of the description of y. In the above examples:

In the mathematical problem, a proof must be not too huge, else it is
impossible to check whether it is a proof or not.

In the physical problem, it makes no sense to have a formula x2 =
f(x1, C1, . . . , C40) with, say, 40 parameters to describe the results
(x(1)

1 , x
(1)
2 ), . . . , (x(10)

1 , x
(10)
2 ) of 10 experiments, for two reasons:

• First, one of the goals of physics is to discover the laws of nature. If
the number of parameters exceeds the number of experimental data,
then no matter what dependency f(x1, C1, . . .) we choose, in order
to determine Ci, we have, say, 10 equations with 40 unknowns. Such
under-determined system usually has a solution, so the fact that, say,
a linear formula with many parameters fits all the experimental data
does not mean that the dependency is proven to be linear: a quadratic
or cubic formula with as many parameters will fit the same data as
well.

• Second, another goal of physics (definitely related to the first one) is
to find a way to compress the data, so that we will not need to store
all billions of experimental results in order to make predictions. A
dependency y that requires more storage space than the original data
x is clearly not satisfying this goal.

In all cases, it is necessary for a user to be able to read the desired solution
symbol-after-symbol, and the time required for that reading must be feasible.
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In the previous section, we have formalized “feasible time” as a time that is
bounded by some polynomial of len(x). The reading time is proportional to
the length len(y) of the answer y. Therefore, the fact the reading time is
bounded by a polynomial of len(x) means that the length of the output y is
also bounded by some polynomial of len(x), i.e., that len(y) ≤ PL(len(x)) for
some polynomial PL.

So, we arrive at the following formulation of a problem:

Definition 2.2. By a general practical problem (or simply a problem, for short),
we mean a pair 〈R,PL〉, where R(x, y) is a feasible algorithm that transforms
two binary sequences into a Boolean value (“true” or “false”), and PL is a
polynomial.

Definition 2.3. By an instance of a (general) problem 〈R,PL〉, we mean the
following problem:

GIVEN: a binary sequence x.

GENERATE

• either y such that R(x, y) is true and len(y) ≤ PL(len(x)),

• or, if such a y does not exist, a message saying that there are no
solutions.

For example, for the general mathematical problem described above, an in-
stance would be: given a statement, find its proof or disproof.

Comments. What we called “general practical problems” is usually described
as “problems from the class NP” (to separate them from more complicated
problems in which the solution may not be easily verifiable). Problems for
which there is a feasible algorithm that solves all instances are called tractable,
easily solvable, or “problems from the class P” (P from Polynomial). It is widely
believed that not all (general practical) problems are easily solvable (i.e., that
NP 6=P), but it has never been proved.

One way to solve an NP problem is to check R(x, y) for all binary sequences y
with len(y) ≤ PL(len(x)). This algorithm (called British Museum algorithm)
requires 2PL(len(x)) checks. This algorithm takes exponential time and is there-
fore, not feasible.
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2.2.3. Reducing a Problem to Another One

Example. Let us start with an example. Suppose that we can have an algo-
rithm that checks whether a given system of linear inequalities

ai1 · x1 + . . . + aim · xm ≥ bi, 1 ≤ i ≤ n,

with known aij and bi, has a solution. A problem of checking whether a given
system of inequalities and equalities ck1 ·x1+. . .+ckm ·xm = dk is consistent can
be reduced to the problem of checking inequalities if we replace each equality by
two inequalities: ck1 ·x1+. . .+ckm ·xm ≥ dk and (−ck1)·x1+. . .+(−ckm)·xm ≥
−dj (the latter being equivalent to ck1 · x1 + . . . + ckm · xm ≤ dk).

General definition. In general, we can say that a problem P = 〈R, PL〉 can
be reduced to a problem P ′ = 〈R′, P ′L〉 if there exist three feasible algorithms
U1, U2, and U3 with the following properties:

The (feasible) algorithm U1 transforms each input x of the first problem
into an input of the second problem.

The (feasible) algorithm U2 transforms each solution y of the first problem
into the solution of the corresponding case of the second problem: i.e., if
R(x, y) is true, then R′(U1(x), U2(y)) is also true.

The (feasible) algorithm U3 transforms each solution y′ of the correspond-
ing instance of the second problem into the solution of the first problem:
i.e., if R′(U1(x), y′) is true, then R(x,U3(y′)) is also true.

(In the above example, U1 transforms each equality into two inequalities, and
U2 and U3 simply do not change the values xi at all.)

If there exists a reduction, then an instance x of the first problem is solvable if
and only if the corresponding instance U1(x) of the second problem is solvable.
Moreover, if we can actually solve the second instance (and find a solution y′),
we will then be able to find a solution to the original instance x of the first
problem (as U3(y′)). Thus, if we have a feasible algorithm for solving the second
problem, we would thus design a feasible algorithm for solving the first problem
as well.

Comment. We only described the simplest way of reducing one problem to
another one: when a single instance of the first problem is reduced to a single
instance of the second problem. In some cases, we cannot reduce to a single
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case, but we can reduce to several cases, solving which helps us solve the original
instance of the first problem.

2.2.4. When is a Problem Tractable, and When is It
Intractable?

Definition 2.4.

A problem (not necessarily from the class NP) is called NP-hard if every
problem from the class NP can be reduced to it.

If a problem from the class NP is NP-hard, it is called NP-complete.

If a problem P is NP-hard, then every feasible algorithm for solving this problem
P would lead to feasible algorithms for solving all problems from the class NP,
and this is generally believed to be hardly possible.

For example, mathematicians believe that not only there is no algorithm for
checking whether a give statement is provable or not (the famous Gödel’s
theorem has proven that), but also they believe that there is no feasible
way to find a proof of a given statement even if we restrict the lengths of
possible proofs. (In other words, mathematicians believe that computers
cannot completely replace them.)

Similarly, physicists believe that what they are doing cannot be completely
replaced by computers.

In view of this belief, NP-hard problems are also called intractable.

Comment. It should be noted that although most scientists believe that in-
tractable problems are not feasible, we still cannot prove (or disprove) this fact.
If a NP-hard problem can be solved by a feasible algorithm, then (by definition
of NP-hardness) all problems from the class NP will be solvable by feasible algo-
rithms and thus, P=NP. Vice versa, if P=NP, then all problems from the class
NP (including all NP-complete problems) can be solved by polynomial-time
(feasible) algorithms.

So, if P 6=NP (which is a common belief), then the fact that the problem is NP-
hard means that no matter what algorithm we use, there will always be some
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cases for which the running time grows faster than any polynomial. Therefore,
for these cases, the problem is truly intractable.

2.3. Three Examples of NP-Hard Problems

Examples are needed. In this book, we will prove that some problems of data
processing and interval computations are NP-hard. A typical way of proving
that a certain problem P ′ is NP-hard is to reduce some problem P, that is
already known to be NP-hard, to P ′.

Why the existence of such a reduction proves NP-hardness of P ′ is easy to
explain: Since we already know that P is NP-hard, this means that any
NP problem P ′′ can be reduced to P. Since P, in its turn, is reducible to
P ′, thus, P ′′ can be reduced to P ′ as well. Thus, every problem from NP
can be reduced to P ′ and hence, by definition, P ′ is NP-hard.

In view of this, it is very important to have examples of problems that are
already known to be NP-hard, problems that we will use in our proofs. Many
examples of such problems can be found in Garey et al. [120]. In this book, we
will mainly use the following three NP-complete problems:

First example: Satisfiability. Historically the NP-complete problem proved
to be NP-complete was the so-called propositional satisfiability (3-SAT) problem
for 3−CNF formulas.

This problem consists of the following: Suppose that an integer v is fixed, and
a formula F of the type F1&F2& . . . &Fk is given, where each of the expressions
Fj has the form a ∨ b or a ∨ b ∨ c, and a, b, c are either the variables z1, . . . , zv,
or their negations ¬z1, . . . ,¬zv (these a, b, c, . . . are called literals).

For example, we can take a formula (z1 ∨ ¬z2)&(¬z1 ∨ z2 ∨ ¬z3).

If we assign arbitrary Boolean values (“true” or “false”) to v variables z1, . . . , zv,
then, applying the standard logical rules, we get the truth value of F . We say
that a formula F is satisfiable if there exist truth values z1, . . . , zv for which
the truth value of the expression F is “true”. The problem is: given F , check
whether it is satisfiable.
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Second example: Partition. In the PARTITION problem, given n integers
s1, . . . , sn, we must check whether there exist values x1, . . . , xn ∈ {−1, 1} for
which s1 · x1 + . . . + sn · xn = 0.

Third example: Max-cut problem. (MAX-CUT) For every graph (V, E)
with vertices (nodes) V and edges E , and for every subset S of the set of all
vertices, the cut c(S) is defined as the number of edges from E that connect
vertices from the set S with vertices that are outside the set S. The problem
is: given a graph (V, E) and a positive integer L, check whether there exists a
set S ⊆ V with the cut c(S) ≥ L.





3
IN THE GENERAL CASE,

THE BASIC PROBLEM OF
INTERVAL COMPUTATIONS

IS INTRACTABLE

In this chapter, we describe the first negative result: that even for polynomials
f(x1, . . . , xn), the basic problem of interval computations – the problem of
computing the range f(x1, . . . ,xn) for given intervals xi – is computationally
intractable (NP-hard).

3.1. Is Our Problem Feasible?

There are many reasonable algorithms that compute an enclosure Y for the
range y = [y, y] = f(x1, . . . ,xn) of a given continuous function f(x1, . . . , xn)
on given intervals x1, . . . ,xn. Ideally, we would like to always compute the
exact range (i.e., its endpoints) in feasible time. Alas, known algorithm are not
yet ideal:

Some algorithms are always feasible (i.e., polynomial-time), but they some-
times overestimate, i.e., result in a non-optimal enclosure Y ⊃ y, Y 6= y.

Other algorithms always compute the exact range, but these algorithms
require, in some cases, exponential time.

A natural question is: Is it possible to have an algorithm that always computes
the exact range (i.e., its endpoints) in feasible time?

To describe this problem in precise terms, first, we must explain what we mean
by “computing the endpoints”:

41
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If the endpoints are rational numbers, then we may want to compute the
explicit values for these points.

In general, we may be interested, e.g., in computing rational approxima-
tions to the desired endpoints with a given accuracy ε > 0.

Second, we must fix the class of functions f . If the function f itself is difficult
to compute, then it is difficult to compute the endpoints of the interval y even
for degenerate input intervals xi = [xi, xi]. To avoid this situation, in this
book, we will restrict ourselves to the simplest possible functions: functions
that can be obtained by finitely many applications of arithmetic operations +,
−, ∗, and /, i.e., to rational functions with rational coefficients.

Comment. For rational functions, the problem of computing the range is, in
principle, algorithmically solvable: namely, we can apply the so-called Tarski’s
algorithm (for details, see the Proofs section)[407]. However, this algorithm
takes too long [84]: it sometimes takes time ≈ 22n

for an input of size n. As
a result, even for small n, it may take billions of years. This is not a practical
solution.

3.2. Definitions and the Main Result

In 1981, Gaganov proved that even for polynomial functions f , the basic prob-
lem is computationally intractable (NP-hard); i.e. (unless P=NP), no feasible
algorithm can solve all instances of this problem [114]). This result was first
published in 1985 [115]. Let us describe the result in precise terms.

Definition 3.1. By the basic problem of interval computations, we mean the
following problem:

GIVEN:

• n rational intervals xi (i.e., intervals with rational endpoints), and

• a computable continuous function f that transforms n real numbers
x1, . . . , xn into a real number y = f(x1, . . . , xn).

COMPUTE: the interval of possible values of y:

y = [y, y] = f(x1, . . . ,xn) =

{y|y = f(x1, . . . , xn) for some x1 ∈ x1, . . . , xn ∈ xn}.
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Comments.

By a computable function f(x1, . . . , xn), we mean an algorithm that, for
arbitrary rational numbers x1, . . . , xn, and δ > 0, computes a rational
number that is δ-close to f(x1, . . . , xn).

Since we only consider continuous functions, the set of all possible values
of y is indeed an interval.

By computing the interval y = [y, y], we mean computing its endpoints
y and y. If these endpoints are not rational numbers, then computing
these endpoints means being able to compute them with any given rational
accuracy ε > 0, i.e., computing the rational numbers ỹ and ỹ for which
|ỹ − y| ≤ ε and |ỹ − y| ≤ ε. Thus, we arrive at the following definition:

Definition 3.2. By the ε−approximate basic problem of interval computations,
we mean the following problem:

GIVEN:

• n rational intervals xi, and

• a computable continuous function f that transforms n real numbers
x1, . . . , xn into a real number y = f(x1, . . . , xn);

• a rational number ε > 0.

COMPUTE: rational numbers ỹ and ỹ that are ε-close to the range’s end-

points, i.e., for which |ỹ − y| ≤ ε and |ỹ − y| ≤ ε, where:

y = [y, y] = f(x1, . . . ,xn) =

{y|y = f(x1, . . . , xn) for some x1 ∈ x1, . . . , xn ∈ xn}

Theorem 3.1. (Gaganov [114, 115]) For every ε > 0, the ε−approximate
basic problem of interval computations is NP-hard even for polynomial functions
f(x1, . . . , xn) with rational coefficients.

Technical comment. We will see from the proof that the problem is NP-hard
even when we only consider such inputs for which the output interval y has
rational endpoints.
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3.3. The Basic Problem of Interval Computa-
tions is NP-Hard for Narrow Input Intervals

Motivation. In the previous section, we allowed input intervals xi = [xi, xi] to
be arbitrarily wide. These input intervals usually come from measurement, so
that xi = [xi, xi] = [x̃i−∆i, x̃i +∆i]. In terms of measurements, wide intervals
correspond to low accuracy.

If we have perfect accuracy ∆i = 0, then all the input intervals are degenerate
xi = [x̃i, x̃i], and the desired range y consists of a single easily computable
point f(x̃1, . . . , x̃n). It is therefore natural to expect that for the high accuracy,
when the values ∆i are close to 0, and the corresponding input intervals are
narrow, the basic interval computation problem is easier than in the general
case. Alas, we will see that for narrow intervals, the problem remains NP-hard.

To describe this result, we must recall that in measurement theory (see, e.g.,
Rabinovich [332]), there are two definitions of accuracy: absolute accuracy ∆i

and relative accuracy ∆i/x̃i. We will show that interval computations remain
NP-hard even if we restrict ourselves to input intervals that are narrow both
in the sense of absolute and relative accuracy.

Definition 3.3. Let x = [x, x] be an interval. The value x̃ = (x + x)/2 is
called the center of the interval x, and the value ∆ = (x − x)/2 is called the
radius of the interval x.

Comment. One can easily see that for thus defined center and radius, x =
[x̃−∆, x̃ + ∆].

Definition 3.4. Let δ > 0 be a rational number.

We say that an interval x = [x̃−∆, x̃+∆] is absolutely δ-narrow if ∆ ≤ δ.

We say that an interval x = [x̃−∆, x̃+∆] is relatively δ-narrow if ∆ ≤ δ·|x̃|.

Theorem 3.2. (Kahl [166]) For every ε > 0 and δ > 0, the ε−approximate
basic problem of interval computations for polynomial functions f(x1, . . . , xn)
with rational coefficients and for intervals xi that are both absolutely and rela-
tively δ-narrow is NP-hard.
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3.4. What Do These Results Mean?

The situation is not as gloomy as it may seem: the problem is in-
tractable only in some cases, but still feasible “on average”. The fact
that the problem is NP-hard means that (unless P=NP) every algorithm that
computes the exact enclosure requires, in some cases, exponential time. This
does not mean that the problem is inherently hard: we will see in the follow-
ing chapters that, in spite of this worst-case complexity, on average, the range
computation problem is feasible. In other words, every feasible algorithm has
cases when it does not return the exact (“optimal”) enclosure y, but for good
algorithms, such cases are exceptionally rare.

One more reason why situation is not so gloomy: NP-hardness simply
means that progress in data processing will never stop. The fact that
the problem is NP-hard means that we cannot design an algorithm that solves
all the problems and then rest: no matter how good our current algorithm
is, there will always be problems to which this algorithm is not applicable,
problems that require creative thinking (this idea is described convincingly, e.g.,
in Ratschek et al. [337], p. 796). When formulated in these terms, NP-hardness
becomes not so much a pessimistic result, but rather a formal description of
a typical situation in numerical mathematics and data processing. Crudely
speaking, NP-hardness is a guarantee that new challenges will never stop and
the progress in numerical methods and data processing will never end.

What if we are in a (rare) bad case: Necessity and possibility of inter-
ruptible algorithms. Since we cannot solve all the instances of our problem
in polynomial time, for every algorithm that computes the exact enclosures,
there are instances for which this algorithm requires unrealistically long time.
If we have run into such an instance, then we have no other choice but to inter-
rupt this algorithm. It is therefore desirable to design algorithms in such a way
that after interrupting them, we still get a reasonable enclosure. The desirabil-
ity of such interruptible algorithms was first considered in Artificial Intelligence
(under the name of anytime algorithms; see, e.g., Pittarelli [325] and references
therein), and it was explicitly formulated for interval computations and data
processing in Shary [390, 391] (see also Shokin [395]). In Beltran et al. [29], it
is shown that it’s possible to make every algorithm interruptible: namely, it is
proven that an arbitrary algorithm can be reformulated in interruptible form
without a big increase in asymptotic computation time.
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A search for feasible subclasses. The fact that a problem is NP-hard
means, crudely speaking, that no feasible algorithm can solve all instances of
this problem, i.e., that can solve this problem for polynomials of arbitrarily
large number of variables, of arbitrarily large degree, with arbitrarily large
coefficients, and with arbitrary intervals. A natural question is: what will
happen if we limit the polynomials and/or intervals? Will the problem still be
NP-hard, or will it become tractable (i.e., solvable by a feasible algorithm)?
This question will be analyzed in the following few chapters. Namely, we will
consider the following natural limitations:

In Chapter 4, we consider polynomials of fixed number of variables.

In Chapter 5, we consider polynomials of bounded degree.

In Chapter 6, we consider polynomials with bounded coefficients.

In Chapter 7, we show that the problem remains NP-hard even if we fix a
sequence of polynomials fn(x1, . . . , xn) and allow arbitrary (narrow) inter-
vals.

Finally, in Chapter 8, we will show that the main problem remains NP-hard
even if we fix some narrow intervals and allow arbitrary polynomials.

Proofs

Proof of the Comment in Section 3.1. The algorithm proposed by Tarski
(and later modified by Seidenberg and others; see Chapter 4 for more details)
takes as input an arbitrary formula F that can be obtained from the polyno-
mial equalities fi(x1, . . . , xn) = 0 and inequalities fj(x1, . . . , xn) = 0 (in which
fi(x1, . . . , xn) and fj(x1, . . . , xn) are polynomials with integer or rational co-
efficients) by adding logical connectives (“and”, “or”, “not”, “implies”), and
quantifiers ∀x and ∃x that run over all real numbers. In particular, the up-
per endpoint y of the range f(x1, . . . ,xn) of a polynomial f(x1, . . . , xn) over
intervals [xi, xi] with rational endpoints can be described by a formula

∀x1 . . . ∀xn (((x1 ≤ x1 ≤ x1)& . . . &(xn ≤ xn ≤ xn)) → f(x1, . . . , xn) ≤ y)&

∃x1 . . . ∃xn ((x1 ≤ x1 ≤ x1)& . . . (xn ≤ xn ≤ xn)&f(x1, . . . , xn) = y) .

If the resulting formula F contains no free variables (i.e., if each of its variables
is bound by some quantifier), then this formula is either true or false, and
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Tarski’s algorithm determines, after a finite number of computational steps,
whether this formula is true or false.

If the input formula F contains free variables, then this algorithm returns a
quantifier-free formula F ′ that is equivalent to F , i.e., a finite sequence of
equations and inequalities that is equivalent to the original formula F .

In particular, if the formula F has exactly one free variable, i.e., if it has the
form F (x) for a real-valued variable x, and if there exists a unique real number
x0 for which this formula is true, then Tarski-Seidenberg’s algorithm returns a
non-zero polynomial P (x) with integer coefficients for which P (x0) = 0, plus
finitely many polynomial inequalities that uniquely determine x0 out of all
possible roots of the polynomial P (x).

There exists algorithms that, given a polynomial P (x) with integer coefficients
and an arbitrary rational number ε > 0, compute rational numbers that are
ε-close to the roots of P (x), and these algorithms can be easily modified to take
inequalities into consideration too. So, as a result, for every given ε > 0, we
get an algorithm that computes an ε-approximation to the desired real number
x0. In particular, this means that we can compute the upper endpoint of the
polynomial’s range (and similarly, we can compute the range’s lower endpoint).

Similarly, Tarski’s algorithm can be used to compute the range of an arbitrary
rational function with rational coefficients.

Proof of Theorem 3.1. Instead of the original Gaganov’s proof, we will use
a simpler proof (inspired by Vavasis [417]). First, we will show that the exact
basic problem of interval computations is NP-hard.

To prove this result, we will show that if we are able to compute the desired
interval y for quadratic polynomials f(x1, . . . , xn), then we will be able to solve
propositional satisfiability problem for 3-CNF formulas. Since satisfiability
problem is known to be NP-hard, we will thus prove that our problem is also
NP-hard.

Indeed, let F = F1& . . . &Fk be a 3-CNF formula with the (Boolean) vari-
ables z1, . . . , zv. (In the computer, usually, “true” is represented as 1, and
“false” as 0.) The corresponding quadratic problem will have v + k variables
x1, . . . , xv, p1, . . . , pk. The construction of f is as follows:
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To each propositional variable zi, we put into correspondence a real-
number variable f [zi] = xi.

To each negative literal ¬zi, we put into correspondence a linear expression
f [¬zi] = 1− xi.

To each expression Fj of the type a ∨ b, we put into correspondence the
expression f [Fj ] = (f [a] + f [b] + pj − 2)2. Since f [a] and f [b] are linear in
the variables xi, the resulting expression is quadratic in xi and pj .

To each expression Fj of the type a∨ b∨ c, we put into correspondence the
expression f [Fj ] = (f [a] + f [b] + f [c] + 2pj − 3)2. The resulting expression
is quadratic in xi and pj .

To the formula F , we put into correspondence the quadratic function

f(x1, . . . , xv, p1, . . . , pk) =
v∑

i=1

xi(1− xi) +
k∑

j=1

f [Fj ].

We will choose xi = pj = [0, 1], and try to compute the lower bound y of the
interval

f(x1, . . . ,xv,p1, . . . ,pk).

Example. Let us take F = (z1 ∨ z2 ∨ z3)&(z1&¬z2). For this formula, v = 2,
k = 2, so, we need v + k = 4 real-number variables x1, x2, p1, and p2. Here:

f [¬z2] = 1− x2.

f [F1] = (x1 + x2 + x3 + 2p1 − 3)2.

f [F2] = (x1 + (1− x2) + p2 − 2)2.

f(x1,2 , p1, p2) = x1(1− x1) + x2(1− x2) + f [F1] + f [F2].

Before we start estimating y, let us notice that f [Fj ] is defined as a square, and
therefore, f [Fj ] ≥ 0. Also, if xi ∈ [0, 1], then xi(1 − xi) ≥ 0. Therefore, the
function f is a sum of non-negative numbers and is, therefore, non-negative.
Hence, y ≥ 0.

Let us show that y = 0 if and only if the formula F is satisfiable.
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If the formula F is satisfiable, i.e., it is true for some propositional vector
z1, . . . , zv, then we take xi = zi (i.e., xi = 1 if zi =“true” and xi = 0 if
zi =“false”). The values of pj are chosen as follows:

• If Fj = a ∨ b, and both a and b are true for zi, then we take pj = 0.
• If Fj = a ∨ b, and only one of the literals a and b is true for a given

choice of zi, then we take pj = 1.
• If Fj = a ∨ b ∨ c, and all three literals are true, then pj = 0.
• If Fj = a∨ b∨ c, and two out of three literals are true, then pj = 0.5.
• If Fj = a∨b∨c, and only one of the three literals is true, then pj = 1.

In all five cases, f [Fj ] = 0 for all j. Therefore, for these xi and pj ,
f(x1, . . . , xn, p1, . . . , pk) = 0; therefore, y = min f ≤ 0. Since we know
that y ≥ 0, we conclude that y = 0.

Vice versa, let us assume that y = min f = 0. The minimum of a contin-
uous function of a compact [0, 1]v+2k is always attained; therefore, there
exist values xi and pj , for which f = 0. We have mentioned that f is a
sum of several non-negative expressions. The sum of non-negative expres-
sions is equal to 0 if and only if all these expressions are equal to 0, i.e.,
xi(1 − xi) = f [Fj ] = 0 for all i and j. From xi(1 − xi) = 0, we conclude
that xi = 0 or xi = 1. Let us show that the values zi = xi (i.e., zi =“true”
if xi = 1 and zi =“false” when xi = 0) make+ the formula F true. For
that, we need to prove that each expression Fj is true.

• For Fj = a ∨ b, from f [Fj ] = 0, it follows that f [a] + f [b] + pj = 2.
Since pj ≤ 1, we conclude that f [a] + f [b] ≥ 1. Both values f [a] and
f [b] are equal either to 0 or to 1. Since their sum is ≥ 1, they cannot
be both equal to 0, so, one of them is equal to 1. Due to our choice of
zi, the corresponding literal a is then true, and therefore, Fj is true.

• For Fj = a ∨ b ∨ c, from f [Fj ] = 0, we conclude that f [a] + f [b] +
f [c] + 2pj = 3, and therefore, since pj ≤ 1, that f [a] + f [b] + f [c] ≥ 1.
Hence, one of these values is = 1. For this value, the corresponding
literal is true, and therefore, Fj is true.

The result is proven.

Let us prove that for the function f constructed in the previous proof, if the
formula F is not satisfiable, then y ≥ 0.09.

We will prove this statement by reduction to a contradiction: we will assume
that y < 0.09, and conclude that F is satisfiable. As in the previous proof, from
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the fact that y = min f < 0.09, it follows that there exist values xi and pj for
which f(x1, . . . , xv, p1, . . . , pk) = y < 0.09. Since f is the sum of non-negative
terms, from this inequality, it follows that each term is < 0.09.

In particular, it follows that xi(1−xi) < 0.09. The function x(1−x) is increasing
for x < 0.5 and decreasing afterwards. So, from xi(1−xi) < 0.09 and from the
fact that 0.1(1− 0.1) = 0.9(1− 0.9) = 0.09, it follows that xi < 0.1 or xi > 0.9
for all i. Let us take zi =“true” if xi > 0.9, and zi =“false” if xi < 0.1, and
let us show that these propositional values make the formula F true (i.e., they
make all the expressions Fj true). Indeed:

If Fj = a ∨ b, then from f [Fj ] = (f [a] + f [b] + pj − 2)2 < 0.09, it follows
that f [a] + f [b] + pj − 2 > −0.3, and f [a] + f [b] > 1.7− pj . Since pj ≤ 1,
we conclude that f [a] + f [b] > 0.7. Therefore, the values f [a] and f [b]
cannot be both < 0.1. Therefore, one of these two values is > 0.9. The
corresponding literal is equal to “true”, and hence, Fj is true.

If Fj = a ∨ b ∨ c, then from f [Fj ] = (f [a] + f [b] + f [c] + 2pj − 3)2 < 0.09,
it follows that f [a] + f [b] + f [c] + 2pj − 3 > −0.3, and f [a] + f [b] + f [c] >
2.7−2pj . Since pj ≤ 1, we conclude that f [a]+f [b]+f [c] > 0.7. Therefore,
the values f [a], f [b], and f [c] cannot be all < 0.1. Therefore, one of these
three values is > 0.9. The corresponding literal is equal to “true”, and
hence, Fj is true.

So, F is satisfiable. The statement is proven.

The value y is thus either = 0 (if the formula F is satisfiable), or ≥ 0.09 (if the
formula F is not satisfiable). Therefore, if we had a polynomial-time algorithm
that computes the desired interval with an accuracy 0.04, we would thus be
able to distinguish between the two cases, and thus, tell whether a formula
is satisfiable or not. So, for ε = 0.04, ε−accurate estimation of the interval
f(x1, . . .) is NP-hard.

To prove NP-hardness for arbitrary ε, we must take into consideration that if
we estimate, for an arbitrary quadratic function f , the interval for a function
g(x1, . . . , ) = (ε/0.04)f(x1, . . .) with an accuracy ε, and divide this estimate by
ε/0.04, then we have an 0.04−accurate estimate for the original function f . So,
since computing a 0.04−accurate estimate is NP-hard, computing ε−accurate
estimates is also NP-hard. The theorem is proven.
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Proof of Theorem 3.2. Let us show that if we can solve the basic problem
of interval computations for intervals that are both absolutely and relatively δ-
narrow, then we will be able to solve it for arbitrary intervals xi. Indeed, assume
that we can solve this problem for narrow intervals. How can we then compute
the range of a polynomial f(x1, . . . , xn) over arbitrary rational intervals xi =
[xi, xi]?

First of all, if one of the intervals xi is degenerate (i.e., xi = xi and xi =
{xi}), then we can simply substitute this value xi instead of the interval xi

into the polynomial f(x1, . . . , xn) and reduce our original problem to a range
estimation problem for a polynomial with one fewer variable. We can thus
easily “eliminate” all degenerate interval inputs.

Therefore, without losing generality, we can assume that all input intervals are
non-degenerate: xi = x̃i − ∆i, x̃i + ∆i] with ∆i > 0. Let us introduce new
variables yi = ai · xi + bi in such a way that when xi goes from xi = x̃i −∆i

to xi = x̃i + ∆i, the new variable yi goes from y
i
= 1 − δ to yi = 1 + δ. The

corresponding equations ai · (x̃i−∆i)+ bi = 1− δ and ai · (x̃i +∆i)+ bi = 1+ δ
lead to ai = δ/∆i and bi = 1 − δ · x̃i/∆i. In terms of these new variables,
xi = (yi − bi)/ai, f(x1, . . . , xn) = F (y1, . . . , yn), where

F (y1, . . . , yn) = f

(
y1 − b1

a1
, . . . ,

yn − bn

an

)
,

and the desired range f(x1, . . . ,xn) coincides with the range F (y1, . . . ,yn) of
the new polynomial F (y1, . . . , yn) over the intervals yi = [1− δ, 1 + δ], each of
which is both absolutely and relatively δ-narrow.

Thus, the basic problem of interval computations for arbitrary intervals (the
problem that is already known to be NP-hard) is reduced to the basic problem
for narrow intervals. Hence, the basic problem for narrow intervals is also
NP-hard. The theorem is proven.





4
BASIC PROBLEM OF INTERVAL

COMPUTATIONS FOR
POLYNOMIALS OF A FIXED

NUMBER OF VARIABLES

In the previous chapter, we proved that the problem of computing the range
f(x1, . . . ,xn) of a given polynomial f(x1, . . . , xn) over given intervals x1, . . . ,xn

is, in general, computationally intractable (NP-hard). Since this general prob-
lem is intractable, it is desirable to look for cases in which it is feasible. In this
chapter, we analyze what happens when we restrict the number of variables
n. Good news is that in this case, a polynomial-time algorithm is possible.
Bad news is that the existing polynomial-time algorithms require too much
computation time to be practical.

4.1. Good News

Theorem 4.1. For every n, there exists a polynomial-time algorithm
that, for any ε > 0, for any polynomial f(x1, . . . , xn), and for any n
intervals [xi, xi], computes ε-approximations to the endpoints of the range
f([x1, x1], . . . , [xn, xn]).

The following table compares this result with the NP-hardness result from the
previous chapter:

Polynomials Polynomials . . . Polynomials . . . Polynomials
of 1 variable of 2 variables of n variables of arbitrary

(n fixed) number of
variables

Polynomial Polynomial . . . Polynomial . . . NP-hard
time time time

53
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Comment This result follows from an algorithm proposed by Grigor’ev et al.
[133] (for checking whether a given system of polynomial inequalities has a
solution).

A similar result is true not only for polynomials, but also for algebraic func-
tions, i.e., functions y = f(x1, . . . , xn) that are uniquely determined by a sys-
tem of polynomial equations Pk(x1, . . . , xn, y) = 0 and polynomial inequalities
Qk(x1, . . . , xn, y) ≥ 0, where Pk and Qk are polynomials with integer coeffi-
cients (e.g., f(x) =

√
x2 + 1 is a solution of a system consisting of the equation

y2 − (x2 + 1) = 0 and of the inequality y ≥ 0).

In contrast to a polynomial which is always continuous (and therefore, always
bounded on a box), a general algebraic function is not necessarily bounded (e.g.,
the function f(x) = 1/x defined by the equation x · y − 1 = 0 is not bounded
on the interval [0, 1]). Therefore, to get a meaningful result, we will only
consider bounded algebraic functions f(x1, . . . , xn), with a known bound ∆ on
|f(x1, . . . , xn)|. For such functions, the following result is true:

Theorem 4.2. For every n, there exists a polynomial-time algorithm that,
for any ε > 0, for any bounded algebraic function f(x1, . . . , xn), and for any
n intervals [xi, xi], computes ε-approximations to the endpoints of the range
f([x1, x1], . . . , [xn, xn]).

4.2. Not So Good News, and Hope

Not so good news: the existing algorithms are not yet practical. The
algorithm described in Grigor’ev et al [133] requires time M · (k · d)n2

, where
2M is the upper bound for the values of the coefficients, k is the total number of
inequalities, and d is the number of binary digits. For fixed n, this algorithm is
polynomial, i.e., its computation time is bounded by a polynomial Pn(L) of the
bit length L of the input data, but the degrees of the polynomials Pn rapidly
increase (as n2) as n increases.

Heintz et al. [147] have shown that the algorithm of Grigor’ev et al. is an
example of an algorithm that is polynomial-time but that is not yet practical:
for polynomials of only four variables, it can take, for some instances, millions
of years to compute, even on the fastest computers.
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There is hope. Although the existing algorithms are not always practical,
the fact that a theoretically feasible (i.e., polynomial-time) algorithm exists
makes us hope that a practically feasible algorithm will appear. This hope
is encouraged by the increasing amount of practical applications of similar
algorithms; see, e.g., Hong et al. [154, 155], Loos et al. [258] Abdallah et al.
[1], Dolzmann et al. [92, 93], Weispfenning et al. [424, 425, 426]. In particular,
there exist applications to transportation problems Loos et al. [258], to control
system design Abdallah et al. [1], to geometric reasoning Dolzmann et al. [93],
to stability analysis of partial differential equations Hong et al. [155], and to
optimization Weispfenning [424].

4.3. Can We Generalize This Feasibility Result?

We have just mentioned that the theoretical feasibility of range computations
for polynomial (or algebraic functions) with fixed number of variables leads to
the hope that some day, a practically feasible algorithm will appear. In view
of this possibility, it is important to know whether theoretical feasibility can
be proven for more general classes of interval computations problems. In this
section, we consider three possible generalizations:

First, a class that, strictly speaking, does not generalize the class of poly-
nomials: In our results, we defined a polynomial as a sum of monomials.
Some polynomials can be re-written in a more compact way: e.g., a bino-
mial x3 + 3x2 · y + 3x · y2 + y3 can be re-written as (x + y)3. A natural
question is: if we allow such compact descriptions, will we still be able
to have a feasible algorithm, i.e., an algorithm whose computation time is
bounded by a polynomial of the length of the compact input?

A natural true generalization of polynomial functions is the class of piece-
wise polynomial functions (splines; see, e.g., Schumaker [384] and Eubank
[102]). Is a polynomial-time algorithm possible for splines?

Splines can be viewed as a very natural generalization of polynomials:
Namely, polynomials can be defined as functions obtained from variables
by using three arithmetic operations; if we add min and max to these
operations, we get piece-wise polynomial functions, i.e., splines. What if
we add other operations, such as sin, cos, exp?

We will show that all three generalizations make the problem intractable.
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Polynomials with compact description

We will show that even allowing the iterated squaring makes the basic problem
of interval computation intractable, even for polynomials of one variable:

Definition 4.1. By a compact polynomial in variables x1, . . . , xn, we mean an
expression that is obtained from variables xi by applying addition +, multipli-
cation ·, and square operation x2.

As examples of compact polynomials, we can take (x1+x2)2 ·x3 or x1 ·x1 ·(x2
1)

2.

Theorem 4.3. (n = 1) For every ε > 0, every algorithm that ε-accurately
computes the range f([x, x]) of an arbitrary compact polynomial f(x) over an
arbitrary interval [x, x], requires, in some instances, exponential time.

Polynomials Compact polynomials
f(x1, . . . , xn) f(x1, . . . , xn)

n = 1 Polynomial time Exponential time
(or worse)

n = 2 Polynomial time Exponential time
(or worse)

fixed n Polynomial time Exponential time
(or worse)

arbitrary n NP-hard Exponential time
(or worse)

Splines

For splines, we also get intractability even for functions of one variable and
even for piece-wise linear functions (i.e., for linear splines):

A continuous function f(x) defined on an interval [x, x] is called a piece-wise
linear function, or a linear spline if the interval can be divided into finitely
many subintervals on each of which f(x) is linear. A spline function is feasible
if there exists a polynomial-time algorithm that, given rational numbers x and
ε > 0, computes an ε-approximation to f(x).

Theorem 4.4. (n = 1) For every ε > 0, the problem of ε-accurately computing
the range f([x, x]) of a given feasible linear spline f(x) on a given interval [x, x]
is NP-hard.
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Historical comment. This result was first announced (in a slightly different
formulation) in Kreinovich [189, 193]; see also Chee [62, 63].

Polynomials Splines
f(x) f(x)

Linear Linear time NP-hard
Quadratic Polynomial time NP-hard
Cubic and higher order Polynomial time NP-hard

Adding Non-Algebraic Functions to Polynomials

Definition 4.2. Let g(x) be a function. By a g-polynomial of n variables
x1, . . . , xn, we mean an arbitrary expression that can be obtained from the
variables x1, . . . , xn and rational constants by applying arithmetic operations
+, −, ·, and a function g.

For g-polynomials, the range computation problem becomes intractable:

Theorem 4.5. (For g(x) = exp(x); n = 1) For every ε > 0, every algorithm
that ε-accurately computes the range f([x, x]) of an arbitrary exp-polynomial
f(x) of one variable over an arbitrary interval x = [x, x], requires, in some
instances, exponential time.

Comments.

This result was first announced (in a slightly different formulation) in
Kreinovich [189, 193].

This result remains true even if we restrict ourselves to sub-intervals x of
a fixed interval a.

Theorem 4.6. (For g(x) = sin(x); n = 1) For every ε > 0, the problem of
ε-accurately computing the range f([x, x]) of an arbitrary sin-polynomial f(x)
over an arbitrary interval x = [x, x] is NP-hard.
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Polynomials exp-polynomials sin-polynomials
f(x1, . . . , xn) f(x1, . . . , xn) f(x1, . . . , xn)

n = 1 Polynomial time Exponential time NP-hard
(or worse)

n ≥ 2 Polynomial time Exponential time NP-hard
(or worse)

Adding Non-Algebraic Functions to Rational Functions

If, in addition to +, −, ·, and g(x), we allow division, we get g-rational functions
for which computing the range is harder than for g-polynomials:

Definition 4.3. Let g(x) be a function. By a g-rational function of n variables
x1, . . . , xn, we mean an arbitrary expression that can be obtained from the vari-
ables x1, . . . , xn and computable constants by applying arithmetic operations
+, −, ·, /, and a function g.

Theorem 4.7. (n = 1) Suppose that g(x) is a twice differentiable function
for which g′(x0) = 0 and g′′(x0) 6= 0 for some x0. Then, for every ε > 0,
every algorithm that ε-accurately computes the range f([x, x]) of an arbitrary
g-rational function f(x) of one variable over an arbitrary interval x = [x, x],
requires, in some instances, exponential time.

Comments.

The class of such functions g(x) includes sin(x) (with x0 = π/2) and cos(x)
(with x0 = 0).

A similar result is true for every k ≥ 2 times differentiable function for
which g(x0) = g′(x0) = . . . = g(k−1)(x0) = 0 and g(k)(x0) 6= 0 for some x0.

Due to the previous remark, this exponential-time result is true for every
computable analytical non-monotonic function g(x) (for precise definition
of computable functions, see, e.g., Bishop et al. [47, 48]). Indeed, since
the function is not monotonic, it must have a local extremum, i.e., a point
x0 in which g′(x0) = 0, and since it is analytical, at least one of the higher
derivatives must be different from 0 at this point x0. Computability of
such values x0 was proven in Orevkov [317].
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g-polynomials g-rational functions
f(x) f(x)

no g(x) Polynomial Polynomial
time time

g(x) = exp(x) Exponential time Exponential time
(or worse) (or worse)

g(x) = sin(x) NP-hard Exponential time
(or worse)

non-monotonic ? Exponential time
analytical g(x) (or worse)

The problem also becomes intractable if we allow complex numbers.

Definition 4.4. By a complex-rational function of n variables x1, . . . , xn, we
mean an arbitrary expression that can be obtained from the variables x1, . . . , xn

and constants 0, 1, and i, by applying arithmetic operations +, −, ·, /, and
operations Re and Im. We say that a complex-rational function f(x1, . . . , xn)
is real-valued if for all real values x1, . . . , xn, the value f(x1, . . . , xn) is also real.

Theorem 4.8. (n = 1) For every ε > 0, every algorithm that ε-accurately
computes the range f([x, x]) of an arbitrary real-valued complex-rational func-
tion f(x) of one variable over an arbitrary interval x = [x, x], requires, in some
instances, exponential time.

Rational Complex-rational
functions f(x1, . . . , xn) functions f(x1, . . . , xn)

n = 1 Polynomial time Exponential time
(or worse)

n ≥ 2 Polynomial time Exponential time
(or worse)

Are the Corresponding Range Estimation Problems Al-
gorithmically Decidable At All?

The above results show that even for the simplest non-algebraic functions g(x),
crudely speaking, no feasible algorithm can estimate the range of the corre-
sponding g-polynomials and g-rational functions. A natural next question is:
Is there any algorithm at all, even non-feasible?
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Even for the first non-algebraic function exp(x) that we considered, it is still
not known whether the range-computation problem is algorithmically decid-
able. Macintyre et al. [264] (see also Marker [271] and Wilkie [427]) proved
that a certain believed-to-be-true hypothesis about algebraic relations (due to
Schanuel) implies the decidability of the first order theory of real numbers
with arithmetic operations and exponentiation. So, if Schanuel’s hypothesis is
true, then for every rational number A, we can check, for every exp-polynomial
f(x1, . . . , xn), whether the first order formula

∀x1 . . . ∀xn((x1 ≤ x1 ≤ x1)& . . . &(xn ≤ xn ≤ xn) → f(x1, . . . , xn) ≤ A),

is true, and thus, check whether y ≤ A; then, by using binary search, we will
be able to compute y with an arbitrary accuracy ε (y can be computed in a
similar manner).

Similarly, Schanuel’s hypothesis would imply that the range problem is decid-
able not only for exp-polynomials and exp-rational functions, but also for exp-
algebraic functions, i.e., for the functions y = f(x1, . . . , xn) that are uniquely
determined by a system of exp-polynomial equations Pk(x1, . . . , xn, y) = 0
and polynomial inequalities Qk(x1, . . . , xn, y) ≥ 0, where Pk and Qk are exp-
polynomials. In particular, since the function y = log(x) is a unique solution
of the exp-polynomial equation exp(y) − x = 0, this function is exp-algebraic,
and thus, Schanuel’s hypothesis implies that the range computing problem is
also algorithmically solvable for log-polynomials and log-rational functions.

The following table represents these results; in this table, “decidable∗” means
decidable if Schanuel’s conjecture is true:

g-polynomials g-rational g-algebraic
f(x1, . . . , xn) functions functions

f(x1, . . . , xn) f(x1, . . . , xn)
no g Algorithmically Algorithmically Algorithmically

decidable decidable decidable
g(x) = exp(x) Algorithmically Algorithmically Algorithmically

decidable∗ decidable∗ decidable∗

g(x) = log(x) Algorithmically Algorithmically Algorithmically
decidable∗ decidable∗ decidable∗

Comment. Various other algorithms and negative results related to exp-
polynomials and exp-rational functions can be also found in Gurevic [134, 135,
136, 137, 138].
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Proofs

Proof of Theorem 4.1. Let us first describe the algorithm that finds the
desired estimate. Since we are interested in approximate values of endpoints,
it is sufficient to describe an algorithm that takes input intervals with binary-
rational endpoints; the endpoints of a polynomial with arbitrary rational co-
efficients can be estimated, if we apply this algorithm to sufficiently accurate
binary-rational approximations of the given rational values. Similarly, it is suf-
ficient to consider polynomials whose coefficients are binary-rational numbers.

The algorithm restricted to binary-rational endpoints thus takes the following
input:

an integer n (describing the number of direct measurements);

an integer d (describing the computer precision, or the number of binary
digits);

n d-digit real numbers x̃i, i.e., numbers of the type dk . . . d0.d−1 . . . d−d

(with d digits after the binary point); these numbers correspond to results
of direct measurements;

n d-digit non-negative real numbers ∆i > 0 (these numbers describe the
accuracies of direct measurements);

a d-digit polynomial f(x1, . . . , xn), i.e., a sum of monomials
f1(x1, . . . , xn) + . . . + fm(x1, . . . , xn), where each monomial fi(x1, . . . , xn)
is an expression of the type ai1...inxi1

1 · . . . · xin
n , and each coefficient ai1...in

is a d-digit real number; (this polynomial f(x1, . . . , xn) describes a data
processing algorithm);

a rational number ε > 0 (that describes precision with which we want the
result.)

Our objective is to compute the ε-approximations ỹ and ỹ to the endpoints
y and y of the interval y = [y, y] = f(x1, . . . ,xn), where xi = [xi, xi] =
[x̃i −∆i, x̃i + ∆i].

To compute these approximations, first, we use naive interval computations to
compute the initial enclosures of the intervals [F , F ] and [G,G] that contain y
and y:
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For each variable xi, 1 ≤ i ≤ n, we compute the upper bound Xi on its
absolute values |xi| as Xi = max(|xi|, |xi|).
For each monomial fj(x1, . . . , xn) = ai1...inxi1

1 · . . . · xin
n , we compute the

upper bounds Fj on its the absolute values |fj(x1, . . . , xn)| of as Fj =
|ai1...in | ·Xi1

1 · . . . ·Xin
n .

We compute the upper bound F for the absolute value |f(x1, . . . , xn)| of
the polynomial f(x1, . . . , xn) as F = F1 + . . . + Fm.

Finally, we take the smallest integer k for which F ≤ 2k, and take F = G = −2k

and F = G = 2k. (Since −F ≤ f ≤ F , and F ≤ 2k, we have y ∈ [F , F ] and
y ∈ [G, G].)

Then, we apply the following iterative bisection procedure for computing y
(computing y is similar):

At the beginning of each iteration, we have an interval [G,G] that is known
to contain y. First, compute its midpoint G = (1/2) · (G + G).

Check whether y ≤ G, by applying Grigor’ev’s algorithm to check the
existence of a real solution of the following sequence of polynomial in-
equalities with integer coefficients: 2D · f(x1, . . . , xn) − 2D · G ≥ 0,
2D(xi − xi) ≥ 0, 1 ≤ i ≤ n, and 2D(xi − xi) ≥ 0 for an appropriate
D.

If this set of inequalities has a solution, this means that the upper bound y
for f is ≥ G, so we take [G,G] as the new interval [G,G]; else, take [G,G].

If G − G ≤ ε, then return G as the desired estimate ỹ; else, continue the
iterations.

That this algorithm finds the desired estimate is clear. The only thing that
needs to be proven is that it is feasible. Indeed:
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The initial step (computing F ) is feasible.

On each step of the bisection process, we are using the polynomial-time
algorithm from Grigor’ev et al. [133]. How many times do we need to
apply this algorithm? The initial size of the interval [G,G] = [−2k, 2k]
is 2k+1. On each iteration step, we halve the size of the interval [G,G].
Therefore, after s steps, we get the interval of the size 2k+1−s. To get a
size 2−N ≤ ε, we need N + k + 1 iterations. This number is polynomial in
the length of the input data, and therefore, the total run-time for all these
iterations is also polynomial.

So, both steps are polynomial, and therefore, the algorithm is feasible. The
theorem is proven.

Proof of Theorem 4.2. One can easily verify that the following algorithm
solves the problem:

The input to this algorithm consists of the same values n, d, x̃i, ∆i, and
N as in Theorem 4.1; the only difference is that instead of a single polyno-
mial f(x1, . . . , xn), we must now describe a finite sequence of (similarly de-
fined) polynomials f1(x1, . . . , xn, y), . . . , fk(x1, . . . , xn, y) such that the given
algebraic function y = f(x1, . . . , xn) is defined as a unique solution of the sys-
tem f1(x1, . . . , xn, y) = 0, f2(x1, . . . , xn, y) ≥ 0, . . ., fk(x1, . . . , xn, y) ≥ 0. We
must also input the (known) upper bound ∆ on |f(x1, . . . , xn)|. Our goal is to
compute the ε-approximations ỹ and ỹ to the endpoints y and y of the range
y = [y, y] = f(x1, . . . ,xn).

Similarly to the proof of Theorem 4.1, we start with computing the initial value
of the intervals [F , F ] and [G, G] (that contain y and y). For that, we simply
take the smallest integer k for which ∆ ≤ 2k, and take F = G = −2k and
F = G = 2k.

Then, we apply the following iterative bisection procedure for computing y
(computing y is similar):
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At the beginning of each iteration, we have an interval [G,G] that is known
to contain y. First, compute its midpoint G = (1/2) · (G + G).

Then, we check whether y ≥ G, by applying Grigor’ev’s algorithm to check
the existence of a real solution of the following sequence of polynomial
equalities and inequalities with integer coefficients: 2d · f1(x1, . . . , xn, y) =
0, 2d · f2(x1, . . . , xn, y) ≥ 0, . . . , 2d · fk(x1, . . . , xk, y) ≥ 0, 2D(y −G) ≥ 0,
2D(xi − xi) ≥ 0, 1 ≤ i ≤ n, and 2D(xi − xi) ≥ 0 for an appropriate D.

If this set of inequalities has a solution, this means that the upper bound y
for f is ≥ G, so we take [G,G] as the new interval [G,G]; else, take [G,G].

Now, we can check whether we have achieved the desired solution, i.e.,
whether G − G ≤ ε; if this is the case, then we simply return G as the
desired estimate ỹ; else, continue the iterations.

The proof that this algorithm is polynomial-time is similar to the proof of
Theorem 4.1. The theorem is proven.

Proof of Theorem 4.3. Let us describe a sequence of compact polynomials for
which the required time grows exponentially with the length of the polynomial’s
description: f0(x) = x and fk+1(x) = (fk(x))2, i.e., f1(x) = x2, f2(x) = (x2)2

(= x4), f3(x) = ((x2)2)2 (= x8), etc. We will take x = [0, 2].

The length of the description of f0(x) is 2: the symbol x itself and 2 indicating
the squaring. To get fk+1(x) from fk(x), one must add three symbols to the
description of fk: “(“, “)”, and “2”. So, the length Lk of the description of
fk(x) is 3k + 2.

One can easily prove by induction that fk(x) = x2k

. Hence, for fk(x), the
desired interval y is equal to [0, 22k

]. For a fixed ε, for sufficiently large k,
we will have ỹ ≥ y − ε ≥ 22k−1. Hence, to represent ỹ in the computer, we
will need at least 2k − 1 binary digits. Generating one digit takes at least one
computational step, so we need ≥ 2k − 1 computational steps. The theorem is
proven.

Proof of Theorem 4.4. Let us assume that for some ε > 0, we can solve the
ε-approximate basic problem of interval computations for feasible piece-wise
linear functions f(x) of one variable in polynomial time. Let us show that we
will then be able to solve the propositional satisfiability problem in polynomial
time and thus, our problem (ε-approximate basic problem of interval compu-
tations for feasible piece-wise linear functions of one variable) is NP-hard.
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Indeed, suppose that we have a propositional formula F with v Boolean vari-
ables z1, . . . , zv. In the following proof, we will design a feasible piece-wise
linear function f : [0, 1] → [0, 3ε] that satisfies the following two properties:

If F is not satisfiable, then f(x) is identically 0, so y = [0, 0].

If F is satisfiable, then y = [0, 3ε].

If we have such a function f(x), then, if we are able to estimate y in polynomial
time with a given accuracy ε, we will be able to distinguish between these
two cases, and thus, decide in polynomial time whether a given formula F is
satisfiable or not.

To achieve this goal, we want to use a piece-wise linear function f(x) that is
defined as follows:

For binary-rational numbers x = 0.z1 . . . zv, as a value of f(x) we take 3ε
times the truth value of a formula F for Boolean variables z1, . . . , zv (in
computers, usually, “true” is represented as 1, and “false” is 0).

We take f(−0.0 . . . 01) = f(0.0 . . . 0) and f(1.0 . . . 0) = f(0.1 . . . 1).

In between these binary-rational numbers, the function f(x) is linear.

This function f(x) is piece-wise linear, and it satisfies the desired property. So,
to complete our proof, we only need to prove that f(x) is feasible, i.e., that
there exists a polynomial-time algorithm that enables us to compute f(x) for
a given rational number x. This algorithm is easy to design:

First, we ask for a 2−v-approximation to x. As a result, we get a binary-
rational number x̃ = 0.z1 . . . zv such that |x − x̃| ≤ 2−v. This inequality
is equivalent to x ≤ x ≤ x, where x = x̃ − 2−v and x = x̃ + 2−v are also
v-digit rational numbers.

For each of the three v-digit numbers x, x̃, and x, we compute the values
of f(x) by checking whether the formula F is satisfied by the propositional
variables taken from the number’s binary expansion, and multiplying the
corresponding truth values by 3ε. As a result, we get the three values f(x),
f(x̃), and f(x). The application of F requires the time that is linear in
the length of F .
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On the interval [x, x] that contains x, our piece-wise linear function f(x)
consists of two linear parts:

• For x ∈ [x, x̃], we have

f(x) = f(x) +
f(x̃)− f(x)

x̃− x
· (x− x).

• For x ∈ [x̃, x], we have

f(x) = f(x̃) +
f(x)− f(x̃)

x− x̃
· (x− x̃).

To complete the computation of f(x), we must consider two possible cases:

• if f(x̃) ≤ (1/2)·(f(x)+f(x))), then on the interval [x, x], the function
f(x) is convex, and therefore, we can compute f(x) as

f(x) = max
{

f(x) +
f(x̃)− f(x)

x̃− x
· (x− x), f(x̃) +

f(x)− f(x̃)
x− x̃

· (x− x̃)
}

.

• if f(x̃) ≥ (1/2)(f(x)+ f(x))), then on the interval [x, x], the function
f is concave, and therefore, we can compute f(x) as

f(x) = min
{

f(x) +
f(x̃)− f(x)

x̃− x
· (x− x), f(x̃) +

f(x)− f(x̃)
x− x̃

· (x− x̃)
}

.

This algorithm takes polynomial time; hence, f(x) is feasible. This completes
the proof of the theorem.

Proof of Theorem 4.5. This proof is similar to the proof of Theorem 4.3.
Namely, we will give an example of a sequence of exp-polynomial functions
for which the required time grows at least exponentially with the length of
the function’s description: we take f0(x) = x and fk+1(x) = exp(fk(x)) (i.e.,
fk(x) = exp(. . . exp(x) . . .) (k times), and x1 = [0, 2].

The length of the description of fk(x) grows linearly with k. The value y =
fk(2), however, grows with k faster than 22k

. Hence, to represent ỹ in the
computer, we will need at least 2k binary digits. Generating one digit takes at
least one computational step, so we need ≥ 2k − 1 computational steps. The
theorem is proven.
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Comment. If we do not restrict ourselves to a single interval x, but allow arbi-
trary intervals, then we do not even bother to consider a sequence of functions
fk(x): we can simply take a function exp(x) for x = [n, n]. Binary represen-
tation of the input requires L ≈ log2(n) bits. Since exp(n) > 2n, the binary
representation of the result requires at least n ≈ 2L bits. To generate each
bit, we need at least one computational step. So, the number of computational
steps does grow exponentially.

Proof of Theorem 4.6. Before we prove the NP-hardness of computing the
range of sin-polynomials of one variable, let us first prove NP-hardness of sin-
polynomials of two variables. To prove NP-hardness of the range estimation
problem, we will reduce yet another known NP-hard problem to our problem:
namely, the problem of solving quadratic Diophantine equations. This problem
was first considered by Manders et al. [268] (see also Garey et al. [120], p. 250);
it is formulated as follows: given positive integers a, b, and c, check whether
there exist positive integers x1 and x2 for which a · x2

1 + b · x2 = c.

For each instance (a, b, c) of the above problem, we can construct a sin-
polynomial f(x1, x2) whose minimum y on x1 = x2 = [1, c] is equal to
0 if and only if the given instance has a solution: namely, we will take
f(x1, x2) = sin2(π · x1) + sin2(π · x2) + (a · x2

1 + b · x2 − c)2. This function
f(x1, x2) is always non-negative (as a sum of non-negative squares), and it is
equal to 0 if and only if all the squares, from which it is constructed, are equal
to 0. From sin(π · x1) = 0, we conclude that x1 is an integer; since x1 ∈ [1, c],
we conclude that it is a positive integer. Similarly, from sin(π · x2) = 0 and
x2 ∈ [1, c], we conclude that x2 is a positive integer; finally, from the equality
between the third term and 0 we conclude that a · x2

1 + b · x2 = c; therefore,
x1 and x2 form a solution to the original instance. Vice versa, if (x1, x2) is a
solution to the original instance, we have f(x1, x2) = 0, and therefore, y = 0.

Thus, the problem of exactly computing the range of sin-polynomials is NP-
hard. One can also show (similarly to the proofs from Chapter 3) that not
only the original instance has a solution if y = 0, but also that this instance
has a solution if y ≤ ε0 for some small ε0: Indeed, in this case, x1 is close to a
positive integer x̃1, x2 is close to a positive integer x̃2, and from the closeness of
a ·x2

1 +b ·x2−c to 0 we conclude that the value a · x̃2
1 +b · x̃2−c is also close to 0;

since this value is an integer, it has to be exactly equal to 0. (The corresponding
value ε0 may actually depend on a, b, and c.) Thus, either y = 0 and the original
instance has a solution, or y > ε0, and the original instance does not have a
solution. Therefore, if we can compute y with an accuracy ε0/2, we will be able
to tell whether the original instance has a solution or not. Hence, for a given
ε > 0, we can consider a modified sin-polynomial f̃(x1, x2) = (2ε/ε0) ·f(x1, x2).
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Computing the lower bound ỹ for this new function with the accuracy ε is
equivalent to computing the lower bound for the original function with the
accuracy ε0/2, and is, thus, equivalent to solvability of the original instance.

Strictly speaking, there is one minor point left in our proof: legally, the above
function f(x1, x2) is not a sin-polynomial because it uses an irrational constant
π. So, instead of this function, we must consider a close function fr(x1, x2) =
sin2(πr ·x1)+sin2(πr ·x2)+(a·x2

1+b·x2−c)2, where πr is a rational approximation
to π (the accuracy of this approximation may depend on a, b, and c). If
πr is close enough to π, then for solvable instances, the minimum yr of the
function fr(x1, x2) will be close to 0, while for non-solvable instances, it will
be greater than or equal to some positive number that is close to ε0. Thus,
if we compute yr with an accuracy εr/2 close to ε0/2, we will then be able
to distinguish between solvable and non-solvable instances. Therefore, for a
function f̃r(x1, x2) = (2ε/εr) · f(x1, x2), computing the lower endpoint y of its
range with accuracy ε is NP-hard.

To complete the proof, we must show that for sin-polynomials of one variable,
range computation is also NP-hard. To prove this result, we will “combine”
both values x1 and x2 into a single real-valued variable x. Namely, we will
consider x = x1 + α · x2, where α > 0 is some sufficiently small rational
number. If we know that both x1 and x2 are integers, and if α is small enough
(α ¿ 1/c), then all c2 real numbers that correspond to different x1 = 1, . . . , c
and x2 = 1, . . . , c are different, so, in principle, it is possible to reconstruct
both integers x1 and x2 from this combination x.

Let us show that we can use sin-polynomials for this reconstruction. Indeed,
since x1 is an integer and α is small, we have sin(π ·x) = sin(π ·x1 +π ·α ·x2) =
± sin(π ·α · x2) ≈ ±π ·α · x2. Therefore, x2 ≈ ±x3 = (1/(π ·α)) · sin(π · x). So,
we can represent the requirement that x2 is an integer (i.e., that sin(π ·x2) = 0)
in terms of x, as sin(π · x3) = 0.

The above argument prompts us to consider the following sin-polynomial:
f(x) = sin2(π · x) + sin2(π · x3) + (a · x2 + b · x3 − c)2, where we denoted
x3 = (1/(π · α)) · sin(π · x).

If the original instance of the quadratic Diophantine problem has a solution
x, y, then for x = x1 + α · x2, we have sin2(π · x) ≈ π2 ·α2 · x2

2 ≤ π2 ·α2 · c2; the
second term is approximately 0, and the third terms is approximately equal to
2a2 · α · x1 · x2 ≤ 2a2 · α · c2. Thus, if α is small enough so that both bounds
π2 · α2 · c2 and 2a2 · α · c2 are much smaller than ε0, we conclude that for our
sin-polynomial, y ¿ ε0.
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Vice versa, if for this polynomial, y ¿ ε0, this means that for some x, all three
squares in the sum that defines this polynomial f(x) must be small. From the
condition that sin2(π · x) is small, i.e., that sin(π · x) ≈ 0, we conclude that x
is close to some integer. We will denote this integer (closest to x) by x1. Since
x is close to an integer, i.e., x ≈ x1, we conclude that sin(π · x) ≈ π · (x− x1),
and therefore, x3 = (1/(π ·α)) · sin(π · x)) ≈ (x− x1)/α. Thus, x ≈ x1 + α · x3.

From the condition that sin2(π ·x3) is small, we conclude that x3 ≈ (x−x1)/α
is close to some integer x2. From x3 ≈ x2 and from the above approximate
expression x ≈ x1 + α · x3, we conclude that x ≈ x1 + α · x2.

Finally, from the condition that (a · x2 + b · x3 − c)2 is small, we conclude
that a · x2 + b · x3 − c ≈ 0, and therefore (since x ≈ x1 and x3 ≈ x2), that
a ·x2

1 + b ·x2− c ≈ 0. Since a, b, c, x1, and x2 are integers, for sufficiently small
α, we will be able to conclude that a · x2

1 + b · x2 − c = 0, and therefore, that
x1 and x2 form a solution to the original instance of the quadratic Diophantine
problem.

Thus, if this instance has a solution, we have y ¿ ε0, and if this instance does
not have a solution, then we can similarly conclude that this lower bound y
cannot be that small. So, if we are able to compute the lower bound y with a
sufficiently good accuracy ε1, then we will be able to solve the corresponding
instance of the quadratic Diophantine problem.

Similarly to the case of two variables, to prove NP-hardness of range estimation
for an arbitrary ε > 0, we consider a modified sin-polynomial f̃(x) = (ε/ε1) ·
f(x).

To finalize the proof, we must replace the irrational number π by a close rational
number πr. The theorem is proven.

Proof of Theorem 4.7. Since the function g(x) is twice differentiable, we
have g(x0+h) = g(x0)+g′(x0)·h+(1/2)·g′′(x0)·h2+o(h2). Since g′(x0) = 0 and
g′′(x0) 6= 0, we can conclude that g(x0 +h)− g(x0) = (1/2) ·g′′(x0) ·h2 +o(h2),
and therefore, that h2 = (2/g′′(x0)) ·(g(x0 +h)−g(x0))+o(h2). So, if we define

g1(h) =
2

g′′(x0)
· (g(x0 + h)− g(x0)),

then for h → 0, we get lim(g1(h)/h2) = 1.

Length-wise, for every expression H, to get the expression for g1(H), we must
add constantly many symbols to the description of H. So, if we define a se-
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quence g2(h) = g1(g1(h)), . . . , gk+1(h) = g1(gk(h)), . . . , then each g-rational
function in this sequence is obtained by adding constantly many symbols to
the previous one, and therefore, the length of the description of the function
gk(h) grows linearly with k.

Asymptotically, g1(h) ∼ h2, so g2(h) = g1(g1(h)) ∼ (h2)2 = h4, g3(h) =
g1(g2(h)) ∼ (h4)2 = h8, and in general, gk(h) ∼ h2k

.

We can now define fk(x) = 1/gk(1/x), and choose x = [X, 2X] for some X > 0.
Then, as x → ∞, we get fk(x) ∼ x2k

, so for sufficiently large X, we get
y = sup fk(x) ≈ (2X)2

k

. Hence, to represent ỹ in the computer, we will need
at least 2k binary digits. Generating one digit takes at least one computational
step, so we need ≥ 2k − 1 computational steps. This number is exponential
in k, and (since the length of the description of fk(x) grows linearly with k),
this number is exponential in the length of the input as well. The theorem is
proven.

Proof of Theorem 4.8. To prove this theorem, we will consider the following
real-valued complex-rational function

g1(h) = 1− Re
(

1
1 + ih

)
.

Since
1

1 + ih
=

1− ih

1 + h2
,

we have g1(h) = 1 − 1/(1 + h2) ∼ h2 as h → 0. For every expression H,
the expression for g1(H) is obtained by adding constantly many symbols to
the description of H. So, we can construct the sequence gk(h) as gk+1(h) =
g1(gk(h)) and conclude the proof as in Theorem 4.7. The theorem is proven.



5
BASIC PROBLEM OF INTERVAL

COMPUTATIONS FOR
POLYNOMIALS OF FIXED ORDER

In Chapter 3, we showed that the basic problem of interval computations is NP-
hard for polynomials f(x1, . . . , xn). In this chapter, we describe what happens
if we restrict the order of these polynomials.

5.1. Results

Main result: intractable for quadratic functions

When the order is 1, we get linear functions. For linear functions
f(x1, . . . , xn) = a0 +

∑
ai · xi, the problem is feasible: the desired range

y = f([x1, x1], . . . , [xn, xn]) can be computed by naive interval computations,
and it is equal to y = [ỹ−∆, ỹ+∆], where ỹ = f(x̃1, . . . , x̃n) and ∆ =

∑ |ai|·∆i.

The next step is quadratic functions. Alas, as the proof of Theorem 3.1 shows,
for quadratic functions, the problem is already NP-hard:

Theorem 5.1. For every ε > 0, the problem of computing the endpoints
y and y of the range f([x1, x1], . . . , [xn, xn]) for a given quadratic polynomial
f(x1, . . . , xn) = a0 +

∑
ai · xi +

∑
aij · xi · xj and for given intervals [xi, xi]

with accuracy ε is NP-hard.

Comment. Quadratic polynomials are a particular case of cubic, quartic, etc.,
therefore, for cubic, etc. polynomials, the basic problem of interval computa-
tions is also NP-hard:

71
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Linear Quadratic Cubic (and higher order)
f(x1, . . . , xn) f(x1, . . . , xn) f(x1, . . . , xn)
Linear time NP-hard NP-hard

Simple case: feasible for diagonal matrices and for lin-
ear functions

We cannot have a feasible algorithm for all quadratic polynomials, but maybe,
we can have an algorithm for some of them? There are two trivial (or almost
trivial) cases when this problem is feasible for quadratic functions f(x1, . . . , xn):
one case is when f(x1, . . . , xn) is actually linear, and another is when the matrix
aij is diagonal:

Theorem 5.2. There exists a linear-time algorithm that computes the end-
points y and y of the range f([x1, x1], . . . , [xn, xn]) for a given quadratic poly-
nomial f(x1, . . . , xn) = a0 +

∑
ai ·xi +

∑
aii ·x2

i and for given intervals [xi, xi].

Are there other feasible cases?

Both cases are very specific, but maybe, if we take close cases, we will still get
a class for which feasible algorithms are possible? Unfortunately, the answer
is negative: for all non-trivial generalizations of the above degenerate classes
that we tried, the resulting problem is NP-hard:

First try: band matrices

A diagonal matrix is a matrix aij for which aij = 0 for i 6= j, i.e., for |i−j| ≥ 1.
The first natural generalization of a diagonal matrix is a w−band matrix, for
which aij = 0 for |i− j| ≥ w for some w ≥ 1 (diagonal matrices correspond to
w = 1):

Theorem 5.3. For w ≥ 3, and for every ε > 0, the problem of ε-accurately
computing the endpoints y and y of the range f([x1, x1], . . . , [xn, xn]) for a given
quadratic polynomial f(x1, . . . , xn) = a0+

∑
ai ·xi+

∑
aij ·xi ·xj with a w-band

matrix aij and for given intervals [xi, xi] is NP-hard.
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Comments.

w-band matrices naturally appear in many real-life problems (see, e.g.,
Schendel [376]). For example, they appear when we estimate the value of
a functional of the type f =

∫ (
a0 · (x(t))2 + a1 · (ẋ(t))2

)
dt, where ẋ(t) de-

notes time derivative. This functional is important in signal processing and
in image processing, where it characterizes the smoothness of a signal (see,
e.g., Tikhonov et al. [409], Inverse Problems [159, 160, 161], Glasko [126],
Lavrentiev et al. [247]), and in control, where it characterizes the smooth-
ness of a resulting trajectory (for a general justification of this functional,
see, e.g., [230]). Usually, we are only given the values x(ti) of the signal
for ti = t0 + i · h. From these data, we can estimate the integral defining
the functional by its integral sum

∑[
a0 · (x(ti))2 + a1 · (ẋ(ti))2

] · h, and
the derivative ẋ(ti) as (x(ti+1)− x(ti))/h. As a result, we get a quadratic
form in which the elements aij are different from 0 only for |i− j| ≤ 1, i.e.,
we get a 2-band matrix. If we take second derivative into consideration,
we get a 3-band matrix, etc.

For 1-band (i.e., diagonal) matrices, we have a feasible (even linear-time)
algorithm. We do not know whether a feasible algorithm is possible for
2-band matrices:

Diagonal (1-band) 2-band 3-band
matrices matrices matrices
Linear time ? NP-hard

Second try: almost scalar matrices

Another possibility is to generalize one particular case of a diagonal matrix:
a scalar matrix, for which aii = const. These matrices can be characterized
by the condition that all their eigenvalues λi are equal: λ1 = . . . = λn = λ
for some number λ. A natural generalization is the notion of an almost scalar
matrix, i.e., a matrix for which all but one eigenvalues coincide.

Theorem 5.4. For every ε > 0, the problem of ε-accurately computing the
endpoints y and y of the range f([x1, x1], . . . , [xn, xn]) for a given quadratic
polynomial f(x1, . . . , xn) = a0 +

∑
ai · xi +

∑
aij · xi · xj with an almost scalar

matrix aij and for given intervals [xi, xi] is NP-hard.
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Third try: bilinear functions

The third generalization is a generalization of linear functions. A natural gen-
eralization is the notion of a bilinear function, i.e., a quadratic function of the
type

∑
aij · xi · yj .

Theorem 5.5. For every ε > 0, the problem of ε−accurately computing the
endpoints y and y of the range f([x1, x1], . . . , [xn, xn], [y

1
, y1], . . . , [yn

, yn]) for
a given bilinear function f(x1, . . . , xn, y1, . . . , yn) =

∑
aij ·xi · yj and for given

intervals [xi, xi] and [y
i
, yi] is NP-hard.

These three NP-hardness results are also true for nar-
row input intervals

Comment. In Chapter 3, we have shown that for every δ > 0, the basic problem
of interval computations is NP-hard even if we allow only input intervals that
are both absolutely and relatively δ-narrow. In the above three NP-hardness
results, we can make the same restriction, and the restricted problems will still
be NP-hard.

Proofs

Proof of Theorem 5.2. For diagonal matrices, the quadratic function
f(x1, . . . , xn) takes the form

∑
aii ·x2

i +
∑

ai ·xi +a0 = a0 +
∑

(aii ·x2
i +ai ·xi).

The restrictions on the values of xi are independent on each other (xi ∈ xi);
therefore, the function f(x1, . . . , xn) attains its smallest value y (or, its largest
value y) if and only if each of the terms aii · x2

i + ai · xi attains its smallest
(correspondingly, its largest) value. In other words, y = a0 + y

1
+ . . . + y

n
and y = a0 + y1 + . . . + yn, where by y

i
and yi, we denoted the minimum

(correspondingly, the maximum) of the expression fi(xi) = aii · x2
i + ai · xi.

The values y
i
and yi can be easily computed if we consider two possible cases:

If aii = 0, then fi(xi) = ai · xi, and hence, [y
i
, yi] = ai · xi.

If aii 6= 0, then

fi(xi) = aii ·
(

x2
i +

ai

aii
x

)
= aii ·

(
xi +

1
2
· ai

aii

)2

− 1
4
· a2

i

aii
.
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For xi ∈ [xi, xi], we can easily compute the exact bounds for this expres-
sion:

• the bounds for zi = xi + (1/2) · (ai/aii) are zi = xi + (1/2) · (ai/aii)
and zi = xi + (1/2) · (ai/aii);

• the bounds for ui = z2
i are: [(zi)

2, (zi)2] when 0 ≤ zi ≤ zi;
[(zi)2, (zi)

2] when zi ≤ zi ≤ 0; and [0, max{(zi)
2, (zi)2}] when

zi ≤ 0 ≤ zi;

• the bounds for fi(xi) are [y
i
, yi] = aii · [ui, ui]− (1/4) · (a2

i /aii).

In both cases, for each i from 1 to n, we need finitely many computation steps
to compute y

i
and yi, so, the total computation of y and y can be completed

in a time that is linear in n. The theorem is proven.

Proof of Theorem 5.3. Let us first prove that the exact computation of the
range is NP-hard for 3-band matrices. To prove this result, we will use another
known NP-hard problem PARTITION: given integers s1, . . . , sn, check whether
there exist values xi ∈ {−1, 1} for which

∑
si · xi = 0. We will reduce this

problem to the problem of computing the range.

For each instance of PARTITION, we will consider the problem of com-
puting the range of the following quadratic polynomial of 2n + 1 variables
x1, . . . , xn, t0, t1, . . . , tn:

f(x1, . . . , xn, t0, t1, . . . , tn) =

n∑

i=1

(1− x2
i ) + t20 +

n∑

i=1

(ti − xi · si − ti−1)2 + t2n

on the intervals xi = [−1, 1] and ti = [−S, S], where we denoted S =
∑ |si|.

If we order the variables in the order t0, x1, t1, x2, t2, . . . , xn, tn, then, as one
can easily see, the only cross-terms are between the variables that are either
immediate neighbors (ti and xi or xi and ti−1) or neighbors to immediate
neighbors (ti and ti−1). Hence, the corresponding matrix is indeed 3-band.

Let us show that the lower endpoint y of the desired range is equal to 0 if and
only if the given instance of PARTITION has a solution. Indeed, if this instance
has a solution xi, then we take these xi, t0 = 0, and ti = s1 · x1 + . . . + si · xi.
Vice versa, let y = 0. Since xi ∈ [−1, 1], each term 1 − x2

i is non-negative.
Since every other term is a square, the entire function f(x1, . . . , xn, t0, . . . , tn)
is non-negative, and hence, the lower endpoint y of its range is non-negative
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too. If this minimum is 0, this means that f(x1, . . . , xn, t0, . . . , tn) = 0 for
some values xi and ti. The sum of non-negative terms can be equal to 0 if and
only if every term in this sum is equal to 0. Thus, for every i, x2

i = 1 (i.e.,
xi ∈ {−1, 1}), t0 = 0, ti = ti−1 + si · xi, and tn = 0. From these equations,
we conclude, by induction, that ti = s1 · x1 + . . . + si · xi, and therefore, the
equation tn = 0 means that s1 · x1 + . . . + sn · xn = 0, i.e., that xi’s are indeed
the solution to the given instance to the PARTITION problem.

This reduction proves that the problem of computing the range exactly is NP-
hard. Let us now show that the problem of computing this range approximately
is also NP-hard. For that, let us first show that for appropriate positive δ < 1,
if, for the above range estimation problem, y ≤ δ2, then the given instance
of PARTITION has a solution. Indeed, let y = f(x1, . . . , xn, t0, . . . , tn) ≤ δ2.
Since f(x1, . . . , xn, t0, . . . , tn) is the sum of non-negative terms, we can conclude
that each of these terms is ≤ δ2.

In particular, we have 1 − x2
i ≤ δ2, hence, x2

i ≥ z = 1 − δ2, and since
√

z ≥ z
for z ≤ 1, we have |xi| ≥

√
z ≥ z = 1 − δ2. Since we assumed that xi ∈

xi = [−1, 1], we conclude that |xi| ≤ 1. Thus, if we define the sign of xi by
x̃i = sign(xi) = ±1, we conclude that |xi − x̃i| ≤ δ2. We will show that the
values x̃i form a solution to the PARTITION problem, i.e., that the (integer-
valued) sum s =

∑
si · x̃i is equal to 0.

Indeed, for other terms q2 from f(x1, . . . , xn, t0, . . . , tn), from q2 ≤ δ2, we
conclude that |q| ≤ δ. In particular, |t0| ≤ δ, |ti − xi · si − ti−1| ≤ δ, and
|tn| ≤ δ. We can represent the sum s1 · x1 + . . . + sn · xn as follows:

n∑

i=1

si · xi = t0 +
n∑

i=1

(ti − xi · si − ti−1)− tn.

Therefore, ∣∣∣∣∣
n∑

i=1

si · xi

∣∣∣∣∣ ≤ |t0|+
n∑

i=1

|ti − xi · si − ti−1|+ |tn|.

Each of the terms in the right-hand side is bounded by δ, so |∑ si · xi| ≤
(n + 2) · δ. Similarly, from

s =
∑

si · x̃i =
∑

si · xi +
∑

si · (x̃i − xi),

we conclude that

|s| ≤
∣∣∣
∑

si · xi

∣∣∣ +
∑

|si| · |x̃i − xi|.
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Replacing |∑ si · xi| and |x̃i − xi| by their known upper bounds, we conclude
that

|s| ≤ (n + 2) · δ +
∑

|si| · δ2 = (n + 2) · δ + S · δ2.

Thus, if we take δ for which (n + 2) · δ + S · δ2 < 1, we will be able to conclude
that |s| < 1, and, since s in an integer, to conclude that s = 0.

It is easy to choose such δ: e.g., we can choose δ for which (n + 2) · δ ≤ 1/3
(i.e., δ ≤ 1/(3 · (n + 2))) and S · δ2 ≤ 1/3, i.e., δ ≤

√
1/(3S). To satisfy

both inequalities, we can take, e.g., the smallest of the required upper bounds:
δ = min{1/(3 · (n + 2)),

√
1/(3S)}.

For this δ, we have proven that if y ≤ δ2, then the corresponding instance
of PARTITION problem has a solution. We already know that in this case,
y = 0. So, if the original instance of the PARTITION problem has a solution,
then y = 0; otherwise, y > δ2. Hence, if we can compute y with an accuracy
ε0 = 0.5 · δ2, we will be able to tell whether the given instance of PARTITION
problem has a solution or not. Therefore, for this ε0, computing the bounds
y and y with an accuracy ε0 is an NP-hard problem. Then, for an arbitrary
ε > 0, we can consider a function (ε/ε0) · f(x1, . . . , xn, t0, . . . , tn). Computing
the lower endpoint for this function with accuracy ε is equivalent to computing
the lower endpoint for the original function f(x1, . . . , xn, t0, . . . , tn) with an
accuracy ε0 and is, therefore, also NP-hard. The theorem is proven.

Proof of Theorem 5.4. To prove this theorem, we will use reduction of the
same PARTITION problem as in the proof of Theorem 5.3. For each instance
s1, . . . , sn of PARTITION, we consider the following quadratic function of n
variables:

f(x1, . . . , xn) =
n∑

i=1

(1− x2
i ) + (s1 · x1 + . . . + sn · xn)2

for xi ∈ xi = [−1, 1]. One can easily see that the corresponding matrix is
almost scalar.

Similarly to the proof of Theorem 5.3, this function f(x1, . . . , xn) is the sum
of non-negative terms and therefore, y ≥ 0. If x1, . . . , xn form a solution to
the PARTITION problem, then for these xi, f(x1, . . . , xn) = 0 and hence,
y = 0. Vice versa, if y = 0, then f = 0 for some values x1, . . . , xn, for which,
therefore, xi ∈ {−1, 1} and

∑
si · xi = 0. So, PARTITION is indeed reducible

to the problem of exactly computing the range of f(x1, . . . , xn). Similarly to
the proof of the previous theorem, this reduction also works for approximate
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computations. Thus, the problem of computing the range is indeed NP-hard
for quadratic functions with almost scalar matrices. The theorem is proven.

Proof of Theorem 5.5. This theorem easily follows from the general results
about matrices that we will prove in Chapters 21 and 22. Namely, let us
consider an arbitrary bilinear function and intervals xi = yi = [−1, 1]. A
bilinear function is, by definition, linear in each of the variables yi. Thus, for
fixed x1, . . . , xn, the largest possible value of

∑
i,j aij ·xi ·yj =

∑
i yi ·(

∑
j aij ·xj)

over yi ∈ [−1, 1] is equal to
∑

i |
∑

j aij · xj |. In algebraic terms, if we take a
matrix A with elements aij , this expression is the l1-norm ‖Ax‖1 of the vector
Ax. Thus, the desired maximum of the bilinear form is equal to the largest
possible value of this expression for all vectors x ∈ [−1, 1]n. In Chapter 21, we
show that this largest possible value coincides with a matrix norm ‖A‖∞,1 of
the matrix A. Thus, the maximum of a bilinear function for xi = yi = [−1, 1]
is equal to the matrix norm. In Chapters 21 and 22, it is shown that computing
this norm (even approximately) is NP-hard. The theorem is proven.

Proof of the comment about narrow intervals. To prove Theorem 3.2,
we reduced the variables xi that take values from arbitrary intervals xi to new
variables yi that take values from narrow intervals yi (that are either degenerate
or equal to [1−δ, 1+δ]); the corresponding reduction was linear: xi = pi ·yi +qi

for some rational numbers pi and qi. If we substitute these expressions for xi

into a quadratic function f(x1, . . . , xn) = a0 +
∑

ai ·xi +
∑

aij ·xi ·xj , we get a
new quadratic function F (y1, . . . , yn) = a′0 +

∑
a′i ·yi +

∑
a′ij ·yi ·yj , with a′ij =

aij · pi · pj . It is easy to see that if the original matrix aij is 3-band or bilinear,
then the resulting matrix a′ij is also 3-band, or, correspondingly, bilinear. Thus,
for narrow input intervals, the basic problem of interval computations for 3-
band (correspondingly, for bilinear) matrices are NP-hard.

To prove a similar result about almost scalar matrices, we will take into con-
sideration that in our proof of Theorem 5.4, all the variables xi take the values
from the same interval [−1, 1]. Therefore, for all i, we have the same linear
transformation: p1 = . . . = pn = p. The resulting new matrix a′ij is, therefore,
equal to p2 · aij . Hence, whenever the original matrix was almost scalar, the
new matrix is almost scalar as well. Thus, the basic problems of interval com-
putations for almost scalar matrices and narrow input intervals is also NP-hard.
The comment is proven.



6
BASIC PROBLEM OF INTERVAL

COMPUTATIONS FOR
POLYNOMIALS WITH BOUNDED

COEFFICIENTS

In Chapter 3, we showed that the basic problem of interval computations is
NP-hard for polynomials f(x1, . . . , xn). In the proof, we did not restrict the
values of the coefficients. In this chapter, we show that the problem remains
NP-hard if we only consider polynomials with coefficients 0, 1, 2, and 3.

The main result of this chapter was obtained in collaboration with
G. Heindl.

Theorem 6.1.

For quadratic polynomials, the basic problem of interval computations re-
mains NP-hard if we allow only polynomials with coefficients 0, 1, 2, and 3.

For cubic polynomials, the basic problem of interval computations remains
NP-hard if we allow only polynomials with coefficients 0 and 1.

Comment. We do not know whether for quadratic polynomials, we can use
only 0 and 1 (or at least 0, 1, and 2) and still get NP-hardness.

Proof of Theorem 6.1. For cubic polynomials, the result is easy to prove:
for every m, we can take the cubic polynomial

fn(z1, . . . , zm, a0, a1, . . . , am, a11, . . . , a1m, . . . , am1, . . . , amm) =

a0 + a1 · z1 + . . . + am · zm + a11 · z1 · z1 + a12 · z1 · z2 + . . . + amm · zm · zm

with n = m + 1 + m + m2 (= m2 + 2m + 1) variables x1, . . . , xn:

79
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x1 = z1, . . . , xm = zm, xm+1 = a0, xm+2 = a1, . . . , x2m+1 = am,

x2m+2 = a11, x2m+3 = a12, . . . , xn = amm.

All the coefficients of this polynomial are equal to 0 or to 1. When ai and aij

are numbers, i.e., degenerate intervals, then the basic problem for the function
f(x1, . . . , xn) reduces to the basic problems for a generic quadratic polynomial,
which is known to be NP-hard. The result about cubic polynomials is thus
proven.

Let us prove the result about quadratic polynomials. Similarly to the proof
of Theorem 3.1, we can show that a 3-CNF formula F = F1& . . . &Fk with
v Boolean variables z1, . . . , zv (where each Fj is a disjunction of two or three
literals), is satisfiable if and only if y = 0, where y is the lower endpoint of the
polynomial

f(x1, . . . , xv, p1, . . . , pk, q1, . . . , qk) =
v∑

i=1

xi · (1− xi) +
k∑

j=1

f [Fj ]2,

for the intervals xi = pj = qj = [0, 1], where:

for Fj = a ∨ b, f [Fj ] = f [a] + f [b] + pj − 2;

for Fj = a ∨ b ∨ c, f [Fj ] = f [a] + f [b] + f [c] + pj + qj − 3,

f [zi] = xi, and f [¬zi] = 1− xi.

Comment. The only difference between this polynomial and the polynomial
described in the proof of Theorem 3.1 is that there, we had f [Fj ] = f [a] +
f [b] + f [c] + 2pj − 3 for disjunction Fj of the type a ∨ b ∨ c.

If we substitute the expressions for f [a] into f [Fj ], we conclude that each term
f [Fj ] has either the form pj + ε(j, 1) · xi(j,1) + ε(j, 2) · xi(j,2) + cj or the form
pj + qj + ε(j, 1) ·xi(j,1) + ε(j, 2) ·xi(j,2) + ε(j, 3) ·xi(j,3) + cj for ε(j, k) = ±1 and
for some constant cj .

The coefficients of the above-described polynomial can be arbitrarily large:
e.g., the constant coefficient is the sum of several terms. To decrease these
coefficients to the desired values, we will change the names of v variables xi to
xi0, introduce new variables:
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for every j = 1, . . . , k, a new variable kj whose interval value is kj = [cj , cj ];

for every i = 1, . . . , v, and for every j = 1, . . . , k, two new variables xij

and yij , with xij = [0, 1] and yij = [−1, 0],

and consider the following new polynomial:

G({xij}, {yij}, {pj}, {qj}, {kj}) =

v∑

i=1

xi0 · (1− xi0) +
v∑

i=1

k∑

j=1

(xi,j−1 + yij)2 +
v∑

i=1

k∑

j=1

(yi,j + xij)2 +
k∑

j=1

G2
j ,

where, depending on the number of lierals in Fj ,

Gj = pj + ri(j,1),j + ri(j,2),j + kj

or
Gj = pj + qj + ri(j,1),j + ri(j,2),j + ri(j,3),j + kj ,

and rij denotes either xij or yij depending on whether the corresponding term
ε is equal to 1 or to −1.

Let us first show that if we open all the parentheses, we will get a polynomial
with coefficients 0, 1, 2, and 3. Indeed, this is a quadratic polynomial, and it
has no constant terms; its only linear terms are xi0 (with coefficient 1), and all
other terms are either products of two different variables, or squares.

Each product of different variables comes from some square. For every two
different variables, there is at most one squared term with these two terms,
so, the coefficient at this product is either 0 (if there is no such term at
all) or 2 (if there is exactly one such term).

The square of each variable pj , qj , and kj occurs only once; so, these
squares come with coefficient 1.

Each square x2
ij comes from no more than 3 terms: (yi,j + xij)2,

(xi,j + yi,j+1)2, and, possibly, G2
j . Thus, the coefficient at x2

ij is equal to
0, 1, 2, or 3.

Similarly, the coefficient at y2
ij is equal to 0, 1, 2, or 3.

Thus, G is the polynomial with the desired values of the coefficients.
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Let us show that the lower endpoint y of the range of this polynomial G is equal
to 0 if and only the original formula F is satisfiable. Indeed, since xi0 ∈ [0, 1],
this polynomial is always non-negative. Therefore, the lower endpoint y of its
range is always ≥ 0. It can be equal to 0 if and only if each of the non-negative
terms that sum up to G are equal to 0, i.e., if:

xi0 · (1− xi0) = 0;

– hence, xi0 = 0 or xi0 = 1;

yij = −xi,j−1 and xij = −yij ;

– hence, xij = −(−xi,j−1) = xi,j−1, and therefore, xij = xi0 and yij =
−xi0;

Gj = 0;

– hence, due to the definitions of Gj and f [Fj ], we can conclude that
f [Fj ] = 0.

Similarly to the proof of Theorem 3.1, one can then prove that the formula F
is satisfiable.

Vice versa, if the formula F is satisfiable, we can take pj and xj as in Theo-
rem 3.1, and then take qj = pj , kj = cj , xij = xi0 = xi, and yij = −xi0. One
can easily check that for these values, G = 0 and therefore, y = 0.

So, we have reduced the NP-hard propositional satisfiabilty problem to the
problem of computing the range for quadratic polynomials with coefficients 0,
1, 2, and 3. Thus, this range computing problem is also NP-hard. The theorem
is proven.



7
FIXED DATA PROCESSING

ALGORITHMS, VARYING DATA:
STILL NP-HARD

In Chapter 3, we showed that if we consider arbitrary polynomials and arbitrary
input intervals, then the corresponding interval computation problem is NP-
hard. In this chapter, we show that this problem remain NP-hard if we fix a
sequence of polynomials fn(x1, . . . , xn) (one for each n) and consider arbitrary
(narrow) input intervals.

In terms of data processing, this means that we fix the data processing
algorithm and consider arbitrary input data.

Motivations. In Chapter 3, we showed that if we consider arbitrary polynomi-
als and arbitrary input intervals, then the corresponding interval computation
problem is NP-hard. In data processing terms, polynomials correspond to data
processing algorithms, and input intervals represent input data. In these terms,
the result from Chapter 3 means that if we allow arbitrary data processing al-
gorithms and arbitrary input data, then the corresponding problem is NP-hard.

A natural question is: what if we fix a data processing algorithm and allow
arbitrary input data; will the problem still remain NP-hard? Of course, if we
fix a sequence of linear functions fn(x1, . . . , xn), then the corresponding interval
computation problem is feasible (even linear time). So, the real question is: Is
it possible to choose a sequence fn(x1, . . . , xn) in such a way that for this
sequence, the interval computation problem remains NP-hard? Our answer is:
Yes, it is possible.

Theorem 7.1. There exists a sequence of cubic polynomials fn(x1, . . . , xn)
with rational coefficients for which the basic problem of interval computations
is NP-hard.
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Comments.

In other words, the problem of computing the range fn(x1, . . . ,xn) for
given intervals x1, . . . ,xn is NP-hard.

This problem remains NP-hard even if we only allow narrow intervals xi

and if we only want to compute the results approximately:

Theorem 7.2. There exists a sequence of cubic polynomials fn(x1, . . . , xn)
with rational coefficients such that for every ε > 0 and for every δ > 0, the
ε−approximate basic problem of interval computations is NP-hard for poly-
nomials fn(x1, . . . , xn) and for intervals xi that are absolutely and relatively
δ-narrow.

Arbitrary fn(x1, . . . , xn), Fixed fn(x1, . . . , xn),
arbitrary intervals xi abritrary intervals xi

Linear Linear time Linear time
fn(x1, . . . , xn)
Quadratic NP-hard ?
fn(x1, . . . , xn)
Cubic NP-hard NP-hard
fn(x1, . . . , xn)

Proof of Theorem 7.1. As a desired sequence of cubic functions
fn(x1, . . . , xn), we will take the functions

fn(z1, . . . , zm, a0, a1, . . . , am, a11, . . . , a1m, . . . , am1, . . . , amm) =

a0 + a1 · z1 + . . . + am · zm + a11 · z1 · z1 + a12 · z1 · z2 + . . . + amm · zm · zm

with n = m + 1 + m + m2 (= m2 + 2m + 1) variables x1, . . . , xn:

x1 = z1, . . . , xm = zm, xm+1 = a0, xm+2 = a1, . . . , x2m+1 = am,

x2m+2 = a11, x2m+3 = a12, . . . , xn = amm.

When ai and aij are numbers, i.e., degenerate intervals, then the basic problem
for the function fn(x1, . . . , xn) reduces to the basic problems for a generic
quadratic polynomial, which is known to be NP-hard (Theorem 3.1). The
theorem is proven.

Proof of Theorem 7.2. This theorem similarly follows from Theorem 3.2,
if we take into consideration that every degenerate interval is (automatically)
absolutely and relatively δ-narrow.



8
FIXED DATA, VARYING DATA
PROCESSING ALGORITHMS:

STILL INTRACTABLE

In Chapter 3, we showed that if we consider arbitrary polynomials and arbitrary
input intervals, then the corresponding interval computation problem is NP-
hard. In the previous chapter, we showed that if we fix polynomials and allow
arbitrary intervals, then the problem remains NP-hard. In this chapter, we
show that if we instead fix intervals and allow arbitrary polynomials, then the
problem also remains intractable.

In terms of data processing, this means that if we fix the data and consider
arbitrary data processing algorithms, the basic problem is NP-hard.

Motivations. In Chapter 3, we showed that if we consider arbitrary polynomi-
als and arbitrary input intervals, then the corresponding interval computation
problem is NP-hard. In data processing terms, polynomials correspond to data
processing algorithms, and input intervals represent input data. In these terms,
the result from Chapter 3 means that if we allow arbitrary data processing al-
gorithms and arbitrary input data, then the corresponding problem is NP-hard.

In the previous chapter, we have shown that this problem remains NP-hard if
we fix a sequence of data processing algorithms and allow arbitrary input data.
In this chapter, we show that the problem remains intractable if, instead, we
fix the input data (i.e., the intervals xi) and allow arbitrary data processing
algorithms.

Theorem 8.1. There exists a sequence of intervals x(0)
1 , . . . ,x(0)

n , . . . with ratio-
nal endpoints for which the basic problem of interval computations is NP-hard
for quadratic polynomials f(x1, . . . , xn) with rational coefficients.
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Comments.

In other words, for these intervals x(0)
i , the problem of computing the

range f
(
x(0)

1 , . . . ,x(0)
n

)
of a given quadratic polynomial f(x1, . . . , xn) is

NP-hard.

This problem remains NP-hard even if we only allow narrow intervals x(0)
i ,

and if we only want to compute the results approximately:

Theorem 8.2. For every δ > 0, there exists a sequence of intervals
x(0)

1 , . . . ,x(0)
n , . . . with rational endpoints, each of which is absolutely and rela-

tively δ-narrow and for which, for every ε > 0, the ε-approximate basic problem
of interval computations for quadratic polynomials f(x1, . . . , xn) with rational
coefficients is NP-hard.

The results from this chapter and from the previous Chapter 7 can be repre-
sented by the following table:

Arbitrary fn, Fixed fn, Arbitrary fn,
arbitrary xi arbitrary xi fixed x(0)

i

Linear Linear time Linear time Linear time
fn(x1, . . . , xn)
Quadratic NP-hard ? NP-hard
fn(x1, . . . , xn)
Cubic NP-hard NP-hard NP-hard
fn(x1, . . . , xn)

Proof of Theorems 8.1 and 8.2. We can take x(0)
i = [1− δ, 1 + δ] for every

i; for this choice, Theorems 8.1 and 8.2 follow from the proof of Theorem 3.2.
The theorems are proven.



9
WHAT IF WE ONLY ALLOW SOME

ARITHMETIC OPERATIONS IN
DATA PROCESSING?

In the previous chapters, we analyzed the basic problem of interval computa-
tions for polynomials f(x1, . . . , xn). A polynomial can be defined as a function
obtained from (rational) numerical constants and variables by using arithmetic
operations +, −, and ∗. A natural question analyzed in this chapter is: What
if we only allow some of these operations?

9.1. Definitions and the Main Results

For general polynomials f(x1, . . . , xn), the basic problem of interval compu-
tations is NP-hard. Polynomials can be defined as functions obtained from
(rational) numbers and variables x1, . . . , xn by applying three arithmetic oper-
ations: addition +, subtraction −, and multiplication ∗. It is therefore natural
to ask: What if we only allow some of these operations? Will the problem
remain intractable? In this chapter, we will answer this question.

Definition 9.1. Let O ⊆ {+,−, ∗} be a non-empty set of arithmetic oper-
ations. By an O-polynomial, we mean a function that can be obtained from
rational constants and from the variables x1, . . . , xn by applying operations
from the set O.

In the set {+,−, ∗} of all possible arithmetic operations, there are seven non-
empty subsets O: {+}, {−}, {∗}, {+,−}, {+, ∗}, {−, ∗}, and {+,−, ∗}. The
following theorem describes the complexity of interval computations for the
corresponding O-polynomials:
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Theorem 9.1.

If the set O contains multiplication and at least one more operation, then
for O-polynomials, the basic problem of interval computations is NP-hard.

For every other set O, there exists a polynomial-time algorithm that solves
the basic problem of interval computations for all O-polynomials.

If, instead of arbitrary rational constants, we only allow non-negative constants
(and, correspondingly, positive intervals, i.e., intervals with non-negative end-
points), the results are slightly different:

Definition 9.2. Let O ⊆ {+,−, ∗} be a non-empty set of arithmetic opera-
tions. By a positive O-polynomial, we mean a function that can be obtained
from non-negative rational numbers and from the variables x1, . . . , xn by ap-
plying operations from O.

Theorem 9.2.

For positive {−, ∗}-polynomials and positive intervals, the basic problem of
interval computations is NP-hard.

For positive {+,−, ∗}-polynomials and positive intervals, the basic problem
of interval computations is NP-hard.

For every other set O, there exists a polynomial-time algorithm that solves
the basic problem of interval computations for all positive O-polynomials
and for all positive intervals.

The corresponding results can be described by the following table:
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Set O of Arbitrary Positive
possible operations O-polynomials O-polynomials

and arbitrary and positive
intervals intervals

{+} Linear time Linear time
{−} Linear time Linear time
{∗} Polynomial time Polynomial time
{+,−} Linear time Linear time
{+, ∗} NP-hard Polynomial time
{−, ∗} NP-hard NP-hard
{+,−, ∗} NP-hard NP-hard

Proofs

Proof of Theorem 9.1. If we only allow + and −, then the resulting O-
polynomials are linear functions, and for linear functions, the basic problem of
interval computations can be solved in linear time.

If we only allow multiplication, i.e., if O = {∗}, then the general O-polynomial
takes the form f(x1, . . . , xn) = r ·xa1

1 ·. . .·xan
n for some non-negative integers ai.

For each i, we can easily describe the set Xi of all possible values of Xi = xai
i

when xi ∈ [xi, xi]:

If ai is odd, or if ai is even and xi ≥ 0, then the function xai is strictly
increasing on the intervals xi = [xi, xi], and therefore, Xi = [(xi)

ai , (xi)ai ].

If ai is even and xi ≤ 0, then the function xai is strictly decreasing on the
interval xi, and therefore, Xi = [(xi)ai , (xi)

ai ].

If ai is even and xi ≤ 0 ≤ xi, then Xi = [0,max{(xi)
ai , (xi)ai}].

The desired interval y of possible values of y = r ·X1 · . . . ·Xn can be obtained
if we apply naive interval computations: y = r ·X1 · . . . ·Xn.

If we allow + and ∗, then we can get an arbitrary polynomial with rational
coefficients, and for arbitrary polynomials, the basic problem of interval com-
putations is NP-hard. (Therefore, the problem is also NP-hard if we allow −
in addition to + and ∗.)
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If O = {−, ∗}, then we also get NP-hardness, because by using − and ∗, we can
get + as a+b = a−(0−b) and thus, every polynomial with rational coefficients
can also be represented by using only − and ∗. The theorem is proven.

Proof of Theorem 9.2. Since positiveO-polynomials form a particular case of
O-polynomials, polynomial-time algorithms known for arbitrary O-polynomials
are applicable to positive ones as well. Thus, from Theorem 9.1, we get the
feasibility for O = {+}, O = {−}, O = {+,−}, and O = {∗}.

If we only allow + and ∗, then the resulting polynomials are monotonely non-
decreasing in each variable; therefore, when xi ∈ [xi, xi], the smallest possible
value of f(x1, . . . , xn) is attained when xi = xi for all i, and the largest possible
value of xi is attained when xi = xi for all i. Thus, the desired range is easy
to compute:

f([x1, x1], . . . , [xn, xn]) = [f(x1, . . . , xn), f(x1, . . . , xn)].

For O = {+,−, ∗}, we can get an arbitrary polynomial with rational coeffi-
cients, and for arbitrary polynomials and positive intervals, NP-hardness was
proven in Theorem 3.2. If O = {−, ∗}, then we also get NP-hardness, because
(as we have mentioned in the proof of Theorem 9.1) by using − and ∗, we can
get + as a + b = a − (0 − b) and thus, every combination of +, −, and ∗ can
also be represented by using only − and ∗. The theorem is proven.

Comment. In our proofs, we used monotonicity of the function f(x1, . . . , xn).
Monotonicity has indeed been successfully used in interval computations: see,
e.g., Collatz [69, 70], Lakshmikantham et al. [246], Walter [422], Harrison [140],
Moore [290], Schröder [382], Rall [334], Mannshardt [269], Dimitrova et al. [90],
Markov [272].
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FOR FRACTIONALLY-LINEAR

FUNCTIONS,
A FEASIBLE ALGORITHM SOLVES

THE BASIC PROBLEM OF
INTERVAL COMPUTATIONS

In Chapter 3, we have shown that while the basic problem of interval computa-
tions is feasible for linear functions f(x1, . . . , xn), for quadratic functions, this
problem is already NP-hard. In this chapter, we show that for another natural
generalization of linear functions, namely, for fractional-linear functions, the
situation is much better: there exists a feasible algorithm that solves the basic
problem of interval computations for such functions.

We have already mentioned that the basic problem of computing an interval
f(x1, ...,xn) is feasible for linear functions f(x1, ..., xn). Can we generalize this
result? There are two natural generalizations of linear functions:

quadratic functions; for them, as we have shown, the basic problem is
NP-hard;

fractionally linear functions, i.e., functions of the type

y = f(x1, ..., xn) =
a0 + a1x1 + ... + anxn

b0 + b1x1 + ... + bnxn
;

these functions occur in many practical applications such as measuring
instruments, intelligent control, etc. (see, e.g., Krotkov et al. [239, 240],
Gerasimov et al. [122, 123], Mazin et al. [277, 278], Trejo et al. [414],
Lea et al. [248]); let us show that for such functions, the basic problem is
feasible.
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Definition 10.1. By a basic interval computation problem for fractionally
linear functions, we mean the following problem:

GIVEN:

• a positive integer n > 0;

• n + 1 rational numbers a0, a1, . . . , an;

• n + 1 rational numbers b0, b1, . . . , bn;

• n intervals x1, . . . ,xn with rational endpoints;

COMPUTE: the range y = f(x1, ...,xn) of the function

y = f(x1, ..., xn) =
a0 + a1x1 + ... + anxn

b0 + b1x1 + ... + bnxn
.

Definition 10.2. We say that an instance of the basic interval computation
problem for a fractionally linear function is non-degenerate if

0 6∈ b0 + b1 · x1 + . . . + bn · xn.

Comment. If an instance is not non-degenerate, then the interval of possible
values of the denominator contains 0, and therefore, the set of all possible
values of the fractions contains ∞. So, the range is a (finite) interval only if
the instance is non-degenerate.

Definition 10.3. We say that an algorithm computes the optimal enclosure
for a fractionally linear problem, if it computes the endpoints y and y of the
range y = f(x1, ...,xn).

Theorem 10.1. (Lea et al. [248]) There exists an algorithm that computes the
optimal enclosure for an arbitrary non-degenerate fractionally linear problem
in quadratic time (i.e., in computation time ≤ Cn2).

Comment. So, the basic problem of interval computations is feasible for frac-
tionally linear functions. In Lea et al. [248], this result is applied to intelligent
control problems.

This result can be represented as a table:
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Function f(x1, . . . , xn) Computational complexity
of the corresponding basic problem of
interval computations

Linear f Linear time
Quadratic f NP-hard
Fractionally-linear f Quadratic time

Let us first describe the algorithm. This algorithm consists of 6 steps, which
we will number Steps 0 through 5. In this algorithm, we will assume that the
expression a/b has a meaning not only for b 6= 0, but for b = 0 as well: for
a < 0, a/0 means −∞; for a > 0, it means +∞.

ALGORITHM.

0. Eliminating irrelevant variables. If for some i, we have ai = bi = 0,
we eliminate the variable xi. (And we denote the resulting new
number of variables again by n.)

1. Making a denominator positive. If b0 +
∑

bi ·xi < 0, change the signs
of all the coefficients, i.e., set anew

i = −ai and bnew
i = −bi

for all i.

2. Making the coefficients in the denominator non-negative. For all i =
1, ..., n, if bi < 0, replace xi with the new variable xnew

i = −xi,
change the signs of the coefficients ai and bi (anew

i = −ai and
bnew
i = −bi), and change xi = [xi, xi] to xnew

i = [−xi,−xi].

3. Eliminating degenerate variables. If ai/bi = aj/bj for some i 6=
j, and |bi| ≥ |bj |, replace two variables xi and xj with a single
variable xnew

i , for which bi and ai stay the same as before
(bnew

i = bi and anew = ai), and for which xnew
i = xi + (aj/ai)xj.

(And we denote the resulting new number of variables again by n.)

4. Ordering the variables. Order the variables xi in the increasing
order of the corresponding ratios ai/bi, so that:

a1

b1
<

a1

b2
< ... <

an

bn
.



94 Chapter 10

5. Computing y and y. Compute y = max(y0, y1, ..., yn), where

yk =
a0 + a1 · x1 + . . . + ak · xk + ak+1 · xk+1 + . . . + an · xn

b0 + b1 · x1 + . . . + bk · xk + bk+1 · xk+1 + . . . + bn · xn
.

Compute y = min(y
0
, y

1
, . . . , y

n
), where

y
k

=
a0 + a1 · x1 + . . . + ak · xk + ak+1 · xk+1 + . . . + an · xn

b0 + b1 · x1 + . . . + bk · xk + bk+1 · xk+1 + . . . + bn · xn

.

Example. Let n = 2, x1 = x2 = [1, 2],

f(x) =
1 + x1 + x2

1 + x1 − 4x2
.

In this case, the interval 1 + [1, 2] − 4[1, 2] = [−6,−1] does not contain 0, so,
the problem is non-degenerate. Let us apply the above algorithm:

0. This function does not have any irrelevant variables, so we move directly
to Step 1.

1. Since b0 +
∑

bi · xi = 1 + 1 − 4 = −2 < 0, we change the signs of all the
coefficients. As a result, we arrive at the following problem: x1 = x2 =
[1, 2],

f(x) =
−1− x1 − x2

−1− x1 + 4x2
.

2. The coefficient bi is negative for i = 1, so for this i, we introduce the new
variable, and correspondingly change the coefficients a1, b1 and the interval
x1. As a result, we get the following problem: x1 = [−2,−1], x2 = [1, 2],

f(x) =
−1 + x1 − x2

−1 + x1 + 4x2
.

3. The values a1/b1 = 1 and a2/b2 = −1/4 are different, so, we do nothing
at this step.

4. Since a1/b1 > a2/b2, we change the order of the variables. As a result, we
get the following problem: x1 = [x1, x1] = [1, 2], x2 = [x2, x2] = [−2,−1],

f(x) =
−1− x1 + x2

−1 + 4x1 + x2
.
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5. We compute y as y = max(y0, y1, y2), where:

y0 =
−1− 2 + (−1)
−1 + 8 + (−1)

=
−4
6

= −2
3
,

y1 =
−1− 1 + (−1)
−1 + 4 + (−1)

=
−3
2

= −3
2
,

y2 =
−1− 1 + (−2)
−1 + 4 + (−2)

=
−4
1

= −4.

Hence, y = −(2/3). We also compute y as y = min(y
0
, y

1
, y

2
), where:

y
0

=
−1− 1 + (−2)
−1 + 4 + (−2)

=
−4
1

= −4,

y
1

=
−1− 2 + (−2)
−1 + 8 + (−2)

=
−5
5

= −1,

y
2

=
−1− 2 + (−1)
−1 + 8 + (−1)

=
−4
6

= −2
3
.

So, y = −4, and y = [−4,−(2/3)].

Proof. Let us denote the numerator of the function f(x1, . . . , xn) by N , and
its denominator by D. Let us first prove that Steps 1–4 do not change the
problem:

Step 1. If we change the signs of all the coefficients ai and bi, then both
numerator and denominator will change signs, and the ratio will remain
unchanged.

Step 2. If we rename the variable xi = −xnew
i , then the values ai and bi,

and the interval of possible values of xnew
i must be changed accordingly.

Step 3. If ai/bi = aj/bj , then aj/ai = bj/bi. Therefore,

bi · xi + bj · xj = bi · (xi + (bj/bi) · xj) = bi · (xi + (aj/ai) · xj),

and ai · xi + aj · xj = bi · (xi + (aj/ai) · xj). Therefore, we can replace the
terms ai ·xi+aj ·xj and bi ·xi+bj ·xj that depend on xi and xj with ai ·xnew

i

and bi ·xnew
i , where the new variable xnew

i is equal to xnew
i = xi+(aj/ai)xj .

If xi ∈ xi and xj ∈ xj , then the set xnew
i of possible values of the new

variable is equal to xnew
i = xi + (aj/ai) · xi.
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Step 4. Renaming the variables does not change the problem.

In view of Steps 1–4, we can assume that bi ≥ 0, and that the ratio ai/bi is
increasing as i increases.

After Step 1, we can be sure that the value of the denominator D is positive at
least for one combination of xi ∈ xi; since the problem is non-degenerate, the
denominator cannot attain 0, and hence, it is always positive.

The function f(x1, . . . , xn) is a continuous function defined on a compact set

x1 × . . .× xn.

Therefore, its maximum y is attained at some point (xopt
1 , . . . , xopt

n ):

y = f(xopt
1 , . . . , xopt

n ) =
Dopt

Nopt
.

The function f(x1, . . . , xn) is smooth; therefore, if for some i, the value xopt
i

is inside the interval [xi, xi] (i.e., xopt
i ∈ (xi, xi)), then i-th partial derivative

must be equal to 0:

∂f

∂xi
(x1, . . . , xn)|x1=xopt

1 ,...,xn=xopt
i

= 0.

Applying the formula for the derivative of the fraction, we conclude that

ai ·Dopt − bi ·Nopt = 0,

hence, ai/bi = Nopt/Dopt = y. In this case, if we replace xi with xi, then, the
new value D′ = D(xopt

1 , . . . , xopt
i−1, xi, x

opt
i+1, . . . , x

opt
n ) of the denominator D will

be equal to

D′ = D(xopt
1 , . . . , xopt

i−1, x
opt
i , xopt

i+1, . . . , x
opt
n ) + bi · (xi − xopt

i )

= Dopt + bi · (xi − xopt
i ).

Similarly, the new value N ′ = N(xopt
1 , . . . , xopt

i−1, xi, x
opt
i+1, . . . , x

opt
n ) of the nu-

merator N will be equal to N ′ = Nopt + ai · (xi − xopt
i ). Since Nopt = Dopt · y

and ai = bi · y, we conclude that

D′ = Dopt · y + bi · y · (xi − xopt
i ) = y · (Dopt + bi · (xi − xopt

i )) = y ·N ′.

Hence, the value f(xopt
1 , . . . , xopt

i , xi, x
opt
i+1, . . . , x

opt
n ) = D′/N ′ is equal to the

maximum y of the function f(x1, . . . , xn).
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Therefore, if for some i, xopt
i ∈ (xi, xi), we can change this value xopt

i to xi and
still get a point at which the function f(x1, . . . , xn) attains its maximum. So,
without losing generality, we can assume that for every i, xopt

i is either equal
to xi, or to xi.

If xopt
i = xi, then, since the function f(x1, . . . , xn) attains its maximum for xopt

i ,
an increase in xi can either decrease the value of the function f(x1, . . . , xn),
or keep this value unchanged. So, at the optimal point (xopt

1 , . . . , xopt
n ), the

function f(x1, . . . , xn) must have a non-negative i-th partial derivative ∂f/∂xi.
This partial derivative is equal to (ai · Dopt − bi · Nopt)/(Dopt)2, so, the fact
that this derivative is non-negative, means that ai ·Dopt − bi ·Nopt ≤ 0, which
is equivalent to ai ·Dopt ≤ bi ·Nopt. Since Dopt > 0 and bi ≥ 0, we can divide
both sides of this inequality by bi ·Dopt, resulting in ai/bi ≤ Nopt/Dopt = y.

Similarly, if xopt
i = xi, a decrease in xi can either decrease the value of the

function f(x1, . . . , xn), or keep it unchanged. So, we will get ∂f/∂xi ≥ 0, and
ai/bi ≥ y.

So, for every i, either xopt
i = xi and ai/bi ≤ y, or xopt

i = xi and ai/bi ≥ y.
Hence, if ai/bi < y, we have xopt

i = xi, and if ai/bi > y, we have xopt
i = xi. If

ai/bi = y, then, as above, we can switch from xopt
i to xi without changing the

value of the function f(x1, . . . , xn).

Since after Step 4, the variables are ordered in the order of the ratio ai/bi, this
means that for all variables x1, . . . , xk up to some k−th one, we have xopt

i = xi,
and for the other variables xk+1, . . . , xn, we have xopt

i = xi. In other words, we
conclude that y = yk for some k. Hence,

y ≤ max(y0, . . . , yn).

On the other hand, each value yk is a possible value of the function f(x1, . . . , xn)
and is therefore, not exceeding the maximum y of the function f(x1, . . . , xn).
So, yk ≤ y for all k; hence,

max(y0, . . . , yn) ≤ y.

From these two inequalities, we conclude that y = max(y0, . . . , yn).

The proof for y is similar.
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To complete the proof, we must now show that our algorithm requires quadratic
time. Indeed, initial steps 1 and 2 require the number of operations that is linear
in n. Sorting (Step 4) can be done in time n log2(n) ¿ n2 (see, e.g., Cormen et
al. [75]), and the final step requires us to compute 2(n + 1) expressions y

k
and

yk, each of which requires 4n + 1 arithmetic operations: 2n multiplications,
2n additions, and 1 division. Totally, we need ≤ 2(n + 1)(4n + 1) = O(n2)
arithmetic operations. The theorem is proven.



11
SOLVING INTERVAL LINEAR

SYSTEMS IS NP-HARD

In the previous chapter, we showed how to compute the range of a fractionally
linear function f(x1, . . . , xn) on given intervals x1, . . . ,xn in polynomial time.
A fractionally linear function f(x1, ..., xn) can be described as a solution of a
linear equation (b0+

∑
bixi)·f = a0+

∑
aixi. The problem of finding the range

of f is thus equivalent to finding the set of all possible solutions of this equation
when xi take the values in their respective intervals. A natural generalization
is, therefore, the solution of a system of linear equations

∑
aij · fj = bi, where

the coefficients aij and bi are linear functions of the variables that are defined
with interval uncertainty.

In this chapter and in the next Chapter 12, we analyze the computational
complexity and feasibility of solving such interval linear equations. In most for-
mulations, this problem is NP-hard, but some particular cases of this problem
turn out to be feasible.

11.1. Introduction

In the previous chapters, we analyzed the computational complexity and fea-
sibility of the problem of estimating the range y = f(x1, . . . ,xn) of an ex-
plicitly given function y = f(x1, . . . , xn) on given intervals x1, . . . ,xn. In
terms of data processing, the range estimation problem describes the situ-
ation of indirect measurement of y, when we have measured the quantities
xi, and from the intervals xi of possible values of xi we find the interval
y of possible values of y = f(x1, . . . , xn). If there are several quantities
y1 = f1(x1, . . . , xn), . . . , ym = fm(x1, . . . , xn) that we want to measure, then
we have to estimate the range of each of these variables.

99
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In many real-life situations, we do not have the explicit formula that expresses
each of these variables yj in terms of xi; instead, we have implicit formulas,
i.e., a system of equations Fk(x1, . . . , xn, y1, . . . , ym) = 0 that relate yj and xi.
What is the computational complexity and feasibility of the range estimation
problem for such implicitly defined functions? This is the question that we
will try to answer in this chapter. Namely, we will show that this problem is
NP-hard even in the simplest case of systems of linear equations.

A general system of linear equations with the unknowns y1, . . . , ym has the form∑
j aij · yj = bi. The situation in which we only know the intervals aij and bi

of the possible values of each of the coefficients is called a system of interval
linear equations and denoted by

∑
j aij · yj = bi. The matrix formed by the

intervals aij is called an interval matrix and denoted by A; the vector formed
by coefficients bi is called an interval vector and denoted by b. In terms of A
and b, a system of interval linear equations can be rewritten as Ay = b, where
we denoted y = (y1, . . . , ym).

If we only know the intervals of possible values of the coefficients, then a vector
y = (y1, . . . , ym) is possible if and only if

∑
aij · yj = bi (i.e., Ay = b) for some

aij ∈ aij and bi ∈ bi. (In the following text, we will sometimes describe these
component-wise inclusions in a shortened form, as A ∈ A and b ∈ b.) The set
of all possible vectors is called a solution set of the system of interval linear
equations. In the interval computations framework, we would like, for each j
from 1 to m, to describe the interval that contains all possible values of yj . The
narrower this interval, the better. Ideally, therefore, we should compute the
interval yj = [y

j
, yj ], where y

j
is the smallest possible value of yj for y ∈ Y ,

and yj is the largest possible value of yj . If we cannot compute this interval
exactly, then we would like to compute an enclosure for this interval, i.e., an
interval ỹj = [ỹ

j
, ỹj ] ⊇ yj .

When all the coefficients are precisely known, then we get a problem of solving
a system of linear equations which can be solved by known polynomial time
algorithms; see, e.g., Schrijver [381], Cormen [75]. There also exist many good
algorithms for solving systems of interval linear equations; see, e.g., Alefeld et
al. [10], Rump [368], Neumaier [302]. It turns out, however, that each algorithm
that computes the exact ranges yj sometimes takes an exponentially long time.
This fact led to the suspicion that the general problem of computing the exact
range is not feasible. This problem indeed turned out to be NP-hard.

Moreover, it is even somewhat more difficult than the problem of computing
the range for explicit functions; there are two reasons for that:
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First, for explicit functions, computing the exact range is difficult, but we
can always use naive interval computations, and easily get an enclosure
for the range. For interval linear systems, even computing an enclosure is
a difficult task.

Second, before we start finding the range, it is desirable to check whether
the interval system is consistent at all: it could be that our model is wrong
and the system is inconsistent, in which case the enclosure makes no prac-
tical sense (it can also happen that no finite enclosure is possible because
the solution set is unbounded). It turns out that not only computing the
enclosures is NP-hard, but even checking consistency is NP-hard.

Historical comment. The first NP-hardness result for the problem of solving
interval linear systems was proved by Kreinovich, Lakeyev, and Noskov in 1993
[220, 244, 245]: the problem of computing the bounds exactly for arbitrary
rectangular (not necessarily square) matrices is NP-hard. Later in 1993, for
arbitrary rectangular matrices, it was shown (by the same authors) that the
problem of estimating the range with a given accuracy ε > 0 is also NP-hard
[221]. In that same year (1993), Rohn et al. proved [359] that the problem
of computing the bounds exactly is NP-hard even for square regular matrices
(regular means that every matrix aij ∈ aij is nonsingular). On hearing about
these two results, A. Neumaier conjectured that the problem of computing
the bounds with a given accuracy is NP-hard even for square regular matrices.
This conjecture was proven correct in 1995 by Rohn, Lakeyev et al. [354, 219].
Finally, it has been recently proven that for every ε > 0 and δ > 0, the problem
of computing the bounds with an accuracy ε for square regular interval matrices
made of intervals of width ≤ δ is also NP-hard: Kahl [166], Rohn [357].

11.2. Definitions and Main NP-Hardness Re-
sults

Definitions and NP-Hardness of Checking Consistency

Definition 11.1. By an interval linear system, we mean a tuple 〈m,n,A,b〉,
where m and n are positive integers, A is a (m × n)-interval matrix, and b is
an m-dimensional interval vector. This system will also be written as Ay = b.
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Definition 11.2.

We say that a vector (y1, . . . , ym) is a possible solution of an interval linear
system 〈m,n,A,b〉 if, for some values aij ∈ aij and bi ∈ bi, we have

m∑

j=1

aij · yj = bi for all i = 1, . . . , n

We say that an interval linear system is consistent if it has a possible
solution.

Theorem 11.1. Checking consistency of interval linear systems is NP-hard.

Similarly to Chapter 3, this NP-hardness results is also true for narrow intervals
aij and bi:

Theorem 11.2. (Kahl [166]) For every δ > 0, the problem of checking consis-
tency of interval linear systems with intervals aij and bi that are both absolutely
and relatively δ-narrow is NP-hard.

Arbitrary absolute Absolutely δ-narrow
accuracy of aij and bi aij and bi

Arbitrary relative NP-hard NP-hard
accuracy of aij and bi

Relatively δ-narrow NP-hard NP-hard
aij and bi

Definition of the Solution Interval

Definition 11.3. Let 〈m,n,A,b〉 be an interval linear systems, and let j ≤ m
be a positive integer. By j-th solution interval yj , we mean a (possibly infinite)
interval yj = [y

j
, yj ], where:

y
j

is the smallest possible value of yj for all possible solutions y =
(y1, . . . , yj−1, yj , yj+1, . . . , ym) of the given interval linear system.

yj is the largest possible value of yj for all possible solutions y =
(y1, . . . , yj−1, yj , yj+1, . . . , ym) of the given interval linear system.
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Comment. The words “possibly infinite” are added to this definition because
the set of possible solutions can be unbounded: the trivial 1 × 1 example is a
system consisting of a single equation [−1, 1] · y1 = [1, 1], for which the set of
possible values of y1 is (−∞,−1] ∪ [1,∞).

Computing Possibly Infinite Solution Intervals is NP-
Hard

As we have just mentioned, the set of possible solutions can be unbounded; in
this case, the desired answers y

j
and yj are infinite. It turns out (see below)

that computing these (possibly infinite) values exactly is NP-hard. Moreover,
it is NP-hard to produce any enclosure to the solution as long as we require
that for a finite interval, the enclosure should be finite:

Definition 11.4. We say that an algorithm produces a possibly finite enclosure
to the solution yj = [y

j
, yj ] of an interval linear system if it produces an

enclosure ỹj ⊇ yj that is finite if the solution interval yj is finite.

Theorem 11.3. (Rohn [351]) The problem of computing a possibly finite en-
closure of a given interval linear system is NP-hard.

Corollary. The problem of exactly computing solution intervals of a given
interval linear system is NP-hard.

Theorem 11.4. (Kahl [166]) For every δ > 0, the problem of computing a
possibly finite enclosure of a given interval linear system with intervals aij and
bi that are both absolutely and relatively δ-narrow is NP-hard.

Corollary. For every δ > 0, the problem of exactly computing solution inter-
vals of a given interval linear system with intervals aij and bi that are both
absolutely and relatively δ-narrow is NP-hard.
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Computing Finite Solution Intervals Exactly is Also
NP-Hard

In most practical cases, we are interested in the finite solution intervals; in
other words, we are interested in solving the following problem:

Definition 11.5. By a problem of solving interval linear systems, we mean
the following problem:

GIVEN:

• an interval linear system 〈m,n,A,b〉; and

• a positive integer j ≤ m for which j-th solution interval yj = [y
j
, yj ]

is finite;

COMPUTE: the endpoints of j-th solution interval.

Comment. In short, we want our algorithm to work if the solution interval is
finite. (It is worth mentioning here that, according to the proof of Theorem
11.3, there is no easy algorithm to check whether a solution interval is finite.)

Theorem 11.5. The problem of solving interval linear systems is NP-hard.

Theorem 11.6. (Kahl [166]) For every δ > 0, the problem of solving interval
linear systems with intervals aij and bi that are both absolutely and relatively
δ-narrow is NP-hard.

Computing Finite Solution Intervals Approximately is
NP-Hard

Since computing finite solution intervals exactly is NP-hard, the natural ques-
tion is: is computing the solution intervals approximately feasible or NP-hard?
In general, it turns out to be NP-hard.

Finiteness is guaranteed, if, e.g., the interval matrix A is regular in the sense
that for every A ∈ A, and for every vector b, there is exactly one vector y for
which Ay = b. This condition is difficult to check (as we will see in the chapters
about the properties of interval matrices, it is even NP-hard to check), but there
are verifiable properties that guarantee regularity. One of such properties is the
following property of strong regularity:
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Definition 11.6. A square interval matrix A = [Ã−∆, Ã+∆] is called strongly
regular if %(|(Ã)−1|∆) < 1 (where |M | denotes a matrix with elements |mij |,
and ρ(M) denotes the spectral radius of a matrix M).

We will show that the problem of approximately computing the solution inter-
vals is NP-hard even if we consider only interval linear systems with strongly
regular matrices A:

Theorem 11.7. Suppose for some real number ε > 0, there exists a polynomial-
time algorithm which for each strongly regular n × n interval matrix A and
each b (both with rational bounds) computes rational enclosures [ỹ

j
, ỹj ] of the

solution intervals yj for which
∣∣∣∣∣
ỹj − yj

yj

∣∣∣∣∣ ≤ ε

for each j with yj 6= 0. Then P=NP.

Theorem 11.8. Suppose for some real number ε > 0, there exists a polynomial-
time algorithm which for each strongly regular n × n interval matrix A and
each b (both with rational bounds) computes rational enclosures [ỹ

j
, ỹj ] of the

solution intervals yj for which |ỹj − yj | ≤ ε for all j. Then P=NP.

So, the problem of approximately computing solution intervals is NP-hard if we
understand “approximately” both in terms of absolute and in terms of relative
accuracy:

Computing exact Computing absolutely Computing relatively
solution intervals ε-approximate ε-approximate

solution intervals solution intervals
NP-hard NP-hard NP-hard

Comments.

As we explained in Chapter 1, due to book size limitations, we had to omit
some easily accessible proofs. In particular, we do not present the proofs
of this theorem and of the following theorems. These proofs are described,
in detail, in the paper [219] published in Reliable Computing.
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If P 6=NP, then for absolute accuracy, not only we cannot compute enclo-
sures with one and the same accuracy (i.e., with one and the same bound
for absolute overestimation) for all n in reasonable time, but even if we
allow accuracy to decrease polynomially with n, we still will not be able
to compute these “relaxed-accuracy” enclosures:

Theorem 11.9. Suppose for some polynomial ε(n) > 0, there exists a
polynomial-time algorithm which for each strongly regular n×n interval matrix
A and each b (both with rational bounds) computes rational enclosures [ỹ

j
, ỹj ]

of the solution intervals yj for which |ỹj − yj | ≤ ε(n) for all j. Then P=NP.

Comments.

In these three theorems, we can additionally assume that all intervals from
the matrix A and the vector b are absolutely δ-narrow for a given δ > 0.

Since the general problem of solving interval linear systems is NP-hard, it
is desirable to find feasible subclasses. We will look for such subclasses in
the next chapter.

11.3. Interval Linear Systems with Symmetric
Matrices

Motivation, Definitions, and a Brief History

In some cases, we know that the actual (unknown) matrix A is symmetric
(aij = aji). In this case, every known interval bound on an element aij also
bounds aji, and vice versa. Thus, the interval matrix A (formed by such
interval bounds) is also symmetric (aij = aji), and it is natural to consider the
set Y sym of all solutions that correspond to systems with symmetric matrices
only:

Y sym = {y|Ay = b for some A ∈ A, b ∈ b, A symmetric}.
For this problem, we want to compute the symmetric solution interval ysym

j =
[ysym

j
, ysym

j ], where

ysym
j

= min
Y sym

yj , and ysym
j = max

Y sym
yj
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Enclosure methods for the symmetric case were given by Jansson [162] and
Alefeld and Mayer [9] (see also Alefeld et al. [5, 6, 7, 8]).

NP-Hardness Results for Interval Linear Systems with
Symmetric Matrices

J. Rohn has shown, in [355], that computing the exact endpoints of the sym-
metric solution intervals ysym

j is an NP-hard problem. In Rohn, Lakeyev et al.
[354, 219], it is shown that approximate computation of these symmetric solu-
tion intervals is also NP-hard, even for strongly regular matrices:

Theorem 11.10. Suppose for some real number ε > 0, there exists a
polynomial-time algorithm which for each symmetric strongly regular n × n
interval matrix A and each b (both with rational bounds) computes rational
enclosures [ỹsym

j
, ỹ

sym

j ] of the symmetric solution intervals ysym
j for which

∣∣∣∣∣
ỹ
sym

j − ysym
j

ysym
j

∣∣∣∣∣ ≤ ε

for each j with ysym
j 6= 0. Then P=NP.

Theorem 11.11. Suppose for some polynomial ε(n) > 0, there exists a
polynomial-time algorithm which for each symmetric strongly regular n × n
interval matrix A and each b (both with rational bounds) computes ratio-
nal enclosures [ỹsym

j
, ỹ

sym

j ] of the symmetric solution intervals ysym
j for which

|ỹsym

j − ysym
j | ≤ ε for all j. Then P=NP.

Comment. In these Theorems 11.10 and 11.11, we can additionally assume that
all intervals from the matrix A and the vector b are absolutely δ-narrow for a
given δ > 0.

Proofs

Proof of Theorem 11.1. To prove this result, we will reduce the PARTITION
problem (known to be NP-hard) to this problem. In the PARTITION problem,
we are given a sequence of integers s1, . . . , sm, and we must check whether there
exist values y1, . . . , ym for which yj ∈ {−1, 1} and s1 ·y1 + . . .+sm ·ym = 0. For
every sequence s1, . . . , sm, we consider the interval linear system that consists
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of the following equations: [−1, 1] · yj = [1, 1] (1 ≤ j ≤ m), [1, 1] · yj = [−1, 1]
(1 ≤ j ≤ m), and [s1, s1] · y1 + . . . + [sm, sm] · ym = [0, 0].

If the given instance has a solution y1, . . . , ym, then, as one can easily see, these
yj form a possible solution to the interval linear system. Vice versa, let the
interval linear system be consistent, i.e., have a possible solution (y1, . . . , ym).
Then, for every j, from the first equation, we conclude that aj ·yj = 1 for some
aj ∈ [−1, 1]; hence, yj = 1/aj and therefore, either yj ≤ −1, or yj ≥ 1. From
the second equation, it follows that yj = bj ∈ [−1, 1], i.e., that yj ∈ [−1, 1].
Together with the previously derived inequalities, we conclude that yj = −1
or yj = 1. Hence, the third equation implies that

∑
sj · yj = 0, i.e., that this

sequence y1, . . . , ym is a solution to the given instance. We have proven the
reduction, and thus, the theorem is proven.

Proof of Theorem 11.2. We will use the following result from the proof of
Theorem 3.2: every quantity a whose possible values form a (non-degenerate)
interval a can be represented, for some real numbers k and l, as a = k · a′ + l,
where possible values of a′ form an interval [1− δ, 1 + δ].

Let us use this result to replace, one-by-one, all non-degenerate coefficient in-
tervals aij and bi by δ-narrow ones. First, we can move all intervals bi to the
left-hand side by introducing a new variable y0 and a new equation y0 = 1, and
replacing each equation

∑
aij · yj = bi by a new equation aij · yj −bi · y0 = 0.

This system is clearly equivalent to the original one. Therefore, without losing
generality, we can assume that the only non-degenerate intervals are among the
coefficients aij .

For each such interval aij , we first compute the values kij and lij for which
aij = kij · a′ij + lij and a′ij takes the values from the interval [1 − δ, 1 + δ].
Then, aij · yj = kij · a′ij · yj + lij · yj . So, we can introduce a new variable
yij , add a new equation yij − a′ij · yj = 0, and replace the term aij · yj in
the original equation by a combination kij · yij + lij · yj . One can easily see
that for the new system, possible values of the old variables yj are exactly the
same as for the old one. Thus, we can step-by-step eliminate all non-narrow
intervals, and get a system with narrow intervals whose consistency is equivalent
to the consistency of the original system. Thus, we have reduced the NP-hard
problem of checking consistency of arbitrary interval linear systems to checking
consistency of narrow interval linear systems. Thus, checking consistency of
narrow interval systems is also NP-hard. The theorem is proven.
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Proof of Theorem 11.3. In our proof, we will consider interval linear systems
of the type Ay = 0, where A is a square matrix, and 0 is a vector consisting
of all 0’s. For every A ∈ A, if A is a regular matrix, then y = 0 is the only
solution, and if A is not regular, then the solution set is unbounded (a line, or,
more general, a subspace). Thus, if the interval matrix A only contains regular
matrices, the solution set consists of a single point 0; otherwise, the solution
set is unbounded.

It is known (see the proof in chapters about interval matrices) that checking
whether a given interval matrix A contains a singular matrix is NP-hard. If
we could always compute a possibly finite enclosure, then we would be able
to check whether the set of all possible solutions is bounded, and therefore,
whether A contains a regular matrix. Thus, the problem of computing an
enclosure is indeed NP-hard. The theorem is proven.

Proof of Theorem 11.4. This theorem is proven by the same reduction as
we used in the proof of Theorem 11.2.

Proof of Theorem 11.5. To prove this result, we will reduce the PARTITION
problem (known to be NP-hard) to this problem. In the PARTITION problem,
we are given a sequence of integers s1, . . . , sm, and we must check whether there
exist values y1, . . . , ym for which yj ∈ {−1, 1} and s1 ·y1 + . . .+sm ·ym = 0. For
every sequence s1, . . . , sm, we consider the interval linear system that consists
of the following equations: [−1, 1] ·yj = [1, 1] (1 ≤ j ≤ m+1), [1, 1] ·yj = [−1, 1]
(1 ≤ j ≤ m + 1), and [s1, s1] · y1 + . . . + [sm, sm] · ym + [sm+1, sm+1] · ym+1 =
[sm+1, sm+1], where we denoted sm+1 = −0.5 · (s1 + . . . + sm).

Similarly to the proof of Theorem 11.1, each of the variables yj can only take
the values yj ∈ {−1, 1}.

The value ym+1 = −1 is always a possible solution, because the values
y1 = . . . = ym = 1 and ym+1 = −1 satisfy all the equations.

On the other hand, if there is a possible solution with ym+1 = 1, then,
from the last equation, we can conclude that s1 ·y1 + . . .+sm ·ym = 0, i.e.,
that the original instance of PARTITION problem has a solution. Vice
versa, if this instance has a solution y1, . . . , ym, then we can add ym+1 = 1
and get a possible solution of the interval linear system.

Hence:
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If the given instance of PARTITION has a solution, we get ym+1 = 1.

If the given instance of PARTITION has no solutions, we get ym+1 = −1.

Thus, if we were able to compute yj , we would thus be able to check whether
the given instance of PARTITION is solvable. This reduction shows that our
problem is NP-hard. The theorem is proven.

Proof of Theorem 11.4. This theorem is proven by the same reduction as
we used in the proof of Theorem 11.2.

Proof of the Comments after Theorems 11.9 and 11.11. If we multiply
both A and b by the same positive constant k, we will not change either strong
regularity property or the solution set, but if k is small enough, all resulting
intervals will be absolutely δ-narrow. The comment is proven.



12
INTERVAL LINEAR SYSTEMS:

SEARCH FOR FEASIBLE CLASSES

In the previous chapter, we showed that in general, solving interval systems is
NP-hard. In this chapter, we look for feasible classes of interval linear systems.

12.1. General Idea

Since the general problem of solving interval linear systems is NP-hard, it is
desirable to find feasible subclasses. We will exploit two different approaches to
finding such subclasses:

First approach. The first approach is based on the following idea: Solving
linear systems is feasible when all interval coefficients are numerical (i.e., degen-
erate intervals); the difficulty is caused by non-degenerate intervals. Thus, we
will consider subclasses in which some of the coefficient intervals are degenerate,
hoping that this restriction will make computations easier.

Second approach. The second approach is based on a slightly different idea:
Solving generic non-interval linear system is feasible but still somewhat time-
consuming: e.g., for a square n × n system, traditional Gaussian elimination
method takes ≈ n3 computational steps. If we add interval uncertainty to this
complexity, we end up with NP-hardness (i.e., in effect, with exponential time).
It is therefore reasonable to consider subclasses of (non-interval) linear systems
for which faster algorithms are known, and hope that when we add interval
uncertainty to thus simplified systems, we will get feasible algorithms.

111
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The original complexity of solving systems of linear equations comes from the
fact that we need lots of input data: n2 rational numbers aij . The more
numbers we need to input, and the more bits we need to describe each number,
the larger the input length. Thus, to simplify the problem of solving linear
systems, we can do one of three things:

limit the number of non-zero elements, i.e., consider sparse matrices, in
which some of the coefficients aij are zeros;

limit the possible values of the coefficients aij ;

if none of the above restriction works, we may want to try to limit both the
number of non-zero elements and the possible values of the coefficients.

Our plans. In this chapter, we will pursue all these approaches.

12.2. First Approach: Interval Systems in
Which Some Intervals are Degenerate

Since complexity is caused by interval uncertainty, let us consider the systems
in which some intervals are degenerate. The first natural idea is as follows: In
the above results, we allowed both the coefficients aij of the (m×n)-coefficient
matrix and the right-hand sides bi to be arbitrary intervals. What if we only
allow interval uncertainty in aij? or only in bi?

Theorem 12.1. Checking consistency of interval linear systems Ay = b with
interval matrices A and real-number vectors b is NP-hard.

Theorem 12.2. The problem of solving interval linear systems Ay = b with
an interval matrix A and a real-number vector b is NP-hard.

Comment 1. Both theorems 12.1 and 12.2 hold for interval matrices in which
all components are absolutely and relatively δ-narrow.

Comment 2. Theorem 12.2 holds even if want to compute the solution intervals
approximately (with absolute or relative ε-accuracy, for a given ε).

Comment 3. We will see from the proof that Theorem 12.2 holds even if we
consider only vectors e(i) = (0, . . . , 0, 1, 0, . . . , 0) with one (i-th) element equal
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to 1 and all other elements equal to 0. For an arbitrary matrix A, the solutions
y(i) to the corresponding systems Ay = e(i) form the inverse matrix to the
matrix A. Thus, this result shows that computing exact (or even approximate)
bounds on elements of an inverse interval matrix is NP-hard (Coxson [77]).

Comment 4. In these two theorems, we assumed that all the intervals bi from
the right-hand sides of the linear equations are numerical; if we assume instead
that all the coefficient intervals aij from the left-hand sides are numerical, we
get a feasible problem:

Theorem 12.3. There exists a polynomial-time algorithm that checks consis-
tency of interval linear systems Ay = b with numerical matrices A and interval
vectors b.

Theorem 12.4. There exists a polynomial-time algorithm that solves interval
linear systems Ay = b with numerical matrices A and interval vectors b.

Numerical A Interval A
Numerical b Polynomial NP-hard

time
Interval b Polynomial NP-hard

time

Theorems 12.3 and 12.4 are true even if for each equation
∑

aij · yj = bi, we
allow at most one interval coefficient:

Definition 12.1. An interval linear system
∑

aij · yj = bi is called almost
numerical if for each equation i, at most one of intervals ai1, . . . ,aim,bi, is
non-degenerate.

Theorem 12.5. Checking consistency of almost numerical interval linear sys-
tems

∑
aij · yj = bi (with numerical right-hand sides) is NP-hard.

Theorem 12.6. The problem of solving almost numerical interval linear sys-
tems

∑
aij · yj = bi (with numerical right-hand sides) is NP-hard.
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12.3. Second Approach, First Try: Band and
Sparse Matrices

Band Matrices

For non-interval linear systems, simple algorithms are possible for w-band ma-
trices, i.e., for square matrices for which aij = 0 for |i − j| ≥ w. These
systems are of great practical importance: For example, a natural way of solv-
ing a system of ordinary linear differential equations dxi/dt =

∑
cij · xj + di,

1 ≤ i ≤ p, is time discretization when we consider the moments of time t0,
t1 = t0 + ∆t, . . ., xk = t0 + k · ∆t, and the following system of equations:
xi(tk+1) = xi(tk) + ∆t ·∑ cij · xj(tk) + ∆t · di. If we order the resulting vari-
ables xi(tk) in chronological order x1(t0), . . . , xn(t0), x1(t1), . . . , xn(t1), . . ., then
we get a linear system with a 2p-band matrix.

What is the complexity of solving interval linear systems with w-band interval
matrices, i.e., for square interval matrices, for which aij = 0 for |i − j| ≥ w?
When w = 1, we get diagonal matrices for which aij = 0 for i 6= j. For these
matrices, each equation is of the form ajj · yj = bj ; from this equation, we
can easily find the set of all possible values of yj . For larger w, the problem is
NP-hard:

Theorem 12.7. For every w ≥ 3, checking consistency of interval linear
systems Ay = b with w-band interval matrices A is NP-hard.

Theorem 12.8. For every w ≥ 3, the problem of solving interval linear systems
Ay = b with w-band interval matrices A is NP-hard.

Comment 1. We do not know whether a feasible algorithm is possible for 2-band
matrices:

Diagonal (1-band) 2-band 3-band
matrices matrices matrices
Linear time ? NP-hard

Comment 2. The same results are true for interval linear systems in which all
intervals are absolutely δ-narrow for all δ. For interval linear systems whose
elements are both absolutely and relatively δ-narrow, we can only prove NP-
hardness for 4-band matrices:
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Theorem 12.9. For every w ≥ 4, checking consistency of interval linear
systems Ay = b with w-band interval matrices A, and with intervals aij and
bi that are both absolutely and relatively δ-narrow, is NP-hard.

Theorem 12.10. For every w ≥ 3, the problem of solving interval linear
systems Ay = b with w-band interval matrices A, and with intervals aij and
bi that are both absolutely and relatively δ-narrow, is NP-hard.

Diagonal 2-band 3-band 4-band
(1-band) matrices matrices matrices
matrices

Arbitrary Linear ? NP-hard NP-hard
intervals aij , bi time
Absolutely δ-narrow Linear ? NP-hard NP-hard
intervals aij , bi time
Absolutely and relatively Linear ? ? NP-hard
δ-narrow intervals aij , bi time

Sparse Matrices

w-band matrices are a specific class of sparse matrices, in which most elements
are equal to 0. For many classes of sparse matrices, simpler algorithms are
indeed possible (see, e.g., Schendel [376]). In addition to w-band matrices,
another important class of sparse matrices is the class of d-sparse matrices, in
which in each row i, at most d elements aij are different from 0. This class is
also very important in practical applications:

A natural way to solve a linear partial differential equation, e.g., a simple
equation ∂f(t, x)/∂t = ∂2f(t, x)∂x2 + g(t, x), is to consider discrete values
tk and xk, and the corresponding system

f(tk+1, xl)− f(tk, xl)
∆t

=
f(tk, xl−1)− 2f(tk, xl) + f(tk, xl+1)

∆x2
+ g(tk, xl).

This is a system of linear equations with unknowns f(tk, xl). A specific
feature of such systems, as opposed to generic linear systems, is that each
equation contains only a few variables (four in the above example) with
non-zero coefficients, so, it is 4-sparse.

Another case where sparse matrices appear is robotic vision (see, e.g.,
Elguea et al. [98]). To act reasonably, a robot must make a 3-D inter-
pretation of the 2-D visual picture, in order to decide which visible faces
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correspond to which objects. The resulting interpretations must satisfy
certain restrictions of the type: “a face must go through a certain point”,
or “two faces must not have an intersection”, etc. The total number of
variables in the description of a 3-D scheme may be huge, but each re-
striction is about a face and a point, or two faces, etc, and therefore, the
corresponding equation contains only a few variables. In other words, the
corresponding system is also sparse.

What happens if we consider d-sparse interval linear systems, i.e., systems in
which for every i, at most d coefficients aij are different from [0, 0]?

When d = 1, then each equation has the form aij ·yj = bi. From each equation
of this type, we can easily describe the set of possible values of yj ; if for some
j, two or more different equations contain yj , we take the intersection of the
corresponding sets. This can be done by a linear-time algorithm. For d ≥ 2,
the problem becomes NP-hard:

Theorem 12.11. For every integer d ≥ 2, checking consistency of interval
linear systems with d-sparse matrices is NP-hard.

Theorem 12.12. For every integer d ≥ 2, the problem of solving interval
linear systems with d-sparse matrices is NP-hard.

1-sparse 2-sparse d-sparse
matrices matrices matrices, d ≥ 3
Linear time NP-hard NP-hard

Comment. The problem remains NP-hard even if we combine the requirement
of 2-sparseness with the requirement that almost all intervals are degenerate:

Theorem 12.13. For every integer d ≥ 2, checking consistency of almost
numerical interval linear systems with d-sparse matrices is NP-hard.

Theorem 12.14. For every integer d ≥ 2, the problem of solving almost
numerical interval linear systems with d-sparse matrices is NP-hard.
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12.4. Second Approach, Second Try: Restrict-
ing the Size of the Coefficients aij

Theorem 12.15. (Heindl et al. [142]) Checking consistency of regular interval
systems, in which every endpoint of every interval is either 0 or 1, is NP-hard.

Theorem 12.16. (Heindl et al. [142]) The problem of solving regular interval
systems, in which every endpoint of every interval is either 0 or 1, is NP-hard.

In other words, the problem is NP-hard for regular linear interval systems in
which each interval coefficient is equal to [0, 0], to [1, 1], or to [0, 1].

Comment. It is known that NP-hard numerical problems can be, crudely speak-
ing, of two types (see, e.g., Garey et al. [120], Section 4.2):

Problems that are, in general, NP-hard, but for which a polynomial-time
algorithm is possible if we restrict ourselves to instances in which the
lengths of all numerical coefficients are bounded by a constant C. Such
problems are called pseudo-polynomial.

Problems that remain NP-hard even if we restrict ourselves to instances
in which the lengths of all numerical coefficients are bounded by some
constant C. Such problems are called NP-hard in the strong sense.

In these terms, our result shows that the problem of finding exact (or ε-
approximate) component-wise bounds for the solution set of a linear interval
system is NP-hard in the strong sense.

12.5. Second Approach, Third Try: Sparse Ma-
trices with Restricted Coefficients

Since neither of the first two tries (i.e., considering sparse matrices and restrict-
ing the size of the coefficients) led to feasible algorithms, let us try imposing
both restrictions. In this case, we do get a feasible algorithm:
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Theorem 12.17. Let w be a positive integer, and let S be a finite set of rational
numbers. Then, there exists a polynomial-time algorithm that checks whether a
given interval linear systems in which aij is a w-band matrix, and all endpoints
of all interval coefficients aij and bi belong to the set S, is consistent.

Theorem 12.18. Let w be a positive integer, and let S be a finite set of
rational numbers. Then, there exists a polynomial-time algorithm that solves
all interval linear systems in which aij is a w-band matrix, and all endpoints
of all interval coefficients aij and bi belong to the set S.

12.6. Additional Results: In Brief

Other NP-hardness results. Several other NP-hardness results for interval
linear systems are presented in Lakeyev et al. [243]. In particular, it is proven
that this problem is NP-hard for interval linear systems with finitely many
solutions, etc.

Other feasibility results. In some practical problems, we know the signs
sj = sign(yj) of all the variables yj . Under this assumption, it is possible to
design polynomial-time algorithms for solving interval linear systems; see, e.g.,
Rohn [342] and Rohn [348] (Theorems 2.2. and 2.3).

In some other cases, we do not know the signs, but we know that only a few sign
combinations s = (s1, . . . , sm) are possible. If there are indeed no more than
polynomially many possible sign combinations, then we can make polynomially
many calls of the above algorithm and get a polynomial-time algorithm for this
case as well (Jansson [163]).

12.7. Different Notions of a Solution: Compu-
tational Complexity and Feasibility

In the previous sections, we considered interval linear systems Ay = b that
originate from data processing and indirect measurements. In these problems,
we are interested in the set Y of all possible values of y for which Ay = b for
some A ∈ A and b ∈ b. This solution set is also called a united solution set,
because it unites all possible vectors y for which Ay = b for possible A and b.
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In some other practical problems, e.g., in control, we get similarly-looking linear
interval systems for which, however, we are interested in different solution sets.

Tolerance Solution

An important example of such a problem comes from the economic planning
problem. Global economy is often described by a Leontieff-type input-output
model, in which the consumption level bi of each item is a linear function of the
productions y1, . . . , ym of different products: bi = ai1 · y1 + . . . + aim · ym. Our
objective is to plan the production, i.e., to find the values of yj that guarantee
the desired consumption.

If we know exactly the desired consumption level bi of each product, and
if we know exactly the coefficients aij , then the planning problem (i.e., the
problem of determining the production levels yj) becomes a simple (easily
solvable) linear equation.

In practice, we often do not know the exact values of bi and aij . Instead, we
only know the intervals b1, . . . ,bn that describe the desired consumption
of each item, and the intervals aij of possible values of each coefficient aij .
In this situation, we would like to set up the production levels y1, . . . , ym

in such a way that for all possible values of the coefficients aij ∈ aij , we
get the desired consumption levels of all the products.

In other words, we are interested in finding the set Y of all vectors y for which
Ay ∈ b for all A ∈ A. This new solution set is called a tolerance solution set (it
is also sometimes called a tolerable solution set). For this set, we can formulate
similar problems of checking consistency and of finding the smallest and largest
values of yj .

The corresponding economic problem was first considered and analyzed in Rohn
[339, 340, 344]; the notion of a tolerance solution set was also analyzed by
Shaidurov and Shary [388], Neumaier [302], Shary [389, 392], Lakeyev and
Noskov [244, 245], and others. In contrast to the previous notion of a solution
set, for this solution set, the above problems are solvable in polynomial time:

Theorem 12.19. There exists a polynomial-time algorithm that checks, for
every interval linear system, whether its tolerance solution set is non-empty.
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Theorem 12.20. There exists a polynomial-time algorithm that, given an
interval linear system 〈m,n,A,b〉, and a positive integer j ≤ m, computes the
smallest y

j
and the largest yj values of yj for all vectors y from the tolerance

solution set.

Controlled Solution

Other control problems lead to another notion of solution, called controlled
solution set. In many control problems, it is relatively easy to maintain steady
control flow y1, . . . , ym, but it is difficult to modify it.

For example, in space exploration, it is relatively easy to ignite a rocket
engine and guarantee a stable flow, but it is very difficult to stop it or
adjust it if something goes wrong.

In radar astronomy, it is relatively easy to generate a mighty radio signal
sent to a planet, but it is difficult to change the parameters of this signal.

Since it is difficult to change the values yj , we fix these values, and tune the
resulting control by applying an appropriate transformation of the original
control y1, . . . , ym → b1, . . . , bn. In the reasonable linear approximation, we
get linear equations bi =

∑
aij · yj . The coefficients aij are adjustable, but

adjustable within certain limits; in other words, we know the intervals aij

within which we can change these coefficients. For every i, we also know the
interval bi of possible values that we may want to achieve. Our goal is to set
up the initial control values yj in such a way that we will be able to achieve
every vector b ∈ b by choosing appropriate coefficients aij ∈ aij .

In mathematical terms, we again have an interval linear system Ay = b, but
this time, we are interested in finding all the vectors y for which, for every
b ∈ b, there exists an A ∈ A such that Ay = b. The set of all such vectors is
called a controlled solution set. This set was studied by Khlebalin and Shokin
[176], Lakeyev and Noskov [244, 245], and Shary [392].

Theorem 12.21. (Lakeyev et al. [245]) Checking whether an interval linear
system has a non-empty controlled solution set is NP-hard.

Theorem 12.22. (Lakeyev et al. [245]) The problem of computing, for every
interval linear system 〈m,n,A,b〉 with a non-empty controlled solution set, an
element from this set, is NP-hard.
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Name of United Tolerance Controlled
solution set
Description of ∃A∃b(Ay = b) ∀A∃b(Ay = b) ∀b∃A(Ay = b)
solution set
Feasibility NP-hard Polynomial NP-hard

time

Proofs

Proof of Theorem 12.1. This proof follows the same idea that we used in
Theorem 11.2: that we can move all intervals bi to the left-hand side if we
introduce a new variable y0, add a new equation y0 = 1, and replace each
equation

∑
aij · yj = bi with a new equation aij · yj − bi · y0 = 0 with no

intervals in the right-hand side. The theorem is proven.

Proof of Theorem 12.2 is done by a similar reduction.

Proof of Theorem 12.4. If all the coefficients aij are numbers, then the
problems of finding the smallest value of yj for which this system has a solution
becomes a linear programming problem:

yj → max

under the conditions

bi ≤
∑

aij · yj ≤ bi, 1 ≤ i ≤ n.

Hence, we can apply known polynomial-time algorithms of solving linear pro-
gramming problems (see, e.g., Karmarkar [168]). The theorem is proven.

Proof of Theorem 12.3 is done by a similar reduction.

Proof of Theorem 12.5. To prove this theorem, we will show that the
problem of checking consistency of an arbitrary interval linear system

m∑

j=1

aij · yj = bi, 1 ≤ i ≤ n,

with numerical right-hand sides (for which NP-hardness was proved in Theorem
12.3) can be reduced to systems of this type.
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Indeed, for each equation i, we introduce m new variables zij , 1 ≤ j ≤ m, and
replace the original equation with the following m + 1 equations:

m∑

j=1

zij = bi;

aij · yj − zij = 0, 1 ≤ j ≤ m.

In this new system, each equation has at most one interval coefficient, and since
zij is equal to aij · yj , these two systems are clearly equivalent to each other.
The theorem is proven.

Proof of Theorem 12.6 is done by a similar reduction.

Proof of Theorem 12.7. For this proof, we will use a reduction to PAR-
TITION problem that is similar to the proof of Theorem 5.3. Namely, for
each instance s1, . . . , sm of PARTITION, we will introduce 3m + 1 variables
t1, . . . , tm, y1, . . . , ym, and z1, . . . , zm, zm+1, that will be presented in the fol-
lowing order: t0, y1, z1, t1, y2, z2, . . . , tm−1, ym, zm, tm, and the following 3m+1
equations:

s1 · y1 − t1 = 0; y1 = [−1, 1]; [−1, 1] · y1 = [1, 1];

t1 + s2 · y2 − t2 = 0; y2 = [−1, 1]; [−1, 1] · y2 = [1, 1];

. . .

tk−1 + sk · yk − tk = 0; yk = [−1, 1]; [−1, 1] · yk = [1, 1];

. . .

tm−1 + sm · ym − tm = 0; ym = [−1, 1]; [−1, 1] · ym = [1, 1];

tm = 0.

The corresponding interval matrix is 3-band. (Note that the variables t0 and zi

are “fictitious” variables that are not present in the equations and whose only
purpose is to make the matrix square.)

One can easily see (similar to the proof of Theorems 5.3 and 11.1) that for
every solution of this system, yj ∈ {−1, 1}, tk = s1 · y1 + . . . + sk · yk, and
tm = s1 · y1 + . . . + sm · ym = 0. Vice versa, if yj is a solution to the given
instance of PARTITION problem, we can take these yj , tk = s1 ·y1+. . .+sk ·yk,
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and arbitrary zj , and get a solution to our linear interval system. Thus, our
system has a solution if and only if the given instance of PARTITION has a
solution. This reduction shows that solving 3-band linear systems is indeed
NP-hard.

For every w ≥ 3, every 3-band matrix is also w-band; hence, solving w-band
linear systems is also NP-hard. The theorem is proven.

Proof of Theorem 12.8 is done by a similar reduction.

Proof of Theorem 12.9. For this proof, we will also use a reduction
of PARTITION problem. Namely, for each instance s1, . . . , sm of PAR-
TITION, we will introduce 5m variables t1, . . . , tm, y1, . . . , ym, y′1, . . . , y

′
m,

z1, . . . , zm, and u1, . . . , um, that will be presented in the following order:
y1, y

′
1, z1, u1, t1, y2, y

′
2, z2, u2, t2, . . . , ym, y′m, zm, um, tm, and the following m

groups of 5 equations in each (1 ≤ k ≤ m):

[−(1/δ),−(1/δ)] · yk + [1− δ, 1 + δ] · y′k = [1, 1];

[1, 1] · tk−1 + [sk, sk] · yk − [1, 1] · tk = [0, 0];

[−(1/δ),−(1/δ)] · yk + [1, 1] · y′k = [0, 0];

[δ, δ] · yk + [1, 1] · zk = [1− δ, 1 + δ];

[1, 1] · zk = [1, 1].

For k = 1 and k = m, the second equation takes a simplified form:

for k = 1, we take [s1, s1] · y1 − [1, 1] · t1 = [0, 0];

for k = m, we take [1, 1] · tm−1 + [sm, sm] · ym = [0, 0].

(This simplification is formally equivalent to taking t0 = tm = 0.) The corre-
sponding interval matrix is 4-band.

If the values y1, . . . , ym form a solution to the given instance of PARTITION
problem, then we can take these values yk, zk = 1, y′k = yk/δ, tk = s1 · x1 +
. . . + sk · yk, and arbitrary uk, and get a solution of the above interval system.
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Vice versa, let us assume that the above interval linear system is consistent.
Then:

From the fifth equation, we conclude that zk = 1; therefore, from the
fourth equation, we get δ · yk ∈ [−δ, δ] and hence, yk ∈ [−1, 1].

Similarly, from the third equation, we conclude that y′k = yk/δ, and there-
fore, the first equation implies that a · yk = 1 for some a ∈ [−1, 1]; hence,
either yk ≤ −1 or yk ≥ 1.

Together with the previous conclusion, we get yk ∈ {−1, 1}.
The second equation implies that tk = tk−1 + sk · yk, where t0 = 0 (and
tm = 0). Therefore, tk = s1 · y1 + . . . + sk · yk, and the condition tm = 0
implies that s1 · y1 + . . . + sm · ym = 0 for yj ∈ {−1, 1}. Thus, the given
instance of PARTITION has a solution.

So, our system has a solution if and only if the given instance of PARTITION
has a solution. This reduction shows that solving 3-band linear systems is
indeed NP-hard. The theorem is proven.

Proof of Theorem 12.10 is done by a similar reduction, with s1 · y1 + . . . +
sm · ym + sm+1 · ym+1 = sm+1 instead of s1 · y1 + . . . + sm · ym = 0.

Proof of Theorem 12.11.

1◦. For every d ≥ 2, every 2-sparse system is d-sparse. Thus, it is sufficient to
prove that the problem is NP-hard for 2-sparse matrices.

2◦. To prove NP-hardness of 2-sparse problems, we will reduce propositional
satisfiability problem for 3-CNF formulas, (that is known to be NP-hard) to
this problem.

3◦. For this reduction, we will use the idea similar to what naive interval
computation does to estimate the value of the expressions: we will “unfold”
the computation of F , and take the results of all intermediate steps as new
(auxiliary) variables.

Computing F = F1& . . . &Fk means that we first compute F1&F2, then we
compute F1&F2&F3, etc., until we reach F1& . . . &Fk. So, we will need aux-
iliary variables to stand for these intermediate expressions F1& . . . &Fj for
j = 2, . . . , k.
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For each of the expressions Fk, if Fk = a ∨ b, then the only intermediate
expression we need is Fk itself, so, for such expressions, we will introduce one
additional variable that will stand for the truth value of Fk.

If Fk = a ∨ b ∨ c, then we need two expression: first, we compute a ∨ b, and
only then, Fk.

Also, each negative literal ¬zi is also an intermediate result, so, we introduce
a new Boolean variable z̃i with the meaning of ¬zi, and add the equation
z̃i ≡ ¬zi.

As a result, we get the following new variables and equations:

For each negative literal ¬zi, we add a new variable z̃i and a new formula
z̃i ≡ ¬zi.

For each expression Fj of the type Fj = a ∨ b, we will add a new variable
Vj that will represent the truth value of this expression. For each such
variable, we add the formula Vj ≡ a ∨ b.

For each expression Fj of the type a ∨ b ∨ c, we will introduce two new
variables:

• Vj will represent the truth value of this expression;

• Wj will represent the truth value of a ∨ b.

In terms of these new variables, the formula Fj = a∨b∨c will be represented
by the following equivalent set of two formulas: Wj ≡ a∨b and Vj ≡ Wj∨c.

We will also introduce “global” propositional variables f2, . . . , fk (i.e., vari-
ables that correspond not to one of the expressions Fk, but to the formula in
general): a variable fj will mean the truth value of the partial conjunction
F1&F2& . . . &Fj (in particular, fk will mean the truth value of the formula
F itself). In terms of these new variables, the formula F = F1& . . . &Fk

will be represented by the following sequence of formulas: f2 ≡ V1&V2 and
fj ≡ fj−1&Vj (3 ≤ j ≤ k).

As a result, the original formula F is reformulated as a set of formulas of the
type a ≡ ¬b, a ≡ b∨c, and a ≡ b&c for some Boolean variables a, b, and c. The
objective is to make fk =“true”, where fk is one of these Boolean variables.
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Example. Let us illustrate the above construction on the example of a formula
F = (z1 ∨ z2 ∨ z3)&(z1 ∨ ¬z2). For this formula, k = 2, F1 = z1 ∨ z2 ∨ z3, and
F2 = z1∨¬z2; therefore, in the reformulated formula, we will have the Boolean
variables V1, W1, V2, f2, and z̃2. The formula itself will be equivalent to the
conjunction of the following formulas:

z̃2 ≡ ¬z2; W1 ≡ z1 ∨ z2; V1 ≡ W1 ∨ z3; V2 ≡ z1 ∨ z̃2; f2 ≡ V1&V2.

The goal is to make f2 =“true”.

4◦–8◦. Let us now describe the reformulated propositional formula in terms of
real-number variables and interval linear equations.

4◦. First, for each Boolean variable a, we introduce a corresponding real-
number variable xa. We want to guarantee that this new variable xa can only
take two values: 0 and 1 (they will correspond to “false” and “true”). The
fact that a variable xa takes only values 0 and 1 will be represented in a way
similar to [220]: Namely, we introduce a new variable ya, and add the following
interval linear equations:

[−2, 2] · ya = [1, 1].

It is easy to show that this equation is equivalent to |ya| ≥ 0.5, i.e.,
to ya ∈ (−∞,−0.5] ∪ [0.5,∞), or, to ya 6∈ (−0.5, 0.5).

ya = [−0.5, 0.5].

This equation guarantees that ya ∈ [−0.5, 0.5]; together with ya 6∈
(−0.5, 0.5), this equation thus guarantees that ya ∈ {−0.5, 0.5}.

xa − ya = [0.5, 0.5].

This equation says that xa = ya + 0.5. Since we already know that
ya = −0.5 or ya = 0.5, we can conclude that xa is equal either to 0,
or to 1.

5◦. The formula b ≡ ¬a can be easily reformulated in terms of the real-
number variables xa and xb, as xa + xb = [1, 1] (so, xb = 1 − xa, which for
xa ∈ {0, 1} = {“true”, “false”} means exactly that b = ¬a).

6◦. For each formula a ≡ b∨ c or a ≡ b&c, we will introduce a new variable xbc

with the intended value 2xb +xc. In other words, this new variable will contain
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the information about the truth values of two Boolean variables b and c; the
variable xbc takes only the values 0, 1, 2, and 3, and in its binary representation,
the first binary digit is equal to xb (i.e., to the truth value of b), and the second
binary digit is equal to xc (i.e., to the truth value of c).

6.1◦. Let us first describe the fact that the variable xbc can only take the values
0, 1, 2, and 3. To describe this fact, we will introduce three auxiliary variables
y1bc, y2bc, and y3bc, and add the following linear interval equations:

[−2, 2] · y1bc = [1, 1]; this equation leads to y1bc 6∈ (−0.5, 0.5).

xbc − y1bc = [0.5, 0.5]; together with the previous equation, this one leads
to xbc 6∈ (0, 1).

[−2, 2] · y2bc = [1, 1]; this equation leads to y2bc 6∈ (−0.5, 0.5).

xbc − y2bc = [1.5, 1.5]; together with the previous equation, this one leads
to xbc 6∈ (1, 2).

[−2, 2] · y3bc = [1, 1]; this equation leads to y3bc 6∈ (−0.5, 0.5).

xbc − y3bc = [2.5, 2.5]; together with the previous equation, this one leads
to xbc 6∈ (2, 3).

xbc = [0, 3]; this equation means that xbc ∈ [0, 3]. Together with xbc 6∈
(0, 1), xbc 6∈ (1, 2), and xbc 6∈ (2, 3), this means that xbc ∈ {0, 1, 2, 3}.

6.2◦. Let us now represent the fact that the first digit in the binary represen-
tation of xbc must coincide with xb. In other words, we want to represent the
following two facts:

if xb = 0, then xbc = 002 = 0 or xbc = 012 = 1; and

if xb = 1, then xbc = 102 = 2 or xbc = 112 = 3.

Enumerating all four possible combinations of truth values of b and c, one can
see that the above two facts are captured by the equation xbc − 2xb = [0, 1].

6.3◦. We must now describe the fact that the second digit in the binary expan-
sion of xbc coincides with xc. In other words, we must represent the following
two facts:
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if xc = 0, then xbc = 002 = 0 or xbc = 102 = 2; and

if xc = 1, then xbc = 012 = 1 or xbc = 112 = 3.

These two facts will be represented by introducing two new variables x̃1bc and
x̃2bc, and the following five interval equations:

xbc − xc = [0, 2]; x̃1bc + xbc = [1, 1]; x̃2bc + xbc = [2, 2];

[−1, 1] · x̃1bc + [0, 1] · xc = [1, 1]; [−1, 1] · x̃2bc + [0, 1] · x̃c = [1, 1].

Let us show that this is indeed an equivalent representation. In other words, we
will show that if xc ∈ {0, 1} and xbc ∈ {0, 1, 2, 3}, then this system of interval
linear equations is solvable if and only if the second binary digit in the binary
expansion of xbc coincides with xc. Indeed:

If xbc is the desired value, then the difference xbc− xc is equal to 0 or to 2
and therefore, belongs to the interval [0, 2]. The second and third equations
are automatically satisfied by taking x̃1bc = 1−xbc and x̃2bc = 2−xbc. To
show that the fourth and the fifth equations can also be satisfied, we must
consider two cases:

• If xc = 1, then we can satisfy the fourth equation by taking

0 · x̃1bc + 1 · xc = 1.

In this case, xbc = 1 or 3, so, x̃2bc = 2 − xbc = ±1, and the fifth
equation can be satisfied by taking (±1) · x̃2bc + 0 · x̃c = 1.

• If xc = 0, then x̃c = 0, and either xbc = 0, or xbc = 2. Therefore,
the value of x̃1bc = 1 − xbc is either 1, or −1. Hence, we can satisfy
the fourth equation by taking (±1) · x̃1bc + 0 · xc = 1, and the fifth
equation by taking 0 · x̃2bc + 1 · x̃c = 1.

Vice versa, let us assume that these five interval equations are satisfied. We
already know that xc ∈ {0, 1}. So, let us consider these two possibilities
one by one:

• If xc = 0, then from the first equation, we conclude that xbc ∈ [0, 2].
Since xbc can only take the values 0, 1, 2, and 3, we can thus conclude
that it takes the value 0, 1, or 2. To complete the proof of correctness
of our representation, we only need to show that xbc cannot be equal
to 1. Indeed, if xbc = 1, then, due to the second equation, x̃1bc =
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1− 1 = 0. Since xc is also 0, the left hand side of the fourth equation
is 0 and therefore, cannot be equal to the right-hand side that is 1.
So, xbc ∈ {0, 2}.

• If xc = 1, then from the first equation, we conclude that xbc ∈ [1, 3].
Since xbc can only take the values 0, 1, 2, and 3, we can thus conclude
that it takes the value 1, 2, or 3. To complete the proof of correctness
of our representation, we only need to show that xbc cannot be equal
to 2. Indeed, if xbc = 2, then, due to the third equation, x̃2bc =
2− 2 = 0. Since xc is also 0, the left hand side of the fifth equation is
0 and therefore, cannot be equal to the right-hand side that is 1. So,
xbc ∈ {1, 3}.

7◦. Let us now show how to represent the relation a ≡ b∨ c, assuming that we
have already guaranteed that the values of the variables xa, xb, and xc belong
to the set {0, 1}, and that the variable xbc takes the desired value.

In this case, we must describe the following conditions:

If xbc = 0, then xa = 0.

If xbc ∈ {1, 2, 3}, then xa = 1.

We will show that these two conditions are equivalent to the following two
linear interval equations: xbc − xa = [0, 2] and 3xa − xbc = [0, 2]. Let us prove
this equivalence.

If a ≡ b ∨ c, then, as one can easily check, in all four cases (corresponding
to four possible values of the pair (b, c)), we have xbc − xa ∈ [0, 2] and
3xa − xbc ∈ [0, 2]. Therefore, both interval equations are satisfied.

Vice versa, let us assume that both interval equations are satisfied, and let
us show that then a ≡ b ∨ c. Indeed:

• If xbc = 0, then from the first equation, we conclude that xa =
xbc − [0, 2] ≤ xbc ≤ 0. Since we know that xa = 0 or xa = 1, the only
possibility for xa ≤ 0 is when xa = 0.

• Let xbc ≥ 1. From the second equation, we conclude that xa =
(1/3) · (xbc + [0, 2]) ≥ (1/3) · xbc. Since xbc ≥ 1, we conclude that
xa ≥ (1/3) · xbc ≥ (1/3) · 1. So, xa 6= 0 and therefore, xa = 1.
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8◦. Let us now show how to represent the relation a ≡ b&c, assuming that we
have already guaranteed that the values of the variables xa, xb, and xc belong
to the set {0, 1}, and that the variable xbc takes the desired value.

In this case, we must describe the following conditions:

If xbc ∈ {0, 1, 2}, then xa = 0.

If xbc = 3, then xa = 1.

We will show that these two conditions are equivalent to the following two
linear interval equations: xbc − xa = [0, 2] and xbc − 3xa = [0, 2]. Let us prove
this equivalence.

If a ≡ b&c, then, as one can easily check, in all four cases (corresponding
to four possible values of the pair (b, c)), we have xbc − xa ∈ [0, 2] and
xbc − 3xa ∈ [0, 2]. Therefore, both interval equations are satisfied.

Vice versa, let us assume that both interval equations are satisfied, and let
us show that then a ≡ b&c. Indeed:

• If xbc = 3, then from the first equation, we conclude that xa =
xbc − [0, 2] ≥ xbc − 2 = 1. Since we know that xa = 0 or xa = 1, the
only possibility for xa ≥ 1 is when xa = 1.

• Let xbc ≤ 2. From the second equation, we conclude that xa =
(1/3) · (xbc − [0, 2]) ≤ (1/3) · xbc. Since xbc ≤ 2, we conclude that
xa ≤ (1/3) · xbc ≤ (1/3) · 2 = 2/3. So, xa 6= 1 and therefore, xa = 0.

9◦. For the resulting system of linear interval equations, if the formula is not
satisfiable, then fk is always false and therefore, xfk

= 0; if the formula is
satisfiable, then xfk

can also take the value 1.

So, if the formula is not satisfiable, the upper bound for the interval xfk
is 0;

if it is satisfiable, this bound is 1. So, if we could compute the exact interval
bounds for each component of the solution of 2-sparse interval linear equations,
we would we would thus be able to decide whether a given propositional formula
is satisfiable or not, and this satisfiability problem is known to be NP-hard.
Therefore, solution of 2-sparse interval linear systems is also NP-hard. The
reduction is complete, so the theorem is proven.
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Example. Let us illustrate the above construction on the example of a propo-
sitional formula F = (z1 ∨ z2 ∨ z3)&(z1 ∨ ¬z2), that was reduced to the set of
formulas:

z̃2 ≡ ¬z2; W1 ≡ z1 ∨ z2; V1 ≡ W1 ∨ z3; V2 ≡ z1 ∨ z̃2; f2 ≡ V1&V2.

This formula contains eight Boolean variables: z1, z2, z3, z̃2, W1, V1, V2, and
f2. So, first, we must introduce the real-number variables x1, x2, x3, x̃3, xW1 ,
xV1 , xV2 , and Xf2 , and add equations that guarantee that these variables only
take the values 0 and 1; for that guarantee, we will need 7 new variables y1, . . .:

[−2, 2] · y1 = [1, 1]; y1 = [−0.5, 0.5]; x1 − y1 = 0.5;

[−2, 2] · y2 = [1, 1]; y2 = [−0.5, 0.5]; x2 − y2 = 0.5;

[−2, 2] · y3 = [1, 1]; y3 = [−0.5, 0.5]; x3 − y3 = 0.5;

[−2, 2] · yW1 = [1, 1]; yW1 = [−0.5, 0.5]; xW1 − yW1 = 0.5;

[−2, 2] · yV1 = [1, 1]; yV1 = [−0.5, 0.5]; xV1 − yV1 = 0.5;

[−2, 2] · yV2 = [1, 1]; yV2 = [−0.5, 0.5]; xV2 − yV2 = 0.5;

[−2, 2] · yf2 = [1, 1]; yf2 = [−0.5, 0.5]; xf2 − yf2 = 0.5.

The equation that corresponds to ¬z2 is:

x̃2 + x2 = 1.

To describe the ∨ and & relations, we will need the new variables, for which,
the new equations are:

[−2, 2] · y112 = 1; x12 − y112 = 0.5; [−2, 2] · y212 = 1;

x12 − y212 = 1.5; [−2, 2] · y312 = 1; x12 − y312 = 2.5;

x12 − 2x1 = [0, 1]; x12 − x2 = [0, 2]; x̃112 + x12 = 1;

x̃212 + x12 = 2; [−1, 1] · x̃112 + [0, 1]x2 = 1; [−1, 1] · x̃212 + [0, 1] · x̃2 = 1;

[−2, 2] · y1,W1,3 = 1; xW1,3 − y1,W1,3 = 0.5; [−2, 2] · y2,W1,3 = 1;

xW1,3 − y2,W1,3 = 1.5; [−2, 2] · y3,W1,3 = 1; xW1,3 − y3,W1,3 = 2.5;

xW1,3 − 2xW1 = [0, 1]; xW1,3 − x3 = [0, 2]; x̃1,W1,3 + xW1,3 = 1;

x̃2,W1,3+xW1,3 = 2; [−1, 1]·x̃1,W1,3+[0, 1]x3 = 1; [−1, 1]·x̃2,W1,3+[0, 1]·x̃3 = 1;

x̃3 + x3 = 1;
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[−2, 2] · y112̃ = 1; x12̃ − y112̃ = 0.5; [−2, 2] · y212̃ = 1;

x12̃ − y212̃ = 1.5; [−2, 2] · y312̃ = 1; x12̃ − y312̃ = 2.5;

x12̃ − 2x1 = [0, 1]; x12̃ − x̃2 = [0, 2]; x̃112̃ + x12̃ = 1;

x̃212̃ + x12̃ = 2; [−1, 1] · x̃112̃ + [0, 1]x̃2 = 1; [−1, 1] · x̃212̃ + [0, 1]x2 = 1;

[−2, 2] · y1,V1,V2 = 1; xV1,V2 − y1,V1,V2 = 0.5; [−2, 2] · y2,V1,V2 = 1;

x12 − y2,V1,V2 = 1.5; [−2, 2] · y3,V1,V2 = 1; xV1,V2 − y3,V1,V2 = 2.5;

xV1,V2 − 2xV1 = [0, 1]; xV1,V2 − xV2 = [0, 2]; x̃1,V1,V2 + xV1,V2 = 1;

x̃2,V1,V2+xV1,V2 = 2; [−1, 1]·x̃1,V1,V2+[0, 1]xV2 = 1; [−1, 1]·x̃2,V1,V2+[0, 1]·x̃V2 = 1;

x̃V2 + xV2 = 1.

The actual ∨ and & relations are now represented as follows:

x12 − xW1 = [0, 2]; 3xW1 − x12 = [0, 2];

xW1,3 − xV1 = [0, 2]; 3xV1 − xW1,3 = [0, 2];

x12̃ − xV2 = [0, 2]; 3xV2 − x12̃ = [0, 2];

xV1,V2 − xf2 = [0, 2]; xV1,V2 − 3xf2 = [0, 2].

End of example.

Proof of Theorem 12.12 is done by a similar reduction.

Proof of Theorem 12.13. Let us show that solving an arbitrary 2-sparse
system can be reduced to solving an almost numerical 2-sparse system.

Indeed, each equation of the general 2-sparse system has the form

a · x + b · y = c,

where x and y are unknowns. To reduce this problem to an almost numerical
system, we introduce two new variables x′ and y′, and replace the original
equation with the following three equations:

a · x− x′ = 0; b · y − y′ = 0; x′ + y′ = c.

This system of three equations is clearly equivalent to the original equation, and
all three equations from this system have at most one non-numerical interval
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coefficient. Therefore, combining these systems together, we get an almost
equivalent 2-sparse system that is equivalent to the original one.

So, if we could solve 2-sparse almost numerical interval linear systems in poly-
nomial time, we would be able to solve all 2-sparse interval linear systems in
polynomial time. But this second problem is already proven to be NP-hard
(in Theorem 12.11). Therefore, our problem is also NP-hard. The theorem is
proven.

Proof of Theorem 12.14 is done by a similar reduction.

Proof of Theorem 12.15. To prove our result, we will start with the known
result (mentioned above; see, e.g., Theorems 11.7–9) that the problem of solving
regular linear interval systems with rational interval coefficients is NP-hard.
We will then describe a general transformation of such systems into systems in
which each interval coefficient is [0, 0], [1, 1], or [0, 1]. This transformation will
be done in several steps.

On some steps, we will introduce new variables in addition to the variables
y1, . . . , ym used in the original system. We will make sure that for each of
the original variables yj , the set of possible values of yj will remain the same.
Thus, we will be sure that the resulting final system has exactly the same
bounds for y1, . . . , ym as the original system. Thus, if there is a polynomial-
time algorithm that can find these bounds for an arbitrary linear interval system
with coefficients [0, 0], [1, 1], or [0, 1], then by applying this algorithm to the
transformation result, we would be able to compute the bounds for the original
system, and this computation is an NP-hard problem. Thus, the problem of
computing solution bounds for linear interval systems with coefficients [0, 0],
[1, 1], or [0, 1] is also NP-hard.

We will also make sure that each transformation step preserves the number
of non-numerical interval coefficients (i.e., coefficients that are not of the type
[a, a]), and that when we choose some values inside these intervals, all the
variables of the resulting system are uniquely determined. In other words,
we will make sure that the systems obtained on each transformation step are
regular. Thus, the problem of computing solution bounds for regular linear
interval systems with coefficients [0, 0], [1, 1], or [0, 1] will be proven to be also
NP-hard.
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1) The first transformation simplifies the right-hand side of the linear equation.
Namely, we introduce a new variable y0, replace each of n equations

∑
aij ·yj =

bi by an equation ai0·y0+
∑

aij ·yj = 0 with ai0 = −bi, and add a new equation
y0 = 1.

If the vector (y0, . . . , ym) belongs to the solution set of the new system, then
y0 = 1, and thus, the values y1, . . . , ym satisfy the original equations. Vice
versa, if the values y1, . . . , ym satisfy the original equations, then for y0 = 1,
the transformed equations also hold. Thus, for each of the variables y1, . . . , ym,
the bounds are the same for the original and for the transformed equations.

If we fix the values aij ∈ aij , then, since the original system was regular, the
values y1, . . . , ym would be uniquely determined. The only missing value y0 can
be now uniquely determined from the equation y0 = 1. Thus, the new system
is regular.

Hence, this transformation preserves both the bounds on yj and the uniqueness
(regularity) property.

2) For every i, all the bounds of all the coefficients aij in i-th equation are
rational numbers (i.e., fractions). If we multiply all coefficients of this equation
by the least common denominator of the corresponding fractions, we get a new
equation in which all bounds of all coefficients are integers.

In the second transformation, we apply this procedure to all equations. As a
result, we get an equivalent (thus regular) linear interval system, in which all
bounds of all interval coefficients are integers.

In particular, the only equation with a the non-zero right-hand side (namely,
the equation y0 = 1) stays the same.

3) On the third step, for each j = 0, . . . , m, we introduce two new variables nj

and pj (here, n stands for negative, and p for positive).

For each j, we add two new equations yj + nj = 0 and nj + pj = 0. In each
original equation, we replace each term [aij , aij ] · yj by one of the following six
expressions:
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If the interval [aij , aij ] is non-degenerate (i.e., if aij < aij), then we use
one of the following three expressions:

• If aij < 0, then we replace the term [aij , aij ] · yj by the sum
|aij | · nj + [0, aij − aij ] · yj .

• If aij = 0, then we leave the term [aij , aij ] · yj (= [0, aij ] · yj) un-
changed.

• If aij > 0, then we replace this term by the sum aij ·pj+[0, aij−aij ]·yj .

If the interval [aij , aij ] is degenerate (i.e., if aij = aij), then we use one of
the following three expressions:

• If aij < 0, then we replace the term [aij , aij ] · yj by |aij | · nj .

• If aij = 0, then we delete the term [aij , aij ] · yj (because it is equal to
0).

• If aij > 0 , then we replace the term [aij , aij ] · yj by aij · pj .

As a result, we get a linear interval system in which each interval coefficient
is either a positive integer, or an interval of the type [0, z] for some positive
integer z.

Let us show that this transformation does not change the bounds of the solution
set for y1, . . . , ym, and preserves regularity.

Indeed, if y0, y1, . . . , ym is a solution of the system that we had before this step,
then, by adding nj = −yj and pj = yj , we get a solution of the transformed
system. Vice versa, if we have a solution of the transformed system, then from
the new equations yj + nj = 0 and nj + pj = 0, we conclude that nj = −yj ,
and pj = −nj = yj . If aij < 0 and aij < aij , then, for every zij ∈ [0, aij − aij ],
we have

|aij | · nj + zij · yj = aij · yj + zij · yj = aij · yj ,

where aij = aij + zij ∈ aij + [0, aij − aij ] = [aij , aij ]. Thus, y0 = 1, y1, . . . , ym

form a solution of the system that we had before this step. (A similar proof
holds in all five other cases: aij = 0 < aij , 0 < aij < aij , aij = aij < 0,
aij = aij = 0, and aij = aij > 0).

Since the system that we had before this step was regular, for each choice
of coefficients in their intervals, the variables y0(= 1), y1, . . . , ym are uniquely
determined; the new variables nj and pj are uniquely determined from yj .
Thus, the transformed system is also regular.
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4) Let us now describe the fourth (and final) transformation step. To simplify
the description of this step, let us first rename the variables yj , nj , and pj into
y
[0]
j , n

[0]
j , and p

[0]
j .

Let N denote the largest integer bound in the system obtained after the third
step, let d denote the number of binary digits in the binary representation of N
(i.e., d = blog2(N)c), and let P denote the set of all pairs (i, j) for which i-th
equation of the system that we had before this step contains the term [0, zij ]·yj .
The transformed system will have the following variables:

For each j = 0, . . . , m, and for each k = 0, . . . , d, variables y
[k]
j , n

[k]
j , and

p
[k]
j .

For each pair (i, j) ∈ P , and for each k = 0, . . . , d, variables y
[k]
ij , n

[k]
ij , and

p
[k]
ij .

This system will consist of the following equations:

Equations y
[k]
j + n

[k]
j = 0 and p

[k]
j + n

[k]
j = 0 (for all j ≤ m).

Equations y
[k]
ij + n

[k]
ij = 0 and p

[k]
ij + n

[k]
ij = 0 (for all (i, j) ∈ I).

Equations y
[k]
j + p

[k]
j + n

[k+1]
j = 0 (for all j ≤ m and k < d).

Equations y
[k]
ij + p

[k]
ij + n

[k+1]
ij = 0 (for all (i, j) ∈ I and k < d).

Equations n
[0]
ij + [0, 1] · y[0]

j = 0 (for all (i, j) ∈ I).

Equations that are obtained from the equations of the system that we had
before this step by the following replacement:

• Each term of the type z · nj is replaced by the sum of the terms n
[k]
j

for all places k on which the binary expansion of z has 1 (i.e., for
which εk = 1 in the binary expansion z =

∑
εk · 2k).

• Each term of the type z · pj is replaced by the sum of the terms p
[k]
j

for all places k on which the binary expansion of z has 1.

• Each term of the type [0, zij ] · yj is replaced by the sum of the terms
y
[k]
ij for all places k on which the binary expansion of zij has 1.
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As a result, we get a linear interval system in which each interval coefficient is
either 0, or 1, or an interval [0, 1].

Let us show that this transformation does not change the bounds of the solution
set for y1, . . . , ym, and preserves regularity.

Indeed, if the values yj , nj , and pj form a solution of the system that we had
before this step, a solution that corresponds to the coefficients cij ∈ [0, zij ],
then, as one can check, the values y

[k]
j = p

[k]
j = 2k · yj , n

[k]
j = −2k · yj , c′ij =

cij/zij , y
[k]
ij = p

[k]
ij = 2k · c′ij · yj , and n

[k]
ij = −2k · c′ij · yj form a solution of the

transformed system, for c′ij ∈ [0, 1].

Indeed, e.g., for this choice of variables, the sum of the terms p
[k]
j for all places

k on which the binary expansion of z has 1, is equal to the sum of the terms
2kyj , i.e., to the product of yj and the sum of the terms 2k that correspond to
all places k on which the binary expansion of z has 1. This sum is exactly the
binary expansion of z, and hence, the sum is equal to z · yj .

Vice versa, if we have a solution of the transformed system, for cij ∈ [0, 1],
then:

From the equations y
[k]
j + n

[k]
j = 0 and p

[k]
j + n

[k]
j = 0, we conclude that

n
[k]
j = −y

[k]
j = 0 and p

[k]
j = −n

[k]
j = y

[k]
j .

From the equations y
[k]
j + p

[k]
j + n

[k+1]
j = 0, we can now conclude that

n
[k+1]
j = −2y

[k]
j , hence, y

[k+1]
j = −n

[k+1]
j = 2y

[k]
j . By induction over k, we

can conclude that y
[k]
j = 2k · y[0]

j , and hence, that n
[k]
j = −2k · y[0]

j and

p
[k]
j = 2k · y[0]

j .

Similarly, we can conclude that y
[k]
ij = 2k · y

[0]
ij , n

[k]
ij = −2k · y

[0]
ij , and

p
[k]
ij = 2k · y[0]

ij .

From the equation n
[0]
ij + [0, 1]y[0]

j = 0, and from our assumption that the

coefficient is equal to cij ∈ [0, 1], we conclude that n
[0]
ij = −cij · y[0]

j , and

therefore, that p
[0]
ij = −n

[0]
ij = cij · y[0]

j .
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Thus, the sums of the terms of the type n
[k]
j and y

[k]
ij reduce to z ·nj and z ·yij =

(z · cij) · yj , where z · cij ∈ z · [0, 1] = [0, z]. Thus, the values y0 = 1, y1, . . . , ym

form a solution of the system that we had before this step.

Since the system that we had before this step was regular, for each choice
of coefficients in their intervals, the variables y0(= 1), y1, . . . , ym are uniquely
determined; the new variables y

[k]
j , n

[k]
j , and p

[k]
j are uniquely determined by

the values yj . For fixed cij , the values of the variables y
[k]
ij , n

[k]
ij , and p

[k]
ij are

also uniquely determined by the values yj . Thus, the transformed system is
also regular. The theorem is proven.

Proof of Theorem 12.16 is done by a similar reduction.

Proof of Theorem 12.18. This algorithm is based on the ideas originally
proposed in Suvorov [405] and Dantsin [82, 83].

To describe this algorithm, we will describe an auxiliary algorithm that would
check, for every j = 1, . . . , n, and for every possible value yj ∈ S of the variables
yj , whether this particular value can be extended to a possible S-solution y of
a given linear system (i.e., to a solution all components of which belong to the
set S). If we have such an auxiliary algorithm, then, to find the desired max yj ,
we will simply enumerate all possible values of yj , check which of these values
are possible, and take the largest of these possible values. Similarly, we will be
able to compute the smallest of the possible values of yj , i.e., y

j
.

The resulting algorithm for computing yj and y
j

consists of applying the aux-
iliary algorithm s times, where s is the number of elements in the set S, and in
finding the largest and the smallest of the resulting values yj . This finding can
be easily accomplished, if on each step, we keep track of the largest-so-far and
smallest-so-far values, and for every new possible yj , compare this new value yj

with these largest-so-far and smallest-so-far values. Therefore, if the running
time of the auxiliary algorithm is bounded by a polynomial P (n) of the size n
of the problem, then the running time of the resulting algorithm for computing
y

j
and yj is also polynomial time: it takes ≤ s ·P (n)+2n steps, where 2n steps

are needed for finding the largest and the smallest elements.

So, to prove our theorem, it is sufficient to design a polynomial-time auxiliary
algorithm. This algorithm will work as follows. The fact that the system is
w-band means that for every i, the i-th equation only contains variables yj

with j = i− (w− 1), i− (w− 2), . . . , i− 1, i, i+1, . . . , i+(w− 1). In particular:
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the first equation contains only variables y1, . . . , yw;

the second equation contains only variables y1, y2, . . . , yw+1;

. . .;

(w − 1)-st equation contains only variables y1, y2, . . . , y2w−1.

On the first stage of the proposed auxiliary algorithm, we will try, for each of
s2w−1 possible S-tuples (y1, . . . , y2w−1), whether this tuple is a solution to the
system of first w−1 linear equations (if the desired variable yj is among one of
these y1, . . . , y2w−1, then we only consider those tuples for which yj takes the
given value). To check each tuple, we will try all possible S-values aij ∈ aij and
bi ∈ bi for all i ≤ w− 1 and j ≤ 2w− 1. Let us describe how many coefficients
there are:

The first equation has w coefficients aij , the second one has w + 1 coefficients
aij , etc. Totally, there are w + (w + 1) + . . . + (2w − 1) coefficients aij , i.e.,

w · (w − 1) + [1 + . . . + w] = w · (w − 1) +
w · (w + 1)

2
=

w · (3w − 1)
2

coefficients. In addition to that, there are w coefficients bi, i ≤ w. In total,
there are w · (5w − 1)/2 coefficients. Each of these coefficients is an element
of the set S and therefore, it can take no more than s different values. Hence,
the entire set of coefficients can take ≤ sw·(5w−1)/2 different values. For each
set of coefficients aij and bi, and for each set (y1, . . . , y2w−1), checking whether
all of k + 1 equations are satisfied (i.e., whether

∑
aij · yj = bi) takes ≤ w2

straightforward multiplications, additions, and comparisons. To check this for
all possible sets of coefficients and for all possible S-tuples, we must, therefore,
apply ≤ w2 · s2w−1 · sw·(5w−1)/2 computational steps. This may be a huge
number, but s and w are both constants independent of the size n of the entire
system. Thus, the number of computations spent on this first step is bounded
by a constant.

Let us now describe the further stages of the proposed algorithm. Totally,
there will be n − (w − 1) of them, and these stages will be marked by num-
bers w, w + 1, . . . , n. On each stage i, we will find the set of all tuples
(yi−(w−1), . . . , yi, . . . , yi+(w−1)) that can be extended to an S-solution of the
system formed by first i equations. To find such a set, let us start with a set of
possible values (yi−w, . . . , yi−1, . . . , yi+w−2) obtained on the previous stage. By
induction assumption, this set contains exactly S-tuples that satisfy the first
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i− 1 equations. So, to move to a new set, we must take the i-th equation into
consideration.

The i-th equation contains 2w coefficients (2w − 1 coefficients aij and one
coefficient bi). Each of these coefficients takes ≤ s values, and therefore, there
are no more than s2w possible sets of these coefficients. So, to describe the new
set, we can, for each tuple from the old set, do the following:

For each of s possible values of yi+(w−1), and for each of s2w possible
values of the coefficients aij , bi, of i-th equation, we check whether the
i-th equation

∑
aij · yj = bi is satisfied.

If it is satisfied, then we add the resulting tuple
(yi−(w−1), . . . , yi, . . . , yi+(w−1)) to the new set.

For each of ≤ s2w possible S-tuples, on i-th stage, we need ≤ s · s2w checks,
and each check takes ≤ 2 · (2w − 1) operations (2w − 1 multiplications aij · yj

and 2(w − 2) additions). Hence, the total number of operations on each stage
is bounded by s2w−1 · s2w · (4w− 2). This upper bound depends only on s and
w, and it is independent on n. Hence, from the viewpoint of dependency on n,
this is simply a constant.

Hence, the total number of computational steps on all n stages is bounded by
constant·n. Hence, we have described the desired linear-time algorithm. The
theorem is proven.

Proof of Theorem 12.17 is done by a similar reduction.

Proof of Theorem 12.19. We want to find the values yj for which bi ≤∑
aij · yj ≤ bi for all aij ∈ [aij , aij ]. For every j, the largest possible value tij

of each linear term aij ·yj is attained on one of the endpoints of the interval aij ,
and a similar property is true for the smallest possible values tij of these terms.
Therefore, the above inequality is equivalent to the following system of linear
inequalities, with new variables tij and tij : tij ≤ aij · yj ≤ tij , tij ≤ aij · yj ≤
tij , bi ≤

∑
tij , and

∑
tij ≤ bi. Thus, we can use known polynomial-time

algorithms for solving linear programming problems (i.e., for solving systems
of linear inequalities; see, e.g., Karmarkar [168]) to solve our problem. The
theorem is proven.
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Proof of Theorem 12.20 is similar: e.g., to compute y
j
, we solve the linear

problem problem of minimizing yj under the linear inequalities described in the
proof of Theorem 12.19.

Proof of Theorem 12.21. To prove NP-hardness of our problem, we will
reduce PARTITION to it. In PARTITION, we are given a sequence of integers
s1, . . . , sm, and we want to check whether there exist integers yj ∈ {−1, 1} for
which

∑
sj · yj = 0. For each instance of PARTITION, let us construct an

interval linear system with 3m variables y1, . . . , ym, z1, . . . , zm, t1, . . . , tm, and
the following 5m + 1 equations:

[−1, 1] · yj = [1, 1]; j = 1, . . . ,m;

[0, 1] · zj = [1, 1]; j = 1, . . . , m;

[0, 1] · tj = [1, 1]; j = 1, . . . , m;

yj + zj = 2; j = 1, . . . , m;

yj − tj = −2; j = 1, . . . , m;

s1 · y1 + . . . + sm · ym = 0.

If y1, . . . , ym is a solution to the given instance, then we can take zj = 2− yj ,
tj = yj + 2, and get an element of the controlled set.

Vice versa, let us assume that the controlled solution set is non-empty, and
that y1, . . . is an element of this set. Then:

From the first equation, we can then conclude that there exists an element
a ∈ [−1, 1] for which a · yj = 1. Therefore, yj = 1/a, and hence, |yj | ≥ 1,
i.e., yj ≥ 1 or yj ≤ −1.

From the second equation, we can similarly conclude that zj = 1/a for
some a between 0 and 1, i.e., that zj ≥ 1. The fourth equation implies
that yj = 2− zj and therefore, that yj ≤ 2− 1 = 1.

Similarly, from the third and the fifth equations, we conclude that yj ≥ −1.

Since we already know that yj is either ≥ 1 or ≤ −1, we thus conclude
that yj ∈ {−1, 1}.
In this case, the last equation shows that the values yj form a solution to
the given instance of PARTITION.
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So, for the above interval linear system, the controlled solution set is non-empty
if and only if the original instance of PARTITION has a solution. The reduction
is proven, and so, checking non-emptiness is indeed NP-hard. The theorem is
proven.

Proof of Theorem 12.22. We can reduce PARTITION to this problem as
follows: for each particular case of PARTITION, construct the interval linear
system as above. Our problem is to produce something that for the case of non-
empty controlled solution set would be its element. For the above system, it is
easy to check whether this “something” is an element of the controlled solution
set: it is sufficient to check whether

∑
sk ·yk = 0 and yj ∈ {−1, 1}. By checking

this, we would be able to check whether a given instance of PARTITION has
a solution. Reduction proves that our problem is indeed NP-hard.



13
PHYSICAL COROLLARY:

PREDICTION IS NOT ALWAYS
POSSIBLE, EVEN FOR LINEAR

SYSTEMS WITH KNOWN
DYNAMICS

In the previous chapter, we proved that solving interval linear systems is com-
putationally intractable. In this chapter, we describe a practical consequence
of this result: that even for linear systems with known dynamics, prediction
can be computationally intractable, i.e., in practical terms, not always possible.

This corollary may be of interest to physicists, meteorologists, etc.

13.1. Informal Introduction to the Problem and
Motivations for the Following Definitions

One of the main objectives of physics is to predict the future behavior of differ-
ent objects and systems. As a basis for this prediction, we can use the results
of current and past measurements. In this chapter, we will show that such a
prediction is not always possible, even if the dynamics of the object is described
by known linear equations.

Before we start the mathematical formulations, let us clarify what we mean
by the phrase “prediction is not always possible”. If the measurements are
absolutely precise, then, since we assumed that we know the exact dynamics
of the object, we can predict the future values of all its parameters exactly.
In real life, however, measurements are never 100% precise. As a result, each
measurement leads not to the exact value of the measured quantity, but to
the interval of possible values. Since we do not know the exact values of the
past characteristics, we cannot predict the exact values of the future ones;
even for known dynamics, there is an interval of possible values of each future
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characteristic. The question is: can we compute (the bounds of) this interval?
and, if we can, can we compute these bounds fast enough?

We emphasized the words fast enough, because for prediction problems, com-
putations only make sense if they are finished before the event that we are
actually trying to predict.

For example, if we have an algorithm that predicts the next day’s weather,
but that takes a year to finish its computations, then these computations
are of no use: by the time when the computations are over, we will have
already recorded the weather that we were trying to predict.

For simplicity, we will consider systems with discrete time, i.e., we only consider
moments of time 1, 2, . . . Let ~s(t) = (s1(t), . . . , sn(t)) be the state of the system
at a moment t. We will show that prediction problem is NP-hard even for linear
systems, i.e., for systems with linear dynamics, in which the state ~s(t + 1) in
the next moment of time is a linear function of the state ~s(t) in the previous
moment of time: ~s(t + 1) = ~d + D~s(t) for some vector ~d and for some matrix
D. Moreover, we will show that prediction is hard even when we know the
dynamics, i.e., when we know both the vector ~d and the matrix D exactly.

Predictions are based on the results of measurements. The very fact that ~s is
a state means that every measured characteristic m of the system is uniquely
determined by this state, i.e., in mathematical terms, that it is a function
f(s1, . . . , sn) of the values si of the physical quantities that form the state:
m(t) = f(s1(t), . . . , sn(t)). We will show that the prediction problem is difficult
even for the simplest case when every quantity mk(t) measured at each moment
of time t linearly depends on the state:

mk(t) = bk + mk1(t) · s1(t) + . . . + mkn(t) · sn(t).

We can assume, for simplicity, that the measuring instruments are calibrated
in such a way that there is no bias, i.e., that bk = 0. Other parameters of this
dependency (i.e., values mki(t)) are, usually, not exactly known; as a result,
we only know intervals mki(t) of possible values of mki(t). Similarly, since
measurements are never absolutely precise, in general, we only know an interval
mk(t) of possible values of the measured quantity mk(t).

We are now ready to formalize what it means, based on the results of the
measurements performed at the moments of time 1, . . . , T , to predict the results
of measurements at the future moment of time T + 1.
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13.2. Definitions and the Main Result

Definition 13.1. By a prediction problem, we mean the tuple

〈n, ~d,D, T, n1, . . . , nT ,M(1), . . . ,M(T ),M(T + 1),m(1), . . . ,m(T )〉,

where:

• n is a positive integer called dimension of the system (or simply dimension);

• ~d is an n−dimensional vector, and D is an n×n matrix (both, with rational

components); the pair 〈~d,D〉 is called dynamics;

• T is a positive integer called the time period;

• nt, 1 ≤ t ≤ T , are positive integers; the integer nt is called the number of
quantities measured at time t;

• M(t), 1 ≤ t ≤ T +1, are interval matrices of sizes nt×n; here, we denoted
nT+1 = 1 (so that the matrix M(T + 1) is of size 1 × n, i.e., actually, an
n-dimensional interval vector); these T + 1 matrices are called measuring
procedures; and

• m(t), 1 ≤ t ≤ T , are interval vectors of size nt called measurement results.

Definition 13.2. Let δ > 0 be a positive rational number. We say that a
prediction problem is based on δ-accurate measurements if all the intervals com-
ponents of the matrices M(t) and the vectors m(t) are absolutely δ-accurate.

Comemnt. Recall that an interval a = [a, a] is called absolutely δ-accurate if its
radius (1/2) · (a− a) does not exceed δ.
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Definition 13.3. We say that a real number p is a possible prediction for a
given prediction problem

〈n, ~d,D, T, n1, . . . , nT ,M(1), . . . ,M(T ),M(T + 1),m(1), . . . ,m(T )〉,

if there exist vectors ~s(1), . . . , ~s(T ), ~s(T +1), vectors ~m(t) ∈ m(t), and matrices
M(t) ∈ M(t) for which:

• ~s(t + 1) = ~d + D~s(t) for t = 1, . . . , T ;

• M(t)~s(t) = ~m(t) for t = 1, . . . , T ; and

• M(T + 1)~s(T + 1) = p.

The smallest and the largest of the possible predictions will be denoted by p
and p.

Definition 13.4. Let ε > 0. By a problem of computing an ε-accurate predic-
tion, we mean the following problem:

GIVEN a prediction problem.

COMPUTE rational numbers p̃ and p̃ that are ε-close to, correspondingly,
the smallest p and the largest p possible predictions (i.e., for which |p̃−p| ≤
ε and |p̃− p| ≤ ε).

Comment. Each possible prediction is a solution of the following interval linear
system:

~s(t + 1)−D~s(t) = ~d, 1 ≤ t ≤ T ;

M(t)~s(t) = m(t), 1 ≤ t ≤ T ;

M(T + 1)~s(T + 1)− p = 0.

We know that in general, the problem of solving interval linear systems is NP-
hard. We will show that it remains NP-hard if we only consider linear systems
that correspond to prediction problems:

Theorem 13.1. For every positive integer T , and for arbitrary positive rational
numbers ε > 0 and δ > 0, the problem of computing an ε-accurate prediction
based on δ-accurate measurements is NP-hard.
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13.3. Auxiliary Result

In our definitions, we assumed the possibility that different measuring pro-
cedures are used for different moments of time t. What if we only consider
time-invariant (stationary) situations, in which at all moments of time, we use
exactly the same set of measuring instruments? It turns out that in this case,
the problem is still NP-hard:

Definition 13.5. By a prediction problem based on stationary measurements,
we mean the tuple

〈n, ~d,D, T, n1,M,M(T + 1),m(1), . . . ,m(T )〉,

where:

• n is a positive integer called dimension of the system (or simply dimension);

• ~d is an n−dimensional vector, and D is an n×n matrix (both, with rational

components); the pair 〈~d,D〉 is called dynamics;

• T is a positive integer called the time period;

• n1 is a positive integer; it is called the number of measured quantities;

• M is an interval matrix of size n1×n called a measuring procedure; M(T+1)
is an n-dimensional row of this matrix;

• m(t), 1 ≤ t ≤ T , are interval vectors called measurement results.

Definition 13.6. We say that a real number p is a possible prediction for a
given prediction problem

〈n, ~d,D, T, n1,M,M(T + 1),m(1), . . . ,m(T )〉

if there exist vectors ~s(1), . . . , ~s(T ), ~s(T +1), vectors ~m(t) ∈ m(t), and a matrix
M ∈ M for which:

• ~s(t + 1) = ~d + D~s(t) for t = 1, . . . , T ;

• M~s(t) = ~m(t) for t = 1, . . . , T ; and

• M(T + 1)~s(T + 1) = p, where M(T + 1) is the corresponding row of the
matrix M .
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Definition 13.7. Let ε > 0. By a problem of computing an ε-accurate predic-
tion based on stationary measurements, we mean the following problem:

GIVEN a prediction problem with stationary measurements.

COMPUTE rational numbers p̃ and p̃ that are ε-close to, correspondingly,
the smallest possible prediction p and the largest possible prediction p,

(i.e., for which |p̃− p| ≤ ε and |p̃− p| ≤ ε).

Comment. This problem is not exactly the problem of solving a system of in-
terval linear equations, because we require that the matrix M ∈ M be the same
for all T equations (i.e., that the coeficients are not independent). However, it
is still NP-hard:

Theorem 13.2. For every positive integer T , and for arbitrary positive rational
numbers ε > 0 and δ > 0, the problem of computing an ε-accurate prediction
based on δ-accurate stationary measurements is NP-hard.

Proofs

Proof of Theorem 13.1. To prove this result, we will reduce the PARTITION
problem (known to be NP-hard) to our prediction problem. In the PARTITION
problem, we are given a sequence of integers v1, . . . , vq, and we must check
whether there exist values x1, . . . , xq for which xi ∈ {−1, 1} and

v1 · x1 + . . . + vq · xq = 0.

Let us take δ0 = min{δ, δ/(2ε)}, and let us form the following prediction prob-
lem: n = q + 1, ~d = ~0 = (0, . . . , 0) is the vector consisting of all 0’s, D is the
unit matrix (D = I), n1 = . . . = nT = 2n + 1(= 2q + 3). Let us first define,
for t = 1, . . . , T , the interval matrices M(t) (with elements mij(t)) and interval
vectors m(t) (with elements mi(t)):
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mii(t) = [−δ0, δ0]; mij(t) = [0, 0] for all j 6= i;

mi+n,i(t) = [δ0, δ0]; mi+n,j(t) = [0, 0] for all j 6= i;

mi(t) = [2ε · δ0, 2ε · δ0];

mi+n(t) = [−2ε · δ0, 2ε · δ0];

We also take m2n+1,j(t) = [vj , vj ] for all j, and m2n+1(t) = [2ε · vn, 2ε · vn],
where we denoted vn = −0.5 · (v1 + . . . + vq).

Finally, we define the matrix M(T + 1) as follows: m1,i(T + 1) = [0, 0] for all
i ≤ q, and m1,n(T + 1) = [1, 1]. It is easy to check that all the intervals are
absolutely δ-accurate (this is why we have chosen δ0 as we did above), i.e., this
problem is indeed based on δ-accurate measurements.

Let us describe all possible predictions. Since ~d = 0 and D = I, we have
~s(t + 1) = ~s(t) and thus, the state does not change with time. So, we will omit
t and denote the state vector simply by ~s = (s1, . . . , sn).

The vector equation M(t)~s(t) = ~m(t) consists of 2n + 1 numerical equations.
From the first n equations M(t)~s(t) = ~m(t), we conclude that mii(t)·si = 2ε·δ0

for some mii(t) ∈ [−δ0, δ0]; therefore, 2ε ·δ0 = |mii| · |si| ≤ |si| ·δ0, and |si| ≥ 2ε,
i.e., si ≤ −2ε or si ≥ 2ε.

From the equations numbers n+1, . . . , n+ i, . . . , 2n, we conclude that for every
i, δ0 · si = mi for some mi ∈ [−2ε · δ0, 2ε · δ0], and therefore, that si ∈ [−2ε, 2ε].
Since we already know that si ≤ −2ε or si ≥ 2ε, we conclude that for every i,
either si = −2ε or si = 2ε. In other words, we can say that si = 2ε · xi, where
xi = −1 or xi = 1.

Finally, the (2n + 1)-st equation M(t)~s(t) = ~m(t) means that v1 · s1 + . . . + vq ·
sq+vn ·sn = 2ε·vn. If we substitute the expression si = 2ε·xi into this equation,
and divide both sides by 2ε, we conclude that v1 ·x1 + . . .+vq ·xq +vn ·xn = vn.
This equation has a possible solution x1 = . . . = xq = −1, xn = −1, and is,
therefore, consistent. The variable xn has two possible values: −1 and 1. The
value −1 is always possible, but the value xn = 1 is possible if and only if
v1 · x1 + . . . + vq · xq = 0 for some xi ∈ {−1, 1}, i.e., if and only if this instance
of the PARTITION problem is solvable.

In our prediction problem, the predicted quantity p is equal to sn, i.e., to 2ε·xn.
So, depending on whether the given instance of PARTITION has a solution or
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not, the set of possible predictions consists either of a single value −2ε, or of
two values {−2ε, 2ε}. Thus, depending on whether this instance is solvable
or not, we will get either p = 2ε or p = −2ε. If we compute this bound p
with accuracy ε, we will be able to detect this difference. Since PARTITION
is known to be NP-hard, our prediction problem is thus also NP-hard. The
theorem is proven.

Proof of Theorem 13.2. To prove Theorem 13.2, we will describe a reduction
similar to the one described in Theorem 13.1. Namely, we will modify the
reduction from the Theorem 13.1 as follows:

First, we will add T more quantities to the description of the state, i.e.,
we will consider T additional variables sq+2, . . . , sq+1+T , to the total of
n = q + 1 + T .

For the first q + 1 components of the state ~s, dynamic equations are the
same as in the proof of Theorem 13.1: si(t + 1) = si(t), 1 ≤ i ≤ q + 1.
For the new components, the dynamics will be slightly more complicated:
sq+i(t + 1) = sq+i−1(t).

In algebraic terms:
• the vector ~d is still all 0’s (~d = ~0), but
• the matrix D, in addition to the (q + 1)× (q + 1)-identity-matrix

part, has T more non-zero terms dq+1+i,q+i = 1, 1 ≤ i ≤ T .

At each moment of time, we will perform the same 2q + 3 measurements
that we did in the proof of Theorem 13.1 (their results, thus, do not depend
on the new variables sq+1+i), plus one more measurement, with m2q+4,i =
[0, 0] for i 6= q+1+T and m2q+4,q+1+T = [1, 1]. For this new measurement,
we will take m2q+4 = [0, 0].

In algebraic terms, to get the new matrix M from the matrix described
in Theorem 13.1, we:
• add T new columns to the right;
• add a new row below, and
• fill new rows and new columns with 0’s except for the intersec-

tion of the last new row and the new column where we place a
(degenerate) interval [1, 1].

Finally, to describe a predicted quantity p, instead of taking the previous
vector M(T + 1), we take a new vector (that is actually equal to the last
row of the new matrix M): m1,i(T + 1) = [0, 0] for i 6= q + 1 + T and
m1,q+2(T + 1) = [1, 1].
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Similarly to the proof of Theorem 13.1, we can conclude that for every possible
prediction, we have si(t+1) = si(t) = 2ε ·xi for all i = 1, . . . , q +1, where each
of the variables xi is equal either to −1 or to 1, and xq+1 = 1 is possible if and
only if the given instance of the PARTITION problem has a solution.

The predicted quantity is p = sq+1+T (T + 1). From the dynamic equations for
the new variables, we conclude that:

sq+1+T (T + 1) = sq+T (T ) = sq+T−1(T − 1) = . . . = sq+i(i) =

. . . = sq+2(2) = sq+1(1).

Thus, in our prediction problem, the predicted quantity p is equal to sq+1, i.e.,
to 2ε · xq+1. So, depending on whether the given instance of PARTITION has
a solution or not, the set of possible predictions consists either of a single value
−2ε, or of two values {−2ε, 2ε}. Thus, depending on whether this instance is
solvable or not, we will get either p = 2ε or p = −2ε. If we compute this bound
p with accuracy ε, we will be able to detect this difference. Since PARTITION
is known to be NP-hard, our prediction problem is thus also NP-hard. The
theorem is proven.





14
ENGINEERING COROLLARY:

SIGNAL PROCESSING IS NP-HARD

In this chapter, we present another example of a practical problem which is com-
putationally intractable in the presence of interval uncertainty: signal process-
ing.

This chapter was written in collaboration with O. Kosheleva.

14.1. Signal Processing: A Brief Introduction

What is signal processing. Signal processing studies dynamic signals, i.e.,
quantities that change with time. Usually, we do not directly observe the actual
values x1, . . . , xn of this quantity at different moments of time 1, . . . , n. Instead,
we measure the values of the transmitted signal m1, . . . , mn that depend on xj :
mi = mi(x1, . . . , xn). One of the basic problems of signal processing is to
reconstruct the signal xj from the measurements m1, . . . , mn.

An important particular case is when the transmission occurs within a measur-
ing system, i.e., when xi are the measured quantities, and mi are the actual
measurement results. If we measure, e.g., a temperature inside the furnace, or
parameters of the Martian soil, then signal transmission is a difficult task, and
transmission inaccuracies are inevitable (i.e., mi 6= xi).

If the signal is strong, then it usually passes through the transmission lines
practically unchanged (i.e., mi ≈ xi), so there is no need for reconstruction.
Reconstruction is only necessary when the signal is weak, i.e., when the values
xj are small. In this case, we can expand the dependence mi on x1, . . . , xn in
Taylor series, and keep only the linear terms, i.e., the constant term bi (bias)
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and the terms proportional to xj :

mi = bi + ai1 · x1 + . . . + ain · xn. (14.1)

In these terms, reconstructing the signal means finding the values xj from the
equations (14.1).

If we know the exact values of the parameters bi and aij and the measurements
that lead to the values mi are precise, then reconstructing the signal simply
means solving a system of linear equations.

Uncertainty. In most real-life situations we do not know the exact values of
the coefficients bi and aij that characterize the transmission line; instead, we
only know the intervals bi and aij of possible values of these variables.

In some cases, we also know probabilities of different values inside these
intervals, but in this chapter, we will only consider the case when the
intervals are the only information we have.

Similarly, as a result of the measurement, we do not get the exact values mi; due
to inevitable measurement errors, we can, at best, get an interval mi of possible
values of the measured quantity. With this interval uncertainty, we get interval
linear equations that relate the (unknown) signal xj with the measurement
results:

bi +
n∑

j=1

aij · xj = mi, 1 ≤ i ≤ n (14.2)

meaning that bi +
∑

aij · xj = mi for some bi ∈ bi, aij ∈ aij , and mi ∈ mi. In
this case, reconstructing the signal means finding all possible values of xi, i.e.,
solving the corresponding system of interval linear equations.

Duplicate measurements. In the ideal case, when we know the exact values
of bi, aij , and mi, we get the exact values of xj from a single sequence of
measured values. In the realistic case, we get only approximate values of xi.
If we are not satisfied with the accuracy of the reconstructed signal, then the
natural way to improve this accuracy is to perform additional measurements,
i.e., to have several channels, and to reconstruct the signal from the results
coming from all these channels.
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For example, if we are interested in the temperature inside the furnace, and
the existing thermo-sensors do not give the desired accuracy, we may want
to complement them with other sensors that measure, e.g., the brightness
of the furnace.

If we use several channels, then, instead of the system (14.2), we have a system

b(c)
i +

∑
a(c)

ij · xj = m(c)
i , (14.3)

where c = 1, 2, . . . , C is the number of the channel, b(c)
i and a(c)

ij are parameters

that describe c-th channel, and m(c)
i are the measurement results coming from

c-th channel.

Measuring instruments are usually stationary. In principle, arbitrary
interval vectors and matrices are possible, so, from the fact that solving interval
linear systems is NP-hard, we can conclude that signal processing is also NP-
hard. However, these arbitrary parameters bi and aij are rare: in practice, most
of the communication channels and measuring instruments are time-invariant
(stationary). Time-invariance means that all properties of the channel and/or
instrument do not depend on time; in particular:

the interval b(c)
i that describes possible bias at time i should not depend

on time at all: b(c)
i = b(c);

the interval a(c)
2,1 that describes how the value m2 of the transmitted signal

(that corresponds to moment 2), depends on the input signal x1 at moment
1, should coincide with the interval a(c)

3,2 that describes how the value m3

of the transmitted signal (that corresponds to moment 3), depends on the
input signal x2 at moment 2, etc. In general, the interval coefficient a(c)

ij

should not depend on the absolute times i and j, but only on the time i−j

that passed between i and j: a(c)
ij = a(c)

i−j (i.e., each interval matrix a(c)
ij is

a Toeplitz matrix).

In this stationary case, we get the following system of equations:

b(c) +
∑

a(c)
i−j · xj = m(c)

i . (14.4)

We will show that signal reconstruction is NP-hard even if we only consider
such stationary systems.
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Comment. In principle, the measured values m1, . . . , mn may depend not only
on the values of the signal x1, . . . , xn during the observation period, but also on
the other values of the signal, such as x0 and xn+1. We will show NP-hardness
for the simplest case when the signal xi can only be different from 0 during the
observations, i.e., when x0 = x−1 = . . . = xn+1 = xn+2 = . . . = 0.

14.2. Definitions and the Main Result

Definition 14.1. Let C be a positive integer. By a C-channel signal processing
problem, we mean the following problem:

GIVEN:

• an integer n,

• C rational intervals b(c), 1 ≤ c ≤ C;

• C rational (2n− 1)-dimensional interval vectors

a(c) = (a(c)
−(n−1), . . . ,a

(c)
n−1), 1 ≤ c ≤ C;

• C rational n-dimensional interval vectors m(c) = (m(c)
1 , . . . ,m(c)

n ),
1 ≤ c ≤ C; and

• an integer i, 1 ≤ i ≤ n.

COMPUTE the smallest xi and the largest xi possible values of xi for
which, for some x = (x1, . . . , xi−1, xi, xi+1, . . . , xn) and for each c and i,

b
(c)
i +

n∑

j=1

a
(c)
ij · xj = m

(c)
i . (14.5)

for some b
(c)
i ∈ bc, a

(c)
ij ∈ a(c)

i−j , and m
(c)
i ∈ m(c)

i .

Theorem 14.1. For C ≥ 2, C-channel signal processing problem is NP-hard.

Comments.

We will see from the proof that not only the problem of computing the exact
bounds for xi is NP-hard, but the problem of approximately computing
these bounds, with a given accuracy, is also NP-hard.

We do not know whether signal processing is NP-hard for the case of a
single channel.
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Proof

It is sufficient to prove the theorem for C = 2. To prove this result, we will
reduce the PARTITION problem (known to be NP-hard) to our problem. In
the PARTITION problem, we are given a sequence of integers s1, . . . , st, and
we must check whether there exist values y1, . . . , yt for which yi ∈ {−1, 1} and
s1 · y1 + . . . + st · yt = 0. Let us take n = 2t + 2, b(1) = b(2) = [0, 0], and the
following intervals a(c)

k and m(c)
i (1 ≤ c ≤ 2):

a(1)
0 = [1, 1] and a(1)

k = [0, 0] for k 6= 0,

m(1)
i = [−1, 1] for 1 ≤ i ≤ t + 1, and m(1)

i = [0, 0] for i > t + 1.

a(2)
0 = [−1, 1], a(2)

k = [0, 0] for 1 ≤ k ≤ t + 1, a(2)
t+1+k = [st+1−k, st+1−k],

1 ≤ k ≤ t+1, where we denoted st+1 = −0.5·(s1+. . .+st); and a(2)
k = [0, 0]

for k < 0.

m(2)
i = [−1, 1] for 0 ≤ i ≤ t + 1, m(2)

i = [−S, S] for t + 1 < i < 2t + 2,
where we denoted S = |s1|+ . . . + |st+1|, and m(2)

2t+2 = [st+1, st+1],

For the first channel, the condition (14.5) implies that for every i ≤ t + 1,
xi = m

(1)
i for some m

(1)
i ∈ [−1, 1], and therefore, that xi ∈ [−1, 1]. For

i > t+1, we similarly conclude that xi = m
(1)
i ∈ [0, 0], i.e., that xt+2 = xt+3 =

. . . = x2t+2 = 0.

From the equations that correspond to the second channel, we conclude that
for every i ≤ t + 1, we have a

(2)
i · xi = 1 for some a

(2)
i ∈ [−1, 1], and therefore,

that xi ≤ −1 or xi ≥ 1. Since we already know that xi ∈ [−1, 1], we conclude
that for every i ≤ t + 1, either xi = −1 or xi = 1.

Let us now consider the equations that correspond to i > t+1, i.e., to i = t+1+k
for k > 0. When t + 1 < i = t + 1 + k < 2t + 2 (i.e., when k < t + 1), the
equation (14.5) takes the form

2t+2∑

j=1

a
(2)
t+1+k,j · xj ∈ [−S, S].
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Since we already know that xt+2 = xt+3 = . . . = 0, we can only retain terms
corresponding to j ≤ t + 1:

t+1∑

j=1

a
(2)
t+1+k,j · xj ∈ [−S, S].

In the equation (14.5), a
(2)
t+1+k,j ∈ a(2)

t+1+k−j . Since k > 0 and j ≤ t + 1,
we have t + 1 + k − j = (t + 1 − j) + k > 0. For a positive index q, the
interval a(2)

q is degenerate, i.e., consists of a single value; therefore, each value
a
(2)
t+1+k,j coincides with the corresponding value. This value is non-zero only

when k − j ≥ 0, i.e., when j ≤ k. Thus, the above formula turns into

k∑

j=1

st+1−(k−j) · xj ∈ [−S, S].

Since xj = ±1, we have |∑ st+1−(k−j) · xj | ≤
∑ |sk| = S, so each of these

equations is automatically satisfied.

For i = 2t + 2, the interval m(2)
i is degenerate, and thus, the corresponding

equation (14.5) takes the form s1 · x1 + . . . + st · xt + st+1 · xt+1 = st+1.

This equation has a possible solution x1 = . . . = xt = −1, xt+1 = −1, and
is, therefore, consistent. The variable xt+1 has two possible values: −1 and
1. The value −1 is always possible, but the value xt+1 = 1 is possible if and
only if s1 · x1 + . . . + st · xt = 0 for some xi ∈ {−1, 1}, i.e., if and only if this
instance of the PARTITION problem is solvable. Thus, depending on whether
this instance is solvable or not, we will get either xt+1 = 1 or xt+1 = −1. Since
PARTITION is known to be NP-hard, our problem is thus also NP-hard.

Thus, if we are able to solve the corresponding interval linear systems with
accuracy ε < 1, we can check whether the actual value of xt+1 is −1 or 1,
and thus, solve the given instance of PARTITION. For ε > 1, we can consider
a similar system with the new measurement intervals m(c)new

i = 2ε · m(c)
i .

Solving this system with accuracy ε is equivalent to solving the original system
with accuracy 0.5, and thus, it is equivalent to solving the given instance of
PARTITION. The theorem is proven.
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BRIGHT SIDES OF NP-HARDNESS
OF INTERVAL COMPUTATIONS I:

NP-HARD MEANS THAT GOOD
INTERVAL HEURISTICS CAN

SOLVE OTHER HARD PROBLEMS

In the previous chapters, we have proven that many computational problems
of data processing and interval computations are NP-hard.

The immediate conclusion of these results is negative: one cannot expect an
algorithm that solves all the problems of data processing and interval compu-
tations in reasonable time.

However, as we will mention in this chapter, the NP-hardness results also
have their bright sides: namely, it enables us to apply efficient heuristic meth-
ods, originally developed for interval computations, to other complicated prob-
lems, and thus, get new heuristics (see also Appendix F for more speculative
applications).

15.1. Possibility

By definition, the fact that a problem P is NP-hard means, as we have men-
tioned, that if we can solve the problem P in polynomial time, then we will be
able to solve many other hard problems (those in the class NP) in polynomial
time. In other words, if a problem P is NP-hard, then every instance of every
other problem from the class NP can be reduced to one or several instances of
this problem P. Based on this reduction, the majority of computer scientists
believe that there is no algorithm that solves all instances of an NP-hard prob-
lem P. But this does not prevent us from having good heuristics that solve
many important instances of P. The reduction mentioned above means that
we can then solve many cases of other hard problems.
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15.2. Such Heuristics Have Actually Been Pro-
posed

For interval computations, many good heuristics are indeed known. In Traylor
et al. [413], it is shown that these heuristics lead to good heuristic algorithms for
solving another NP-hard problem: propositional satisfiability problem, as de-
scribed in Chaoter 2. This problem is considered one of the basic NP-complete
problems (see, e.g., Garey et al. [120]). The resulting heuristic turned out
to be closely connected with similar heuristics that try to simulate how our
brain works, be it on the level of neural networks, or on the level of chemical
reactions; see, e.g., Kreinovich et al. [197, 216, 225, 210] and Fuentes et al.
[113, 112].



16
IF INPUT INTERVALS ARE
NARROW ENOUGH, THEN

INTERVAL COMPUTATIONS ARE
ALMOST ALWAYS EASY

In the previous chapters, we have shown that in general, interval computations
are NP-hard. This means, crudely speaking, that every algorithm that solves
the interval computation problems requires, in some instances, unrealistic ex-
ponential time. Thus, the worst-case computational complexity of the problem
is large. A natural question is: is this problem easy “on average” (i.e., are
complex instances rare), or is this problem difficult “on average” too?

In this chapter, we show that “on average”, the basic problem of interval
computations is easy. To be (somewhat) more precise, we show that if input
intervals are narrow enough, then interval computations are almost always easy.

16.1. Formulation of the Problem: Are Hard
Cases Rare?

Hard cases are inevitable. Ideally, in the basic problem considered above,
we would like to compute the exact range interval of a function y = f(x1, ..., xn).
Traditional methods of interval computations do not always give the exact
range, but they usually give an enclosure of the desired range, i.e., an inter-
val that contains the range y. The result that computing the exact range is
NP-hard means, crudely speaking, that there is no feasible (polynomial time)
algorithm that can always compute the exact range. In other words, every
enclosure-computing feasible algorithm sometimes either overestimates, or does
not work at all. In particular, every feasible algorithm that is always applicable
sometimes overestimates.
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Hard cases can be rare or frequent. Every always-applicable feasible
algorithm sometimes overestimates. The natural question is: how often is this
“sometimes”? There are two possible scenarios here:

a pessimistic one: many particular cases are hard; the most pessimistic
case is when every feasible algorithm overestimates in almost all cases;

an optimistic one: a few cases are hard, but the vast majority are feasible.

It turns out that we are in the optimistic situation: for small input intervals,
almost all interval computation problems are feasible.

How to formalize “almost all”: standard formalization is not ap-
plicable. To formulate this result in precise terms, we need to formalize what
“almost all” means. In mathematics, “almost all” usually means “all points,
except for points from a set of Lebesgue measure 0” (or, “except for points from
a set of a small Lebesgue measure”). In the existing computers, however, only
rational numbers are represented. The set of all rational numbers is countable
and has, therefore, Lebesgue measure 0; so the standard mathematical notion
of “almost all” is not applicable.

A new formalization of “almost all”. To formalize the notion of “almost
all”, we must somehow “extend” our algorithms, that are currently applicable
only to rational numbers, to arbitrary real numbers.

In real life, when we say that “an algorithm is applied to real numbers
x1, . . . , xn”, we usually mean that this algorithm is applied to rational numbers
r1, . . . , rn that are η-close to x1, . . . , xn, where η is the computer precision. So,
if we fix η > 0, we can say that an algorithm works fine for n real numbers
x1, . . . , xn if it works fine for all real-valued vectors r = (r1, . . . , rn) that are
η-close to the vector x = (x1, . . . , xn).

Now, we have real-valued inputs on which the algorithm works fine, and real-
valued inputs on which it does not. For real-valued inputs, we can apply
Lebesgue measure. As a result, we arrive at the following definition:
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16.2. Definitions and the Main Result

Definition 16.1. Let ε > 0 be a real number, D ⊆ Rn be a compact domain
with a positive Lebesgue measure µ(D) > 0, and P (x) be a property that is
true for some points x ∈ D. We say that P is true for (D, ε)-almost all x if
µ({x ∈ D|¬P (x)}) ≤ ε · µ(D).

Comment. In other words, a property is true for (D, ε)-almost all x if the
portion of the domain D for which this property is false does not exceed ε.

Definition 16.2. Let η > 0 be a real number.

We say that an interval x = [x̃ − ∆, x̃ + ∆] is η-close to an interval r =
[r − d, r + d] if |x̃− r| ≤ η and |∆− d| ≤ η.

We say that an interval vector r = (r1, . . . , rn) is η-close to an interval
vector x = (x1, . . . ,xn) if for all i from 1 to n, the interval ri is η-close to
the interval xi.

Similarly, we say that an interval matrix

R = (r11, . . . , r1n, . . . , rm1, . . . , rmn)

is η-close to an interval matrix

X = (x11, . . . ,x1n, . . . ,xm1, . . . ,xmn)

if for all i from 1 to m and for all j from 1 to n, the interval rij is η-close
to the interval xij .

In this section, we consider rational functions, i.e., functions that can be rep-
resented as a fraction of two polynomials:

f(x1, . . . , xn) =
P (x1, . . . , xn)
Q(x1, . . . , xn)

.

(Polynomials are a particular case of rational functions, corresponding to
Q(x1, . . . , xn) = 1.) If both polynomials P (x1, . . . , xn) and Q(x1, . . . , xn) have
rational coefficients, then we can represent a rational function f(x1, . . . , xn) =
P (x1, . . . , xn)/Q(x1, . . . , xn) in the computer by storing the rational coefficients
of both polynomials P (x1, . . . , xn) and Q(x1, . . . , xn).
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Definition 16.3. Let U be an algorithm for solving the basic problem of
interval computations.

• Let η > 0 be a real number, let f(x1, . . . , xn) be a rational function with
rational coefficients, and let x be an n-dimensional interval vector with
components xi = [x̃i − ∆i, x̃i + ∆i], 1 ≤ i ≤ n. We say that U is η-
exact on the function f(x1, . . . , xn) and on the interval vector x if for
every n-dimensional interval vector r = (r1, . . . , rn) whose components are
intervals with rational endpoints, and that is η-close to x, the algorithm
U returns the exact endpoints of the interval f(r1, . . . , rn).

• We say that the algorithm U is almost always exact for narrow input in-
tervals if for every compact domain D with µ(D) > 0, for every rational
function f(x1, . . . , xn) with rational coefficients that is finite on an open
set N ⊃ D, and for every ε > 0, there exist δ > 0 and η > 0 such
that for (D, ε)-almost all vectors x̃ = (x̃1, . . . , x̃n), if all n input intervals
xi = [x̃i−∆i, x̃i +∆i] of an input vector x = (x1, . . . ,xn) are absolutely δ-
narrow (∆i ≤ δ), the algorithm U is η-exact on the function f(x1, . . . , xn)
and on the interval vector x.

Theorem 16.1. (Lakeyev et al. [242, 223]) There exists a polynomial-time al-
gorithm U that, given n intervals xi = [x̃i−∆i, x̃i+∆i], and a rational function
f(x1, . . . , xn) with rational coefficients, returns a (possibly infinite) enclosure
for the range f(x1, . . . ,xn), and that is almost always exact for narrow input
intervals.

Comments.

As we can see from this formulation, one and the same algorithm works
for all rational functions.

As we will see from the proof, this theorem is true for a quite reasonable
algorithm U that has, in effect, been used many times before. In other
words, the algorithm is not new. What is new is the observation that this
algorithm gives an exact estimate in almost all cases.

A similar results shows that solving systems of interval linear equations is also
almost always easy:
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Definition 16.4. Let U be an algorithm that, given an (n×n)-interval matrix
A with components aij = [ãij − ∆ij , ãij + ∆ij ], an n-dimensional interval

vector b with components bi = [b̃i−∆i, b̃i + ∆i], and an integer i ≤ n, returns
an enclosure for the interval xi of possible values of xi (i.e., values for which∑

aij · xj = bi for some aij ∈ aij and bi ∈ bi).

• Let η > 0 be a real number, A be an (n × n)-interval matrix, and b
be an n-dimensional interval vector. We say that U is η-exact on A and
b, if for every (n × n)-interval matrix Ar and for every n-dimensional
interval vector br that are η-close to, correspondingly, A and b, and whose
component intervals have rational endpoints, the algorithm U returns the
exact endpoints of the solution interval xi corresponding to Ar and br.

• We say that the algorithm U is almost always exact for narrow input in-
tervals if for every compact domain D of positive (n× n) + n-dimensional
Lebesgue measure (for which all matrices A in an open neighborhood of D
are invertible), and for every ε > 0, there exist δ > 0 and η > 0 such that
for (D, ε)-almost all pairs (Ã, b̃)(where Ã is an (n × n)-matrix and b is a
vector), if all (n × n) component intervals aij = [ãij − ∆ij , ãij + ∆ij ] of

the interval matrix A and all n component intervals bi = [b̃i−∆i, b̃i +∆i]
of the interval vector b are absolutely δ-narrow, then the algorithm U is
η-exact on A and b.

Theorem 16.2. (Lakeyev et al. [242, 223]) There exists a polynomial-time
algorithm U that, given an (n×n)-interval matrix A, an n-dimensional interval
vector b, and an integer i ≤ n, returns a (possibly infinite) enclosure for the
interval xi of possible values of xi, and that is almost always exact for narrow
input intervals.

These results can be represented as a table:

Worst-case “Average-case”
complexity complexity

Computing the range NP-hard Polynomial time
of a rational function
Solving a system of NP-hard Polynomial time
interval linear equations
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Proofs

Proof of Theorem 16.1. We will describe an algorithm that consists of the
following two stages:

first, we simplify the function f(x1, . . . , xn);

then, we compute the desired range y.

Let us start with the first stage. In the beginning of this stage, we check whether
the given function f(x1, . . . , xn) actually depends on all of its variables. To do
that, we will:

apply analytical differentiation formulas to f(x1, . . . .xn) (see, e.g., Rall
[333]), and

check whether the resulting derivatives are identically 0 or not.

In this chapter, we will use the following notation for partial derivatives that
we borrow from physics:

f,i(x1, . . . , xn) =
∂f

∂xi
(x1, . . . , xn).

The derivative of a rational function is also rational. Therefore, this rational
function can be represented as a ratio of two polynomials: f,i(x1, . . . , xn) =
P (x1, . . . , xn)/Q(x1, . . . , xn). This ratio is identically equal to 0 if and only if
the polynomial P (x1, . . . , xn) is identically equal to 0, and the polynomial is
identically 0 if and only if all its coefficients are zeros. Since all the coefficients
of f(x1, . . . , xn) are rational numbers, the coefficients of f,i(x1, . . . , xn) (and
thus, of P (x1, . . . , xn)) are also rational numbers, and for rational numbers,
equality to 0 is easy to check.

If for some i, it turns out that the partial derivative f,i(x1, . . . , xn) is identically
0, then the original function f(x1, . . . .xn) does not depend on this variable xi

at all. So, we can substitute an arbitrary value of xi into the original formula
f(x1, . . . , xn), and get a new expression with one fewer variable.

We can repeat this substitution procedure for all the variables xi for which
f,i(x1, . . . , xn) is identically 0. As a result, we get a new expression
for f(x1, . . . , xn) that only contains the variables on which this function
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f(x1, . . . , xn) essentially depends (i.e., for which the derivative f,i(x1, . . . , xn)
is not identically 0). Stage 1 is over.

Comment. To explain why this procedure is so complicated, let us give an
example of a rational function f(x1, . . . , xn) that does not depend on x3 but
whose expression explicitly contains x3:

f(x1, x2, x3) =
x2

1 + x1 · x2 + x1 · x3 + x2 · x3

x2
1 + x1 · x3

.

If we factorize the numerator and the denominator, we will see that this function
f(x1, x2, x3), indeed, does not depend on x3:

f(x1, x2, x3) =
(x1 + x2) · (x1 + x3)

x1 · (x1 + x3)
=

x1 + x2

x1
.

However, we do not want to factorize, because factorization can be a very
time-consuming procedure. Instead, we differentiate with respect to all three
variables, and indeed get f,3(x1, x2, x3) = 0. As a result, we substitute an arbi-
trary constant instead of x3, and get an equivalent expression for f(x1, x2, x3)
that contains only two variables. For example, if we substitute x3 = 0, we get
the following expression:

f(x1, x2) =
x2

1 + x1 · x2

x2
1

.

After Stage 1, we have a rational expression f(x1, . . . , xm) for which for all
i ≤ m, the derivative f,i(x1, . . . , xm) is not identically 0. For this expression,
we do the following:

First, for each i from 1 to m, we apply an interval centered form (see, e.g.,
Ratschek et al. [335]) to compute the interval enclosure ei = [ei, ei] for
f,i(x1, . . . ,xm).

If on one of the steps of this procedure, we need division by an interval
that contains 0, then we simply return the entire real line as the
enclosure for the range f(x1, . . . ,xn).

If for some i, the interval ei contains 0, then we apply the same interval
center form (or any other interval computation technique) to compute an
enclosure e for the desired range f(x1, . . . ,xm).

If for all i, the interval ei does not contain 0, then we compute si = sign(ei)
(where sign(a) = 1 for a > 0 and sign(a) = −1 if a < 0), and return the
interval [y, y] as the exact value of the range, where
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y = f(x̃1 − s1 ·∆1, . . . , x̃m − sm ·∆m),

y = f(x̃1 + s1 ·∆1, . . . , x̃m + sm ·∆m).

Why is this a correct estimate?

If 0 ∈ ei, then the fact that the above-described algorithm returns an
enclosure follows from the properties of interval computation methods.

If 0 6∈ ei for all i, this means that for every i, the function f(x1, . . . , xn) is
monotonic with respect to each of its variables:

• If ei > 0, then f,i(x1, . . . , xn) > 0, and f(x1, . . . , xn) is increasing
with respect to xi.

• If ei < 0, then f,i(x1, . . . , xn) < 0, and f(x1, . . . , xn) is decreasing
with respect to xi.

Comment. As we have already mentioned, the use of monotonicity is not a
novel idea. As examples of successful applications of this idea, we can cite
Collatz [69, 70], Lakshmikantham et al. [246], Walter [422], Harrison [140],
Moore [290], Schröder [382], Rall [334], Mannshardt [269], Dimitrova et al.
[90], Markov [272].

To complete our proof, we must prove that the described algorithm returns the
exact range in almost all cases. Crudely speaking, we will show that the above
algorithms returns the exact range for all the points x̃ = (x̃1, . . . , x̃n) in which
all m partial derivatives f,i(x1, . . . , xm) (with respect to m variables on which
the function f(x1, . . . , xn) really depends) are different from 0. (We will show
that almost all points x̃ have this property.) If all these partial derivatives are
different from 0 at a point x̃, then, due to continuity of these derivatives, each
of them keeps the same sign in a sufficiently small neighborhood of the point
x̃. The fact that the i-th derivative keeps the same sign means that in this
small neighborhood, the function f(x1, . . . , xm) is monotonic in xi. Since the
function is monotonic in each of the variables, we can compute its range over
the box x1× . . .×xm (provided that the input intervals are narrow enough, so
that the resulting box fits into this small neighborhood), by simply computing
the values of this function f(x1, . . . , xm) at two appropriately chosen endpoints
– which is exactly what the above algorithm does.
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This is the main idea of the proof that the above algorithm is almost always
exact. This idea would constitute a perfect proof if we could decide, for each
box, whether this box is “small enough” in the above sense, i.e., whether the
corresponding range of each partial derivative is indeed an interval that does
not contain 0. Then, we should resort to enclosure estimation only if one of
these ranges does contain 0. In reality, we cannot exactly compute the ranges
for the partial derivatives; instead, in the algorithm, we rely on the enclosures
for these ranges. As a result, for some input intervals x1, . . . ,xm on which the
actual ranges of the partial derivatives do not contain 0 (so that the function
f(x1, . . . , xm) is actually monotonic), the enclosure for one of these ranges may
contain 0 and therefore, the above algorithm will return an enclosure instead
of the exact range f(x1, . . . ,xm).

So, to complete the proof of the theorem, we must show that in spite of this
complication, the above algorithm is indeed almost always exact. This final
part of the proof is somewhat of a technical nature: it is not very complicated
for a professional mathematician, but it requires some familiarity with the basis
results about Lebesgue measure, manifolds, compactness, continuity, and uni-
form continuity, familiarity that other parts of the book do not require. Readers
who so not feel comfortable about these notions can skip this part; hopefully,
they have already got the idea of the proof from the previous paragraphs.

For those who are still with us, here are the main steps of this final part of
the proof. After the first stage, we have a rational function f(x1, . . . , xm) that
depends on each of its m variables. Let us assume that this rational function is
finite on some open neighborhood N of a compact set D. Since N is an open
neighborhood, there exists a real number δ0 > 0 such that every point that is
≤ δ0-close to the set D (in the sup metric d(x, y) = max |xi − yi|) also belongs
to N . Let us denote the set of all the points that are δ0-close to D (i.e., a
δ0-neighborhood of D) by D0. This set D0 is closed and bounded (since D is
bounded), so, D0 is a compact.

A rational function f(x1, . . . , xm) is continuous in every point x in which it is
finite. Since f(x1, . . . , xm) is finite on all points of N , it is also finite on all
points from D0 ⊆ N . Therefore, f(x1, . . . , xm) is continuous on every point
from the set D0.

Since f(x1, . . . , xm) is a rational function, for every i, the partial deriva-
tive f,i(x1, . . . , xm) is also a rational function, i.e., a ratio of two polynomi-
als: f,i(x1, . . . , xm) = Pi(x1, . . . , xm)/Qi(x1, . . . , xm). Therefore, the set Si

of all points x = (x1, . . . , xm) ∈ D for which f,i(x1, . . . , xm) = 0 is a set
of all solutions of the polynomial equation Pi(x1, . . . , xm) = 0. From the
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topological viewpoint, the structure of the set of all the solutions of a non-
degenerate polynomial equation (i.e., a polynomial equation in which a poly-
nomial Pi(x1, . . . , xm) is not identically 0) is well known: it is either a manifold
of dimension ≤ m − 1, or a union of finitely many manifolds of dimension
≤ m − 1. In both cases, the Lebesgue measure µ(Si) of this set is equal to 0:
µ(Si) = µ({x|f,i(x) = 0}) = 0.

In our algorithm, we do not use the exact range of the partial derivatives
fi(x1, . . . ,xm), we only use an enclosure of this range. Therefore, to analyze
the behavior of our algorithm, we would like to have some measure estimate
that is based not on the exact value of f,i(x1, . . . , xm), but on the interval of
possible values of this partial derivative. Such an estimate is reasonably easy
to get: Indeed, the set Si can be represented as an intersection of the sequence
of a monotonically decreasing sequence of sets:

Si = {x|f,i(x) = 0} =
∞⋂

k=1

{x||f,i(x)| ≤ 2−k}.

Therefore, due to the known properties of measure,

µ
({x||f,i(x)| ≤ 2−k}) → µ(Si) = 0

as k →∞. So, there exists a ki for which

µ
({x||f,i(x)| ≤ 2−ki}) ≤ ε · µ(D)

m
.

If we denote by k the largest of these ki, i.e., k = max(k1, . . . , km), then we
will conclude that

µ
({x||f,i(x)| ≤ 2−k}) ≤ µ

({x||f,i(x)| ≤ 2−ki}) ≤ ε · µ(D)
m

.

Let us denote the corresponding set {x||f,i(x)| ≤ 2−k} by Ai. Then, for a union
A of these sets

A =
m⋃

i=1

Ai = {x||f,i(x)| ≤ 2−k for some i},

we have

µ(A) ≤
m∑

i=1

µ(Ai) ≤
m∑

i=1

ε · µ(D)
m

= ε · µ(D).

We want to find δ > 0 for which the above-described algorithm computes
the precise range for all absolutely δ-narrow intervals whose centers x̃ =



If Intervals are Narrow, Interval Computations are Easy 171

(x̃1, . . . , x̃n) satisfy the condition x̃ 6∈ A. Let us find such a δ. For that,
we will use the following two ideas:

For every i from 1 to m, the rational function f,i(x1, . . . , xm) is continuous
on the compact set D0. Therefore, the function f,i(x1, . . . , xm) is uniformly
continuous. In particular, there exists a δi > 0 such that if d(x, x̃) ≤ δi,
then |f,i(x)− f,i(x̃)| ≤ 2−(k+2).

According to [335], the centered method has an accuracy
O(max(∆1, . . . , ∆m)). This means that for every i from 1 to m, there
exists a constant Ci such that if all input intervals are absolutely δ-narrow,
then the difference between the endpoints of the actual range [ai, ai] =
f,i(x1, . . . ,xm) and the corresponding endpoints of the estimated range
ei = [ei, ei] does not exceed Ci · δ: |ei − ai| ≤ Ci · δ and |ei − ai| ≤ Ci · δ.

Now, let us take

δ = min
(

δ0, δ1, . . . , δm,
2−(k+2)

C1
, . . . ,

2−(k+2)

Cm

)
.

Let us show that for this δ, if the input intervals are absolutely δ-narrow,
and x̃ 6∈ A, then none of the intervals ei contain zero and therefore, for these
algorithms, the above-described algorithm returns the exact interval range.

Indeed, since x̃ 6∈ A, by definition of the set A, we have |f,i(x̃)| > 2−k for all i.
This means that either f,i(x̃) > 2−k, or f,i(x̃) < −2−k.

Let us first consider the first case. In this case, for each j, if xj ∈ xj =
[x̃j −∆j , x̃j + ∆j ], then (since the interval xj is absolutely δ-narrow), we
have |xj − x̃j | ≤ ∆j ≤ δ. Hence, d(x, x̃) = max |xj − x̃j | ≤ δ. Due to our
choice of δ as min(. . . , δi, . . .), we have δ ≤ δi and therefore, d(x, x̃) ≤ δi.
Due to our choice of δi this inequality, in turn, leads to the inequality
|f,i(x)− f,i(x̃)| ≤ 2−(k+2). In particular, we have f,i(x) ≥ f,i(x̃)− 2−(k+2).
Since f,i(x̃) > 2−k, we can conclude that f,i(x) > 2−k − 2−(k+2) =
3 · 2−(k+2). So, if x1 ∈ x1, . . . , and xm ∈ xm, then f,i(x) ≥ 3 · 2−(k+2).
Therefore, the lower bound ai of the actual range f,i(x1, . . . ,xm) satisfies
the inequality ai ≥ 3 · 2−(k+2).

Now, because of our choice of δ as δ = min(. . . , 2−(k+2)/Ci, . . .), we have
δ ≤ 2−(k+2)/Ci. Hence, Ci · δ ≤ 2−(k+2). By the choice of Ci, this means
that |ei − ai| ≤ 2−(k+2). Hence, ei ≥ ai − 2−(k+2). We already know that



172 Chapter 16

ai ≥ 3 · 2−(k+2). Hence, ei ≥ 3 · 2−(k+2) − 2−(k+2) = 2 · 2−(k+2) > 0.
The lower bound of the interval ei is positive, hence, this interval can only
contain positive numbers and cannot contain 0.

If f,i(x̃) < −2−k, then we can similarly conclude that the upper bound ei

of the interval ei is negative; hence, this interval contains only negative
numbers and cannot contain 0.

So, for these intervals, the above algorithm gives the exact range. The theorem
is proven.

Proof of Theorem 16.2. Theorem 16.2 follows from Theorem 16.1, if we
take into consideration that the solution of a square (n× n) linear system is a
rational function of the coefficients aij and bi.



17
OPTIMIZATION – A FIRST

EXAMPLE OF A NUMERICAL
PROBLEM IN WHICH INTERVAL

METHODS ARE USED:
COMPUTATIONAL COMPLEXITY

AND FEASIBILITY

In addition to the above-mentioned problems in which input is known with
interval uncertainty, interval computations are also used to get guaranteed in-
terval estimates for problems with purely numerical inputs. One such problem
is optimization. In this chapter, we analyze computational complexity and
feasibility of the corresponding optimization problems.

17.1. Interval methods are also used to solve
numerical (non-interval) problems

So far, we have described interval methods for solving interval problems, i.e.,
problems in which the inputs are known with interval uncertainty. In addition
to these problems, interval computations are also used to get guaranteed (inter-
val) estimates for problems with purely numerical inputs. These are important
applications of interval computations, and it is therefore desirable to analyze
their computational complexity and feasibility.

A number x can be viewed as a particular case of an interval: namely, as a de-
generate interval x = [x, x]. Therefore, numerical computational problems can
be viewed as particular cases of the corresponding interval problems. Hence:

173
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if a computational problem is feasible for interval inputs, it is feasible for
numerical inputs as well;

however, if a computational problem is intractable for interval inputs, its
particular cases that correspond to numerical inputs may as well turn out
to be feasible.

For example, the problem of computing the value of a quadratic
function f(x1, . . . , xn) is NP-hard for interval inputs x1, . . . ,xn, but
straightforward and easy (and feasible) for numerical inputs.

It is therefore necessary, in addition to the above analysis of computational
complexity and feasibility of interval problems, to analyze also the computa-
tional complexity and feasibility of the corresponding numerical problems. We
will describe the results of this analysis in this chapter and in the few following
chapters.

In this particular chapter, we analyze the class of numerical problems to which
interval methods are most frequently used: namely, the optimization problems.

17.2. Constrained optimization: in brief

In most practical optimization problems, we know a priori bounds on the values
of all variables and therefore, we have a constrained optimization problem.

In the basic problem of interval computations, we are interested in comput-
ing the endpoints y and y of the range y = f(x1, . . . ,xn) of the function
f(x1, . . . , xn) for xi ∈ xi. In other words, y is the smallest possible value of
f(x1, . . . , xn) for xi ∈ xi, and y is the largest possible value of f(x1, . . . , xn) un-
der similar constraints. Therefore, the lower endpoint y of the desired interval
y is the solution of the following (numerical) optimization problem:

f(x1, . . . , xn) → min

under the constraints
xi ≤ xi ≤ xi, 1 ≤ i ≤ n, (17.1)

and the upper endpoint y is the solution of a similar optimization problem:
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f(x1, . . . , xn) → max

under the same constraints.

Hence, all our results about NP-hardness of interval computations can be re-
formulated as the results about NP-hardness of constrained optimization prob-
lems. In particular, we can conclude that the constrained optimization prob-
lem for quadratic functions f(x1, . . . , xn) under interval constraints (17.1) is
NP-hard; that it is NP-hard even if we restrict ourselves to bilinear functions
f(x1, . . . , xn), to quadratic functions f(x1, . . . , xn) =

∑
aij ·xi ·xj+

∑
ai ·xi+a0

with sparse matrices aij , etc.

Additional results on computational complexity and feasibility of constrained
optimization problems can be found, e.g., in surveys Pardalos [323] and Horst
et al. [156]. In particular, constrained optimization problems arising in optimal
control turn out to be NP-hard (see, e.g., Abello et al. [2] and Smith et al.
[398]).

17.2. Unconstrained optimization: finding
the optimal value of the objective function
f(x1, . . . , xn)

In most practical optimization problems, we know a priori bounds on the values
of all variables and therefore, we have a constrained optimization problem. In
some practical cases, however, no a priori bounds are known: e.g., in fundamen-
tal physics, most equations are formulated in terms of variational principles:
namely, the values x1, . . . , xn of physical quantities are such that a certain func-
tion S(x1, . . . , xn) (called action in physics) is optimized (see, e.g., Feynman
[104]).

For example, a static configuration (e.g., a static configuration of electric
charges) usually corresponds to the minimal energy, etc. In general, fun-
damental physical equations are usually formulated in the optimization
form S =

∫
LdV dt → min (here, dV denotes integration over a 3-D vol-

ume V , and dt denotes integration over time). This “variational principle”
S → min is the only condition on xi, no additional a priori information is
known; therefore, from the mathematical viewpoint, we have a problem of
unconstrained optimization.
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Since the unconstrained optimization problems are practically useful, it is im-
portant to analyze the computational complexity and feasibility of this class of
problems.

Definition 17.1. By the precise unconstrained optimization problem, we mean
the following problem:

GIVEN:

• a positive integer n;

• a polynomial f(x1, . . . , xn) with rational coefficients.

COMPUTE the value y = sup f(x1, . . . , xn), where the supremum (least
upper bound) is taken over all possible real numbers x1, . . . , xn (y is either
a real number or a symbol +∞).

Comments.

For infimum (greatest lower bound) y = inf f(x1, . . . , xn), a similar prob-
lem can be formulated, with −∞ as a possible value.

When we optimize a continuous (everywhere defined) function
f(x1, . . . , xn) over a bounded (and closed) domain, then both
sup f(x1, . . . , xn) and inf f(x1, . . . , xn) are real numbers. Over an un-
bounded domain, this is not always true: sup can be equal to +∞, inf
can be equal to −∞.

Definition 17.2. By the ε−approximate unconstrained optimization problem,
we mean the following problem:

GIVEN:

• a positive integer n;

• a polynomial f(x1, . . . , xn) with rational coefficients;

• a rational number ε > 0.

COMPUTE a real number ỹ that is ε−close to y = sup f(x1, . . . , xn),
where sup is taken over all possible real numbers x1, . . . , xn (i.e., either a
real number ỹ for which |ỹ − y| ≤ ε, or ∞ is y = +∞).



Optimization: Computational Complexity and Feasibility 177

Our first comment is that this problem is algorithmically solvable:

Proposition 17.1. There exists an algorithm that solves an arbitrary polyno-
mial optimization problem.

For example, we can use Tarski’s algorithm (mentioned in Chapter 3) or one of
its modern faster versions (mentioned in Chapter 4) to compute the desired min-
imum and maximum. Such algorithms have indeed been successfully applied
to optimization (see, e.g., Weispfenning [424]). However, as we have mentioned
in Chapter 3, such algorithms often requires unrealistically long time. So, it is
desirable to know when a feasible algorithm is possible.

Optimization over an interval (i.e., over a bounded domain) is feasible (even
linear time) for linear functions f(x1, . . . , xn) and NP-hard for quadratic (and
higher order) polynomials. Unconstrained optimization turns out to be some-
what easier: it is feasible (polynomial time) for all quadratic and cubic polyno-
mials as well:

Theorem 17.1.

There exists a polynomial-time algorithm that solves the unconstrained op-
timization problem for all polynomials of degree ≤ 3.

For quartic polynomials, and for every ε > 0, the ε−approximate uncon-
strained optimization problem is NP-hard.

The comparison between this result and the complexity of constrained opti-
mization is given by the following table:

Objective function Constrained Unconstrained
optimization optimization

Linear Linear time Linear time
Quadratic NP-hard Polynomial time
Cubic NP-hard Polynomial time
Quartic NP-hard NP-hard
5-th and higher degree NP-hard NP-hard

Comment. We want to attract the reader’s attention to the fact that these
comparison results may seem somewhat counterintuitive. Indeed:
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Intuitively, the complexity of the optimization problem depends on the
size of the area in which a solution has to be found. This size describes
the total number of objects that we need to analyze in order to find a
solution; thus, the larger the size, the more complicated the problem. In
general, this intuition is true: e.g., the more variables an optimization
problem has, the more difficult it is to solve it. From this viewpoint,
when we bind the variables xi, then we drastically decrease the size of
the area where the solution can be found. Therefore, it may seem at
first glance that constrained optimization should be computationally easier
(than unconstrained optimization).

However, in reality, unconstrained optimization is computationally easier.

17.3. Unconstrained optimization: locating the
values x1, . . . , xn for which the maximum is at-
tained

In applications, we often want to know not only the largest (or the smallest)
value of the objective function f(x1, . . . , xn), but also where exactly it is at-
tained.

For example, in control applications, e.g., in designing the most fuel-
efficient car, we want to know not only how much fuel can be saved, but
also how to achieve these optimal savings.

In these cases, we get the following formulations:

Definition 17.3. By the problem of precisely locating the optimizing values,
we mean the following problem:

GIVEN:

• a positive integer n;

• a bounded-from-above polynomial f(x1, . . . , xn) with rational coeffi-
cients.

COMPUTE the numbers x1, . . . , xn for which the objective function
f(x1, . . . , xn) attains the largest possible value.
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A similar problem can be formulated for computing the numbers for which the
function f(x1, . . . , xn) attains the smallest possible value. In optimization, both
types of optimizing values are also called the optimal solution to the original
optimization problem.

Definition 17.4. By the problem of ε-approximately locating the optimizing
values, we mean the following problem:

GIVEN:

• a positive integer n;

• a bounded-from-above polynomial f(x1, . . . , xn) with rational coeffi-
cients;

• a rational number ε > 0.

COMPUTE the rational numbers x̃1, . . . , x̃n that are ε-close to the num-
bers x1, . . . , xn for which the objective function f(x1, . . . , xn) attains the
largest (correspondingly, smallest) possible value.

This problem seems to be somewhat more complicated than the problem of
finding the largest value of f :

If we know the vector ~x = (x1, . . . , xn) where the maximum is attained,
i.e., for which y = f(x1, . . . , xn), then we can easily compute this maximum
y by computing the value of the polynomial f for the known numbers xi.

On the other hand, even if we know the exact value of the maximum y, it is
still somewhat difficult to find the values x1, . . . , xn for which f(x1, . . . , xn)
attains this maximum because this means solving a polynomial equation
f(x1, . . . , xn) = y in many variables, and no easy general algorithm is
known for solving such equations (moreover, as we will see in the next
chapter, the problem of solving such equations is NP-hard).

Our first comment is that this (somewhat more complicated) problem is still
algorithmically solvable:

Proposition 17.2. There exists an algorithm that locates the optimizing values
for an arbitrary bounded-from-above polynomial objective function.

For example, we can use Tarski’s algorithm (mentioned in Chapter 3) or one
of its modern faster versions to locate the optimizing values. Such algorithms
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have indeed been successfully applied to optimization (see, e.g., Weispfenning
[424]). However, as we have mentioned in Chapter 3, such algorithms often
require unrealistically long time. So, it is desirable to know when a feasible
algorithm is possible.

Theorem 17.2.

There exists a polynomial-time algorithm that precisely locates the optimiz-
ing values for all polynomials of degree ≤ 3.

For every ε > 0, an arbitrary algorithm that ε-approximately locates the
optimizing values for all quadratic objective functions requires, for some
instances, at least exponential time (O(2n)).

Comments.

We will see from the proof that the result about exponential time holds
even if we know the actual minimum value y, and even if there is only one
point ~x = (x1, . . . , xn) at which this minimum is attained.

This resulting computational complexity estimates are indeed somewhat
harsher for this location problem than for the problem of computing the
minimum (or maximum) value:

Objective function Computing Computing
the maximum the values x1, . . . , xn

sup f(x1, . . . , xn) for which the
maximum is attained

Linear Linear time Linear time
Quadratic Polynomial time Polynomial time
Cubic Polynomial time Polynomial time
Quartic NP-hard Exponential time

(or worse)
5-th and higher degree NP-hard Exponential time

(or worse)
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17.4. Optimization for polynomials with
bounded coefficients

In Theorems 17.1 and 17.2, we considered polynomials with arbitrary coeffi-
cients. It turns out that our computational complexity and feasibility results
do not change if we impose a priori bounds on the values of these coefficients:

Theorem 17.3.

For quartic polynomials with coefficients from the set {0, 1, 2, 3}, and for
every ε > 0, the ε−approximate unconstrained optimization problem is
NP-hard.

For every ε > 0, an arbitrary algorithm that ε-approximately locates the
optimizing values for all quadratic objective functions with coefficients from
the set {0, 1, 2} requires, for some instances, at least exponential time.

Comment. We do not know whether each of these results holds for a smaller
set of values, i.e.:

whether NP-hardness results hold for values from the set {0, 1, 2}, and

whether the exponential lower bound will stand if we only allow coefficients
from the set {0, 1} (i.e., coefficients that only take two values: 0 and 1).

17.5. Optimization problems with fixed number
of variables

Theorems 17.1–17.3 show what happens if we restrict the degrees of the poly-
nomials. If, instead, we restrict the number of variables n, then we get the
following results:

Theorem 17.4. For every n, there exists a polynomial-time algorithm that
locates the optimizing values for all polynomials of n variables.

Comment. This algorithm is similar to the one presented in Chapter 4: it is
polynomial time, but it is not yet practical.
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17.6. Stationary points

In some practical problems (including the problems from theoretical physics
with which we started this chapter), we do not necessarily need the point
~x = (x1, . . . , xn) where the global minimum or the global maximum is attained;
it is often sufficient to find a stationary (extremal) point, in which all partial
derivatives ∂f/∂xi are equal to 0:

In theoretical physics, traditional differential equations correspond exactly
to the condition that the action S is extremal, not that we necessarily have
a global optimum.

Another example is when y = f(x1, . . . , xn) is potential energy. Then, a
stationary point describes equilibrium (stable or unstable).

This problem turns out to be somewhat more complicated than the problem of
finding global extrema:

Definition 17.5. By the problem of precisely locating a stationary point, we
mean the following problem:

GIVEN:

• a positive integer n;

• a polynomial f(x1, . . . , xn) with rational coefficients.

COMPUTE the numbers x1, . . . , xn for which all n partial derivatives of
the objective function f(x1, . . . , xn) equal 0.

Definition 17.6. By the problem of ε−approximately locating a stationary
point, we mean the following problem:

GIVEN:

• a positive integer n;

• a polynomial f(x1, . . . , xn) with rational coefficients;

• a rational number ε > 0.

COMPUTE rational numbers x̃1, . . . , x̃n that are ε-close to the numbers
x1, . . . , xn for which all n partial derivatives of the objective function
f(x1, . . . , xn) equal 0.
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Proposition 17.3. There exists an algorithm that precisely locates stationary
points of an arbitrary polynomial.

(For example, we can use Tarski’s algorithm.)

Theorem 17.5.

There exists a polynomial-time algorithm that precisely locates stationary
points for all linear and quadratic polynomials.

For every ε > 0, an arbitrary algorithm that ε-approximately locates the
stationary points for all cubic objective functions requires, for some in-
stances, at least exponential time.

Comments.

We will see from the proof that the result about exponential time holds
even if there is only one stationary point.

This exponential-time result is also true if we restrict ourselves to quartic
polynomials in which each coefficient is equal to 0, 1, or 2.

Objective function Computing Computing
the values x1, . . . , xn stationary points
for which the
maximum is attained

Linear Linear time Linear time
Quadratic Polynomial time Polynomial time
Cubic Polynomial time Exponential time

(or worse)
Quartic NP-hard Exponential time

(or worse)
5-th and higher degree NP-hard Exponential time

(or worse)
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17.7. Local optimization

In some practical problems, we need more than only global optima, but less
than all the stationary points. For example, when f(x1, . . . , xn) is potential
energy, then we may be looking only for stable equilibria, i.e., for local minima.

For computing local minima and maxima, we have the following complexity
result:

Definition 17.7. By the problem of precisely computing local maximum, we
mean the following problem:

GIVEN:

• a positive integer n;

• a polynomial f(x1, . . . , xn).

COMPUTE the numbers x1, . . . , xn at which the objective function
f(x1, . . . , xn) attains a local maximum.

A similar problem can be formulated for computing local minima.

Definition 17.8. By the problem of ε-approximately computing local maxi-
mum, we mean the following problem:

GIVEN:

• a positive integer n;

• a polynomial f(x1, . . . , xn);

• a rational number ε > 0.

COMPUTE the rational numbers x̃1, . . . , x̃n that are ε-close to the num-
bers x1, . . . , xn for which the objective function f(x1, . . . , xn) attains a
local maximum.

Proposition 17.4. There exists an algorithm that precisely computes local
maxima and local minima of an arbitrary polynomial.

(For example, we can use Tarski’s algorithm.)
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Theorem 17.6.

There exists a polynomial-time algorithm that precisely locates local max-
ima and minima for all linear and quadratic polynomials.

For every ε > 0, an arbitrary algorithm that ε-approximately locates local
minima for all quartic objective functions requires, for some instances, at
least exponential time.

Comments.

We will see from the proof that the result about exponential time holds
even if there is only one local minimum.

This exponential-time result is also true if we restrict ourselves to quartic
polynomials in which each coefficient is equal to 0, 1, or 2.

Objective Global Stationary Local
function optimum points optimum
Linear Linear Linear Linear

time time time
Quadratic Polynomial Polynomial Polynomial

time time time
Cubic Polynomial Exponential time ?

time time (or worse)
Quartic NP-hard Exponential Exponential

time (or worse) time (or worse)
5-th and higher NP-hard Exponential Exponential
degree time (or worse) time (or worse)

Proofs

Proof of Theorem 17.1. Let us first show that the unbounded optimization
problem is easy for polynomials f(x1, . . . , xn) of degree ≤ 3.

Indeed, a polynomial of 0-th degree is simply a constant: f = a0. Therefore,
sup f = inf f = a0 (and this value is attained for an arbitrary tuple ~x =
(x1, . . . , xn)).



186 Chapter 17

If a polynomial of first degree f(x1, . . . , xn) = a0 + a1x1 + . . . + anxn is not
a constant, this means that at least one of its coefficients ai, 1 ≤ i ≤ n, is
different from 0. If we take xi 6= 0 for this i and xj = 0 for all j 6= i, then we
can easily conclude that inf f = −∞ and sup f = +∞.

If a polynomial of second degree

f(x1, . . . , xn) = a0 +
n∑

i=1

aixi +
n∑

i=1

n∑

j=1

aijxixj

is not a linear function, this means that at least one of the coefficients aij is
different from 0. The maximum and minimum of the smooth function f are
attained at a point where all the partial derivatives of f are equal to 0. Partial
derivatives of a quadratic function are linear expressions, so, we get a system
of linear equations to find the point where sup and inf are attained. There
are known polynomial time algorithms (modified Gaussian elimination one of
them) to solve systems of linear equations. Substituting these values into f , we
get the desired inf and sup. (Degenerate case when the matrix aij is singular are
also easy to handle: If the corresponding linear system has no solutions at all,
this means that the quadratic function has no stationary points, so inf f = −∞
and sup f = +∞. If the system has infinitely many solutions, it is sufficient to
take any of them.)

Let us now consider polynomials f(x1, . . . , xn) of third degree that are not
quadratic. Each polynomial of this type can be represented as

f(x1, . . . , xn) = f0(x1, . . . , xn)+f1(x1, . . . , xn)+f2(x1, . . . , xn)+f3(x1, . . . , xn),

where
f0(x1, . . . , xn) = a0,

f1(x1, . . . , xn) =
n∑

i=1

aixi,

f2(x1, . . . , xn) =
n∑

i=1

n∑

j=1

aijxixj ,

f3(x1, . . . , xn) =
n∑

i=1

n∑

j=1

n∑

k=1

aijkxixjxk.

The fact that f is not a quadratic function means that f3(x1, . . . , xn) 6= 0 for
some tuple (x1, . . . , xn). Then, for every real number λ, we can consider the
value g(λ) = f(λx1, . . . , λxn). This new function g is a cubic function of λ:
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g(λ) = g0 + λg1 + λ2g2 + λ3g3, where we denoted gi = fi(x1, . . . , xn). This
cubic polynomial attains all values from −∞ to +∞. Hence, for polynomials
of third degree that are not quadratic, we have inf f = −∞ and sup f = +∞.

Let us now show that for every ε > 0, the ε−approximate unconstrained opti-
mization problem for quartic polynomials is NP-hard.

Let us start with proving a slightly weaker result: that the precise uncon-
strained optimization problem is NP-hard for quartic polynomials. To prove
this result, we will reduce the PARTITION problem (known to be NP-hard) to
this problem. In the PARTITION problem, we are given a sequence of integers
s1, . . . , sn, and we must check whether there exist values x1, . . . , xn for which
xi ∈ {−1, 1} and s1 · x1 + . . . + sn · xn = 0.

For each instance of the PARTITION problem, we will construct the following
quartic polynomial:

f(x1, . . . , xn) =

(x1 + 1)2 · (x1 − 1)2 + . . . + (xn + 1)2 · (xn − 1)2 + (s1 · x1 + . . . + sn · xn)2.

This polynomial is a sum of squares; therefore,

it is always non-negative (i.e., greater than or equal to 0), and

its value is equal to 0 if and only if all the squared terms are equal to 0,
i.e., if (xi + 1) · (xi − 1) = 0 for all i and

∑
si · xi = 0.

Thus, if the infimum of this polynomial is equal to 0, this means that there
exist values xi for which xi ∈ {−1, 1} and

∑
si · xi = 0, i.e., the answer to the

given instance of the PARTITION problem is “yes”. Vice versa, if the answer
to the given instance is “yes”, this means that there exist values xi ∈ {−1, 1}
for which

∑
si ·xi = 0, and therefore, the infimum of the function f(x1, . . . , xn)

is indeed equal to 0.

Thus, the infimum y of this function f(x1, . . . , xn) is equal to 0 if and only if
the answer to the given instance of PARTITION problem is “yes”. This re-
duction shows that the precise unconstrained optimization problem for quartic
equations is indeed NP-hard.

To complete our proof, let us modify this reduction so that it will be applicable
for ε-approximate unconstrained optimization. For this approximate problem,
instead of the above function f(x1, . . . , xn), we will use a slightly different
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function f̃(x1, . . . , xn) = C · f(x1, . . . , xn); we will choose a constant C > 0 for
which there is still a reduction, i.e., to be more precise, for which ỹ ≤ 2ε if and
only if the answer to the given instance is “yes”.

Indeed, if the answer is “yes”, then the actual infimum y of the function
f̃(x1, . . . , xn) is equal to 0, and therefore, its ε-approximation ỹ cannot exceed
y + ε = 0 + ε = ε; thus, ỹ ≤ ε < 2ε.

Vice versa, if ỹ ≤ 2ε, this means that the actual infimum y of the func-
tion f(x1, . . . , xn) is bounded by y ≤ ỹ + ε ≤ 3ε. Hence, there exist values
x1, . . . , xn for which f̃(x1, . . . , xn) = C · f(x1, . . . , xn) ≤ 3ε and for which,
therefore, f(x1, . . . , xn) ≤ δ, where we denoted δ = 3ε/C. Since the function
f(x1, . . . , xn) is the sum of several non-negative terms, this means that each of
these terms is bounded by δ, i.e., (xi + 1)2 · (xi − 1)2 ≤ δ and (

∑
si · xi)2 ≤ δ.

Each of these n + 1 bounded terms is a square. Therefore, from the inequality
on the square, we can extract two-sided inequalities on the squared expressions:

−
√

δ ≤ (xi + 1)(xi − 1) ≤
√

δ;

−
√

δ ≤ s1 · x1 + . . . + sn · xn ≤
√

δ.

The first inequality means that −
√

δ ≤ x2
i −1 ≤

√
δ, and 1−

√
δ ≤ x2

i ≤ 1+
√

δ.
From this inequality on x2

i , we would like to extract an inequality for |xi| =√
x2

i .

For δ < 1, both bounds on x2
i are positive: 1 −

√
δ < 1 and 1 +

√
δ > 1.

Thus, we can take square roots of all three sides of this double-sided inequality
and conclude that

√
1−

√
δ ≤ |xi| ≤

√
1 +

√
δ. This inequality is somewhat

clumsy to use, so, we will try to deduce a slightly easier-to-handle inequality
from it. To deduce this “easier” inequality, we will use the following two facts:

For z ≥ 1, we have
√

z ≤ z; therefore,
√

1 +
√

δ ≤ 1 +
√

δ.

For z ≤ 1, we have z ≤ √
z; therefore, 1−

√
δ ≤

√
1−

√
δ.

Therefore, from the above inequality on x2
i , we can conclude that 1 −

√
δ ≤

|xi| ≤ 1 +
√

δ. Therefore:
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either xi ≥ 0 and 1−
√

δ ≤ xi ≤ 1 +
√

δ,

or xi ≤ 0 and 1 −
√

δ ≤ −xi ≤ 1 +
√

δ, in which case −1 −
√

δ ≤ xi ≤
−1 +

√
δ.

In both cases, xi is either
√

δ-close to 1, or to −1. Since δ < 1, we have√
δ < 1, and therefore, a number xi cannot be

√
δ-close to both 1 and −1. Let

us denote by x̃i the number that is equal to 1 or −1 and that is
√

δ-close to xi:
|xi − x̃i| ≤

√
δ.

From the inequality
∑

si · xi ≤
√

δ, we can now conclude that
∑

si · x̃i =
∑

si · (xi + (x̃i − xi)) =
∑

si · xi +
∑

si · (x̃i − xi) ≤
√

δ +
∑

|si| ·
√

δ =
√

δ(1 +
∑

|si|).

So,
∑

si · x̃i ≤ ∆, where we denoted ∆ =
√

δ(1 +
∑ |si|). Similarly,

∑
si · x̃i ≥

−∆. Since si and x̃i are integers, the sum S =
∑

si · x̃i is also an integer.
Therefore, if we choose δ in such a way that ∆ =

√
δ(1 +

∑ |si|) < 1, then
from −1 < −∆ ≤ S ≤ ∆ < 1, we conclude that −1 < S < 1, i.e., that S = 0.
Thus, for such δ, we have n values x̃i ∈ {−1, 1} for which

∑
si · x̃i = 0, and

the answer to this instance of the PARTITION problem is indeed “yes”.

To complete the proof, let us choose an appropriate ε > 0. The only condition
on δ is

∆ =
√

δ(1 +
∑

|si|) < 1,

i.e.,
√

δ < 1/(1 +
∑ |si|) (the original condition

√
δ < 1 follows from this one).

Therefore, we can, e.g., take δ for which
√

δ = 1/(2 · (1 +
∑ |si|)), i.e., we can

take δ = 1/(4 · (1 +
∑ |si|)2). To achieve this value of δ = 3ε/C, we must take

C = 3ε/δ. The theorem is proven.

Proof of Theorem 17.2. For linear and cubic (non-quadratic) polynomials,
as we have mentioned in the proof of the previous theorem, the maximum is
+∞, the minimum is −∞, so we can produce the answer “no such xi” without
even looking at the coefficients.

A quadratic (non-linear) objective function f(x1, . . . , xn) = a0 +
∑

ai · xi +∑
aij · xi · xj has:
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a finite minimum (and infinite maximum) if the matrix aij is positive
semi-definite;

a finite maximum (and infinite minimum) if the matrix aij is negative
semi-definite;

infinite maximum and infinite minimum for all other matrices aij .

The maximum (minimum) is attained (if at all) at a point for which all n
partial derivatives are equal to 0. All these derivatives are linear functions and
therefore, to find the values xi, we can solve a system of linear equations (which
takes polynomial time).

Let us show that for quartic objective functions, we need exponential time to
locate the optimizing values. Indeed, let us consider the following polynomial:

f(x1, . . . , xn) = (x1 − 2)2 + (x2 − x2
1)

2 + (x3 − x2
2)

2 + . . . + (xn − x2
n−1)

2.

This function is a sum of non-negative terms, and is, therefore, itself non-
negative, and its minimum is non-negative.

Let us show that the minimum of this function is 0. For its value to be equal
to 0, it is necessary for all the terms in the sum to be equal to 0, i.e., it is
necessary that the following equations hold: x1 = 2, x2 = x2

1, x3 = x2
2, . . .,

xn = x2
n−1. From this system, we can find x1, x2, . . ., xn, and get the (unique)

solution x1 = 2, x2 = 22, x3 = (22)2 = 222
, x4 = (222

)2 = 222·2 = 223
, . . .,

xi = x2i−1

1 = 22i−1
. For these xi, we indeed have f(x1, . . . , xn) = 0. Thus, the

minimum of this objective function is indeed 0, at it is attained for only one
sequence of values ~x = (x1, . . . , xn).

Let us now show that computing these values xi is exponentially hard. Indeed,
in binary representation, xn = 22n−1

is 1 followed by 2n−1 zeros. This number
contains exponentially many bits, therefore, we need exponential time just to
write this answer down. Similarly, if we are looking for a number that is ε-
close to xn, then, for large enough n, we will still need exponentially many bits.
Thus, solving this particular systems of equation requires at least exponential
time. The theorem is proven.

Proof of Theorem 17.3. Let us first prove the NP-hardness result. To
prove it, we will use the same NP-hard problem PARTITION as in the proof
of Theorem 17.1, but we will replace the polynomial

f(x1, . . . , xn) =
∑

(x2
i − 1)2 +

(∑
si · xi

)2
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that was used in the proof of that theorem, by a polynomial whose coefficients
only take values 0, 1, and 2.

The polynomial used in that proof is a sum of squares. Therefore, this poly-
nomial is equal to 0 if and only if all the squared terms are equal to 0, i.e.,
if and only if the corresponding system of equations (consisting of equations
x2

i − 1 = 0 and
∑

si · xi = 0) is satisfied.

The new polynomial will also be equal to the sum of squares of linear and
quadratic polynomials, so its value will be equal to 0 if and only if the corre-
sponding system of equations is satisfied. (We will, therefore, interchangingly
talk about the new polynomial f̃ and about the corresponding (new) system of
equations.)

To get a new system of equations, let us describe, step-by-step, how each term
in the left-hand side of the original system of equations is computed. We will
introduce new variables to describe each intermediate step of these computa-
tions. Checking whether x2

i = 1 is done in two steps:

First, we compute the square qi := xi · xi; this multiplication can be
represented by the equation qi = x2

i .

Then, we check whether qi = 1.

Checking whether the sum S =
∑

si · xi is equal to 0, is done as follows: we
start with the partial sum equal to 0 (S0 = 0), and then, for i from 1 to n, we
do the following two elementary operations:

First, we multiply si and xi: q′i := si · xi (equation q′i = si · xi).

Then, we add the result to the existing partial sum, thus getting the new
partial sum: Si := Si−1 + q′i (equation Si = Si−1 + q′i).

Finally, we check whether Sn = 0.

In this description, we assumed that the constants si are already given. If we
want to be more precise, in the computer, the binary representations for these
constants will be obtained bit-by-bit from the decimal values that we enter into
the program. We can represent the process of generating these constants as the
following computation process:
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First, we generate the powers of 2 that are needed to represent all the digits
in all the binary expansions of all the values si: we start with d0 = 1, and
get d1 := d0 + d0, d2 := d1 + d1, . . ., di := di−1 + di−1, . . . (equations
di = di−1 + di−1, i = 1, 2, . . .).

The total number of necessary powers of two does not exceed the
length of the binary code of si, and therefore, does not exceed the
length of the input.

Then, each positive values of si can be represented as a sum of powers of
two (e.g., 92 = 10012 = 23 + 20 = d3 + d0), and this sum can be, in its
turn, represent in the same step-by-step manner as the sum

∑
si · xi.

each negative coefficient si can be represented as si = −|si|, where |si| is
represented as before.

As a result, we get a system of simple equations, of the type a = b · c, a = b+ c,
a = b − c, a = −b, a = 0, and a = 1, that is equivalent to the original system
of equations.

For example, if n = 2, s1 = 9 = 23 + 20, and s2 = −5 = −(22 = 20), we get the
following systems of equations:

q1 = x2
1, q1 = 1, q2 = x2

2, q2 = 1;

S0 = 0, q′1 = s1 · x1, S1 = S0 + q′1, q′2 = s2 · x2, S2 = S1 + q′2, S2 = 0;

d0 = 1, d1 = d0 + d0, d2 = d1 + d1, d3 = d2 + d2;

(to compute s1 = 9) S10 = 0, S11 = S10 + d0, s1 = S11 + d3;

(to compute s2 = −5) S20 = 0, S21 = S20 +d0, S22 = S21 +d2, s2 = −S22.

In general, according to this system of equations, we start with 0 and 1, and
perform elementary arithmetic operations and comparisons. Let us order all
the constants and variables in the order of their appearance in this computation
process, and let us correspondingly rename them by r0, r1, r2, . . . Since we start
with 0 and 1, we can always assume that r0 = 0 and r1 = 1.

In the above example, if we first compute the power of two (di), then the values
si, and then check the equations, we will get the following new notations for
the constant and variables:
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r0 = 0, r1 = 1, r1 = d0, r2 = d1, r3 = d2, r4 = d3;

r5 = S10, r6 = S11, r7 = s1;

r8 = S20, r9 = S21, r10 = s2;

r11 = S0, r12 = q′1, r13 = S1, r14 = q′2, r15 = S2;

r16 = q1, r17 = q2.

In terms of these new variables, on each computational step, we express each
term ri in terms of the previous terms rj , j < i.

In principle, one and the same term rj can be used in computing several terms
ri, and in each of these computations, it can be used several times: e.g., in
d1 = d0 + d0, the same value d0 is used twice: as the first and as the second
argument of addition. Inside the computer, the value rj is copied as many times
as necessary. To describe this “copying” process, let us introduce different
variables r

(1)
j , r

(2)
j , . . ., for different uses of rj . For each of these variables, we

will also add a new variable s
(k)
j with the intended meaning −r

(k)
j . Then the

equality between different copies of the same variable rj can be described by the
following equations: r

(1)
j +s

(1)
j = 0, s

(1)
j +r

(2)
j = 0, r

(2)
j +s

(2)
j = 0, s

(2)
j +r

(3)
j = 0,

. . ., r
(k)
j + s

(k)
j = 0, s

(k)
j + r

(k+1)
j = 0. From the first equation, we conclude that

s
(1)
j = −r

(1)
j , then the second leads to r

(2)
j = −s

(1)
j = r

(1)
j , etc.

We will now use these “negative” variables sj to re-write the elementary equa-
tions in a way that avoids negative coefficients:

An equation ri = rj + rk is rewritten as rj + rk + si = 0.

An equation ri = rj − rk is rewritten as rj + sk + si = 0.

An equation ri = rj · rk is rewritten as rj · rk + si = 0.

An equation ri = −rj is rewritten as rj + ri = 0.

An equation ri = 0 stays.

An equation ri = 1 is rewritten as si + 1 = 0.

As a result, we get a system of equations with coefficients 0 and 1. As the
desired function f̃ , we will take the sum of the squares of all these equations.
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After our renaming, each variable (r(k)
j or s

(k)
j ) occurs at most in three equa-

tions: when it is first introduced, when it is copied to the next copy, and when
it is used in some computations or checking. Thus, the coefficient at the vari-
able’s square is equal to 0, 1, 2, or 3. One can check that all other (non-square)
terms in f̃ occur only once, therefore, the coefficient at each of these terms is
equal to 1 or to 2.

Since each equation is quadratic, the sum of their squares is a quartic polyno-
mial. Thus, we get a quartic polynomial whose coefficients belong to the set
{0, 1, 2, 3} and whose minimum is equal to 0 if and only if the answer to the
original instance of the PARTITION problem is “yes”. Therefore, we have re-
duced PARTITION to the problem of computing the minimum and hence, the
problem of computing the minimum is indeed NP-hard. The first statement is
proven.

Let us now prove the exponential bound. For that, we will consider the following
function of n + 3 variables:

f(z−, z+, z0, y1, . . . , yn) =

(z− + 1)2 + (z+ + 1)2 + (z0 + z− + z+)2 + (y1 + z0)2+

(y2 + y2
1)2 + (y3 + y2

2)2 + . . . + (yn + y2
n−1)

2.

If we open all the parentheses, we will easily see that every coefficient in this
polynomial is indeed equal to 0, 1, or 2.

This objective function is non-negative, and it is equal to 0 if and only if all
the squared terms in the sum (that forms this function) are equal to 0, i.e., if
z−+1 = 0, z+ +1 = 0, z0 + z−+ z+ = 0, y1 + z0 = 0, y2 + y2

1 = 0, y3 + y2
2 = 0,

. . ., yn + y2
n−1 = 0. From the first four equations, we conclude that z− = z+ =

−1, z0 = −(z− + z+) = 2, and y1 = −2. From the following equations, we
conclude that y2 = −221

, y3 = −222
, . . ., yi = −22i−1

, . . ., yn = −22n−1
. Thus,

similarly to Theorem 17.2, computing yn requires exponentially many steps.
The theorem is proven.

Proof of Theorem 17.4 is similar to the proofs from Chapter 4.

Proof of Theorem 17.5. Non-constant linear functions do not have sta-
tionary points, and stationary points of quadratic objective functions can be
obtained as solutions of a system of linear equations (see the proof of Theo-
rem 17.2).
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Let us show that finding stationary points for cubic polynomials requires expo-
nential time. Indeed, let us consider the following cubic polynomial with n + 1
variables x0, x1, . . . , xn:

f(x0, x1, . . . , xn) = x0 · (x1 − 2)2 + x0 · (x2 − x2
1)

2 + x0 · (x3 − x2
2)

2 + . . . +

x0 · (xn − x2
n−1)

2 + x3
0.

What are the stationary points of this polynomial? Differentiating with respect
to x0 and equating the resulting partial derivative to 0, we conclude that

(x1 − 2)2 + (x2 − x2
1)

2 + (x3 − x2
2)

2 + . . . + (xn − x2
n−1)

2 + 3x2
0 = 0.

Since the sum of several non-negative terms is equal to 0, it means that each
of the terms is equal to 0, i.e., x1 = 2, x2 = x2

1, x3 = x2
2, . . ., xn = x2

n−1.

Differentiation with respect to any other variable xi leads to an expression
that is proportional to x0. Since, from ∂f/∂x0 = 0, we already know that
x0 = 0, it follows that all other partial derivatives are also equal to 0. Thus,
stationary points of our cubic polynomial coincide with the solutions of a system
of equations, the same system of equations whose solving, as we have already
noticed in the proof of Theorem 17.2, requires at least exponential time. The
theorem is proven.

Proof of the comment after Theorem 17.5. In our proof of Theorem 17.5,
we started with a function from the proof of Theorem 17.2. If, instead of this
starting function, we start with a function used in the proof of Theorem 17.3,
we get an objective function

f(x0, z
−, z+, z0, y1, . . . , yn) = x0 ·(z−+1)2+x0 ·(z++1)2+x0 ·(z0+z−+z+)2+

x0 · (y1 + z0)2 + x0 · (y2 + y2
1)2 + x0 · (y3 + y2

2)2 + . . . + x0 · (yn + y2
n−1)

2 + x3
0,

we will be able to show exponential lower bound for cubic polynomials whose
coefficients can only take values 0, 1, or 2. Comment is proven.

Proof of Theorem 17.6. For linear and quadratic objective functions, lo-
cal maxima and minima coincide with global ones, so the result follows from
Theorem 17.2.

Let us show that for quartic polynomials, the problem of computing local op-
tima is exponentially hard. We already know, from Theorem 17.2, that for such
polynomials, computing the values at which the global maximum is attained
is exponentially hard. Let us show that for the function considered in Theo-
rem 17.2, there are no local minima except for the global minimum, and thus,
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computing a local minimum is as hard as computing a global minimum, i.e.,
exponentially hard. We will even show that this local minimum is the only
stationary point of this objective function.

Indeed, a stationary point of a function

f(x1, . . . , xn) = (x1 − 2)2 + (x2 − x2
1)

2 + . . . + (xn−1 − x2
n−2)

2 + (xn − x2
n−1)

2

is a point where all its partial derivatives are equal to 0. Let us apply this
condition to derivatives with respect to xn, xn−1, . . ., x1 (in this order).

Differentiating with respect to xn and equating the result to 0, we get
2(xn − x2

n−1) = 0, i.e., xn = x2
n−1.

Differentiating with respect to xn−1, we get

2(xn−1 − x2
n−2) + 2(xn − x2

n−1) · (−2xn−1) = 0.

Since we already know that xn − x2
n−1 = 0, we conclude that 2(xn−1 −

x2
n−2) = 0 and xn−1 = x2

n−2.

Similarly, by equating ∂f/∂xn−2 to 0, and using the already proven equa-
tion xn−1 = x2

n−2, we can conclude that xn−2 = x2
n−3, etc.

. . .

Finally, by equating ∂f/∂x1 to 0, we conclude that x1 = 2.

So, at every stationary point ~x = (x1, . . . , xn) of the objective function
f(x1, . . . , xn) all the terms that form f are equal to 0, and therefore,
f(x1, . . . , xn) = 0, i.e., f indeed attains the global minimum. We already know
that computing this global minimum requires exponential time. The theorem
is proven.



18
SOLVING SYSTEMS OF

EQUATIONS

In this chapter, we analyze the computational complexity and feasibility of
yet another computational problem in which interval methods are often used:
solving systems of equations. It turns out that already for systems of quadratic
equations, solving these systems is NP-hard.

18.1. Solving systems of equations

Definition 18.1. By precisely solving systems of polynomial equations, we
mean the following problem:

GIVEN:

• an integer n, and

• a finite sequence of polynomials f1(x1, . . . , xn), . . ., fk(x1, . . . , xn)
with rational coefficients.

COMPUTE: a tuple x1, . . . , xn that satisfies all equations from the follow-
ing system:

f1(x1, . . . , xn) = 0,

. . . (18.1)

fk(x1, . . . , xn) = 0.
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Definition 18.2. By ε-approximately solving systems of polynomial equations,
we mean the following problem:

GIVEN:

• an integer n,

• a finite sequence of polynomials f1(x1, . . . , xn), . . ., fk(x1, . . . , xn)
with rational coefficients, and

• a rational number ε > 0.

COMPUTE: rational numbers x1, . . . , xn that are ε−close to a tuple that
satisfies the system (18.1).

The first natural question is: is this problem algorithmically solvable at all?
The answer to this question is given by the following proposition:

Proposition 18.1. There exists an algorithm that solves an arbitrary system
of polynomial equations.

For example, we can use Tarski’s algorithm (mentioned in Chapter 3) to com-
pute the solutions of every system of polynomial equations. However, as we
have mentioned, this algorithm often requires unrealistically long time. So, it is
desirable to know when a feasible algorithm is possible. The result is as follows:

Theorem 18.1.

There exists a polynomial-time algorithm that precisely solves systems of
linear equations.

For every ε > 0, an arbitrary algorithm that ε-approximately solves all sys-
tems of quadratic equations requires, for some systems, at least exponential
time.

Comment. We will see from the proof that the result about exponential time
holds even if we only consider systems of quadratic equations that have a unique
solution.
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Since numerical equations are particular (degenerate) case of interval equations,
solving systems of interval quadratic equations is also at least exponentially
hard. Thus, we can describe the following comparison between the computa-
tional complexity and feasibility of solving numerical and interval equations:

Polynomials Solving numerical Solving interval
systems of equations systems of equations

Linear fi Polynomial time NP-hard
Quadratic fi Exponential time Exponential time

(or worse) (or worse)
Cubic fi Exponential time Exponential time
(or higher order) (or worse) (or worse)

18.2. Checking whether a system of equations
is solvable

Definition 18.3. By checking solvability of systems of polynomial equations,
we mean the following problem:

GIVEN:

• an integer n, and

• a finite sequence of polynomials f1(x1, . . . , xn), . . ., fk(x1, . . . , xn)
with rational coefficients.

CHECK: whether the system of polynomial equations (18.1) has a solution.

Theorem 18.2.

There exists a polynomial-time algorithm that checks whether a system of
linear equations is solvable.

The problem of checking solvability of a system of quadratic equations is
NP-hard.

Theorems 18.1 and 18.2 can be represented as a table:
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Polynomials Solving Checking solvability of
systems of equations systems of equations

Linear fi Polynomial time Polynomial time
Quadratic fi Exponential time NP-hard

(or worse)
Cubic Exponential time NP-hard
(or higher order) fi (or worse)

18.3. Systems of equations: other possible re-
strictions

Theorems 18.1 and 18.2 show what happens if we restrict the degrees of the
polynomials. In these theorems, we did not restrict the size of the coefficients
of the polynomials fj(x1, . . . , xn), the number of variables n, or number of
equations k. If we restrict one of these parameters, we get the following results.

If we impose a priori bounds on the coefficients of the polynomials fk, the
above computational complexity and feasibility results do not change, even
if we require that all the coefficients of these polynomials are equal either to
0 or to 1. We will call such polynomials 0-1-polynomials and corresponding
equations 0-1-polynomial equations. For example, linear equations with linear
0-1-polynomials will be called 0-1-linear equations; quadratic equations with
quadratic 0-1-polynomials will be called 0-1-quadratic, etc.

Theorem 18.3.

For every ε > 0, an arbitrary algorithm that ε-approximately solves all
systems of 0-1-quadratic equations requires, for some systems, at least ex-
ponential time.

The problem of checking solvability of a system of 0-1-quadratic equations
is NP-hard.

If we restrict the number of variables n, the results change:
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Theorem 18.4.

For every n, there exists a polynomial-time algorithm that ε-approximately
solves an arbitrary system of polynomial equations with n unknowns.

For every n, there exists a polynomial-time algorithm that checks solvability
of an arbitrary system of polynomial equations with n unknowns.

Comments.

This algorithm is similar to the one presented in Chapter 4: it is
polynomial-time, but it is not yet practical.

If we fix the number of equations instead of the number of variables, the
results are different. Namely, for the case k = 1, when we have a single
equation instead of a system of equations, we get the following result:

Theorem 18.5.

There exists a linear-time algorithm that solves each linear equation.

There exists a polynomial-time algorithm that checks solvability of each
quadratic or cubic equation.

The problem of checking solvability of an arbitrary quartic (4-th order)
equation is NP-hard.

Comments.

From the proof of Theorem 17.3, it follows that for quartic polynomials, the
problem if NP-hard even if we only allow polynomials whose coefficients
come from the set {0, 1, 2, 3}.
The results about checking solvability can be represented in the following
table:
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Single equation Systems of equations
Linear fi Linear time Polynomial time
Quadratic fi Polynomial time NP-hard
Cubic fi Polynomial time NP-hard
Quartic fi NP-hard NP-hard
5-th or higher order NP-hard NP-hard

Proofs

Proof of Theorem 18.1. It is well known that systems of linear equations
can be solved in polynomial time (see, e.g., Cormen et al. [75]).

Let us show that solving systems of quadratic equations requires exponential
time. Indeed, for a system x1 = 2, x2 = x2

1, x3 = x2
2, . . ., xn = x2

n−1,
the only possible solution is xi = x2i−1

1 = 22i−1
. In binary representation,

xn is 1 followed by 2n−1 zeros. This number contains exponentially many bits,
therefore, we need exponential time just to write this answer down. Similarly, if
we are looking for a number that is ε-close to xn, we will still need exponentially
many bits. Thus, solving this particular system of equations requires at least
exponential time. The theorem is proven.

Proof of Theorem 18.2. For systems of linear equations, known methods
(modified Gaussian elimination for one) check solvability in polynomial time
(see, e.g., Cormen et al. [75]).

Let us show that checking solvability of systems of quadratic equations is NP-
hard. To prove this result, we will reduce the PARTITION problem (known
to be NP-hard) to this problem. In the PARTITION problem, we are given a
sequence of integers s1, . . . , sn, and we must check whether there exist values
x1, . . . , xn for which xi ∈ {−1, 1} and s1 · x1 + . . . + sn · xn = 0.

For each instance of the PARTITION problem, let us consider the following
system of n + 1 quadratic equations: (xi + 1) · (xi − 1) = 0, 1 ≤ i ≤ n, and
s1 · x1 + . . . + sn · xn = 0.

If real numbers xi satisfy this system, then from the first n equations, we
conclude that for each i, either xi = −1, or xi = 1, and from the (n+1)-st
equation, that

∑
si · xi = 0.
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Vice versa, if the values xi satisfy the conditions of the PARTITION prob-
lem, then all n + 1 equations hold.

So, our system of equations is solvable if and only if the answer to the given
instance of the PARTITION problem is “yes”. Hence, the PARTITION prob-
lem (that is known to be NP-hard) is reduced to our problem, and therefore,
our problem is NP-hard too. The theorem is proven.

Proof of Theorem 18.3. Let us first show that computing the solutions
of systems of 0-1-quadratic equations indeed requires exponential time. In-
deed, let us consider the following system of equations with 2(n+1) unknowns
x0, x1, . . . , xn, and y0, y1, . . . , yn: x0 + 1 = 0, y0 + 1 = 0, x1 + x0 + y0 = 0,
xi + yi = 0 (1 ≤ i ≤ n), and yi + x2

i−1 = 0 (2 ≤ i ≤ n). All the coefficients of
all the polynomials in the left-hand side are equal to 0 or to 1.

If xi and yi satisfy this system of equations, then x0 = y0 = −1,

x1 = −(x0 + y0) = 2,

and xi = −yi = x2
i−1. Thus, for xi, 1 ≤ i ≤ n, we get the same system

of equations that we have considered in the proof of Theorem 18.1 (and x0

and yi are easily computed from these xi). For this system, xn = 22n−1
takes

exponential time to compute. The statement is proven.

Let us now prove the NP-hardness result. To prove it, we will re-formulate the
system from the proof of Theorem 18.2 in the desired 0-1-form. The equation
x2

i − 1 = 0 is the easiest to represent in this form: we can take a new variable
x0, add a new equation x0 + 1 = 0, and replace each equation x2

i = 1 by an
equivalent equation x2

i + x0 = 0.

To represent the equation s1·x1+. . .+sn·xn = 0 in the 0-1-form, we replace each
constant si by a new variable vi, and add new equations that guarantee that
vi = si. How can we do that? In the computer, each constant si is represented
as a binary number: e.g., if s1 = 5, then s1 = 510 = 1112 = 1 ·22 +1 ·21 +1 ·20.
The maximal power of 2 in these representations of si does not exceed the
length of each of these numbers. Therefore, to describe these variables, we will
introduce auxiliary variables d+

0 , d+
1 , . . ., d̃+

0 , d̃+
1 , . . ., d−0 , d−1 , . . . , and d̃−0 , d̃−1 , . . .

with the intended meaning d+
i = d̃+

i = 2i and d−i = d̃−i = −2i. The number of
these auxiliary variables is equal to the largest length of the numbers s1, . . . , sn.
The following equations guarantee the desired values for xi:
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First, the equations

d−0 + 1 = 0, d̃−0 + 1 = 0, d+
0 + d−0 = 0, and d̃+

0 + d̃−0 = 0

guarantee that d−0 = d̃−0 = −1 and d+
0 = d̃+

0 = −(−1) = 1.

Then, for every i ≥ 1, four equations

d+
i + d−i−1 + d̃−i−1 = 0, d̃+

i + d−i−1 + d̃−i−1 = 0,

d−i + d+
i−1 + d̃+

i−1 = 0, and d̃+
i + d+

i−1 + d̃+
i−1 = 0,

guarantee that if d+
i−1 = d̃+

i−1 = 2i−1 and d−i−1 = d̃−i−1 = −2i−1, then
d+

i = d̃+
i = 2i and d−i = d̃−i = −2i.

Then, for every i from 1 to n, to guarantee that vi = si, we add the following
equation:

If si ≥ 0, then we take the binary representation of si:

si = ε0 · 20 + ε1 · 21 + . . . + εi · 2i + . . . (εi ∈ {0, 1}),
and add an equation

vi + ε0 · d−0 + ε1 · d−1 + . . . + εi · d−i + . . . = 0

If si < 0, then we take the binary representation of −si:

−si = ε0 · 20 + ε1 · 21 + . . . + εk · 2i + . . . (εi ∈ {0, 1}),
and add an equation

vi + ε0 · d+
0 + ε1 · d+

1 + . . . + εi · d+
i + . . . = 0

In the resulting system of equations, we have vi = si and therefore, the equation
v1 · x1 + . . . + vn · xn = 0 is equivalent to s1 · x1 + . . . + sn · xn = 0.

Thus, the new system of quadratic equations, in which all polynomials are 0-
1-polynomials, is equivalent to the original one; hence, solving an instance of
the PARTITION problem is equivalent to this problem. Therefore, we have
reduced the PARTITION problem to the problem of solving systems of 0-1-
quadratic equations and so, the problem of solving these equations is indeed
NP-hard. The theorem is proven.
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Proof of Theorem 18.4 is similar to the proofs from Chapter 4.

Proof of Theorem 18.5. A linear equation a0 + a1 · x1 + . . . + an · xn = 0 is
solvable if either one of the coefficients a1, . . . , an is different from 0, or all the
values a1, . . . , an, a0 are equal to 0.

In the first case, if ai 6= 0, we can take xi = −a0/ai, and xj = 0 for all
j 6= i.

In the second case, arbitrary values x1, . . . , xn form a solution, so we can
take, e.g., x1 = . . . = xn = 0.

This algorithm takes linear time.

The possibility of checking solvability of quadratic and cubic equations
f(x1, . . . , xn) = 0 follows from Theorem 17.2: Indeed, due to continuity of
a a polynomial f(x1, . . . , xn), solvability of this equation is equivalent to the
condition 0 ∈ [inf f, sup f ]. According to Theorem 17.2, for a quadratic or cu-
bic polynomial, we can compute the values inf f and sup f in polynomial time
and thus, check, in polynomial time, whether the corresponding polynomial
equation is solvable.

Let us prove that for quartic polynomials, solving a polynomial equation is NP-
hard. We will prove it by reducing the same PARTITION problem as we did
in the proof of Theorem 18.2. Namely, for each instance of the PARTITION
problem, we can consider the equation f(x1, . . . , xn) = 0, where f(x1, . . . , xn) =
(x1 + 1)2 · (x1 − 1)2 + . . . + (xn + 1)2 · (xn − 1)2 + (s1 · x1 + . . . + sn · xn)2.
Since this quartic polynomial is a sum of squares, it is equal to 0 if and only
if all the squared terms are equal to 0, i.e., if (xi + 1) · (xi − 1) = 0 for all i
and

∑
si · xi = 0. We already know (from the proof of Theorem 18.2) that the

solvability of this system is equivalent to the “yes” answer to the given instance
of the PARTITION problem. Thus, the equation f(x1, . . . , xn) = 0 is solvable
if and only if the answer to this instance is “yes”. This reduction shows that
solvability of quartic equations is NP-hard. The theorem is proven.
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APPROXIMATION OF INTERVAL

FUNCTIONS

Another problem where interval computations are used is a problem of approx-
imating functions with simpler ones. In this chapter, we show that already the
problem of optimal (narrowest) approximation of a quadratic interval function
f(x1, . . . , xn) by a linear one is NP-hard. For a practically important 1D case
(n = 1), an efficient approximation is possible.

This chapter was written in collaboration with M. Koshelev and L. Longpré.

19.1. Introduction: why approximation?

In many practical problems, we know that a quantity y depends on the quanti-
ties x1, . . . , xn (i.e., that y = f(x1, . . . , xn) for some function f), but we do not
know the exact form of this dependence; instead, for every x = (x1, . . . , xn),
we know an interval y = [y, y] of possible values of y.

For example, to determine the desired dependence, we may:

measure the value of y at certain points x(1), . . . , x(M), thus getting the
intervals f(x(1)), . . . , f(x(M)), and then

use the a priori known bounds Di on the rate of change of f , i.e., on the
partial derivatives: ∣∣∣∣

∂f

∂xi

∣∣∣∣ ≤ Di,

to estimate the values of f(x) for all other x.
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If we make only one measurement, then we get a piece-wise linear estimate

f(x1, . . . , xn) = [f(x1, . . . , xn), f(x1, . . . , xn)],

where

f(x1, . . . , xn) = f(x(1)
1 , . . . , x(1)

n )−D1 · |x1 − x
(1)
1 | − . . .−Dn · |xn − x(1)

n |;

f(x1, . . . , xn) = f(x(1)
1 , . . . , x(1)

n ) + D1 · |x1 − x
(1)
1 |+ . . . + Dn · |xn − x(1)

n |.
For several measurements (M > 1), we get a slightly more complicated but still
piece-wise linear bounds on f(x1, . . . , xn).

The case n = 1 is especially practically important, because it represents the
dependence on time x1 = t:

we measure the values of physical quantities at different moments of time
and then

we use a priori bounds on the time derivative to estimate the values of
these quantities at intermediate moments of time.

In particular, in Lhomme et al. [251, 252] and in Loiez et al. [255, 256],
such piece-wise linear interval functions were effectively used in electrical and
electronic engineering: namely, in analysis of circuits with linear elements.

In many real-life applications, we need to process the resulting values y, and
the data processing algorithms are often non-linear. As a result:

if we start with the intervals for y(x) that are piece-wise linear in x,

we end up with intervals for the result r of data processing whose depen-
dence on x is much more complicated.

For example:

if we add or subtract two interval functions whose endpoints are piece-wise
linear in x, we still get the result that is piece-wise linear in x; but

if we multiply two intervals that are linear in x, then their endpoints also
get multiplied, and, as a result, we get an interval function in which the
endpoints are quadratic functions of x (i.e., we get quadratic interval func-
tions).
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If we multiply more, we get cubic, quartic, etc. functions; see, e.g., Loiez et
al. [256]. In principle, there is nothing wrong with this complexity, except for
the fact that, e.g., while a linear interval function of one variable requires only
4 numbers to store (2 coefficients of the lower endpoint and 2 coefficients of
the upper endpoint), quadratic functions require 6 coefficients, cubic functions
require 8, etc. The more complicated the function becomes, the more memory
we need to store these coefficients, and the longer it takes to process these
functions.

Thus, since we are often limited both in processing time and in memory (espe-
cially if the processing is done in an on-board computer), we must approximate
the given complicated interval function by a simpler one.

In other words, if we have an interval function y(x) = [y(x), y(x)] that is known
to contain the actual value y(x), we want to be able to find a simpler interval
function z(x) = [z(x), z(x)] that, for each x, contains the entire interval y(x)
and is, thus, guaranteed to contain the actual value y(x).

Of course, this approximation comes at a trade-off: we simplify the expres-
sion, but we make the interval wider (and therefore, lose some information).
Therefore, the narrower the approximating interval function, the better.

The simplest approximation problem of this type is the problem of approximat-
ing a quadratic interval function by linear ones. Due to the practical impor-
tance, this problem has been analyzed in several papers; see, e.g., Schmitgen
[378], Oelschlägel et al. [313, 314, 312, 315], Rokne [362], Beaumont [22].

In this chapter, following Koshelev et al. [182, 181]:

we show that, in general, this problem is computationally intractable (NP-
hard); and

we will present an efficient optimal solution to the practically important
1D case of this problem.
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19.2. When is an approximation optimal?
Mathematical formulation of the problem

Definition 19.1. Let a box X = [x1, x1] × . . . × [xn, xn] be fixed. By an
interval function, we mean a mapping y that puts into correspondence to each
element x ∈ X an interval y(x) = [y(x), y(x)].

Definition 19.2. If both functions y(x) and y(x) are linear functions of x, i.e.:

y(x) = y
0

+
∑

y
i
· xi for some constants y

0
and y

i
, and

y(x) = y0 +
∑

yi · xi,

we say that the interval function y(x) = [y(x), y(x)] is linear.

Definition 19.3. If both functions y(x) and y(x) are quadratic functions of x,
i.e.,

y(x) = y
0

+
∑

y
i
· xi +

∑
y

ij
· xi · xj for some constants y

0
, y

i
, and y

ij
,

and

y(x) = y0 +
∑

yi · xi +
∑

yij · xi · xj ,

we say that the interval function is quadratic.

Definition 19.4. We say that a linear interval function z(x) = [z(x), z(x)]
approximates a quadratic interval function y(x) = [y(x), y(x)] (or is an approx-
imation of y) if y(x) ⊆ z(x) for all x.

Comment. The narrower the intervals, the better. So, our goal is to minimize
the worst-case width of the approximating interval, i.e., the value W (z) =
maxx(z(x)− z(x)).

We will see that in some cases, for a given quadratic interval function y(x),
there are several approximating linear interval functions z with the same value
of W (z). If two different approximating functions have the same worst-case
widths, then it is reasonable to choose the one for which the best-case width
w(z) = minx(z(x) − z(x)) is the smallest. Thus, we arrive at the following
definition:
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Definition 19.5.

For every interval function z(x):

– by its worst-case width, we mean the value

W (z) = max
x∈X

(z(x)− z(x)).

– by its best-case width, we mean the value

w(z) = min
x∈X

(z(z)− z(x)).

Let a quadratic interval function y be fixed on a box X. We say that a lin-
ear function z is an optimal approximation of y if the following conditions
are satisfied:

– first, z approximates y;

– second, among all linear approximations to y, the function z has the
smallest value of the worst-case width W (z);

– third, if there exist several linear approximations u to y, with the
same smallest value of the worst-case width W (u), the function z has
the smallest value of the best-case width w(z).

19.3. Results

In general, this problem is computationally intractable (NP-hard):

Theorem 19.1. (Koshelev et al. [181]) The problem of computing the optimal
linear approximation to a given quadratic interval function is NP-hard.

For a practically important 1D case (n = 1), an efficient algorithm is possible:

Proposition 19.1. (n = 1; Koshelev et al. [182, 181]) The following Algorithm
19.1 computes the optimal linear approximation to a given quadratic interval
function of one variable.

The resulting complexity of the approximation problem can be represented by
the following table:
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n = 1 n fixed and finite general case
Feasible ? NP-hard

Comment. If we are given a piece-wise quadratic function, then we can apply
this algorithm to each quadratic piece and thus, get the optimal piece-wise
linear approximation.

Algorithm 19.1. (Koshelev et al. [182, 181]) We start with a quadratic
interval function

y(t) = [y
0

+ y
1
· t + y

2
· t2, y0 + y1 · t + y2 · t2]

defined on an interval [t, t]. The formulas for the optimal linear approximation
z(t) = [z(t), z(t)] depend on the signs of the coefficients (y

2
and y2) at the

quadratic term t2.

Case 1: y
2
≤ 0, y2 ≥ 0.

In this case, the function z(t) is the secant of y(t), i.e., a straight line whose
endpoints are the endpoints of the quadratic function y(t) on this interval.
Similarly, z(t) is a secant of y(t), i.e.,

z(t) = y(t) +
y(t)− y(t)

t− t
· (t− t), (2)

z(t) = y(t) +
y(t)− y(t)

t− t
· (t− t). (3)

Case 2: y
2
≤ 0, y2 < 0.

In this case, the lower line z(t) is a secant (2). To determine the upper
line z(t), we apply the formula

tm = −(y1 − z1)/(2y2). (4)

to compute the value tm. Then:

– If tm ∈ [t, t], we take z(t) = z(t) + (y(tm)− z(tm)).
– If tm > t, then z is the tangent to y at t:

z(t) = y(t) + (y1 + 2y2 · t)(t− t). (5)

– If tm < t, then z is the tangent to y at t:

z(t) = y(t) + (y1 + 2y2 · t)(t− t). (6)
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Case 3: y
2

> 0, y2 ≥ 0.

In this case, the upper line z(t) is a secant (3). To determine the lower
line z(t), we compute the value tm = −(y

1
− z1)/(2y

2
). Then:

– If tm ∈ [t, t], we take z(t) = z(t)− (z(tm)− y(tm)).

– If tm > t, then z is the tangent to y at t:

z(t) = y(t) + (y
1

+ 2y
2
t)(t− t). (7)

– If tm < t, then z is the tangent to y at t:

z(t) = y(t) + (y
1

+ 2y
2
t)(t− t). (8)

Case 4: y
2

> 0, y2 < 0.

In this case, we first compute tM = −(y1 − y
1
)/[2(y2 − y

2
)]. Then:

– If tM ∈ [t, t], then z is the tangent to y at tM , and z is the tangent
to y at tM : z(t) = y(tM ) + (y

1
+ 2y

2
· tM )(t − tM ); z(t) = y(tM ) +

(y1 + 2y2 · tM )(t− tM ).

– If tM > t, then z is the tangent (7) to y at t, and z is the tangent (5)
to y at t;

– If tM < t, then z is the tangent (8) to y at t and z is the tangent (6)
to y at t.

Proofs

Proof of Theorem 19.1. To show that our problem P is NP-hard, we will
reduce a problem V already known to be NP-hard to P. As such a problem V,
we will take the problem of minimizing a given non-negative quadratic function
y(x) on a given box X. (The fact that the problem V is NP-hard was shown
in Chapter 3.)

Indeed, let us assume that an algorithm U solves all particular cases of our
problem P in polynomial time. Then, we can find the minimum m of a given
non-negative quadratic function y(x) as follows:

1. We compute an upper bound B for the quadratic function y(x) on a box
X. This upper bound can be obtained, e.g., by using naive interval com-
putations.
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2. We apply the algorithm U to a quadratic interval function

y(x) = [0, B − y(x)].

As a result of applying this algorithm, we get the linear interval function
z(x) = [z(x), z(x)] that is the optimal approximation of y(x).

3. We compute the worst-case width W = W (z) of the linear interval function
z(x), i.e., the maximum of a linear function

z(x) = z(x)− z(x) = z0 + z1 · x1 + . . . + zn · xn

on a box X = [x1, x1]× . . .× [xn, xn]. This maximum is easy to compute:

W = z(mid(X)) + |z1| · half(x1) + . . . + |zn| · half(xn),

where

mid(X) =
(

x1 + x1

2
, . . . ,

xn + xn

2

)

is the midpoint of the box, and

half([xi, xi]) =
xi − xi

2

is the radius (half-width) of the corresponding interval.

4. Finally, we take the difference B−W as the desired value of the minimum
m.

Let us show that the value B − W computed by our algorithm is indeed the
minimum of the original function y(x):

First, we will show that m ≥ B −W .

Indeed, since the function z(x) is an approximation to y(x), we have y(x) ⊆
z(x); hence, for every x, the interval z(x) is wider than or equal to the
interval y(x). Therefore, the worst-case width W (z) is greater than or
equal to the worst-case width W (y) of the quadratic interval function
y(x): W = W (z) ≥ W (y). To use this inequality, we must find the value
W (y).

For every x, the width y(x) − y(x) of the interval y(x) = [0, B − y(x)]
is equal to B − y(x). Therefore, the largest possible value W (y) of this
width is attained when B−y(x) is the largest possible, i.e., when y(x) is the
smallest possible. Hence, W (y) = max(B−y(x)) = B−min y(x) = B−m.

So, W = W (z) ≥ W (y) = B −m, and therefore, m ≥ B −W .



Approximation of Interval Functions 215

On the other hand, since z is the optimal approximation to y, its worst-case
width W = W (z) must be the smallest possible of the worst-case widths
W (u) of all linear interval approximations u(x) to the function y(x).

In particular, since y(x) ≥ m for all x, we have B − y(x) ≤ B − m and
therefore, a linear interval function u(x) = [0, B −m] is an approximation
for y(x) = [0, B − y(x)]. The worst-case width W (u) is equal to

W (u) = max(B −m) = B −m.

Therefore, W = W (z) ≤ W (u) = B − m, i.e., W ≤ B − m and thence,
m ≤ B −W .

So, m ≥ B −W and m ≤ B −W and hence, m = B −W . The reduction is
proven, so, our problem is indeed NP-hard. The theorem is proven.

Proof of Proposition 19.1. Let us present the proofs for all 4 cases.

Case 1: y
2
≤ 0, y2 ≥ 0. In this case, both functions y(x) and y(x) are

“pointing inward”.

If z(t) is a linear interval approximation to the given quadratic interval function,
then, from y(t) ⊆ z(t), it follows, in particular, that z(t) ≤ y(t) for all t ∈ [t, t];
therefore, z(t) ≤ y(t) and z(t) ≤ y(t).

Since y
2
≤ 0, the quadratic function y(t) is concave and hence, from z(t) ≤ y(t)

and z(t) ≤ y(t), i.e., from the fact that the line z(t) lies below the two endpoints
of the graph of y(t), it automatically follows that the entire graph of y(t) is
above the line z(t). So, it is sufficient to guarantee that at the endpoints, the
values z(t) and z(t) do not exceed the corresponding values of y(t) and y(t).

For fixed z(t), the resulting intervals are the narrowest when the line z(t) is at
the highest possible location. Thus, to minimize the widths of the intervals,
we must move both points z(t) and z(t) up as much as possible. The highest
possible location for z(t) is y(t), and the highest possible location for z(t) is
y(t). Thus, y(t) is a a straight line going through y(t) and y(t), i.e., a secant.

Similarly, z(t) is a secant of y(t).

Case 2: y
2
≤ 0, y2 < 0. The arguments given for Case 1 show that in this

case, the function z(t) is still the secant. With z(t) fixed, it is sufficient to find
the upper function z(t) for which the resulting approximation is optimal.



216 Chapter 19

Let us first guarantee that the worst-case width is indeed the smallest possible.
Let us denote the worst-case width by W0. By definition, for every t, we have
z(t) ≤ z(t) + W0, and therefore, y(t) ≤ z(t) ≤ z(t) + W0. Thus, to guarantee
that W0 takes the smallest possible values, we must choose W0 as the smallest
possible value for which y(t) ≤ z(t) + W0 for all t ∈ [t, t]. In other words, as
W0, we take the maximum of the function y(t)− z(t) on the interval [t, t].

The maximum of the concave quadratic function

y(t)− z(t) = (y0 − z0) + (y1 − z1) · t + y
2
· t2

is attained at the point where its derivative is equal to 0, i.e., at the point tm
determined by the formula (4). If this maximum is attained at the internal
point tm of this interval, then at tm, the line z(t)+W0 is a tangent to y(t), and
therefore, there is no way to find a lower line without increasing the worst-case
width W (z). So, in this case, z(t) = z(t) + W0.

If the maximum is attained in one of the endpoints, e.g., at t, then, we can,
keeping the straight line z(t) at the point (t, y(t)), lower its other end and
still get the same worst-case width. The lowest value of the best-case width is
attained when we lower the other end to the lowest possible position in which
it is still above y(t), i.e., to the position of a tangent to y(t).

Case 3: y
2

> 0, y2 ≥ 0. This case is similar to case 2.

Case 4: y
2

> 0, y2 < 0. In this case, both functions y(x) and y(x) are
“pointing outward”.

As a first step of constructing the optimal linear approximation z(t), let us first
make sure that we have the smallest possible value of the worst-case width. For
every t ∈ [t, t], from y(t) ⊆ z(t), we can conclude that the width of z(t) is at
least as large as the width of the interval y(t). Thus, the worst-case width
W (z) of the approximating linear function z(t) cannot be smaller than the
worst-case width W (y) of the original (quadratic) interval function y. Since
we are minimizing W (z), it is therefore desirable to choose z in such a way that
its worst-case width is exactly equal to W (y).

The worst-case width W (y) is a maximum of the quadratic width function
y(t)−y(t) on the interval [t, t]. By differentiating this difference, one can easily
get an explicit expression for this maximum point tM (this expression is given
in the formulation of the algorithm).
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If this maximum point tM is inside the interval [t, t], then at this point tM ,
both approximating lines z(t) and z(t) must be tangent to the corresponding
functions y(t) and y(t), because otherwise, in at least one of the directions, the
width will increase.

If this maximum tM is attained at one the endpoints, e.g., for t, then we must
have z(t) = y(t) and z(t) = y(t). In this case, to guarantee the smallest possible
best-case width, we must place z(t) as low as possible (i.e., along the tangent
to y), and z(t) as high as possible, i.e., similarly, along the tangent to y(t).

As a result, we arrive at the formulas given in the algorithm. Proposition is
proven.





20
SOLVING DIFFERENTIAL

EQUATIONS

Yet another problem where interval computations are used is a problem of
solving differential equations. In this chapter, we show that in general, this
problem requires at least exponential time, and briefly describe the heuristics
that are used to solve important particular classes of differential equations in
polynomial time.

This chapter was written in collaboration with M. Berz.

20.1 In General, Solving Differential Equations
is Exponentially Hard

In the previous chapters, we have shown that even simple problems, such as
solving a system of polynomial equations or optimizing a polynomial objective
function, are, in general, NP-hard or even exponentially hard (i.e., require at
least exponential running time for some instances). It is therefore natural to
expect that if, instead of the simple static problems, we consider more realistic
dynamic problems (e.g., if we solve differential equations instead of simpler
algebraic equations), then the required computation time will only increase.
Indeed, solving even the simplest linear differential equations is, in general,
exponentially hard:

219
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Definition 20.1. By ε-approximately solving systems of polynomial differential
equations, we mean the following problem:

GIVEN:

• an integer n;

• a finite sequence of polynomials f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)
with rational coefficients;

• n rational numbers x
(0)
1 , . . . , x

(0)
n ;

• rational numbers t0 < T ; and

• a rational number ε > 0.

COMPUTE: rational numbers x̃1, . . . , x̃n that are ε−close to the values
of xi(T ), where x1(t), . . . , xn(t) are a solution to the system of differential
equations

dxi

dt
= fi(x1, . . . , xn) (20.1)

for which xi(t0) = x
(0)
i (i = 1, . . . , n).

Comment. In particular, when n = 1, i.e., when the system consists of only
one differential equation, we will talk about ε-approximately solving polynomial
differential equations. Already this problem is exponentially hard:

Theorem 20.1. For every ε > 0, an arbitrary algorithm that ε-approximately
solves all linear differential equations requires, for some equations, at least ex-
ponential time.

This is indeed much worse than for systems of algebraic equations:

Systems of algebraic Systems of differential
equations equations

Linear Polynomial time Exponential time
fi(x1, . . . , xn) (or worse)
Quadratic Exponential time Exponential time
fi(x1, . . . , xn) (or worse) (or worse)
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20.2. Important Heuristics: Traditional Nu-
merical Methods and Taylor Series Methods

It may be possible to have a feasible heuristic. As we can see from
the proof, the exponential running time appears if we allow arbitrarily large
values of integration time T − t0 and of the right-hand sides fi(x1, . . . , xn).
It is, therefore, reasonable to fix some T0 and B and consider only systems
of equations for which |T − t0| ≤ T0 and |fi(x1, . . . , xn)| ≤ B. With this
restriction, we can hope to have reasonable algorithms or at least reasonable
heuristics.

Traditional numerical methods, and why, unfortunately, their worst-
case computational complexity is still exponential. People have been
solving differential equations for more than three centuries, and many good
practical methods have been designed. So, the first natural idea is to check
the computational complexity of the known methods. Alas, it turns out that
although these methods are very good in many practical problems, their worst-
case computational complexity is still exponential.

Indeed, most of these methods are based on a step-by-step integration of the
system (20.1). The exponential complexity can be illustrated on the simplest
example of Euler integration, in which we choose some computation step ∆t
and sequentially compute, for t1 = t0 + ∆t, t2 = t0 + 2∆t, etc., the values

xi(tk+1) = xi(tk) + ∆t · fi(x1(tk), . . . , xn(tk))

until we reach tk ≈ T . This method requires T/∆t iterations.

The accuracy of such an integration scheme is proportional to ∆t, so to attain
the desired accuracy ε, we need to make ≈ 1/ε computation steps. For k-digit
values, e.g., for ε = 2−k, this means that we need a number of computational
steps that exceed an exponent 2k of the length of the input. In other words,
these methods require exponential time.

The same exponential lower bound for computation time holds for more so-
phisticated methods, for which the accuracy is proportional to (∆t)a for some
a: to achieve the desired accuracy ε > 0, we need to take ∆t ≈ ε1/a, i.e., for
ε = 2−k, still exponential time.
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This worst-case behavior of traditional methods is a real phenom-
enon. The exponential-time behavior of traditional methods is, unfortunately,
not just a purely theoretical phenomenon. It is indeed happening for some
real-life differential equations. Let us give two examples.

When we design a particle accelerator, we must guarantee that the particles
will not get out of the camera after billions of cycles. To do this, we must solve
systems of differential equations. With particles moving at approximately the
speed of light, and the resulting fast changes, traditional methods of solving
differential equations would require millions of years to compute.

Another example is geophysics, when we want to simulate long-time behavior
of complex interacting geophysical system. In this case, too, traditional meth-
ods do not work if we want to predict what will happen after (a geologically
meaningful period of) millions of years.

How to avoid exponential time: Taylor series methods. If the right-
hand sides fi(x1, . . . , xn) of the differential equations (20.1) are polynomials, or,
more generally, analytical functions, then the well-known Cauchy theorem says
that the solution is also analytical. We can, therefore, represent each solution
as a Taylor series. If we take only first d terms of this expansion, we get an
expression xi(t) = ai0 + ai1 · t + ai2 · t2 + . . . + aid · td with unknown coefficients
aij . We can find these coefficients if we substitute these expressions into the
original system (20.1) (and apply known automatic differentiation techniques).
As a result, we get a system of n× (d + 1) algebraic equations with n× (d + 1)
unknowns, a system which is often easy to solve (and which, at least, is not
doomed to exponential computation time).

How many terms do we need to achieve the given accuracy? If we restrict our-
selves to d-th order terms in Taylor series, then the remainder is, crudely speak-
ing, proportional to (T/R)d+1, where R is the radius of convergence. Therefore,
to achieve an accuracy ε = 10−k, we must choose d for which (T/R)d+1 ≈ 10−k,
i.e., for which d ≈ const · k. Thus, the number of terms is bounded by a poly-
nomial of the length of the input. If we are in a situation where solving the
resulting system of algebraic equations is feasible (i.e., polynomial time), we
have thus reduced the original exponential time to polynomial time.

Comment. From the computational complexity viewpoint, these methods were
first described in Longpré et al. [257] and Kreinovich et al. [229].
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Taylor series methods indeed lead to practically feasible algorithms.
The Taylor series methods indeed work well for many practical problems, in
particular, for the particle accelerator example; see, e.g., Berz et al. [37, 38,
39, 41, 40], Makino et al. [266, 267].

Proofs

Proof of Theorem 20.1. Indeed, for t0 = 0 and x
(0)
1 = 1, a system dx/dt =

C · x has a solution x(t) = exp(C · t) for which x(T ) = exp(C · T ). Thus, if we
are given k-digit numbers C and T , the resulting value requires an order of 2k

digits to describe. Thus, we need exponentially many computational steps just
to write down the solution. Similarly to the previous chapters, requiring that
the solution be ε-approximate does not eliminate this exponential time. The
theorem is proven.
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PROPERTIES OF INTERVAL

MATRICES I: MAIN RESULTS

In the previous chapters, we analyzed the computational complexity and feasi-
bility of the problems in which the main goal was to compute a number (or an
interval). In many practical situations, however, we are not interested in the
exact value of this number; all we need to know is whether a certain property
is true or not: e.g., whether a given controlled system is stable, etc. It turns
out that the most interesting practical problems of this type relate to numer-
ical and interval-values matrices: to check whether a given matrix is regular,
positive definite, stable, etc.

In this chapter, we describe the main results related to computational com-
plexity and feasibility of such problems. Proofs and several important auxiliary
results are presented in the next chapter.

21.1. Properties of Interval Objects: Informal
Introduction

“Checking” problems and why they are practically important. In
the previous chapters, we analyzed the computational complexity and fea-
sibility of the problems in which the main goal was to compute a number
y = f(x1, . . . , xn), or, to be more precise, to find the set of all possible val-
ues of the function y = f(x1, . . . , xn) when its inputs xi take values from given
intervals xi. In many practical situations, however, we are not interested in the
exact value of this number; all we need to know is whether a certain property
is true or not.

225
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For example, in environmental applications, we may want to know whether the
pollution level exceeds the legal limit or not; in control applications, we may
want to know whether the given controlled system is stable or not, etc.

“Checking” problems are (somewhat) simpler than the correspond-
ing computation problems. In most problems of this type, the condi-
tion that we want to check can be re-formulated as an inequality of the type
f(x1, . . . , xn) ≥ y0 for a given value y0 (or as several inequalities of this type).
For example, the problem of checking the pollution level is already given in this
form; the problem of checking stability of a controlled system is formulated in
a much more complicated form, but, as we will see later in this chapter, it can
also be reduced to checking inequalities of this type.

Since we only know intervals xj of possible values of xj , we can only get a
interval y = [y, y] of possible values of y. Depending on the values y and y, we
can have three different possibilities:

If y ≥ y0, this means that all possible values of y = f(x1, . . . , xn) (i.e.,
all values y from the interval [y, y]) satisfy the desired inequality, so the
desired property is guaranteed to be true.

If y < y0, this means that none of possible values of y = f(x1, . . . , xn)
satisfy the desired inequality, so the desired property is guaranteed to be
false.

If y < y0 ≤ y, this means that some possible values of y = f(x1, . . . , xn)
satisfy the desired inequality, while some other possible values do not sat-
isfy this property. In this case, based on our information (as described by
the intervals x1, . . . ,xn), we cannot decide whether the desired property
is satisfied or not, so, additional information is needed.

When there exists a feasible algorithm for computing the interval y =
f(x1, . . . ,xn), we can thus check the desired property in reasonable time. How-
ever, as all the previous chapters show, in many cases, the problem of computing
the interval y is computationally intractable (NP-hard). In these cases, we can-
not simply compute the interval y and then check whether elements of this
interval are larger than or equal to y0. The fact that we cannot compute the
endpoints y and y of the interval y in reasonable time does not necessarily
mean that we cannot check the desired property in reasonable time by using
some feasible algorithm: for this checking, we do not need the exact values of y
and y, we do not even need ε-approximations to these endpoints: all we need to
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know is whether y ≥ y0 and whether y ≥ y0. Since the desired output consists
of a single bit of information (yes or no), this problem is clearly simpler than
the corresponding computing problem in which the desired output (a number)
consist of several bits.

Due to this relative simplicity, in some cases, this simpler “checking” problem
becomes feasible even when the corresponding computational problem is NP-
hard.

For example, if f(x1, . . . , xn) is a non-linear polynomial, then, in general,
computing the exact range y is NP-hard. On the other hand, we can apply
naive interval computations or some more sophisticated interval technique
and get a reasonable enclosure Y ⊃ y. If all the values y from this enclosure
are greater than or equal to y0, then the desired property is guaranteed to
be true; if all the values from Y are smaller than y0, then we can guarantee
that the desired property is false.

In some other cases, the “checking” problem is still NP-hard. However, since
checking problem is, in general, simpler than the computing problem, we cannot
simply deduce this NP-hardness from the NP-hardness of the corresponding
computational problem: we have to prove it anew.

The main goal of this chapter is to analyze computational complexity and
feasibility of the “checking” problems.

21.2. Practically Important Properties of Inter-
val Objects: Informal Introduction Continued

Three basic stages of solving practical problems: a brief reminder.
To describe practically important properties of interval objects, let us recall
the basic stages of solving a generic practical problem:

At first, we determine the current state of the system and, ideally, its
dynamics.

Then, we use the known dynamics to predict the future states of the system.

Finally, if we are not satisfied with this prediction, we try to find the control
that leads to, say, the largest possible value of the objective function.
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Let us briefly recall the computational problems related to each of these three
stages, and describe natural “checking” problems that appear on each of these
stages.

First stage: Determining the current state. To determine the current
state of the system, we must undertake some measurements. In some situations,
we can directly measure the values of the variables x1, . . . , xn that describe the
system’s state. In other situations, we cannot directly measure the values xj

(or at least cannot easily directly measure these values). In such situations,
we measure some other quantities y1, . . . , ym (that are related to the desired
quantities xj), and use the results ỹi of measuring yi and the known relations
between xj and yi to reconstruct the values of the desired quantities xj .

In some cases, we have explicit formulas that describe xj in terms of yi: xj =
fj(y1, . . . , ym). In such cases, from the computational viewpoint, all we need
to do to compute estimates x̃j is to perform some explicit computations: x̃j =
fj(ỹ1, . . . , ỹm). If we take interval uncertainty into consideration, i.e., if we
take into consideration that we only know the intervals yj of possible values
of yi, then we get the above basic problem of interval computations: given the
intervals yi, compute the range fi(y1, . . . ,ym). In these cases, this problem is
a purely computational problem, with no significant “checking” component.

In other cases, we only have implicit formulas that relate xj and yi:

Fk(x1, . . . , xn, y1, . . . , ym) = 0, 1 ≤ k ≤ K. (21.1)

In such cases, to find xj , we must actually solve the system of equations (21.1).
The corresponding functions Fk can be arbitrarily complicated. Usually, we
know the approximate values x

(0)
j of the measured quantities xj . If this knowl-

edge is accurate enough, i.e., if the differences δxj = xj − x
(0)
j are small, we

can simplify these equations if we expand the functions

Fk(x1, . . . , xn, y1, . . . , ym) = Fk(x(0)
1 + δx1, . . . , x

(0)
n + δxn, y1, . . . , ym)

into Taylor series in δxj and retain only the first few main terms in this ex-
pansion. In particular, if we only retain linear terms, we get a system of linear
equations ∑

akjxj = bk, 1 ≤ k ≤ K, (21.2)

(where

akj =
∂Fk

∂xj
(x(0)

1 , . . . , x(0)
n , y1, . . . , ym)
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and bk =
∑

akj · x(0)
j − Fk(x(0)

1 , . . . , x
(0)
n , y1, . . . , ym).) If we take interval un-

certainty into consideration, then, as we have shown in the previous chapters,
even in this simplest case, the problem of estimating xj is NP-hard.

“Checking” problems emerging from the first stage. If the relations
(21.1) or (21.2) are absolutely true (and the measuring instruments that measure
yi are functioning correctly), then we have to solve the system (21.1) or (21.2)
(or its interval analogue) anyway, because this is how we determine xj . In this
case, there is no checking problem. However, in reality, it happens sometimes
that the relations (21.1) that we assumed to be (absolutely) true are only
approximately true or, even worse, these relations are only true for some values
xj and yi (including all the values for which they have been tested before) and
not true for the values xj and yi that we are currently measuring. It can also
happen that one of the measuring instruments is broken, and the values yi that
we get from this instrument are way off. In these cases, the system (21.1) may
have no solution at all. If this is the case, we must re-analyze the situation:
e.g., replace the sensors, make new measurements of yi, and try again to solve
the system (21.1).

Since solving a system of nonlinear equations is a computationally hard problem,
the algorithms that solve such systems are often very time-consuming. Since
there is a risk that the original system is not solvable at all (and thus, the
time spent on trying to solve this system is wasted), it is desirable, before
starting this time-consuming algorithm, to check whether the system (21.1)
has a solution. Thus, on the first stage of practical problem solving, we have
an important “checking” problem: to check whether a given system of equations
(21.1) has a solution.

In the ideal (numerical) case when all the intervals are degenerate (i.e., numbers)
and all the measurements are precise (i.e., when the measured values ỹi coincide
with the actual values yi of the directly measured quantities), we should expect
that not only the system has a solution, but that there should be a unique
solution. In this ideal case, in order to determine n values x1, . . . , xn, we
need only n equations, i.e., n relations (21.1); every other relation would be
redundant and extra measurements used to establish this relation unnecessary.
So, we have a system of n equations with n unknowns.

For the simplest case of a linear system, the requirement that the resulting
n× n system of linear equations (21.2) has a unique solution can be easily re-
formulated in purely algebraic terms: it is equivalent to the requirement that
the matrix A formed by the coefficients akj is regular (i.e., invertible).
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Thus, the first stage of problem solving leads to the following important “check-
ing” problem: to check whether a given matrix is regular (non-singular).

Comment. To be more precise: the general problem is to check solvability of a
system of equations. Regularity of a matrix is only the simplest case of the gen-
eral problem; more complicated (and more general) cases are also practically
interesting. However, as we will show, in the presence of interval uncertainty,
already this simplest case is NP-hard; so there is no need to consider computa-
tional complexity of other, more general and more complicated cases: all these
more general and more complicated cases are NP-hard too.

Second stage: Predicting the future states. On the second stage of
practical problem solving, we use the known initial state of the system and its
known dynamics to predict the future states of the system. There are two basic
ways to describe the dynamics:

Traditionally, in fundamental physics, we describe the dynamics in such a
way so as to be able to predict what is happening after an arbitrary period
of time ∆t. In particular, we must be able, knowing the state xi(t) at the
initial moment of time t, to predict the state xi(t+∆t) for arbitrarily small
values ∆t. For small ∆t, we have xi(t+∆t) ≈ xi(t)+∆t · ẋi(t) (where ẋi(t)
denotes the time derivative). Therefore, being able to predict the values
xi(t + ∆t) is equivalent to being able, knowing the values x1, . . . , xn, to
predict the values of the derivatives ẋi(t). Hence, we describe the dynamics
in terms of a system of differential equations:

dxi(t)
dt

= fi(x1(t), . . . , xn(t)). (21.3)

In many practical problems, we are only interested in the state xi(t) for
discrete moments of time: e.g., in daily temperatures, yearly crop, etc. In
other words, we know the values xi(t) at a certain initial moment of time
t, and we are interested in the values xi(t + ∆t), xi(x + 2∆t), . . ., where
∆t > 0 is a given positive constant (observation period).

– In principle, we can still describe the dynamics in terms of differential
equation (21.3), solve this differential equations (i.e., find the values
xi(t) for all t), and then extract the desired values of xi(t) from the
resulting solutions.

– However, from the computational viewpoint, this is a waste of comput-
ing resources, because, in addition to the states xi(t+∆t), xi(t+2∆t),
etc., in which we are really interested, we compute all intermediate
states xi(t) as well.
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To make computations more efficient, it is desirable to directly describe
the transition from the state xi(t) in the initial moment of time to the
state xi(t + ∆) in the moment of time t + ∆t:

xi(t + ∆t) = Fi(x1(t), . . . , xn(t)). (21.4)

If we know the exact initial values of the parameters xi(t) that characterize the
initial state and the exact functions fi that describe the dynamics, then we can
explicitly solve the corresponding system of equations ((21.3) or (21.4)) and get
the desired prediction.

These prediction problems are doable, although often they are time-consuming,
especially if n is large, and we want to predict a reasonably distant future. For
example, weather prediction requires a significant amount of time on modern
supercomputers that perform 109 to 1012 operations per second, and still the
results of modern computer weather prediction are still far from being perfect.

Similarly to the first stage, we can simplify the equations (21.3) and (21.4) by
retaining only the first few terms in the Taylor expansion of the functions fi or
Fi. In particular, in the simplest case when we only retain linear terms (and
thus, approximate the original functions fi or Fi by linear functions), we get
the following linear equations:

dxi(t)
dt

= a0 +
n∑

j=1

aij · xj(t); (21.5)

xi(t + ∆t) = a0 +
n∑

j=1

aij · xj(t). (21.6)

“Checking” problems emerging from the second stage. In real life,
there are inevitable measurement errors in the initial values of xi(t): the actual
values xi(t) are slightly different from the measured values x̃i(t). As a result,
sometimes, the prediction process becomes unstable: as we try to predict the
states at the times t → ∞, even small errors ∆xi(t0) = x̃i(t0) − xi(t0) at the
initial moment of time t0 exponentially increase as t →∞. In this case, due to
the possibility of large prediction errors ∆xi(t) = x̃i(t)−xi(t), the results x̃i(t)
of integrating the equations (21.3) or (21.4) do not lead to any meaningful
information about the desired actual future values xi(t). Since prediction is
often very time-consuming, it is desirable to avoid unnecessary computations
and check beforehand whether the given prediction problem is stable or not.
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From this computational viewpoint, stability means that small initial deviations
∆xi(t) do not grow exponentially to ∞ as t →∞, but remain reasonably small.

Stability checking is also very important for control applications, where the
equations (21.3) or (21.4) characterize the dynamics of the controlled system.
The typical goal of control is to stabilize the system, i.e., to make sure that
an arbitrary initial deviation xi(t0) 6= xdes

i (t0) of the actual trajectory xi(t)
from the ideal (desired) trajectory xdes

i (t) will eventually get corrected, i.e., the
deviations ∆xi(t) = xi(t) − xdes

i (t) from the desired trajectory tend to 0 as
t →∞.

Notice that control applications motivate a stronger stability requirement than
computational applications:

In computational applications, we only required that the deviations do not
grow too fast.

In control applications, we want the deviations to decrease and tend to 0.

For non-linear systems, checking each of these stability properties can be very
complicated, but for linear systems, the problem is much easier: there exist
explicit formulas for solving the systems (21.5) and (21.6), and these formulas
lead to explicit formulas for checking stability. Let us briefly describe how this
is done; a detailed description can be found, e.g., in Chorlton [66] and Bellman
[23].

Indeed, in both problems, we are interested in the difference ∆xi(t) between
the two solutions of the corresponding equation (21.5) or (21.6):

In the computational applications, ∆xi(t) is the difference between the
trajectory x̃i(t) based on the approximate initial state x̃i(t0) and the tra-
jectory xi(t) based on the exact (unknown) initial state xi(t0).

In the control applications, ∆xi(t) is the difference between the actual
trajectory xi(t) and the ideal (desired) trajectory xdes

i (t).

From the fact that both solutions satisfy the equation (21.5) (or (21.6)), it
follows that the difference ∆xi(t) between these two solutions satisfies one of
the following equations:
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d∆xi(t)
dt

=
n∑

j=1

aij ·∆xj(t); (21.7)

∆xi(t + ∆t) =
n∑

j=1

aij ·∆xj(t). (21.8)

These equations are the easiest to solve when n = 1, then the first equation
leads to ∆x1(t) = ∆x1(t0)·exp(a11 ·(t−t0)), and the second to ∆x1(t0+k·∆t) =
∆x1(t0) · ak

11. For n > 1, we can try to find partial solutions of the similar type
xi(t) = Ci·exp(λ·t) or xi(t) = Ci·λt, and then use the fact that the equations are
linear to describe the general solution as an arbitrary linear combination of these
partial solutions. If we substitute the desired partial solution into the equations
(21.7) or (21.8), we get the system

∑
j aijCj = λ · Ci. In other words, λ is an

eigenvalue of the matrix aij , while Ci is the corresponding eigenvector. So, if
a matrix aij has n different eigenvalues, then we have n linearly independent
partial solutions of this type, and an arbitrary solution can be represented as
a linear combination of these partial ones. The degenerate case when two or
more eigenvalues are equal (λ′ = λ) can be treated as the limit case of the
non-degenerate case λ′ = λ + ε when ε → 0:

For the system of differential equations (21.7), in the non-degenerate case,
we have an arbitrary linear combination of exp(λ · t) and exp((λ + ε) · t).
In the limit ε → 0, in addition to exp(λ · t), we also have a solution

lim
ε→0

exp((λ + ε) · t)− exp(λ · t)
ε

=
d

dλ
exp(λ · t) = t · exp(λ · t).

If we have three coinciding eigenvalues, then we, similarly, get solutions
proportional to t2 · exp(λ · t), etc.

Similarly, for the equation (21.8), we get solutions of the type t ·λk, t2 ·λt,
etc.

In general, an arbitrary solution ∆xi(t) of the system (21.7) can be represented
as a linear combination of the terms xp · exp(λ · t), where p is a non-negative
integer and λ is an eigenvalue, and an arbitrary solution of the system (21.8)
can be represented as a linear combination of the terms xp · λk for similar p
and λ. This explicit description of all possible solutions of these systems leads
to explicit conditions for stability; in deriving these conditions, we must take
into consideration that eigenvalues λ are, in general, complex numbers:
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To describe stability conditions for the system (21.7), we can use the fact
that

tp · exp(λ · t) = tp · exp((Reλ + i · Imλ) · t) =

tp · exp(Reλ · t) · (cos(Imλ · t) + i · sin(Imλ · t)).
This term tends to 0 if and only if Reλ < 0, and it does not increase
exponentially if and only if Reλ ≤ 0. Thus:

– Stability needed for control applications is equivalent to the require-
ments that Reλ < 0 for each eigenvalue λ of the matrix aij . Matrices
that satisfy this property are called stable, or Hurwitz stable, after the
mathematician who first analyzed this type of stability.

– Stability needed for computational applications is equivalent to the
requirements that Reλ ≤ 0 for each eigenvalue λ of the matrix aij .
Matrices that satisfy this property are called semi-stable, or Hurwitz
semi-stable.

To describe stability condition for the system (21.7), we used a stan-
dard representation of a complex number in terms of two real numbers:
λ = Reλ + i · Imλ; in the standard geometric representation of complex
numbers as points on a plane, this representation corresponds to Carte-
sian coordinates. For the system (21.8), it is more appropriate to use an
alternative (polar-coordinate) representation λ = |λ| · exp(i · ϕ). We can
now use the fact that

tp · λk = tp · |λ|k · exp(i · k · ϕ) = tp · |λ|k · (cos(k · ϕ) + i · sin(k · ϕ)).

This term tends to 0 when k → ∞ if and only if |λ| < 1, and it does not
increase exponentially if and only if |λ| ≤ 1. Thus:

– Stability needed for control applications is equivalent to the require-
ments that |λ| < 1 for each eigenvalue λ of the matrix aij . Matrices
that satisfy this property are called Schur stable, after the mathe-
matician who first analyzed this type of stability.

– Stability needed for computational applications is equivalent to the
requirements that |λ| ≤ 1 for each eigenvalue λ of the matrix aij .
Matrices that satisfy this property are called Schur semi-stable.

Thus, the second stage of problem solving leads to the following important
“checking” problem: to check whether a given matrix is stable (see, e.g.,
Barmish [16]).



Properties of Interval Matrices I: Main Results 235

Third stage: Optimization. Finally, if we are not satisfied with this predic-
tion, we try to find the alternative that leads to the smallest (or the largest)
possible value of some objective function y = f(x1, . . . , xn):

f(x1, . . . , xn) → min (21.9)

The objective function can be very complicated, but if we know the approximate
values x

(0)
i of the desired parameters xi, we can expand the objective function

into Taylor series in δxi = xi − x
(0)
i and keep only a few main terms in the

expansion.

In our analysis of the first two stages of problem solving, we kept only linear
terms in the corresponding Taylor expansions. For unconstrained optimization,
keeping only linear terms in the expansion of f(x1, . . . , xn) does not make sense,
because a linear function does not have any minima or maxima at all. Thus,
we need to keep at least quadratic terms as well. If we keep quadratic terms,
we get the following (approximate) optimization problem:

a0 +
n∑

i=1

ai · xi +
n∑

i=1

n∑

j=1

aij · xi · xj → min . (21.10)

“Checking” problems emerging from the third stage. In many real-life
situations, we only have an approximate information about how the desired
objective (e.g., cost or time) depend on the controlled parameters xi. Due to
this approximate character of the objective function, it may happen (and it
does happen sometimes) that the resulting optimization problem (21.9) does
not have a solution at all. If this turns out to be the case, this means that we
need to make a more accurate description of the objective function and repeat
the computations.

We already know, from the previous chapters, that optimization is, in general,
a computationally difficult problem. Thus, it is desirable, before we start the
actual optimization, to check whether this optimization problem has a solution
at all.

Optimization problems also lead to another, related “checking” problem: If the
original optimization problem has a single solution, i.e., a unique combination
of parameters x1, . . . , xn that minimizes the objective function (21.9), then we
simply choose these values xi. But what if the same smallest value of the
objective function is attained for several different combinations of parameters?
There exist two possible approaches to this situation:
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A pragmatic approach is to pick one of these combinations and use it.

On the other hand, if the practical problem is really important, the exis-
tence of several solutions to the optimization problems means that we can
do some further optimization.

For example, let us assume that we are designing a super-computer,
and our initial goal is to achieve the fastest speed. If it turns out that
several different designs guarantee the best possible speed, then we
can use this non-uniqueness to select, e.g., the least costly design.

In other words, in this second approach, we change the objective function
and re-solve the optimization problem.

Since we are solving the second optimization problem anyway, it makes sense to
avoid the (often time-consuming) process of solving the original optimization
problem. In other words, it is desirable to be able, given an optimization
problem, to check whether it has a unique solution or not.

For quadratic objective functions (21.10), these two “checking” problems can
be easily reformulated in terms of the corresponding matrix aij :

the (unconstrained) minimization problem (21.10) has a solution if and
only if the matrix aij is positive semi-definite, i.e., if

∑
aij · xi · xj ≥ 0 for

every vector ~x = (x1, . . . , xn);

the (unconstrained) minimization problem (21.10) has a unique solution if
and only if the matrix aij is positive definite, i.e., if

∑
aij · xi · xj > 0 for

every vector ~x = (x1, . . . , xn) 6= ~0 = (0, . . . , 0).

Auxiliary “checking” problems. We already know, from the previous chap-
ters, that many problems of interval computations are NP-hard. This means,
crudely speaking, that no algorithm is likely to exist that would solve all in-
stances of these problems in feasible time. There are, however, feasible algo-
rithms that solve some instances. For many such algorithms, we know con-
ditions that guarantee the algorithm’s usefulness. Often, these conditions are
formulated in theoretical terms, without a ready-made algorithm for checking.
In such cases, we have an important practical problem of checking whether these
conditions are true. Let us give two important examples of such properties:
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In interval computations, many computational problems are difficult to
solve. One practically useful case when they are relatively easy to
solve is the case of monotonic functions: if we know that a function
f(x1, . . . , xn) is non-decreasing in each of its variables xi, then its range
y = f(x1, . . . ,xn) over the intervals xi = [xi, xi] is simply equal to
y = [f(x1, . . . , xn), f(x1, . . . , xn)]. (Examples of successful applications
of monotonicity were given and cited in Chapter 16.) In particular, for
the problem of solving a system of linear equations

∑
j aijxj = bi, we have

xj =
∑

i mjibi, where mji is an inverse matrix to the matrix aij . Each
of the resulting linear functions bi → xj is non-decreasing in each of the
variables bj if and only if all the coefficients mji of the inverse matrix are
non-negative. Matrix aij with this property are called non-negative in-
vertible. So, we arrive at the problem of checking whether a given matrix
is non-negative invertible.

Real good algorithms for solving linear interval systems are known for the
case when an additional condition is satisfied: that aij ≤ 0 for all i 6= j;
such matrices are called M-matrices (see, e.g., Neumaier [302]). So, it is
also reasonable to check whether a given matrix is an M-matrix.

Since even unconstrained optimization problems are difficult to solve, con-
strained optimization problems are often even more difficult. One class of
constrained optimization problems for which reasonable algorithms exist
is a class of linear complementarity problems (see, e.g., Murty [296]), i.e.,
problem of finding a solution to the system of equations xi −

∑
aijyj = bi

for given bi and aij under the conditions that for every i, both values xi

and yi are non-negative and one of them is equal to 0. This algorithm
is useful, e.g., for solving linear programming problems (which can be re-
formulated in this form). It is known that this problem is guaranteed to
have exactly one solution for all bi if and only if all the principal minors of
the matrix aij are positive; such matrices were introduced by Fiedler and
Pták [106] under the name of P-matrices. Thus, we get another “checking”
problem: check whether a given matrix is a P-matrix.

Summarizing: practically important “checking” problems. Let us sum-
marize the important “checking” problems that we have described so far: given
a matrix, check whether this matrix is: regular, stable, semi-stable, Schur
stable, Schur semi-stable, positive semi-definite, positive definite, nonnegative
invertible, an M-matrix, or a P-matrix. These are the problems whose compu-
tational complexity and feasibility we will analyze in this chapter.
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We will show that for numerical matrices, almost all these problems are feasible,
while for interval matrices, almost all these problems are NP-hard. For such
NP-hard problems, we also describe finitely verifiable necessary and sufficient
conditions that help in solving these problems for small n (but whose worst-
case checking time grows exponentially with n). For some of these problems, we
also describe feasibly verifiable sufficient conditions that may help in practical
applications.

A comment about eigenvalues. Most of the matrix properties in which we
are interested are invariant with respect to arbitrary linear change of variables
xi. Therefore, they can be re-formulated in terms of the characteristics of the
matrix that are invariant with respect to such transformations. Since every
matrix can be represented in a standard (Jordan) form, that is determined
only by its eigenvalues and their multiplicity, we can, therefore, re-formulate
the desired properties in terms of eigenvalues. We have already done that for
stability properties; other properties can also be re-formulated in this form:
e.g., regularity means that there is no vector xi for which

∑
aijxj = 0, i.e.,

that 0 is not an eigenvalue.

In view of this importance of eigenvalue-related properties of matrices, we will
also analyze the computational complexity and feasibility of computing eigen-
values and of checking whether all eigenvalues of a given matrix satisfy a certain
property.

Let us now summarize definitions of the matrix properties in which we are
interested:
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21.3. For numerical matrices, almost all “check-
ing” problems are feasible

Definition 21.1. An n× n matrix A with elements aij is called:

regular if this matrix has an inverse;

stable (or Hurwitz stable) if Reλ < 0 for all its eigenvalues λ;

semi-stable (or Hurwitz semi-stable) if Reλ ≤ 0 for all its eigenvalues λ;

Schur stable if |λ| < 1 for all its eigenvalues λ;

Schur semi-stable if |λ| ≤ 1 for all its eigenvalues λ;

positive semi-definite if
∑

aij · xi · xj ≥ 0 for all ~x = (x1, . . . , xn);

positive definite if
∑

aij ·xi·xj > 0 for all ~x = (x1, . . . , xn) 6= ~0 = (0, . . . , 0);

nonnegative invertible if there exists an inverse matrix mij , and all the
elements of this inverse matrix are non-negative;

an M-matrix if it is nonnegative invertible and aij ≤ 0 for all i 6= j;

a P-matrix if all its principal minors (i.e., determinants of square subma-
trices formed from rows and columns with the same indices) are positive.

How complicated is it to check these properties?

For numerical matrices, there exist a polynomial-time algorithm for computing
its eigenvalues with an arbitrary accuracy (see, e.g., Schrijver [381], Cormen
[75]); therefore, we can check, in polynomial time, whether a matrix is stable,
semi-stable, Schur stable, or Schur semi-stable. Several other matrix properties
can be easily reformulated in terms of eigenvalues:

A matrix is regular if an only if 0 is not its eigenvalue.

A matrix aij is positive semi-definite if all eigenvalues of its symmetric part
asym

ij = (1/2) · (aij + aji) are non-negative.

A matrix aij is positive definite if all eigenvalues of its symmetric part are
positive.
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Therefore, the corresponding three matrix properties are also easy to check.

Computing the inverse matrix can be done, e.g., by (modified) Gaussian elim-
ination, in polynomial time (see, e.g., Edmonds [97], Schrijver [381], Cormen
[75]). After computing this inverse matrix, we can check whether each of the
resulting elements is non-negative. Thus, checking whether a given numeri-
cal matrix is nonnegative invertible is also a feasible problem. Thus, checking
whether a given matrix is an M-matrix is also feasible.

The only remaining property is the property of being a P-matrix.

A symmetric matrix A is a P-matrix if and only if it is positive defi-
nite (Wilkinson [428]), hence for symmetric matrices, P-property can be
checked in polynomial time.

For generic matrices, this problem was shown by Coxson [76] to be NP-
hard (the proof will be given in the Proofs section).

Summarizing, we arrive at the following result:

Theorem 21.1.

There exist polynomial-time algorithms that check, given a numerical ma-
trix A with rational elements aij , whether this matrix is regular, stable,
semi-stable, Schur stable, Schur semi-stable, positive semi-definite, positive
definite, nonnegative invertible, or an M-matrix.

There exists a polynomial-time algorithm that checks, given a symmetric
matrix aij , where this matrix is a P-matrix.

The problem of checking whether an arbitrary matrix aij with rational
elements is a P-matrix is NP-hard.

In the previous section, we promised to try to describe, for all NP-hard matrix
“checking” problems, how to check the corresponding properties for small n.
For numerical matrices, the only such problem is whether a given matrix is in-
deed a P-matrix. By definition, P-property means that all principal minors are
positive. Since there exist feasible algorithms for computing the determinant
of a numerical matrix, we can check this property as follows: For every non-
empty set S ⊆ {1, 2, . . . , n}, we take a matrix formed by the elements aij with
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i, j ∈ S, and check whether the determinant of this matrix is indeed positive.
Since there are 2n−1 possible non-empty subsets, we thus need to check 2n−1
submatrices.

Comment. For other examples of NP-hard matrix problems, see, e.g., Brimkov
et al. [58] and references therein.

21.4. For interval matrices, almost all “check-
ing” problems are NP-hard

Let us start with the necessary definitions (the first definition was already given
in Chapter 11):

Definition 21.2.

A collection of intervals aij = [aij , aij ] is called an interval matrix. We

will denote interval matrices by bold capital letters, e.g., A = [A,A].

We say that a numerical matrix A with elements aij belongs to an interval
matrix A with elements aij (and denote it by A ∈ A) if aij ∈ aij for all i
and j.

We say that an interval matrix A satisfies a property P if all (numerical)
matrices A that belong to A satisfy this property.

For example, an interval matrix A is called regular if all matrices A ∈ A are
regular (i.e., non-singular); an interval matrix A is called stable if all matrices
A ∈ A are stable, etc.

Terminological comment. Non-regular numerical matrices are also called sin-
gular. Similarly, an interval matrix that is not regular is also sometimes called
a singular interval matrix. To avoid potential confusion, we want to mention
that although the resulting definition of a singular interval matrix seems quite
natural, it does not follow the general pattern established by Definition 21.2:
namely, contrary to Definition 21.2, a singular interval matrix is defined not as
an interval matrix for which all numerical matrices A ∈ A are singular, but as
an interval matrix for which some numerical matrix A ∈ A is singular.
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Comment. Some interval algorithms originate from measurement applications,
where an interval x is of the form [x̃−∆, x̃ + ∆], where x̃ is the measurement
result and ∆ is the upper bound on the measurement errors. To apply these
algorithms to a general interval x = [x, x], we must represent it in this form.
This is easily done by taking the center x̃ = (1/2) · (x + x) and the radius
∆ = (1/2) · (x− x). Similarly, for an arbitrary interval matrix A = [A,A], it is
often useful to represent it in the form [Ã−∆, Ã + ∆], where:

Ã = (1/2) · (A + A) is the center matrix, with elements
ãij = (1/2) · (aij + aij); and

∆ = (1/2) · (A−A) is the radius matrix, with elements
∆ij = (1/2) · (aij − aij).

Theorem 21.2.

For each of the following six properties, the problem of checking whether
a given interval matrix satisfies the property is NP-hard: regularity, sta-
bility, semi-stability, positive semi-definiteness, positive definiteness, and
P-matrix property.

There exist polynomial-time algorithms that check, given a interval matrix
A, whether A is nonnegative invertible, and whether A is an M-matrix.

Comments. We will see from the proof that all six NP-hardness results hold
even if we restrict ourselves to symmetric interval matrices (i.e., matrices for
which aij = aji for all i and j), and to matrices formed by narrow intervals,
i.e., matrices for which, for a given rational number δ > 0, aij − aij ≤ δ for all
i and j.

Historical comments.

The result about NP-hardness of regularity of interval matrices was pub-
lished by Poljak and Rohn in a report form [327] in 1988 and in a journal
form [328] in 1993. This result was proved independently (and also pub-
lished in 1993) by Nemirovskii [299].

NP-hardness of checking stability was proven in Nemirovskii [299] for gen-
eral (not necessarily symmetric) interval matrices and in Rohn [350] for
symmetric ones.
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NP-hardness of checking positive semi-definiteness was proven by Ne-
mirovskii [299].

NP-hardness of checking positive definiteness was proven by Rohn [350].

NP-hardness of checking P-property was proven in Rohn and Rex [360];

Feasibility of checking nonnegative invertibility and M-matrix property
easily follows from a result of Kuttler [241].

In some practical situations, we know that the (unknown) matrix aij is sym-
metric. In such situations, we may want to check a property not for all matrices
A ∈ A, but only for all symmetric ones:

Definition 21.3. We say that a symmetric interval matrix A s-satisfies a
property P if all symmetric numerical matrices A that belong to A satisfy this
property.

Theorem 21.3.

For each of the following eight properties P , the problem of checking
whether a given interval matrix s-satisfies the property is NP-hard: regu-
larity, stability, semi-stability, Schur stability, Schur semi-stability, posi-
tive semi-definiteness, positive definiteness, and P-matrix property.

There exist polynomial-time algorithms that check, given an interval ma-
trix A, whether A s-satisfies the nonnegative invertibility property, and
whether A s-satisfies the M-matrix property.

Historical comment. NP-hardness of checking s-Schur stability was proven in
Rohn [350].

The results on computational complexity of “checking” problems can be repre-
sented by the following table:
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Numerical Numerical Interval Interval
matrices matrices matrices matrices
(general) (symmetric) (general) (symmetric)

Regular Polynomial Polynomial NP-hard NP-hard
time time

Stable Polynomial Polynomial NP-hard NP-hard
time time

Semi-stable Polynomial Polynomial NP-hard NP-hard
time time

Schur stable Polynomial Polynomial ? NP-hard
time time

Schur Polynomial Polynomial ? NP-hard
semi-stable time time
Positive Polynomial Polynomial NP-hard NP-hard
semi-definite time time
Positive Polynomial Polynomial NP-hard NP-hard
definite time time
Nonnegative Polynomial Polynomial Polynomial Polynomial
invertible time time time time
M-matrix Polynomial Polynomial Polynomial Polynomial

time time time time
P-matrix NP-hard Polynomial NP-hard NP-hard

time

21.5. How to Check Properties of Interval Ma-
trices of Small Size

Let us describe, for all NP-hard matrix “checking” problems, how to check the
corresponding properties for small n.

21.5.1. Regularity

In view of the NP–hardness result of Theorem 21.2, no easily verifiable neces-
sary and sufficient regularity conditions may be expected to exist. Indeed, 13
such conditions are proved in Theorem 5.1 in Rohn [346], all of which exhibit
exponential behavior. Probably the most easily implementable criterion is that
one by Baumann [20] (Theorem 21.4 below) which employs matrices A(y,z), de-
fined for an n× n interval matrix A = [Ã−∆, Ã + ∆] = [A, A] and for vectors
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y = (y1, . . . , yn) ∈ {−1, 1}n and z = (z1, . . . , zn) ∈ {−1, 1}n by the formula

a
(y,z)
ij = ãij −∆ij · yi · zj (21.11)

It is easy to check that

a
(y,z)
ij =

{
aij if yi · zj = −1,
aij if yi · zj = 1 (21.12)

for each i, j, hence A(y,z) ∈ A. Baumann’s criterion employs a finite set of test
matrices Ayz for y, z ∈ {−1, 1}n of cardinality at most 22n−1. (We have 2n

possible vectors y ∈ {−1, 1}n and 2n possible vectors z ∈ {−1, 1}n, so, totally,
we have 2n · 2n = 22n pairs, but due to A(−y,−z) = A(y,z), it is sufficient to
check only half of these pairs.)

Theorem 21.4. An interval matrix A is regular if and only if determinants
of all the matrices A(y,z), y, z ∈ {−1, 1}n are nonzero and of the same sign.

In view of the exponentiality inherent in the necessary and sufficient conditions,
in practical computations we must resort to verifiable sufficient conditions (that
are not necessary conditions). These conditions are usually formulated in terms
of the spectral radius %(A), minimal and maximal singular values σmin(A) and
σmax(A), and similar characteristics of a matrix A. The most useful sufficient
conditions are given by the following theorem (in this theorem, |A| is a matrix
with elements |a|ij = |aij |, and A ≥ 0 means that all elements aij of the matrix
A are non-negative):

Theorem 21.5. Each of the following two conditions implies regularity of the
interval matrix [Ã−∆, Ã + ∆]:

(i) %(|Ã−1|∆) < 1,

(ii) σmax(∆) < σmin(Ã).

Each of the following two conditions implies that the interval matrix
[Ã−∆, Ã + ∆] is not regular:

(iii) maxj(∆|Ã−1|)jj ≥ 1,

(iv) (∆− |Ã|)−1 ≥ 0.
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Historical comment. The condition (i), which is most frequently used, is due
to Beeck [24]; an interval matrix satisfying this condition (i) is called strongly
regular (Neumaier [302]). The second condition is due to Rump [369]. The
condition (iii) is proved in Rohn [346], and (iv) comes from Rohn [358].

21.5.2. Stability

The following theorem establishes a link with another matrix property:

Theorem 21.6. (Rohn [349]) A symmetric interval matrix A = [A, A] is stable
if and only if the symmetric interval matrix −A = [−A,−A] is positive definite.

Consider now the matrices A(y,z) defined by the formula (21.12) with y = −z,
i.e. the matrices for which

a
(−z,z)
ij =

{
aij if zi · zj = 1,
aij if zi · zj = −1

(i, j = 1, . . . , n). Each of these matrices A(−z,z) is symmetric for a symmetric A.

Theorem 21.7. A symmetric interval matrix A is stable if and only if each
of the matrices A(−z,z), z ∈ {−1, 1}n is stable.

Historical comment. Each matrix A(−z,z), z ∈ {−1, 1}n is a so-called vertex
matrix, i.e., a matrix for which for all i and j, the corresponding value a

(−z,z)
ij

is either equal to aij , or equal to aij . The first attempt to use vertex matrices
for characterization of stability was made by BiaÃlas [44] who conjectured that
a general interval matrix A is stable if and only if all the vertex matrices are
stable. His conjecture, however, was shown to be erroneous by Karl, Greschak
and Verghese [167] and by Barmish and Hollot [18], see also Barmish, Fu, and
Saleh [17]. Soh proved later [399] that for symmetric interval matrices this
result is true: namely, a symmetric interval matrix is stable if and only if all
the 2n(n+1)/2 symmetric vertex matrices are stable. Theorem 21.7, where the
number of vertex matrices to be tested is reduced to 2n−1 (since A(−z,z) =
A(z,−z)), was proven (in a slightly different form) by Hertz [148] and by Wang
and Michel [423], and in the present form by Rohn [349]. A branch-and-bound
algorithm for checking stability of symmetric interval matrices, that is based
on Theorem 21.7, was given in Rohn [360].

For practical purposes we may use the following sufficient condition that is for-
mulated in terms of the largest eigenvalue λmax of a related symmetric matrix;
this condition is valid both for symmetric and non-symmetric interval matrices
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(Rohn [349], Delgado-Romero et al. [87]). It is formulated in terms of a sym-
metrization Asym of an interval matrix A that is defined as an interval matrix
with elements

asym
ij =

[
1
2
· (aij + aji),

1
2
· (aij + aji)

]
. (21.13)

For the symmetrization, the center matrix Ãsym and the radius matrix ∆sym

are defined, correspondingly, by the formulas

ãsym
ij =

1
2
· (ãij + ãji);

∆sym
ij =

1
2
· (∆ij + ∆ji).

Theorem 21.8. An interval matrix [Ã−∆, Ã + ∆] is stable if

λmax(Ãsym) + %(∆sym) < 0. (21.14)

21.5.3. Positive definiteness

Positive definiteness of interval matrices is closely related to regularity:

Theorem 21.9. (Rohn [349]) An interval matrix A is positive definite if and
only if its symmetrization Asym is regular and contains at least one positive
definite matrix.

It is known that a numerical matrix A is positive definite if and only if its
symmetrization Asym is positive definite. Theorem 21.9 now implies that the
same relationship holds for interval matrices:

Theorem 21.10. An interval matrix A is positive definite if and only if its
symmetrization Asym is positive definite.

A finite characterization of positive definiteness of interval matrices was first
given by Shi and Gao [394] who proved that a symmetric interval matrix A =
[A,A] is positive definite if and only if each symmetric vertex matrix A ∈ A
of the form aii = aii, aij ∈ {aij , aij} for i 6= j, is positive definite. There are
2n(n−1)/2 such matrices. In [349] it was shown that the number of test matrices
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may be reduced down to 2n−1 if we employ instead the set of matrices A(z,z)

defined for z ∈ {−1, 1}n by

a
(z,z)
ij =

{
aij if zizj = −1,
aij if zizj = 1 (21.15)

(i, j = 1, . . . , n). These are exactly the matrices A(y,z) (see (21.12)) used in the
Baumann regularity criterion (Theorem 21.4), with y = z. Each matrix A(z,z)

is symmetric if A is symmetric.

Theorem 21.11. An interval matrix A is positive definite if and only if each
of the matrices A(z,z), z ∈ {−1, 1}n is positive definite.

In practical computations we may use the following sufficient condition (where
λmin denotes the minimal eigenvalue of a symmetric matrix and % is the spectral
radius):

Theorem 21.12. (Rohn [349]) An interval matrix A = [Ã − ∆, Ã + ∆] is
positive definite if %(∆sym) < λmin(Ãsym).

21.5.4. P-property

The following theorem is due to BiaÃlas and Garloff [45], reformulation using
matrices A(z,z) comes from Rohn and Rex [360].

Theorem 21.13. An interval matrix A is a P-matrix if and only if each matrix
A(z,z), z ∈ {−1, 1}n is a P-matrix.

For symmetric matrices we also have the following useful reduction:

Theorem 21.14. A symmetric interval matrix A is a P-matrix if and only if
it is positive definite.

21.6. Related computational problems are also
NP-hard

If an interval matrix does not satisfy a certain property, it is desirable to cal-
culate how close it is to matrices that do. In this section, we will show that the
corresponding computational problems are also NP-hard.
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21.6.1. Problems related to regularity I: Computing de-
terminants

In linear algebra, several criteria are known that determine when a given (nu-
merical) matrix is regular. The most well known criterion is that a matrix
A is regular if and only if its determinant det A is not equal to 0. Similarly,
an interval matrix A is regular if and only if the range of the determinant
function detA = {detA|A ∈ A} does not contain 0. Thus, one way to check
regularity of an interval matrix is to compute the endpoints of this interval
detA = [det(A),det(A)] and to check whether 0 is indeed located between
these endpoints. It turns out that the problem of computing these endpoints
is NP-hard:

Theorem 21.15. The problem of computing the endpoints det(A) and det(A)
of the determinant interval detA of a given rational-valued interval matrix A
is NP-hard.

For small n, we can use the following result to compute these endpoints:

Theorem 21.16. (Rohn [343]) For every interval matrix A = [A,A], each of
the endpoints det(A) and det(A) of the determinant interval detA is attained
at one of the vertex matrices.

Thus, to find the desired endpoints, it is sufficient to compute detA for all 2n2

vertex matrices A, for which, for every i and j, aij = aij or aij = aij .

21.6.2. Problems related to regularity II: Computing
eigenvalues

We have already mentioned that most checking problems can be re-formulated
in terms of eigenvalues; in particular, a numerical matrix is non-regular if and
only if 0 is its eigenvalue, and an interval matrix is non-regular if and only if 0
belongs to its set of possible eigenvalues. Therefore, from the fact that checking
regularity of an interval matrix is NP-hard, it follows that:

Theorem 21.17. The problem of checking, for a given interval matrix A and
a given rational number λ, whether λ is an eigenvalue of one of the matrices
A ∈ A, is NP-hard.
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Comment. It is interesting that, in contrast to eigenvalues, rational eigenvectors
can be checked in polynomial time (Rohn [347]).

In view of the relation between regularity and eigenvalues, an alternative way
to check whether an interval matrix is regular or not is to find its possible
eigenvalues. Let us show that this problem is also NP-hard.

For an interval matrix A define

λ(A) = max{Reλ|λ is an eigenvalue of some A ∈ A}.
We will show that computing λ(A) approximately with relative error less than
1 is NP-hard:

Theorem 21.18. Suppose there exists a polynomial-time algorithm which for
each symmetric interval matrix A computes a rational number λ̃(A) for which

∣∣∣∣∣
λ̃(A)− λ(A)

λ(A)

∣∣∣∣∣ < 1

if λ(A) 6= 0 and λ̃(A) ≥ 0 otherwise. Then P=NP.

In general, an eigenvalue can be a complex number. Let us show that the
problem of computing eigenvalues is NP-hard even if we restrict ourselves to
symmetric numerical matrices, for which all eigenvalues are real numbers. Be-
fore formulating the result, let us show that the corresponding set of possible
values is indeed an interval:

Theorem 21.19. For a symmetric interval matrix A, the set

λmax(A) = {λmax(A)|A symmetric, A ∈ A}
is a (finite and closed) interval.

It is not only NP-hard to compute the endpoints of this interval, but it is also
NP-hard to check whether a given interval (a, a) is indeed an enclosure for the
interval λmax(A):

Theorem 21.20. The following problem is NP-hard: given a symmetric in-
terval matrix A and an interval (a, a), check whether λmax(A) ⊂ (a, a).

How can we actually compute the endpoints of the interval λmax(A), at least
for small n? By definition, the desired interval is a set of all values λmax(A)
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for all symmetric matrices A ∈ A. Some simplification comes from the fact
that to compute theses endpoints, it is not necessary to consider all symmetric
matrices A ∈ A, only so-called edge matrices:

Definition 21.4. Let A = [A, A] be an interval matrix. A numerical matrix
A ∈ A is called its edge matrix if for all pairs (i, j) except for maybe one pair,
either aij = aij or aij = aij .

This name comes from the following geometric representation: Every numerical
matrix can be represented by a point in n2-dimensional space; an interval ma-
trix A is then represented as a box (parallelepiped) in Rn2

, and “edge matrices”
form edges of this box.

Theorem 21.21. (Rohn [346]) If a real number λ is an eigenvalue of some
A ∈ A, then it is also an eigenvalue of one of A’s edge matrices.

This result is not always true for complex eigenvalues: there exists an interval
matrix A for which a complex eigenvalue λ of one of the matrices A ∈ A is
different from all eigenvalues of all its edge matrices (Barmish, Fu, and Saleh
[17]); an appropriate modification of the “edge theorem” is, however, true for
complex eignevalues as well (Hollot and Bartlett in [152]).

21.6.3. Radius of non-singularity (and subordinate ma-
trix norms)

We can also describe a slightly different computational problem: assuming that
a given numerical matrix A is regular, how accurately do we need to describe
it so that the resulting matrix will still be guaranteed to be regular? In other
words, for each “direction”, how wide, in this “direction”, can an interval matrix
centered in A be that it will still be regular?

Formally, given an n×n matrix A and a nonnegative “directional” n×n matrix
∆, the radius of non-singularity is defined by

d(A,∆) = inf{ε ≥ 0|[A−ε∆, A+ε∆] is not a regular interval matrix} (21.16)

(d(A, ∆) = ∞ if no such ε exists; if d(A, ∆) < ∞, then the infimum is attained
as minimum). This notion was, to the best of our knowledge, first formulated
by Neumaier [301] and was since studied by Poljak and Rohn [327, 328], Dem-
mel [88], Rohn [347] and Rump [371], [370] (Demmel and Rump use the term
“componentwise distance to the nearest singular matrix”).
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This problem is NP-hard even for the special case when all the values of ∆ij

are equal to 1, i.e., when ∆ coincides with the matrix E all of whose elements
are equal to 1. We will denote the radius d(A,E) by d(A). This radius d(A)
is always finite and d(A) = 0 if and only if A is singular. For regular matrices,
the radius d(A) can be explicitly described in terms of one of the known matrix
norms. To describe this result, let us recall how matrix norms are defined.

Given two vector-space norms ‖x‖α in Rn and ‖x‖β in Rm, a subordinate matrix
norm in Rm×n is defined as

‖A‖α,β = max
‖x‖α=1

‖Ax‖β

(see Golub and van Loan [129] or Higham [150]). ‖A‖α,β is a matrix norm, i.e.,
it possesses the three usual properties:

1) ‖A‖α,β ≥ 0 and ‖A‖α,β = 0 if and only if A = 0,

2) ‖A + B‖α,β ≤ ‖A‖α,β + ‖B‖α,β ,

3) ‖λA‖α,β = |λ| · ‖A‖α,β .

It is worth mentioning, however, that generally, such a norm does not satisfy
the property ‖AB‖α,β ≤ ‖A‖α,β‖B‖α,β (it does satisfy this property, e.g., if
α = β).

By combining the three most frequently used norms

‖x‖1 =
∑

i

|xi|, ‖x‖2 =
√∑

i

x2
i , ‖x‖∞ = max

i
|xi|,

we get nine subordinate norms, including the three usual norms

‖A‖1 = ‖A‖1,1 = max
j

∑

i

|aij |,

‖A‖2 = ‖A‖2,2 =
√

λmax(AT A),

‖A‖∞ = ‖A‖∞,∞ = max
i

∑

j

|aij |.

It turns out that the radius d(A) is related to one of these nine norms, namely,
to the norm

‖A‖∞,1 = max
‖x‖∞=1

‖Ax‖1.
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Theorem 21.22. (Poljak et al. [328]) For each non-singular matrix A,

d(A) =
1

‖A−1‖∞,1
. (21.17)

This norm has an exceptional behavior in the sense that it is much more difficult
to compute than the other ones:

Theorem 21.23. Computing ‖A‖∞,1 is NP-hard.

Comment. In sharp contrast to this result, the norm ‖A‖1,∞ (with indices
swapped) can be computed in polynomial time (see Higham [150]):

‖A‖1,∞ = max
i,j

|aij | (21.18)

As an immediate consequence of Theorem 21.23, we obtain the following result
Poljak et al. [328]:

Theorem 21.24. Computing the radius of non-singularity d(A, ∆) is NP-hard
(even in the special case ∆ = E).

Not only computing this norm, but even computing an approximation to it or
checking whether a given interval is an enclosure for the norm are NP-hard
problems:

Theorem 21.25.

Checking whether ‖A‖∞,1 ≥ 1 for a given matrix A is NP-hard.

Checking whether d(A) ≤ 1 for a given matrix A is NP-hard.
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Theorem 21.26.

For every δ > 0, computing a rational number that is δ-close to ‖A‖∞,1 is
NP-hard.

Suppose there exists a polynomial-time algorithm which for each nonneg-
ative symmetric positive definite rational matrix A computes a rational
approximation d̃(A) to d(A) satisfying

∣∣∣∣∣
d̃(A)− d(A)

d(A)

∣∣∣∣∣ ≤
1

4n2
,

where n is the size of A. Then P=NP.

How can we actually compute the radius of non-singularity for small n? A
general formula for d(A, ∆) was given in Poljak and Rohn [328]:

d(A, ∆) =
1

max{%0(A−1T1∆T2)||T1| = |T2| = I} , (21.19)

where I is the unit matrix, %0 denotes the real spectral radius defined as %0(A) =
max{|λ||λ is a real eigenvalue of A} (and as %0(A) = 0 if a matrix A has no real
eigenvalues). A matrix T satisfying |T | = I is obviously a diagonal matrix with
±1 entries on the diagonal. There are 2n such matrices, hence the formula
(21.19) enables us, for small n, to compute the radius of non-singularity in
finitely many steps.

For ∆ = E, we can compute the radius d(A) = d(A, E) as follows:

first, we compute the matrix norm of a matrix A by trying all 2n vectors
z ∈ {−1, 1}n and using the following theorem;

then, we use the formula (21.17) that relates the desired radius to this
matrix norm.

Theorem 21.27. For each A ∈ Rm×n we have

‖A‖∞,1 = max
z∈{−1,1}n

‖Az‖1. (21.20)

If A is symmetric positive semidefinite, then

‖A‖∞,1 = max
z∈{−1,1}n

zT Az. (21.21)
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The above method can be used for small n, when it is still computationally
feasible to analyze all 2n possible vectors z ∈ {−1, 1}n. For larger n, this is
not possible; for such n, bounds on the radius of non-singularity can be derived
from sufficient regularity or singularity conditions. E.g., from Theorem 21.5,
we conclude that

1
%(|A−1|∆)

≤ d(A, ∆) ≤ 1
maxj(∆|A−1|)jj

.

Using a more sophisticated reasoning, Rump [371], [370] recently proved a
“symmetric” estimation

1
%(|A−1|∆)

≤ d(A, ∆) ≤ 6n

%(|A−1|∆)
.

Comment. Related to the radius of non-singularity is the structured singular
value introduced by Doyle [96]. The NP-hardness of its computation was proved
by Braatz, Young, Doyle, and Morari [55] and independently by Coxson and
DeMarco [78, 79].

21.6.4. Radius of stability

Similarly to the radius of non-singularity d(A,∆), we may define radius of
stability as

s(A, ∆) = inf{ε ≥ 0|[A− ε∆, A + ε∆] is unstable}.

Hence, [A−ε∆, A+ε∆] is stable if 0 ≤ ε < s(A,∆) and unstable if ε ≥ s(A, ∆).
These two radii are related:

Theorem 21.28. If A is a symmetric stable matrix, and ∆ is a symmetric
matrix, then s(A, ∆) = d(A,∆).

Hence, we may apply the results of the previous subsection to the radius of
stability. In particular: for a symmetric stable matrix A we have

s(A,E) =
1

‖A−1‖∞,1
,

and computing s(A, E) is NP-hard (even approximately).
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PROPERTIES OF INTERVAL
MATRICES II: PROOFS AND

AUXILIARY RESULTS

In this chapter, we prove the results about computational complexity and fea-
sibility of properties of interval matrices that were formulated in the previous
chapter. Along the way, we also describe some important auxiliary results.

22.1. Notations

In the proofs, we will use the following notations.

For two matrices A,B of the same size, inequalities like A ≤ B or A < B
are understood componentwise. A is called nonnegative if A ≥ 0 and
symmetric if AT = A (AT is the transpose of A). The absolute value of
a matrix A = (aij) is defined by |A| = (|aij |); properties like |A + B| ≤
|A|+ |B| or |AB| ≤ |A||B| are easy to prove.

The same notations also apply to vectors that are treated as one-column
matrices. In particular, for vectors a = (ai) and b = (bi), aT b =

∑
i aibi is

the scalar product, whereas abT is the matrix (aibj).

λmin(A), λmax(A) denote, correspondingly, the smallest and the largest
eigenvalue of a symmetric matrix A. As is well known, λmin(A) =
min‖x‖2=1 xT Ax and λmax(A) = max‖x‖2=1 xT Ax.

σmin(A), σmax(A) denote the minimal and maximal singular value of a
matrix A, and %(A) is the spectral radius of A.

I denotes the unit matrix, ej is the jth column of I and e = (1, . . . , 1)T is
the vector of all ones, E = eeT is the matrix of all ones.
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22.2. The norm ‖A‖∞,1

22.2.1. Properties of the norm

Proof of Theorem 21.27. Many results will use properties of the norm
‖A‖∞,1. So, let us start the proofs with proving Theorem 21.27 that provides
an explicitly computable (although not feasibly computable) expression for this
matrix norm: ‖A‖∞,1 = maxz ‖Az‖1, where max is taken over all z ∈ {−1, 1}n

(i.e., over all ±1-vectors), and ‖A‖∞,1 = maxz zT Az for symmetric positive
semidefinite matrices A.

If ‖x‖∞ = 1, then x belongs to the unit cube {x| − e ≤ x ≤ e}, which is a
convex polyhedron, therefore x can be expressed as a convex combination of
its vertices which are exactly the points in {−1, 1}n:

x =
∑

z∈{−1,1}n

λzz, (22.1)

where λz ≥ 0 for each z ∈ {−1, 1}n and
∑

z∈{−1,1}n λz = 1. From (22.1), we
get

‖Ax‖1 = ‖
∑

z∈{−1,1}n

λzAz‖1 ≤ max
z∈{−1,1}n

‖Az‖1,

hence
max

‖x‖∞=1
‖Ax‖1 ≤ max

z∈{−1,1}n
‖Az‖1 ≤ max

‖x‖∞=1
‖Ax‖1

(since ‖z‖∞ = 1 for each z ∈ {−1, 1}n) and (21.20) follows.

Let now A be symmetric positive semidefinite and let z ∈ {−1, 1}n. Define
y ∈ {−1, 1}n by yj = 1 if (Az)j ≥ 0 and yj = −1 if (Az)j < 0 (j = 1, . . . , n),
then ‖Az‖1 = yT Az. Since A is symmetric positive semidefinite, we have (y −
z)T A(y − z) ≥ 0, which implies

2yT Az ≤ yT Ay + zT Az ≤ 2 max
z∈{−1,1}n

zT Az,

hence
‖Az‖1 = yT Az ≤ max

z∈{−1,1}n
zT Az

and
‖A‖∞,1 = max

z∈{−1,1}n
‖Az‖1 ≤ max

z∈{−1,1}n
zT Az. (22.2)
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Conversely, for each z ∈ {−1, 1}n we have

zT Az ≤ |z|T · |Az| = ‖Az‖1 ≤ max
z∈Z

‖Az‖1 = ‖A‖∞,1,

hence
max

z∈{−1,1}n
zT Az ≤ ‖A‖∞,1,

which together with (22.2) gives (21.21). The theorem is proven.

22.2.2. Computing ‖A‖∞,1 is NP-hard

In order to prove the NP-hardness for a possibly narrow class of matrices, we
introduce the following concept (first formulated in Rohn [350]):

Definition 22.1. A numerical symmetric n× n matrix A = (aij) is called an
MC-matrix if it is of the form

aij

{
= n if i = j
∈ {0,−1} if i 6= j

(i, j = 1, . . . , n).

Comment. MC comes from “maximum cut” (see the proof of Theorem 22.2
below)

Since an MC-matrix is symmetric by definition, there are altogether 2n(n−1)/2

MC-matrices of size n. The basic properties of MC-matrices are summed up in
the following proposition:

Theorem 22.1. An MC-matrix A ∈ Rn×n is symmetric positive definite,
nonnegative invertible and satisfies

‖A‖∞,1 = max
z∈{−1,1}n

zT Az, (22.3)

n ≤ ‖A‖∞,1 ≤ n(2n− 1) (22.4)

and
‖A−1‖1 ≤ 1.
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Proof. A is symmetric by definition; it is positive definite since for x 6= 0,

xT Ax ≥ n‖x‖22 −
∑

i 6=j

|xixj | = (n + 1)‖x‖22 − ‖x‖21 ≥ ‖x‖22 > 0

(‖x‖1 ≤
√

n‖x‖2 by Cauchy-Schwartz inequality; see, e.g., Golub and van Loan
[129]). Hence (22.3) holds by Theorem 21.27. Since |aij | ≤ 1 for i 6= j, for each
z ∈ {−1, 1}n and i ∈ {1, . . . , n} we have

zi(Az)i = n +
∑

j 6=i

aijzizj ∈ [1, 2n− 1],

hence
n ≤ zT Az ≤ n(2n− 1)

for each z ∈ {−1, 1}n, and (22.3) implies (22.4). By definition, A is of the form

A = nI −A0 = n(I − 1
n

A0)

where A0 = nI −A ≥ 0 and ‖ 1
nA0‖1 ≤ n−1

n < 1, hence

A−1 =
1
n

∞∑
0

(
1
n

A0

)j

≥ 0

and
‖A−1‖1 ≤ 1

n− ‖A0‖1 ≤ 1.

The theorem is proven.

The following basic result is due to Poljak and Rohn [328] (given there in a
slightly different formulation without using the concept of an MC-matrix).

Theorem 22.2. The following decision problem is NP-complete:
Instance. An MC-matrix A and a positive integer `.
Question. Is zT Az ≥ ` for some z ∈ {−1, 1}n?

Proof. Let n be a positive integer, and let (V, E) be an arbitrary graph whose
vertices are integers 1 through n; in this proof, we will denote its set of vertices
by V (i.e., take V = {1, . . . , n}) and its set of edges by E . Let A = (aij) be
given by aij = n if i = j, aij = −1 if i 6= j and the nodes i, j are connected by
an edge (i.e., if (i, j) ∈ E), and aij = 0 if i 6= j and i, j are not connected. Then
A is an MC-matrix. For an arbitrary set S ⊆ V, define the cut c(S) as the
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number of edges in E whose one endpoint belongs to the set S and the other
one does not belong to this set. We will prove that

‖A‖∞,1 = 4 max
S⊆V

c(S)− 2Card(E) + n2 (22.5)

holds. Given a S ⊆ V, define a z ∈ {−1, 1}n by

zi =
{

1 if i ∈ S
−1 if i /∈ S.

Then we have

zT Az =
∑

i,j

aijzizj =
∑

i 6=j

aijzizj + n2

=
∑

i 6=j

[−1
2
aij(zi − zj)2 + aij ] + n2

= −1
2

∑
zizj=−1

aij(zi − zj)2 +
∑

i 6=j

aij + n2

= −1
2

∑
zizj=−1

4aij +
∑

i 6=j

aij + n2,

hence
zT Az = 4c(S)− 2Card(E) + n2. (22.6)

Conversely, given a z ∈ {−1, 1}n, then for S = {i ∈ V|zi = 1} the same
reasoning implies (22.6). Taking maximum on both sides of (22.6), we obtain
(22.5) in view of (22.3).

Hence, given a positive integer L, we have

c(S) ≥ L (22.7)

for some S ⊆ V if and only if

zT Az ≥ 4L− 2Card(E) + n2

for some z ∈ {−1, 1}n. Since the decision problem (22.7) is NP-complete
(“simple max-cut problem”, Garey, Johnson and Stockmeyer [121]), we obtain
that the decision problem

zT Az ≥ ` (22.8)

(` positive integer) is NP-hard. It is NP-complete since for a guessed solution
z ∈ {−1, 1}n the validity of (22.8) can be checked in polynomial time. The
theorem is proven.
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In this way, we have also proven that computing ‖A‖∞,1 is NP-hard for MC-
matrices, and thus, we have proven Theorem 21.23.

To facilitate formulations of some subsequent results, it is advantageous to
remove the integer parameter ` from the formulation of Theorem 22.2. This
can be done by using M-matrices instead of MC-matrices. Let us recall that
A = (aij) is called an M-matrix if aij ≤ 0 for i 6= j and A−1 ≥ 0 (a number of
equivalent formulations may be found in Berman and Plemmons [32]); hence
each MC-matrix is an M-matrix (Theorem 22.1). Since a symmetric M-matrix
is positive definite Berman and Plemmons [32], this property is not explicitly
mentioned in the following theorem:

Theorem 22.3. The following decision problem is NP-hard:
Instance. An n× n symmetric rational M -matrix A with ‖A‖1 ≤ 2n− 1.
Question. Is ‖A‖∞,1 ≥ 1?

Proof. Given an MC-matrix A and a positive integer `, the assertion

zT Az ≥ ` for some z ∈ {−1, 1}n

is equivalent to ‖A‖∞,1 ≥ ` and thereby also to
∥∥∥∥

1
`
A

∥∥∥∥
∞,1

≥ 1,

where 1
` A is a symmetric rational M-matrix with ‖1

` A‖1 ≤ ‖A‖1 ≤ 2n − 1.
Hence the decision problem of Theorem 22.2 can be reduced in polynomial
time to the current one, which is then NP-hard. The theorem is proven.

Thus, we have also proven the first statement of Theorem 21.25, that checking
whether ‖A‖∞,1 ≥ 1 for a given matrix A is NP-hard.

Finally we will show that even computing a sufficiently close approximation of
‖A‖∞,1 is NP-hard:

Theorem 22.4. Suppose there exists a polynomial-time algorithm which for
each MC-matrix A computes a rational number ν(A) satisfying

|ν(A)− ‖A‖∞,1| < 1
2
.

Then P=NP.
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Proof. If such an algorithm exists, then ‖A‖∞,1 < ν(A) + 1
2 < ‖A‖∞,1 + 1,

therefore,

‖A‖∞,1 =
⌊
ν(A) +

1
2

⌋

(since ‖A‖∞,1 is integer for an MC-matrix A, see (22.3)), hence the NP-hard
problem of Theorem 22.3 can be solved in polynomial time, implying P=NP.
The theorem is proven.

By considering matrices 2δ · A for MC-matrices A, we thus prove the first
statement of Theorem 21.26, that for every δ > 0, computing a rational number
that is δ-close to ‖A‖∞,1 is NP-hard.

22.3. Regularity

22.3.1. Checking regularity is NP-hard

The basic relationship of regularity to the previous section is provided by the
following equivalence:

Theorem 22.5. For a symmetric positive definite matrix A, the following
statements are equivalent to each other:

(i) ‖A‖∞,1 ≥ 1,

(ii) the interval matrix
[A−1 − E, A−1 + E] (22.9)

is not regular,

(iii) the interval matrix (22.9) contains a symmetric singular matrix A′ of the
form

A′ = A−1 − zzT

zT Az
(22.10)

for some z ∈ {−1, 1}n.

Proof. (i)⇒(iii): Due to Theorem 21.27, if (i) holds, then

‖A‖∞,1 = max
z∈{−1,1}n

zT Az ≥ 1,
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hence zT Az ≥ 1 for some z ∈ {−1, 1}n. Since
∣∣∣∣

zzT

zT Az

∣∣∣∣ ≤ E,

the matrix A′ defined by (22.10) belongs to [A−1 − E, A−1 + E] and satisfies

A′Az = z − z(zT Az)
zT Az

= 0,

where Az 6= 0 (A is nonsingular since it is positive definite), hence A′ is singular,
and obviously also symmetric.

(iii)⇒(ii) is obvious.

(ii)⇒(i): Let A′′x = 0 for some A′′ ∈ [A−1 − E,A−1 + E] and x 6= 0. Define
z ∈ {−1, 1}n by zj = 1 if xj ≥ 0 and zj = −1 otherwise (j = 1, . . . , n). Then
we have

eT |x| = zT x = zT A(A−1 −A′′)x ≤ |zT A(A−1 −A′′)x| ≤ |zT A|eeT |x|,

hence
1 ≤ |zT A|e = ‖Az‖1 ≤ ‖A‖∞,1,

which is (i). The theorem is proven.

Theorem 22.6. The following problem is NP-complete:
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Is [A− E,A + E] non-regular?

Proof. For a symmetric rational M-matrix A (which is positive definite [32]),

‖A‖∞,1 ≥ 1 (22.11)

is according to Theorem 22.5 equivalent to non-regularity of

[A−1 − E, A−1 + E],

where A−1 is rational, nonnegative and symmetric positive definite. Since
computing A−1 can be done (by a modified Gaussian elimination) in polynomial
time (Edmonds [97]), we have a polynomial-time reduction of the NP-hard
problem (22.11) (Theorem 22.3) to the current problem, which is thus also
NP-hard.
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If [A − E, A + E] is not regular, then it contains a rational singular matrix of
the form

A− zzT

zT A−1z

for some z ∈ {−1, 1}n (Theorem 22.5, (ii)⇔(iii)) which can be guessed (gen-
erated by a nondeterministic polynomial-time algorithm) and then checked for
singularity by modified Gaussian elimination in polynomial time [97]. Thus the
problem is in the class NP, hence it it NP-complete. The theorem is proven.

This result immediately implies NP-hardness of checking regularity (Theorem
21.2); to be more precise, we have the following result:

Theorem 22.7. The following problem is NP-hard:
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Is [A− E,A + E] regular?

As a by-product of the equivalence (ii)⇔(iii) of Theorem 22.5 we obtain that
the problem of checking regularity of all symmetric matrices contained in
[A− E, A + E] is also NP-hard (Theorem 21.3).

22.3.2. Necessary and/or sufficient conditions

Let us prove the results about checking regularity for small n (that were for-
mulated in Chapter 21). These results are based on the following corollary of
the Oettli-Prager theorem [316]:

Theorem 22.8. An interval matrix A = [Ã−∆, Ã + ∆] is not regular if and
only if the inequality

|Ãx| ≤ ∆|x| (22.12)

has a nontrivial solution.

Proof. If A contains a singular matrix A, then Ax = 0 for some x 6= 0, which
implies

|Ãx| = |(Ã−A)x| ≤ ∆|x|.
Conversely, let (22.12) hold for some x 6= 0. Define y ∈ Rn and z ∈ {−1, 1}n

by

yi =
{

(Ãx)i/(∆|x|)i if (∆|x|)i > 0,
1 if (∆|x|)i = 0
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and

zj =
{

1 if xj ≥ 0,
−1 if xj < 0

(i, j = 1, . . . , n). In Chapter 21, we have used the formula (21.11) to define, for
each interval matrix A, and for each pair of vectors y, z ∈ {−1, 1}n, a numerical
matrix A(y,z). We can use the same formula (21.11) to define a matrix A(y,z)

for arbitrary vectors y and z. For thus defined matrix, we have

(A(y,z)x)i = (Ãx)i − yi(∆|x|)i = 0

for each i, hence A(y,z) is singular, and since |yi| ≤ 1 for each i due to (22.12),
from (21.11) it follows that A(y,z) ∈ A, hence A is not regular. The theorem
is proven.

Proof of Theorem 21.4. Let us prove that an interval matrix A is regular if
and only if determinants of all the matrices A(y,z), y, z ∈ {−1, 1}n are nonzero
and of the same sign.

Let A be regular and assume that

(det A(y,z))(det A(y′,z′)) ≤ 0

holds for some y, z, y′, z′ ∈ {−1, 1}n. Define a real function ϕ of one real
variable by

ϕ(t) = det(A(y,z) + t(A(y′,z′) −A(y,z))), t ∈ [0, 1].

Then ϕ(0)ϕ(1) ≤ 0, hence there exists a τ ∈ [0, 1] with ϕ(τ) = 0. Thus the
matrix A(y,z) + τ(A(y′,z′) − A(y,z)) is singular and belongs to A (due to its
convexity), which is a contradiction. Hence

(det A(y,z))(det A(y′,z′)) > 0

holds for each y, z, y′, z′ ∈ {−1, 1}n.

Conversely, let A be not regular. From the proof of Theorem 22.8 we know that
there exists a singular matrix of the form A(y,z) for some |y| ≤ e, z ∈ {−1, 1}n.
Let us introduce the function

f(s) = det A(s,z)

for s ∈ Rn, and define a vector y = (yj) ∈ {−1, 1}n componentwise by induction
on j = 1, . . . , n as follows: if the function of one real variable

f(y1, . . . , yj−1, t, yj+1, . . . , yn) (22.13)
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is increasing in t, set yj = 1, otherwise set yj = −1. Since the function (22.13)
is linear in t due to (21.11), we have

f(y1, . . . , yj−1, yj , yj+1, . . . , yn) ≤ f(y1, . . . , yj−1, yj , yj+1, . . . , yn)

for each j, and by induction

0 = det A(y,z) = f(y1, . . . , yn) ≤ f(y1, . . . , yn) = det A(y,z),

hence 0 ≤ detA(y,z), y, z ∈ {−1, 1}n. In an analogous way we may construct a
y ∈ {−1, 1}n satisfying det A(y,z) ≤ 0. Hence

(det A(y,z))(det A(y,z)) ≤ 0

for some y, y, z ∈ {−1, 1}n, which concludes the proof of the second implication.
The theorem is proven.

Proof of Theorem 21.5. Let us show that the conditions described in The-
orem 21.5 indeed imply that the matrix A is, correspondingly, regular or not
regular.

(i) Let condition (i) hold, i.e., let %(|Ã−1|∆) < 1. Assume to the contrary that
A is not regular, then

|Ãx| ≤ ∆|x| (22.14)

for some x 6= 0 (Theorem 22.8), hence

|x′| ≤ ∆|Ã−1x′| ≤ ∆|Ã−1||x′|
holds for x′ = Ãx 6= 0, which implies

1 ≤ %(∆|Ã−1|) = %(|Ã−1|∆)

(Neumaier [302]), a contradiction.

(ii) Let now condition (ii) hold, i.e., σmax(∆) < σmin(Ã). Again assuming to
the contrary that A is not regular, we have that (22.14) holds for some x 6= 0
which may be normalized so that ‖x‖2 = 1, hence also

|Ãx|T |Ãx| ≤ (∆|x|)T (∆|x|),
which implies

σ2
min(Ã) = λmin(ÃT Ã) = min

‖x‖2=1
xT ÃT Ãx ≤ (Ãx)T (Ãx)

≤ |Ãx|T |Ãx| ≤ (∆|x|)T (∆|x|) = |x|T ∆T ∆|x|
≤ max

‖x‖2=1
xT ∆T ∆x = λmax(∆T ∆) = σ2

max(∆),
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hence
σmin(Ã) ≤ σmax(∆),

which is a contradiction.

(iii) Let condition (iii) hold, i.e., maxj(∆|Ã−1|)jj ≥ 1. This means that
(∆|Ã−1|)jj ≥ 1 for some j and let ej denote the jth column of the unit matrix
I. Then

ej ≤ ∆|Ã−1|ej = ∆|Ã−1ej |
holds, hence for x = Ã−1ej 6= 0 we have

|Ãx| ≤ ∆|x|

and A is not regular due to Theorem 22.8.

(iv) Let condition (iv) hold, i.e., (∆− |Ã|)−1 ≥ 0. Then for x = (∆− |Ã|)−1e

we have x > 0 and (∆− |Ã|)x = e > 0, hence

|Ãx| ≤ |Ã|x < ∆x = ∆|x|

and Theorem 22.8 implies that the matrix A is not regular. The theorem is
proven.

22.3.3. Radius of non-singularity

Let us now prove results about the radius of non-singularity, the first being
Theorem 21.22 about the relation between this radius and the matrix norm.

Proof of Theorem 21.22. Let us prove that d(A) = 1/‖A−1‖∞,1.

Since ‖A‖1,∞ = maxij |aij | (see (21.18)), Kahan’s theorem [165] gives

d(A) = min{ε ≥ 0|[A− εE, A + εE] is not regular}
= min{‖A−A′‖1,∞|A′ is singular}
=

1
‖A−1‖∞,1

.

The theorem is proven.

This theorem implies the following complexity result:
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Theorem 22.9. The following problem is NP-hard:
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Is d(A) ≤ 1?

Proof. For a symmetric M-matrix A,

‖A‖∞,1 ≥ 1

is according to Theorem 21.22 equivalent to

d(A−1) ≤ 1,

where A−1 is rational, nonnegative symmetric positive definite, hence the NP-
hard problem of Theorem 22.3 can be reduced in polynomial time to the current
one, which is thus NP-hard as well. The theorem is proven.

As an immediate consequence we obtain Theorem 21.24 (that computing the
radius of non-singularity d(A, ∆) is NP-hard even in the special case ∆ = E)
and the second statement of Theorem 21.25 (that checking whether d(A) ≤ 1
for a given matrix A is NP-hard).

Proof of the second statement of Theorem 21.26. Let us prove that the
existence of a polynomial-time algorithm which for each nonnegative symmetric
positive definite rational matrix A computes a rational approximation d̃(A) to
d(A) satisfying ∣∣∣∣∣

d̃(A)− d(A)
d(A)

∣∣∣∣∣ ≤
1

4n2
,

implies P=NP.

Let A be an n × n MC-matrix, then A−1 is rational nonnegative symmetric
positive definite, hence we have

∣∣∣∣∣
d̃(A−1)− d(A−1)

d(A−1)

∣∣∣∣∣ ≤
1

4n2
.

Since ‖A‖∞,1 ≤ n(2n− 1) by Theorem 22.1, there holds 2‖A‖∞,1 + 1 ≤ 4n2 −
2n + 1 < 4n2, hence

∣∣∣∣∣
d̃(A−1)
d(A−1)

− 1

∣∣∣∣∣ ≤
1

4n2
<

1
2‖A‖∞,1 + 1

<
1

2‖A‖∞,1 − 1
,
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which implies

2‖A‖∞,1

2‖A‖∞,1 + 1
= 1− 1

2‖A‖∞,1 + 1
<

d̃(A−1)
d(A−1)

<

1 +
1

2‖A‖∞,1 − 1
=

2‖A‖∞,1

2‖A‖∞,1 − 1

and by Theorem 21.22,

2
2‖A‖∞,1 + 1

< d̃(A−1) <
2

2‖A‖∞,1 − 1

and ∣∣∣∣
1

d̃(A−1)
− ‖A‖∞,1

∣∣∣∣ <
1
2
.

Hence we have a polynomial-time algorithm for computing ‖A‖∞,1 with accu-
racy better than 1

2 , which according to Theorem 22.4 implies that P=NP. The
theorem is proven.

22.4. Positive definiteness

22.4.1. Positive definiteness and regularity

Proof of Theorem 21.9. Let us prove that an interval matrix A is positive
definite if and only if its symmetrization Asym is regular and contains at least
one positive definite matrix.

Let A = [Ã−∆, Ã + ∆], so that

Asym = [Ãsym −∆sym, Ãsym + ∆sym].

We will first prove that if A is positive definite, then Asym is also positive defi-
nite. Assume to the contrary that Asym is not positive definite, so that xT A′x ≤
0 for some A′ ∈ Asym and x 6= 0. Since |xT (A′ − Ãsym)x| ≤ |x|T ∆sym|x|, we
have

xT Ãx− |x|T ∆|x| = xT Ãsymx− |x|T ∆sym|x| ≤
xT Ãsymx + xT (A′ − Ãsym)x = xT A′x ≤ 0. (22.15)
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Define a diagonal matrix T by tjj = 1 if xj ≥ 0 and tjj = −1 otherwise. Then
|x| = Tx, and from (22.15) we have

xT (Ã− T∆T )x ≤ 0,

where |T∆T | = ∆, hence the matrix Ã − T∆T belongs to A and is not posi-
tive definite. This contradiction shows that positive definiteness of A implies
positive definiteness of Asym, and thereby also regularity of Asym.

Conversely, let Asym be regular and contain a positive definite matrix A0.
Assume to the contrary that some A1 ∈ A is not positive definite. Let Ã0 =
1
2 (A0+AT

0 ), Ã1 = 1
2 (A1+AT

1 ), hence both Ã0 and Ã1 are symmetric and belong
to Asym, Ã0 is positive definite whereas Ã1 is not. Put

τ = sup{t ∈ [0, 1]|Ã0 + t(Ã1 − Ã0) is positive definite}.

Then τ ∈ (0, 1], hence the matrix

A∗ = Ã0 + τ(Ã1 − Ã0)

belongs to Asym (due to its convexity) and is symmetric positive semidefinite,
but not positive definite, hence λmin(A∗) = 0, which shows that A∗ is singular
contrary to the assumed regularity of Asym. Hence A is positive definite, which
completes the proof. The theorem is proven.

Proof of Theorem 21.10. Let us now prove that a matrix A is positive
definite if and only if Asym is positive definite.

Indeed, according to Theorem 21.9, A is positive definite if and only if Asym is
regular and contains a positive definite matrix. If we apply the same theorem
to Asym instead of A, in view of the obvious fact that (Asym)sym = Asym we
obtain that Asym is positive definite if and only if Asym is regular and contains
a positive definite matrix. These two equivalences show that A is positive
definite if and only if Asym is positive definite. The theorem is proven.

22.4.2. Checking positive definiteness is NP-hard

To prove NP-hardness of checking positive definiteness (Theorems 21.2 and
21.3), we will use the following auxiliary result:

Theorem 22.10. Let A be a symmetric positive definite matrix. Then the
interval matrix [A− E,A + E] is positive definite if and only if it is regular.
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Proof. Under the assumption, the interval matrix A = [A − E, A + E] sat-
isfies Asym = A and contains a symmetric positive definite matrix A. Hence
according to Theorem 21.9, A is positive definite if and only if it is regular.
The theorem is proven.

As a direct consequence we prove NP-hardness of checking positive definiteness:

Theorem 22.11. The following problem is NP-hard:
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Is [A− E,A + E] positive definite?

Proof. In view of Theorem 22.10, such an interval matrix is positive definite if
and only if it is regular. Checking regularity was proved to be NP-hard for this
class of interval matrices in Theorem 22.7. Hence the same is true for checking
positive definiteness. The theorem is proven.

22.4.3. Necessary and/or sufficient conditions

Proof of Theorem 21.11. Let us show that A is positive definite if and only
if each A(z,z), z ∈ {−1, 1}n is positive definite.

The “only if” part is obvious since A(z,z) ∈ A for each z ∈ {−1, 1}n. The
“if” part was proved in the first part of the proof of Theorem 21.9 (a matrix
Ã−T∆T is of the form A(z,z) where z is the diagonal vector of T ). The theorem
is proven.

Proof of Theorem 21.12. Let us prove that an interval matrix
A = [Ã−∆, Ã + ∆] is positive definite if %(∆sym) < λmin(Ãsym).

Indeed, for each A ∈ A and x with ‖x‖2 = 1 we have

xT Ax = xT Ãx + xT (A− Ã)x ≥ xT Ãx− |x|T ∆|x|
= xT Ãsymx− |x|T ∆sym|x|
≥ λmin(Ãsym)− λmax(∆sym) = λmin(Ãsym)− %(∆sym) > 0,

hence A is positive definite. The theorem is proven.
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22.5. Positive semi-definiteness

Let us prove that checking positive semi-definiteness of an interval matrix is
NP-hard (Theorems 21.2 and 21.3). By definition, all elements of an MC-matrix
A are integers. Therefore, due to the the second part of Theorem 21.27, its
norm ‖A‖∞,1 is also an integer. Due to Theorem 22.2, it is NP-hard to decide,
for any given `, whether this norm is ≥ ` or < `. If it is < `, then, since this
norm is an integer, we conclude that it is ≤ ` − 1. According to the formula
(22.5), this norm cannot exceed twice the total number of edges plus n2. Since
the number of edges, in its turn, cannot exceed the total number of pairs n2,
we conclude that the norm cannot exceed 3n2. Thus, it is sufficient to consider
only the values ` ≤ 3n2.

For a given MC-matrix A, and for a given `, either ‖A‖∞,1 ≥ ` or ‖A‖∞,1 ≤
`−1, and it is NP-hard to tell which is the case. Thus, for an MC-related matrix
B = `−1A, either ‖B‖∞,1 ≥ 1 or ‖B‖∞,1 ≤ 1− 1/`, and it is hard to tell which
is the case. Since ` ≤ 3n2, in the second case, we have ‖B‖∞,1 ≤ 1− 1/(3n2).

According to Theorem 22.5, ‖A‖∞,1 ≥ 1 if and only if the interval matrix
[A−1 − E, A−1 + E] is not regular. Thus, in the first case, the interval matrix
M = [M −E,M +E], where M = B−1, is not regular (and hence, the smallest
eigenvalue λmin of symmetric matrices from this interval matrix is non-positive),
while in the second case, this interval matrix regular (hence, λmin > 0).

To prove our result, we will consider an auxiliary matrix

B′ =
B

1− 1/(6n2)
;

its inverse is

M ′ = (B′)−1 =
(

1− 1
6n2

)
·B−1 =

(
1− 1

6n2

)
·M.

Let us show that in the first case (when ‖B‖∞,1 ≥ 1), the interval matrix
M′ = [M ′ − E, M ′ + E] is not positive semi-definite, while in the second case,
it is. Then, from the NP-hardness of distinguishing between these two cases,
we would conclude that checking positive semi-definiteness is also NP-hard.
Indeed:

In the first case, when ‖B‖∞,1 ≥ 1, then [M −E, M + E] is not a regular
interval matrix, which means that it contains a singular symmetric numer-
ical matrix S, i.e., a symmetric matrix for which 0 is an eigenvalue. If we
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multiply a singular matrix S ∈ [M − E, M + E] by a positive constant
1− 1/(6n2), we get a new singular symmetric matrix

S1 =
(

1− 1
6n2

)
· S ∈

[
M ′ −

(
1− 1

6n2

)
· E, M ′ +

(
1− 1

6n2

)
· E

]
,

for which λ = 0 is also an eigenvalue. Hence, for a matrix

S2 = S1 − 1
6n2

· I

which still belongs to the desired interval matrix M′ = [M ′ −E,M ′ + E],
one of the eigenvalues is negative (equal to −1/(6n2)), and therefore, this
interval matrix is not positive semi-definite.

In the second case, when ‖B‖∞,1 ≤ 1− 1/(3n2), then

‖B′‖∞,1 =
‖B‖∞,1

1− 1/(6n2)
≤ 1− 1/(3n2)

1− 1/(6n2)
< 1;

therefore, due to Theorem 22.5, the interval matrix M′ = [M ′−E,M ′+E]
is regular and hence, positive definite.

The NP-hardness is proven.

22.6. P-property (for interval matrices)

22.6.1. Necessary and sufficient conditions

Proof of Theorem 21.13. Let us prove that A is a P-matrix if and only if
each A(z,z), z ∈ {−1, 1}n is a P-matrix.

Indeed, if A is a P-matrix, then each A(z,z) is a P-matrix since A(z,z) ∈ A, z ∈
{−1, 1}n. Conversely, let each A(z,z), z ∈ {−1, 1}n be a P-matrix. Fiedler and
Pták proved, in [106], that A is a P-matrix if and only if for each x 6= 0 there
exists an i ∈ {1, . . . , n} such that xi(Ax)i > 0. Take A ∈ A, x 6= 0, and let z ∈
{−1, 1}n be defined by zj = 1 if xj ≥ 0 and zj = −1 otherwise (j = 1, . . . , n).
Since A(z,z) is a P-matrix, according to the Fiedler-Pták theorem there exists
an i ∈ {1, . . . , n} such that xi(A(z,z)x)i > 0. Then we have

xi(Ax)i =
∑

j

ãijxixj +
∑

j

(aij − ãij)xixj
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≥
∑

j

ãijxixj −
∑

j

∆ij |xi||xj |

=
∑

j

(ãij −∆ijzizj)xixj = xi(A(z,z)x)i > 0,

hence A is a P-matrix by the Fiedler-Pták theorem. This proves that A is a
P-matrix. The theorem is proven.

22.6.2. P-property and positive definiteness

Proof of Theorem 21.14. Let us now prove that a symmetric interval matrix
A is a P-matrix if and only if it is positive definite.

Indeed, all the matrices A(z,z), z ∈ {−1, 1}n defined by (21.15) are symmetric
for a symmetric interval matrix A. Hence, A is a P-matrix if and only if each
A(z,z), z ∈ {−1, 1}n is a P-matrix, which is the case if and only if each A(z,z), z ∈
{−1, 1}n is positive definite, and this is equivalent to positive definiteness of A
(Theorem 21.11). The theorem is proven.

22.6.3. Checking P-property is NP-hard

As a result, we get NP-hardness of checking P-property of interval matrices
(Theorems 21.2 and 21.3):

Theorem 22.12. The following problem is NP-hard:
Instance. A nonnegative symmetric rational P-matrix A.
Question. Is [A− E,A + E] a P-matrix?

Proof. Since A is symmetric positive definite, [A−E,A+E] is a P-matrix if and
only if it is positive definite (Theorem 21.14). Checking positive definiteness
of this class of interval matrices was proved to be NP-hard in Theorem 22.11.
The theorem is proven.



276 Chapter 22

22.7. Stability

22.7.1. Checking stability is NP-hard

Proof of Theorem 21.6. Let us show that a symmetric interval matrix A is
stable if and only if −A is positive definite.

First notice that A ∈ A if and only if −A ∈ −A. Let A be stable, and consider
a symmetric matrix A ∈ −A. Then −A ∈ A is symmetric and stable, hence
λmax(−A) = −λmin(A) < 0, so that λmin(A) > 0, which means that A is
positive definite. Hence each symmetric A ∈ −A is positive definite, which in
view of Theorem 21.11 implies that −A is positive definite.

Conversely, let −A be positive definite. Then a similar argument shows that
each symmetric matrix in A is stable, and from Bendixson’s theorem (see Stoer
and Bulirsch [403]) we have that each eigenvalue λ of each A ∈ A satisfies

Reλ ≤ λmax

(
1
2
(A + AT )

)
< 0

(since 1
2 (A + AT ) ∈ A), hence A is stable. The theorem is proven.

NP-hardness of checking stability (Theorems 21.2 and 21.3) now follows easily:

Theorem 22.13. The following problem is NP-hard:
Instance. A non-positive symmetric stable rational matrix A.
Question. Is [A− E,A + E] stable?

Proof. By Theorem 21.6, [A− E, A + E] is stable if and only if

[−A− E,−A + E]

is positive definite, where −A is a nonnegative symmetric positive definite ra-
tional matrix. Hence the result follows from Theorem 22.11. The theorem is
proven.

22.7.2. Necessary and/or sufficient conditions

Proof of Theorem 21.7. Let us prove that a symmetric A is stable if and
only if each A(−z,z), z ∈ {−1, 1}n is stable.

Indeed, A is stable if and only if −A is positive definite which, in view of
(already proven) Theorem 21.11, is the case if and only if each −A(−z,z), z ∈
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{−1, 1}n is positive definite, and this is equivalent to stability of all A(−z,z), z ∈
{−1, 1}n. The theorem is proven.

Proof of Theorem 21.8. Let us prove that an interval matrix [Ã−∆, Ã+∆]
is stable if λmax(Ãsym) + %(∆sym) < 0.

Indeed, if the inequality holds, then %(∆sym) < λmin(−Ãsym), hence [−Ãsym −
∆sym,−Ãsym + ∆sym] is positive definite by (already proven) Theorem 21.12,
and [Ãsym −∆sym, Ãsym + ∆sym] is stable by Theorem 21.6. Stability of [Ã −
∆, Ã+∆] then follows by using Bendixson’s theorem as in the proof of Theorem
21.6. The theorem is proven.

22.7.3. Radius of stability

Proof of Theorem 21.28. Let us prove that if A is symmetric stable and ∆
is symmetric nonnegative, then the radius of stability s(A, ∆) is equal to the
radius of non-singularity d(A,∆).

Indeed, an interval matrix [A− ε∆, A + ε∆] is stable
if and only if [−A− ε∆,−A + ε∆] is positive definite (Theorem 21.6)
if and only if [−A− ε∆,−A + ε∆] is regular (Theorem 21.9)
if and only if [A− ε∆, A + ε∆] is regular. Therefore the values of s(A,∆) and
d(A,∆) are equal. The theorem is proven.

22.8. Semi-stability

NP-hardness of semi-stability (Theorems 21.2 and 21.3) is proven by a reduction
to positive semi-definiteness that is similar to the above deduction of stability
to positive definiteness.

22.9. Schur stability

NP-hardness of s-Schur stability (Theorem 21.3) is proven by using the following
reduction to stability:
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Theorem 22.14. A symmetric interval matrix [A,A] is stable if and only if
the symmetric interval matrix

[I + αA, I + αA]

is s-Schur stable, where

α =
2

‖A‖1 + ‖A−A‖1 + 2
. (22.16)

Proof. Let [A, A] be s-stable. Then for each symmetric A′ ∈ [I + αA, I + αA]
we have A′ = I + αA for some symmetric A ∈ [A, A], hence λmax(A′) =
1 + αλmax(A) < 1. Furthermore, from

|λmin(A)| ≤ %(A) ≤ ‖A‖1 ≤ ‖A‖1 + ‖A−A‖1 <
2
α

we have
λmin(A′) = 1 + αλmin(A) > −1,

hence A′ is Schur stable and thereby [I + αA, I + αA] is s-Schur stable.

Conversely, if [I+αA, I+αA] is s-Schur stable, then each symmetric A ∈ [A, A]
is of the form A = 1

α (A′ − I) for some symmetric A′ ∈ [I + αA, I + αA], hence
λmax(A) = 1

α (λmax(A′) − 1) < 0, and A is stable. Stability of all symmetric
matrices in [A,A] implies stability of [A, A] due to Theorem 21.7. The theorem
is proven.

As a consequence of Theorem 22.14 we obtain the desired NP-hardness result:

Theorem 22.15. The following problem is NP-hard:
Instance. A symmetric Schur stable rational matrix A with A ≤ I, and a

rational number α ∈ [0, 1].
Question. Is [A− αE, A + αE] s-Schur stable?

Proof. For a non-positive symmetric stable rational matrix A, the symmetric
interval matrix [A−E,A+E] is stable if and only if [(I+αA)−αE, (I+αA)+αE]
is s-Schur stable, where α is given by (22.16). Here I + αA is a symmetric
Schur stable rational matrix with I + αA ≤ I, and α ∈ [0, 1]. Hence we have
a polynomial-time reduction of the NP-hard problem of Theorem 22.13 to the
current problem, which shows that it is NP-hard as well. The theorem is proven.

Comment. This result differs from the previous results where NP-hardness was
established for the class of interval matrices of the form [A − E,A + E]. This
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is explained by the fact that regularity, positive definiteness and stability are
invariant under multiplication by a positive parameter whereas Schur stability
is not. This same invariance explains why in Theorem 21.2 we can take interval
matrices with narrow intervals and still keep NP-hardness: because a matrix
A has the desired property if and only if a “narrow” matrix δ ·A has it.

22.10. Schur semi-stability

NP-hardness of checking s-Schur semi-stability (Theorem 21.3) can be proven
by reducing this problem to (already proven) semi-stability. This reduction is
similar to the one used in Theorem 22.14.

22.11. Checking eigenvalues

22.11.1. Checking eigenvalues is NP-hard

Theorem 21.17 follows from the following result:

Theorem 22.16. The following problem is NP-hard:
Instance. A nonnegative symmetric positive definite rational matrix A

and a rational number λ.
Question. Is λ an eigenvalue of some symmetric matrix in [A−E, A+E]?

Proof. [A − E,A + E] is not regular if and only if 0 is an eigenvalue of
some symmetric matrix in [A−E, A + E] (Theorem 22.5). Hence the NP-hard
problem of Theorem 22.7 can be reduced in polynomial time to the current
problem, which is thereby NP-hard. The theorem is proven.

Proof of Theorem 21.18. Suppose there exists a polynomial-time algorithm
which for each symmetric interval matrix A computes a rational number λ̃(A)
for which ∣∣∣∣∣

λ̃(A)− λ(A)
λ(A)

∣∣∣∣∣ < 1

if λ(A) 6= 0 and λ̃(A) ≥ 0 otherwise. Let us prove that P=NP.
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Indeed, under the assumptions, λ̃(A) < 0 if and only if λ(A) < 0, and this
is equivalent to stability of A. Hence we have a polynomial-time algorithm
for solving the NP-hard problem of Theorem 22.13, which implies P=NP. The
theorem is proven.

22.11.2. Computing the maximal eigenvalue is NP-hard

Proof of Theorem 21.19. Let us prove that for a symmetric interval matrix
A, the set λmax(A) of all values of λmax(A) for all symmetric matrices A ∈ A
is an interval (i.e., a finite and closed interval).

Indeed, let

λ(A) = min{λmax(A)|A symmetric, A ∈ A},
λ(A) = max{λmax(A)|A symmetric, A ∈ A}.

By continuity argument, both bounds are attained, hence λ(A) = λmax(A1)
and λ(A) = λmax(A2) for some symmetric A1, A2 ∈ A. Define a real function
ϕ of one real variable by ϕ(t) = f(A1 + t(A2 −A1)), t ∈ [0, 1], where

f(A) = max
‖x‖2=1

xT Ax.

This function ϕ is continuous since f(A) is continuous (Rohn [349]), and ϕ(0) =
f(A1) = λmax(A1) = λ(A), ϕ(1) = f(A2) = λmax(A2) = λ(A), hence for each
λ ∈ [λ(A), λ(A)] there exists a tλ ∈ [0, 1] such that

λ = ϕ(tλ) = f(A1 + tλ(A2 −A1)) = λmax(A1 + tλ(A2 −A1)).

Hence each λ ∈ [λ(A), λ(A)] is the maximal eigenvalue of some symmetric
matrix in A, and we have λmax(A) = [λ(A), λ(A)]. The theorem is proven.

22.11.3. Checking enclosures is NP-hard

Finally, Theorem 21.20 is a corollary of the following result:

Theorem 22.17. The following problem is NP-hard:
Instance. A non-positive symmetric stable rational matrix A, and rational

numbers a, b, a < b.
Question. Is λmax([A− E,A + E]) ⊂ (a, b)?

Proof. For each symmetric A′ ∈ [A− E,A + E] we have

|λmax(A′)| ≤ %(A′) ≤ ‖A′‖1 ≤ ‖A‖1 + ‖E‖1 = ‖A‖1 + n < α,
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where we denoted α = ‖A‖1 +n+1. Hence due to Theorem 21.7, [A−E, A+E]
is stable if and only if

λmax([A− E, A + E]) ⊂ (−α, 0)

holds. This shows that the NP-hard problem of checking stability of
[A − E, A + E] (Theorem 22.13) can be reduced in polynomial time to the
current problem, which is thus NP-hard. The theorem is proven.

22.12. Determinants

22.12.1. Computing extremal values of determinant is
NP-hard

Proof of Theorem 21.15. Let us show that computing the exact range of
the determinant of an interval matrix is an NP-hard problem.

Indeed, an interval matrix of the form A = [A − E, A + E], where A is a
nonnegative symmetric positive definite rational matrix, is not regular if and
only if

det(A0) ≥ 0, (22.16)

where A0 = A if det A ≤ 0 and A0 is constructed by swapping the first
two rows of A otherwise (which changes the sign of the determinant). Here
A0 = [A0 − E, A0 + E], where A0 is a nonnegative rational matrix. Hence
the NP-hard problem of checking regularity (Theorem 22.7) can be reduced in
polynomial time to the decision problem (22.16) which shows that computing
det(A) is NP-hard in this class of interval matrices. The proof for det(A) is
analogous. The theorem is proven.

22.12.2. Edge theorem

To prove other results about det(A), we will need the following auxiliary “edge
theorem”:

Theorem 22.18. (Rohn [343]) Let A = [A, A] be an interval matrix. Then
for each A ∈ A there exists an edge matrix A′ ∈ A with the same value of the
determinant (detA = det A′).
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Proof. For each Ã ∈ A denote by h(Ã) the number of matrix entries with
ãij /∈ {aij , aij}, i, j = 1, . . . , n. Given an A ∈ A, let A′ be a matrix satisfying
A′ ∈ A,det A′ = det A and

h(A′) = min{h(Ã)|Ã ∈ A, det Ã = det A}. (22.17)

If h(A′) ≥ 2, then there exist indices (p, q), (r, s), (p, q) 6= (r, s) such that a′pq ∈
(apq, apq), a′rs ∈ (ars, ars). Then we can move these two entries within their
intervals in such a way that at least one attains its bound, and the determinant
is kept unchanged. Then the resulting matrix A′′ satisfies h(A′′) < h(A′), which
is a contradiction. Hence A′ defined by (22.17) satisfies h(A′) ≤ 1 (i.e., A′ is
an edge matrix), and det A = det A′. The theorem is proven.

As a corollary, for det A = 0, we have the following results:

Theorem 22.19. (Rohn [346]) If an interval matrix A is not regular, then it
contains a singular edge matrix.

Proof of Theorem 21.21. Let us prove that if a real number λ is an eigenvalue
of some A ∈ A, then it is also an eigenvalue of some edge matrix.

Indeed, if λ is a real eigenvalue of some A ∈ A = [A, A], then A − λI is a
singular matrix belonging to the interval matrix [A − λI, A − λI], which is
thus not regular; hence by Theorem 22.19 this new interval matrix contains a
singular edge matrix A′ − λI. Hence, A′ is also an edge matrix of the matrix
A, and λ is an eigenvalue of A′. The theorem is proven.

Proof of Theorem 21.16. Let us prove that for every interval matrix A =
[A,A], each of the extremal values of det A, A ∈ A, is attained at one of the
vertex matrices (as defined in Chapter 21; i.e., matrix for which for all i and j,
the corresponding value aij is either equal to aij , or equal to aij).

Indeed, since the determinant is linear in each entry, Theorem 22.18 implies
that the extremal values of the determinant are attained at some of the 2n2

vertex matrices. The theorem is proven.
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22.13. Nonnegative invertibility and M-
matrices

Let us describe results that lead to feasible algorithms for checking whether a
given interval matrix is nonnegative invertible or an M-matrix. This result was
originally proven by Kuttler [241]; we will use an elementary proof from Rohn
[345]. This algorithm is based on the following result:

Theorem 22.20. An interval matrix A = [A, A] is nonnegative invertible if
and only if A−1 ≥ 0 and A

−1 ≥ 0.

Proof. The “only if” part is obvious. To prove the “if” part, denote D0 =
A
−1

(A−A), then D0 ≥ 0 and

(I −D0)−1 = (A
−1

A)−1 = A−1A = I + A−1(A−A) ≥ 0,

hence %(D0) < 1. Then for each A ∈ A we have %(A
−1

(A− A)) ≤ %(D0) < 1,
and from the identity

A = A(I −A
−1

(A−A))

we obtain

A−1 =
∞∑

j=0

(A
−1

(A−A))jA
−1 ≥ 0.

The theorem is proven.

Hence, checking nonnegative invertibility of an interval matrix A with rational
bounds can be performed in polynomial time (Edmonds [97]). For M-matrices,
we have a similar result:

Theorem 22.21. An interval matrix A = [A, A] is an M-matrix if and only if
A and A are M-matrices.

Proof. The “only if” part is obvious. Conversely, if both A and A are M-
matrices, then A−1 ≥ 0 and A

−1 ≥ 0, hence each A ∈ A satisfies A−1 ≥ 0
(Theorem 22.20) and Aij ≤ Aij ≤ 0 for i 6= j, i.e. A is an M-matrix. The
theorem is proven.
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22.14. P-property (for numerical matrices)

Let us prove the last statement from Theorem 21.1, that checking P-property
for numerical matrices is NP-hard. This proof is based on an interesting equiv-
alence of regularity of interval matrices and P-property of associated numerical
matrices.

22.14.1. Regularity and P-property

Consider an n × n interval matrix A = [A, A] = [A,A + 2∆]. Assuming non-
singularity of A, for each i, j ∈ {1, . . . , n} define the vector

cij = 2(∆i1m1j ,∆i2m2j , . . . , ∆inmnj)T

(where we denoted M = A−1), and the matrix Cij = cije
T (where e is the

n-vector of all ones). Hence, Cij is an n × n matrix whose all columns are
identical and equal to the vector cij . Finally, define the numerical matrix

C(A) =




I 0 . . . 0
0 I . . . 0
...

...
. . .

...
0 0 . . . I


 +




C11 C12 . . . C1n

C21 C22 . . . C2n

...
...

. . .
...

Cn1 Cn2 . . . Cnn




This matrix consists of n×n blocks, each of which is a n×n matrix; therefore,
C(A) is of size n2 × n2. For each y, z ∈ {−1, 1}n, let us define the yz-minor
of C(A) as the determinant of the principal submatrix of C(A) consisting of
rows and columns with indices (i− 1)n + j, where yizj = −1.

Theorem 22.22. For an interval matrix A = [A, A] with A < A, the following
conditions are equivalent:

(i) A is regular,

(ii) A is nonsingular and C(A) is a P-matrix,

(iii) A is nonsingular and each yz-minor of C(A) is positive, y, z ∈ {−1, 1}n.

Historical comment. The equivalence (i)⇔(ii) of the above theorem is due to
Coxson [76], equivalence (i)⇔(iii) is added here as a consequence of the Bau-
mann’s Theorem 21.4 to show that the number of determinants to be checked
for positivity can be decreased from 2n2 − 1 to 22n−1 − 1. The specific feature
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of this result consists in the fact that regularity of an n× n interval matrix A
is characterized in terms of an n2 × n2 numerical matrix C(A). Nevertheless,
the number of operations involved still remains exponential in n.

Proof. (i)⇔(ii): Let

F =




eT 0T . . . 0T

0T eT . . . 0T

...
...

. . .
...

0T 0T . . . eT


 ,

where all the blocks are n-dimensional vectors, hence F is of size n× n2, and

G =




∆11e1 ∆12e2 . . . ∆1nen

∆21e1 ∆22e2 . . . ∆2nen

...
...

. . .
...

∆n1e1 ∆n2e2 . . . ∆nnen


 ,

where ej denotes the jth column of the n × n unit matrix I, hence G is of
size n2 × n. Consider any vertex matrix A of A, i.e. a matrix for which
aij ∈ {aij , aij} for all i, j = 1, . . . , n. A straightforward computation shows
that A can be written in the form A = A + 2FDG, where D is the n2 × n2

diagonal matrix satisfying

D(i−1)n+j,(i−1)n+j =
{

1 if aij = aij ,
0 if aij = aij

(i, j = 1, . . . , n). Then we have

detA = (det A)(det(I + 2A−1FDG)). (22.18)

Since
det(I + 2A−1FDG) = det(In2 + 2DGA−1F ) (22.19)

(see Gantmacher [118]; In2 is the n2 × n2 unit matrix), and since

2GA−1F = C(A)− In2 (22.20)

(as it can be easily verified), from (22.18)–(22.20) we obtain

detA = (det A)(det(In2 + D(C(A)− In2))), (22.21)

where
det(In2 + D(C(A)− In2)) (22.22)
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is obviously the determinant of the principal submatrix formed from rows and
columns of C(A) with indices (i− 1)n + j for which aij = aij .

Now, if A is regular, then each principal minor of C(A) can be written
in the form (22.22) for an appropriately chosen vertex matrix A. Since
(det A)(det A) > 0 due to regularity, (22.21) implies that (22.22) is positive.
Conversely, if each principal minor of C(A) is positive, then (detA)(det A) > 0
for each vertex matrix A of A due to (22.21), which implies that A is regular
(Theorem 21.4). Hence (i) and (ii) are equivalent.

To prove (i)⇔(iii), notice that each matrix A(y,z) ∈ A, y, z ∈ {−1, 1}n defined
by (21.11) satisfies

a
(y,z)
ij = Aij + (1− yizj)∆ij , i, j = 1, . . . , n,

hence it can be written as

A(y,z) = A + FD(y,z)G,

where F and G are as above and D(y,z) is the n2×n2 diagonal matrix for which

d
(y,z)
(i−1)n+j,(i−1)n+j = 1− yizj , i, j = 1, . . . , n.

Then we obtain as before that

detA(y,z) = (detA)
(

det
(

In2 +
1
2
D(y,z)(C(A)− In2)

))
,

where

det
(

In2 +
1
2
D(y,z)(C(A)− In2)

)

is exactly the yz-minor of C(A) defined earlier in this section. Hence an obvious
reasoning based on Baumann’s Theorem 21.4 leads to the conclusion that A is
regular if and only if all the yz-minors of C(A) are positive, y, z ∈ {−1, 1}n.
The theorem is proven.

22.14.2. Checking P-property is NP-hard for numerical
matrices

Proof of Theorem 21.1. We have already shown, in the main text, that all
the properties of numerical matrices except for the P-property can be checked
in polynomial time. To complete the proof of Theorem 21.1, we must thus
prove that checking P-property is NP-hard.
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This is an immediate consequence of the previous characterization of P-
property. Indeed, according to the equivalence (i)⇔(ii) of Theorem 22.22, the
problem of checking regularity of an interval matrix A with rational bounds
can be reduced in polynomial time to the problem of checking P-property of a
rational matrix C(A). Since the former problem is NP-hard (Theorem 22.7),
the same is true for the latter one as well. The theorem is proven.

22.14.3. Regularity and P-property: additional connec-
tion

It should be noted that there also exists another relationship between regularity
and the P-property, which proved to be a very useful tool for deriving some
nontrivial properties of inverse interval matrices and of systems of linear interval
equations. The following theorem was published in a report form [341] in 1984
and in a journal form [347] in 1989.

Theorem 22.23. If A is a regular interval matrix and A1, A2 ∈ A, then
A−1

1 A2 is a P-matrix.

Proof. Assume to the contrary that A−1
1 A2 is not a P-matrix for some A1, A2 ∈

A = [Ã − ∆, Ã + ∆]. Then according to the Fiedler-Pták characterization of
P-matrices [106] (quoted in the proof of Theorem 21.13) there exists an x 6= 0
such that xi(A−1

1 A2x)i ≤ 0 for each i. Put x′ = A−1
1 A2x, then

xix
′
i ≤ 0 (i = 1, . . . , n) (22.23)

and
x 6= x′ (22.24)

holds. In fact, since x 6= 0, there exists a j with xj 6= 0; then x2
j > 0 whereas

(22.23) implies xjx
′
j ≤ 0, hence xj 6= x′j . Now we have

|Ã(x′ − x)| = |(Ã−A1)x′ + (A2 − Ã)x| ≤ ∆|x′|+ ∆|x| = ∆|x′ − x| (22.25)

since |x′| + |x| = |x′ − x| due to (22.23). Hence Theorem 22.8 in the light of
(22.25) and (22.24) implies that A is not regular, which is a contradiction. The
theorem is proven.

For applications of this result, see Rohn [346].





23
NON-INTERVAL UNCERTAINTY I:

ELLIPSOID UNCERTAINTY AND
ITS GENERALIZATIONS

In the previous chapters, we considered the problem of estimating the range of
a function f(x1, . . . , xn) under the assumption that each variable xi is known
to belong to a given interval xi = [x̃i −∆i, x̃i + ∆i]. So far, we have analyzed
this problem under the assumption that we do not know of any dependency
between the variables xi. Under this assumption, the set of all possible values
of ~x = (x1, . . . , xn) forms a Ämulti-dimensional interval (box) x1 × . . .× xn.

In many practical cases, however, there is a known dependency between
the variables xi. For the simplest (quadratic) type of this dependency, the set
of all possible values of ~x forms an ellipsoid. In this chapter, we analyze the
computational complexity and feasibility of data processing under such ellipsoid
uncertainty.

23.1. Why non-interval uncertainty?

So far, we considered the problem of estimating the range of a function
f(x1, . . . , xn) under the assumption that each variable xi is known to belong to
a given interval xi = [x̃i−∆i, x̃i+∆i], and we have analyzed this problem under
the assumption that we do not know of any dependency between the variables
xi. Under this assumption, the set of all possible values of ~x = (x1, . . . , xn)
forms a multi-dimensional interval X = x1 × . . .× xn, also called a box.

In many practical cases, however, there is a known dependency between the
variables xi. As a result, not all vectors ~x from the box X are possible, and
the set of all possible vectors forms a proper (non-interval) subset of this box.

289
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With this chapter, we will start to analyze the computational complexity and
feasibility of data processing problems under such non-interval uncertainty.

23.2. Why ellipsoids?

23.2.1. In the Simplest Case, Additional Information
Leads to Ellipsoids

Additional information about the values of xi usually comes from additional
measurements, i.e., from measuring an additional quantity z whose value is
uniquely determined by the values of xi’s: z = g(x1, . . . , xn). As a result of
each measurement of this type, we get the value z̃ with some measurement
accuracy ∆. So, we can conclude that g(x1, . . . , xn) ∈ [z̃ −∆, z̃ + ∆], i.e., that

z̃ −∆ ≤ g(x1, . . . , xn) ≤ z̃ + ∆. (23.1)

If error bounds ∆i in directly measuring xi are small enough, then the actual
errors of direct measurements ∆xi = x̃i−∆xi are small. Hence, we can expand
the expression g(x1, . . . , xn) = g(x̃1 − ∆x1, . . . , x̃n − ∆xn) into Taylor series
and keep only quadratic terms in the resulting expansion. In other words,
we replace the original function g(x1, . . . , xn) in the restriction (23.1) by a
quadratic function g̃(x1, . . . , xn). Hence, restrictions of the type (23.1) become
inequalities of the type g̃(x1, . . . , xn) ≤ C or g̃(x1, . . . , xn) ≥ C for a quadratic
function g̃(x1, . . . , xn) and a real number C. Geometrically, depending on the
quadratic function, each inequality describes an ellipsoid, or a hyperboloid, or
a plane, etc.

The simplest case is when we have only one such inequality, i.e., when the set
of possible values of ~x = (x1, . . . , xn) is described by a single inequality of this
type. Geometrically, when a single quadratic inequality describes a bounded
set, this set is an ellipsoid

∑
aij · xi · xj +

∑
ai · xi + a0 ≤ C. (23.2)
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23.2.2. In Addition to Error Bounds, We Often Know
Probabilities of Different Errors

In many cases, in addition to the intervals, we know the probabilities of differ-
ent values of errors. Measurement errors are usually assumed to be normally
distributed. In other words, if we denote by x the (unknown) actual value of
the physical quantity x, and if we denote by x̃ the result of the measurement,
then for a given x, the probability density of x̃ is equal to

ρ(x̃) = const · exp
(
− (x− x̃)2

2σ2(x)

)
,

where σ(x) is the standard deviation.

The errors of different measurements are usually assumed to be independent.
As a result, if we make several measurements, then the probability density ρ(~̃x)
on the set of possible measurement results ~̃x = (x̃1, x̃2, . . . , x̃n) is Gaussian
(normal):

ρ(~̃x) = ρ(x̃1) · ρ(x̃2) · . . . · ρ(x̃n) =
(

const1 · exp
(
− (x1 − x̃1)2

2 · σ2(x1)

))
·
(

const2 · exp
(
− (x2 − x̃2)2

2 · σ2(x2)

))
· . . . ·

(
constn · exp

(
− (xn − x̃n)2

2 · σ2(xn)

))
= const · exp

(
−

n∑

i=1

(xi − x̃i)2

2 · σ2(xi)

)
, (23.3)

where xi is the (unknown) actual value of i−th physical quantity, x̃i is the
measured value of this quantity, and σ(xi) is its standard deviation.

For Gaussian distribution, the probability density ρ(~̃x) is everywhere positive;
this means that, in principle, for any given set of measurement results ~̃x, an
arbitrary tuple ~x is possible. In practical statistics, however, tuples with very
low probability density ρ(~̃x) are considered impossible.

For example, in 1-dimensional case, we have a “three sigma” rule: values for
which |x − x̃| > 3σ(x) are impossible. In multi-dimensional case, it is natural
to choose some value α > 0, and consider only tuples for which

ρ(~̃x) ≥ α (23.4)

as possible ones. For Gaussian distribution, formula (23.4) can be simplified.
Indeed, we can do the following:



292 Chapter 23

substitute formula (23.3) into the condition (23.4) that describes possible
tuples;

divide both sides of the resulting inequality by a positive constant const
(from (23.4));

take natural logarithms of both sides, and

change the signs of both sides of the resulting inequality;

then, we will arrive at the inequality

n∑

i=1

(xi − x̃i)2

2 · σ2(xi)
≤ C,

where by C, we denoted − ln(α/const). This inequality describes an ellipsoid.
Therefore, for given measurement results x̃1, . . . , x̃n, the possible set of values
of ~x is an ellipsoid.

Comment. If the measurement errors are not independent, then we also have
an ellipsoid, but with a general quadratic form in the left-hand side of the
inequality.

23.2.3. Ellipsoids as an Optimal Approximation

Ellipsoids are also known to be the optimal approximation sets for different
problems [400, 108].

23.2.4. Ellipsoid Uncertainty is Successfully Used in
Practical Problems

Ellipsoid error estimates are actively used in different applications; see, e.g.,
Schweppe [385, 386], Fogel et al. [109], Belforte et al. [27], Norton [308],
Chernousko [64, 65], Soltanov [401], Utyubaev [415], Filippov [107], and refer-
ences therein.
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23.3. Computational complexity and feasibility
of data processing under ellipsoid uncertainty

23.3.1. Why Ellipsoid Uncertainty May Be Computa-
tionally Easier to Process Than Interval Uncertainty

For a smooth function f(x) of one variable x, it is usually easy to find a max-
imum on a given interval [a, b]: this maximum is attained either inside the
interval, in which case it is a zero of the derivative f ′(x) = 0, or at one of
the endpoints (a or b). A similar result is true if we look for a maximum of
a function f(x1, . . . , xn) of n variables on a box x1 × . . .× xn: this maximum
is either inside the box, or on one of its faces. The only problem, as we have
mentioned in Chapter 1, is that we have 2n possible faces, so this approach
leads to an exponentially long (thus, non-feasible) algorithm. An ellipsoid does
not have many different faces, so for ellipsoids, the corresponding problem must
be simpler.

23.3.2. Definitions and Main Results

Definition 23.1. By the ellipsoid computation problem, we mean the following
problem:

GIVEN:

• a positive integer n;

• a polynomial f(x1, . . . , xn); and

• an ellipsoid E defined by the formula (23.2) with rational coefficients
aij , ai, a0, and C.

COMPUTE the values y = max f(x1, . . . , xn) and y = min f(x1, . . . , xn),
where the maximum and minimum are taken over all points ~x =
(x1, . . . , xn) ∈ E.
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Definition 23.2. By the ε-approximate ellipsoid computation problem, we
mean the following problem:

GIVEN:

• a positive integer n;

• a polynomial f(x1, . . . , xn);

• a rational number ε > 0; and

• an ellipsoid E defined by the formula (23.2) with rational coefficients
aij , ai, a0, and C.

COMPUTE rational numbers ỹ and ỹ that are ε-close to y =
max f(x1, . . . , xn) and y = min f(x1, . . . , xn), and the maximum and min-
imum are taken over all points ~x = (x1, . . . , xn) ∈ E.

Our first comment is that this problem is algorithmically solvable:

Proposition 23.1. There exists an algorithm that solves an arbitrary ellipsoid
computation problem.

For example, we can use Tarski’s algorithm (mentioned in Chapter 4) or one
of its modern faster versions to compute the desired minimum and maximum.

Theorem 23.1.

There exists a polynomial time algorithm that solves the ellipsoid compu-
tations problem for all quadratic polynomials.

For quartic polynomials, and for every ε > 0, the ε−approximate ellipsoid
computation problem is NP-hard.

Historical comment. The first part of the theorem was proven in Vavasis [417];
the second part was (partly) announced in [203].

The resulting computations are clearly simpler than interval computations that
are NP-hard already for quadratic polynomials:
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Interval Ellipsoid
computations computations

Linear Linear time Polynomial time
Quadratic NP-hard Polynomial time
Cubic NP-hard ?
Quartic NP-hard NP-hard
5-th and higher degree NP-hard NP-hard

23.3.3. Auxiliary Results

In Theorem 23.1, we considered polynomials with arbitrary coefficients. It turns
out that our computational complexity and feasibility results do not change if
we impose a priori bounds on the values of these coefficients:

Theorem 23.2. For quartic polynomials f(x1, . . . , xn) with coefficients from
the set {0, 1, 2, 3}, and for every ε > 0, the ε−approximate ellipsoid computa-
tion problem is NP-hard.

Theorem 23.1 shows what happens if we restrict the degrees of the polynomials.
If, instead, we restrict the number of variables n, then we get the following
results:

Theorem 23.3. For every n, there exists a polynomial-time algorithm that
solves the ellipsoid optimization problem for all polynomials of n variables.

Comment. This algorithm is similar to the one presented in Chapter 4: it is
polynomial time, but it is not yet practical.

23.4. Linear systems under ellipsoid uncertainty

In Chapter 11, we have considered systems of linear equations under interval
uncertainty. Similarly, we can describe systems of linear equations under ellip-
soid uncertainty. There are two possible definitions of such a system, and for
each of these definitions, the resulting problem is NP-hard:
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23.4.1. Ellipsoid Uncertainty: First Definition

Definition 23.3.

By a linear system under ellipsoid uncertainty, we mean a tuple 〈m, n,E〉,
where m and n are positive integers, and E is a (m× n + m)-dimensional
ellipsoid with rational coefficients.

We say that a vector (x1, . . . , xn) is a possible solution of a linear system
〈m,n, E〉 if for some values

(a11, a12, . . . , a1n, . . . , am1, . . . , amn, b1, . . . , bm) ∈ E,

and for all i = 1, . . . ,m, we have

n∑

j=1

aij · xj = bi.

We say that a linear system with ellipsoid uncertainty is consistent if it
has a possible solution.

Comment. If a system has a possible solution, there usually are several different
possible solutions. When we talk about solving a linear system under uncer-
tainty, we want to describe the entire solution, i.e., the entire set of possible
solutions:

Definition 23.4. By a problem of solving linear systems under ellipsoid un-
certainty, we mean the following problem:

GIVEN:

• a linear system with ellipsoid uncertainty; and

• a positive integer i ≤ n;

FIND: the largest xi and the smallest xi values of xi for all possible solu-
tions (x1, . . . , xi−1, xi, xi+1, . . . , xn) of the given linear system.

Theorem 23.4. (Kreinovich et al. [221]) Checking consistency of linear sys-
tems under ellipsoid uncertainty (as described in Definitions 23.3–23.4) is NP-
hard.
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Theorem 23.5. (Kreinovich et al. [221]) The problem of solving linear systems
under ellipsoid uncertainty (as described in Definitions 23.3-23.4) is NP-hard.

Comment. As we explained in Chapter 1, due to book size limitations, we had
to omit some easily accessible proofs. In particular, we do not present the proofs
of this and the following theorems. These proofs are described, in detail, in the
papers Kreinovich et al. [221] and Lakeyev et al. [243] published in an easily
accessible journals Linear Algebra and its Applications and Kluwer’s Reliable
Computing.

23.4.2. Ellipsoid Uncertainty: Second Definition

Definition 23.3′.

By a linear system under ellipsoid uncertainty, we mean a tuple
〈m,n, Ea, Eb〉, where m and n are positive integers, Ea is a (m × n)-
dimensional ellipsoid with rational coefficients, and Eb is an m-dimensional
ellipsoid with rational coefficients.

We say that a vector (x1, . . . , xn) is a possible solution of a linear system
〈m,n, Ea, Eb〉 if for some values (a11, a12, . . . , a1n, . . . , am1, . . . , amn) ∈ Ea

and (b1, . . . , bm) ∈ Eb, and for all i = 1, . . . ,m, we have

n∑

j=1

aij · xj = bi.

We say that a linear system with ellipsoid uncertainty is consistent if it
has a possible solution.

Theorem 23.4′. (Kreinovich et al. [221]) Checking consistency of linear sys-
tems under ellipsoid uncertainty (as described in Definitions 23.3′–23.4) is NP-
hard.

Theorem 23.5′. (Kreinovich et al. [221]) The problem of solving linear sys-
tems under ellipsoid uncertainty (as described in Definitions 23.3′–23.4) is NP-
hard.

Comment. Similar results hold when we consider the situations of combined
interval and ellipsoid uncertainty:
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23.4.3. Mixed Uncertainty: Ellipsoid Coefficients, In-
terval Right-Hand Side

Definition 23.5.

By a linear system with ellipsoid coefficients and interval right-hand side,
we mean a tuple 〈m,n, Ea,b〉, where m and n are positive integers, Ea is a
(m×n)-dimensional ellipsoid with rational coefficients, and b = b1, . . . ,bm

is an m-dimensional interval vector.

We say that a vector (x1, . . . , xn) is a possible solution of a linear system
〈m,n, Ea,b〉 if for some values (a11, a12, . . . , a1n, . . . , am1, . . . , amn) ∈ Ea

and b1 ∈ b1, . . . , bm ∈ bm, and for all i = 1, . . . , m, we have

n∑

j=1

aij · xj = bi.

We say that a linear system with ellipsoid coefficients and interval right-
hand side is consistent if it has a possible solution.

Definition 23.6. By a problem of solving linear systems with ellipsoid coeffi-
cients and interval right-hand side, we mean the following problem:

GIVEN:

• a linear system with ellipsoid coefficients and interval right-hand side;
and

• a positive integer i ≤ n;

FIND: the largest xi and the smallest xi values of xi for all possible solu-
tions (x1, . . . , xi−1, xi, xi+1, . . . , xn) of the given linear system.

Theorem 23.6. (Kreinovich et al. [221]) Checking consistency of linear sys-
tems with ellipsoid coefficients and interval right-hand side is NP-hard.

Theorem 23.7. (Kreinovich et al. [221]) The problem of solving linear systems
with ellipsoid coefficients and interval right-hand side is NP-hard.
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23.4.4. Mixed Uncertainty: Interval Coefficients, Ellip-
soid Right-Hand Side

Definition 23.7.

By a linear system with interval coefficients and ellipsoid right-hand side,
we mean a tuple 〈m, n,A, Eb〉, where m and n are positive integers, A is
a (m× n)-dimensional interval matrix with rational elements aij , and Eb

is an m-dimensional ellipsoid with rational coefficients.

We say that a vector (x1, . . . , xn) is a possible solution of a linear sys-
tem 〈m,n,A, Eb〉 if for some values a11 ∈ a11, . . . , amn ∈ amn and
(b1, . . . , bm) ∈ Eb, and for all i = 1, . . . , m,, we have

n∑

j=1

aij · xj = bi.

We say that a linear system with interval coefficients and ellipsoid right-
hand side is consistent if it has a possible solution.

Definition 23.8. By a problem of solving linear systems with interval coeffi-
cients and ellipsoid right-hand side, we mean the following problem:

GIVEN:

• a linear system with ellipsoid coefficients and interval right-hand side;
and

• a positive integer i ≤ n;

FIND: the largest xi and the smallest xi values of xi for all possible solu-
tions (x1, . . . , xi−1, xi, xi+1, . . . , xn) of the given linear system.

Theorem 23.8. (Kreinovich et al. [221]) Checking consistency of linear sys-
tems with interval coefficients and ellipsoid right-hand side is NP-hard.

Theorem 23.9. (Kreinovich et al. [221]) The problem of solving linear systems
with interval coefficients and ellipsoid right-hand side is NP-hard.
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23.5. Sets more general than ellipsoids

23.5.1. Non-Gaussian Probability Distributions and
Resulting Sets

Why Gaussian? One of the reasons why ellipsoids provide an adequate de-
scription of uncertainty is that ellipsoids naturally come from Gaussian distrib-
utions, the error probability distributions that are most widely used in practice
(see, e.g., Rabinovich [332]). The main fundamental motivation to use Gaussian
distributions is that according to the central limit theorem, under reasonable
assumptions, the distribution of the sum of several (N) independent small ran-
dom variables tends to the Gaussian distribution as N →∞. Therefore, if we
eliminate major error components in the measurement error, the resulting error
will be caused by the cumulative effect of many independent small components,
and hence, its distribution will be close to Gaussian (see, e.g., [421]), Gnedenko
et al. [128], and Arak et al. [14]).

Sometimes, errors are not Gaussian. In many cases, error distribution is
Gaussian. However, in other cases, the distribution is different (see, e.g., Novit-
skii et al. [311], Orlov [319]. The reason why the above fundamental argument
is not always applicable to measurements is that for some measurements, we
know several major sources of error, but we cannot eliminate the corresponding
error components.

For example, in indirect geophysical measurements, without the very
drilling that we are trying to avoid, we cannot measure the corresponding
error-inducing characteristics.

As a result, the actual error distribution is often far from being Gaussian.

Weibull-type distributions: empirical fact. According to the experi-
mental data analyzed in Novitskii et al. [311], for the majority of measur-
ing instruments, the probability distribution of the measurement error ∆x
can be described by a Weibull-type distribution with the probability density
const · exp(−k · |∆x|p) for some p > 0. These distributions and the corre-
sponding statistical methods are actively used in data processing, especially in
geodesy and geophysics; see, e.g., Claerbout [67], Heindl et al. [144, 145, 146],
Tarantola [406], Scales [373], Gomberg et al. [130], Gerstenberger [125], Doser
et al. [94], and references therein.
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Weibull-type distributions: theoretical justification. For a Weibull-type
distribution, if we have several independent measurements x̃(1), . . . , x̃(n) of the
same quantity x, then for each x, the probability density is equal to the product

ρ =
(
const · exp(−k(|x̃(1) − x|p)

)
· . . . ·

(
const · exp(−k(|x̃(n) − x|p)

)
=

const · exp
(
−k(|x̃(1) − x|p + . . . + |x̃(n) − x|p)

)
,

and, as an estimate for x, it is natural to choose the most probable value, i.e.,
the value for which ρ → max. In statistics, the choice of the most probable
value is called the Maximum Likelihood Method. For Weibull distribution, the
maximum likelihood method is equivalent to

|x̃(1) − x|p + . . . + |x̃(n) − x|p → min .

This condition is scale-invariant in the sense that it leads to the same x if we
use a different unit for measuring x (i.e., if we replace x by λ · x and x̃(j) by
λ · x̃(j), where λ is the ratio of the old and the new units). It turns out that
the above-described Weibull-type distributions are the only distributions for
which the corresponding maximum likelihood method lead to a scale-invariant
formula Bickel [46], Kirillova et al. [196, 177], and Shevlyakov et al. [393].
Thus, we get a theoretical justification for this class of distributions.

Sets resulting from Weibull-type distributions. If we make several in-
dependent measurements of different quantities, and the probability density of
each measurement error ∆xi = x̃i− xi is distributed according to the Weibull-
like distribution (with the same p but with probably different consti and ki),
then the resulting probability density ρ(~̃x) on the set of possible measurement
results ~̃x = (x̃1, x̃2, . . . , x̃n) has the following form:

ρ(~̃x) = const · exp

(
−

n∑

i=1

ki · |xi − x̃i|p
)

, (23.5)

Similarly to the Gaussian case, this probability density ρ(~̃x) is everywhere pos-
itive; this means that, in principle, for any given set of measurement results
~̃x, an arbitrary tuple ~x is possible. In practical statistics, however, tuples with
very low probability density ρ(~̃x) are considered impossible. It is natural to
choose some value α > 0, and consider only tuples for which ρ(~̃x) ≥ α as possi-
ble ones. For Weibull-type distribution (23.5), the resulting formula (23.4) can
be simplified, by taking logarithms of both sides, into a formula

n∑

i=1

ki · |xi − x̃i|p ≤ C. (23.6)
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For p = 2, this formula turns into an ellipsoid; therefore, we will call the set of
all vectors (x1, . . . , xn) that satisfy this formula a p-generalized ellipsoid.

Comment. If the measurement errors are not independent, then we get an even
more general class of sets. As we will show, the main computational problems
of interval computations and data processing are NP-hard already for sets of
type (23.5); therefore, they are NP-hard for more general sets as well.

23.5.2. Definitions and the Main Results

Definition 23.9. Let p ≥ 1 be a real number, and let n be a positive integer.
By a p-generalized ellipsoid in an n-dimensional space Rn, we mean a tuple
〈~̃x,~k, C〉, where ~̃x ∈ Rn, a vector ~k = (k1, . . . , kn) ∈ Rn consists of positive
values ki, and C > 0 is a positive real number. We say that a vector ~x =
(x1, . . . , xn) belongs to the generalized ellipsoid if the formula (23.6) holds.

Comment. For p = 2, a generalized ellipsoid becomes a normal ellipsoid.

Definition 23.10. By the ε-approximate p-generalized ellipsoid computation
problem, we mean the following problem:

GIVEN:

• a positive integer n;

• a polynomial f(x1, . . . , xn);

• a rational number ε > 0;

• a rational number p ≥ 1; and

• a p-generalized ellipsoid E.

COMPUTE rational numbers ỹ and ỹ that are ε-close to y =
max f(x1, . . . , xn) and y = min f(x1, . . . , xn), and the maximum and min-
imum are taken over all points ~x = (x1, . . . , xn) ∈ E.

Theorem 23.10. For quartic polynomials, for every ε > 0 and p ≥ 1, the
ε-approximate p-generalized ellipsoid computation problem is NP-hard.
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Definition 23.11.

By a linear system under (pa, pb)-generalized ellipsoid uncertainty, we
mean a tuple 〈m,n, pa, pb, Ea, Eb〉, where m and n are positive integers,
Ea is a (m × n)-dimensional pa-generalized ellipsoid with rational coeffi-
cients, and Eb is an m-dimensional pb-generalized ellipsoid with rational
coefficients.

We say that a vector (x1, . . . , xn) is a possible solution of a linear system
〈m,n, pa, pb, Ea, Eb〉 if for some values (a11, . . . , a1n, . . . , am1, . . . , amn) ∈
Ea and (b1, . . . , bm) ∈ Eb, and for all i = 1, . . . ,m, we have

n∑

j=1

aij · xj = bi.

We say that a linear system with ellipsoid uncertainty is consistent if it
has a possible solution.

Definition 23.12. By a problem of solving linear systems under (pa, pb)-
generalized ellipsoid uncertainty, we mean the following problem:

GIVEN:

• a linear system with (pa, pb)-generalized ellipsoid uncertainty; and

• a positive integer i ≤ n;

FIND: the largest xi and the smallest xi values of xi for all possible solu-
tions (x1, . . . , xi−1, xi, xi+1, . . . , xn) of the given linear system.

Theorem 23.11. (Lakeyev et al. [243]) For every pa and pb, checking consis-
tency of linear systems under (pa, pb)-generalized ellipsoid uncertainty is NP-
hard.

Theorem 23.12. (Lakeyev et al. [243]) For every pa and pb, the problem
of solving linear systems under (pa, pb)-generalized ellipsoid uncertainty is NP-
hard.
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23.5.3. Auxiliary Results: Linear Systems with Mixed
Uncertainty

Definition 23.23. Let pa ≥ 1.

By a linear system with pa-generalized ellipsoid coefficients and interval
right-hand side, we mean a tuple 〈m,n, pa, Ea,b〉, where m and n are pos-
itive integers, Ea is a (m × n)-dimensional pa-generalized ellipsoid with
rational coefficients, and b = b1, . . . ,bm is an m-dimensional interval vec-
tor.

We say that a vector (x1, . . . , xn) is a possible solution of a linear system
〈m,n, pa, Ea,b〉 if for some values (a11, . . . , a1n, . . . , am1, . . . , amn) ∈ Ea

and b1 ∈ b1, . . . , bm ∈ bm, and for all i = 1, . . . , m,, we have

n∑

j=1

aij · xj = bi.

We say that a linear system with pa-generalized ellipsoid coefficients and
interval right-hand side is consistent if it has a possible solution.

Definition 23.14. By a problem of solving linear systems with pa-generalized
ellipsoid coefficients and interval right-hand side, we mean the following prob-
lem:

GIVEN:

• a linear system with pa-generalized ellipsoid coefficients and interval
right-hand side; and

• a positive integer i ≤ n;

FIND: the largest xi and the smallest xi values of xi for all possible solu-
tions (x1, . . . , xi−1, xi, xi+1, . . . , xn) of the given linear system.

Theorem 23.23. (Lakeyev et al. [243]) For every pa ≥ 1, checking consistency
of linear systems with pa-generalized ellipsoid coefficients and interval right-
hand side is NP-hard.

Theorem 23.14. (Lakeyev et al. [243]) For every pa ≥ 1, the problem of solv-
ing linear systems with pa-generalized ellipsoid coefficients and interval right-
hand side is NP-hard.
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Definition 23.15. Let pb ≥ 1.

By a linear system with interval coefficients and pb-generalized ellipsoid
right-hand side, we mean a tuple 〈m,n, pb,A, Eb〉, where m and n are
positive integers, A is a (m×n)-dimensional interval matrix with rational
elements aij , and Eb is an m-dimensional pb-generalized ellipsoid with
rational coefficients.

We say that a vector (x1, . . . , xn) is a possible solution of a linear sys-
tem 〈m,n, pb,A, Eb〉 if for some values a11 ∈ a11, . . . , amn ∈ amn and
(b1, . . . , bm) ∈ Eb, and for all i = 1, . . . , m,, we have

n∑

j=1

aij · xj = bi.

We say that a linear system with interval coefficients and pb-generalized
ellipsoid right-hand side is consistent if it has a possible solution.

Definition 23.16. By a problem of solving linear systems with interval co-
efficients and pb-generalized ellipsoid right-hand side, we mean the following
problem:

GIVEN:

• a linear system with pb-generalized ellipsoid coefficients and interval
right-hand side; and

• a positive integer i ≤ n;

FIND: the largest xi and the smallest xi values of xi for all possible solu-
tions (x1, . . . , xi−1, xi, xi+1, . . . , xn) of the given linear system.

Theorem 23.15. (Lakeyev et al. [243]) For every pb ≥ 1, checking consistency
of linear systems with interval coefficients and pb-generalized ellipsoid right-
hand side is NP-hard.

Theorem 23.16. (Lakeyev et al. [243]) For every pb ≥ 1, the problem of solv-
ing linear systems with interval coefficients and pb-generalized ellipsoid right-
hand side is NP-hard.
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Proofs

Proof of Theorem 23.1. Let us first show that the ellipsoid computation
problem is feasible for quadratic functions f(x1, . . . , xn), i.e., that it is feasible
to find the minimum and the maximum of a quadratic function f(x1, . . . , xn)
under a quadratic constraint g(x1, . . . , xn) ≤ C. It is sufficient to consider the
minimum, because the maximum can be found in a similar fashion.

The minimum is attained either inside the ellipsoid, in which case all partial
derivatives are equal to 0, and we have an easy-to-solve system of linear equa-
tions, or on its border g(x1, . . . , xn) = C. To find the minimum of f(x1, . . . , xn)
on the border g(x1, . . . , xn) = C, we can use the Lagrange multiplier method,
i.e., consider the unconstrained minimum f(x1, . . . , xn)+λ·g(x1, . . . , xn) → min
and then find λ from the condition that g(x1, . . . , xn) = C. The new objective
function f(x1, . . . , xn) + λ · g(x1, . . . , xn) is also quadratic and therefore, to
find a point x = (x1, . . . , xn) where its unconstrained minimum is attained, we
can equate all its partial derivatives to 0 and get a system of linear equations.
The coefficients of this system linearly depend on the (unknown) parameter λ;
therefore, this system has the form (F + λ ·G)x = f + λ · g for some (known)
matrices F, G, and vectors f and g. Hence, x = (F + λ · G)−1(f + λ · g).
Substituting this x into the equation g(x1, . . . , xn) = C, we get a polynomial
equation with a single unknown λ; so, we can use a known polynomial-time
algorithm for solving such equations (see Chapter 18). Thus, we can feasibly
compute all points x in which the minimum can be attained. By comparing
the values of the function f(x1, . . . , xn) in all these points, we get the desired
minimum.

A simple algorithm that we have described requires polynomial time but may
not be very practical. Vavasis [417] describes somewhat more complicated
polynomial-time algorithms for solving this problem that are already very prac-
tical.

The second part of the theorem follows from the fact that, according to The-
orem 17.1, the unconditional minimization problem is NP-hard for quartic
polynomials. For polynomials f(x1, . . . , xn) considered in the proof of that
theorem, we can easily find the bound B such that the minimum of the func-
tion f(x1, . . . , xn) is attained when each of the variables xi is in the interval
[−B, B]. The resulting box [−B, B]× . . .× [−B, B] is contained in an ellipsoid
x2

1+. . .+x2
n ≤ n·B2. Therefore, minimizing the objective function f(x1, . . . , xn)

over this ellipsoid in equivalent to its unconditional minimization. Since we al-
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ready know that unconditional minimization is NP-hard, we can thus conclude
that ellipsoid computations are NP-hard. The theorem is proven.

Proof of Theorem 23.2. Theorem 23.2 follows from the first part of The-
orem 17.3 in the same way as the first part of Theorem 23.1 follows from
Theorem 17.1.

Proof of Theorem 23.10. This theorem is proven similarly to the second
part of Theorem 23.1.





24
NON-INTERVAL UNCERTAINTY II:

MULTI-INTERVALS AND THEIR
GENERALIZATIONS

The basic problem of interval computations is to find all possible values of
y = f(x1, . . . , xn) when we only have partial information about xi.

Traditional interval computation techniques deal with the situation in which
the set of all possible values of each variable xi is an interval xi = [xi, xi] (where
xi is the smallest possible value of xi and xi is the largest possible value of xi),
and all possible combinations of these values are possible. In this case, the set
of all possible values of ~x = (x1, . . . , xn) is a multi-dimensional interval (box)
x1 × . . .× xn.

In the previous chapter, we considered the situations in which for each vari-
able xi, its set of possible values is (still) an interval, but not all combinations
of xi are possible. In this case, all possible values of ~x form a subset of the box,
e.g., an ellipsoid.

In this chapter, we consider the case in which for some variables xi, not all
values from the interval [xi, xi] are possible. In this case, the set of all possible
values of each variable xi becomes disconnected: it is, e.g., a union of two or
more intervals. Such a union is called a multi-interval.

We describe why such multi-intervals appear in practical problems, and
analyze the computational complexity and feasibility of multi-interval (and
more general) computations.

309
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24.1. Not Only Intervals: Practical Motivation

Why non-interval sets: a theoretical possibility. The basic problem of
interval computations is to find all possible values of y = f(x1, . . . , xn) when
we only have partial information about xi.

In the previous chapters, we considered the situations in which for each variable
xi, this uncertainty is of interval type, i.e., in which the set Xi of possible values
of xi coincides with the interval xi = [xi, xi], where xi is the smallest possible
value of xi and xi is the largest possible value of xi.

In practice, however, sometimes we know not only the bounds xi and xi on
the possible values on xi, but we also know that some values from the interval
[xi, xi] are impossible. In this case, the set Xi of all possible values of xi is
not an interval. Let us give a few examples of different possible origins of such
situations.

Origin 1: non-interval noise. (Misane et al. [284], Nguyen et al. [305])
In computer engineering, especially in computer design and testing, we must
perform measurements (of current, voltage, etc.) inside the computer. For each
such measurement, we know the upper bound ∆ on the measurement error, i.e.,
we know that the measurement error ∆x is guaranteed to belong to the interval
[−∆, ∆]. In many measurements, this error is mainly caused by the influence
of a nearby magnetic memory element, which can be in two possible states
(corresponding to “0” and “1”). In this case, the error is either positive, or
negative (depending on the state), but never 0; actually, the error can never
be smaller than some value δ. Hence, the set X of possible values of the error
is not an interval, but a union of two intervals: X = [−∆,−δ] ∪ [δ,∆]. Such a
union of several intervals is also called a multi-interval.

Origin 2: measuring x2 (or a more complicated function) instead of
directly measuring x. Another case of a non-interval uncertainty is when we
do not exactly measure xi directly. This may sound somewhat strange because
the entire reason for measuring the quantities xi is that we can measure these
quantities directly, as opposed to the desired quantity y that we cannot easily
directly measure. In reality, there is no inconsistency here: yes, we can measure
xi directly, but there are several degrees of directness. To measure an arbitrary
quantity xi, we must generate an electric signal that represents its value; such
generation is done by a sensor.
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For example, a photo-sensor generates the signal representing the light’s
intensity, an accelerometer generates a signal characterizing acceleration,
etc.

In some (rare) cases, the signal coming from the sensor is exactly equal (or
exactly proportional) to the measured value, but most often, the signal s is only
a function of the measured value s = g(xi); so, to reconstruct the desired value
xi, we must re-scale the signal s (i.e., compute xi = g−1(s)). For intelligent
sensors and measuring instruments, this re-scaling is performed by a built-in
microprocessor and is, thus, hidden from us. All we get is the signal that is
exactly equal to the measured value. From this viewpoint, this is truly a direct
measurement. However, such a re-scaling is only possible when the function
g(x) is one-to-one. In some cases, this function is not one-to-one, and thus, one
and the same value of the observed signal can correspond to several different
values of the measured quantity.

For example, in computer engineering, it is very difficult to measure cur-
rents inside the chip, because the currents are very weak and traditional
measurement techniques would change these very currents that we are
trying to measure (and thus, disrupt the microprocessor). Therefore, it is
desirable to measure each current xi by measuring some quantity that is
related to the current but that is, by itself, not electromagnetic (and thus,
does not interfere with the workings of the chip). One such possibility is
to measure the heat caused by the current. It is known that the power of
this heat is proportional to the square of the current: s = x2. Thus, e.g.,
if we have measured that the heat is s ∈ [1, 4], then the only information
that we have about the current x is that either x is between 1 and 2, or
that x is between −2 and −1; in other words, the set of all possible values
of the current is a union [−2,−1] ∪ [1, 2] of two (disjoint) intervals.

We can re-formulate this example in slightly different terms: we can assume
that the current is the desired quantity y, and that the heat x1 is the directly
measured quantity. Similarly to the more traditional interval computation set-
ting, there is a relationship between the quantity that we directly measure (i.e.,
x1) and the quantity that we want to reconstruct (i.e., y), but in contrast to
that setting, the value y is not uniquely determined by x1: instead of a normal
(one-valued) function y = f(x1), we have a two-valued “function” y = ±√x1.
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Origin 3: automatic control (Buridan’s ass). An important practical
situation in which multi-intervals appear is automated control (see, e.g., Yen et
al. [433, 434, 435] and Nguyen et al. [303]). If the analyzed system includes
an optimally controlled part, then it is not necessary to actually measure all
the parameters of this part (which may be fastly moving and thus difficult to
measure): it is often sufficient to measure the same parameters as the system
measures, and then use our knowledge of the system’s objective function to
accurately describe its behavior.

For example, when a spaceship re-enters the Earth’s atmosphere, its out-
side temperature gets so high that it is extremely difficult to measure any
characteristics. However, if we know its initial position and velocity and
we know exactly the objective function that its trajectory optimizes, then
we can predict the trajectory of the spaceship with a reasonable accuracy,
and meet it at the desired place.

Due to measurement uncertainty, we can only make approximate predictions.
In most cases, this uncertainty can be well described by intervals, but in some
cases, multi-intervals are a more adequate description. To avoid the complexity
of a spaceship example, let us illustrate this “non-intervalness” on a much
simpler example of a car.

If a car, traveling on a lonely road, is approaching an obstacle, then we can
either turn to the left, or turn to the right. If the situation is absolutely
symmetric, then, from the viewpoint of any reasonable objective function,
both turns are equally good. If we knew the precise values of all the
parameters, then we would be able to recommend the optimal turn angle
ϕ > 0, so that turning ϕ or −ϕ degrees would lead to an optimal obstacle-
avoiding trajectory. In this case, the set of possible angle values consists of
two points {−ϕ,ϕ}. In reality, due to inevitable uncertainty, we can only
describe the interval [ϕ,ϕ] of possible values of this angle. Thus, the set of
possible values of the actual turn angle is a two-component multi-interval
[−ϕ,−ϕ] ∪ [ϕ, ϕ].

This situation formalizes the famous 14th century Buridan’s ass example: when
confronted between two equally accessible and equally attractive bales of hay,
an ass must make an unpredictable choice between the two.
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Comment. In addition to the above examples, there are numerous other prac-
tical applications of multi-intervals in data processing; see, e.g., the survey
Dmitriev et al. [91] and references therein.

Multi-intervals are difficult to process. In spite of the practical impor-
tance of computations with multi-intervals, the existing techniques of process-
ing multi-intervals require lots of computation time. It is not accidental that
several methods of time-saving parallelization have been developed for compu-
tations with multi-intervals; see, e.g., Yakovlev [432], Shvetsov et al. [396], and
[212].

It is important to analyze computational complexity and feasibility of
computations with multi-intervals. Since the existing methods of process-
ing multi-intervals require a lot of computation time, it is very important to
analyze whether the excessive computation time is caused by the inefficiency
of the existing algorithms or by the complexity of the problem itself. In other
words, it is necessary to analyze the computational complexity and feasibility of
computations involving multi-intervals.

24.2. Multi-Interval Computations: Defini-
tions, Computational Complexity, and Feasibil-
ity

Definition 24.1. By a multi-interval X, we mean a finite union of intervals.
If all these intervals have rational endpoints, then this multi-interval is called
rational. Unions of two intervals will be called two-component multi-intervals.

Comment. The basic problem of interval computations is to compute the range
of a given function f(x1, . . . , xn) when xi run over given intervals xi. When
the function f(x1, . . . , xn) is continuous, this range y is itself an interval, and
therefore, to describe this range, it is sufficient to describe its lower and upper
endpoints y and y. If xi belong to multi-intervals, then the set Y of possible
values of y is not necessarily an interval: it is not an interval even for the
simplest possible function f(x1) = x1. Therefore, it is not sufficient to describe
the endpoints y and y of the range, we must also describe which numbers from
the corresponding interval [y, y] belong to the range and which numbers don’t.
In other words, we must be able to check, for each rational number y, whether
y ∈ Y or not. Thus, we arrive at the following definition:
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Definition 24.2. By the basic problem of multi-interval computations, we
mean the following problem:

GIVEN:

• a positive integer n;

• a polynomial f(x1, . . . , xn) with rational coefficients;

• n rational multi-intervals X1, . . . , Xn;

• a rational number y.

CHECK: whether there exist real numbers x1, . . . , xn for which:

• xi ∈ Xi for all i = 1, . . . , n; and

• y = f(x1, . . . , xn).

Theorem 24.1. For linear functions f , the basic problem of multi-interval
computations is NP-hard.

Comments.

From the proof, we will see that this problem is NP-hard even for the
simplest non-interval multi-intervals: namely, for two-component ones.

Since this problem is NP-hard even for linear functions f , it is therefore
NP-hard for any more general class of functions, e.g., for quadratic func-
tions f .

Since interval computations are feasible for linear functions f(x1, . . . , xn),
this result shows that multi-interval computations are more compli-
cated than interval computations. Thus, this result explains the above-
mentioned empirical fact: that multi-intervals are more difficult to handle
than intervals.

Interval Multi-interval
computations computations

Linear f Linear time NP-hard
Quadratic f NP-hard NP-hard
Cubic f NP-hard NP-hard
(and higher order)
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Definition 24.3.

By a multi-interval vector, we mean a sequence (X1, . . . , Xn) of multi-
intervals.

By a multi-interval matrix, we mean a collection of multi-intervals Xij ,
1 ≤ i ≤ n, 1 ≤ j ≤ m.

By a multi-interval linear system, we mean a tuple 〈m,n, A,B〉, where
m and n are positive integers, A is a (m × n)-dimensional multi-interval
matrix with elements Aij , and B is an m-dimensional multi-interval vector
with components Bi.

We say that a vector (x1, . . . , xn) is a possible solution of the linear system
〈m,n, A, B〉 if for some values

a11 ∈ A11, a12 ∈ A12, . . . , a1n ∈ A1n, . . . , am1 ∈ Am1, . . . , amn ∈ Amn,

b1 ∈ B1, . . . , bm ∈ Bm,

and for all i = 1, . . . ,m, we have

n∑

j=1

aij · xj = bi.

We say that a multi-interval linear system is consistent if it has a possible
solution.

Definition 24.4. By a problem of ε−approximately solving multi-interval lin-
ear systems, we mean the following problem:

GIVEN:

• a multi-interval linear system;

• a positive rational number ε > 0; and

• a positive integer i ≤ n;

COMPUTE the rational numbers x̃i and x̃i that are ε-close to, corre-
spondingly, the largest xi and the smallest xi values of xi for all possible
solutions (x1, . . . , xi−1, xi, xi+1, . . . , xn) of the given linear system.
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Theorem 24.2. Checking consistency of multi-interval linear systems is NP-
hard.

Theorem 24.3. For every ε > 0, the problem of ε-approximately solving
multi-interval linear systems is NP-hard.

Comments.

Both results remain true if we only allow two-component multi-intervals.

We will see from the proof that both problems remain NP-hard even if we
require that either A is a numerical matrix, or that B is a numerical vec-
tor. For interval computations, if the matrix A is numerical, the problem
becomes feasible (namely, it becomes a particular case of linear program-
ming). Thus, for solving linear systems, multi-interval computations are
also harder than interval computations.

Interval Multi-interval
computations computations

Numerical Aij , Polynomial time Polynomial time
numerical Bi

Numerical Aij , Polynomial time NP-hard
non-numerical Bi

Non-numerical Aij , NP-hard NP-hard
numerical Bi

Non-numerical Aij , NP-hard NP-hard
non-numerical Bi

24.3. The General Case of (Bounded) Non-
Interval Uncertainty

In this section, we will show that if we add at least one non-interval multi-
interval set to the family of all intervals, then some reasonable interval com-
putation problems that were previously computationally feasible become in-
tractable. Thus, we will provide a justification for using only intervals.

We know that the basic problem of interval computations is NP-hard for poly-
nomials, i.e., for functions that can be obtained from variables xi by addition,
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subtraction, and multiplication. We also know that if we only allow addition
and multiplication, then we get linear functions f(x1, . . . , xn) for which the
basic problem of interval computations is feasible.

A natural question is: What other operations can be added to addition and
subtraction that still keep this computation feasible? If, in addition to +
and −, we allow feasible monotonic functions of one variable g(x) (i.e., func-
tions whose values can be computed in polynomial time), we get function
f(x1, . . . , xn) = g1(x1) + . . . + gn(xn). For such functions f(x1, . . . , xn) and
for intervals x1, . . . ,xn, we can compute Y = [y, y] = f(X1, . . . , Xn) in poly-
nomial time; namely, y =

∑
ti and y =

∑
ti, where:

• ti = gi(xi) if gi(x) is increasing, and ti = gi(xi) if gi(x) is decreasing;

• ti = gi(xi) if gi(x) is increasing, and ti = gi(xi) if gi(x) is decreasing.

Thus, for such functions, the basic problem of interval computation is also
feasible.

We will prove that adding at least one non-interval (closed bounded) rational
multi-interval S to the family of intervals makes this problem NP-hard, even for
the functions gi(x) that are piecewise-linear functions with rational coefficients.

Definition 24.5. Let S be a (closed bounded) rational multi-interval. We say
that a set X is given if either we know that this set is a rational interval (and
we are given its endpoints), or we know that X = S. By PS , we denote the
following general problem:

GIVEN:

• n feasible piece-wise linear functions g1(x), . . . , gn(x) with rational
coefficients;

• n given sets X1, . . . , Xn;

• a rational number y;

CHECK whether y ∈ Y , where

Y = f(X1, . . . , Xn) = {f(x1, . . . , xn)|x1 ∈ X1, . . . , xn ∈ Xn},

and f(x1, . . . , xn) = g1(x1) + . . . + gn(xn).
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Theorem 24.4. (Nogueira et al. [307])

If the set S is an interval, then the problem PS is solvable in polynomial
time.

If the set S is not an interval, then the problem PS is NP-hard.

Comment. So, if we add even a single non-interval multi-interval to the family
of all intervals, then a natural problem which was originally feasible becomes
NP-hard. This result provides one more motivation for using the interval family:
because if we increase this family, we lose computability. It should be mentioned
that there are several alternative justifications of using intervals, such as:

computational simplicity of interval computations Misane et al. [284, 285];

invertibility of interval arithmetic as opposed to arithmetic operations with
non-intervals Bouchon-Meunier et al. [51, 52], Kosheleva et al. [186];

intervals naturally appear when the error is a result of several small causes
[209], etc.

24.3. Infinite Multi-Intervals: Computational
Complexity and Feasibility

In some cases, we get infinite intervals and multi-intervals: e.g., if we measure
the quantity 1/xi and it turns out that 1/xi ∈ [−1, 1], then the possible values
of xi form an infinite multi-interval (−∞,−1] ∪ [1,∞).

When the set of possible values of each variable xi is an infinite interval or multi-
interval Xi, then the range f(X1, . . . , Xn) of most functions f(x1, . . . , xn) is also
infinite (and usually, simply coincides with the entire real line). Thus, after the
corresponding indirect “measurement”, arbitrary large and/or arbitrarily small
values of the indirectly measured quantity y = f(x1, . . . , xn) are still possible.
From the practical viewpoint, this is not what we would call a measurement.

More meaningful problems appear when we consider linear systems in which,
in addition to interval uncertainty, we allow infinite multi-interval coefficients:
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Definition 24.6.

By an infinite multi-interval X, we mean a set (−∞, a] ∪ [a,+∞).

If both endpoints a and a are rational, then this infinite multi-interval is
called rational.

Definition 24.7.

By a mixed interval and infinite multi-interval vector (or simply a mixed
vector, for short), we mean a sequence (X1, . . . , Xn), in which each Xi is
either a rational interval or a rational infinite multi-interval.

By a mixed interval and infinite multi-interval matrix (or simply a mixed
matrix, for short), we mean a collection Xij , in which each Xij is either a
rational interval or a rational infinite multi-interval.

By a mixed interval and infinite multi-interval linear system (or simply a
mixed linear system, for short), we mean a tuple 〈m,n,A, B〉, where m
and n are positive integers, A is a (m×n)-dimensional mixed matrix with
elements Aij , and B is an m-dimensional mixed vector with components
Bi.

We say that a vector (x1, . . . , xn) is a possible solution of the linear system
〈m,n, A, B〉 if for some values

a11 ∈ A11, a12 ∈ A12, . . . , a1n ∈ A1n, . . . , am1 ∈ Am1, . . . , amn ∈ Amn,

b1 ∈ B1, . . . , bm ∈ Bm,

and for all i = 1, . . . ,m,, we have

n∑

j=1

aij · xj = bi.

We say that a mixed linear system is consistent if it has a possible solution.
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Definition 24.8. By a problem of ε−approximately solving mixed linear sys-
tems, we mean the following problem:

GIVEN:

• a mixed linear system;

• a positive rational number ε > 0; and

• a positive integer i ≤ n;

COMPUTE the rational numbers x̃i and x̃i that are ε-close to, corre-
spondingly, the largest xi and the smallest xi values of xi for all possible
solutions (x1, . . . , xi−1, xi, xi+1, . . . , xn) of the given linear system.

Theorem 24.5. Checking consistency of mixed interval and infinite multi-
interval linear systems is NP-hard.

Theorem 24.6. For every ε > 0, the problem of ε-approximately solving mixed
interval and infinite multi-interval linear systems is NP-hard.

Comments. We will see from the proof that both problems remain NP-hard
even if we require that either A is a numerical matrix, or that B is a numerical
vector. For interval computations, if the matrix A is numerical, the problem
becomes feasible (namely, it becomes a particular case of linear programming).
Thus, for solving linear systems, mixed computations are also harder than
interval computations.

Interval Mixed interval
computations and infinite

multi-interval
computations

Numerical Aij , Polynomial time Polynomial time
numerical Bi

Numerical Aij , Polynomial time NP-hard
non-numerical Bi

Non-numerical Aij , NP-hard NP-hard
numerical Bi

Non-numerical Aij , NP-hard NP-hard
non-numerical Bi
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Proofs

Proof of Theorem 24.1. To prove this result, we will reduce the PARTITION
problem (known to be NP-hard) to this problem. In the PARTITION problem,
we are given a sequence of integers s1, . . . , sn, and we must check whether there
exist values y1, . . . , yn for which yi ∈ {−1, 1} and s1 · y1 + . . . + sn · yn =
0. This is exactly a multi-interval computation problem for a linear function
f(x1, . . . , xn) = s1 · x1 + . . . + sn · xn, (two-component) multi-intervals Xi =
[−1,−1] ∪ [1, 1], and y = 0. Thus, the multi-interval computation problem is
indeed NP-hard. The theorem is proven.

Proof of Theorem 24.2. For non-numerical Aij and numerical Bi, NP-
hardness was proven (in the corresponding chapter) even for the case of in-
tervals. Thus, it is sufficient to prove NP-hardness for numerical Aij and
non-numerical Bi. This can be proven by a reduction from PARTITION
similar to the reduction we used in the previous theorem. Namely, for
every sequence s1, . . . , sn, we consider the following equations: x1 = b1,
with B1 = [−1,−1] ∪ [1, 1], . . ., xn = bn, with Bn = [−1,−1] ∪ [1, 1], and
s1 ·x1 + . . .+ sn ·xn = bn+1, where Bn+1 = [0, 0]. This multi-interval system is
consistent if and only if the original PARTITION problem has a solution. Thus,
checking consistency of multi-linear systems is indeed NP-hard. The theorem
is proven.

Proof of Theorem 24.3. For this result, we will also use reduction to
PARTITION, but the system will be slightly different: for every instance
(s1, . . . , sn), we will consider the following system of equations with n + 1
unknowns x1, . . . , xn+1:

xi = bi, Bi = [−1,−1] ∪ [1, 1], 1 ≤ i ≤ n + 1;

s1 · x1 + . . . + sn · xn + sn+1 · xn+1 = sn+1, where we denoted sn+1 =
−0.5 · (s1 + . . . + sn).

This system has a possible solution x1 = . . . = xn = 1, xn+1 = −1, and is,
therefore, consistent. The variable xn+1 has two possible values: −1 and 1.
The value −1 is always possible, but the value xn+1 = 1 is possible if and only
if s1 · x1 + . . . + sn · xn = 0 for some x1 ∈ {−1, 1}, . . . , xn ∈ {−1, 1}, i.e., if and
only this instance of the PARTITION problem is solvable. Thus, depending
on whether this instance is solvable or not, we will get either xn+1 = 1 or
xn+1 = −1. Therefore, if we are able to solve multi-interval linear systems
with accuracy ε < 1, we can check whether the actual value of xn+1 is −1 or
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1, and hence, solve the given instance of PARTITION. Since PARTITION is
known to be NP-hard, our problem is thus also NP-hard.

For ε > 1, we can consider the system Ax = 2ε · B. Solving this system with
accuracy ε is equivalent to solving the system Ax = B with accuracy 0.5, and
thus, to solving the given instance of PARTITION. The theorem is proven.

Proof of Theorem 24.4. We have already shown that for a rational interval
S, this problem is indeed solvable in polynomial time. Let us show that for all
other rational multi-intervals S, this problem is NP-hard.

1◦. For this proof, we will need the following fact: If S is a bounded closed
set and not an interval, then there exist real numbers a and a that themselves
belong to S, but no intermediate value a ∈ (a, a) belongs to S.

Indeed, every set S is contained in the interval (possibly infinite) [inf S, supS].
Since S is bounded, the endpoints inf S and sup S of this interval are finite.
Since S is closed, both endpoints belong to S. Since S is not an interval, it
cannot coincide with this interval, so there must exist a point a ∈ (inf S, supS)
that does not belong to S.

Now, we can take a = sup{s ∈ S|s < a} and a = inf{s ∈ S|s > a}. By
definition of inf and sup, no point in between a and a can belong to S. Since
S is closed, both points a and a belong to S. The statement is proven.

For a rational multi-interval, these points a and a are rational numbers.

2◦. Now, we are ready to prove NP-hardness of our problem by reducing
PARTITION to it. Let s1, . . . , sn be an instance of PARTITION. Then, we
can design the following particular case of our problem PS :

•

gi(xi) =




−si if xi ≤ a
−si + 2si · (xi − a)/(a− a) if a < xi < a
si if xi ≥ a

• all sets Xi are equal to S, and

• rational number y = 0.

We will show that for this case, 0 ∈ f(X1, . . . , Xn) ⇔ the given instance of
PARTITION has a solution.
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⇒ Assume that 0 ∈ f(X1, . . . , Xn). By definition of the set f(X1, . . . , Xn),
this means that there exists real numbers x1 ∈ X1, . . . , xn ∈ Xn such that
f(x1, . . . , xn) = 0, i.e.,

g1(x1) + . . . + gn(xn) = 0 (24.1).

The numbers xi are within the set S, and therefore, these numbers cannot
belong to the interval (a, a) (due to our choice of a and a). Hence, xi ≤ a
or xi ≥ a. For every i, let us take yi = 1 if xi ≥ a, and yi = −1 if xi ≤ a.
By definition of the functions gi(xi), we have gi(xi) = si for xi ≥ a and
gi(xi) = −si for xi ≤ a. Thus, in both cases, gi(xi) = si · yi. Hence, from
(24.1), we conclude that

s1 · y1 + . . . + sn · yn = 0, (24.2)

i.e., that the given instance of PARTITION problem has a solution.

⇐ Vice versa, if (24.2) has a solution, we can take xi = a when yi = 1, and
xi = a when yi = −1. Then, as before, gi(xi) = si · yi, and therefore, (24.2)
implies (24.1), i.e., f(x1, . . . , xn) = 0, and 0 ∈ f(X1, . . . , Xn).

Reduction is proven, so our problem PS is indeed NP-hard. The theorem is
proven.

Proof of Theorem 24.5. The proof is similar to the proof of Theorem 24.2,
the only difference is that for each variable xi, instead of a single equation
xi = bi with Bi = [−1,−1] ∪ [1, 1], we have to consider two equations xi = b

(1)
i

with B
(1)
i = [−1, 1] and xi = b

(2)
i with B

(2)
i = (−∞,−1] ∪ [1,+∞). These two

equations hold if and only if xi ∈ B
(1)
i ∩B

(2)
i = {−1, 1}. Thus, they are indeed

equivalent to the original equation. The theorem is proven.

Proof of Theorem 24.6. This theorem is proven by applying the same mod-
ification that we used for the previous theorem to the proof of Theorem 24.3.





25
WHAT IF QUANTITIES ARE

DISCRETE?

25.1. Why Discrete Quantities?

The basic problem of interval computations that we analyze in this book is to
compute the accuracy of the results of data processing. To be more precise,
we know an algorithm f(x1, . . . , xn) that is used in data processing and the
intervals xi of possible values of the input quantities x1, . . . , xn, and we want
to describe the set of all possible values of f(x1, . . . , xn) when xi ∈ xi.

In interval computations, it is customary to consider quantities x1, . . . , xn that
can, in principle, take arbitrary real values. For any such quantity xi, if the only
information we have about its value is that this value belongs to the interval
[x−i , x+

i ], then each number from this interval can be a possible value of xi.
Therefore, the set of possible values of f(x1, . . . , xn) coincides with the range

Y = f(x1, . . . ,xn) = {f(x1, . . . , xn)|x1 ∈ x1, . . . , xn ∈ xn}
of the function f on intervals xi.

Our problem then is to describe this set Y . What does it mean to describe this
set? It means, e.g., that for every number y, we must be able to tell whether
y belongs to this set or not. For a continuous function f , the range Y is an
interval; therefore, in order to describe this set Y , it is sufficient to describe
its two endpoints y−, y+. If we know these endpoints, then in order to check
whether a given number y belongs to the set Y = [y−, y+], it is sufficient to
check two inequalities y ≥ y− and y ≤ y+.

There are, however, some real-life situations where some quantities xi cannot
take all possible real numbers as their values: they can only take values that

325
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are integer multiples of a certain value qi (called a quantum). In other words,
possible values of xi are . . . ,−nqi, . . . ,−2qi,−qi, 0, qi, 2qi, . . . , nqi, . . . Typical
examples of such quantities are electric charge, spin (for which qi = 1/2), and
many other characteristics of elementary particles, ions, atoms, etc.

In such cases, if we know (from the measurements) the interval of possible values
[x−i , x+

i ] of such a quantity xi, then only numbers that belong to this interval
and that are integer multiples of qi are possible values of xi. When the set of
possible values xi is discrete, the set Y of possible values of y = f(x1, . . . , xn)
is not necessarily an interval. Therefore, to describe this set Y , it is no longer
sufficient to describe its greatest lower bound inf Y and its least upper bound
supY ; we must also be able, for every rational number y, to check whether this
number belongs to the set Y or not. (Similarly to the previous chapters, we
restrict ourselves to rational numbers, because the existing computers usually
represent only rational numbers. The following results will not change much if
we use other computer-represented numbers.)

25.2. Precise Formulation of the Basic Problem
of Discrete Interval Computations

Definition 25.1. By the basic problem of discrete interval computations, we
mean the following problem:

GIVEN:

• a positive integer n;

• a polynomial f(x1, . . . , xn);

• n positive rational numbers q1, . . . , qn;

• n intervals xi = [x−i , x+
i ], 1 ≤ i ≤ n, with rational endpoints x−i and

x+
i .

• a rational number y.

CHECK: whether there exist real numbers x1, . . . , xn for which:

• xi ∈ xi for all i = 1, . . . , n;

• the ratio xi/qi is an integer for all i = 1, . . . , n;

• y = f(x1, . . . .xn).
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25.3. Computational Complexity of Discrete In-
terval Computations

The natural question is: what is the computational complexity of this problem?

Are discrete interval computations easier? At first glance, it may seem
that this problem is easier than non-discrete interval computations. Intuitively,
the complexity of a computational problem depends on the size of the area
where a solution has to be found. This size describes the total number of
objects that we need to analyze in order to find a solution; thus, the larger this
size, the more complicated the problem.

This intuition is generally true; e.g., the more variables a problem has, the
more difficult it is to solve it.

From this viewpoint, when we impose the additional condition that the ratio
xi/qi must be an integer, then we drastically decrease the size of the area where
the solution can be found: from continuum to a finite set. Therefore, it may
seem at first glance that the discrete problem is computationally easier than
the continuous problem of interval computations.

As we will soon see, this intuitive conclusion is false. The basic problem of
discrete interval computations is computationally harder than its continuous
analogue.

Computational complexity of the basic problem of discrete interval
computations. For (continuous) interval computations, the basic problem is
already NP-hard for quadratic functions

f(x1, . . . , xn) = a0 + a1x1 + . . . + anxn + a11x
2
1 + a12x1x2 + . . . + annx2

n.

The major case when this problem can be solved in polynomial time is the case
of linear functions f(x1, . . . , xn) = a0 + a1x1 + . . . + anxn. For this class, the
basic problem of (continuous) interval computations is computable not only in
polynomial time, but even in linear time. For discrete interval computations,
the problem is much more difficult:

Theorem 25.1. For linear functions f , the basic problem of discrete interval
computations is NP-hard.
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Comment. Since this problem is NP-hard even for linear functions f , it is
therefore NP-hard for any more general class of functions, e.g., for quadratic
functions f .

Computational complexity of an auxiliary problem of discrete inter-
val computations. If we allow infinite intervals, then for continuous interval
computations, the basic problem of interval computations turns into a problem
of unconstrained optimization. This problem is known to be NP-hard, but de-
cidable in the sense that there exists an algorithm that given a problem, returns
its solution (for example, we can apply Tarski-Seidenberg algorithm [407, 387]).

It turns out that the discrete analogue of this problem is undecidable (i.e., does
not allow any algorithm at all).

To formulate this problem in precise mathematical terms, we take Definition
25.1, and replace each interval [x−i , x+

i ] from that definition by an infinite in-
terval (−∞,∞). Since the intervals are fixed, we do not need to describe them
in the GIVEN part of the problem. Also, for such intervals, the condition
xi ∈ (−∞,∞) is always satisfied, so, we do not need to consider it in the
CHECK part of the problem. As a result, we arrive at the following definition:

Definition 25.2. By the discrete analogue of the unconstrained optimization
problem, we mean the following problem:

GIVEN:

• a positive integer n;

• a polynomial f(x1, . . . , xn);

• n positive rational numbers q1, . . . , qn;

• a rational number y.

CHECK: whether there exist real numbers x1, . . . , xn for which:

• the ratio xi/qi is an integer for all i = 1, . . . , n;

• y = f(x1, . . . .xn).

Theorem 25.2. The discrete analogue of unconstrained optimization problem
is undecidable.



What if Quantities Are Discrete? 329

(Continuous) Discrete
Interval Computations Interval Computations

Linear f Linear time NP-hard
Quadratic f NP-hard NP-hard
Unconstrained
Optimization Decidable Undecidable

Proofs

Proof of Theorem 25.1. To prove this result, we will reduce the PARTITION
problem (known to be NP-hard) to this problem. In the PARTITION problem,
we are given a sequence of integers s1, . . . , sn, and we must check whether there
exist values y1, . . . , yn for which yi ∈ {−1, 1} and s1 · y1 + . . . + sn · yn = 0.
In this problem, each variable yi can take only two possible values: −1 and 1.
Instead of these variables yi, we can consider new variables xi = (yi + 1)/2.
When yi ∈ {−1, 1}, then xi ∈ {0, 1}. To describe the condition

∑
si · yi = 0

in terms of the new variables xi, we will use the fact that yi = 2xi − 1; then,
the desired condition takes the form 2

∑
si · xi −

∑
si = 0. If we divide both

sides of this equality by 2 and move the negative term to the other side of the
equality, we get

∑
si · xi = y, where y = (1/2) · (s1 + . . . + sn). Hence, the

PARTITION problem is equivalent to the following problem:

GIVEN:

• a positive integer n;

• n non-negative integers s1, . . . , sn;

CHECK: whether there exist real numbers x1, . . . , xn for which:

• xi ∈ {0, 1} for all i = 1, . . . , n;

• y = s1 · x1 + . . . + sn · xn, where y = (1/2) · (s1 + . . . + sn).

The only difference between this problem and the discrete interval problem for
the linear function f(x1, . . . , xn) is that the condition xi ∈ {0, 1} is not in the
desired form. But this condition can be easily represented in the desired form
if we take x−i = 0, x+

i = 1, and qi = 1: indeed, the only numbers from the
interval [0, 1] that are multiples of 1 are 0 and 1.
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Thus, the PARTITION problem (which is known to be NP-hard) can indeed
be reduced to a particular case of the basic problem of discrete interval com-
putations for linear functions f ; therefore, this basic problem is also NP-hard.
The theorem is proven.

Proof of Theorem 25.2. For q1 = . . . = qn = 1, the problem reduces to
checking whether a given polynomial f has an integer solution. An equation in
which we are looking for an integer solution is called Diophantine. It is known
that there exists no algorithm for solving Diophantine equations (this result,
originally proved by Matiyasevich [275] (see also [276, 85]), was a solution to
the famous Hilbert’s Tenth Problem [151]). Thus, the more general problem
(discrete analogue of unconstrained optimization) is also undecidable. The
theorem is proven.



26
ERROR ESTIMATION FOR

INDIRECT MEASUREMENTS:
INTERVAL COMPUTATION

PROBLEM IS (SLIGHTLY) HARDER
THAN A SIMILAR PROBABILISTIC

COMPUTATIONAL PROBLEM

One of main applications of interval computations is estimating errors of in-
direct measurements. A quantity y is measured indirectly if we measure some
quantities xi related to y and then estimate y from the results x̃i of these mea-
surements as f(x̃1, . . . , x̃n) by using a known relation f . Interval computations
are used “to find the range of f(x1, . . . , xn) when xi are known to belong to
intervals xi = [x̃i − ∆i, x̃i + ∆i],” where ∆i are guaranteed accuracies of di-
rect measurements. It is known that the corresponding problem is intractable
(NP-hard) even for polynomial functions f .

In some real-life situations, we know the probabilities of different value of xi;
usually, the errors xi − x̃i are independent Gaussian random variables with 0
average and known standard deviations σi. For such situations, we can formu-
late a similar probabilistic problem: “given σi, compute the standard deviation
of f(x1, . . . , xn)”. It is reasonably easy to show that this problem is feasible for
polynomial functions f . So, for polynomial f , this probabilistic computation
problem is easier than the interval computation problem.

It is not too much easier: Indeed, polynomials can be described as functions
obtained from xi by applying addition, subtraction, and multiplication. A
natural expansion is to add division, thus getting rational functions. We prove
that for rational functions, the probabilistic computational problem (described
above) is NP-hard.

The results of this chapter appear in Kosheleva et al. [185].

331
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26.1. Introduction

Interval computations solve a real-life problem. We are interested in
some properties of known objects. Some of these properties we can simply
measure (like a body temperature). No computation is necessary here. Such
measurements are never absolutely accurate. Therefore, the result x̃ of measur-
ing x can differ from the actual value of x. How large can an error ∆x = x̃− x
be? Manufacturers of measuring instruments guarantee some accuracy ∆; this
means that the error will never exceed ∆: |∆x| ≤ ∆. So, if our measurement
result is x̃, then the possible values of x = x̃−∆x form an interval [x̃−∆, x̃+∆].

Some quantities we can simply measure; but for many others quantities, it is
either impossible or too costly to measure them directly. Such situations are
very frequent. There is no ruler to measure the distance between us and a
quasar, no scales to weigh the Earth or our Galaxy, no speedometer to measure
directly the speed of elementary particles.

Since we cannot simply measure, we need to compute such values. All these
values are measured indirectly: we measure several other quantities x1, . . . , xn

that are related to the desired one y, and then we reconstruct the value of y from
the results x̃i of measuring xi. In other words, we have an algorithm f that takes
the values x̃i and returns an estimate ỹ = f(x̃1, . . . , x̃n). This estimate is called
a result of indirect measurement. And here comes the problem: to estimate the
error of this estimate. For example, in case we know the accuracies ∆i with
which we measured xi (i.e., if we know the intervals xi = [x̃i −∆i, x̃i + ∆i] of
possible values of xi), then we would like to know the interval of possible values
of y. This is the basic problem of interval computation with which the entire
field started:

GIVEN:

• a function f : Rn → R;

• n intervals x1, . . . ,xn.

COMPUTE:

the range

fu(x1, . . . ,xn) = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

What does “compute” mean? For a continuous function f , the de-
sired range is an interval, so, to compute a range means to compute the
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endpoints of this range interval, i.e., the values y = inf fu(x1, . . . ,xn) and
y = sup fu(x1, . . . ,xn).

In the majority of the existing computers, only rational numbers are repre-
sented. It is therefore natural to assume that all the parameters in the definition
of a function f are rational numbers:

if f is a polynomial function, then f is a polynomial with rational coeffi-
cients;

if f is a rational function, then it is a ratio of two polynomials with rational
coefficients,

etc. For such functions, however, the (desired) endpoints of the resulting in-
terval are not necessarily rational numbers. So, when we say that we want to
compute these endpoints, we mean that we want, given any accuracy ε > 0, to
be able to compute these endpoints with the given accuracy (i.e., to compute
some numbers ỹ and ỹ that are ε−close to the desired endpoints).

If a function f is discontinuous for some xi (e.g., if it is a rational function), then
the bounds y and y may be infinite. In the majority of computers, there are
upper bounds on the size of the numbers that can be represented. Therefore,
to represent ∞, we can use the largest possible computer-represented number
M (and we can use −M to represent −∞). In this situation, “to compute”
each of the endpoints y or y means to be able, for any given ε > 0 and M > 0,
to find a value ỹ (correspondingly, ỹ) with the following properties:

if y ≥ M , then ỹ ≥ M − ε;

if y ≤ −M , then ỹ ≤ −(M − ε);

if −M ≤ y ≤ M , then |ỹ − y| ≤ ε.

Interval computations are intractable. The basic problem of interval com-
putations (formulated above) is known to be intractable (NP-hard) even for
quadratic functions f (see previous chapters).

Probabilistic computational problem emerging from error estima-
tion for indirect measurements: informal description. In many real-life
situations, manufacturers of the measuring instruments provide us with the
probabilities of different values of the error ∆xi = x̃i − xi.
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The simplest (and the most frequent) case is when the errors ∆xi are assumed
to be independent Gaussian random variables (see, e.g., Rabinovich [332]).
To describe a Gaussian distribution, it is sufficient to describe the first two
moments. The first moment (average) is usually assumed to be 0, because
if for a given measurement instrument, the average is not 0, then we can re-
calibrate the measuring device to get rid of this systematic error. In this case,
the second moment is simply the square of the standard deviation. So, we can
assume that we know the standard deviation σi of each measurement error ∆xi.

The main fundamental motivation to use Gaussian distributions is that accord-
ing to the central limit theorem, under reasonable assumptions, the distribu-
tion of the sum of several (N) independent small random variables tends to the
Gaussian distribution as N →∞. Therefore, if we eliminate major error com-
ponents in the measurement error, the resulting error ∆xi will be caused by the
cumulative effect of many independent small factors, and hence, its distribution
will be close to Gaussian (see, e.g., Wadsworth [421]).

If the errors ∆xi are independent Gaussian distributed random variables,
then, for every box B = [a1, b1] × . . . × [an, bn] ⊆ Rn, the probability that
(∆x1, . . . , ∆xn) ∈ B is positive (this probability is positive for any random
variable with unbounded joint density function). Therefore, in this Gaussian
(probabilistic) case, for unbounded functions f , no guaranteed bounds for y are
possible.

Instead, we would like to compute the probabilistic characteristics of the re-
sulting random error

∆y = y − ỹ = f(x̃1 −∆x1, . . . , x̃n −∆xn)− f(x̃1, . . . , x̃n).

The two simplest characteristics (the ones most widely used in engineering
measurements; see Rabinovich [332]) are the first and the second moments,
i.e., equivalently, the average E(∆y) and the standard deviation σ(∆y).

As a result, we arrive at the following problem:
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Definition 26.1. By a (E, σ)−probabilistic computational problem emerging
from error estimation for indirect measurement (or simply (E, σ)−probabilistic
computational problem, for short), we mean the following computational prob-
lem:

GIVEN:

• a function f : Rn → R;

• n real numbers x̃1, . . . , x̃n;

• n non-negative real numbers σ1, . . . , σn.

COMPUTE:

the average value E(∆y) and the standard deviation σ(∆y) of ∆y =
f(x̃1−∆x1, . . . , x̃n−∆xn)−f(x̃1, . . . , x̃n), where ∆xi are independent
random variables with Gaussian distribution, 0 average, and standard
deviations σi.

How complicated is the (E, σ)−probabilistic computational problem?
For a linear function f(x1, . . . , xn) = a0 + a1x1 + . . . + anxn, both the interval
and the (E, σ)−probabilistic computational problems can be explicitly solved:

For an interval computation problem, the resulting interval for y is y =
[ỹ −∆, ỹ + ∆], where

∆ = |a1|∆1 + . . . + |an|∆n.

For a similar (E, σ)−probabilistic computational problem, the desired
standard deviation σ(∆y) is equal to

σ(∆y) =
√

a2
1σ

2
1 + . . . + a2

nσ2
n.

To compute ∆, we need n multiplications (|ai|∆i, 1 ≤ i ≤ n) and n − 1 addi-
tions. To compute σ2(∆y), we need 3n multiplications (ai ·ai ·σi ·σi, 1 ≤ i ≤ n).
So, even if we discount the square root and the additions, the formula for σ(∆y)
requires more computation steps than the formula for ∆. Based on this simplest
case, it may seem that our (E, σ)−probabilistic computational problem is more
complicated than the corresponding interval computation problem. So, the
natural question is: is this really so? In particular, is the (E, σ)−probabilistic
computational problem (formulated above) intractable for polynomial functions
f? And if it is not intractable, what if we enlarge the class of functions? These
questions are answered in this chapter.
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26.2. Main Results

Proposition 26.1. There exists a polynomial-time algorithm that solves the
(E, σ)−probabilistic computational problem (emerging from error estimation for
indirect measurements) for polynomial functions f .

Comment. In other words, for polynomial functions f , the (E, σ)−probabilistic
computational problem described above is feasible. So, the interval com-
putation problem emerging from error estimation for indirect measurements
is harder than a similar (E, σ)−probabilistic computational problem. How
harder? I.e., what operations can we add to polynomials and still retain feasi-
bility of the (E, σ)−probabilistic computational problem?

Our informal answer to this question is: probably, none, because when we add
the simplest possible operation, feasibility is lost.

The precise result can be formulated as follows: Polynomials can be described
as functions obtained from xi by applying addition, subtraction, and multipli-
cation. A natural expansion is to add division, thus getting rational functions.
Our second result is that already for rational functions, the (E, σ)−probabilistic
computational problem is NP-hard.

Theorem 26.1. For rational functions f , the (E, σ)−probabilistic computa-
tional problem (emerging from error estimation for indirect measurements) is
intractable (NP-hard).

The results of this chapter can be represented as a table:

f(x1, . . . , xn) Interval (E, σ)-Probabilistic
computations computations

Linear f Linear time Linear time
(slightly faster) (slightly slower)

Quadratic f NP-hard Polynomial time
Polynomial f NP-hard Polynomial time
Rational f NP-hard NP-hard
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26.3. Open Problem: How Complicated Is It
to Compute Other Probabilistic Characteristics
of Indirect Measurements (In Particular, Con-
fidence Intervals)?

It is desirable to compute other characteristics. The first two moments
do not describe the probability distribution completely. Therefore, to describe
the distribution of ∆y, we must also describe other probabilistic characteristics
of ∆y.

In particular, since in general, no guaranteed bounds for y are possible, it is
natural to looks for an interval that contains y with a certain probability p0

(close to 1), i.e., for a confidence interval for f(x1, . . . , xn).

For confidence intervals, traditional engineering methods do not give
guaranteed estimates. In traditional engineering practice (see, e.g., Rabi-
novich [332]), confidence intervals for the result y of indirect measurement are
estimated from the average E(∆y) and the standard deviation σ(∆y) on the
assumption that the distribution of y is Gaussian (for Gaussian distribution,
simple formulas are known for computing confidence intervals).

The actual probability distribution for ∆y may be close to Gaussian, but for
non-linear functions f , it is (in general) not exactly Gaussian. Therefore, these
engineering estimates are only approximately true, and they do not guarantee
that y belongs to the constructed interval with the desired probability p0.

Chebyshev’s inequalities give a guaranteed but too wide enclosure
for the confidence interval. To get guaranteed bounds, commonly, the well
known Chebyshev’s theorem is used; this theorem states that for any random
variable ∆y, and for any positive real number k, the inequality

E(∆y)− k · σ(∆y) ≤ ∆y ≤ E(∆y)− k · σ(∆y)

is true with probability ≥ 1− 1/k2.

Chebyshev’s inequality leads to a guaranteed interval, but for the typical case
when the distribution of ∆y is close to the Gaussian distribution, the resulting
interval is often too wide (i.e., much wider than the smallest possible interval
in which the measurement error ∆y is located with a given probability). In
other words, the interval that stems from the Chebyshev’s inequality only gives
a crude enclosure for the desired confidence interval.
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It is desirable to compute the confidence interval exactly. Open
problem. We, therefore, arrive at the following problem of estimating the
confidence interval exactly :

GIVEN:

• a function f : Rn → R;

• n real numbers x̃1, . . . , x̃n;

• n non-negative real numbers σ1, . . . , σn;

• a rational number p0 from the open interval (0, 1).

COMPUTE:

an interval y for which:

• the probability that y = f(x̃1 − ∆x1, . . . , x̃n − ∆xn) ∈ y is ≥
p0, where ∆xi are independent random variables with Gaussian
distribution, 0 average, and standard deviations σi; and

• no proper subinterval y′ ⊂ y has this property.

Whether this probabilistic problem is feasible or not for polynomial and/or for
rational functions f is an interesting open problem.

Proofs

Proof of Proposition 26.1. Let f be a polynomial, i.e.,

f(x1, . . . , xn) =
∑

ci1,...,inx1
i1 . . . xn

in .

Then,
∆y = f(x̃1 −∆x1, . . . , x̃n −∆xn)− f(x̃1, . . . , x̃n)

is also a polynomial. Our goal is to find E[∆y] and σ[∆y].

By definition, σ[α] =
√

E[(α− E(α))2]. So, σ[∆y] =
√

E[(∆y − E(∆y))2].
Since ∆y is a polynomial, the expression (∆y − E(∆y))2 is also a polynomial
(E(∆y) is a constant). Therefore, if we can prove that computing E[P ] for an
arbitrary polynomial P is feasible, then, as a result, we will be able to conclude
that computing σ[P ] is feasible as well.
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So, it is sufficient to show how to compute E[P ] for an arbitrary polynomial

P (∆x1, . . . , ∆xn) =
∑

ai1,...,in
∆x1

i1 . . . ∆xn
in .

Since mathematical expectation E[α] is a linear operator, we conclude that

E[P ] = E[
∑

ai1,...,in∆x1
i1 . . . ∆xn

in ] =
∑

ai1,...,inE[∆x1
i1 . . . ∆xn

in ].

Due to our assumption that the random variables ∆xi are independent, we
have E[∆x1

i1 . . . ∆xn
in ] = E[∆x1

i1 ] · . . . · E[∆xn
in ]. Therefore,

E[P ] =
∑

ai1,...,inE[∆x1
i1 ] · . . . · E[∆xn

in ].

So, to compute E[P ], it is sufficient to be able to compute the values E[∆xj
k].

We know that ∆xi is distributed according to Gaussian distribution, i.e., with
density

ρi(x) =
1√

2πσi

exp
(
− x2

2σ2
i

)
.

In terms of ρ,

E[(∆xi)k] =
∫ ∞

−∞
xkρi(x)dx.

After we substitute the expression for ρi into this integral, we will get

E[(∆xi)k] =
1√

2π · σi

∫ ∞

−∞
xk exp

(
− x2

2σ2
i

)
dx.

For odd k, we have an integral of an odd function over a symmetric interval, i.e.,
0. For even k = 2m, we have an integral of an even function over a symmetric
interval (−∞,∞). This integral can be computed as two times the integral
over [0,∞), and this integral is known (see, e.g., Beyer [42], formula 666):

∫ ∞

0

x2m exp(−ax2)dx =
1 · 3 · 5 · . . . · (2m− 1)

2m+1am

√
π

a
.

We multiply this integral by 2, so we will get 2m instead of 2m+1 in the de-
nominator. Here, a = 1/(2σi)2, so

1
2mam

√
a

=
(2σ2

i )m
√

2 · σi

2m
=

2mσ2m+1
i

√
2

2m
= σ2m+1

i

√
2.

Hence,

E[(∆xi)2m] =
1√

2π · σi

· 1 · 3 · 5 · . . . · (2m− 1) · σ2m+1
i

√
2
√

π.
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Cancelling equal terms in the numerator and the denominator, we arrive at the
formula

E[(∆xi)2m] = 1 · 3 · 5 · . . . · (2m− 1) · σ2m
i .

This is an easily computable expression: it consists of the elementary computa-
tional steps (multiplications) whose total number is linear in m, and, therefore,
limited by a linear function of the length of the description of a polynomial.
The total number of such terms is also bounded by the total length of the de-
scription of a polynomial. Therefore, we can conclude that computing E[P ] is
feasible (computable in quadratic time). Proposition is proven.

Proof of Theorem 26.1. To prove the theorem, we will reduce satisfiability
problem for 3-CNF formulas to our problem. Let us assign to every 3-CNF for-
mula F = D1& . . . &Dm with n Boolean variables z1, . . . , zn (and disjunctions
Dj of the type a∨ b or a∨ b∨ c, where a, b, c are variables or their negations), a
rational function f(x1, . . . , xn) of n real variables x1, . . . , xn. This assignment
will be done in several steps:

First, to every Boolean variable zi, we put into correspondence an expres-
sion C[zi] = x2

i (C stands for “correspondence”).

To every negative literal ¬zi, we assign an expression C[¬zi] = (1− xi)2.

To every disjunction D = a ∨ b, we assign an expression

C[D] = C(a) · C(b).

To every disjunction D = a ∨ b ∨ c, we assign an expression

C[D] = C(a) · C(b) · C(c).

To the formula F = D1& . . . &Dm, we assign an expression

C[F ] = C(D1) + . . . + C(Dm).

Finally, we take f = (C[F ])−p, where p is an arbitrary integer that is
greater than n/2.

We take x̃1 = . . . = x̃n = 0.5, and σ1 = . . . = σn = 0.5.

For this function f(x1, . . . , xn), we are interested in computing E[∆y], where

∆y = f(x̃1 −∆x1, . . . , x̃n −∆xn)− f(x̃1, . . . , x̃n),



Computational Complexity of Probabilistic Computations 341

and ∆xi are independent Gaussian random variables with 0 average and stan-
dard deviation σi.

We will prove the following two statements:

(a) If a formula F is not satisfiable, then 0 ≤ |E[∆y]| ≤ 64p.

(b) If a formula F is satisfiable, then E[∆y] = ∞.

So, if there exists an algorithm U that solves the (E, σ)−probabilistic com-
putational problem for rational functions f , then for every 3-CNF formula
F , by applying U to the above rational function f , we will be able to check
whether F is satisfiable or not. Since this checking is known to be NP-hard,
(E, σ)−probabilistic computational problem for rational functions f is also NP-
hard.

To complete our proof, we must prove statements (a) and (b).

Proof of (a).

1. First, we will prove that if F is not satisfiable, then C[F ] ≥ 1/64 for all
values of xi. This statement is equivalent to the following one: “if the infimum
inf C[F ] of C[F ] over all x1, . . . , xn is smaller than 1/64, then a formula F is
satisfiable”. Let us prove it.

Since the infimum of C[F ] is smaller than 1/64, there exist values x1, . . . , xn,
for which C[F ](x1, . . . , xn) < 1/64. Let us take the following Boolean vector:
for every i,

zi =“true” if xi < 1/2, and

zi =“false” otherwise.

We will show that these Boolean values satisfy the formula F . Since F =
D1& . . . &Dm, it is sufficient to prove that all disjunctions Dj are satisfied by
these Boolean variables zi. Indeed, since C[F ] = C[D1] + . . . + C[Dn] < 1/64,
and C[Dj ] ≥ 0, we can conclude that for all j, C[Dj ] < 1/64.

Let us now show that for every disjunction Dj , at least for one of its literals
a, we have C[a] < 1/4. The proof will slightly differ depending on how many
literals are there in this disjunction:
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If Dj = a, then C[a] = C[Di] < 1/64 < 1/4.

If Dj = a∨b, then C[Di] = C[a]·C[b] < 1/64. Therefore, either C[a] < 1/4,
or C[b] < 1/4, because otherwise, from C[a] ≥ 1/4 and C[b] ≥ 1/4, we
would conclude that C[a] · C[b] ≥ 1/16 > 1/64.

If Dj = a ∨ b ∨ c, then C[Di] = C[a] · C[b] · C[c] < 1/64. Therefore,
either C[a] < 1/4, or C[b] < 1/4, or C[c] < 1/4, because otherwise, from
C[a] ≥ 1/4, C[b] ≥ 1/4, and C[c] ≥ 1/4, we would conclude that C[a] ·
C[b] ≥ C[c] ≥ 1/64.

Now, to prove that Dj is satisfied, we must consider two possible cases:

a = zi. In this case, C[a] = C[zi] = x2
i , so, from C[a] < 1/4, we con-

clude that xi < 1/2. Therefore, zi is “true”, so a is true, and the entire
disjunction Dj = a ∨ . . . is satisfied.

a = ¬zi. In this case, C[a] = (1 − xi)2 < 1/4 hence, 1 − xi < 1/2 and
so xi > 1/2. Therefore, zi is “false”, a = ¬zi is “true”, and the entire
disjunction Dj = a ∨ . . . is satisfied.

In all cases, all disjunctions Dj are satisfied and therefore, F is also satisfied.
So, we have proved that if the infimum inf C[F ] of C[F ] over all x1, . . . , xn is
smaller than 1/64, then a formula F is satisfiable.

2. Now, we can complete the proof of the statement (a). Indeed, if a formula F
is not satisfiable, then, as we have proved in Part 1. of this proof, C[F ] ≥ 1/64.
Therefore, f = (C[F ])−p ≤ (1/64)−p = 64p. On the other hand, f is a positive
function, so 0 ≤ f(x1, . . . , xn) ≤ 64p for all possible values x1, . . . , xn.

By definition, E[∆y] = E[y]− ỹ, where ỹ = f(x̃1, . . . , x̃n), and

y = f(x̃1 −∆x1, . . . , x̃n −∆xn).

From the inequality 0 ≤ f ≤ 64p, we can conclude that 0 ≤ ỹ ≤ 64, and that
0 ≤ E[y] ≤ 64p. If two numbers belong to an interval [0, t], then the largest
possible difference between them is t. Therefore, |E[∆y]| = |E[y] − ỹ| ≤ 64p.
Statement (a) is proved.

Proof of (b).

1. Let us first do some preliminary simplification. Suppose that a formula F
is satisfiable. This means that it has a Boolean vector that satisfies it. Let us
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fix one of these Boolean vectors z1, . . . , zn. To simplify further computations,
we will rename the variables:

if zi is true, then we take ti = zi;

if zi is false, then we take ti = ¬zi.

After this renaming, we get a new formula G = D′
1& . . . &D′

m with new Boolean
variables t1, . . . , tn that is satisfied by the values t1 = . . . = tn =“true”.

We can apply our procedure C to this new formula G, and get a polynomial
C[G] of n variables u1, . . . , un. The relationship between C[G](u1, . . . , un) and
C[F ](x1, . . . , xn) is easy to trace: if we take

ui = xi if zi is true, and

ui = 1− xi if zi is false,

then C[G](u1, . . . , un) = C[F ](x1, . . . , xn).

Because of our choice of x̃i, in terms of new variables, we will have either
ũi = 0.5, or ũi = 1 − x̃i = 1 − 0.5 = 0.5, i.e., ũi = 0.5 for all i. Therefore,
the (E, σ)−probabilistic computational problem for f = C[F ]−p, x̃i = 0.5 and
σi = 0.5, is equivalent to the (E, σ)−probabilistic computational problem for
g = C[G]−p, with ũi = 0.5, and σi = 0.5.

2. To prove statement (a), we estimated C[Dj ] by a constant. To prove (b),
we will need a better estimate. We will get such an estimate only for the case
when |ui| ≤ 1 for all i. In this case:

for every positive literal a = ti, C[a] = u2
i ≤ 1;

and for every negative literal a = ¬ti, C[a] = (1− ui)2. Since |ui| ≤ 1, we
can conclude that |1− ui| ≤ 1 + |ui| ≤ 2, and C[a] ≤ 4.

In both cases, C[a] ≤ 4.

Let D′
j be an arbitrary disjunction from G. Since G is satisfied by the values

t1 = . . . = tn =“true”, we can conclude that D′
j is also satisfied by these
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Boolean values and therefore, one of its literals is positive. Without losing
generality, we can denote this literal by a = ti. For this literal, C[a] = u2

i ≤ S,
where we denoted

S =
n∑

i=1

u2
i .

Depending on the number of literals in D′
j , we have three cases:

D′
j = a. In this case, C[D′

j ] = C[a] ≤ S.

D′
j = a∨b. In this case, C[D′

j ] = C[a] ·C[b]. Since C[a] ≤ S, and C[b] ≤ 4,
we conclude that C[D′

j ] ≤ 4S.

D′
j = a ∨ b ∨ c. In this case, C[D′

j ] = C[a] · C[b] · C[c]. Since C[a] ≤ S,
C[b] ≤ 4, and C[c] ≤ 4, we conclude that C[D′

j ] ≤ 16S.

In all three cases, we have C[D′
j ] ≤ 16S.

Adding the inequalities for all disjunctions, we conclude that C[G] = C[D′
1] +

. . . + C[D′
m] ≤ 16mS. Therefore, when |uj | ≤ 1, we have C[G] ≤ 16mS. In

particular, this inequality is true when S ≤ 1, because then, for every j,

u2
j ≤

n∑

i=1

u2
i = S ≤ 1,

and hence, |ui| ≤ 1. So, when S ≤ 1, we have C[G] ≤ 16mS. In this case,
the function g = C[G]−p to which we apply (E, σ)−probabilistic computational
problem, satisfies the inequality g = C[G]−p ≥ (16m)−pS−p.

We want to compute E[∆y], where

∆y = g(ũ1 −∆u1, . . . , ũn −∆un)− g(ũ1, . . . , ũn),

and ∆ui are Gaussian independent variables with average 0 and standard de-
viation σi. Therefore, E[∆y] = E[y]− ỹ, where we denoted

y = g(ũ1 −∆u1, . . . , ũn −∆un)

and ỹ = g(ũ1, . . . , ũn). Since ỹ is a finite number, in order to prove that
E[∆y] = ∞, we must prove that E[y] = ∞. By definition,

E[y] =
∫

. . .

∫
ρ(u1, . . . , un) · g(u1, . . . , un)du1 . . . dun,
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where the integral is taken over the entire n−dimensional space, and

ρ(u1, . . . , un) =
n∏

i=1

ρi(ui),

where

ρi(ui) =
1√

2π · σi

exp
(
− (ui − 0.5)2

2σ2
i

)
,

and ρ is the probability density. Since g is non-negative, we can conclude that

E[y] =
∫

. . .

∫
ρ(u1, . . . , un) · g(u1, . . . , un)du1 . . . dun ≥ I1,

where we denoted

I1 =
∫

. . .

∫

B

ρ(u1, . . . , un) · g(u1, . . . , un)du1 . . . dun,

and B is the set of all values (u1, .., un) for which S ≤ 1. So, to prove that
E[∆y] = ∞, it is sufficient to prove that I1 = ∞.

To prove that, let us estimate ρ. We have chosen σi = 0.5, so 2σ2
i = 0.5,

1/(2σ2
i ) = 2, and 1/(

√
2π · σi) = 2/(

√
2π) =

√
2/π. For (u1, . . . , un) ∈ B,

we have |ui| ≤ 1, therefore, we have |ui − 0.5| ≤ |ui| + 0.5 ≤ 1 + 0.5 = 1.5,
(ui − 0.5)2 ≤ 2.25, and

(ui − 0.5)2

2σ2
i

= 2(y − 0.5)2 ≤ 4.5.

Therefore,

exp
(
− (ui − 0.5)2

2σ2
i

)
≥ exp(−4.5),

and

ρi(ui) =
1√

2π · σi

exp
(
− (ui − 0.5)2

2σ2
i

)
≥

√
2
π

exp(−4.5) > 0.

If we denote √
2
π

exp(−4.5)

by ρ0, we can describe the resulting inequality as ρi(ui) ≥ ρ0 > 0. Hence, the
function ρ that is the product of m such terms, is bounded from below by a
positive number ρm

0 . Therefore,

I1 =
∫

. . .

∫

B

ρ(u1, . . . , un) · g(u1, . . . , un)du1 . . . dun ≥
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ρm
o ·

∫
. . .

∫

B

g(u1, . . . , un)du1 . . . dun.

So, to prove that I1 is infinite, it is sufficient to prove that the integral

I2 =
∫

. . .

∫

B

g(u1, . . . , un)du1 . . . dun

is infinite.

For (u1, . . . , un) ∈ B, we have g(u1, . . . , un) ≥ (16m)−pS−p. Therefore,

I2 =
∫

. . .

∫

B

g(u1, . . . , un)du1 . . . dun ≥ (16m)−pI3,

where we denoted
I3 =

∫
. . .

∫

B

S−pdu1 . . . dun.

So, to prove that I2 is infinite, it is sufficient to prove that the integral I3

is infinite. But this integral can be easily expressed in spherical coordinates
(r, θ1, θ2, . . . θn−1), where r =

√
u2

1 + . . . + u2
n and θi are angles such that

u1 = r · cos(θ1),

u2 = r · sin(θ1) · cos(θ2),

. . .

ui = r · sin(θ1) · . . . · sin(θi−1) · cos(θi),

. . .

un−1 = r · sin(θ1) · . . . · sin(θn−2) cos(θn−1),

un = r · sin(θ1) · . . . · sin(θn−2) · sin(θn−1).

Indeed, the area B is spherically symmetric (it is actually the ball of
radius 1), the integrand is symmetric because S = r2, du1 . . . dun =
A(θ1, . . . , θn)rn−1drdθ1 · . . . · dθn−1 for some expression A(θ1, . . . θn). So, when
we integrate over θ1, . . . , θn, the integral takes the form

I3 = const ·
∫ 1

0

rn−1dr

r2p
= const ·

∫ 1

0

r−2p+n−1dr =

(
r−2p+n

−2p + n

)
|r=1

−
(

r−2p+n

−2p + n

)
|r=0

.

Since we have chosen p > n/2, this expression is infinite (for r = 0), so I3 = ∞,
and hence, I2 = ∞, I1 = ∞, E[y] = ∞, and E[∆y] = ∞. The statement (b) is
proved, and so is the theorem.



A
IN CASE OF INTERVAL (OR MORE

GENERAL) UNCERTAINTY, NO
ALGORITHM CAN CHOOSE THE

SIMPLEST REPRESENTATIVE

When we only know the interval of possible values of a certain quantity (or
a more general set of possible values), it is desirable to characterize this in-
terval by supplying the user with the “simplest” element from this interval,
and by characterizing how different from this value we can get. For example,
if, for some unknown physical quantity x, measurements result in the interval
[1.95, 2.1] of possible values, then, most probably, the physicist will publish this
result as y ≈ 2. Similarly, a natural representation of the measurement result
x ∈ [3.141592, 3.141593] is x ≈ π.

In this appendix, we show that the problem of choosing the simplest element
from a given interval (or from a given set) is, in general, not algorithmically
solvable.

The results presented in this appendix first appeared in Heindl et al. [143].

A.1. In Case of Interval (or More General Set)
Uncertainty, a User Would Like to Have a Rep-
resentative Value from This Interval (Set)

The value of a physical quantity y is usually obtained either by a direct mea-
surement, or by an indirect measurement, i.e., by processing the results of some
related measurements x1, . . . , xn. Since measurements are normally not 100%
precise, their results may differ from the actual values of the measured quanti-
ties. As a result, after the measurement (direct or indirect), we do not get the
exact value of the desired quantity, we only get a set Y of its possible values.

347
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In many cases, this set Y is an interval, but more complicated sets are also
possible: e.g., if we know that y2 = x1, and that x1 ∈ [1, 4], then the set of
possible values of y is the union of two intervals [−2,−1] ∪ [1, 2].

For each set, it would be very convenient for the users of this information, if
we could select a representative element of this set and describe the possible
deviations from this value.

For example, if the set of possible values is the interval [3, 5], it is natural to take
the midpoint of this interval (i.e., the number 4) as the desired representative,
and describe the possible positive and negative deviations from 4 as 4+1

−1.

For more complicated intervals, a midpoint may not be the best choice. For
example, for an interval [1.95, 2.1], the natural representative is 2, so the natural
representation of this interval is 2+0.1

−0.05. By a “natural representation” we mean
that if, say, a physicist tries to measure an unknown quantity y, and as a result
of the measurement, he gets the interval [1.95, 2.1] of possible values, then,
most probably, he will publish this result as y ≈ 2. The reason for choosing 2
is that the hypothesis y = 2 seems to be the simplest possible hypothesis, i.e.,
2 seems to be the simplest possible number from this interval.

This “simplest” number is not always an integer or a rational number: e.g., for
an interval [3.141592, 3.141593], the natural representative is, most likely, π.

The natural question is: is it possible to design an algorithm that would, given
a set of real numbers, choose its simplest element?

A.2. How to Formalize “The Simplest”?

To answer this question, we must first define what “simple” means. Intuitively,
a number is simple if it is easy to describe; in other words, a number is simple
if the length of its description is small. It is natural to use this intuitive idea
to give a precise definition.

Traditionally, foundations of mathematics are based on set theory. So, in prin-
ciple, we can fix some standard version of set theory (e.g., Zermelo-Fraenkel
theory ZF), and consider definitions within this theory. Such a formalization
would have made the definitions (and maybe proofs) slightly shorter. However,
these shorter-to-prove results will only apply to ZF. What is we use another
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version of set theory? What if we use alternative foundations of mathemat-
ics (e.g., based on categories instead of sets)? We will see that our results do
not depend on which version of set theory we choose, and do not even depend
on whether we use set theory or any other formalization of mathematics. To
convey this generality, we will formulate our results in the most general form.

We want to be able to have variables that run over real numbers (i.e., whose
possible values are real numbers), variables that run over integers, and maybe
some other types of variables (e.g., variables that run over intervals, and/or
variables that run over arbitrary sets). So, the natural language to use is
multi-sorted first order logic. For the convenience of the readers who may not
be well familiar with this notion, let us give sketchy definitions here; readers
who are interested in technical details can look, e.g., in Barwise [19], Enderton
[100], and Schoenfield [379].

Definition A.1.

Let a finite set A be fixed. This set will be called an alphabet, and elements
of this set will be called symbols. We assume that this set does not contain
symbols (, ), &, ∨, ¬, →, ∀, ∃, and symbols with subscripts.

By a multi-sorted first order language, we mean the tuple L = (S,P,F , ar),
where

– S, P, and F are subsets of the set A that have no common elements
(i.e., S ∩ P = S ∩ F = P ∩ F = ∅);
∗ elements of the set S will be called sorts;
∗ elements of the set P will be called predicate symbols;
∗ elements of the set F will be called function symbols.

– ar is a function that transforms every element from the set P ∪ F
into a non-empty finite sequence of sorts (i.e., of elements of S).

– for every predicate symbol P ∈ P, the number of elements in a se-
quence ar(P ) is called the arity of this predicate; if this number is 1,
the predicate is called unary; if it is 2, the predicate is called binary,
etc.;

– for every function symbol f ∈ F , its arity is defined as the number
of elements in ar(f) minus 1; the last symbol is the sequence ar(f)
is called its output type; 0-ary functions are called constants of this
output type.
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Let s ∈ S be a sort. By a variable of sort s, we mean an expression of the
type xs

n, where n is a natural number.

The notion of the term and its type is defined as follows:

– every variable xs
n is a term of type s;

– if t1, . . . , tm are terms of types s1, . . . , sm, and if f ∈ F is a function
symbol for whom ar(f) = s1 . . . sms, then the expression f(t1, . . . , tm)
is a term of type s.

The notion of an elementary formula is defined as follows: If t1, . . . , tm are
terms of types s1, . . . , sm, and P ∈ P is a predicate for which ar(P ) =
s1 . . . sm, then P (t1, . . . , tm) is an elementary formula.

The notion of a formula is defined as follows:

– Every elementary formula is a formula.

– If F and G are formulas, then the expressions (F ), F&G, F ∨G, ¬F ,
and F → G are formulas.

– If F is a formula and v is a variable, then expressions ∀vF and ∃vF
are formulas.

In a standard manner, we can now define closed formulas, formulas with one
free variable, etc.

Comment. In the following text, we will consider languages in which the list of
sorts S contains two symbols: “integer” and “real”, and which contain standard
arithmetic predicates and function symbols such as 0, 1, +, −, ·, /, =, <, ≤,
both for integers and for reals.

For reader’s convenience:

we will denote variables that run over real numbers by x, y, . . . (instead of
x“real′′

1 , x“real′′
2 , . . .), and, correspondingly, variables that run over natural

numbers by m,n, . . .; and

for terms containing standard functions like +, we will use traditional
notations x + y (with a function symbol inside the expression) instead of
a more precise expression +(x, y) following from Definition A.1.

Definition A.2. Let a (multi-sorted first order) language L be fixed. By a
theory T , we mean a finite set of closed formulas.
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Comment. In the following text, we will always assume that a theory T is
consistent.

In a standard (and natural) manner, we can now define the notion of an inter-
pretation of a language L, in which, crudely speaking:

to every sort s ∈ S, we assign a set (whose elements will be called objects
of this sort);

to every predicate symbol, we assign a predicate;

to every function symbol, a corresponding function.

For each interpretation, we can then interpret terms and formulas, and we say
that an interpretation is a model of the theory T if all formulas from T are true
in this interpretation.

We say that a formula F is deducible from the theory T (and denote it by
T ` F ) if this formula F is true in every model of the theory T .

Comment. In the following text, we will assume that a theory T is fixed. We
will assume that this theory contains both the standard first order theory of
integers (Peano arithmetic (Barwise [19], Enderton [100], Schoenfiled [379]) and
a standard first order theory of real numbers (Tarksi [407], Seidenberg [387],
Ben-Or et al. [30], Canny [59]).

As we have already mentioned, one of the possibilities is to consider, as the
theory T , axiomatic set theory (e.g., ZF), together with explicit definitions
of integers, real numbers, and standard operations and predicates in terms of
set theory. In this case, the set of sorts consists of three elements: “integer”,
“real”, and “set”. However, as we have also mentioned, our definitions and
results apply to other theories as well.

Now, we are ready to define “definability”.

Definition A.3. Let a language L (whose set of sorts includes the sort of real
numbers) and a theory T be fixed. By a definable real number, we mean a
formula F (y) with one free variable for real numbers for which

T ` ∃yF (y)&∀x∀y(F (x)&F (y) → x = y).

We will also say that a formula F (y) defines a real number.
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Comment. Informally, a real number x0 is definable if there exists a formula
F (x) that is true for this real number x0 that is not true for any other real
number x 6= x0.

Examples.

A formula y · y = 1 + 1&y ≥ 0 satisfies the Definition A.3; thus, it defines
a unique real number (

√
2).

A formula ∀x(x · y = x + x + x) defines a real number 3.

If the language L contains all symbols for standard mathematical functions,
including the sine function sin(x), and if the theory T contains ZF +
definitions of these mathematical functions in terms of set theory, then
the formula sin(y) = 0 & 3 ≤ y ≤ 4 defines a real number: actually, this
number is π.

Definition A.4. Let F (y) and F ′(y) be definable real numbers. We say that
they define the same real number if

T ` ∀x∀y(F (x)&F ′(y) → x = y).

We say that F (y) and F ′(y) define different numbers if

T ` ∀x∀y(F (x)&F ′(y) → x 6= y).

Definition A.5.

By a length of a formula F , we mean its total length that is counted as
follows:

– every symbol from the alphabet A, every parenthesis (, ), and every
logical symbol (&,∨,¬,→, ∀, ∃) is counted as one symbol;

– every variable xs
n is counted as 2 symbols + as many symbols as there

are bits in the binary representation of the integer n.

Let F (y) be a definable real number. By its complexity D(F ), we mean
the length of the shortest formula that defines the same real number.
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Comments.

This definition is similar to the so-called Kolmogorov complexity C(x) (in-
vented independently by Chaitin, Kolmogorov, and Solomonoff), which is
defined as the smallest length of the program that computes x (for a cur-
rent survey on Kolmogorov complexity, see, e.g., Li et al. [253]). In our
case, however, we do not care that much about how to compute: com-
puting 3.141592 may be easier than computing π; we are more interested
in how easy it is to describe x. Due to this difference, we had to modify
Kolmogorov’s definition.

The above-defined complexity of a number depends on the theory. Corre-
spondingly, the choice of the simplest number from an interval may also
depend on the theory. For example, if this interval is [0.0625, 0.15625],
then we can have at least two different situations:

– On one hand, if we are preparing a publication, then the simplest
element of this interval is, most probably, 0.1, because 0.1 is, probably,
the simplest possible decimal number on this interval.

– On the other hand, if we must choose a number for a further computer
processing, it makes more sense to choose a number 1/8 that has the
simplest binary representation (0.0012).

These two different situations correspond to two different theories:

– in the theory that correspond to the first situation, we allow decimal
numbers as constants but not binary numbers;

– in the theory that correspond to the second situation, we allow binary
numbers as constants but not decimal numbers.

A.3. First Result: It Is Impossible to Algorith-
mically Choose the Simplest Element of a Finite
Set

Comment. When we say that a real number is given, we mean that we are given
a formula F (y) that defines this number. So, the question becomes: suppose
that we are given several numbers. Can we choose the one with the the smallest
complexity? We will prove that the answer is negative even for the simplest
sets that consist of two real numbers.
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Definition A.6. By the problem of choosing the simplest representative from
a finite set, we mean the following problem:

GIVEN:

• an integer n, and

• a set of n definable real numbers, i.e., n formulas F1(y), . . . , Fn(y)
that define real numbers.

FIND:

the value i for which the corresponding real number is the simplest,
i.e., for which D(Fi) = min(D(F1), . . . , D(Fn)).

Proposition A.1. Even for n = 2, no algorithm is possible that, given a finite
set with n elements, chooses the simplest representative from this set.

A.4. Second Result: It Is Impossible to Algo-
rithmically Choose the Simplest Element of an
Interval

Definition A.7a. By a definable interval, we mean a pair of formulas F (y)
and F (y) that define real numbers and for which

T ` ∀x∀y(F (x)&F (y) → x ≤ y).

Definition A.7b. We say that a definable real number F (y) belongs to the
definable interval [F (y), F (y)] if

T ` ∀x∀y∀z(F (x)&F (z)&F (y) → (x ≤ z&z ≤ y).
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Definition A.8. By the problem of choosing the simplest representative from
an interval, we mean the following problem:

GIVEN:

a definable interval [F (y), F (y)].

FIND:

• the formula F (y) that defines the simplest definable real number from
the interval [F (y), F (y)]; and,

• in case one of the endpoints F (y), F (y) is the simplest definable num-
ber on this interval, the value − or + indicating, correspondingly,
whether the lower endpoint F (y) or the upper endpoint F (y) is the
simplest.

Proposition A.2. No algorithm is possible that, given a definable interval,
would return the simplest representative from this interval.

Comment. The same impossibility result holds if we fix one of the endpoints. To
be more precise, this result holds for almost all possible choices of the endpoint
(“almost all” in some natural sense).

Proposition A.3.

If F (y) is the simplest possible definable real number, then:

There exists an algorithm that, given any definable real number F ′(y)
that defines a different number, chooses the simplest representative
from the corresponding interval [F (y), F ′(y)] or [F ′(y), F (x)].

If F (y) is not the simplest possible real number, then:

No algorithm is possible that, given any definable interval with F (y)
as one of the endpoints, would choose the simplest representative from
this interval.

Definition A.9. We say that a property P̃ (x) holds for almost all definable real
numbers if there exists finitely many definable real numbers F1(y), . . . , Fn(y)
such that: if the definable number F (y) is different from each of them, then
the property P̃ (x) holds for the number that is defined by the formula F (y).
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Comment. Informally, we can say that a property holds for almost all definable
real numbers if it holds for all definable real numbers, except, maybe, finitely
many of them.

Corollary. For almost all definable real numbers F (y), the following property
holds:

∗ No algorithm is possible that, given a definable interval with F (y) as one of
its endpoints, would choose the simplest representative from this interval.

Comment. Similar results are true if we restrict ourselves to intervals in which
the given number F (y) is the lower endpoint (or, correspondingly, the upper
endpoint).

Proposition A.4.

For any definable real number F (y), the following two properties are equiv-
alent to each other:

– The number defined by the formula F (y) is the simplest of all definable
real numbers that are ≥ that this number.

– There exists an algorithm that, given any definable interval with F (y)
as its lower endpoint, chooses the simplest representative from this
interval.

For any definable real number F (y), the following two properties are equiv-
alent to each other:

– The number defined by the formula F (y) is the simplest of all definable
real numbers that are ≤ that this number.

– There exists an algorithm that, given any definable interval with F (y)
as its upper endpoint, chooses the simplest representative from this
interval.
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A.5. Similar Results Hold for
Computable Real Numbers

For the cases when the intervals (from which we are choosing the simplest
numbers) come from computations, it is reasonable not to consider arbitrary
definable real numbers, but to restrict ourselves to computable real numbers,
i.e., real numbers that can be computed with an arbitrary accuracy (see, e.g.,
Bishop [47], Bridges [57], Beeson [25], Bishop et al. [48]):

Definition A.10. A real number x is called constructive if there exists an
algorithm (program) that transforms an arbitrary integer k into a rational
number xk that is 2−k−close to x. It is said that this algorithm computes the
real number x.

Comment. Every constructive real number is uniquely determined by the cor-
responding algorithm and is, therefore, definable.

Comment. When we say that a constructive real number is given, we mean
that we are given an algorithm that computes this real number.

Definition A.11. By the problem of choosing the simplest representative from
a constructive interval, we mean the following problem:

GIVEN:

a constructive interval, i.e., algorithms U and U that compute real
numbers x < x.

FIND:

the simplest (in the sense of D(F ) → min) constructive real number
from the interval [x, x].

Proposition A.5. No algorithm is possible that, given a constructive interval,
returns the simplest representative from this interval.
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Proposition A.6.

If x is the simplest possible constructive real number, then:

There exists an algorithm that, given any other constructive real num-
ber y 6= x, chooses the simplest representative from the corresponding
interval [x, y] or [y, x].

If x is not the simplest possible constructive real number, then:

No algorithm is possible that, given any other constructive real number
y 6= x, would choose the simplest representative from the correspond-
ing interval [x, y] or [y, x].

Proposition A.7.

For any constructive real number x, the following two properties are equiv-
alent to each other:

– The number x is the simplest of all constructive real numbers ≥ x.

– There exists an algorithm that, given any constructive real number
y > x, chooses the simplest constructive real number from the interval
[x, y].

For any definable real number x, the following two properties are equivalent
to each other:

– The number x is the simplest of all constructive real numbers ≤ x.

– There exists an algorithm that, given any constructive real number
y < x, chooses the simplest constructive real number from the interval
[y, x].

Proofs

General comment. The results of this appendix are mainly based on results
from mathematical logic.

Proof of Proposition A.1. We will prove our result by reduction to a con-
tradiction. Let us assume that there exists an algorithm U that for every two
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defining properties F1 and F2 tells whether the first or the second one defines
the simplest number.

Since we have assumed, in effect, that the theory T contains formal (= first
order) arithmetic, we can use the famous Gödel’s theorem and conclude that
this theory is undecidable, i.e., that there exists no algorithm that, given a
formula F from this languages, would tell whether this formula is deducible
from T or not (see, e.g., Barwise [19], Enderton [100], Schoenfield [379]).

Moreover, no algorithm is possible, that is applicable to an arbitrary arithmetic
formula F and that would return “yes” if F is deducible from T and “no” if the
negation ¬F of the formula F is deducible from T (see, e.g., Schoenfield [379],
Chapter 6, Ex. 13(c)); see also Rogers [361], Sections 7.7–7.9). We will show
that our hypothetic algorithm U leads exactly to such an impossible algorithm.

Indeed, let us take an arbitrary definable number and denote it by F−.

Since the language L contains the formal arithmetic, all integers are defined in
this language. Therefore, there are infinitely many definable numbers. Since
for every length l, there are only finitely many formulas of this length, these
formulas can only define finitely many different numbers. Thus, for every length
l, there exists a definable number that cannot be defined by any formula of
length ≤ l, and for which, therefore, the complexity is > l. In particular, there
exists a definable number whose complexity is greater than l = D(F−). Let us
pick one such number and denote it by F̃ (y). Similarly, there exists a definable
number whose complexity is > D(F̃ ). Let us pick one such number and denote
it by F+.

So, we have three definable numbers F−(y), F̃ (y), and F+(y), for which
D(F−) < D(F̃ ) < D(F+).

Let us now consider the following formula:

(F → F−(y))&(¬F → F+(y)).

We will denote this formula by F ′(y). Let us first prove that this formula
indeed defines a real number:

if F is deducible from T , then this formula F ′(y) clearly defines a real
number (namely, the same real number as F−(y));

similarly, if ¬F is deducible from T , then this formula F ′(y) also defines a
real number (namely, the same real number as F+(y));
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since in classical logic, we have T ` F ∨ ¬F , we can thus conclude that
this formula always defines a real number.

In particular, if either F or ¬F is deducible from the theory T , then:

If F is deducible from T , then this new formula is equivalent to F−(y) and
therefore, it defines the same number as F−(y).

If F is not deducible from T , then this formula is equivalent to F+(y) and
thus, it defines the same number as F+(y).

Let us now apply our hypothetic algorithm U to the formulas F ′(y) and F̃ (y):

If F is deducible from T , then U will select the number defined by F ′(y),
because this number (F−(y)) is simpler than the number defined by F̃ (y).

If ¬F is deducible from T , then U will select the number defined by the
formula F̃ (y), because in this case, this number is simpler than the number
(F+(y)) defined by the formula F ′(y).

Thus, simply by looking at the output of the algorithm U , we get an algorithm
that returns “yes” if F is deducible from T and “no” if its negation ¬F is
deducible from T . We already know that such an algorithm is impossible.

This contradiction shows that our initial assumption — that the problem of
choosing the representative from a finite set is algorithmically solvable — is
false. Hence, this problem is not algorithmically solvable. Proposition A.1 is
proven.

Comments.

This result is similar to the known result that Kolmogorov complexity
is not computable (Li et al. [253]). In effect, our result sounds slightly
stronger because we have proven that not only computing the actual values
of complexity is impossible, but even deciding which of the values has larger
complexity is also impossible.
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Simplicity seems to be a natural criterion for choosing a representative, but
we can also look for other ways in which a number can be representative.
For example, we may want a number that is the most “typical” of the
elements of the given set; this approach is outlined, for different notions
of “typicality”, in Heindl et al. [144, 145, 146], Friedman et al. [111],
Bouchon-Meunier et al. [54].

Proof of Propositions A.2–A.4. Let us first prove Proposition A.3. Then,
we will show that the Corollary (and hence, Proposition A.2) is also true.

Case of the Simplest Possible Definable Real Number F (y). Let F (y)
be the simplest possible definable real number. This means that its complexity
D(F ) is the smallest possible complexity that a real number can have. In
other words, the number F (y) is defined by a formula of length lmin that is the
shortest possible formula defining a real number. For such F (y), it is easy to
describe the desired algorithm: from every interval [F (y), F ′(y)] or [F ′(y), F (y)]
that has F (y) as one of its endpoints, we can return this very definable number
F (y) as the desired simplest representative.

Case of a Definable Real Number F (y) That Is Not the Simplest Pos-
sible. Let now F (y) be not the simplest possible real number. For such F (y),
we will prove the impossibility of an algorithm by reduction to a contradiction.
Let us assume that there exists an algorithm U that, given any other definable
real number F ′(y):

chooses the simplest representative s from the corresponding interval
[F (y), F ′(y)] or [F ′(y), F (y)]; and

if this simplest representative coincides with one of the endpoints, returns
− or + depending on whether s is the left or the right endpoint.

The fact that F (y) is not the simplest possible number means that there exist
other definable real numbers whose complexity is smaller than D(F ), i.e., that
are defined by formulas shorter than D(F ). We have already shown in the proof
of Proposition A.1 that for every length l, there exist finitely many definable
real numbers of complexity l. Thus, there exist finitely many definable real
numbers that are simpler than F (y). From these numbers, let us pick the
formula G(y) for which the number defined by it is the closest to F (y) (if there
are two such numbers, let us pick the one that is greater than the number
defined by F (y)).
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Without loss of generality, we can assume that the number xF defined by the
formula F (y) is smaller than the number xG defined by the formula G(y) (the
case xG < xF can be considered similarly). Now, let f(n) be any algorithmic
function from natural numbers to natural numbers. It is known that every
algorithmic sequence is definable in Peano arithmetic, and therefore, since out
theory T includes Peano arithmetic, f(n) is definable in T as well.

For every such function, we can define a new definable number zf as follows:

If ∀n(f(n) = 0), then zf = xG.

If ∃n(f(n) 6= 0), then zf = xG − 2−nmin · (xG − xF ), where nmin is the
smallest natural number n for which f(n) 6= 0.

(We have used words to define zf , but this definition can be easily reformulated
in terms of formulas, so, the number zf is indeed definable.)

For each function f , it is easy to see which element from the interval [xF , zf ]
is the simplest:

If ∃n(f(n) 6= 0), then xF < zf < xG. Since we have chosen xG as the
closest of all definable real numbers that are simpler than xF , and since all
the elements of the semi-open interval (xF , zf ] are closer to xF than xG,
we can conclude that none of the real numbers from the interval (xF , zf ]
is simpler than xF . Thus, xF is the simplest of all real numbers from the
interval [xF , zf ].

If ∀n(f(n) = 0), then zf = xG. Since we have chosen xG as the closest
of all definable real numbers that are simpler than xF , and since all the
elements of the open interval (xF , xG) are closer to xF than xG, we can
conclude that none of the real numbers from the open interval (xF , xG) is
simpler than xF . Thus, xG is the simplest of all real numbers from the
interval [xF , xG] = [xF , zf ].

In both cases, the simplest element coincides with one of the endpoints, so, the
algorithm U will return either − or +:

If ∃n(f(n) 6= 0), then the lower endpoint (xF ) is the simplest, and hence,
the algorithm U will return −.



Choosing the Simplest Number from an Interval 363

If ∀n(f(n) = 0), then the upper endpoint (zf ) is the simplest, and hence,
the algorithm U will return +.

Thus, by checking whether the sign returned by the algorithm U is − or +, we
will be able to check, for a given computable function f , whether ∀n(f(n) = 0)
is true or not.

However, it is known (see, e.g., Lewis et al. [250], Martin [273], Papadimitriou
[322]) that there exists no algorithm for deciding whether a program (to be more
precise, a program that always finishes its computations) always returns 0. In
other words, there exists no algorithm, that, given an algorithmic (everywhere
defined) function f(n) from natural numbers to natural numbers would check
whether ∀n(f(n) = 0). This contradiction shows that our initial assumption
— that the problem of choosing the representative from an interval is algorith-
mically solvable — is false. Hence, this problem is not algorithmically solvable.
Proposition A.3 is proven.

Proof of the Corollary. Let us now prove the Corollary (and thus, Propo-
sition A.2). In the proof of Proposition A.1, we have already shown that for
every length l, there exist finitely many definable real numbers of complexity l.
In particular, this means that there exist finitely many definable real numbers
of the smallest possible complexity lmin. Thus, every property (including the
property ∗) that holds for all definable real numbers, except for the simplest
ones, is thus true for almost all definable real numbers. Corollary is proven.

Proofs of Proposition A.4. Proposition A.4 can be proven similarly to the
proof of Proposition A.3.

Proof of Propositions A.5–A.7. If x is the simplest possible constructive
real number, then we can always return x.

If x is not the simplest possible constructive real number, then we can use the
same construction as in the proof of Proposition A.3. To complete the proof,
we must now prove only the following two additional statements:

First, we need to prove that zf is a constructive real number (and that,
given a program f , we can construct a program (algorithm) for computing
zf ).

Second, in our definition, we no longer require the algorithm to return −
or +. Therefore, to complete the proof, we must show that if an algorithm
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returns a constructive real number s that is equal to one of the endpoints
(i.e., to x or to zf ), then we can algorithmically check whether this con-
structive real number coincides with the left or with the right endpoint.

Both statements are (relatively) easy to prove:

To compute zf with an accuracy (z − x) · 2−k, it is sufficient to compute
first k values of f , and take:

• If ∀n(n ≤ k → f(n) = 0), then ak = z.

• If ∃n(n ≤ k&f(n) 6= 0), then ak = z − 2−nmin · (z − x), where nmin is
the smallest natural number n ≤ k for which f(n) 6= 0.

Then, as one can easily see, |ak − zf | ≤ 2−k · |zf − x| ≤ 2−k · |z− x|. From
these values a1, a2, . . . , ak, . . ., we can easily compute the desired rational
approximations zfk to zf .

If an algorithm returns a constructive real number s that coincides with
one of the constructive endpoints of the interval [x, zf ], then, by computing
x, zf , and s with sufficient accuracy (namely, with accuracy
ε < (zf − x)/4), and comparing the corresponding rational numbers, we
will be able to check whether s = x or s = zf . Indeed, in this case, from
|sk − s| ≤ ε, and |zfk − zf | ≤ ε, we can conclude that

|zfk − sk| ≥ |zf − s| − |sk − s| − |zfk − zf | >

|zf − s| − 2 · (1/4) · |zf − s| > (1/2) · |zf − x|.
Hence:

• If s = x, then, similarly, |sk − zfk| > (1/2) · |zf − x|. On the other
hand, in this case, |sk−xk| ≤ |sk−s|+ |xk−x| ≤ 2ε < (1/2) ·(zf−x).
Therefore, in this case, |sk − xk| < |sk − zfk|.

• Similarly, if s = zf , then |sk − xk| > |sk − zfk|.
Thus, comparing two rational numbers |sk−xk| and |sk− zfk|, we can tell
with which of the endpoints s coincides.

Propositions are proven.



B
ERROR ESTIMATION FOR

INDIRECT MEASUREMENTS:
CASE OF APPROXIMATELY

KNOWN FUNCTIONS

In the main text, we analyzed the error estimation problem for indirect mea-
surements with a precisely known f(x1, . . . , xn). In particular, we showed that
for a linear function f(x1, . . . , xn) = a0 +a1 ·x1 + . . .+an ·xn, this problem can
be solved in linear time. In real life, we sometimes know the function f only
approximately. For example, we may know that f is linear, but we do not know
the exact values of the coefficients ai; these values must be determined from
measurements. In this appendix, we show that in this situation, even for lin-
ear functions, the error estimation problem for indirect measurements becomes
computationally intractable (depending on the formulation, this problem is
either NP-hard or exponential time).

B.1. Introduction to the problem

Indirect measurements: brief reminder. One of the main problems to
which interval computations are applied is the problem of error estimation for
indirect measurements. In indirect measurements, we are interested in the value
of a physical quantity y that is difficult to measure directly. To overcome this
difficulty, we:

measure some other physical quantities x1, . . . , xn that uniquely determine
y (i.e., for which y = f(x1, . . . , xn) for some function f), and then

use the results x̃1, . . . , x̃n of these measurements to estimate the value of
y as ỹ = f(x̃1, . . . , x̃n).

365
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Measurements are not absolutely precise; hence, the measurement results x̃i

may differ from the actual values xi of the measured quantities. In some cases,
we know the probabilities of different measurement errors ∆xi = x̃i − xi, but
in many cases, we only know the upper bounds ∆i on the errors ∆xi. In
such cases, from the result x̃i of each direct measurement, we can conclude
that the (unknown) actual value xi of the measured physical quantity belongs
to the interval xi = [x̃i − ∆i, x̃i + ∆i]. Because of the potential inaccuracy
of direct measurements (xi 6= x̃i), the result ỹ = f(x̃1, . . . , x̃n) of indirect
measurements can also be inaccurate, i.e., different from the (unknown) actual
value y = f(x1, . . . , xn). For a given measurement, possible values of y form
an interval y. It is, therefore, desirable to estimate this interval. This is one of
the basic problems of interval computations.

We have shown that for the simplest case of linear functions f , there exist a
linear-time algorithm for computing f(x1, . . . , xn), while for the next-simplest
quadratic functions f(x1, . . . , xn), the problem becomes, in general, computa-
tionally intractable (NP-hard).

In indirect measurements, we do not always know the function
f(x1, . . . , xn) precisely. In the main text, we considered the idealized situ-
ation when we know the exact expression for the function f(x1, . . . , xn). This
expression usually comes from a theory that describes the relation between xi

and y. Sometimes, such a theory gives an exact dependence, but often, we only
get a formula with coefficients that needs to be experimentally determined.
(For example, Newton’s gravitation theory includes a gravitation constant that
must be determined from experiments; special relativity contains the speed of
light c, and quantum mechanics contains Planck’s constant h̄.) In such sit-
uations, error estimation for indirect measurements becomes a more difficult
problem than for the case of precisely known f .

What is the computational complexity of this more difficult problem? Is it
feasible or intractable?

For quadratic (and more complicated) functions f , the problem is
NP-hard, so we will only consider linear functions f . For quadratic
functions f(x1, . . . , xn), the above problem of interval computation is NP-hard
even if we know the exact function f . Therefore, in any reasonable formulation,
a more complicated problem of error estimation for indirect measurements for
the case of approximately known f is intractable (NP-hard) as well.
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Therefore, to answer the question about computational complexity, it is
sufficient to consider the situations when the actual (unknown) function
f(x1, . . . , xn) is linear.

How can we determine f? How can we determine the function f experi-
mentally? Since we assumed that the quantity y depends on the quantities xi,
a natural idea is to generate some values of xi and measure the resulting value
of y. After these measurements, we get several patterns (x̃(p)

1 , . . . , x̃
(p)
n , y(p)),

1 ≤ p ≤ P , from which we determine f .

Usually, a function f is used for many indirect measurements. Each pattern
measurement (that leads to determining f) will benefit all these measurements.
Therefore, when we plan these pattern measurements, we can afford to spend
more and thus get better sensors and better accuracy than in further (one-time)
measurement of xi. Hence, we will assume that the patterns are measured with
higher accuracy that the values xi in the follow-up measurement.

Passive and active formulations. In the main text, we assumed that we
first somehow determine the function f , and then use this function to compute
the desired interval y. We can use a similar two-stage approach for a new
situation as well; in other words:

on the first stage, we perform several (highly accurate) measurements to
determine the function f(x1, . . . , xn); and then

on the second stage, we get the measurement results xi, and use the in-
formation obtained on the first stage to compute the desired interval y for
different input intervals xi.

It is possible that for a particular problem, the information that we have gath-
ered on the first stage is not sufficient to compute y. In this case, it is desirable
to perform new experiments to recover the missing information about f . (For
example, if we are planning an automatic mission to a distant planet, and we
cannot, based on the known values of the masses and gravitational constant,
predict whether the spaceship will successfully reach the planet, then we must
undertake new measurements to get better values of the constants.) In other
words, instead of the traditional passive two-stage approach, it is reasonable
to use an active approach, in which, after measuring xi, we may (if necessary)
return to the first stage and make new measurements to get more information
about f .
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From the viewpoint of the accuracy, this active process is ideal. But realistically,
extra measurements cost time and money, so, in applications in which time
and/or cost is limited (e.g., in real-time control where time is severely limited,
and in manufacturing where cost is severely limited) we will not be able to
afford this active process. Since such applications are quite frequent, in the
following, we will consider two possible formulations: passive (two-stage) and
active.

Measurement errors corresponding to measuring f . To formulate the
problem of error estimation for indirect measurement in precise terms, we must
describe all measurement errors that influence this problem.

In the basic problem as described in the main text, the only measurement
errors that we had to consider where the errors in measuring xi (as described
by their bounds ∆i). In the new problem, the function f itself comes from
measurements, so, we have to take into consideration the errors with which
this function is measured, i.e., errors with which we get each of the patterns.

To get a pattern (x̃(p)
1 , . . . , x̃

(p)
n , y(p)), we must set up xi (and maybe also mea-

sure xi to check how accurately we set this value), and then measure y. So,
instead of a single type of measurement errors, we have now three types of
measurement errors:

errors ∆xi related to measuring xi in the indirect measurement;

errors ∆x
(p)
i related to measuring xi when forming a pattern;

errors ∆y(p) related to measuring y (when forming a pattern).

In general, all three errors are present, and our general formulation of the error
estimation problem will take all three types of errors into consideration.

Possibility of simplification. The general error estimation problem (with
all three types of measurement errors present) turns out to be computationally
intractable (see below). Therefore, we have to look for simplifications that make
this problem feasible. There is a natural way to simplify this general problem:
namely, as we will show, some of these measurement errors are much smaller
than the others and therefore, these smaller errors can be often safely neglected
(i.e., assumed to be equal to 0).
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We have already remarked that the patterns are usually measured with
much higher accuracy than in the follow-up measurements of xi, i.e., that
|∆x

(p)
i | ¿ |∆xi| and |∆y(p)| ¿ |∆xi|.

The entire necessity for indirect measurements is caused by the situation
in which it is much more difficult to accurately measure y directly than to
measure xi; therefore, |∆x

(p)
i | ¿ |∆y(p)|.

Hence, |∆x
(p)
i | ¿ |∆y(p)| ¿ |∆xi|. In view of this relation, we can have two

consequent simplifications:

First, we can neglect the smallest possible measurement errors ∆x
(p)
i , i.e.,

assume that, in patterns, the values of x
(p)
i are measured absolutely pre-

cisely.

Second, we can also neglect the errors of the second smallest type (∆y(p)),
i.e., assume that in each pattern not only the values x

(p)
i , but also the

values y(p) are measured with absolute precision.

In this appendix, we will analyze each of the two problems (passive and active)
in all three settings: in the most general setting and in these two simplified
settings.

Comment. Theoretically, we can go one more step further and consider the
situation in which measurement errors of all three types are negligible, but
that assumption would simply mean that x̃i are the precise values of xi and
therefore, no interval computations are needed at all.

B.2. Precise formulation of the problem: the
simplest case

Let us start with the simplest setting, in which in each pattern, we can measure
both x

(p)
i and y(p) precisely. This setting will be the easiest to analyze.

We know that the actual dependence f is linear, i.e., that f(x1, . . . , xn) =
a0 +a1 ·x1 + . . .+an ·xn for some (initially unknown) coefficients ai. Therefore:
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In the active problem, we can easily compute all the coefficients:

– First, we take the pattern with the values x
(0)
1 = . . . = x

(0)
n = 0. For

this pattern, y(0) = a0, and thus, after measuring y(0), we get a0.

– Next, for all i = 1, . . . , n, we take the pattern with x
(i)
i = 1 and

x
(i)
j = 0 for all j 6= i. For this pattern, y(i) = a0 + ai. Since we

already know a0, we can thus determine ai as y(i) − a0.

Thus, after n + 1 pattern measurements, we get all n + 1 coefficients, and
so, we can compute the desired interval y in linear time. Thus, if we count
both the measurement and the computations, we still get the time that is
linear in n.

In the passive problem, we cannot choose the patterns. Instead, we are
given the patterns (x(p)

1 , . . . , x
(p)
n , y(p)), 1 ≤ p ≤ P . These patterns mean

that the (unknown) coefficients ai satisfy the system of linear equations:

a0 + a1 · x(p)
1 + . . . + an · x(p)

n = y(p).

There are two possibilities here:

– One possibility is that this system of linear equations is under-
determined. In this case, the set A of all possible values of ~a =
(a0, a1, . . . , an) is an (infinite) plane (of dimension ≥ 1), and, there-
fore, for any non-degenerate interval x1, . . . ,xn, the set of possible
values of y = a0 + a1 · x1 + . . . + an · xn (for all xi ∈ xi and ~a ∈ A)
coincides with the entire real line R. In this case, we get no infor-
mation at all about the actual value of y, and therefore, there is no
indirect measurement of y.

– The only case when there is an indirect measurement of y is when
the corresponding system of linear equations is determined. In this
case, we can uniquely determine the coefficients ai by solving the
corresponding system of linear equations.

∗ Solving a linear system requires polynomial time (O(n2.376); see,
e.g., Cormen et al. [75], Chapter 31).

∗ After we have computed all the coefficients ai, computing y re-
quires linear time.

Thus, totally, for passive situation, we need polynomial time.



Approximately known functions f(x1, . . . , xn) 371

B.3. Precise formulation of the problem: the
second simplest case

Passive case. Let us first consider the passive case.

Definition B.1.

Let a positive integer n be given; it will be called the number of inputs.

By a linear function (or a coefficient vector), we mean a sequence of n + 1
real numbers ~a = (a0, a1, . . . , an).

By a pattern, we mean a sequence of n + 2 real numbers P =
(x1, . . . , xn, y, ∆), with ∆ ≥ 0.

We say that a pattern P is consistent with the linear function (coefficient
vector) ~a is the following inequality holds: |l(x1, . . . , xn) − y| ≤ ∆, where
l(x1, . . . , xn) = a0 + a1 · x1 + . . . + an · xn.

We say that a sequence of patterns P(p), 1 ≤ p ≤ P , is consistent if there
exists a coefficients vector that is consistent with all the patterns.

Definition B.2. By a problem of estimating error of an approximately linear
indirect measurement (in the passive setting), we mean the following problem:

GIVEN:

• n intervals x1, . . . ,xn;

• a consistent sequence of patterns P(1), . . . ,P(P );

• a positive real number δ.

COMPUTE:

rational numbers that are δ−close to the endpoints of the interval y
of all possible values of y = l(x1, . . . , xn) = a0 + a1 · x1 + . . . + an · xn

for all xi ∈ xi and for all linear function l = (a0, a1, . . . , an) that are
consistent with all the patterns.

Theorem B.1. The problem of estimating error of an approximately linear
indirect measurement (in the passive setting) is NP-hard.
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Active case. In the active case, in addition to the purely computation steps, we
can also make a measurement step: namely, we can take an arbitrary sequence
(x1, . . . , xn), and perform an experiment that will determine the appropriate
value of f(x1, . . . , xn) (with the accuracy corresponding to pattern-measuring
y). In this section, we will denote the (approximate) measured value of y that
corresponds to the given x1, . . . , xn, by f̃(x1, . . . , xn).

Both computational and measurement steps take time; therefore, to estimate
the total running time of the algorithm, we will count both computational and
measurement steps. In the language of theory of computing, these “computa-
tions + measurements” are called computations with an oracle f̃(x1, . . . , xn).

We will show that the resulting problem requires exponential time.

One last comment before we describe the precise formalization: In real life, we
cannot simulate arbitrary large values of a physical quantity, there is usually an
upper bound on its physically possible values. So, to make our formulation real-
istic, we will assume that we can get the values f̃(x1, . . . , xn) not for arbitrary
vectors ~x = (x1, . . . , xn) of rational numbers, but only for vectors ~x that are
sufficiently close to the measurement vector ~̃x = (x̃1, . . . , x̃n), i.e., for which the
Euclidean distance d(~̃x, ~x) =

√
(x̃1 − x1)2 + . . . + (x̃n − xn)2 does not exceed

some given value r > 0. We must, of course, make sure that all possible values
xi (i.e., all values for which |∆xi| = |xi− x̃i| ≤ ∆i, where ∆i is an upper bound
on the error of i-th direct measurement) are still sufficiently close to ~̃x in this
sense. Thus, we must require that

√
∆2

1 + . . . + ∆2
n ≤ r.

Definition B.3.

Let a positive integer n be given; n will be called the number of inputs.

By a coefficient vector, we mean a sequence of n + 1 real numbers ~a =
(a0, a1, . . . , an).

By an oracle, we mean a function f̃(x̃1, . . . , x̃n) of n variables.

By a measurement result, we mean two vectors ~̃x = (x̃1, . . . , x̃n) and ~∆ =
(∆1, . . . , ∆n), where ∆i ≥ 0. The value x̃i is called the result of i-th
direct measurement, and the value ∆i is called the accuracy of i-th direct
measurement.

Let a positive real number ε > 0 be give, It will be called the accuracy of
pattern measurement.
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We say that an oracle f̃ is (~̃x, r, ε)-consistent with a linear function l(~x) =
a0 +a1 ·x1 + . . .+an ·xn if |f̃(~x)− l(~x)| ≤ ε for all vectors ~x = (x1, . . . , xn)
that are r-close to ~̃x (i.e., for which d(~̃x, ~x) ≤ r).

We say that an oracle f̃ is (~̃x, r, ε)-consistent if there exists a linear function

l(x) that is (~̃x, r, ε)-consistent with f̃ .

Definition B.4. By a problem of estimating error of an approximately linear
indirect measurement (in the active setting), we mean the following problem:

GIVEN:

• n real numbers x̃1, . . . , x̃n;

• n non-negative real numbers ∆1, . . . , ∆n;

• positive real numbers r ≥
√

∆2
1 + . . . + ∆2

n and ε.

• a (~̃x, r, ε)-consistent oracle f̃(x1, . . . , xn);

• a positive real number δ.

COMPUTE:

rational numbers that are δ−close to the endpoints of the interval

y = [y, y] = {y = l(x1, . . . , xn)|xi ∈ xi for all i, and a linear function

l(x1, . . . , xn) is (~̃x, r, ε)-consistent with the given oracle f̃ .}

Comments.

If the measurements of xi are absolutely accurate (i.e., if ∆i = 0 and
x̃i = xi), and if the patterns are measured absolutely accurately (i.e., ε = 0
and f̃(x1, . . . , xn) = f(x1, . . . , xn)), then we can compute the desired value
y as ỹ = f̃(x̃1, . . . , . . . xn). In the general case of non-zero errors, it is still
reasonable to take this value ỹ = f̃(x̃1, . . . , x̃n) as the numerical estimate
for y. From this viewpoint, it makes sense to ask for the largest possible
deviation ∆ between this estimate ỹ and all possible values y ∈ y (i.e., to
be more precise, the largest possible value of |y− ỹ|). (Of course, if we can
compute the endpoints of the interval y, then we can easily compute this
value ∆ as well.)
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The only way to use the oracle function f̃ is to generate some rational
values x1, . . . , xn and to return f̃(x1, . . . , xn). By the computational com-
plexity of an algorithm that solves our problem, we will mean the total
number of elementary computational operations plus the number of oracle
calls. (Of course, by counting the call as one computational step, we under-
estimate the computational complexity of an algorithm, but since we are
going to prove an exponential lower bound for the number of calls, we will
thus get an exponential lower bound for any other reasonable definition of
a computational complexity.)

Theorem B.2. (Kreinovich [205]) If an algorithm solves the problem of es-
timating errors of approximately linear indirect measurements (in the active
setting), then its worst-case computational complexity is ≥ 2n−1.

Comment. This theorem means that whatever algorithm solves our problem,
this algorithm will require exponential time on some instances. Of course, the
worst-case exponential complexity does not mean that we always have expo-
nential time: for some oracles, faster computations are possible (see an example
in the Proofs section).

B.4. Precise formulation of the problem: the
general case

Since our problem is computationally intractable even in the simplified case,
when the errors ∆(p)

i are negligible, it is intractable in the general case as well.

The complexity of different problems (related to error estimation for indirect
measurements for approximately known linear functions f) can be represented
as a table:
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Accuracy of Active setting Passive setting
experiments for (we can make (we can only use results
measuring f new experiments) of given experiments)
xi and y measured Polynomial time Linear time
precisely
xi measured precisely, Exponential time NP-hard
y measured with error (or worse)
xi and y measured Exponential time NP-hard
with error (or worse)

We can use another table to compare the computational complexity of the
problems with precisely known and approximately known f :

Precisely Approximately
known f known f

Linear f Linear time Exponential time
(or worse)

Quadratic f NP-hard Exponential time
(or worse)

Polynomial f NP-hard Exponential time
(or worse)

B.5. Proofs

Proof of Theorem B.1.

We already know, from the main text, that for bilinear functions y =
∑

aijxiyj ,
the basic problem of interval computations is NP-hard. To be more precise, the
problem of computing the largest possible value of a bilinear function

∑
aijxiyj ,

when xi and yj run over given intervals xi and yj , is NP-hard. To show that
our problem is NP-hard, let us reduce this bilinear problem to ours. Namely,
if we:

rename yj as an+j ,

introduce a new coefficient a0 that is equal to 0, and

denote
∑

j aijyj by ai,
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then we can re-formulate the original bilinear problem in the following equiva-
lent form:

a0 + a1 · x1 + . . . + an · xn + an+1xn+1 + . . . + a2n · x2n → max

under the conditions that x1 ∈ x1, . . . , xn ∈ xn, xn+1 ∈ xn+1 = [0, 0], . . .,
x2n ∈ x2n = [0, 0], and the values ai satisfy the following system of 2n + 1
two-sided linear inequalities:

0 ≤ ai −
n∑

j=1

aijan+j ≤ 0, 1 ≤ i ≤ n;

y
j
≤ an+j ≤ yj , 1 ≤ j ≤ n;

0 ≤ a0 ≤ 0.

The last inequality can be represented as consistency condition between the
coefficient vector ~a and the all-zeroes pattern (0, . . . , 0, 0, 0). This condition
guarantees that a0 = 0.

Since a0 = 0, each of remaining 2n double-sided inequalities

c ≤ k1 · a1 + . . . + k2n · a2n ≤ c,

can, in its turn, be represented as a consistency condition between a vector ~a
and a pattern (k1, . . . , k2n, y, ∆), where y = (c+ c)/2 and ∆ = (c− c)/2. Thus,
the original bi-linear problem is equivalent to a particular case of our problem.

Hence, any method of solving our problem in polynomial time would lead to
solving the bilinear problem in polynomial time; since the bilinear problem is
NP-hard, our problem is, thus, also NP-hard. The theorem is proven.

Proof of Theorem B.2. We will prove this theorem by reduction to a con-
tradiction. Assume that we have an algorithm U that solves this problem and
whose worst-case computational complexity for some n is < 2n−1. This means
that this algorithm will always produce the answer in ≤ 2n−1−1 computational
and measurement steps. In particular, it will produce the desired answer with
≤ 2n−1 − 1 calls to the oracle f̃(~x). Let us show that this assumption leads to
a contradiction.

To show this, we will take x̃i = 0, ∆i = 1, ε = 1, and r =
√

n (we will choose
δ > 0 later). As an oracle f̃(~x), we will take a function that is identically 0.
(For this function, ỹ = f̃(x̃1, . . . , x̃n) is always equal to 0.) This oracle f̃(~x) is
itself a linear function, so it is (~̃x, r, ε)-consistent for all ~̃x, r, and ε.
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If a linear function l(~x) is (~̃x, r, ε)-consistent with this oracle, then for all xi ∈ xi,
we have |l(~x) − f̃(~x)| ≤ ε = 1. Since f̃(~x) = 0, we have |l(~x)| ≤ 1. Thus, all
possible values y = l(~x) are between −1 and 1, and therefore, the deviation
|y− ỹ| between y and ỹ = 0 cannot exceed 1. Hence, the largest possible value
∆ of this deviation is also ≤ 1: ∆ ≤ 1.

The algorithm U computes the value ∆̃ that is δ−close to ∆. Therefore, from
∆ ≤ 1, we conclude that ∆̃ ≤ ∆ + δ ≤ 1 + δ.

This algorithm U uses ≤ 2n−1 − 1 values of the oracle f̃(~x). So, if we use
another oracle g̃(~x) which is also (~̃x, r, ε)-consistent, and which has the same
values in all tested points ~x(p) (i.e., f̃(~x(p)) = g̃(~x(p))), then the algorithm U
will not notice the difference and thus produce the same estimate ∆̃ for the
new largest deviation ∆(g̃). To get the desired contradiction, we will produce
an oracle g̃(~x) for which this estimate will be incorrect.

For each of ≤ 2n−1−1 patterns ~x(p) = (x(p)
1 , . . . , x

(p)
n ) for which the algorithm U

calls the oracle, we can find a vector of signs (sign(x(p)
1 ), . . . , sign(x(p)

n )), where
the sign function is defined as usual: sign(x) = 1 if x > 0, sign(x) = −1 if x < 0,
and sign(0) = 0. These≤ 2n−1−1 patterns lead to≤ 2n−1−1 sign vectors. If we
add, for each pattern, a vector of its negative signs (−sign(x1), . . . ,−sign(xn)),
we still get no much than twice the number of patterns, i.e., no more than
2n − 2 different sign vectors.

There are totally 2n sign vectors that consist of ±1. Therefore, at least one
of these vectors is not appearing neither as the sign vector of a pattern, nor
as a negative sign vector of a pattern. Let us denote one of these vectors by
~ε = (ε1, . . . , εn); let us then take

l0(~x) =
1√

n(n− 1)

n∑

i=1

εi · xi,

and define the oracle g̃(~x) as follows:

g̃(~x) = l0(~x)− 1 if l0(~x) > 1;

g̃(~x) = 0 if −1 ≤ l0(~x) ≤ 1;

g̃(~x) = l0(~x) + 1 if l0(~x) < −1.

This oracle is (~̃x, r, ε)-consistent, because it is (~̃x, r, ε)-consistent with the linear
function l0(~x).
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Let us prove that this new oracle g̃(~x) attains the same values (identically 0)
for all the patterns ~x(p) (to which f̃ has been applied while the algorithm U
was running).

Indeed, let ~x(p) be one of such patterns. Because of our choice of signs εi, not
all the signs of x

(p)
i coincide with εi. For those i for which x

(p)
i and εi have

different signs, the product εi · x(p)
i is non-positive. Therefore,

n∑

i=1

εi · x(p)
i ≤

∑

i∈Pp

εi · x(p)
i ,

where by Pp, we denoted the set of all i for which the sign of x
(p)
i coincides

with εi. Since not all of these signs coincide, the number of elements |Pp| in a
set Pp is smaller than n, i.e., |Pp| ≤ n− 1.

It is well known that the scalar (dot) product ~a ·~b =
∑

ai · bi of arbitrary two
vectors cannot exceed the product of their lengths: ~a · ~b ≤

√∑
a2

i ·
√∑

b2
i .

Therefore,

∑

i∈Pp

εi · x(p)
i =

∑

i∈Pp

1 · |xi| ≤
√∑

i∈Pp

1 ·
√∑

i∈Pp

|x(p)
i |2.

But ∑

i∈Pp

1 = |Pp| ≤ n− 1,

and ∑

i∈Pp

|x(p)
i |2 =

∑

i∈Pp

∆2
i ≤

n∑

i=1

∆2
i ≤ r2 = n.

Therefore,
n∑

i=1

εi · x(p)
i ≤

∑

i∈Pp

εi · x(p)
i ≤ √

n− 1 · √n =
√

n(n− 1),

and

l0(~x(p)) =
1√

n(n− 1)

n∑

i=1

εi · x(p)
i ≤ 1.

Similarly, one can prove that l0(~x(p)) ≥ −1. Therefore, according to our defin-
ition of the oracle g̃(~x), we have g̃(~x(p)) = 0. So, on all the patterns ~x(p), the
new oracle g̃(~x) indeed attains the same value (= 0) as the original oracle f̃(~x).
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Let us now estimate the largest possible deviation ∆ for this new oracle. This
oracle is (~̃x, r, ε)-consistent with the linear function l0(~x). The values xi = εi

are possible values of i−th quantity, because |x̃i−xi| = |0−εi| = |εi| = 1 ≤ ∆i.
So, the largest possible deviation ∆(g̃) is greater than or equal to the deviation
|y− ỹ| = |l0(~ε)− g̃( ~̃x)|. For x̃i = 0, we have l0(~̃x) = 0 and therefore, ỹ = g̃(~̃x) =
0. On the other hand,

y = l0(~ε) =
1√

n(n− 1)

n∑

i=1

ε2
i =

n√
n(n− 1)

=
√

n

n− 1
.

Hence, |y − ỹ| =
√

n/(n− 1), and ∆(g̃) ≥
√

n/(n− 1).

We have already shown that for this oracle g̃(~x), the algorithm U returns the
estimate ∆̃ ≤ 1 + δ. So, if we choose δ < 1/2(

√
n/(n− 1) − 1), then this

estimate cannot be δ-close to the value ∆(g̃) ≥
√

n/(n− 1) and will, therefore,
be incorrect.

This contradiction shows that our initial assumption that we can have an algo-
rithm U (that solves the problem of estimating errors of approximately linear
indirect measurements) with < 2n−1 computational and measurement steps is
wrong. The theorem is proven.

Proof of the comment after Theorem B.2. Let us show an example of
problems that can be solved fast. Let us take arbitrary ε > 0, r ≥ 3 · √n,
x̃i ≤ 1, ∆i ≤ 1, and the following oracle f̃ :

f̃(0, 0, . . . , 0) = −ε;

f̃(1, 0, . . . , 0) = f̃(0, 1, 0, . . . , 0) = . . . = f̃(0, . . . , 0, 1, 0, . . . , 0) = . . . =
f̃(0, . . . , 0, 1) = ε;

f̃(−1, 0, . . . , 0) = f̃(0,−1, 0, . . . , 0) = . . . = f̃(0, . . . , 0,−1, 0, . . . , 0) =
. . . = f̃(0, . . . , 0,−1) = ε;

f̃(x1, . . . , xn) = 0 for all other vectors ~x = (x1, . . . , xn).

This oracle is (~̃x, r, ε)-consistent because it is consistent with the linear function
l0(x1, . . . , xn) ≡ 0. Let us show that l0(~x) is the only linear function l(~x) =
a0 + a1 · x1 + . . . + an · xn that is consistent with this oracle.

Indeed, consistent means that |f̃(~x) − l(~x)| ≤ ε for all ~x that are r-close to ~̃x.
In particular, this inequality must be true for ~x = (0, 0 . . . , 0), ~x = (1, 0, . . . , 0),
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and ~x = (−1, 0, . . . , 0). Substituting the values of the oracle and the general
expression for the linear function l(x1, . . . , xn) into these inequalities, we get the
following three inequalities: |a0 +ε| ≤ ε, |a0 +a1−ε| ≤ ε, and |a0−a1−ε| ≤ ε.
These inequalities can be re-formulated in the following two-sided form:

−2ε ≤ a0 ≤ 0;

0 ≤ a0 + a1 ≤ 2ε;

0 ≤ a0 − a1 ≤ 2ε.

Adding the second and the third of these inequalities, and dividing all three
sides of the resulting two-sided inquality by two, we conclude that 0 ≤ a0 ≤ 2ε,
i.e., that a0 is non-negative. Since from the first inequality, we know that a0 is
non-positive, we conclude that a0 = 0.

Since a0 = 0, the second inequality leads to a1 ≥ 0, and the third leads to
−a1 ≥ 0, i.e., to a1 ≤ 0. Thus, a1 = 0. Similarly, we can show that ai = 0 for
i = 2, . . . , n, and l(~x) = 0 = l0(~x).

Since l0(~x) = 0 is the only linear function that is consistent with the oracle,
the desired set y of all possible values of y = l(~x) consists of a single value 0,
and this degenerate interval is easy to compute.



C
FROM INTERVAL COMPUTATIONS

TO MODAL MATHEMATICS

In this appendix, we describe the computational complexity and feasibility of
another natural generalization of interval computations: modal mathematics.

This appendix was written in collaboration with B. Bouchon-Meunier. The
results presented in this appendix first appeared in Bouchon-Meunier et al.
[53].

C.1. Formulation of the Problem

Traditional interval mathematics: a brief reminder. Before we start
explaining why we need to go beyond interval computations, let us briefly recall
our motivation for the use of interval computations in data processing.

Traditional data processing methods of numerical mathematics are based on
the assumptions that we know the exact values of the input quantities. In
reality, the data come from measurements, and measurements are never 100%
precise; hence, the actual value x of each input quantity may differ from its
measurement result x̃. In some cases, we know the probabilities of different
values of error ∆x = x̃ − x, but in most case, we only know the guaranteed
upper bound ∆ for the error; in these cases, the only information we have about
the (unknown) actual value x is that x belongs to the interval x = [x̃−∆, x̃+∆].

One of the basic problems of interval mathematics is, therefore, as follows: given
a data processing algorithm f(x1, . . . , xn) and n intervals x1, . . . ,xn, compute
the range y of possible values of y = f(x1, . . . , xn) when xi ∈ xi.
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Non-traditional interval problems: control, design, optimization, etc.
The above formulation makes perfect sense when we estimate the value of a
certain physical quantity y that is related to the directly measured quantities
xi. In this case, the goal is to find all real numbers that can be the values of
this quantity y (for the given measurement results).

The goal of data processing is, however, often more complicated. For example,
we may want to control a certain system; in this case, we must find a control
value that, e.g., guarantees stability of the system for all possible values of the
parameters xi (i.e., for all xi ∈ xi). In this case, we want to find all real numbers
y for which stability must occur. Similarly, many real-life problems of design,
control, and optimization lead to complicated mathematical formulations.

Shary’s approach: successes and limitations. For the case when the
relationship between different variables is described by a system of (linear or
non-linear) equations, different possible problems have been described by Shary
(see, e.g., [392]). Shary distinguishes between different possible formulations
by using different quantifiers for different variables: e.g., if we are interested in
the set of possible values of y, we are interested in values y for which ∃xi such
that the given equations are true; if we want a control y that leads to stability
for all possible values xi, we use a universal quantifier ∀xi.

Successes. Shary’s classification contains practically all known problems, and
it seems to be sufficient for describing objective knowledge, that is usually de-
scribed in terms of equations.

Limitations. The main limitation of Shary’s approach is that an essential part of
our knowledge comes from experts, and experts often describe their knowledge
not in terms of equations, but in terms of logical statements (e.g., in terms of
“rules” of the type “if A then B”).

Modal logic: a way of describing “can” and “must”. In case of mea-
surement uncertainty, expert statements cannot be formulated in terms of pure
logic; we also need some formalization of the words like “can” and “must” that
were used in the above descriptions of our objectives. Logics that formalize
these terms are called modal logics (see, e.g., Reyes et al. [338], Mints [283]); in
these logics, “A can happen” is usually described as ♦A, and “A must happen”
as 2A.
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Our problem. Our problem is thus: to add these modal operators to mathe-
matics, and thus, go from interval mathematics to modal mathematics.

Since our intended application is data processing, this generalization only makes
sense while its results are still computable (and feasibly computable). So,
among the first problems to handle are the problems of computability and com-
putational complexity of the resulting modal mathematics. These problems will
be handled in the chapter.

Historical comment. The fact that formulas and relations of interval mathe-
matics can be described in terms of modal logic is not new: it was first noticed
in Gardeñes [119] (see also Kreinovich et al. [211] and [235]).

C.2. Example, and an Idea of the General De-
scription

Example. Let us use capital letters (e.g., Xi) to describe variables that are
not necessarily uniquely determined by our knowledge, i.e., that can still take
different values (e.g., values from an interval). In these terms, if a measurement
leads us to a conclusion that the value of this variable belongs to an interval
[xi, xi], then we can express this knowledge as: 2(xi ≤ Xi ≤ xi). In these
terms, the basic problem of interval computations can be, crudely speaking,
reformulated as follows: given the values xi, xi, and y, check whether the
following formula is true:

(2(x1 ≤ X1 ≤ x1)& . . . &2(xn ≤ Xn ≤ xn)) →

2(f(X1, . . . , Xn) ≤ y). (C.1)

Actually, by checking the validity of this formula, we check whether the upper
bound of the range f([x1, x1], . . . , [xn, xn]) is greater than a given number y
or not. If we can do that for all numbers y, then, by applying bisection, we
can compute the actual upper endpoint of the range interval with greater and
greater accuracy.

Similarly, we can compute the lower endpoint of the range interval if we check
a formula

(2(x1 ≤ Xi ≤ x1)& . . . &2(xn ≤ Xn ≤ xn)) →
2(f(X1, . . . , Xn) ≥ y).
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The idea of a general description. Let us denote by X ⊆ Rn the (unknown)
set of possible values of tuples (X1, . . . , Xn). For each tuple (X1, . . . , Xn), it is
easy to define truth values of elementary formulas (e.g., equations, inequalities,
etc.), and formulas of first order logic (that are obtained from elementary ones
by using propositional connectives “and”, “or”, “not”, and quantifiers). If a
formula A is well defined, then:

we say that ♦A is true if and only if A is true for at least one tuple from
X , and

that 2A is true if A is true for all tuples from X .

We then say that a formula is true if it is true for all sets X ⊆ Rn.

In particular, the validity of formula (C.1) means the following:

The formula 2(xi ≤ Xi ≤ xi) means that for every tuple from X , the value
Xi belongs to the interval [xi, xi]. In other words, this formula is true if
and only if the set X is a subset of the box B = [x1, x1]× . . .× [xn, xn].

The formula 2(f(X1, . . . , Xn) ≤ y) means that for every tuple
(X1, . . . , Xn) ∈ X , the value f(X1, . . . , Xn) does not exceed y. In other
words, this formula means that the range f(X ) of the function f on the
set X belongs to the semi-line (−∞, y].

Finally, the formula (C.1) itself means that if X ⊆ B, then f(X ) ⊆
(−∞, y]. To check this implication, it is sufficient to check it for X = B,
because from F (B) ⊆ (−∞, y] and X ⊆ B, it follows that f(X ) ⊆ f(B) ⊆
(−∞, y]. Thus, the formula (C.1) is equivalent to f(B) ⊆ (−∞, y].

Comment. The possibility of quantification over all possible sets (not only
numbers from intervals) is what distinguishes this formalism from Shary’s. In
particular, this formalism leads to a new description of the so-called Kaucher
arithmetic (see, e.g., [226]).

This description can also be generalized to describe unknown functions [235]:
For example, we often know that a physical quantity y depend on some other
quantity x (i.e., that y = f(x) for an unknown function f); as a result of the
measurements, we have intervals [y

i
, yi] of possible values of yi = f(xi) at given

points x1 < . . . < xn. A natural question is: is this information consistent with
the assumption that the function f is monotonic?
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For example, if f(x) describes the dependency of the brightness y of the astro-
nomical source on the coordinate x, then this question has a precise physical
meaning: does this course constitute a single component, or it consists of sev-
eral components? (There exist several other applications of this problem; these
applications and a feasible algorithm for solving this problem are described in
Villaverde et al. [419, 420].) In terms of modal logic, this problem can be
formulated as follows: if we are sure that f(xi) ∈ [y

i
, yi] for all i, then is it

possible that f(x) is monotonic? In other words, is it true that

(2(y
1
≤ f(x1) ≤ y1)& . . . &2(y

n
≤ f(xn) ≤ yn)) →

♦∀x∀y(x < y → f(x) ≤ f(y)).

C.3. Definitions and the Main Result

Let us define the language of modal mathematics. Let us first describe the
alphabet of the designed language. The formulas of the desired language will
be formed from the following symbols:

constants for all rational numbers;

variables x1, . . . (denoted by small letters) that run over all real numbers;

modal variables X1, . . . (denoted by capital letters);

arithmetic operations +, −, ·, and /; and

relations =, <, ≤, >, ≥.

Definintion C.1. A term is defined as follows:

every constant and every variable is a term;

if t and t′ are terms, then (t), t + t′, t− t′, t · t′, and t/t′ are terms;

nothing else is a term.

Definition C.2. An elementary formula is defined as a formula of the type
t ◦ t′, where t and t′ are terms, and ◦ is one of the relations (i.e., =, <, ≤, >,
or ≥).
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Definition C.3. A formula is defined as follows:

every elementary formula is a formula;

if F and F ′ are formulas, then (F ), ¬F , F&F ′, F ∨ F ′, and F → F ′ are
formulas;

if F is a formula, and xi is a variable, then ∀xiF and ∃xiF are formulas;

if F is a formula, then ♦F and 2F are formulas;

nothing else is a formula.

A formula is called quantifier-free if it does not use quantifiers ∀ and ∃, and
modal-free if it does not use modalities ♦ and 2. A formula is called closed
if every variable xi is within the scope of some quantifier, and every modal
variable Xi is within the scope of some modality.

Comment. Modal-free formulas are exactly formulas of first order theory of
real numbers described in Tarski, Seidenberg [407, 387].

To define the truth value of an arbitrary formula F of modal mathematics, we
must select:

some values x1, . . . , xm for all free numerical variables from this formula;

some values X1, . . . , Xf for all free modal variables from this formula, and

a set X ⊆ Rn (where n is the total number of non-free modal variables in
a formula F ).

For this choice, the truth value of a formula F is defined as follows:

Definition C.4. Let F be a modal formula. By a selection, we mean a tuple
〈x1, . . . , xm, X1, . . . , Xf ,X〉, where m is the total number of free numerical
variables, f and n are, correspondingly, the total numbers of free and non-free
modal variables, xi and Xj are real numbers, and X ⊆ Rn.
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Definition C.5. Let F be a formula, and let 〈x1, . . . , xm, X1, . . . , Xf ,X〉 be a
selection. Then, the truth value of a formula is defined as follows:

The value of a term is defined in a straightforward way (as the result of
the corresponding computations).

Correspondingly, the truth value of an elementary formula t ◦ t′ depends
on whether the values of the terms t and t′ are indeed connected by a
relation ◦.
The truth value of a composite formula F&F ′, ∀xF , etc., is defined ac-
cording to the normal understanding of the logical operations &, ∀, etc.

The formula ♦A is true if and only if there exists a tuple (X1, . . . , Xn) ∈ X
for which A is true.

The formula 2A is true if and only if A is true for all tuples (X1, . . . , Xn)
from the set X .

Comment. In particular, for closed formulas, a selection consists of only the
set X .

Definition C.6. We say that a closed formula is valid (in modal mathematics)
if it is true for all sets X ⊆ Rn.

In terms of this definition, the basic computation problem of modal mathemat-
ics is to check whether a given closed formula is valid or not.

Theorem C.1.

For closed quantifier-free formulas:

• Validity of modal-free formulas can be checked in polynomial time.

• Checking validity of formulas that use modalities is an algorithmically
decidable but NP-hard problem.

For formulas with quantifiers:

• Checking validity of arbitrary modal-free formulas is an algorithmi-
cally decidable problem.

• Checking validity of arbitrary formulas with modality is an algorith-
mically undecidable problem.
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This result can be represented as a table:

Modal-free Formulas with
formulas modalities

Quantifier-free Polynomial time Decidable,
formulas NP-hard
Formulas with Decidable, Undecidable
quantifiers ≥ exponential time

Proof of Theorem C.1.

Modal-free formulas: general comment. According of our definition of a
closed formula, every modal formula must be within a scope of some modality.
Therefore, if a closed formula is modal-free (i.e., contains no modalities), then
it does not contain any modal variables at all.

Modal-free quantifier-free formulas. If a closed modal-free formula F
is also quantifier-free, this means that F contains no variables at all, only
constants, and the formula itself is a propositional combination of elementary
formulas of the type t ◦ t′, where t and t′ are terms made composed from
constants by applying elementary arithmetic operations. Computing the values
of these terms step-by-step takes linear time (i.e., time that is bounded by a
linear function of the size of the formula); comparing these values and applying
propositional connectives to the Boolean-valued results of this comparison is
also linear-time. So, as a result, we can check whether a formula is valid or not
in linear (hence, in polynomial) time.

Modal-free formulas: general case. In general, if a closed modal-free for-
mula is not necessarily quantifier-free, it is, as we have mentioned, a first order
formula from the theory of real numbers described in Tarski and Seidenberg
[407, 387]. For this theory, there are algorithms that test whether a given closed
formula is valid or not; the first such algorithm was proposed by Tarski and
Seidenberg [407, 387]; for more practical algorithms, see, e.g., Collins and Hong
[71, 153, 72]. Therefore, for the class of modal-free formulas, the problem of
checking whether a given formula is valid or not is algorithmically decidable.

Exponential (actually, doubly exponential) lower bounds for this problem were
proven in Davenport [84].
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Quantifier-free formulas with modalities. Let us first show that this
problem is NP-hard. Indeed, we know (from the previous chapters) that the
problem of computing the range of an interval function is NP-hard; actually,
in our proofs, we have shown that the problem of checking whether, say, one of
the endpoints of the resulting range interval is ≥ a given number, is NP-hard.
But this problem, as we have shown, can be reformulated as a quantifier-free
formula of modal mathematics. Thus, checking validity of such formulas is an
NP-hard problem.

Let us now prove that checking validity of quantifier-free closed formulas F
of modal mathematics is algorithmically decidable. For this, we will use the
deciding algorithm from Tarski and Seidenberg [407, 387] or from Collins and
Hong [71, 153, 72]. This algorithm transforms each first-order formula from
the theory of real numbers (i.e., in our terms, each modal-free formula) into an
equivalent quantifier-free modal-free formula (in particular, a closed formula is
transformed into its Boolean value “true” or “false”).

For each quantifier-free modal-free formula, we can describe the set of all tuples
that make it true. Such a set is called semi-algebraic. By this definition,
the union, complement, and intersection of semi-algebraic sets are also semi-
algebraic (because they correspond to the disjunction ∨, conjunction &, and
the negation ¬ of the corresponding formulas).

We will first show that if F is a quantifier-free formula with modalities, then
each subformula of the formula F is equivalent to the propositional combination
of quantifier-free modal-free formulas and formulas of the type X ⊆ A for semi-
algebraic sets A. We will show this by induction over the length of the formula:

Induction base: Elementary formulas are quantifier-free modal-free, and there-
fore, they are themselves of the right type.

Induction step: Let us assume that all formulas shorter than a formula G are
equivalent to formulas of the desired type. This means, in particular, that all
subformulas of G are equivalent to formulas of the given type. Then, depending
on the structure of the formula G, we have three possible situations:

If G is a propositional combination (i.e., if G = G′&G′′, G′ ∨ G′′, etc.),
then, since each of its subformulas G′, G′′ is equivalent to a propositional
combination of the formulas of the right type, G is also equivalent to such
a propositional combination; so, for this case, the induction step is proven.
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Let us now consider the case when G has the form 2H for some formula
H. We know that H is equivalent to a propositional combination H ′ of
quantifier-free formulas and finitely many formulas of the type X ⊆ A; let
us denote the total number of such sets A by m, and the sets themselves
by A1, . . . , Am. Depending on whether X ⊆ Aj for each j = 1, . . . , m, we
have 2m possible situations. Each situation will be denoted by sk, where
k is an m−digit number, in which 1 in i−th place means that X ⊆ Ai,
and 0 that X 6⊆ Ai. (For example, s0 means that X 6⊆ A1& . . . &X 6⊆
Ap.) For each of these situations sk, H ′ can be reduced to a quantifier-
free modal-free formula; we will denote such a formula by Hk. Hence,
for every set X that is characterized by this situation sk, the formula G
of the type 2H is equivalent 2H ′, which, in its turn, is equivalent to
∀X1, . . . , ∀Xn((X1, . . . , Xn) ∈ X → Hk). If we denote the set of all tuples
that satisfy the condition Hk by A′k, then this condition is equivalent
to X ⊆ A′k. So, for each situation sk, the formula 2H is equivalent to
X ⊆ A′k. Therefore, in general, the formula 2H is equivalent to the
following propositional combination

(s1&(X ⊆ A′1)) ∨ . . . ∨ (s2m−1&(X ⊆ A′2m−1)).

Each of the conditions sk is already in the desired form, so H is also in
the desired form.

The case when G is of the type ♦H can be reduced to the previous one,
because, as one can easily check, ♦H is equivalent to ¬2(¬H).

The statement is proven. In particular, it is applicable to the original closed
formula F . Since this formula is closed, it has no modal variables left, and
therefore, F is equivalent to a propositional combination of the formulas fj of
the type X ⊆ A. This propositional combination can be reduced to a conjunc-
tive normal form (CNF), i.e., to a formula C1& . . . &Cp, where each subformula
Ck (called conjunction) is of the type a ∨ ... ∨ b, and each of the subformulas
a, . . . , b is either fj , or ¬fj . So, the validity of the formula F is equivalent to
the fact that for every set X , the conjunction C1& . . . &Cp is true. This means
that for each set X , each conjunction must be true. So, to check validity, it is
sufficient to be able to check, for k = 1, . . . , p, that each conjunction Ck is true
for all sets X ⊆ Rn.

If we take into consideration that each conjunction Ck is a conjunction of the
formulas fj and ¬fj , and fj is of the type X ⊆ Aj , then (after, if necessary,
reordering the terms inside Ck) we get the formula of the type

(X ⊆ B1) ∨ . . . (X ⊆ Bq) ∨ (X 6⊆ C1) ∨ . . . ∨ (X 6⊆ Cr)
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for some semi-algebraic sets Bk and Cl. This formula is equivalent to

(X ⊆ C1& . . . &X ⊆ Cr) → (X ⊆ B1 ∨ . . .X ⊆ Bq).

The condition of this implication is that X is a subset of r sets C1, . . . , Cr;
this is equivalent to X being a subset of the intersection C1 ∩ . . . ∩ Cr. This
intersection of semi-algebraic sets (we will denote it by C) is also semi-algebraic.
So, for a given set X , the truth of the formula F is equivalent to the truth of
the following formula:

X ⊆ C → (X ⊆ B1 ∨ . . .X ⊆ Bq). (C.2)

The validity of F means that this implication must be true for all sets X . Let
us show that this formula is true for all X if and only if

C ⊆ B1 ∨ . . . ∨ C ⊆ Bq. (C.3)

Indeed:

If (C.2) is true for all sets X , it must also be true for X = C. For this set,
the condition of (C.2) is true, and therefore, the conclusion must be true,
and this conclusion is exactly (C.3).

Vice versa, let (C.3) be true. Then, if a set X satisfies the condition of the
implication (C.2), then X is a subset of C, and C (by (C.3)) is a subset
of one of the sets Bk. Hence, X is a subset of one of the sets Bk, which
is exactly the conclusion of the formula (C.2). So, the implication that
constitutes the formula (C.2) is true.

So, validity of F is equivalent to the validity of a formula (C.3) with semi-
algebraic sets C and Bk. The fact that these sets are semi-algebraic means that
each of these sets is a set of all tuples (X1, . . . , Xn) that satisfy a certain modal-
free formula; we will denote the corresponding formulas by FC(X1, . . . , Xn)
and FBk

(X1, . . . , Xn). In terms of these formulas, the condition C ⊆ Bk

becomes a first order (modal-free) statement ∀x1 . . . ∀xn(FC(x1, . . . , x)n →
FBk

(x1, . . . , xn)), and first order modal-free statement are algorithmically de-
cidable (we can use Tarski-Seidenberg algorithm [407, 387] or a more modern
algorithm from Collins and Hong [71, 153, 72]).
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General case: formulas that contain both quantifiers and modalities.
Let us now prove that the problem of checking validity of general formulas is al-
gorithmically undecidable. To prove this statement, we will use the known fact
that there exists no algorithm for checking whether a given Diophantine equa-
tion has a solution, i.e., whether for a given polynomial P (x1, . . . , xn) with inte-
ger coefficients, there exist natural numbers (non-negative integers) x1, . . . , xn

for which P (x1, . . . , xn) Matiyasevich, Davis et al. [275, 85]. Let us show that
checking whether such integers exist is equivalent to checking the validity of
the following formula from our language:

(Z1& . . . Zn&C) → ♦P (X1, . . . , Xn) = 0, (C.4)

where Zi stands for

♦(Xi = 0)&∀x(♦(Xi = x) → ♦(Xi = x + 1)),

and C for

∀x1 . . . ∀xn((♦(X1 = x1)& . . . &♦(Xn = xn)) ↔ ♦(X1 = x1& . . . &Xn = xn)).

Indeed, according to our definitions, the validity of the statement Zi means
that the set Xi of all possible values of Xi (i.e., of all values Xi from the tuples
(X1, . . . , Xi, . . . , Xn) ∈ X ) contains 0 and contains x+1 with each its element x.
This means, in particular, that it contains 0, 1, 2, . . ., i.e., all natural numbers.

The condition C means that if for each i = 1, . . . , n, Xi is possible (i.e., Xi ∈
Xi), then the tuple (X1, . . . , Xn) is also possible (i.e., (X1, . . . , Xn) ∈ X ). In
particular, since each natural number xi is a possible value of Xi, an arbitrary
tuple of natural numbers (x1, . . . , xn) belongs to the set X .

The conclusion of the implication (C.4) means that P (X1, . . . , Xn) = 0 for
some tuple (X1, . . . , Xn) ∈ X .

If the equation P (x1, . . . , xn) has a solution x
(0)
1 , . . . , x

(0)
n in which all values

x
(0)
i are natural numbers, then for every set X , for which the conditions of the

implication (C.4) are satisfied, the tuple (x(0)
1 , . . . , x

(0)
n ) corresponding to this

solution is an element of X , and therefore, the conclusion of the implication
is true. Thus, if the original Diophantine equation has a solution, then the
formula (C.4) is valid.

Vice versa, if the formula (C.4) is valid, then it is valid for an arbitrary set X , in
particular, for the set X = Nn (where N is the set of all integers). For this set,
the conditions of the implication (C.4) are true, and therefore, the conclusion
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must also be true. Hence, the equation P (X1, . . . , Xn) must have a solution
(X1, . . . , Xn) ∈ X . Since X = Nn, this means that the original equation has a
solution in natural numbers.

So, a Diophantine equation has a solution if and only if the corresponding
formula (C.4) of modal mathematics is valid. Since it is impossible to algorith-
mically check whether a given Diophantine equation has a solution, it is thus
impossible to check whether a given formula of modal mathematics is valid or
not. Hence, in the general case, the problem of checking validity of formulas of
modal mathematics is algorithmically undecidable. The theorem is proven.





D
BEYOND NP: TWO ROOTS GOOD,

ONE ROOT BETTER

One Of The Main Objectives Of Theoretical Research In Computational Com-
plexity And Feasibility Is To Explain Experimentally Observed Difference In
Complexity. In some cases, this experimental difference can be theoretically ex-
plained by proving that the experimentally harder problem is NP-hard, while
the experimentally easier problem is computationally feasible. But sometimes,
both problems are NP-hard. In this case, we need to find a way to compare
NP-hard problems. This is what we will do in this appendix.

Specifically, in this appendix, we explain why finding a unique root is eas-
ier than finding multiple roots. This chapter contains our joint results with
R. B. Kearfott; these results were announced in Kreinovich and Kearfott
[191, 192, 193, 194, 195, 200, 217].

D.1. Formulation of the Problem: An Empirical
Fact Needs to Be Explained

Experimental fact. The main objective of this appendix is to explain the
following experimental facts (see, e.g., Kearfott [170, 171, 172, 173, 174]):

In general, it is easier to find a solution (x1, . . . , xn) to a system of equa-
tions f1(x1, . . . , xn) = 0, . . . , fk(x1, . . . , xn) = 0 when this system has a
unique solution than when this system has several solutions.

In general, it is easier to find a point (x1, . . . , xn), in which a given function
f(x1, . . . , xn) attains its maximum, when there is only one such point, and
much harder when there are several.
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Two possible explanations. In principle, there are two possible explana-
tions:

this is a drawback of the existing methods; for other methods, finding
non-unique solutions is as easy as finding unique ones;

it actually is harder to find a non-unique solution.

The first explanation is quite possible: there are examples when a similar prob-
lem turned out to be a method’s fault – e.g., Newton’s method works faster
and better if the root is in the middle of the domain, and worse if the root is
close to the border. However, other methods find near-the-border roots much
easier, almost as easily as the roots in the middle of the domain.

Both problems are, crudely speaking, NP-hard. We want to compare
the complexity of two problems:

solving systems of equations with arbitrarily many solutions, and

solving the system of equations with a unique solution.

We already know that the general problem of solving a system of polynomial
equations (without any limitations on the number of solutions) is NP-hard (it
is even NP-hard for quadratic equations). We cannot exactly prove that finding
the unique solution is NP-hard, but we can prove that it is “almost” NP-hard in
the following precise sense: namely, using the reduction described in the proof
of Theorem 3.1, one can show that the problem of finding the unique solution to
a system of equations (or the unique point where the maximum is attained) is
as complicated as the problem of finding the unique satisfying vector for a given
propositional formula. The latter problem (it is usually denoted by USAT, from
unique satisafiability) is known to be “almost” NP-hard in the sense that every
other problem from the class NP can be probabilistically reduced to USAT; so
if we were able to solve all the instances of USAT in polynomial time, we would
have a probabilistic polynomial-time algorithm that solves almost all instances
of all problems from the class NP. (Exact definition are somewhat complicated
so, due to the lack of space, we refer the interested reader to Johnson [164] and
Valiant et al. [416]. Note that in Beigel et al. [26], arguments are given that
this problem may not be NP-hard.)

How can we compare these two situations? Since both problems seem
to be equally difficult, how can we compare them?
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D.2. Our Idea, and the Resulting Theoretical
Explanation

Our idea. For polynomials whose coefficients are rational numbers, both prob-
lems are of approximately the same complexity (both are, crudely speaking,
NP-hard). A natural idea is to consider polynomials whose coefficients are
computable real numbers (see Appendix A for precise definitions). Such poly-
nomials are called computable. For computable polynomials, we already get a
clear distinction between unique and non-unique cases.

Indeed, for the case of the unique solutions, the following results are known
in constructive mathematics (see, e.g., Kreinovich [192, 194], Kohlenbach [178,
179]):

Theorem D.1. There exists an algorithm that is applicable to an arbitrary
system of polynomial equations f1(x1, . . . , xn) = 0, . . . , fk(x1, . . . , xn) = 0 (with
computable fi(x1, . . . , xn)) that has a unique solution, and computes this solu-
tion.

Theorem D.2. There exists an algorithm that is applicable to an arbitrary
computable polynomial f(x1, . . . , xn) on a computable box X = x1 × . . . × xn

that attains its maximum on X at exactly one point x = (x1, . . . , xn), and
computes this point x.

If we allow two or more roots, the complexity of the problem changes drastically:

Theorem D.3. No algorithm is possible that is applicable to any polynomial
function f(x) with exactly two roots, and returns these two roots.

Theorem D.4. No algorithm is possible that is applicable to any polynomial
function f(x) that attains its maximum at exactly two points, and returns these
two points.

These theorems explain why it is much more difficult to find all the roots if
there are two of them than if there is a unique root. In other words, we have a
theoretical explanation of the above-mentioned experimental fact.
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Unique solution Two solutions
System of Decidable, Algorithmically
equations “almost” NP-hard undecidable
Optimization Decidable, Algorithmically

“almost” NP-hard undecidable

D.3. Philosophical Comment: These Results
Form the Basis for Optimism

The problem of finding a unique solution is algorithmically solvable not only
for computable polynomials fk(x1, . . . , xn), but also for arbitrary computable
functions fk(x1, . . . , xn). On the other hand, if we have at least two solutions,
no general algorithm is possible. This result can be viewed as a foundation of
optimism (see, e.g., [199]).

Let us illustrate this idea on the example of historical processes. It often hap-
pens in history that a country is in a bad situation; it may be that a tyrant is
ruining it, it may be that the enemies are devastating it. As times goes by, the
situation gets gloomier and gloomier; it seems that there are fewer and fewer
chances of survival, and then, in the darkest hour, when there seems to be the
only easy-to-miss chance of survival, a miracle happens and this only possible
way out is indeed followed.

It often happens that the army wins only after it was almost defeated. It often
happens that the personal enlightment comes only after a person has plunged
into despair. It often happens that a proof of the theorem comes only after
unsuccessful attempts has almost led to despair. The above results explain
these “miracles”: according to these results, in general, it is much easier to find
a way out when there is the only way out left, than to find it when there were
still several possible.

This result teaches us to be optimistic: if the situation gets gloomier and
gloomier we should not despair but try harder, and then, hopefully, when there
will be only one way out left, we will find it!
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Proofs

We will only give the proofs of Theorems D.3 and D.4. Both proofs use the
fact that it is algorithmically impossible to tell whether a real number is equal
to 0 or not (see, e.g., [190], or Bishop [47], Bridges [57], Beeson [25], Bishop et
al. [48]; in Appendix A, we had, in effect, proved this impossibility).

Proof of Theorem D.3. We will prove this Theorem by reduction to a
contradiction. Assume that such an algorithm U exists. So, U is applicable
to an arbitrary polynomial with exactly two roots, and returns exactly these
roots. As an example of such a polynomial, let’s take

fα(x) = (x− 1− α2) · (x− 1 + α2) · ((x + 1)2 + α2),

where α is some constructive real number.

It is easy to check that for every α, this polynomial has exactly two roots.
Indeed, fα(x) is the product of three factors, so fα(x) = 0 if and only if one of
these factors is equal to 0. We will consider two cases:

If α = 0, then fα(x) = (x− 1)2 · (x + 1)2, so fα(x) = 0 if either x = 1, or
x = −1.

If α 6= 0, then the third factor is positive, so for fα(x) to be 0, one of
the first two factors must be equal to 0. In other words, the roots are
x = 1− α2 and x = 1 + α2.

Now, we can get the desired contradiction: for every constructive number α,
we can apply U to the polynomial fα(x) and get the roots with an arbitrary
accuracy. Let’s compute them with the accuracy 1/4. Depending on whether
α = 0 or not, we have two cases:

If α = 0, then one of the roots is −1, so the (1/4)-approximation to this
root will be a negative rational number.

If α 6= 0, then both roots are ≥ 1 − (1/2)2 = 3/4, hence, their
(1/4)−approximations are greater than 0.

So, if one of the approximations is negative, then α = 0, else α 6= 0. Hence,
based on U , we can construct the following algorithm V that would check
whether a constructive real number is equal to 0 or not:
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apply U to fα(x), and compute both roots with accuracy 1/4;

if both resulting approximations are positive, return the answer “α 6= 0”,
else return the answer “α = 0”.

But we have already mentioned that such an algorithm is impossible. So, our
initial assumption (that an algorithm U exists) was wrong. The theorem is
proven.

Proof of Theorem D.4. The proof is similar to the proof of Theorem D.3,
with the only difference that as fα(x), we now take

fα(x) = −(x− 1− α2)2 · (x− 1 + α2) · ((x + 1)2 + α2).

This function is always non-negative, and since it attains 0 (in exactly the
same points as the function from the proof of Theorem 1), its maximum is
equal to 0. So, the polynomial fα(x) attains its maximum for some x if and
only if fα(x) = 0. Then, similar arguments complete the proof. The theorem
is proven.



E
DOES “NP-HARD” REALLY MEAN

“INTRACTABLE”?

Most computer scientists believe that NP-hard problem are really computation-
ally intractable. This belief is well justified for traditional computers, but there
are non-traditional physical and engineering ideas that may make NP-hard
problem easily solvable. These ideas are briefly overviewed in this appendix.

Parallelism is desirable for interval computations. Many problems of
interval computations and data processing are NP-hard. This means that in
the worst case, computations take a very long time. To speed up these compu-
tations, it is desirable to have several computers working in parallel.

Parallelism is useful. Parallelization has indeed been successfully used in
interval computations: see, e.g., Bernat et al. [214, 213, 215, 33, 34, 35, 36],
Bhamidipati [43], Caprani et al. [60], Cooke [73], Deboeck et al. [86], Doser
et al. [94], Eriksson et al. [101], Henriksen et al. [149], Hu et al. [157, 158],
Kreinovich et al. [212, 236], Leclerc [249], Morgenstein et al. [293], Nemir
et al. [298], Nguyen et al. [303, 306], Schaefer et al. [374], Schnepper et al.
[380], Villa et al. [418], Villaverde et al. [420], Wolff von Gudenberg [431] and
references therein.

Even with the fastest parallel machines, we still cannot solve some
problems. Even on the fastest parallel computers, some problems cannot be
solved. There have been several attempts to design hardware specifically tai-
lored towards parallel interval computations (see, e.g., Schulte et al. [383],
Cooke et al. [74], Nguyen et al. [305]), but even for specifically tailored hard-
ware, the worst-case computation time remains unrealistically exponential.

What can we do?
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Within Newtonian physics, NP-hardness does seem to mean “in-
tractable”. The common belief that NP-hard means intractable is based on
the abilities of the physical processes that are used in the existing comput-
ers; it has been proven that is we only use processes from Newtonian physics,
then we do not add additional ability to the computational devices (for exact
formulations and proofs, see, e.g., Gandy [116, 117]).

Within traditional (Newtonian) physical and engineering solutions, NP-hard
seems to indeed mean “intractable”. Indeed, the existing computations schemes
describe (more or less accurately) the ability of the modern computers. The
only thing that is missing from the standard algorithms is randomness, i.e.,
the ability to input truly random data and use them in computations. In
the language of theory of computation, the outside source of data is called an
oracle. As early as 1981, Bennet et al. has shown [31] that if we allow a random
sequence as an oracle, and correspondingly reformulate the definitions of the
classes P and NP, then we can prove that P 6=NP [31].

What if we use non-traditional physical and engineering ideas in com-
puter design? Since we seem not to be able to avoid the unrealistic expo-
nential time with traditional, Newtonian-physics-based computers, a question
naturally appears: what if in the future, we will find non-Newtonian processes;
will then NP-hard problems still be intractable? This question was first formu-
lated by G. Kreisel [237].

In this appendix, we will show that by using some of these processes, we will
be able to compute NP-processes fast.

Classification of possible non-Newtonian physical processes. Tradi-
tional computers use discrete-oriented deterministic processes in normal space
and time. In reality, physical processes are (1) continuous, (2) non-deterministic
(as described by quantum mechanics), and (3) they occur in non-traditional
(curved) space-time. So, to describe how using additional physical processes
will help in computations, we must consider how these three factors (adding
non-determinism and taking curvature into consideration) change our compu-
tational abilities.

Non-Newtonian processes of first type: Use of physical fields. For a
physical field, the value f(~x, t) of the field f in a future moment of time t can
be expressed in terms of the current state of this field f(~x, 0) by an explicit in-
tegral formula. This formula is usually computable on existing computers, and
therefore, the evolution described by the fields is recursive (relevant theorems
are proved, e.g., in Pour-El et al. [331]).
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In some cases, however, f(~x, t) is described as an integral in terms of the func-
tion f(~x, t) and its spatial derivatives. So, if we start with a function f(~x, 0)
that is recursive, but whose (spatial) derivatives are not recursive, we may end
up with a non-recursive value f(~x, t). This was shown by Pour-El et al. in [330]
(see also Beeson [25], Ch. 15, and Pour-El et al. [331]). This result generalizes
a theorem proved by Aberth in 1971 and rediscovered in Pour-El et al. [329].

Another possible way of using fields to speed up computations is described in
Beltran et al. [28].

Comment. This result does not necessarily mean that we have found a way to
compute a function that is not computable on a normal computer (see, e.g.,
Kreisel [238]), because for that, we would need to find a way to implement the
initial conditions with a non-recursive derivative. A more definite possibility
of solving NP-hard problem fast comes from the other two aspects of physical
processes.

Non-Newtonian processes of second type: Quantum processes
(adding non-determinism). In [89], Deutch has shown that the use of quan-
tum processes can potentially speed up computations (see also Penrose [324],
Ch. 4, p. 146). The fact that quantum processes can speed up computations
follows from the fact that the prediction problem in quantum mechanics is NP-
hard [234] (see also Kosheleva et al. [183]), and therefore, if we can simply wait
to see what will happen, we will thus get (in time t) the values whose com-
putation on a normal computer would require a time that grows exponentially
with t.

Specifically, in Stannett [402], it is shown that in some versions of quantum
mechanics, relativistic physics, and algebraic field theory, it is possible not only
to solve NP-hard problems fast, but even to compute functions that are not
computable on regular computers at all. For several approaches to quantum
gravity, a similar property is described in Geroch et al. [124] and in Penrose
[324], Ch. 8, and Ch. 10, p. 431.

Comment 1. Penrose in [324], Ch. 9, pp. 400–402, provides arguments that
quantum processes may be essential for the functioning of the brain (in par-
ticular, he cites experimental data from Hecht et al. [141] and Baylor et al.
[21]). He also remarks that the well-known fact that our brain easily solves
problems that are still difficult for modern computers, may be an indication
that our brain uses non-Newtonian processes for computations (and thus. it
has additional computational abilities).
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Comment 2. Rosen in [366], Ch. 11, p. 257, argues that biological processes
cannot be explained by the existing physical processes, and thus concludes that
some (not yet known) physical processes must be responsible for these processes.

Comment 3. In Brasher et al. [56], it is proved that quantum processes can
not only speed up computations, they can also decrease the energy consumption
of the computation processes.

Non-Newtonian processes of third type: Using curved space-time
for computations. If we allow heavily curved space (e.g., semi-closed black
holes), we can get the results faster if we stay in the area where the curvature
is strong and time goes slower, and let the computations be done outside (see,
e.g., Morgenstein et al. [199, 286]); then, we will even be able to compute
NP-hard problems in polynomial time.

Some physical theories describe acausal processes (e.g., closed timelike curves
that enable us to send information from the future to the past). The possibility
of such processes is seriously discussed in physics (see, e.g., Tipler, Thorne, et
al. [410, 411, 412, 294, 295, 309, 131, 318, 408, 310, 11]). Rosen in [364]
provides biological motivations for the existence of such processes: namely, he
suggests that the living beings can use physical processes that influence the
current events depending on the future ones (he calls such acausal processes
anticipatory; see also [363, 365, 366, 367]).

If we allow such processes, then talking about computation time may make
no sense: we can spend all the time we want on solving a problem, and then
simply send the result back in time to the moment of time when we asked for a
solution. In this case, many computational steps pass, but we get the solution
exactly at the same moment when we ask for it (i.e., we do not feel any waiting
at all). This idea was described in Kosheleva et al. [184] (see also Maslov [274]
and Kreinovich [204]), Moravec [291], and Nahin ([297], pp. 202–203).

An even more unusual idea has been proposed by Penrose: using his analysis
of how new ideas come to mind (sometimes we kind of “see” them), he argues
that the platonic world of ideas may physically exist, and communication with
this world is part of our conscience [324], Ch. 10, p. 427. If we assume that
there exists a platonic world of ideas in which time is not defined, then we can
simply read the solution from that world without bothering about time at all.
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BRIGHT SIDES OF NP-HARDNESS
OF INTERVAL COMPUTATIONS II:

FREEDOM OF WILL?

In this book, we have proven that many computational problems of data
processing and interval computations are NP-hard. The immediate conclu-
sion of these results is negative: one cannot expect an algorithm that solves
all the problems of data processing and interval computations in reasonable
time. However, as we will mention in this chapter, the NP-hardness results
also have their bright sides. The first bright side was described in Chapter
15: NP-hardness interval computations enables us to apply efficient heuristic
methods, originally developed for interval computations, to other complicated
problems, and thus, get new heuristics.

In this appendix, we present a more speculative idea: namely, we show that
this NP-hardness may help us to somewhat patch the seeming contradiction
between the determinism of modern physics and the notion of freedom of will.

F.1. Freedom of Will

Determinism of modern physics. Physical theories are usually described
in terms of differential equations; in these theories, the current state of the
world is uniquely determined by the initial state of the world. So, if we know
the initial state of the world, then we can uniquely determine the state of the
world at any future moment of time.

A more accurate description of this statement is as follows: if we know the
initial state of the model of a part of the world, then we can determine the
future state of the model.
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This prediction is not an abstract possibility: physical equations often lead to
reasonably efficient predictions.

Comment. A comment is in order regarding quantum physics:

In classical (non-quantum) physics, the state of the world is uniquely de-
termined by the corresponding differential equations, and it uniquely de-
termines the results of all possible experiments.

In quantum mechanics, the state ψ is still uniquely determined by
Schroedinger’s equations, but this state does not determine the results
of the experiments: it only determines the probabilities of different exper-
imental results.

Freedom of will. This determinism contradicts to the idea of freedom of will,
i.e., to the fact that we humans feel ourselves capable of making free decisions
– decisions that cannot be predicted. According to the idea of the freedom of
will, not only the decisions cannot be predicted, but we cannot even always
predict what decisions will be possible.

At first glance, there seems to be a contradiction. At first glance, there
seems to be a contradiction between determinism and the freedom of will, and
philosophers have been viewing it as such.

Contradiction disappears if we take interval uncertainty into con-
sideration. Let us show that the seeming contradiction between physics and
freedom of will almost disappear if we take into consideration that we never
know the initial state of the world precisely:

Indeed, we get this state from measurements, and measurements are never ab-
solutely precise. As a result, for every measured physical quantity x, we do not
know its exact value, we only know the result x̃ of measuring x, together with
the guaranteed accuracy ∆ of the measuring device. From this measurement,
we can only conclude that the actual value x is somewhere on the interval
[x̃ − ∆, x̃ + ∆]. So, instead of knowing the exact values of the parameters of
the initial state, we only know intervals of possible values of these parameters.
For intervals, as we have seen, the problem of computing the exact range is
NP-hard, and therefore, it is not possible to compute, in reasonable time, the
interval of possible values of parameters that describe the future state. This
impossibility means that we cannot predict which decisions will be possible



Bright Sides of NP-Hardness of Interval Computations II 407

and which decision will not. In other words, this impossibility leaves room for
freedom of will.

Disclaimer: this is not yet a solution of the freedom of will problem,
but it may be a step towards the solution. Our remarks, of course, do
not explain whether freedom of will exists of not, which is the basic question
argued by theologians and philosophers over the centuries; our remarks only
say that in spite of a seeming contradiction with physical determinism, there
seems to be a room for freedom of will.

Historical comments.

The relationship between freedom of will and computational complexity
was mentioned by Penrose in [324]; see also Balogh [15] and Alefeld et al.
[3, 4].

For quantum systems, a similar result (that prediction is NP-hard) was
proved in Kreinovich et al. [234]; for gravitational systems, it was proven
in Kreinovich [202]. We have shown that this result is true even for simple
linearized equations of classical physics.

F.2. Possible (Speculative) Consequences

Our conclusion about freedom of will has the following two (even more specula-
tive) consequences. We fully realize that these consequences are speculative and
that we are not specialists in this field. We hope however that these comments
will be useful to the corresponding specialists:

Is absolute totalitarianism possible? L. A. Levin, one of the authors of the
notion of NP-hardness, remarked that the impossibility to always predict the
exact consequences of a person’s behavior means that absolute totalitarianism is
impossible. Indeed, the idea of a totalitarian control is based on the assumption
that dictators can always predict the results of their pressure, and choose the
strategy that guarantees their power in the future. Hopefully, such a prediction
is impossible, and therefore, the dictators will always make an erroneous move
with unpredicted results that they were trying to avoid.

Towards solving the sociobiological dilemma. The impossibility of pre-
diction may also help in resolving the following sociobiological dilemma (see,
e.g., Wilson [429, 430], Lumsden et al. [259, 260], MacDonald [263], Ruse [372]):
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On one hand, many biologists believe that genes determine many impor-
tant human characteristics, including many characteristics related to in-
telligence.

However, on the other side, they abhor the (seemingly inevitable) con-
clusion of this belief, that people with certain genetic characteristics are
intellectually inferior to others.

The computational intractability of prediction helps us avoid the inevitability of
this conclusion: genes may theoretically determine our behavior, but in practice,
it may be computationally intractable to make any behavior predictions based
on the genetic characteristics.



G
THE WORSE, THE BETTER:

PARADOXICAL COMPUTATIONAL
COMPLEXITY OF INTERVAL
COMPUTATIONS AND DATA

PROCESSING

In this book, we have presented many results about computational complexity
and feasibility of interval computations and data processing.

From the technical viewpoint, most important practical problems, related to
data processing and interval computations, are either known to be computa-
tional intractable, or known to be computationally feasible. There are only a
few (relatively minor) problems for which it is not known whether a problem is
feasible or not, so the reader may get an impression that this area of research
is almost finished.

To avoid creating this false impression, we decided to finish this book with
this appendix that describes the fundamental challenge: many important tech-
nical results about computational complexity and feasibility of interval compu-
tations and data processing, with all their technical sound proofs, are actually
intuitively paradoxical. Namely, problems that should intuitively be more com-
plicated actually turn out to be computationally easier, and vice versa.

We believe that if somebody can come up with a reasonable explanation of
this paradoxical complexity, this explanation will greatly enhance our under-
standing of the fundamental problems of computing. With this grand challenge,
we finish the book.

(This appendix was written in collaboration with V. Nesterov. Its main
ideas first appeared in Nesterov et al. [300].)

Intuitive complexity of a computational problem: three main fac-
tors. Intuitively, the complexity of the computational problem depends on the
following three factors:

409
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The first factor is the size of the area where solution has to be found.
This size describes the total number of objects that we need to analyze in
order to find a solution; so, the larger this size, the more complicated the
problem.

In general, this conclusion is true: e.g., the more variables a problem
has, the more difficult it is to solve it. However, we will see that this
intuitive conclusion is not always true.

Another factor is the number of solutions. Intuitively, the more objects are
solutions to our problem, the easier it must be to find one. For example, if
half of the possible objects are solutions, then we can find one by several
successive random number simulations.

Again, we will show that this is not always the case, and sometimes,
the unique solution is easier to find than a multiple one.

Finally, the complexity of the problem is determined by the complexity of
the condition that we want the desired solution to satisfy.

We will see that sometimes, problems with more complicated condi-
tions are easier to solve.

In this appendix, we will briefly describe the corresponding basic examples of
paradoxical computational complexity.

Decreasing the size of the area, in which a solution has to be found,
can drastically increase the computational complexity. Traditionally,
problems of interval computations are solved under the assumption that the
corresponding variables xi take arbitrary values from the given intervals [xi, xi].
A typical problem is the problem of range estimation:

GIVEN:

• an integer n;

• a polynomial f(x1, . . . , xn) with rational coefficients;

• n intervals xi = [xi, xi] (1 ≤ i ≤ n) with rational endpoints; and

• a rational number y.

CHECK whether y belongs to the range of possible values of f(x1, . . . , xn)
(i.e., whether y can be represented as f(x1, . . . , xn) for some xi ∈ xi).
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For linear functions f(x1, . . . , xn), this problem is easy to solve; for polynomial
functions f(x1, . . . , xn), it is NP-hard but still algorithmically solvable (even if
we allow infinite intervals xi).

Here comes a paradox. In many real-life situations, we know that a quantity
xi takes only values proportional to a certain quantum qi (electric charge is a
typical example). If we impose this additional condition that the ratio xi/qi

is an integer, then, at first glance, we drastically decrease the size of the area
where the solution can be found. However, as we have seen, the computational
complexity immediately increases:

even for linear functions f(x1, . . . , xn), the problem becomes NP-hard (i.e.,
crudely speaking, not solvable by a feasible algorithm), and

in the general case of arbitrary polynomials and possibly infinite intervals,
the problem becomes algorithmically undecidable.

The fewer solutions, the ... easier to find them. Intuitively, as we have
mentioned, the fewer solutions, the more difficult it is to find one. However,
it is well known in numerical computations that numerical methods converge
faster if there is a unique solution (e.g., the unique root). Since there is a clear
contradiction between the intuitive expectations and the existing numerical
techniques, it is natural to ask a question:

is this easy-when-few-roots phenomenon caused by the inadequacy of the
known methods, or

is a general property of all possible methods?

Surprisingly, the second answer is correct, and intuition is all wrong here; as
we have mentioned earlier in the book:

there exists a general algorithm for finding roots of computable functions
that have only one root, but

it is algorithmically impossible to find a root of all functions who have one
or two roots.
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Sometimes, problems involving more complicated properties are eas-
ier to solve. Finally, computational complexity of a problem “find an object
x that satisfies a given property P (x)” (or “check whether a given object x
satisfies a given property P (x)”) is influenced by the computational complexity
of the corresponding property P (x). In particular, the range problem of interval
computations can be reformulated as the problem of checking the formula

∃x1 . . . ∃xn(xi ≤ xi ≤ xi&f(x1, . . . , xn) = y).

This formula has a quantifier complexity 1 (meaning that it contains only one
type of quantifiers), and it may seem, at first glance, that it is easier to check
than any problem with higher quantifier complexity.

However, if we restrict ourselves to monotonic functions, i.e., if we check for-
mulas

∃x1 . . . ∃xn(xi ≤ xi ≤ xi&f(x1, . . . , xn) = y)&

∀xi, x
′
i(xi < x′i →

f(x1, . . . , xi−1, xi, xi+1, . . . , xn) ≤ f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn))

of quantifier complexity 2, the range problem becomes easy to solve, much
easier than the general range problem.

Summarizing:

The results about
computational complexity and feasibility

of interval computations and data processing
are often paradoxical and counter-intuitive.

To explain
these paradoxical results

is a fundamental challenge.

With this challenge, we finish the book.

Thank you for being with us!
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val matrix,symmetrization —270 interval matrix,vertex matrix —246 in-
terval matrix,vertex matrix —247 interval matrix,vertex matrix —249 in-
terval matrix,with bounded coefficients —112 interval vector —100 inter-
val —001 interval —010 interval,absolutely narrow —044 interval,absolutely
narrow —074 interval,absolutely narrow —084 interval,absolutely nar-
row —086 interval,absolutely narrow —102 interval,absolutely narrow
—103 interval,absolutely narrow —104 interval,absolutely narrow —106
interval,absolutely narrow —107 interval,absolutely narrow —114 inter-
val,absolutely narrow —242 interval,center —044 interval,constructive —357
interval,definable —354 interval,feasible —242 interval,guaranteed —337 inter-
val,infinite —318 interval,infinite —328 interval,multi-dimensional —289 inter-
val,narrow —044 interval,narrow —074 interval,narrow —084 interval,narrow
—101 interval,narrow —102 interval,narrow —103 interval,narrow —104 inter-
val,narrow —106 interval,narrow —107 interval,narrow —112 interval,narrow
—114 interval,narrow —161 interval,narrow —164 interval,narrow —210 inter-
val,narrow —242 interval,narrow —279 interval,radius —044 interval,relatively
narrow —044 interval,relatively narrow —074 interval,relatively narrow
—084 interval,relatively narrow —086 interval,relatively narrow —102 inter-
val,relatively narrow —103 interval,relatively narrow —104 interval,relatively
narrow —114 intractable —017 Kaucher arithmetic —384 Leontieff model
—119 Leontieff model,consumption —119 Leontieff model,interval version
—119 Leontieff model,planning —119 Leontieff model,production —119 lin-
ear complementarity problem —237 linear programming —121 linear program-
ming —140 linear programming —237 linear programming —316 linear sys-
tem,interval —018 linear system,interval —101 linear system,interval —237 lin-
ear system,mixed interval and infinite multi-interval —319 linear system,mixed
—319 linear system,multi-interval —315 linear system,under ellipsoid uncer-
tainty —296 linear system,under generalized ellipsoid uncertainty —303 linear
system,with ellipsoid coefficients and interval right-hand side —298 linear sys-
tem,with generalized ellipsoid coefficients and interval right-hand side —304
linear system,with interval coefficients and ellipsoid right-hand side —299 lin-
ear system,with interval coefficients and generalized ellipsoid right-hand side
—305 linearization —006 linearization,is not always working —007 lineariza-
tion,is not always working —009 linearization,is not always working —011
literal —038 logic,3-CNF formula —038 logic,alphabet —349 logic,alphabet
—385 logic,arity —349 logic,as knowledge representation —382 logic,binary
predicate —349 logic,Boolean variable —038 logic,closed formula —350
logic,closed formula —386 logic,consistent theory —351 logic,constant —349
logic,constant —385 logic,deducible formula —351 logic,deducible formula
—359 logic,definability —351 logic,definable interval —354 logic,definable real
number —351 logic,elementary formula —350 logic,elementary formula —384
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logic,elementary formula —385 logic,first order formula —384 logic,first order
language —349 logic,first order logic —349 logic,first order logic —386 logic,first
order multi-sorted language —349 logic,first order multi-sorted logic —349
logic,first order theory —060 logic,formula —350 logic,function symbol —349
logic,Goedel’s theorem —037 logic,Goedel’s theorem —359 logic,interpretation
—351 logic,language of modal mathematics —385 logic,language —349
logic,length of the formula —352 logic,literal —038 logic,modal formula
—386 logic,modal logic —382 logic,modal logic —385 logic,modal variable
—385 logic,modal-free formula —386 logic,model —351 logic,Peano arithmetic
—351 logic,predicate symbol —349 logic,predicate —349 logic,propositional
formula —038 logic,propositional formula —390 logic,propositional logic
—390 logic,propositional variable —038 logic,quantifier-free formula —386
logic,satisfiable formula —038 logic,sort —349 logic,symbol —349 logic,term
type —350 logic,term —350 logic,term —385 logic,theory —350 logic,true for-
mula —384 logic,truth value of a formula —386 logic,unary predicate —349
logic,undecidable theory —359 logic,valid formula —387 logic,variable —350
logic,variable —385 Matiyasevich’s theorem —330 Matiyasevich’s theorem
—392 matrix,absolute value —257 matrix,almost scalar —073 matrix,band
—072 matrix,band —114 matrix,definite —239 matrix,determinant —249 ma-
trix,determinant —266 matrix,determinant —281 matrix,diagonal —072 ma-
trix,eigenvalue —073 matrix,eigenvalue —233 matrix,eigenvalue —238 ma-
trix,eigenvalue —239 matrix,eigenvalue —246 matrix,eigenvalue —248 ma-
trix,eigenvalue —249 matrix,eigenvalue —257 matrix,eigenvalue —279 ma-
trix,eigenvalue —282 matrix,eigenvector —233 matrix,Hurwitz semi-stable
—234 matrix,Hurwitz semi-stable —239 matrix,Hurwitz stable —234 ma-
trix,Hurwitz stable —239 matrix,interval —100 matrix,interval —241 ma-
trix,inverse —113 matrix,inverse —240 matrix,inverse —264 matrix,largest
eigenvalue —257 matrix,M-matrix —237 matrix,M-matrix —239 matrix,M-
matrix —262 matrix,M-matrix —283 matrix,maximal singular value —257
matrix,MC-matrix —259 matrix,MC-matrix —269 matrix,MC-matrix —273
matrix,minimal singular value —257 matrix,mixed interval and infinite
multi-interval —319 matrix,mixed —319 matrix,non-negative invertible —237
matrix,non-negative invertible —239 matrix,nonnegative —257 matrix,norm
—078 matrix,norm —252 matrix,norm —252 matrix,norm —258 matrix,norm
—268 matrix,norm —273 matrix,one-column —257 matrix,other problems
—241 matrix,P-matrix —237 matrix,P-matrix —239 matrix,P-matrix —274
matrix,P-matrix —284 matrix,P-matrix —287 matrix,positive definite —236
matrix,positive semi-definite —236 matrix,positive semi-definite —239 ma-
trix,positive semidefinite —258 matrix,regular —229 matrix,regular —239 ma-
trix,regular —249 matrix,Schur semi-stable —234 matrix,Schur semi-stable
—239 matrix,Schur-stable —234 matrix,Schur-stable —239 matrix,semi-stable
—234 matrix,semi-stable —239 matrix,singular value —245 matrix,singular
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value —257 matrix,singular —282 matrix,smallest eigenvalue —257 ma-
trix,sparse —115 matrix,sparse —175 matrix,spectral radius —245 ma-
trix,spectral radius —248 matrix,spectral radius —254 matrix,spectral ra-
dius —257 matrix,stable —234 matrix,stable —239 matrix,stable —280 ma-
trix,subordinate norm —252 matrix,symmetric —240 matrix,symmetric —257
matrix,symmetric —258 matrix,symmetric —280 matrix,unit matrix —257
max-cut problem —039 max-cut problem —259 max-cut problem —261
maximum likelihood method —301 measurement error —003 measurement
error —290 measurement error,average —334 measurement error,Gaussian
distribution —291 measurement error,Gaussian distribution —300 measure-
ment error,Gaussian distribution —331 measurement error,Gaussian distri-
bution —334 measurement error,independent —291 measurement error,non-
Gaussian distribution —300 measurement error,normal distribution —291
measurement error,not independent —292 measurement error,not indepen-
dent —302 measurement error,probability density —291 measurement er-
ror,probability of —003 measurement error,probability of —010 measurement
error,probability of —291 measurement error,probability of —331 measurement
error,standard deviation —291 measurement error,standard deviation —334
measurement error,systematic —334 measurement error,Weibull-type distribu-
tion —300 measurement —001 measurement —290 measurement,accelerometer
—311 measurement,amount of oil —002 measurement,amount of oil —016 mea-
surement,direct —002 measurement,direct —009 measurement,direct —228
measurement,direct —310 measurement,direct —347 measurement,duplicate
—154 measurement,in astronomy —332 measurement,in particle physics
—332 measurement,indirect —002 measurement,indirect —009 measure-
ment,indirect —118 measurement,indirect —228 measurement,indirect —300
measurement,indirect —310 measurement,indirect —318 measurement,indirect
—331 measurement,indirect —332 measurement,indirect —347 measure-
ment,indirect —365 measurement,measuring unit —301 measurement,of cur-
rent —310 measurement,of voltage —310 measurement,photo-sensor —311
measurement,re-scaling —311 measuring instrument,calibration —003 mea-
suring instrument,calibration —144 measuring instrument,calibration —334
measuring instrument,intelligent —311 measuring instrument,standard —004
miracle,explanation —398 modal logic —382 modal logic —385 modal math-
ematics —020 modal mathematics —381 modal mathematics —383 modal
mathematics,alphabet —385 modal mathematics,closed formula —386 modal
mathematics,constant —385 modal mathematics,elementary formula —385
modal mathematics,formula —386 modal mathematics,language —385 modal
mathematics,modal variable —385 modal mathematics,modal-free formula
—386 modal mathematics,quantifier-free formula —386 modal mathemat-
ics,term —385 modal mathematics,truth value of a formula —386 modal
mathematics,valid formula —387 modal mathematics,variable —385 multi-
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interval computations —020 multi-interval computations —314 multi-interval
computations,basic problem —314 multi-interval linear system —315 multi-
interval linear system,consistent —315 multi-interval linear system,possible so-
lution —315 multi-interval matrix —315 multi-interval vector —315 multi-
interval —020 multi-interval —309 multi-interval —310 multi-interval —313
multi-interval —348 multi-interval,infinite rational —319 multi-interval,infinite
—318 multi-interval,rational —313 multi-interval,two-component —313 multi-
interval,two-component —316 national standard —004 neural network —160
NP —035 NP-complete —037 NP-hard —017 NP-hard —037 NP-hard,bright
side —159 NP-hard,bright side —405 NP-hard,in the strong sense —117 num-
ber,binary rational —026 number,complex —059 number,computable —357
number,computable —397 number,constructive —357 number,definable —351
number,definable —357 number,fixed-point —026 number,floating-point —026
number,integer —026 number,rational —026 number,typical —361 Oettli-
Prager theorem —265 open problem —024 open problem —032 open prob-
lem —037 open problem —073 open problem —079 open problem —084
open problem —114 open problem —114 open problem —156 open prob-
lem —181 open problem —337 operation,arithmetic —087 operation,hardware
supported —028 optimism,foundation of —020 optimism,foundation of —398
optimization —008 optimization —020 optimization —055 optimization
—173 optimization —235 optimization —382 optimization —397 optimiza-
tion,bilinear —175 optimization,constrained —174 optimization,cubic —183
optimization,discrete unconstrained —328 optimization,local —184 optimiza-
tion,quadratic —175 optimization,quadratic —181 optimization,quadratic
—183 optimization,quadratic —185 optimization,quartic —181 optimiza-
tion,quartic —183 optimization,quartic —185 optimization,quartic —185 opti-
mization,unconstrained —175 optimization,unconstrained —328 oracle —372
oracle —376 oracle —402 P —035 parallel computations —401 parallel compu-
tations,for multi-intervals —313 parallel computations,hardware support —401
parallel computations,non-feasible —401 parallelepiped —009 partition prob-
lem —039 partition problem —075 partition problem —107 partition prob-
lem —109 partition problem —122 partition problem —123 partition prob-
lem —141 partition problem —142 partition problem —148 partition prob-
lem —157 partition problem —187 partition problem —190 partition prob-
lem —202 partition problem —204 partition problem —205 partition problem
—321 partition problem —321 partition problem —329 pattern —367 pattern
—371 physics of computations —020 physics of computations,acausal processes
—404 physics of computations,curved space-time —402 physics of compu-
tations,field theory —402 physics of computations,Newtonian —402 physics
of computations,non-Newtonian —402 physics of computations,platonic ideas
—404 physics of computations,quantum processes —402 platonic world of
ideas —404 polynomial,compact —056 polynomial,computable —397 poly-
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nomial,quadratic —085 polynomial,with bounded coefficients —079 polyno-
mial,with bounded coefficients —181 polynomial,with bounded coefficients
—183 polynomial,with bounded coefficients —185 polynomial,with bounded co-
efficients —200 polynomial,with bounded coefficients —201 prediction problem
—143 prediction problem —227 prediction problem,meteorology —144 predic-
tion problem,specifics —144 probability distribution,average —334 probability
distribution,Chebyshev’s inequality —337 probability distribution,Chebyshev’s
theorem —337 probability distribution,close to Gaussian —300 probabil-
ity distribution,close to Gaussian —334 probability distribution,confidence
interval —337 probability distribution,Gaussian —291 probability distribu-
tion,Gaussian —300 probability distribution,Gaussian —331 probability dis-
tribution,Gaussian —334 probability distribution,moment —334 probability
distribution,non-Gaussian —300 probability distribution,normal —291 proba-
bility distribution,standard deviation —334 probability distribution,Weibull-
type —300 probability,computation —020 probability,computation —331
probability,computation —334 problem,algorithmically decidable —060 prob-
lem,algorithmically decidable —177 problem,algorithmically decidable —179
problem,algorithmically decidable —183 problem,algorithmically decidable
—184 problem,algorithmically decidable —198 problem,algorithmically decid-
able —294 prob-
lem,algorithmically decidable —328 problem,algorithmically decidable —387
problem,algorithmically undecidable —328 problem,algorithmically undecid-
able —330 problem,algorithmically undecidable —347 problem,algorithmically
undecidable —354 problem,algorithmically undecidable —355
problem,algorithmically undecidable —355 problem,algorithmically undecid-
able —356 problem,algorithmically undecidable —357 problem,algorithmically
undecidable —359 problem,algorithmically undecidable
—359 problem,algorithmically undecidable —360 problem,algorithmically un-
decidable —387 problem,algorithmically undecidable —397 problem,class NP
—035 problem,class P —035 problem,feasible —264 problem,instance of —035
problem,intractable —032 problem,NP-complete —037 problem,NP-complete
—260 problem,NP-complete —264 problem,NP-hard —037 problem,pseudo-
polynomial —117 problem,reduction —033 problem,subclass —046 prob-
lem,tractable —032 quantum computing —402 quantum,of a physical quan-
tity —326 RAM (Random Access Memory) computer —031 random vari-
able,dependent variables —292 random variable,independent variables —291
random variable,independent variables —331 random variable,independent
variables —334 random variables,not independent —302 randomness —402
range —005 representative,simplest —020 representative,simplest —347 rep-
resentative,simplest —354 representative,simplest —357 satisfiability problem
—038 satisfiability problem —047 satisfiability problem —124 satisfiability
problem —160 satisfiability problem —340 satisfiability problem,unique so-
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lution —396 scalar product —257 scale invariance —301 Schanuel’s hypoth-
esis —060 semi-algebraic set —389 set theory —348 set theory —351 set
theory —352 set,semi-algebraic —389 Shary’s approach —382 signal process-
ing —073 signal processing,stationary —155 signal —153 signal,bias —153
signal,reconstruction —153 signal,several channels —154 signal,strong —153
signal,transmitted —153 signal,weak —153 smoothness —073 sociobiological
dilemma —407 spline —055 spline,linear —056 stability —055 standard devi-
ation —291 stationary point —182 system,of differential equations —114 sys-
tem,of differential equations —220 system,of differential equations —230 sys-
tem,of equations —020 system,of equations —100 system,of equations —197
system,of equations —228 system,of equations —396 system,of interval lin-
ear equations —018 system,of interval linear equations —099 system,of lin-
ear equations under ellipsoid uncertainty —295 system,of linear equations un-
der mixed uncertainty —298 system,of linear equations —099 system,of linear
equations —198 system,of linear equations —199 system,of linear equations
—382 system,of multi-interval linear equations —315 system,of non-linear equa-
tions —382 system,of partial differential equations —115 system,of polynomial
equations —397 system,of polynomial inequalities —054 system,of quadratic
equations —197 system,of quadratic equations —198 system,of quadratic equa-
tions —199 system,of quadratic equations —200 system,solution set —100
system,with multiple solutions —395 system,with unique solution —198 sys-
tem,with unique solution —395 Tarski’s algorithm —042 Tarski’s algorithm
—177 Tarski’s algorithm —179 Tarski’s algorithm —183 Tarski’s algorithm
—184 Tarski’s algorithm —198 Tarski’s algorithm —294 Tarski’s algorithm
—328 Tarski’s algorithm —388 Tarski’s algorithm —389 Tarski’s algorithm
—391 theory,first order —060 theory,first order —350 theory,first order —351
theory,first order —351 theory,first order —386 three sigma rule —291 totalitar-
ianism —407 Turing machine —028 typicality —361 uncertainty,non-interval
—289 uncertainty,non-interval —316 uncertainty,non-interval —348 variational
principle —175 vector —257 vector,mixed interval and infinite multi-interval
—319 vector,mixed —319


