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ABSTRACT 

This paper gives a survey of embedding theorems for cones and their 

application to classes of convex sets occurring in interval 

m.athematics. 

1 • INTRODUCTION 

In many situations, the investigation of set-valued maps can be reduced 

to the vector-valued case by applying embedding theorems for classes of 

convex sets. For example, R§dstrom's embedding theorem for the class of 

all nonempty, compact, convex subsets of a normed vector space has been 

used in the construction of the Debreu integral and in the proof of a 

law of large numbers for random sets, and there is some hope that such 

embedding theorems can also be used for proving fixed-point theorems 

for set-valued maps which are needed in interval mathematics and other 

areas like mathematical economics. 

An interesting method for proving embedding theorems for classes of 

convex sets is that of R&dstrom [10] who first established the cone 

properties of the class of convex sets under consideration and then 

applied a general embedding theorem for cones to prove his embedding 

theorems for the class of all nonempty, compact, convex subsets of a 

normed vector space and for the class of all nonempty, closed, bounded, 

convex subsets of a reflexive Banach space. R§dstrom's method has also 

been used by Urbanski [15] who considered a more general situation, and 

it has quite recently been used by Fischer [1] who proved an err~edding 

theorem for the class of all hypernorm balls of a hypernormed vector 

space which can be applied to norm balls and order intervals. 

Since the value of such embedding theorems for classes of convex sets 
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depends on the amount of information they provide on the embedding vector 

space and the embedding map, it is desirable to have embedding theorems 

which also reflect the inclusion of sets as an order relation as well as 

the relationship existing between the topological and order properties 

of the class of convex sets under consideration. For example, taking into 

account the inclusion of sets as an order relation has led to more 

informative versions of the embedding theorems proven by R8dstrom [10], 

Hormander [2], and Fischer [1], and it has also led to new err~edding 

theorems for the class of all order intervals of an (M-normed) vector 

lattice (with unit); see [13] and [14]. With regard to R8dstrom's method 

for proving embedding theorems for classes of convex sets, the results 

of [13] and [14] suggest a systematic study of embedding theorems for 

(topological) ordered cones. 

The purpose of these notes is to give a survey of embedding theorems for 

cones and their application to classes of convex sets occuring in interval 

mathematics. 

In Section 2, we present some known and several new embedding theorems for 

cones, ordered cones, topological cones, and topological ordered cones. 

As far as topological properties are concerned, we confine ourselves to 

the case where the topology is determined by a positively homogeneous 

translation-invariant metric. For applications in interval mathematics, 

this seems to be a reasonable restriction, as remarked by Ratschek [11]. 

In Section 3, we study the cone properties of norm balls, hypernorm balls, 

and order intervals. These classes of convex sets are always endowed with 

the Minkowski addition of sets, the usual multiplication of sets by 

positive scalars, and the inclusion of sets as an order relation, and the 

metrics under consideration are those of Hausdorff and Moore. Using the 

results of Section 3 and applying suitable embedding theorems for cones 

given in Section 2, it is not hard to establish embedding theorems for 

norm balls, hypernorm balls, and order intervals. For the brevity of the 

presentation in these notes, however, the formulation of the resulting 

embedding theorems must be left to the reader, but we remark that some of 

them may be found in [14]; see also [13] for intervals on the real line. 

In Section 4, we indicate some further aspects of embedding theorems for 

classes of convex sets occuring in interval mathematics. In particular, 

we briefly discuss the relationship between quasilinear spaces and cones, 

we sketch the cone properties of order intervals with respect to an order 

relation which differs from the inclusion of sets but has the advantage 
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of extending the order relation of the underlying vector lattice, and 

we also include some comments on concrete embedding theorems for order 

intervals. 

For any details concerning ordered vector spaces and (normed) vector 

lattices, we refer to the books by Luxemburg and Zaanen [6] and by 

Schaefer [12]. 

2. EMBEDDING THEOREMS FOR CONES 

In this section, we present some known and several new embedding theorems 

for cones, ordered cones, normed cones, and normed ordered cones. For the 

formulation of these embedding theorems, we have to introduce some new 

terminology for cones. Although some of the new definitions we introduce 

may be tentative, they are convenient for our purposes, and all of them 

are in accordance with the corresponding definitions for vector spaces. 

The proofs of the embedding theorems for cones are somewhat technical and 

lengthy and cannot be included in these notes. However, to give an idea 

of the proofs, we indicate the construction of the embedding vector space 

and the embedding map. Some further details may be found in the papers of 

R&dstrom [10] and Kaucher [4]; see also [13] and [14]. 

Con e s 

A cone (or semilinear space [1]) is a set F with a distinguished element 

Z E F (called the zero element), a map +: lFxlF ~:IF (called addition) 

satisfying A + (B+C) = (A+B) + C, A + B = B + A , and A + Z = A for all 

A, B, C E JF , and a map :IR+xJF ~:IF (called scalar multiplication) 

satisfying A(A+B) AA + AB, (A+U) A AA + lJA, (AU)A A(lJA) 

1A = A ,and OA = Z for all A, B E JF and A, U E JR+ • If F is a cone 

with zero element Z, then the identity AZ Z holds for all A E ~+ 

A cone F has the cancellation property if A B holds for all 

A, B E JF satisfying A + C = B + C for some C E JF • 

Let JF be a cone having the cancellation property. 

On ]FxlF, define an equivalence relation by letting 

(A,B) (C,D) 

for all (A,B), (C,D) E ]FxlF , and let 

<A,B> 

denote the equivalence class containing (A,B) 

Let ~ denote the collection of all equivalence classes of ]Fx]F. 
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On CG , def ine addition +: CGxCG -----;a. CG and scalar mul tiplication 

lRxCG ~ CG by letting 

<A,B> + <C,D> .= <A+C,B+D> 

and 

if a E JR+.. __ 1 < aA >, aB 
a<A,B> 

«~-alB, (-a)A> otherwise 

for all <A, B>, <C, D> E CG and a E JR • 

Furthermore, define a map j : F ~ CG by letting 

j(A) .= <A,Z> 

for all A E JF • 

Then we have the following basic embedding theorem for cones, which is 

due to R&dstrom [10]: 

2.1. Theorem.
 

Suppose F is a cone having the cancellation property.
 

Then CG is a vector space satisfying CG = j (F) - j (]F) , and j is an
 

injection which is additive and positively homogeneous.
 

In particular, the identities <A,B> + <Z,Z> = <A,B> and
 

<A,B> + <B,A> = <Z,Z> hold for all <A,B> E CG •
 

In the formulation of subsequent embedding theorems, we shall usually 

not repeat those properties of the embedding vector space CG and the 

embedding map j which are evident from more general results. 

o r d ere d Con e s 

An ordered cone is a cone F with an order relation < such that 

A + C < B + C and "AA <"AB holds for all A, B E F satisfying A ~ B 

and for all C E F and A E JR+ • If F is an ordered cone, then the 

set F := A E F I Z < A is said to be the positive cone of F •+ - 
An ordered cone F has the order cancellation property if A < B holds 

for all A, B E F satisfying A + C < B + C for some C E F , it is 

Archimedean if A < B holds for all A, B E::IF satisfying nA + D < nB + C 

for some C, D E F and all nEE, and it has the Hukuhara property 

if for all A, B E F satisfying A < B there exists some D E F+ 

satisfying A + D = B • 

Each Archimedean ordered cone has the order cancellation property, and 

each ordered cone having the cancellation property and the Hukuhara 

property has the order cancellation property. 

Let F be an ordered cone having the order cancellation property. 
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On ~ , define an order relation < by letting 

<A,B> < <C,D> 

for all <A,B>, <C,D> E ~ satisfying A + D < B + C • 

2.2. Theorem.
 

Suppose F is an ordered cone having the order cancellation property.
 

Then CG is an ordered vector space, and j is isotone and
 

inverse-isotone.
 

Moreover, <G is Archimedean if and only if :IF is Archimedean,
 

and ffi+ j(:IF+) holds if and only if :IF has the Hukuhara property.
 

A semilattice cone (or upper semilattice cone [13,14]) is an ordered 

cone :IF such that AvB := sup {A,B} exists for all A, B E F and the 

identity (A+C) v (B+C) AvB + C holds for all A, B, C E:IF 

Each semilattice cone having the cancellation property has the order 

cancellation property, a semilattice cone :IF is Archimedean if and only 

if A = B holds for all A, B E:IF satisfying B < A and nA + D < nB + C 

for some C, D E:IF and all n E ~ , and a semilattice cone :IF having 

the cancellation property and the Hukuhara property is Archimedean if 

and only if A Z holds for all A E JF+ satisfying nA < C for some 

C E:IF and all n E:N • 

A semilattice cone F has the Riesz property if the identity 

A + B = AvB + AAB holds for all A, B E:IF for which AAB : = inf {A,B} 

exists. If :IF is a semilattice cone having the cancellation property 

and the Riesz property, then the identity (A+C) A(B+C) = AAB + C holds 

for all A, B, C E:IF for which (A+C)A(B+C) and AAB exist. 

2.3. Theorem.
 

Suppose :IF is a semilattice cone having the cancellation property.
 

Then ~ is a vector lattice, and j preserves finite suprema.
 

In particular, the identities <A,B>v<C,D> = «A+D)v(B+C),B+D> and
 

<A,B> A«i.r» <A+C, (A+D) v (B+C) > hold for all <A,B>, <C,D> E ~
 

Moreover, j preserves finite infima if and only if :IF has the Riesz
 

property.
 

An ordered cone F is (countably) order complete if sup { Ay lYE r } 
exists for each (countable) set {A

y 
E:IF lyE r satisfying Ay ~ C 

for some C E:IF and all y E r • 

Each countably order complete semilattice cone having the cancellation 

property and the Hukuhara property is Archirnedean. 
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2.4. Theorem.
 

Suppose F is a semilattice cone having the cancellation property and
 

the Hukuhara property.
 

Then ~ is (countably) order complete if and only if F is (countably)
 

order complete.
 

In the case where F is only an ordered semigroup, some of the previous 

results have been proven by Kaucher [4]. 

Nor m e d Con e s 

If F is a cone and d: lFx]F -+ lR+ is a positively homogeneous 

translation-invariant metric, then 

(i) d(A,Z) = a if and only if A = Z , 

(ii) d(A+B,Z) < d(A,Z) +d(B,Z) , and
 

(iii) d(AA,Z) Ad(A,Z)
 

holds for all A, B E F and A E]R+ ' and
 

(iv) d(A,Z) = d(B,Z)
 

holds for all A, B E F satisfying A + B = Z • These properties of the
 

map d(.,Z) F ~]R+ suggest the following definition of a normed
 

cone, but it should be noted that the existence of a map F ~ ]R+
 

having properties (i) - (iv) is not equivalent to the existence of a
 

positively homogeneous translation-invariant metric on F ; see also
 

Mayer [7].
 

A normed cone is a cone F with a metric d which is translation

invariant and positively homogeneous. If F is a normed cone, then 

addition and scalar multiplication on F are continuous. 

Each normed cone has the cancellation property. 

Let F be a normed cone. 

On a; , define a norm II. II : a:; ~ lR+ by letting 

II <A,B> II := d(A,B) 

for all <A, B> Ea;. 

2.5. Theorem.
 

Suppose F is a normed cone.
 

Then a; is a normed vector space, and j is isometric.
 

The previous result is due to R&dstrom [10]. For an extension of 

Theorem 2.5 to more general topological cones, see Urbanski [15]. 



165 

Nor m e d o r d ere d Con e s 

A normed ordered cone is an ordered cone F with a metric d which is 

translation-invariant and positively homogeneous and satisfies one (and 

thus all) of the following equivalent conditions: 

d(A,B) < d(A,C) holds for all A, B, C E F satisfying A < B C~-
d(B,C) < d(A,C) holds for all A, B, C E F satisfying A < B < C -
d(A,B) < d(C,D) holds for all A, B, C, D E F satisfying B < A , 

-
-

D ~ C , and A + D < B + C • 

A metric satisfying these conditions is said to be chain isotone. 

2.6. Theorem.
 

Suppose F is a normed ordered cone having the order cancellation
 

property.
 

Then ~ is a normed ordered vector space.
 

A normed semilattice cone is a semilattice cone F with a metric d 

which is translation-invariant and positively homogeneous and satisfies 

one (and thus all) of the following equivalent conditions: 

d is chain isotone and d((A+A)v(B+B),A+B) = d(A,B) holds for 

all A, B E F ; 

d(A,B) ~ d(C,D) holds for all A, B, C, D E F satisfying 

(A+A) v (B+B) + C + D ~ A + B + (C+C) v (D+D) • 

Each normed semilattice cone is Archimedean; in particular, each normed 

semilattice cone has the order cancellation property. 

An M-normed semilattice cone (with unit) is a normed semilattice cone F 

such that 

d ( (A+D) v (B+C), B+D) = max { d(A,B) , d(C,D) holds for all 

A, B, C, D E F satisfying B < A and D < C (and there exists -

some E E F satisfying d(E, Z) 1 and A <: B+E for all
-
A, B EF satisfying d(A,B) < 1 ) .-

2.7. Theorem.
 

Suppose F is a normed semilattice cone.
 

Then ~ is a normed vector lattice.
 

Moreover, ~ is an M-normed vector lattice (with unit) if and only
 

if F is an M-normed semilattice cone (with unit) •
 

The previous results can be extended to more general topological ordered 

cones, as indicated in [13]. 
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3. CONES OF CONVEX SETS OCCURING IN INTERVAL MATHEMATICS 

In this section, we study the cone properties of the classes of all norm 

balls of a normed vector space, all hypernorm balls of a hypernormed 

vector space, and all order intervals of a (normed) vector lattice. The 

cone properties of these classes of convex sets are studied with respect 

to the Minkowski addition of sets + which is defined by letting 

A+B:= {a+blaEA,bEB} 

for all nonempty subsets A and B of a (real) vector space E , 

the usual multiplication of sets by positive scalars which is defined 

by letting 

"AA - = {"Aa I a E A } 

for all nonempty subsets A of E and (positive) scalars "A E E+ ' 

and the inclusion of sets c. The cone properties of the class of all 

norm balls of a normed vector space E are also studied with respect 

to the Hausdorff distance 8 which is defined by letting 

8(A,B) -= max { sUPAinfB Iia-bil , sUPBinfA lib-ail 

for all nonempty bounded subsets A and B of E , and those of the 

class of all order intervals of a normed vector lattice E are also 

studied with respect to the Moore distance 6 which is defined by letting 

6 ( [a ,b] , [c, d] ) - = max { II a-c II , II b-d II 

for all order intervals [a,b] and [c,d] of E and which in certain 

cases agrees with the Hausdorff distance 8. The proofs of the cone 

properties of these classes of convex sets cannot be included in these 

notes, but parts of them may be found in the paper of Fischer [1] and 

in (1 3 ] and [1 4] • 

Nor m B a I I s 

If E is a normed vector space with norm II. II , let 

U -= {xEJElllxll< 

denote the closed unit ball of E • It is known and can be proven by a 

slight modification of the proof of [13; Theorem 6.2] that the identity 

8(A,B) inf { £E (0,00) I A c B+£U B c A+E:U} 

holds for all nonempty bounded subsets A and B of E . 

Let E be a normed vector space with norm II. II • A subset A of E 

is a norm ball of E if there exist m E E and U E lR+ satisfying 

<mj u> -= {x E JE I IIx-m II < U } m + uU A 

This midpoint-radius representation of a norm ball is clearly unique. 

Let JF (JE, II. II) denote the class of all norm balls of E , endowedb 
with the Minkowski addition of sets, the usual multiplication of sets 
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by positive scalars, and the inclusion of sets. 

3.1. Theorem.
 

Suppose E is a normed vector space.
 

Then JF (lE, II. II) is an Archimedean ordered cone having the Hukuhara
b 
property. 

In particular, the identity <m U1> + <m = <m +U holds for1; 2; u2> 
1

+m2; U1 2> 

all norm balls <m ;u > and <m2 i U2> of E .1 1

We remark, however, that JFb{lE, 11.11) may fail to be a semilattice cone; 

see [14; Example 5.4]. 

The following lemma can be used to give a simple proof of the properties 

of the Hausdorff distance on the class of all norm balls of E : 

3.2. Lemma.
 

Suppose E is a normed vector space.
 

Then the identity
 

6 (<m ; U > , II m m II + I U1 1 <m2; U2» 1 - 2 1 - U2 
holds for all norm balls <m1iU1> and <m2 iU2> of E • 

Let JFb 6 (lE, II. II ) denote the ordered cone JFb (lE, II. II ) endowed with the 

Hausdorff distance 6. 

3.3. Theorem.
 

Suppose E is a normed vector space.
 

Then JF6
b us. II. II) is an Archimedean normed ordered cone having the
 

Hukuhara property.
 

This result can be proven by using Lemma 3.2 or [13; Lemma 3.2]. 

H Y per nor m B a I I s 

If E is a vector space and F is an ordered vector space, then a map 

h : lE --+ lP + is a lP- hypernorm on E or briefly a hypernorm [1] if 

(i) h{x) 0 if and only if x = 0 , 

(ii) h (x+y) < h (x) + h (y) , and 

(iii) h{ax) = lalh{x) 

holds for all x, y E E and a E lR+ • 

A lP-hypernorm h on a vector space lE is splittable if for all x E E 

satisfying h (x) :: p + q for some p, q E F + there exist y, z E E 

satisfying x = y + z, h (y) < P , and h (z ) :: q , and it is surjective 
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if for all p E F+ there exists some x E E satisfying h(x) p. 

A ~-hypernormed vector space or briefly a hypernormed vector space is a 

vector space JE with a JP-hypernorm h and will be denoted by (:IE, h) 

For example, if JE is a normed vector space with norm II. II , then 

(:IE, 11.11) is an lR-hypernormed vector space, and if lE is a vector 

lattice with modulus I. I , then (:IE, I. I) is an lE-hypernormed vector 

space, and in either case the hypernorm is splittable and surjective. 

Let (:IE, h) be a ~- hypernormed vector space. A subset A of E is a 

hypernorm ball of lE if there exist m E lE and p E F + satisfying 

<miP> := {x E lE I h(x-m) < p } A 

Different from the case of norm balls, however, this midpoint-radius 

representation of a hypernorm ball need not be unique, as pointed out by 

Fischer [1]. Let JFb (lE, h) denote the class of all hypernorm balls of 

:IE, endowed with the Minkowski addition of sets, the usual multiplication 

of sets by positive scalars, and the inclusion of sets. 

3.4. Theorem.
 

Suppose (:IE, h) is a ~-hypernormed vector space such that F is
 

Archimedean and h is splittable.
 

Then lF b (lE, h) is an Archimedean ordered cone.
 

In particular, the identity <m1 i P1> + <m2 i P2> = <m1+m2iP1+P2> holds for
 

all hypernorm balls <m iP1> and <m2 i P2> of (:IE, h)
 1

The previous result improves [14i Theorem 5.3] where a weaker definition 

of an Archimedean ordered cone has been usedi see also Fischer [1]. Under 

an additional assumption on the hypernorm, Theorem 3.4 can be improved as 

to yield the following complete extension of Theorem 3.1: 

3.5. Theorem.
 

Suppose (:IE, h) is a ~-hypernormed vector space such that lP is
 

Archimedean and h is splittable and surjective.
 

Then JFb(:IE, h) is an Archimedean ordered cone having the Hukuhara
 

property.
 

Since hypernormed vector spaces generalize normed vector spaces, ]Pb (rs, h) 

may fail to be a semilattice cone, by the remark following Theorem 3.1. 

It would be interesting to know whether Theorem 3.3 can be extended to the 

hypernormed case by replacing the norm in the definition of the Hausdorff 

distance by the hypernorm h (in the case where lP is order complete) • 
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In [14], the corresponding question for a different class of convex sets 

in a hypernormed vector space has been answered in the negative. 

o r d e r I n t e r val s 

Let E be a vector lattice with modulus 1.1 • A subset A of E is 

an order interval of E if there exist a, bEE satisfying a < band 

[a,b] := {x EEl a ~ x ~ b A 

This lower-bound-upper-bound representation of an order interval is unique 

and yields a (unique) midpoint-radius representation of an order interval 

with respect to the modulus 1.1; see e.g. [14; Proposition 6.1]. 

Let Fb(E, I. I) denote the class of all order intervals of E , endowed 

with the Minkowski addition of sets, the usual multiplication of sets by 

positive scalars, and the inclusion of sets. 

3.6. Theorem.
 

Suppose E is a vector lattice.
 

Then Fb(E, 1.1) is a semilattice cone having the cancellation property,
 

the Hukuhara property, and the Riesz property.
 

In particular, the identities [a,b] + [c,d] = [a+c,b+d] and
 

[a,b] v [c,d] = [aAc,bvd] hold for all order intervals [a,b] and [c,d] 

of E , and the identity [a,b] A [c,d] = [avc,bAd] holds for all order 

intervals [a,b] and [c,d] of E having nonempty intersection. 

Moreover, Fb(E, 1.1) is Archimedean if and only if E is Archimedean, 

and Fb(E, I. I) is (countably) order complete if and only if E is 

(countably) order complete. 

The previous result has been proven in [14; Lemma 6.2, Lemma 6.3, 

Lemma 6.5, and Theorem 6.6]. In the case where E is Archimedean, some 

of the assertions of Theorem 3.6 can be obtained from Theorem 3.5, but 

even in that case Theorem 3.6 provides more information on Fb(E, 1.1) 
than Theorem 3.5 does. Therefore, it seems not to be convenient to 

consider the order intervals of E as hypernorm balls of (m, 1.1) • 

Let now E be a normed vector lattice with modulus 1.1 and norm 11.11 , 
oand let Fb(m, 1.1) denote the ordered cone Fb(E, I. I) endowed with the 

Moore distance o. The Moore distance has been introduced by Moore [8] in 

the case m = ~ , and it has been used by Jahn [3] in the general case. 

3.7. Theorem.
 

Suppose E is a normed vector lattice.
 
6Then Fb(E,I.I) is a normed semilattice cone. 
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o
Moreover, F b (:IE, I. I ) is an M-normed semilattice cone (with uni t) 

if and only if E is an M-normed vector lattice (with unit) • 

In the general case, the Moore distance 0 may differ from the Hausdorff 

distance ~, as can be seen from [14; Example 6.12]. However, we have 

the following result which can also be used to give a simple proof of the 

properties of the Hausdorff distance on the class of all order intervals 

of an M-normed vector lattice with unit: 

3.8. Lemma.
 

Suppose E is an M-normed vector lattice with unit.
 

Then the identity
 

~([a,b], [c,d]) o( [a,b], [c,d]) 

holds for all order intervals [a,b] and [c,d] of E . 

For a proof of Lemma 3.8, see [14; Lemma 6.11]. 

~ 
Let F b ( :IE, I. I ) denote the ordered cone :IF(:IE, I. I ) endowed with the 

Hausdorff distance A. 

3.9. Theorem.
 

Suppose E is a normed vector lattice.
 
~ 

Then Fb(m,I.I) is a normed ordered cone having the order cancellation 

property. 
AMoreover, JFb(m,I.I) is an M-normed semilattice cone wi~h unit 

if and only if E is an M-normed vector lattice with unit. 

For a proof of Theorem 3.9, see [14; Theorem 6.13 and Theorem 6.14]. 

We remark that in the case where E is an arbitrary normed vector 

lattice, F~(m, 1.1) may fail to be a normed semilattice cone since the 

Hausdorff distance need not be compatible with the semilattice structure 

of Fb(E, 1.1) , as can be seen from [14; Example 6.10]. 

In the case where E is an arbitrary normed vector lattice of dimension 

greater than one, only the one-point sets of E are at the same time norm 

balls and order intervals of E . However, in the case where E is even 

an M-normed vector lattice with unit, each norm ball of E is an order 

interval of E since there exists some e E E+ satisfying U = [-e,e] • 

In this case, Fb(E,I.I) may be considered as the semilattice completion 

of Fb(m, 11.11) , and the identity U = [-e,e] together with the role 

of the closed unit ball ij in one of the equivalent definitions of the 

Hausdorff distance may also serve as an intuitive explanation of the 
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compatibility of the Hausdorff distance with the semilattice structure 

of JFb (lE, I. I ) 

4. REMARKS 

As an abstraction of the structure of the class of all order intervals of 

an ordered vector space, Mayer [7] introduced the notion of a quasilinear 

space. Mayer also considered norms and metrics on a quasilinear space, 

but it appears that no ordered quasilinear spaces have been studied in 

the literature. This is somewhat surprising since ordered quasilinear 

spaces would reflect the inclusion of order intervals and would thus 

allow for a formulation of the subdistributive law for order intervals 

without any restriction on the scalars. On the other hand, with regard 

to the restricted distributive law in quasilinear spaces and the fact 

that a quasilinear space cannot be embedded into a vector space such that 

the embedding map is additive and homogeneous (and not only positively 

homogeneous), as pointed out by Kracht and Schroder [5], it seems to be 

convenient to generalize one step further and to restrict multiplication 

by scalars to positive scalars alone. This leads from quasilinear spaces 

to cones. 

While the Minkowski addition of sets, the usual multiplication of sets 

by positive scalars, and the distances of Hausdorff and Moore are clearly 

related to the structure of the underlying vector space, this is not the 

case for the inclusion of sets. For order intervals of an ordered vector 

space E , a different order relation < can be defined by letting 

[a,b] ~ [c,d] if a < c and b < d holds; see Nickel [9] and Jahn [3]. 

The order relation < extends the order relation on E , and if E is 

even a vector lattice, then the order intervals of E form a lattice 

with respect to the order relation <, as pointed out by Nickel [9]. 

Let JFb (ns, <) denote the class of all order intervals of JE , endowed 

with the Minkowski addition of sets, the usual multiplication of sets 

by positive scalars, and the order relation -c , Then JF CIE, -c) is ab 
lattice cone having the order cancellation property and the Riesz property 

but lacking the Hukuhara property. Furthermore, if E is a normed vector 

lattice, let lF~ (lE, <) denote the ordered cone JFb (lE, <) endowed with 

the Moore distance 6. Then JF~(lE, <) is a normed lattice cone. Since 

the cone properties of lFb (lE, <) and JF~ (lE, <) are slightly different 
6from those of F us. I. I) and JF (lE, I. I) , they lead to differentb b 

embedding theorems for order intervals reflecting the different properties 

of the order relation c and <. 



172 

For the class of all order intervals of an (M-normed) vector lattice 

(with unit) E, it is also possible to prove err~edding theorems which are 

concrete in the sense that the embedding vector lattice is defined to be 

the Cartesian product mxE, endowed with the componentwise defined 

addition, scalar multiplication, and order relation (and the sup-norm), 

and that the embedding map is defined by using the lower-bound-upper-bound 

representation of order intervals. These concrete embedding theorems can 

be obtained from an (isometrically) isomorphic representation of the 

(abstract) embedding vector lattice by mxE, and the different 

properties of the order relations c and < are then reflected by the 

different properties of the embedding map. Such concrete embedding 
5theorems for JFb(lE, 1.1) and JFb(m, 1.1) have been proven in [14]; 

see also [13] for the case m = ::IR • 

Apart from the embedding theorems which can be obtained from the results 

of Sections 2 and 3, it appears that the investigation of the cone 

properties of classes of convex sets occuring in interval mathematics, 

which is motivated by RSdstrom's method for proving embedding theorems, 

may also be interesting for its own sake since it seems to be helpful for 

understanding the different properties of norm balls, hypernorm balls, 

and order intervals, and those of different order relations and metrics. 
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