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Preface 

IN late 1967, Professor Leslie Fox, Director of the Oxford University 
Computing Laboratory, invited several persons to speak at a Symposium 
on Interval Analysis. This meeting was sponsored by the Oxford Univer- 
sity Computing Laboratory and took place on 24 and 25 January 1968 
at the Culham Laboratory, Culham, England. 

The speakers were Dr. Michael Dempster of Oxford, Dr. Eldon Hansen 
of Lockheed Missiles and Space Co. (who a t  that time was a Visiting 
Research Fellow a t  Oxford), Professor Frederick Kriickeberg of the 
University of Bonn, Professor Jean Meinguet of the University of 
Louvain, Professor Ramon E. Moore of the University of Wisconsin, 
Professor Karl Nickel of the Technische Hochschule, Karlsruhe, and Dr. 
James H. Wilkinson of the National Physical Laboratory, Teddington. 

Drs. Dempster and Meinguet each gave one lecture; the other speakers 
gave two. The lectures were subsequently submitted in written form and 
appear as separate chapters in this book. Titles and authors are identified 
in the table of contents. Unfortunately, Dr. Wilkinson found it impracti- 
cable to submit a written contribution. 

The symposium was divided into two parts; one on algebraic problems 
and one on continuous problems. Professor Moore was asked to introduce 
these topics in his two lectures. As so often and so naturally happens, the 
lectures did not necessarily fit entirely into one category. Partly for this 
reason, but especially to provide greater continuity, the order of presenta- 
tion of lectures has been changed. 

During discussion periods, several topics were discussed which were 
not a part of the formal lectures. The speakers were encouraged to 
include such topics when preparing their lectures in written form. Some 
have done so. In  this-spirit, chapter 10 has been added because of 
repeated comments in 1ect;r;s and discussions indicating interest in 
Moore's 'centred form'. 

The notations used are not consistent from one chapter to the next. 
Different authors denoted quantities and ideas in different ways which 
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often were particularly suitable in different contexts. Hence it seemed 
desirable to leave notations unchanged. However, relevant comments 
to alternative notation have been added where appropriate, and literary 
styles have been altered for uniformity. 

E. H. 
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PART 1 

ALGEBRAIC P R O B L E M S  



1 Introduction to Algebraic Problems 

MATHEMATICS is considered by many as an 'exact science'. Mathe- 
maticians themselves continually talk of such precise-sounding terms as 
'proofs' and 'solutions'. Numerical computation, particularly by com- 
puting machines, is regarded by most people as completely straight- 
forward and flawless and reliable. Of course, the numerical analysb 
knows otherwise. It cannot be much of an exaggeration to say that 
nearly all the numbers that have been computed so far are of unknown 
(although 'probably' adequate) accuracy. 

Even though mathematical techniques are known (and continually 
improved) for the analysis of error in most types of computation, they 
are rarely used in practice. It can be difficult, time-consuming, and 
expensive to carry out by hand a complete error-analysis for a compli- 
cated practical problem. 

A variety of alternative procedures are commonly used. I n  many- 
perhaps most-cases they are quite reasonable and sensible procedures. 
Comparison of computed results with experimental measurements in 
some test cases, application of an algorithm to a simple test case with 
known solution, statistical estimation of error, 'asymptotic' estimates 
based on repeating a computation several times with changes in 'program 
parameters' such as step size, number of iterations, word length, and so 
on; all these are useful and often easy to apply in order to gain confidence 
in the validity and accuracy of the results of numerical computation. 
Chapter 6, by Meinguet, and Chapter 12, by Dempster, discuss some 
techniques for estimating errors in this spirit of gaining reasonable con- 
fidence in numerical results. 

I t  seems a pity, nevertheless, that mathematical rigour should have 
to be abandoned precisely a t  the point when a problem is reduced to 
arithmetic. 

Interval analysis is concerned with techniques that can be programmed 
for computing machines and contain both a computation and a rigorous 
and complete error-analysis of the results of the computation. Chapters 
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1 ,2 ,3 ,5 ,  and 7-11 by Hansen, Kriickeberg, Moore, and Nickel deal with 
this approach. 

There are three sources of error in numerical computation. The first 
and most serious, because it cannot be made arbitrarily small by addi- 
tional computation, is the propagation of error in initial data. I include 
here uncertainties in the mathematical equations that are supposed to 
describe some physical process. For example, we might have a differen- 
tial equation such as y" = ay-b 

with boundary conditions y(0) = yo, y(1) = y,, and perhaps all the 
quantities yo, y,, a ,  and b are only known approximately. The question 
then arises: 'How much error is there in the solution as a result of errors 
of given magnitude in the quantities yo, y,, a, and b ? '  

The second and third kinds of error in computation, round-off error, 
caused by computing with numbers rounded-off to a finite number of 
digits, and truncation error, caused by truncating infinite sequences of 
arithmetic operations after a finite number of steps, can always, in 
principle, be made arbitrarily small by doing enough computation. 

In  practice, of course, the question of efficiency arises and it is of 
importance to devise computational schemes so that just enough com- 
puting is done to make the second and third kinds of errors as small as 
warranted. 

If computation is still 'an art', as some have suggested, rather than 
a science, then our work is not finished. 

The propagation of error in initial data and the accumulation of 
round-off error in any Jinite sequence of arithmetic operations can both be 
rigorously bounded by the computing machine during the course of the 
arithmetic operations simply by performing them in rounded-interval 
arithmetic instead of ordinary machine arithmetic. 

Arithmetic operations with intervals are defined as follows: 

[a, bl + [c, dl = [a. +c, b +dl, 

[a, b]-[c, dl = [a-d, b-c], 

[a, b][c, dl = [min(ac, ad, bc, bd), max(ac, ad,&, bd)lj 

[a, bll[c, dl = [a, bl[lld, llc) (if 0 $ [c, dl). 

Rounded-interval arithmetic consists of adding a low-order bit to right- 
end points and subtracting a low-order bit from left-end points, when 
necessary, in order to compute intervals that are as narrow as possible 
and contain the exact interval results. 
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Both Fortran and Algol compilers can be extended in order to be able 
do this kind of arithmctic. I n  this way ordinary algebraic expressions 
Fortran or Algol symbols can be compiled and executed either in 

rounded-interval arithmetic or in ordinary machine arithmetic a t  the 
option of the user. In  case a variable is declared to be of interval type, 
then an interval of initial values may be given. Chapter 2, by Nickel, 
contains further discussion concerning these things. 

We now give some very simple illustrations of the kind of numerical 
results possible with rounded-interval arithmetic. 

Consider the computation of the quantities lln! for n = 1, 2, 3,. .., N, 
using rounded-interval arithmetic. We suppose, for simplicity, that 
three-decimal-digit, rounded, normalized floating-point arithmetic is 
available on the computer. Define the quantities fn = lln! recursively 
as 

fl = 1, fn+l =fn/(n+l) (n = 17 27--*7N)- 

We suppose that N is small enough for the numbers n + l  (n = 1, 
2, ..., N) to  be computed (or stored from input) exactly. The computation 
would proceed as follows for intervals Fn that contain fn (n = 1,2, ..., N): 

Fl = [O-100 x lo1, 0.100 x lo1], 

F2 = [O-100 x lo1, 0.100 x 101]/[0-200 x lo1, 0.200 x lo1] 
= [0.500 x lo0, 0.500 x lo0], 

F3 = [O-500 x lo0, 0.500 x 10°]/[0.300 x lo1, 0-300 x lo1] 

= [0.166 x lo0, 0.167 X lo0], 

= [O-138 x 0.140 x 10-2], 
and so on. 

In the next example we illustrate the simultaneous bounding of propa- 
gation of error in initial data and round-off error accumulation. 

Consider the problem of computing an approximate value and bound- 
ing its error for the quantity 
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when it is known that x = 0.452&0.001 and 

a, = 0.200f 0.001, a, = 0.300f 0.005, 

a, = 6.17f 0.02, a, = -2.0f 0.1. 

The computation is rounded-interval arithmetic (again assuming three- 
decimal-digitjloating-point machine arithmetic) would proceed as follows. 
(We represent the numbers here in an equivalent fixed-point notation.) 
Put X = [0.451,0.453], 

A, = [0.199,0.201], 

A, = [0.295,0.305], 

A, = [6-15,6.19], 

A, = [-2.10, -1.901; 

X2 = [0.203,0.206], 

A4X2 = [-0.433, -0.3851, 

A3+A4X2 = [5.71,5.81], 

A2X = [0.133,0.139], 

Al+A, X = [0.332,0.340], 

then 

We know that Y must contain y, thus 

0.0574 < y < 0.0599, 

or we could write (averaging end points) 

y = 0.0586f 0.0013. 

Computational problems in algebra--even as simple as that of calcu- 
lating 42-often require infinite sequences of arithmetic operations for 
their exact solution. We cannot, and the computing machine cannot, 
execute infinitely many arithmetic operations during a finite interval 
of time; so we must approximate the limiting result by truncating the 
infinite sequence after some finite number of steps. This is the source 
of the third kind of error in computation. 

In  problems in linear algebra, such as matrix inversion, there are finite 
procedures, so-called 'direct methods' such as Gaussian elimination and 
indirect methods such as iterative procedures. It is sometimes better to 
use indirect methods, even at the cost of introducing truncation error, 
in order to sharpen the computed bounds on the other kinds of error. 
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The evaluation of any finite sequence of interval-arithmetic operations 
produces upper and lower bounds on the range of values of the same 
computation in real arithmetic for any choice of real numbers in the 
initial intervals. Rational expressions for truncation errors can be 
bounded in this way. Irrational expressions for truncation errors can 
often be bounded, making use of special information about the functions 
concerned. 

One can often obtain rational interval functions, for example interval 
polynomials, which contain a given irrational function. 

For example, consider the Taylor series with remainder in mean-value 
form for the exponential function with negative real argument: 

for some t E [x, 0] where x < 0. 

We have e' E [ex, eO] c [O,1] for t E [x, 01 and x < 0. 
Therefore, for every positive integer k, and all x < 0, the exponential 

function is contained in the interval polynomial 

We have ex E Qk(x) for k = 1, 2 ,..., and x < 0. 
If we evaluate Q,(x) in rounded-interval arithmetic on the computer 

we will obtain an interval containing the exact value of ex, for negative x. 
The width of this interval can be made arbitrarily small by taking k large 
enough and by carrying enough digits on the machine. Of course, for 
large negative x there are more efficient ways to do the same thing. 

In order to bound the range of values of ex when x E [xl,x2] with 
x, < x, < 0 we could simply compute Qk([x1,x2]) since 

ex E Qk([xl, x,]) for all x E [x,, x2]. 

The width of the bounding interval Q,([x,,xz]) obtained in this way 
will be slightly greater (carrying enough digits) than e(x8-x1)- 1. If x2-x1 
is small, then this will be a narrow interval. On the other hand for wide 
intervals [x,, x,] we can make use of the monotonicity of the exponential 
function and notice that x, < x, < 0 implies 

ex. < exa < 1. 

Then we can compute Qk(xl) and Qk(x2) and we shall obtain 

and 
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and we will have for all x E [xl, x2] with x2 < 0, 

ex E [exl, ex.] c [al(xl), b2(x2)l. 
For large enough Ic, and carrying enough digits, this bounding interval, 
[al(xl), b2(x2)], will have a width greater than the width, exa-exl, of the 
actual range of values by an arbitrarily small amount. 

We conclude this introduction with an application of these remarks 
to the problem of finding a zero of the function f(x) = ex+x with 
rigorous error-bounding. 

The given function surely has a root in [- 1,O] since it is continuous 
and f(-1) = e-l-1 < 0 whereas f(0) = eO+O = 1 > 0. We shall not 
attempt to decide whether this observation should be considered as art 
or science. In  any case let us pass on to the next step. 

From the mean value theorem, we have (since f is continuously 
differentiable) f (4 = f (Y)+f  ' (~ (x -Y)  
for some 6 between x and y. Suppose f (x) = 0 and suppose that both 
x and y are in some interval [a, b]; then so also is 6 in [a, b] and we can 
write 

where F1([a, b]) is an interval function containing the range of values 
off '(6) when 5 E [a, b]. For the problem at hand, f '(6) = e[+l. We can 
get improved bounds on the root using even the crude bounds on the 
range of values off' given by 

f '(0 ~.Qz([a, b l )+ l  
f o r f ~ [ a , b ]  a n d a  < b < 0 with 

Q2([a, bl) = 1 +[a, bl++[O, ll[a, b12. 
If x and y are in [a, b] c [- 1,0], then so is 5 in [a, b] and we have 

Now take [a,b] = [-I, 01 and y = $(a+b) = --+, then x and y are 
in [- 1,0] and 

Qz(Y) = Qz(-B) = l--++i[O, 11(-3)2 = [B, 91, 
Qz([a,bl) = Q2([-1,01) = 1+[-1,01++[0, I][-1, 012 = [O, $1. 

Therefore x E y- Q Y + Y  = 1 [+,#I+(-&) 
Qz([a, bl)+l 2 [0,31+1 

Carrying out the interval arithmetic, we obtain 

x E [-9, -41. 
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We now know that a zero of e5+x is in the narrower interval [- #, - $1. 
The procedure we used amounts to  an interval version of Newton's root- 
finding method. We could iterate the process and obtain a sequence of 
intervals each containing the root. The sequence would not converge to 
an interval of zero width, of course, unless we allow k, the number of 
terms in our interval approximation to ex, to  increase as the iteration 
continues. 

Chapters 2 and 3 by Nickel contain further work on interval methods 
for such problems. For some related work, see [I]. 

Some work has been done also on an n-dimensional interval version 
of Newton's method for systems of non-linear algebraic equations. See 
121, 131, and 141. 

REFERENCES 

1. DARQEL, R. H., LOSCALZO, F. R., and WITT, T. H., Automatic error bounds 
on real zeros of functions. Communs Ass. comput. Mach. 9,  806-9 (1966). 

2. HANSEN, ELDON, On solving systems of equations using interval arithmetic. 
Math. Comput. 22, 374-84 (1968). 

3. MOORE, R. E. Interval analysis. Prentice-Hall, New Jersey (1966). 

4. -Practical mpects of internal computation. Aplikace matematiky, Prague 
13, 52-92 (1968). 



2 Triplex-Algol and Applications 

1. Introduction 
IN this chapter we present a survey of triplex-Algol 60 and some 
examples showing how to work with triplex-Algol. As one example, s 
Newton-algorithm in triplex notation is given which always converges. 

In  1966 a team of mathematicians at  the University (Technische 
Hochschule) of Karlsruhe, Germany, started the triplex-project.? The 
triplex group consists of members of the Lehrstuhl fur Numerische 
Mathematik und Grossrechenanlagen and of the Rechenzentrum. Since 
then the following three subjects have been treated: 

(1) development of the new algorithmic language 'triplex' and the 
exact definition in Backus-Naur-form as 'triplex-Algol 60', 

(2) realization of a triplex-Algol compiler, 
(3) description of a number of triplex-Algol algorithms for the numeri- 

cal solution of mathematical problems. 

Some of the results are given in references [l]  and [5]-[14]. 

2. What is  triplex ? 

The triplex language is an extension of one of the common algorithmic 
languages such as Fortran, PL/1, or Algol 60. The extension consists 
of the addition of a new kind of variable of the type 'triplex' to the 
'integer', 'real', 'Boolean', ... variables. The triplex numbers are an 
extension of Moore's interval numbers (see [3]) and the triplex arithmetic 
contains Moore's interval arithmetic (see [3]). 

Until now, only the triplex-Algol 60 language has been defined (see [I]). 
A triplex-Algol 60 compiler has been working since May 1967 for the 
computer ZUSE Z 23 (see [9]-[14]). A compiler for the computer 
Electrologica X 8 is under construction. Sub-routines for triplex arith- 
metic in PL/1 have been written [2]. In  what follows only the completely 
defined triplex-Algol 60 language will be considered. 

t Previously called 'Fehlersohraltkelt-ZahZm-Projekt'. 
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3. Why triplex-Algol ? 

Triplex-Algol is a formalized language containing Moore's interval- 
analysis. Therefore it is possible to define each 'interval-algorithm' in 
that general language universally, i.e. independently of code procedures, 
a machine language, or special computer characteristics. 

4. Definition of triplex-Algol 60 
A detailed description of triplex-Algol is given in the literature as 

indicated in section 2 above. For our present purposes, we give the 
following definition in extract form : 

Types 
integer also the combinations 
triplex integer array, triplex array,. ., 
real integer procedure, triplex procedure,. . . 
Boolean are permitted. 

Triplex numbers 
X:  = [g, 53, ZIT (see figure). 

A triplex number X is an entity. The values of g, 53, Z are of type real. 
Their meaning is: g, Z = lower, upper bound; 5 = main value. The 
relations g t: 5 < Z must hold. 

Arithmetic 
If * denotes one of the operators (+, -, x , I )  then for triplex numbers 

X and Y, by definition: 

2: = X * Y : = { X * ~ : X E X , ~ E Y ) ,  whereO$Yfor*lc/.  

The main value is defined by x": = Zsy", using the ordinary real (i.e. 
floating-point) arithmetic (permanence principle, see [8]). The round-off 
errors are included. 

Transfer functions 
g: = inf (X), 
5: = main (X), X: = compose (g, 5, Z),  
Z: = sup (X). 

t Here and in what follows we denote triplex variables by capital letters, integer and 
red variables by small letters. 
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Relational operators < , = , > . 
Relational operators are defined in terms of the bounds (not the main 

value) of a triplex number: 

X < Y : Z < y ,  
x = Y : g = y / \ Z = g ,  
X > Y : g  >i. 

Also the operators ,<, 2, # have been defined. 

Input/output includes rounding if a decimal-binary conversion is 
necessary. 

Standard sub-routines 

Standard sub-routines for triplex arguments are defined, too. For 
example, 

I 1 i f O < X ,  
signum : sign (X): = 0 if 0 E X, 

-1 if 0 > X .  

I X if sign(X) = 1, 
absolute value: abs (X) : = -X if sign (X) = - 1, 

[O, abs (Z), max (-p, Z)] if sign (X) = 0. 
intersection : 

intact (X, Y): = 
rmax (p, y), 5 ,  min (2, g)] if sign (X-Y) = 0,t  
not defined if sign (X-Y) # 0. 

5. Reasons for the use of interval numbers 
I n  section 6 we shall explain why the triplex-Algol system was 

developed. To this end, we now consider reasons why interval numbers 
are used. The &st reason is that mathematical problems cannot always 
be solved in floating-point arithmetic because of round-off errors. For 
example, the equation 3x = 1 
has the unique solution 

Q = 113 = 0.333 ..., 
which cannot be written as a floating-point number of finite length in 
decimal or binary notation. 

In  interval numbers the solution, to five decimal digits, is 

i.e. the solution X can be written by means of floating-point numbers. 

t 1 is arbitrary but lies between the bounds of intsct(X, Y). 
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The second reason is that intervals (more generally, sets) often arise 
naturally in mathematics. For example, assume 2 < 53. The mean 
value theorem, 

f ($1 = f (53)+($-2)ft(4) (i < 4 < Z), 
cannot be treated numerically in real numbers, because 4 is unknown. 
But the relation f ($1 5 f (@+(2-2)f'(X) 

with X: = [$,$I can be used numerically with the aid of interval analysis. 

6. Reasons for the use of triplex numbers 
We now consider reasons why the use of triplex numbers is preferred 

to the use of interval numbers. The first reason is that storing the 
numbers is simpler. For example, the number n: = 3.14159265.. . written 
in interval form, using nine significant decimal digits, is 

To store this interval number (without sign) requires eighteen decimal 
digits. Similar information can be expressed in the form 

T: = 3.14159265f.1 x 
which (without sign) requires eleven digits. In  the triplex case, we can 
use the latter form. That is, we need not store the numbers g, 2, and d 
to represent X = [g,Z,2]. Instead, we can use the equivalent form 
(53,2-g, 2-53) or even (53, max(2-g, 2-2)). 

The second reason is that the arithmetic is faster. For example, to add 
the intervals 

e: = [2.71828182,2.71828183] and T: = [3.14159265,3.14159266] 

requires eighteen digit-to-digit additions (ignoring carry) to get 

e + ~ :  = [5.85987447,5-859874491. 

If a triplex number X is written ill the form X: = 53- (5-g) +(2-53), 
we have 

e: = 2.81728182-0+1 x 10-a and n: = 3.14159265-0+1 x 
so that e+n: = 5.85987447y0+2 x Here only ten digit-to-digit 
additions (ignoring carry) are required. This is important for 'long 
numbers '. 

The third reason is that there is no loss of information if the bounds 
are pessimistic. After a great number of arithmetic operations it may 
be that, in floating-point arithmetic, the result is 2 = 7.12 x lo4 while 
an interval analysis gives the result X = [-3.74 x 103, +7-51 x lo4]. In  
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this case the interval notation is practically meaningless. But it may be 
that the approximation P is not too bad. Printing only the interval X 
means throwing away the previous information 5.  In  triplex that 
information is conserved and printed out too. 

The fourth reason is that many algorithms in numerical mathematics 
need both the main value P plus a corresponding interval [g,5] con- 
taining P. Therefore in triplex the combination X: = [g,Z,8] is used. 
In  what follows the Newton procedure is an example of such an algorithm. 

7. Examples, working in triplex-Algol 
In the following examples the problem of finding a root of 

is solved in several ways. 

7.1. Iterative solation 

Let 

82 
Because Iy'(x)I = 1(3+x2)2/ - 9 6 < 
the iteration 

x, arbitrary, x,,,: = cp(x,) for n = 0, 1, 2 ,... 
leads to an always converging sequence {x,}. Replacing the real numbers 
x, by triplex numbers X, gives the iteration formula 

X, arbitrary, X,,,: = y(X,) for = 0, 1 ,... . 
The following is a triplex-Algol-program? for this iterative algorithm. 

It was stopped manually. 

' BEGIN ' 
'INTEGER' N ; 
'TRIPLEX ' X ; 
N :  = 0; 
X:  = [-I, 0, +I]; 

LABEL : PRINT (N, X) ; 
N: = N+1; 
X : = (1-X 'POWER' 2)/(3+X 'POWER' 2) ; 
' GOTO ' LABEL 

'END' 

t The program is in the Moor notation. For details and programming examples 
[41. 
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The results? are 
X 

4 
A 

1 

N x 2 2 

The convergence is linear. The main value and the bounds both have 
approximately the same speed of convergence. 

7.2. Na7ve Newton method 

In  order to get a better rate of convergence (quadratic instead of 
linear) the well-known Newton method is often used. In real analysis 
the algorithm is 

X, arbitrary, x,+~: = x,-f (x,)lft(xn) for n = 0, 1, ..., 

where 

Replacing the real numbers x, by triplex numbers X, gives the (naive) 
algorithm : 

X, arbitrary, X,,,: = Xn-f (X,)lft(Xn) for n = 0, 1, ... . 
Programming this algorithm gives the astonishing result that the result- 
ing sequence X, is always divergent for an arbitrary initial value X, # f ! 

t Computed with the computer ZUSE Z 23 with the triplex-Algol compiler of 
Dr. Wippermann (see [lo]-[14]). 
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What is the reason for this behaviour ? Before answering that question, 
let us introduce the real-valued function? 

span (X) = span ([x, 2, b]): = 2-F (see figure). 

X 

The span has the following properties: 

span (X) >, 0, 
span (a) = 0 if a is real, 

span ( ax )  = jar 1 span (X) (a real), 

span (Xf Y) = span (X) +span (Y). 

With this definition, one sees that for X, # 2 and f f 0, 

span (Xn+,) = span (Xn)+span (f (Xn)lfl(Xn)) > span (Xn). 

Therefore the convergence of the bounds of Xn is impossible. 

7.3. Pseudo-Newton method 

Rewriting 
f x-cp - x-xyt-x+cp cp-x(pl x--- =x-- - - -- 
f '  1-cp' 1 -cpl 1-cp' ' 

one may hope to get a convergent Newton method. The following two 
examples show two possibilities: 

This formulation leads to the triplex-Algol program.$ 

'BEGIN ' 
'INTEGER' N ; 
'TRIPLEX ' X, Y ; 
N :  = 0;  
X :  = [-1,0,1]; 

t Moore and Hansen (see Chapters 1, 5, and 11) call this value 'width' and denote 
it by w ( X ) .  

$ The program is in the Alcor notation. For details and programming examples see [4]. 
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LABEL : PRINT ( N ,  X )  ; 
N:  = N + I ;  
Y :  = X 'POWER' 2 ;  
X :  = ( 3 + 6 x  Y-Y 'POWER' 2)/ 

( 4 + 4 x ( I + X )  'POWER' 2 + ( 1 + Y )  'POWER' 2); 
'GOTO ' LABEL ; 

' END ' 

This program yields the fo l lowing  results:? 

The program s t o p p e d  because of overf low.  The main value is-as 
expected-quadratically c o n v e r g e n t ;  the bounds are still divergent. 

This formulation gives the fo l lowing  t r ip lex-Algo l  program$ ( w h i c h  was 
stopped m a n u a l l y )  : 

'BEGIN' 
'INTEGER' N ; 
'TRIPLEX' X, Y ; 
N:  = 0; 
X :  = [-I, 0, 11; 

LABEL : PRINT ( N ,  X )  ; 
N:  = N+1; 
Y :  = X 'POWER' 2 ;  
X : = ( 4 + 4 x  Y-(1-Y) 'POWER' 2)/ 

( 4 + 4 ~  ( l + X )  'POWER' 2+(1+  Y )  'POWER' 2 ) ;  
' GOTO ' LABEL 

'END' 

t Computed with the computer ZUSE Z 23 with the triplex-Algol compiler of 
Dr. Wippermann ([lo]-[14]). 

1 The program is in the Alcor notation. For details and programming examples see [4]. 
8533350 0 

c 
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The numerical results? are: 
X - 

/ \ 

N - x z 2 

0 -0~100000000 X lo1 
1 .125000000 
2 -372630021 X 10-I 
3 -831308385 x 10-I 
4 -952804747 x 10-I 
5 .115990216 
6 -142702889 
7 -172952331 
8 -204435240 
9 -233079488 

10 -255490542 
11 -2'70988171 
12 -280883393 
13 -286924555 
14 -290525348 
15 -292644115 
16 -293882076 
17 -294602557 
18 -295020938 
19 m295263584 
20 -295404206 
2 1 -295485667 
22 -295532845 
23 -295560165 
24 -295575984 
25 -295585143 
26 -295590446 
27 -295593516 
28 -295595294 
29 -295596323 
30 -295596919 
3 1 -295597264 
32 -295597463 
33 -295597580 
34 -295597647 
35 -295597685 
36 -295597708 
37 e295597721 
38 -29559'7728 
39 -295597732 
40 -295597736 
4 1 -295597737 
42 -295597737 
43 -295597738 
44 -296597738 

t Computed with the oomputer ZUSE 
Dr. Wippermann ([lo]-[14]). 

0.0 0~100000000 x 101 
-333333334 ~160000001 x lo1 
-296000000 -141073988 x lo1 
-295597791 -128521236 x lo1 
-295597743 -109277484 x lo1 
-29559'7743 -894041905 
-295597743 -715065710 
-295597743 -565699620 
-295597743 -456048028 
-295597743 .386170705 
~295597743 -345960847 
-295597743 -323764036 
-295597743 -311518896 
-295597743 .304677140 
-295597743 -300806489 
-295597743 -298597097 
-295597743 -297328739 
-295597743 -296598067 
-295597743 -296176268 
-295597743 -295932479 
-295597743 -295791474 
-295597743 -295709883 
-295597743 -295662661 
-295597743 -295635327 
-295597743 -295619504 
-295597743 -295610343 
-295597743 -295605039 
-295597743 -295601968 
-295597743 -295600191 
-295597743 -295599162 
-295597743 -295598566 
-295597743 -295698221 
-295597743 -295598020 
-295597743 -295597905 
-295597743 -295597838 
-295597743 -295597800 
-295597743 -295597777 
-295597743 -295597765 
-295597743 -295597757 
-295597743 -295597753 
a295597743 -295597750 
-295597743 -295597748 
-295597743 -295597747 
-295597743 -295597747 
-295597743 -295597747 

Z 23 with the triplex-Algol compiler of 
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The main value is again quadratically convergent, the bounds are now 
convergent-but only linearly. In  fact, the number of iterations neces- 
sary to obtain the final result is much higher (43 compared with 15) than 
in the case of the simple iteration method (see section 7.1). Also the 
computing time is greater because of the higher number of arithmetic 
operations needed. Therefore this pseudo-Newton method is too poor 
to be used. 

7.4. Newton method 
Let 9 be the solution of f(x) = 0 and 2 an arbitrary real number. 

Then by the mean value theorem there exists a number f = f(9, 2) such 
that 0 = f (9) = f (2) +(9-2) f '(0. Let X: = [g, 2,531 be a triplex number 
containing 9. Then 6 E X and therefore 

9 = 2+f (2)lf1(E) E 2+f (2)lf1(X) 
if 0 4 fl(X). Therefore we now define the following triplex Newton 
algorithm: X, arbitrary, but containing 9, 

X,,,: = 2,+f(Zn)/f1(X,) form= 0, 1, .... 
If 2, = main (X,) is quadratically convergent and fl(Xn) is bounded, 
then X, is obviously also (quadratically) convergent, because 

span (X,+,- $1 = span (2,- $+f (2,)lf '(X,)) 

= If (2,) I span (llf '(Xn)) + 0. 
This algorithm was first given by Moore (see [3], p. 64) with (53,+gn)/2 
instead of 2,. 

I n  this example i t  can be clearly seen that the use of the real 'main 
value' 2, together with the interval X, is very often quite 'natural' for 
numerical algorithms. This was one of the main reasons for introducing 
the triplex numbers replacing interval numbers. 

A triplex-Algol program for this algorithm is:? 

'BEGIN' 'INTEGER' N ; 
' TRIPLEX' X, Y ; 

'TRIPLEX' 'PROCEDURE ' F(Y) ; 
' TRIPLEX ' Y ; 

'BEGIN ' ' TRIPLEX ' ; 
2: = Y; 
Y: = Y 'POWER' 2; 
F : = 2-(1-Y)/(3+Y) 

'END'; 

t The program is in the Alcor notation. For details a d  programming examplessee [4]. 
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'TRIPLEX' 'PROCEDURE ' F P R I M E  ( Y )  ; 
' TRIPLEX ' Y ; 
F PRIME : = 1 + 8 X Y/((3+ Y 'POWER' 2) 'POWER' 2 )  ; 
N :  = 0 ;  
X :  = [ - I ,  0, + I ] ;  

LABEL : PRINT ( N ,  X )  ; 
N :  = N + l ;  
Y : = COMPOSE ( M A I N  ( X ) ,  MAIN ( X ) ,  M A I N  ( X ) )  ; 
X : = Y -F( Y ) / F  P R ~ E  ( X )  ; 
' UOTO ' LABEL 

' E N D  ' 
The program was stopped manually. The numerical results? were: 

X - 
/ \ 

N 
- x 2 X 

0 -0~100000000 X 101 0.0 0~100000000 x 101 
1 -176470587 -333333334 ~300000001 x lo1 
2 .286176605 -296000000 -320150327 
3 ~295594364 -295597791 -295604528 
4 -295597741 -295597743 ~295597744, 
5 -295597741 -295597743 -295597743 
6 -295597741 -29559'7743 q295597743 

These results are very satisfactory. The convergence is now obviously 
quadratic for both main value and bounds. It is interesting to note that 
after one iteration the upper bound 2, is outside of X,. 

7.5. Generalized Newton method 
THEOREM. Let -a < a < b < co, I :  = [a, b],  f ( x )  E Cl(I )  or C,(I), 

and let F ' ( X )  be a continuous triplex extension of f ' (x)$ with the property 
0 $ F ' ( X )  for X c I.  Then the following generalized Newton algorithm i s  
always super-linear or quadratically convergent: 

X ,  E I arbitrary 

xn+1: = [Zn-f (2n)/P'(Xn)l n x,. 
The proof is not difficult and will not be given here. The fact that 

this algorithm is quadratically convergent if span (X,) is sufficiently 
small has been given by Moore ([3]) .  

A realization of this algorithm in triplex-Algol applied to the function 
f ( x ) :  = x/(l+Ixl), f '(2): = 1/(1+1~1)~,  2 = OintheintervalC-106,106]with 
the initial value X,: = [- 7,471 1, 2479211 gives the following program : 

t Computed with the compiler ZUSE Z 23 with the triplex-Algol compiler of 
Dr. Wippermam ( [ lo]- [14]) .  

$ i.e. F'(X) E C,(I), f'(53) E F'(X) if Z E X ,  and f  '(53) = F1([3. 3 ,  531). 
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' B E G I N  ' ' I N T E G E R '  N ; 
' T R I P L E X '  X ,  Y ,  Z ,  Z X ;  
'REAL' R, Z M ,  Z X I ,  Z X S  ; 

' T R I P L E X  ' ' PROCEDURE ' F ( X )  ; 
'TRIPLEX ' X ; 
' BEGIN ' 

'REAL ' X I ,  X S  ; 
X I  : = ABS ( I N F  ( X ) )  ; 
X S  : = A B S  (SUP ( X ) )  ; 
' I F  ' X I  ' GREATER ' X S  ' T H E N  ' X S  : = X I  ; 
' I F '  SIGN ( X )  'EQUAL' 0 ' T H E N '  X I :  = 0 ;  
F : = X / ( 1  +COMPOSE ( X I ,  ABS (MLLIN ( X ) ) ,  X S ) )  ; 

' E N D  '; 
'TRIPLEX'  'PROCEDURE ' F PRIME ( X )  ; 

' T R I P L E X  ' X ; 
' BEGIN ' ' T R I P L E X  ' Z ; 

'REAL' Z I ,  Z M ,  ZS, M ; 
'REAL ' X I ,  X S  ; 
X I :  = ABS ( I N F  ( X ) )  ; 
X S  : = A B S  (SUP ( X ) ) ;  
' I F '  X I  'GREATER' X S  ' T H E N '  X S :  = X I ;  
' I F '  SIGN ( X )  'EQUAL' 0 ' T H E N '  X I  = 0 ;  
M :  = l / ( l f  lo6) 'POWER' 2 ; 
Z :  = l / ( ( l f  COMPOSE ( X I ,  ABS (MAIN ( X ) ) ,  X S ) )  

'POWER' 2 )  ; 
ZI : = I N F  (2) ; 
ZM : = MAIN (2) ; 
ZS : = SUP (2) ; 
' I F '  ZS 'GREATER' 1 ' T H E N '  Z S :  = 1 ; 
' I F '  ZM 'GREATER' 1 ' T H E N '  Z M :  = 1 ; 
' I F ' Z I  'LESS '  M ' T H E N '  Z I :  = M ;  
' I F '  ZM 'LESS '  M ' T H E N '  Z M :  = M ;  
F PRIME : = COMPOSE (21, Z M ,  2s) ; 

' E N D ' ;  

X :  = [-7, 4711, 2479211; 
N :  = 0 ;  

L1: PRINT ( N ,  X )  ; 
N :  = N+1; 
'FOR'  R : = MAIN ( X ) ,  I N F  ( X ) ,  SUP ( X )  ' D O  ' 
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'BEGIN' Y :  = COMPOSE (R, R, R) ; 
8 : = Y-F(Y) /p  PRIME (X) ; 
ZX : = INTSCT (X, 2) ; 
ZM: = MAM (2); 
ZXI : = I N F  (ZX) ; 
ZXS : = SUP (ZX) ; 
'1s' ZX 'EQUAL' X 'THEN' 'GOTO' L2; 
' IF ' ZM ' NOT LESS ' 2x1 ' AND ' ZM ' NOT GREATER ' 

ZXS 
'THEN' X : = COMPOSE (ZXI, ZM, ZXS) 
'ELSE'  X : = COMPOSE (2x1, (ZXIf 

+ZXS)/2, ZXS) ; 
'GOTO' L1; 

L2 : 
'END' ;  

WRITE ( " 
"1 ; 

PRINT (N, X) 
'END' 

The resultst were: X 
f l  A\ - 

N x z 2 

t Computed with the computer ZUSE Z 23 with the triplex-Algol compiler of 
Dr. Wippemann ([lo]-[14]). 
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This example and the initial value were chosen such that the conver- 
gence is not very fast. The real Newton method for this function f (x) 
is always diverging for lxo 1 2 1. For n = 0(1)11 the convergence is only 
linear; then it becomes quadratic until n = 16 where the round-off errors 
slow down the rate of convergence. For n = 16 the main value becomes 
zero by underflow. Then the bounds for n = 17 are the exact value. 
The final result occurs for n = 18. 

Additional note by E. Hansen 

In order to apply the Newton method as described in section 7.4 or 
section 7.5, we require an initial bound on the root. It is frequently 
possible to obtain such a bound in the course of the computation. This 
is made possible by the following theorem: 

THEOREM. Assume f (x) E Cl(X) and 0 4 f '(X) for some given interval X. 
Let 2 be a point in X and de$ne 

TX: = 2-f (2)lf '(X). 

If TX c X, then there exists a point 2 E TX such that f (2) = 0. 

Proof. Since 0 4 f '(X), we can assume without loss of generality that 
f '(X) > 0. Denote f '(X) = [c, dl. Iff (2) = 0, there is nothing to prove. 
If f (2) > 0, then since f '(x) E [c, dl for x E X, the curve y = f (x) lies 
below the line yl = c(x-2)+f (2) and above the line y, = d(x-2) + f (53) 
for x < 2. Hence f (x) = 0 for some point in the interval 

[2-f(z)lc, ~-f(a)la].  

But this interval is contained in X since TX c X by assumption. Hence 
2 E X, which implies .$ E TX (see Lemma 7.2 of [3]). A similar proof 
can be obtained when f (2 )  < 0. 

In practice, rounding occurs and instead of TX we will obtain, say, 
TIX 3 TX. If we find TI X c X, this assures 2 E Tl X since it implies 
TX c X. 

It is of interest to note that 2 is not a fixed point of the mapping T 
(unless 2 = 2). 

It has been shown by Professor W. Kahan (private communication) 
that the above theorem can be extended to the multidimensional case, 
where it is especially useful. 

REFERENCES 
1. APOSTOLATOS, N., KWLISCH, U., KRAWCZYK, R., LORTZ, B., NICKEL, K., and 

WIPPERMANN, H.-W. The algorithmic language triplex-Algol 60. Num. Math. 
11, 175-80 (1968). 



24 TRIPLEX-ALGOL AND APPLICATIONS 2.7 

2. CSAJKA, I., MUNZNER, W., and NICKEL, K. Subroutines ADD, NEQ, SUB, 
DIV, MUL for use in an 'error-bound arithmetic'. IBM Research Laboratory, 
SZiumerstrasse 4, 8803 Riischlikon, Switzerland. 

3. MOORE, R. E., Interval Analysis. Prentice Hall, New Jersey (1966). 

4. NICKEL, K. AZgol Praktikum. G .  Braun-Verlag, Karlsruhe (1964). 

6. - Ober die Notwendigkeit einer Fehlerschranken-Arithmetik fiir Rechen- 
automaten. Num. Math. 9, 69-79 (1966). 

6. -Die vollautomatische Berechnung einer einfachen Nullstelle von 
P( t )  = 0 einschliel3lich einer Fehlerabschiitzung. Computing, 2, 232-45 
(1967). 

7. - Quadraturverfahren rnit Fehlerschranken. Computing, 3,47-64 (1968). 

8. - Anwendungen einer Fehlerschranken-Arithmetik. To appear in Nume- 
rische Mathematik, Differentklgleichungen, Approximutiomtheorie. Inter- 
nationale Schriftenreihe zur numerischen Mathematik, Birkhiiuser, Basel 
(1968). 

9. - Zwei neue Rechenmaschinen-Systeme an der Universitiit (TH) Karls- 
ruhe. HYDRA-X8 Triplex-Algol-Z 23. Umschau 67, 625-6 (1967). 

10. WIPPERMANN, H.-W. Realisierung einer Interval-Arithmetik in einem Algol- 
60-System. Elektron. Rechemnl. 9, 224-33 (1967). 

11. - Definition von Schrankenzahlen in Triplex-Algol. Computing, 3,99-109 
(1968). 

12. - Implementierung eines Algol-Systems mit Schrankenzahlen. Elektron. 
Datenverarb. 10, 189-94 (1968). 

13. -Manual fiir das System Triplex-Algol Karlsruhe. Ber. Imt .  Angew. 
Math. Rechenzent. Univ. ( T H )  KarZsruhe, April (1967). 

14. Ein Algol-60 Compiler mit Triplex-Zahlen. 2. angew. Math. Mech. 47, 
T76-T79 (1967). 



3 Zeros of Polynomials and Other 
Topics 

1. Dependent intervals 

be a rational function with real rational coefficients a, and b,. Let 
X: = [g, b] be an interval and 

F(X): = {f(x):x EX). 

In interval arithmetic or triplex arithmetic, the function f (x) can be 
evaluated for x replaced by the interval X yielding 

where the arithmetic operations are performed as machine-interval 
operations. It is well known that in general 

but (see Moore [7]) the following is always true: 

f (X) 2 F(X). 
As an example, let 

f(x): = 1-x+x2-x3+x4-$5 and X = [g,b]: = [2,3]. 

Now f '(x) < 0 for x > - 1 and therefore 

F(X) = [f (b)'f (dl = r-182, -211, 

while f (X) = [-252, +49] 3 F(X). 

Very often the value off (X) obtained in this way depends on the kind 
of algorithm used, so that it is possible to get 'better' results just by 
rearranging the form off (x). To illustrate this, note that in this example, 
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the interval X: = [2,3] gives the following different values for f (X) if 
f is written in the forms shown: 

The last value is the correct one for f (X). 
Under certain conditions the equality 

(*I f (XI = F(X) 

holds. This is true, for example (even in the case in which the coefficients 
are interval numbers), if X 2 0 and 

m 
(a) n = 0, i.e. f (2): = 2 apxp/bo, and ap 2 0 for p = O(1)m; 

p=o 

(b) a, > 0, ap < 0 for p = 1 (l)m, and sign f (X) = sign b, for 
v = O(1)n. 

Unfortunately the relation (*) is in general false. This means that in 
general the result of an algorithm has bounds worse than is desired. 
This is revealed by the following very simple example. Let f (x) = x-x. 
Then f (x) = 0 and therefore f (X) = 0 for each X = [g, dl. But (see 
section 7.2 of Chapter 2) 

spanf(X) = span(X-X) = 2spanX 3 0 

where equality holds if and only if X is a real number. 
It is very important to learn why (*) is not true in general, i.e. why 

and when such a loss of exactitude occurs. The reason for this behaviour 
was first pointed out in full detail by Apostolatos and Kulisch ([I]-[3]). 
In  order to discuss this reason, we make the following definition. Two 
intervals X = [g, d] and Y = [y, g] are called dependent, if there exists 
a point-wise relation X t ,  Y, i.e. if each point x E X belongs to a point 
y E Y and vice versa. In  other words, there are two functions [(t), ~ ( t )  
defined on 0 < t < 1 such that 

Some examples of dependent intervals are: 

(a) X = X, i.e. each interval X depends on itself, 
(b) Y: = X2, Y: = X(1-X), etc., 
(c) X: = {t(l-t2): 0 < t < l), Y: = {t2(1-t):0 < t < 1). 
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Let * denote one of the arithmetic operations +, --, x , or I. B'or 
dependent intervals, the 'natural' definition of X * Y becomes 

d x * Y: = ([(t) * ~ ( t ) :  0 < t < l), 

where, in the case of the division, ~ ( t )  # 0 for any t E [0, 11. Aposto- 
d 

latos and Kulisch call the arithmetic based on the operations * and * 
'extended' (erweiterte) and 'simple' (einfache) interval arithmetic, respec- 
tively. Within the computer only the 'simple' interval arithmetic can 
be realized. Obviously the following inclusion always holds: 

For other properties and results, see the papers of Apostolatos and 
Kulisch ([I]-[3]). 

In  algorithms concerning dependent intervals the resulting bounds 
are in general not 'best', if the 'simple' interval arithmetic is used. B'or 
example, this difficulty arises if a polynomial with a triplex number 
as its argument is evaluated or if a polynomial is divided by a linear 
factor containing a triplex number. Both these operations are commonly 
done during the evaluation of all roots of a polynomial with computed 
error bounds. See section 5. 

2. Application of the theory of dependent intervals to matrix 
problems 

Let A be an n x n  matrix and b an n  vector. We consider the two 
following problems. 

(A) Solve the linear system Ax = b. 

(B) Compute A-l, i.e. solve the matrix-system 

AX = I ,  

where I denotes the unit matrix. Both problems can be solved in a 
finite number of steps by the Gaussian elimination method. The number 
of arithmetic operations required is proportionalt to na. 

If this method is straightforwardly programmed using interval- or 
triplex-arithmetic the results are interval- or triplex-numbers containing 
the exact results, as must be expected. But a very interesting pheno- 
menon is experimentally observed. If n is not too small (say n  > 10) 
then the bounds for the results are in general very pessimistic. For the 
reason for this, see Moore [7], Hansen [4], or Hansen and Smith [5]. 
If T: = [_t, z, i?] is a typical triplex-componentsay T: = x, in problem (A) 

t A multiplicative constant faotor being suppressed. 
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or T: = Xik ill problem (B)-then it is no6 unusual to find (f-_t)/ I l l  > lo5 
or even los, even in the case of well-conditioned matrices. What is the 
reason for this behaviour ? It is interesting to see that it can be explained 
very simply with the aid of the idea of dependent intervals. 

Let us first assume the coefficients aik of A are interval (triplex) 
numbers with non-zero span. There are n2 of them. The computation 
of the solution of problem (A) or (B) requires about n3 0perations.t That 
means that, on the average, each element ai, of A is used about n times.t 
Because each interval is dependent on itself this implies the use of a 
formula that is highly dependent upon the input data aik. Such depen- 
dency in general causes great loss of accuracy, as has been shown in 
section 1. Therefore in this case the occurrence of unrealistic error- 
bounds is explained. 

Now the remaining case of a real-valued matrix A will be treated. 
In  order to change A into a triangular matrix in the Gauss method the 
following algorithm is used: multiply the first row of A by p,: = -a,,/a,,, 
p2: = -a3,/a11,... and add the result to the second, third, ... row; then 
perform the same operations with the remaining (n- 1) x (n- 1) matrix, 
andsoon. Thereareobviously(n-I)+(%-2)+ ...+ 1 = n(n-1)/2r  n2 
such p-factors,t giving a total of a3 arithmetic operations,t each 
containing at least one p-factor. So necessarily each p-factor-being 
an interval because of round-off errors-has to be used several times, 
namelyi n times. For the same reason as above the results of so many 
operations with dependent intervals will yield unrealistic error bounds. 

3. Solving systems of linear equations by the Newton method 

We will now restrict ourselves (without loss of generality) to problem 
(A) of section 2 with a real-valued matrix A and vector b, i.e. to solving 
the system 

f(x): = Ax-b = 0. ( l )  
Because af/ax = A the application of the Newton method to (1) gives 
the algorithm x, arbitrary, 

x,,,: = x~-A-~(Ax,-~)  (k = 0, I,...) . 
As in Chapter 2 we transform this real algorithm to the triplex algorithm 

X, = [x,, ?,, go] arbitrary, 
I 

LXk+iJ = ~ [ ~ k + i , ~ k + i , ~ k + i l J  : = gk- (A%-!)) (k = 0, I,...), 
(CJ ?A-l. 

A multiplicative constant factor being suppressed. 
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Here the arithmetic has to be performed as triplex-arithmetic. The dot 
under a variable (e.g. A )  means this variable (matrix, vector, ...) is real- 
valued. The notation [ ) indicates that a variable is triplex-valued 

(e.g. [CJ 1. 
The matrix [CJ may have very unrealistic error bounds; in general, 

one will use the 'inverse' computed with the triplex Gauss algorithm. 
Theoretically the main values Eik of the components [gik, Eik, zik] of [ C )  
are the exact values of the components of A-l. Therefore, for an arbi- 
trary starting vector X, = [go, Z,, Z,], the main value 2, of 

has the correct value, i.e. A2, = b. Thus, for exact real arithmetic, 
X2 = X, = ... = [2,, Z1,2,]. 

Practically there will be a small difference between 5, and the correct 
solution x, due to the round-off errors. But using (for the component Eik) 
the values obtained with ordinary floating-point arithmetic is obviously 
the best that can be done with a given computer. Therefore the practical 
convergence will always be very fast. In  some thousand examples, even 
for condition numbers higher than 10l0(!), never more than 5 iteration 
steps had to be performed. 

Hansen ([4], [5]) uses exactly the above-given algorithm with the only 
difference that he-having in interval arithmetic no 'main' value- 
replaces the Eik by (gik+Eik)/2, which are in general worse values. This 
is a second example illustrating the fact that numerical algorithms 
very often quite naturally need not only the error bounds but also 
the 'main' value, which is available in triplex numbers and triplex 
arithmetic. 

After the Oxford Symposium the author found the excellent paper of 
Hansen and Smith [5], which he did not know of before. Independently 
of each other Kriickeberg [6] and the author have also considered the 
methods used therein. The results of the evaluations of A-1 and A-lb in 
some thousand experiments,? with well- and ill-conditioned matrices, 
were always very good. In these experiments, double-precision arith- 
metic entailed 16 decimal digits. A typical example for an extremely 
ill-conditioned matrix A had n = 10, IlAll = llbll = 10, x = (1, 1, ..., 
JIA-111 = 1.96 x 1011, and conditions number llAll. IIA-lll = 1.96 x 1012(!). 
Both A-1 and A-lb were iteratively computed. The number of iterations 

t Computed with the IBM 360167 computer in October 1967 while the author was at 
the IBM Thos. J. Watson Research Laboratory at Yorktown Heights, New York, 
U.S.A. 
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needed was 5; the rnax span (A-l)-f to begin with was 7.40 x lo1,, and 
rnax span (A-1) after 5 iterations was 2.07 x lo6. Also, rnax span (X,)-f 
= 3.06 x 1016, rnax span (X,) = 1.47 x Therefore the value of 
8: = 1016 x rnax span (X,)/IIAJI . (IA-111 = 7.46. This value 8 shows, as is 
well known (see Wilkinson [lo]), how realistically the bounds could be 
computed using 16 decimal digits. In  the experiments, 0 was always(!) 
between 2 and 9. Also the maximum of the span of the bounds of the 
'inverse' A-l was 2 x lo6, which is nearly 'best' for matrices A and A-1 
with norms 101 and 2 x 1011 if 16-decimal-digit arithmetic is involved. 

4. Complex-valued triplex arithmetic 
If complex numbers z :  = x+iy, ia = -1 are considered there are 

different possibilities for changing to triplex variables. The most compli- 
cated way is to store a complex triplex number 2 = X+iY as a pair of 
two triplex numbers X = [g, Z,5] and Y = [y, y", Q]. A much more 
natural way is the following (see figure). A complex triplex number Z 
describes a circle 1 2 - E l  < 5 and is stored as a triple Z = [Z, y", (1. Here 
2 and y" will generally be two floating-point numbers of full length (single 
or double precision), while ( may be a number having fewer digits. 

Until now there has not been d e h e d  such a generalization of one of 
the common algorithmic languages. There is no complex concept in 
Algol (except in Russia). It should, however, not be too difficult to 
introduce triplex-complex in Fortran IV and PL/I, where complex 
variables are known. 

t For a vector B with the triplex elements B4 = [hi, 64, bi] and for a matrix C with 
cik = ["k, E ~ ~ ,  i?ik], by definition, max spm(B) : = rnax span(B+) = mctx (61-bi) and 

i=l(l)n i-l(l)n 
rnax spm(C) : = max span(Cik) = m x  (Eik-~4k). 

i,k=l(l)n 6,k=l(l)n 
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5. Roots of polynomials 
In a previous paper [8] an algorithm was given for the computation 

of all roots W, of a given polynomial 

for a, real, an # 0, Z = X+iY.  This algorithm includes error bounds 
obtained by the aid of a triplex-like arithmetic. The algorithm was also 
published as an Algol program without the computation of the error 
bounds [9]. 

The evaluation of one root W, is performed in four steps. 

(A) Find an approximation Z*. 
(B) Improve Z*. 
(c) Go to step (D) if Z* is good enough; otherwise go back to (B). 

(D) Compute an error bound 1 2 0 such that 

IZ*-w,l< 5. 
After finishing these four steps put Wp: = (Z*, 0 ,  where Z* is an 
approximation and 5 an error bound. For the evaluation of W,,, the 
polynomial P(Z) is replaced by P(Z)/(Z- Wp). This is done forp = 1 (1)n. 

It is very important to note that no triplex analysis is performed 
during the steps (A) and (B). In  step (c) a triplex-based decision can be 
used if desired. In this case the phrase 'Z* is good enough' is interpreted 
as 'the circle for P(Z*), computed with complex triplex arithmetic, 
contains the zero'. But it should be emphasized that step (c) can also 
be performed in floating-point complex arithmetic without any know- 
ledge of the round-off errors (see [9]). 

For the computation of 5 in step (D) the following formula due to 
Fekete will be used: 

1: = min ~ ( ~ ) / l $ l ] .  
k=l(l)n. 

Here the coefficients Cv are defined by the identity 

but they are computed using triplex arithmetic. 
It is rather trivial to note that triplex arithmetic is necessary for this 

step. This can be seen from just the fact that in floating-point arithmetic 
it may be that P(Z*) = Co is numerically zero by underflow, even in 
the case P(Z*) # 0. This would give, however, an error bound 5 = 0, 
which is obviously wrong. 
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There is, however, a still unsolved problem. In one approach to the 
problem the reduction P(Z)/(Z- W,) is performed in triplex arithmetic 
where Wp = (Z*, 5) as above. In  this case the computation of the error 
bounds for the roots of the reduced polynomial gives exact values; that 
is, strict bounds. But, unfortunately, a great loss of accuracy of the 
bounds occurs, due to the occurrence of dependent intervals during the 
reduction. As can be seen in the results of [8], for just n 6 the typical 
bounds have a relative error of more than 100 per cent 

Alternatively, if the reduction is not performed in triplex arithmetic 
but in floating-point arithmetic, the bounds 5 for the approximation Z 
must be computed by using the (undisturbed) values of the initial 
coefficients a, for v = O(1)n. In  this case (see [8], Fig. 2) the following 
phenomenon may occur. 

X 

It may be that some of the circles obtained by step (D) are separated 
and contain therefore at  least (in general, exactly) one root, while others 
overlap. Por the latter case it can be concluded only that there is at  
least one root inside them. Therefore some of the roots may get 'lost'. 
See the figure for the case n = 4, where the exact roots are denoted by 
crosses. There are two roots 'trapped' in single circles, one root in the 
intersection of two circles, and one root is not contained in any of the 
circles. 
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If by a posteriori inspection it is found that all circles are separated, 
then all roots W, have been 'trapped'. But if there are multiple roots 
or clusters of roots then the geometric situation is not so favourable. 
In this case, the reduction can be performed by means of triplex arith- 
metic. Then, however, favourable error bounds cannot be guaranteed 
for all roots. 

It is possible, however, to obtain error bounds 5 for a given approxima- 
tion Z* such that there exist at  least k < n roots Wl, W,,..., W, for which 
1 W,- Z* 1 < 5 for p = l(1)k. With such bounds the above problem 
can obviously be completely solved. An example for k = 2 is the 
following formula: 

As a numerical example for n = 10, consider 

P(Z): = 0-1+0.1Z+lOZ2+ ..., with Z*: = 0. 

Fekete's formula reveals that there exists one root Wl of P ( Z )  such that 

Obviously there is one other root in the neighbourhood of the origin. 
The new formula gives IKl, lK1 < 0.718 

with a bound 5 nearly as good as that from the Fekete formula but now 
with the certainty of bounding two zeros instead of one. 
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4 On Linear Algebraic Equations 
with Interval Coefficients 

1. Introduction 
CONSIDER the set of equations 

AX = b 

where b = (bi) is a given real vector of order n and A = (a,*) is a given, 
non-singular, real matrix of order n. The solution vector x is the unique 
vector A-lb. Suppose, however, that A and b are subject to error. 
Suppose we know only that aU E a; = [a$, a:] and bt E bb = [bt, q ] ,  
for i, j = 1, ..., n. Denote A' = (a;), and b' = (bf) and assume no A E AI 
is singular. We wish to know the set of solutions 

X = { x : A x = b , A ~ A ~ , b ~ b q  (1.2) 

to the equation AIx = br. (1.3) 

Hansen and Smith [3] discussed methods for computing an interval 
vector + containing X. A vector xr = [xL,xR] defines a region in an 
%-dimensional space bounded by the planes xi = xf and xi = @ 
(i = 1 ,... , f i ) .  In general, the set X is not a region bounded by planes 
parallel to the coordinate axes and hence the narrowest interval vector + 
is not equal to X. (By the narrowest interval vector, we mean the vector 
whose elements are all narrowest possible.) 

Nevertheless, the smallest XI is of interest. In  this chapter we show 
how to obtain both upper and lower bounds on the narrowest xr 2 X. 

We assume that at  least one element of AI or bI  is an interval of non- 
zero width. Otherwise, the method described below is no different from 
that in [3]. 

2. The solution set X 

In this section we briefly consider the set X. Rewrite (1.3) as 
12 

2 a&xj = b: (i = 1, ..., n). 
j=1 
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Suppose some fixed point x E X lies in the positive orthant. For this x, 
(2.1) can be written (symbolically only) as 

n n 
a$ xi, 2 a$xi] = b: (i = 1 ,... , n). 

j=1 

There exists A E AT and b E bI such that  Ax - b, for this fixed x, 
provided the intervals on the left and right of (2.2) intersect for each 
i = 1 ,..., n. That is, x E X (if xi > 0 for j = 1 ,..., n)  provided 

If xi < 0 for some value of j ,  then a$ xi = [azx, a$ xi]. Hence by 
noting the sign of each xi for some given x, we can write an 'equation' 
corresponding to (2.2) and obtain conditions similar to (2.3). Thus it is 
a simple matter to check whether a given x lies in X. 

However, in general it is not so simple to  find X or to represent it 
once it is found. It is for this reason we choose to study xr instead. The 
set X is discussed by Oettli, Prager, and Wilkinson [B]. See also Riga1 
and Gaches [7]. For our purpose we shall find X in a simple illustrative 
case by solving inequalities of the form (2.3). 

Consider the equations: 

[2,3Ixl+[O, 11x2 = [O, 1201, 

[ l ,  2]x1+[2, 3]x2 = [GO, 2401. 
(2.4) 

In  this first quadrant, where 

x1>0 ,  x 2 2 0 ,  (2.5) 

we can rewrite the left members of (2.4) as [Zx,, 3x,+x2] and [x1+2x2, 
2x1+3x2], respectively. The intersections 

[2x1,3x,+x2] n [O, 1201 

and [XI +2x2,2x1+3x21 n [GO, 2401 

must not be empty and hence 

From (2.5) and (2.6) we easily find that (in the first quadrant) X is a 
polygon with vertices a t  the points (30, O), (60, O), (60, go), (0,120), and 

(0,20)- 
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Repeating this process for the other three quadrants, we find that X 
is a polygon in the second and fourth quadrants but that no point of X 
lies in the third quadrant. Combining these results, we find that X is 
an eight-sided polygon. Proceeding counter-clockwise around the 

-loo i 
FIG. 4.1. The solution set for equations (2.4). 

boundary of X, its vertices are at  the points (30, O), (90, -6O), (60, O), 
(60, go), (0,120), (- 120,240), (- 12,24), and (0,20). See Fig. 4.1. 

Even in this two-dimensional case, the set X is not particularly easy 
to represent. Obviously, in higher-dimensional cases, X is difficult to 
represent in general. (In special cases, of course, this need not be so.) 
We can, however, easily represent the smallest parallelepiped containing 
X having sides parallel to the coordinate axes. In our example, this 
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parallelepiped is bounded by the planes X ,  = - 120, x, = 90, x, = 6 0 ,  
and x, = 240. We may thus represent it by 

It is our purpose in this chapter to show how to obtain both upper and 
lower bounds on X I  for arbitrary AI and bl. 

3. The basic method 
We shall use a method that is essentially an interval analytic version 

of a procedure of Kuperman's [4] for bounding errors in the computed 
solution to a set of linear equations. Kuperman's method is applicable 
for only certain problems (described later). We shall show how to extend 
its applicability to all cases. 

Consider the equation A x  = b and suppose ax,/aaij 2 0, where x, is 
the rth element of x. Then x, is non-decreasing as aij increases. If aij 
can take any value in a; = [a;, a$], then x, will be smallest if aij = a$ 
and largest if aij = a$. If ax,/aa,, is of one sign for each i, j = 1, ..., n 
for all aij E a6 and all x, E 4, then the largest (and smallest) value of x, 
occurs in the solution of a problem in which each aij (i, j = 1, ..., n) has 
the appropriate extreme value a$ or a$. 

We now develop these ideas into an algorithm for computing bounds 
on XI. In so doing we include the possibility that ax,/aa, may change 
sign. We also consider the effect of the vector bl. 

Consider the equation A 4  = b1 and define the matrices Pf and Qf 
and the vectors cf and d: whose elements are, respectively, 

[ 
a$ if ax,/aa, 0 for all A E AI and all b E bl, 

P&= a ~ i f a x , / a a i j < O f o r a l l A ~ A I a n d a l l b ~ b I ,  (3.1) 

a& otherwise; 

tZ 'f ax,/aaij 2 0 for all A E A1 and all b E bI, 

QLj = a$ if ax,/aaij < 0 for all A E A1 and all b E bl, (3.2) 
a& otherwise; r1 
i 
bf if ax,/ab, 0 for all A E AI and all b E bI, 

cTi = if ax,/abi < 0 for all A E A1 and all b E bl, (3.3) 
b: otherwise; 

bp if ax,/abi >, 0 for all A E AI and all b E bl, 

bf if axr/abi < 0 for all A E AI and all b E bI, (3.4) 
b: otherwise. 
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Let Pfy, = c j  (3.5) 

and Qfz, = df. (3.6) 

The rth component yj, of the solution y j  of (3.5) contains the left endpoint 
x,L of the rth component x j  of XI. Similarly, xf, contains the right end- 
point $ of xf. 

If we solve (3.5) and (3.6) for r = 1, ..., n using interval arithmetic, 
we obtain both upper and lower bounds on each of the components 
x,L and x:. Such a solution might be obtained by the method recom- 
mended in [3] (a Fortran program called LSD using this method is given 
in [8] and is available from the SHARE organization). Note that only 
the rth component of yf is required. Hence for most values of r, the 
solution of (3.5) need not be fully completed. If Pf and c: are the same 
for two (or more) values of r, then (3.5) and (3.6) need be solved only 
once for both values of r. In  the most fortuitous case Pj is the same for 
all r = 1, ..., n. This occurs, for example, if every A E A1is an M matrix 
and b: 3 0 (i = 1, ..., n). (For a definition of an M matrix see, for 
example, Varga 191.) 

Having solved (3.5) for y&., we solve (3.6) for zI,. The remarks in the 
preceding paragraph again apply. 

4. Obtaining the derivatives 

We now consider how to obtain the derivatives which determine how 
P,, Qr, c,, and d, will be formed. Differentiating (1.1) with respect to aij, 
we have 

where Eij denotes the matrix whose every element is 0 except that the 
element in position (i, j) is 1. Let W = Ad1, then 

and hence 

Differentiating (1.1) with respect to b,, we have 
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where ei denotes the i th column of the identity matrix. Therefore 

and 

In  (3.1)-(3.4) we need to know whether the derivatives ax,/aa,, and/or 
ax,/ab, are of one sign for all A E AI and all b E bl. We can use (4.2) and 
(4.4) to  attempt to  determine this. Using (say) the LSD program we 
can obtain an interval vector Z I  containing xI and an interval matrix WI 
containing (A1)-l. 

If, for example, @,Iii$> 0 for some values of r, i, and j, then, from 
(4.2) ax,/aa, < 0 for all A E AI and all b E br. Similarly, if > 0, say, 
then from (4.4), ax,/ab, 2 0 for all A E AIand all b E bl. That is, examin- 
ing @IandZ1, we can determine P f ,  Qf, cf, andd:forr = 1, ..., n. Actually, 
since @I and $I will not be sharp, in general, we may obtain a matrix 
Pf containing but not equal to Pf.  That is, it  may be that w;'ixf > 0 
while 0 is an interior point of @AZ!. Similarly we may not obtain Qf, 
cf, and/or df sharply. This would not invalidate our results but would 
make them less sharp. 

5.  An example 
We shall now consider an example of a type for which many elements 

of wI and XI change sign as A ranges over AI and b ranges over bI. Thus 
many elements of P,I, Qf, cj, and d: will be intervals. As we shall see, 
however, the results are still rather good with respect to sharpness. 

Let AI = A+elE, where EI = a[-1, 11, a = E is the matrix 
whose every element is 1, and 

5 4 3 2 1  

4 4 3 2 1  

A c 3 3 3 2 1 .  [;;;;I 
Let bI = (1 +d)e, where e = (1,1, ..., 

The equation A 4  = b1 was solved and the 'inverse' W's (A')-1 was 
computed by the LSD program using floating-point arithmetic with a 
27-binary-bit mantissa. It was found that 

*i > 0 (i = 1, ..., 5), 
< 0, < 0 (i = 1 ,..., 4), (5.1) 

0 E @&, otherwise. 



4.5 WITH INTERVAL COEFFICIENTS 41 

It can be shown that relations (5.1) hold for wiflreplaced by WI = (A1)-1. 
Using the same program, a vector ZI was computed which contains the 
solution XI to AIx = bI. It was found that 

It can be shown that (5.2) holds with 2I replaced by XI. 

From (4.2), (5.1), and (5.2),  we see that axr/aa,, changes sign as A 
ranges over AI and b ranges over b1 unless j = 5 and r = i - 1, i, or i + 1. 
Hence Pf = Q;f = AI except for either two or three elements in the last 
column. Also, from (4.4) and (5.1), cf = d;f = br unless r = i- 1, i, or 
i + 1. The vectors c;f are 

for r = 1 ,..., 5 ,  respectively. The vectors d;f ( r  = 1 ,..., 5 )  are obtained 
from c;f by replacing a by -a. The matrices Pf (i 5 1, ..., 5 )  are obtained 
by replacing the last column of AI by d i .  The matrices &,I (i = 1, ..., 5 )  
are obtained by replacing the last column of AI by c,l. 

We solve (3.5) for y;f, and (3.6) for z;f, using the LSD program. Let y' 
denote the vector with elements y,l, ( r  = 1, ..., 5 )  and zldenote the vector 
with elements z;f, (r  = 1, ..., 5) .  We obtain 

I 
[-4.006 812, -39993 1901 x 
[-2.013 624, -7.986 3871 x lop4 

y1 = [-8.012 018, -7.986 3 9 g x  lo-' , 
[-8.013 624, - 7.991 1861 x lo-' 

[0.9993 993, 0.9994 0111 

[3.993 190, 4.006 8121 x lo-' 

[7.986 388, 8.013 6231 x lo-' [ [7.987 986, 8.013 6241 x , 
[7.986 400, 8.008 8111 x 

I 
[1.000 599, 1.000 6021 

where we have recorded the results to only seven significant decimal 
digits. Denote yI = [yL, yR] .and z1 = [zL, zR]. Then 

[yR, zL] C XI C [yL, zR]. 
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If we approximate XI by 

[(yL+yR)12, (zL+zR)I21 = 

we know that no endpoint of any element can be in error by as much as 
2 x 10-6. 

The widths of the elements of yI and zI are quite small even though 
many elements Pi ,  Qf, ci, and di were intervals rather than real numbers. 
This can be explained as follows. The interval elements occurred because 
0 was contained either in the set 

But if 0 E S ,  then, in general, ax,,/aa,, is small for all A E AI and b E bI. 
Therefore the value of x,, depends very little on the value of a,,.. Hence 
w(xi) is increased only slightly by using a t  rather than some real number 
a,,. E a;. Here w ( ~ )  denotes the width of the interval xj. A similar 
argument holds if 0 E T. 

6. A special case 

Suppose that no element of WI or XI contains zero. Then Pi ,  Qf, cf, 
and d j  are real. It was this special case for which Kuperman [4] observed 
that the analysis of the previous sections was valid. (However, he did 
not express his results in interval analytic form as we have done.) It is 
also in this special case that the linear form of Oettli's method [5] is valid. 
He obtains X as the solution of a linear programming problem. 

Since in this case (3.5) and (3.6) are real, not interval, equations, we 
can solve them to arbitrary accuracy by using (interval, say) arithmetic 
of sufficiently high precision. This is not the case for the original equation 
AIx = blnor is it the case for (3.5) and (3.6) if they are interval, not real, 
equations. In the latter cases, the inherent lack of sharpness (see [2] or 
[3]) precludes obtaining arbitrarily high accuracy in the computed result 
without a prohibitively large amount of work. 
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7. A more special case 
We have considered the case in which no element of x or W changes 

sign as A ranges over AI and b ranges over bl. If in addition, the width 
of a6 is the same for each row of AI or for each column of AI, the vector 
d can be found more easily. 

Denote AI = Ac+[--1, lIM, (7.1) 

where AC is the centre of AI and M is the real matrix with mu = iw(a5). 
If m,* is independent of i, then M = evT for some vector v, where vT 
denotes the transpose of v. If mij is independent of j, then M = ueT for 
some u. In  the example in section 5, we chose M = 10-*eeT. 

Examples of this kind could be obtained in practice. For illstance, 
we might replace mu by max mij for each j = 1 ,. .., n. We would thus 

lgign 

sacrifice sharpness for ease of solution. 
As a more general case, assume 

Then a=a$j-uiv,,  a$=a$i+urv,. (7.3) 

Since by assumption no element of x or W changes sign as A ranges 
over AI and b ranges over br, then, from (3.1) and (4.2), 

Define 

and ty) = kp) uc, Then Pd, = az+tr)sj. 
Denote b r =  bc+[-1, l]f, 

where b C  is the centre of br and f is the, real vector with elements 

fi = +w(bf). 
From (3.3) and (4.4) 

b,L if WI, > 0, 
c, = 

bp if w$ < 0 
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Let g(n denote the vector with elements 

ga" = ky' fi. 

Then c,,. = bg-gF) 

and (3.5) becomes (Ac +t(r)sT)y, = bc-g(,). 

NOW (Ac+t(r)sT)-1 = Wc(I- ar br)sT WC), 

where WC = (AC)-1 and 

a, = 
1 

1 +sTWcbr)' 

Hence y, = WC(I - a, br)sT Wc)(bc-@)). 

We require only the rth element of y,. It is given by 

yTr = e: y, = e? WC(I - a, bT)sT WC)(bC-q(,)) . (7.9) 

Similarly, X, = e, Wc(I +/3,br)sT WC)(bC+g(,)), (7.10) 

where 

The elements of XI are given by 

X: = [~ r r ,  zrrl' 

In  practice we can obtain bounds on y, and z,, using the following 
procedure. First invert A1, obtaining Wr 2 (A1)-l, and solve Arx = bI, 
obtaining 9. If some element of W1 or Zr contains 0 as an interior point, 
we cannot proceed with our simplified method. If no element of WI or 
Zr contains 0 as an interior point, we form the vectors k@), S, br), and 8). 
Next invert Ac, obtaining an interval matrix Wcbr containing WC. We 
can now compute intervals y;f, and x& obtained by replacing WC by Wcl 

in (7.9) and (7.10). 

8. Example 
To illustrate the analysis of the last section, we consider an example 

of order 4 studied by Albrecht [l] and Oettli [5]. Let 

where d = 5 x 1,1], E is the matrix whose every element is 1, 
and 4.33 -1.12 -1.08 

k t c =  [ -1.12 4.33 0.24 -1.22 
-1.08 0.24 7.21 -3.22 

1.14 -1.22 -3.22 5.43 -1.09 

We wish to solve A1x = bbr. 
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Following the prescription in section 7, we invert Az, using the LSD 
program obtaining Wz 3 (A1)-1. We find that z Z ~  > 0 for all i ,  j = 1, 2, 
3, 4 except that E:, < 0 and < 0. Similarly, we find Z: > 0 for 
i = 1, 2, and 3 and bf < 0. We thus know that no element of (Az)-l 
or X contains 0 and the method of section 7 applies. 

We require WC. Using the same program to invert AC, we find 

where we have (outwardly) rounded the results to five significant decimal 
digits. 

Now M = 5 x lO-,E = 5 x 10-,eeT. Hence from (7.2) we may let 
u = 5x lO-,e and v = e. Noting Zz, we see that s = (1,1,1, and 
noting Vz, we have 

Also, f = 5 x 10-,e. We now have the necessary information to compute 
yrr from (7.9) and z,, from (7.10) for r = 1, 2, 3, and 4. We find 

Again we have recorded results to only five significant digits. 
The author is indebted to Mrs. Roberta Smith who procured the 

numerical results quoted in this chapter. 
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5 On the Estimation of Significance 

1. Introduction 
INTERVAL arithmetio is manifestly an important tool in digital com- 
putation and programming. When it is used in a naive manner-as a 
simple technique for simulating a forward error analysis-interval arith- 
metic is, however, unable to give sharp bounds on the total computational 
error. As a matter of fact, to achieve that purpose, provision must be 
made for combining the results of local-error monitoring with estimates 
obtained by global analysis, which falls within the competence of the 
numerical expert. For a variety of important problems, algorithms have 
been found that answer the above purpose by using interval arithmetic 
together with other techniques; needless to say, such elaborate proce- 
dures usually require a much greater amount of computation time than 
the direct simulation in interval arithmetic of conventional numerical 
processes. Similar remarks obviously apply also to the other techniques 
for automatic error monitoring that have been studied and experimented 
with so far, namely: unnormalized arithmetic (see, for example, Ashen- 
hurst and Metropolis [2]), normalized floating-point arithmetic with an 
index of significance (see, for example, Gray and Harrison [9]), and 
automatic controlled precision arithmetic (see, for example, Chartres 171). 

The purpose of this chapter is to contribute to the economical solution 
of the general problem of automatic-error estimation by emphasizing the 
most welcome fact that, in certain important situations, the pseudo- 
arithmetic effect of the accumulation of generated errors can be entirely 
disregarded with respect to the effect of propagation of inherent errors. 
It should be realized that any preliminary separation of those effects 
can be regarded as a major simplification of the original problem of error 
estimation provided that the number of guarding figures to be kept in 
the calculation to ensure such a separation can be readily estimated. 
This is typically the case for any numerical process that has been proved 
to be 'gutartig' in the sense of Bauer [4]-[6] : indeed, from the equivalent 
condition that the natural instability dominate the numerical instability 
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of the process-both Binds of instability being measured by appropriate 
condition numbers-it follows that rounding phenomena can be entirely 
disregarded if the calculations are performed with (say) one more place 
than strictly needed to cope with the accuracy of the data. Section 3 
will be concerned with an analysis of the concept of gutartig algorithm, 
which seems to be insufficiently known so far. To help the reader to 
realize the full implications of that important concept, we shall outline 
the very instructive proof, also due to Bauer [6], of the following remark- 
able property: the Gauss-Jordan scheme without any pivoting for size 
is gutartig if the matrix to be inverted is positive definite and Hermitian. 
It can be almost gutartig for more general matrices if a suitable pivoting 
strategy is followed. 

The concept of a gutartig algorithm can also be defined in terms of 
compatibility requirements of computed results with prescribed toler- 
ances. Since the general problem of the compatibility is important by 
itself, it will be discussed independently in section 2, mainly from a 
theoretical point of view. According to Bauer [5], the underlying criteria 
in forward and backward error analysis should be regarded only as 
extremely particular cases, the general criterion of compatibility being 
indeed defined by criterion (3). We shall show that, at least for matrix 
inversion, the set of admissible solutions in the Bauer sense can be much 
larger than the sets defined by the classical criteria. This property, which 
is supported here by simple convexity arguments, clearly has many 
interesting applications. 

In  section 4, we shall present a simple technique for the automatic 
estimation of the significance in matrix inversion (essentially in the 
positive definite case). It turns out that the concept of gutartig numerical 
processes and techniques like a posteriori estimation and unnormalized 
arithmetic are all relevant for the required procedure. 

2. The problem of compatibility in digital computation 
The following discussion of errors in digital computation is based 

essentially on a recent analysis (Bauer [4]-[6]) which seems to be 
insufficiently known considering its far-reaching implications. Since the 
original work is available only in the German language, it is hoped that 
the present survey will prove useful to a number of readers interested 
in error analysis and control. A certain familiarity with the topics 
discussed here will be assumed later. 

Like Bauer [5], we shall take a theoretical problem (the inversion of 
a non-singular matrix, for example) to mean a single-valued mapping f 
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from the space 9 of data to a space 92 of results, it being understood for 
simplicity that a unique solution is assumed to exist. As a general rule, 
an algorithm devised (by the numerical analyst!) to perform the mapping 
f will actually evaluate a mapping f * from 9" c 9 to 92* c 92. Any 
numerical process f * is indeed essentially a machine-oriented program 
involving a finite number of finite precision-arithmetic operations and 
logical decisions. Accordingly it depends on parameters (for example, 
the stepsize of the discretization in continuous problems, the number 
of steps in the approximation of limit processes, etc.) and on pseudo- 
arithmetic details (for example, the word length of the machine, the 
rounding rules, etc.), which control the size of the accumulated errors 
resulting from finitude, namely, the analytic errors (due to discretization 
and truncation) and the generated errors (due to rounding). On the other 
hand, the numerical analyst is not responsible for the other two sources 
of error distinguished by von Neumanii and Goldstine (see, for example, 
Householder [12]) although he should be concerned with the practical 
estimation of the range of uncertainty in 9 to which they give rise. 
Disregarding the errors due to possibly idealized formulations, we shall 
concentrate hereafter on a comparative study of the relative effects of 
propagatiorl of inherent errors and accz~mulation of generated errors. It 
should indeed be realized that irlherent errors are generally presht, not 
only in the problems that are termed physical (Fox [8]) where they are 
due to experimental measurement, but also in most mathematical prob- 
lems in view of the necessary restriction of 9 to the subspace 9 *  = g 9  
of machine numbers. Moreover, errors arising from the various sources 
result, irrespective of their complex interaction, in a single error on any 
intermediate result, which error can be interpreted as inherent for the 
subsequent computational steps. 

An over-all assessment 7 of the size of errors arising in the practical 
evaluation off is given by 

7 = supd(f*A*, fA) for A* = gA, A E 9 ,  (1) 

where d denotes an arbitrary distance function on 92. Needless to say, 
more refined measures could be used instead, specially by resorting to 
pseudo-distances in the sense of Schroder [21]. Any candidate f*A* for 
the approximation within a prescribed tolerance 6 of the theoretical out- 
come fA can certainly be accepted if 

fA E Y8(f*A*) = {X E 92:d(f*A*,X) < 6). (2) 

This simple condition is too restrictive, however, when inherent errors 
8633330 E 
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(of whatever source) are present. As readily verified, the criterion appro- 
priate to that general case can be written in the form (given by Bauer [B]) 

3 Y E Yp(A*) = (Y E 9: d'(A*, Y) < 8'): fY E Y8(f*A*), (3) 
where 8' denotes the tolerance within which the data are known, 9 being 
regarded here as a metric space with distance function d'. Criterion (3) 
reduces to (2) for 8' = 0 (and A* = A) and to 

3 Y  €Yp(A*):fY = f*A* (4) 

for 8 = 0, these specialized criteria being classically appropriate to 
forward and backward error analysis, respectively. As emphasized 
recently (see, for example, Oettli et al., [17]-[19] and Riga1 and Gaches 
[20]) in connection with important algebraic problems (linear equations, 
polynomial and eigenvalue problems), the combination of elementary 
techniques of backward error analysis and a posteriori estimation proves 
extremely useful. It leads indeed, among others, to simple criteria for . 

deciding, on a realistic basis and independently of the numerical process 
itself, whether a given candidate for an approximate solution can be 
accepted under the given constraints of accuracy. On the other hand, 
the general criterion (3) has not received much attention so far and does 
not seem to have been sufficiently exploited in concrete situations in 
spite of its obvious theoretical importance. 

To exemplify the actual gain in significance that can be achieved by 
using criterion (3) instead of (4) or (2), we shall outline a discussion (to 
be completed in a further paper elsewhere) of the compatibility problem 
in matrix inversion, answering thereby a suggestion made by Wilkinson 
(personal communication). Proceeding first in the spirit of (4), we must 
regard a computed (right-hand) inverse X of a given non-singular matrix 
A as the exact inverse of some perturbed matrix Y = A+AA. The 
basic identities R = I-A.X = AA.X, (5 a) 

X-A-1 = -A-l. R (5 b) 
then yield, among others, the well-known a priori estimates of the 
relative error in X, 

CO~~-~(X)I~AAIJII(AJ) G I(X-A-lIIIJIXII 6 c~nd(A)  IIAAIIIIIAII, (6 )  
and the corresponding a posteriori estimates 

(IlXll llAll)-lllRll < Ilx-A-llllllxll (IIA-llllllxll) 11R11, (7 a) 
cond-l(X) IIRII < IIAAIIIIIX-llI < IIRII, (7 b) 

which are clearly of much more value in practice (the main purpose of 
an apriori analysis is indeed to reveal the basic weaknesses of a numerical 



6.2 ON THE ESTIMATION OF SIGNIFICANCE 51 

process and to gain some idea of its fundamental limitations). The above 
appraisals take a much simpler form, lub norms being used throughout 
(so that llIll = l) ,  if 

IlAAIl llA-lll < 1. (8) 

This may be regarded as a fairly natural assumption in view of the 
identity (I+A-l. AA)X = A-l. (5 c) 

As a matter of fact, the approximations IIA-lIJ - IIXII, IlAll w IIX-lll, 
cond (A) = llAll. IIA-lll- cond (X) - IIAII - IIXII are then all admissible 
within a very low relative error. According to (4), an alleged inverse X 
of A (computed by any technique) can be accepted if and only if the 
perturbation matrix AA satisfies 

In this case the right-hand inequality in (6) takes the form 

IIX--A-lII/(IXI( < S'IIA-lll = 8"cond (A) = 8/11XI(. (9 b) 

As emphasized by Wilkinson ([23], see p. 319), the well-known fact that 
the appraisal (9 b) is sharp on the sphere (9 a) does not a t  all imply that, 
conversely, any X satisfying (9 b) is the exact inverse of some matrix 
A+AA for which (9 a) holds. Roughly this disappointing result is sup- 
ported by the left-hand inequality in (6) which is known to be sharp on 
the sphere (9 b). 

It should be realized that the shortcomings inherent in the elementary 
appraisals (6) and (7) cannot be remedied as long as Yp(A) and Y8(X) 
are the oiily convex sets under consideration. This simple remark 
suggests an alternative but less convenient approach we shall now briefly 
explain. According to criterion (3), an alleged inverse X of A (computed 
by any method) can be accepted if and only if there exist perturbation 
matrices AX and AA related by (A+AA)(X+AX) = I or equivalently 

by R = I-AX = AA.X+A.AX+AA.AX (10) 

under the constraints 
IlAAIl < 8'2 (11 a) 

where 8' and S are the prescribed tolerances. Assuming for simplicity 
that (8) holds true, which should be the case as a general rule, we are 
justified in disregardiiig the quadratic term in (10) and in replacing 
accordingly the unknown A-1 by the known X whenever it appears as 
a factor in the appraisals. Then, to exploit criterion (3), we have only 
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to verify whether the computed residual matrix R belongs to the equili- 
brated convex body defined by the so-called Minkowski sum 

Y = Yp(0) .X+A.Y$(O), (12) 

where Yp(0) c 9 and Y8(0) c 9 are clearly the spheres defined by (1 1 a) 
and (11 b), respectively (for a survey of the theory of norms and con- 
vexity, see, for example, Householder [13]). In  particular, according as 
6 = 0 (backward analysis) or 6' = 0 (forward analysis), the criterion of 
compatibility R E Y reduces to the respective conditions 

llR.All < S', (13 a) 

(IX. R(( ,< 6, (13 b) 
which are classical to a certain extent in a posteriori analyses. In  the 
general case, however, such simplifications are not allowed, so that 
distance functions and support functions cannot be dispensed with for 
describing completely the three convex sets appearing in (12). Anyway, 
the above geometric interpretation of Y shows that criterion (3) can be 
regarded as a most significant extension of both criteria (2, 13 b) and 
(4, 13 a). Indeed, in current practice, the Minkowski sum turns out to 
be much larger than either component subset. 

3. The concept of gutartig numerical process 
For any theoretical problem that is well-posed in the Hadamard sense 

(see, for example, Isaacson and Keller [14]), the distance functions d and 
d' may be chosen arbitrarily, provided only that the mapping f is bounded 
(i.e. Lipschitz continuous on its domain), which means that 

d(fA*, fY) < l.d'(A*, Y) for Y E Y&(A*), (14) 

where 1 is a Lipschitz constant. Then, whenever condition (3) is fulfilled, 
the triangle inequality yields, for example, the appraisal 

d(f*A*, fA*) ,< d(f*A*,fY)+d(fA*, fY) < 6+1.Sf, (15) 
where the right-hand bound is seen to reflect the relative ill-posedness 
off and may be large accordingly. As supported by (15), we can hardly 
expect that a computed f *A* will be more accurate than inherent errors 
allow. More specifically, a high accuracy of the outcome, say within 6, 
cannot be guaranteed from compatibility arguments alone. 

The intersection of all spheres %(f*A*) containing at least one point 
(distinct from the centre f*A*) of the space 9 *  (i.e. 9 restricted by 
rounding) is clearly a sphere S",( f *A*) whose radius E is strictly positive 
and depends mainly on the word length of the machine. For example, 
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inp-place binary fixed-point computations, 6 will denote 2-p /2  or n .2-*/2 
according as 9 is a metric space of numbers (with the absolute distance 
function) or a normed space of n-dimensional matrices (with the 
Euclidean norm). Of course, a similar quantity 6' must be defined in %+ 
too, whenever the data cannot be represented exactly by machine 
numbers. Then the most we have a right to demand of a numerical 
process f*  is that it be compatible, in the sense of criterion (3), with 
tolerances 6 and 6' not greater than E and E', respectively. Any such 
algorithm is said to be gutartig (this term has been coined by Bauer [4], 
p. 64) and should be regarded as achieving the best possible fit of the 
theoretical requirements of accuracy to the practical limitations resulting 
from the finite precision of digital computation. 

From the above definition it follows indeed that the global effect of 
the accumulation of generated errors for any gutartig algorithm is domi- 
nated by the effect of propagation of inherent errors of the size E' however 
well-posed the theoretical problem may be. Because of this most welcome 
property, rounding phenomena can be entirely disregarded if the calcula- 
tions are performed with, say, one more place than strictly needed to cope 
with the over-all accuracy of the data. The problem of error estimation 
then reduces, a t  least if analytic errors can be disregarded or controlled 
by other means, to the study of the propagation of inherent errors, which 
phenomenon is independent of the mode of computation. In  other words 
(see Bauer ([4], [6])), it may be said that an algorithm is gutartig if the 
natural instability (i.e. the over-all susceptibility of the solution to per- 
turbations in the data) dominates the numerical instability (i.e. the over- 
all sensitivity of the solution with respect to perturbations in all the 
intermediate results that may be subject to rounding errors). Both types 
of instability are to be measured by condition numbers appropriate to 
the pseudo-arithmetic used (in floating-point computation, for example, 
relative measures are generally preferred to absolute ones). 

Since the calculation tree concerned with the propagation of any single 
generated error is necessarily obtained by extraction from the process 
graph representing the whole of a (gutartig) algorithm, it is hardly to be 
expected that some Y exists such that the conditions d(f*A*,fY) < E 

and dr(A*, Y) < E' are both fulfilled. That is, however, the case for 
certain important applications where it can be proved that the total 
effect of all the rounding errors made in the process of solution is indeed 
far less than those which come from the inherent errors. By way of 
illustration, we may consider for example the inversion, working with 
eight decimals, of a symmetric segment of order five of the Hilbert matrix; 
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the detailed discussion that can be found in Wilkinson ([23], p. 319) 
shows that ~ ~ X I H - ~ - ( H * ) - ~ J ~ ~  - 6000, 

(16a) 
whereas ma~l(H*)-l--XJ,~ - 1, (16b) 

where H denotes the exact Hilbert segment, H * the same matrix with 
the elements truncated to eight decimals, and X the approximate inverse 
of H* computed by an appropriate Gaussian technique. 

Certain well-known algorithms are manifestly not gutartig. The most 
overworked examples (in floating-point arithmetic) are probably the 
calculation of the smallest (real) root of a quadratic equation from its 
classical definition in terms of the coefficients and the calculation of the 
eigenvalues of a Hermitian matrix from its characteristic polynomial. 
It can be proved, indeed, that, as a general rule, the instability with 
respect to generated errors affecting certain intermediate results (the 
coefficients of the characteristic polynomial, for example) dominates the 
natural instability. In  other words, an algorithm is certainly not gutartig 
if an error-decreasing section is followed by an error-increasing section 
since then any error generated at the beginning of the latter section can 
only be magnified, whereas inherent errors (and generated errors of the 
former section) are damped before being all magnified in the same way. 
Specifically, all situations where an error-decreasing section is followed 
by cancellation effects should be systematically avoided in single- 
precision floating-point computation. 

It is unnecessary to say that gutartig algorithms are still unknown for 
many theoretical problems. As a matter of fact, the very question 
whether a given algorithm is gutartig is a challenging matter. Any com- 
parison on a common basis of the respective effects of accumulation of 
generated errors and of propagation of inherent errors indeed requires 
an apriori analysis where special care has to be taken, however, to obtain 
appraisals that are really sharp. It follows that the one-stage error esti- 
mates, whose concatenation is typical of elementary forward techniques 
and of automatic error monitoring, cannot be used blindly. In  principle, 
more elaborate forward techniques (devised at the level of procedures, 
for example) and backward techniques cannot be dispensed with. In  
this respect, the theoretical and practical importance of Wilkinson's 
work in the field of matrix computations and related algebraic processes 
(see, for example, Wilkinson [24], [25]) can hardly be exaggerated. In  
current practice it may happen that actually gutartig algorithms are 
found to be only 'almost gutartig' in view of the obvious fact that apriori 
estimates are too liberal, which unduly magnifies rounding effects, 
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whereas the propagation of inherent errors is governed by the theoretical 
matrix of condition numbers. If an algorithm has been proved to  be 
almost gutartig, then the effects of pure propagated errors and round-off 
can be automatically separated by keeping a small number of guarding 
Jigures in the calculation (for an interesting illustration of this type of 
argument- 'lengthy' Gauss elimination process in fixed-point arithmetic 
with partial pivoting-see, for example, Fox [8], pp. 159-67). 

Among other significant results, it must be emphasized here that 
Gaussian elimination is a gutartig numerical process when applied to 
positive definite Hermitian matrices and that the complete pivoting 
scheme is almost gutartig as a general rule. As the following outline is 
intended to show, the proof (due to Bauer [6]) of this most important 
property turns out to be surprisingly simple and particularly instructive. 
Let Ack) denote the intermediate theoretical matrix after the first k 
exchange-steps; in particular, A@) coincides with the given non-singular 
n-square matrix A and A(m) coincides with the theoretical inverse 
B = A-l. By proceeding, for example, as explained by Stiefel [22], it 
is easily seen that 

where Aij and Bij (i, j = 1, 2) denote the blocks into which A and 
B = A-l are partitioned conformally, All and Bll being k-square. 
Whatever form of pivoting is used, (17) is true (in infinite precision 
arithmetic) provided A is used to denote the original matrix with its 
rows and columns suitably permuted; it is known, however, that no 
pivoting for size is required in the positive definite case (see, for example, 
Wilkinson [23], p. 285). It follows directly from (17) that a Gauss-Jordan 
scheme can be gutartig only if the pivotal strategy is such that none of 
the bottom right-hand corner principal submatrices B,l is more ill- 
conditioned than A itself with respect to the calculation of the inverse. 
Formulae (9) accordingly yield the following set of necessary conditions 
for the numerical process to be gutartig: 

cond (B,,) < cond (A) for 1 ,< k < TL, (18) 
where suitable condition numbers must still be chosen. 

If A is positive definite and Hermitian, then conditions (18), where 
spectral condition numbers are used, are automatically fulfilled. This is 
in fact a straightforward consequence of the well-known separation 
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theorem (see, for example, Householder [13], p. 76) which states that 
the eigenvalues of any (n-1)-dimensional section of a Hermitian n- 
matrix A separate those of A. To establish that the Gauss-Jordan scheme 
(without any pivoting for size) is actually gutartig in the present case, it 
remains essentially to prove that the theoretical inverse B = A-1 is not 
more sensitive to perturbations AAif) in the blocks appearing in (17) than 
to perturbations AAij in the original blocks Aij themselves. Of course, 
this a priori comparison of the respective conditions of the conformally 
partitioned matrices Ack) and A = A(O) with respect to the calculation of 
the blocks Bij can depend to a certain extent on pseudo-arithmetic details 
since the perturbations AAjf) must be interpreted as originating from 
pure round-off. More precisely, in floating-point computation, an elemen- 
tary backward analysis of the generated errors for the kth exchange-step 
yields the componentwise appraisal 

lAA:f)l < (A:f)19~ for i, j = 1, 2 (19) 

with = (P/2)P-", (20) 

where is the base (usually 2 or 10) and p is the precision of the digital 
representation (i.e. the number of digits in the mantissa). By using 
intermediately Euclidean norms 11. ) I E ,  it follows from (19) that the 
spectral lub norms of the perturbation blocks are restricted by 

lub (A@)) < IlAA:f)Il, < llA$)llE 9~ < 1ub (A$))y(i,j)9~, (21 a) 
where ( i ,  1 = k ,  y(i, 2) = (n-k)*. (21 b) 

The next step in Bauer's proof consists in determining sharp upper 
bounds (in terms of only the spectral lub norms of A and A-1) for each 
lub (A:?)). This is readily done for the diagonal blocks in view of the 
separation theorem recalled above. For the other two blocks, a remark- 
able extension (also due to Bauer) of the Kantorovich inequality must 
be exploited. I n  view of the basic identity 

which can be verified by an explicit algebraic calculation, a sharp estimate 
(of the prescribed form) for the relative error (in the spectral norm) in the 
inverse can be obtained from the above appraisals. The final result is of 
a fairly complicated form (see Bauer [6], p. 418) unless cond (A) > 1. 
I n  that especially important case it reduces indeed to 

lub (AA-l)/lub (A-l) < cond (A). (n-k)h,, (23 a)  
where ek = 9 ~ / [ 1  -cond (A). (n- k)+9a]. (23 b) 
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By using (5c) and (21) (extended to  the case k = 0), it turns out that 
the appraisal (9) coincides with (23) where k = 0. This simple remark 
completes the proof that  the algorithm is gutartig. 

If A is not a positive definite Hermitian matrix, then neither the 
separation theorem nor the Kantorovich inequality hold true and pivot- 
ing for size must in any case here be taken into account. A11 appropriate 
approach (in floating-point computation) consists of the direct applica- 
tion of the componentwise appraisal (19) to the identity (22), which 
yields the indeed remarkable result 

IAA-lI < IA-119~+IA-1-I (24 a)  

On the other hand, by again using (19) (extended to the case k = 0), i t  
follows from (5) that 

(AA-ll < IA-l(. IAI. IA-'ISE+O(E~) (24 b) 
if the spectral radius p( 1 A-l 1 . (A 19~) < 1. The comparison of (24 a)  with 
(24 b) reveals that the Gauss-Jordan scheme is certainly almost gutartig 
if for any k the smallest p(" satisfying 

is of the order of 1; this is automatically the case when A is positive 
definite for it has been proved (see, for example, Wilkinson [23], p. 285) 
that no element in any reduced matrix Aii) exceeds the maximum element 
in the original matrix A. An alternative approach, also followed by 
Bauer [6], is based upon the Frobenius theory of non-negative matrices 
with which polyhedral norms are known to be intimately associated. 
The Perron root r(lA1) of a non-negative matrix IAI may indeed be 
regarded as the norm associated with a certain equilibrated polytope of 
a simple structure (see, for example, Householder [13], p. 49). As 
emphasized by Bauer [3], i t  plays a prominent role in the problem of 
optimal scaling of matrices with respect to the inversion problem. A 
typical result in this connection is the following one: if lub (A) is subordi- 
nate to the maximum norm, then 

mincond(D,AD,) = .rr(IAI. IA-ll), 
D i , 4  

(26) 

where D, and D, denote arbitrary non-singular diagonal matrices which 
can be regarded as achieving a certain 'equilibration' of the given 
matrix A (it should be stressed that the pck) in (25) are invariant with 
respect to any diagonal scaling). As to the pivoting strategy to be 
followed for the Gauss-Jordan scheme to be almost gutartig (if that is 
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possible a t  all for the given A ) ,  formulae (24) and (26) show that it should 
be such that (for 1 < k < n) 

These necessary conditions are to be compared with the conditions 
(18) that must hold in the positive definite case. 

4. On the automatic estimation of significance in matrix inver- 
sion 

The foregoing analysis has emphasized the welcome fact that, for 
certain algorithms, the total effect of the accumulation of generated 
errors is dominated by the effect of propagation of inherent errors (of 
whatever source) and therefore can be entirely disregarded provided the 
precision p exceeds the minimum precision k that is required to accom- 
modate the most precise input of interest. Taking best advantage of 
this characteristic property of gutartig algorithms, we now present a 
surprisingly simple procedure designed to provide automatic error 
monitoring and control in matrix inversion. 

By way of numerical illustration, we consider the inversion, using 
6-decimal floating-point arithmetic, of the symmetric segment 

of the Hilbert matrix. The entry 113 cannot be represented exactly by 
a finite number of decimals; its truncation to, say, k = 5 decimal digits 
involves replacing H by the slightly perturbed matrix 

the matrix of inherent errors being accordingly 

Like H, A is a positive definite matrix. The Gauss-Jordan scheme 
(without any pivoting for size and even without a double-precision 
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accumulator) is consequently a gutartig numerical process. Then, since 
k < p = 6, the computed inverse 

of A is the theoretical inverse of a perturbed matrix H+AH*, which 
is known to be such that the following estimate, 

AH-1 = X-H-l= -H-l.AH*.X - - H-l . AH. X, (32) 

is necessarily sharp. This fundamental consequence of the gutartig 
character of the algorithm is most remarkable, for it turns out that AH * 
is here quite different from AH. From the right-handed residual matrix 
(computed in double-precision floating-point arithmetic and rounded to 
six decimals) 

I -H.X = AH*.X 

10-3( - 0~120000) 10-~(O.~OOOOO) 10-=(-0.433333) 
10-3(0-106667) 10-3(-0~900000) 10-3(0~700000) 
10-4(-0-433333) 10-4(-0~500000) 10-4(-0~500000) 

estimate 16.44 10.17 7.67 

which is such that I(AH*.XJI, - 0.0017 << 1, it follows indeed that the 

AH* - (AH* X ) H  = 11.00 7.17 1-94) (34) 
8.50 5-08 -3.69 

is certainly correct to  two significant figures in view of the identity 

AH* = (AH*.X)(I-AH*.X)-lH. (35) 

In consequence of the smallness of the norm of the residual matrix (33), 
H-1 can also be replaced by X in the estimate on the right of formula 
(32) which then yields, using (30) and (31), 

H-l- X+X.AH.X 
9 -36 0.9 -6 

= i -36 192 
30 -180 180 5 -40 40 

Here the first matrix on the right is the well-known theoretical inverse 
of the Hilbert segment (28). 

In  principle, the above method of improving the accuracy of an 
approximate inverse computed by a gutartig numerical process can be 
used only if AH is known. It should be realized, however, that the basic 
estimate (32) proves to be useful (provided the replacement on the right 
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of H-l by X is justified) in any case where correlated patterns of inherent 
errors must be taken into account. Whenever the uncertainties in the 
elements of the matrix A to be inverted can be regarded as entering in 
a random pattern, which is typically the case for physical problems, an 
alternative procedure can be exploited, as discussed hereafter, to assess 
automatically for any entry of the computed inverse X the number of 
figures that have a meaning and are accordingly worth quoting. Ufi- 
normalized$oating-point arithmetic, with the so-called signijicance rules, 
is known to provide a proper setting for the automatic estimation of 
significance, at least as far as the propagation effects of inherent errors 
are concerned. In infinite precision (binary) unnormalized arithmetic, 
any non-zero number x = 2e .  f ,  where the exponent e is an integer and 
the fractional part f satisfies 0 < If 1 < 1, can be represented by any one 
of the equivalent ordered pairs (e-s, 28. f )  where, however, the adjust- 
ment parameter s may not exceed the number m of leading zeros off. 
The degree of freedom provided by the flexibility of the unnormalized 
format can be used to adjust each input operand so that the least 
significant digit resides in some specified position called the error front, 
say k, within the format of available digits, say p. This particular 
adjustment obviously reflects the accuracy of the operand since the 
coeficient error d (i.e. the absolute error in the adjusted fractional part) 
is readily estimated from the number k of correct jigures by 

$1 < 2-k/2 .  (37) 

As to the p-k digits on the right, they can serve as guarding figures to 
separate the effect of inherent errors from that of generated errors. 
Whenever the stability of the error front is guaranteed the errors in the 
output numbers can be correctly assessed by mere inspection, which is 
actually the essential purpose of the unnormalized schemes and can be 
reasonably achieved if all participating operands in an algorithm are 
statistically independent. Indeed, for the arithmetic operations ex- 
pressed in the symbolic form 

(e39f3) = (el,fl) * (e,,f2), (38a) 
the following rules of thumb 

e3 = max (el, e,) (in addition/subtraction), (38 b) 

m3 = max(ml, m2) (in multiplication/division) (38 c) 

(with appropriate modifications in special cases such as overflow, zero 
operands, etc.) turn out to work satisfactorily, at least if the operands 
are not correlated. The original proof, which is due to Ashenhurst and 
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Metropolis [2] for the base f l  = 2 (see Meinguet [15] for the extension 
to other bases), is framed in terms of the amplification factor 

= ld3llmax(ldll, Id,l), (39) 

which ideally should be close to  1. I n  actual fact, the expected value 
of a is indeed close to 1 whereas a: itself is only bounded by 2 (in addition/ 
subtraction), by 3 (in multiplication), and by 4 (in division). It should 
be realized that the adjustment rules (38 b, c) unify in a most natural 
way the well-conditioned rules of fixed-point and floating-point arith- 
metics so that erratic error build-up of any kind is impossible anyhow. 
More details on unnormalized arithmetics and their interesting applica- 
tions can be found in the many papers that have been devoted to  that 
challenging matter (for a survey and an extensive list of references, see, 
for example, Meinguet [15], [16]). Another related technique for error 
monitoring should be mentioned here; namely normalized floating-point 
arithmetic with an index of significance (see Gray and Harrison [9]). 
It must be emphasized, however, that this index scheme, like interval 
arithmetic, involves carrying and manipulating more information than 
a simple ordered pair (e, f ). 

As we now explain, the number of figures that are worth quoting for 
any element of the computed inverse X can be automatically estimated 
by resorting to  significant digit arithmetic, a t  least if the uncertainties 
in the entries of the given matrix A can be regarded as statistically 
independent. Under that assumption, if the elements of A are adjusted 
so that the least significant digit of the fractional part resides in a common 
digit position k of a word (at the option of the programmer), then i t  can 
be expected that  'on the average' the elements of the right-handed 
residual matrix (calculated in double-precision unnormalized arithmetic) 
will be automatically 'lined-up' on the right a t  the kth digit position 
according to the last significant digit (whereas in floating-point arith- 
metic the fractional parts are lined-up on the extreme left according to  
the first significant digit). As a matter of fact, this stabilizing effect of 
unnormalized arithmetic on the error front is not a straightforward 
consequence of the general properties of a: we have recalled above, since 
the elements of X enter here as exact parameters. I t s  actual justification 
can be found in Ashenhurst [l] where the significance rules (38) are shown 
to  be adequate in this special case too, a t  least from the point of view 
of expected value. Let the index X distinguish the matrices whose 
elements are correctly adjusted in the above sense. Choosing k = 5, we 
obtain by the significance rules from the given matrix (29) and its 
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computed inverse (31) the double-precision unnormalized residual matrix 

R, = I - A , . X  

102(-0~000000 198980) 10a(-0~000004 005300) 102(0~000001 671600) 

loa(-0~000000 134420) 102(-0-000002 594300) 102(0~000000 994700) . 
101(-0~000001 331260) 10a(-O~OOOOO1 701090) 10a(O~OOOOOO 501020) 1 

(40) 

In the present case where A and A, are both regarded as close approxima- 
tions to the theoretical H, the elements of A, must all be represented in 
the normalized 6-digit format and are therefore identical with the corre- 
sponding elements of A. It should be clearly realized, however, that 
A, # A : indeed, all entries of A, are regarded as correct to five significant 
digits whereas all elements of A, with only the exception of 0.333330, 
are regarded as correct to six decimals. The second (and final) part of 
our procedure for estimating the significance of the computed X consists 
of exploiting, in unnormalized arithmetic too, the remarkable identity 

(A-I), = X(A, .X)-1 = X . (I- R,)-1. (41) 

For the reasons mentioned above, (41) yields indeed the correctly ad- 
justed inverse of A, a t  least if the inverse on the right is itself correctly 
adjusted. This basic idea of reducing a given problem concerning general 
data to the same problem concerning appropriately specialized data (here 
X is indeed replaced by I- R N I) has often been applied to problems 
in interval arithmetic (see, for example, Hansen [lo] and Hansen and 
Smith [ll]). 

Since X has been calculated by a gutartig numerical process for 
k = 5 < p = 6, the adjusted error (X-A-I), is due to round-off only 
and therefore must coincide with the zero matrix up to the error front. 
It follows that it would be pointless to modify any digit in X,, so that 
in the single-precision unnormalized format the last factor on the right in 
(41) must reduce 'column-wise' to the unit matrix. Matrix (40) shows 
that the minimum choice of the adjustment parameter achieving that 
reduction is 1 for each of the three columns. Hence the required result is 

i 103(0.009006) lo4(-0.003603) 104(0.003003) 
(A-I)), = X, = lo4(-0.003603) 105(0.001921) 105(-0~001801) , 

104(0-003003) lo5(-0.001801) 105(0~001801) 1 
(42) 

which is seen to be correct to five decimals. It should be remarked that 
the complete calculation of the matrix (40) is not a t  all required. Only 
the exponent and the number of leading zeros for each single-precision 
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fractional part are used in the estimation of the adjustment parameters. 
However, the calculations must be organized in such a way that the 
relative errors made in computing the residual matrix are small. 

On the other hand, if the accumulation effect of the generated errors 
during matrix inversion is not dominated by the effect of propagation 
of inherent errors, then the foregoing procedure turns out to be 'conserva- 
tive' in the sense that certain digits are discarded whereas they would 
become meaningful by iterative refinement of the inverse (see, for 
example, Wilkinson [24], p. 121). In  such cases, provided that 1 1  RJI < 1, 
we can replace (I- R,)-I in (41) by the approximate matrix I + R, so that 

where unnormalized arithmetic must be used throughout. Using for 
example the data (31) and (40), we obtain for the correction term in 
(43) the unnormalized matrix 

which can be used to estimate separately each adjustment parameter 
and to correct significant rounding errors. Of course, in the present case, 
(43) yields the same results (up to the error front) as (41), namely (42). 
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PART 2 

C O N T I N U O U S  P R O B L E M S  



6 Introduction to Continuous 
Problems 

IN Chapter 1 we discussed, primarily, interval methods for problems 
whose solutions are numbers (or finite sets of numbers-vectors, matrices) 
or interval numbers. By 'continuous problems', we mean those whose 
solutions are continuous functions defined, say, on a whole interval of 
argument values. These are problems involving differential equations, 
integral equations, and so on. There is actually some overlap between 
these two areas. For example, in the discussion of 'algebraic problems' 
in Chapter 1, an interval polynomial Q,(x) was introduced which contains 
the function ex for every x ,< 0. In this chapter we consider the problem 
of quadrature, whose solution is a number. 

Interval methods have been developed for the machine computation 
of rigorous upper and lower bounds on exact solutions of 'continuous 
problems', including quadrature, integral equations, both initial and 
boundary-value problems for systems of non-linear ordinary differential 
equations and also for certain problems in partial differential equations. 
For an account of the work on partial differential equations see Chapter 
9 by Kriickeberg. 

If P(x) is an interval-valued function of a real variable and if F is also 
defined on intervals, say for X c [a, b], then we can define 

where 

This amounts to the same thing mathematically as 

where F(x) = [Fl(x), P!(x)]. 
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The first definition is of more interest computationally since, in the 
first place, it gives a means of computing an interval containing the 
exact value of the integral. In  the second place, formulae for the end 
points E;(x) and F2(x) of an interval function are often not available or 
at  least very inconvenient for computation. 

To illustrate the use of the first formula, consider a special case when 
F(x) is actually real-valued, for example, F(x) = l/x. We obtain, for 
instance, z St.5 

i= l  1 

for every positive integer n. Such a procedure, however, amounts to 
only a Jirst-order method, that is the width of the bounding interval is 
of the order lln. 

Higher-order methods have been developed which are based on Gauss- 
ian quadrature formulae and also arbitrarily high-order methods' can 
be based on Taylor series expansions. For example, see [l] and [2]. 

In order to use Taylor series expansions on the computer for this 
problem and for the solution of problems in ordinary differential equa- 
tions, auxiliary techniques have been developed to enable the computer 
to derive recursion formulae for the efJicient evaluation of successive 
Taylor coefficients. The evaluation can be carried out by the computer 
either in ordinary machine arithmetic or in rounded-interval arithmetic. 
In  this way the remainder term in the Taylor series can be evaluated in 
interval arithmetic and thus bounded over a region containing the 
unknown 'mean value' that occurs in this form of Taylor series expan- 
sion. 

A complete description of procedures that can be programmed for the 
computer for the machine computation of an approximate solution with 
rigorous bounds on the total error (all three kinds are taken into account) 
for the initial value problem for non-linear systems of ordinary differen- 
tial equations can be found in [I]. 

Further work on interval methods for ordinary differential equations 
is described by Hansen in Chapter 7 and by Kriickeberg in Chapter 9. 

An interval version of Picard iteration can be used for the machine 
computation of interval functions that contain exact solutions to integral 
equations. In [I], such a procedure is described for interval 'step func- 
tions'. We conclude this introduction by giving two examples of the 
construction of nested sequences of interval polynomials for such 
problems. 
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The initial-value problem 

can be written as the integral equation 

Let Po be a constant-interval polynomial with 

= [l,dI (x 2 01, 
and consider the sequence of interval polynomials defined by 

If PI(%) c Po(x) for 0 < x < a (a > 0), then the sequence {Pk(x)} 
(k = 0, 1, 2, ...) will be fiested, that is Pk+,(x) c Pk(x) for every k and all 
x E [0, a]. 

We wish to find numbers d > 0 and a > 0 such that 

for all x E [0, a]. This amounts to the condition that 

which is satisfied, for example, by d = 2, a = 114. 
With this choice (d = 2, a = 114) we obtain 

= 1 +x+[l, 4]x2+[1/3, 16/3]x3, 
and so on. 

The sequence of interval polynomials {Pk(x)} (k = 0, 1, 2, ...) obtained 
in this way converges uniformly to the exact solution y(x) of the given 
initial-value problem for x E [O,1/4] (see Fig. 6.1). Furthermore, for 
every k = 0, 1, 2 ,... and every x E [O, 1/41 we have 
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This sequence of interval polynomials has the disadvantage, however, 
of rapidly increasing degrees. The degree of P,(x) will be 2k- 1. 

An idea of Kriickeberg's can be used to limit the degrees of the Pk(x) 
to any fixed degree desired-at the cost of some coarsening (uergroberung) 
of the bounds. In  this example it would amount to the following. If 
n > m, then for x E [O, 1/41 we have 

xn = xm . xn-rn E [O, (1/4)"-m]xm. 

Thus we can reduce any term of degree greater than m to a term of fixed 

degree m a t  the expense of a slight loss of sharpness. For instance, the 
last term in P2(x) was [1/3, 16/3]xa and if we choose m = 2, we can use 
the result x3 E [O, 1/4]x2 (x E [O, 1/41) 
to get [1/3,16/3]9 c [1/3,16/3][0, 1/4]x2, 

or [1/3, 16/3]x3 c [0, 4/3]x2 (x E [0,1/4]). 

Therefore c l+x+([l, 41 +LO, 4/31)x2, 

or P2(x) c 1 +x+[l, 16/3]x2. 

We could now use the second-degree polynomial 

P,*(x) = 1 +x+[l, 16/3]x2 

in place of P2(x) and compute terms of the sequence {P:(x)} obtained by 
'cutting the degree' of x 

I+  1 (P~(x'))"xz' 
n 

down to 2 each time. 
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This sequence will no longer converge to the exact solution y(x), of 
course, but we will still have y(x) E P$(x) for all k and x E [O, 1/41 and 
we could stop the iteration when no further improvement results. 

For our second example, consider the boundary-value problem 

which can be written as the integral equation 

By arguments similar to those given in Chapter 1, if 0 < s < d, then 

s2 Sk-l sk 
es E Qk(s) = l+s+,+ ... +-- 

(k- I)! +[l,edlp 

for every k = 1, Z,.. . . The range of values of eS when s E [sl, s,] with 
0 < s, < s, < d is contained in Qk([sl,s2]). Note that this is a slightly 
different Qk than the earlier one, since here we bound ef for ( E [O, dl 
by et E [1, ed]. 

Now define an interval operator G, on interval-valued functions Y(x) 

by 
x 1 

G,( Y)(x) = (x-1) xtQk(- Y(xf)) dxl+x 1 (2'-l)Qk(- Y(S)) dx'. 
0 x 

If Y(x) c [-d, 01 for x E [0, 11, then - Y(x) E [0, dl and 

providing y(x) E Y(x). Therefore if y(x) E Y(x), then y(x) E Gk(Y)(x) for 
x E [O,l]. 

Furthermore, if we can find a number d > 0 such that 

for all x E [0, 11, then the sequence given by 

will be a nested sequence of interval polynomials containing an exact 
solution y(x) of the boundary-value problem. If k is allowed to increase 
as the iteration proceeds, convergence to an exact solution will be 
obtained. In  any case we will have y (x) E Y,(x) for all p and x E [O, 11. 
Again we can limit the degrees of the polynomials Y,(x) by computing, 
as in the first example, Y$(x) with vergroberung to some fixed degree. 
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For a numerical illustration, take lc = 2, then 

e8 E Q2(s) = 1 +s+[l, ed]+s2, s E [O, dl. 

In  particular, ed E 1 +d+[l, ed]+d2, 

so that ed < l+d+ed+d2 

and, therefore, if 0 < d < 42 we can use 

In  any case, Q2([0, dl) = 1 +[0, d]++[l, ed][O, d2] 
and G2([-d, 01)(x) = (x- 1)4x2Q2([0, dl)-!rx(x- 1)2Q2([0, dl) 

= +x(x- l)QZ([O, dl). 
Thus we wish to find a number d > 0 such that 

+x(x- 1)Q2([0, dl) c [-d, 01 
for all x E [0, 11. 

From Chapter 1, we have 
1 l + d  

Q2([0,dl) c l+[o,d1+~[1,  w][o,d21 

(provided d E [O, 2/21). 
- 

Now the minimum value of x(x-1) for x E [O,l] is -114 so it is 
sufficient that d satisfy the inequality 

provided d E 10,421 also. 
It can be verified directly that d = 0.15 satisfies this condition. With 

this choice of d, we have, using 

and computing with 3-digit rounded-interval arithmetic, the result that 

An exact solution of the boundary-value problem 
y N  = e-Y , ~ ( 0 )  = ~ ( 1 )  = 0 

thus lies in x(x-1)[0.5, 0.5821 for all x E [O, 11 (see Fig. 6.2). 
This two-point boundary problem has two exact solutions. One is in 

the region indicated. The other, which lies outside this region except near 
the end-points, can also be found by the method described here by 
starting with an initial region for &(x) which contains it and is sufficiently 
narrow. 
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Further iteration with higher values of k will produce narrower bound- 
ing interval polynomials. 

See Chapter 8 by Hansen for more discussion of interval methods 
for such problems. 
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7 On Solving Two-point 
Boundary-value Problems using 

Interval Arithmetic 

1. Introduction 

IN this chapter we show how interval arithmetic can be used to bound 
the solution to certain two-point boundary-value problems for ordinary 
differential equations. Our method can be applied to non-linear equa- 
tions but in some such cases we assume initial crude bounds to  be given. 
However, for the linear case, no initial bounds are required. 

To simplify the presentation, we consider only a single equation of 
second order. The method to be discussed can be easily extended to the 
more general case. In  [6] (p. 83), Moore indicates that the problem 

can be solved, with strict bounds on the error, by formulating the prob- 
lem as an integral equation and using the method of Chapter 9 of [6]. 
See also Chapter 6 of this book. In the following, we present an alterna- 
tive procedure for solving the more general equation 

Y" = f ( x ~ Y ~ Y ' )  
with boundary conditions 

For brevity, we replace equations (1.2) by the special simple conditions 

However, use of (1.2) instead of (1.3) introduces no difficulties. Our 
method is essentially an interval analytic extension of the difference 
approximation method in common use (see, for example, [2]). The 
modification of our method to use (1.2) instead of (1.3) follows the same 
steps as those of section 12 of Chapter 4 of [2]. 
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We assume the problem expressed by (1.1) and (1.2) has a unique 
solution, bounded in [a, b], and that its f i s t  four derivatives are con- 
tinuous and bounded in [a, b]. We impose further conditions at  the end 
of section 3. 

We also assume f is a rational function of x, y, and y'. If this is not 
the case, it may be possible to obtain a system of differential equations 
entailing only rational functions. For details of such a step, see, for 
example, section 11.2 of [6]. This assumption is not necessary, in general, 
since there are means for computing intervals containing the 'value' of 
irrational functions with interval arguments. For example, see Chapter 1 
by Moore. We consider some irrational examples in sections 10 and 11. 

2. The basic step of the method 
Divide the interval [a, b] into sub-intervals 

X i =  [X~,X,+~] (i = 0,1, ..., n-1) 

where x, = a and xn = b. The meshpoints xi need not be equally 
spaced although we assume them to be. At each interior meshpoint 
x,, ..., x,-,, we write discrete approximations for the derivatives in the 
differential equation (1.1). The error in these approximations can be 
analytically expressed and then bounded by use of interval arithmetic. 
The simplest central difference approximations are the well-known 
formulae 

1 y! - -(y. - h2 
' - 2h .&+I Y - 1 - Y " ,  (( = I,..., n-1) (2.1) 

1 h2 
and y=-(y+l-2yi-yl)--$4(i)  1 n - 1 ,  (2.2) 

h2 12 

where h = xi+,-xi and y6 denotes y(x,), etc. The quantities 6, and r] ,  

are unknown except that ti E X r  and r]{ E X: where 

x: = Xi U Xi-l = [xi-,, x,+~]. 

We later show how to bound the error terms. For now, assume we 
know intervals A, and B, such that ~"'(6,) E A, and $*)(r],) E B, for 6, and 
11.1 in X:. Substituting these bounding intervals for the respective 
quantities in (2.1) and (2.2) and substituting the results into (1.1) (with 
x = xi), we obtain 
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Since yo and y, are given, we thus have n- 1 equations in the n- 1 
unknowns y,, ..., y,-,. If the equations are linear, we can solve them by 
(say) the interval arithmetic method recommended in [5] (for which a 
computer program is given in [TI). If the equations are non-linear, a 
method in [4] or [6] can be used. We thus obtain an interval y: con- 
taining yi (i = 1, ..., n- 1). 

3. Obtaining Ai and Bi 

We now consider how the bounds Ai and Bt can be obtained. To do 
this, we assume we have bounds on y and y'; that  is, assume we know 
y(x) E Y ,  and yf(x) E YL for x E Xi. In  later sections we discuss how to 
find the intervals Y ,  and Y;. 

Differentiating equation (1. I), we have 

where f, r af/ay and fun r af/%'. Substituting for y" in (3.1) from (1.1), 
we obtain 

Y"' = p(x, y, yl), (3.2) 

where P(X, Y, yl) -- f ~ + ~ l f r + f f ~ e  (3.3) 

is a function of x, y, and y' alone. 

Similarly we find $*' = PI(X, Y, Y') (3.4) 

by differentiating (3.2) and substituting for y" as before. 
We can bound y" over an interval Xi by evaluating p(X,, Y,, Yi) using 

interval arithmetic. Denote 

Ai = p(&, Y,, Y;) U p(Xi-1, &-I, K-i)- (3-5) 

Similarly, Bi = q(Xi,Y,, Y;) u q(Xi_,,Y,-,, Yip,). (3.6) 

The intervals Ai and Bi are the quantities required in (2.3). 
We assume that  p(X,, Y,, Yi) and q(X,, Y,, Yi) are bounded for all 

i = 0, ..., n-1. This rules out many interesting differential equations. 
For example, we cannot solve y" = ylx if 0 E [a, b]. 

4. Improving Yi 

We assume the bounding intervals Y ,  and Yi were initially crude. We 
now consider how to improve these bounds. 

Using Taylor series with remainder we easily find 
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for any point x E Xi, where Oi E Xi and 4, E X,. Denote 

Y; = f (X,, 5, Yi). (4.2) 
From (1.1), y"(9,) E Yi and ~"(4,)  E Y; and hence from (4.1), 

for anyx E Xi, where w{[O, 1lY;)denotes the width of the interval [O, l]Y;. 
Denote 

Then yl(x) E Y; for any x E Xi and Y; is the (improved, in general) bound 
we sought. We use the same notation Y; for the old crude bound and 
the new improved bound on y'(x) for x E Xi. At any stage of our method, 
Y; denotes the current best approximation. In  practice we should use 
the intersection of the old and new intervals. 

5. Improving 5 
We now use the improved bound Y; to improve Y,. Using Taylor series, 

we easily find 

Y(X) = B[~i+~i+l+(xi+l-x)~'(~i)-(x-xi)~'(~i)I (5.1) 
for any x E Xi, where pi E Xi and vi E Xi. Since Y'(~,)  E Y; and yl(vd) E Yi, 
we have 

y(x) E B[Y:+Y~+I+ (xi+l-Xi)Y;- (Xi-xi)Yll 
h 

= ?(Y:+Y:+~) +l (LO, llY;-[o, 11Yi) 

for any x E Xi. Denote 
h 5 = l(y:+y:+l) +5 w(lo,1ly;)[- 1,lI. (5.2) 

Then y(x) E Y ,  for x E Xi. This new value of Y,  replaces the original crude 
value; and, as before for Y;, the intersection of the two can be used. 

6. The iterative method 
We are now able to describe the method we propose. We proceed in 

the following steps. 
(a )  Procure crude bounds 5 and Y; for i = 0, ..., n-1 (see sections 

8-11). 
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(b) Evaluate Ai using (3.5) and B, using (3.6) for i = 1, ..., n- 1. 
(c) Using (1.3), solve equations (2.3) for y{ (i = 1, ..., n-1). 
(d) Find improved bounds Yi (i = 0, ..., n-1) using (4.3). 
(e) Find improved bounds & (i = 0, ..., n- 1) using (5.2). 
(f)  Iterate steps (b)-(e). 

The iteration can proceed either until the error bounds are sufficiently 
sharp or until successive iterates differ by a sufficiently small amount. 
Note that for fixed finite precision arithmetic, a stage will be reached 
where no improvement occurs. 

We have assumed convergence. If this does not occur, the fact is 
almost immediately revealed. In  theory, the likelihood of convergence 
is enhanced by reducing h. In practice, this may not help because the 
number of interval equations (2.3) increases and may be difficult to solve 
sharply. 

We wish next to present a general procedure for obtaining crude 
bounds when the differential equation is linear. To do this, we first 
require some preliminary concepts which we now consider. 

7. Computation with variable intervals 
Let M, and N, be intervals whose end-points are specifically given 

numbers. Let W be an unspecified variable interval. We cannot un- 
ambiguously express M, W explicitly in terms of the end-points of M, 
and W since the end-points of M, W depend upon the unknown signs 
and magnitudes of W. To compute with variable intervals, we can 
represent them as N, W. Then M,(N, W) can be 'computed' by evaluating 
N,,, = MrN, and representing the result in the form N,,, W. 

If we assume W is symmetric about the origin so that W = [-w, w], 
we can simplify the arithmetic. We can then replace N, = [n:, n a  by 
a positive real number n, since 

N,[-w,wl = n,[-w,wl, 
where n, = IN, 1 = max ( ln,ll, InFI). Similarly 

W1.w = WlllMrI. (7.1) 
In the next section, we take advantage of this simplification. 

8. Obtaining & and Y;  in the linear case 
If boundary conditions of the form (3) are given, we choose to seek 

bounds of the form Yi = {y(a)+y(b))12+ U (8.1) 

and y - y(b)--y(a) + v, 
2 ' -  b-a 
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where U = [-U,U] and V = [-v,v] SO that U and V are symmetric 
about the origin. If the boundary conditions are not of the form (3), we 
can simply choose = U and Yi = V. 

Using the analytically expressed bounds (8.1) and (8.2), we perform 
steps (b)-(e) of our method described in section 6. We use the arithmetic 
described in section 7. 

Let and Fi denote the new bounds on the solution and its derivative, 
obtained in this way. We find 

8 = M,+c, U+d, V (8.3) 

and Ti = M:+c: U+di V (8.4) 

for i = 0 ,..., n-1, where c, 2 0 ,  d, 2 0, ci 2 0, and di 3 0. Denote 
M, = bi,qi], Mi = [pi, qi], = [gf,fjF], and = [Z?, ZF] .  From (8.3) 
and (8.4), fjf = pa-ci~-drv, 

z? = q;+c:u+d;v, (8.5) 
for i = 0, ..., n-1. 

Let r = {y(a)+y(b))/2 and s = {y(b)-y(a))/(b-a). Then from (8.1) 
and (8.5), the differences between the old and new left end-points of the 
bounds on y(x) in Xi are 

and the changes in the right end-points are 

Similarly, the changes in the end-points of the interval containing y'(x) 
in Xi are Azt  = p;-s-c;u+(l-~)v (8.8) 

and Azp = qi-s+c;u-(1-di)v (8.9) 

for i = 0, ..., n-1. 
The new bounds are strict improvements over the old if 

We now argue that for h sufficiently small, the inequalities (8.10) will, 
in fact, hold provided the initial bounds are not already too sharp. 
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We performed steps (b) - (e )  of the procedure in section 6. Each of these 
steps involved use of a formula in which the error term was multiplied 
by a positive integer power of h. Hence the non-negative numbers c,, 
d,, ci, and d; are all O(h). We assume h is so small that 

From (8.11), we see that the coefficients 1-ci in (8.6) and (8.7) and 
1 -d; in (8.8) and (8.9) are positive. This (along with another condition 
given later) enables us to satisfy conditions (8.10) by choosing u and v 
to be related in an appropriate way. 

Since we seek only crude bounds, we shall not attempt to obtain a best 
result but shall sacrifice sharpness (in the crude bounds) for simplicity 
of method. We do not, of course, drop the requirement that our bounds 
be strict. 

Using (8.6)-(8.9) and noting (8.11), we rewrite (8.10) as 

for i = 0, ..., n-1. We assume di > 0 although the case d,. = 0 causes 
no difficulty. However, di = 0 only iff is independent of y. For simpli- 
city, we omit discussion of such cases. Define 

a, = min{(p,-r)/di}, a, = min{(r-q;)/di}, 

a = m n { ( - 1 - )  ah = min{(s-q;)/(l-a;)), 

/3 = min{(l -ci)/di), and /3' = max{ci/(l -d;)), 

where the max and min are taken over all i = 0, ..., n- 1. Define 
a = min(a,, a,) and a' = min(a;, ah). Then (8.12) and (8.13) are satisfied 
if u 2 0 and v 0 are such that 

and (8.14) and (8.15) are satisfied if 

The right members of (8.16) and (8.17) can be viewed as lines in the 
(u, v) plane. Relation (8.16) says the point (u, v) must lie below the line 
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and (8.17) says (u, v) must lie above the line 

It is easily seen that 0 < P = O(l/h) and 0 < Pf = O(1). Hence for h 
sufficiently small, Pf < P (8.20) 
and there exist points (u, v) satisfying both (8.16) and (8.17). Hereafter, 
we assume (8.20) to hold. 

In  general, conditions (8.11) and (8.20) can be satisfied by choosing h 
sufficiently small. However, this is not always the case. If equations 
(2.3) are nearly linearly dependent, y$ may be large in magnitude. 
Subsequently, terms which are supposedly relatively small may not be 
so and our method can fail. Note that for the eigenvalue problem wherein 
equations (2.3) are, in fact, linearly dependent, our method fails 
completely. 

We choose (u, v) to lie on the line whose slope is the average of the 
slopes of the lines (8.18) and (8.19) and which passes through their point 
of intersection. That is, we choose (u, v) to lie on the line 

A point on this line satisfies (8.16) and (8.17) if u = uo+Au for all 
Au > 0 where 

UO = -(a+af)/(P-Bf). (8.22) 

It is easily seen that u, = O(1). Note we also require u > 0. 
Substituting for v from (8.21) into (8.6) and (8.7) and using the defini- 

tions of a, a', p, and p', we find 

and AY? < - ~ ( ~ - ~ l ) ( u - u o )  
2 (8.24) 

respectively. Whatever value of u > u, we use in (8. l ) ,  we now see that 
we could replace it by 

where d = min(di) for i = O,.. . , n- 1. That is, we could reduce u-u, by 

Now 1-(/3-P)d/2 2 (1 +ci+dP1)/2 > 0 and hence u-u, can always be 
reduced by a positive fixed fraction of itself if u > u,. 

8533330 a 
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Similarly, from (8.8) and (8.9) we find that v-v, can be reduced by 
an amount 

P-P' (1 -dt)(v-v,), A(v-v,) = - 
P +rs' (8.26) 

where d' = max(di) for i = 0, ..., n- 1 and 

0 - 
.P' +Pa' v ---. 

P-P' 
Hence both u-u, and v-v, can be reduced by fixed positive fractions 

of themselves if u > u, and v > v,. We have assumed y and y' bounded 
for all x E [a, b]. Suppose we choose u and v satisfying (8.21) and so large 
that (8.1) and (8.2) do, in fact, bound y and y' in [a, b]. If 

u > UI = max(O,u,) and v > v, = max(0, v,), 

we can reduce both u and v, keeping (8.21) satisfied, until as the limit 
of an infinite sequence of steps, u = u, and v = v,. (Actually we will 
find u < u, and v < v, since we have used bounds rather than true 
values of AyF, etc.) Thus, letting u = u, in (8.1) and v = v, in (8.2) 
yields actual bounds on y and y' for x E [a, b ] .  

It is quite easy to obtain results which are slightly sharper, in general. 
Replace < by < in (8.12)-(8.15) and substitute for v in terms of u from 
(8.21). Find the smallest value of u satisfying all these relations for all 
i = 0, ..., n-1. This value, substituted into (8.1), yields bounds on y. 
Substituting this value of u into (8.21) and solving for v yields a value 
which when used in (8.2) yields bounds on y'. 

I n  general, still better results can be obtained by solving a linear 
programming problem. We minimize +(u,v) = u subject to the con- 
straints (8.10). The values of u and v for the solution point (u,v) yield 
bounds as before. 

Proof of the validity of the statements in the last two paragraphs can 
be obtained in the manner used to prove u = u, and v = v, provide 
actual bounds. 

In practice, a relatively large value of h could be used in obtaining the 
crude error bounds. If the bounding procedure cannot be completed 
because (8.11) or (8.20) fails to hold, then h can be reduced and the 
process repeated. However, the crude bounding procedure is quite 
simple to apply. Moreover, it yields sharper results for moderately 
small h. Hence there is no great advantage in using large h. 
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9. Example 

We illustrate the above analysis with an example considered by 
Collatz on pp. 178 and 179 of [I]. Consider 

y" = 2x-2y- l/x (9.1) 

with boundary conditions 

y(2) = y(3) = 0. (9.2) 
Following Collatz, we let h = 113. In general practice, however, it is 
necessary to choose a machine representable value of h. 

Differentiating (9.1), we find 

y(" = 4x--3(4y/x- 1 - 2y') = q(x, y, y'). (9.3) 
We shall not need y" since y' does not occur in (9.1) so we shall not have 
to use (2.1). We shall be evaluating (9.3) with the variables replaced by 
intervals. Hencz we ought to write the equation in such a way as to 
obtain sharpest results. The given form is better, for example, than 
4~-~(4y-x(l  f 2y1)}. 

Equations (8.1), (8.2), and (9.2) dictate that we seek bounds of the 
form & = U and Y;  = V. We thus replace y by U and y' by V in (9.3) and 
replace x by suitable intervals. To reduce the labour, we have used 
intervals Xr to find Bi rather than use Xi and Xi-, separately. In  general 
practice this should not be done since 

!?(Xi-1, u ,  V) lJ q(X,, u, V) c q(XZ, u ,  V); 

that is, the left-hand member of this relation yields sharper results, 
usually. We find 

Bl = q(XT, U, V) = [-0.500, -0-210]+ U+V, 

Substituting these results into (2.3) and using (9.2), we obtain 

Solving these equations, we get 

= [0~0419,0~0429]+0~000690U+0~000753V. 

We next find Yi = [-0-500, -0.4281 +0.500U 

using (4.2), and 

= [0~0483,0~219]+0~170U+0~00263V 



84 SOLVING TWO-POINT BOUNDARY-VALUE PROBLEMS 7.9 

using (4.3). Similarly, we find Y;  and Y!. Next we obtain 

Yo = [-0~0148,0~0680]+0~0571 U+O-00132V 

as well as Y, and Y, using (5.2). 
Writing (8.6)-(8.9) for i = 0, 1, and 2, we have 

Ayk = -0.0148+0.9429~-0.00132~~ 

Ayp = 0-018+0.9564u-0.00245~~ 

Thus (8.18) and (8.19) become (approximately) 

0 = -51.5+390~-v 

and 0 = -0.22-0.17u+v, 

respectively. Rounding to  one significant digit (for convenient hand 
calculation) we approximate (8.21) by 

It does not matter that we approximate (8.21) so poorly since we choose 
not to compute u, and v,. Instead we use the alternative method 
described above. 

Substituting for v from (9.5) into (9.4) we find Ayt >, 0, Ay? < 0, 
Ax? >, 0, and Ax? < 0 for i = 0,1, and 2 if u = 0.152. If we had used 
(8.22), we would have found u, = 0.133. The alternative method 
(which is better) has yielded a worse result because we rounded (8.21) 
so drastically to get (9.5). Using higher-precision arithmetic to  obtain 
(9.5), we could have got u, = 0.133. Using u = 0.152, equation (8.1) 
reveals that y E [-0.152,0.152] for all x E [2,3]. Solving (9.5) for v and 
using (8.2), we find that y' E [-0.4,0.4]. 

We could now use our iterative process beginning with step ( b )  in 
section 6. However, we already know what the result of performing 
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steps (b)-(e)  will be. Except for the fact that the arithmetic might differ 
slightly, we would obtain the improvements given by (9.4) for the bounds. 
We thus find Y,, = [-0-023, 0.0773],Yl = [0.01,0.765], Y, = [-0.017, 
0.05911, Yo = [0.021,0.246], Y; = [-0.102,0.09], and Y', = [-0.208, 
-0.0481. 

We now begin our iterative process. We find y: = [0.0434,0-04471 and 
yi = [0.0418, 0.04271. As before we have evaluated B, and B, in the 
form B, = q(X:, Y,-, U Y,, Yi-, U Y;). To improve sharpness in the final 
time through the iterative process, we use 

Bi = q(Xi-l,Y,-l, Yi-,) u q(X,,Y,, Y;). 

We find y: = [0.0440,0.0446] and yi  = [0.0422,0.0427]. Very little 
improvement could be obtained by further iteration. 

Our step-size h is too large to  yield high accuracy. However, if we con- 
sider the mid-points of y: and y; to be approximate values of y, and y,, 
we know that the relative errors are less than 0.007 and 0.006, respec- 
tively. 

Collatz [l] solved this same problem approximately and using an 
explicit expression for y(4) in terms of x obtained estimates 

yf = [0.043288,0.044708] and yi = [0.041464,0.042884]. 

I n  practice, of course, we do not know y(4) explicitly in terms of x alone. 
Without this information, we havc obtained error bounds, not estimates, 
which arc sharper. 

10. Crude bounds for lion-linear equations 

We now consider ways in which crude bounds on y and y' can be 
obtained for non-linear differential equations of the form (1.1) with 
boundary conditions given by (1.3). 

It should be noted that no initial bounds on y' are required iff (x, y, y') 
in (1.1) is independent of y'. I n  this case (4.3) provides bounds on y' 
assuming bounds on y are known. 

I n  very special situations initial bounds may be quite simple to  obtain. 
Suppose, for example, the differential equation is 

Suppose g(x) is bounded for x E [a, b]. Evaluating g([a, b]) in interval 
arithmetic, let G be the interval obtained. Then yM(x) E Gfor allx E [a, b]. 
Hence (4.3) provides bounds Y; (i = 0, ... , n- 1). We merely let h = b-a 



86 SOLVING TWO-POINT BOUNDARY-VALUE PROBLEMS 7.10 

so that yi = y(a) and yi+, = y(b). These quantities are given by (1.3). 
Similarly, (5.2) yields a bound on y(x) for all x E [a, b]. 

In  problems for which it is applicable, a crude form of the method 
discussed by Moore in Chapter 6 could be used to get initial bounds on y. 

We now quote a theorem due to  Gendzhoian [3] which can be useful: 

THEOREM. Given y" = f (x, y, y'), y(0) = y(1) = 0. Assume that for 
0 < x < 1 and yz+y'2 < co, the following conditions hold: 

(i) f is continuous in x, y, and y'. 
(ii) f is continuously differentiable with respect to y and y'. 

(iii) 0 ,< f, < M and If,,l < M. 

Let N > 0 be such that If (x, 0,O) I < 2eN12 and let a = +{M+(M2+4)112) 
and R = max(N, a). Then -v(x) < y(x) < v(x) for 0 < x ,< 1 where 

In  certain cases, i t  can be determined that the conditions of this 
theorem hold. Note that an upper bound for the constant N can be 
obtained by evaluating f (x, 0,O) in interval arithmetic with x replaced 
by the interval [O,l]. 

If for all x E [a, b], the function f (x, y, y') does not grow too rapidly as 
a function of y and y', we can obtain crude bounds on y and y' in a way 
similar to that of the last section. 

Denote Y = [yL, yR], Y' = [zL, zR]. If we substitute the fixed interval 
X = [a, b] for x and the variable intervals Y for y and Y' for y' in 

f (x, Y, Y'), we have f (X, Y, Y') = [gL7 gRl, (10.1) 

where gL and gR are functions of yL, yR, zL, and zR. 
From (4.3), y' E F' for x E X where 

b-a 
(10.2) 

b-a 

Thus from (5.2), y E for x E X where 

b-a 
F = t { ~ b )  +y(b)} +37w( [0 .  11J1)[- 1 , l l  

= ${~(a )+~(b ) )+&{~(b ) -~ (a )+(b -a )~w([O,  ll[gL, gRI))[-1, 11. 
(10.3) 

- 
Denote Y = [fjL, fjR], F' = [fjL, fjR], AyL = fjL-yL, AyR = gR-yR, 
AzL = ZL-zL, and AzR = IR-zR. 

The bounds (10.2) and (10.3) are strictly better than the bounds Y 
and Y', respectively, if 

AyL > 0, AyR < 0, AzL > 0, AzR < 0. (10.4) 
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This will be the case if gL and gR grow at  less than a linear rate as func- 
tions of their arguments provided that -yL, yR, -xL, and xR are suffi- 
ciently large positive numbers. In  particular cases, linear growth of gL 
and gR may be acceptable. 

For alinear differential equation, gL, gR, ZL, and ZR are linear functions 
of yL, yR, zL, and zR. Hence it  was necessary (in general) in the last 
section to  subdivide X and use (2.3) to assure that, corresponding to  
(10.4), we could satisfy (8.10). With the assumption that gL and gR grow 
sufficiently slowly, the additional step is unnecessary. 

The following example illustrates the ideas just discussed. We develop 
the results in a way that might occur in practice. That is we impose 
conditions as they appear necessary or convenient. 

Consider the problem 

y'' = 4O(y~')l1~, y(1) = 40, y(2) = 320 

whose solution is y = 40x5. Note that f (x, y, y') = 40(yy')lI3 is indepen- 
dent of x. This simplification is neither necessary nor particularly helpful. 
Substituting Y for y and Y' for y' in f, we obtain Y" = 40(YY')lI3. 

From (10.2), 
7' = 280+2Ow{[O, 1]Y1/3(Y')113)[- 1,1]. 

For convenience, assume 0 E Y and 0 E Y'. Then 

7' = 280 +20w{[(yL)l13, (yR)1/3][(xL)1/3, ( z ~ ) ~ / ~ ] ) [ -  1,1]. 

Since y(1) > 0 and y(2) > 0, assume yR -yL. Since y(2)-y(1) > 0, 
assume xR -zL. Then 

[(yL)l13, (yR)1/3][(xL)1/3, (xR)lI3] 

= [min{(yLxR)1/3, (yRzL)lI3), (yRzR)1/3] c [- (yRzR)lI3, 

Since we may enlarge 7' if we like, we accept 

From (10.3), we obtain 

H = [40, 320]+40(yRxR)113[- 1,1]. (10.6) 
Hence AyL = 40-4O(yRxR)lB+yL, 

AyR = 320+40(yRzR)l13-yR. 

Choose yL = -yR. Then AyL > 0 and AyR < 0 if 

~ ~ - 4 0 ( ~ ~ ~ ~ ) ~ / ~ - 3 2 0  > 0. 
From (10.5), AxL = 280-40(yR~R)113-zL, 

AxR = 280+40(yRxR)113-xR. 
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Choose xL = x R .  Then AxL > 0 and AxR < 0 if 

xR-40(yRzR)1/3-280 > 0 .  (10.8) 

Choose zR = yR. Then both (10.7) and (10.8) are satisfied if 

yR-40(yR)213-320 ) 0 .  (10.9) 

The largest root of this cubic in (yR)li3 is near 40.2 and (10.9) is satisfied 
if (yR)lI3 > 40-2. Since (40.2)3 < 64965, we concludc that inequalities 
(10.4) arc satisfied if -yL = y R  = - x L  = x R  64965. Using the 
argument applied in the last section, we conclude that both y and y' are 
contained in the interval 64965[- 1 , 1 ]  for all x E X. The best possible 
bounds on y and y' are [40,320] and [ Z O O ,  32001, respectively. 

Thus the bounds are not very good. Howcver, subdividing X and 
using these crude bounds in the iterative method described in section 6, 
good bounds can be obtained. 

11. Additional notes 
We have shown how, under certain conditions, strict bounds can be 

obtained on the solution of a two-point boundary-value problem. We 
not only get bounds on the value of the solution at the mesh points but 
also uniform bounds on the solution between mesh points. If desired, 
the method could be easily extended to yield interval polynomial bounds 
between the mesh points. 

We have implicitly assumed that a and b were rational numbers that 
can be expressed in single precision in the computer. If this is not the 
case, then h, x,, x,, ... are irrational, in general. These numbers could 
be replaced by intervals. However, it seems easier to replace x by, say, 
x = a+(b-a) t .  Then t  takes the values 0 and 1 a t  the end-points of the 
interval in which the differential equation is to be solved. Alternatively, 
we could choose h to be rational and let only x,-a and/or b-x,-, be 
irrational. In  this case alternative expressions for (2.1) and (2 .2)  must 
be written for i = 1 and/or i = n-1 .  

Equations (2.1) and (2 .2)  are commonly replaced by alternative 
expressions in practice (see [ 2 ] ) .  If the necessary cxtra derivatives off 
can be easily obtained, it seems probable that higher order approxima- 
tions should be used. Similarly (4.1) and (5 .1)  could be replaced. For 
example, suppose the boundary conditions are of the form y'(a) - yb and 
yl(b)  = yk. Then in the crude error bounding method in section 10, it 
may be better to use, say, an interval version of 

~ ' ( 4  = i {y l (a)- l  y'(b)+(b-x)y"(~)--(x-a)y"(+)) 
in place of (10.2). 
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To avoid use of we could replace (2.2) by 

where ti E Xi and 7; E Xi-,. If this equation is used instead of (2.2), we 
can drop the condition that y have a bounded fourth derivative. 

Equation (11.1) may be especially useful in obtaining crude error 
bounds. For example, consider the differential equation 

y" = y' +sin y. 
For this example, we find 

yttt = yf ( l  +cos y) +sin y 

and = yf(l  +2 co~y)-(y ' )~  sin y+(1 +cos y)sin y. 

I n  order to  use the procedure in section 10, we could replace 

Y; = f (X,, Y,, Y;) = Y;+sin Y ,  

by F; = Y;+ [- l ,1]  since sin yi E [- l,1]. Similarly, we could replace 

Yy = p(X,,Y,, Y;) = Y;(l+cosY,)+sinq 

by = [O, 2]Yi+[-1,1]. However, if we attempt to  do this for 
the result is not linear in & and Yi. Hence the method in section 10 could 
not be used. But if we replace (2.2) by (11.1), we do not require a bound 
on The bounds on y; and yy are linear in & and Y; and hence we 
can apply the crude bounding procedure of section 8. 

The procedure whose steps are listed in section 6 yields bounds on y' 
over the intervals Xi. If bounds on y' a t  the mesh-points xi are desired, 
we obtain sharper results by noting that y; E Yi-, n Y;. Sharper results, 
in general, can be obtained using (2.1), which becomes 

Note we can attempt to improve y: (i = 1 ,.. . , n- 1) by replacing yi by 
Y: n Y ,  n q-,. 
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8 Ordinary Differential Equations 

1. Introduction 
LET there be given a system of n ordinary differential equations of 
first order 

Y' = f ( 4 ~ )  
with the initial condition 

y(t,) = s; s E Rn 

so that the solution of (1) and (2) is 

y"(t; ta, 8) (3) 
for t >, ta. Usually a numerical approximation for y"(t; t,, s) is sought. 
If interval methods are used, condition (2) can be generalized. Instead 
of a point s E Rn, a set Wa c Rn can be used so that the result is a set 
of solutions. This set of solutions will be denoted by 

W(t) = (2: Z = y"(t; t,, s), S E Wa) (4) 
so that F(ta) = W,. 

When using interval arithmetic it is advantageous if Wa can be 
described by an interval vector or by a product of an interval vector 
and a point matrix. Intervals will be denoted by the symbol J , so that 
LcJ is an interval and LwJ is an interval vector. 

Using Taylor series, Moore [l] obtains very good results in the numeri- 
cal integration of ordinary differential equations. This chapter describes 
a new numerical process that can be realized in several different ways. 
We will call it 'Three-Process Method' or 3PM. 

2. The 3PM process 
Assume we are given a system (1) or n ordinary differential equations 

and a set of initial values W,* at the time t,. Our problem is to construct 
a set W$* so that W$* 2 W,*, (5) 

w,* = W*(t,), (6) 

and w*(t) = {x:x = y"(t;t,,s), s E W:) (7) 
where t, = ta+h, h > 0. (8) 

The step length can be determined by process (I) given below. 
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Three procedures will be described for solving the problem. The 
procedures are defined by three sub-problems that must be solved. 
There are many numerical realizations for each procedure so that i t  is 
possible to find a large number of combined realizations for the whole 
3PM. 

2.1. Process ( I )  

Assume we are given an initial time value t ,  and an initial set W z  
a t  the time t,. Also given is an integer k 2 0. 

Our problem is to determine a step length h > 0 and an interval 
polynomial with vector coefficients 

k 

['(tpta)J = 2 [pvJ (t-ta) 
v=o 

(9) 

so that for all t  E [t,, tb], 
(r'(t-ta)J 2 W*(t). (10) 

Here tb is determined by (8) and w*( t )  by (7) .  I n  most cases i t  is sufficient 
to  construct (f'J for k = 0. 

2.2. Process (11) 

Assume that a t  the time t ,  there is given an initial point rz with 
VZI, E WZI,. The dot over a variable denotes that the variable is a single 
value and not a set. Our problem is to  find a set V$* with 

v;* 2 V $  (11) 

where V$ = g(tb; t,, r:). (12) 

Obviously process (11) contains the ordinary problem of numerical 
integration, starting with a single initial point. For the performance of 
process (11), the result of process (I) must be used. 

2.3. Process ( I I I )  

Assume there is given a decomposition of W z  as the sum of the point 
VZI, and a set Uz so that  

w,*~V:+u,*, O E U ~ .  (13) 

Our problem is to  find a set U,** with the property 

up2 Ub* (14) 

where U$ = Wg- r:. (15) 

The set Ug can be interpreted as the image of the perturbations Uz of 
Vz if integration is performed from t ,  to t,. For process (111) the result 
of process ( I )  must be used. 
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2.4. Composition of processes (I) ,  (II) ,  and (III) 

By composition of processes (I), (11), and (111) the whole 3PM can be 
constructed in a simple way. This is illustrated in diagram (16) (p. 94). 

From (16) it can be seen that 3PM is a one-step method. It differs from 
other integration methods in the separation of the integration into the 
two processes (11) and (111). 

Some realizations of (I), (11), and (111) will now be considered. 

3.1. Realization of process (I) 

Moore ([I], p. 131 et seq.) gives a realization of process (I) for k = 0. 
This realization works very well. A realization for k > 0 can be found 
by using the Picard-Lindelof iteration. 

There may exist an interval vector [WE) with the property 

W z s  [wXJ .  
By using Moore's method for k = 0, an interval polynomial of degree 
k = 0 can be obtained with 

i&(t-ta)J = 1 ~ 0 J  (17) 
so that, for tb = t,+h (h > 01, 

W* (t) s [PO J (18) 
for all t E [t,, tb]. The Picard-Lindelof iteration now leads to 

1 

J : = [wZJ + J if (ta +T, iPv(~) J ) J a~ (19) 
0 

forv=O, 1 , 2  ,.... 
In (19) fJ  is a representation for f in interval arithmetic operations. 

By using interval polynomials for the integration (19), it is easy to get 
[PV+,j. But it is necessary to have the ability to limit the degree of 
[PV+, J . This can be done by vergroberung. After each step, v + v+ 1, 
and the degree of [Pv+,J can be reduced to v+ 1. In this way-after 
k steps using (19)-we obtain [PJ = [$J , where 

W( t )  G [P(t-ta) J (20) 

for all t E [ta,tb]. In practice it is sufficient to have the result (17) for 
k = 0. Only the cases k = 1 or k = 2 may also be of practical interest. 

3.2. Realization of process (11) 

For the realization of process (11), only a point-integration need be 
done, so that nearly all one-step integration methods are available if the 
remainder can be written down. The simplest realization is given by 
the Taylor series (see Moore [l]). 
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Given 

Process ( I )  r-- '- l  

A point i,* must be chosen within 
[ w ~ J .  Then iX is a realization of p,*. 
The Taylor series through terms of 
second order now has the form 

(vPJ : = gZ+h(f(ta,i,*)J + 

where V r  is realized by 

v;* = [vg*] . ( 2 2 )  

Now it is true that 

Vg E [vg*J (23) 

because in the remainder of ( 2 1 )  the 
whole set of solutions F*(t) is included 
in (&Lo, hl) J . I Process (11) I 

3.3 Realization of process ( I I I )  

Process (111) I 
Result for t b  I 

Preparation of the next 
integration step 

It is very important to have a good 
realization of process (111). Only then is 
it possible to get small bounds for the 
error propagation. By linearization of 
the given differential equation in the 
neighbourhood of y"(t;t,, V:) and by 
using the theory of matricants a realiza- 
tion can be found. The interval vector 

[C:J : = (w,*J -.i)Z (24) 
is a description of UZ. Interval functions 
[lijJ must be obtained which contain 
the functional matrix of f for each 
element so that 

L(tY Y )  = Pij(tY Y)1Y (25) 

( l i j ( tyy)J 3 l+j ( tY~)  forts < t < tb. 

(27) 
Let [pOJ be the result of process (I) 

for k = 0. Then 
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must be computed. Now [yJ contains all matrices L with arguments in 
the set W*(t) for t E [t,, tb]. Hence it follows by the theory of matricants 
that for " h v  

[QJ : = f+ 2 -( V! ~ Y J  
v = l  

[ C r J  : = [QJ [C;J 

so that for the interval vector [CYJ , the relation 

[Cg*J z U,* (31) 

holds. The machine calculation of [QJ can be done by interval arith- 
metic without difficulty. 

If [Q J contains a geometric rotation, the result (ziz*J may not be 
very good. Moore discusses this difficulty in his book [I]. At Bonn we 
have evaluated a special method for carrying out a mapping that is 
better than (30). It is assumed that U,* = Wz-r; has the following 
representation : 

LC;] z2"a[eaJ z U,*, 

The product pa ',leaJ is defined in the sense of the 'united extension' 
. . 

(see Moore [I]) : 

Process (I) can be realized independently of this representation by 
using lw,*J . Also [Q J can be computed in the old way. Only the 
mapping (30) must be obtained in a more complicated way: 

IQJ  sol+ l Q z J  3 01 E IQJ , 
~,Ih,r%+ ITJ, (34) 

[TJ leaJ + l Q z J  p a  leaJ leJ.  
Then [QJ (Ta LeaJ 1 ~ ' b  I&J  + I'J = (35) 

and p b  (eaJ + [eJ 2 u,*- (36) 

Now the set Uz* is not described by an interval vector. This implies 
that the following change should be made in (16): 

Wg* = V p + U z * c  (vSJ +pb + (eJ. (37) 

By separation of v p  in the form 

[v$*J 5 6::+ [vgzj (6;; E (vg*J ), (38) 

the relation w$*~+Tb*+% [BaJ + l e l J  (39) 

holds with l e l l  2 leJ  -I- (vg:J . (40) 
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By performing the operations indicated in (39) it is possible to get 
a description of Wg* in the form (33). If [SJ z T C ~  then 

' b  leaJ + [elJ s i b (  leaJ + (BJ  LelJ 1, (41) 

l e b J  LfiJ lelJ + LeaJ 3 (42) 
so that Wg* c df$+Pb (ObJ (43) 

and (43) is of the form (33). For starting the next integration step all 
variables must be given a new notation: 

'* - '** va: - V l b ,  

Pa: = i b ,  (44) 

[eaJ : = lob] 
[ w ~ J  ?Pa [BaJ + V ~ Z  W;. 

By this more complicated method, very good results can be obtained. 
By a small modification it is possible to also get 'inside' interval vectors 
[eal with the property that the set so described is contained in the set 
of all solutions. 

4. Examples 
To illustrate the preceding analysis, we consider two problems we 

have solved by the methods described. Our first example is the astro- 
nomical three-body problem. The differential equations used as the test 
problem were those for the three-dimensional problem sun4upiter-8th 
moon of Jupiter. This problem was integrated (see Kriickeberg [4]) by 
Taylor series of order three with h = 1/16 for 1600 steps (= 100 days) 
by 3PM. The results are 

[y,) = [- 1.2852300740, 1.2852300703], 

[y,] = [0.8599642591, 0.85996426691, 

[y,J = [0.30140620~, 0.30140620@], 

[ y ; )  = [0.9963448543, 0.99634486061, - 
[ y i j  = [0-5962818.&, 0.59628190671, 

[y& = [-0.6042486288, -0.6042486228]. 

For our second example, we consider the integration of y" = -y. 
This very simple example is very interesting from the following point 
of view. The initial set is rotated through an angle 5 = 2~ as the time 
variable runs from t to  t+2n. It is difficult to find small bounds for the 
error propagation (see Moore [l]). Without any special technique, the 
bounds can be overestimated by a factor of about 500 for each rotation. 
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Moore has reduced this factor to about 16. Using the technique described 
above, it is possible to perform 12340 integration steps with h = r / l O  
and, after 617 rotations, get the following 'inside' and 'outside' interval 
vectors for the mapping of the starting 'window7 (BoJ : 

The results were computed using single word length in an interval version 
of Fortran, called Fortran-i, wherein Fortran expressions are automati- - 

tally interpreted as interval arithmetic expressions. 
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9 Partial Differential Equations 

1. Introduction 
INTERVAL arithmetic can be used in problems in partial differential 
equations. But today it seems to be difficult to give a general description 
of the possibilities. To give some impressions two different examples are 
selected. 

2. Example I 
Schrijder [6] has studied error estimation for a certain boundary-value 

problem. The equation has the form 

Let 4 be an approximation for the solution u and define the defect 
function d ( 4 )  such that 

d ( 4 )  = AY-f (x ,  Y ) ,  x  E G ;  

4 = + ( x , Y ) ,  x, Y E G. ( 2 )  
The problem now is to find small bounds for d ( 4 )  within G in practical 

cases; here d ( 4 )  can be a very complicated expression. In  the given 
example we have 

d(x,  y )  = d ( 4 )  = A++exp{+(x, y ) - - P ( x ,  Y ) ) ,  (3) 

G : x  E [ - 1 ,  + I ] ;  y  E [ -1 ,  +1] 

with b ( x ,  Y )  = do(x, Y )  +41(x, Y )  (4) 

and 
1 

40(xty) = - - {H(x)+H(y) - -H( l ) ) ,  77 ( 5 )  



9.2 PARTIAL DIFFERENTIAL EQUATIONS 99 

and 
fi = 17 b, = 5.6176774 X 

f2 = x2+y2, b2 = -2.0087935 X lo-2? 
f3 = x4+9,  b3 = 6.2069297 X 

f4 = x2y2, b4 = 1.1764105 X (9) 

f5 = x6+y67 b, = -5.7364814 x 

f6 = x 4 ~ 2 + x 2 9 7  b, = -2.4416037 x 

and 
1 

P(x, Y) = -(p1+p2+p3+p4)7 
57 

Pl = q(x7 Y), J'2 = q(-y,x), 

p3 = q(-x, -Y), p 4  = P(Y, -x), ( 10) 

Q(X,Y) = ( l+x)( l  +Y)ln{(l+~)~+(l+Y)~)+ 

+{(1 + ~ ) ~ - ( 1  +~)~)arctan{(l  +y)l(l +XI). 
It is very easy to compute d(x, y) for a special list of values xi, yi. But it 
seems to  be impossible to  construct uniform bounds for d(z, y). Interval 
arithmetic is a successful instrument here. The functions P ,  4, and A+ 
can be described by interval polynomials in two variables in the form 

P(x,+s,y,+t) E (a$J + (aTJ s+ (azJ t = [QaJ, 

+ (xo+~ ,Yo+~)  E (b t J  + (bTJs+ (b2J t = (&bJ7 (11) 
A+(x,+s,Y,+~) E (ctJ + (cTJs+ (czJ t = [QcJ, 

for s ~ [ O , h ] ;  t ~ [ O , h ] ;  s , , t , ~ G .  

This is possible if interval polynomial representations of ln(z), arctan(z) 
are known and arithmetic operations with interval polynomials can be 
performed. It is important that the degree of the resulting interval 
polynomials can be reduced and bounded by Vergroberung. Now from 
(Q,J , (Qb J , and (&,I new interval polynomials can be constructed so 
that 

d(xo+s, ~ o + t )  E (BoJ + lBlJ S+ (BzJ t (12) 

and the bounds of d(x,+s, y,+t) in the sub-square [q,, x,+h], [yo, yo+h] 
are 

[Bo+min(O, (B,h)+min(o, (B2h) < d < BoJ +BIJ h+B2J h. 
(13) 

By dividing G into about 100,1000, or 10 000 sub-squares and perform- 
ing this interval-estimation, more or less close bounds for d can be con- 
structed uniformly in G. 

According to  Schroder [6] more estimations are necessary (see p. 158, 
equation (4.6) of [6]) for determination of an error-constant a. This 
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problem was also solved by interval arithmetic. The so-constructed 
value a* = 1.0471266~ 10-3 is only a little larger than the value 
a = 1.0577 x 10-3 which was computed using only a finite set of points 
xi, yi within G. Now it is easy to get correct bounds for u. The interval 
computations in this problem were performed by Wauschkuhn [7]. 

From a theoretical point of view it is of interest to use not only interval 
polynomials for defect estimation. The polynomials can be generalized 
to  certain classes of functions with arange of values within a half-ordered 
space (see Kriickeberg [3]). 

3. Example I1 
In  some cases it is possible to construct directly the operator for 

solving a given partial differential equation. If the problem has the form 

u(O,x)=4(x), u € R n  

and if the special example is 

the solving operator can be written in general form 

u(t, x) = a ( B ,  t){Q(C, t)[4l+Q(-B, t)cf, 

c(t) = a ( -  B, ~)A(~)Q(B,  t). (16) 
By performing (16) for (15) using Forrnac the following result can be 
obtained : 

(see V. Scharf [5]). But the coefficients in (17) are computed in Formac 
with rounding errors. By using interval arithmetic in combination with 
Forrnac it is possible to  get correct bounds for the coefficients. I n  this 
way upper and lower bounds for the solution u can be constructed. 

It seems to  be a very successful procedure to combine a system like 
Formac with the ideas of interval analysis. Furthermore, in this way 
'inside' intervals can be constructed. 



PARTIAL DIFFERENTIAL EQUATIONS 101 

REFERENCES 

1. MOORE, R. E. Interval analysis. Prentice-Hall, New Jersey (1966). 

2. NICKEL, K. ~ b e r  die Notwendigkeit einer Fehlerschranken-Arithmetik fiir 
Rechenautomaten. N u m .  Math. 9 (1)  69-79 (1966). 

3. KRUCKEBERG, F. Defekterfassung bei gewohrdichen und partiellenDifferentia1- 
gleichungen. Vortrag Oberwolfach im J u n i  1966, Band 9. Birkhauser-Verlag, 
Base1 (ISNM) (1968). 

4. K ~ I S C H ,  U. and APOSTOLATOS, N. Approximation der erweiterten Intervall- 
arithrnetik durch die einfache Maschinenintervallarithmetik. Computing 2 (3) 
181-94 (1967). 

5. SCHARF, V. Ein Verfahren zur Losung des Cauchy-Problems fiir lineare 
Systeme von partiellen Differentialgleichungen. Dissertation, Bonn, 1966. 

6. SCHRODER, J. Operator-Ungleichungen und ihre numerische Anwendung bei 
Randwertaufgaben. N u m .  Math. 9, 149-62 (1966). 

7. WAUSCHKUHN, U. Methoden der Intervall-Analysis zur gleichmajligen Erfassung 
des Wertebereicha von Punktionen in einer und mehreren Veranderlichen. 
Diplom-Arbeit, Bonn (1967). 



10 The Centred Form 

1. Introduction 
IN this chapter we shall prove that a conjecture of Moore's concerning 
the centred form is correct. We first discuss some introductory ideas. 

Consider a rational function f  ( x )  of a real variable x. Since interval 
arithmetic does not obey the distributive law, it is meaningless, in general, 
to replace x by an interval X and write f  ( X ) .  If we specify the order 
in which the arithmetical steps to evaluate f ( x )  are to be performed, 
however, f  ( X )  is then meaningful. It is common practice to write f  ( X )  
without the algorithmic steps for evaluation. A particular but arbitrary 
and unspecified rule of evaluatian is usually implied. 

Let r be some rule for evaluating f  ( x )  and let f , (X)  denote the interval 
obtained by using this rule to evaluate f  ( x )  with x replaced by X .  We 
ask the question: what rule r will be such that the width w { f , ( X ) )  of 
f , (X)  is as small as possible ? This is an open question for arbitrary f ( x ) .  

Moore [l] discusses certain types of rules. In  particular, he discusses 
what he calls the 'centred form'. Let c be the midpoint of X and write 

f (4 = f (4 +g(x-c,  c ) .  ( 1 . 1 )  

This defines g(x-c, c )  which, following Moore, we write simply as g(x-c).  
The function f  ( x )  is said to be in centred form when written in this way. 

Note that x-c divides f  (x ) - f  (c) .  (In fact, one way to obtain g is to 
perform this division explicitly.) Hence 

g(x-C) = ( x - c ) ~ ( x - c )  

so that f (4 = f ( c ) f ( x - c ) h ( ~ - c ) .  (1 .2)  

If we write f (XI = f ( c ) + ( X - c ) h ( X - c ) ,  (1.3) 

this still does not define f  ( X )  since we have not specified how h ( X - c )  
is to be evaluated. In  whatever way h ( X - c )  is evaluated, however, 
'good' results are obtained as we shall see later. 

We could write h(x-c) itself in centred form as 

h(x-c) = h(0)  t ( x - c ) k ( x - c )  
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and now we must ask how k(x-c) is to be written, etc. If f(x) is a 
polynomial, we eventually get 

f '"'(~1 f(x) = f(c)+(x-c)f'(c)+...+(~-c)~- n! ' 
the terminating Taylor series for f (x) expanded about the point c. This 
result would be in nested form although we have not written it that way. 

2. Moore's conjecture 
Iff  (x,, ..., x,) is a rational function of n variables, Moore defines the 

centred form in the same way. Thus 

where ci (i = 1, ..., n) is the mid-point of a given interval Xi. For any 
function p(xl,. . . , x,), let $(XI,. . . , X,) denote the united extension (see [l]) 
of p for xi E Xi (i = 1, ..., n). Moore ([l], p. 45) conjectures that with f 
written in centred form, 

~ { f  (Xl,..., Xn))-~{f(Xl,.-., Xn)) = O(d2), (2.2) 
where d = max di 

19 jgn  

and di = w(Xi). We assume f(xl,. . ., x,) is bounded for 

xi E Xi (i = 1, ..., n). 

We shall now prove that the conjecture is true. 

3. The one-dimensional case 
In this section we shall prove Moore's conjecture for the case in which - 

f is a rational function of a single variable x. In  the next section, we give 
a different proof valid for any number of variables. 

From Theorem 4.4 of [I], if we evaluate the function h(X-c) occur- 
ring in (1.3), we obtain 

h(X-C) = A(X-c)+E (3.1) 

where w(E) = O{w(X-c)) = O(d). (3.2) 

Hence, from (1.3), 

c f (c)f (X-c)fi(X-c)+(X-c)E. (3.3) 
Note that from (3.2), 

w([-1, 1]E) = O(d). (3.4) 

But X-c = $d [- 1, 11. Hence from (3.3) and (3.4), 
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The notation in (3.5) requires explanation. For any functions g and G, 
the notation G ( X )  = g(X)+O(d2) indicates that g ( X )  and G ( X )  differ 
by an interval function whose width is O(d2). 

Let t E X be such that 

(h(t-c)( = maxlh(x-c)l .  
x e x  

Then [-1,1]6(X-c)  = [ - I ,  l]lh(t-c)I. (3.6) 

From (3.5) and (3.6), 

w{ f  ( X ) )  = dlh(t-c) l +O(d2). (3.7) 

Denote X = [a, b]. Then obviously 

w { P ( X ) )  > I f  (b)-f ( a )  I .  (3.8) 

By Taylor series with remainder, 

where t is as defined above. Note t E X and 71 E X .  Subtracting (3.9) from 
(3.10) and substituting into (3.8), 

w { f ( X ) )  2 dIf  ' ( t )  I +O(d2). (3.11) 

From (1.2), f ' ( t )  = (t-c)hl(t-c) +h(t-c) 

and hence w { f ( x ) )  2 dlh(t-c) 1 +O(d2). (3.12) 

Comparing this result with (3.7), we see that the proof is complete. 
The steps used in this proof can be carried out in the multi-dimensional 

case. However, the final relations similar to (3.7) and (3.12) do not 
produce the desired proof except in special cases. In  the next section 
we give another proof valid for any number of variables xi. However, 
to simplify the presentation, we consider only the two-dimensional case. 

4. The two-dimensional case 
Since f (x) is assumed to be rational, we can write 

where p and q are multinomials of the form 
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for some integers k and m. Letting x, = c, and x2 = c2 in (4.1), we see 
that poo = p(0,O) = 0. 

Assume we evaluate p in the form i t  is given in (4.2). For a given 
term in the sum we obtain 

= O(di+J). 
Hence 

= 8(I~loldl+ l~olId2)[--1, 11+0(d2). 
Similarly, 

We assume q(Xl-c,, X2-c2) does not contain zero so that no division 
by zero occurs. That is, 

Without loss of generality, we can assume qoo > 0. Hence we compute 

?(I~lOldl+ lPOlld2) [- 1, l]+O(d2). f ( X I ,  X2) = f (c1, ~ 2 )  +poo-l( l  
Id  2 q10 I+ 191011d2) 

Therefore 

Let G and g be any functions such that 

G(x1, ~ 2 )  = g(x1, x2)+O(d2). 

Then B ( x i 7 X 2 )  = g(X1, X2) +O(d2). 

Hence f (X1,  X2) = f ( ~ 1 ,  c2) +Y(Xl, X2) + O(d2) (4.5) 

where ~ ( x 1 ,  ~ 2 )  = P ~ O ( X I - C I )  +1101(~2-~2) 
qoo +qlo(xl-cl) + ~ 0 1 ( ~ 2 - - ~ 2 )  ' 

(4.6) 

Now wF(X1, x2)) 2 k(b1, b2) -r(al, a21 1 
for any a, E X,, b, E X I ,  a2 E X 2 ,  and b2 E X,. Denote E ,  = sgn(plo) and 



106 THE C E N T R E D  F O R M  10.4 

E, = sgn(pol) and let a, = c,-~,d,/2, b, = c,+~,d,/2, a, = c,-~,d,/2, 
and b, = ~ ~ + € ~ d ~ / 2 .  Then 

Comparing this result with (4.4) and noting (4.5) yields the desired result 
since w{P(X,, X2)) < w{f (XI, X,)}. 
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Distributions in Intervals and 
Linear Programming 

1. Introduction 

THIS book is concerned with a class of methods for evaluating errors 
in the numerical solution of a mathematical problem. These arise from 
two sources, initial errors in the data and errors generated during the 
course of the computational process itself. In either case it seems 
reasonable to attribute an underlying theoretical probability distribution 
to error. 

The purpose of this chapter is therefore twofold. First, to examine 
some concepts of interval analysis from the probabilist's viewpoint, and 
secondly, to describe the application of probabilistic methods to a par- 
ticular algebraic problem, linear programming, indicating the sorts of 
things that may be said. It should be mentioned that the use of probabi- 
listic technique in the error analysis of numerical methods for ordinary 
and partial differential equations is a more difficult matter. Indeed, the 
rigorous treatment of stochastic differential equations is a deep branch 
of probability theory (at least with the current Kolmogorov model for 
the theory). 

In  section 2, some of the concepts and methods of interval analysis 
and its variants [5] are placed in a probabilistic framework. Section 3 
is based on a suggestion of R. W. Hiorns, made after the author's talk 
at  the symposium. It proposes quantile arithmetic (essentially) an exten- 
sion of triplex arithmetic involving a statistically more sophisticated 
treatment of error a t  moderate extra computational expense. 

For the sake of completeness, some basic results of the theory of linear 
programming are set out in section 4. The last section presents a summary 
of recent work [l, 2,4,5, 8 ,9 ,  111 on the distribution problem of stochastic 
linear programming. For present purposes, this problem concerns the 
distributions of the solution vector and optimal value of a linear program 
when there are random errors in the data. It is thus intimately connected 
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with parametric progmmming [7, 10, 121, the study of how these entities 
change with parametric variation of the data. Unfortunately, com- 
putational errors will largely be ignored. Of course in many practical 
problems, and, hopefully, with the usual simplex methods for linear pro- 
gramming, these will be overwhelmed by errors in data. In  Meinguet's 
terminology (see Chapter 5), it is assumed that simplex methods can be 
made gutartig. 

2. Distributions in  intervals and interval analysis 

Consider a real number x subject to random error. To this corresponds 
a random variable (r.v.) X. The statistical properties of X are given by 
its distribution function P ,  a non-decreasing, right continuous mapping 
of the line into the closed unit interval, giving the probability that X 
lies below level x as F(x) = P(X < x}. 

For simplicity, we may assume F generates a distribution absolutely 
continuous with respect to Lebesgue measure on the line, so that X has 
a probability density function f, i.e. 

x 

P(x) = If (z) dx. 
- m  

(For practical purposes the integral may be taken in the Riemann sense.) 
Let us further assume that f (x) > 0 for all x E (g, b), an open interval 
whose closure will be denoted by XI, and f (x) = 0 otherwise. The closed 
interval XI = [g, b] is called the support of X and is denoted supp X. 

Interval arithmetic deals with two parameters of the distribution of X, 
namely, the end-points of supp X = XI. Triplex arithmetic deals with 
these two parameters and a third, the main value, a computationally 
significant interior point of supp X. Sometimes, of course, interestis 
centred on the single parameter b-x, called the width w(X1) by Moore 
(see [6] and Chapter 1) and the span by Nickel (see Chapter 2). The 
degree of signi$cance discussed by Meinguet in Chapter 5 is another single 
parameter (an interior point of XI) summarizing the probabilistic infor- 
mation about X. 

A probabilist also attempts to summarize information about the distri- 
bution of X in a few parameters, usually the mean or expected value 

the median mX, a number, not necessarily unique, such that X lies 
on either side of it with probability 112 (both of these are location 
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parameters), and the variance or dispersion VX = E(X- EX)2 (a scale 
parameter), when they exist. When the distribution of X is known only 
implicitly in a problem, he expends much effort in attempting to find 
analytic approximations to the mean and variance of X, or bounds on 
its support. Another common practice is to attempt to show that if {X,) 
is a sequence of random variables, then as n -+ co, X, converges in a 
suitable sense to a random variable with known distribution function, 
for example, Gaussian. This will be dealt with further in section 5. We 
now attempt some rather trivial probabilistic intuition. 

First notice that if a computation involving interval numbers is inter- 
preted as involving random variables, the exact interval for the result 
of the computation is the support of the corresponding random variable. 
(The result i s  a random variable, since arithmetic (in fact continuous) 
operations on random variables generate the same.) Thus interval arith- 
metic may be looked on as a method of approximating supports of random 
variables. Kriickeberg's elegant interval approximations of the evolu- 
tion of initial value regions of differential systems (see Chapter 8) may 
be interpreted similarly in higher dimensions. Here one is concerned 
with a vector of random variables, or a random vector X, whose prob- 
ability distribution is specified by a joint distribution function, now a 
suitable mapping of several variables into the unit interval. In  this case, 
of course, the support of X is no longer reasonably a multi-dimensional 
interval, although it may usually be safely assumed connected and 
approximated with interval methods. (Recall that absolute continuity 
is being assumed.) 

Returning to one dimension, Nickel's convergent Newton's method 
for finding a zero of a function (see Chapter 3) may also be given an 
interpretation in terms of supports of probability distributions. It makes 
use of the positive probability of successive intervals overlapping to 
obtain convergence. In probabilistic terms, at  each stage of the process 
a new probability distribution of error is defined on the intersection of 
the intervals by convolving the distributions on the union of the intervals, 
truncating the convolution off the overlap and re-normalizing the result- 
ing distribution on it. 

Consider next the random variable X above. There are many sym- 
metric distributions on an interval X I  and for these E X  = (5-g)/2. 
For example, one such is the uniform distribution with density 

f (z) = (;/(i-z) if x E XI, 
otherwise. 
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At the beginning of a computation in interval or triplex arithmetic, one 
often assumes such distributions for the input data. However, at  the 
end of the computation, even if the assumption were correct, the distri- 
bution of error in the exact interval for the result, and a fortiori in the 
computed interval, will in general be skewed (see, for example, the 
computations reported by Nickel in Chapter 2). It is thus perhaps of 
questionable value to write the result ofthe computation as the arithmetic 
mean of the interval plus or minus a deviation. 

If, at  the beginning of a computation in triplex arithmetic, one thinks 
of the main value of an input number as E X  of the corresponding random 
variable X, then no difficulty is encountered in interpreting the main 
value of the sum or difference of a pair of variables X and Y as E(X&Y), 
since expectation is a linear functional. On the other hand, to preserve 
a similar interpretation for products and quotients, it is necessary to 
assume X and Y are independent random variables in order to ensure 
that, for example, EX.  Y = EX.  EY. It is difficult to dispense with this 
assumption in practice, for consideration of statistical dependency in 
general would be computationally prohibitive. 

However, interval arithmetic treats even two occurrences of the same 
variable as independent. This may be a t  least partially overcome by 
the inclusion of a power operation in the arithmetic. A consequence of 
treating a variable as independent of itself is that when variables occur 
many times in the numerator of a rational expression, the resulting 
interval grows, because the support of the corresponding random variable 
is the interval sum of the supports of the individual terms. 

The effect is reduced by using methods such as centred forms (see [6] 
and Chapter 10) to reduce the occurrence of the variable, and pushing 
the interval quantities (i.e. the random variables) into the denominator 
of rational expressions, so as to use the spread (variation) to drive con- 
vergence to a constant. For example, using Newton's method for solving 
a linear equation system AX = b in interval (random) variables, 

X,+l = EX,-A-l(EAEX,-Eb). 

A similar idea is involved in Hansen's methods (see [6] and Chapter 4) for 
this problem. It is an idea familiar to probabilists. Indeed, most of the 
methods for reducing interval spread are also used in probability theory. 
For example, Moore's united extensions may be interpreted as taking 
account of certain statistical dependencies between variables entering 
an expression. 

There is, however, a basic probabilistic limitation in the treatmelit 
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of error distributions by current interval methods, even if they were 
exact. Specifically, this is the simple fact that while the support of the 
error distribution of the result of some finite computations on interval 
(random) variables may become arbitrarily large, the error distribution 
itself may be concentrated in a small interval with probability close to 
one. In such a case, the error distribution of the result has low dispersion, 
but long tails in which little probability is massed. It is upon considera- 
tion of this possibility that quantile arithmetic is based. 

3. Quantile arithmetic 
Let us consider the approximation of our random variable X of the 

previous section by a discrete random variable f;;. For computational 
tractability we will assume a three-point distribution for g, although in 
principle a distribution on more points could be used in the sequel (at 
the expense, of course, of increased computation). Therefore, suppose 
2 has the following discrete density function: 

a if x = x,, where P{X < x,} = a, 
1-2a if x = x,, where P{X < x,} = 112, 

if x = x,, where P{X < x,} = 1-a, 
otherwise; where 0 < a < 112. 

Thus g < x, < x, < x, < 2, and x,, x,, and x, are, respectively, the ath 
quantib the 112th quantile (or median), and the (1-a)th quantile of the 
(absolutely continuous) distribution of X with support XI. The situation 
is illustrated in Fig. 11.1. 

Now (dropping the tilde notation) an arithmetic will be defined on 
the space 9, of all independent random variables of the form 2. (9, may 
be considered as a suitable subset of the space of essentially bounded 
random variables on the probability space generated by Lebesgue 
measure restricted to the unit interval.) The number a will be a para- 
meter of the arithmetic which in a machine implementation would 
normally be fixed. In  general, the more concentrated the error distribu- 
tions of variables approximated by elements of 9,, the larger may a be 
chosen. The choice of a is largely a matter of probabilistic interpretation, 
for we shall see that the machine implementation of quantile arithmetic 
is the same for positive a < 0.17. Probably choosing a = 1/20 is most 
reasonable from the probabilistic point of view, so that the 'true' value 
of the number x lies between x, and x, with probability 9/10. However, 
a = 1/10 or a = 1/ 100 might also be reasonable for disperse and concen- 
trated error distributions respectively. Formally, 9,,, is isomorphic to R 
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and 2, to triplex numbers with the main value interpreted as the median 
of the error distribution of the associated number. Except where 
explicitly stated otherwise, 0 ,< a < 112 will be assumed fixed below 
and 2, will be denoted simply by 2. 

Let X, Y E 2 andlet * denote any one ofthe four arithmetic operations. 
Then (due to the assumption of independence) the result of performing 
the binary operation * on X and Y is a random variable, Z having a 
nine-point distribution with density 

pipi i fz  = xi*yj, i , j  = 1,2 ,3 ,  
= ( 0 otherwise, 

where p, = a, p, = 1-201, and p3 = a, and (x,, x,, x,) and (y,, y,, y,) are 
the defining triples of X and Y respectively. In order to define an (exact) 
arithmetic on 2 a rule must be given for the approximation of Z by an 
element X * Y E 2 ,  except, of course, in case y, = 0 is a divisor for some 
i = 1,2,3, when the division operation must remain undefined. (Notice 
that this is a considerably weaker restriction than its analogue in interval 
arithmetic [6]. In general, for absolutely continuous error distribution, 
the fact that zero lies in the support of a distribution does not render 
the corresponding variable ineligible as a divisor.) A suitable rule to 
generate the triple (w,, w,, w,) defining X * Y E 2 is the following: 

(i) order the nine numbers xi * yi in order of increasing magnitude 
as, say, z,, Z, ,..., z,, with associated probabilities q,, q, ,..., q,; 
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i 
(ii) take w, to be the largest xi such that 2 qj < or; 

i=1 

i-1 
(iii) take w, to be the smallest xi such that 2 qi > 112; 

j=1 
(3.1) 

i-1 
(iv) take w, to be the smallest xi such that  2 qj > 1-a. 

j=1 

Noting that a real number /3 may be identified with a random variable 
taking the value /3 with probability one, the real numbers may be 
embedded in 9 as random variables with defining triples of the form 
(p, P, P). Of course, /3 * X E 2 is defined by the triple (P * x,, P * x,, /3 * x3) 
using the rule above. The rule assumes that X and Y are independent 
and thus are not identical. To complete the description of the arithmetic, 
rules for binary operations involving a single element X E 2 are needed. 
Addition and subtraction may be handled by reducing to multiples 
m.X, m an integer, before computation. Multiplication and division 
may similarly be reduced before computation to powers. This requires 
the following rule to generate the triple (w,, w,, w,) defining X P  E 9 ,  for 
p an integer: 

take w1 = min{xf , x;, xt}, 

W2 = x;, (3.2) 

and w, = max{xf,x~,x~}. 

Unlike interval arithmetic, special account of dependence must be taken 
to prevent under- as well as over-estimation of the appropriate values. 

The stochastic interpretation of elements of 2 may be submerged, and 
9 taken to  be the space of all ordered triplex X = (xl,x2,x,) of real 
numbers x, < x, < x, together with the arithmetic defined in the pre- 
vious paragraph. The elements of 2 may then be called quantile numbers. 
The following table gives a comparison between operations on the triples 
X = (- 1, -3,i) and Y = (-4,1,3) performed in exact triplex arith- 
metic, and exact quantile arithmetic with (for example) ac = 1/20. 

Notice that the intervals defined by quantile numbers are in every case 
not wider than those defined by triplex numbers. (For a = 0 they would 
agree, since then quantile arithmetic is simply a complicated version of 

8533330 I t 

Arithmetic 

Triplex 

Quantile 

X-Y 
( - B - 4 5 )  

29 39 6 

(-2, -$,$) 

X+Y 
(-3811) 

29 3 9  6 

(-4, $, $1 

X .  Y 
( -8--1-1  

2 ,  3 7 2 )  

(-1, -4,i) 

X/y 
( - l , -+ ,q  

(-$, -+,$) 

X2 

(+,+, l )  

(&,&, 1) 
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triplex arithmetic with a power operation.) The second entries of triplex 
and quantile numbers agree in the table. This will be so in general as 
long as 0 < a < (2-2/2)/4 g 0.17. I n  fact, for any positive a in this 
interval, the probability attached to the second entry, (1-2a)=, exceeds 
112 and the resulting arithmetic is the same. 

The key to  this statement and to  the investigation of 2 as an abstract 
mathematical system is an understanding of the possible orderings of 
the nine numbers xi * yj generated by a binary arithmetic operation on 
elements of 2 (along with their associated probabilities). Some of these 
are illustrated in the lattice diagrams of Fig. 11.2. Fig. 11.2 (a) refers to 
ordering relations that hold for addition, multiplication of non-negative 
numbers, or division of non-positive numbers. Fig. 11.2 ( b )  refers to 
subtraction, multiplication of non-positive numbers, or division of non- 
negative numbers. Of course, for specific X, Y E 2 a linear order results, 
but these and similar diagrams show that there are many possibilities. 
It is the existence of these possibilities that makes 2 a rather peculiar 
system, cf. [6], section 3.1. 

Indeed, quantile addition and multiplication are commutative, but not 
associative, i.e. if X, Y, Z E 2 ,  

X+Y = Y+X and X . Y  = Y.X, 

but neither (X+Y)f Z = X+(Y+Z), nor (X. Y) . Z = X .  (Y. Z), neces- 
sarily. For example, taking (as in the sequel) a < 0.17, 

{(-2, -17 1)+(-17 17 2)}+(-3, -27 2) = (-4, -2,O), 
while 

(-2, -1, I)+{(-1, 1,2)+(-3, -2,Z)) = (-4, -2,Z). 

This is perhaps not surprising when it is remembered that  a 27-point 
discrete probability distribution is being approximated by a 3-point 
distribution in two stages in two different ways. It follows immediately 
that when one or more of X,  Y, or Z are real numbers, the associative 
laws hold. As in interval arithmetic, the real numbers 0 and 1 are 
identities for quantile addition and multiplication, i.e. 

O + X = X + O = X  and l . X = X . l = X .  

However, quantile arithmetic is not in general even sub-distributive, i.e. 
defining inclusion for two quantile numbers with identical second entries 
in the obvious way, X .  (Y+Z) $ X. Y+X. Z. For example, 

(-2, -1,2).{(-1, 1,2)+(-37 -2, 1)) = (-4,1,3), 
while 
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If p is a real number, it is easily verified that  the distributive law holds, 
i.e. P.(Y+Z) = p . y + p . z .  

Quantile arithmetic is not generally inclusion, monotonic with respect to 
any of the arithmetic operations. For example, even though 

(-3, -2,1) c (-3, -2,2), 

(-2,0, I)+(-3, -2 , l )  = (-4, -2,l)  

while (-2,0, I)+(-3, -2,2) = (-4, -2,O). 

If /3 is real and X c Y, it is immediate thaC 

p+x c p+y ,  

p-X c p--Y and X-/3 c Y-8, 

p.x c p . y ,  

Blx c Ply, and X/P c YIP. 

More important, however, is the fact that iff (x1,x2, ..., xn) is a rational 
expression in several real variables, then for the corresponding quantile 
expression F(X1,X2 ,.., Xn), where xi = xi, i = 1, 2 ,..., n, 

f (xl, x2 ,..., xn) c F(X1, X2 ,..., Xn). 

This is the principal property required of any interval method and for 
quantile arithmetic follows easily from the definitions. 

Turning to  machine implementation, it will again be prudent, after 
an arithmetic operation resulting in a quantile number X,  to round the 
machine number xl down and the machine number x2 up, using a low- 
order bit, cf. [6], section 3.2. Since quantile arithmetic ignores all but 
the most obvious statistical dependencies amongst parts of a calculation, 
its estimates of the quantiles of the error distribution of the result are 
likely to be on the conservative side even in exact form. I n  most cases, 
error in input data to a calculation is indicated in deviation form. The 
upper and lower deviations are then used in interval and triplex arith- 
metic to specify appropriate numbers. A similar procedure for quantile 
arithmetic would interpret the deviations to  be the ath and (1-a)th 
quantiles of the error distribution, and this suggests that a should be 
small, say 1/20 or 1/100, for interpretation. However, for computation, 
a may be taken to be 1/10 and the probabilities a2, a(1-2a), and (1-2a)2 
manipulated as the integral percentages 1, 8, and 64, respectively. 

For each arithmetic operation X * Y between quantile numbers, a list 
of nine floating-point numbers with remainders must be computed and 
stored. The corresponding probabilities may be appended as the last 
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six bits of each number. As in triplex arithmetic, it  may be useful to 
compute x, * y, to a higher order of precision than the others. It may 
immediately be stored a t  this precision as the second entry of the result 
before being reduced to the precision of the others for placing in the list. 
Next the computer must order the list. For addition and subtraction, 
the relations of Fig. 11.2 may be used to reduce the number of comparisons 
necessary. The probabilities of the numbers in the ordered list are then 
cumulated until they exceed 10, when the previous entry in the list is 
rounded down and stored as the first entry of the result, cf. rule (1. ii). 
The cumulation process continues until the sum of the probabilities 
exceeds 90, when the next entry in the list is rounded up and stored as 
the last entry of the result, cf. rule (1. iv). This completes the com- 
putation. 

The implementation of the power operation does not involve prob- 
abilities, see rule (2), and is straightforward. 

Set against the increased burden of computation over interval or 
triplex arithmetic, quantile arithmetic has the advantage of providing 
the tighter control over error that results from considering error distribu- 
tion. The product of a computation in quantile arithmetic (with 
a < 0.17) is the ordinarily computed value, interpreted as the median 
of the error distribution of the result, bounded by approximations of 
the ath and (1 -a)th quantiles of this distribution. Both the propagation 
of initial error and machine error is bounded only stochastically in 
quantile arithmetic. Therefore it is expected that some processes un- 
stable in the sense that the intervals expand rapidly when performed 
in interval or triplex arithmetic, may be stable when performed in 
quantile arithmetic. Quantile arithmetic may thus be particularly 
useful in continuous problems (see [6] and Chapters 3 and 9). 

4. Some results in linear programming 

I n  this section the analytic and computational theory of linear pro- 
gramming will be outlined in a form useful for the next section. The 
reader may refer to  [3] for details. 

Linear programming deals with a dual pair of optimization problems: 

rr = maxc'x subject to Ax < b, 
x> 0 

(4.1) 

and 8 = min b'y subject to A'y c, 
2/> 0 

(4.2) 

where A is an m x n  matrix, c, b, x, and y are vectors of appropriate 
dimension, prime denotes transpose, and < denotes a coordinate-wise 
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vector partial ordering. The programs (4.1) and (4.2) are called primal 
and dual respectively. The primal or dual constraints often appear in 
equation form. In particular, those of (4.1) and (4.2) become 

A x f g =  b and A'y-6= C ,  (4.3) 

upon the addition of sbck vectors g 0 and 6 2 0. In general, equation 
constraints simply reduce the dimensions of, for example, the primal 
slack vector and the corresponding dual non-negativity constraints. 
(The discussion in the sequel is easily modified to cover equation con- 
straints.) In any case, the set of feasible vectors x and y, over which the 
optima are to be taken, lie in constraint sets which are closed convex 
polytopes. When the constraint set of a program is not vacuous, the 
program is said to be feasible. When the constraint set is non-empty 
and bounded, so that the optimal value of the program is finite, the 
program is said to be proper. The optimal value is achieved at an optimal 
vector. 

The basic results of the (finite dimensional) theory of linear program- 
ming are given by the following two theorems, which rest on the separa- 
tion theorem for convex sets. 

THEOREM (Duality). The following cases are mutually exclusive: 

(i) the primal and dual programs are both feasible, when, both have 
optimal vectors, xO and yo say, and rr = 6 ;  

(ii) the primal program is  feasible and the dual i s  not, when the primal 
program is  improper, i.e. its value i s  uabounded; 

(iii) the dual program i s  feasible and the primal i s  not, when the dual 
program is  improper; 

(iv) neither program is  feasible. 

THEOREM (Complementary slackness). The vectors x0 > 0 and yo 2 0 
are optimal for the dual programs if Z0'x0 = 0 and yO'gO = 0, where 
SO= A'yO-cand go = b-Ax0. 

The principal computational algorithm for linear programming (of 
which many variants exist) is the simplex method. It is a direct method 
based on the fact that the optimum of a linear functional over a convex 
polytope is attained at an extreme point (vertex) of the polytope. 
Assuming for the moment that the primal program is feasible, each 
vertex x of the primal constraint set (a feasible vector) corresponds to an 
m x m non-singular sub-matrix B of the m x (n,+m) matrix (A  I )  whose 
m columns (a vector space basis for Rm) are called a primal basis. 
Similarly, assuming the dual program feasible, each vertex of the dual 
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constraint set corresponds to a dual basis formed from an n x n non- 
singular sub-matrix C of the n x (m+n) matrix (A' -I). Specifically, 
the basic coordinates of the primal vertex x (dual vertex y) are given by 
the entries of B-lb (C-lc) corresponding to the columns A (A') in the 
basis. (The other coordinates are zero.) It is therefore not surprising 
that the simplex method is a modification of Gauss-Jordan techniques 
for the solution of simultaneous linear equations. At each pivot step, 
both primal and dual bases are changed simultaneously so as to ensure 
that the optimality criteria of the complementary slackness theorem are 
satisfied. Eventually, either an optimum for both programs is reached, 
or one of the dual programs is found to be infeasible. 

The computations are carried out in an (mf l )  x (n+l)  tableau whose 
initial and final optimal forms are shown below. 

Depending on the existence of an initial feasible primal or dual vector, 
one of a primal or dual set of rules for choosing the next pivot entry is 
used. (When neither program has an obvious initial feasible vector, 
suitable starting procedures are available to find one.) The pivot choice 
rules preserve the appropriate feasibility at  each step. Geometrically 
the process searches, simultaneously, a vertex of the constraint set of 
one problem, and a vertex generated by the constraints of its dual, but 
lying outside the feasible region, i.e. a vector satisfying only some of the 
constraints (including non-negativity constraints). If a pair of feasible 
vertices are found, then both the complementary slackness theorem and 
the duality theorem, case (i), guarantee that the process has terminated 
successfully. The duality theorem applies, since at  each step the values 
of the primal and dual functionals, evaluated at the current vertices, 
agree. Minus their common value is exhibited in the (mf l ,  n+l) th  
entry of the tableau. The other cases ((ii)-(iv)) of the duality theorem 
are translated into forms concerning tableau entries to provide the 
remaining stopping criteria. 

Under the appropriate choice of nm-degeneracy hypothesis, viz. the 
vector b (c) does not lie in a proper sub-space of R(A)  (R(A1)), or, equiva- 
lently, the hyperplane b'y = const. (c'x = const.) is not parallel to a 
face of the dual (primal) constraint set, the search process is monotonic. 
That is, the value of the functional of the appropriate problem (and thus 
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that of its dual) is strictly incremented a t  each vertex searched. Since 

there are a t  most vertices, the procoss must terminate. In the 

general case, a combination of primal and dual pivot choice rules may 
be used to ensure that no vertex is searched twice. (Degenerate programs 
arise from a set of parameter values c, A, b of Lebesgue measure zero 
in Rn+mn+m. 1 

At successful termination, the optimal dual pair of bases correspond 
to  non-singular sub-matrices P and I) of (A I) and (A' - I ) ,  respectively. 
The basic coordinates of xO and ijO are given by P-lb, exhibited in the 
(n+l) th  column of the tableau, and the basic coordinates of yo and Zo 
are given by D-'c, exhibited as minus the entries of the (m+l)th row 
of the tableau. Under the non-degeneracy hypotheses, the basic coordi- 
nates of these vectors are positive, the remainder being zero. Moreover, 

T = clxO = cf(P-lb),, - b'(D-'c),, = b'y" = 6. (4.4) 

in an obvious notation. 

5. T h e  distribution problem of stochastic linear p rogramming  

Now suppose that the parameters of the linear program (4.1) (and its 
dual (4.2)) are random variables, so that C, A, b form a random vector in 
Rm+mn+n with joint distribution function F. The optimization required 
in this version of (4.1) is no longer clear, for one could think of choosing 
a vector x either before or after the random variables are realized. We 
shall consider only the latter case. That is, we suppose that after the 
random variables are realized, the resulting ordinary program is solved 
for ~ ( c ,  A,Ib) and xo(c, A, b), and ask, a priori, for the distributions of the 
random variable n = T(C, A, b), and the n-dimensional random variable 
XO = xO(c, A,b). (The arithmetic nature of the computations leading 
to n: and the elements of xo ensure that they are random variables.) 
This distributional problem was first posed by Tintner [ l l] ,  and is, of 
course, the problem appropriate to the case of error in the parameter 
data. (The reader is referred to [4] for a discussion of decision problems 
in which the vector x must be chosen before the random variables are 
realized.) The value ~ ( c ,  A, b) is a piece-wise rational function of the 
parameters c, A, and b, so that if both expectations exist, 

ET(c, A, b) # T(Ec, EA, Eb) ,  (6.1) 

in general. The right side of (5.1) is the value of the ordinary linear 
program formed by replacing the random variables by their expectations. 
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It will be seen that when parameter dispersions are small this expected 
value program provides a useful reference point. For convenience, only 
results for the maximization problem will be discussed below. (Dual 
results for the minimization problem follow immediately.) 

Consider first the distribution problem when only the vector c of 
(4.1) is random. I n  this case the problem becomes one of obtaining the 
distribution of the maximum of a random linear functional over a closed 
(not necessarily bounded) convex polytope in Rn, cf. [4]. (When only b 
is random, the problem may be treated similarly by considering the dual 
program (4.2).) From a consideration of the properties of a maximum, 
i t  is quite easy to show that ~ ( c )  is a concave, continuous, piece-wise 
linear function. Using Jensen's inequality, expression (5.1) may be 
sharpened in this case to 

E(m(c)) $ n(Ec), (5-2) 

when the expectations exist. The equality can hold only if suppc is 
small. To see this, let C denote the set of extreme points, i.e. vertices, 
x1, x2, ..., xK, of the constraint set {x: x 0, Ax < b) c Rn. It was seen 

in the previous section that K $ m+n , and it follows from the dis- 
( m  1 

cussion there that by varying c, the elements of C may be explicitly 
calculated using simplex techniques, for given A and b. Simons [lo] has 
shown that to  each xk there corresponds a closed convex polytope in Rn 

which may be called a decision region [2]. Alternatively, we may think 
of a decision region as corresponding to an optimal basis of the simplex 
method, or to the non-singular W L X ~  matrix P defined by it. The 
interiors of the decision regions are disjoint, and their union A = u Ak 

is a closed convex subset of Rn. If the constraint set is bounded, A = ~ n .  

For variation of the parameters within the lcth decision region Ak, 
xk remains optimal and ~ ( c )  = c'xk is a linear function, so that  (5.2) holds 
as an equation. From these considerations it is easy to derive necessary 
and sufficient conditions for E7c to be finite [4]. 

THEOREM. En(c) is finite if and only if (i) P{c E A) = 1 and (ii) Ec  
is Jinite. 

Theoretically, the distribution of the K random variables c'xk can be 
calculated from the joint distribution function of the random vector c, 
and thus the distribution of IT = maxk{c'xk: k = 1 ,.. ., I{) determined. 
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From this distribution, the discrete joint distribution of x0 with support 
X is easily found. In practice, it may be sufficient to derive or approxi- 
mate the distribution of x for only some of the xks. This possibility will 
be discussed in the context of the general distribution problem, to which 
we now turn. 

When all parameters of (4.1) are random, i.e. c, A, b form a random 
n+mn+m vector, the problem becomes one of maximizing a random 
linear functional over a random set in Rn. It is now necessary to interpret 
a decision region as corresponding to an optimal basis. Indeed, A and b 
random imply that P-lb, and hence xO, will be random, even within a 
single region. Formally, the lcth decision region becomes a set in Rn+mn+m 
defined by A, = (c, A, b: P,gl b 2 0, Dk1c 01, (5.4) 

corresponding to one of the K = possible simultaneous choices 

of m columns of (A I )  and n columns of (A' -I) .  Using the form of an 
optimal tableau, it is easily seen that A, is closed, but it is no longer 
necessarily a polytope, or even convex. The closed set A is again a union 
of interior-disjoint regions, but is in general neither convex nor polytopic. 

A first approach to the general distribution problem is to assume that 
the support of the random vector formed from c, A, b lies in a single 
decision region. This assumption is most reasonable for a sensitivity 
analysis of small errors and resembles the assumptions on coefficients 
for linear equations discussed by Hansen (Chapter 4). This approach was 
first taken by Babbar [I], who assumed the finiteness of the means and 
variances of the random variables. It is then possible to express the 
elements of the random vector x0 in terms of random determinants, 
using Cramer's rule, and to approximate the distributions of these 
determinants by normal distributions. (Without loss of generality, 
although it might be necessary to consider the dual problem instead, 
it may be assumed that A is of rank m with probability one [l].) The 
approximate distributions of the determinants may in turn be used to 
give .rc approximately as a ratio of weighted sums of normal variates. 
Using rather sophisticated techniques, the distribution function Pix < n} 
may be approximated, so that in particular E x  and Vx may be estimated. 

A more straightforward approximation technique, due to Prdkopa [8], 
is to develop n(c, A, b) in a finite Taylor series about the value of the 
expected value program and to obtain the distributions of the leading 
terms. Denoting Ec, EA, and E b  by c, A, and b_, respectively, it is of 
course necessary to assume that c, A, b_ belongs to the interior of a 
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decision region. Using the usual expansions for inverse matrices, it then 
follows that 

T-IF = - - yO'(P-~)~+(~-~)'~O+(b-~)'yO+p (5.5) 
in an open region about c, A, b_, where and - yo are optimal vectors 
for the primal and dual expected value programs, and p is the remainder 
consisting of second and higher order terms. Denoting the linear terms 
in (5.5) by A, it may be shown that the corresponding random variable A 
has mean 0 and variance u2 involving 5 0  and yo and the variances and 
covariances of C, A, b. Certain simplificationsof the expression for u2 

are possible when elements of c, A, b are independent random variables. 
One may treat the distribution of x for highly concentrated error 
distributions of the parameters by considering a sequence {cs, As,bs) 
of random vectors whose joint distributions are concentrated in an open 
region 0 contained in some Ak, and are becoming more and more highly 
concentrated about c, A, b. To make this idea rigorous a form of 
stochastic convergence is required, and Prdkopa's results concern the 
weakest form-convergence in distribution. A sequence of random 
variables (or random vectors) {Xs} converges in distribution to a random 
variable (or random vector) X with (joint) distribution function C ,  
denoted XS -D+ X, if the sequence of corresponding (joint) distribu- 
tion functions {GS) converges to G at  all its points of continuity. For 
example, if 

Gs(() = P{XS < 5 )  +a)(() = - a7 (-oo < 5 < a ) ,  
- m  

then Xs -% N(p, v2), the normal random variable with mean ,u and 
variance v2. 

THEOREM. If, as s -+ oo, P{(cS, As, bs) E 0} -+ 1 and : 

(i) cS, AS, bs 5 c, A, b, 

(ii) As/uS 5 N(0, l ) ,  

ccnd (iii) ps/us 5 0; 

then (xs- x)/us -% N(0, l) ,  i.e. nS is asymptotically N(x, (us) 2). 

In order to ensure condition (ii) of the theorem, it is sufficient to 
assume the random vectors cs, AS, bs have joint (multivariate) normal 
distributions. A similar limit theorem is available for the case when, 
instead of condition (i), the dimensions of the random vectors cS, As, bs, 
m and n, are increasing together to infinity (as in Hilbert matrix prob- 
lems). Here, however, the analogue of condition (iii) is unreasonable, 
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and the quadratic terms of the Taylor series must be considered. These 
theorems justify, for highly concentrated error distributions, normal 
approximations to error in 7~ centred at z ,  the computed value. For 
highly concentrated distributions, the assumptions of the theorems are 
reasonable. However, they are unreasonable for genuine randomness in 
the parameters (e.g. due to weather), and probably even for measurement 
error arising in practice. In  general, the support of the parameter 
distribution will intersect several decision regions and higher order 
approximations are necessary within each. Hanson [5] has given such 
approximations to the means and variances of the elements of xO within 
a single decision region.? These may be used to generate corresponding 
approximations for x .  Hanson presents a simple example of (4.1) with 
only A random, in which, due to the conditioning of the constraints, 
a small variation in the parameters leads to an underestimate of Ex by 
5 of over 30 per cent. Estimating Ex by x, and more generally the 
distribution of x with a symmetric distribution, may thus be wildly in 
error, cf. expressions (I) and (2). 

It is therefore useful to have an existence theory for the general 
distribution problem. This has essentially been provided by Bereanu [2], 
who considered the case when the support of the (marginal) joint distribu- 
tion of A, b lies in the positive orthant of Rmn+m. The present discussion 
is based on the more general definition (5.4) of a decision region, and 
follows trivially from Bereanu's considerations. An immediate necessary 
condition for Ex to be finite is 

(Recall that A is the union of the K decision regions Ak given by (5.4).) 
When P(A > 0, b >, 0) = 1, it follows from the duality theorem, case (i), 
that (5.6) is satisfied. Necessary and sufficient conditions for the finite- 
ness of Ex, in terms of (5.6) and the moments of c, A, b, are not so far 
known explicitly in the general case. As in the special case when only c 
is random, the distributions of x and x0 can in principle be obtained 
from a consideration of the decision regions which intersect the support 
of c, A, b. Indeed, it has been mentioned that the decision regions are 
interior disjoint, and for the case when the joint distribution of c, A, b 
is absolutely continuous (with respect to Lebesgue measure on Rn+mn+m ), 
it may be shown that 

t I am indebted to Dr. B. Bereanu for this reference. 
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Consider the restrictions ck, A,, bk of the random vector formed from 
c, A, b to the decision regions Ak, k = 1, ..., K. The basic coordinates 
of the corresponding restrictions x; or x0 are given by Pklbk. Similarly, 
the restrictions xk of x to Ak are given by C; xO, = ck(P,lb,),;, cf. (4.4). 
With suitable modifications for the behaviour of x and x0 on the inter- 
secting boundaries of the decision regions, distributional considerations 
may thus be decomposed into similar considerations for regions whose 
intersections have zero probability, and on which the forms of x and xo 
are known explicitly. (Rigorously, the procedure is one of representing 
the random variables in terms of sums of their conditional expectations 
with respect to a suitable partition of Rn+mn+m. In the absolutely con- 
tinuous case, the decision regions themselves will suffice without dis- 
junctification for this partition.) In  theory, therefore, the distributions 
of x and x0 are completely determined. 

In  practice, however, since the multi-dimensional transformations 
and integrals involved in a given problem are prohibitively complicated, 
some kind of approximative computational technique is required. 

A practical method is Monte Carlo simulation. Some experience along 
these lines has been reported by Sengupta [9], where the sample data 
on c ,  A, b were drawn from a time series of actual observations arising 
from an agricultural resource allocation problem. Sengupta's method 
was to compute the value of the functional at  all the extreme points of 
the constraint set for each sample parameter triple and to rank these 
values in descending order. Upon computing the sample means and 
variances for the ranks, it was found that the sample variance of the 
first rank (i.e. of the optimal value) exceeded that of the second (called 
a truncated maximand), the variance of the second rank exceeded that 
of the third, etc. Using methods for obtaining the sampling distribution 
of an extreme value in the theory of order statistics, it is possible to give 
sufficient conditions for this agreement between the rankings of the 
sample means and variances to hold, both in finite samples and asymp- 
totically [2]. Perhaps more interesting from the present point of view 
is the fact that Sengupta was able to fit a beta distribution skewed in 
the downward direction (i.e. with a long upper tail) to the sample 
distribution of x.  

Another possibility for approximating the distributions of x and x0 
is to restrict attention to a few decision regions, using interval methods 
(see [6] and Chapter 4) to compute, in quantile arithmetic, say, the 
quantile vectors P-lb and D-lc and the quantile number n. Beginning 
with the optimal basis of the expected value program, a tree structure 
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of optimal tableaux could be pursued, following negative overlaps of the 
intervals for basic coordinates until the returns, in terms of the prob- 
abilities attached to the corresponding decision regions, were negligible. 
These probabilities would be compounded from those assigned to the 
negative lower quantiles of basic coordinates at  each branch. (The 
parametric primal-dual version of the simplex method [3] using the 
product form of the inverse might prove useful for this procedure.) In  
this connection it should be mentioned that Hanson [5] has estimated the 
probability that the random vectors P;lbk and D;lck corresponding 
to the decision region of the optimal basis of the expected value program 
are not non-negative. Assuming that these vectors are jointly normally 
distributed and that with high probability only one of the elements of 
Pklbk is negative at  a time, this probability may be compounded from 
normal probabilities after estimating appropriate means and variances. 
Oettli, Prager, and Wilkinson [7] have developed a parametric linear 
programming method to solve a certain interval problem for linear 
equation systems.? Investigation of similar problems using parametric 
methods may prove fruitful for the distribution problem. 
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