
Self�Validated Numerical Methods

and Applications

Jorge Stol�
Instituto de Computa�c�ao� Universidade Estadual de Campinas �UNICAMP�

Luiz Henrique de Figueiredo
Laborat�orio Nacional de Computa�c�ao Cient��	ca �LNCC�

Preface

This monograph is a set of course notes written for the
�st Brazil�
ian Mathematics Colloquium held at IMPA in July ��� It gives an
overview of the 	eld of self�validated numerics�computation models in
which approximate results are automatically provided with guaranteed
error bounds� We focus� in particular� on two such models� interval
arithmetic and a�ne arithmetic�

Interval arithmetic �IA� was developed in the ����s by Ramon E�
Moore ����� IA is the simplest and most e�cient of all validated nu�
merics models� and� not surprisingly� the most widely known and used�
After two decades of relative neglect� IA has been enjoying a strong
and steady resurgence� driven largely by its successful use in all kinds
of practical applications� We are con	dent that many readers of this
monograph will 	nd IA to be a useful tool in their own work as well�

A�ne arithmetic �AA� is a more complex and expensive computation
model� designed to give tighter and more informative bounds than IA in
certain situations where the latter is known to perform poorly� The AA
model was proposed and developed recently by the authors �������� al�
though a similar model had been developed in ��� by E� R� Hansen �����
Apart from its usefulness for certain special applications� AA is being
presented here as an example of the many topics for research that are
still unexplored in the 	eld of self�validated numerical methods�

We apologize to the reader for the length and verbosity of these notes
but� like Pascal�� we didn�t have the time to make them shorter�

��Je n�ai fait celle�ci plus longue que parce que je n�ai pas eu le loisir de la faire
plus courte�� �Blaise Pascal� Lettres Provinciales� XVI �	
���

i

ii

Acknowledgements

We thank the Organizing Committee of the
�st Brazilian Mathematics
Colloquium for the opportunity to present this course�
We wish to thank Jo�ao Comba� who helped implement a prototype

a�ne arithmetic package in Modula��� and Marcus Vinicius Andrade�
who helped debug the C version and wrote an implicit surface ray�tracer
based on it� Ronald van Iwaarden contributed an independent imple�
mentation of AA� and investigated its performance on branch�and�bound
global optimization algorithms� Douglas Priest and Helmut Jarausch
provided code and advice for rounding mode control�
We wish to thank also Sergey P� Shary and Lyle Ramshaw for valu�

able comments and references� and Paulo Correa de Mello for the use of
his computing equipment�
The authors� research has been supported over the years partly

by grants from Brazilian research funding agencies �CNPq� CAPES�
FAPESP� FAPERJ�� and by the State University of Campinas �UNI�
CAMP�� the Ponti	cal Catholic University of Rio de Janeiro �PUC�Rio��
the Institute for Pure and Applied Mathematics �IMPA�� the National
Laboratory for Scienti	c Computation �LNCC�� and Digital�s Systems
Research Center �DEC SRC� in Palo Alto�
Figures ��� and �� were generated with Geomview ����� Figure ���

was generated with xfarbe ��	�� Figures ��
 and ��� were kindly provided
by Luiz Velho� The other 	gures were generated with software written
by the authors�

Jorge Stol	

Instituto de Computa�c�ao� UNICAMP
Caixa Postal
	�

	�������� Campinas� SP� Brazil
stolfi�dcc�unicamp�br

Luiz Henrique de Figueiredo

Lab� Nacional de Computa�c�ao Cient���ca
Rua Lauro M�uller ���
������	
� Rio de Janeiro� RJ� Brazil
lhf�lncc�br

May ��

Contents

� Introduction �

��� Approximate computations � � � � � � � � � � � � � � � � � �

��
 Error models �

��� Floating�point number systems � � � � � � � � � � � � � � � �

��� The IEEE �oating�point standard � � � � � � � � � � � � � �

� Interval arithmetic �

�� Introduction ��

�
 Intervals ��

�� Computing with IA ��

�� Speci	c operations �
�

�� Utility operations �

�� The error explosion problem � � � � � � � � � � � � � � � � � ��

�� Avoiding error explosion ��

� A�ne arithmetic ��

��� A�ne forms ��

��
 Joint range of a�ne forms � � � � � � � � � � � � � � � � � � ��

��� Special a�ne forms ��

��� Conversions between IA and AA � � � � � � � � � � � � � � ��

��� Computing with AA �

��� A�ne operations ��

��� Non�a�ne operations ��

��� Optimal a�ne approximations � � � � � � � � � � � � � � � ��

�� Square root ��

���� The min�range approximation � � � � � � � � � � � � � � � � ��

���� Exponential ��

iii

iv Contents

���
 Reciprocal �
���� Multiplication ��
���� Division ��
���� The mixed AA�IA model � � � � � � � � � � � � � � � � � � ��
���� Comparing AA and IA ��
���� Implementation issues �
���� Optimization techniques ��
��� Hansen�s Generalized Interval Arithmetic � � � � � � � � � ��

� Some applications 	�
��� Zeros of functions ��
��
 Level sets �
��� Ray tracing �
��� Global optimization ���
��� Surface intersection ���

Bibliography ���

Chapter �

Introduction

��� Approximate computations

Many numerical computations� especially those concerned with mod�
eling physical phenomena� are inherently approximate� they will not
deliver the �true� exact values of the target quantities� but only some
values that are in some sense �near� the true ones�

Approximate numerical computation has been an essential tool of
science and technology for several centuries� The history of the 	eld is
actually as long as that of science itself� the ancient Babylonians were
already computing reciprocals and square roots as truncated sexagesimal
fractions ��� �
�� One of Archimedes�s best�known endeavors was a
numerical approximation algorithm for �� The greatest mathematicians
of modern history� such as Newton and Gauss� were deeply concerned
with this 	eld� The 	rst electronic computers were expressly designed for
numerical computing� and that application is still an overriding concern
in the design of modern CPU chips�

����� Error analysis

The di�erence between a computed value and the �true� value of the
corresponding quantity is commonly called the error of that computed
value�

Some sources of error are external to the computation� the inputs
may have been contaminated by measurement error or missing data� or

�

� Introduction

the computation may be based on a simpli	ed mathematical model that
later proves to be inadequate�

Other sources of error are internal� due to the discrete nature of
digital computing� to resource limitations �on computing time� storage
capacity� or program complexity�� or to compatibility constraints �such
as hardware �oating�point formats and decimal input�output conver�
sion�� These factors usually force the original mathematical model to be
replaced by a discrete approximation� with 	nite steps� truncated series�
rounded arithmetic� etc�

The accuracy of numeric algorithms is notoriously hard to analyze�
In practice� it is often impossible or unfeasible to predict mathematically
the magnitude of the roundo� and truncation errors hidden in the output
of a numeric program�

In order to be truly useful� every approximate numerical procedure
must be accompanied by an accuracy speci�cation� a statement that
de	nes the magnitude of the errors in the output values �usually� as a
function of the input values and their errors�� The accuracy speci	cation
must be supported by an error analysis� a mathematical proof that the
output errors obey the speci	cations�

Unfortunately� even for relatively simple algorithms� a rigorous error
analysis is often prohibitively long� or di�cult� or both ���� Moreover� a
useful accuracy speci	cation often requires that the inputs satisfy a host
of prerequisites�this matrix must be well�conditioned� that function
must have bounded derivatives� these formulas should not over�ow� etc�
In practice� these prerequisites are often impossible to guarantee� or even
to check�

As a consequence� numerical algorithms are often put to use without
accuracy speci	cations� much less a proper error analysis� Interpretation
of the results is left to the user� who must rely on his intuition� crude
tests� or pure luck�

This unfortunate state of a�airs has even led to prejudice against
approximate numerical computing in contemporary computer science�
despite its importance and evident success in applications� The 	eld is
generally perceived by outsiders as �sloppy� and �fuzzy�� and hence not
really precise and scienti	c� and hence not a respectable part computer
science�where� as in mathematics� there is no place for things that are
� correct��

��� Approximate computations �

A simple and common approach for estimating the error in a �oating�
point computation is to repeat it using more precision� and compare the
results� If the results agree in many decimal places� then the computa�
tion is assumed to be correct� at least in the common part� However�
this common practice can be seriously misleading� as the following sim�
ple example by Rump �
�� shows� Consider the evaluation of

f ! ������y� " x����x�y� � y� � �
�y� �
� " ���y� " x��
y��

for x ! ����� and y ! ����� Note that x� y� and all coe�cients in f
are exactly representable in �oating�point �be it binary or decimal��
Rump �
�� reports that computing f in FORTRAN on a IBM S����
mainframe yield�

f ! ����
��� � � � using single precision�
f ! ����
��������� � � � using double precision�
f ! ����
����������� � � � using extended precision�

Since these three values agree in the 	rst seven places� common practice
would accept the computation as correct� However� the true value is f !
����
����� � � �� not even the sign is right in the computed results#
Similar results can be obtained with Maple��

x�������� y����	
��

� evaluate in floating point

f��������y���x�������x���y���y�������y��������y���x����y��

f �� ������	�
�	

� evaluate in exact rational arithmetic

f��������		�y���x�������x���y���y�������y��������	�y���x����y��

����

f �� � �����

���
�

� show decimal equivalent

evalf�f��	��

������
�	

����� Self�validated numerics

In response to this problem� there have arisen several models for self�
validated computation �SVC� ���� also called automatic result veri�ca�
tion ����� in which the computer itself keeps track of the accuracy of

�Maple is a registered trademark of �

��� Ontario Inc�

� Introduction

computed quantities� as part of the process of computing them�� So� if
the magnitude of the error cannot be predicted� at least it can be known
a posteriori�

The simplest and most popular of these models is R� Moore�s interval
arithmetic ����� which we study at length in Chapter
� There are
many other models� however� such as E� Hansen�s generalized interval
arithmetic ����� and the ellipsoid calculus of Chernousko� Kurzhanski�
and Ovseevich �	� �	�� In Chapter �� we describe our own model� similar
to Hansen�s� which we call a�ne arithmetic �����

A basic limitation of self�validated numerical models is that they can
only determine the output errors a posteriori� Still� this capability is
quite su�cient in certain applications� especially those where the errors
are mostly due to external causes� If the output errors� as computed by
the model� are deemed too large� then the response must involve some
external action�acquire more data� stop the process� alert a human
operator� etc�

In cases where the output errors are mainly due to internal approxi�
mations and rounding� a self�validated model makes it possible to auto�
matically redo or re	ne the computation� with increased precision� until
the output errors are acceptable� This approach has been turned into a
fundamental principle in lazy real arithmetic �����

Of course� there are many applications� such as real�time process
control� where one needs a priori guarantees on the accuracy and time�
liness of the results� In such cases� the self�validated approach is not
of much help� one still needs to perform a rigorous error analysis� prior
to implementation� in order to guarantee that the output errors will be
always acceptable�

��� Error models

For this monograph� we will start from a very general model of self�
validated computation� We assume that the original goal was to evaluate
z � f�x� for some mathematical function f �Rm � Rn� but we actually
had to implement a discrete computation Z � F �X�� where X and Z
are approximate values�discrete mathematical objects that carry only

�This would allow the correct result to be obtained in Rump�s example� using only
�oating�point arithmetic�

��� Error models �

partial information about the values of the corresponding continuous
quantities x and z�

There are many di�erent self�validated computation models that 	t
this pattern� They are distinguished by the nature of the approximate
values they use� probability distributions� intervals� boxes� ellipsoids�
polytopes� con	dence intervals� lazy digital expansions� interval bags�
and many more�

����� Probabilistic error models

In the natural sciences and engineering� it is customary to view approxi�
mate values in a statistical sense� the computed result Z is seen to de	ne
a probability distribution for the �unknown� true quantities z�� �� zn�

Typically� the errors are assumed to follow a Gaussian �normal� dis�
tribution� The computed result Z should then specify the mean and
variance of each true quantity zi� and possibly the full covariance ma�
trix for the zi� that is� the joint �Gaussian� probability distribution of
the vector �z�� �� zn��

In this framework� a self�validated computing model should automat�
ically compute the statistical parameters for the output quantities zi�
given those for the inputs xj�

Unfortunately� this model is limited to relatively simple situations�
where the measurement errors can be modeled by a Gaussian distri�
butions� and the computations use only linear formulas with negligible
roundo� errors� When these conditions do not hold� computing the prob�
ability distribution of the error� or even its mean and variance� appears
to be an intractable mathematical problem�

����� Range�based models

To avoid the apparent limitations of the probabilistic model� most self�
validated numerical models are based on range analysis� i�e�� use ranges�
rather than distributions� as approximate values�

Speci	cally� the approximate value Z de	nes a range $Z% for the
quantity z� i�e�� a set of real values that is guaranteed to contain the true
value of z � provided that the input quantities x lie in the range $X%
speci	ed by the input value X� We refer to this property as the funda�
mental invariant of range analysis �see Section ��
����

� Introduction

In the simplest range analysis models� such as interval arithmetic�
each component Zi of the computed value de	nes a range of values $Zi%
for the corresponding real quantity zi� The output Z does not include
any constraint relating two or more quantities zi� in other words� the
range $Z% for the output vector z ! �z�� �� zn� is merely the Cartesian
products of those individual ranges� $Z% ! $Z�%��� $Zn%� All combinations
of z�� �� zn in the box Z����Zn are in principle allowed by this model�
In more sophisticated models� such as a�ne arithmetic and the el�

lipsoid calculus� the output Z includes also some information on par�
tial dependencies between the quantities zi and the inputs xj� Thus�
the computed result Z may give more information about the vector z
than one would get by considering its meaning for each zi indepen�
dently� Therefore� the Zi together de	ne a joint range for the vector
�z�� �� zn�x�� �� xm�� which is generally a proper subset of the Cartesian
product of the individual ranges�
Some models fall halfway between these two extremes� Hansens�s

generalized interval arithmetic ����� for example� records only correla�
tions between the output quantities zi and the inputs xj� but not among
the inputs� or among the outputs �see Section �����
For e�ciency reasons� each range�based SVCmodel restricts its ranges

to a speci	c family Rn�m of subsets of R
n�m� whose members can be

e�ciently represented� handled� and combined� boxes� ellipsoids� poly�
topes� etc�

����� The fundamental invariant of range analysis

Whatever the shape of the allowed ranges� all range�based SVC models
provide� for every function f �Rm � Rn� a range extension F �Rm �
Rn� with the following property� which we shall call the fundamental
invariant of range analysis�

If the input vector �x�� �� xm� lies in the range jointly deter�
mined by the given approximate values X�� �� Xm� then the
quantities �z�� �� zn� ! f�x�� �� xm� are guaranteed to lie in the
range jointly de�ned by the approximate values �Z�� �� Zn� !
F �X�� �� Xm��

Ideally� the joint range determined by the outputs Zi should be as tight
as possible� namely the set of all vectors f�x�� �� xm� such that xj � Xj �

��� Error models 	

In practice� however� a range�based numerical routine is allowed to err
on the conservative side� if that is necessary to keep the output ranges
representable� or desirable for e�ciency reasons� We shall see plenty of
examples in the following chapters�

����� Relative accuracy

As we shall see� a major problem in all forms of range�based computa�
tion is the excessive conservativism of the results�the computed ranges
are often much wider than necessary� Therefore� in order to e�ectively
compare di�erent algorithms and approaches� we must develop some
quantitative measure of this conservativism�

Let Z � F �X� be a range computation that purports to represent
the mathematical computation z � f�x�� where f �Rm � Rn� Its
relative accuracy is� by de	nition� the ratio between the size of the ideal
range Y ! f f�x� � x � $X% g and that of the computed range $Z%� By
�size� we mean the measure appropriate to the space in question� length
for one dimension� area for two� and so on�

Because of the fundamental invariant of range analysis� the relative
accuracy is therefore a number between zero �meaning that the output
range is in	nitely wider than the ideal range� and one �meaning that
the two ranges are essentially the same��

Note that if the input range has zero measure� then the relative
accuracy is likely to be zero� because of roundo� errors� Therefore� the
concept is useful only when X is large enough to make roundo� errors
irrelevant�

����� Con�dence�range models

The fundamental invariant stated above requires that the input values
lie in the range described by the Xi� This requirement is too strict
for scienti	c and engineering applications� where the input quantities
are obtained by physical measurement� and hence may be a�ected by
essentially unbounded error�

In order to use range analysis in such applications� we must replace
absolute guarantees by probability statements� That is� each approxi�
mate value Z speci	es a con�dence range for the corresponding quan�
tity z� a range of values $Z%� as before� and also a real number pZ � the

 Introduction

probability or con�dence level of z lying in that range�

More generally� an ensemble of approximate values Y ! �Y�� �� Yk� for
quantities �y�� �� yk� speci	es a subset ofR

k� and an associated con	dence
level pY � the probability of the vector �y�� �� yk� lying in that set� Note
that this approach is quite di�erent from the Gaussian�error model� here�
no assumption is made about the shape or variance of the probability
distribution� except that its integral inside the range $Y % is at least pY �

In this con	dence�interval framework� an SVC model should tell us
how to compute the joint range and con	dence level for the outputs of
a formula� given the same data about the inputs� Again� the model
is allowed to err on the conservative side� when computing ranges and
probabilities�

Most of the ordinary �i�e�� non�probabilistic� range�based SVC mod�
els can be easily adapted to the con	dence�range interpretation� Specif�
ically� one should compute the ranges as in the non�probabilistic model�
and then evaluate the con	dence level according to the laws of proba�
bility� For example� if x lies in the interval $�� "�% with probability
���� and y lies in $� �% with probability ����� then x"y lies in $� �%
with probability at least ��� " ���� � � ! ����� In general� we have
pf�x�y	 � px " py � ��

��� Floating�point number systems

A �oating�point number system is a scheme for representing real numbers
in discrete machines ����� To allow a wide range of real numbers to be
represented� �oating�point number systems encode a fraction part� called
mantissa� and a scale part� called exponent� More precisely� a �oating�
point number system has a base �� usually
 or ��� and encodes real
numbers as ��adic fractions of the form�

����d� � � � dp�� �e ! �
�
d�
�
"

d�
��
" � � � " dp

�p

�
�e�

where the mantissa m ! ���d� � � � dp�� is written in base �� and e is
the exponent� A �oating�point number system is characterized by the
base �� the precision p� and the exponent range� emin 	 e 	 emax� Most
computers use base
� whereas most hand calculators use base ���

��� The IEEE �oating�point standard �

Figure ��� shows a �oating�point system with � !
� p ! �� emin !
��� and emax ! �� Note that �oating�point numbers are not uniformly
spaced� but instead display �logarithmic clustering��

Figure ���� Non�uniform distribution of �oating�point numbers�

There are two sources of errors when representing real numbers in
�oating�point� First� a �oating�point number system only represents a
	nite set of numbers� Thus� most real numbers will be either too large
in absolute value to be represented� resulting in over�ow� or too small in
absolute value� resulting in under�ow� Second� not every real number is
a ��adic fraction� and so most real numbers in the range of the �oating�
point number system will fall between two �oating�point numbers� and
one of them has to be chosen to represent it� This choice is called
rounding� and the error committed is called the roundo� error�

For example� decimal fractions such as ��� or ����� are very popular
as a step sizes in numerical computation� but have no exact represen�
tation in binary �oating�point systems� Thus� in binary �oating�point
arithmetic� ������
! � and ����������
! �� because of roundo� errors�
It would be much safer to use diadic fractions instead� such as ���
� or
���������
�� specially in long computations�

��� The IEEE oating�point standard

The IEEE �oating�point standard ��� is arguably one of the most sig�
ni	cant developments in numerical computing since the advent of FOR�
TRAN� Until the widespread adoption of the IEEE standard in the early
���s� every computer manufacturer� and often every computer model�
had its own �oating�point number system� with its own base� precision�
range� and its own semantics for rounding� commutativity� over�ow� un�
der�ow� division by zero� etc� Moreover� those rules were usually illogi�
cal and poorly documented� being generally the consequence of decisions
made by the hardware designers� who were more concerned with speed
and cost than with mathematical precision�

�� Introduction

The IEEE standard ended this era of confusion� The standard
postulates quite rigid formats for single�precision ��
�bit� and double�
precision ����bit� �oating�point formats� To be precise� there are two
IEEE �oating�point standards� ANSI�IEEE Std ������� and IEEE
Std �������� The 	rst one deals speci	cally with �
�bit and ���bit bi�
nary formats� whereas the second covers �oating�point systems of any
base and precision� Since most machines follow both standards� we can
safely view them as one�

The standard also ties down precisely the semantics of the four basic
arithmetic operations� and of certain common transcendental functions�
by requiring that they be as correct as logically possible� That is� hard�
ware conforming to the IEEE standard must interpret the operands as
rational numbers� compute the exact result� as in mathematics� and then
round it to the nearest representable number� in a speci	c direction�
Moreover� the standard provides control over rounding� a feature that
is essential to SVC �see Section ������� Finally� the standard speci	es
precisely the results of exceptional operations� such as division by zero�
over�ow� and under�ow� To this end� it reserves certain bit patterns to
denote two �in	nite� values �"� and ���� and a series of error codes
or �not�a�numbers� �NaN�� and extends the semantics of all operations
to accept and return these special values�

Essentially� the standard does not leave unspeci	ed a single signi	�
cant bit of the �oating�point model� Thanks to this unforgiving strict�
ness� every �oating�point number that can be represented in the IEEE
standard format can be stored in any standard�compliant machine� with�
out loss of precision� Moreover� any standard�compliant processor that
performs the same sequence of �oating�point operations on the same
data will return precisely the same result� down to the last bit� This
provided a much welcome portability of numerical programs and data�

The IEEE standard is so thorough� and 	lled such a need� that it
was quickly adopted by most computer manufacturers� down to the last
bit� Like every standard� this one has several technical �aws� which are
all the more irritating for having been cast in stone for decades to come�
Still� as in most other 	elds� a bad standard is better than no standard�

Besides all its practical contributions to portability� robustness� and
documentation� the IEEE standard has had an enormous psychological
impact on the programming community� Suddenly� it became worth�

��� The IEEE �oating�point standard ��

while to worry about roundo� errors in a precise way� It became pos�
sible� at least in principle� to design truly robust numerical algorithms�
and give rigorous proofs of their correctness� even in the presence of
under�ow and over�ow� Thus� the IEEE standard prepared the way for
self�validated computation�

����� Special 	oating�point values

As mentioned above� the IEEE �oating�point standard de	nes� in addi�
tion to ordinary �	nite� numbers� certain special values�

� the in�nities "� and ��� whose meaning and properties are for
the most part obvious�

� the not�a�number values� collectively denoted by NaN� which are
the conventional result of indeterminate operations like ���� � ���
and ����

� the negative zero &�� which by de	nition is the reciprocal of ��
�and vice�versa��

As we shall see� the in	nities "� and �� are very useful for self�
validated computation� since they allow us to represent the notion of
�no lower bound� and �no upper bound�� respectively�
The NaN values behave rather peculiarly in comparisons� a NaN is

neither greater than� equal to� nor less than any other value�including
itself# A NaN may signify either as �no value�� �more than one value��
or �any real value�� depending on the context� Since many SVC models
have other ways of representing these concepts� NaN values tend to be
little used�
We shall use the term ��oat� for any IEEE �oating�point value�

	nite� in	nite� or NaN� We shall denote by F the set of all 	nite �oats�
which we shall consider as a subset of the real line R� and by F� the set
of numeric �oats� F� ! Ff���"�g� Note that NaN does not belong
to either F or F��

����� Negative zero

One of the most controversial features of the IEEE standard is the ex�
istence of a negative zero� &� ! ������� While it is possible to concoct

�� Introduction

examples where this feature saves an instruction or two� in the vast ma�
jority of applications this value is an annoying distraction� and a possible
source of subtle bugs�

Unlike in	nite values� which merely extend the domain of arithmetic
operations without changing their semantics for ordinary numbers� the
introduction of negative zero actually a�ects the semantics of many op�
erations in non�obvious and mathematically inconsistent ways� For in�
stance� the square root of negative zero is de	ned to be negative zero�

Fortunately� negative zero behaves like ordinary zero in many re�
spects� In particular� in numeric comparisons negative zero turns out
to be equal to �and not less than� ordinary zero� Thus� we can usually
pretend that ordinary zero and minus zero are the same value� and we
shall adopt this viewpoint here� However� one must watch out for occa�
sional pitfalls� for instance� I�O routines will usually print negative zero
as ��� and its sign comes out as �� instead of "��

����� Rounding mode control

A feature of the IEEE standard that is highly relevant to SVC is its
provision for rounding control� A standard�compliant processor must
allow the programmer to specify the direction in which computed results
are rounded to representable numbers� As we shall see� this feature is
essential for the e�cient implementation of interval arithmetic and other
self�validated computation models�

In this monograph� we use the notation hEi for the value of expres�
sion E evaluated in IEEE �oating�point arithmetic� with the default
rounding mode ��to nearest or to even��� We also write �E� for a nu�
meric �oat �possibly "�� that is greater than or equal to the value of a
formula E � that is� the value of E rounded up to a representable number
�not necessarily the smallest one�� Similarly� we write �E� for the value
of E rounded down to a representable value�
In the special case when E consists of a single arithmetic operation�

�E� and �E� are by de	nition the result of computing E on an IEEE�
compliant processor with the rounding direction set as speci	ed� If E
contains two or more operations� then each must be rounded in the ap�
propriate direction so as to ensure that the 	nal result is rounded as
speci	ed� For example� when evaluating

x�x���x� " ��x�� the denomi�
nator must be rounded towards ��� whereas the numerator and the

��� The IEEE �oating�point standard ��

quotient must be rounded towards "��
Sometimes� the correct rounding mode to use when evaluating a sub�

expression depends on the values of other sub�expressions� For example�
in
x�x�y " ��x�� the result of y " � must be rounded up if x is positive�

and down if x is negative� We shall generally avoid such complicated
situations� and use external tests to ensure that each operation inside a
��� or ��� can be evaluated with a single� statically determined rounding
mode�
Unfortunately� the rounding�mode controls of most processors are

extremely inconvenient to use� so that changing the rounding mode is
expensive�typically a dozen machine instructions� To minimize such
changes� we can use the identities

��E� ! ��E� � ��E� ! ��E� �
These formulas work for all �oat values� because� according to the IEEE
standard� sign negation is involutory� exact� and never over�ows�

����� Single vs� double precision

When implementing an SVC model� one may have to choose between us�
ing single precision ��
�bit� or double precision ����bit�� Three decades
ago� the di�erence in speed and storage space dictated that most nu�
merical computing should be performed in single precision� with double
precision being used only when really necessary� Nowadays� storage is
rarely a limiting factor� and most �oating�point processors will be just
as fast on ���bit operations as on �
�bit ones� so the advantages of single
precision have all but disappeared� and double precision is increasingly
being seen as the default� �For instance� the original de	nition of the C
programming language stated that all �oating�point arithmetic was to
be done in double precision ���� p� �����
Moreover� many mathematical libraries and programming languages

will automatically convert arguments and results to the double�precision
format� Now� another questionable �feature� of IEEE �denormalized
numbers� has the unfortunate consequence of making conversion be�
tween single and double precision very expensive on certain machines�
because it has to be done by software� Therefore� it is quite possible �in
the authors� own experience#� for a numerical computation to become
much faster when converted from single to double precision�

Chapter �

Interval arithmetic

In this chapter� we describe interval arithmetic� the simplest and most
e�cient of all validated numerics models� We also discuss how to write
procedures for most elementary operations and functions�

��� Introduction

Interval arithmetic �IA�� also known as interval analysis� is a range�
based model for numerical computation where each real quantity x is
represented by an interval &x of �oating�point numbers� Those intervals
are added� subtracted� multiplied� etc�� in such a way that each com�
puted interval &x is guaranteed to contain the �unknown� value of the
corresponding real quantity x�

Interval arithmetic was invented in the ����s by Ramon E� Moore
���� ���� then a Ph� D� student at Stanford University� Its prestige and
popularity among the numerical analysis community has been somewhat
of a roller�coaster ride� Interest in IA was quite high for a few years af�
ter Moore�s thesis� at which time it seem to have been oversold as a
panacea for all numerical computation problems� As the euphoria sub�
sided� a reaction set in� and for the next two decades IA was viewed very
negatively�to such an extent that authors who needed to use intervals
in their algorithms reportedly had to call them �segments� or �ranges�
in order to get their papers published�

However� in recent years there has been a strong and steady resur�
gence of interest in IA� Practitioners and researchers in the most varied

��

�� Interval arithmetic

	elds�from pure mathematics to computer graphics to economics�
have found that IA provides a simple and relatively e�cient solution
to computational problems that were intractable under the �classical�
approach� IA is now appreciated for its ability to manipulate imprecise
data� keep track automatically of truncation and round�o� errors� and
probe the behavior of functions e�ciently and reliably over whole sets
of arguments at once�

Successful applications of IA include� for example� robust root 	nders
for ray tracing ��� ���� domain enumeration for solid modeling� ���� ���

��
	�
��� surface intersection ��	�� global optimization ������� ���
��� ���
��
�� ��We will discuss some important applications of IA in
Chapter �� It is also noteworthy that interval arithmetic recently played
a key role in settling the double bubble conjecture ����� a longstanding
open problem in the theory of minimal surfaces�

This revival of IA was greatly helped by the publishing and universal
acceptance of the IEEE �oating�point standard ���� The standard man�
dated the implementation of directed rounding� which is indispensable
for practical implementations of IA� Moreover� adoption of the standard
by all major computer manufacturers encouraged the development of
portable IA packages ���� ����
�� Finally� the high visibility of the
standard undoubtedly made programmers more aware of the �oating�
point roundo� problem� and hence interested in self�validated numeric
computation�

Interval arithmetic and related techniques now have a dedicated jour�
nal �Reliable Computing� formerly Interval Computations� published by
Kluwer Academic Publishers�� a central web site containing a wealth of
information and links ��	�� and several established conferences�

��� Intervals

In interval arithmetic� each quantity x is represented by an interval
&x ! $&x�lo &x�hi % of real numbers� meaning that the �true� value of x is
known to satisfy &x�lo 	 x 	 &x�hi �
Those intervals are added� subtracted� multiplied� etc�� in such a way

that each computed interval is guaranteed to contain the �unknown�
value of the quantity it represents� Thus� for example� the sum and

��� Intervals �	

di�erence of two intervals &x and &y is computed as

&x" &y ! $&x�lo " &y�lo &x�hi " &y�hi %

&x� &y ! $&x�lo � &y�hi &x�hi � &y�lo%�

�These formulas ignore roundo� errors� over�ow� and other details� which
we address in Section
����
The reader may check that these are the smallest intervals that con�

tain x" y and x� y� respectively� for all possible pairs x � &x and y � &y�
Analogous formulas can be devised for multiplication� division� square
root� and all common mathematical functions �see Section
����

����� Precise de�nition of intervals

In the spirit of SVC� before proceeding any further we must de	ne very
precisely the representation and semantics of intervals in the IA model�
Accordingly� we de	ne a non�empty interval as a set of the form

$&x�lo &x�hi % ! f x � R � &x�lo 	 x 	 &x�hi g �

where &x�lo �the lower bound of the interval� is in F f��g� and &x�hi
�the upper bound� is in F f"�g�
We also de	ne the empty interval $ % as synonymous of the empty set�

The upper and lower bounds of $ % are not de	ned�
Note that every �nite �oat x can be represented as an interval $x

x%� Every other real number can be approximated by an interval $a b%�
where a and b are consecutive �oat values� possibly in	nite�
Note that the bounds of an interval are �oat values� possibly in	nite�

but its elements are drawn from the 	nite real numbers R� Thus� for
example� the interval $� "�% includes � and p
 and ���

� but not
"�� In particular� $�� "�% is the same as R� the set of all �	nite�
real numbers�
The obvious way to represent a non�empty interval &x in the com�

puter is by record with two �oat components� &x�lo and &x�hi � The empty
interval could then be represented by any such pair with &x�lo � &x�hi �
We shall use $"� ��%� speci	cally� because this choice simpli	es the
implementation in some cases�
Since�� and "� are not real numbers� the pairs with &x�lo ! &x�hi !

�� or &x�lo ! &x�hi ! "� would denote the empty set� too� However�

�
 Interval arithmetic

it is advisable to outlaw these two pairs altogether� so that the common
test x ! $ % can be consistently implemented as &x�lo � &x�hi �
In summary� a pair �&x�lo� &x�hi� represents a non�empty interval if

&x�lo � F f��g� &x�hi � F f"�g� and &x�lo 	 &x�hi � or the empty
interval� if &x�lo � &x�hi � The pairs

$"� "�%� $�� ��%� $NaN NaN%� $a NaN%� $NaN a%�

are not valid intervals� for any �oat a�
We say that an interval &x straddles a real number z when &x�lo � z �

&x�hi � When &x�lo ! z or &x�hi ! z� and the interval is not empty� we say
that &x merely touches z�

��� Computing with IA

For every operation f�x� y� � � �� from reals to reals �such as sum� product�
square root� etc��� the interval arithmetic model de	nes a corresponding
interval extension &f�&x� &y� � � ��� This operation returns some interval�
preferably the smallest one�that contains all values of f�x� y� � � ��� where
the variables x� y� � � � range independently over the given intervals &x� &y� � � �
For elementary operations� implementing these interval extensions is

generally straightforward� we need only devise formulas for the maxi�
mum and minimum values of f when the arguments x� y� � � � vary inde�
pendently over speci	ed intervals� Often� a case analysis is required�
For certain functions� determining the exact maxima and minima

may be too di�cult� In such cases� it is acceptable to return any com�
putable interval that contains the theoretical range of the function� not
necessarily the smallest one� That is� we are allowed to increase the
upper bound� and decrease the lower bound� doing so does not violate
the fundamental invariant of range analysis �Section ��
����
Once we have implemented interval extensions for all elementary

operations and functions� interval extensions for a complicated function
can be computed by composing these primitive formulas in the same way
the primitive operations are composed to compute the function itself� In
other words� any algorithm for computing a function using primitive op�
erations can be readily �and automatically� interpreted as an algorithm
for computing an interval extension for the same function� �This is spe�
cially elegant to implement with programming languages that support

��� Computing with IA ��

operator overloading� such as Ada� C""� Fortran��� and Pascal�XSC�
but can be easily implemented in any programming language� either
manually or with the aid of a pre�compiler�� Thus� the class of functions
for which interval extensions can be easily �and automatically� com�
puted is much larger than the class of rational polynomial functions�
This proves the fundamental invariant of range analysis for IA�

����� Handling roundo
 errors

A common reason for widening the result interval is the need to rep�
resent the endpoints as �oating�point values� In order to preserve the
fundamental invariant� we must be careful to round each bound in the
proper direction� namely� the lower bound must be rounded towards
��� and the upper bound towards "��
This concern also applies to any intermediate values that may a�ect

the computed bounds� Such values must always be rounded in the most
conservative direction�the one which leads the resulting interval to be
widened� rather than narrowed� In particular� we can always replace the
input intervals by wider ones� �See Section
����
 for an example where
this action is necessary��

����� Handling over	ow

In some operations� we must also worry about the possibility of over�ow
when computing the extrema of f in the given interval� Fortunately� in
IEEE�compliant �oating�point arithmetic� over�ow generally produces a
special in	nity value with the appropriate sign� so that we do not need
to handle those cases explicitly� Thus� if over�ow occurs� the resulting
interval will automatically extend to in	nity� in either or both directions�
and the fundamental invariant will be preserved�

However� the IEEE standard also speci	es that certain operations�
such as ��� or � � �� and ���� " �"��� result in the special �not�a�
number� value NaN� Recall that we decided �in Section
�
��� to forbid
intervals with NaN endpoints� because of its ambiguous meaning and
bizarre properties� Therefore� whenever an operation might return NaN�
we must test for that event� and return either R ! $�� "�% or $ %�
as appropriate� The reason why we outlawed the intervals $"� "�%
and $�� ��% is precisely to reduce the need for such tests�

�� Interval arithmetic

����� Handling domain violations

When implementing an elementary function� such as square root and
logarithm� which is de	ned only for a proper subset of the real line� one
should simply ignore any part of the argument interval that is outside
domain of de	nition�

Thus� for example� the square root routine� when given $�� "�%�
should simply return $�
%� It would not be appropriate to signal an
error in this case� because the argument interval is merely a conservative
estimate of the true range of the corresponding quantity� The fact that
the interval extends into the negative values does not imply that the
quantity may be negative�

This �soft� policy towards unde	ned values may seem to violate the
fundamental invariant of range analysis� After all� $�
% does not
contain all possible values of

p
x when x ranges over $�� "�%� some of

those �values� are unde	ned �or imaginary�� However� if an algorithm
says to compute

p
x at some point� and expects a real result� then the

square�root routine must assume that the true value of x would always
be positive in any exact evaluation of the algorithm� If the true value of x
could be negative at that point� then the algorithm would be logically
incorrect� Now� the IA model cannot guarantee that the 	nal intervals
are correct if the exact algorithm is not correct �otherwise� $�� "�%
would be the only valid output#��

On the other hand� if the argument interval to an IA operation is
entirely outside the domain of de	nition of the corresponding function�
then something is clearly wrong with the program� In that case� the IA
routine should probably signal an error�

Another alternative in such cases is to use a �super�soft� policy� and
return the empty interval $ %� It is then the programmer�s responsibility
to test whether the result is $ %� and take action if necessary� In that
case� for consistency� every IA operation should return $ % whenever one
or more operands are $ %�

Early detection vs� soft failure

The choice between signalling an error and returning $ % is a special case
of a classical dilemma of software engineering� the tension between early
detection versus soft failure�

��� Speci�c operations ��

The early detection policy requires that �exceptional� conditions�
such as end�of�	le or division by zero� be treated as immediate breaks
in the control �ow� which require explicit handling� One advantage of
this policy is that programming errors that derive from or cause such
conditions tend to be detected sooner� and hence are easier to debug� It
also has the merit of forcing the programmer to be aware and handle all
exceptional cases�

The soft failure policy� in contrast� implies that �exceptional� condi�
tions should be handled as �ordinarily� as possible� namely by encoding
them as distinguished values that can be returned and assigned like any
other value� This approach usually simpli	es the code that follows pro�
cedure calls� since it is not necessary to handle the exceptional results
explicitly� On the other hand� under this policy one often needs extra
tests at procedure entry to recognize and handle the exceptional values�

Software engineering experts seem still divided on this issue� The de�
signers of the IEEE standard avoided taking a stand on this matter� they
provided in	nities and NaNs� in accordance to the soft�failure approach�
but also allowed the programmer to specify whether the creation of such
values should cause an error trap� as required for early detection�

��� Speci�c operations

We now describe in detail how to compute interval extensions for the
elementary operations and functions�

We shall use a Pascal�like syntax� Iteration and branching will be
speci	ed with for� while� and if commands� with obvious semantics�
However� command grouping will be indicated by indentation alone�
without the begin � � � end brackets of Pascal� Comments appear in
italics guarded by �� Assignment statements will be written variable �
value� Variables will be declared by var name� Type� as in Pascal� but
declarations may appear at the beginning of any compound statement�
as in C or Algol ��� The type Float stands for any IEEE �oating�point
value except NaN� and Finite is Float n f���"�g�
For actual implementations of interval operations� see the public do�

main libraries ���� ����
��

�� Interval arithmetic

����� Negation

We begin with negation� because of its simplicity�

IA�neg�&x� Interval�� Interval �
� Computes �&x�
return $�&x�hi �&x�lo%

Note the reversal of the upper and lower bounds� Note also that
negation of intervals� unlike almost any other operation� is not a�ected
by roundo� or over�ow� Note� 	nally� that the code above works even
for the special intervals R and $ %�

����� Addition

The code for addition is straightforward� except that we must explicitly
return $ % if either argument is $ %�

IA�add�&x	 &y� Interval�� Interval �
� Computes &x" &y�
if &x ! $ % or &y ! $ % then

return $ %
else

return $�&x�lo " &y�lo� �&x�hi " &y�hi�%

The reader may want to check that this algorithm works even for
intervals with one or two in	nite bounds� Note that a
! "� and
b
! "� imply �a" b�
! "�� even when a " b over�ows the 	nite
�oating�point range� and similarly for �a" b� and ��� Therefore� the
algorithm above cannot return the �forbidden� intervals $"� "�%
and $�� ��%� as long as they are not given as arguments�
One might think that the initial tests for $ % could be avoided if $ %

were consistently represented by $"� ��%� since the general formula
would then give

$ % " &y ! $�"�� " &y�lo ���� " &y�hi % ! $"� ��% ! $ %�
as desired� Unfortunately� this simpli	cation would fail when adding $ %
to R ! $�� "�%� because ���� " �"�� is NaN� So the tests seem
unavoidable�

��� Speci�c operations ��

����� Translation

A common special case of addition is translation of an interval by a 	nite
�oat c �which may be regarded as an interval of zero width�� There is no
reasonable way to extend this operation for in	nite values of c� because
$a"� b"�% is $"� "�%� which is not a valid interval�

IA�shift�&x� Interval
 c� Finite�� Interval �
� Computes &x" c�
if &x ! $ % then

return $ %
else

return $�&x�lo " c� �&x�hi " c�%

����� Subtraction

To subtract two intervals� we merely add the 	rst to the negation of the
second� Combining the two operations into a single procedure� we get

IA�sub�&x	 &y� Interval�� Interval �
� Computes &x� &y�
if &x ! $ % or &y ! $ % then

return $ %
else

return $�&x�lo � &y�hi� �&x�hi � &y�lo�%

����� Scaling

Scaling an interval by a positive factor is straightforward� scaling by a
negative factor requires swapping the bounds� Scaling by �� of course�
should result in the degenerate interval $� �%� We must handle this case
explicitly� in case the interval has in	nite bounds� because � � � ! NaN

in IEEE arithmetic� As in the case of translation� there is no reasonable
way to de	ne scaling when c is in	nite�

�� Interval arithmetic

IA�scale�&x� Interval
 c� Finite�� Interval �
� Computes c � &x�
if &x ! $ % then

return $ %
else if c � � then

return $�c � &x�lo� �c � &x�hi�%
else if c � � then

return $�c � &x�hi� �c � &x�lo�%
else

return $� �%

����� Multiplication

For the multiplication routine� we need formulas for the maximum and
minimum of xy when the pair �x� y� ranges over a rectangle $&x�lo
&x�hi %� $&y�lo &y�hi %� The key observation here is that� for a 	xed value
of x� the product xy is linear �hence monotonic� in y� and vice�versa� It
follows that the extrema must occur at corners of the rectangle�
The simplest implementation is thus�

IA�mul�&x	 &y� Interval�� Interval �
� Computes &x � &y 	 naive version�
if &x ! $ % or &y ! $ % then

return $ %
else if &x ! $� �% or &y ! $� �% then

return $� �%
else

a� minf�&x�lo � &y�lo� � �&x�lo � &y�hi� � �&x�hi � &y�lo� � �&x�hi � &y�hi�g
b� max f�&x�lo � &y�lo� � �&x�lo � &y�hi� � �&x�hi � &y�lo� � �&x�hi � &y�hi�g
return $a b%

Note that we must handle separately the cases where one of the
operands is $� �%� in case the other one has in	nite bounds �which
would lead to NaN bounds in the result��

��� Speci�c operations ��

This routine requires eight multiplications in all non�trivial cases�
However� we can reduce this to only two multiplications in most cases�
and four in only one case� by testing the signs of the operands in order
to determine which corners yield the maximum and minimum product�
There are nine main cases to consider� depending on whether each

interval is entirely non�negative� entirely non�positive� or straddles zero
�see Figure
���� If either x or y has consistent sign� then the two
extremal corners are determined by the sign combinations alone� If
both intervals straddle zero� then the signs alone do not su�ce� we
must evaluate the product at all four corners� and compare the results�

Figure ���� The nine cases for multiplication �� 	 possible maximum
 � 	
possible minimum��

�� Interval arithmetic

IA�mul�&x	 &y� Interval�� Interval �
� Computes &x � &y�
if &x ! $ % or &y ! $ % then

return $ %
else if &x ! $� �% or &y ! $� �% then

return $� �%
else if &x�lo � � then

if &y�lo � � then

return $�&x�lo � &y�lo� �&x�hi � &y�hi�%
else if &y�hi 	 � then

return $�&x�hi � &y�lo� �&x�lo � &y�hi�%
else

return $�&x�hi � &y�hi� �&x�hi � &y�lo�%
else if &x�hi 	 � then

if &y�lo � � then

return $�&x�lo � &y�hi� �&x�hi � &y�lo�%
else if &y�hi 	 � then

return $�&x�hi � &y�hi� �&x�lo � &y�lo�%
else

return $�&x�lo � &y�hi� �&x�lo � &y�lo�%
else

if &y�lo � � then

return $�&x�lo � &y�hi� �&x�hi � &y�hi�%
else if &y�hi 	 � then

return $�&x�hi � &y�lo� �&x�lo � &y�lo�%
else

a� minf�&x�lo � &y�hi� � �&x�hi � &y�lo�g
b� max f�&x�lo � &y�lo� � �&x�hi � &y�hi�g
return $a b%

����� Reciprocal

The reciprocal function ��x is not de	ned for x ! �� Hence �as discussed
in Section
������ the IA implementation must implicitly exclude that
argument value from the input interval &x�
The algorithm has two main cases� depending on whether the input

interval &x straddles zero or not� In the 	rst case� the reciprocal may

��� Speci�c operations �	

assume arbitrarily large and arbitrarily small real values� hence the cor�
rect interval result must be R ! $�� "�%� In the second case� the
reciprocal is monotonic� so we only need to evaluate it at the interval
endpoints�
However� input intervals with zero bounds must be handled sepa�

rately� The IEEE standard de	nes ��� as "�� and ������ ! ��� but
we cannot trust that zero bounds in the argument will have the �right�
sign� due to the existence of negative zero�

IA�inv�&x� Interval�� Interval �
� Computes ��&x�
if &x ! $ % then

return $ %
else if &x�lo � � and &x�hi � � then

return $�� "�%
else if &x ! $� �% then

return $ %
else

if &x�hi ! � then a� �� else a� �y��&x�hi�y
if &x�lo ! � then b� "� else b� x���&x�lox�
return $a b%

It should be noted that
�y��&x�hi�y may be �� and

x���&x�lox� may
be "�� even when the denominators are 	nite� Fortunately� these pos�
sible over�ows will not a�ect the correctness of the result�

���� Division

The division of &x by &y could be implemented in IA as the product of &x
by ��&y� However� we may gain a couple of bits of accuracy by coding
a special routine for division� For example� the latter should be able to
evaluate $� �%�$� �% ! $� �% without any roundo� error� whereas
the reciprocal of $� �% would introduce some rounding error�
In fact� if the bounds of &y are too close to zero� then their reciprocals

may over�ow� leading to an in	nite range for &x���&y�� even when the
quotient may still be 	nite�
Like multiplication and reciprocal� the division algorithm must be

broken down into several distinct cases� depending on the signs of the

�
 Interval arithmetic

operands� The code structure is a bit simpler than multiplication� how�
ever� because in the three cases where &y straddles zero the result is
simply the entire real line�

IA�div�&x	 &y� Interval�� Interval �
� Computes &x�&y�
if &x ! $ % or &y ! $ % or &y ! $� �% then

return $ %
else if &x ! $� �% then
return $� �%

else if &y�lo � � then

if &x�lo � � then

return $
�y&x�lo�&y�hi�y x�&x�hi�&y�lox�%

else if &x�hi 	 � then

return $
�y&x�lo�&y�lo�y x�&x�hi�&y�hix�%

else

return $
�y&x�lo�&y�lo�y x�&x�hi�&y�lox�%

else if &y�hi 	 � then

if &x�lo � � then

return $
�y&x�hi�&y�hi�y x�&x�lo�&y�lox�%

else if &x�hi 	 � then

return $
�y&x�hi�&y�lo�y x�&x�lo�&y�hix�%

else

return $
�y&x�hi�&y�hi�y x�&x�lo�&y�hix�%

else

return $�� "�%

����� Square root

The IA version of square root is extremely simple� because the function
is monotonic and is not liable to over�ow or under�ow for any 	nite
arguments� The only special precaution we must take is to remove the
negative part of the input range� if any �using the �super�soft� policy
described in Section
������

��� Speci�c operations ��

IA�sqrt�&x� Interval�� Interval �
� Computes

p
&x�

if &x ! $ % or &x�hi � � then

return $ %
else if &x�lo 	 � then

return $�
x��p&x�hix��%

else

return $
��yp&x�lo��y x��p&x�hix��%

������ Logarithm

The code for logarithm is quite similar to that of square root� except
that log is not de	ned at zero� and tends to �� at its right�

IA�log�&x� Interval�� Interval �
� Computes log &x�
if &x ! $ % or &x�hi 	 � then

return $ %
else if &x�lo 	 � then

return $�� x�log�&x�hi�x�%
else

return $
�ylog�&x�lo��y x�log�&x�hi�x�%

This code can be used for computing logarithms in any base� Note
that we do not need to handle the case &x�lo ! � separately� because
�log �� is �� in IEEE�compliant platforms�

������ Exponential

The exponential function exp�x� ! ex is also monotonic� and de	ned
everywhere�

�� Interval arithmetic

IA�exp�&x� Interval�� Interval �
� Computes exp &x�
if &x ! $ % then

return $ %
else

return $
�yexp�&x�lo��y x�exp�&x�hi�x�%

The �oating�point evaluation of expx will over�ow for values of x
above a few hundred� Ideally� these over�ows should not require spe�
cial handling in the code�

x�exp�&x�hi�x� should be "�� and �yexp�&x�lo��y
should be the maximum 	nite value� in which case the interval result
would be correct�

������ Sine and co�sine

There are several features of the trigonometric functions sin and cos
that require special attention� For one thing� they are non�monotonic�
therefore� when computing their extremal values in some interval� we
must consider their local maxima and minima� as well as the interval
endpoints�

The local extrema of cos occur at integer multiples of �� Thus�
after disposing of the empty case� our 	rst step is to scale the input
interval &x by ���� If the resulting range straddles an even integer� then
the interval &x contains a maximum� and we can set the upper bound
of the result to �� Symmetrically� if the scaled range straddles an odd
integer� then the lower bound is ��� If only one of these conditions
holds� then we must compare the values of cos at the endpoints of &x
in order to determine the other bound for the result� Finally� if the
scaled interval straddles no integers� then cos is monotonic �increasing
or decreasing� in the original interval &x� and the extremal values occur
at &x�lo and &x�hi �

Here� as always� we must take into account all roundo� errors� In
particular� since � is not exactly representable as a �oat value� we must
treat it as an interval $&��lo &��hi % of non�zero width� where &��lo and
&��hi are consecutive �oats�

��� Speci�c operations ��

IA�cos�&x� Interval�� Interval �
� Computes cos &x�
if &x ! $ % then

return $ %
else

� Scale &x by ���

if &x�lo � � then a� �y&x�lo�&��hi�y else a� �y&x�lo�&��lo�y
if &x�hi � � then b� x�&x�hi�&��lox� else b� x�&x�hi�&��hix�
� Check for odd and even integers in $a b%

m� bac
n� dbe
if �n�m� �
 then

� There are no extremal values in �&x�lo &x�hi�

if even�m� then

u� �cos &x�lo�
 v � �cos &x�hi�
else

u� �cos &x�hi�
 v � �cos &x�lo�
else if �n�m� !
 then

� At most one extremal value in �&x�lo &x�hi�

if even�m� then

u� ��
 v � max f�cos &x�lo� � �cos &x�hi�g
else

u� min f�cos &x�lo� � �cos &x�hi�g
 v � "�
else

� There seem to be maxima and minima in �&x�lo &x�hi�

u� ��
 v � "�

return $u v%

The notation bac means� as usual� the greatest integer not greater
than a� In order to avoid integer over�ow �which� in most machines� is
either fatal or hard to detect�� this quantity must be computed entirely
in �oating�point� with the floor function from the standard C math

library� or equivalent� That way� the operation m� bac will return the
correct result� without rounding� even if jaj is very large� or the exponent
of bac is greater than that of a� Similar remarks apply to dbe�
The logic behind this algorithm is somewhat subtle� Note that a

and b may be a�ected by roundo� errors� and so �n�m� !
 does not

�� Interval arithmetic

imply that the original interval &x actually straddles any local maxima
or minima� Nevertheless� we can safely assume that it does� and use the
parity of m to decide whether this presumed extremum is "� or ��� A
similar observation applies to the case �n�m� �
� Here we are relying
on an important principle of interval arithmetic� in a correctly imple�
mented IA operation� replacing any argument &x by another interval &x�

that contains &x will not a�ect the validity of the result�
The code works even when &x is in	nite in one or both directions�

The code for sin is entirely analogous� except that the local extrema are
shifted by ��
� Thus� we must subtract ��� from a �rounding down� and
from b �rounding up��

������ Other elementary functions

The preceding examples should o�er su�cient guidance for the reader to
implement any other elementary function f in IA� assuming the availabil�
ity of a routine that computes f in �oating�point with directed rounding�

When such a routine is not available� however� the task becomes
much harder� Implementing� say� arctan x with directed�rounding and
last�bit accuracy requires far more work than most numerical program�
mers can spare�
Still� if one has an algorithm F �x� that computes f�x� with known

error bound ��x�� then one can simulate �crudely� the desired directed�
rounding procedure by computing

�yF �x�� ��x�
�y or x�F �x� " ��x�

x�� as
appropriate�

��� Utility operations

We will now describe some useful IA operations that are speci	c to
intervals� rather than mere interval extensions of ordinary operations�

����� Midpoint

The midpoint of an interval is a 	nite �oat value contained in the inter�
val� and as close as possible to its center �&x�lo " &x�hi��
� By de	nition�
the midpoint of a semi�in	nite interval is either �M or "M � where
M ! MaxFloat is the maximum 	nite �oating�point number� and the
midpoint of R is � by convention�

��
 Utility operations ��

Because of possible over�ow� we must divide each endpoint by

before adding them� Because of possible under�ow in the division� we
must round each term in a di�erent direction�

IA�mid�&x� Interval�� Float �
� Computes the approximate midpoint of &x� Assumes &x
! R�
if &x ! $ % or &x ! R then

return �

else if &x�lo ! &x�hi then

return &x�lo
else if &x�lo ! �� then

return �MaxFloat
else if &x�hi ! "� then

return "MaxFloat
else

return hx�&x�lo�
x� " �yhix�
�yi
The divisions by
 are exact� except for numbers of very small mag�

nitude� when the quotient may be rounded by half a unit in the last bit�
At worst� the sum

x�&x�lo�
x� " �y&x�hi�
�y will di�er from the exact mid�
point by half a unit in the last bit� and therefore will lie in the original
interval &x�

The 	nal rounding of the sum may increase the error to ��� of the
last bit� so the returned result may not be the most accurate answer
possible� In any case� since rounding cannot cross over a representable
�oat� the result will still be inside &x�

����� Radius

The half�width or radius of an interval is half of the di�erence between
the upper and lower endpoints� rounded upwards� As special cases� the
half�width of unbounded intervals is "�� and that of $ % is zero�
The half�width of every bounded interval is representable as a 	nite

�oat� This property makes the half�width more useful than the total
width �&x�hi � &x�lo�� which may over�ow for some bounded intervals�
Another useful property of the half�width is that it is zero if and only if
the interval is empty� or contains a single point�

�� Interval arithmetic

In order to maximize the usefulness of the half�width r� we must
round it in such a way that the given interval &x is contained in the
interval $m � r m " r%� where m is the midpoint of &x �as computed
by IA�mid�� The simplest way to achieve this goal is to derive the half�
width from the midpoint�

IA�rad�&x� Interval�� Float �
� Computes the half�width of &x�
if &x ! $ % or &x�lo ! &x�hi then

return �

else

m� IA�mid�&x�
return max f�m� &x�lo� �&x�hi �m�g

Thanks to the rules of IEEE arithmetic� this code will return "�
whenever &x�lo ! �� or &x�hi ! "�� �Recall that $"� "�% and
$�� ��% are not valid intervals��
In practice� since IA�rad and IA�mid are often used together� it may

be convenient to combine them into a single procedure that returns both
parameters�

����� Meet �intersection�

The set�theoretical intersection� or meet� of two intervals &x and &y is an�
other interval �possibly empty� denoted by &x�&y or &x�&y� The intersection
is trivial to compute�

IA�meet�&x	 &y� Interval�� Interval �
� Returns &x � &y� i�e� &x � &y�
if &x ! $ % or &y ! $ % or &x�lo � &y�hi or &x�hi � &y�lo then

return $ %
else

return $max f&x�lo� &y�log min f&x�hi � &y�hig%

If the internal representation of $ % is any pair $a b% with a � b� then
the if test can be eliminated�the max �min formula will automatically
return $ % when appropriate�

��
 Utility operations ��

This operation is typically used when we obtain� by di�erent lines of
reasoning or computation� two ranges &x� and &x�� that are both known to
contain some quantity x� The interval &x��&x�� condenses that information
into a single interval�

����� Join �convex hull�

The union of two intervals &x and &y may not be a single interval� However�
we can easily compute their join� or convex hull� which is the smallest
interval &x � &y that contains both�

IA�join�&x	 &y� Interval�� Interval �
� Returns &x � &y�
if &x ! $ % then

return &y
else if &y ! $ %
return &x

else

return $min f&x�lo� &y�log max f&x�hi � &y�hig%

The tests for $ % can be omitted only if the empty interval is consis�
tently represented as $"� ��%� If pairs like $� �% are also allowed
to represent $ %� then they must be handled as special cases� as shown
above�
The join operation is often used when coding the interval version of

a conditional algorithm� If x is variable� then a test like

if x � �
then y � f�x� � � ��
else y � g�x� � � ��

can often be translated into

&u� &f�&x � $� "�%� � � ��
&v � &g�&x � $�� �%� � � ��
&y � &u � &v

where &f and &g are the interval extensions of f and g�

�� Interval arithmetic

Note� in this example� that the case x ! � is incorrectly included in
both branches� The 	rst statement should have been

&u� &f�&x � �� "�%��
but standard IA only allows for closed intervals� However� as discussed in
Section
��� the computation &f must tolerate the widening of �� "�%
to $� "�%� even if f is unde	ned for x ! ��

��� The error explosion problem

The main weakness of IA is that it tends to be too conservative� the
computed interval for a quantity may be much wider than the exact
range of that quantity� often to the point of uselessness� This problem
is particularly severe in long computation chains� where the intervals
computed at one stage are inputs for the next stage� Unfortunately�
such �deep� computations are not uncommon in practical applications�
This over�conservatism is mainly due to the assumption that the

�unknown� values of the arguments to primitive operations may vary
independently over the given interval� If this assumption is not valid �
that is� if there are any mathematical constraints between those quan�
tities � then not all combinations of values in the given intervals will
be valid� In that case� the result interval computed by IA may be much
wider than the exact range of the result quantity�
As an extreme example� when we evaluate the expression x�x with

IA� given the interval &x ! $
 �% for x� we get $
�� ��
% ! $�� "�%
� instead of $� �%� which is the true range of the expression� The
IA subtraction routine cannot tell that the two given intervals actually
denote the same quantity� since they could also denote two independent
quantities that just happen to have the same range�
For a less extreme �and more typical� example� consider evaluating

x���� x�� where x is known to lie in the interval &x ! $� �%� Applying
the formulas of Section
�� blindly� we get

��� &x ! $�� ��%� $� �% ! $� �%

&x��� � &x� ! $� �% � $� �% ! $�� ��%�

On the other hand� a trivial analysis shows that the true range of
x��� � x� is $
�
�%� The relative accuracy of the IA computation is

�� The error explosion problem �	

thus �
� �
������ � ��� ! ����� meaning the resulting interval was
�
times wider than what it should be�

The large discrepancy between the two intervals is due to the inverse
relation between the quantities x and ��� x� which is not known to the
interval multiplication algorithm� This problem a�ects all operations
with two or more arguments� if the corresponding quantities are not
independent� and are correlated in the �wrong� way� then the result
interval may be much wider than necessary�

����� Error explosion

The over�conservatism of IA is particularly bad in a long computation
chain� because the overall relative accuracy of the chain tends to be the
product of the relative accuracies of the individual stages� In such cases�
one often observes an �error explosion�� as the evaluation advances down
the chain� the relative accuracy of the computed intervals decreases at
an exponential rate� Thus� after a few such stages the intervals may
easily be too wide to be useful� by many orders of magnitude�

For an example of this phenomenon� consider the function g�x� !p
x� � x" ��
�

p
x� " ��
� Figure
�
a shows the graph of g�x� �black

curve� and the result of evaluating g�&x� with standard IA� for �� consec�
utive equal intervals &x in $�
 "
%� Figure
�
b shows the same data
for the second iterate h�x� ! g�g�x�� of the same function� Although the
iterates gk converge to a constant function� the intervals &gk�&x� computed
by standard IA diverge�

Figure ���� Error explosion in IA estimates for iterated functions�

�
 Interval arithmetic

����� Error explosion and subdivision depth

When the IA evaluation of &f�&x� &y� � � �� produces an interval that is too
wide for the purpose at hand� we can often improve matters by parti�
tioning the argument range &x � &y � � � � into two or more sub�ranges�
evaluating f on each of these� and combining the results into a single
interval� However� this technique is not very e�ective against error ex�
plosion� because the relative accuracy of an IA operation is generally
independent of the width of the input intervals� �That is� IA has basi�
cally 	rst�order approximation error�� So� if the relative accuracy of a
computation is too small to be useful by a factor of ����� then we will
probably have to split the domain into ���� sub�intervals to obtain a
useful result�

��	 Avoiding error explosion

In order to avoid this error explosion problem� we should try to arrange
the computation in such a way as to avoid unfavorable correlations be�
tween the arguments of the IA operations� In particular� minimizing
the number of occurrences of a variable in a formula usually results in
tighter range estimates� if each variable occurs only once� then the range
estimates produced by IA are exact�

Another general technique is to lump several arithmetic operations
into a single �macro operation�� and write a special�purpose IA routine
for it� Since the routine can take into account the correlation between
shared sub�expressions� it may be able to compute a tighter range for
the result than which could be given by using IA at each step�

However� these remedies can only be applied to relatively simple
computations over restricted domains� When the expression to be com�
puted is determined only at run�time� or involves dozens of variables
and operations� avoiding bad correlations is almost impossible� In such
cases� one should consider using more sophisticated SVC models� such
as those described in Chapter ��

����� Powers

A trivial but important example of avoidable error explosion is the eval�
uation of powers z � xn� The naive IA implementation� based on re�

��� Avoiding error explosion ��

peated multiplication� will show poor accuracy for intervals that straddle
zero� In particular� for &x ! $�
 "
%� the evaluation of z � x� in IA
as x � x will give &z ! $�� "�%� even though x� cannot be negative�
For this reason� IA libraries should always include special routines

for squares and other integer powers� Here is a typical example�

IA�sqr�&x� Interval�� Interval �
� Computes &x��
if &x ! $ % then

return $ %
else if &x�lo � � then

return $
��y&x�lo���y x��&x�hi�x��%

else if &x�hi 	 � then

return $
��y&x�hi���y x��&x�lo�x��%

else if &x�hi � �&x�lo then

return $�
x��&x�hi�x��%

else

return $�
x��&x�lo�x��%

����� B�ezier bounding for polynomials

Another important example is the evaluation of a polynomial h�x� over
an interval &x� A naive IA evaluation� either as a sum of powers or
through Horner�s rule� is likely to be a�ected by negative correlation
among its terms� We can obtain a tighter range for h�x� by computing
the B�ezier�Bernstein coe�cients ��
� of h over &x� and returning the
smallest interval that contains them all�

����� Alternating series

As another example� consider the problem of evaluating a series f�x� !P
�

i�
 aix
i� If the argument x or some of the coe�cients ai are negative�

then there will often be adverse correlation between the various terms� In
that case� the series computed with IA will have poor relative accuracy�
even if the series itself is strongly convergent�
However� if we happen to know that the terms have alternating signs

and non�increasing magnitude� then we can usually improve the relative

�� Interval arithmetic

accuracy by evaluating two terms at a time� and estimating the maxi�
mum range of the pair analytically�

As a concrete example� suppose we want to evaluate sinx by the
Taylor series

z �
�X
k�

����k x�k��

�
k " ��#
�
���

for &x ! $���
�� ������%� �This is merely an example of series manip�
ulation� and not necessarily the best way to compute sinx�� Evaluating
each term separately� we get

$"���
�� "������% "

$������� �������% "
$"������ "������% "

$������� ������% "

� � �

The sum of the 	rst three intervals is $������ ������%� and the sum
of the 	rst four is $����� ������%� Since the terms have alternating
signs� we know that the in	nite series lies between these two partial
sums� thus we can safely set z � $����� ������%�

Now� the true range of sinx in that interval is $������ ������%�
The relative accuracy is thus only ����

� If we continued adding more
terms� the total interval would not shrink any further�in fact� it would
slowly grow wider� because of accumulated roundo� error�

On the other hand� we can rewrite the series as

z !
�X
k�

�
x�k��

��k " ��#
� x�k��

��k " ��#

�

!
�X
k�

x�k��

��k " ��#

�
�� x�

��k " ����k "
�

�
� �
�
�

If x lies in $� �%� then each term of this series is non�negative and
monotonically increasing with x� So� for argument ranges &x contained
in that interval� a tight range for each term will be

rk ! $
�yfk�&x�lo��y x�fk�&x�hi�x�%�

��� Avoiding error explosion ��

where

fk�x� !
x�k��

��k " ��#

�
�� x�

��k " ����k "
�

�
�

In our case� the 	rst few terms are

$"������ "������% "

$"������ "�����
% "

$"������ "������% "

$"������ "������% "

� � �

Since the original series �
��� is alternating� and x lies in $� �%� the
sum of all the terms with k �
 in the series �
�
� lies between � and
��# � ������� Thus� we can safely replace those terms by the interval
$������� "������%� and return z � $"������ "������%� The relative
accuracy is now ����
Unfortunately� these remedies are hardly applicable when the expres�

sion to be computed is determined only at run�time� or involves more
than a few variables and operations�

Chapter �

A�ne arithmetic

In this chapter� we describe another method for range analysis� which we
call a�ne arithmetic �AA�� This model is similar to standard interval
arithmetic� to the extent that it automatically keeps track of rounding
and truncation errors for each computed quantity� In addition� AA keeps
track of correlations between those quantities�
Thanks to this extra information� AA is able to provide much tighter

bounds for the computed quantities� with errors that are approximately
quadratic in the uncertainty of the input variables� This advantage of
AA is especially noticeable in computations of great arithmetic depth
or subject to cancellation errors�
As one may expect� the AA model is more complex and expensive

than ordinary interval arithmetic� However� we believe that its higher
accuracy will be worth the extra cost in many applications� as indicated
by the examples given in Chapter ��

��� A�ne forms

In a�ne arithmetic � a partially unknown quantity x is represented by
an a�ne form 'x� which is a 	rst�degree polynomial�

'x ! x
 " x�	� " x�	� " � � �" xn	n�

The coe�cients xi are 	nite �oating�point numbers� and the 	i are
symbolic real variables whose values are unknown but assumed to lie in
the interval U ! $�� "�%� We call x
 the central value of the a�ne

��

�� A�ne arithmetic

form 'x� the coe�cients xi are the partial deviations� and the 	i are the
noise symbols�

Each noise symbol 	i stands for an independent component of the
total uncertainty of the quantity x� the corresponding coe�cient xi gives
the magnitude of that component� The source of the uncertainty may be
either �external� �due to original measurement error� indeterminacy� or
numerical approximation a�ecting some input quantity�� or �internal�
�due to arithmetic roundo�� series truncation� function approximation�
and other numerical errors committed in the computation of 'x��

In particular� the internal sources of error include the need to cast
the results of non�linear operations as a�ne forms� As we shall see in
Section ���� this casting requires approximating a non�linear function of
the noise symbols 	i by an a�ne function� The error of this approxima�
tion will be represented in the result by a new noise symbol 	k�

����� The fundamental invariant of a�ne arithmetic

The semantics of a�ne forms is formalized by the fundamental invariant
of a�ne arithmetic�

At any stable instant in an AA computation� there is a single
assignment of values from U to each of the noise variables
in use at the time that makes the value of every a�ne form
equal to the value of the corresponding quantity in the ideal
computation�

By stable instant we mean any time when the algorithm is not perform�
ing an AA operation�

��� Joint range of a�ne forms

The key feature of the AA model is that the same noise symbol may
contribute to the uncertainty of two or more quantities �inputs� outputs�
or intermediate results� arising in the evaluation of an expression�

The sharing of a noise symbol 	i by two a�ne forms 'x and 'y in�
dicates some partial dependency between the underlying quantities x
and y� The magnitude and sign of the dependency is determined by the

��� Joint range of a�ne forms ��

corresponding coe�cients xi and yi� Note that the signs of the coe��
cients are not signi	cant in themselves� but the relative sign of xi and yi
de	nes the direction of the correlation�
For example� suppose that the quantities x and y are represented by

the a�ne forms

'x ! �� "
	� " �	� � �	�
'y !
� � �	� " �	� " �	��

From this data� we can tell that x lies in the interval &x ! $� ��%
and y lies in &y ! $�

�%� However� since they both include the same
noise variables 	� and 	� with non�zero coe�cients� they are not entirely
independent of each other� In fact� the pair �x� y� is constrained to lie
in the dark grey region of R� depicted in Figure ����
Obviously� this dependency information would be lost if we were to

replace 'x and 'y by the intervals &x and &y� Taken individually� these
intervals encode precisely the same ranges of values as the a�ne forms�
Taken jointly� however� they only tell us that the pair �x� y� lies in the
rectangle &x� &y ! $� ��%� $�

�%� shown in light grey in Figure ����

6 14

12

28

Figure ���� Joint range of two partially dependent quantities in AA�

����� The shape of joint ranges

In Figure ���� observe that the joint range of x and y is a convex poly�
gon� symmetric around the central point �x
� y
�� Each pair of parallel

�� A�ne arithmetic

sides corresponds to a noise variable 	i appearing in 'x or 'y� The coef�
	cients of 	i determine the length and direction of those two sides� the
corresponding plane vectors are �
xi�
yi� and ��
xi��
yi�� The value
pairs �x� y� lying on those sides are obtained from the a�ne forms by
varying 	i over U while all other noise variables 	j are 	xed at �� or "��
in some speci	c pattern�

In general� if we have m a�ne forms depending on n noise symbols�
then the set of possible joint values for the corresponding m quantities
will be a center�symmetric convex polytope in Rm� That polytope is
the parallel projection on Rm of the hypercube Un by the a�ne map
consisting of the m a�ne forms�

Each k�dimensional face of this polytope corresponds to a subset E
of k noise variables appearing in the a�ne forms� The points on that
face are obtained by ranging the variables in E over Uk� while 	xing the
remaining variables at some speci	c combination of �� and "��

��� Special a�ne forms

As in IA� it is convenient to have special a�ne forms $ %� meaning �no
value�� and R� meaning �any real value��

Note that the set of values described by an ordinary a�ne form is
necessarily bounded �because all coe�cients are 	nite �oats�� and non�
empty �because the set always contains the center value�� Therefore�
the precise computer representations of $ % and R must be established by
convention� For details over possible representations� see Section �����

Note also that the special form R does not record any dependency
information� That is� if 'x ! 'y ! R� then we cannot infer any constraint
or relationship between quantities x and y� The range of the point �x� y��
as implied by those a�ne forms� is the whole plane R��

Prospective AA implementors may be tempted to allow in	nite �oats
as coe�cients� as in 'x ! �"� 	k� in order to represent unbounded quan�
tities within the general AA model� Unfortunately� such in	nite forms
cannot convey the relationship between� say� x and
x� when x has un�
bounded range� Moreover� in order to avoid NaNs� the a�ne arithmetic
routines would have to test for such forms� and handle them separately�
Therefore� such in	nite forms would be merely equivalent representa�
tions of the single special value R� as de	ned above�

��� Conversions between IA and AA �	

����� Computer representation

Computer representations of a�ne forms will be discussed in Section �����
Until then� we will describe AA algorithms in a representation�independent
manner� based on the following conventions�

� We assume an unlimited supply of noise variables 	i� each identi	ed
by its index i �a positive integer��

� We denote by E�'x� the set of indices of all noise variables that
appear in the a�ne form 'x�

� We denote by xi the coe�cient of the noise variable 	i in the a�ne
form 'x� In particular� xi ! � if i �� E�'x��

� The central value of 'x will be denoted by x
�

� The procedure newsym�� is assumed to return the index of a �new�
noise variable� not used in any a�ne form computed so far�

� For any 	nite �oat value c� we denote by 'c its AA representation�
namely the a�ne form 'x with center value x
 ! c and E�'x� ! fg�

��� Conversions between IA and AA

Conversion between a�ne forms and ordinary intervals is often required�
especially in the input and output of numerical programs� Although
simple in principle� the conversions requires some care in the handling
of roundo� errors� Also� special intervals such as $ % and unbounded
intervals must be handled separately�

Because of the unavoidable roundo� errors and over�ows that may
occur in the conversion between intervals and a�ne forms� the two mod�
els are not exactly equivalent�

In particular� some 	nite a�ne forms must be converted to in	nite or
semi�in	nite intervals� Conversely� all semi�in	nite intervals� and some
	nite ones� must be converted to R�

�
 A�ne arithmetic

����� Conversion from AA to IA

If a quantity x is described by the a�ne form 'x ! x
"x�	�" � � �"xn	n�
then its value is guaranteed to be in the interval

$'x% ! $x
 � rad�'x� x
 " rad�'x�%�

where

rad�'x� !
nX

i��

jxij� �����

Note that $'x% is the smallest interval that contains all possible values
of 'x� assuming that each 	i ranges independently over the interval U !
$�� "�%�
Obviously� this conversion discards all knowledge of constraints be�

tween the computed quantities that was preserved in their a�ne forms�
The quantity rad�'x� de	ned by ����� plays an important role in arith�

metic operations �see Section ����� We call it the total deviation of 'x�

AA�rad�x� AA�Form�� Float �
� Computes rad�'x��
if x ! $ % then

return �
else if x ! R then

return "�
else

return
x�P fjxij � i � E�'x�g

x�
IA�from�AA�x� AA�Form�� Interval �
� Converts x to interval�
if x ! $ % then

return $ %
if x ! R then

return R
else

r � AA�rad�x�
return $�x
 � r� �x
 " r�%

��
 Computing with AA ��

����� Conversion from IA to AA

Given an interval &x ! $a b% representing some quantity x in IA� an
equivalent a�ne form for the same quantity is given by 'x ! x
 " xk	k�
where x
 is the midpoint of the interval� and xk is its half�width�

x
 !
b" a

� and xk !

b� a

�

The noise symbol 	k represents the uncertainty in the value of x that
is implicit in its interval representation &x� Since the interval tells us
nothing about possible constraints between the value of x and that of
other variables� 	k must be distinct from all other noise symbols used so
far in the same computation�

AA�from�IA�&x� Interval�� AA�Form �
� Converts &x to a�ne form�
if &x ! $ % then

return $ %
if &x�lo ! �� or &x�hi ! "� then

return R
else

r � IA�rad�&x�
if r ! "� then return R
m� IA�mid�&x�
k � newsym��
return m" r	k

Note that the correctness of this code depends on IA�rad�&x� being
large enough to compensate any rounding of IA�mid�&x�� as explained
in Section
���

��� Computing with AA

In order to evaluate a formula with AA� we must replace each elementary
operation on real quantities by a corresponding operation on their a�ne
forms� returning an a�ne form�
Let�s consider speci	cally a binary operation z � f�x� y�� The cor�

responding AA operation 'z � 'f�'x� 'y� is a procedure that computes an
a�ne form for z ! f�x� y� that is consistent with a�ne forms 'x� 'y�

�� A�ne arithmetic

By de	nition�

x ! x
 " x�	�"��xn	n ���
�

y ! y
 " y�	�"�� yn	n �����

for some �unknown� values of 	�� �� 	n � Un� Therefore� the quantity z
is a function of the 	i� namely

z ! f�x� y�

! f�x
 " x�	�"��xn	n� y
 " y�	�"�� yn	n�� �����

The challenge now is to replace f�x� y� by an a�ne form

'z ! z
 " z�	�"�� zn	n
that preserves as much information as possible about the constraints
between x� y� and z that are implied by ���
(����� but without implying
any other constraints that cannot be deduced from the given data�

��� A�ne operations

If the operation f itself is an a�ne function of its arguments x and y�
then formula ����� can be expanded and rearranged into an a�ne combi�
nation of the noise symbols 	i� Except for roundo� errors and over�ows�
this a�ne combination describes all the information about the quanti�
ties x� y� and z that can be deduced from the given a�ne forms 'x and 'y�
and the operation f � In particular� for any
� � � R�

'x� 'y ! �x
 � y
� " �x� � y��	� " � � �" �xn � yn�	n

'x ! �
x
� " �
x��	� " � � � " �
xn�	n
'x� � ! �x
 � �� " x�	� " � � � " xn	n�

Note that� according to the formulas above� the di�erence 'x � 'x
between an a�ne form and itself is identically zero� The subtraction
formula �knows� that� in this case� the operands are actually the same
quantity� and not just two quantities that happen to have the same range
of possible values� from the fact that they share the same noise symbols
with the same coe�cients�

�� A�ne operations ��

By the same token� linear identities such as �'x " 'y� � 'x ! 'y or
��'x�� 'x !
'x� which do not hold in IA� do hold in AA �except for
�oating�point roundo� errors�� More generally� computations that con�
sist only of a�ne operations with numeric coe�cients will have relative
accuracy near unity�

����� Negation

Negation is one of the few exact AA operations�

AA�neg�'x� AA�Form�� AA�Form �
� Computes �x�
if 'x ! $ % or 'x ! R then

return 'x
else

var 'z� AA�Form� '�
z
 � �x

for each i in E�'x� do

zi � �xi
return 'z

����� Handling roundo
 errors

For operations other than negation� we must take into account the
�oating�point roundo� errors that may occur when computing the coef�
	cients of the result�

One might think that �as in IA� it su�ces to round each coe�cient zi
in the �safe� direction� namely away from zero� However� in AA there
is no �safe� direction for rounding a partial deviation zi� If the noise
variable 	i occurs in some other a�ne form 'w� then any change in zi
� in either direction � would imply a di�erent correlation between the
quantities z and w� and would falsify the fundamental invariant of a�ne
arithmetic�

In order to preserve the fundamental invariant� whenever a computed
coe�cient zi di�ers from its correct value by some amount d� we must
account for this error by adding an extra term d	r� where 	r is a noise
symbol that does not occur in any other a�ne form�

�� A�ne arithmetic

����� General a�ne operations

An AA operation must also handle the special forms $ % andR� Moreover�
if any coe�cient of the result over�ows� then the operation must return
R as the result�
All these cases are taken into account by the following code� which

computes the general a�ne operation in two variables�
x"�y"�� The
routine also accepts an extra uncertainly coe�cient �� to be added to
the result� This uncertainty is combined with the rounding error term�

AA�affine�'x� 'y� AA�Form

� �� �� Finite
 �� Float��

AA�Form �
� Computes
'x" �'y " � � ��
� Assumes � � ��
if 'x ! $ % or 'y ! $ % then

return $ %
else if 'x ! R or 'y ! R or � ! "� then

return R
else

var 'z� AA�Form� '�
z
 � h
x
 " �y
 " �i
if jz
j ! "� then return R
a� �
x
 " �y
 " ��
b� �
x
 " �y
 " ��
� � x�max fb� z
� z
 � agx�
for each i in E�'x� E�'y� do

zi � h
xi " �yii
a� �
xi " �yi�
b� �
xi " �yi�
� � x�� "max fb� zi� zi � agx�

if � ! "� then return R
k � newsym��
 zk � �
return 'z

Note that we are allowed to round � away from zero only because
the noise variable 	k is not yet shared by any other a�ne form�
In practical implementations� it is worth having several versions of

this code� specialized for addition� subtraction� scaling and translation�
The inner loop can be signi	cantly simpli	ed in these cases�

Sergey P. Shary
В правой части оператора присваивания должна быть сумма выписанного выражения и входно параметра \delta.

Тем самым будет учтена погрешность, накопленая на предыдущих вычислениях, которая является входным параметром \delta у функции.

��� Non�a�ne operations ��

It is quite annoying that we have to evaluate the coe�cient
xi"�yi
three times� with di�erent rounding modes� only to obtain an upper
bound on its error� We can save two multiplications� at the cost of
losing one bit of precision� by computing just a and b� and then setting
z � a� � � x�� " �b� a�

x��
Here is a place where a trivial redesign of the �oating�point pro�

cessor interface would make a signi	cant di�erence in computing time�
For example� suppose the processor returned in a special register fperr
some upper bound to the roundo� error of the most recent operation
performed� Then we could simplify the body of the for loop above by

u� h
xii
 � � �� " fperr�
v � h�yii
 � � �� " fperr�
zi � hu" vi
 � � �� " fperr�

thus saving four multiplications and two additions per coe�cient�

��	 Non�a�ne operations

Let�s now consider the case of a non�a�ne operation z � f�x� y�� If x
and y are described by the a�ne forms 'x and 'y� then z is described by
the formula

z ! f�x
 " x�	�"�� xn	n� y
 " y�	�"�� yn	n�
! f��	�� �� 	n�� �����

where f� is a function from Un to R� If f� is not a�ne� then z cannot
be expressed exactly as an a�ne combination of the noise symbols 	i�
In that case� we must pick some a�ne function of the 	i�

fa�	�� �� 	n� ! z
 " z�	� " � � � " zn	n �����

that approximates f��	�� �� 	n� reasonably well over its domain U
n� and

then add to it an extra term zk	k to represent the error introduced by
this approximation� That is� we return

'z ! fa�	�� �� 	n� " zk	k

! z
 " z�	� " � � �" zn	n " zk	k�

�� A�ne arithmetic

The term zk	k will represent the residual or approximation error �

e��	�� �� 	n� ! f��	�� �� 	n�� fa�	�� �� 	n��

The noise symbol 	k must be distinct from all other noise symbols that
already appeared in the same computation� and the coe�cient zk must
be an upper bound on the absolute magnitude of e�� that is�

jzkj � max f je��	�� �� 	n�j � 	�� �� 	n � U g �
Note that the substitution of zk	k for e

��	�� �� 	n� represents a loss of
information� from this point on� the noise symbol 	k will be implicitly
assumed to be independent from 	�� �� 	n� when in fact it is a function of
them� Any subsequent operation that takes 'z as input will not be aware
of this constraint between 	k and 	�� �� 	n� and therefore may return an
a�ne form that is less precise than necessary�
However� as we shall see� if the approximation fa is properly chosen�

then the error term zk will depend quadratically on the widths of the
ranges of the input variables 'x and 'y� so that its magnitude will decrease
�even in the relative sense� as those ranges become smaller�

����� Selecting the a�ne approximation

There are n"� degrees of freedom in the choice of the a�ne approxima�
tion fa� In order to keep the algorithms reasonably simple and e�cient�
we will consider only approximations fa that are themselves a�ne com�
binations of the input forms 'x and 'y� that is�

fa�	�� �� 	n� !
'x" �'y " �� �����

Thus� we have only three parameters to determine� instead of n" ��
For some operations f � the most accurate a�ne approximation to

f��	�� �� en� may not be of the form ������ However� the restriction
to ����� has relatively minor consequences� The reason is that� for
smooth functions f � the di�erence between the two optimal approxi�
mations� restricted and unrestricted� depends quadratically on the size
of the input ranges�
Moreover� for univariate functions f�x� the restriction is perfectly

harmless� because it can be shown that the best a�ne approximation
to f� is indeed of the form
'x" ��

��	 Optimal a�ne approximations ��

����� The general algorithm

Once we have selected the approximation fa of the form ������ we can
use the general�purpose routine AA�affine of Section ����� to compute
the a�ne form fa�'x� 'y� !
'x " �'y " �� To this form� we then add the
extra term zk	k� which can be combined with the roundo� error incurred
by AA�affine�

In summary� the general binary operation z � f�x� y� can be imple�
mented as follows�

AA�Form AA�f�'x	 'y� AA�Form� �
� Computes f�'x� 'y��
h Choose
� �� � i
h Find � � max f jf�'x� 'y�� �
'x" �'y " ��j � 	�� �� 	n � U g i
return AA�affine�'x	 'y	
	 �	 �	 ��

Of course� this same approach can be used for operations with one ar�
gument� or more than two arguments�

��
 Optimal a�ne approximations

There are many goals we can aim for when choosing the a�ne approx�
imation ������ Accuracy is usually an important goal� but hardly the
only one� We will often have to settle for a less accurate solution in
exchange of e�ciency� code simplicity� or other practical criteria�

���� Accuracy measures

The accuracy of the result 'z can be quanti	ed in many ways� For in�
stance� we can measure its error by the magnitude of the extra coef�
	cient zk� This number measures the uncertainty in the true value of
quantity z that the a�ne form 'z allows but fails to relate to the argument
uncertainties 	�� �� 	n�

Alternatively� we can use the volume of the polytope Pxyz jointly

determined by the a�ne forms of 'x� 'y� and 'z ! 'f�'x� 'y�� This volume
measures the uncertainty in the location of the point �x� y� z��

Fortunately� it turns out that� for approximations of the form ������
the two error measures are equivalent� It is easy to see that� in this case�

�� A�ne arithmetic

the polytope Pxyz is a prism with vertical axis and parallel oblique bases�
whose projection on the x(y plane is the joint polytope Pxy de	ned by 'x
and 'y� and whose height in the z direction is
 jzkj� Therefore� the
volume of Pxyz is
 jzkj times the volume of Pxy� Since the latter does
not depend on the approximation fa� minimizing the volume of Pxyz is
equivalent to minimizing jzkj�

���� Chebyshev �minimax� approximations

Approximations that minimize the maximum absolute error are the sub�
ject of Chebyshev approximation theory�

Speci	cally� let F be some space of functions� �polynomials� a�ne
forms� etc��� An element of F that minimizes the maximum absolute
di�erence from a given function f over some speci	ed domain) is known
as a Chebyshev �or minimax � F�approximation to f over)��
Chebyshev approximation theory is a well�developed 	eld with many

non�trivial results and a vast literature� Fortunately for us� the sub�
theory of a�ne approximations is relatively simple and easy to under�
stand in geometric terms�

Univariate Chebyshev a�ne approximations

In particular� for univariate functions� the minimax a�ne approximation
is characterized by the following property �����

Theorem � Let f be a bounded and continuous function from some
closed and bounded interval I ! $a b% to R� Let h be the a�ne function
that best approximates f in I under the minimax error criterion� Then�
there exist three distinct points u�v�and w in I where the error f�x��h�x�
has maximum magnitude� and the sign of the error alternates when the
three points are considered in increasing order�

This theorem provides an algorithm for 	nding the optimum approx�
imation in many cases� via the following corollary�

�Minimum�error Chebyshev approximations are not to be confused with the trun�
cated expansions of f in the Chebyshev orthogonal polynomial basis ���� The latter
do not minimize the maximum error� although they usually come quite close to�

��� Square root �	

Theorem � Let f be a bounded and twice di�erentiable function de�ned
on some interval I ! $a b%� whose second derivative f �� does not change
sign inside I� Let fa�x� !
x " � be its minimax a�ne approximation
in I� Then

� The coe�cient
 is simply �f�b� � f�a����b � a�� the slope of the
line r�x� that interpolates the points �a� f�a�� and �b� f�b���

� The maximum absolute error will occur twice �with the same sign
at the endpoints a and b of the range� and once �with the opposite
sign at every interior point u of I where f ��u� !
�

� The independent term � is such that
u"� ! �f�u�"r�u���
� and
the maximum absolute error is � ! jf�u�� r�u�j �
�

Note that this result gives us an algorithm for 	nding the optimum
coe�cients
 and �� as long as we can solve the equation f ��u� !
�

Geometry of Chebyshev approximations

Recall that the goal of AA is to keep track of the relationships between
the quantities occurring in a computation� When we use a Chebyshev
minimum�error approximation in the computation of 'z � f�'x�� we are
in a sense trying to preserve as much information as we can about the
relationship of 'z and 'x� More precisely� consider the set P of all possible
pairs of values �x� z� that are consistent with the a�ne forms 'x and 'z�
that is�

P ! f �x� z� � x ! x
 " x�	�"��xn	n� z !
x" � " zk	k�

	�� �� 	n� 	k � U g�
The set P is a parallelogram with altitude &x�hi � &x�lo and base
zk�

rotated �� �see Figure ��
�� Clearly� by minimizing the approximation
error �� we are minimizing the area of this parallelogram� which we
can view as a measure of how much information was lost about the
relationship between x and z�

��� Square root

To illustrate the use of Theorem
� let�s examine in detail how the square
root operation z !

p
x is implemented in AA�

�
 A�ne arithmetic

a bu

Figure ���� Geometry of Chebyshev approximations�

����� The �exact� solution

As explained in Section ���� the 	rst step is to select a good a�ne
approximation for the non�a�ne function

p
'x !

p
x
 " x�	�"�� xn	n�

when the noise variables 	�� �� 	n range independently over U� Since
square root is an univariate function� it can be shown that the best
a�ne approximation �in the sense of minimizing the maximum absolute
error� has the form

'x" � !
�x
 " x�	�"��xn	n� " ��

In fact� the problem reduces to 	nding the best a�ne approximation

x " � to the univariate function

p
x� when x ranges over the interval

$'x% ! $a b%� See Figure ����
For the time being� let�s assume that a � �� Since px has negative

second derivative for all positive x� Theorem
 applies� and tells us that

 is the slope of the line r�x� that goes through �a�

p
a� and �b�

p
b��

namely

 !

p
b�p

a

b� a
!

�p
b"

p
a
� �����

The point u where the graph of
p
x has slope
 is the solution of

���

p
u� !
� namely

u !
�

�
�
!

a" b"

p
a
p
b

�
� ����

��� Square root ��

a bu

Figure ���� Chebyshev approximation for the square root function�

According to Theorem
� the optimum independent term is

� !
f�u� " r�u�

�
u !

p
a"

p
b

�
"
�

p
a
p
bp

a"
p
b

������

and the maximum error is

� !
f�u�� r�u�

!
�

�

�
p
b�p

a��p
a"

p
b

������

The maximum absolute error � occurs at the endpoints of the in�
terval� where the curve lies below the line
x " �� and at the point
c ! �

p
a"

p
b����� where the curve lies above the line�

Therefore� the optimal a�ne form for z !
p
x is

z
 " z�	�"�� zn	n " zk	k�

where 	k is a new noise variable� and

z
 !
x
 " � ����
�

zi !
xi �i ! �� �� n� ������

zk ! � ������

����� Geometric interpretation

Geometrically� these computations determine the parallelogram P with
two vertical sides that encloses the graph of

p
x in the interval &x and has

�� A�ne arithmetic

the smallest possible vertical extent �see Figure ����� Since the width
of &x is 	xed� that is also the enclosing parallelogram with minimum area�
The a�ne function
x " � is the oblique axis of P � and the maximum
error � is half of P �s vertical extent�

The parallelogram P is merely the joint range of the pair �z� x�� as
implied by the a�ne forms 'x and 'z� Thus� by minimizing the maxi�
mum error� we are preserving as much information as we can about the
relationship of z !

p
x and x�

In contrast� consider evaluating &z !
p
&x with standard IA� assuming

that &x and 'x have the same range� The pairs of values �x� y� consistent
with these intervals cover the entire rectangle R ! &x� &z� whose area is
greater area than that of P �

����� Coping with roundo
 errors

Formulas ����(����� assume that we can compute
� �� and � exactly�
In practice� the computation of
 must be carried out in �oating point�
and so we will get only an approximation �
 to the optimum slope
 �see
Figure �����

a bu

Figure ��� Approximation to optimum slope�

Now� to compute �� we cannot simply substitute �
 for
 in for�
mula ������� because the derivation of that formula used the fact that

was the slope of the chord r�x�� Instead� we must compute conservative
estimates for the di�erence

p
x � �
x at the endpoints of I� and at the

point v of I where the slope of
p
x equals �
�

��� Square root ��

da !
�ypa� �
a�y ������

dv !
x�pv � �
vx� ������

db !
��ypb� �
b��y � ������

Assuming �
 is close enough to
 that v lies inside I� dv will be greater
than the other two values� and the di�erence

p
x � �
x� for any x � I�

will lie in the interval spanned by da� dv� and db� We may then take the
approximate midpoint of this range as the independent term ��� and its
approximate radius as the maximum error estimate �� �see Figure �����

The point v is �����
��� but we do not need to compute it explicitly�
Substituting symbolically �����
�� into equation ������� we get

dv !

r
�

��
�
� �
 �

��
�
!
�

��

�

Formulas ����
(����� must then be changed to use �
� ��� and �� in�
stead of
� �� and �� Naturally� the computation of z
� z�� �� zn by these
formulas will be a�ected by roundo� errors� which must be estimated
and combined with ��� to obtain the error term zk�

Actually� the computations become a bit simpler if we work with
� ! ��
 instead of
 itself� Here is the detailed code�

AA�sqrt�'x� AA�Form�� AA�Form �
� Computes

p
'x�

if 'x ! $ % or 'x ! R then

return 'x
&x� AA�to�IA�'x� � $� "�%
if &x ! $ % then return $ %
if &x�hi ! "� then return R
��� �� �� � Cheb�sqrt�&x�
return AA�invaffine�'x	 ��	 �	 ��

The routine AA�invaffine computes 'x�� " � � �� in a manner entirely
similar to AA�affine �Section �������

The code for Cheb�sqrt is

�� A�ne arithmetic

Cheb�sqrt�&x� Interval�� ��	 �	 �� Float� �
� Computes a Chebyshev approximation x�� " � � �
� to

p
x for x � &x�

� Assumes &x is non�empty and bounded� and &x�lo � ��
ra �

��yp&x�lo��y
rb �

x��p&x�hix��
� � �ra " rb�
da �

�yra��� ra���
�y

db �
�yrb��� rb���

�y
dmin � minfda� dbg
dmax �

x����x�
� � IA�mid�$dmin dmax%�
� � IA�rad�$dmin dmax%�
return ��� �� ��

There are several subtle points in this code� First� the interval
$a b%� over which the a�ne approximation is computed� is not the
range $&x�lo &x�hi % of 'x� but the slightly wider interval $r�a r�b %� That
is� a and b are de	ned retroactively as the �exact� squares of the �ap�
proximate� square roots ra and rb� This convention allows us to avoid

some square roots� For instance in the computation of db !
��ypb� b��

��y�
where we need

p
b rounded down� we can use rb in its place� because��ypb��y ! x��pbx�� ! rb� On the other hand� we must use �rb�� instead of

&x�hi for the second b in that formula�
The procedure also assumes that the value � lies between
ra and
rb�

which is true in the IEEE �oating�point standard� This condition en�
sures that the maximum of

p
x�x�� lies between ra and rb� and therefore

that the minimum is either at ra or rb� Actually� for maximum accuracy�
� should be rounded to the nearest Float� Rounding up �or down� is
more e�cient� however� and the precision loss is minimal�
Note that the implied range of 'x is clipped to the interval $� "�%�

As we observed in Section
����� it is convenient to assume that any
intrusion of &x into the negative numbers may be due to sloppiness of
the range computation� and doesn�t imply that the real quantity x can
assume negative values�

��� Square root ��

The handling of over�ows could be improved� As it is� the procedure
returns R if the computation of $'x% over�ows� which may happen if
some of the coe�cients xi are near the end of the 	nite Float range�
However� the square root of jx
j" jx�j"�� jxnj is always a 	nite value� so
the over�ow could be avoided with some care� Spurious over�ows may
also occur in the computation of

x�r � d�
x��

Note that the cost of this algorithm is essentially two square roots�
plus a few �oating�point operations for each xi�

����� Overshoot

The use of a Chebyshev approximation in the computation of
p
'x has

one signi	cant drawback� Note that the range of values for z that is
implied by the a�ne form 'z �that is� the vertical extent of the parallel�
ogram P in Figure ��
� is actually wider than the range that would be
computed using ordinary interval arithmetic# The explanation is that
the new noise variable 	k actually has a hidden �non�linear� dependency
on the other noise variables� such that the value of zk	k is negative when
the other terms approach the maximum value� If we were to take this
dependency into account� we would conclude that the maximum value
of 'z is indeed

p
b � but since we assume that the 	i are independent� we

must count zk	k as positive at the upper end of the interval�

This problem is particularly vexing when the range of x� as implied
by its a�ne form� is partially negative� If we compute 'z as described�
the implied range for z will contain some negative values�even though
the square root function is never negative�

So� the a�ne form based on Chebyshev approximation trades some
knowledge about the range of z for knowledge about the relationship
between z and x� If there is any merit to the AA approach� then in
complex computations the trade should generally be worthwhile� that
is� in subsequent operation we hope to gain enough by cancellation of
noise terms to compensate for the extra�wide interval�

In any case� recall that the coe�cient zk depends quadratically on
the width of the input interval� which is still a qualitative improvement
over the 	rst�order errors of ordinary interval arithmetic�

�� A�ne arithmetic

���� The min�range approximation

As a matter of fact� we can produce a a�ne form 'z for
p
'x that implies

a tight range for z� if we settle for less than the optimal Chebyshev
approximation� We only need to choose the coe�cients
 and � in such
a way that the joint range P of the forms 'x and 'z !
'x" � � � has the
same vertical extent as the piece of the graph of

p
x subtended by the

interval $a b% �see Figure �����

a b

Figure ���� Min�range approximation for the square root�

It is easy to see that the smallest such parallelogram has the top side
tangent to the graph� at the higher endpoint of the interval $a b%� The
parameters of this approximation are

 !
�

p
b
� � !

p
b

� � !

�
p
b�p

a��

p
b

�

We say that
x " � � � is a min�range a�ne approximation to
p
x

in the interval $a b%�
Note that the set P is still a proper subset of the rectangle R ! $a

b%� $pa p
b%� so the resulting a�ne form 'z is strictly more informative

than the result of ordinary interval arithmetic� Moreover� the ratio of
the areas is

jP j
jRj !

�p
b�p

a
! ��

r
a

b
! ��

s
�� b� a

b
�

which goes to zero linearly as the relative width �b� a��b goes to zero�
In other words� the modi	ed AA approximation above still has higher
order of convergence than IA�

���� The min�range approximation ��

Incidentally� the IA square root algorithm can be viewed as this
same idea taken to the extreme� where the parallelogram P is the whole
rectangle $a b% � $pa p

b% �see Figure ����� This corresponds to
approximating

p
x by a constant function in the interval $a b%� that

is� choosing

 ! �� � !

p
a"

p
b

� � !

p
b�p

a

�

With these choices� the returned a�ne form 'z !
'x"�"�	k contains
only the independent term � and the single noise term �	k� which is not
related to any other quantity� and this is essentially the a�ne form
interpretation of the ordinary interval $

p
a

p
b%�

a b

Figure ���� The IA approximation for square root�

There are other reasons that may justify the choice of a sub�optimal
a�ne approximation� such as avoiding over�ows� simplifying the algebra
or the handling of rounding errors� We will see some examples in the
following sections�

������ Handling roundo
 errors

The routine MinRange�sqrt below implements the min�range approxi�
mation formulas� with due care for roundo� errors� It is meant to be a
replacement for the routine Cheb�sqrt� called in AA�sqrt�
As in Cheb�sqrt� the approximation is actually computed for the

interval I ! $r�a r�b %� which contains &x� Since ��� 	 �
p
x�� for all

x � I� the di�erence
p
x� x�� is minimum at x ! r�a and maximum at

x ! r�b � The correctness of the result then follows�

�� A�ne arithmetic

MinRange�sqrt�&x� Interval�� ��	 �	 �� Float� �
� Computes an a�ne approximation x�� " � � �
� to

p
x for x � &x� minimizing the output range�

� Assumes &x is non�empty and bounded� and &x�lo � ��
ra �

��yp&x�lo��y
rb �

x��p&x�hix��
�� � �
rb�
dmin �

�yra��� ra����
�y

dmax �
x�rb��� rb����

x�
�� � IA�mid�$dmin dmax%�
�� � IA�rad�$dmin dmax%�
return ��� �� ��

���� Exponential

The exponential function f�x� ! exp�x� ! ex in AA is quite similar
to square root� The key step is computing an a�ne approximation
fa�x� !
x" � � � to exp�x� in the interval &x ! $'x%�

������ The Chebyshev approximation

Since the second derivative of exp is everywhere positive� the Chebyshev
approximation is parallel to the chord� i�e��

 !
eb � ea

b� a
�

We cannot compute the exact value of
� but only some approxima�
tion �
� In any case� as long as �
 lies between ea and eb� the di�erence
ex � �
x will be maximum at either x ! a or x ! b� and minimum at
x ! u ! log �
� the abscissa where ex has slope �
� If �
 � eb� then the
di�erence ex � �
x will be maximum at either x ! a and minimum at
x ! b� See Figure ���a� Either way� from these extremal di�erences we
can compute � and �� as in the square root formulas�

The complete procedure is�

���� Exponential �	

AA�exp�'x� AA�Form�� AA�Form �
� Computes exp�'x��
if 'x ! $ % or 'x ! R then

return 'x
&x� AA�to�IA�'x�
if &x ! $ % then return $ %
if &x�hi ! "� then return R
�
� �� �� � Cheb�exp�&x�
return AA�affine�'x	
	 �	 ��

where Cheb�exp is

Cheb�exp�&x� Interval�� �
	 �	 �� Float� �
� Computes a Chebyshev approximation
x" � � �
� to exp�x� for x � &x�
� Assumes &x is non�empty and bounded from above�
eb �

x�exp�&x�hi�x�
w � �&x�hi � &x�lo�
if w ! "� then

ea � �

� �

else

ea �
�yexp�&x�lo��y

� x��eb � ea��w
x�

if
 ! � then

dmin � ea
dmax � eb

else if
 � eb then

dmin �
�yexp�&x�hi��
&x�hi

�y
dmax �

x�exp�&x�lo��
&x�lo
x�

else

da �
x�exp�&x�lo��
&x�lo

x�
db � �eb �
&x�hi�
dmin �

�y
��� log
��y
dmax � max fda� dbg

� � IA�mid�$dmin dmax%�
� � IA�rad�$dmin dmax%�
return �
� �� ��

�
 A�ne arithmetic

a bu a b

Figure ���� Chebyshev �left� and min�range �right� approximation for exp�

������ The min�range approximation

The Chebyshev approximation is somewhat tricky and expensive to
compute� and is plagued by large undershoots when the interval is
moderately wide� In particular� it extends into the negative range for
rad�'x� � �� The reason is obvious if one looks at a plot of y ! ex over
such a wide range�

In practice� therefore� one may prefer to use the min�range approxi�
mation �see Section ������ which is easier to compute and has no over�
or undershoot� This approximation preserves less information on the
dependency between x and ex� but this loss is signi	cant only for wide
intervals� where the dependency is mostly non�linear anyway� For small
intervals� the min�range approximation still has quadratic error�

In the min�range approximation� the slope
 is chosen as the deriva�
tive of ex at the lowest end of the argument interval $a b%� that
is� ea� See Figure ���b� The coe�cients � and � are then computed
as in Cheb�exp�

���� Reciprocal ��

MinRange�exp�&x� Interval�� �
	 �	 �� Float� �
� Computes a min�range a�ne approximation
x" � � �
� to exp�x� for x � &x� Assumes &x is non�empty and bounded�
ea �

�yexp�&x�lo��y
eb �

x�exp�&x�hi�x�

� ea
if
 ! � then

dmax � eb
dmin � �

else

dmax � �eb �
&x�hi�
dmin � �ea �
&x�lo�

� � IA�mid�$dmin dmax%�
� � IA�rad�$dmin dmax%�
return �
� �� ��

���� Reciprocal

For the reciprocal f�x� ! ��x in AA� we proceed pretty much as for the
square root� except that over�ow and undershoot are a major concern�
For these reasons� and for the sake of code simplicity� it seems best to use
the min�range approximation� instead of the Chebyshev one �Figure �����

a b a bu

Figure ���� Min�range �left� and Chebyshev �right� approximation for ��x�

If the interval $'x% ! $a b% includes zero� then the reciprocal may
have arbitrarily large and�or arbitrarily small values� so the only valid

	� A�ne arithmetic

result is R� If the interval is entirely positive �a � ��� then the slope of
the min�range approximation is the derivative of ��x at x ! b� namely

 ! ���b�� We must round ��b� downwards� in order to prevent over�
�ow� The case of negative argument range �b � �� is similar�

AA�inv�'x� AA�Form�� AA�Form �
� Computes ��'x�
if 'x ! $ % or 'x ! R then

return 'x
&x� AA�to�IA�'x�
if &x ! $ % then return $ %
if &x�lo 	 � and &x�hi � � then return R
�
� �� �� � MinRange�inv�&x�
return AA�affine�'x�
� �� ��

where MinRange�inv is

MinRange�inv�&x� Interval�� �
� �� �� Float� �
� Computes a min�range approximation
x" � � �
� to ��x for x � &x�
� Assumes &x is non�empty and zero�free�
a� minfj&x�loj � j&x�hi jg
b� maxfj&x�loj � j&x�hi jg

� ��y��b��y
dmax �

x���a�
a
x�

dmin �
�y��b�
b

�y
� � IA�mid�$dmin dmax%�
if &x�lo � � then � � ��
� � IA�rad�$dmin dmax%�
return �
� �� ��

���� Multiplication

Let�s now consider the multiplication of a�ne forms� that is� the evalua�
tion of z ! f�x� y� ! xy� given the a�ne forms 'x and 'y for the operands
x and y�

���� Multiplication 	�

The product of the a�ne forms is� of course� a quadratic polynomial
f��	�� �� 	n� on the noise symbols�

f��	�� �� 	n� ! 'x � 'y

! �x
 "
nX

i��

xi	i� � �y
 "
nX

i��

yi	i�

! x
y
 "
nX
i��

�x
yi " y
xi� 	i " �
nX

i��

xi	i� � �
nX

i��

yi	i��

It is not hard to see that the best a�ne approximation to f��	�� �� 	n�
consists of the a�ne terms from the expansion above

A�	�� �� 	n� ! x
y
 "
nX

i��

�x
yi " y
xi�	i�

plus the best a�ne approximation to the last term

Q�	�� �� 	n� ! �
nX

i��

xi	i� � �
nX

i��

yi	i� !
nX
i��

nX
j��

xiyj 	i	j �

Observe that Q is a center�symmetric function� in the sense that
Q��	�� ���	n� ! Q�	�� �� 	n�� Moreover� its domain U

n is also center�
symmetric� that is� �	�� �� 	n� � Un i� ��	�� ���	n� � Un� From these
properties� it follows easily that the best �Chebyshev� a�ne approxima�
tion to Q over Un is itself a center�symmetric a�ne function � that is
to say� a constant function�

More precisely� if a and b are the minimum and maximum values
of Q�	�� �� 	n� over U

n� then the best a�ne approximation to the latter
is the constant function �a " b��
� and its maximum error is �b � a��
�
Thus� we should return

'z ! A�	�� �� 	n� "
a" b

"
b� a

	k�

where 	k is a �new� noise symbol�

Computing the extremal values a and b of Q in U is not trivial� The
best algorithm known to the authors runs in O�m logm� time� where m
is the number of nonzero noise terms in 'x and 'y�

	� A�ne arithmetic

Fortunately� the exact bounds are not necessary� We can use instead
the trivial range estimate &Q ! � rad�'x� rad�'y�� That is� we can return

'z ! x
y
 "
nX

i��

�x
yi " y
xi�	i " rad�'x� rad�'y�	k � ������

It can be shown that the error of this approximation is at most four times
the error of the best a�ne approximation� The worst case happens when
the joint range of 'x and 'y is a square rotated ��� with respect to the
axes� that is� when 'x ! x
" 'u"'v and 'y ! y
" 'u� 'v� where 'u and 'v are
a�ne forms with the same range $�r "r%� but disjoint noise symbols�
In that case� the residual Q is 'u�� 'v�� and its true range is $�r� "r�%�
On the other hand� since rad�'x� ! rad�'y� !
r� the trivial estimate will
be &Q ! $��r� "�r�%�

The reader may have noticed that the trivial estimate &Q is precisely
the range of Q as it would be computed by standard IA� without taking
into account any correlations between the two factors� But then� how
could the result of formula ������ be more accurate that the ordinary IA
product of $'x% and $'y% * The answer is that formula ������ uses standard
IA only to estimate the quadratic residual� The formula still allows
negatively correlated terms to cancel out in the linear part� whereas in
standard IA even the linear part may be overestimated�

Indeed� even though it may be four times wider than the optimum�
the trivial estimate &Q ! � rad�'x� rad�'y� is still quadratic in the total
width of the input intervals $'x% and $'y%� which is enough to make the AA
multiplication asymptotically more accurate than standard IA� as the
input ranges get smaller�

������ Multiplication example

To illustrate these formulas� let�s evaluate the expression

z ! ��� " x" r� � ���� x" s�

for x � $�
 "
%� r � $�� "�%� and s � $�� "�%� Converting the
ordinary intervals to a�ne forms� we get

x ! � "
	�� r ! � " �	� s ! � " �	��

���� Multiplication 	�

Therefore

�� " x" r ! �� "
	� " �	�

��� x" s ! ���
	� " �	�
z ! ��� " x" r� � ���� x" s�

! ��� " ��	� " ��	� " �
	� " �	����
	� " �	���

In the quadratic term� each factor �considered independently� has
the range $�� "�%� Therefore� a quick estimate for the range of that
term is

&Q ! $��� � �� "�� � ��% ! $� "%�

Using this estimate� we obtain for z the a�ne form

'z ! ��� " ��	� " ��	� " 	��

The range of z implied by this a�ne form above is

$��� �
 ��� "
% ! $�� �
%�

A more precise analysis reveals that the true range of the quadratic
term &Q above� assuming the input noise symbols 	�� �� e� are independent�
is actually $� �%� and that of the product z is $�� �
�%� The relative
accuracy of this AA computation is therefore ��
� � ������
 � ��� !
����� For comparison� standard IA would return

$� ��% � $� ��% ! $� ��%�

whose relative accuracy is ��� � �����
 � ��� ! ���
� In words� the
IA interval is more than twice as wide as it should be� whereas the AA
result is only �� wider�

Observe that� in this example� the uncertainty associated to the noise
symbol 	�� which is shared by both operands� happened to cancel out
to 	rst order in the 	nal result� This cancellation does not occur in the
IA computation� which is the main reason for the larger uncertainty in
the IA result�

	� A�ne arithmetic

������ The multiplication routine

As usual� the implementation must also estimate the roundo� errors and
add them to the term zk� Here is the complete code�

AA�mul�'x	 'y� AA�Form�� AA�Form �
� Computes 'x � 'y�
if 'x ! $ % or 'y ! $ % then

return $ %
else if 'x ! R or 'y ! R then

return R
else

var &p� Interval

rx � AA�rad�'x�
ry � AA�rad�'y�
� � x�rxryx�
&p� IA�mul�$x
 x
%	 $y
 y
%�

� y

� � x

� � �IA�mid�&p�
� � �� " IA�rad�&p��
return AA�affine�'x	 'y	
	 �	 �	 ��

Note that the form
'x"�'y includes two instances of the term x
y
�
one of which is canceled by the term �� Implementors should consider
expanding the call to AA�affine in�line and optimizing the computation
of z
 to be just ��

���� Division

Division of a�ne forms is harder than multiplication� To begin with�
division by quantities that may wander close to zero �that is� whose
uncertainty is comparable to their average magnitude� is inherently in�
accurate and unstable� a modest slop in the computation of the divisor
may cause its range to overlap zero� in which case the division cannot
be carried out�
That being said� there are many ways to compute an acceptable a�ne

form 'z for the quotient 'x�'y� The simplest is to rewrite 'x�'y as a product

���
 The mixed AA�IA model 	�

'x � ���'y�� This two�step approach does have quadratic convergence�
because any 	rst order correlations between 'x and 'y are preserved by
the AA reciprocal routine�

AA�div�'x	 'y� AA�Form�� AA�Form �
� Computes 'x�'y�
return AA�mul�'x	 AA�inv�'y��

���� The mixed AA�IA model

The overshoot �and undershoot� problem that we observed in the anal�
ysis of

p
x and exp�x� show that AA�s goal of recording the correlation

between quantities leads sometimes to range estimates for individual
variables that are worse than those produced by standard IA� This prob�
lem is more likely to happen in simple computations� where uncertainty
cancellation does not have a chance to occur�

We have already seen one way of coping with this problem� namely
using min�range approximations instead of Chebyshev ones� This solu�
tion does cure the overshoot problem� but loses some of the correlation
information� For example� the min�range approximation to sinx over
$���
 ��
% is � � �� which contains no hint of the fact that sinx is
monotonically increasing in that interval�

Another solution to the overshoot problem� which actually improves
the overall accuracy of computations� is to combine the AA and IA rep�
resentations in a single model� That is� the representation '&x of a quan�
tity x consists of both an ordinary interval &x and an a�ne form 'x� The
purpose of the former is to provide tight ranges for individual variables
in simple operations� while the latter is optimized to record correlations
between quantities� The joint range implied by representations '&x� '&y� � � �
is then the intersection of the joint range of 'x� 'y� � � � �a center�symmetric
convex polytope� and the box &x� &y � � � ��
There is more to thismixed AA�IA model �AAIA� than just perform�

ing the same computation in AA and IA and intersecting the resulting
ranges� The two models can and should interact synergistically at each
step� with each model using the other�s information to improve its own
accuracy�

	� A�ne arithmetic

Speci	cally� the AAIA procedure that implements '&z � '&f�'&x� '&y� will
use the IA ranges of the arguments &x and &y when selecting the a�ne
approximation
'x " �'y " � � � for f � and use it to compute the AA
component 'z � 'f�'x� 'y� of the result� The procedure will then compute
the IA component as &z � &f�&x� &y� � $'z%�
Since the IA ranges &x and &y generally tighter than the AA�implied

ranges $'x% and $'y%� the a�ne approximation chosen by the AAIA proce�
dure is likely to be tighter �in the sense of having a smaller error term ��
than its pure�AA counterpart� Conversely� whenever the correlation in�
formation results in an accurate AA form� the interval &z will be tighter
than its pure�IA counterpart�

Thus� the mixed AA�IA model can often produce better results than
running the IA and AA computations in parallel� and may produce
usable results even in cases where both pure models fail due to error
explosion�

���� Comparing AA and IA

Numerical experiments seems to con	rm our claim that AA is in general
substantially more precise than standard IA� and less prone to error
explosion�

Obviously� AA is more complex �and expensive� than IA� However�
we believe that its higher accuracy will be worth the extra cost in many
	elds where IA�s �error explosion� may be a problem� such as computer
graphics� We shall see some examples in Chapter ��

������ Example� iterated functions

For instance� consider the function

g�x� !
q
x� � x" ��
�

q
x� " ��
 �

which we used in Section
���� to illustrate the error explosion problem�
Figure �� shows the result of evaluating g and its iterate h�x� ! g�g�x��
with AA� over �� equal intervals in $�
 "
%� This picture should be
compared to Figure
�
� which shows the results of standard IA over the
same intervals�

��� Comparing AA and IA 		

Figure ���� Avoiding error explosion in iterated functions with AA�

������ Cancellation of uncertainty

The main reason why AA is usually more accurate than IA is the can�
cellation phenomenon described in Section ����� which tends to make
the range of computed quantities smaller than the corresponding inter�
vals computed by standard IA� Indeed� except for roundo� errors� any
computation chain that involves only a�ne operations will be evaluated
by AA with relative accuracy � � that is� the range of the computed
a�ne form will be the true range of the corresponding quantity�

������ Cancellation of internal errors

Another feature of AA is that the a�ne form of each computed quan�
tity keeps track of how much of its uncertainty is attributable to the
linearization and roundo� errors committed at each previous step� sep�
arately� Thus� these linearization errors themselves may cancel out in
later operations� instead of always adding up �as they usually do in IA��
For example� let 'x ! x
 " x�	� and 'y ! y
 " y�	�� and consider the

following AA computation�

'u� 'x�'y� 'v �
p
'u� 'z � 'u� 'v�

The 	rst step will compute an a�ne form 'u ! u
 " u�	� " u�	� " u�	��
where the term u�	� represents the linearization and roundo� errors of
the division� Similarly� the second step will compute 'v ! v
 " v�	� "
v�	� " v�	� " v�	�� where v�	� represents the linearization and round�
o� errors of the square root� Note the term v�	�� which records the
uncertainty in v that was inherited from the previous division step� In
the last step� this term will be subtracted from u�	�� meaning that the
error committed in the division does not a�ect 'z as much as it a�ects 'u�

	
 A�ne arithmetic

Needless to say� in standard IA the errors corresponding to v� and u�
would be added� instead of subtracted�

������ Quadratic convergence

Since the AA model keeps track of the 	rst�order dependency between
variables� the loss of information in an AA computation�as measured by
the �new� error coe�cients zk�will in general depend quadratically on
the size of the input intervals� Therefore� as the ranges of the operands
get smaller� the error term zk	k will become less important�not only
in absolute terms� but also relative to the other terms�

That is� in AA the relative accuracy of each operation �Section ��
���
will be inversely proportional to the width of the input intervals� Thus�
in a long computation chain� halving the input intervals will not just
halve the output ones� but will also make all steps of the chain more
accurate� and therefore improve the accuracy of the result by a factor
that is roughly exponential in the length of the chain�

One should keep in mind� however� that quadratic convergence ap�
plies only to the a�ne approximation errors� and not to arithmetic
roundo� errors� which are proportional to the magnitude of the quanti�
ties� irrespective of their uncertainties� The relative roundo� errors are
small �about ���� for double precision coe�cients�� but they do de	ne
a lower limit to the size of input intervals� Once roundo� errors begin to
dominate the uncertainty of the result� reducing the width of the inputs
�e�g�� by domain subdivision� will not be of much help�

������ When to use AA

Since AA errors are quadratic� whereas IA errors are linear� there is usu�
ally a critical width for the input intervals beyond which AA is not ac�
curate enough to be worth its added expense� Therefore� in applications
such as global optimization and zero 	nding� which depend on recursive
domain exploration� one should ideally use the faster IA model at 	rst�
and switch to AA once the subregions have become small enough�

The problem with this idea is that the critical width cannot be ef�
fectively determined beforehand� Therefore� in practice one will simply
try computing the range with IA� and redo the test with AA if IA was
inconclusive�

���� Implementation issues 	�

���	 Implementation issues

To test the practicality and usefulness of AA� we have implemented the
basic operations �"� �� �� �� p � in C for the Sun SPARCstation� We
describe below some choices that we made in our prototype implemen�
tation �
�� but which are not part of the AA model proper�

������ Representation of a�ne forms

In our prototype implementation of AA� we represent an a�ne form 'x
depending on m noise symbols by an array of
m"
 consecutive �
�bit
words� The 	rst two words contain the central value x
 and the num�
ber m� then come the m terms� each consisting of a partial deviation xi�
and the corresponding index i � an integer value that uniquely identi�
	es the noise symbol 	i� All real quantities are encoded as IEEE �
�bit
�oating�point numbers�

The noise symbol indices need to be stored because a�ne forms are
quite sparse� although a long�running program may create billions of
independent noise symbols� each a�ne form will typically depend only
on a small subset of them� Therefore� it is imperative that we store for
each a�ne form 'x only the terms xi	i that are not zero�

Thus� in general� each a�ne form that occurs in a computation will
have a di�erent number of terms� with a di�erent set of noise symbol
indices� Two a�ne forms are dependent only when they include terms
with the same index�

Algorithms that operate on two or more a�ne forms� such as the
addition and multiplication routines described above� typically need to
match corresponding terms from the given operands� while computing
the terms of the result� In order to speed up this matching� we make
sure that the terms of every a�ne form are always sorted in increasing
order of their noise symbol indices�

������ Memory and index management

A�ne forms are typically stored in a special storage pool SA� which is
managed like a stack� In general� a routine that performs AA compu�
tations should reset the SA top�of�stack pointer� right before exiting� to
the value it had on entry� This action implicitly discards all a�ne forms

� A�ne arithmetic

computed during the routine�s execution� and recycles their storage� Of
course� if the routine is supposed to return any of these a�ne forms�
then it must copy them to the new top�of�stack position� and adjust the
pointer accordingly�

As mentioned above� new noise symbols are constantly being created
while the program runs� Practically every time we compute a new a�ne
form� we need to introduce a brand new noise symbol� to represent the
linearization and roundo� errors committed in that operation� The noise
symbols do not consume any storage by themselves� but each requires
a distinct index� For this purpose� we use a global counter that keeps
track of the highest index in use at any moment�

To avoid running out of indices after
�� AA operations� an �in�
dustrial strength� implementation of AA should to manage the noise
symbol namespace too as a stack� when exiting from a procedure� one
should reset the noise symbol counter to the value it had upon entry�
This action implicitly �discards� all the noise symbols created during
the procedure� and allows their indices to be �recycled�� If the proce�
dure returns an a�ne form as its result� then any new noise symbols
that occur in the latter must be renumbered while the result is copied
to its proper location�

������ Space and time cost

Consider the AA evaluation of an expression �or a sequence of chained
expressions� with m operations� where the input values are a�ne forms
that depend on a certain set of n noise symbols 	�� �� 	n� Each operation
will contribute one more noise symbol to this set� representing the lin�
earization and roundo� errors of that step� Therefore� each computed
value will depend at most on n " m noise symbols� Since the cost of
any basic AA operation is proportional to the size of the operands� the
whole expression can be evaluated in O�m�n"m�� time and space�

���
 Optimization techniques

High computational cost is the main obstacle to the use of AA in prac�
tical applications� especially those with modest precision requirements�
Implementors of AA libraries should therefore be sensitive to e�ciency

���	 Optimization techniques
�

issues� We will now describe some helpful optimization techniques for
AA programs�

����� Condensing noise variables

On long computations� with m� n� most terms in each a�ne form will
be recording errors due to previous operations� In general� it is not worth
keeping track of all those errors separately� For the sake of e�ciency�
it is desirable to insert at selected points extra code to �condense� the
a�ne forms�

The idea is to replace two or more terms zi	i� zj	j � � � � by a single
term zk	k� where zk ! jzij " jzj j " � � �� and 	k is a brand�new noise
symbol� This operation reduces the size of the a�ne form 'z� possibly at
the cost of losing correlation information�

No information will be lost if the noise variables 	i� 	j � � � � are
exclusive to 'z� that is� they do not appear in any other a�ne form
that is still alive� �A value is alive at some point if it may be used
further on�� Also� the loss of information is likely to be minimal if the
condensed coe�cients jzij� jzj j� � � � are small compared to the other
noise coe�cients of 'z� The condensation might make a di�erence only if
the larger coe�cients happened to cancel out later on� Hence� we may
condense all terms of 'z form which are smaller than some fraction of $'z%�

For example� suppose the computation is a loop where only two
variables 'x and 'y are carried from one iteration to the next� Suppose
'x and 'y begin as simple a�ne forms� each depending on a single noise
variable� At the end of the 	rst iteration� the joint range of those two
variables will be a center�symmetric polygon D whose complexity is at
worst
�m"
�� where m is the number of operations performed in the
body of the loop� If we just went on� each iteration would add another

m terms to those forms�

We can solve this problem by condensing all noise variables at the
end of each iteration� That is� we replace 'x and 'y by the new forms

'x ! x
 " xi	i " xj	j

'y ! y
 " yi	i " yj	j�

where 	i� 	j are two brand new noise symbols� The joint range of these
new forms is a parallelogram P with sides parallel to �xi� yi� and �xj � yj��

� A�ne arithmetic

The new coe�cients xi� xj� yi� yj should be chosen so that this parallel�
ogram contains the original domain D� preserving that AA invariant�

The parallelogram of minimum area enclosing the convex polygon D
can be computed in O�m logm� steps� and its area is at most ��� times
the area D� Thus� at a modest cost in time and accuracy� we can keep
the size of the a�ne forms bounded by O�m�� inde	nitely�

Depending on the context� it may be important to know how the
	nal result correlates with the input quantities� In that case� we should
condense only �internal� noise variables �i�e�� those that were created
during the computation itself�� but preserve the �external� ones �i�e��
those that were present in the input forms��

This technique begs the question� how many terms do we really need
to keep in the a�ne forms* Suppose that� at some point of the compu�
tation� there are k a�ne forms that are still �alive� �i�e�� that may be
used later�� In principle� at that point we could replace all those forms
by a new set of k a�ne forms� depending exclusively on k new noise
variables� in such a way that the volume of the joint range increases
only by a constant factor �that depends on k��

Unfortunately� this result is not very useful� since computing the
smallest k�dimensional paralelotope that contains the old joint range is
a di�cult problem when k � ��

����� Static storage allocation

Another promising optimization is the �compilation� of AA algorithms
into an ordinary programming language� like C�

Many applications of AA� such as those described in Chapter �� can
be coded as procedures that take ordinary intervals as parameters� con�
vert them to a�ne forms� and evaluate a linear �non�looping� chain of
expressions on those values� In such cases� the compiler could predict
statically the set of noise symbols a�ecting each computed a�ne form�
The compiler could then allocate the a�ne forms statically� on the or�
dinary procedure�call stack� using a separate simple variable for each
coe�cient� The noise symbol indices would then be super�uous� In this
context� the AA arithmetic operations that loop over the terms �such
as AA�affine and its variants� would be expanded in�line� avoiding the
overhead of merging the term lists�

���� Hansen�s Generalized Interval Arithmetic
�

����� Shared sub�expressions

In actual programs� it is common for the same sub�formula to appear
as an operand of two or more operations� With ordinary �oating�point�
or with standard IA� evaluating such shared sub�expressions more than
once is merely a waste of time� With AA� however� multiple evalua�
tions may also make the results less accurate� The reason is that each
evaluation of a shared sub�formula represents the linearization errors of
the latter by a di�erent set of noise symbols� preventing those errors
from canceling out in later steps� Therefore� when coding expressions
like �x� � y����x� " y�� for AA evaluation� it is doubly important to
identify common sub�expressions like x� and y�� and compute each of
them only once� Symbolic manipulations programs can identify common
sub�expressions and make coding much easier� For example� in Maple
we have�

C��x���y�����x���y����optimized��

t� � x�x�

t� � y�y�

t� � t��y�

t� � �t��t����t��t���

���� Hansen�s Generalized Interval Arithmetic

A�ne arithmetic can be viewed as a simpli	cation of generalized in�
terval arithmetic �GIA�� a computation model proposed in ��� by
E� R� Hansen ����� �For a fuller discussion about GIA� including ap�
plications� see �����

In its original formulation� GIA addresses speci	cally the problem of
computing one or more functions from a 	xed set of n quantities x�� �� xn�
which are given as ordinary intervals &x�� �� &xn� Every quantity z that is
derived from these variables� including the function result� is represented
as a list �z of n" � intervals &�
� &��� �� &�n� with the understanding that

z � &�
 " &��x� " &��x� " � � � &�nxn�

Note that the xi in this formula are unknown quantities� so the formula
is kept unevaluated�just as a�ne forms of AA� From this representation

� A�ne arithmetic

we can obtain a range for z� namely

&z ! &�
 " &��&x� " &��&x� " � � � &�n&xn�

where the formula is evaluated as in standard IA�
This model is obviously similar to AA� not only in its representation�

but also on its main virtue�namely� that in principle it can model a�ne
dependencies between quantities� with error that shrinks quadratically
with the size of the input intervals�

������ Conceptual di
erences

However� GIA and AA are not mathematically equivalent� and neither
is a special case of the other� In general� conversion from one represen�
tation to the other entails loss of information� The di�erence is evident
when one considers the joint range of two quantities u and v when they
are described in either model�
As we have seen� in AA the joint range is always a center�symmetric

convex polygon in the u(v plane� In a computation with n input vari�
ables and m steps� the joint range may have up to
�n "m� sides� In
GIA� the joint range may be a non�convex polygon� whose complexity
is proportional to n alone� Consider� for example� the GIA forms

�u ! $� �% " $� �%&x

�v ! $� �% " $� �%&x�

where x is the only input variable� If x ranges over $�� "�%� then the
value pairs �u� v� that are allowed by these forms is the bowtie�shaped
region shown in Figure �����

Moreover� the fact that the GIA coe�cients are intervals� rather than
numbers� implies that uncertainty cancellation will not be as complete
as it can be in the AA model� For example� if �u is the form given above�
then the GIA evaluation of �u� �u will produce

$� �% " $�
 "
%x" $� �%y�

whereas the analogous AA computation returns exactly zero� For the
same token� we can expect that error explosion will occur in GIA more
often than in AA�

���� Hansen�s Generalized Interval Arithmetic
�

Figure ����� Joint range in GIA�

Finally� by lumping all internal errors into the independent interval &�

�or� in the coe�cients &��� �� &�n�� the GIA model prevents those errors from
canceling out�

������ Practical di
erences

GIA and AA di�er also in a number of practical details that a�ect
their e�ciency and �exibility� First� in the GIA representation� each
coe�cient takes twice as much space as in AA� and the extra space does
not seem to translate into increased accuracy�

Another di�erence is that the number of terms in a GIA form is
	xed� and their order is tied to the order of the function arguments�
This choice forces one to handle and operate on all n terms� even when
the quantity at hand depends on a small subset of the input variables�

Moreover� the GIA representation is implicitly tied to a speci	c set
of variables� which limits the scope of GIA forms to the body of a single
function �or to a set of functions with the same arguments�� a feature
that hinders the composition of complex functions from simpler ones�

For example� suppose that the function f�x� y� is de	ned in terms
of some previously de	ned function g�u� v� w�� The values of u� v� and
w computed by f with GIA will be expressed as GIA forms with three
coe�cients over the variables x and y� whereas the values handled in�
ternally by g are four�term GIA forms over u� v� and w� Therefore� the

� A�ne arithmetic

call to g from f will require some non�trivial conversion between the two
types of GIA forms� usually with loss of information�
A�ne arithmetic is more �exible in this regard� In the implementa�

tion originally proposed by Comba and Stol	 ����� and detailed in Sec�
tion ����� the �names� of the noise variables are recorded in the a�ne
form� and their scope is the entire program� As a consequence� a�ne
forms can be passed across function boundaries without conversion or
loss of information� An example of application where this issue is quite
relevant is the ray�tracing of implicit surfaces� described in Section ����

Chapter �

Some applications

In this chapter� we describe some applications of interval arithmetic to
problems in numerical analysis� computer graphics� geometric model�
ing� and global optimization� We also show that a�ne arithmetic can
produce better results than IA ��������

��� Zeros of functions

Solving equations is a fundamental problem in mathematics�� The sim�
plest kind of equation is f�x� ! �� de	ned by a real function f �)� R
of a single variable x� A solution �also called a root� is of course any
number �x �) such that f��x� ! �� We also say that �x is a zero of f �
Sometimes� 	nding any one zero of f is su�cient� Sometimes� all zeros
are required�

There exist explicit formulas for computing all zeros of polynomial
functions of degree at most �� The formula for degree � is trivial� The
formula for degree
 is the well known quadratic formula� The formulas
for degrees � and �� based on the famous Cardano solution of the cubic�
are less well known� and not frequently used� because they may require
complex arithmetic� even when all roots are real�

No formulas exist for solving polynomial equations of higher degree
or transcendental equations� Thus� in general� we must resort to numer�
ical approximation methods� Moreover� we should keep in mind that

�It can be argued that mathematics advances by continuously rede�ning what
�equation� and �solution� mean�

��

 Some applications

it is very probable that the zeros of f will have no exact �oating�point
representation� even if we know in theory how to compute them exactly�
For example� the trivial equation �x� � ! � has no exact �oating�point
solution in base
 �or ���� So� approximate solutions are all we can
obtain with a computer�

What does it mean to solve an equation f�x� ! � approximately*
Two natural interpretations are�

�� Find a number close to a root� More precisely� given � � �� 	nd
'x �) such that j'x � �xj � �� for some exact root �x of f � Clearly�
the whole point is to 	nd such 'x without knowing �x�

� Find a root of an equation that is close to the original equation�
More precisely� given � �� 	nd 'x �) such that jf�'x�j � � In
this case� 'x is a solution of the equation f�x��f�'x� ! �� which may
be thought as a �perturbation� of the original equation� because
f�'x� is small�

Both de	nitions of approximate solution are useful� sometimes even
in combination� the adequate de	nition depends on the application� In
any case� both de	nitions make sense in the �oating�point world� pro�
vided that the tolerances � and are not too small�

There are many classical numerical methods for 	nding zeros of func�
tions� However� to a certain extent� their success depends on having
previously isolated a root� Once a root has been isolated� these methods
usually converge quickly� Thus� the hard part in solving equations is
isolating the roots�
One way to isolate a root is to 	nd a small interval $a� b% �) such

that f�a� and f�b� have di�erent signs� In this case� we say that $a� b% is
a bracketing interval for f � By the Intermediate Value Theorem� if f is
continuous in a bracketing interval $a� b%� then f must have at least one
zero in $a� b%�

����� Bisection

A simple algorithm that is guaranteed to 	nd a root of f in a bracketing
interval $a� b% is bisection� This algorithm successively divides a bracket�
ing interval at its midpoint into two parts� choosing the half that is still
a bracketing interval�

��� Zeros of functions
�

bisect�a� b� fa� fb � R�� R �
� Finds a zero of f in a bracketing interval $a� b%�
c� �a" b��

if �b� a��
 	 � then return c
fc � f�c�
if fafc � � then

return bisect�a� c� fa� fc�
else

return bisect�c� b� fc� fb�

Starting with a call to bisect�a� b� f�a�� f�b��� this algorithm com�
putes a sequence of nested bracketing intervals� each interval half as
wide as its predecessor� Thus� bisection always converges to a root of f �
�This observation can be used as the basis of a constructive proof of the
Intermediate Value Theorem��

There are many things that may go wrong when we try to implement
the bisection algorithm in �oating point� For one thing� if a and b are
	nite but large� then the formula �a " b��
 may return "�� Also� if
�b � a��
 is not rounded properly �i�e�� upwards�� then the result may
not be within distance � of a root� We can avoid these problems by
using IA�mid and IA�rad to compute these quantities �see Section
����

Another possible problem is that the product fafc may under�ow to
zero even when fa � � and fc � �� If this happens� then the procedure
will take the wrong branch� and the result may be arbitrarily far from
any root� Thus� instead of multiplying the values� we must work with
the signs only�

A subtler problem is that bisect may go into in	nite recursion if c
gets rounded to a or b while �b � a��
 is still greater than �� If IA�mid
has been properly coded� then this can happen only when a and b are
consecutive Float values� In that case� the user has chosen too small a
tolerance� and there is no way to get any closer to the bracketed root�
or to tell which of a and b is closer to it� We should then give up and
return either a or b�

Incorporating these changes into the basic algorithm� we get

�� Some applications

FP�bisect�a� b� Finite
 �� Finite�� Finite �
� Given a �nite non�empty interval $a b% and � � f���"�g�
� such that �f�a� 	 � and �f�b� � ��
� returns a value c that is either within distance � of a root of f �
� or is one of the two representable Floats closest to such root�
c� IA�mid�$a b%�
if c ! a or c ! b or IA�rad�$a b%� 	 � then return c
fc � �f�c�
if fc � � then

return FP�bisect�a� c� ��
else if fc � � then

return FP�bisect�c� b� ��
else

return c

The search begins with a call to FP�bisect�a� b� sign�f�b����

Bisection is slow� only one bit of precision is obtained at each itera�
tion� Thus� it needs dlog��ja� bj���e steps to reach tolerance ��
The well�known iterative method of Newton� if properly used� will

have faster convergence �doubling the number of bits at each step�� How�
ever� Newton�s method is not guaranteed to converge in all cases� Even
when the mathematical function f satis	es all the conditions for conver�
gence� the rounding errors in its �oating�point implementation �f may
cause Newton�s method to loop or diverge� In Section ������ we will see
how to achieve convergence rates similar to Newton�s while retaining the
robustness of bisection�

����� Interval bisection

Bisection is one example of a guaranteed method� not a common situa�
tion in numerical methods� However� bisection has limitations� it needs
to start with a bracketing interval� and it only 	nds one root in the
interval� even if there are many roots�

A more serious limitation is that bisect does not 	nd a root of the
intended function f � but rather a root of its �oating�point implementa�
tion �f � Even if the values of f and �f are very close� their roots may be
arbitrarily di�erent�

��� Zeros of functions ��

As long as we are con	ned to the realm limited�precision arithmetic�
there is no satisfactory solution to this problem� The inevitable roundo�
errors can always turn a near�root into a true root� or vice�versa� How�
ever� if we have an interval implementation &f of f � then we can use it
to discard parts of the domain &x that are guaranteed not to contain any
roots of f �
The idea is to evaluate &z � &f�&x�� for various sub�intervals &x� of)�

starting with) itself� If &z does not contain the value zero� then &x� cannot
contain a root of f � and can be discarded� Otherwise the sub�interval is
split into two halves� which are recursively tested� This process continues
until the intervals are smaller than a speci	ed tolerance �� or cannot be
subdivided any further�
In the end� we are left with a subset x� of)� consisting of zero or

more intervals� that is guaranteed to contain all the roots of f in)�
even if) is not bracketing for f � Moreover� the intervals that make
up x� are small or indivisible� and� when tested with &f � their signs turn
out ambiguous� We will say that x� is an approximate root set of the
original function f �

IA�roots�&x� Interval�� stream of Interval �
� Given a �nite interval &x� outputs a sequence of sub�intervals
� that are either indivisible or have radius at most ��
� and constitute an approximate root set of f �
if � � &f�&x� then

c� IA�mid�&x�
if c ! &x�lo or c ! &x�hi or IA�rad�&x� 	 � then

output &x
else

output IA�roots�$&x�lo c%�
output IA�roots�$c &x�hi %�

For many applications� the approximate root set x� computed by IA�roots
is an acceptable surrogate for the true set of roots of f � In a sense� this
improved bisection algorithm is able to 	nd all roots of f inside any
given interval� Obviously� the accuracy �and usefulness� of x� is limited
by the accuracy of &f and by our computation budget�
Since IA�roots explores the left half before the right half� it 	nds all

roots in order� from left to right� as they occur in &x� If only the smallest

�� Some applications

root is required� then the method can be modi	ed to stop as soon as a
root is found� This variant is useful in applications such as ray tracing�
when one is interested in 	nding the 	rst intersection of a ray with a
surface �see Section ����� or spectral analysis of matrices� when one is
usually interested only in the 	rst few eigenvalues�
Note that IA�roots may report two or more intervals for each root

�or near�root� of f � The reason is that the range estimator &f is liable
to return an ambiguous sign for intervals that are close to a root but do
not straddle it� Therefore� we may want to pipe the output of IA�roots
through a 	lter that merges any consecutive abutting intervals� This step
does not guarantee that each root of f will be represented by exactly
one interval� but it may reduce the caller�s overhead�

����� Using a�ne arithmetic

If the ranges computed by &f are much wider than the true range of f
in &x� then IA�roots may become quite slow� since it will be forced to
split the intervals more 	nely in order to resolve sign ambiguities� It
may also output a large number of intervals for each root� and also
many intervals that contain no root�
As we observed in Section
��� this problem is particularly likely

when f is a complicated function with correlated sub�expressions� When
this �interval explosion� may be a problem� we may consider adapting
IA�roots to use a�ne arithmetic instead of standard IA�
The trivial approach is to use AA only inside the range estimator &f �

that is� we compute &z � &f�&x� by converting &x to an a�ne form 'x� then
evaluating 'z � 'f�'x� in the AA model �or the mixed AA�IA model�� and
returning &z ! $'z%�
However� if we are going to use AA� then we might as well take

advantage of the extra information it provides� Speci	cally� we should
replace IA�roots by a similar routine AA�roots that evaluates 'z � 'f�'x�
itself� and then uses the information contained in the a�ne form 'z to
choose the split point c�
The routine AA�roots begins by converting the interval &x to the

a�ne form x
 " x�	�� The result of 'z � 'f�'x� will be

'z ! z
 " z�	� " z�	� " � � �" zn	n�

We may then conclude that the graph of f in &x is contained in the

��� Zeros of functions ��

parallelogram P with center �x
� z
� and horizontal projection &x� whose
top and bottom sides have slope z��x�� and whose left and right sides are
vertical and have length
�� where � ! jz�j" jz�j" � � �" jznj� It follows�
then� that any roots of f in &x must be con	ned to the sub�interval &x�

where the parallelogram P intersects the x�axis� Thus� we can replace &x
by &x� before splitting the interval in half� Here is the detailed code�

AA�roots�&x� Interval�� stream of Interval �
� Given a �nite interval &x� outputs a sequence of sub�intervals
� that are either indivisible or have radius at most ��
� and constitute an approximate root set of f �
var k � newsym��

var 'x� AA�Form� IA�mid�&x�" IA�rad�&x�	k
var 'z� AA�Form� 'f�'x�
&x� &x � AA�rootAux�'x� 'z� k�
if &x
! $ % then
c� IA�mid�&x�
if c ! &x�lo or c ! &x�hi or IA�rad�&x� 	 � then

output &x
else

output AA�roots�$&x�lo c%�
output AA�roots�$c &x�hi %�

The routine AA�rootAux computes the intersection of P and the x�axis�

AA�rootAux�'x� 'z� AA�Form
 k� Index�� Interval �
� Given a�ne forms 'x ! x
 " xk	k and 'z�
� returns an interval &x� containing the intersection
� of the x�axis with the joint range of 'x and 'z�
var �� x�P fjzij � i � E�'z� n f k gg

x�
var &z � $�z
 � �� �z
 " ��%
var &u� IA�div�$�xk �xk%� $zk zk%�
return IA�shift�&u� x
�

For smooth functions� AA�roots will exhibit quadratic convergence
�doubling the number of bits at each step� until the interval &x becomes
so small that roundo� errors start to dominate� In any case� convergence
will be at least linear �one bit gained per iteration�� as in IA�roots�

�� Some applications

��� Level sets

Many applications deal with scalar 	elds h�)� R� where) is a subset
of Rd� For example� h may be temperature� pressure or height� Of
special interest are the subsets of) where h is constant� called the level
sets of h� i�e�� the sets h���c� ! fx �) � h�x� ! cg� for c � R� A picture
showing how the level sets of h are distributed and how their geometry
changes as c varies contains a great deal of qualitative information about
the behavior of h �Figure ����� Such contour maps are widely used
in scienti	c applications� Familiar examples are temperature charts in
weather maps and level curves in altitude maps�

 -0.500

 -0.400

 -0.300

 -0.200

 -0.100

 0.000

 0.100

 0.200

Figure ��� Contour map of a scalar �eld�

����� Enumeration

Consider the computation of an approximation of a single level set C�
Without loss of generality� we may take C ! h������ the level set at level
zero� because the level set at level c of h is the level set at level zero of
h�c� For concreteness� we shall consider only the two�dimensional case�
i�e�� d !
� However� the discussion below can be modi	ed for arbitrary
dimension�

The zero set C is the set of solutions of the equation h�x� ! �� Since
we are now dealing with an equation in several unknowns� the set C
does not need to be a single point� or even 	nite� In general� C is a
curve� but it can be almost anything�� We also say that C is an implicit

�Every closed set in Rd is the zero set of a C� function�

��� Level sets ��

curve� de	ned by the equation h�x� ! �� Implicit curves and surfaces
are important in geometric modeling�
A simple and general technique for computing an approximation of

a level curve C in) is enumeration�

�� decompose) into small cells�

� identify which cells intersect C�

�� approximate C within each intersecting cell�

The simplest cellular decompositions used in step � are regular grids
of squares or triangles �Figure ��
�� Such decompositions are often used
in practice because their topology and geometry are well understood� If
the cells are su�ciently small� then C can be approximated by linear
segments in step ��

Figure ��� Simple cellular decompositions�

Step
� the enumeration of the intersecting cells� is usually the most
expensive step in this method� In the simplest schema� the cells that
intersect C are identi	ed by sampling� The function h is evaluated at the
vertices of each cell� if the signs of those values are not identical� then the
cell necessarily intersects C �again� this follows from the Intermediate
Value Theorem� if h is continuous�� The points where C intersects the
boundary of the cell can be found by bisection� or by simple linear
interpolation� if the cell is small�
Obviously� the converse does not hold� when all the values of h at

the vertices have the same sign� we cannot conclude that the cell does

�� Some applications

not intersect C� This is a form of aliasing in the sampling related to
the size of the cell� Therefore� cell sizes must be carefully chosen to
avoid missing features due to undersampling �Figure ����� On the other
hand� choosing very small cells can be expensive� a uniform cellular
decomposition of) having n cubes along each main direction has nd

cubes� but only O�nd��� cubes will intersect C� Thus� choosing a smaller
cell size to avoid aliasing in the sampling will greatly increase the number
of cells to be scanned� and also increase the fraction of �useless� tests�
Therefore� the approximation of level curves with uniform enumeration
is simple but not e�cient�

Figure ��� Missing features due to undersampling�

����� Adaptive enumeration

To 	nd the cells intersecting a level curve C without visiting all cells
in a cellular decomposition of)� we need a way to discard� quickly
and reliably� large portions of) that cannot contain pieces of C� Point
sampling can only prove the presence of C in some region of)� to reduce
the number of cells scanned� we need a test procedure that can also prove
the absence of C in a region�

Range analysis can provide such a test� If we have an interval version
&h of h� then we can enumerate the cells intersecting C by an adaptive
procedure� which is essentially a two�dimensional version of IA�roots
�see Section ����
�� We explore) recursively� starting with) itself as the

��� Level sets �	

initial cell� If a cell is proved to be empty� then it is ignored� otherwise�
it is subdivided into smaller cells� which are then explored recursively�
until the cells are small enough to approximate C ����
��
��
��

For rectangular decompositions� a simple way to divide a cell into
subcells is to bisect it orthogonally to its widest direction� or cyclically
bisect along one of the coordinate directions at each step� resulting in a

�d tree decomposition of)� Another popular variant divides the cells
into four equal parts� resulting in a quadtree decomposition of)�

The meaning of �small enough� depends on the application� For
rendering� it might mean �smaller than a pixel�� For other applications�
such as modeling� it may depend on some other numerical criterion� For
instance� testing how closely h can be approximated by a linear function
inside the cell allows polygonal approximations to adapt to the curvature
of C�

Note that the test procedure is not required to be complete� in the
sense that it may fail to prove either the presence or the absence of C
in a given cell� In particular� a cell that is declared �small enough� may
still have unknown status� Each application must decide what to do
with those �indeterminate� cells� discard them� treat them just like the
cells that do intersect C� or handle them in some special way� Point
sampling may be useful at this stage to help identify some intersecting
cells�

To test whether a cell K �) intersects C� we evaluate &h�&x� &y��
where &x and &y are the projections of K onto the coordinate axes� The
interval thus computed is guaranteed to contain all values of h for points
inside K� If this interval does not contain zero� then K cannot contain
zeros of h� Of course� the converse does not hold�if the interval contains
zero� we cannot conclude that h vanishes somewhere in K�

An adaptive enumeration method based on IA is�

�
 Some applications

IA�roots ��K� Cell�� stream of Cell �
� Enumerates a set of sub�cells of cell K
� that are either small or indivisible� and
� which constitute an approximate solution of h�x� y� ! � in K�
if � � &h�K� then

if is small�K� then

output K
else

�K�� �� Kn�� IA�divide ��K�
if n ! � then

output K
else

for i in f��� ng do

output IA�roots ��Ki�

����� Examples

Figure ���a shows a full enumeration of the cubic curve de	ned implicitly
by y��x�"x ! �� in the square) ! $�

%� $�

%� using a �����
grid� Intersecting cells were identi	ed by sampling and appear in grey
�note how few they are� only �� out of
���� The points where the curve
crosses cell edges �marked with white dots� were computed by simple
linear interpolation� and have been joined into a polygonal approxima�
tion for the curve� Note that a level curve can have several connected
components� Figure ���b shows an adaptive enumeration based on IA of
the same curve� but now using a �
� �
 grid� Note that large portions
of) were discarded at early stages�
Figure ��� shows adaptive enumerations� using
�d trees� of the quar�

tic curve de	ned by h�x� y� ! x�" y�"xy� �xy���
� ��� in the square
) ! $�

%� $�

%� Note how AA was able to be compute a much
better approximation than IA� because of the many correlations in h�

��� Ray tracing

Interval analysis has also been used for reliable ray�tracing of surfaces ���
���� speci	cally� to determine all intersections between an implicit sur�
face h�x� y� z� ! � and a line segment pq �the �ray���

��� Ray tracing ��

Figure �� Full enumeration �left� and hierarchical enumeration using IA
�right��

Figure ��� Adaptive enumeration of quartic with IA �left� and AA �right��

��� Some applications

This problem is equivalent to that of 	nding the roots of the univari�
ate function

f�t� ! h��� � t�xp " txq� ��� t�yp " tyq� ��� t�zp " tzq�

in the interval $� �%� A robust and reasonably e�cient algorithm for
the latter combines interval analysis with Newton�s root�	nding method�
We evaluate &u ! &f�&t� using IA� for the whole interval &t ! $� �%� If the
resulting interval &u is strictly positive or strictly negative� then we know
that the ray pq does not intersect the surface� Otherwise� we evaluate the
derivative &v ! f ��&t�� in that interval� also using IA� From the intervals
&u and &v� we can compute a sub�interval &t� of &t that must contain all the
roots of f in &t� If &t� is less than half as wide as &t� then we repeat the
search in &t�� recursively� Otherwise� we split &t� in two equal parts� and
repeat the search recursively in each half� The recursion stops when the
interval &t is small enough for the application�

The order of convergence of this algorithm is somewhere between
linear and quadratic� depending on the accuracy of the computed inter�
vals &u and &v� However� evaluating &f�&t� in the IA model is equivalent
to evaluating &h�&x� &y� &z� on the intervals &x ! $xp xq%� &y ! $yp yq%�
&z ! $zp zq% � that is� evaluating h on the axis�aligned bounding box
of the segment pq� instead of only along the segment itself� Once again�
the problem arises because the IA routines have no way of knowing that
the arguments x� y� and z of h�x� y� z� are highly correlated�

Obviously� the bounding box of the segment pq may intersect the
surface even when the segment itself does not� Even assuming that
&h�&x� &y� &z� will be computed accurately �which� as we saw� is unlikely to
happen with standard IA�� this fact alone will surely lead to slow con�
vergence� and to many evaluations of &f on ray segments that eventually
turn out not to contain any roots�

Replacing standard IA by AA will generally improve the performance
of this algorithm� Even without any algebraic manipulation� AA will
automatically notice that the a�ne forms 'x� 'y� and 'z are strongly cor�
related� and will use this fact to produce tighter bounds for f�t��

Moreover� as the interval $'t% decreases� the deviation of the computed
a�ne form 'u should be increasingly dominated by the single error term
uj	j whose noise symbol 	j is that of the input interval 't� �Recall that
if f is moderately well behaved� then the other partial deviations of 'u

��� Global optimization ���

should decrease quadratically with the size of $'t%�� But in that case the
coe�cient uj is a good estimate of the derivative of f in the interval� and
we can use it to guess the position of the root for the next iteration� In
other words� AA allows us to carry out Newton�s root�	nding algorithm
without explicitly computing the derivative of f �

��� Global optimization

Another important and di�cult problem is global optimization� that is�
the computation of the global maximum or minimum of a function over
its domain� There are two main variants for this problem� unconstrained
optimization� which is over the entire domain� and constrained optimiza�
tion� which is only in a subregion of the domain� usually de	ned implic�
itly by non�linear equations and inequations�

We shall consider the box�constrained global minimization problem�
given a d�dimensional box) � Rd �that is� the Cartesian product of d
real intervals�� and a continuous objective function f �) � R� 	nd its
global minimum f� ! min f f�x� � x �) g� and the set of all global min�
imizers)��f� ! f x� �) � f�x�� ! f� g� Actually� we shall consider the
approximate numerical version of this problem� instead of 	nding all
minimizers)��f�� we seek only to identify some subset b) of) that is
guaranteed to contain)�� The goal then becomes to make the measure
of b) as small as possible� for a given computation budget�
There are many methods for 	ndind local minima� but it would seem

that 	nding a global minimum with a computer is a hopeless task� In�
deed� this is probably correct� if we are restricted to computing the
values of f at a 	nite set of sample points in)� because f may oscil�
late arbitrarily between these sample points� Nevertheless� combining
general branch�and�bound techniques with range analysis can provide
robust algorithms for global optimization� because range estimates can
be used to discard large subregions of) that cannot contain a global
minimum�

����� Branch�and�bound methods for global optimization

Branch�and�bound is a general numerical technique for solving global
minimization problems� A branch�and�bound algorithm generally alter�

��� Some applications

nates between two main steps� branching� which is a recursive subdivi�
sion of the domain)� and bounding� which is the computation of lower
and upper bounds for the global minimum of f in a subregion of)� By
keeping track of the current best upper bound for the global minimum
of f � one can discard subregions that cannot contain a global minimizer�
i�e�� subregions where the lower bound for f is greater than the current
upper bound for the global minimum f�� Subregions that cannot be dis�
carded in this way are kept in a list L to be further processed� Thus� at
any time� the set b) ! L is a valid solution to the global minimization
problem� such as de	ned above� The algorithm stops when the current
solution b) is adequate for the application �based on the sizes of the
boxes in L� on the estimated range for f�� or on some other criterion��
This algorithm converges provided that� the function f is continuous�

the branching step is such that the width of the widest box in L tends
to zero� and the range estimates for f�+� shrink to a single value as the
diameter of + goes to zero�

The basic branch�and�bound algorithm� outlined above� admits end�
less variations� depending on how the branching and bounding steps are
implemented ��� ��� ���
��
��� The simplest branching method is to
bisect the current box orthogonally to its widest direction ����� Alterna�
tively� one can cyclically bisect along one of the coordinate directions at
each step ����� �This similar to enumeration techniques for level sets��

The correctness of general branch�and�bound methods requires range
estimates that are guaranteed to contain the values of f in a subregion +
of)� On the other hand� the e�ciency of such methods depends on the
quality of those estimates� One usually trades quality for speed when
computing estimates� however� tight estimates� even if more expensive
to compute� sometimes provide overall faster algorithms�

����� Example

Consider the Goldstein�Price function�

f�x� y� ! $� " �x" y " ������ ��x" �x� � ��y � �xy " �y��% �
$�� " �
x� �y����� � �
x" �
x� " ��y � ��xy "
�y��%�

The global minimum of f in the box) ! $�
 "
% � $�
 "
% is
f� ! � ! f�������

��
 Surface intersection ���

This is an easy function for local optimization� but which is very
di�cult for a branch�and�bound IA algorithm� The dependency problem
generates a large number of boxes and causes it to partition the region
much more 	nely than is required for AA� as shown in Figure ���� In this
	gure� boxes shown in white have been eliminated� and boxes shown in
grey remain at termination� and are thus guaranteed to contain all global
minimizer for f in)� Intuitively� a �good� algorithm should generate a
picture with few� large white boxes� and few� small grey boxes� This is
interpreted as its ability to both quickly discard large subregions of)
and locate all global minimizers very precisely�

Figure ��� Domain decompositions for minimizing the Goldstein�Price func�
tion with IA �left� and AA �right��

��� Surface intersection

Parametric surfaces are the most popular primitives used in computer
aided geometric design �CAGD�� They are easy to approximate and ren�
der� and there is a huge literature on special classes of surfaces suitable
for shape design� such as B�ezier and splines surfaces� for which special
algorithms exist �
�� However� using parametric surfaces for modeling
solids in CSG systems requires e�cient and robust methods for comput�
ing surface intersection� mainly for trimming surfaces into patches that
can be sewn together to bound complex shapes�

��� Some applications

����� Methods for computing surface intersections

Several methods have been proposed for solving the important problem
of computing the intersection of two parametric surfaces� These meth�
ods can be classi	ed into two major classes� continuation methods and
decomposition methods�

Continuation methods� also called marching methods� use a local ap�
proach to the surface intersection problem� Starting from a point known
to be on both surfaces� these methods build an approximation for the
intersection curve by marching along the curve� successively computing
a new point based on the previous point �or points� ��� Continua�
tion methods must use numerical approximations not only for marching
along the curve� but also for 	nding starting points� Since the intersec�
tion curve may have several connected components� a starting point is
needed on each component� Moreover� care must be taken for handling
closed components correctly� In some applications� such as trimming� in�
tersection curves computed with continuation methods must be mapped
back to the parameter domains to de	ne trimming curves� This may be
a di�cult inverse problem�

Decomposition methods� on the other hand� use a more global ap�
proach to the problem� A simple decomposition method is to build
polygonal approximations for both surfaces and then intersect the cor�
responding polyhedral surfaces� Although it is easy to build polygonal
approximations for parametric surfaces� such approximations need to be
very 	ne to provide a good approximation for the intersection� A naive
polygonal approximation is obtained by simply subdividing the parame�
ter domain uniformly into many small rectangles� However� intersecting
such 	ne polygonal approximation is itself a di�cult task� Even if we do
not care about geometric degeneracies ��
�

�� this is a high complexity
task� If there are n rectangles along each main direction in parameter
space� then there are n� faces in each polyhedron� A naive algorithm
that computes the intersection of the two polyhedra by testing every
possible pair of faces has to consider n� cases� most of which do not
contribute to the intersection� This algorithm is not practical because
it is very expensive to re	ne an approximation�

Since decomposition methods work directly on parameter domains�
no inverse problem needs to be solved to 	nd trimming curves� On
the other hand� decomposition methods compute trimming curves in a

��
 Surface intersection ���

piecewise� unstructured way� the pieces must be somehow glued together
into complete curves�

Adaptive decomposition methods avoid the cost of uniform decom�
positions by subdividing the domain until the surface is approximately
planar� In that way� the associated polygonal approximation is adapted
to the local curvature of the surface� being 	ner in regions of high cur�
vature and coarser in regions of low curvature� where the surface is
almost �at� Such methods are generally restricted to speci	c types of
surfaces� whose nature can be exploited to derive e�cient tests for local
�atness ����

����� A decomposition method based on interval analysis

The decomposition method proposed by Gleicher and Kass ��	� takes
a global approach for subdividing the domains� using range analysis�
Given a rectangle in each domain� use IA to compute an estimate for
the range of values taken by the corresponding parametric function on
each rectangle� This estimate is a bounding box for a surface patch�
i�e�� a rectangular box in �d space� aligned with the coordinate axes�
and guaranteed to contain the piece of the surface corresponding to the
given rectangle in parameter space� If two bounding boxes do not in�
tersect� then the corresponding surfaces patches cannot intersect� If the
bounding boxes do intersect� then the surfaces patches may intersect�
In this case� the corresponding rectangles in the domains are subdivided
into four equal pieces� and the process is repeated until either the sur�
faces patches are proved disjoint or a user de	ned tolerance is reached�
the patches are then assumed to intersect� In this way� a quadtree de�
composition is built for each domain�

For e�ciency� Gleicher and Kass keep track of all pairs of patches
that might intersect� each leaf node in one quadtree contains a list of
leaf nodes in the other quadtree that it overlaps� This list is re	ned and
distributed to its children when a node is subdivided�

����� Examples

We show two examples of how the Gleicher�Kass algorithm for surface
intersection can be improved by using AA instead of IA� specially for
surfaces that are common in CAGD�

��� Some applications

Lofted parabolas

Consider a cubic patch obtained by lofting a parabola to another parabola�
More precisely� take three points a
� a�� a� in R�� and consider the
quadratic B�ezier curve de	ned by these points�

�u� ! a
��� u�� "
a�u��� u� " a�u
�� u � $�� �%�

Take three other points b
� b�� b� in R
�� and the B�ezier parabola de	ned

by them�

��u� ! b
��� u�� "
b�u��� u� " b�u
�� u � $�� �%�

Now� sweep
 to � linearly to obtain a surface�

f�u� v� ! ��� v�
�u� " v��u�� u� v � $�� �%�

Lofting is a common operation in CAGD�
Because the parametrization f contains several occurrences of u and

� � u� and of v and � � v� the terms are strongly correlated� and we
expect AA to provide tighter bounds for f than IA� This expectation is
met� Figure ��� shows the domain decompositions built with IA and AA
for computing the intersection of the two lofted parabolas shown in Fig�
ure ���� using six levels of recursive subdivision� Note how AA exploits
correlations to give much tighter approximations for the intersection�
quickly discarding large parts of both domains�

Figure ��� Two intersecting lofted parabolas�

��
 Surface intersection ��	

Figure ��� Domain decompositions computed with IA �top� and AA �bottom�
for intersecting the two skew parabolic cylinders shown in Figure ���

��
 Some applications

Bicubic patches

Consider now bicubic patches� the most common surface patches in
CAGD� A bicubic patch is a tensor product B�ezier surface� de	ned by a
mesh of sixteen control points aij � R� �i� j ! ������

f�u� v� !
�X

i�

�X
j�

aijB
�
i �u�B

�
j �v��

where u� v � $�� �% and Bn
i is the i�th Bernstein polynomial of degree n�

Bn
i �t� !

�
n

i

�
ti��� t�n�i�

�Lofted parabolas are also tensor product B�ezier surfaces��
Figure ���� shows the domain decompositions built with IA and AA

for computing the intersection of the two bicubic patches shown in Fig�
ure ��� Because tensor product parametrizations contain many occur�
rences of strongly correlated terms� we expect AA to provide tighter
bounds than IA� Again� this expectation is met� An extra subdivision
step with AA is su�cient to show that the intersection curve is not a loop
�Figure ������ Figure ���
 shows the trimming curves corresponding to
the intersection curve�

Figure ��� Two intersecting bicubic patches�

Figure ���� Domain decompositions computed with IA �top� and AA �bottom�
for intersecting the two bicubic patches shown in Figure ���

Figure ���� Extra subdivision step with AA shows that intersection curve is
not a loop�

Figure ���� Trimming curves for the intersecting bicubic patches�

Bibliography

$�% M� Abramowitz and I� A� Stegun� editors� Handbook of mathemati�
cal functions with formulas� graphs� and mathematical tables� Dover
Publications Inc�� New York� �
� Reprint of the ��
 edition�

$
% G� Alefeld� A� Frommer� and B� Lang �eds��� Scienti�c Comput�
ing and Validated Numerics� volume � of Mathematical Research�
Akademie�Verlag� ��� Proceedings of the International Sympo�
sium on Scienti	c Computing� Computer Arithmetic and Validated
Numerics �SCAN���� Wuppertal� Germany�

$�% ANSI�IEEE� ANSI�IEEE Std �������� IEEE� New York� IEEE
Standard for Binary Floating�Point Arithmetic� ����

$�% R� Baker Kearfott� Rigorous Global Search
 Continuous Problems�
Kluwer� October ���

$�% R� E� Barnhill� Surfaces in computer�aided geometric design� A
survey with new results� Computer Aided Geometric Design�
��(
����(��� ����

$�% R� E� Barnhill� G� Farin� M� Jordan� and B� R� Piper� Sur�
face�surface intersection� Computer Aided Geometric Design� ����

���(��� ����

$�% W� Barth� R� Lieger� and M� Schindler� Ray tracing general para�
metric surfaces using interval arithmetic� The Visual Computer�
���������(���� ���

$�% F� L� Chernousko and A� I� Ovseevich� Method of ellipsoids� Guar�
anteed estimation in dynamical systems un der uncertainties and

���

��� Bibliography

control� In Abstracts of the International Conference on Interval
and Compute r�Algebraic Methods in Science and Engineering �IN�
TERVAL���� page ��� St� Petersburg� Russia� April ���

$% D� M� Cl�audio and S� M� Rump� Inclusion methods for real and
complex functions in one variable� Revista de Inform�atica Te�orica
e Aplicada�
�����
�(���� January ���

$��% J� L� D� Comba and J� Stol	� A�ne arithmetic and its applications
to computer graphics� In Proceedings of VI SIBGRAPI �Brazilian
Symposium on Computer Graphics and Image Processing� pages
(��� ��� Available at http���dcc�unicamp�br�stolfi��

$��% L� H� de Figueiredo� Surface intersection using a�ne arithmetic�
In Proceedings of Graphics Interface ���� pages ���(���� May ���
Available at ftp���csg�uwaterloo�ca�pub�lhf�gi���ps�gz�

$�
% L� H� de Figueiredo and J� Stol	� Adaptive enumeration of im�
plicit surfaces with a�ne arithmetic� Computer Graphics Forum�
������
��(
�� ���

$��% L� H� de Figueiredo R� Van Iwaarden and J� Stol	� Fast
interval branch�and�bound methods for unconstrained global
optimization with a�ne arithmetic� March ��� Sub�
mitted to SIAM Journal of Optimization� Available at
ftp���ftp�icad�puc�rio�br�pub�lhf�doc�go�ps�gz�

$��% T� Du�� Interval arithmetic and recursive subdivision for implicit
functions and constructive solid geometry� Computer Graphics
�SIGGRAPH ��� Proceedings�
��
�����(���� July �
�

$��% R� Farouki and V� Rajan� Algorithms for polynomials in Bernstein
form� Computer Aided Geometric Design� ������(
�� ����

$��% D� Filip� R� Magedson� and R� Markot� Surface algorithms us�
ing bounds on derivatives� Computer Aided Geometric Design�
�����
�(���� ����

$��% Geomview� Software written at the Geometry Center� University of
Minnesota� Available at http���www�geom�umn�edu�software��

Bibliography ���

$��% M� Gleicher and M� Kass� An interval re	nement technique for
surface intersection� In Proceedings of Graphics Interface ���� pages

�
(
�� May �
�

$�% D� Goldberg� What every computer scientist should know about
�oating�point arithmetic� ACM Computing Surveys�
������(���
���

$
�% E� Hansen� A generalized interval arithmetic� In K� Nickel� editor�
Interval Mathematics� number
 in Lecture Notes in Computer
Science� pages �(��� Springer Verlag� ����

$
�% E� Hansen� Global optimization using interval analysis � the one�
dimensional case� Journal of Optimization Theory and Applications�

�������(���� ���

$

% E� Hansen� Global optimization using interval analysis � the multi�
dimensional case� Numerische Mathematik� ������
��(
��� ����

$
�% E� Hansen� Global Optimization using Interval Analysis� Number
��� in Monographs and Textbooks in Pure and Applied Mathemat�
ics� M� Dekker� New York� ����

$
�% J� Hass� M� Hutchings� and R� Schla�y� The double bubble conjec�
ture� Electronic Research Announcements of the American Mathe�
matical Society� ������(��
 �electronic�� ���

$
�% C� M� Ho�mann� Geometric and Solid Modeling
 An Introduction�
Morgan Kaufmann� ���

$
�% R� Horst and H� Tuy� Global Optimization� Springer�Verlag� Berlin�
���

$
�% K� Ichida and Y� Fujii� An interval arithmetic method for global
optimization� Computing�
����(�� ���

$
�% Interval computations� http���cs�utep�edu�interval�comp�main�html�

$
% R� B� Kearfott� Interval Newton�generalized bisection when there
are singularities near roots� Annals of Operations Research�
�����(
��� ���

��� Bibliography

$��% R� B� Kearfott� An interval branch and bound algorithm for bound
constrained optimization problems� Journal of Global Optimization�

�
�(
��� �
�

$��% R� B� Kearfott� Algorithm ���� INTERVAL ARITHMETIC � a
Fortran � module for an interval data type� ACM Transactions on
Mathematical Software�

�������(�
� ���

$�
% B� W� Kernighan and D� M� Ritchie� The C Programming Language�
Prentice�Hall� ����

$��% O� Kn,uppel� BIAS � basic interval arithmetic subroutines� Tech�
nical Report ���� Department of Computer Science III� Tech�
nical University of Hamburg�Harburg� July ��� Avaliable at
http���www�ti��tu�harburg�de��

$��% O� Kn,uppel� PROFIL � programmer�s runtime optimized fast
interval library� Technical Report ���� Department of Computer
Science III� Technical University of Hamburg�Harburg� July ���
Avaliable at http���www�ti��tu�harburg�de��

$��% O� Kn,uppel and T� Simenec� PROFIL�BIAS extensions� Tech�
nical Report ���� Department of Computer Science III� Techni�
cal University of Hamburg�Harburg� November ��� Avaliable at
http���www�ti��tu�harburg�de��

$��% D� E� Knuth� Ancient Babylonian algorithms� Communications of
the ACM� ���������(���� ��
� Errata� ibid� ��
������ ����

$��% U� Kulisch and H� J� Stetter� editors� Scienti�c computation with
automatic result veri�cation� volume � of Computing Supplemen�
tum� Springer�Verlag� Vienna� ���� Papers from the conference
held in Karlsruhe� September ��(October
� ����

$��% A� B� Kurzhanski� Ellipsoidal calculus for uncertain dynam�
ics� In Abstracts of the International Conference on Interval and
Computer�Algebraic Methods in Science and Engineering �INTER�
VAL���� page ��
� St� Petersburg� Russia� April ���

$�% D� Michelucci and J�M� Moreau� Lazy arithmetic� Techni�
cal report� Ecole des Mines de St�Etienne� ��� Available at
ftp���ftp�emse�fr�pub�papers�LAZY�lazy�ps�gz�

Bibliography ���

$��% D� P� Mitchell� Robust ray intersection with interval arithmetic� In
Proceedings of Graphics Interface ���� pages ��(��� May ���

$��% R� Moore� E� Hansen� and A� Leclerc� Rigorous methods for global
optimization� In C� A� Floudas and P� M� Pardalos� editors� Re�
cent Advances in Global Optimization� pages �
�(��
� Princeton
University Press� Princeton� NJ� �
�

$�
% R� E� Moore� Interval Analysis� Prentice�Hall� ����

$��% R� E� Moore� Methods and Applications of Interval Analysis� SIAM�
Philadelphia� ���

$��% S� P� Mudur and P� A� Koparkar� Interval methods for process�
ing geometric objects� IEEE Computer Graphics � Applications�
��
���(��� ����

$��% O� Neugebauer� A History of Ancient Mathematical Astronomy�
Springer�Verlag� New York� ���� Studies in the History of Math�
ematics and Physical Sciences� No� ��

$��% A� Neumaier� Interval Methods for Systems of Equations� Cam�
bridge University Press� New York� ���

$��% C� E� Pearson� editor� Handbook of Applied Mathematics
 Selected
Results and Methdos� Van Nostrand Reinhold� second edition� ����

$��% A� Preusser� xfarbe� Visualization of
D�arrays� Available at
http���www�fhi�berlin�mpg�de�grz�pub�xfarbe doc�html�

$�% H� Ratschek and J� Rokne� Computer Methods for the Range of
Functions� Ellis Horwood Ltd�� ����

$��% H� Ratschek and J� Rokne� New Computer Methods for Global
Optimization� Ellis Horwood Ltd�� ����

$��% H� Ratschek and R�L� Voller� What can interval analysis do for
global optimization* Journal of Global Optimization� ��
�����(����
���

$�
% D� Ratz� Box�splitting strategies for the interval Gauss�Seidel step
in a global optimization method� Computing� ����(��� ���

��� Bibliography

$��% S� M� Rump� Algorithms for veri	ed inclusions� theory and prac�
tice� In R� E� Moore� editor� Reliability in computing
 The role of
interval methods in scienti�c computing� volume � of Perspectives
in Computing� pages ��(�
�� Academic Press Inc�� Boston� MA�
����

$��% J� M� Snyder� Interval analysis for computer graphics� Computer
Graphics �SIGGRAPH ��� Proceedings�
��
���
�(���� July �
�

$��% A� J� Stewart� Local robustness and its applications to polyhe�
dral intersection� International Journal on Computational Geome�
try and Applications� �������(���� ���

$��% J� Stol	� libaa� An a�ne arithmetic library in C� ��� Avaliable
at http���www�dcc�unicamp�br�stolfi��

$��% K� G� Su�ern� Quadtree algorithms for contouring functions of two
variables� The Computer Journal� �����
(���� ���

$��% K� G� Su�ern and E� D� Fackerell� Interval methods in computer
graphics� Computers � Graphics� ������(���� ���

$�% G� Taubin� Rasterizing algebraic curves and surfaces� IEEE Com�
puter Graphics and Applications� �����(
�� ���

$��% J� A� Tupper� Graphing equations with generalized interval
arithmetic� Master�s thesis� Graduate Department of Com�
puter Science� University of Toronto� ��� Available ay
http���www�dgp�utoronto�ca�people�mooncake�msc�html�

$��% R� van Iwaarden� An Improved Unconstrained Global Opti�
mization Algorithm� PhD thesis� Department of Mathemat�
ics� University of Colorado at Denver� ��� Available at
http���www�cs�hope�edu�rvaniwaa�phd�ps�gz�

$�
% J� H� Wilkinson� Rounding errors in algebraic processes� Prentice�
Hall Inc�� Englewood Cli�s� N�J�� ����

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

