

1122tthh GGAAMMMM -- IIMMAACCSS IInntteerrnnaattiioonnaall SSyymmppoossiiuumm oonn SScciieennttiiffiicc
CCoommppuuttiinngg,, CCoommppuutteerr AArriitthhmmeettiicc aanndd VVaalliiddaatteedd NNuummeerriiccss

SSCCAANN 22000066

September 26-29, 2006, Duisburg, Germany

CCoonnffeerreennccee PPoosstt--PPrroocceeeeddiinnggss

Foreword
12

th
 GAMM-IMACS International Symposium on Scientific Computing,

Computer Arithmetic and Validated Numerics

Duisburg, Germany, 26-29 September 2006

This conference continued the series of international SCAN symposia initiated by the University of Karlsruhe.

SCAN symposia have been held in many towns in Europe and Japan under the joint sponsorship of GAMM and

IMACS: Basel (1989), Varna-Albena (1990), Oldenburg (1991), Vienna (1993), Wuppertal (1995), Lyon (1997),

Budapest (1998), Karlsruhe (2000), Paris (2002), Fukuoka (2004) and Duisburg (2006).

Scope of the Conference

SCAN symposia have traditionally covered the numerical and algorithmic aspects of scientific computing, with a

strong emphasis on how validation and verification provide guaranteed properties of computed results as well as on

arithmetic, programming and algorithmic tools for this purpose.

They present a state-of-the-art overview on the challenging and dynamic field of reliable computing techniques

and interval arithmetic for the researchers, experts and scientists who apply these techniques. Contributions provide

competent and concise information on recent hardware and software standards, language support with interval

arithmetic, algorithms with result verification and applications in various fields.

An important part of the 2006 conference was devoted to software systems for verified numerics using enhanced

interval arithmetic, appropriate data types and accurate numerical, geometric or stochastic modeling. Other tools for

validation and avoiding round-off errors are based on exact or formal representation or include symbolic, algebraic

and algorithmic methods. One of the missions of SCAN 2006 was to provide a forum for presenting the many

validation approaches currently in use and for serious debate about scientific computing and result verification.

Scientific Program

The program consists of invited plenary lectures and contributed presentations. Invited speakers and presentations:

Tibor Csendes, University of Szeged: Global Optimization and Verified Numerical Techniques for the
Solution of Mathematical Problems

Peter Hertling, Hochschule der Bundeswehr München: Solvability and Bit Complexity of Problems
Concerning Real Numbers

Eberhard P. Hofer, Universität Ulm: Applications of Interval Algorithms in Engineering

Philippe Langlois, Université de Perpignan: Accurate Algorithms in Floating Point Arithmetic

Kaori Nagatou, Kyushu University: Validated Computation for Infinite-Dimensional Eigenvalue Problems

Ned Nedialkov, McMaster University Canada: Tools for ODEs and DAEs

Arnold Neumaier, Universität Wien: Computer-Assisted Proofs

Siegfried Rump, TU Hamburg-Harburg: Self-Validating Methods

Contributed presentations in nine parallel sessions were invited to all twelve conference subjects.

Hardware support for numerical validation

Software support for numerical validation (standardization, controlled rounding, accurate operations and

functions, programming languages, user-oriented interfaces, standardized data transfer, automatic

translation into programs with result verification)

Arithmetic (floating point with error bounds, interval, fuzzy interval, affine, Taylor models, exact real,

stochastic)

Supercomputing (parallel and grid computing)

Verification numerics (ODE, PDE, DAE, [non]linear systems)

Exact methods, computability, domain theory

Computer-aided proofs (linear algebra, geometry, dynamical systems)

Validation in logic, symbolic, algebraic and algorithmic calculus

Numerical tools using enhanced interval arithmetic

Validation in optimization problems and dynamical systems

Validated modeling and simulation (Parameter estimation, control, task planning, networks)

Industrial and scientific applications (financial simulation and optimization, mechanical design, robotics,

aeronautics, measurement of physical constants, environmental engineering, chemical process simulation

and control, computer graphics, computer-aided geometric design, astrophysics, biology, medicine)

Young researchers and Ph.D. candidates were especially encouraged to contribute to the conference.

This book contains the proceedings of the 2006 SCAN meeting in Duisburg, Germany. We present written

versions of five invited plenary lectures and 36 carefully selected papers from the paper sessions, which included a

total of 99 contributions. We would like to thank all the authors for providing us with their interesting contributions

and the referees listed below for helping to enhance the papers.

Wolfram Luther

Werner Otten

Duisburg, Germany

April 2007

Invited Lectures

Applications of interval algorithms in engineering
 Eberhard P. Hofer and Andreas Rauh

Operator dependant compensated algorithms
 Philippe Langlois and Nicolas Louvet

Validated computation for infinite dimensional eigenvalue problems
 Kaori Nagatou

Interval tools for ODEs and DAEs
 Nedialko S. Nedialkov

Computer-assisted proofs
 Arnold Neumaier

Regular Lectures

On the solution to numerical problems using stochastic arithmetic
 René Alt, Jean-Luc Lamotte, and Svetoslav Markov

Toward validating a simplified muscle activation model in SmartMOBILE
 Ekaterina Auer, Martin Tändl, Daniel Strohbach, and Andres Kecskeméthy

GRKLib: a guaranteed Runge Kutta library
 Olivier Bouissou and Matthieu Martel

Hardware implementation of continued logarithm arithmetic
 Tomás Brabec

Rigorous lower bounds for the topological entropy
via a verified optimization technique
 Tibor Csendes, Balázs Bánhelyi, and Barnabás M. Garay

Nonlinear adaptive control of an uncertain wastewater treatment model
 Neli Dimitrova and Mikhail Krastanov

Interval fuzzy rule-based hand gesture recognition
 Gracaliz P. Dimuro, Benjamín R.C. Bedregal, and Antônio C. Rocha Costa

Analyzing properties of fuzzy implications obtained via the interval constructor
 Gracaliz P. Dimuro, Benjamín R.C. Bedregal, Regivan H.N. Santiago,
 and Renata H.S. Reiser

Interval analysis of linear analog circuits
 Alexander Dreyer

A reliable convex hull algorithm for interval-based hierarchical structures
 Eva Dyllong

Parametric linear system of equations, whose elements are nonlinear functions
 Hassan El-Owny

Guaranteed bounds for uncertain systems: methods using linear Lyapunov-like
functions, differential inequalities and a midpoint method
 Marc Gennat and Bernd Tibken

On the approximation of linear AE-solution sets
 Alexandre Goldsztejn and Gilles Chabert

Rigorous inner approximation of the range of functions
 Alexandre Goldsztejn and Wayne Hayes

Ensuring numerical quality in grid computing
 Andreas Frommer and Matthias Hüsken

An interval version of the backward differentiation (BDF) method
 Malgorzata Jankowska and Andrzej Marcinak

A workload analysis tool for discrete-time semi-Markovian servers
 Sebastian Kempken

Efficient 16-bit floating-point interval processor for embedded systems
and applications
 Michel Kieffer, Stéphane Piskorski, Lionel Lacassagne, and Daniel Eti

Guaranteed robust tracking with flatness based controllers
applying interval methods
 Marco Kletting, Eberhard P. Hofer, and Felix Antritter

Interval observer design based on Taylor models for nonlinear uncertain
continuous-time systems
 Marco Kletting, Andreas Rauh, Eberhard P. Hofer, and Harald Aschemann

Strong unboundedness of interval linear programming problems
 Jana Konícková

intpakX ― an interval arithmetic package for Maple
 Walter Krämer

Towards interval techniques for processing educational data
 Vladik Kreinovich, Olga Kosheleva, Luc Longpré, Mourat Tschoshanov,
 and Gang Xiang

Towards combining probabilistic, interval, fuzzy uncertainty, and constraints:
an example using the inverse problem in geophysics
 Vladik Kreinovich, S.A. Starks, A.A. Velasco, M.G. Averill, R. Araiza,
 G. Xiang, and G.R. Keller

Adding constraints to situations when, in addition to intervals, we also have partial
information about probabilities
 Vladik Kreinovich, Martine Ceberio, Giang Xiang, Scott Ferson,
 and Cliff Joslyn

Fast and accurate multi-argument interval evaluation of polynomials
 Andreas Frommer and Bruno Lang

Vectorised/semi-parallel interval multiplication
 Eoin Malins, Marek Szularz, and Bryan Scotney

On the interval Gaussian algorithm
 Günter Mayer

Numerical computation of the mapping degree using computational homology
 Kansaku Nakakura and Sunao Murashige

Computer-assisted proofs in solving linear parametric problems
 Evgenija D. Popova

ValEncIA-IVP: a comparison with other initial value problem solvers
 Andreas Rauh, Eberhard P. Hofer, and Ekaterina Auer

Interval techniques for design of optimal and robust control strategies
 Andreas Rauh, Johanna Minisini, and Eberhard P. Hofer

Deterministic global optimization for dynamic systems using interval analysis
 Youdong Lin and Mark A. Stadtherr

Computing the Jordan canonical form in finite precision arithmetic
 Toshio Suzuki and Tomohiro Suzuki

The fundamental theorems of interval analysis
 M.H. van Emden and B. Moa

Expression defined accuracy
 A. Pokorny and J. Wolff von Gudenberg

Applications of Interval Algorithms in Engineering

Eberhard P. Hofer and Andreas Rauh
Institute of Measurement, Control, and Microtechnology

University of Ulm
D-89069 Ulm, Germany

{EP.Hofer, Andreas.Rauh}@uni-ulm.de

Abstract

The optimization of the functionality and the guarantee
of a safe operation of a technical system are important is-
sues in industry. These aspects become even more important
when we have to deal with numerous uncertainties which
heavily influence the behavior of the technical system under
consideration and — in the worst case — cause system fail-
ure. Appropriate interval tools can offer solutions to prob-
lems where system uncertainties play a key role. Over the
recent years at the Institute of Measurement, Control, and
Microtechnology existing interval tools have been extended
and new modules have been developed.

In this contribution, successful applications of interval
algorithms to real-world problems in various fields of en-
gineering are presented. The focus is on measuring tech-
niques including interval observers and sensitivity analy-
sis as well as design of optimal and robust controllers for
continuous-time and discrete-time systems.

1 Introduction

In this paper, an overview of various applications of in-

terval algorithms in engineering is given1. A common basis

of all applications is a given mathematical model of the rel-

evant technical system described by sets of algebraic equa-

tions and ordinary differential equations. In general, two

different types of problems can be considered which are

steady state analysis and analysis of the transient behavior

of a dynamical system.

For most practically relevant dynamical systems, guaran-

teed knowledge about the influence of uncertainties of both

initial states and system parameters is of importance. In the

following, different applications are presented in order to

highlight the benefits of the use of interval methods [8, 13].

1For a complete list of recent applications of interval meth-

ods investigated by the authors, the reader is referred to

http://www.interval-methods.de.

An application in automotive engineering covers the in-

fluence of unavoidable manufacturing errors on the func-

tionality of a mechanical component. As a result, quality

control in production can be improved. A further applica-

tion deals with guaranteed estimation of physical parame-

ters for characterization and model validation of a micro-

electromechanical device.

Safety-critical applications in X-by-wire systems, e.g.,

automobiles and aircrafts, influenced by sensor uncertain-

ties usually require the verification of the systems’ func-

tionality. Such uncertainties may not only affect the behav-

ior of the feedback control, but also the monitoring of the

function in the control unit and, thus, may lead to delayed

or even false reactions in case of failure. Therefore, it is

extremely important to get reliable results about the influ-

ence of sensor tolerances on the dynamic behavior of the

closed-loop system. The task is formulated as a global in-

terval optimization problem. It is solved by using advanced

interval algorithms keeping all safety-critical states within a

pre-defined limit.

In addition to safety aspects, reduction of operation costs

of a plant is always a strong issue. In an application taken

from environmental engineering the efficiency of interval

methods not only for reliable plant operation but also for

plant and controller design is shown.

Section 2 summarizes the notation used in this paper for

the description of technical systems with uncertainties. The

selected applications in engineering can be associated with

the following problems:

• Steady state analysis for time-invariant sys-
tems (Sec. 3). The applications are a rocker arm

(Sec. 3.1) and a micro relay (Sec. 3.2).

• Analysis of discrete-time dynamical systems with
time-invariant parameter uncertainties (Sec. 4).
The applications are an airbus elevator (Sec. 4.1) and a

common-rail injection (Sec. 4.2).

• Analysis of continuous-time dynamical systems
with time-varying parameter uncertainties (Sec. 5).

The application is a subsystem of biological wastewa-

ter treatment processes (Sec. 5.2).

• State and parameter estimation using interval ob-
servers (Sec. 6). The applications are an electrostatic

microactuator (Sec. 6.1) and a micropositioning sys-

tem (Sec. 6.2).

Section 7 summarizes the most important benefits that have

been achieved by the use of interval methods for the ap-

plications presented here. An outlook on future research

concludes this contribution.

2 Technical Systems with Uncertainties

The technical applications considered in this paper are

described both by the discrete-time state-space representa-

tion [
xk+1

pk+1

]
=

[
gk (xk, pk, uk, k)
gp,k (pk, Δpk)

]
(1)

and — in the case of continuous-time processes — by ordi-

nary differential equations[
ẋ (t)
ṗ (t)

]
=

[
f (x (t) , p (t) , u (t) , t)

Δp (t)

]
. (2)

In both cases, uncertainties of the initial conditions of the

state vector x have to be taken into account. For discrete-

time models they are denoted by x0 ∈ [x0] := [x0 ; x0],
for continuous-time systems by x (0) ∈ [x (0)] :=
[x (0) ; x (0)]. In both system models, control vectors are

denoted by u. All uncertain system parameters are rep-

resented by the parameter vector p which is bounded by

the intervals pk ∈
[
p

k
; pk

]
for all k ≥ 0 and p (t) ∈[

p (t) ; p (t)
]

for all t ≥ 0, respectively.

For time-varying parameter uncertainties, their variation

rates Δp are not vanishing. Uncertainties of these quantities

can be modeled by the intervals Δpk ∈
[
Δp

k
; Δpk

]
and

Δp (t) ∈ [
Δp (t) ; Δp (t)

]
, respectively. In Fig. 1, the

influence of non-vanishing parameter variation rates Δp is

depicted for the scalar case.

p (t)
p

p

t

Δp = 0

diam ([Δp]) �= 0

Figure 1. Time behavior of time-varying pa-
rameter uncertainties.

3 Steady State Analysis for Time-Invariant
Systems

In order to analyze the steady state of a discrete-time dy-

namical system, the algebraic equations

x = g (x, p, u) (3)

have to be solved. In the continuous-time case, the steady

state is determined by solving the nonlinear algebraic equa-

tions

0 = f (x, p, u) . (4)

In both scenarios, interval enclosures for all physically rel-

evant solutions x = x (p, u) with p ∈ [p] have to be deter-

mined. To deal with this problem, possible interval arith-

metic approaches are:

Solution Approach 1
(i) Subdivision of the physically relevant domain [x].
(ii) Consistency tests for all subintervals of [x] by interval

evaluation of g and f in (3) and (4).

Solution Approach 2
(i) Subdivision of physically relevant domain [x] (optional).
(ii) Application of interval Newton methods, e.g. Krawczyk

operator.

3.1 Rocker Arm

As a first application in steady state analysis of nonlinear

systems with uncertainties, the tolerances of motion of the

valve lifter depicted in Fig. 2 are determined for the known

uncertain system parameters pi, i = 1, . . . , 8,

p1 := RG ∈ [16 ; 16.01]
p2 := RS ∈ [25 ; 25.01]
p3 := Dist ∈ [42 ; 42.01]
p4 := L1 ∈ [27.5 ; 27.501]
p5 := Δε ∈ [0.7 ; 0.7]
p6 := K2 ∈ [4 ; 4.001]
p7 := L4 ∈ [34 ; 34.01]
p8 := R1 ∈ [10 ; 10.001] .

(5)

The motion of the considered valve lifter is described by

x1 := SV (pi) = p8 + p6 − p7 cos δ(pi)
x2 := VV (pi) = p7H4(pi) sin δ(pi)
x3 := BV (pi) = p7 · [H2

4 (pi) cos δ(pi)
+ H6(pi) sin δ(pi)] ,

(6)

where the functions H4, H6, and δ are explicitly given by

the geometry of the system, see [22]. In equation (6), the

variable SV denotes the position of the valve lifter, VV its

velocity, and BV its acceleration.

10 mm

Cam

Rocker arm

K
2

M
S

Dist

M
V

R
1

L
4

L
6

R
S

L
1

R
G

U ��
�

-�
-� �

S
V

Valve

Valve lifter

Figure 2. System parameters of a rocker arm.

The goal of the steady state analysis for this system is

to determine guaranteed bounds for all variables xj , j =
1, 2, 3 according to

x1 ∈ [x1 ; x1] = [minSV (pi) ; maxSV (pi)]
x2 ∈ [x2 ; x2] = [minVV (pi) ; maxVV (pi)]
x3 ∈ [x3 ; x3] = [minBV (pi) ; maxBV (pi)] .

(7)

In the following, the results obtained by natural interval

arithmetic, mean-value rule evaluation, and optimized in-

terval arithmetic based on global optimization [3] including

mean-value rule evaluation and monotonicity tests are sum-

marized.

Natural interval evaluation

SV (Φ) = [2.23940; 2.35208]
VV (Φ) = [2.04417; 2.61488]
BV (Φ) = [−6.23038; 10.29386]

(8)

Mean-value rule evaluation

SV (Φ) = [2.29515; 2.29634]
VV (Φ) = [2.32611; 2.32874]
BV (Φ) = [2.35106; 2.41480]

(9)

For the optimized interval evaluation the following outer in-

terval enclosures and inner interval enclosures have been

determined:

Outer interval enclosures in optimized evaluation

SV (Φ) = [2.295244; 2.296247]
VV (Φ) = [2.326920; 2.327928]
BV (Φ) = [2.382394; 2.383468]

(10)

Inner interval enclosures in optimized evaluation

SV (Φ) = [2.295318; 2.296160]
VV (Φ) = [2.327011; 2.327837]
BV (Φ) = [2.382495; 2.383367]

(11)

The desired accuracy between the outer and inner interval

bounds has been chosen as ε = 10−4 for each xj . As dis-

played in the sketch in Fig. 3, the inner interval enclosures

are always completely included in the outer ones. By the

outer and inner interval bounds (10) and (11), an enclosure

of the true range of the variable xj is given. For the sake of

comparison with non-validated evaluation techniques, the

range of all xj has been approximated by a Monte-Carlo

simulation [2] using 10,000 samples. The resulting bounds

are given in (12) and Fig. 4.

Monte-Carlo simulation

SV (Φ) = [2.29529; 2.29621]
VV (Φ) = [2.32797; 2.32789]
BV (Φ) = [2.38248; 2.38339]

(12)

S

S
S

S
V, natural

V, mean-value rule

V, optimized, outer

V, optimized, inner

S
V, Monte-Carlo

Desired accuracy

� < 10
-4

Figure 3. Reduction of overestimation by
sophisticated interval techniques for range
computation.

It should be pointed out that Monte-Carlo methods —

especially for complex, higher-dimensional systems — can

only provide tight bounds for the desired range if huge num-

bers of sampling points are used. Hence, it cannot be guar-

anteed that the bounds computed by Monte-Carlo simula-

tions are contained within the inner and outer enclosures

determined using interval arithmetic.

3.2 Micro Relay

As a second application, the estimation of system pa-

rameters for the micro relay displayed in Fig. 5 is consid-

ered [6]. Based on rough a priori enclosures of the range

Figure 4. Monte-Carlo simulation as refer-
ence for the quality of the computed interval
bounds of SV .

movable

parts

fixed

parts

100 m�

lever

copper coil

coil current I
C

contact-

block

z

air

gaps

permalloy core

permeability μ
R

springs

spring constant c

Figure 5. Micro relay.

Figure 6. Consistent and inconsistent param-
eter sets for the micro relay within the a priori
enclosures.

of the spring constant c ∈ [5.33; 5.38] N/m and the perme-

ability μR ∈ [690; 710] of the permalloy core as well as

uncertain measurements of the displacement z of the lever,

the parameter estimates have to be improved such that only

values are obtained which are consistent with all measured

data. The measurement of the displacement has been car-

ried out 23 times for various coil currents Ic with an un-

certainty of ±0.3μm of the measured position. Using the

measurement equations

zj(μR, c) =
2γ(μR)

3

·
(

cos
(

1
3

arccos
(

1 − 27ϑ(c, Icj)
2γ(μR)3

))
− 1

)

γ(μR) =
LFeAG

2μRAFe
+ δ0

ϑ(c, Icj) =
N2AGμ0I

2
cj

4c
, j = 1, . . . , 23

(13)

the admissible set Ω of the spring constant c and the perme-

ability μR is given by

Ω =
{[

μR

c

]∣∣∣∣ |ẑj(Icj) − z(μR, c)| ≤ 0.3μm,
j = 1, . . . , 23

}
. (14)

The resulting guaranteed parameter set Ω and the bound-

ing area containing the intervals which separate the con-

sistent and inconsistent parameter values are depicted in

Fig. 6. The accuracy of the computed sets can be influenced

by specification of the maximum admissible width of each

component of the undecided intervals. Here, an accuracy of

1% of the initial parameter uncertainties has been specified.

4 Discrete-Time Dynamical Systems with
Time-Invariant Parameter Uncertainties

After the discussion of techniques and applications of

steady state analysis of dynamical systems with uncertain-

ties, the dynamics of discrete-time models and continuous-

time models is analyzed in Sections 4 and 5, respectively.

According to Section 2, a discrete-time system is given

by the state-space representation[
xk+1

pk+1

]
=

[
gk (xk, pk, uk, k)
gp,k (pk, Δpk)

]
. (15)

For time-invariant uncertainties, the relations Δpk = 0 and

pk+1 = pk hold for all k ≥ 0. For the following analysis

it is assumed that uk is either a given open-loop or closed-

loop control law. Using interval arithmetic evaluation of

the mathematical system models for all uncertain parame-

ters, guaranteed state enclosures have to be determined for

each time step k for a given finite time horizon. In the fol-

lowing list of possible solution approaches, only those are

x
2,

k
+

1

x1,k

x
2,

k

x
2,

k
+

1

x1,k+1

x1,k+1

Subdivision into
interval boxes

Natural interval evaluation
(without optimization)

Consistency test
by inverse mapping Result of forward computation

of subdivided interval boxes

Xk

xk+1 = gk (xk, pk, uk, k) for all xk ∈ Xk

xk = ḡk (xk+1, pk, uk, k)

Application of optimized

Xk+1

interval techniques

Figure 7. Interval arithmetic simulation of dynamical processes with subdivision into interval boxes,
propagation of subintervals, and consistency tests.

mentioned which have been used in the selected applica-

tions [4].

Solution Approach 1. The basic approach for calculation

of guaranteed state enclosures of discrete-time systems is

the recursive computation of the state intervals

[xk+1] = gk

(
[xk] , [pk] , uk, k

)
(16)

for open-loop control and

[xk+1] = gk

(
[xk] , [pk] , uk ([xk]) , k

)
(17)

in the case of closed-loop control.

Solution Approach 2. To reduce overestimation caused

by the wrapping effect, computation of the state enclosures

[xk+1] can be improved by coordinate transformations. The

simplest possibility is a linear transformation according to

[xk] = Tk · [x̃k]

[x̃k+1] = T−1
k+1 · gk

(
Tk · [x̃k] ,

[
pk

]
, uk, k

)
.

(18)

Solution Approach 3. In Fig. 7, subdivision of state inter-

vals [xk+1] is used for the computation of tight enclosures

of complexly shaped regions if the coordinate transforma-

tion in the Solution Approach 2 does not result in the desired

quality.

(i) Consistency tests by inverse mapping of the state equa-

tion according to

[xk] = ḡk

(
[xk+1] , [pk] , uk, k

)
, (19)

where the interval [xk+1] denotes the subintervals obtained

by forward computation [10].

(ii) Interval Newton methods for state equations where the

inverse mapping cannot be calculated analytically.

(iii) Merging of subintervals in case of small overestimation

of the union of the merged subintervals is described in de-

tail in [19].

Solution Approach 4. Computation of state variables

[xk+1] by explicit replacement of [xk], [xk−1], . . . , [x2], [x1]
in terms of the initial state [x0] and all parameter uncertain-

ties [p0], [p1], . . . , [pk−1], [pk], i.e.,

[xk+1] = gk

(
gk−1

(
. . .

g1

(
g0 ([x0] , [p0] , u0, 0) , [p1] , u1, 1

)
. . .

))
.

(20)

Here, mean-value rule evaluation, monotonicity tests, and

global optimization techniques are useful approaches to sig-

nificantly reduce overestimation caused by multiple depen-

dency of the state equation (15) upon the components of the

interval vectors [xk] and [pk].

4.1 Airbus Elevator

For the elevator control loop depicted in Fig. 8, interval

enclosures for the actual elevator angle δ and the servo valve

position xV are of interest for a given time horizon [5].

Figure 8. Airbus elevator.

This dynamical system can be modeled with sufficient

accuracy by the discrete-time equations

xk+1 = xk +
√

5 · 105 B

A
xvhΔt,

yk = δ = kSPAP xk,

h = sign(z)
√|z| ,

z =

⎛
⎝ 2

1 +
k∗

MQB2x2
V

2 A2

− 1

⎞
⎠ (Δps − pL sign(xV)),

pL = −100
A

(a + b δ) c v2
CAS ,

xV = kSV kSC(iC + iB) − xC ,

xC = kFb kC x,

iB = kR (δC − δS),
iC = kCp δS ,

δS = r δ + δoffs ,

(21)

where the reference elevator angle is denoted by δC , the

measured elevator angle by δS , the control output by iB , the

compensating current by iC , the load pressure by pL the hy-

draulic cylinder position by x, and the mechanical feedback

by xC . The functions highlighted by gray boxes in (21)

are not continuously differentiable. The uncertainties of the

position sensor in the closed-loop control are

r = [0.98 ; 1.02] and δoffs = [−0.6 ; 0.6] . (22)

For the desired accuracies εδ = 0.1◦ of the actual el-

evator angle δ and εx = 0.01mm of the servo valve po-

sition xV , interval enclosures of their time responses are

shown in Figs. 9 and 10, respectively.

Figure 9. Interval bounds for the time re-
sponse of the actual elevator angle δ.

Figure 10. Interval bounds for the time re-
sponse of the servo valve position xV .

4.2 Common-Rail Injection System

Analogously to the previous application, the sensitivity

of the closed-loop control of the common-rail injection sys-

tem in Fig. 11 is analyzed [21]. This system is described by

the discrete-time model given by the equations (23)–(26).

The reference pressure is denoted by pref , the drive voltage

by u, the tappet displacement by xc, and the measured rail

pressure by psensor.

Mathematical model of the common-rail injection system

Common-rail injection prail,k+1 = flim,p

“
prail,k +

qpump − qab1 − qab2

V κ
Δt

”

qab1 = Aflowαfurb

r
prail,k − pab

5 ρ
, ρ =

824 − 0.68 (tρ − 15)

1 − 0.06 prail,k

639 +prail,k

(23)

Aflow = min

„
π

2
xC,k

„
d +

xC,k√
2

«
,

π

16
d2

«

Magnetic valve xC,k+1 = flim,x (xC,k + (Ferr − c xC,k) Δt), Ferr = Fhyd − F0 − Fmag

Fmag = k1

0
BB@ω

flim,z

„
1 − e

− iL,k
k3

«

flim,n (k2 + 0.001 xC,k)

1
CCA

2

(24)

Fhyd = k0
prail,k − pab + k1 xC,k

k2 + xC,k

iL,k+1 = iL,k +
uin − R iL,k

L
Δt, uin = ubatt flim,u (u)

Controller u = fstat (pref) + uP + uI,k + uD

up = KR ek, ek = pref − psensor (25)

uI,k+1 = uI,k + ek
KR

TI
fswitch (uP , uD)

uD = KRTD
ek − ek−1

Δt

Sensor characteristic psensor = r prail,k + poffs (26)

Figure 11. Common-rail injection system.

� = 10

Figure 12. Inner and outer interval enclosures
for the rail pressure prail.

The functions highlighted by gray boxes in (23)–(26)

contain system-dependent static nonlinearities as well as

saturation and switching characteristics which are not con-

tinuously differentiable. Hence, special treatment of these

terms is necessary for the application of evaluation tech-

niques which use partial derivatives of the state equations

w.r.t. parameters and states. These are, for example, evalu-

ation techniques aiming at the reduction of overestimation

such as mean-value rule evaluation and monotonicity tests

which are summarized in [4]. In the sensitivity analysis,

the uncertainty r ∈ [0.97 ; 1.03] of the parameter of the

pressure sensor is considered. The resulting interval enclo-

sures for the actual rail pressure prail are shown in Fig. 12.

The desired accuracy of the actual rail pressure prail in the

global optimization approach used for computation of inner

and outer interval bounds has been set to ε = 10.

5 Continuous-Time Dynamical Systems with
Time-Varying Parameter Uncertainties

5.1 Theoretical Background

In addition to discrete-time processes which have been

discussed in the previous Section, continuous-time systems

described by sets of ordinary differential equations ODEs

are widely used system representations in engineering. The

considered ODEs are assumed to be given in state-space

representation according to[
ẋs (t)
ṗ (t)

]
=

[
fs (xs (t) , p (t) , u (t) , t)

Δp (t)

]
, (27)

where the system parameters are time-varying, i.e.,

Δp (t) �= 0 and diam ([Δp]) �= 0 usually hold for all

t ≥ 0. For given bounded uncertainties of the initial state

vector, given bounded parameter uncertainties, and given

open-loop and closed-loop control laws u (t) and u (x (t)),
guaranteed state enclosures have to be determined at each

point of time t for a given finite time horizon.

To simplify the notation for the solution approaches dis-

cussed in the following, the extended state vector

x (t) :=
[
xT

s (t) pT (t)
]T

(28)

is introduced. This allows to rewrite the state equations (27)

in the form

f (·) :=
[
fs (x (t) , u (t) , t)

Δp (t)

]
. (29)

Solution Approach 1. The computation of state enclosures

of an initial value problem IVP by series expansion with
respect to time according to

[x (tk+1)] = [x (tk)] +hk ·φ ([x (tk)] , uk, tk) + [ek] (30)

with

φ (·) :=
ν∑

i=1

hi−1
k

i!
· di−1f (·)

dti−1
(31)

and the discretization error interval

[ek] :=
hν+1

k

(ν + 1)!
· dνf (·)

dtν

∣∣∣∣
[τk],[Bk]

(32)

is the basis for several validated ODE solvers such as

VNODE by Nedialkov [14]. Here, the bounds for the dis-

cretization error have to be evaluated for a bounding box of

all states and parameters [Bk] which can be reached in the

time interval [τk] := [tk ; tk+1]. This bounding box is usu-

ally either determined with the help of the Picard iteration

or with the help of higher order enclosure methods [15].

Solution Approach 2. Furthermore, state enclosures of

IVPs can also be computed by series expansions with re-

spect to time and initial states. This approach is imple-

mented in the Taylor-model-based solver COSY VI by

Berz and Makino [12].

Solution Approach 3. A novel approach for the compu-

tation of state enclosures [xencl (t)] := xapp (t) + [R (t)]
of IVPs — not based on series expansions — relies on

non-validated approximate solutions xapp (t) and guaran-

teed error bounds [R (t)]. This technique is implemented in

VALENCIA-IVP by Rauh and Auer [1].

5.2 Biological Wastewater Treatment

The dynamical behavior of biological wastewater treat-

ment plants has to be robust w.r.t. changes of most system

parameters [10, 19]. Furthermore, cost-effective plant op-

eration demands for a reduction of the oxygen input rate

into the aeration tank to its lowest possible value. Hence,

it is necessary to find a suitable compromise between both

prerequisites. To deal with this problem, interval arithmetic

simulation of mathematical system models such as the Acti-

vated Sludge Model No. 1 ASM1 of the International Water

Association, under consideration of time-varying uncertain

system parameters, is a useful technique. In the following,

the Solution Approach 1 using a validated explicit Euler

method with subdividing and merging of interval boxes is

applied to simulation of a subsystem model of a wastewater

treatment plant as shown in Fig. 13.

���������

��������	���

	��
�����
���	���

�������

	��
�������
	���

���
�����
������

��������
������
�

�
�����
�������	

������
��
���
��	

�������

�

Figure 13. Biological wastewater treatment
plant.

The state equations

Ṡ =
QW

VA
(SW − S) − μ (S, SO)

1
Y

X

Ẋ = − QW

VA
X +

QRS

VA
(XSet − X)

+ (μ (S, SO) − b) X

ṠO =
QW

VA
(SOW − SO) − μ (S, SO)

1 − Y

Y
X

+
ρO2

VA

(
1 − SO

SO,sat

)
uO2

ẊSet =
QW + QRS

VSet
X − QEX + QRS

VSet
XSet ,

(33)

where the nonlinear growth rate of substrate consuming

bacteria is modeled by the Monod kinetics

μ (S, SO) = μ̂H
S

S + KS

SO

SO + KOS
, (34)

describe the reduction of biodegradable organic substrate

by heterotrophic bacteria. The state variables are the con-

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 8 12 164 20

t/
(
104 s

)

S
/
(kg

/m
3)

forbidden region

Smax

enlarged t/
(
104 s

)
0.02

0.10

4 4.5

Figure 14. Substrate concentration S in the aeration tank.

200 4 8 12 16

uO2 = 0.5 · uO2,nominal

time-response for

200 4 8 12 16

6

5

4

3

1

0

2

S
O

/
(kg

/m
3)

×10−3

t/
(
104 s

)

SO,min

uO2 = 0.5 · uO2,nominal

time-response for

0.3

0.2

0.1

forbidden region0.4

0.5

0.6

X
/
(kg

/m
3)

t/
(
104 s

)

Figure 15. Bacteria concentration X and concentration SO of dissolved oxygen.

centration S of organic substrate, the concentration X of

bacteria, and the concentration SO of dissolved oxygen in

the aeration tank as well as the bacteria concentration XSet

in the settler.

With the prescribed bounds

substrate:

{
S unbounded for t < 40, 000 s

S ≤ Smax for t ≥ 40, 000 s

oxygen:

{
SO unbounded for t < 400 s
SO ≥ SO,min for t ≥ 400 s

(35)

as robustness requirements, the computed validated state

enclosures show that oxygen input rates from the interval

uO2 = [0.5 ; 1.0] · uO2,nominal can be chosen without vio-

lation of the given bounds (35). Thus, the optimal choice of

a constant oxygen input rate w.r.t. minimization of the oper-

ating costs is uO2 = 0.5 · uO2,nominal, see Figs. 14 and 15.

Note that this numerical proof of admissibility of control

strategies for reliable plant operation using validated ODE

solvers can be carried out analogously for control laws with

time-varying oxygen input rates and for investigating pa-

rameter uncertainties. For details see [17].

6 State and Parameter Estimation Using In-
terval Observers

The applications which have been described in the pre-

vious Sections of this paper either dealt with estimation

of system parameters in steady state or with the dynami-

cal simulation of discrete-time and continuous-time systems

without including any measured data. In the following, the

concept of an interval observer [9] is discussed which relies

on state-space representations of discrete-time systems as in

eq. (1) and continuous-time systems as in eq. (2).

In addition to the system dynamics, mathematical mod-

els of the measurement process are necessary. They are

given by

yk+1 = hk+1 (xk+1, pk+1, δk+1, uk+1, k + 1) (36)

and

y (tk+1) = h (x (t) , p (t) , δ (t) , u (t) , t)
∣∣∣
t=tk+1

(37)

for discrete-time and continuous-time processes, respec-

tively. In both cases, it is assumed that new measured data

only become available at discrete points of time. For the

sake of simplicity, the vector p of parameter uncertainties is

now redefined such that it consists of the parameters of both

the dynamical system model and the measurement model.

Using the measurement equations (36) and (37), a model-

based reconstruction of the state vector x as well as the pa-

rameter vector p is performed under consideration of the

bounded measurement uncertainties δ ∈ [δ] :=
[
δ ; δ

]
.

The block diagram of the interval observer in Fig. 16

shows the two basic steps of state estimation. In the pre-
diction step, propagation of all uncertainties is performed

with the help of the mathematical model of the system dy-

namics until the point of time at which measured data are

available. Then, the correction step eliminates those parts

of the state enclosures (obtained by the prediction) which

are inconsistent with the model of the measurement process

under consideration of its uncertainties.

�

�
�
��
�
�

��
�

��������	
���������

�	���
���

�	���
���

��
��
��
��
��
��
��
��
��
��
��
��
��

�������������
���	���	���

������������
�
	����������	�

���������
���	

���������

������
�����

�����������
�����

����������
���	

���
��	������������������	���	�����

���	
�	�����
�������
	������	�

������������
��

	��������	�

�	���
	�	����

�	���
	�	����

Figure 16. Interval observer.

In the following applications, state and parameter esti-

mates computed by the interval observer are presented.

6.1 Electrostatic Micro Actuator

First, the electrostatic micro actuator in Fig. 17 is consid-

ered. For this device, the not directly measured initial gap

x20 between the two plates of the capacitor, the position

�
�

�

��

����

���

��

�

� ����	
���
���
�

� ���	
���
���
�

�
�
� 	
����������

	 ����������

������

� 	
�������	���
��

Figure 17. Electrostatic micro actuator.

x2 (t), and the velocity ẋ2 (t) have to be estimated. The

dynamical system model is given by the ODEs [20]

ẋ1 =
1
R

(
Vi − x1x2

εA

)
ẋ2 = x3

ẋ3 =
−1
m

(
x2

1

2εA
+ k(x2 − x20) + bx3

) (38)

with the uncertain initial conditions

x(0) ∈
⎡
⎣[x10]

[x20]
[x30]

⎤
⎦ =

⎡
⎣ [0; 0]

[0.9; 1.1]
[0; 0]

⎤
⎦ (39)

and the time-invariant uncertain spring constant k ∈
[0.8; 1.2]. Using the measurement equations

y1 =
x1x2

εA
+ δ1 and y2 =

x2

εA
+ δ2 (40)

with the uncertainties δ1 ∈ [−3; 3] · 10−4 and δ2 ∈ [−1; 1] ·
10−4, the estimates in Fig. 18 are obtained. A significant

reduction of the initial uncertainty [x20] by the model-based

state and parameter estimation approach is obvious.

0 1 2
0.85

0.9

0.95

1.00

1.05

1.1

time

0 1 2
-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

time

v
e

lo
c
it
y

x
3

In
it
ia

l
g

a
p

x 2
0

/
p

o
s
it
io

n
x

2

1.15

Figure 18. Estimates of position and velocity
of the electrostatic micro actuator.

6.2 Micropositioning System

As a second application for the interval observer, the mi-

cropositioning system shown in Fig. 19 is discussed.

Figure 19. Micropositioning system.

Here, the task is the guaranteed positioning of micro-

drops on a DNA chip within given tolerances. For that pur-

pose, the positioning unit is described by dynamical second

order models in each axis. The dominating uncertainties in

this system are the static friction coefficient Fs as well as

the sliding friction coefficient μ which are depicted in the

friction characteristic in Fig. 20.

μ = μ

μ = μ

sliding friction for negative

velocity

sliding friction for positive

velocity

Ff (x2)

velocity x2

Ff (x2) = −Fs + μ · x2

Ff (x2) = Fs + μ · x2

Fs ∈
[
F s ; F s

]static friction coefficient

Figure 20. Friction characteristic.

The algorithm which is used for model-based estimation

of both position and velocity of the positioning unit relies

on validated integration of the dynamical system model in

the prediction step. Here, all points of time have to be de-

tected at which switchings between sliding and static fric-

tion occur. The exact procedure using a state transition di-

agram which is evaluated for all interval uncertainties has

been published in [18].

In Fig. 21, results for two different cases are illustrated:

(i) The black solid lines show the influence of the parameter

uncertainties in the friction characteristic in terms of worst-

case bounds of the system’s position.

(ii) Additionally, uncertain measurement information of the

position is considered (marked by black dots). Then, com-

pared to case (i), the bounds of the position estimate can be

reduced significantly.

0 25 50 75 100
−0.5

0

0.5

1

1.5

2

time

p
o

si
ti

o
n

desired target position

Figure 21. Position estimates.

7 Conclusions

The applications presented in this paper have been cho-

sen to demonstrate how interval arithmetic evaluation meth-

ods for steady state analysis as well as simulation of both

discrete-time and continuous-time systems can be applied

successfully in engineering. The common goal of all ap-

plications has been to compute guaranteed enclosures of all

physically relevant states and parameters. Besides simu-

lation of the dynamical system behavior in open-loop and

closed-loop operation, the design of a model-based inter-

val observer for guaranteed state and parameter estimation

has been described. In this approach, measurement infor-

mation can be used efficiently to eliminate parts of the state

enclosures which are inconsistent either with the mathemat-

ical model of the system dynamics or with the model of the

measurement process.

As shown in this contribution, the most important prop-

erty of interval algorithms, namely the ability to compute

guaranteed enclosures [7], is especially relevant in the anal-

ysis and the design of technical and non-technical systems.

Based on mathematical system models, the worst-case in-

fluence of uncertainties as well as the robustness, reliabil-

ity, cost-effectiveness, and safety of a system can be inves-

tigated by computation of guaranteed bounds of the corre-

sponding system states.

In order to apply interval algorithms to a wider class of

problems, further general implementations have to be made

available. Additionally, future research aiming at the de-

velopment of improved and novel interval arithmetic tools

has to consider the necessity to deal with uncertain dy-

namical systems which include discontinuities and model

switchings in the systems’ representations, e.g. hystereses

in electro-mechanical applications. Finally, the develop-

ment of interval arithmetic methods for the computation

of robust and optimal control strategies [11, 16] for high-

dimensional nonlinear systems with non-negligible influ-

ence of uncertainties will be an important field for future

developments.

Future research will be directed towards both establish-

ing interval techniques in the computing mainstream by fur-

ther developing software tools and — most important —

demonstrating successful applications.

References

[1] E. Auer, A. Rauh, E. P. Hofer, and W. Luther. Validated

Modeling of Mechanical Systems with SMARTMOBILE:

Improvement of Performance by VALENCIA-IVP. In

Proc. of Dagstuhl Seminar 06021: Reliable Implementation
of Real Number Algorithms: Theory and Practice, Lecture

Notes in Computer Science, 2006. In print.

[2] J. M. Hammersley and D. C. Handscomb. Monte-Carlo
Methods. John Wiley & Sons, New York, 1964.

[3] E. Hansen. Global Optimization Using Interval Analysis.

Marcel Dekker, New York, 1992.

[4] J. Heeks. Charakterisierung unsicherer Systeme mit inter-
vallarithmetischen Methoden. PhD thesis, Universität Ulm,

Abteilung Mess-, Regel- und Mikrotechnik, 2002.

[5] J. Heeks, E. P. Hofer, B. Tibken, K. Lunde, and K. Thor-

wart. Simulation of a Controlled Aircraft Elevator Under

Sensor Uncertainties. In W. Krämer and J. W. von Guden-

berg, editors, Scientific Computing, Validated Numerics, In-
ternal Methods, Kluwer Academic/Plenum Publishers, New

York, pages 227–237. 2001.

[6] E. P. Hofer, B. Tibken, and C. Rembe. Guaranteed Param-

eter Estimation for Characterization of Microdevices. In

E. Reithmeier and G. Leitmann, editors, Proc. of 10th Work-
shop on Dynamics and Control, Lambrecht, Germany, 1998,

Complex Dynamical Systems with Incomplete Information,

pages 81–93. Shaker Verlag, Aachen, 1999.

[7] E. P. Hofer, B. Tibken, and M. Vlach. Traditional Parameter

Estimation Versus Estimation of Guaranteed Parameter Sets.

In W. Krämer and J. W. von Gudenberg, editors, Scientific
Computing, Validated Numerics, Internal Methods, Kluwer

Academic/Plenum Publishers, New York, pages 241–253.

2001.

[8] L. Jaulin, M. Kieffer, O. Didrit, and É. Walter. Applied In-
terval Analysis. Springer, London, 2001.

[9] M. Kletting, A. Rauh, H. Aschemann, and E. P. Hofer. Inter-

val Observer Design for Nonlinear Systems with Uncertain

Time-Varying Parameters. In Proc. of 12th IEEE Intl. Con-
ference on Methods and Models in Automation and Robotics
MMAR, pages 361–366, Miedzyzdroje, Poland, 2006.

[10] M. Kletting, A. Rauh, H. Aschemann, and E. P. Hofer. Con-

sistency Tests in Guaranteed Simulation of Nonlinear Un-

certain Systems with Application to an Activated Sludge

Process. Journal of Computational and Applied Mathemat-
ics, 199(2):213–219, 2007.

[11] Y. Lin and M. A. Stadtherr. Deterministic Global Optimiza-

tion for Dynamic Systems Using Interval Analysis. In Book
of Abstracts of 12th GAMM-IMACS Intl. Symposium on Sci-
entific Computing, Computer Arithmetic, and Validated Nu-
merics SCAN 2006, page 74, Duisburg, Germany, 2006.

[12] K. Makino. Rigorous Analysis of Nonlinear Motion in Par-
ticle Accelerators. PhD thesis, Michigan State University,

1998.
[13] R. Moore. Methods and Applications of Interval Analysis.

SIAM, Philadelphia, 1979.
[14] N. S. Nedialkov. Computing Rigorous Bounds on the Solu-

tion of an Initial Value Problem for an Ordinary Differential
Equation. PhD thesis, Graduate Department of Computer

Science, University of Toronto, 1999.
[15] N. S. Nedialkov, K. R. Jackson, and J. D. Pryce. An Ef-

fective High-Order Interval Method for Validating Existence

and Uniqueness of the Solution of an IVP for an ODE. Re-
liable Computing, 7:449–465, 2001.

[16] A. Rauh and E. P. Hofer. Interval Arithmetic Optimiza-

tion Techniques for Uncertain Discrete-Time Systems. In

E. P. Hofer and E. Reithmeier, editors, Proc. of 13th
Int. Workshop on Dynamics and Control, Wiesensteig, Ger-
many, 2005, Modeling and Control of Autonomous Deci-

sion Support Based Systems, pages 141–148. Shaker Verlag,

Aachen, 2005.
[17] A. Rauh, M. Kletting, H. Aschemann, and E. P. Hofer. Ro-

bust Controller Design for Bounded State and Control Vari-

ables and Uncertain Parameters Using Interval Methods. In

Proc. of 5th Intl. Conference on Control and Automation
ICCA, pages 777–782, Budapest, Hungary, 2005.

[18] A. Rauh, M. Kletting, H. Aschemann, and E. P. Hofer. In-

terval Methods for Simulation of Dynamical Systems with

State-Dependent Switching Characteristics. In Proc. of
IEEE Intl. Conference on Control Applications CCA 2006,

pages 355 – 360, Munich, Germany, 2006.
[19] A. Rauh, M. Kletting, H. Aschemann, and E. P. Hofer. Re-

duction of Overestimation in Interval Arithmetic Simulation

of Biological Wastewater Treatment Processes. Journal of
Computational and Applied Mathematics, 199(2):207–212,

2007.
[20] A. Rauh, M. Kletting, and E. P. Hofer. Model-Based State

and Parameter Estimation for Micro-Mechatronic Systems

with Interval Bounded Uncertainties. In A. Weckenmann,

editor, CD-Proc. of 10th CIRP Intl. Conference on Computer
Aided Tolerancing, Erlangen, Germany, 2007, Reports from

the Chair Quality Management and Manufacturing Metrol-

ogy, QFM Report 16. Shaker Verlag, Aachen, 2007.
[21] B. Tibken, E. P. Hofer, J. Heeks, K. Thorwart, and H. Asche-

mann. Simulation of a Common Rail Fuel Injection System

Using Interval Arithmetic. SCAN 2002. Paris, France, 2002.
[22] B. Tibken, E. P. Hofer, and W. Seibold. Quality Control

of Valve Push Rods Using Interval Artihmetic. In Proc. of
14th Triennial World Congress Intl. Federation of Auto-
matic Control IFAC, volume A, pages 409–412, Beijing,

P. R. China, 1999.

Operator Dependant Compensated Algorithms

Philippe Langlois Nicolas Louvet
DALI at ELIAUS Laboratory, Université de Perpignan Via Domitia

52, avenue Paul Alduy, F-66860 Perpignan, France
[langlois, nicolas.louvet]@univ-perp.fr

Abstract

Compensated algorithms improve the accuracy of a re-
sult evaluating a correcting term that compensates the finite
precision of the computation. The implementation core of
compensated algorithms is the computation of the rounding
errors generated by the floating point operators. We focus
this operator dependency discussing how to manage and to
benefit from floating point arithmetic implemented through
a fused multiply and add operator. We consider the com-
pensation of dot product and polynomial evaluation with
Horner iteration. In each case we provide theoretical a pri-
ori error bounds and numerical experiments to exhibit the
best algorithmic choices with respect to accuracy or perfor-
mance issues.

1. Introduction

Different techniques and several softwares aim to im-
prove the accuracy of results computed in a fixed finite pre-
cision, e.g., in IEEE-754 floating point arithmetic [10].
A natural way to improve the accuracy of a given com-

putation is to increase the working precision. For this pur-
pose, numerous multiprecision libraries are available when
the computing precision is not large enough to guarantee a
prescribed accuracy [4, 2, 14]. The computing-time over-
head of such arbitrarily precise computation limits its use
to applications for which running-time is not crucial. When
twice or four times the IEEE-754 double precision is suf-
ficient, actual and effective solutions are double-double or
quad-double libraries [8, 1]. For example a double-double
number is an unevaluated sum of two IEEE-754 double
precision numbers and its associated arithmetic provides
at least 106 bits of significand. These fixed-length expan-
sions are currently embedded in major developments such
as for example within the new extended and mixed precision
BLAS [12]. Such libraries benefit from good performances
in term of running-time and also from a wide applicability

since they provide extended precision for classic arithmetic
operators and elementary functions.
Compensating a given algorithm is a less generic process

than the simple plug-in of the extended precision facilities
previously mentioned. Nevertheless farther presented
results will exhibit that when available, compensated
algorithms run always faster than the corresponding ones
with extended precision libraries. Compensated algorithms
implement the computation of a correcting term that
approximates the errors generated by the finite precision
evaluation of the algorithm. This computation relies on
error-free transformations (EFT) as named in [16]. EFT
are properties that describe the final forward error such that
(an approximate of) this error can be computed only using
the current working precision. Such EFT for arithmetic
operators, dot product and polynomial evaluation will be
given hereafter. The core of the EFT computation depends
on low-level arithmetic properties (which is also the case
for extended precision libraries); most of them are clearly
defined by the IEEE-754 standard. Nevertheless new
questions raise when IEEE-754 compliant add or multiply
operators are implemented from a unique fused multiply
and add instruction. The fused multiply and add instruction
(FMA) is available on some current processors, such as
the IBM Power PC or the Intel Itanium. Given a, b and c
three floating point point values, this instruction computes
the expression a × b + c with only one final rounding error
[13].

The FMA can be used to improve algorithms based on
error-free transformations in two ways. First, it allows us
to compute the EFT for the product of two floating point
values in a very efficient way: algorithm TwoProd re-
called hereafter computes this EFT in only two flops when
a FMA is available [15, 13]. On the other hand, an algo-
rithm that computes an EFT for the FMA has been pro-
posed in [3]. In particular, it is proved that the EFT for
the FMA is the sum of three floating point numbers. As-
suming an IEEE-754 like floating point arithmetic with the
round to the nearest rounding mode, algorithm ThreeFMA

Table 1. Summary of algorithms
routine description

HornerFMA IEEE-754 double precision with FMA (Algorithm 5)
CompHornerFMA Compensated HornerFMA (Algorithm 7)

CompHorner Compensated Horner (Algorithm 9)
DDHorner Horner algorithm performed with the double-double format + FMA
DotFMA Dot product algorithm with FMA (Algorithm 11)

CompDotFMA Compensated DotFMA (Algorithm 12)
CompDot Compensated Dot (Algorithm 13)

DDDot Dot product with the double-double format + FMA

computes three floating point numbers x, y and z such that

a × b + c = x + y + z with x = FMA (a, b, c) .

In this paper we focus on the FMA dependency of com-
pensated algorithms. We discuss how to manage and to ben-
efit from this fused multiply and add operator. Notations are
presented in Section 2 and then error-free transformations
are introduced in Section 3.
We consider the compensation of polynomial evaluation

with Horner iteration and dot product, respectively in Sec-
tion 4 and Section 5. In each case we provide theoretical a
priori error bounds and numerical experiments to exhibit
the best algorithmic choices with respect to accuracy or
performance issues. A priori error bounds prove that the
FMA does not significantly improve the worst-case error –
even if implementations with FMA suffer from twice less
rounding errors than without. Experiments also illustrate
this similar behavior in terms of accuracy for both original
and compensated algorithms.
Running-time issues are different for compensated algo-

rithms. We conclude that FMA should be avoided in the
main computation (replacing it by add or multiply opera-
tors) but preferred in the compensating process (namely to
compute the error generated by the multiply operator). This
should motivate further research to less costly algorithms
or availability of low level primitives that compute the er-
ror generated by the FMA. Hence the whole computation of
compensated algorithms would benefit from the fused mul-
tiply and add instruction.

2. Notations

Throughout the paper, we assume a floating point arith-
metic adhering to the IEEE-754 floating point standard [10].
We constraint all the computations to be performed in one
working precision, with the “round to the nearest” round-
ing mode. We also assume that no overflow nor under-
flow occurs during the computations. Next notations are
standard (see [9, chap. 2] for example). F is the set of

all normalized floating point numbers and u denotes the
unit roundoff, that is half the spacing between 1 and the
next larger representable floating point value. For IEEE-
754 double precision with rounding to the nearest, we have
u = 2−53 ≈ 1.11 · 10−16.
The symbols⊕,� and⊗ represent respectively the float-

ing point addition, subtraction and multiplication. For more
complex arithmetic expressions, fl(·) denotes the result of
a floating point computation where every operation inside
the parenthesis is performed in the working precision. So
we have for example, a ⊕ b = fl(a + b).
When no underflow nor overflow occurs, the following

standard model describes the accuracy of every considered
floating point computation. For two floating point numbers
a and b and for ◦ in {+,−,×}, the floating point evaluation
fl(a ◦ b) of a ◦ b is such that

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2),
with |ε1|, |ε2| ≤ u. (1)

To keep track of the (1+ε) factors in next error analysis,
we use the classic (1 + θk) and γk notations [9, chap. 3].
For any positive integer k, θk denotes a quantity bounded
according to

|θk| ≤ γk =
ku

1 − ku
.

When using these notations, we always implicitly assume
ku < 1. In farther error analysis, we essentially use the
following relations,

(1 + θk)(1 + θj) ≤ (1 + θk+j), ku ≤ γk, γk ≤ γk+1.

3. Error Free Transformations (EFT)

First we review error free transformations (EFT) known
for the elementary floating point operations +, − and ×.
Let ◦ be an operator in {+,−,×}, a and b be two floating

point numbers, and x = fl(a ◦ b). Then it exists a floating
point value y such that

a ◦ b = x + y. (2)

Table 2. Summary of a priori bounds and flop counts.
Algorithm A priori bound for the relative accuracy Number of flop

HornerFMA γn cond(p, x) n
Horner γ2n cond(p, x) 2n

CompHornerFMA u + γnγn+1 cond(p, x) 19n
CompHorner u + γnγ2n+1 cond(p, x) 10n − 1

DotFMA γn cond(xT y)/2 n
Dot γn cond(xT y)/2 2n − 1

CompDotFMA u + uγn+1 cond(xT y)/2 19n − 16
CompDot u + γ2

n cond(xT y)/2 10n − 7

The difference y between the exact result and the computed
result is the rounding error generated by the computation of
x. Let us emphasize that relation (2) between four floating
point values only relies on real operators and exact equal-
ity. Ogita et al. [16] name such a transformation an error
free transformation (EFT). The practical interest of the EFT
comes from next Algorithms 1 and 2 that compute the exact
error term y for ◦ = + and ◦ = ×.
For the EFT of the addition we use Algorithm 1, the well

known TwoSum algorithm by Knuth [11] that requires 6
flop (floating point operations).
Usually, the well known algorithm TwoProd by

Veltkamp and Dekker (see [5]) is used for the EFT of the
product. TwoProd requires 17 floating point operations.
Nevertheless, TwoProd can be rewritten very efficiently
when a FMA is available. For a, b and c in F, FMA (a, b, c)
is the exact result a × b + c rounded to the nearest floating
point value. Thus, y = a×b−a⊗b = FMA (a, b,−(a ⊗ b)),
and TwoProd now only requires two flop.
The next theorem exhibits the previously announced

properties of TwoSum and TwoProd.

Theorem 1 ([16]). Let a, b in F and x, y ∈ F such that
[x, y] = TwoSum(a, b) (Algorithm 1). Then, even in the
presence of underflow,

a+b = x+y, x = a⊕b, |y| ≤ u|x|, |y| ≤ u|a+b|.
Let a, b ∈ F and x, y ∈ F such that [x, y] = TwoProd(a, b)
(Algorithm 2). Then, if no underflow occurs,

a×b = x+y, x = a⊗b, |y| ≤ u|x|, |y| ≤ u|a×b|.
An algorithm that computes an EFT for the FMA has

been recently given by Boldo and Muller [3]. The EFT of a
FMA operation cannot be represented as a sum of two float-
ing point numbers, as it is the case for the addition and for
the product. Therefore, the following algorithm ThreeFMA
produces three floating point numbers. For efficiency rea-
sons, we slightly modify the algorithm from [3] such that
ThreeFMA here performs no renormalization of the final

result. Algorithm 3 requires 17 flop. It satisfies the follow-
ing properties.

Theorem 2 ([3]). Given a, b, and c three floating point val-
ues, let x, y and z be the three floating point numbers such
that [x, y, z] = ThreeFMA (a, b, c). Then we have

• a× b + c = x + y + z exactly, with x = FMA (a, b, c),

• |y + z| ≤ u|x| and |y + z| ≤ u|a × b + c|,
• y = 0 or |y| > |z|.
We notice that the algorithms presented in this section

only require well optimizable floating point operations.
They do not use branches nor access to the mantissa that
can be time-consuming.

Two error free transformations for polynomial evalua-
tion are introduced in next Section 4. Relation (7) exhibits
the exact rounding error generated by the Horner algorithm
when its inner iteration uses a FMA; Relation (10) applies
when no FMA appears in the Horner algorithm.

4. Polynomial evaluation

We consider the evaluation of p(x) =
∑n

i=0 aix
i, where

the data x and the polynomial coefficients ai are floating
point numbers. We study the two versions of the classic
Horner algorithm (without or with the FMA) and associated
compensated Horner algorithms.
We recall that the classic condition number of the evalu-

ation of p(x) is

cond(p, x) =
∑n

i=0 |ai||x|i
|∑n

i=0 aixi| =
p̃(x)
|p(x)| . (3)

4.1. Horner algorithms

For any floating point value x, Horner (p, x) is the re-
sult of the floating point evaluation of the polynomial p at x
using the Horner algorithm (Algorithm 4).

Algorithm 1. EFT of the sum of two floating
point numbers.
function [x, y] = TwoSum (a, b)

x = a ⊕ b
z = x � a
y = (a � (x � z)) ⊕ (b � z)

Algorithm 2. EFT of the product of two floating
point numbers with a FMA.
function [x, y] = TwoProd (a, b)

x = a ⊗ b
y = FMA (a, b,−x)

Algorithm 3. EFT for the FMA operation.
function [x, y, z] = ThreeFMA (a, b, c)

x = FMA (a, b, c)
(u1, u2) = TwoProd (a, b)
(α1, z) = TwoSum (b, u2)
(β1, β2) = TwoSum (u1, α1)
y = (β1 � x) ⊕ β2

Algorithm 4. Horner algorithm

function r0 = Horner (p, x)
rn = an

for i = n − 1 : −1 : 0
ri = ri+1 ⊗ x ⊕ ai

end

A forward error bound for the result of Algorithm 4 is
(see [9, p.95])

|p(x) − Horner (p, x) | ≤ γ2n p̃(x). (4)

So, the accuracy of the computed evaluation is linked to the
condition number of the polynomial evaluation as follows,

|p(x) − Horner (p, x) |
|p(x)| ≤ γ2n cond(p, x). (5)

Clearly, the condition number (3) can be arbitrarily large.
In particular, when cond(p, x) > γ−1

2n , we cannot guarantee
that the computed result Horner (p, x) contains any correct
digit.
If a FMA instruction is available on the considered archi-

tecture, then we can change the computation of ri = ri+1⊗
x⊕ai in Algorithm 4 by ri = FMA (ri+1, x, ai). This gives
the following algorithm HornerFMA (Algorithm 5).
Algorithm 5. Horner algorithm with FMA

function r0 = HornerFMA (p, x)
rn = an

for i = n − 1 : −1 : 0

ri = FMA (ri+1, x, ai)
end

This slightly improves the error bound since we write
now,

|p(x) − HornerFMA (p, x) |
|p(x)| ≤ γn cond(p, x). (6)

With the FMA, the number of floating point operations in-
volved in the computation is also divided by two and so is
the worst case error.

4.2. Compensating HornerFMA

As previously mentioned, next EFT for the polynomial
evaluation with HornerFMA exhibits the exact rounding
error generated by this algorithm. Following algorithm
EFTHornerFMA computes this EFT thanks to ThreeFMA
(Algorithm 3).
Algorithm 6. EFT for HornerFMA

function [u0, pε, pϕ] = EFTHornerFMA(p, x)
un = an

for i = n − 1 : −1 : 0
[ui, εi, ϕi] = ThreeFMA (ui+1, x, ai)
Let εi be the coefficient of degree i in pε

Let ϕi be the coefficient of degree i in pϕ

end

Theorem 3. Let p(x) =
∑n

i=0 aix
i be a polynomial of de-

gree n with floating point coefficients, and let x be a floating
point value. Algorithm 6 computes both

• the floating point evaluation HornerFMA (p, x) (Al-
gorithm 5), and

• two polynomials pε and pϕ, of degree n−1, with float-
ing point coefficients;

we write

[HornerFMA (p, x) , pε, pϕ] = EFTHornerFMA (p, x) .

Algorithm 6 requires 17n floating point operations.
We have the next EFT,

p(x) = HornerFMA (p, x) + (pε + pϕ)(x), (7)

with
˜(pε + pϕ)(x) ≤ γn p̃(x).

As before we have ˜(pε + pϕ)(x) =
∑n−1

i=0 |εi + ϕi||xi|.
Relation (7) means that EFTHornerFMA is an EFT for the
polynomial evaluation with the Horner algorithm when the
FMA is used. From this relation, the global forward error

affecting the floating point evaluation of p at x according to
the Horner algorithm is

p(x) − HornerFMA (p, x) = (pε + pϕ)(x), (8)

where the coefficients of the polynomials pε and pϕ are
exactly computed by EFTHornerFMA (Algorithm 6), to-
gether with the approximateHornerFMA (p, x). Therefore,
the key of the following compensated algorithm is to com-
pute an approximate c of the global error (8) in working
precision, and then to compute a corrected result

r = HornerFMA (p, x) ⊕ c.

We say that c is a correcting term for the initial result
HornerFMA (p, x). The corrected result r is expected to
be more accurate than HornerFMA (p, x) as proved in the
sequel of the section. We compute the correcting term c by
evaluating the polynomial whose coefficients are those of
pε +pϕ rounded to the nearest floating point value, i.e., c =
HornerFMA (pε + pσ, x). We can now describe the com-
pensated algorithm for polynomial evaluation.
Algorithm 7. Compensated HornerFMA

function r = CompHornerFMA (p, x)
[h, pε, pϕ] = EFTHornerFMA (p, x)
c = HornerFMA (pε ⊕ pϕ, x)
r = h ⊕ c

We state hereafter that the result of a polynomial evalu-
ation computed with Algorithm 7 is as accurate as if com-
puted by the classic Horner algorithm using twice the work-
ing precision and then rounded to the working precision
(proofs are detailed in [7]).

Theorem 4. Given a polynomial p(x) =
∑n

i=0 aix
i of de-

gree n with floating point coefficients, and x a floating point
value. We consider the result CompHornerFMA (p, x)
computed by Algorithm 7. Then,

|CompHornerFMA (p, x)−p(x)| ≤ u|p(x)|+γnγn+1 p̃(x).

CompHornerFMA requires 19n floating point operations.

It is interesting to interpret the previous theorem with re-
spect to the condition number of the polynomial evaluation
of p at x. Combining the error bound in Theorem 4 with the
condition number (3) for the polynomial evaluation gives
the following relation,

|CompHornerFMA (p, x) − p(x)|
|p(x)| ≤ u+γnγn+1 cond(p, x).

(9)

For practical purpose, just consider γnγn+1 as u2. In
other words, the bound for the relative error of the com-
puted result is essentially u2 times the condition number of

the polynomial evaluation, plus the inevitable summand u
for the final rounding of the result to the working precision.
In particular, while cond(p, x) � 1/u, then the relative ac-
curacy of the result is bounded by a constant of the order u.
This means that the compensated Horner algorithm com-
putes an evaluation accurate to the last few bits as long as
the condition number is smaller than 1/u. Besides that, Re-
lation (9) tells us that the computed result is as accurate as
if computed by the classic Horner algorithm with twice the
working precision. Of course no accuracy can be expected
for condition number larger than 1/u2.

4.3. Compensating Horner

The principle of next algorithm CompHorner is the
same as CompHornerFMA. Nevertheless we need an EFT
which computes the rounding error generated by Horner,
that is for polynomial evaluation without using the FMA.
Next results provide this EFT.
Algorithm 8. EFT for Horner.

function [q0, pπ, pσ] = EFTHorner(p, x)
qn = an

for i = n − 1 : −1 : 0
[pi, πi] = TwoProd (qi+1, x)
[qi, σi] = TwoSum (pi, ai)
Let πi be the coefficient of degree i in pπ

Let σi be the coefficient of degree i in pσ

end

Theorem 5. Let p(x) =
∑n

i=0 aix
i be a polynomial of de-

gree n with floating point coefficients, and let x be a floating
point value. Then following Algorithm 8 computes both

• the floating point value Horner (p, x) (Algorithm 4),
and

• two polynomials pπ and pσ , of degree n−1, with float-
ing point coefficients;

we write

[Horner (p, x) , pπ, pσ] = EFTHorner (p, x) .

Algorithm 8 requires 8n flops.
We have the next EFT,

p(x) = Horner (p, x) + (pπ + pσ)(x), (10)

with
(p̃π + p̃σ)(x) ≤ γ2n p̃(x).

We deduce another compensated evaluation algorithm
based on the previous EFT for Horner.
Algorithm 9. Compensated Horner algorithm.

function r = CompHorner (p, x)
[h, pπ, pσ] = EFTHorner (p, x)
c = HornerFMA (pπ ⊕ pσ, x)
r = h ⊕ c

Theorem 6. Given a polynomial p(x) =
∑n

i=0 aix
i of de-

gree n with floating point coefficients, and x a floating point
value. We consider the result CompHorner (p, x) com-
puted by Algorithm 9. Then,

|CompHorner (p, x) − p(x)| ≤ u|p(x)| + γnγ2n+1 p̃(x).

Algorithm 9 requires 10n − 1 floating point operations.

Again, combining the error bound in Theorem 6 with the
condition number (3) for polynomial evaluation leads to

|CompHorner (p, x) − p(x)|
|p(x)| ≤ u + γnγ2n+1 cond(p, x).

(11)
Since γnγ2n+1 ≈ u2, the previous remarks about error
bound (9) also apply to the previous one. While Com-
pHornerFMA needs almost two times more flop thanCom-
pHorner, we notice that the error bounds (9) and (11) are
similar.
Actually, our next experimental results confirm that

CompHorner is more efficient than CompHornerFMA in
terms of computing time while being similarly accurate.

4.4. Experimental scheme

All our experiments are performed using IEEE-754 dou-
ble precision. Since the double-doubles [8, 12] are usually
considered as the most efficient portable library to double
the IEEE-754 double precision, we consider it as a reference
in the following comparisons. For our purpose, it suffices
to know that a double-double number a is the pair (ah, al)
of IEEE-754 floating point numbers with a = ah + al

and |al| ≤ u|ah|. This property implies a renormaliza-
tion step after each arithmetic operation. We denote by
DDHorner our implementation of the Horner algorithm
with the double-double format, derived from the implemen-
tation proposed by the authors of [12]. We notice that the
double-double arithmetic naturally benefits from the avail-
ability of a FMA instruction: DDHorner uses TwoProd in
the inner loop of the Horner algorithm. DDHorner requires
20n floating point operations. Using the double-double li-
brary proposed in [8], we can slightly reduce this flop
count, but it has almost no impact on the measured com-
puting times.

4.5. Accuracy tests

We test the expanded form of the polynomial pn(x) =
(x−1)n. Accuracy of the evaluation is not guaranteed in the

neighborhood of the real root 1 of pn. Indeed the condition
number is

cond(pn, x) =
p̃n(x)
|pn(x)| =

∣∣∣∣
|x| + 1
x − 1

∣∣∣∣
n

,

and cond(pn, x) grows exponentially with respect to n.
In the experiments reported on Figure 1, we have chosen
x = fl(1.333) to provide a binary floating point value
with many non-zero bits in its mantissa. The value of
cond(pn, x) varies from 102 to 1040, that corresponds to
degrees n range 3 to 42. These huge condition numbers
have a sense since the coefficients of p and the value x are
floating point numbers.
We experiment both HornerFMA, CompHornerFMA,

CompHorner and DDHorner (see Table 1). For every
polynomial pn, the exact value pn(x) is approximated with
high accuracy thanks to the MPFR library [14]. Figure 1
presents the relative accuracy |r − pn(x)|/|pn(x)| of the
evaluation r computed by each algorithm. We set to the
value one relative errors greater than one, which means that
almost no useful information is available in the computed
result. We also display the a priori error estimates (6) and
(9) – no difference between (9) and (11) appears on this fig-
ure. We observe that our compensated algorithms exhibit
the expected behavior: compensated results are roughly as
if the Horner algorithm is computed with twice more bits.
We identify no significant difference between the accuracy
provided by double-double implementation compared to
compensated ones. The full precision solution is computed
as long as the condition number is smaller than u−1 ≈ 1016.
Then, for condition numbers between u−1 and u−2 ≈ 1032,
the relative error degrades (linearly in the log scale) to no
accuracy at all as it was expected from the a priori error
bounds (9) and (11).
As usual, these a priori bounds are definitely pessimistic

especially when the condition number term becomes pre-
dominant in (9) and (11). More realistic bounds are pro-
vided by a dynamic analysis we describe in [7]. This lat-
ter reference also presents experiments with a more generic
choice of polynomials; results are still similar to those dis-
played on Figure 1.

4.6. Running-time tests

All the algorithms are implemented in a C-code. We use
the same programming techniques for the implementations
of the three routines CompHornerFMA, CompHorner
and DDHornerFMA. The experimental environments are
listed in Table 3. Our measures are performed with polyno-
mials whose degrees vary from 5 to 200 by step of 5. We
randomly choose the values of the coefficients and the ar-
guments. For each degree, the routines are tested on the
same polynomial with the same argument. Table 4 dis-
plays the time overhead of the algorithms with respect to

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-4

1e-2

1

100000 1e+10 1e+15 1e+20 1e+25 1e+30 1e+35 1e+40

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

u

γn cond u+γnγn+1 cond

HornerFMA
CompHorner

CompHornerFMA
DDHorner

Figure 1. Accuracy of the polynomial evaluations.

HornerFMA. We have reported the minimum, the mean
and the maximum of these ratios. The theoretical overheads
(resulting from the number of floating point operations in-
volved by each algorithm) are also reported.
Our compensated algorithms CompHornerFMA and

CompHorner are both significantly faster than DDHorner.
Algorithm CompHorner seems to be the most efficient al-
ternative to improve the accuracy of the Horner algorithm.
It runs about 1.8 times faster than CompHornerFMA and
more than two times faster than DDHorner that uses the
double-double library. We also notice that the measured
overheads are always significantly smaller than theoreti-
cally expected. This issue will be explained in last Sec-
tion 5.5.

5. Dot product

The purpose is now to compare the classic dot product
algorithm without and with the use of FMA and correspond-
ing compensated algorithms.

5.1. Classic dot product algorithm

Let x = (x1, . . . , xn)T and y = (x1, . . . , xn)T be n-
vectors with floating point elements. The classic algorithm
to compute a dot product is the following.
Algorithm 10. Dot product

function sn = Dot (x, y)
s1 = x1y1

for i = 2 : n
si = xiyi + si−1

end

Algorithm 10 requires 2n−1 flops. The computed result
satisfies [9]

|Dot(x, y) − xT y| ≤ γn|xT ||y|. (12)

FMA is suitable for dot product algorithm. We now look
at the dot product algorithm where we use the FMA instead
of the classic multiplication and addition.
Algorithm 11. Dot product with FMA.

function sn = DotFMA (x, y)
s1 = x1y1

for i = 2 : n
si = FMA (xi, yi, si−1)

end

As we can see, the number of floating point operations is
divided by two when the FMA is used: algorithm DotFMA
only requires n floating point operations. Nevertheless, the
FMA does not improve the worst case accuracy of the com-
puted dot product. Indeed, the two previous algorithms
share the same error bound (12). Let us remark that the
γn factor does not describe the number of floating point op-
erations but the length of the largest path from the data to
the result in the data flow graph.

5.2. Compensated DotFMA

Again x = (x1, . . . , xn)T and y = (x1, . . . , xn)T are
two n-vectors with floating point elements. We consider
the following compensated version ofDotFMA. The round-
ing errors generated by every FMA are computed thanks to
ThreeFMA (Algorithm 3).
Algorithm 12. Compensated DotFMA.

Table 3. Experimental environments
environment description

I Intel Itanium I, 733MHz, GNU Compiler Collection 2.96
II Intel Itanium II, 1.5GHz, GNU Compiler Collection 3.4.6
III Intel Itanium I, 733 MHz (16KB L1, 96KB L2 cache), Intel C++ Compiler v9.0.
IV Intel Itanium II, 1.6 GHz (32KB L1, 256KB L2 cache), Intel C++ Compiler v9.0.

 1

 1.5

 2

 2.5

 3

 20 40 60 80 100 120 140 160 180 200

Ti
m

e
ra

tio

Degree of the Polynomial

Measured time ratio of DDHorner/CompHorner [environment I]

DDHorner/CompHorner

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 20 40 60 80 100 120 140 160 180 200

Ti
m

e
ra

tio

Degree of the Polynomial

Measured time ratios [environment I]

DDHorner/HornerFMA
CompHornerFMA/HornerFMA

CompHorner/HornerFMA

 1

 1.5

 2

 2.5

 3

 20 40 60 80 100 120 140 160 180 200

Ti
m

e
ra

tio

Degree of the Polynomial

Measured time ratio of DDHorner/CompHorner [environment II]

DDHorner/CompHorner

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 20 40 60 80 100 120 140 160 180 200

Ti
m

e
ra

tio

Degree of the Polynomial

Measured time ratios [environment II]

DDHorner/HornerFMA
CompHornerFMA/HornerFMA

CompHorner/HornerFMA

Figure 2. Measured overhead for CompHornerFMA, CompHorner and DDHorner with respect to the
polynomial degree (environment I on the left, and II on the right).

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

CompHornerFMA/HornerFMA
(I) (II)

CompHorner/HornerFMA
(I) (II)

DDHorner/HornerFMA
(I) (II)

Figure 3. Overhead of CompHornerFMA, CompHorner and DDHorner compared to HornerFMA: mean
values are reported together with mean absolute deviation (obtained from Figure 2).

Table 4. Measured running-time overhead compared to theoretical values for polynomial evaluation.
environment CompHornerFMA/HornerFMA CompHorner/HornerFMA DDHorner/HornerFMA

min. mean max. theo. min. mean max. theo. min. mean max. theo.
I 2.9 5.3 5.7 19 1.8 2.7 2.8 10 3.4 6.8 7.4 20
II 3.3 5.1 5.4 19 2.5 3.7 3.9 10 3.5 5.5 5.9 20

function r = CompDotFMA (x, y)
[s1, c1] = TwoProd (x1, y1)
for i = 2 : n

[si, αi, βi] = ThreeFMA (xi, yi, si−1)
ci = ci−1 ⊕ (αi ⊕ βi)

end
r = sn ⊕ cn

Proposition 7. The result computed by previous Algo-
rithm 12 satisfies

|CompDotFMA (x, y) − xT y| ≤ u|xT y| + uγn+1|x|T |y|.
(13)

CompDotFMA requires 19n−16 floating point operations.

Proofs are detailed in [6].

5.3. Compensating Dot

The following algorithm for dot product computation is
due to Ogita, Rump and Oishi [16].
Algorithm 13. Compensated Dot.

function r = CompDot (x, y)
[s1, c1] = TwoProd (x1, y1)
for i = 2 : n

[pi, πi] = TwoProd (xi, yi)
[si, σi] = TwoSum (pi, si−1)
ci = ci−1 ⊕ (πi ⊕ σi)

end
r = sn ⊕ cn

The following proposition sums up the properties of this
algorithm.

Proposition 8 ([16]). If no underflow occurs, the result
computed by Algorithm 13 satisfies

|CompDot (x, y) − xT y| ≤ u|xT y| + γ2
n|xT ||y|, (14)

CompDot algorithm requires 10n − 7 flops when the
FMA is available.

Let us note again that this proposition means that the
compensated algorithm returns a computed dot product as
accurate as if computed in twice the working precision.

Experimental scheme for the following testing of accu-
racy and running-time issues is similar to the one we have
described in Section 4.4.

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100000 1e+10 1e+15 1e+20 1e+25 1e+30 1e+35

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

Classical dot product without FMA (n=100, 720 samples)

u

1/2 γn cond
Dot

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100000 1e+10 1e+15 1e+20 1e+25 1e+30 1e+35
re

la
tiv

e
fo

rw
ar

d
er

ro
r

condition number

Classical dot product with FMA (n=100, 720 samples)

u

1/2 γn cond
DotFMA

Figure 4. Accuracy of classic dot product al-
gorithm with and without FMA

5.4. Accuracy Tests

For testing the actual accuracy reached by the various
dot product algorithms previously presented, we need to
generate dot products with condition number up to about
1032. For this purpose, we use the random generator of ill-
conditioned dot product GenDot described in [16]. Here it
allows us to generate 720 dot products of length n = 100,
with condition numbers varying from 102 to 1035. We al-
ways use the same set of dot products in all our experiments.
Figure 4 presents the results for classic dot product algo-

rithm with and without FMA. We display the relative error
of the computed result with respect to the condition num-

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100000 1e+10 1e+15 1e+20 1e+25 1e+30 1e+35

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

Compensated dot product CompDot (n=100, 720 samples)

u

u + 1/2 γn
2 cond

CompDot

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100000 1e+10 1e+15 1e+20 1e+25 1e+30 1e+35

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

Compensated dot product CompDotFMA (n=100, 720 samples)

u

u + 1/2 u γn+1 cond
CompDotFMA

Figure 5. Accuracy of compensated dot prod-
ucts CompDotFMA and CompDot

ber. The dashed curves represent the relative error bounds
derived from Relations (13) and (14). As we can see, the use
of FMA does not significantly improve the accuracy of the
result. Even if the theoretical bounds are pessimistic, they
provide a reasonable estimate of the actual error bounds.
Figure 5 presents the results for compensated dot prod-

uctsCompDotFMA andCompDot. Again this figure illus-
trates that using the error-free transformation ThreeFMA
does not improve the accuracy of the result compared to the
error-free transformation TwoProd. Finally the accuracy of
the considered algorithms does not benefit from the use of
FMA as it was expected from the theoretical worst case
bounds.

5.5. Running-time tests

The measured execution times are reported with Table 5.
The timings are compared with ordinary dot product algo-
rithm DotFMA. Last row also reports the theoretical ratios.
These results show that the compensated algorithms

CompDotFMA andCompDot run both considerably faster
than DDDot.

Table 5. Running-time ratios of dot products.
Environment III (top) and IV (middle) are com-
pared to theoretical flop counts (bottom) for
various vector lengths n.

n CompDot
DotFMA

CompDotFMA
DotFMA

DDDot
DotFMA

50 1.4 2.3 8.24
100 1.29 2.37 8.98
1000 1.24 2.63 10.46
10000 1.25 2.63 10.5
100000 1.07 1.76 6.27
50 1.63 2.61 9.87
100 1.35 2.43 9.65
1000 1.26 2.6 10.86
10000 1.25 2.62 10.97
100000 1.25 2.35 9.8
Theoret. 10 19 22

As previously observed for polynomial evaluation, the
measured ratios of the compensating process overhead are
always smaller than the theoretical values. Theoretical ra-
tios just count the floating point operations and do not take
into account the complex instruction reordering the com-
piler or the processor perform. Most modern processors are
capable of executing several instructions in parallel, but it is
not always easy to exploit this feature in real programs. In
order to exploit the ability to perform multiple instructions
in parallel, both the compiler and the processor must recon-
struct the implicit parallelism in a program which is usually
written in a serial fashion. In particular, the main part of the
instruction scheduling is performed by the compiler to take
advantage of the instruction-level parallelism on Intel Ita-
nium architecture. On the other hand, the possibility of per-
forming parallel execution of instructions is not only lim-
ited by the architecture and the compiler performances, but
also by the instruction-level parallelism which is an intrin-
sic parameter of the algorithm. For instance a program may
require long sequences of serial instructions that can not be
performed in parallel with any other. Compensated algo-
rithms here exhibit a better intrinsic instruction-level paral-
lelism than double-double ones since they are implemented
with no normalization step.

6. Acknowledgment

Authors thank T. Ogita, S.M. Rump and S. Oishi for [16]
that motivates the analysis and development of compen-
sated algorithms. They also thank S. Graillat (LIP6, UPMC
Paris) for his contribution to previous results about compen-
sated algorithms.

References

[1] High-precision software directory. URL = http://crd.
lbl.gov/˜dhbailey/mpdist.

[2] D. H. Bailey. Algorithm 719: Multiprecision translation and
execution of Fortran programs. ACM Trans. Math. Software,
19(3):288–319, 1993.

[3] S. Boldo and J.-M. Muller. Some functions computable with
a fused mac. In IEEE, editor, IEEE Symposium on Computer
Arithmetic ARITH’17, Cape Cod, Massachusetts, USA, June
2005.

[4] R. P. Brent. A Fortran multiple-precision arithmetic pack-
age. ACM Trans. Math. Softw., 4(1):57–70, 1978.

[5] T. J. Dekker. A floating-point technique for extending the
available precision. Numer. Math., 18:224–242, 1971.

[6] S. Graillat, P. Langlois, and N. Louvet. Accurate dot prod-
ucts with FMA. In G. Hanrot and P. Zimmermann, editors,
RNC-7, Real Numbers and Computer Conference, Nancy,
France, pages 141–142, July 2006. Extended version avail-
able on-line.

[7] S. Graillat, P. Langlois, and N. Louvet. Fused Multiply and
Add implementations of the compensated Horner scheme.
In P. Hertling, C. Hoffmann, W. Luther, and N. Revol, edi-
tors, Reliable Implementation of Real Number Algorithms:
Theory and Practice, Dagstuhl Seminar 6021, Jan. 2006.
Extended version available on-line.

[8] Y. Hida, X. S. Li, and D. H. Bailey. Quad-double arithmetic:
Algorithms, implementation, and application. In N. Burgess
and L. Ciminiera, editors, 15th IEEE Symposium on Com-
puter Arithmetic, pages 155–162. Institute of Electrical and
Electronics Engineers, June 2001.

[9] N. J. Higham. Accuracy and Stability of Numerical Algo-
rithms. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, second edition, 2002.

[10] IEEE Computer Society, New York. IEEE Standard for Bi-
nary Floating-Point Arithmetic, ANSI/IEEE Standard 754-
1985, 1985. Reprinted in SIGPLAN Notices, 22(2):9–25,
1987.

[11] D. E. Knuth. The Art of Computer Programming, Volume 2,
Seminumerical Algorithms. Addison-Wesley, Reading, MA,
USA, third edition, 1998.

[12] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida,
J. Iskandar, W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin,
B. J. Thompson, T. Tung, and D. J. Yoo. Design, implemen-
tation and testing of extended and mixed precision BLAS.
ACM Transactions on Mathematical Software, 28(2):152–
205, June 2002.

[13] P. Markstein. IA-64 and elementary functions. Speed and
precision. Hewlett-Packard Professionnal Books. Prentice-
Hall PTR, 2000.

[14] The MPFR library. URL = http://www.mpfr.org/.
[15] Y. Nievergelt. Scalar fused multiply-add instuctions pro-

duce floating-point matrix arithmetic provably accurate to
the penultimate digit. ACM Transactions on Mathematical
Software, 29(1), Mar. 2003.

[16] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot
product. SIAM J. Sci. Comput., 26(6):1955–1988, 2005.

Validated computation for infinite dimensional eigenvalue problems

Kaori Nagatou
Faculty of Mathematics

Kyushu University
6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan

nagatou@math.kyushu-u.ac.jp

Abstract

In this paper we will show how guaranteed bounds for
eigenvalues (together with eigenvectors) are obtained and
how non-existence of eigenvalues in a concrete region could
be assured. Some examples for several types of operators in
bounded and unbounded domains will be presented. We will
furthermore discuss possible future applications to eigen-
value enclosing/excluing of Schrödinger operator, hopefully
in its spectral gaps.

1 Introduction

Up to now we have developed a method to enclose and
exclude eigenvalues for differential operators [10, 11, 12,
13, 14, 15]. This method is based on Nakao’s theory known
as a numerical verification method for partial differential
equations [16, 17, 18, 19], and it has a merit that it could be
applied even in case the operator is not self-adjoint. A re-
markable point of this eigenvalue enclosing/excluding is to
assure an existence and non-existence range of eigenvalues
with mathematically rigorous sense. This means not only
a reliability of computed eigenpairs but also that such eval-
uation of eigenvalues (and eigenvectors) can be applied to
related another problems, e.g. another numerical verifica-
tion methods for nonlinear problems or stability analysis of
bifurcation phenomenon in hydrodynamics.

This paper aims to show how eigenvalues (and eigen-
vectors) are enclosed or excluded in mathematically rigor-
ous sense. At first in Section 2, we briefly overview what
the spectrum is, and in Section 3 we introduce some eigen-
value enclosure methods, especially for symmetric opera-
tors. Our original method is described in Section 4 together
with some applications to algebla, another numerical veri-
fication methods for nonlinear problems and stability anal-
ysis of bifurcation phenomenon in hydrodinamics. Finally
in Section 5, we will briefly comment our recent challenge
to enclose or exclude eigenvalues in spectral gaps of one

dimensional Schrödinger operator.

2 Spectrum and eigenvalue

Let X be a Banach space. We denote a set of linear and
continuous operators on X by L(X). For simplicity, we
consider a (linear) closed operator T on X and let D(T)
denote a domain of definition.

We call ρ(T) ≡ {z ∈ C | (T − zI)−1 ∈ L(X)} as
a resolvent set of T , here I is an identity operator on X ,
and its complement in C: σ(T) = C\ρ(T) is called as
spectrum of T . The spectrum could be further divided into
three subsets as follows:

σP (T) = {z ∈ σ(T) | T − zI has no inverse}
σC(T) = {z ∈ σ(T) | (T − zI)−1 has an unbounded

inverse with domain dense in X}
σR(T) = {z ∈ σ(T) | (T − zI)−1 has an inverse

(bounded or not) whose domain is not
dense in X}

We call σP (T), σC(T) and σR(T) as point spectrum，
continuous spectrum and residual spectrum, respec-
tively．The union of σC(T) and σR(T) could be called as
essential spectrum. The necessary and sufficient condition
for λ ∈ σP (T) is that there exists u ∈ D(T) which is not
identically zero and satisfies the relation Tu = λu. We
call λ ∈ σP (T) as an eigenvalue of T and corresponding
function 0 �= u ∈ D(T) is called as an eigenvector.

In case that X is finite dimensional, any linear operator
A on X is represented by a matrix. Any point in σP (A)
corresponds to an eigenvalue of the matrix A and

σC(A) = σR(A) = φ

holds. Therefore the spectrum is equal to eigenvalue in
finite dimensional case, but infinite dimensional case (i.e.
dim X = ∞) there could be a big gap between spectrum
itself and eigenvalue.

Example 1: Let X be a set of continous functions on an
open interval (a, b), and consider two domains as follows:

D1 ≡ {x ∈ X | x′ ∈ X},
D2 ≡ {x ∈ D1 | x(a) = 0}.

Then two operators

T1 : x ∈ D1 �→ x′

and
T2 : x ∈ D2 �→ x′

which only differ concerning domain of definition, have the
following different structure of spectrum:

σ(T1) = σP (T1) = C, σ(T2) = φ.

Example 2: Let X be a set of continuous functions on an
interval [0, 1] and define an operator on X

(Au)(x) ≡
∫ x

0

u(y)dy (0 ≤ x ≤ 1).

Then we have

σ(A) = σC(A) = {0}.

As we can see in Example 1, the spectrum of a differen-
tial operator x �→ x′ depends on boundary conditions. The
operator A in Example 2 is compact and it is known that
a compact operator has rather similar nature of an opera-
tor in finite dimensional space. But this operator A has no
point spectrum (i.e. eigenvalue) and it is one of the typical
phenomenun in infinite dimensional case.

There are many interesting topics on spectral theory. See
[4, 8] for example.

3 Enclosure methods for symmetric opera-
tors

Finding an eigenvalue and eigenvector of infinite dimen-
sional operator (i.e. an operator defined in an infinite dimen-
sional space) is called as infinite dimensional eigenvalue
problem.

Let H be an infinite dimensional Hilbert space with an
inner product < ·, · >. For a linear symmetric operator
L : D(L) → H , we consider the eigenvalue problem

Lu = λu, u ∈ D(L)\{0}. (3.1)

An eigenvalue of an operator takes an important role to
understand a nonlinear phenomenon in science and engi-
neering. Especially, it often becomes a key value when we
consider a behavior of dynamical systems.

Several methods to enclose eigenvalues for symmetric
operators have been proposed. In the below we introduce
some of those methods. Here we assume that all eigenvalues
are bounded below and ordered as λ1 ≤ λ2 ≤ · · ·.
Krylov-Weinstein’s bounds [4]

As one of the simplest way of eigenvalue enclosure,
Krylov-Weinstein’s bounds is well known.

Let (ũ, λ̃) ∈ D(L)×R be an approximate eigenpair and
compute

δ ≡ ‖Lũ − λ̃ũ‖
‖ũ‖ .

Then the interval
[λ̃ − δ, λ̃ + δ]

contains at least one eigenvalue of L.

This bound is easy to compute, but the width of the en-
closed interval is not so narrow. And it also has another
defect that no information is obtained concerning the index
of eigenvalue.

Kato-Temple’s bounds [8]

As an improved version of Krylov-Weinstein’s bounds,
there is a Kato-Temple’s bounds which was proposed in
1949.

Let (ũ, λ̃) be an approximate eigenpair satisfying

λ̃ =< Lũ, ũ > / < ũ, ũ >

and compute

δ ≡ ‖Lũ − λ̃ũ‖
‖ũ‖ .

For the nth eigenvalue λn with finite multiplicity, suppose
that an open interval (α, β) does not contain any spectrum
except for λn. Then for ρ ∈ R satisfying α < ρ < β, we
have

λn ∈
[
ρ − δ2

β − ρ
, ρ +

δ2

ρ − α

]
. (3.2)

The quality of this bounds is better than Krylov-
Weinstein’s bounds. Indeed it has an O(δ2) quality com-
pared with an O(δ) quality of Krylov-Weinstein’s bounds.
But it also has a difficulty that it needs a precise informa-
tion on eigenvalue distribution in advance, i.e. a (rough)
upper bound for λn−1 and (rough) lower bound for λn+1

are needed to obtain the result.

Rayleigh-Ritz bounds [4]

The Rayleigh-Ritz method is well known as a method to
obtain very accurate upper bounds for the first N eigenval-
ues of L.

Let ũ1, ..., ũN ∈ D(L) be linearly independent functions
and define two N × N− matrices

A1 ≡ (< Lũi, ũj >)i,j=1,...,N ,

A2 ≡ (< ũi, ũj >)i,j=1,...,N .

Then, for N eigenvalues Λi (i = 1, ..., N) of the matrix
eigenvalue problem

A1x = ΛA2x, x ∈ RN\{0}, (3.3)

we have
λi ≤ Λi (i = 1, ..., N). (3.4)

Being different from Kato-Temple’s bounds, this method
does not need any a priori information concerning eigen-
value distribution, although it does not give any lower
bounds.

Lehman’s Bounds [3]

Concerning the lower bounds for eigenvalues, there is a
Leman’s method as follows.

Let ũ1, ..., ũN ∈ D(L) be linearly independent functions
and suppose that ΛN < ν ≤ λN+1 holds for a real number
ν, where ΛN denotes the Rayleigh-Ritz bound. Moreover
define three N × N− matrices

A3 ≡ (< Lũi, Lũj >)i,j=1,...,N ,

B1 ≡ A1 − νA2,

B2 ≡ A3 − 2νA1 + ν2A2,

where A1 and A2 are the same matrices in Rayleigh-Ritz
method. Then, for N eigenvalues μi (i = 1, ..., N) of the
matrix eigenvalue problem

B1x = μB2x, x ∈ RN\{0}, (3.5)

we have

λN+1−i ≥ ν +
1
μi

(i = 1, ..., N). (3.6)

This lower bound is also sharp, but it also has the same
difficulty as Kato-Temple’s method, i.e. it needs a priori
information on the exact eigenvalue λN+1.

Homotopy Method [20]

In order to overcome the difficulty to obtain a priori in-
formation on exact eigenvalues, the homotopy method was
proposed by Plum in 1990. In his method a base problem
is considered which corresponds to the given problem, i.e.
for the eigenvalue problem for L. Here the base problem

is chosen so that the eigenvalue distribution of it is already
obtained. Let L0 be an operator which corresponds to this
base problem, then consider a homotopy which connects
two operators L and L0:

Ls ≡ (1 − s)L0 + sL, s ∈ [0, 1].

Then starting from s = 0 and making use of the continuity
and monotonicity of eigenvalues on the parameter s, some
eigenvalues for Ls are enclosed in each step. Finally the
first several eigenvalues of L are enclosed when the param-
eter s reached 1.

Besides these methods, there is an intermediate methods
[1, 2], but all these methods are restricted to symmetric op-
erators and cannot be applied to non-symmetric operators.
Moreover, any eigenvectors are not enclosed by these meth-
ods. In the next section, we introduce our method which
could be also applied to non-symmetric operators and also
provides the eigenvector enclosures.

4 Enclosure method based on Nakao’s theory

We have developed a method to enclose eigenvalues and
eigenvectors for differential operators [10, 11, 12], which
was based on Nakao’s verification methods for nonlinear
differential equations [16, 17, 18, 19]. Our method is also
applicable to non-symmetric operators. So far we have ap-
plied our enclosure method to enclose eigenpair of sym-
metric operators and to enclose real eigenvalues and cor-
responding eigenvectors of a non-symmetric operator.

Now we describe the principle of our method, and show
some applications.

4.1 Eigenvalue enclosing and excluding method ([10, 11,
12])

Though the following arguments are almost the same as
[12], in order to keep this paper to be self-contained, we
will give the detailed description in the below.

We consider a self-adjoint eigenvalue problem:{−Δu + qu = λu in Ω,
u = 0 on ∂Ω.

(4.1)

Here Ω is a bounded convex domain in R2 and let q ∈
L∞(Ω). We apply Nakao’s method which is known as a
numerical verification method for nonlinear problems.

In what follows, for some integer m, let Hm(Ω) de-
note the L2-Sobolev space of order m on Ω. Then, define
H1

0 (Ω) ≡ {v ∈ H1(Ω) | v = 0 on ∂Ω} with the inner prod-
uct < u, v >H1

0
≡ (∇u,∇v)L2 for u, v ∈ H1

0 (Ω), and the
norm ‖u‖H1

0
≡ ‖∇u‖L2 for u ∈ H1

0 (Ω), where (·, ·)L2 and
‖ · ‖L2 represent the inner product and the norm on L2(Ω),
respectively.

Now, let Sh be a finite dimensional subspace of H1
0 (Ω)

dependent on h (0 < h < 1). Usually, Sh is taken to be a
finite element subspace with mesh size h. Also, let

Ph0 : H1
0 (Ω) −→ Sh

denote the H1
0 -projection defined by

(∇(u − Ph0u),∇v)L2 = 0 for all v ∈ Sh.

We now assume the following approximation property in
Sh :

Assumption 1. For any u ∈ H2(Ω)
⋂

H1
0 (Ω),

inf
χ∈Sh

‖u − χ‖H1
0
≤ C1h|u|H2, (4.2)

where

|u|2H2 ≡
2∑

i,j=1

‖ ∂2u

∂xi∂xj
‖2

L2.

Here, C1 is a positive, numerically determined constant
which is independent of h.

The following lemma is well known [6]:

Lemma 1. For any ψ in L2(Ω), there exists a unique
solution φ ∈ H2(Ω)

⋂
H1

0 (Ω) of the following Poisson
equation: {−Δφ = ψ in Ω,

φ = 0 on ∂Ω.
(4.3)

Furthermore, there exists a positive constant C2 satisfying

|φ|H2 ≤ C2‖ψ‖L2. (4.4)

In particular, if Ω is a convex polygonal domain, we can set
C2 = 1 ([6]).

Since we want to verify the eigenpairs of this problem,
we consider the space H1

0 (Ω) × R, and define the innner
product < ·, · >H1

0×R and the norm ‖ · ‖H1
0×R by

< w1, w2 >H1
0×R≡ (∇u1,∇u2)L2 + λ1λ2,

‖w‖H1
0×R ≡ (‖u‖2

H1
0

+ |λ|2) 1
2 ,

respectively, where wi = (ui, λi) ∈ H1
0 (Ω) × R (i = 1, 2)

and w = (u, λ) ∈ H1
0 (Ω) × R. Moreover, let I0 and I be

the identity map on H1
0 (Ω) and H1

0 (Ω) × R, respectively.
We first normalize the problem (4.1) as

find (û, λ) ∈ H1
0 (Ω) × R s.t.⎧⎨⎩−Δû + (q − λ)û = 0,∫

Ω

û2 dx = 1.
(4.5)

We define the projection

Ph : H1
0 (Ω) × R −→ Sh × R

by
Ph(u, λ) ≡ (Ph0u, λ).

Now, let ŵh = (ûh, λ̂h) ∈ Sh × R be a finite element
solution of (4.5), that is,⎧⎨⎩ (∇ûh,∇φi)L2 = ((λ̂h − q)ûh, φi)L2 ∀φi ∈ Sh,∫

Ω

û2
h dx = 1.

(4.6)
We will verify the existence of the eigenvalues and the

eigenfunctions for (4.5) in the neighborhood of (ū, λ̂h) sat-
isfying{−Δū + (q − λ̂h)ûh = 0 in Ω,

ū = 0 on ∂Ω.
(4.7)

Notice that ū ∈ H2(Ω)
⋂

H1
0 (Ω), and ŵh = Ph(ū, λ̂h).

We have by (4.5) and (4.7)⎧⎨⎩−Δ(û − ū) = (λ − q)û − (λ̂h − q)ûh,∫
Ω

û2 dx = 1.
(4.8)

Defining v0 = ū − ûh, we then have v0 ∈ S⊥
h , where S⊥

h

means the orthogonal complement of Sh in H1
0 (Ω), and we

can write

ū = ûh + v0 for ûh ∈ Sh and v0 ∈ S⊥
h .

Here we use a posteriori estimates for v0 as below.
Let S∗

h ⊂ H1(Ω) be a finite element subspace whose
basis consists of the union of the basis on Sh and the base
functions having nonzero values on the boundary ∂Ω. De-
fine ∇̄ûh ∈ S∗

h × S∗
h, a vector function in two dimension,

by the L2-projection of ∇ûh ∈ L2 ×L2 to S∗
h × S∗

h. Then,
define Δ̄ûh ∈ L2(Ω) by

Δ̄ûh ≡ ∇ · ∇̄ûh.

We then obtain the following estimation (cf.[25]):

‖v0‖H1
0
≡ ‖∇ûh − ∇̄ûh‖ + C0h‖Δ̄ûh + (λ̂h − q)ûh‖,

where C0 ≡ C1C2. Using the well-known Aubin-Nitsche
trick ([9]), we can estimate the L2 norm of v0 as

‖v0‖L2 ≤ C0h‖v0‖H1
0
.

Now, in order to verify solutions (û, λ) of (4.5) near
(ū, λ̂h), representing

û = ū + ũ , λ = λ̂h + λ̃,

we can rewrite (4.8) as

−Δũ = (λ̂h + λ̃ − q)(ũ + ûh + v0)

−(λ̂h − q)ûh,∫
Ω

(ũ + ûh + v0)2 dx = 1.

Thus using the following compact map on H1
0 (Ω) × R

F (ũ, λ̃) ≡ (
(−Δ)−1{(λ̂h + λ̃ − q)(ũ + ûh + v0)

− (λ̂h − q)ûh} ,

λ̃ +
∫

Ω

(ũ + ûh + v0)2 dx − 1
)
, (4.9)

where (−Δ)−1 means the solution operator for Poisson
equation with homogeneous boundary condition, we have
the fixed point equation for w = (ũ, λ̃)

w = F (w). (4.10)

We now assume the following assumption.

Assumption 2. Set ρ ≡ (−v0, 0) and define F ′(ρ) as
the Fréchet derivative of F at ρ. Assume that restriction to
Sh × R of the operator Ph[I − F ′(ρ)] : H1

0 (Ω) × R −→
Sh × R has an inverse

[I − F ′(ρ)]−1
h : Sh × R −→ Sh × R.

This assumption can be numerically checked in the actual
computation.

Now we decompose (4.10) into the finite and the infinite
dimensional parts:{

Phw = PhF (w),
(I − Ph)w = (I − Ph)F (w). (4.11)

And we use the Newton-like method only for the former
part of (4.11), that is, we define the Newton-like operator

Nh(w) ≡ Phw − [I − F ′(ρ)]−1
h (Phw − PhF (w)).

We next define the operator

T : H1
0 (Ω) × R −→ H1

0 (Ω) × R

as
T (w) ≡ Nh(w) + (I − Ph)F (w). (4.12)

Then T becomes a compact map on H1
0 (Ω) × R, and

w = T (w) ⇐⇒ w = F (w) (4.13)

holds.

An arbitrary element w ∈ H1
0 (Ω) × R can be uniquely

written as

w = (vh, μ)+(v⊥, 0), (vh, μ) ∈ Sh×R, (v⊥, 0) ∈ S⊥
h ×{0}
(4.14)

with

vh =
M∑

j=1

vjφj , M = dim Sh.

And for w in (4.14) we use the following notation:

(w)i ≡ |vi|, i = 1, ...,M,

(w)M+1 ≡ ‖v⊥‖H1
0
,

(w)M+2 ≡ |μ|

Now, we intend to find a solution to (4.5) in a set
W , referred to as a ‘candidate set’. Taking a vector
(W1, ...,WM+2)t such that Wi > 0(i = 1, ...,M + 2), a
candidate set W is defined by

W ≡ {w ∈ H1
0 (Ω) × R | (w)i ≤ Wi (i = 1, ...,M + 2)}

(4.15)
Now let T ′ be the Fréchet derivative of T . Then we choose
two vectors

(Y1, ..., YM+2)t, Yi > 0 (i = 1, ...,M + 2)

and

(Z1, ..., ZM+2)t, Zi > 0 (i = 1, ...,M + 2)

such that

(T (0))i ≤ Yi, i = 1, ...,M + 2,

(T ′(w1)w2)i ≤ Zi, i = 1, ...,M + 2,

∀w1, w2 ∈ W

The verification condition is described in the following the-
orem.
Theorem 1. If a candidate set W , defined by (4.15), satis-
fies

Yi + Zi < Wi (i = 1, ...,M + 2), (4.16)

then there exists a fixed point of T in

K ≡ {v ∈ H1
0 (Ω)×R | (v)i ≤ Yi+Zi (i = 1, ...,M +2)}.

(4.17)
Moreover, this fixed point is unique within the set W .

By this method we can uniquely enclose an eigenpair
(û, λ) in the set W . The author further extended this method
by using an infinite dimensional homotopy method, and ob-
tained the local uniqueness of eigenvalue and eigenvector
respectively as follows:

Theorem 2. If a set W = U ×R satisfies the conditions
in Theorem 1, then we have

i) ∃1u∗ :eigenfunction s.t. u∗−ū ∈ U,

∫
Ω

(u∗)2 dx = 1,

ii) ∃1λ∗ :eigenvalue s.t. λ∗ − λ̂h ∈ Λ,

iii) F (u∗ − ū, λ∗ − λ̂h) = (u∗ − ū, λ∗ − λ̂h),

iv) λ∗ :geometric simple eigenvalue.

(See [12] for the proof of Theorem 1 and Theorem 2.)

It is remarkable that this extended method can assure that
the enclosed eigenvalue is simple in mathematically rigor-
ous sense.

Moreover we have proposed a method to exclude an
eigenvalue in a concrete interval, i.e. to prove that there
is no eigenvalue in such an interval. This could be done as
follows.

Let Λ be a narrow interval in which we want to exclude
any eigenvalues. Then consider the linear equation{−Δu + qu = Λu in Ω,

u = 0 on ∂Ω.
(4.18)

Since the equation (4.18) has a trivial solution u ≡ 0, if we
could prove the uniqueness of the solution of (4.18) then the
non-existance of eigenvalues in Λ could be confirmed. We
can also apply Nakao’s method to enclose the unique solu-
tion of (4.18). (See [10, 11] for details.) These enclosing
and excluding methods will be able to apply to the problem
in R3.

4.2 Applications of our method

Now we present some examples to which we have ap-
plied our method so far.

Application 1: A numerical verification of solutions for
nonlinear elliptic problems [11]

We consider the nonlinear elliptic boudary value prob-
lem: {−Δu = f(u) in Ω,

u = 0 on ∂Ω,
(4.19)

where Ω is a bounded convex domain in R2 and f :
H1

0 (Ω) → L2(Ω) satisfies some suitable conditions. (cf.
[11]). In [11] we evaluated the norm of the inverse operator
of the linearized operator by making use of our eigenvalue
excluding method, and used the infinite dimensional New-
ton’s method which is based on Plum’s method [21]. This

can be regarded as a combined method between Nakao’s
method and Plum’s method.

Application 2: Linearized eigenvalue problem at an ex-
act solution of nonlinear problems [13]

We consider the follwing problem:

Find (u, v, λ) ∈ H1
0 (Ω) × H1

0 (Ω) × R s.t.⎧⎪⎪⎨⎪⎪⎩
−Δu = f(u),

−Δv − f ′(u)v = λv,∫
Ω

v2 dx = 1,
(4.20)

where Ω and f are same as in Application 1.

This type of problem is important to analyze the stability
of a solution or bifurcation point itself in mathematically
rigorous sense. By enclosing the triple (u, v, λ) of (4.20),
we can obtain an exact solution of nonlinear equation and
eigenpair of the operator which was linearized at the exact
solution.

Application 3: Eigenvalue problem for non-
commutative harmonic oscillators [14]

The purpose of this research is to develop a verified nu-
merical method for computing the eigenvalues and eigen-
functions of the following system:

Q(α,β) ≡ I(α,β)

(
−1

2
d2

dx2
+

x2

2

)
+ J

(
x

d

dx
+

1
2

)
.

Here x ∈ R and the matrices I(α,β) and J are given by

I(α,β) ≡
(

α 0
0 β

)
, J ≡

(
0 −1
1 0

)
∈ Mat2(R),

and α and β are positive real constants satisfying αβ > 1. It
is known that Q(α,β) defines a self-adjoint positive definite
operator, hence has a discrete spectrum. Since the spectrum
is defined via non-commuting two matrices I(α,β) and J
for α �= β, the system is called by the non-commutative
harmonic oscillator.

In case of α = β, the eigenvalue is determined as

λn = (n + 1/2)
√

α2 − 1 (λ ∈ N)

by representation theory, but it is very difficult to describe
explicitly the eigenstate, in case α �= β. In [14] the spectral
method using Hermite functions was used together with our
enclosure method, and we obtained very accurate enclosure
results in case that α is different from β. Moreover we have
proved that some enclosed eigenvalues have multiplicity 2.
Basically our method cannot be applied to enclose multi-
ple eigenvalues, but in this case we could make use of the

parity of eigenfunctions and monotonicity of eigenvalues.
We can say that this application became a good example of
computer assisted proof in pure mathematics.

Application 4: Kolmogorov problem [15]

We consider the following Navier-Stokes equations⎧⎪⎨⎪⎩
∂u
∂t + u∂u

∂x + v ∂u
∂y = νΔu − 1

ρ
∂p
∂x + γ sin

(
πy
b

)
,

∂v
∂t + u ∂v

∂x + v ∂v
∂y = νΔv − 1

ρ
∂p
∂y ,

∂u
∂x + ∂v

∂y = 0,

(4.21)
where (u, v), ρ, p and ν are velocity vector, mass density,
pressure and kinematic viscosity, respectively and γ is a
constant representing the strength of the sinusoidal outer
force. The flow region is a rectangle [−a, a]×[−b, b] and the
periodic boundary condition is imposed in both directions.
We define the aspect ratio α as b/a.

We have presented a rigorous theorem which proves the
stability of certain solutions by the verified computation.
The linearized eigenvalue problem arising in this problem
is not self-adjoint and, accordingly, it is quite difficult to
treat theoretically.

It is known that nontrivial solutions bifurcate from the
basic solution at a certain Reynolds number if and only if
0 < α < 1. If α is small enough or close to unity, then the
stability could be proved mathematically. However, stabil-
ity in the intermediate range of α is very difficult to prove.
We therefore took a new approach to this stability problem
by employing the theory of verified computation. Our result
shows that the stability is rigorously verified for the cases of
α = 0.4, 0.7, and 0.8. Our method can be applied, in prin-
ciple, to any α ∈ (0, 1).

In [15] we reformulated above problem using a stream
function and enclosed an eigenfunction corresponding to
the zero eigenvalue as well as the Reynolds number which
attain the eigenvalue “zero”. Using the results we proved
the stability of a bifurcating solution. This is also a good
example of computer assisted proof for the problem which
is difficult to treat theoretically.

Remark: Our enclosure method proposed in [10, 12]
needs the simplicity of the aiming eigenvalues. (Of course
such information is not needed in advance.) It means that in
principle multiple eigenvalues cannot be enclosed by this
method. Concerning the enclosing multiple eigenvalues,
see [24]. In [24], for the eigenvalue problem Lu = λu, let n
be an expected multiplicity of an eigenvalue λ and consider
the following system:

LY = Y M, Y ≡ (y1, ..., yn), M ≡
⎛⎝ m11 . . . m1n

...
. . .

...
mn1 . . . mnn

⎞⎠
for Yi ∈ H1

0 (Ω) and mij ∈ R. In their mehod the mul-

tiple eigenvalue and the basis of corresponding invariant
subspace are verified by enclosing a solution (Y, M) ∈
(H1

0 (Ω))n × Rn2
. This method is an extension of the en-

closing method for multiple eigenvalues of matrix [22].

5 Essential spectrum problem

Finally we describe our recent challenge to exclude
eigenvalues in spectral gaps, i.e. we treat an operator which
has the essential spectrum with gaps.

We consider the following eigenvalue problem

Lu ≡ −u′′ + q(x)u + s(x)u = λu, x ∈ R, (5.1)

where we assume that q(x) ∈ L∞(R) is a periodic function
and s ∈ L∞(R) satisfies s(x) → 0 (|x| → ∞). Here we
consider the case that s(x) = ce−x2

. Our aim is exclud-
ing an eigenvalue in some interval (hopefully between two
essential spectra).

The essential spectrum of L could be obtained as fol-
lows.

At first the essential spectrum of the operator

L0u ≡ −u′′ + q(x)u

is obtained using the result by Eastham [5].

Theorem 3. Let q(x) be a periodic function in (0, r) and
consider the following two eigenvalue problems:

I. Periodic eigenvalue problem:{−u′′ + q(x)u = λu,
u(0) = u(r), u′(0) = u′(r), (5.2)

and

II. Semi-periodic eigenvalue problem:{−u′′ + q(x)u = μu,
u(0) = −u(r), u′(0) = −u′(r). (5.3)

Then for each eigenvalues {λn}, {μn} we have

λ0 < μ0 ≤ μ1 < λ1 ≤ λ2 < μ2 ≤ μ3 ≤ · · · , (5.4)

and the essential spectra of L0 are obtained as

(λ2m, μ2m), (μ2m+1, λ2m+1) m = 0, 1, 2, · · · . (5.5)

Moreover we are able to confirm that L is a compact
perturbation of L0. Therefore essential spectra of L and L0

coincide. (cf. [26])
We try to exclude eigenvalues of L in spectral gaps by

the method proposed in [10] or [12].

We first consider the case that q(x) = a · cos(2πx) for
a ∈ R. Then we obtain (approximate) {μi} and {λi} for
e.g. a = 5.0 as follows:

λ0(−0.624017) < μ0(7.292924) < μ1(12.287917) < λ1(39.425660)

< λ2(40.049607) < μ2(88.863540) < · · · ,

The first spectral gap is (μ0, μ1) and the second spectral
gap is (λ1, λ2) which is much narrow than the first spectral
gap. Our first target is to exclude eigenvalue in the first
spectral gap.

5.1 Fixed Point Formulation

For a real number λ /∈ σess(L0), consider a linear equa-
tion

(L − λ)u = 0 on R. (5.6)

Since it is clear that (5.6) has a trivial solution u = 0, if
we validate the uniqueness of the solution of (5.6) by the
method described below, it implies that any λ is not an
eigenvalue of L.

Since the inverse of L0 − λ exists if λ /∈ σess(L0), we
have

(L − λ)u = 0 ⇔ (L0 − λ)u + su = 0
⇔ u = −(L0 − λ)−1(su).

By Floquet Theory there exist fundamental solutions
ψ1(x), ψ2(x) of (L0 − λ)ψ = 0 s.t.

ψ1(x) = eμxp1(x), ψ2(x) = e−μxp2(x), (5.7)

where μ is the characteristic exponent and p1(x), p2(x) are
periodic functions. Using those fundamental solutions we
define the Green’s function G(x, y, λ) [5] for −∞ < x, y <
∞ by

G(x, y, λ) =
{

ψ1(x)ψ2(y)/W (ψ1, ψ2)(x) (x ≤ y)
ψ2(x)ψ1(y)/W (ψ1, ψ2)(x) (x ≥ y)

(5.8)
where W (ψ1, ψ2)(x) ≡ ψ1(x)ψ′

2(x) − ψ′
1(x)ψ2(x) stands

for the Wronskian.

Lemma 2. Above W (ψ1, ψ2)(x) is the constant function.

Proof. We have

W (ψ1, ψ2)′(x) = ψ1(x)ψ′′
2 (x) − ψ′′

1 (x)ψ2(x),

and this vanishes because of the relation

ψ′′
1

ψ1
=

ψ′′
2

ψ2
.

Therefore we express W (ψ1, ψ2)(x) as ξ and rewrite
G(x, y, λ) as

G(x, y, λ) =
{

ψ1(x)ψ2(y)/ξ (x ≤ y)
ψ2(x)ψ1(y)/ξ (x ≥ y) (5.9)

Using this Green’s function we have [5]

(L0 − λ)−1f =
∫
R

G(x, y, λ)f(y)dy. (5.10)

Using a compact operator

Fλu ≡ −
∫
R

G(x, y, λ)s(y)u(y)dy

on H1(R) we have a fixed point equation

u = Fλu (5.11)

which is equivalent to (L − λ)u = 0.

5.2 Projection and interpolation

Let ΩM ≡ [−M, M] be a bounded interval on R and
set Ω̃M ≡ R\ΩM . For any v ∈ H1(R) we consider the
following decomposition:

vM (x) ≡ v(x)|ΩM , ṽM (x) ≡ v(x)|
Ω̃M

. (5.12)

Defining the projections

PM : H1(R) → H1(ΩM)

and
P̃M : H1(R) → H1(Ω̃M)

as PM (v) = vM and P̃M (v) = ṽM , we decompose (5.11)
into the finite and infinite interval parts:{

PMu = PMFλ(u),
P̃Mu = P̃MFλ(u).

(5.13)

Let Π be the piecewise linear interpolation operator on
ΩM and we further decompose the former part of (5.13)
into the finite and infinite dimensional parts:{

ΠPMu = ΠPMFλ(u),
(I − Π)PMu = (I − Π)PMFλ(u). (5.14)

Let Sh(ΩM) denote the set of continuous and piecewise
linear polynomials on ΩM with uniform mesh −M = x0 <
x1 < · · · < xN = M and mesh size h. Due to Schultz [23]
we have the following error estimation for Π:

Lemma 3. If f ∈ PC2,∞(ΩM) ≡ {ϕ ∈
C2(ΩM) | ‖ϕ′′‖∞ < ∞}, then we have

‖f − Πf‖∞ ≤ 1
8
h2‖f ′′‖∞. (5.15)

5.3 Newton-like method and verification
condition

Since we apply a Newton-like method only for the for-
mer part of (5.14), we define the following operator:

Nλ(u) ≡ Pu − [I − Fλ]−1
M (Pu − PFλ(u)),

where P ≡ ΠPM .
Here we assumed that the restriction to Sh(ΩM) of the

operator Π[I − Fλ] : Sh(ΩM) → Sh(ΩM) has the inverse
[I − Fλ]−1

M . The validity of this assumption can be numeri-
cally confirmed in actual computations.

We next define the operator

Tλ : H1(ΩM) × H1(Ω̃M) −→ H1(ΩM) × H1(Ω̃M)

for uM ≡ PMu and ũM ≡ P̃Mu by

Tλ

(
uM

ũM

)
≡

(Nλ(u) + (I − Π)PMFλ(u)
P̃MFλ(u)

)
.

Then we have the following equivalence relation(
uM

ũM

)
= Tλ

(
uM

ũM

)
⇐⇒ u = Fλ(u).

Our purpose is to find a unique fixed point of Tλ in a
certain set U ⊂ L∞(ΩM) × L2(Ω̃M), which is called a
‘candidate set’. Given positive real numbers γ, αM and β
we define the corresponding candidate set U by

U ≡
(

UM + [αM]
[β]

)
, (5.16)

where

UM ≡ {vh ∈ Sh(ΩM) | ‖vh‖L∞(ΩM) ≤ γ}, (5.17)

[αM] ≡ {vM
⊥ ∈ (I−Π)(H1(ΩM)) | ‖vM

⊥ ‖L∞(ΩM) ≤ αM},
(5.18)

[β] ≡ {ṽ ∈ H1(Ω̃M) | ‖ṽ‖
L2(Ω̃M)

≤ β}. (5.19)

If the relation

Tλ(U) ⊂ int(U) (5.20)

holds, by the linearity of Tλ, there exists the unique fixed
point u ≡ 0 of Tλ in U , which implies that λ is not an
eigenvalue of L.

Decomposing (5.20) into two types of finite and infinite
parts we have a sufficient condition for (5.20) as follows:

sup
u∈U

‖Nλ(u)‖L∞(ΩM) < γ, (5.21)

sup
u∈U

‖(I − Π)PMFλ(u)‖L∞(ΩM) < αM , (5.22)

sup
u∈U

‖P̃MFλ(u)‖
L2(Ω̃M)

< β. (5.23)

So in oder to construct a suitable set U which satisfies
the condition (5.20), we find the positive real numbers γ,
αM and β which satisfy the conditions (5.21)-(5.23).

5.4 Verification for the fundamental solu-
tions

In order to obtain the fundamental solutions ψ1 and ψ2

for (L0 − λ)ψ = 0, it is sufficient to enclose the functions
φ1 and φ2 which are solutions for the following equations:{ −φ′′

1 + qφ1 − λφ1 = 0 in [0, M]
φ1(0) = 1, φ′

1(0) = 0 (5.24)

{ −φ′′
2 + qφ2 − λφ2 = 0 in [0, M]

φ2(0) = 0, φ′
2(0) = 1 (5.25)

We define

V ≡ W 1
∞,0(0, M) ∩

(
N∧

i=0

C1[xi, xi+1]

)
.

Setting φ1(M) = κ, φ2(M) = τ and transforming

φ̃1(x) ≡ φ1(x) +
1 − κ

M
x − 1, φ̃2(x) ≡ φ2(x) − τ

M
x,

we consider the following problems:

Find (φ̃1, κ) ∈ V × R s.t.⎧⎪⎨⎪⎩
−φ̃′′

1 + (q − λ)(φ̃1 + κ−1
M x + 1) = 0 in [0, M]

φ̃1(0) = φ̃1(M) = 0
φ̃′

1(0) = 1−κ
M

(5.26)

Find (φ̃2, τ) ∈ V × R s.t.⎧⎪⎨⎪⎩
−φ̃′′

2 + (q − λ)(φ̃2 + τ
M x) = 0 in [0, M]

φ̃2(0) = φ̃2(M) = 0
φ̃′

2(0) = 1 − τ
M

(5.27)

After solving these problems we evaluate φ1(M) and
φ′

2(M) rigorously. Then we can calculate the real values
ρ1 and ρ2 which are solutions of the quadratic equation:

ρ2 − {φ1(M) + φ′
2(M)}ρ + 1 = 0. (5.28)

Note that ρ1 and ρ2 are characteristic multipliers for (L0 −
λ)ψ = 0 and characteristic exponents μ1 and μ2 are calcu-
lated by the relation eMμi = ρi (i = 1, 2).

Here we mention about the relation between φ1, φ2 and
ψ1, ψ2. We define the matrix A by

A =
(

φ1(M) φ′
1(M)

φ2(M) φ′
2(M)

)
.

Then clearly ρ1 and ρ2 are eigenvalues of A. Let v1 and
v2 be the corresponding eigenvectors for ρ1 and ρ2, respec-
tively. Then we define ψ1 and ψ2 by(

ψ1

ψ2

)
≡ (v1 v2)−1

(
φ1

φ2

)
. (5.29)

Now we define p1 and p2 by(
p1

p2

)
≡

(
eμxψ1

e−μxψ2

)
. (5.30)

Then we can observe that pi(x+M) = p1(x) (i = 1, 2) and
the ψ1 and ψ2 defined by (5.29) satisfy the relation (5.7).

The actual computation to obtain the set U defined by
(5.16) and to enclose the fundamental solutions ψ1 and ψ2

will be presented in the forthcoming paper.

References

[1] Bazley, N. W., and Fox, D. W., A Procedure for Esti-
mating Eigenvalues, Journal of Mathematical Physics,
3, No. 3 (1962), 469-471.

[2] Beattie, C., and Goerisch, F., Methods for computing
lower bounds to eigenvalues of self-adjoint operators,
Numerische Mathematik, 72 (1995), 143-172.

[3] Behnke, H., and Goerisch, F., Inclusions for Eigenval-
ues of Selfadjoint Problems, In: J.Herzberger(eds.),
Topics in Validated Computations-Studies in Compu-
tational Mathematics, Elsevier, Amsterdam, 1994.

[4] Chatelin, F., Spectral Approximation of Linear Oper-
ators, Academic Press, New York, 1983.

[5] Eastham, M. S. P., The Spectral Theory of Peri-
odic Differential Equations, Scottish Academic Press
(1973).

[6] Grisvard, P., Elliptic problems in nonsmooth domains,
Pitman Monographs and Survays in Pure and Applied
Mathematics 24 (1985), London.

[7] Kato, T., On the upper and lower bounds of eigenval-
ues, Journal of the Physical Society of Japan, 4 (1949),
334-339.

[8] Kato, T., Perturbation Theory for Linear Operators,
Springer, Berlin Heidelberg 1966, 1976.

[9] Kř́ižek, M., Neittaanmäki, P., Finite Element Approx-
imation of Variational Problems and Applications,
Longman Scientific and Technical, Harlow (1990).

[10] Nakao, M. T., Yamamoto, N., and Nagatou, K., Nu-
merical Verifications for eigenvalues of second-order
elliptic operators, Japan Journal of Industrial and Ap-
plied Mathematics, 16, No.3 (1999), 307-320.

[11] Nagatou, K., Yamamoto, N., and Nakao, M. T., An
approach to the numerical verification of solutions for
nonlinear elliptic problems with local uniqueness, Nu-
merical Functional Analysis and Optimization, 20, 5
& 6 (1999), 543-565.

[12] Nagatou, K., A numerical method to verify the elliptic
eigenvalue problems including a uniqueness property,
Computing, 63 (1999), 109-130.

[13] Nagatou, K., and Nakao, M. T., An enclosure method
of eigenvalues for the elliptic operator linearlized at an
exact solution of nonlinear problems, a special issue of
Linear Algebra and its Applications on LINEAR AL-
GEBRA IN SELF-VALIDATING METHODS, 324/1-
3 (2001), 81-106.

[14] Nagatou, K., Nakao, M. T., and Wakayama, M., Veri-
fied numerical computations for eigenvalues of non-
commutative harmonic oscillators, Numerical Func-
tional Analysis and Optimization, 23, 5 & 6 (2002),
633-650.

[15] Nagatou, K., A computer-assisted proof on the stabil-
ity of the Kolmogorov flows of incompressible viscous
fluid, submitted.

[16] Nakao, M.T., A numerical approach to the proof of ex-
istence of solutions for elliptic problems, Japan Jour-
nal of Applied Mathematics 5 (1988), 313-332.

[17] Nakao, M.T., A numerical approach to the proof of
existence of solutions for elliptic problems II, Japan
Journal of Applied Mathematics 7 (1990), 477-488.

[18] Nakao, M.T. and Yamamoto, N., Self-validating meth-
ods (in Japanese), Nihonhyoron-sha, 1998.

[19] Nakao, M.T., Numerical verification methods for so-
lutions of ordinary and partial differential equations,
Numerical Functional Analysis and Optimization 22
(3&4) (2001), 321-356.

[20] Plum, M., Eigenvalue inclusions for second-order or-
dinary differential operators by a numerical homotopy
method, Journal of applied mathematics and physics
(ZAMP), 41 (1990), 205-226.

[21] Plum, M., Explicit H2-estimates and pointwise
bounds for solutions of second-order elliptic bound-
ary value problems, Journal of Mathematical Analysis
and Applications, 165 (1992), 36-61.

[22] Rump, S. M., Computational Numerical Bounds for
Multiple or Nearly Multiple Eigenvalues, Linear Al-
gebra and its Applications, 324 (2001), 209-226.

[23] Schultz, M. H., Spline Analysis, Prentice-Hall, Lon-
don (1973).

[24] Toyonaga, K., Nakao, M. T., and Watanabe, Y., Veri-
fied Numerical Computations for Multiple and Nearly
Multiple Eigenvalues of Elliptic Operators, Journal of
Computational and Applied Mathematics, 147, Issue
1 (2002), 175-190.

[25] Yamamoto, N., and Nakao, M. T., Numerical verifi-
cations for solutions to elliptic equations using resid-
ual iterations with a high order finite element, Jour-
nal of Computational and Applied Mathematics 60
(1995) 271-279.

[26] Yosida, K., Functional Analysis, Springer-Verlag,
Berlin (1995).

Interval Tools for ODEs and DAEs

Nedialko S. Nedialkov
Department of Computing and Software

McMaster University, Canada
nedialk@mcmaster.ca

Abstract

We overview the current state of interval methods and
software for computing bounds on solutions in initial value
problems (IVPs) for ordinary differential equations (ODEs).
We introduce the VNODE-LP solver for IVP ODEs, a suc-
cessor of the author’s VNODE package. VNODE-LP is
implemented entirely using literate programming. A ma-
jor goal of the VNODE-LP work is to produce an interval
solver such that its correctness can be verified by a human
expert, similar to how mathematical results are certified for
correctness.

We also discuss the state in computing bounds on solu-
tions in differential algebraic equations.

1. Introduction

We consider the initial-value problem (IVP)

y′(t) = f(y), y(t0) = y0, y ∈ R
n, t ∈ R. (1)

Since interval methods for IVPs for ordinary differential
equations (ODEs) are typically based on Taylor series,
which require the computation of Taylor coefficients (TCs)
for y up to some order k ≥ 1, we assume that f is as differ-
entiable as needed.

The initial condition can be in an interval vector y0, that
is, y0 ∈ y0. If we denote the solution of (1) by y(t; t0, y0),
we denote by y(t; t0, y0) the set of solutions originating
from each initial condition in y0:

y(t; t0, y0) =
{
y(t; t0, y0) | y0 ∈ y0

}
.

Given tend > t0, we wish to compute interval vectors that
are guaranteed to contain the solution to (1) at points tj for
which t0 < t1 < t2 < · · · < tN = tend. Namely, we want
to find yj such that

y(tj ; t0, y0) ⊆ yj for all j.

When computing these yj , we use interval methods to
enclose roundoff and truncation errors in the computed
bounds, thus obtaining rigorous bounds on the true solution
of the ODE [24, 44].

When describing the theory of these methods, it is con-
venient to work with an autonomous ODE. However, this
is not a restriction, as the theory can be applied to non-
autonomous systems, or a non-autonomous system can be
converted into an autonomous one. Also for convenience,
we require that tend > t0, but in general tend may be less
than t0.

Section 2 lists software packages for computing bounds
on the solution of (1) and lists various applications. Sec-
tion 3 outlines some of the theory behind interval methods
for IVP ODEs. Section 4 gives an overview of VNODE-
LP, elaborates on literate programming (LP), and presents
numerical results to illustrate some of the issues in these
methods. Section 5 outlines Pryce’s [52] structural anal-
ysis for solving systems of differential algebraic equations
(DAEs) and summarizes work to date on Taylor series meth-
ods for DAEs. Conclusions are in the last Section 6.

In this paper, we assume knowledge of interval arith-
metic and basic interval techniques (see for example [2,
37]). Intervals, interval vectors, and interval matrices will
be in bold font.

2. Software and applications

In Table 1, we list packages for computing bounds on
the solution of an IVP ODE. We refer to the methods im-
plemented in the packages AWA [33], ADIODES [54], VN-
ODE [43], VNODE-LP [40], and VODESIA [18] as “tradi-
tional” interval methods for IVP ODEs. The COSY VI [9]
solver is based on Taylor models [48], and VSPODE [32]
can be viewed as a mixture of traditional methods and Tay-
lor models.1 All require computing TCs, while ValEncIA-
IVP [4] needs only the Jacobian of f .

1To the author’s knowledge, VODESIA is not publicly available, and
VSPODE is available by request from the authors.

package year language
AWA 1988 Pascal-XSC
ADIODES 1997 C++
COSY VI 1997 Fortran

C++ interface
VNODE 2001 C++
VODESIA 2003 Fortran-XSC
VSPODE 2005 C++
ValEncIA-IVP 2005 C++
VNODE-LP 2006 C++

Table 1. Packages for computing bounds in
IVP ODEs.

A notable contribution to this area are the automatic dif-
ferentiation (AD) packages FADBAD [7] and TADIFF [8],
and now FADBAD++ [55]. They have been instrumental in
VNODE, VNODE-LP, and VSPODE for computing TCs of
an ODE solution and TCs of the solution to the associated
variational equation, and in ValEncIA-IVP for evaluating
the Jacobian of f .

In general, traditional methods produce tight bounds on
solutions in linear ODEs and in nonlinear problems, when
the computed enclosures remain sufficiently small. If the
overestimations in the computed bounds start growing, then
these bounds typically blow up quickly. In particular, on
nonlinear ODEs, if the initial condition set is not very small,
or long integration is desired, these methods usually break
down because of overestimations on the computed solution
sets.

Taylor model integration is more effective than tradi-
tional methods at producing tight enclosures on a solution
to a nonlinear ODE, with an initial condition set that is not
very small and over longer integration intervals. However,
Taylor models become expensive computationally on larger
problems (more than 5–10 equations), while a traditional
method, from the author’s experience, can deal with a few
hundred equations.

While applications of interval methods for ODEs were
scarce ten years ago, we see a variety of applications in the
last few years; in particular, after the VNODE solver be-
came available, and COSY VI with its Taylor models be-
came popular.

Application of these methods include rigorous computa-
tion of asteroid orbits [11], studying long-term stability of
large particle accelerators [12], global optimization for pa-
rameter estimation in chemical engineering [31], and simu-
lation of wastewater treatment processes [26]. The VNODE
package has been employed in rigorous multibody simula-
tions [3], reliable surface intersection [38, 50], robust eval-
uation of differential geometry properties [29], computing
bounds on eigenvalues [14], parameter and state estimation
[25, 53], rigorous shadowing [21, 22], and theoretical com-
puter science [1].

3. Theory

We outline the theory of a traditional interval method
for IVP ODEs (Subsection 3.1), discuss briefly Taylor mod-
els (Subsection 3.2), and show how they work in VSPODE
(Subsection 3.3).

3.1. Traditional methods

Suppose that we have computed yj at tj such that

y(tj ; t0, y0) ⊆ yj .

We advance to the next point in time in two phases.
ALGORITHM I tries to find an interval [tj , tj+1] and an

a priori enclosure ỹj such that y′ = f(y), y(tj) = yj has a
unique solution for all yj ∈ yj and all t ∈ [tj , tj+1], and

y(t; tj , yj) ⊆ ỹj for all t ∈ [tj , tj+1]. (2)

Proving existence and uniqueness, and finding [tj , tj+1]
and ỹj , is usually based on applying a fixed-point theorem
[19, 33, 39]. In practice, if the stepsize hj+1 = tj+1 − tj
(determined in this phase) is smaller than a value for the
smallest allowable stepsize, then normally the integration
cannot proceed [40]. That is, we cannot validate existence
and uniqueness.

ALGORITHM II uses ỹj to enclose the truncation error of
the method and computes a tighter enclosure yj+1 at tj+1

such that

y(tj+1; t0, y0) ⊆ yj+1 ⊆ ỹj . (3)

Figure 1 depicts bounds produced in these two phases.2

y

t

tight bounds
a priori bounds

Figure 1. A priori and tight bounds.

Methods for implementing the above two phases are usu-
ally based on Taylor series. One reason for their popularity

2For this visualization, the tight bounds are connected with lines, which
do not necessarily enclose the true solution.

is that it is relatively easy to enclose the truncation error of
the method; see also [44]. Before we describe how these
two algorithms work, we introduce convenient notation for
TCs.

Taylor coefficients. Denote

f [0](y) = y,

f [i](y) =
1
i

(
∂f [i−1]

∂y
f

)
(y) for i ≥ 1.

Given the IVP y′(t) = f(y), y(tj) = yj , we have for the
ith TC of its solution

y(i)(tj)
i!

= f [i](yj).

Such coefficients can be computed through source-code
translation [15] or operator overloading, as in TADIFF and
FADBAD++, for example. These packages can compute
TCs with a user-supplied data type. In particular, given an
interval as an input, they can generate interval TCs.

We note that to compute k coefficients, we require O(k2)
work. Given a stepsize h, one can generate scaled TCs di-
rectly, that is hif [i](yj), instead of computing first f [i](yj)
and then multiplying it by hi.

Computing a priori bounds. In VNODE, VNODE-LP,
and VSPODE, Algorithm I implements the High-Order En-
closure (HOE) method [45]. It is based on the following
result: if yj is in the interior of ỹj , and

yj +
k−1∑
i=1

(t − tj)if [i](yj) + (t − tj)kf [k](ỹj) ⊆ ỹj (4)

(k ≥ 1) for all t ∈ [tj , tj+1] and all yj ∈ yj , then there
exists a unique solution to y′ = f(y), y(tj) = yj for all
yj ∈ yj and

y(t; tj, yj) ∈ yj +
k−1∑
i=1

(t− tj)if [i](yj) + (t− tj)kf [k](ỹj)

for all t ∈ [tj , tj+1] and all yj ∈ yj .
When k = 1, we obtain the method in AWA, but it re-

stricts the stepsizes similarly to Euler’s method. An advan-
tage of the HOE method is that it allows larger stepsizes
compared to AWA. Moreover, a good stepsize control can
be conveniently incorporated in the HOE method. Details
are in [40, 45].

Computing tight bounds. Using ỹj , we wish to compute a
tighter enclosure yj+1 such that (3) holds. A basic approach
is to use Taylor series. Writing a Taylor series expansion,
we can compute

yj+1 := yj +
k−1∑
i=1

hi
jf

[i](yj) + hk
j f [k](ỹj)

(hj = tj+1 − tj), which contains the true solution, but the
width of yj+1 is

w(yj+1) ≥ w(yj), and usually w(yj+1) > w(yj),

even if the solutions are contracting—“naive” method.
To obtain a scheme that could follow contracting solu-

tions, we apply the mean-value evaluation: for any yj , ŷj ∈
yj ,

yj +
k−1∑
i=1

hi
jf

[i](yj) + hk
j f [k](ỹj)

⊆ ŷj +
k−1∑
i=1

hi
jf

[i](ŷj) + hk
j f [k](ỹj)

+

{
I +

k−1∑
i=1

hi
j

∂f [i]

∂y
(yj)

}
(yj − ŷj),

(5)

where I is the n × n identity matrix. The above Jacobians
can be evaluated through AD by generating TCs for the so-
lution to the associated variational equation [33, 39]. The
FADBAD++ [55] package can readily evaluate these Jaco-
bians [40, 43].

ŷj

tj tj+1 t

true solutions

uj+1 + zj+1yj

yj+1

Figure 2. The enclosure at tj+1 is formed from
an approximate point solution, an enclosure
on the local excess, and an enclosure on the
propagated global excess.

Based on (5), we can form an enclosure yj+1 consisting
of (see also Figure 2)
(a) a point approximation uj+1 = ŷj +

∑k−1
i=1 hi

jf
[i](ŷj);

(b) an enclosure zj+1 = hk
j f [k](ỹj) of the truncation error;

this enclosure can be viewed as the excess introduced on the
current integration step over the true solution set, or local
excess [39]; and
(c) an enclosure Sj(yj − ŷj), where

Sj = I +
k−1∑
i=1

hi
j

∂f [i]

∂y
(yj),

of the propagated global excess [39] to tj+1. One can view
yj − ŷj as an enclosure of the global excess at tj .

Thus,

yj+1 := uj+1 + zj+1 + Sj(yj − ŷj). (6)

Since we also enclose roundoff errors in the above compu-
tations, when executed in machine interval arithmetic, we
have a rigorous enclosure on the true solution of (1).

There are two major sources of overestimation in (6).
First, we have a high-order Taylor series expansion in time,
but only a first-order Taylor series expansion in space. In
general, we cannot expect to compute tight bounds for non-
linear ODEs when the initial set, here yj , is not sufficiently
small. For linear ODEs, we do not have overestimations in
the Jacobian evaluations, as they do not depend on yj .

Second, there is typically wrapping effect [37, 42] origi-
nating from the product Sj(yj − ŷj). Because of the wrap-
ping effect, the scheme (6) can follow contracting solutions
in a few special cases only [42].

Wrapping effect. For simplicity in the illustration that fol-
lows, Figure 3.1, assume n = 2, Sj ∈ Sj is a 2 × 2 point
matrix, and denote aj = yj − ŷj . We are interested in the
set {Sja | a ∈ aj}, cf. (6), but we compute in interval arith-
metic the box Sjaj , which can introduce significant over-
estimation over the parallelepiped {Sja | a ∈ aj}. Then,
we have to work with this box on the next step, may have
another overestimation, and so on. Such overestimations
can quickly accumulate, leading to the wrapping effect and
a blow up in the computed bounds.

Lohner’s QR factorization method [33] for reducing the
wrapping effect puts a box in a moving orthogonal coor-
dinate system, and this box matches one of the edges of
the enclosed parallelepiped. We can always “match” the
longest edge, and intuitively, introduce a smaller overesti-
mation.

Reducing the wrapping effect. Instead of working with
box enclosures yj , we can also represent an enclosure on
the solution in the form

yj ∈ { ŷj + Ajrj | rj ∈ rj},
where ŷj ∈ R

n, Aj ∈ R
n×n is nonsingular, and rj ∈ IR

n.
(IRn denotes the set of n-dimensional interval vectors.)

Instead of computing with (6), we proceed as follows.
We set initially

A0 = I, ŷ0 = m(y0), and r0 = y0 − ŷ0,

where m(·) denotes componentwise midpoint. Then on
each step, we find

yj+1 = uj+1 + zj+1 + (SjAj)rj ,

ŷj+1 = uj+1 + m(zj+1),

{Sja | a ∈ aj}

(a) (b)

(d)

Sjaj

(c)

aj

Figure 3. (a) aj = yj − ŷj; (b) wrapping in the
original coordinate system; (c) and (d) wrap-
ping in a moving orthogonal coordinate sys-
tems that matches one of the edges of the
enclosed set.

select a nonsingular Aj+1, and form

rj+1 =
{
A−1

j+1(SjAj)
}
rj + A−1

j+1

{
zj+1 − m(zj+1)

}
.

The selection of Aj+1 is crucial for the performance of
this scheme. If Aj+1 = m(SjAj), we have the paral-
lelepiped method [19, 33]. It frequently breaks down be-
cause the Aj become ill conditioned, and the computed
bounds become too wide.

In Lohner’s QR method, we select Aj+1 = Qj+1 from
the QR factorization Qj+1Rj+1 = m(SjAj). We enclose
in a moving orthogonal coordinate system, and we can al-
ways “match” the longest edge of the enclosed set by a suit-
able permutation of the columns of m(SjAj), [33]. An
eigenvalue-type analysis shows that the QR method pro-
vides good stability for the underlying interval method [42].

3.2. On Taylor models

The above approach uses a parallelepiped to enclose a
solution set, which may not be convex. Inherently, methods
of this type cannot follow accurately complicated solution
sets and can produce large overestimations.

An integration based on Taylor models [10, 35] repre-
sents a solution enclosure as a multivariate polynomial in
y0, where y0 ∈ y0, plus a small remainder interval. As a

result, such enclosures are not necessarily convex and can
describe a solution set much more accurately than a paral-
lelepiped.

Let F be the set of continuous functions on x ∈ IR
n to

R, let p : R
n → R be a polynomial of order m, and let r be

an interval. A Taylor model is (cf. [48, §2.3]){
f ∈ F | f(x) ∈ p(x) + r for all x ∈ x

}
.

Arithmetic operations and elementary functions can be im-
plemented on Taylor models such that each of these opera-
tions results in a Taylor model [10, 34].

In practice, given a sufficiently differentiable g on x ∈
IR

n and x0 ∈ x, one can apply a (multivariate) Taylor
expansion of g around x0 to construct a polynomial ap-
proximation p(x − x0) to g(x) and enclose the error term
(for all x ∈ x) in this expansion in an interval r. Then
g(x) ∈ p(x−x0)+r for all x ∈ x. We refer to p(x−x0)+r
as a Taylor model Tg of g.

Figure 4 illustrates a Taylor model of a function. If its
range is enclosed by an interval, we would propagate a box
through a computation. With Taylor models, we propagate
a Taylor model Tg , a much tighter enclosure of g than an
interval enclosure.

x

Tg
g(x)

Figure 4. Function and its Taylor model en-
closure.

In this paper, we show how Taylor models are incorpo-
rated in VSPODE. A good exposition of how “full” Taylor
model integration works is in [48].

3.3. Taylor models in VSPODE

Lin and Stadtherr [32] consider the IVP

y′ = f
(
y(t), θ

)
, y(t0) = y0 ∈ y0, θ ∈ θ, (7)

where t ∈ R, y ∈ R
n, y0 ∈ IR

n, θ ∈ IR
l, θ is a parameter,

and f is assumed sufficiently differentiable, so TCs for y up
to some order k ≥ 1 can be computed.

The goal is to enclose the solution to (7) for all y0 ∈ y0

and all θ ∈ θ. The method implemented in VSPODE works

as follows. Initially, set Taylor models

y0 ∈ Ty0 = m(y0) +
(
y0 − m(y0)

)
+ [0, 0]n and

θ ∈ Tθ = m(θ) +
(
θ − m(θ)

)
+ [0, 0]p,

where [0, 0]n denotes the n vector with all components
[0, 0].

We denote the solution to (7) by y(t; t0, y0, θ). Assume
that, at tj ,

y(tj ; t0, y0, θ) ∈ pj(y0, θ) + vj , (8)

where pj : R
n+l → R

n is a polynomial in y0 and θ of some
degree, say m, and vj ∈ IR

n. That is, we have a Taylor
model at tj .

Then at tj+1, for any yj ∈ pj(y0, θ)+vj and any θ ∈ Tθ,

y(tj+1; t0, y0, θ) ∈
k−1∑
i=0

hi
jf

[i](yj , θ) + hk
j f [k](ỹj , θ)

⊆
k−1∑
i=0

hi
jf

[i](pj + vj , Tθ) + wj+1, (9)

where the f [i] are functions of both y and θ, and

wj+1 = hk
j f [k](ỹj , θ),

in which ỹj is an a priori enclosure over [tj , tj+1].
The term wj+1 is computed with the HOE method. The

TCs f [i], for i = 1, . . . , k − 1, can be enclosed by perform-
ing Taylor model arithmetic through a TC computation.
That is, suppose we have a program for computing TCs that
works with a generic data type (TADIFF and FADBAD++
allow user-defined types). If we have a Taylor model class
with overloaded arithmetic operations and elementary func-
tions, we can execute TC computation with our program
and objects of this class. Hence, we can enclose the f [i], and
therefore y(tj+1; t0, y0, θ), for all y0 ∈ y0 and all θ ∈ θ.
However, since intervals are involved in evaluating the code
list of each f [i] in (9), the widths of the enclosures that we
would compute using (9) grow similarly to the widths in
the naive Taylor series method described earlier (but likely
much slower).

Applying the mean-value theorem to the f [i] and evalu-
ating them with pj and Tθ, we have

y(tj+1; t0, y0, θ) ∈
k−1∑
i=0

hi
jf

[i](pj , Tθ) + wj+1

+

(
k−1∑
i=0

hi
j

∂f [i]

∂y
(yj , θ)

)
vj.

(10)

When evaluating
∑k−1

i=0 hi
jf

[i](pj , Tθ), we can construct a
polynomial pj+1(y0, θ) of degree m, enclose the resulting

higher order terms, and include this enclosure and wj+1 in
an interval (vector) uj+1 [32]. That is, we have

k−1∑
i=0

hi
jf

[i](pj , Tθ) + wj+1 ⊆ pj+1(y0, θ) + uj+1. (11)

Denoting

V j =
k−1∑
i=0

hi
j

∂f [i]

∂y
(yj , θ),

we have from (10) and (11) that

y(tj+1; t0, y0, θ) ∈ pj+1(y0, θ) + uj+1 + V jvj . (12)

If we implement a scheme based on (12), the product
V jvj would typically give rise to the wrapping effect. To
reduce it, instead of (8), VSPODE uses the representation{

pj(y0, θ) + Bjs | y0 ∈ y0, θ ∈ θ, s ∈ sj

}
,

where Bj ∈ R
n×n is nonsingular, and sj ∈ IR

n, as an
enclosure on the solution set at tj . Then (12) becomes

y(tj+1; t0, y0, θ) ∈ pj+1(y0, θ) + uj+1 + (V jBj)sj .

For the next step, Bj+1 and sj+1 are computed as in
Lohner’s method.

We evaluate Jacobians of f [i] over yj (and in this case
θ) as in traditional methods and deal with the wrapping ef-
fect as in Lohner’s method. Hence, propagating the global
excess in VSPODE is similar to propagating global excess
in traditional methods. However, due to the more elaborate
enclosures of TCs, this excess often remains smaller (and
the enclosures tighter) in VSPODE compared to the excess
in traditional methods; see for comparison the numerical re-
sults in [32].

4. VNODE-LP

4.1. Motivation

In general, interval methods produce results that can
have the power of a mathematical proof. As shown in the
previous section, when computing an enclosure of the so-
lution of an IVP ODE, an interval method first proves that
there exists a unique solution to the problem and then pro-
duces bounds that contain it. When solving a nonlinear
equation, an interval method can prove that a region does
not contain a solution or compute bounds that contain a
unique solution to the problem.

However, if such a method is not implemented correctly,
it may not produce rigorous results. Furthermore, we can-
not claim mathematical rigor if we miss to include even a
single roundoff error in a computation. Therefore, it is of

paramount importance to ensure that an interval algorithm
is encoded correctly in a programming language.

In the author’s opinion, interval software should be pro-
duced in a form such that program correctness can be cer-
tified in a human peer-review process, like a mathematical
proof is checked for correctness. This is in contrast to me-
chanical software verification, when a proof tool is applied
to verify code against given specifications.

A major goal of the VNODE-LP work is to implement
and document an interval solver for IVPs for ODEs such
that its correctness can be verified by a reviewer.

4.2. Literate programming

To accomplish our goal, we have chosen the LP ap-
proach. The author has found LP particularly suitable for
ensuring that an implementation of a numerical algorithm is
a correct translation of its underlying theory into a program-
ming language. With LP, theory, code, and documentation
are interwoven in LATEX-like web files.3 The source code is
extracted in a tangle process, and the documentation is cre-
ated in a weave process. With VNODE-LP, we have used

web file(s)

source
code

latex file

ctangle

cweave

Figure 5. Producing C++ and LATEX files from
web files

the CWEB package [28]. The LP document [40], which
contains theory, code, examples, user guide, etc., is gener-
ated by executing cweave [28] on VNODE-LP’s web files;
see Figure 5. The C++ code of VNODE-LP and all the ex-
amples in [40] are generated by executing ctangle [28]
on those files (Figure 5).

Some of the benefits of using LP follow.

• We can combine theory, source code, and documenta-
tion in a single document.

• With LP, we can produce nearly “one-to-one” trans-
lation of the mathematical theory of a method into a
computer program. In particular, we can split the the-
ory into small pieces, translate each of them, and keep
mathematical expressions and the corresponding code
close together in a unified document. This facilitates

3“web” is unrelated to the World Wide Web.

verifying the correctness of smaller pieces and of a
program as a whole.

• Since theory and implementation are in a single doc-
ument, it is easier to keep them consistent, compared
to having separate theory, source code, and documen-
tation.

Finally, if the correctness of the manuscript [40] is con-
firmed by reviewers in a peer-review-like process, we may
trust in the correctness of the implementation of VNODE-
LP, and accept the bounds it computes as rigorous. When
claiming rigor, we presume that the operating system, com-
piler, and the packages VNODE-LP uses do not contain er-
rors.

4.3. Overview

In its basic usage, VNODE-LP attempts to compute
bounds on the solution of

y′ = f(t, y), y(t0) ∈ y0

at a given point tend �= t0. (Here, y0 ∈ IR
n, and t0, tend ∈

R.) If VNODE-LP cannot reach tend, for example if the
bounds are too wide, bounds on the solution at some t∗ be-
tween t0 and tend are returned.

This package is applicable to ODE problems for which
derivatives of the solution exist to some order. Hence, the
code list of f should not contain functions such as abs or
min.

When integrating from t0 to tend, VNODE-LP can also
return on each step an enclosure yj on the solution at point
tj such that (3) holds, and an enclosure ỹj on the solution
over [tj , tj+1] such that (2) holds. Examples of how such
enclosures are obtained are given in [40].

The HOE method (cf. Section 3) is implemented in Algo-
rithm I, and the interval Hermite-Obreschkoff method [39]
is implemented in Algorithm II. (The latter can be viewed
as a generalization of a Taylor series method.) VNODE-LP
features variable stepsize control and constant order. The
stepsize is varied such that an estimate of the size of the lo-
cal excess per unit step in Algorithm I is below a tolerance.
Namely, hj is selected such that

hk
j

∥∥w(f [k](ỹj))
∥∥ � hj

(
atol + rtol · ∥∥yj

∥∥),
where atol and rtol are absolute and relative tolerances, re-
spectively, with default values of 10−12, and ‖ · ‖ is the
infinity norm.

Typical values for the order can be between 20 and 30
(cf. Subsection 4.5), and a default order is set to 20. There
is also improved wrapping effect control compared to VN-
ODE [43] by combining the parallelepiped and QR factor-
ization methods [40].

4.4. Packages and platforms

VNODE-LP compiles with either of the interval arith-
metic (IA) packages PROFIL/BIAS [27] or FILIB++
[30]. The interface to an IA package is encapsulated in
about 25 short wrapper functions that call functions from it
[40]. In principle, one should be able to incorporate a differ-
ent IA package without major difficulties by implementing
these wrapper functions.

The automatic differentiation is done through FAD-
BAD++ [55], and the necessary (non-rigorous) linear al-
gebra is done through LAPACK and BLAS.

To date, VNODE-LP has installed successfully with the
GNU C++ compiler as shown below:

IA OS Architecture
FILIB++ Linux x86

Solaris Sparc
PROFIL Linux x86

Solaris Sparc
Mac OSX PowerPC
Windows with Cygwin x86

4.5. Performance

We report numerical results to illustrate some of the is-
sues in this area. The computations are performed on a
3 GHz dual-core Pentium with 2GB RAM and 4MB L2
cache. The operating system is Linux (Fedora), the com-
piler is gcc version 4.1.1, and the IA package is PRO-
FIL/BIAS. VNODE-LP and the supporting packages are
compiled with option -O2.

Work versus order

We integrate the Lorenz system

y′
1 = 10(y2 − y1)

y′
2 = y1(28 − y3) − y2

y′
3 = y1y2 − 8/3 y3

(13)

with

y(0) = (15, 15, 36)T , t ∈ [0, 20]

and atol = rtol = 10−7, 10−9, 10−11, and 10−13. In Fig-
ure 6, we plot the user CPU time (in seconds) taken by
VNODE-LP versus the order of the method. As can be seen
from this figure, choosing the optimal value for the order
is not crucial for the efficiency of the integration: any or-
der around 20 yields good performance. Experience shows
that, in general, the value for the order that results in the
least amount of work is located in a rather flat minimum.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 15 20 25 30 35 40 45 50

C
P
U

t
i
m
e

(
s
)

order

10-7

10-9

10-11

10-13

Figure 6. Work versus order for the Lorenz
system.

Work versus problem size

We give the DETEST [23] problem C3

y′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0

...
0 · · · 1 −2 1
0 · · · 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
y

with y(0) = (1, 0, . . . , 0)T to VNODE-LP.
We integrate with problem sizes n = 40, 60, . . . , 300 for

t ∈ [0, 5]. In this and the remaining examples, we use the
default order 20 and atol = rtol = 10−12. In Figure 7, we
plot in a log-log scale the CPU time per step versus n; for
each n, VNODE-LP takes 8 steps.

10-1

100

101

102

103

 260 200 140 100 80 60 40

C
P
U

t
i
m
e
/
s
t
e
p

(
s
)

n

Figure 7. CPU time versus n for the DETEST
C3 problem.

On this problem, the linear algebra contributes the most
in the total amount of work. From Section 3 (and this plot),
it is obvious that this work grows like n3. The O(n3) com-
plexity comes from the matrix operations in reducing the

wrapping effect, and this complexity is a serious obstacle
towards solving larger problems.

Remark. To keep the dependence on an IA package as
minimal as possible, the author has implemented the in-
terval linear algebra through the C++ standard template li-
brary, not exploiting PROFIL’s matrix and vector opera-
tions, which are optimized in terms of minimizing rounding
mode switches. The present implementation of VNODE-LP
does not attempt to minimize the number of these switches
in matrix and vector operations. If such optimizations are
taken into account, the running time would be reduced, but
it will be still O(n3).

Stiff problems

We integrate Van der Pol’s equation (written as a first-order
system)

y′
1 = y2

y′
2 = μ(1 − y2

1)y2 − y1

with y(0) = (2, 0)T and tend = 200. We vary μ and report
the number of steps and CPU time used by VNODE-LP in
Table 2.

μ steps CPU time (s)

101 2377 0.8
102 11697 3.6
103 126459 36.1
104 1180844 336.4

Table 2. Number of steps and CPU time when
integrating the Van Der Pol system.

As μ increases, the stiffness of this problem increases,
and VNODE-LP is forced to take very small stepsizes, re-
sulting in an inefficient integration. For an efficient integra-
tion of stiff problems, we need a scheme that would allow
much larger stepsize, and no such scheme is available to
date.

In passing we note that, for the same order of the trun-
cation error, an interval Hermite-Obreschkoff method al-
lows larger stepsizes than an interval Taylor series method
[39, 41]. However, as shown in [39], these methods have
a restriction on the stepsize due to the associated formula
for the truncation error. As a consequence, their stability is
determined not only by the stability function of the under-
lying formula, as in a standard ODE method, but also by the
associated formula for the truncation error.

Interval initial conditions

We illustrate how the bounds behave when integrating the
Lorenz system with

y(0) ∈
⎛⎝15 + [−10−4, 10−4]

15 + [−10−4, 10−4]
36 + [−10−4, 10−4]

⎞⎠ . (14)

In Figure 14, we plot the bounds on y1 versus t. In the

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6

y
1

t

lower bound
upper bound

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

 5.7 5.8 5.9 6 6.1

y
1

t

bounds
midpoint

Figure 8. Bounds on y1 versus t for the Lo-
renz system (13) with (14).

second plot, we show the computed bounds and their mid-
points. Clearly, one should expect a divergence of these
bounds. Once they start growing, typically they explode in
size very soon. Here, a Taylor model integrator, such as
COSY VI, may be able to compute tighter bounds over a
longer time interval.

5. On solving DAEs

While several interval solvers for IVPs for ODEs are
publicly available, no software is available for computing
rigorous bounds on the solution of IVP DAEs. A promising
approach for building an interval method (and a solver) for
DAEs is Pryce’s structural analysis [52] combined with a
Taylor series expansion of the solution of a DAE. We out-
line this analysis and summarize work to date.

5.1. Pryce’s structural analysis

We consider an IVP for a DAE system with n equations
fi in n dependent variables xj = xj(t). We write infor-
mally

fi

(
t, the xj and derivatives of them

)
= 0 (15)

(1 ≤ i ≤ n). The fi are assumed sufficiently smooth. They
can be arbitrary expressions built from the xj and t using
+,−,×,÷, other standard functions, and the differentiation
operator dp/dtp.

A common measure of the numerical difficulty of a DAE
is its differentiation index νd [13], the number of times the
fi must be differentiated (w.r.t. t) to obtain equations that
can be solved to form an ODE system for the xj . As shown
in [46, 47], a method based on Pryce’s SA and Taylor series
does not find high index inherently hard.

The steps of this SA are summarized below.

1. Form the n × n signature matrix Σ = (σij), where

σij =
{

order of derivative of xj in fi, or
−∞ if xj does not occur in fi.

2. Find a Highest Value Transversal (HVT), which is n
positions (i, j) in Σ with one entry in each row and
column such that

∑
σij is maximized.

3. Find the smallest “offsets” ci, dj ≥ 0 satisfying

dj − ci ≥ σij for all i, j = 1, . . . , n and

dj − ci = σij on the HVT.

Steps 2 and 3 are equivalent to a linear assignment
problem and its dual.

4. Form the system Jacobian J, where

Jij =

⎧⎨⎩
∂fi

∂x
(σij)
j

if dj − ci = σij

0 otherwise.

Example. Consider the simple pendulum,

0 = f = x′′ + xλ

0 = g = y′′ + yλ − G

0 = h = x2 + y2 − L2,

which is an index-3 DAE. The dependent variables are x,
y, and λ; G (gravity) and L (length) are constants. The
signature matrix and the offsets are

Σ =

x y λ ci()
f 2◦ −∞ 0∗ 0
g −∞ 2∗ 0◦ 0
h 0∗ 0◦ −∞ 2

dj 2 2 0

There are two HVTs, which are marked by ∗ and ◦. The
system Jacobian is

J =

⎡⎢⎢⎣
∂f

∂x′′ 0 ∂f
∂λ

0 ∂g
∂y′′

∂g
∂λ

∂h
∂x

∂h
∂y 0

⎤⎥⎥⎦ .

If J is nonsingular at a consistent point, then the SA suc-
ceeds, and the DAE is solvable in a neighborhood of this
point [51, 52]; see also [46].4 Provided that the SA suc-
ceeds, it derives a structural index

νs = max
i

ci +

{
1 if some dj = 0
0 otherwise,

which is the same as that found by the method of Pantelides
[49]. It is shown in [52] that νd ≤ νs; often they are the
same.

In the pendulum example, J is nonsingular for any values
of x and y, and the index is νs = νd = 3.

To solve (15) by Taylor series, one can use AD to gener-
ate functions for evaluating TCs of the equations fi. Equat-
ing these coefficients to zero gives equations that are solved
for the TCs of the solution components xj(t). The off-
sets prescribe how to organize the computation of TCs
[46, 51, 52] for the solution components of (15); that is,
what equation to solve and for which TCs of the solution.

We believe that the computation of TCs described in [46]
(in the point, approximate case) can be extended to comput-
ing interval enclosures of such coefficients. Hence, Algo-
rithm I and Algorithm II could be carried out in the DAE
case. A key issue is to ensure that the initial values on the
first and subsequent integration steps are consistent with the
DAE. That is, they must satisfy the constraints of the DAE,
which can include hidden constraints. Pryces’s SA identi-
fies the constraints of the DAE using the offsets ci. Namely,

f ′
i , f ′′

i , . . . , f
(ci−1)
i = 0

must hold for all i = 1, . . . , n, from which we can deter-
mine xj , x′

j , . . . , x
(dj−1)
j for j = 1, . . . , n.

For example, for the simple pendulum the values for x,
x′, y, and y′ must satisfy the obvious and hidden constraints

x2 + y2 − L2 = 0 and

xx′ + yy′ = 0,
(16)

respectively. In an interval setting, given intervals enclos-
ing x and x′, one may apply an interval Newton method to
enclose y and y′, or given intervals for x, x′, y, y′, one may
verify that they contain a point satisfying (16).

4Although applicable to a wide range of DAEs, there are problems on
which this SA fails; that is, when J is singular at a point at which the DAE
is solvable. Examples of such problems are discussed in [46, 51, 52].

5.2. Work to date

Chang and Corliss [15] show how to generate Taylor se-
ries for the simple pendulum DAE. Then Corliss and Lod-
wick [17] show how to use interval techniques to obtain
bounds on the solution of a simple linear DAE with AWA.
They assume that consistent initial conditions are given, and
consistency on subsequent steps is a result of AWA’s vali-
dation algorithm. In [16], they investigate the role of con-
straints in an interval method for DAEs when applied to the
simple pendulum, and in particular, how to use these con-
straints to verify consistency of user-supplied initial condi-
tions; to suggest consistent initial conditions if necessary;
and to tighten initial conditions (on first and subsequent
steps) by a Gauss-Seidel iteration or intersecting with the
constraints.

Hoefkens [14] uses Pryce’s structural analysis to convert
a DAE into a generalized ODE, which is then solved in a
rigorous way using Taylor models and the COSY package
[5]. We note that transforming a DAE into an ODE usu-
ally increases the size of the problem to be solved and may
destroy its original sparsity pattern.

The rest of this summary includes work on computing
approximate DAE solutions using Taylor series. The au-
thor has developed a C++ package DAETS for solving high-
index, fully-implicit, arbitrary order DAEs in the form (15).
This package takes a C++ description of the DAE, generates
Σ through operator overloading, finds the problem offsets,
and computes TCs using FADBAD++. Then an approx-
imate solution is obtained by summing these coefficients
(with appropriate stepsize) and projecting it to satisfy the
constraints of the DAE. Theory, algorithmic details, and ex-
amples produced by DAETS are given in [46, 47].

Walther and Griewank [20] report of a similar imple-
mentation (to DAETS) of a Taylor series method based on
Pryce’s analysis, but using the ADOL-C package.

Finally, Barrio [5] uses MATHEMATICA to compute Σ,
set up an ODE system, and then generate FORTRAN 77
code for evaluating TCs for the ODE system. In [6], he
studies the applicability of Taylor series methods for sensi-
tivity analysis of ODEs and DAEs, where DAEs are solved
using Pryce’s SA and very high-order Taylor series.

6. Conclusion

In the area of interval methods for IVPs for ODEs, we
would like to be able to compute efficiently tight bounds on
solutions of much larger problems than the current tools can
handle. A major obstacle is the O(n3) complexity, when
dealing with the wrapping effect on each integration step.
Beating this complexity in a general method may be diffi-
cult, but one may develop more efficient methods for classes

of ODEs. For example, the wrapping effect does not oc-
cur when integrating quasi-isotone problems [44]. The DE-
TEST C3 (Subsection 4.5) is such a problem, but it was
integrated with a general-purpose ODE solver, which does
not take into account quasi-isotonicity.

Although high-order Taylor series may be reasonably ef-
ficient for mildly stiff ODEs, we do not have an interval
method suitable for stiff ODEs. A major challenge and op-
portunity in this area is to devise an efficient interval method
for stiff problems.

The DETEST test set [23] and now the Test Set for IVP
Solvers [36] are standard in assessing and comparing (ap-
proximate) IVP ODE solvers. As the area of interval ODE
solving is maturing, and various interval solvers for IVPs
ODEs are available, we need a sound and comprehensive
methodology for assessing and comparing these solvers.

Finally, building an interval DAE solver of the quality
of existing interval ODE solvers is a challenge, but feasible
with the recent progress on both theory and implementation
of Taylor series methods for DAEs.

Acknowledgments. George Corliss and John Pryce pro-
vided insightful comments, which helped to improve this
paper. This work was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada.

References

[1] D. Achlioptas. Setting 2 variables at a time yields a new
lower bound for random 3-SAT. Technical Report MSR-TR-
99-96, Microsoft Research, Microsoft Corp., One Microsoft
Way, Redmond, WA 98052, December 1999.

[2] G. Alefeld and J. Herzberger. Introduction to Interval Com-
putations. Academic Press, New York, 1983.

[3] E. Auer, A. Kecskeméthy, M. Tändl, and H. Traczinski. In-
terval algorithms in modelling of multibody systems. In Nu-
merical Software with Result Verification, volume 2991 of
LNCS, pages 132–159. Springer-Verlag, 2004.

[4] E. Auer, A. Rauh, E. P. Hofer, and W. Luther. Validated
modeling of mechanical systems with SmartMOBILE: Im-
provement of performance by ValEncIA-IVP. In Reliable
Implementation of Real Number Algorithms: Theory and
Practice. Springer-Verlag, to appear.

[5] R. Barrio. Performance of the Taylor series method for
ODEs/DAEs. Appl. Math. Comp., 163:525–545, 2005.

[6] R. Barrio. Sensitivity analysis of ODES/DAES using the
Taylor series method. SIAM J. Sci. Comput., 27:929–1947,
2006.

[7] C. Bendsten and O. Stauning. FADBAD, a flexible C++
package for automatic differentiation using the forward and
backward methods. Technical Report 1996-x5-94, Depart-
ment of Mathematical Modelling, Technical University of
Denmark, DK-2800, Lyngby, Denmark, August 1996.

[8] C. Bendsten and O. Stauning. TADIFF, a flexible C++ pack-
age for automatic differentiation using Taylor series. Techni-
cal Report 1997-x5-94, Department of Mathematical Mod-

elling, Technical University of Denmark, DK-2800, Lyngby,
Denmark, April 1997.

[9] M. Berz. COSY INFINITY version 8 reference manual.
Technical Report MSUCL–1088, National Superconducting
Cyclotron Lab., Michigan State University, East Lansing,
Mich., 1997.

[10] M. Berz and K. Makino. Verified integration of ODEs
and flows using differential algebraic methods on high-order
Taylor models. Reliable Computing, 4:361–369, 1998.

[11] M. Berz, K. Makino, and J. Hoefkens. Verified integration of
dynamics in the solar system. Nonlinear Analysis: Theory,
Methods & Applications, 47:179–190, 2001.

[12] M. Berz, K. Makino, and Y.-K. Kim. Long-term stability of
the tevatron by verified global optimization. Nuclear Instru-
ments and Methods, A558:1–10, 2005.

[13] K. Brenan, S. Campbell, and L. Petzold. Numerical Solution
of Initial-Value Problems in Differential-Algebraic Equa-
tions. SIAM, Philadelphia, second edition, 1996.

[14] B. M. Brown, M. Langer, M. Marletta, C. Tretter, and
M. Wagenhofer. Eigenvalue bounds for the singular Sturm-
Liouville problem with a complex potential. J. Phys. A:
Math. Gen., 36(13):3773–3787, April 2003.

[15] Y. F. Chang and G. F. Corliss. ATOMFT: Solving ODEs and
DAEs using Taylor series. Comp. Math. Appl., 28:209–233,
1994.

[16] G. F. Corliss and W. Lodwick. Role of constraints in the
validated solution of DAEs. Technical Report 430, Mar-
quette University, Department of Mathematics, Statistics,
and Computer Science, Milwaukee, Wisc., March 1996.

[17] G. F. Corliss and W. A. Lodwick. Correct computation of so-
lutions of differential algebraic control equations. Zeitschrift
für Angewandte Mathematik und Mechanik, special issue
Numerical Analysis, Scientific Computing, and Computer
Science, pages 37–40, 1996.

[18] S. Dietich. Adaptive verifizierte Lösung gewöhnlicher Dif-
ferentialgleichungen. PhD thesis, University of Karlsruhe,
Karlsruhe, Germany, February 2003.

[19] P. Eijgenraam. The Solution of Initial Value Problems Using
Interval Arithmetic. Mathematical Centre Tracts No. 144.
Stichting Mathematisch Centrum, Amsterdam, 1981.

[20] A. Griewank and A. Walther. On the efficient generation
of Taylor expansions for DAE solutions by automatic differ-
entiation. In J. Dongarra, K. Madsen, and J. Wasniewski,
editors, PARA’04, State-of-the-art in scientific computing,
volume 3732 of LNCS, pages 1103–1111. Springer-Verlag,
2006.

[21] W. Hayes. Rigorous shadowing of numerical solutions of
ordinary differential equations by containment. PhD thesis,
Department of Computer Science, University of Toronto,
Toronto, Canada, 2001.

[22] W. Hayes and K. R. Jackson. Rigorous shadowing of nu-
merical solutions of ordinary differential equations by con-
tainment. SIAM J. Numer. Anal., 42(5):1948–1973, 2003.

[23] T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedg-
wick. Comparing numerical methods for ordinary differen-
tial equations. SIAM J. Numer. Anal., 9(4):603–637, Decem-
ber 1972.

[24] K. R. Jackson and N. S. Nedialkov. Some recent advances in
validated methods for IVPs for ODEs. Appl. Numer. Math.,
42:269–284, August 2002.

[25] M. Kieffer and E. Walter. Nonlinear parameter and state
estimation for cooperative systems in a bounded-error con-
text. In Numerical Software with Result Verification, volume
2991 of LNCS, pages 107–123. Springer-Verlag, 2004.

[26] M. Kletting, A. Rauh, H. Aschemann, and E. Hofer. Consis-
tency tests in guaranteed simulation of nonlinear uncertain
systems with application to an activated sludge process. J.
Comput. Appl. Math., 199(2):213–219, 2007.

[27] O. Knüppel. PROFIL/BIAS – a fast interval library. Com-
puting, 53(3–4):277–287, 1994.

[28] D. E. Knuth and S. Levy. The CWEB System of Structured
Documentation. Addison-Wesley, Reading, Massachusetts,
1993.

[29] C. kuo Lee. Robust evaluation of differential geometry prop-
erties using interval arithmetic techniques. Master’s the-
sis, Massachusetts Institute of Technology, Department of
Ocean Engineering, May 2005.

[30] M. Lerch, G. Tischler, and J. Wolf von Gudenberg.
FILIB++—interval library specification and reference man-
ual. Technical Report 279, Universität Würzburg, Germany,
2001.

[31] Y. Lin and M. A. Stadtherr. Deterministic global optimiza-
tion for parameter estimation of dynamical systems. Ind.
Eng. Chem. Res., 2006. in press.

[32] Y. Lin and M. A. Stadtherr. Validated solution of initial
value problems for ODEs with interval parameters. In R. L.
Muhanna and R. L. Mullen, editors, Proceedings of 2nd NSF
Workshop on Reliable Engineering Computing, Savannah,
GA, February 2006.

[33] R. J. Lohner. Einschließung der Lösung gewöhnlicher
Anfangs– und Randwertaufgaben und Anwendungen. PhD
thesis, Universität Karlsruhe, 1988.

[34] K. Makino and M. Berz. Remainder differential algebras
and their applications. In M. Berz, C. Bischof, G. Corliss,
and A. Griewank, editors, Computational Differentiation:
Techniques, Applications, and Tools, pages 63–74. SIAM,
Philadelphia, Penn., 1996.

[35] K. Makino and M. Berz. Suppression of the wrapping effect
by Taylor model-based validated integrators. Technical Re-
port MSU HEP 40910, Department of Physics and Astron-
omy, Michigan State University, East Lansing, MI 48824,
USA, 2004.

[36] F. Mazzia and F. Iavernaro. Test set for initial value problem
solvers. Technical Report 40, Department of Mathematics,
University of Bari, Italy, 2003. http://pitagora.dm.
uniba.it/˜testset/.

[37] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood
Cliffs, N.J., 1966.

[38] H. Mukundan, K. H. Ko, T. Maekawa, T. Sakkalis, and
N. M. Patrikalakis. Tracing surface intersections with a val-
idated ODE system solver. In G. Elber and G. Taubin, edi-
tors, Proceedings of the Ninth EG/ACM Symposium on Solid
Modeling and Applications. Eurographics Press, June 2004,
June 2004.

[39] N. S. Nedialkov. Computing Rigorous Bounds on the Solu-
tion of an Initial Value Problem for an Ordinary Differential
Equation. PhD thesis, Department of Computer Science,
University of Toronto, Toronto, Canada, M5S 3G4, Febru-
ary 1999.

[40] N. S. Nedialkov. VNODE-LP — a validated solver for initial
value problems in ordinary differential equations. Techni-
cal Report CAS-06-06-NN, Department of Computing and
Software, McMaster University, Hamilton, Canada, L8S
4K1, July 2006. VNODE-LP is available at www.cas.
mcmaster.ca/˜nedialk/vnodelp/.

[41] N. S. Nedialkov and K. R. Jackson. An interval Hermite-
Obreschkoff method for computing rigorous bounds on the
solution of an initial value problem for an ordinary differ-
ential equation. Reliable Computing, 5(3):289–310, 1999.
Also in T. Csendes, editor, Developments in Reliable Com-
puting, pp. 289–310, Kluwer, Dordrecht, Netherlands, 1999.

[42] N. S. Nedialkov and K. R. Jackson. A new perspective
on the wrapping effect in interval methods for initial value
problems for ordinary differential equations. In A. Facius,
U. Kulisch, and R. Lohner, editors, Perspectives on En-
closure Methods, pages 219–264. Springer-Verlag, Vienna,
2001.

[43] N. S. Nedialkov and K. R. Jackson. The design and imple-
mentation of a validated object-oriented solver for IVPs for
ODEs. Technical Report 6, Software Quality Research Lab-
oratory, Department of Computing and Software, McMaster
University, Hamilton, Canada, L8S 4K1, 2002.

[44] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated
solutions of initial value problems for ordinary differential
equations. Appl. Math. Comp., 105(1):21–68, 1999.

[45] N. S. Nedialkov, K. R. Jackson, and J. D. Pryce. An effec-
tive high-order interval method for validating existence and
uniqueness of the solution of an IVP for an ODE. Reliable
Computing, 7:449–465, 2001.

[46] N. S. Nedialkov and J. D. Pryce. Solving differential-
algebraic equations by Taylor series (I): Computing Taylor
coefficients. BIT, 45:561–591, 2005.

[47] N. S. Nedialkov and J. D. Pryce. Solving differential-
algebraic equations by Taylor series (II): Computing the
System Jacobian. BIT, 2007. To appear.

[48] M. Neher, K. R. Jackson, and N. S. Nedialkov. On Taylor
model based integration of ODEs. SIAM J. Numer. Anal.,
45:236–262, 2007.

[49] C. C. Pantelides. The consistent initialization of differential-
algebraic systems. SIAM. J. Sci. Stat. Comput., 9:213–231,
1988.

[50] N. M. Patrikalakis, T. Maekawa, K. H. Ko, and H. Mukun-
dan. Surface to surface intersection. In L. Piegl, editor, In-
ternational CAD Conference and Exhibition, CAD’04, Thai-
land, May 2004.

[51] J. D. Pryce. Solving high-index DAEs by Taylor Series.
Numerical Algorithms, 19:195–211, 1998.

[52] J. D. Pryce. A simple structural analysis method for DAEs.
BIT, 41(2):364–394, 2001.

[53] N. Ramdani, N. Meslem, T. Raı̈ssi, and Y. Candau. Set-
membership identification of continuous-time systems. 14th
IFAC Symposium on System Identification, Newcastle,
Australia, 2006.

[54] O. Stauning. Automatic Validation of Numerical Solutions.
PhD thesis, Technical University of Denmark, DK-2800,
Lyngby, Denmark, October 1997.

[55] O. Stauning and C. Bendtsen. FADBAD++ web page, May
2003. FADBAD++ is available at www.imm.dtu.dk/
fadbad.html.

Computer-assisted proofs

Arnold Neumaier
Fakultät für Mathematik, Universität Wien

Nordbergstr. 15, A-1090 Wien, Austria
Arnold.Neumaier@univie.ac.at

http://www.mat.univie.ac.at/∼neum/

Abstract

This paper discusses the problem what makes a
computer-assisted proof trustworthy, the quest for an al-
gorithmic support system for computer-assisted proof, re-
lations to global optimization, an analysis of some recent
proofs, and some current challenges which appear to be
amenable to a computer-assisted treatment.

1 Introduction

Computer-assisted proofs have a long history. Perhaps
one of the oldest computer-assisted proofs dates back to the
year 1610:

Theorem (Ludolf van Ceulen 1610)
3.14159 26535 89793 23846 26433 83279 26433 deviates
from π by less than 10−35.

Proof. Apply the algorithm of Archimedes until the error
is small enough. ��

At that time, computers were human, slow and not very
reliable. The running time on the biological computer
quoted as the author of the theorem was over 14 years; the
amount of external storage (paper) used is not recorded.

The algorithm of Archimedes was well-known since an-
tiquity. But nobody checked the correctness of van Ceulen’s
implementation of it, nor inspected anyone the logfiles pro-
duced (probably they were not even kept as record). Never-
theless, the theorem is correct and was always regarded as
correct.

Improved error bounds, using a much faster algorithm,
were computed (on a similar computer) by SHANKS 1893.
Shanks approximated π to 707 decimal digits. Again, no-
body checked the correctness of the proof or the implemen-
tation. However, this time, although based on an algorithm
known to be correct, the theorem turned out – much later –
to be false (FERGUSON 1945): Only the first 527 digits (and

a few random later digits) were correct. It didn’t matter –
nobody needed (or needs today) so many digits of π. But
it is a scientific challenge to get things 100% right – even
things whose only use is to satisfy the human curiosity. To-
day, over 109 digits of π are believed to be known.

Trusting computations. All our communication, and all
our knowledge, is based on trust. Trust in the sources, trust
in the tools used to create and/or check statements, trust in
one’s memory and in one’s reasoning power. And trust in
computations, if these play a role.

Trust is important in all proofs, not only the computer-
assisted ones. We trust the referees, the experts in the fields,
the quoted references, or our own expertise. Sometimes, the
trust turns out to be unjustified later. Nevertheless, without
trust there is no knowledge, for everything can be doubted.
In particular, we trust computations

• if the algorithms on which they are based are under-
standable and have understandable correctness proofs,

• and if they are carried out with a degree of care that –
based on a finite amount of past experience on similar
computations – we learnt to rate as reliable.

In case of doubt, we may want to have independent im-
plementations with which the computations can be done.
Preferably these implementations should be based upon dif-
ferent algorithms to increase our confidence in the correct-
ness.

The Pentium bug a few years ago shows that computer
hardware cannot be trusted unconditionally. Nevertheless,
we expect that significant bugs are sooner or later found
and then corrected. The search for bugs usually begins with
getting an unexpected contradiction to supposed behavior,
followed by debugging – the search for the piece in the long
chain of arguments or instructions which had no true justi-
fication. After the corrections everything depending on the
correction must be repeated. For mistakes in crucial places
(such as in Shank’s calculation of π) on which many other
things depend, a large part of the results may be wrong.

On the other hand, in robust, well-structured mathemat-
ical proofs, there are many connections between the con-
cepts and arguments used. This has the consequence that
most results remain correct when a particular link is found
wanting. For example, Russell’s paradox invalidated the
logical basis of set theory, but hardly affected the bulk of
mathematics. This explains that mathematics as a whole
thrives, in spite of many wrong published theorems. But it
shows the importance of plausibility checks and/or formal
verification tools.

Proof checking. Checking a proof ist often (not always)
much easier than finding it. Finding the proof of the fol-
lowing result took at the time about 150 days of (human)
computer time. Checking it was a matter of 20 minutes.

Theorem. (Cole 1903)
267 − 1 is not a prime.

Proof. 267 − 1 = 761838257287 ∗ 193707721. ��

Most mathematicians regard this as a perfectly valid
proof, although the details are long and tedious, and error
prone (but doable) for manual checking. But the underlying
algorithm is familiar to many people (i.e., for the present
purposes, biological computers with independent imple-
mentations of the same algorithm) so that trust is granted
easily.

The traditional check of numerical calculations with a
pocket calculator happens to give the same results for the
left and right side of the equation in the proof. We know,
however, that pocket calculators are not reliable, and that
rational multiprecision arithmetic or interval arithmetic are
needed to guard against arithmetical errors in computer cal-
culations.

No one ever will probably want to check the details of
a proof of the following theorem, proved (using the formal
proof system Coq) by long computations:

Theorem. (CAPROTTI & OOSTDIJK [1])
The 40 decimal digit number

90262 58083 38499 68604 49366 07214 23078 01963
is a prime.

Thus having reduced a mathematical problem to algo-
rithmic computations together with a credible execution of
the computations is generally considered enough evidence
to count as a proof – except when the algorithms employed
are unfamiliar.

When the four-color-theorem was first proved in 1976,
the heavy computational part (weeks of combinatorial com-
putations) created strong sentiments about whether it was a
valid proof. In the mean time, reservations largely subsided.
The computational part of the four-color-problem has be-
come a test problem in mixed-integer linear programming,
(with 1372 binary variables and 4944 linear inequality con-
straints). See FERRIS et al. [3]. Although still nontriv-

ial to solve, its mathematical complexity is now embedded
in a well-tested algorithmic framework with many indepen-
dently written computer codes. Thus it is tamed, under-
stood, even though the details are executed by a computer.

The key for routine acceptability is therefore to reduce a
problem to one which can be settled by computer using gen-
eral purpose software available to many and used by many.

2 The structure of computer-assisted proofs

Typically, computer-assisted proofs which don’t consist
of pure computation proceed in three stages, which are not
always clearly separated:

Stage 1. Qualitative conceptual understanding reduces
the problem to a finite number of individual subproblems,
each characterized by a small number of parameters.

Stage 2. The analysis of each subproblem results in a
number of equations and/or inequalities satisfied for a coun-
terexample.

Stage 3. A specialized computational algorithm is ex-
ecuted, showing that the resulting constraint satisfaction
problems have no solution.

The third stage is completely independent of the remain-
der of the proof. But the formulation of the constraints that
make the third stage computationally tractable may involve
lots of trial and error.

This leads to the challenge to create software which han-
dles the third step stage automatically and reliably, without
the need on the user’s side to understand the details. This
will allow nonexpert users to pose the computational part of
a desired proof in a straightforward (close to) mathematical
language, and then run the verification software to check
whether the wanted statement can in fact be algorithmically
verified.

Such a software system would relieve users from hav-
ing to think about how to do the computations, so that they
can concentrate on the formulation of the constraints. If the
software is fast enough, it would allow users to try many
formulations and select the the most successful one.

In addition, this would allow computer-assisted proofs
to become much more transparent than at present (where
the computational and the conceptual parts of the proofs
are typically intermingled). It would also make indepen-
dent checks much easier since the statements which are to
be checked by computation are cleanly separated from the
conceptual arguments.

Computer-assisted proofs in analysis always require in-
terval methods; see, e.g., [4, 10, 12]. But the typical user
of such a verification system should need to know as lit-
tle about the intricacies of reducing overestimation in inter-
val computations as the typical player of a computer game
knows about the underlying computational geometry.

The success of Matlab as an algorithmic language for ap-
proximate numerical calculations is largely due to the sim-
plicity with which mathematical algorithms can be encoded.
The success of LaTeX as a mathematical typesetting lan-
guage is largely due to the flexibility with which traditional
mathematical notation can be encoded. Therefore, the part
of the verification software which the user sees should be as
simple to use as a Matlab editor and flexible enough that not
much more than elementary LaTeX knowledge is needed to
use the software.

The double bubble proof. To see what such a system
must be able to solve, I made a study of the computer-
assisted proof of the double-bubble conjecture by HASS et
al. [6]. From the perspective of the interval community,
a short synopsis of the problem and its solution was given
by Andreas FROMMER [4]. It is not easy to separate the
computationally proved part into a mathematical statement
involving only the conditions to be checked without further
reference to the geometric sources. Such a separation is
needed, however, to enable experts in computer verification
but not in geometry to make an independent check of the
computational part of the proof.

Here is how I understand what they proved by computer,
and what together with the conceptual arguments given in
their paper suffices to establish the validity of the double
bubble conjecture. (Their notation translates to my notation
as y1 = s1, y2 = s2.)

Theorem.
The following conditions are inconsistent:

c2
1 + s2

1 = c2
2 + s2

2 = 1,

s1 ≥ 0, s2 ≥ 0, c1 ≥ 0, |c2| ≤ 0.5,

−fi = f0 = us2
1 + s1c1

√
3 = us2

2 + s2c2

√
3,

h0 = 1 + u, hi = 1 − u, u ∈ [−1, 9],
∫ y2

y1

t0(y)√
4y2 − t0(y)2

|dy| =
∫ y2

y1

ti(y)√
4y2 − ti(y)2

|dy|
∫ y2

y1

y2t0(y)√
4y2 − t0(y)2

|dy| =
∫ y2

y1

y2ti(y)√
4y2 − ti(y)2

|dy|

where

t0(y) = h0y
2 − f0, ti(y) = hiy

2 − fi.

Here the absolute values indicate that the integral is to be
understood as a line integral along a path from y1 to y2 that
reverts its direction at points where the square root vanishes.
(It is not difficult to see that this implies that the singularity
is harmless.)

Clearly, this theorem needs no geometric knowledge for
its proof. It is also nearly obvious (at least for those knowl-
edgeable in interval techniques) that this theorem, if true,
can be proved in a finite computation using interval tech-
niques, by implementing a branch and bound process that
computes enclosures for both sides of each equation, and
discards a box if the resulting intervals are disjoint.

Assuming the theorem to be correct, the success of the
method is guaranteed if the enclosures have overestima-
tions that tend to zero with the box size, and this is easy
to achieve. The actual implementation of Hass and Schlafly
indeed uses only the simplest tools (Riemann sums, interval
evaluations, and a limited form of constraint propagation),
and finishes the work after having considered 15016 boxes.
(More sophisticated strategies would probably shorten the
computer-assisted part of the proof considerably.)

Note that formulating the theorem (and adding the above
comments) makes the whole proof much more transparent
than the proof as actually given. Every reader can see what
is the geometric and what is the algebraic part of the proof.
Thus, geometers could content themselves checking the ge-
ometric part and just trust the programs to settle the alge-
braic part; the numerical analysts could trust the geometry
and check the algebra. In this way the checking work is
naturally divided, and the proof easier to check. This adds
to the credibility and thus to its trustworthiness. At present
one needs to know both sides of the expertise to be able to
check the proof.

Had a reliable software system been widely available
that allows to check proposed theorems of the above form,
the authors would probably have used it – or would have
been encouraged by the referees to use it –, to the benefit
of all. The availability of such a verification system would
make people elsewhere aware of the possibilities of auto-
matic verification, and would give easy access to powerful
techniques which are currently for many potential users still
a big hurdle.

3 Relations to global optimization

In practice, one often wants to assert something specific
about concrete problems in analysis (as opposed to general
theorems about all objects of a certain type) To do this rigor-
ously requires the ability to reason with constructively given
elements or sets in R, R

n, or some function space. These
are typically defined in terms of inequalities (e.g., balls as
sets of points x with ‖x − x0‖ ≤ r). Thus we need to be
able to check whether certain equations and/or inequalities
imply others. Thus we need the ability to work efficiently
with equations and inequalities. The assertion

A(x) <= B(x) ⇒ f(x) < g(x)

for vector-valued functions A,B with componentwise in-
equality and real-valued functions f, g is equivalent with
the assertion that the system of inequalities

(
B(x) − A(x)
f(x) − g(x)

)
≥ 0

has no solution.
Thus we need to be able to verify rigorously the nonex-

istence of solutions of systems of inequalities. Traditional
numerical software systems cannot do this – not even ap-
proximately – in the absence of special properties such as
linearity or convexity. (Traditional nonlinear programming
software just spends some time trying to find a solution and
then gives up without a conclusion.) Instead, one needs
techniques based on interval arithmetic [10].

The problems stated are semilocal or even global in na-
ture: They must be solved with quantifying over sets with
substantial volume (the semilocal case) or even over un-
bounded sets (the global case).

Finding best inequalities leads to global optimization
problems. For polynomial optimization problems, proofs of
global optimality, and hence of the validity of inequalities,
are possible due to necessary and sufficient global optimal-
ity conditions recently derived by NEUMAIER & SCHICHL

[14]. The proof is based on a deep result from real algebraic
geometry, the so-called Positivstellensatz. This, in turn, can
be proved using nontrivial techniques from model theory.

The conditions lead to a certificate of optimality, con-
sisting in the coefficients of a polynomial equation. The
difficulty of proof finding is reflected in the potentially ex-
ponential size of the equation; but in practice often a small
certificate exists.

GloptLab [2] is a Matlab implementation of a branch-
and-bound method currently under development at the Uni-
versity of Vienna, mainly being implemented by Ferenc
Domes. It currently solves quadratic constraint satisfac-
tion problems defined by bound constraints and linear and
quadratic equations and inequalities. Every algebraic sys-
tem of equations and inequalities can be brought into this
form, but integrals (such as those needed in the double bub-
ble proof) are not covered at present. GloptLab is based
on constraint propagation combined with the maximal ex-
ploitation of quadratic (hence small) certificates of infeasi-
bility related to the above results.

Theorem.
For every positive semidefinite matrix G and every matrix
Z ≤ 0, the polynomial p(x) defined by

(
1
x

)T

G

(
1
x

)
=

⎛
⎝ 1

x − x
x − x

⎞
⎠

T

Z

⎛
⎝ 1

x − x
x − x

⎞
⎠+zT Q(x)+p(x)

satisfies 0 ≤ p(x) on the feasible set.

In place of longer polynomial certificates, case distinc-
tions (branching steps) are used. Compared with other
solvers for global optimization and constraint satisfaction,
the emphasis is on mathematical rigor and short proofs, i.e.,
a small number of branching steps. The implementation
uses the Intlab package (RUMP [11]) for interval calcula-
tions, the semidefinite programming package SeDuMi [15]
for finding certificates, and converters from the COCONUT
environment (SCHICHL [13]) to solve global optimization
problems posed in the modeling language AMPL.

Rounding error control is essential to make the compu-
tations mathematically rigorous. For example, a strictly
convex, quadratic inequality constraint defines an ellip-
soid whose interval hull is easy to compute analytically.
But to cope efficiently with rounding errors is nontrivial.
GloptLab uses an algorithm which computes a directed
Cholesky factor for a symmetric, positive definite interval
matrix A, i.e., a nonsingular triangular matrix R such that
A − RT R is positive semidefinite for all A ∈ A, and tiny
if the components of A are narrow intervals. In particular,
xT Ax ≥ ‖Rx‖2

2, with little overestimation. This allows us
to write strictly convex, quadratic inequalities in the form
||Rx‖2

2 − 2aT x ≤ α. By solving RT Rx0 = a, we find
bounds ‖R(x − x0)‖2 ≤ δ :=

√
max{0, α + aT x0}, from

which one can find the componentwise bounds |x − x0| ≤
δ diag(R−1R−T).

4 Open conjectures

We end by listing some open conjectures which are likely
to be tractable in the near future by computer-assisted tech-
niques.

The Wright conjecture (1955).
For 0 < p < π/2, every solution of the delay-differential
equation x′(t) = −p(1 + x(t))x(t − 1) tends to zero as
t → ∞.

This conjecture by WRIGHT [17] is currently under at-
tack in Szeged, and appears to be ”almost” (i.e., up to final
correctness checks) solved.

Hilbert’s 16th Problem, second part (1900).
“This is the question as to the maximum number and po-
sition of Poincaré’s boundary cycles (cycles limites) for a
differential equation of the first order and degree of the form

dy

dx
=

Y

X
,

where X and Y are rational integral functions of the n-th
degree in x and y. Written homogeneously, this is

X(y
dz

dt
− z

dy

dt
) + Y (z

dx

dt
− x

dz

dt
) + Z(x

dy

dt
− y

dx

dt
) = 0,

where X , Y , and Z are rational integral homogeneous func-
tions of the n-th degree in x, y, z, and the latter are to be
determined as functions of the parameter t.“ (quoted from
HILBERT [7]). The problem has been reposed in 2000 by
SMALE [16] as one of the “Mathematical Problems for the
Next Century”. For a recent survey, see ILYASHENKO [8].

It is known that the number of limit cycles is finite in
each particular instance, but no finite upper bound is known.
This problem is still unsolved, even for n = 2, in spite of a
lot of research on the problem. For n = 2, the largest num-
ber of limit cycles known is 4, and probably this bound is
tight. For n = 2, the problem amounts to understanding the
set of periodic solutions of pairs of autonomous differential
equations

ẋ = ax2 + bxy + cy2 + dx + ey + f,

ẏ = a′x2 + b′xy + c′y2 + d′x + e′y + f ′.

This is a 12-dimensional manifold of orbits, which can be
reduced to 5 dimensions by suitable linear transformation of
the variables. Periodic solutions can be described as fixed
points of Poincaré maps. Hence the problem is to show that
certain equations F (z, w) = z in the single variable z and
parameterized by a 5-dimensional vector w never have more
than 4 solutions (except when they have infinitely many – a
degenerate, well understood case excloded by the demand
that the periodic solution is a limit cycle).

The low dimension makes the problem appear feasible
for branch and bound techniques. Some obstacles remain:
The fixed point equation is not algebraic but a Poincaré
mapping must be enclosed, and the parameter vector ranges
over an unbounded 5-dimensional manifold, whence addi-
tional asymptotic estimates are needed.

The Thompson-Smith problem (2000).
Is 10 or 12 the minimim norm of the Thompson-Smith lat-
tice in dimension 248?

The conjectured answer 12 (for background informa-
tion see LEMPKEN et al. [9]) would follow (according to
Gabriele Nebe, personal communication) from the solvabil-
ity of a nonlinear mixed integer constraint satisfaction prob-
lem. The integer coefficients are generated automatically by
Maple; some have several hundred digits.

5 Conclusion

As we have seen, there is lots of interesting work to be
done at the interface between

• Mathematics – the art and science of unambiguous
concepts,

• Logic – the art and science of impeccable reasoning,

• Operations Research – the art and science of optimal
planning,

• Numerical Analysis – the art and science of algorith-
mic approximation, and

• Computer Science – the art and science of efficient
computation.

References

[1] O. Caprotti and M. Oostdijk, Formal and Efficient Pri-
mality Proofs by Use of Computer Algebra Oracles, J.
Symbolic Computation 32 (2001), 55-70.

[2] F. Domes and A. Neumaier, GLOPTLAB – a Matlab-
based global optimization laboratory. In preparation
(2007).

[3] M.C. Ferris, G. Pataki and S. Schmieta, Solving the
Seymour problem, Optima 6 (2001), 2.

[4] A. Frommer, Proving conjectures by use of inter-
val arithmetic, pp. 1–13 in: Perspective on Enclo-
sure Methods (U. Kulisch et al., eds.), Springer, Wien
2001.

[5] T.C. Hales, A Proof of the Kepler Conjecture, Annals
of Mathematics 162 (2005), 1065-1185.
Computations are described in the special issue: Dis-
crete and Computational Geometry, 36 (2006), 1-265.

[6] J. Hass, M. Hutchings, and R. Schlafly, Double bub-
bles minimize, Ann. Math. (2) 515 (2000), 459–515.
http://math.ucdavis.edu/∼hass/
bubbles.html

[7] D. Hilbert, Mathematical Problems, Bull. Amer.
Math. Soc. 8 (1901/2), 437–479.

[8] Yu. Ilyashenko, Centennial history of Hilbert’s 16th
problem, Bull. Amer. Math. Soc. 39 (2002), 301-354.

[9] W. Lempken, B. Schröder and P.H. Tiep, Symmetric
Squares, Spherical Designs, and Lattice Minima, J.
Algebra, 2001

[10] A. Neumaier, Interval methods for systems of equa-
tions, Cambridge Univ. Press 1990.

[11] S.M. Rump, INTLAB – INTerval LABoratory, pp.
77–104 in: Developments in reliable computing (T.
Csendes, ed.), Kluwer, Dordrecht 1999.
http://www.ti3.tu-harburg.de/rump/
intlab/index.html

[12] S.M. Rump, Verification methods for dense and sparse
systems of equations, pp. 63-136 in: J. Herzberger
(ed.), Topics in Validated Computations – Studies
in Computational Mathematics, Elsevier, Amsterdam
1994.

[13] H. Schichl, The COCONUT environment.
http://www.mat.univie.ac.at/
coconut-environment/

[14] H. Schichl and A. Neumaier, Transposition theorems
and qualification-free optimality conditions, SIAM J.
Optimization, to appear (2006).
http://www.mat.univie.ac.at/∼neum/
papers.html#trans

[15] SEDUMI web site.
http://sedumi.mcmaster.ca/

[16] S. Smale, Mathematical Problems for the Next Cen-
tury, Math. Intelligencer 20, No. 2, 7-15, 1998.

[17] E. M. Wright, A nonlinear difference-differential
equation, J. Reine Angew. Math. 194 (1955), 66-87.

On the solution to numerical problems using stochastic arithmetic

René Alt, Jean-Luc Lamotte
CNRS, UMR 7606, LIP6

University Pierre et Marie Curie
4 place Jussieu

75252 Paris cedex 05, France
Rene.Alt@lip6.fr

Jean-Luc.Lamotte@lip6.fr

Svetoslav Markov
Institute of Mathematics and Informatics

Bulgarian Academy of Sciences
“G. Bonchev” st.

bl. 8, 1113 Sofia, Bulgaria
smarkov@bio.bas.bg

Abstract

We investigate some algebraic properties of the system of
stochastic numbers with the arithmetic operations addition
and multiplication by scalars and the relation inclusion and
point out certain practically important consequences from
these properties. Our idea is to start from a minimal set
of empirically known properties and to study these proper-
ties by an axiomatic approach. Based on this approach we
develop an algebraic theory of stochastic numbers. A nu-
merical example based on the Lagrange polynomial demon-
strates the consistency between the CESTAC method and the
presented theory of stochastic numbers.

1. Introduction

The CESTAC method is a widely used statistical Monte-
Carlo type method to compute the accuracy of the solu-
tion of real life numerical problems implemented on a com-
puter. In this method an imprecise numbers is represented
as an N -tuple of random values with Gaussian distribution
so that the mean value and standard deviation of this N -
tuple provide respectively approximations of the exact un-
known value and of the error. Such an N -tuple which is
a sampling of a Gaussian random variable is named in this
context a discrete stochastic number. In practice the CES-
TAC method has been implemented in a software called
CADNA in which the N samples of the stochastic num-
bers are randomly rounded up or down so as to take into
account the round-off errors, see [3], [8], [9], [12], with the
same idea that directed rounding is used for implementing
interval arithmetic [5].

In order to provide a good algebraic understanding of
the performance of the CESTAC method discrete stochastic
numbers have been modeled as Gaussian random variables

with a known mean value and a known standard deviation
named here stochastic numbers. Thus stochastic numbers
are idealizations of discrete stochastic numbers. To get an
idea of the operations between stochastic numbers it should
be mentioned that we are concerned with imprecise data
in which the unknown errors are relatively important (say,
of order 10−2–10−3) whereas the arithmetic operations are
performed using double precision arithmetic. In this case
it can be easily checked that addition and multiplication by
reals in the CESTAC method satisfy certain algebraic prop-
erties, e. g. stochastic numbers form a commutative and
cancellative monoid with respect to addition. Some funda-
mental properties of stochastic numbers are considered in
[4], [10].

This work is part of a more general one, which aims,to
study the abstract algebraic structures induced by the oper-
ations on stochastic numbers and to compare the relevant
theory with the performance of the CESTAC method [1],
[2], [6], [7]. In the paper we restrict ourselves to the arith-
metic operations addition, negation and multiplication by
scalars and the relation inclusion.

1.1. Stochastic Arithmetic (CSA): basic
properties

Denote by S the set of stochastic numbers and by Sn the
set of all n-tuples of stochastic numbers. The operations
addition and multiplication by −1 (negation) are well de-
fined in S, resp. Sn. We next recall some basic properties
of these operations and derive some logical consequences
of these properties, which will allow us to better under-
stand the nature of stochastic numbers. The system (Sn, +)
is a commutative monoid (semigroup with null) with can-
cellation law. The operator negation is an automorphism
¬ : Sn → Sn, that is: ¬(A + B) = ¬A + (¬B), and
involution: ¬(¬A) = A. These properties can be checked
experimentally, say, by a CESTAC-like method, see e. g.

[8], [9], [10]. So, we next consider these properties as ax-
iomatically given, and we want to derive some simple con-
sequences.

We first note that Sn is not a group with respect to addi-
tion; however it can be easily embedded in a group. The
standard algebraic construction that converts any abelian
monoid with cancellation law into a group will be further
referred as embedding construction. Recall that this ap-
proach is used to pass from the monoid of nonnegative reals
(R+, +) to the set of reals (R, +). Thus, it is natural instead
of the original system (Sn, +) to consider the extended sys-
tem (Sn, +) obtained by the embedding construction. We
next briefly recall this construction.

1.2. Algebraic completion of the monoid of
stochastic numbers

Every abelian monoid (M, +) with cancellation law in-
duces an abelian group (M, +), where M = M2/ ∼ is
the difference (quotient) set of M consisting of all pairs
(A, B) factorized by the congruence relation ∼: (A, B) ∼
(C, D) iff A+D = B+C, for A, B, C, D ∈ M . Addition
in M is defined by (A, B) + (C, D) = (A + C, B + D).
The neutral (null) element of M is the class (Z, Z), Z ∈
M . Due to the existence of null element in M , we have
(Z, Z) ∼ (0, 0). The opposite element to (A, B) ∈ M

is opp(A, B) = (B, A). The mapping ϕ : M −→ M

defined for A ∈ M by ϕ(A) = (A, 0) ∈ M is an em-
bedding of monoids. We embed M in M by identifying
A ∈ M with the equivalence class (A, 0) ∼ (A + X, X),
X ∈ M ; all elements of M admitting the form (A, 0)
are called proper and the remaining (new) elements are
called improper. The set of all proper elements of M is
ϕ(M) = {(A, 0) | A ∈ M} ∼= M .

Using the embedding construction described above the
system (Sn, +) is embedded into a group (Sn, +) in a
unique way. We define multiplication by −1, called nega-
tion, in the group S

n, by means of: ¬(A, B) = (¬A,¬B),
A, B ∈ Sn. In what follows we shall use lower case
roman letters to denote the elements of S

n, writing e. g.
a = (A1, A2), A1, A2 ∈ S

n. Thus negation will be denoted
as ¬a; a ¬ b means a + (¬b). Clearly the properties of
negation in S hold also in S, that is: ¬(a + b) = ¬a ¬ b
and ¬(¬a) = a. From opp(a) + a = 0 we obtain
¬opp(a) ¬ a = 0, that is ¬opp(a) = opp(¬a). The el-
ement ¬opp(a) = opp(¬a) is further denoted by a− and
the corresponding operator is called dualization or conju-
gation. We say that a− is the conjugate (or dual) of a. In
the sequel we shall express the opposite element symboli-
cally as: opp(a) = ¬a−, minding that a + (¬a−) = 0 (to
be briefly written a ¬ a− = 0).

In Section 2 we investigate the system (Sn, +,¬) ob-
tained by algebraic completion by means of a novel ap-

proach. Namely, starting from a minimal set of basic al-
gebraic properties, we naturally arrive to the necessity of
studying separately the spaces of mean values (which is
a vector space) and of standard deviations (which is an s-
space). In Section 3 we consider the system (Sn, +, R, ∗).
There we also discuss an algebraically natural approach to
define an order relation inclusion for stochastic numbers ar-
riving thus to the system (Sn, +, R, ∗,⊆). In Section 4 we
give some numerical examples aiming to compare the CSA
theory with the performance of the CESTAC method. Our
numerical experiments with Lagrange interpolation demon-
strate that the model of stochastic numbers is, at least in the
case of the operationsin consideration, in perfect agreement
with the results obtained with the CESTAC method.

2. Decomposing the group of stochastic num-
bers

We shall now concentrate on the algebraic properties of
the system (Sn, +,¬). For a better understanding the fol-
lowing reminder about expressions involving the dual op-
erator will be useful: i) a + opp(a) = 0 is equivalent to
a− ¬ a = 0 or a ¬ a− = 0; ii) (a + b)− = a− + b−, iii)
y ¬ y = 0 is equivalent to y = y−; iv) ¬z = z is equivalent
to z + z− = 0. An element y with property iii) is called lin-
ear or distributive; an element z with property iv) is called
centred or 0-symmetric.

Denote nx = x + x + ... + x (n times). We recall that
a divisible (additive) group is such that every equation of
the form nx = a has a solution x for any a ∈ G; the solu-
tion will be further denoted (1/n)a. An (additive) group is
torsion-free if na = 0 implies a = 0 for any a ∈ G.

Remark. Clearly, the group of stochastic numbers is
divisible and torsion-free (the monoid possesses the same
properties). For our purposes it will be sufficient that the
following two properties hold in (G, +): i) x + x = a =⇒
x = (1/2)a, and ii) x + x = 0 =⇒ x = 0. Note that the
latter property is equivalent to x + x = y + y =⇒ x = y
(indeed, x +x = y + y =⇒ (x ¬ y−)+ (x ¬ y−) = 0 =⇒
(x ¬ y−) = 0 =⇒ x = y).

Let (G, +) be an additive abelian divisible torsion-free
group. In addition we shall assume that G posseses an
involutary automorphism ¬ : G → G, such that: C1.
¬(a + b) = ¬a ¬ b; C2. ¬(¬a) = a.

Remark. In particular, the operator “¬” may coincide
with opposite or identity. Conditions C1–C2 imply ¬0 = 0
(to see this substitute b = ¬a− in C1).

Theorem (Decomposition theorem). G is an additive
divisible torsion-free abelian group with an involutary au-
tomorphism “¬”. For every x ∈ G there exist unique
y, z ∈ G, such that: i) x = y + z; ii) y ¬ y = 0; iii)
¬z = z; iv) y = z =⇒ y = z = 0.

Proof. Let us consider equations i)–iii) as a system of
equations for x, y, z and let us solve this system with re-
spect to y and z. To this end we shall repeatedly use some
properties of the dual operator, such that opp(a) = ¬a−,
equation y ¬ y = 0 is equivalent to y = y− and ¬z = z is
equivalent to z + z− = 0.

Write x = y + z in the form: x− = y− + z−; replacing
y− by y and z by ¬z we obtain: x− = y ¬ z−. Adding the
latter equation to x = y + z we obtain

x + x− = y + y. (1)

Similarly, write x = y + z in the form :¬x = ¬y + ¬z;
replacing y− by y and z by ¬z we obtain: ¬x = ¬y− + z.
Adding the latter equation to x = y + z we obtain

x ¬ x = z + z. (2)

Summing up equations (1) and (2) we obtain x + x =
y + y + z + z, which implies x = y + z (using that x+x =
0 =⇒ x = 0).

Assume now that a x ∈ G is given. Chose y and z to
satisfy resp. (1) and (2). Such elements exist due to the
divisibility assumption; denote them y = (1/2)(x + x−)
and z = (1/2)(x ¬ x). Clearly, y is linear, whereas z is
centred. As we have x = y + z, it follows that any x ∈ G is
decomposable into a sum of a linear and a centred element.
To show that the sum is direct, it remains to prove that y =
z =⇒ y = z = 0. Assume y = z. Then y + y = z + z,
or x + x− = x ¬ x. The latter implies x− = ¬x, or
x = ¬x− = opp(x), or x + x = 0, or x = 0 (again due to
the assumption x + x = 0 =⇒ x = 0). �

Comments. The Decomposition theorem states that any
x ∈ G can be written in the form:

x = y + z = (1/2)(x + x−) + (1/2)(x ¬ x). (3)

The element y = (1/2)(x+x−) satisfies y = y−, equiv-
alently y ¬ y = 0; thus y is a linear (distributive) element.

Alternatively, the element z = (1/2)(x ¬ x) satisfies
z = ¬z, equivalently z + z− = 0; therefore z is centred
(0-symmetric).

The subset of all linear elements of G is denoted G′ =
{y ∈ G | y ¬ y = 0} and the subset of all centred elements
of G is denoted G′′ = {z ∈ G | z = ¬z}.

If negation coincides with opposite in G, then x ¬ x = 0
for all x ∈ G and, from (3): x = (1/2)(x + x−) for all
x ∈ G. In this case the subset G′′ is empty and G consists
only of linear elements. Alternatively, if negation coincides
with identity in G, then x+x− = 0 for all x ∈ G and, from
(3): x = (1/2)(x ¬ x) for all x ∈ G. In this case the subset
G′ is empty and G consists only of centred elements.

Corollary. Let G be an additive divisible torsion-free
abelian group with an involutary automorphism “¬”. Then

G is a direct sum of G′ = {y ∈ G | y ¬ y = 0} and
G′′ = {z ∈ G | z = ¬z}, symbolically G = G′ ⊕G′′.

Remark. Note that while the group G = (G, +,¬) pos-
sesses an operator (negation) in addition to opposite, the
subgroups G′, G′′ do not possess additional operator (as
negation coincides with opposite in G′ and with identity in
G′′). Therefore we do not need to write down the operator
negation in the groups: G = G′ ⊕G′′ can be written as
(G, +,¬) = (G′, +)

⊕
(G′′, +).

2.1. Practical consequences

The Decomposition theorem implies that the alge-
braically natural presentation of stochastic numbers is as
a sum of two components — a linear component and a
centred component. The linear component, by definition,
is such that negation of this element coincides with oppo-
site, and the centred component is such that negation co-
incides with identity. The latter holds for elements of S,
but it also holds for elements of S (that is proper stochastic
numbers). Indeed, by the embedding construction, proper
stochastic numbers as elements of S are pairs of the form
(A, 0), wherein A ∈ S. Assume first that (A, 0) is linear,
that is (A, 0) ¬ (A, 0) = 0; this implies A ¬ A = 0,
that is negation of A coincides with opposite. Such prop-
erty have, e. g., real numbers (real vectors) as elements of
a linear space. Assume now that (A, 0) is centred, that is
(A, 0) = ¬ (A, 0); this means A = ¬ A, that is negation
of A coincides with identity.

According to the Corollary the group of stochastic num-
bers S decomposes as a direct sum of two subgroups S =
S′ ⊕

S
′′. Thus a stochastic number a ∈ S can be written in

the form a = (a′; a′′). As well-known, the first component
a′ is interpreted as mean value, and the second component
a′′ is the standard deviation. A stochastic number of the
form (a′; 0) has zero standard deviation and represents a
(pure) mean value, whereas a stochastic number of the form
(0; a′′) has zero mean value and represents a (pure) standard
deviation. Using addition in S, as defined in a direct sum by
means of (a′; a′′) + (b′; b′′) = (a′ + b′; a′′ + b′′), we have
the presentation a = (a′; a′′) = (a′; 0) + (0; a′′). For nega-
tion we have ¬a = ¬(a′; a′′) = (¬a′;¬a′′) = (−a′; a′′),
minding that ¬a′ = −a′ and ¬a′′ = a′′.

In the case of stochastic vectors we have: a = (a′; a′′) ∈
S

n with a′ ∈ R
n, a′′ ∈ R

n. We have a′′ ≥ 0 for a proper;
a′′ has at least one negative component for improper a.

The two systems (S′, +), (S′′, +) composing (S, +,¬)
are of distinct algebraic nature, hence it is correct to use
different notations for the operation addition. The system
of mean values is identified with the additive group of reals
(R, +) where negation coincides with opposite: ¬δ = −δ
for δ ∈ R. Therefore we shall use the usual sign for addition
in the system (S′, +), but we use a distinct sign for addition

in the system (S′′, +), namely (S′′,⊕).
In order to characterize the system (S′′,⊕) define for

α ∈ R the sign function σ by: σ(α) = {+, if α ≥
0; −, if α < 0}. As shown in [6], [7], the system
(S′′,⊕) is identified with the group system (R,⊕), where
for α, β ∈ R addition is defined by:

α ⊕ β = σ(α + β)
√

|σ(α)α2 + σ(β)β2|, (4)

and negation is identity: ¬δ = δ for δ ∈ R.
Define the symmetric square and square root functions

by: α
b2 = σ(α)α2, α

d1/2 = σ(α)|α|1/2, α ∈ R. If α ≥ 0
then α

b2 coincides with α2, similarly α
d1/2 and α1/2 are iden-

tical; however if α < 0 then α
b2 = −α2, α

d1/2 = −α1/2.
Using the symmetric square and square root functions (4)
can be written as

α ⊕ β = (αb2 + β
b2)

d1/2. (5)

For two stochastic numbers (m1; s1), (m2; s2) ∈ S, we
have

(m1; s1) + (m2; s2) = (m1 + m2; (s
b2
1 + s

b2
2)

d1/2), (6)

¬(m1; s1) = (−m1; s1). (7)

For the special case of two proper stochastic numbers
(m1; s1), (m2; s2), s1, s2 ≥ 0, formula (6) becomes

(m1; s1) + (m2; s2) = (m1 + m2;
√

s2
1 + s2

2). (8)

This is the familiar formula for the addition of two in-
dependent random variables with normal distribution. The
advantage of formula (6) is that it can be applied in the gen-
eral case without assuming nonnegativity of standard devi-
ations.

3. The space (Sn, +, R, ∗,⊆)

The Decomposition theorem states that a group with
negation is a direct sum of two spaces under mild as-
sumptions for the group (divisibility, torsion-freedom) and
the negation operator (automorphism, involution). As the
groups S, resp. S

n, satisfy these assumptions (as known
from empirical evidence), we can state that S = S

′ ⊕
S
′′,

resp. S
n = (S′)n ⊕

(S′′)n, where S
′ is the space of mean

values and S
′′ is the space of standard deviations.

3.1. Multiplication by scalars

Multiplication by scalars “∗” is defined for x = (m; s) ∈
S by

γ ∗ x = γ ∗ (m; s)
def
= (γm; |γ|s), γ ∈ R. (9)

Clearly, the system (S′, +, R, ∗) is a linear space and will
be written also as (S′, +, R, ·). As we know the system
(S′′,⊕, R, ∗), resp. ((S′′)n,⊕, R, ∗), with operation addi-
tion defined by (4) and multiplication by scalars defined
from (9) by

γ ∗ s = |γ|s, γ ∈ R, (10)

is an s-space in the sense of the following definition [6]:

Definition. The system (G,⊕, RD, ∗) is called an s-
space if (G,⊕) is an abelian group, such that for s, t ∈ G,
α, β ∈ R:

α ∗ (s ⊕ t) = α ∗ s ⊕ α ∗ t, (11)

α ∗ (β ∗ s) = (αβ) ∗ s, (12)

1 ∗ s = s, (13)

(−1) ∗ s = s, (14)√
α2 + β2 ∗ s = α ∗ s ⊕ β ∗ s. (15)

Let us define in (S′′,⊕, R, ∗) two operations as follows:

α + β = (α
d1/2 ⊕ β

d1/2)b2, (16)

γ · s = γ ∗ sσ(γ), γ ∈ R. (17)

It can be easily checked that the space (S′′, +, R, ·) with
operations “+” and “·” defined by (16), (17) is linear. Thus
the space (S′′,⊕, R, ∗) can be considered as a linear space
with two additional operations, namely (S′′, +,⊕, R, ·, ∗).

3.2. Inclusion

We next discuss two relations for inclusion of stochas-
tic numbers. The so-called interval inclusion (briefly: i-
inclusion) is defined for x1 = (m1; s1), x2 = (m2; s2) ∈
S, by:

x1 ⊆i x2 ⇐⇒ |m2 − m1| ≤ s2 − s1. (18)

We note that addition is inverse i-inclusion isotone, that
is: x1 + y ⊆i x2 + y implies x1 ⊆i x2 [2]. However, it
is easy to see that i-inclusion isotonicity does not hold, i. e.
x1 ⊆i x2 does not imply x1 + y ⊆i x2 + y. If we want that
a two-directional implication

x1 ⊆ x2 ⇐⇒ x1 + y ⊆ x2 + y

holds in S, then instead of “⊆i” we should use the inclusion
relation “⊆s” between two stochastic numbers defined by

x1 ⊆s x2 ⇐⇒ |m2 − m1|2 ≤ s2
b2 − s1

b2. (19)

Relation (19) is called stochastic inclusion, briefly: s-
inclusion. In the proper case s-inclusion has been proposed
in [1].

Proposition 1. Addition and multiplication by scalars
are (inverse) inclusion isotone (invariant with respect to s-
inclusion).

The proof in the general case (s real) is similar to the one
for the proper case (s nonnegative) see [1].

Remark. In fact it can be seen that x1 ⊆s x2 if x2 = x1+
y for some stochastic number y = (m, s) whose ”range”
[m − s, m + s] contains 0.

We shall next compare relations (19) and (18). To this
end we introduce an end-point presentation.

End-point presentation. This presentation may be use-
ful when dealing with confidence intervals. The confidence
interval corresponding to the stochastic number (m; s) is
[m − γs, m + γs], where γ > 0 is a chosen number (usu-
ally γ ≈ 2). For simplicity in the sequel we assume γ = 1,
which corresponds to usual compact intervals on R.

Recall that the relation between the end-point presen-
tation of an interval A = [a−, a+] ⊆ R and its mid-
point/radius presentation A = (a′; a′′) is given by:

a− = a′ − a′′, a+ = a′ + a′′;

a′ = (a− + a+)/2, a′′ = (a+ − a−)/2.

Recall also the relation a+a− = a′2 − a′′2.
The i-inclusion (18) admits a simple end-point presenta-

tion, namely for A ⊆i B condition |b′ − a′| ≤ b′′ − a′′ is
presented in end-point form as b− ≤ a−, a+ ≤ b+. We
next look for an end-point presentation for the s-inclusion
(19): A ⊆s B ⇐⇒ (b′ − a′)2 ≤ b′′2 − a′′2.

The condition (b′ − a′)2 ≤ b′′2 − a′′2 can be written as
b′2−b′′2 +a′2 +a′′2 ≤ 2a′b′. Replacing b′2−b′′2 = b+b−,
a′ = (a− + a+)/2, a′′ = (a+ − a−)/2, etc. we obtain:
2b+b− + a+2 + a−2 ≤ (a+ + a−)(b+ + b−). Thus the
end-point condition for s-inclusion obtains the form:

A ⊆s B ⇐⇒ a+2 + a−2 + 2b+b− ≤ (a+ + a−)(b+ + b−),

which can be also written in the form 2(b+b− − a+a−) ≤
(a+ + a−)(b+ + b− − (a+ + a−)).

Proposition 2. Interval inclusion (18) implies stochastic
inclusion (19).

Proof. We sketch the proof for proper stochastic num-
bers. Assume that A = (a′; a′′) is i-included in B =
(b′; b′′), A ⊆i B, which according to (18) means |b′−a′| ≤
b′′ − a′′. We have to show that (19) holds true. Note
first that from (18) we have 0 ≤ a′′ ≤ b′′. Now from
|b′ − a′| ≤ b′′ − a′′ we have (b′ − a′)2 ≤ (b′′ − a′′)2 ≤
(b′′ − a′′)(b′′ + a′′) = b′′2 − a′′2. �

As a consequence from Proposition 2, stochastic addi-
tion is i-inclusion isotone.

3.3. Lattice operations

The lattice operations for the i-inclusion are well-known.
We next consider the lattice operations for the s-inclusion,
sketching the results for proper intervals. The case when
one of the stochastic number is s-included in the other one
is obvious. Let us determine sup(A, B) = C for the case
when neither A ⊆s B, nor B ⊆s A.

Recall that in the case of i-inclusion we have :

c′′ = |c′ − a′| + a′′ = |c′ − b′| + b′′.

From |c′−a′|+a′′ = |c′− b′|+ b′′ we can compute first
c′ and then c′′ = |c′ − a′| + a′′.

Similarly in the case of s-inclusion we have:

c′′2 = a′′2 + (c′ − a′)2 = b′′2 + (b′ − c′)2.

From a′′2 +(c′−a′)2 = b′′2 +(b′− c′)2 we compute c′:

2c′ =
b′2 + b′′2 − (a′2 + a′′2)

b′ − a′ =
b′′2 − a′′2

b′ − a′ + b′ + a′.

For c′′2 = a′′2 + (c′ − a′)2 we obtain:

4c′′2 =
(b′′2 − a′′2)2

(b′ − a′)2
+ 2(b′′2 + a′′2) + (b′ − a′)2.

Let us now determine inf(A, B) = D for the case when
neither A ⊆s B, nor B ⊆s A.

Recall first that in the case of i-inclusion we have:

d′′ = a′′ − |d′ − a′| = b′′ − |d′ − b′|.
From a′′−|d′−a′| = b′′−|d′− b′| we can compute first

d′ and then d′′ = a′′ − |d′ − a′|.
Similarly in the case of s-inclusion we have:

d′′2 = a′′2 − (d′ − a′)2 = b′′2 − (b′ − d′)2.

From a′′2 − (d′ − a′)2 = b′′2 − (b′ − d′)2 we compute
d′:

2d′ =
b′2 − b′′2 − (a′2 − a′′2)

b′ − a′ = −b′′2 − a′′2

b′ − a′ + b′ + a′.

For d′′2 = a′′2 − (d′ − a′)2 we obtain:

4d′′2 = − (b′′2 − a′′2)2

(b′ − a′)2
+ 2(b′′2 + a′′2) − (b′ − a′)2.

Clearly, we have d′′ < 0 for relatively small standard
deviations a′′, b′′ and relatively large value of |b′−a′|. This
means that inf(A, B) can have a negative standard deviation
for proper stochastic numbers. In other words two proper
stochastic numbers may not have a proper infimum.

4. Application: Lagrange interpolation

The goal of this section is to compare the results obtained
with the theory developed in this paper, which is named
continuous stochastic arithmetic (CSA), with respective re-
sults obtained with the CESTAC method and with interval
arithmetic.

As mentioned in the introduction, in the CESTAC
method, each stochastic variable is represented by a N -
tuple of gaussian random values with known mean value
m and standard deviation s. The method also uses a spe-
cial arithmetic called discrete stochastic arithmetic (DSA),
which acts on the N -tuples.

In the scope of granular computing [11], stochastic arith-
metic CSA operates on stochastic numbers and is directly
derived from operations on independent gaussian random
variables. Hence a stochastic number is a granule and CSA
is a tool for computing with granules.

With the same point of view of granular computing, in
discrete stochastic arithmetic (DSA) a granules is composed
by a N -tuple of samples of the same mathematical result
of an arithmetical operator implemented in floating point
arithmetic. The samples differ from each other because
data are imprecise and because of different rounding. The
operator acting on these granules is a floating point opera-
tor corresponding to the exact arithmetical operator which
is performed N times in a synchronous way with random
rounding. Thus the result is also a granule named discrete
stochastic number. It has been shown that DSA operating
on discrete stochastic numbers has many properties (but not
all) of real numbers; In particular the notion of stochastic
zero has been defined. As explained above, the CADNA
library merely implements DSA.

To compare the two models, a specific library has been
developed which implements both continuous and discrete
stochastic arithmetic. The computations are done sepa-
rately. CSA implements the mathematical rules defined
above in sections 2–3.

The comparison has been done on the Lagrangian inter-
polation method. Let (xi, yi), i = 0, 1, ..., n, be a set of
n + 1 pairs of numbers where all xi are different. We want
to compute the value p(t) of the Lagrangian polynomial at
a given point t with the classical formula:

p(t) = y0l0(t) + y1l1(t) + · · · + ynln(t), (20)

wherein

li(t) =

∏
i�=j(t − xj)∏

i�=j(xi − xj)
.

We consider the situation when the values of yi are im-
precise (contain some errors) and xi are considered exact.
This case is within the scope of our theoretical results where

only addition or subtraction between two stochastic num-
bers and multiplication of a stochastic number by a real
number is considered.

For all examples presented below, we take n = 10; the
exact x-values are defined as xi = i, i = 1, ..., n + 1,
and the imprecise values yi are around 1. The latter means
that in the interval case all intervals yi have a midpoint 1,
whereas in the stochastic case they have a mean value 1.

4.1 Interval approach

First, the interval approach is considered to obtain ex-
act bounds for the results assuming that some guaranteed
bounds are given for the data yi in the form of intervals Yi,
that is yi ∈ Yi.

Then it is well-known that at each t

p(t) ∈ P (t) = l0(t) ∗ Y0 + l1(t) ∗ Y1 + · · · + ln(t) ∗ Yn.

The computation of the interval polynomial P (t) has
been performed with the Intlab implementation [5] of in-
terval arithmetic. The maximum error on the Yi value is
ierr = 0.02. With the case Yi = [1 − ierr; 1 + ierr] =
constant and xi = i, i = 1, ..., 11, the upper and lower
bounds of P are shown in black on Fig. 1.

Remark. This is an example when the use of so-called
naive interval arithmetic produces exact (sharp) bounds
(Fig. 1). Normally, naive interval arithmetic produces pes-
simistic bounds. In most cases, such sharp bounds cannot
be obtained by naive interval arithmetic and more sophisti-
cate methods should be used.

4.2 Experiments with stochastic arith-
metic

The computation of (20) is done using the stochastic
arithmetic approach (CSA). This approach is based on the
gaussian random variable (m, σ) with a mean value m
and a standard deviation σ. It is well known that 95%
of the samples of a such variable are inside the interval
[m − 2σ, m + 2σ]. To compare the results with the interval
approach, the Yi are equal to (1, 0.01).

The computation has been performed with our specific
implementation of CSA. A set of (mp(ti), σp(ti)) is ob-
tained. The gray lower and upper curves in the figure 1
represent the results of CSA, i.e. each point of the lower
curve (resp. the upper curve) is equal to mp(ti) − 2 ∗ σp(ti)

(resp. mp(ti) + 2 ∗ σp(ti)).
It can be seen that the two curves corresponding to CSA

are inside the range of those computed with Intlab.

4.3 Discrete stochastic arithmetic

The results computed with DSA are compared with CSA
in figures 2, 3, 4, 5. On each figure, the N samples and
the lower and upper curve obtained with CSA are drawn re-
spectively for N = 3, 5, 10, 20. All the figures are com-
posed of two sub-figures. The left sub-figure shows the N
curves of the samples. The right sub-figure compares the
computed mean value and standard deviation obtained from
the N -samples and the theoretical mean value and standard
deviation obtained with CSA.

From these experiments it can be easily seen that if p(ti)
denotes the mean value of all the samples obtained with
DSA for the computation of p(ti) then: mp(ti) − 2σp(ti) ≤
p(ti) ≤ mp(ti) + 2σp(ti). Hence the experiments show
clearly that CSA is a good model for DSA and the CESTAC
method.

5. Conclusion

Starting from a minimal set of empirically known facts
related to stochastic numbers, we formally deduce a number
of properties and relations. We investigate the complete set
of all stochastic numbers and show that this set possesses
nice algebraic properties. We point out to the distinct alge-
braic nature of the spaces of mean-values and standard de-
viations. Based on the algebraic properties of the complete
set of stochastic numbers we propose a natural relation for
inclusion, called stochastic inclusion. A numerical example
based on the Lagrange polynomial demonstrates the con-
sistency between the CESTAC method and the presented
theory of stochastic numbers.

Acknowledgments. The authors want to thank an
anonymous referee for his useful comments.

References

[1] Alt, R., S. Markov, On the Algebraic Properties of
Stochastic Arithmetic. Comparison to Interval Arith-
metic, In: W. Kraemer and J. Wolff v. Gudenberg
(Eds.), Scientific Computing, Validated Numerics, In-
terval Methods, Kluwer, 2001, 331–342.

[2] Alt, R., J.-L. Lamotte, S. Markov, Abstract struc-
tures in stochastic arithmetic, In: B. Bouchon-Meunier,
R. R. Yager (Eds.), Proc. 11-th Conference on Infor-
mation Processing and Management of Uncertainties
in Knowledge-based Systems (IPMU 2006), Editions
EDK, Paris, 2006, 794–801.

[3] Alt, R., J. Vignes, Validation of Results of Collocation
Methods for ODEs with the CADNA Library. Appl. Nu-
mer. Math. 20 (1996), 1–21.

[4] Chesneaux, J. M., J. Vignes, Les fondements de
l’arithmétique stochastique, C.R. Acad. Sci., Paris, Sér.
I, Math. 315 (1992), 1435–1440.

[5] INTLAB — INTerval LABoratory Version 5.2.,
www.ti3.tu-harburg.de/ rump/intlab/

[6] Markov, S., R. Alt, Stochastic arithmetic: Addition
and Multiplication by Scalars, Appl. Numer. Math. 50
(2004), 475–488.

[7] Markov, S., R. Alt, J.-L. Lamotte, Stochastic Arith-
metic: S-spaces and Some Applications, Numer. Algo-
rithms 37 (1–4), 275–284, 2004.

[8] Vignes, J., R. Alt, An Efficient Stochastic Method for
Round-Off Error Analysis, in: Accurate Scientific Com-
putations, LNCS 235, Springer, 1985, 183–205.

[9] Vignes, J., Review on Stochastic Approach to Round-
Off Error Analysis and its Applications. Math. and
Comp. in Sim. 30, 6 (1988), 481–491.

[10] Vignes, J., A Stochastic Arithmetic for Reliable Scien-
tific Computation, Math. and Comp. in Sim. 35 (1993),
233–261.

[11] Yao, Y. Y., Granular Computing: basic issues and pos-
sible solutions, In: P. P. Wang (Ed.), Proc. of the 5-th
Joint Conference on Information Sciences, Vol. I, At-
lantic City, New Jersey, USA, February 27–March 3,
2000, Association for Intelligent Machinery, 186–189.

[12] http://www.lip6.fr/cadna

0 2 4 6 8 10 12
0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 1. Lagrangian polynomial obtained
with interval arithmetic (black) and CSA
(gray)

0 2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Figure 2. DSA 3 samples

0 2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Figure 3. DSA 5 samples

0 2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Figure 4. DSA 10 samples

0 2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Figure 5. DSA 20 samples

Toward Validating a Simplified Muscle Activation Model in SMARTMOBILE

Ekaterina Auer
Faculty of Engineering, IIIS

University of Duisburg-Essen
D-47048, Germany
auer@inf.uni-due.de

Martin Tändl, Daniel Strobach, Andres Kecskeméthy
Faculty of Engineering, IMSD
University of Duisburg-Essen

D-47048, Germany
{martin.taendl,daniel.strobach,andres.kecskemethy}

@uni-due.de

Abstract

In this paper, we apply the validated modeling and
simulation environment SMARTMOBILE along with two
solvers recently added to its core to the problem of the iden-
tification of muscle activation in general motor tasks. The
identification of muscle activation is one of the important
and still open problems in biomechanics which aims at help-
ing physicians assess an individual therapy for a patient.
We address the discrepancy of the results supplied by the
proposed simplified muscle activation model to the gait lab
data and make an initial analysis of model’s parameter sen-
sitivity using validated techniques.

1 Introduction

Modeling and simulation of kinematics and dynamics

of mechanical systems is employed in many branches of

modern industry and applied science. This fact contributed

to the appearance of various tools for automatic genera-

tion and simulation of models of multibody systems. Pos-

sible measurement uncertainties in model parameters and

errors induced by model idealization or the use of float-

ing point numbers encourage the employment of validated

arithmetics and methods in such tools.

SMARTMOBILE (Simulation and Modeling of

dynAmics in MOBILE: Reliable and Template based) [1]

is an environment for validated modeling and simulation

of mechanical systems built on top of the non-validated

MOBILE [7]. SMARTMOBILE verifies kinematics and

dynamics for various classes of systems including non-

autonomous and closed-loop ones. For this purpose, a basic

data type (e.g. TMoInterval based on INTERVAL from

PROFIL/BIAS) is combined with an appropriate validated

solver (e.g. VNODE-based [13] initial value problem

(IVP) solver TMoAWAIntegrator for dynamical tasks).

Moreover, SMARTMOBILE facilitates the integration of

other validated arithmetics and solvers into its core owing

to its template-based, object-oriented structure. This way,

a validation technique can be chosen according to the

modeling task at hand, which might help to overcome

overestimation or CPU time problems during simulation.

One of the possible application areas of validated meth-

ods is biomechanics. For example, the identification of

muscle activation in general motor tasks can yield essential

information for the physicians for therapy planning. This

is a still open problem in biomechanics. Especially in the

context of surgical interventions, the information about the

contribution of a single muscle to joint moments during mo-

tion can enable the physician to assess a therapy before ap-

plying it to a patient. Typical solutions to this problem usu-

ally have long computation times, which make them unsuit-

able for on-line motion approximation required for patient-

specific therapy. Recently, a fast method has been devel-

oped to roughly identify muscle activation profiles. Al-

though suitable for first identification of activation profiles

despite considerable simplifications, the approach produces

results which differ from the prototype ones.

In this paper, a first study of the proposed approach from

the validated point of view is made. Here, this method was

simplified still further for the validation purposes which led

to a relatively rough muscle activation model. An ideal goal

is to detect the source of the deviation of the model results

to the prototype ones. Since most of the model parameters

cannot be measured exactly, and the above mentioned ap-

proach does not take the uncertainty in consideration, this

might be a possible error source. On the other hand, the de-

viation might also result from the inadequately chosen mus-

cle models. Considerable model simplifications performed

for this first study do not allow us to make certain state-

ments about that. Instead, we make a step in this direc-

tion by analyzing the influence of small changes in param-

eters on the model behavior in order to determine a criti-

cal set. This important task is especially difficult to han-

dle with validated methods due to the chaotic character of

the considered model. For this analysis, the validated envi-

ronment SMARTMOBILE and an explicit symbolic model

were used.

The article is structured as follows. In Section 2, we

describe the main features and recent developments of

SMARTMOBILE as well as provide brief information on

validated libraries it employs. Besides, a simple usage ex-

ample is supplied. In Section 3, we focus on validation of

the proposed simplified muscle activation model. This in-

cludes the description of the model and the comparison of

the validated results for point interval parameters to the ex-

perimental data. After that, the influence of the uncertainty

in several model parameters on the dynamic model behav-

ior is studied. Finally, we recapitulate the main results from

the paper and provide an outlook on future research in Sec-

tion 4.

2 Main Features of SMARTMOBILE

The validated environment SMARTMOBILE is built on

top of the non-validated object oriented C++ tool MOBILE

for modeling and simulation of kinematics and dynamics of

mechanical systems. MOBILE uses the multibody method

based on the concept of a transmission element which maps

motion and force between system states. A rigid link mod-

eling rigid bodies or an elementary joint modeling revo-

lute and prismatic joints are examples of such transmis-

sion elements. Mechanical systems are considered to be

concatenations of transmission elements leading to serial

chains, tree type or closed loop systems. With the help

of the global kinematics, the transmission function of the

complete system chain can be obtained from transmission

functions of its parts. Using the inverse kinematics and

the kinetostatic method [8], it is possible to build dynamic

equations of motion, which are solved with common IVP

solvers. MOBILE belongs to the numerical type of mod-

eling software, that is, it does not produce a symbolic de-

scription of the resulting model. Only the values of output

parameters for the user-defined values of input parameters

and the source code of the program itself are available.

In SMARTMOBILE, validated arithmetics and corre-

sponding IVP solvers are used instead of usual floating

point ones. Besides, an external software for algorithmic

differentiation is necessary in some cases. In this way,

SMARTMOBILE can model and perform validated simu-

lation of the behavior of mechanical systems as well as pro-

vide more realistic models by taking into account the uncer-

tainty in parameters.

In this Section, we first list the employed validated tools

and their features, and then turn to the main characteristics

of SMARTMOBILE and its basic usage. At last, validated

IVP solvers supplied with SMARTMOBILE are compared

using a simple example. This comparison is meant to pro-

vide potential users with rudimentary criterions of choosing

an appropriate solver for their problems.

2.1 Employed Validated Software

At the moment, SMARTMOBILE provides the choice

between two kinds of validated arithmetics: interval and

Taylor model-based. The library PROFIL/BIAS1 is used

for the former, and COSY2 and RIOT3 for the latter.

In the interval case, two IVP solvers are employed:

VALENCIA-IVP [1] and VNODE [13]. Since both of

them require derivatives of the right side of the first

(the former) and higher (the latter) orders, the libraries

FADBAD [2] and TADIFF [3] are used for algorithmic

differentiation of the code of MOBILE, which is neces-

sary because the symbolic model description is not avail-

able. In particular, data types TINTERVAL for Taylor coef-

ficients, FINTERVAL for Jacobians and TFINTERVAL for

Jacobians of Taylor coefficients are employed. In the Tay-

lor model case, it is possible to use the C++ equivalent of

COSY VI [11] by M. Kletting or its C++, object oriented

version RIOT [5] by I. Eble. The algorithmic differentiation

required for these solvers is handled there internally.

In VALENCIA-IVP, the interval error bounds [R (t)]
are sought, such that the true solution of the IVP for the

given initial conditions over the given time span is contained

in the enclosure [xencl (t)] = xapp (t) + [R (t)], where

xapp (t) is an arbitrary (non-validated) approximate solu-

tion. The error bounds are computed using the Picard iter-

ation in combination with the mean-value theorem, mono-

tonicity tests, iterative range computation, and consistency

tests based on backward integration.

To use VNODE, it is necessary to discretize the time

span and transform the given IVP into an autonomous one.

The right side of the ODE system is assumed to be contin-

uously differentiable up to a given order p > 0. First, ex-

istence and uniqueness of the solution of an IVP is proved

with the help of Banach’s fixed point theorem and the high

order method [14] which generalizes the usual techniques

based on the Picard iteration [10]. After that, a tight enclo-

sure of the solution is computed by either the direct Taylor

series algorithm, Lohner’s QR-factorization algorithm, or

the interval Hermite-Obreschkoff algorithm. Owing to the

open structure of this object oriented solver, new algorithms

can be easily added to its core.

To reduce overestimation, COSY VI expands the solu-

tion using high order Taylor series in time and initial con-

ditions. It models the local functional behavior with the

Picard iteration in combination with Schauder’s fixed-point

theorem. The long-term growth of integration errors is con-

1www.ti3.tu-harburg.de/Software/PROFILEnglisch.html
2www.bt.pa.msu.edu/index cosy.htm
3http://iamlasun8.mathematik.uni-karlsruhe.de/∼ae08/

trolled by the shrink wrapping method [4] and with the

help of QR, blunting, and curvilinear preconditioning meth-

ods [12].

2.2 Features and Usage of SMARTMOBILE

The focus of SMARTMOBILE is to model and simulate

the dynamics of mechanical systems. For this purpose, it

is necessary to solve an IVP for the differential(-algebraic)

equations of motion of the system model in the state space

form. As already mentioned, validated IVP solvers need

derivatives of the right side of these equations, which are

not easy to obtain in case of MOBILE. The usual way is to

make use of automatic (or algorithmic) differentiation [6],

the method that is practicable but might consume a lot of

CPU time in case of such a large program as MOBILE.

An alternative is to obtain the derivatives from the system’s

mechanics. This option is not provided by MOBILE devel-

opers yet and seems to be rather difficult to algorithmize for

(arbitrary) higher orders.

Algorithmic differentiation of a piece of program code

can be implemented mainly through overloading or pro-

gram transformation. In the first case, a new data type is

developed that is capable of computing the derivative along

with the function value. This new data type is used instead

of the simple one in the code piece, which automatically

supplies the derivative. The drawback of this method is the

lack of optimization during the derivative computation. The

technique of program transformation presupposes the devel-

opment of a compiler that takes the original code fragment

and the set of differentiation rules as its input and produces a

program delivering derivatives as its output. This way might

be difficult to implement for large pieces of code which are

self-contained programs themselves. However, derivatives

can be evaluated more efficiently with this technique.

In case of SMARTMOBILE, overloading was cho-

sen (see Tab. 1). All relevant occurrences of MoReal
(an alias of double in MOBILE) have to be re-

placed with an appropriate new data type. To pro-

vide interval-based validation of dynamics with the

help of VNODE-based solver TMoAWAIntegrator,

the basic data type TMoInterval including data

types necessary for algorithmic differentiation should

be used. The data type TMoFInterval enables

the use of TMoValenciaIntegrator, an adjust-

ment of the basic version of VALENCIA-IVP. The

newly developed TMoRiotIntegrator is based on

the IVP solver from the library RIOT and requires the

class TMoTaylorModel, a SMARTMOBILE-compatible

wrapper of the library’s own data type TaylorModel.

Analogously, to be able to use an adjustment of the solver

COSY VI, the wrapper RDAInterval is necessary.

Modification of the latter solver for SMARTMOBILE is

MOBILE SmartMOBILE
TMoRigidLink<TMoInterval> R;↗

MoRigidLink R; ↘
TMoRigidLink<MoReal> R;

Figure 1. Template usage.

xy

z

g

m1

m2

first angle

second angle

Figure 2. The double pendulum.

currently work in progress.

The availability of several basic data types in

SMARTMOBILE points out its second feature: the general

data type independency through its template structure. That

is, MoReal is actually replaced not with a concrete data

type, but with a placeholder. For example, the transmission

element MoRigidLink from MOBILE is replaced with

its template equivalent TMoRigidLink, the content of the

placeholder for which (e.g. TMoInterval or MoReal,

cf. Fig. 1) can be defined at the final stage of the system

assembly. This allows us to use a suitable pair consisting

of the data type and solver depending on the application at

hand. If only a reference about the form of the solution is

necessary, MoReal itself and a common numerical solver

(e.g. Runge-Kutta’s) can be used. If a relatively fast vali-

dation of dynamics without much uncertainty in parameters

is of interest, TMoInterval and TMoAWAIntegrator
might be the choice. For validation of highly nonlinear sys-

tems with a considerable uncertainty, the slow combination

of TMoTaylorModel and TMoRiOTIntegrator can

be used.

2.3 Comparison of Available Solvers

Let us consider the example of the double pendulum

with an uncertain initial angle of the first joint from [1],

shown in Fig. 2. We study the dynamics of the double

Table 1. Basic validated data types and the corresponding solvers in SMARTMOBILE.

Data type Solver Required tools

class TMoInterval{
INTERVAL Enclosure;
TINTERVAL TEnclosure;
TFINTERVAL TFEnclosure;}

TMoAWAIntegrator PROFIL/BIAS, FADBAD, TADIFF

TMoFInterval=
{double,INTERVAL,FINTERVAL} TMoValenciaIntegrator PROFIL/BIAS, FADBAD, VALENCIA-IVP

TMoTaylorModel={TaylorModel} TMoRiOTIntegrator RIOT

RDAInterval={Cosy} COSY VI–based solver COSY, COSY VI

MoFrame K0, K1, K2, K3, K4;

MoAngularVariable psi1, psi2;

// transmission elements

MoVector l1(0,0,-1), l2(0,0,-1) ;

MoElementaryJoint R1(K0,K1,psi1,xAxis) ;

MoElementaryJoint R2(K2,K3,psi2,xAxis) ;

MoRigidLink rod1(K1,K2,l1),rod2(K3,K4,l2) ;

MoReal m1(1),m2(1) ;

MoMassElement Tip1(K2,m1),Tip2(K4,m2) ;

// the complete system

MoMapChain Pend;

Pend << R1<<rod1<<Tip1<<R2<<rod2<<Tip2 ;

// dynamics

MoVariableList q; q << psi1<<psi2 ;

MoMechanicalSystem S(q,Pend,K0,zAxis) ;

MoAdamsIntegrator I(S) ;

for(int i=0;i<100;i++) I.doMotion();

#define TMoInterval t;

TMoFrame<t> K0, K1, K2, K3, K4;

TMoAngularVariable<t> psi1, psi2;

// transmission elements

TMoVector<t> l1(0,0,-1), l2(0,0,-1) ;

TMoElementaryJoint<t> R1(K0,K1,psi1,xAxis) ;

TMoElementaryJoint<t> R2(K2,K3,psi2,xAxis) ;

TMoRigidLink<t> rod1(K1,K2,l1),rod2(K3,K4,l2) ;

t m1(1),m2(1) ;

TMoMassElement<t> Tip1(K2,m1),Tip2(K4,m2) ;

// the complete system

TMoMapChain<t> Pend;

Pend << R1<<rod1<<Tip1<<R2<<rod2<<Tip2 ;

// dynamics

TMoVariableList<t> q; q << psi1<<psi2 ;

TMoMechanicalSystem<t> S(q,Pend,K0,zAxis) ;

TMoAWAIntegrator I(S,0.0001,ITS QR,15) ;

I.doMotion();

Figure 3. The double pendulum in MOBILE (left) and SMARTMOBILE (right).

pendulum using a SMARTMOBILE model from Fig. 3,

where it is shown in comparison to the corresponding model

from MOBILE. Note that MOBILE users can switch to

SMARTMOBILE easily since the difference between the

models is minimal. The lengths of both massless arms of

the pendulum are equal to 1 m and the two point masses

amount to 1 kg each with the gravitational constant g =
9.81m

s2 . The initial values for angles (specified in rad) and

angular velocities (in rad
s) are given as

β0 =
[
0.99

3π

4
−11π

20
0.43 0.67

]T

,

β
0

=
[
1.01

3π

4
−11π

20
0.43 0.67

]T

,

where the initial angle of the first joint has an uncertainty of

±1 percent of its nominal value.

The results are summarized in Tab. 2. In case of

TMoAWAIntegrator, the QR-factorization algorithm

with Taylor series of order 15 and step size h = 0.0001
is chosen. TMoValenciaIntegrator has a step size

h = 0.0001, too. TMoRiotIntegrator is used with

Taylor models of order 5, without the shrink wrapping, and

with a variable step size 0.0002 ≤ h ≤ 0.2. The line

”Break-down” of Tab. 2 contains the time in seconds af-

ter which the corresponding method no longer works. The

last line indicates the CPU time (in seconds) which the

solvers take to obtain the solution over the integration in-

terval [0; 0.4] on a Pentium 4, 3.0 GHz PC using CYGWIN.

Note that the CPU times are provided only as a rough ref-

erence since the solvers can be further optimized in this re-

spect. Additionally, the interval enclosures of the two an-

gles β1 and β2 of the double pendulum are shown for iden-

tical time intervals in Fig. 4.

The use of TMoValenciaIntegrator improves

both the tightness of the resulting enclosures and the CPU

time in comparison to TMoAWAIntegrator for this ex-

Table 2. Performance of TMoAWAIntegrator, TMoRiOTIntegrator, and TMoValenciaIntegrator
for the double pendulum over the time interval [0; 0.4].

Strategy TMoAWAIntegrator
(h = 0.0001)

TMoRiOTIntegrator
(0.0002 ≤ h ≤ 0.2)

TMoValenciaIntegrator
(h = 0.0001)

Break–down 0.424 0.820 0.504
CPU Time 1248 9312 294

0 0.082 0.164 0.246 0.328 0.41
 time (s)

1.8

1.9

2

2.1

2.2

2.3

2.4

fi
rs

t
a

n
g

le
 (

ra
d

)

TMoAWAIntegrator

TMoRiOTIntegrator

TMoValenciaIntegrator

(a) Enclosure of the first joint angle.

0 0.082 0.164 0.246 0.328 0.41
 time (s)

-1.8

-1.68

-1.56

-1.44

-1.32

-1.2

s
e

c
o

n
d

 a
n

g
le

 (
ra

d
)

TMoAWAIntegrator

TMoRiOTIntegrator

TMoValenciaIntegrator

(b) Enclosure of the second joint angle.

Figure 4. Interval enclosures for the first and second state variable of the double pendulum.

ample. Although TMoRiOTIntegrator breaks down

much later than the both former solvers, it needs a lot of

CPU time (cf. Tab. 2).

3 A Simplified Muscle Activation Model

In this Section, we first describe the simplified muscle

activation model under consideration. Then we compare

the validated results for the model without uncertainty to

the results from the gait lab. After that, SMARTMOBILE

and a corresponding symbolic model in combination with a

validated IVP solver are used to investigate the influence of

small changes in the chosen parameters on the simulation.

3.1 Description

The model under investigation represents a simplified

subsystem of the human leg (cf. Fig. 5). It consists of

pelvis, thigh and shank, represented by the corresponding

bones hipbone, femur and tibia. The two joints at hip and

knee limit the possible range of motion to the sagittal plane.

To drive the model in forward dynamics simulations, the

muscle biceps femoris short head is included, which is

responsible for knee flexion. Segment dimensions, mass

properties and characteristic muscle parameters (origin and

Figure 5. A simplified leg model in MOBILE.

insertion points, actuator reference length, ratio of tendon

length and muscle tissue length in the actuator) stem from a

male adult of 1,78 m body height and a weight of 77,9 kg.

All used data is taken from [16]. To enable reasonable com-

putation times in forward dynamics simulations, the force

law of the involved muscle model is roughly simplified with

respect to the HILL-type muscle model described in [17].

The activation of the muscle is modeled using linear

combinations of exponential functions to reduce the number

of parameters for each muscle. The method is described in

detail in [15]. For the purposes of this first validated study,

the overall function was simplified so that it is everywhere

continuously differentiable. We chose a muscle activation

such that the motion (hip and knee angle) produced by the

simulation approximates measurements performed in a gait

lab. In this setting, the target motion represents a flexion-

extension movement of the knee, starting and ending in a

stretched leg position (hip and knee flexion angle ≈ 0◦).

The full MOBILE code of the studied model can

be made available by the authors on demand. The

validated model from SMARTMOBILE is similar to

that of MOBILE. The model behavior is studied us-

ing the solvers TMoAWAIntegrator (Lohner’s QR-

factorization algorithm with order 15 and a variable step

size), TMoValenciaIntegrator (with the step size

0.0002) and TMoRiOTIntegrator (with order 5, a vari-

able step size and without shrink wrapping) described in

Section 2.3.

On the other hand, a corresponding symbolical model

can be derived using MOMAPLE4, a rudimentary plug-in

for MOBILE capable of modeling only tree-type mecha-

nisms. Through a program very similar to that of MOBILE,

a MAPLE worksheet producing the symbolic form of equa-

tions of motion is automatically generated. Here, the equa-

tions can be symbolically simplified if all the parameters

are assigned their values before the function for the right

side of the system is evaluated. However, the explicit de-

pendence on parameters is then lost. We made a compro-

mise and let the symbolical model explicitly depend only

on the thigh length and the coordinates of the proximal and

distal insertion points for the muscle.5 The equations can be

solved by a validated IVP solver. We chose VNODE-2.0

(Lohner’s QR-factorization algorithm with order 15 and a

variable step size) and COSY VI version of November 10,

2006 (with (weighted) order of 12, a variable step size and

without preconditioning and shrink wrapping).

3.2 Model Analysis

In the above model, there exist many parameters that

cannot be measured exactly. They are, for example,

the lengths of the thigh and shank as well as coordi-

nates of muscle insertion points. If the model is sim-

ulated in SMARTMOBILE with point interval parame-

ters, a considerable discrepancy between the gait lab and

model data can be observed. In Fig. 6, the dependence of

TMoAWAIntegrator enclosures of hip and knee angles

4Release of September 2006 by M.Tändl, e-mail

martin.taendl@uni-due.de
5Note that the numerical model from SMARTMOBILE cannot be sim-

plified in this way and is therefore more complex.

on time is shown in comparison to the gait lab data for point

interval parameters. The source of the discrepancy might

be inexact measurements which influence both the gait lab

data and the values of parameters from literature used in the

muscle activation model. On the other hand, the idealiza-

tion and simplification of the model itself contribute to that.

The simulation results for the example from Section 2.3

imply that validated methods are able to produce meaning-

ful results only over short integration periods if the param-

eters are chosen to be intervals. This also concerns the sim-

ple biomechanical model used here because it has a dou-

ble pendulum as its basis (cf. Figures 2 and 5). In Fig. 7,

this suspicion is confirmed. The Figure shows the influence

of ±0.1 percent uncertainty in the thigh length on the be-

havior of the numerical (left) and symbolic (right) model.

The integration process can reach at most t = 0.54337 sec-

onds (for the more simple symbolic model with the help

of COSY VI). Moreover, it can be seen that this relatively

small uncertainty (from the mechanical point of view) can-

not account for the discrepancy between the model and lab

data. Although for several obtained enclosures the empir-

ical results seem to lie within validated bounds, the com-

parison with better bounds show that this is rather the result

of overestimation of the corresponding method and chaotic

character of the model.

From the mechanical point of view, the coordinates of

insertion points of the muscles seem to be especially diffi-

cult to measure exactly. Besides, most of the literature data

is provided for a human of a certain height and weight (cf.

Section 3.1), which brings still more uncertainty in to the

model for a concrete patient. Because of that, it is especially

important to find the set of sensitive parameters. In Tab. 3,

our first validated parameter analysis is summarized. We re-

stricted the set of parameters to the thigh and shank lengths

as well as the coordinates of the proximal insertion point

for the biceps femoris short head. We introduced one per-

cent and one tenth of percent uncertainty in each parameter.

The goal was to compare the break down times for these un-

certainties in the numerical and more simple symbolic case

(with the help of TMoAWAIntegrator and VNODE, re-

spectively).

The analysis of both models shows that the most sensi-

tive parameters are the thigh length, the shank length and

the z coordinate of the proximal muscle insertion point.

(The shank length was not studied in the symbolic case ow-

ing to conventions mentioned at the end of the Section 3.1.)

Besides, the x coordinate has a remarkable influence despite

its relatively small value. In Tab. 4, we study the the thigh

length in more detail with the help of the symbolic model

and VNODE. (Reference break down time means that only

a reference is available here for this characteristic since the

simulation was manually aborted as soon as the width of the

enclosures was larger than of order 10.) It can be observed

0 2 4 6 8 10
 Time (s)

-0.4

-0.32

-0.24

-0.16

-0.08

0

0.08
 H

ip
 a

n
g

le
 (

ra
d

)

Model data (without uncertainty)

Gait lab data

(a) The hip angle.

0 2 4 6 8 10
 Time (s)

-0.4

0

0.4

0.8

1.2

1.6

2

 K
n

e
e

 a
n

g
le

 (
ra

d
)

Model data (without uncertainty)

Gait lab data

(b) The knee angle.

Figure 6. Interval enclosures and and gait lab data for the hip and knee angles (no uncertainty).

0 0.06 0.12 0.18 0.24 0.3
 Time (s)

-0.2

-0.12

-0.04

0.04

0.12

0.2

 k
n

e
e

 a
n

g
le

 (
ra

d
)

TMoAWAIntegrator
TMoRiOTIntegrator

TMoValenciaIntegrator

Gait lab data
Reference solution

(a) The knee angle in SMARTMOBILE.

0 0.12 0.24 0.36 0.48 0.6
 Time (s)

-0.2

0.04

0.28

0.52

0.76

1
 k

n
e

e
 a

n
g

le
 (

ra
d

)
VNODE

Gait lab data
COSY VI

Reference solution

(b) The knee angle in VNODE and COSY VI.

Figure 7. Interval enclosures of the knee angle under ±0.1 percent uncertainty in the thigh length.

that this parameter should be measured exactly up to the or-

der of a micrometer to have little influence on the system in

the framework of VNODE.

Table 4. Influence of the uncertainty in the
thigh length.

Uncertainty Reference break down time (s)

±0.001% 4.2e − 01
±0.0001% 7.0e − 01
±0.00001% > 1.0e + 00

4 Conclusions and Outlook on Future Re-
search

In this paper, we presented two recently developed

solvers for the validated modeling and simulation environ-

ment SMARTMOBILE: TMoValenciaIntegrator
based on VALENCIA-IVP and TMoRiOTIntegrator
based on RiOT. The full range of SMARTMOBILE solvers

was applied to analyze the simplified muscle activation

model which aimed at helping physicians assess an indi-

vidual patient therapy. Due to the further model simplifica-

tion for validation purposes, the question about the source

of the discrepancy of the model results and the gait lab data

could not be answered unambiguously. However, first steps

in this direction were made and the set of especially sensi-

tive parameters of the model identified. Generally, the task

Table 3. Influence of the parameters on the simplified muscle activation model

Parameter Break down (TMoAWAIntegrator) Break down (VNODE)

±1% ±0.1% ±1% ±0.1%
Thigh length = 0.45 8.4068249e − 02 1.1859999e − 01 1.5557e − 01 2.6935e − 01
Shank length = 0.49 8.1839977e − 02 1.2529627e − 01 — —

IP, coordinate z = −0.2281 9.4212640e − 02 1.3543401e − 01 2.0333e − 01 3.7424e − 01
IP, coordinate y = −0.0253 2.5418879e − 01 3.8887304e − 01 6.5233e − 01 1.6692e + 00
IP, coordinate x = 0.0054 1.1982085e − 01 1.8389055e − 01 4.2507e − 01 8.0971e − 01

of taking into consideration all uncertainties that can appear

in this model in a validated way seems to be a difficult one

due to the chaotic nature of the underlying system of equa-

tions.

Still, further steps toward this goal are planned. First,

we will consider the model without simplifications which

were made for validation. This will help better approximate

the gait lab data and so allow us to choose smaller uncer-

tainties. This might involve the necessity to differentiate

piecewise continuously differentiable functions automati-

cally in SMARTMOBILE. Alternatively, such functions can

be artificially made differentiable. Both of these approaches

involve considerable effort on the side of MOBILE and

SMARTMOBILE developers.

A second direction of our future work will be to further

reduce the overestimation in SMARTMOBILE. On the one

hand, this will include the adjustment of such solvers as

VSPODE [9] by Stadtherr and Lin to SMARTMOBILE.

On the other hand, the consideration of splitting and merg-

ing techniques proposed by the group around E.P. Hofer in

combination with backward integration and parallelization

seems promising.

References

[1] E. Auer, A. Rauh, E. P. Hofer, and W. Luther. Validated

Modeling of Mechanical Systems with SMARTMOBILE:

Improvement of Performance by VALENCIA-IVP. In

Proc. of Dagstuhl Seminar 06021: Reliable Implementation
of Real Number Algorithms: Theory and Practice, Lecture

Notes in Computer Science, 2006. To appear.
[2] C. Bendsten and O. Stauning. FADBAD, a flexible C++

package for automatic differentiation using the forward and

backward methods. Technical Report 1996-x5-94, Technical

University of Denmark, Lyngby, 1996.
[3] C. Bendsten and O. Stauning. TADIFF, a flexible C++ pack-

age for automatic differentiation using Taylor series. Tech-

nical Report 1997-x5-94, Technical University of Denmark,

Lyngby, 1997.
[4] M. Berz and K. Makino. Suppression of the Wrapping Ef-

fect by Taylor Model-Based Verified Integrators: Long-term

Stabilization by Shrink Wrapping. International Journal of
Differential Equations and Applications, 2006. In print. On-

line.

[5] I. Eble. RiOT. Available through the author:

http://iamlasun8.mathematik.uni-karlsruhe.de/∼ae08/.
[6] A. Griewank. Evaluating derivatives: principles and tech-

niques of algorithmic differentiation. SIAM, 2000.
[7] A. Kecskeméthy. Objektorientierte Modellierung der Dy-

namik von Mehrkörpersystemen mit Hilfe von Übertra-
gungselementen. PhD thesis, Gerhard Mercator Universität

Duisburg, 1993.
[8] A. Kecskeméthy and M. Hiller. An object-oriented ap-

proach for an effective formulation of multibody dynamics.

Computer Methods in Applied Mechanics and Engineering,

115:287–314, 1994.
[9] Y. Lin and M. A. Stadtherr. Validated solution of initial value

problems for ODEs with interval parameters. In NSF Work-
shop Proceeding on Reliable Engineering Computing, Sa-

vannah GA, February 22-24, 2006.
[10] R. Lohner. Einschließung der Lösung gewönlicher Anfangs-

und Randwertaufgaben und Anwendungen. PhD thesis, Uni-

versität Karlsruhe, 1988.
[11] K. Makino. Rigorous Analysis of Nonlinear Motion in Par-

ticle Accelerators. PhD thesis, Michigan State University,

1998.
[12] K. Makino and M. Berz. Suppression of the Wrapping Ef-

fect by Taylor Model-Based Verified Integrators: Long-term

Stabilization by Preconditioning. International Journal of
Differential Equations and Applications, 2006. In print. On-

line.
[13] N. S. Nedialkov. The design and implementation of an

object-oriented validated ODE solver. Kluwer Academic

Publishers, 2002.
[14] N. S. Nedialkov, K. R. Jackson, and J. D. Pryce. An effec-

tive high-order interval method for validating existence and

uniqueness of the solution of an IVP for an ODE. Reliable
Computing, 7:449–465, 2001.

[15] D. Strobach, A. Kecskeméthy, G. Steinwender, and

B. Zwick. A simplified approach for rough identification of

muscle activation profiles via optimization and smooth pro-

file patches. In CD Proceedings of the International ECCO-
MAS Thematic Conference on Advances in Computational
Multibody Dynamics, Madrid, Spain, June 21 – 24 2005.

ECCOMAS.
[16] G. T. Yamaguchi. Dynamic modeling of musculoskeletal mo-

tion. Kluwer Academic Publishers, 2001.
[17] F. E. Zajac. Muscle and tendon: properties, models, scaling,

and application to biomechanics and motor control. 1989.

GRKLib: a Guaranteed Runge Kutta Library

Olivier Bouissou

CEA LIST

olivier.bouissou@cea.fr

Matthieu Martel

CEA LIST

matthieu.martel@cea.fr

Abstract

In this article, we describe a new library for computing

guaranteed bounds of the solutions of Initial Value Prob-

lems (IVP). Given an initial value problem and an end point,

our library computes a sequence of approximation points

together with a sequence of approximation errors such that

the distance to the true solution of the IVP is below these er-

ror terms at each approximation point. These sequences are

computed using a classical Runge-Kutta method for which

truncation and roundoff errors may be over-approximated.

We also compute the propagation of local errors to obtain

an enclosure of the global error at each computation step.

These techniques are implemented in a C++ library which

provides an easy-to-use framework for the rigorous approx-

imation of IVP. This library implements an error control

technique based on step size reduction in order to reach a

certain tolerance on local errors.

1. Introduction

Users of numerical solvers for Ordinary Differential

Equations (ODEs) are generally interested in computing ap-

proximation points with an estimate of the error at each

point. Many scientists and engineers are more interested

in the efficiency of the method than on the quality of the

error estimation. However, for many safety critical appli-

cations, this estimation is not enough, and safe bounds on

the error are required. These applications that need guar-

anteed approximations include state estimation [8], hybrid

systems analysis [6] or industrial systems where critical

damage may occur. For such systems, the required feature

of the solver is safety rather than efficiency, i.e. the nu-

merical solver should not only give an approximation of the

solution but it should also prove that the true solution lies

between computed bounds. This problem has been studied

over the past 40 years, i.e. almost since interval arithmetic

was invented. However, using interval versions of classi-

cal algorithm gives validated solvers which usually suffer

from a bad long term stability. The most successful meth-

ods are based on a Taylor Series expansion of the solution

with respect to time and a fine algorithm for computing the

remainder terms.

In the rest of this introduction, we briefly recall what an

Initial Value Problem is and we give the foundations of Tay-

lor Series based methods for computing rigorous bounds of

IVPs. For a more complete description of these methods

and tools implementing them, we invite the reader to refer

to [13].

1.1. Initial Value Problems

An IVP consists of a system of ODEs together with an
initial condition:

ẏ = f(y) y(x0) = y0. (1.1)

Here, y is a function from R to R
n and f is a continuous

function from R
n to R

n. ẏ denotes the derivative of y with

respect to time x.

Solving the IVP means finding a (possibly unique) func-

tion y(x;x0, y0) which satisfies Equation (1.1). Numeri-

cal solvers usually compute a sequence of approximation

points {y0, y1, . . . , yM} such that yi is an approximation of

the value y(xi;x0, y0), for some xi. Let yv
i = y(xi;x0, y0)

be the real value of the solution of (1.1) at time xi. The

sequence
(
xn

)
is the sequence of steps, and we let hi =

xi+1 − xi denote the step sizes. In sections 2 and 3, we

assume a fixed step size. The step size control mechanism

and its influence on the algorithm are detailed in Section 4.

If we consider systems with uncertainties, the initial con-

ditions are not always exactly known, or we may only have

approximate values for the parameters of the equations.

Therefore, we will focus on a more general IVP, where the

initial conditions are given as follows:

y(x0) ∈ [y0], [y0] ⊆ R
n

(1.2)

Solving this interval IVP means finding the set of func-

tions y(x;x0, [y0]) = {y(x;x0, y0) | y0 ∈ [y0]}. Again,

this problem is difficult. All we can do is to compute a se-

quence of boxes [yn] such that ∀n, y(xn;x0, [y0]) ⊆ [yn].

1.2. Taylor Series Methods in a Nutshell

The method studied and used most often to achieve
guaranteed bounds on the solutions of IVPs is based on
an interval version of classical Taylor Series algorithm
[4, 10, 12, 17]. This method performs a Taylor decomposi-
tion of the solution of (1.1) with respect to time, in such a
way that:

y
j+1 = yj +

N−1X
k=1

f [k](yj)h
k
j + hN

j · f [N]`y(xs)
´
, (1.3)

where xs ∈ [xj , xj+1] and f [k](y) = 1
k

(
∂f [k−1]

∂y
f
)

(y),

f [0](y) = y. A direct translation of (1.3) into interval arith-
metic gives Equation (1.4), where [ỹj] is an a priori enclo-
sure of y(xs):

[y
j+1] = [yj] +

N−1X
k=1

f [k]([yj])h
k
j + f [N]`[ỹj]

´
. (1.4)

In a direct evaluation of (1.4), the width of [yj] grows, even
if the system contracts. Thus, it is important to compute
[y

j+1
] in a way which limits the overestimation inherent in

interval arithmetic. This is achieved by expressing the in-
terval valued evaluations by their mean value form:

f({a ∈ [a, a]}) ⊆ â + J(f, [a, a]) · ([a, a] − â) ⊆ f([a, a]),

where J(f, [a, a]) is the Jacobian of the function f evalu-
ated on the whole interval [a, a], and â ∈ [a, a]. If we apply
this formula to (1.4), we obtain:

[y
j+1] = ŷj +

N−1X
k=1

f [k](ŷj)h
k
j + f [N]`[ỹj]

´
+

`
I +

N−1X
k=1

J(f [k], [yj])h
k
j

´
([yj] − ŷj).

There are still two problems to solve to use this formula:

• finding the a priori enclosure [ỹj], i.e. a box such that

∀x ∈ [xj , xj+1], y(x;xj , [yj]) ∈ [ỹj].

• reducing the wrapping effect when computing(
I +

∑N−1
k=1 J(f, [yj])h

k
j

)
([yj] − ŷj).

Thus, Taylor Series methods are generally two-step meth-

ods: they first compute an a priori enclosure of the solution

on one integration step, then they reduce this enclosure to

get [y
j+1

] as tight as possible. We will face these two prob-

lems in our method, as developed in sections 3.1 and 3.2.

1.3. Description of our Method

The main contribution of this article is to show the fea-

sibility of another way for computing rigorous bounds on

the solution of an IVP. Our approach is comparable to the

one taken by ValEncIA-IVP [15]; we compute a sequence

of non-validated approximation points together with a se-

quence of guaranteed bounds on the distance between these

points and the exact solution. Therefore, this method may

be seen as a predictor-corrector algorithm: we predict the

value of the approximation points, and we correct them by

computing an over-approximation of the global error. The

interest of this approach is that the use of interval arithmetic

is limited to verification tasks (computation of the errors),

thus limiting the size of the intervals to grow too much.

We chose to base our method on a classical Runge-Kutta

algorithm for the computation of the approximation points.

The error is then estimated using the higher order deriva-

tives of the function y we want to approximate. It is com-

puted as the sum of three terms: the error due to the lim-

ited order of the Runge-Kutta method, the error propagated

by the dynamical system, and finally the error due to the

implementation of the algorithm on a finite precision ma-

chine. We start with a brief review of the RK4 algorithm

we use (Section 2). Then we show how we compute the

over-approximation of the global error (Section 3). Finally,

we see how the step size may be controlled to achieve a re-

quired error bound in Section 4 and we give some numerical

results and benchmarks in Section 5.

2. The RK4 Algorithm

The RK4 algorithm is a Runge-Kutta algorithm of or-
der 4. Runge-Kutta algorithms are implicit schemes which
compute the sequence of approximation points

(
yn

)
us-

ing only yn and some intermediary points for the compu-
tation of yn+1. Details on these methods may be found
in many numerical analysis books, for example [3, 18].
The RK4 method can be seen as an extension of Euler’s
(yn+1 = yn + h · f(yn)) and Midpoint’s method (yn+1 =
yn + h · f(yn + h/2 · f(yn))). It uses four evaluations of f to
compute yn+1: one at the beginning of the interval, two at
the middle and on at the end:

k1 = f(yn)
k2 = f(yn + h/2 · k1)
k3 = f(yn + h/2 · k2)
k4 = f(yn + h · k3)

yn+1 = yn + h
6

(k1 + 2k2 + 2k3 + k4) .

(2.1)

It is commonly known, as we will see it in the next section,
that using these formulas gives an approximation of order
4, i.e. the difference between the exact value y(xn + h)
and yn+1 is of the same magnitude as h5. If we apply suc-
cessively these formulas, we obtain a set of approximation
points yj for every xj = x0 + j ∗ h. These points are often
believed to be a good approximation of the real solution. We
show in the next section how one can compute guaranteed
bounds on the error y(xj) − yj for every j. Let us define
some functions which will help to express the error bounds.
We make the ki coefficients depend on y and h, and define

the iteration function Φ:

k1(y, h) = f(y)
k2(y, h) = f(y + h/2 · k1(y, h))
k3(y, h) = f(y + h/2 · k2(y, h))
k4(y, h) = f(y + h · k3(y, h))
Φ(y, h) = y + h

6

`
k1 + 2k2 + 2k3 + k4

´
(y, h)

(2.2)

such that we have yj = Φj
(
y0, h

)
, where Φj is the jth iter-

ate of the function Φ. We also define two partial functions
ψj and φj at every step:

ψj : y �→ Φ(y, hj) φj : x �→ Φ
`
yv

j , x − xj

´
. (2.3)

3. Computing the Error

Let us now focus on the central part of our algorithm, i.e.

the computation of guaranteed bounds on the global error.

Our goal is to compute upper bounds of
(
y(xj ;x0, y0)−yj

)
for all the approximation points. Hence, we need to address

the following questions: what is the error introduced by the

method and how is it propagated by the dynamical system

from one step into another? Furthermore, we need to be

very careful on the implementation of the method, as any

roundoff error must be taken into consideration.

Let us consider Step n + 1: we already computed yn

and [εn] at xn such that yv
n ⊆ yn + [εn]. We recall that

yv
n = y(xn;x0, y0) is the value of the solution at time xn.

Let yr
n+1

be the real valued point given by the Runge-Kutta

fomulas, which approximates yv
n+1

, and let y
n+1 be the cor-

responding floating point given by the implementation. This

is the point we will actually use. A first source of error

comes from the difference between y
n+1

and yr
n+1

. In addi-

tion, there is the error propagated by the dynamical system

itself. Let y∗
n+1

be the real valued point that we would have

computed if we had applied the RK4 formulas starting from

yv
n. The distance between yr

n+1
and y∗

n+1
represents how

[εn] has been propagated into [ε
n+1]. Finally, there is the

error introduced by the method itself, which is the distance

between y∗
n+1

and yv
n+1

. So, the global error at x
n+1

may be

decomposed into three kinds of errors (see Figure 1):

• truncation errors due to the method:

η
n+1 = yv

n+1
− y∗

n+1
,

• propagation of the previous error due to the dynamical

system: χ
n+1 = y∗

n+1
− yr

n+1
,

• roundoff errors due to finite precision computations:

ε
n+1 = yr

n+1
− y

n+1 .

In the following, we explain how these terms are computed.

Figure 1. Three kinds of errors.

3.1. Truncation Errors

Truncation errors arise because the trajectory of the true

solution to Equation (1.1) (curved line on Figure 1) and

the trajectory given by the RK4 formulas (dotted line) dif-

fer. We suppose that they have a common starting point

yv
n at xn, and we try to over-approximate their difference

y(x
n+1 ;xn, yv

n) − y∗
n+1

at x
n+1 = xn + hn. The following

proposition then holds:

Proposition 3.1 y∗
n+1

= φn

(
x

n+1

)
, and the four first

derivatives of y and φn are equal at x = xn:

∀i ∈ [0, 4],
diy

dxi

`
xn

´
=

diφn

dxi

`
xn

´
.

The proof of this proposition is straightforward and may be

read in [2]. Proposition 3.2 follows immediately:

Proposition 3.2 There exists some ξ ∈ [xn, x
n+1] such that

η
n+1 =

h5

120

d5(y − φn)

dx5

`
ξ
´
.

The proof is once again a straightforward application of the

Taylor Series theorem with Lagrange remainder. Now, let

us compute this fifth derivative. We have:

d5(y − φn)

dx5
=

d5(y)

dx5
−

d5(φn)

dx5
=

d4(f)

dx4
−

d5(φn)

dx5

η
n+1

=
d4(f)

dx4

(
y(ξ;xn, yv

n)
)
−

d5(φn)

dx5

(
ξ
)
.

The function φn only depends on x; so does
d5(φn)

dx5 . There-
fore, we have:

d5(φn)

dx5

`
ξ
´
∈

d5(φn)

dx5

`
[xn, x

n+1]
´
. (3.1)

For the term
d4(f)
dx4

(
y(ξ;xn, yv

n)
)
, the situation is a bit

more complicated, as we cannot easily enclose the value

y(ξ;xn, yv
n). We thus need an a priori enclosure of the func-

tion y on the interval [xn, x
n+1], i.e. a box [ỹn] such that

∀x ∈ [xn, x
n+1

], y(x;xn, yv
n) ∈ [ỹn]. This will be done us-

ing Picard operator and Banach fixed point theorem, as in

[10, 12]. Let us recall the definition of the operator and the

main result that we will use (Proposition 3.3).

Defintion 3.1 Given an ODE ẏ = f(y), y(xn) = yv
n, the

associated Picard-Lindelöf operator is defined by:

T (y)(t) = yv
n +

Z t

xn

f(y(s)) ds

Furthermore, let S be a closed subset of

C0
(
[xn, xn+1], R

d
)
, the set of continuous functions

from [xn, xn+1] into R
d.

Proposition 3.3 If f satisfies a Lipschitz condition and if S

is mapped into itself by T , then there exists a unique solu-

tion to the ODE on [xn, xn+1].

This proposition is used to find an a priori enclosure of the
solution of the ODE over the step [xn, xn+1] [17]. Let
S′ =

˘
y|y ∈ C0

`
[xn, xn+1], B

´¯
be the set of continuous

functions over [xn, xn+1] with value in the box B. For any
y ∈ S′, we have:

(Ty)(t) = yv
n +

Z t

xn

f(y(s))ds

⊆ yv
n + [0, hn] · f(B)

Now, if we have yv
n + [0, hn] · f(B) ⊆ B, then for every

u ∈ S′, Tu ∈ S′, so that S′ is mapped into itself by T . Thus
there is a unique solution to the ODE on [xn, xn+1] that has
values in B. We then just need to get a box [ỹn] such that
yv

n + [0, hn]f([ỹn]) ⊆ [ỹn]. Let P be the interval Picard-
Lindelöf operator defined by P (R) = [yn]+[0, h]f(R). We
find [ỹn] by iterating P : we start from R0 which contains
[yn] and y∗

n+1
, and we compute Rn = P (Rn−1). We stop

once we found Rm such that Rm+1 ⊆ Rm. We use Rm+1

as our a priori enclosure for the values of y(x;xn, yv
n), and

then compute the over-approximation:

d4f

dx4

`
y(ξ; xn, yv

n)
´
∈

d4f

dx4

`
Rm+1

´
. (3.2)

So, combining 3.1 and 3.2 gives an enclosure of η
n+1 :

η
n+1 ∈

d4f

dx4

`
Rm+1

´
−

d5(φn)

dx5

`
[xn, x

n+1]
´

(3.3)

3.2. Propagation of the Error

The propagation of the error at the nth step [εn] into the
error at the (n + 1)st step must account for the separation
between the solutions of Equation (1.1) with an initial value
yv

n at xn and with an initial value yn: the point y∗
n+1

is the

application ψn at yv
n, and yr

n+1
is the application of ψn at

yn. These two flows are functions defined over D ⊆ R
d

with values in D′ ⊆ R
d. The separation of such functions

is computed using the Jacobian matrix. For every differen-
tiable function f : D → R

d, let

J(f) =

0
BBB@

∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xd

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xd

. . .
∂fd

∂x1

∂fd

∂x2
. . . ∂fd

∂xd

1
CCCA .

be its Jacobian matrix, and let

J(f, Y) =

0
BBB@

∂f1
∂x1

(Y) ∂f1
∂x2

(Y) . . . ∂f1
∂xd

(Y)
∂f2
∂x1

(Y) ∂f2
∂x2

(Y) . . . ∂f2
∂xd

(Y)

. . .
∂fd

∂x1
(Y) ∂fd

∂x2
(Y) . . . ∂fd

∂xd
(Y)

1
CCCA .

be its Jacobian matrix with all derivatives evaluated at some

Y ∈ D. We may now express the extension of the mean

value theorem to multivariate functions in a compact for-

mulation:

Theorem 3.1 Let D ⊆ R
d be an open subset of R

d and let
f : D → R

d be a differentiable function on D. Then, for
all a and u such that [a, a + u] ⊂ D, there exists θ ∈]0, 1[
such that

f(a + u) − f(a) = J(f, a + θ · u) · u.

Now, as y∗

n+1
= ψn

`
yv

n

´
and yr

n+1
= ψn

`
yn

´
, there must

exist θ ∈]0, 1[and c = yv
n + θ(yn − yv

n) such that:

y∗

n+1
− yr

n+1
= J

`
ψn, yv

n + c
´
·

`
yn − yv

n

´
. (3.4)

This formula gives the exact value of χ
n+1 , assuming we

know the exact value of c and yv
n, which we do not. How-

ever, the following holds:

∀θ ∈]0, 1[, yv
n + θ

`
yn + y(xn)

´
∈ [yn, y(xn)] ⊆ yn + [εn].

Furthermore, we know that yv
n ∈ yn + [εn], so we may

enclose the propagation of [εn] as follows:

χ
n+1 = J

`
ψn, yv

n + c
´
·

`
yn − yv

n

´
∈ J

`
ψn, yn + [εn]

´
· [εn]. (3.5)

Equation (3.5) gives a method for computing χ
n+1

. How-

ever, if we apply this formula naively, the wrapping effect

mentioned in Section 1.2 makes the error grow. Actually,

if the Jacobian matrix is a rotation matrix, then huge over-

estimations are performed at each step, as shown by Figure

2 (where J = J
(
ψn, yn + [εn]

)
). To limit this problem, we

can use the same techniques as Taylor Series methods, for

example Löhner’s QR factorization method [10]. Its idea

is the following: instead of representing errors as boxes in

the standard orthogonal coordinate system, we will express

them in a different, better basis before performing the mul-

tiplication with the Jacobian matrix. The new coordinate

system is constructed as follows: the first axis is chosen

parallel to the longest edge of J , and we construct the other

axis so that they are as parallel as possible to other edges.

This is achieved by permuting the columns of J and then

computing its QR-factorization. For more details, see [12].

Figure 2. Wrapping effect.

3.3. Roundoff Errors

Roundoff errors occur during the computation of the

next approximation point y
n+1 . They are due to the differ-

ence between the computation made on a finite precision

machine, which leads to the floating point number y
n+1 ,

and the computation that would be performed on real num-

bers, which leads to the real value yr
n+1

. This separation

comes from the implementation of floating point numbers

as defined by the IEEE754 Standard. They may be re-

duced using multi-precision arithmetic, such as the MPFR

library [5], but not eliminated and we thus need to con-

sider very carefully these error terms. We compute to-

gether with the floating point number y
n+1 an interval [e

n+1]
such that yr

n+1
∈ y

n+1
+ [e

n+1
]. This interval which over-

approximates all computation errors is computed using the

global error arithmetic, first defined and used in the field

of numerical validation of C programs [14]. The idea is to

attach to each floating point number a formal term which

represents the distance between the floating point and the

real number it is supposed to represent. Thus, a global error

number a may be written as:

a = fa + [ea]−→εe ,

where fa is a floating point number and −→εe is a formal vari-

able. [ea] is supposed to be the difference between the real

value xa and its floating point representation fa. It should

thus be a real number, and we naturally implement it as an

interval. This representation means that a is a floating point

number with value fa which represents a real number xa

such that xa ∈ fa + [ea]. We have two kinds of infor-

mation: the result of a floating point computation and its

distance to the real value. The main advantage of this repre-

sentation is that the final enclosure on xa, namely fa +[ea],
does not need to contain fa, whereas all interval based rep-

resentations (either infimum/supremum or midpoint/radius)

produce enclosures that contain both the real value and the

floating point number. Thus, the width of our error term [ea]
is usually smaller than the width of the otherwise computed

interval. Moreover, it is possible to use more precision for

the computation of the error term than for the floating point

term, in order to decrease the width of [ea]. In our imple-

a = fa + ea
−→εe and b = fb + eb

−→εe

a + b = ↑
∼

(fa + fb) + (ea + eb+ ↓
∼

(fa + fb))
−→εe

a − b = ↑
∼

(fa − fb) + (ea − eb+ ↓
∼

(fa − fb))
−→εe

a × b = ↑
∼

(fa × fb)
+

`
eafb + ebfa + eaeb+ ↓

∼
(fa × fb)

´−→εe

Table 1. Global error arithmetic.

mentation, we use double the precision for the error terms.

Let us give an example to explain the gain of this arith-

metic compared to interval arithmetic. Suppose that we

have floating point numbers with a mantissa of 5 digits only.

We start from y = 1 and subtract 106 times 10−6 to y. In

real number arithmetic, the result is obviously 0. In floating

point arithmetic, the result will be y = 1 as a cancella-

tion occurs at each subtraction. If we do the same com-

putation with the infimum/supremum interval arithmetic,

we obtain a final interval of width 1066. With the mid-

point/radius arithmetic, using doubled precision for the ra-

dius terms, we obtain (1, 1.0001), i.e. an enclosure of width

2 for the real result. With the global error arithmetic, we ob-

tain 1 + [−1.0001,−9.9977]−→εe , i.e. an enclosure of width

4 · 10−4 . This difference1 is due to the fact that the er-

ror term in the global error representation is directed: it is

not a radius indicating in which circle the real value lies but

rather an arrow aiming at it. For a more complete compar-

ison between various arithmetic used for the validation of

numerical programs, see [11].

The casting of a real number x into a global error num-

ber a proceeds as follows: the floating point part of a is the

closest floating point number to x, denoted ↑
∼

(x), and its

error part is the distance between x and ↑
∼

(x), denoted

↓
∼

(x). Thus we have:

a =↑
∼

(x)+ ↓
∼

(x)−→εe .

In a computer, the value ↓
∼

(x) is enclosed by the interval

[−u, u], where u is the value of the last bit of the repre-

sentation of ↑
∼

(x), and doubled precision is used. Basic

operations and elementary functions are defined over such

numbers. The rules for addition, subtraction and multipli-

cation are given in Table 1. So, if we use this arithmetic to

compute y
n+1 , we not only get the floating point value of

the next step but also its distance to the real value yr
n+1

:

yr
n+1

= y
n+1

+ [e
n+1

]−→εe

yr
n+1

− y
n+1

∈ [e
n+1

]. (3.6)

1A c++ program showing these results can be downloaded at

http://www.lix.polytechnique.fr/Labo/

Olivier.Bouissou/progs/patriot.cc

3.4. Putting Things Together

Using formulas (3.3), (3.4) and (3.6), we have:

ε
n+1 = η

n+1 + χ
n+1 + e

n+1

∈
d4f

dx4

`
R

´
−

d5(φn)

dx5

`
[xn, x

n+1]
´

+

J
`
ψn, yn + [εn]

´
.[εn] + [e

n+1]. (3.7)

4. Controlling the Step Size

The global error can be estimated with our method and
interval arithmetic. Using this error estimator, one may
want to control the error by modifying the step-size in order
to achieve a prescribed accuracy. The main difficulty is that
it is in general very expensive to control the global error.
Actually, as it has been shown, the global error after n + 1
steps is computed as:

yn+1 − y(xn+1) =
`
yn+1 − y∗

n+1

´
+

`
y∗

n+1 − y(xn+1)
´
.

The second term represents the local error due to the method

and its implementation, while the first one represents the

stability of the dynamical system (in the sense of Lya-

punov’s stability [16]): given two close initial points, a

stable system will join them whereas an unstable system

will separate them. The second term depends on the cho-

sen method, and we can control it, whereas the first term

depends on the problem itself, and it is therefore not di-

rectly observable. If the problem is unstable between xn

and xn+1, this term grows, and a reduction in the step-size

does not affect this. Moreover, if we want to achieve a cer-

tain tolerance at time T , it may not be efficient to control

the global error before this point, as the integral curves may

converge only near T . So, controlling the global error gen-

erally requires at least two integrations of the problem, as

the step-size selection at one point strongly depends on what

happens next. Here we concentrate on the local error con-

trol for performance issues. Another reason why we should

do that comes from the previous formula. Clearly, keep-

ing the local error (the second term) small will affect the

global error and help to keep it small. Moreover, control

techniques often try to prevent from instability phenomenas

and thus keep the values of yn inside the stability region of

the problem: the control techniques we present will reduce

the step-size as soon as the derivative of the solution grows.

Thus, the accuracy of the computation will be increased in

the regions where the derivative is high, so that the first term

of the formula will be kept low.

For all these reasons, we focus on the following problem:

given a user-defined, absolute tolerance tol, adapt the step-

size so that the error introduced at each step (both method

and roundoff error) is smaller than tol. Obviously, as the

step-size decreases, the method error decreases. However,

the dependence of the roundoff error into the step-size is

not so obvious, and this error clearly limits the accuracy one

can obtain. Therefore, we only control the method error by

adapting the step-size. If one wants to control the roundoff

error as well, then increasing the precision of the computa-

tion by using multi-precision arithmetic such as the MPFR

library would be the easiest way.

The method for controlling the step-size is derived from
general methods of control theory for the automatic con-
trol of physical systems. The main idea is that the step-size
is the adjustment variable to control the truncation error,
which can be seen as a physical variable with an optimal
value, tol, and that we must bring as close as possible to it.
The dependence between the error and the step-size is given
by the formula

εn+1 = |ϕn| · h
5
n,

where |ϕn| is the enclosure of the value of the fifth deriva-
tive of f on the a priori enclosure for the nth step (between
xn and xn+1). This gives us a first control method, based
on the assumption that |ϕn| ≈ |ϕn+1|:

hn+1 =

„
tol

|ϕn+1|h5
n

« 1
5

hn

This controller is called the integral controller. Actually, if
you use this formula, then the error after the n + 1st step is
εn+2 = |ϕn+2|.h

5
n+1 = |ϕn+1|.

tol
|ϕn+1|.h5

n
.h5

n = tol. How-

ever, the assumption that |ϕn| ≈ |ϕn+1| is in general false
for non trivial problems. Hence, this control mechanism
tends to overcompensate, leading to many variations in the
step-size and to rejected steps. To overcome this problem,
a first solution would be to use θ.tol instead of tol in the
formula, with θ ∈ [0, 1]. This smooths slightly the varia-
tions of hn, but this strategy is still not satisfactory for com-
plex problems. Hence, we build a more complex controller
which considers not only the previous step error to compute
the next step-size, but also takes into account the variation
of the error over the last two steps. In this way, if the error
is growing, then the previous controller will be adjusted so
that the step-size does not increase too much. On the con-
trary, if the error is decreasing, the controller will amplify
the variations of the step-size. The idea of this second con-
troller is to add, as in control theory, a term proportional to
the control error to the previous integral term. This leads to
the formula:

hn+1 =

„
θ.tol

rn+1

«k1
„

rn

rn+1

«kp

hn,

with rn = |ϕn+1|.h
5
n. k1 and kp are the controller parame-

ters. The difficulty is to chose them to achieve a good per-

formance. Ideally, they should be computed independently

for every problem, as they strongly depend on its condi-

tion. However, choosing k1 = 0.3
k

and kp = 0.2
k

is a good

choice for many problems.

5. Numerical Results and Benchmarks

We implemented this method in a C++ library that offers

an easy-to-use framework for solving differential equations.

Our implementation depends on two libraries:

• GiNaC [1], a formal derivation C++ library. With this

tool, we generate at compile time C++ code for the

higher order derivatives. We thus provide a source

code transformation system which computes all the

function needed for the computation of the error term.

• Profil/BIAS [9], a C++ interval library.

In this section, we study the performances of our library.

First, we compare the speed and accuracy of our library with

Taylor series methods; we chose to compare with AWA [10]

and VNODELP [13]. AWA was the first software to use

Taylor series to achieve guaranteed integration, and VN-

ODELP is the new version of VNODE, which is proba-

bly the validated solver that is used the most. We run the

tests with GRKLib, VNODELP and AWA but also with

VNODELP and AWA limited to order 5. Actually, the

main limitation of our method is its relatively low order,

but our RK4 method is much more efficient than Taylor se-

ries method of the same order, while as precise as them. We

then show how the method scales with problem size, toler-

ance and initial error. The tests were run on a laptop (two

1.7Ghz processors, 1Gb of RAM) running Ubuntu Linux.

We used g++ (version 4.1) with optimization options -O2.

5.1. Linear problem: pure contraction

We integrate the IVP (5.1) on the interval [0, 2000], and
with an absolute tolerance of 10−12 at each step. This prob-
lem is a pure contraction, meaning that the Jacobian matrix
does not rotate the error terms. Thus, the wrapping effect
described in 3.2 is very limited.

Ẏ =

0
@ −0.4375 0.0625 0.2652

0.0625 0.4375 0.2652
−0.2652 0.2652 0.375

1
A Y Y0 =

0
@ 1.0

1.0
1.0

1
A

(5.1)

Figure 3 shows how the CPU time depends on the integra-

tion time. VNODELP is 1.5 times faster than our library,

but we are 3 times faster than VNODELP with order 5.

AWA is more than 10 times slower than VNODELP of or-

der 5, whatever the order is. The time for one step is much

smaller for GRKLib (4.6 · 10−5 seconds against 3.8 · 10−4
for VNODELP). The width of the final enclosure is 2 ·10−9

for our method, 3.10−10 for VNODELP with order 5 and

10−12 for VNODELP and AWA. The error is bigger for

GRKLib because the error control method controls the step

size so that the local error introduced is of 10−12, and we

do not control the global error. If we integrate the same

 0.01

 0.1

 1

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
 ti

m
e

(s
)

Integration time

GRKLIB
VNODE

VNODE_ORDER_5
AWA

AWA_ORDER_5

Figure 3. CPU time versus t for Problem (5.1)

problem with fixed, small step size, we can achieve a fi-

nal global error of 10−14 while being only 5 times slower.

Thus, we would greatly benefit from a global error control

which would predict the evolution of the step size in a better

way.

5.2. Linear problem: pure rotation

We solve the IVP (5.2), on the interval [0, 2000], with an
absolute tolerance of 10−12 at each step. This problem is
a pure rotation, meaning that the Jacobian matrix is almost
a rotation matrix. Thus, it widely suffers from wrapping
effect, and this problem shows the efficiency of Löhner’s
QR factorization method.

Ẏ =

0
@ 0 −0.707107 0.5

0.707107 0 0.5
0.5 0.5 0

1
A Y Y0 =

0
@ 1.0

1.0
1.0

1
A

(5.2)

Figure 4 shows how the CPU time depends on the integra-

tion time. The time per step remains 10 times smaller for

GRKLib, but we need to make more steps because of our

limited order. The width of the error at t = 2000 is 2.10−9

for GRKLib, 10−11 for VNODELP and AWA and 6.10−10

for VNODELP with order 5. Once again, a global error

control method would help to reduce the error width.

5.3. Non linear problem: Lorenz equations

Finally, we applied our method on Lorenz equations
(5.3). We set the absolute tolerance to 10−12 and performed
the integration on the interval [0, 15].

8<
:

ẏ1 = σ.(y2 − y1)
ẏ2 = y1.(ρ − y3) − y2

ẏ3 = y1.y2 − β.y3

8<
:

y1(x0) = 15.0
y2(x0) = 15.0
y3(x0) = 36.0

(5.3)

Figure 5 shows how the computation time depends on the

time. Once again, the time per step is much smaller for

GRKLib, but as the derivatives of the function take very

high values, we need to make very small steps to achieve

 0.01

 0.1

 1

 10

 100

 100 300 500 700 900 1100 1300 1500 1700 1900

C
P

U
 T

im
e

(s
),

 lo
ga

rit
hm

ic
 s

ca
le

Integration time

GRKLIB
VNODE

VNODE_ORDER_5
AWA

AWA_ORDER_5

Figure 4. CPU time versus t for Problem (5.2)

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12 14

C
P

U
 T

im
e

(s
),

 lo
ga

rit
hm

ic
 s

ca
le

Integration time

GRKLIB
VNODE

VNODE_ORDER_5
AWA

AWA_ORDER_5

Figure 5. CPU time versus t for Problem (5.3)

the given tolerance. However, we remain 10 times faster

than VNODELP with order 5 and 2 times faster than AWA.

The final error at t = 15 is 4 ·10−3 for GRKLib, 5 ·10−6 for

VNODELP, 2 · 10−3 for VNODELP with order 5 and 10−4

for AWA. AWA with order 5 did not make it to t = 15.

The bigger number of steps we have to make explains this

difference.

5.4. Performance

Work versus problem size
To study how computation time depends on the problem

dimension, we used the DETEST problem C3 [7], as sug-
gested by Nedialkov [13]. The problem is given by:

Ẏ =

0
BBBBB@

−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0

...

0 0 · · · 0 1 −2

1
CCCCCA

Y

with y0 = (1, 0, . . . , 0)T . We solved the equation from 0 to

2 for dimensions n = 40, 60, 80, . . . , 140. Figure 7 shows

the computation time per step (we need 42 steps to reach 2).

The complexity is O(n3) because the QR method to reduce

 1

 10

 100

 1000

 10000

 40 60 80 100 120 140

C
P

U
 ti

m
e/

st
ep

 (
s)

, l
og

 s
ca

le

Dimension

Figure 6. CPU time per step versus n

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12 1e+13
 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

C
P

U
 ti

m
e

(s
),

 lo
g

sc
al

e

A
cc

ur
ac

y,
 lo

g
sc

al
e

1/Tolerance, log scale

CPU Time (s)
Accuracy

Figure 7. CPU time and accuracy versus tol

the wrapping effect requires a matrix decomposition which

is the most time expensive part of the algorithm.

Work versus tolerance

To study the dependence of our method on

the tolerance, we integrate the linear problem

(5.1) on the interval [0, 1000] with a tolerance

tol = 5.10−2, 10−2, 5.10−3, . . . , 5.10−14. Figure 7

shows how CPU time and accuracy depends on the toler-

ance. As excepted, the accuracy increases as the tolerance

decrease, whereas the CPU time increases.

Accuracy versus initial conditions

To study how the method depends on initial conditions,

we integrate the Lorenz equations (5.3) with initial errors

tol = 10−4, 10−5, . . . , 10−9. We present on Figure 5.4 the

maximum time at which we were able to integrate (5.3) for

each value of tol. As excepted, the bounds diverge much

quicker than for point initial conditions; on this problem,

the bounds tend to explode as soon as they start diverging.

6. Conclusion

In this article, we have shown the feasibility of a guar-

anteed version of the classical numerical algorithm RK4.

The guaranteed nature of our method differs from previous

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10000 100000 1e+06 1e+07 1e+08 1e+09

M
ax

im
um

 in
te

gr
at

io
n

tim
e

(s
)

1/(initial error), log scale

GRKLib
VNODE

Figure 8. Maximum Tend versus initial error

works in the sense that we compute non validated points

in a first step and then guaranteed error bounds. To com-

pute these bounds, we localize every type of errors that may

occur during the computation of the approximating points:

truncation errors due to the method, propagation errors due

to the dynamical system, and roundoff errors due to the pre-

cision of machines on which the method is implemented.

We use a constant a priori enclosure to compute truncation

errors, Löhner’s method to reduce the wrapping effect in

propagation errors, and the global error domain for round-

off errors. We also use a step-size control mechanism that

gives good performance results.

We believe that this method is promising because it does

not mix interval and floating point computations. Actually,

intervals are used only for verification tasks and not for the

computation of the next approximation points. This clear

separation is analogous to the separation between floating

point numbers and intervals in global error arithmetic. This

has given very good results in the field of numerical vali-

dation, so we are confident that it should perform well for

guaranteed integration.

The idea of separation between interval and floating

point computations is orthogonal to the choice of the nu-

merical method. Actually, all we need is an iteration func-

tion for which the derivatives are computable. We chose to

base our library first on Runge-Kutta methods because they

are widely used for numerical (non guaranteed) integration

and that users generally know how to tune the step size con-

trol mechanism to make the method as precise as possible.

However, we do not want to limit ourselves to this partic-

ular integration scheme, and we plan to add more sophisti-

cated ones to our library to fit better to more types of prob-

lems. Especially, we are planning to use higher order nu-

merical integration schemes; experimentations showed that

the mean step size is the main limitation to performance and

accuracy, the use of higher order methods will allow bigger

step sizes and consequently much better performances.

References

[1] C. Bauer, A. Frink, and R. Kreckel. Introduction to the

GiNaC framework for symbolic computation within the C++

programming language. Journal of Symbolic Computation,

33(1):1–12, 2002.

[2] L. Bieberbach. On the remainder of the runge-kutta for-

mula in the theory of ordinary differential equation. ZAMP,

2:233–248, 1951.

[3] J. C. Butcher. The numerical analysis of ordinary differential

equations: Runge-Kutta and general linear methods. Wiley-

Interscience, New York, 1987.

[4] G. Corliss and Y. F. Chang. Solving ordinary differential

equations using Taylor series. ACM Transaction on Mathe-

mathical Software, 8(2):114–144, 1982.

[5] G. Hanrot, V. Lefevre, R. F., and P. Zimmermann. The

MPFR library. Available at www.mpfr.org.

[6] T. Henzinger and P. Ho. Algorithmic analysis of nonlinear

hybrid systems. In CAV, volume 939 of LNCS, pages 225–

238. Springer Verlag, 1995.

[7] T. Hull, W. Enright, B. Fellen, and A. Sedgwick. Compar-

ing numerical methods for ordinary differential equations.

Journal on Numerical Analysis, 9(4):603–637, 1972.

[8] M. Kieffer and E. Walter. Guaranteed nonlinear state esti-

mator for cooperative systems. Journal of Numerical Algo-

rithms, 37(1–4):187–198, Dec. 2004.

[9] O. Knüppel. PROFIL/BIAS – A fast interval library. Comput-

ing, 53:277–287, 1994.

[10] R. Löhner. Einschliessung der Lösung gewöhnlicher

Anfangs- und Randwertaufgaben und Anwendungen. PhD

thesis, Universität Karlsruhe, 1988.

[11] M. Martel. An overview of semantics for the validation of

numerical programs. In VMCAI, volume 3385 of LNCS,

pages 59–77. Springer, 2005.

[12] N. Nedialkov, K. Jackson, and G. Corliss. Validated solu-

tions of initial value problems for ordinary differential equa-

tions. Applied Mathematics and Computation, 105(1):21–

68, 1999.

[13] N. S. Nedialkov. Interval tools for ODEs and DAEs. Tech-

nical Report CAS 06-09-NN, Dept. of Computing and Soft-

ware, McMaster University, 2006.

[14] S. Putot, E. Goubault, and M. Martel. Static analysis-based

validation of floating-point computations. In Numerical

Software with Result Verification, volume 2991 of LNCS,

pages 306–313. Springer, 2003.

[15] A. Rauh, E. Auer, E. Hofer, and W. Luther. Validated mod-

eling of mechanical systems with SmarMOBILE: Improve-

ment of performance by ValEncIA-IVP. In Reliable Imple-

mentation of Real Number Algorithms: Theory and Prac-

tice. Springer Verlag, to appear.

[16] S. Sastry. Nonlinear Systems Analysis, Stability and Control.

Spinger, Berlin, 1999.

[17] O. Stauning. Automatic Validation of Numerical Solutions.

PhD thesis, Technical University of Denmark, Lyngby, Den-

mark, 1997.

[18] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis.

Springer Verlag, New York and Berlin, 1993.

Hardware Implementation of Continued Logarithm Arithmetic

Tomáš Brabec
Faculty of Electrical Eng. at Czech Technical University

Dept. of Computer Science and Engineering
Karlovo nám. 13, 121 35 Prague 2, Czech Republic

brabect1@fel.cvut.cz

Abstract

This paper gives details on architecture of an arithmetic
unit built on principles of continued logarithms and pro-
vides its sample characterization using FPGA technology.
Continued logarithms can be used for exact arithmetic, but
similarly to other exact/reliable methods they face the in-
stant problem of poor performance. Their naturally binary
character, however, gives them a good potential to be re-
alized directly in hardware. We prove feasibility of this
approach by constructing a continued logarithm unit and
quantifying its possible performance.

1. Introduction

Continued logarithms form a number system capable of

representing real numbers. As it relies on error-free ra-

tional arithmetic, it is useful for exact arithmetic, which

in other words means that computing with continued log-

arithms produces accurate results with arbitrary precision

[7]. This paradigm was first introduced in [5] as a derivative

of regular continued fractions and has a better potential for

binary arithmetic and hardware implementation. Likewise

continued fractions, continued logarithms feature many ad-

vantageous properties such as reversibility and incremen-

tality of computation, implicit error bound tracking, good

rational approximation and etc. [6].

Unfortunately, continued logarithms also keep the major

problem of continued fraction arithmetic, that is the high

complexity of arithmetic algorithms. These algorithms gen-

erally compute bilinear fractional transformations operating

with eight-tuples of big-integer coefficients [5, 9]. This in-

troduces significant computational overhead, which is espe-

cially notable for sequential software implementation and

which can practically prevail over most advantages of con-

tinued representations.

There is, however, a chance to minimize this overhead by

exploiting parallelism inside the (bi)linear fractional trans-

formations and use dedicated hardware support. This pos-

sibility is further supported by regularity and uniformity of

arithmetic algorithms, but its final success relies on efficient

use of hardware resources. Even though continued fractions

in their regular form are not generally useful in this sense,

there were some past attempts for their hardware implemen-

tation [9] using a factorization into binary digits. More re-

cently a similar idea appeared in [10].

Our intention here is to investigate the use of continued

logarithms as a possible alternative and show its promise

for practical realization. For this reason, we cover the most

important aspects of continued logarithms in Section 2 –

the representation, principles of arithmetic, and some im-

portant properties. We also compare continued logarithms

with regular continued fractions, showing on some practical

experiments that there is no major difference between them.

We try to keep that section compact but still complete so as

to provide sufficient material for understanding the remain-

ing parts.

The idea of constructing a continued logarithm unit was

already introduced in [2], but its description was rather gen-

eral and we showed only preliminary results. Here we give

a more detailed and complete overview of the unit’s archi-

tecture (Sections 3.1 and 3.2) and present final results of its

implementation (Section 3.3). We also provide an analysis

in Section 3.4 that quantifies a performance potential of the

unit, showing a significant improvement over the software

implementation.

There is, however, a limitation behind the continued log-

arithm representation, which affects applicability of the pro-

posed unit. This problem and its possible solution is finally

discussed in Section 4.

2. Continued Logarithm Arithmetic

2.1. Basics

Continued logarithm representation of a real number x
is defined by a recursive formula (1), which produces one

Table 1. BCL “Cubic” transformations of fractional coefficients during processing/generating a digit
of individual variables.

Digit x-transformation y-transformation z-transformation

–

−A B −C D

−E F −G H

!
−A −B C D

−E −F G H

!
−A −B −C −D

E F G H

!

/

B A D C

F E H G

!
C D A B

G H E F

!
E F G H

A B C D

!

0

A + B A C + D C

E + F E G + H G

!
A + C B + D A B

E + G F + H E F

!
E F G H

A − E B − F C − G D − H

!

1

2A B 2C D

2E F 2G H

!
2A 2B C D

2E 2F G H

!
A B C D

2E 2F 2G 2H

!

digit per iteration starting from the most significant one. As

(1) consists of four definition cases, there are in total four

digits (‘−’, ‘/’, ‘0’ and ‘1’) respectively assigned to individ-

ual cases. Thus starting from the top, digit ‘−’ corresponds

to −xi, ‘/’ to 1/xi and etc. It happens from the nature of

(1) that the digits ‘−’ and ‘/’ have “sign” character as they

may appear only at the beginning of a number representa-

tion. This is why we denote this representation a binary
continued logarithm (BCL), even though there are actually

four digits.

xi+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−xi for xi ∈ [−∞, 0),
1/xi for xi ∈ [0, 1),
1/(xi − 1) for xi ∈ [1, 2),
xi/2 for xi ∈ [2, +∞],

(1)

i = 0, 1, . . . and x0 = x ∈ R.

Let us show the use of (1) to find a BCL representation of

a rational number x = − 2
3 . We start from i = 0 by letting

x0 = x and iteratively continue to higher indices as shown

below, finding out that − 2
3 = (−/010)BCL.

i xi digit condition xi+1

0 − 2
3 ‘–’ [−∞, 0) −(− 2

3)

1 2
3 ‘/’ [0, 1) 1/ 2

3

2 3
2 ‘0’ [1, 2) 1/(3

2 − 1)

3 2 ‘1’ [2, +∞] 2/2

4 1 ‘0’ [1, 2) 1/(1 − 1)

5 ∞
Although it is not explicitly defined, the recursive process

may terminate once the value of xi reaches ∞. By termi-

nating the digit sequence for such i, we avoid an infinite

suffix of trailing ones caused by equivalence ∞
2 = ∞.

Recursive nature of (1) and the employed rational func-

tions imply that the BCL representation has a character of

composed linear fractional transformations (LFTs). This

character is typical for many similar representations (e.g.

[6, 10, 11]), all of which base their arithmetic on a bilinear

fractional transformation (BLFT). BLFT is a rational func-

tion of the following form

z(x, y) =
Axy + By + Cx + D

Exy + Fy + Gx + H
(2)

=
(

A B C D
E F G H

)
(x, y),

where A through H are integer coefficients and x, y are

real-valued arguments, in our case having a form of contin-

ued logarithms.

Notice that the BLFT function is general enough to com-

pute all basic arithmetic operations, being the only suffi-

cient operator to constitute whole continued logarithm arith-

metic. As explained in [4], BLFT is closed to composition

of LFTs and so it naturally matches the character of contin-

ued logarithms. This closure actually means that the bilin-

ear form of BLFT stays preserved, no matter what input (x,

y) and output (z) digits are being processed.

It thus follows that after processing k digits from x and l
from y and after generating i digits of a result z, the state of

(2) changes from z(x, y) = z0(x0, y0) to zi(xk, yl), defined

by

zi(xk, yl) =
(

Ak,l
i Bk,l

i Ck,l
i Dk,l

i

Ek,l
i F k,l

i Gk,l
i Ek,l

i

)
(xk, yl). (3)

This new state is solely characterized by actual values of

fractional coefficients and indices i, k, l. Notice that each

fractional coefficient has associated all three indices, as its

value changes with processing of every digit, input or out-

put. The way these coefficients change depends on a vari-

able and a digit being processed.

The four digits and the three variables account together

to twelve possible transformations, which are summarized

in Tab. 1. The table shows a new state of a BLFT (2) trans-

formed correspondingly to a given variable and a processed

digit. One can derive these transforms easily [2] by substi-

tuting for a given variable from the BCL definition formula

(1) into (2). A partial example of their use is shown below,

but the particular details are left to Section 3.1.

The last substantial aspect of the continued logarithm

arithmetic is its understanding as a second-level arithmetic

with the underlying variable-length integer arithmetic being

the first level. It means that, despite of x, y, z having BCL

representation, the coefficients A to H of (2) are integers

represented in a normal, positional number system. There-

fore, all operations with these coefficients found in Tab. 1

use conventional integer arithmetic. This understanding is

very important and we will return to it in the following sec-

tions, where we inspect properties of continued logarithms.

Example: We illustrate the continued logarithm arith-

metic on computing a function z = xy, where we put for

simplicity x = y = 2 = (10)BCL. We use here a special no-

tation where the symbol
d=v denotes an equivalence attained

by processing a digit d from an input variable v. Likewise,

the symbol
d→z represents an output z-transformation, dur-

ing which an output digit d is emitted.

z0 =
(

1 0 0 0
0 0 0 1

)
(2, 2) ‘1’=x

(
2 0 0 0
0 0 0 1

)
(1, 2)

‘1’=y

(
4 0 0 0
0 0 0 1

)
(1, 1) ≥ 4 ‘1’→z z1

z1 =
(

4 0 0 0
0 0 0 2

)
(1, 1) ≥ 2 ‘1’→z z2

z2 =
(

4 0 0 0
0 0 0 4

)
(1, 1) ‘0’=x

(
4 4 0 0
0 0 4 0

)
(∞, 1)

‘0’=y

(
4 4 4 4
4 0 0 0

)
(∞,∞) = 1 ‘0’→z z3

z3 =
(

4 0 0 0
0 4 4 4

)
(∞,∞) = ∞

We can see that the produced sequence ‘1’, ‘1’, ‘0’ corre-

sponds to a BCL representation of a number z = 4.

2.2. Properties

The BCL definition formula does not directly evoke that

continued logarithms are really continued fractions, but this

fact is immediate from formulas (4) and (5) introducing a

canonical continued logarithm (CCL). Both BCL and CCL

representations are equal and they are tied together through

powers of two so that every ki within CCL represents the

number of ‘1’ digits between i-th and (i − 1)-th ‘0’ digit

within BCL (see [5] for details).

x = s (χ)e
, (4)

2B

G

E

H

F

BA

+

xy
z

C D

2x

2x

+

+

+

2A DC
2F2E HG

B-FA-E D-HC-G
FE HG

A C+DA+B C
E G+HE+F G

2x

2x
-

-
-

-

Figure 1. Graphical view of some BCL cubic
transformations (see Tab. 1) after mapping
fractional coefficients onto a cube.

where s, e and χ are defined as follows:

s =

{
−1 for x < 0,

+1 otherwise,

e =

{
−1 for |x| < 1,

+1 otherwise,

χ = 2k0 +
2k0

2k1 +
2k1

. . . +
2kn−1

2kn + . . .

≥ 1. (5)

The canonical form is especially useful for studying the-

oretical properties of continued logarithms, because it is

similar to the form of regular continued fractions. The dif-

ference is that regular continued fractions use a “linear” ap-

proximation of a real number x by an integer �x�, while

continued logarithms use a “logarithmic” approximation by

a close power of two, namely 2�log2 x�. Similarity of this

principle suggests analogy in properties of continued loga-

rithms and regular continued fractions. Let us mention for

instance uniqueness of representation, built-in error analy-

sis, reversibility of computation, etc. [6]. Proofs of these

properties known for regular continued fractions [8] can be

easily adapted to continued logarithms. The logarithmic na-

ture, on the other hand, makes some properties distinct. A

particular example is approximation convergence, which is

much slower for continued logarithms.

Other interesting properties are due to theoretical prin-

ciples of continued arithmetic and they are thus common

to both considered continued representations. It is espe-

cially the uniformity and regularity of BLFT transforma-

tions, which is nicely illustrated by mapping the fractional

coefficients of (2) onto a cube (see Fig. 1). Individual cube

dimensions correspond to the three variables of a bilinear

transformation and at the same time they define directions,

in which coefficient transformations happen. For details re-

fer to [9]. The graphical view also reveals high degree of

parallelism among individual transformations.

A unique feature of continued logarithms is their use of

only powers of two (see (5)), which significantly reduces

the complexity of underlying binary arithmetic, i.e. opera-

tions performed with fractional coefficients A to H . Where

regular continued fractions multiply and divide by general

integers, CCL use integer powers of two. That is, contin-

ued logarithms reduce all multiplications and divisions to

simple shifts while keeping the complexity of addition and

subtraction unchanged. In case of the BCL representation,

all transformations then use only 1-bit shifts, add/sub and

exchange operations (see Tab. 1). Notice that it is namely

this property which gives continued logarithms their better

potential for direct hardware realization.

2.3. Practical Evaluation

Properties and principles of continued arithmetic makes

it promising for implementation of exact arithmetic. Un-

fortunately, there is a general problem with relatively high

complexity of algorithms computing the (bi)linear frac-

tional transformations. This is partially caused by the com-

plexity of arithmetic operations with fractional coefficients,

such as multiplication and notably division. As contin-

ued logarithms replace these critical operations with rela-

tively simple shifts, performance of their algorithms should

increase. On the other hand, continued logarithms have

worse approximation convergence than regular continued

fractions and it will take them longer to reach a result with a

required precision. It is hard to predict, which of these con-

flicting properties will have greater impact on the overall

performance.

To evaluate the effect of continued logarithm properties

and to see if they are rather advantageous or not, we com-

pared continued logarithms with regular continued fractions

on few practical examples. There were two parameters we

observed – performance and precision. Performance is con-

sidered here naturally as time to complete the computation

and its importance is immediate. The precision parame-

ter represents a peak precision (i.e. bit-length) required for

fractional coefficients during the computation. We observed

this parameter to get an idea of hardware resource require-

ments, i.e. register size and data path width, and thus to

indicate which of the considered representations would be

more effective from hardware design perspective.

For the evaluation purposes, we used Java as an imple-

mentation basis and run several simple benchmarks, includ-

ing random-generated BLFT evaluation, polynomial eval-

uation and matrix inversion. BLFTs were generated with

0

10

20

30

40

Precision [bits]

N
u

m
.

o
f
e
le

m
e

n
ts

ContLog

RegContFrac

0

4

8

12

Precision [bits]

N
u

m
.

o
f
e

le
m

e
n

ts

ContLog

RegContFrac

2480 403216 48 56 64 72

2480 403216 48 56 64 72

(a) Hilbert matrix: 10 × 10 (top) and 5 × 5 (bottom)

0

10

20

30

40

Precision [bits]

N
u

m
.
o

f
e

le
m

e
n

ts

ContLog

RegContFrac

0

4

8

12

16

20

Precision [bits]

N
u

m
.

o
f

e
le

m
e

n
ts

ContLog

RegContFrac

0 10 20 30 40 100 160 400220 460340280

0 10 20 30 40 100 160 400220 460340280

(b) Random matrix: 10 × 10 (top) and 5 × 5 (bottom)

Figure 2. Histogram of fractional coefficients’
precision across the computed elements of
an inverted matrix.

8-bit signed coefficients and with floating-point arguments

in range [0.0, 1.0]. Rump’s polynomial [12] served as an ex-

ample of precision sensitive calculation and it was also used

to verify accuracy of our implementation. Computing a ma-

trix inverse was finally the most complex benchmark we

also used to measure performance. Particular implementa-

tions we compared were BCL representation introduced in

preceding sections and generic regular continued fractions

described in [5].

A complete list of results with detailed comments may

be found in [1] and we thus limit here to rephrase only im-

portant conclusions. We can generally say that none of both

continued representations has an evident advantage over the

other one. In the test of random BLFTs, the results were al-

most equal. Regular continued fractions had average preci-

Table 2. Peak precision of BLFT fractional coefficients detected during computing a result of Rump’s
polynomial with its precision specified in number of decimal digits.

Result prec. [dec. digits] 1 2 3 4 5 6 7 8 9 10 11 12 13 ≥14

Coef. prec. (reg. cont. frac.) [bit] 126 126 126 126 126 126 126 1261) 126 126 126 126 126 126

Coef. prec. (BCL) [bit] 170 170 170 170 171 171 171 171 178 178 178 178 345 3451)

1)At this point an exact solution of a result in a corresponding continued representation has been reached. Note that the solution of Rump’s polynomial is a
rational number and as such it has a finite representation in both reg. cont. fractions and BCL. To convert this solution into a decimal number system with
indicated precision, the continued representation needed to be processed completely (i.e. evaluated to the exact value).

sion per fractional coefficient 51 bits, while continued loga-

rithms required 56 bits. Significant difference showed re-

sults of Rump’s polynomial evaluation (see Tab. 2). We

computed a solution of the polynomial with required preci-

sion and observed precision of fractional coefficients during

intermediate BLFT calculations. As shown, an approximate

solution of the polynomial up to few decimal digits required

roughly comparable results (126 and 170 bits per fractional

coefficient). However, exact solution in a continued loga-

rithm arithmetic would require 2.5 times more bits per frac-

tional coefficient than regular continued fractions. Finally,

the most interesting were results of matrix inversion, par-

tially also because this benchmark was the most complex

one. In case of ill-conditioned Hilbert and Pascal matrices,

the results came up better for regular continued fractions

both in terms of performance and precision of fractional co-

efficients. On the other hand, inverse of random-generated

matrices favored continued logarithms, where performance

and especially the precision was remarkably lower. Fig. 2

illustrates these results and displays histograms of fractional

coefficient’s precision gathered from all elements of an in-

verse matrix. For instance, we can see that a peak precision

for a 10×10 Hilbert matrix was 46 bits for regular continued

fractions and 72 bits for continued logarithms. Conversely,

a random matrix of the same dimension would require 450

bits and 161 bits, respectively. For comparison of perfor-

mance refer to [1].

Even though our evaluation had a limited scope, it does

not seem so far that there is a major difference between con-

tinued logarithms and regular continued fractions. How-

ever, continued logarithms theoretically keep their advan-

tage of significantly easier implementation in hardware.

With this observation, we had enough justification why to

use continued logarithms instead of commonly preferred

continued fractions.

3. Arithmetic Unit

In [2] we presented preliminary results of designing an

arithmetic unit using continued logarithm representation. In

this paper we are about to describe the details of unit’s ar-

chitecture and present the final results of its implementation.

We also evaluate performance improvement that such unit

could eventually offer.

3.1. Principles

The process of computing BLFT (2) is based on prin-

ciples of digit-serial on-line computation and interval-like

function evaluation. The former principle defines the way

of generating output digits serially by having only a partial

knowledge about exact values of input arguments. When-

ever this partial knowledge is insufficient for producing an-

other output digit, there is possibility to refine it by pro-

cessing more input digits from one or both arguments. The

partial knowledge is specified by intervals restricting the set

of possible values that input arguments may gain. With

these considerations, it is an immediate consequence that

at a given state of the computation we can only determine a

range of BLFT functional values and not just a single point.

However, this is acceptable as long as the range interval can

meet output conditions (1) for continued logarithm digits.

Since the exact value of the result is a part of that range, it

will certainly meet the output conditions as well.

It follows that the whole process is demand-driven – it

takes the actual state (3) of the computation and determines

the range of zi using information on domains of input vari-

ables xk and yl. Let us denote Zi the range of zi and sim-

ilarly Xk and Yl the domains of xk and yl. If Zi cannot

satisfy any output condition, input domains are refined by

processing more input digits and taking input transforma-

tions on fractional coefficients. Thanks to the character of

BLFT transformation, Zi gets refined too. Once Zi is tight

enough for output, it is possible to do a z-transformation

and produce a corresponding digit. Further digits for Zi+1,

Zi+2 and etc. are produced as long as it is possible; after

then another input digits are requested and the whole pro-

cess repeats. This is formally sketched in the algorithm at

the end of the paper.

Yet a bit unclear remains determining the range Zi. In

general case, it is a hard and complex task, but in case

of well-defined BLFT function, it is possible to take ad-

vantage of restrictions on domains Xk and Yl. By “well-

definedness” we mean that the function is continuous and

RAM
RAMRAM

>>
<<

4x ALU

2 copies 2 copies

8x 8x

8x

Write back

8 registers

Register File Transform Logic Compare Logic

2T latency 1T latency 4T latency

Controller

z

pipeline registers

x

y

Figure 3. Simplified architecture of the continued logarithm unit.

monotone on its assumed domain. It follows from the def-

inition of BCL (1) that this domain is implicitly restricted

to Xk × Yl ⊆ [1,∞]2 as it holds xk, yl ≥ 1 for k, l ≥ 2.

Let us define the following partial sums among fractional

coefficients of BLFT:

N0 = A,

N1 = A + B,

D0 = E,

D1 = E + F,

N2 = A + C,

N3 = A + B + C + D,

D2 = E + G,

D3 = E + F + G + H.

(6)

One can easily verify that using the implicit restriction to

[1,∞]2 the following conditions are sufficient to make a

BLFT well-defined:

sgn(N0) = sgn(N1) = sgn(N2) = sgn(N3),

sgn(D0) = sgn(D1) = sgn(D2) = sgn(D3) 	= 0.
(7)

The partial sums actually represent the value of zi’s nu-

merator (Nj) and denominator (Dj) in one of the corners

of [1,∞]2 – e.g. zi(∞, 1) = (A + C)/(E + G) = N2/D2.

Therefore, if the “well-definedness” conditions (7) are met,

we also check what output conditions (1) the fractions

Nj/Dj , j = 0, . . . , 3, satisfy. If they all satisfy the same

condition, then zi’s range certainly does too because its

BLFT is well-defined. Output conditions may be checked

using these equivalences:

Zi ⊂ [−∞, 0) ⇔ sgn(N0) = −sgn(D0),
Zi ⊂ [0, 1) ⇔ 0 ≤ Nj < Dj for ∀j,
Zi ⊂ [1, 2) ⇔ Dj ≤ Nj < 2Dj for ∀j,
Zi ⊂ [2, +∞] ⇔ Dj ≤ Nj for ∀j.

(8)

Let us finally note that the introduced principle is deter-

ministic, but it is finite only if input arguments are rational

numbers. It is because rational numbers have finite contin-

ued logarithm representation and can be thus processed in

a finite time, and because their BLFT will produce a ratio-

nal number too. In general case of real-valued arguments,

problems of non-computability may arise because of com-

puting with infinite continued logarithms of irrational num-

bers. However, we leave this well-known limitation [9] for

discussion in Section 4.

3.2. Architecture

The unit’s operation follows the process of computing

BLFT discussed previously and its architecture thus natu-

rally reflects this character (see Fig. 3). The parts depicted

in the figure correspond to individual steps of the comput-

ing process, except for added controller that manages the

overall operation.

The controller takes digits from input arguments and

emits computed digits of the result. The core functionality,

i.e. the data intensive processing of fractional coefficients,

is left to the rest of the unit representing the data path. The

controller coordinates the data processing and decides on

proceeding of the computation e.g. by following the algo-

rithm discussed in the previous section. For this purpose it

relies on status signals of data path modules, and especially

those of comparison logic, which provides information on

possibility of output.

Values of fractional coefficients are stored in the register
file, which is composed of eight dual-port RAMs, each one

for storing a single fractional coefficient. The capacity of a

RAM module thus defines the maximum precision of a frac-

tional coefficient. The register file also provides the func-

tionality to prepare its output data for further processing,

so that computing of cubic transformations can be handled

more easily. This is the purpose of the shuffle block that can

permute register file outputs with respect to a “dimension”

(x, y, z) of a selected transformation. If we call the output of

the shuffle block permuted, then e.g. for y-transformation

there will be an eight-tuple (A,B, C, D, E, F,G,H) on the

direct output of the register file and the corresponding per-

muted output will be (B,A, D, C, F,E,H, G).
Both direct and permuted outputs of the register file are

further processed by the transform logic module, which

computes the individual cubic transformations according to

a selected dimension. The module is composed of eight

ALUs so that i-th ALU takes i-th direct and i-th permuted

output. ALUs can be grouped by four, one group for nu-

merator and one for denominator of a computed BLFT. The

ALU itself is quite simple and its functionality covers all

operations occurring within the cubic transformations (see

Tab. 1). These operations include 1-bit shift left/right, addi-

tion, subtraction and negation. Important is also the ability

of “no operation” used only to propagate permuted outputs

so as to realize coefficients exchange such as in case of y-

transformation for ‘/’ digit.

New values of fractional coefficients produced by the

transform logic are stored back to the register file. At the

same time, these values are passed to the module of com-
pare logic, which computes the partial sums Nj , Dj defined

in (6) and evaluates well-definedness (7) and the output con-

ditions (8). Final decision on taking the z-transformation

and producing an output digit is left to the controller.

Although the arithmetic unit operates equally to its se-

quential software equivalent, the main difference is in em-

ploying algorithm-level and “operation”-level parallelism.

The algorithm-level parallelism corresponds to parallel

computing of the cubic transformations with independent

fractional coefficients (Fig. 1). The “operation”-level paral-

lelism means that thanks to the pipelining it is possible to

overlap individual steps of computation, such as computing

new fractional coefficients together with their partial sums

and output evaluation.

Advantage of pipelining and operation overlapping is

further supported by unit’s multi-cycle character, which

means that fractional coefficients are processed by parts

(e.g. 32-bit words) rather than at once with full precision.

Despite taking more clock cycles to complete a single trans-

formation, the multi-cycle character generally offers better

resource utilization and by proper choice of a word size one

can leverage different speed/area trade-offs. E.g. a 32-bit

unit must iterate sixteen times to compute a transformation

of 512-bit fractional coefficients, while a 64-bit unit needs

Table 3. Experimental results for different
unit’s configurations.

Word
Size N

Word
Addr. k

Complete
Precision

Freq.1) Area1) Area1,2)

[bit] [bit] [bit] [MHz] [Slices] [%]

8 4 128 218 538 3

16 4 256 205 893 6

32 4 512 180 1 676 12

64 4 1 024 130 3 303 24

32 5 1 024 175 2 113 15

16 6 1 024 200 1 313 9

8 7 1 024 205 1 063 7

1)Implementation results obtained from Xilinx ISE 8.1.3 tool.

2)The area percentage corresponds to utilization of Xilinx XC2VP30
FPGA device with 13 696 slices.

only eight cycles – but the 32-bit unit will most likely be

smaller (see Section 3.3 for actual figures). Nonetheless, the

primary motivation for introducing the multi-cycle charac-

ter was to handle extreme precision of thousands bits, which

can possibly occur for some ill-conditioned problems, but is

rather occasional.

3.3. Implementation Details

The architecture was described in VHDL hardware de-

scription language, with a possibility to configure the word

size N (i.e. data path width) and the number of cycles per

cubic transformation M = 2k. These parameters account

for a total unit’s precision of N × 2k bits (per fractional co-

efficient) and their choice also affects area utilization and

timing parameters. Such configurability is thus important

for evaluating the area/performance trade-offs of a physi-

cally realized design.

For implementation we used FPGA (Field Pro-

grammable Gate Array) technology because it goes hand-

in-hand with the required design-time configurability and

gives possibility for future run-time reconfiguration. Impor-

tant advantage of this technology is immediate availability

of silicon devices and thus its potential for rapid prototyp-

ing. For purposes of our evaluation, we used Xilinx FPGA

devices and in particular Virtex-II Pro family.

Implementation results for few typical configurations of

the arithmetic unit are listed in Tab. 3. These results exhibit

linear increase of occupied area with respect to data-path

width N or address width k, which is a sign of good scal-

ability. Simultaneously with the increasing word size, the

frequency partially dropped down as a result of lengthen-

ing the critical path going through adders and relating logic.

Nonetheless, all configurations were still able to operate at

high frequencies. Notice that despite the drop down, using

higher word size still pays off if the associated area over-

head is acceptable. Just for convenience we also provide

implementation results (Tab. 4) of some highly optimized

floating-point units so that one has a fair comparison be-

tween the size of a floating-point and the continued loga-

rithm unit.

3.4. Performance Evaluation

Using the presented implementation results, one can esti-

mate1 the acceleration potential that the proposed arithmetic

unit offers in comparison with its software equivalent. Al-

though we base our assessment on very simplified and raw

estimates of ideal SW and HW performance, its results will

give us some idea of what we may expect when integrating

the arithmetic unit as an accelerator in a computer system.

For this evaluation we compare a 32-bit variant of the unit

with a hypothetical 32-bit RISC-like processor. This means

that the fractional coefficients are processed by 32-bit words

in both cases.

In case of software implementation, we omit any con-

trol overhead and restrict the whole data processing only

to major operations within the cubic transformations and

Zi range evaluation. After analysis of these major opera-

tions, we found out that any cubic transformation requires

at least four operations and Zi range evaluation at least six-

teen operations [1]. If we assume each operation to take a

single cycle, which is quite realistic, then a minimum time

for complete computation:

Tmin SW = M(Kx + Ky)Tx/y-transf

+ MKz(Tz-transf + TZ eval)

≥ (
4M(Kx + Ky) + MKz(4 + 16)

)
T

=
(
4M(Kx + Ky) + 20MKz

)
T,

where M is the number of words per fractional coefficient

and Kx, Ky , Kz are the numbers of digits per continued

logarithm representation of individual variables. T is a

clock period.

Performance of the arithmetic unit is easy to estimate

from its architecture on Fig.3. We see that the latency of

individual parts is LReg.File = 2T , LTransf.Log. = T and

LCmp.Log. = 4T . If we assume input symbols from both ar-

guments to be instantly available, the arithmetic unit can op-

erate at full bandwidth alternating x- and y-transformations,

interleaved by a z-transformation whenever possible. Since

the evaluation of output possibility is overlapped with cu-

bic transformations, its overhead projects into only a small

constant additive to the complete latency of the arithmetic

1We use this estimation as we did not have real-time performance re-

sults at the time of writing.

Table 4. Implementation results for some
commercially available floating-point units.

Vendor Architecture Area 1) Freq.
[Slices] [MHz]

Gaisler Research [3] Virtex-II 8 000 (DP) 65

Xilinx [13] Virtex 4 1 200 (SP) 137.5 ÷ 170

1)DP/SP stands for double/single precision.

unit. Performance of the unit is thus:

THW = (Kx + Ky + Kz)(M + LReg.File + LTransf.Log.

+ LCmp.Log.)
= (Kx + Ky + Kz)(M + 2 + 1 + 4)T
= (Kx + Ky + Kz)(M + 7)T

Advantage of the hardware implementation is immediate

from Tmin SW versus THW. Let us put for simplicity Kx =
Ky = Kz = K, and we get Tmin SW = 28MK for software

and THW = 3MK + 21K for hardware. Letting M = 16
for the total precision of 512 bits, we end up with

Tmin SW = 448K and THW = 69K,

i.e. the arithmetic unit can at least 6.5 times outperform

a processor at the same frequency. According to Tab. 3,

we may equivalently asset the unit to perform as well as a

processor running at 6.5×180 MHz, i.e. above GHz border.

4. Conclusions

We showed that continued logarithms represent a fea-

sible alternative to commonly preferred regular continued

fractions and that principles of their arithmetic can be bor-

rowed for efficient hardware realization. The analysis of

the presented results demonstrated that the specifically de-

signed arithmetic unit offers considerably higher perfor-

mance, i.e. 6.5 times higher, than optimal sequential soft-

ware implementation. Further improvement is possible by

running more such units in parallel. The multi-unit archi-

tecture is certainly possible because of fine area utiliza-

tion, which is in average comparable to that of conventional

floating-point units.

There, however, remains the problem of real number

computability, which we identified in Section 3.1 and which

makes the proposed unit useful only for exact rational arith-

metic. Consider a case of an irrational square root with

an integer square – continued logarithms fail to compute

this square as they cannot produce a finite representation of

the integer from an infinite representation of an irrational

number. This limitation is a result of the on-line arithmetic

character combined with the representation uniqueness [9].

Nonetheless, there is a chance to find a redundant exten-

sion and solve this problem. One possibility is a detection

of non-computable cases and their speculative resolution,

which can take advantage of the rational arithmetic unit pro-

posed here. The unit would just require some minor exten-

sions of the data path and a change of control mechanism

to take care of the speculation. With a relatively low ad-

ditional overhead, we could finally introduce a continued

logarithm unit capable of exact real arithmetic and having

implementation parameters similar to those presented here.

Acknowledgment

This work was supported by Czech Technical Univer-

sity under the grant no. CTU0609213. The author would

also like to thank anonymous referees for their helpful com-

ments.

References

[1] T. Brabec. On Exact Real Hardware with Specialization to

Continued Methods. PhD Proposal, 2006.

http://service.felk.cvut.cz/anc/brabect1/pub/phdprop06.pdf.
[2] T. Brabec and R. Lórencz. Arithmetic Unit Based on Contin-

ued Fractions. In Proceedings of the 7th International Sci-
entific Conference on Electronic Computers and Informatics
ECI 2006.

http://service.felk.cvut.cz/anc/brabect1/pub/eci06.pdf.
[3] E. Catovic. GRFPU - High Performance IEEE-754 Floating-

Point Unit, 2004.

http://www.gaisler.com/doc/grfpu wp.pdf.
[4] P. Flajolet, B. Vallée, and I. Vardi. Continued Fractions from

Euclid to The Present Day, 2000.
[5] R. W. Gosper. Continued Fraction Arithmetic. Unpublished

manuscript, 1977.
[6] R. W. Gosper, M. Beeler, and R. Schroeppel. HAKMEM.

Technical report, Cambridge, MA, USA, 1972. Item 101.
[7] P. Gowland and D. Lester. A Survey of Exact Arithmetic

Implementations. In J. Blanck, V. Brattka, and P. Hertling,

editors, CCA, volume 2064 of Lecture Notes in Computer
Science, pages 30–47. Springer, 2000.

[8] A. Y. Khinchin. Continued Fractions, 3rd ed. The Univer-

sity of Chicago Press, 1964.
[9] P. Kornerup and D. W. Matula. An Algorithm for Redun-

dant Binary Bit-Pipelined Rational Arithmetic. IEEE Trans.
Computers, 39(8):1106–1115, 1990.

[10] M. Niqui. Exact Arithmetic on the Stern-Brocot Tree. Tech-

nical Report NIII-R0325, Nijmeegs Instituut voor Informat-

ica en Informateikunde, 2003.
[11] P. J. Potts. Exact Real Arithmetic using Möbius Transforma-

tions. PhD Thesis, Imperial College, London, 1998.
[12] S. M. Rump. Algorithms for Verified Inclusions – Theory

and Practice. Reliability in Computing: The Role of Interval
Methods in Scientific Computing, pages 109–126, 1988.

[13] Xilinx, Inc. APU Floating-Point Unit v2.1, 2006.

Algorithm: Computing BCL of BLFT

input: coeffs . . . coefficients of BLFT, see (2)

x . . . null-terminated BCL of x variable

y . . . null-terminated BCL of y variable

output: z . . . null-terminated BCL of z variable

i . . . number of produced BCL digits

i = k = l = 0;
xk = x; yl = y; zi = null;
Zi= ∅; Xk=Yl= [−∞, +∞];

while (Zi �= {+∞}) {
Zi= rangeBLFT(coeffs, Xk, Yl);

/* see Eq. (8) and relating */

switch (Zi) {
case Zi⊆ [2, +∞] : digit = ‘1‘; break;
case Zi⊆ [1, 2) : digit = ‘0‘; break;
case Zi⊆ [0, 1) : digit = ‘/‘; break;
case Zi⊆ [−∞, 0) : digit = ‘ − ‘; break;
default : digit = null;

}
if (digit �= null) {

coeffs = transform(coeffs, DIRECTIONz, digit);
/* see Tab. 1 */

zi = digit ◦ zi+1; /* concat. */
i + +;
zi = null;
continue;

}
/* Function select() selects an input arg.

* for input transformation. Selection may

* be random or deterministic - e.g.

* strict alternation */
if (select(xk, yl) == xk) {

digit = getMSD(xk);
if (digit == null) continue;
xk+1 = discardMSD(xk);

/* rest of BCL repres. except

* most significant digit (MSD) */
coeffs = transform(coeffs, DIRECTIONx, digit);

/* see Tab. 1 */
k + +;
Xk = rangeBCL(xk);

/* uses implicit restriction to

* subset of [1,∞] */
} else {

digit = getMSD(yl);
if (digit == null) continue;
yl+1 = discardMSD(yl);

/* rest of BCL repres. except MSD */
coeffs = transform(coeffs, DIRECTIONy, digit);

/* see Tab. 1 */
l + +;
Yl = rangeBCL(yl);

/* implicit restriction (see Xk) */
}

}
z = z0;

Rigorous lower bounds for the topological entropy via a verified optimization
technique

Balázs Bánhelyi
University of Szeged

Institute of Informatics
H-6701 Szeged, Hungary
banhelyi@inf.u-szeged.hu

Tibor Csendes
University of Szeged

Institute of Informatics
H-6701 Szeged, Hungary
csendes@inf.u-szeged.hu

Barnabás M. Garay
Budapest University of Technology

Institute of Mathematics
H-1521 Budapest, Hungary

garay@math.bme.hu

Abstract

Our automatic method developed for the detection of
chaos is used for finding rigorous lower bounds for the
topological entropy of the classical Hénon mapping. We do
this within the abstract framework created by Galias and
Zgliczynski in 2001, and focus on covering graphs involv-
ing different iterations. Our results are compared to those
obtained by them.

1. Introduction

Starting from the landmark paper by Mischaikow and
Mrozek [11] on the Lorenz equation, computer–assisted
proofs for chaos have become an integral part of dynamical
systems theory. They upgraded the importance of verified
numerics to general mathematics considerably.

What the computer is actually used for is the rigorous
checking of a finite number of inclusions of the form

Tj(Wj) ⊂ Uj , j = 1, 2, . . . , M, (1)

where the Wj’s and Uj’s are subsets of the phase space and
the Tj’s are functions associated with the dynamics. The
collection of inclusions (1) is structured by the concept of
covering relations [16] and forms a sufficient condition for
chaos, more precisely, for the embeddability of a certain
type of symbolic dynamics into the mapping or differential
equation under investigation.

The topological entropy of the embedded symbolic dy-
namics can be easily determined on the basis of inclusions
(1) and is a lower bound for the topological entropy of
the mapping or of a Poincaré mapping of the differential
equation considered. Computer–assisted proofs for chaos
lead to positive lower bounds for topological entropy. Posi-
tive topological entropy is an important qualitative indicator
for chaos. The larger the topological entropy the stronger

chaos. For diffeomorphisms, positive topological entropy
implies positivity of the maximal Lyapunov exponent.

The real task is not to check inclusions (1) but to find the
Wj’s, Uj’s, and Tj’s involved in a sufficient condition for
chaos.

In a recent paper of ours [4], this task is formulated
as a constraint satisfaction problem in optimization the-
ory and thus the possibility of applying algorithms of
global optimization in computer–assisted proofs for chaos
opened. As for the first application, we reproved Zgliczyn-
ski’s result [16] on embeddability of the full shift on two
symbols—shortly: the existence of Σ2–chaos—in the sev-
enth iterate of the widely investigated Hénon mapping

H : R
2 → R

2 , (x, y) → (1 + y − ax2, bx)

with the classical parameters

a = 1.4 and b = 0.3 .

Our proof in [4] differs strikingly from all computer–
assisted proofs for chaos (we mean those based on embed-
ding symbolic dynamics we are aware of): There is no trial
and error interaction between computer and computer sci-
entist, and the tedious task of adjusting the distinguished
sets Wj , Uj in (1) by hand is left entirely to the computer.
Nevertheless, a reasonable choice of the search domain in
the optimization procedure requires a “good initial guess”
for the Wj’s and Uj’s exploiting a priori numerical and the-
oretical results on the dynamics. This is the only reason
why our method cannot be termed fully automatic.

The present paper is a continuation of our previous
work [4]. We focus on computing lower bounds for the
topological entropy of the classical Hénon mapping based
on covering graphs involving different iterations.

Though they are valid in a much greater generality [10],
[12], all abstract results in Section 2 are formulated only in
two dimension. We follow the presentation in Galias and

Zgliczynski [9] very closely. Covering relation and topo-
logical entropy, the two most relevant notions of dynami-
cal systems theory are defined and thoroughly discussed in
Subsections 2.1 and 2.2, respectively. We assume that the
reader is (at least, intuitively) familiar with Smale’s classi-
cal horseshoe presented in Figure 4(a), a well–known ex-
ample for chaos. The type of combinatorial and dynamical
complexity of Smale’s classical horseshoe is termed as Σ2–
chaos. For dynamical systems theory in general, we refer to
[14].

Section 3 is devoted to describing the interval arithmetic
based checking algorithm and the optimization model for
the collection of inclusions (1).

In Section 4 applications to the classical Hénon mapping
are presented. The compact set in (2) is chosen for the stan-
dard trapping region, a positively invariant trapezoid for H.
It is actually the continuous mapping ϕ = H|X , the re-
striction of H to X to which the abstract results of Section
2 and the computational methods of Section 3 are applied.
Our results are compared to those obtained by Galias and
Zgliczynski [6, 8, 9, 16, 17]. The greater part of them con-
firms earlier intuition but a small part of them gives new
geometric insight on the existence of Σ2–chaos for small
and large iterates of H.

We cannot conceal that the combination of what are
called “educated guesses” and computer experimentation
with human overhead is still better. The 2002 lower bound
of Galias [8] for the topological entropy of the classical
Hénon mapping remains the best known to date. Never-
theless, we think that automatic methods for rigorous chaos
detection – including those that lead to rigorous estimates
for quantitative chaos indicators – have a huge potential for
the future and, eventually, from the view–point of effective-
ness, they supersede those requiring repeated human inter-
ference. In particular, with further improvements, we hope
that the model case applications of our verified optimization
method [4] in Section 4 to bound topological entropy (the
only new results of the present paper) will be competitive to
those governed by hands.

2. Some abstract results in advance

2.1 The covering relation

Throughout this paper, let Q1, Q2, . . . , QN denote pair-
wise disjoint, closed, solid quadrangles in R

2 with pairs of
opposite edges termed horizontal and vertical. Continuing
the vertical edges by parallel half–lines, two closed, solid,
vertical stripes—an upper stripe and a lower stripe—are at-
tached to each quadrangle. The upper stripe and the quad-
rangle share the upper horizontal edge whereas the lower
stripe and the quadrangle share the lower horizontal edge
of the quadrangle. Together with the attached stripes, each

quadrangle separates R
2 to a left and a right part. They are

open, topological half–planes.
For i = 1, 2, . . . , N , the union of the two attached stripes

is denoted by Ei. Left and right vertical edges of Qi are de-
noted by eL

i and eR
i , respectively. The corresponding left

and right topological half–planes are components of the set
R

2 \ (Qi ∪ Ei). They are denoted by OL
i and OR

i , respec-
tively.

Let X be a compact set with the property

N⋃
i=1

Qi ⊂ X ⊂ R
2, (2)

and consider a continuous mapping ϕ : X → X .

Definition 1 Following Galias and Zgliczynski [9], we say

that Qi ϕk–covers Qj and use the notation Qi
k=⇒ Qj

(k = k(i, j) is a positive integer) if

(i) the image of Qi under ϕk is located between the hori-
zontal edges of Qj or, equivalently,

ϕk(Qi) ⊂ R
2 \ Ej

and

(ii) the images of the vertical edges of Qi under ϕk have
empty intersection with Qj ∪ Ej and they are located
on the opposite sides thereof. In other words, one of
the following two alternatives holds true: Either

ϕk(eL
i) ⊂ OL

j and ϕk(eR
i) ⊂ OR

j

(see Figure 1) or

ϕk(eL
i) ⊂ OR

j and ϕk(eR
i) ⊂ OL

j .

Qi

Qj

ϕk(Qi)
eL

i eR
i

ϕk(eL
i) ϕk(eR

i)

OL
j OR

j

Ej

Ej

Ei

Ei

Figure 1. The covering properties

Definition 1 leads naturally to the concept of the covering
graph. The covering graph is a directed graph with vertices
Q1, Q2, . . . , QN and weighted edges. The pair (Qi, Qj)

belongs to the edge set of the covering graph if Qi
k=⇒ Qj

for some positive integer k and integer k is the weight on

this edge. Thus the covering relation Qi
k=⇒ Qj repre-

sents a weighted edge of the covering graph and vice versa.
Multiple edges have different weights. Loop edges are also
allowed. The covering matrix is an N × N matrix C with

elements {cij}N
i,j=1 where cij = k > 0 if Qi

k=⇒ Qj for
a unique k = k(i, j) and 0 otherwise. Thus the covering
matrix is defined only in the absence of multiple edges.

Of course everything depends on the choice of the pair-
wise disjoint quadrangles Q1, Q2, . . . , QN . The more care-
ful this choice, the richer the structure of the covering graph
can be, and the higher the estimate for h(ϕ), the topological
entropy of mapping ϕ.

The expanded covering graph is defined as follows. For
i = 1, 2, . . . , N , set

s(i) = max{k
∣∣ Qi

k=⇒ Qj , j = 1, 2, . . . , N} ,

the maximum weight on outgoing edges at Qi. In case there
are no outgoing edges from Qi, we take s(i) = 0. If 0 ≤
s(i) < 2, vertex Qi is renamed as Q0

i . If s(i) ≥ 2, then
vertex Qi is replaced by the string of s(i) vertices and the
connecting s(i) − 1 directed edges

Q0
i → Q1

i → . . . → Q
s(i)−1
i .

In both cases, vertex Q0
i of the expanded covering graph is

identified with vertex Qi of the covering graph. For i ∈
{1, 2, . . . , N} with s(i) ≥ 2, the new, intermediate vertices
Q1

i , Q
2
i , . . . , Q

s(i)−1
i of the expanded covering graph are

identified with the sets ϕ(Qi), ϕ2(Qi), . . . , ϕs(i)−1(Qi),
respectively. Finally, edge Qi

k=⇒ Qj of the covering graph
is replaced by the ‘not–in–the–string’ edge Qk−1

i → Q0
j of

the expanded covering graph. For an example, see Figure 2.
The expanded covering matrix A is defined as the ad-

jacency matrix of the expanded covering graph. In other
words, A is the NE ×NE 0–1 matrix with apq = 1 if there
is an edge of the expanded covering graph starting from the
p–th and arriving at the q–th vertex and 0 otherwise. Note
that NE is the sum of N (the number of the original vertices
of the covering graph) and of

∑
i{(s(i) − 1) | s(i) ≥ 2} }

(the number of the new, intermediate vertices).

1

1

2
2

2 22

2

3

Q1

Q2

Q3

Q4 Q5

(a) A covering graph

Q0
1

Q1
1

Q0
2

Q1
2

Q0
3

Q1
3

Q0
4

Q1
4 Q2

4
Q0

5

(b) Its expanded version

Figure 2. Expanding covering graphs

The most important property of the concept of covering
is summarized in the following fundamental result stating
that paths and circles of the covering graph can be shadowed
by true trajectories.

Theorem 1 [9] Suppose we are given a finite chain of cov-
erings

Qi0
k0=⇒ Qi1

k1=⇒ . . .
kM=⇒ QiM+1 . (3)

For brevity, we write �0 = 0 and, inductively, �m+1 = �m +
km, m = 0, 1, . . . , M . Then there exists a finite sequence
of points

x�0 ∈ Qi0 , x�1 ∈ Qi1 , . . . , x�M+1 ∈ QiM+1

such that

ϕ�m(x0) = x�m
, m = 0, 1, . . . , M + 1.

If, in addition,
i0 = iM+1,

then (
Qi0 = QiM+1 and

)
x�0 = x�M+1 .

For s = 0, 1, . . . , km − 1 and m = 0, 1, . . . , M , define
x�m+s = ϕ�m+s(x0) and observe that x�m+s ∈ Qs

im
=

ϕs(Qim
). Note also that xj+1 = ϕ(xj) whenever j =

0, 1, . . . , �M+1 − 1. Thus we are justified in saying that
{xj}�M+1

j=0 is a ϕ–trajectory segment induced by the chain
of coverings (3). The length of this trajectory segment is
L = �M+1. The distance between two trajectory segments
{x′

j}
L

0
and {x′′

j }
L

0
of equal length is maxj |x′

j − x′′
j |.

2.2 Symbolic dynamics and topological
entropy

For convenience, we recall here the definition of the
topological entropy. As before, we assume that X is a com-
pact set with property (2) and function ϕ : X → X is
continuous.

Definition 2 For n = 1, 2, . . . and ε > 0, a (necessarily
finite) set Y ⊂ X is called (n, ε)–separated if for every two
different points y, ỹ ∈ Y , there exists an integer j ∈ [0, n)
such that

|ϕj(y) − ϕj(ỹ)| > ε .

With �Y denoting the cardinality of Y , set

sn(ε) = max { �Y
∣∣ Y ⊂ X is (n, ε)-separated } .

Finally, the topological entropy of ϕ is defined as

h(ϕ) = lim
ε→0

lim sup
n→∞

1
n

log sn(ε) .

Roughly speaking, topological entropy measures the
scaled number of metrically different trajectory segments of
increasing length. (sn(ε) itself means the maximum num-
ber of discrete points that can be packed into X before there
exists two of them that do not separate by ε after n iterates.)

Theorem 2 [9] Using the terminology adopted in the last
paragraph of the previous subsection, assume that

(a) for some ε0 > 0, the distance between any two ϕ–
trajectory segments of equal length which are induced
by different chains of coverings is at least ε0.

Then
h(ϕ) ≥ log λ1(A),

where h(ϕ) is the topological entropy of ϕ and λ1(A) is the
dominant eigenvalue of the expanded covering matrix.

Note that assumption (a) is considerably weaker than
each of the standard assumptions

(b) all iterates involved in the covering graph are the same,
i.e., all edges of the covering graph have the same
weight, say k∗

or

(c) the original quadrangles {Q0
i }

N

i=1 and the new, interme-

diate sets {Q1
i , Q

2
i , . . . , Q

s(i)−1
i }{i | s(i)≥2} altogether

are pairwise disjoint.

The dominant eigenvalue λ1(A) satisfies inequality
λ1(A) ≥ |λj(A)| for all eigenvalues of A. The existence
of such an eigenvalue is part of the Frobenius–Perron the-
orem on nonnegative matrices [14]. Note that λ1(A) > 1
if and only if the covering graph has two different but in-
tersecting directed circles (a loop edge is not excluded). In
view of Theorem 2, inequality λ1(A) > 1 is a sufficient
condition for chaos.

It is worth mentioning here that assumption (b) implies

λ1(C) = k∗ (λ1(A))k∗

for the dominant eigenvalue of the covering matrix. On the
other hand, assumption (c) implies that ϕ is semiconjugate
to a subshift of finite type with transition matrix A. None of
these two latter properties is a consequence of assumption
(a).

The crucial task is to guarantee that assumption (a)
is satisfied. The problem is to control the position of the
intermediate sets. It is clearly enough to check the existence
of a positive integer T with the property as follows.

Property (P) Given any two ϕ–trajectory segments {x′
j}

L

0

and {x′′
j }

L

0
of equal length

L = k′
0 + k′

1 + . . . + k′
M ′ = k′′

0 + k′′
1 + . . . + k′′

M ′′

and which are induced by the different chains of coverings

Qi′0
k′
0=⇒ Qi′1

k′
1=⇒ . . .

k′
M′

=⇒ Qi′
M′+1

and

Qi′′0
k′′
0=⇒ Qi′′1

k′′
1=⇒ . . .

k′′
M′′

=⇒ Qi′′
M′′+1

,

there exist integers n ∈ [0, L] and t ∈ [0, T] such that

x′
n ∈ Qi′p for some integer p ∈ [0,M ′ + 1] , (4)

x′′
n ∈ ϕt(Qi′′r) for some integer r ∈ [0,M ′′ + 1] (5)

with n = #
{

iterates up to Qi′′r

}
+ t and

Qi′p ∩ ϕt(Qi′′r) = ∅, (6)

or, alternatively,

x′
n ∈ ϕt(Qi′p) for some integer p ∈ [0,M ′ + 1] , (7)

x′′
n ∈ Qi′′r for some integer r ∈ [0,M ′′ + 1] (8)

with n = #
{

iterates up to Qi′p

}
+ t and

ϕt(Qi′p) ∩ Qi′′r = ∅. (9)

If property (P) is satisfied, ε0 in assumption (a) can be
chosen as

ε0 = min{ distance(Qi, ϕ
t(Qj)) },

where the minimum is taken for all i, j = 1, 2, . . . , N and
t = 0, 1, . . . , T with Qi ∩ ϕt(Qj) = ∅.

3. Computer procedures to analyze the cover-
ing property

In order to check subset relations of the form T (W) ⊂ U
in a rigorous way, several algorithms were developed in the
last decade. They form an integral part of what is called
set–valued numerics and are surveyed in [5]. The key task
is, however, to establish the subset relations themselves. We
assume that T : R

n → R
n is continuous, W ⊂ R

n is
compact, U ⊂ R

n is open. The major assumption is that
T , W , and U depend on some vector λ ∈ Λ of parameters
where Λ is a compact subset of R

m. The parameter vector
λ0 has to be specified in such a way that the resulting subset
relation T (λ0)(W (λ0)) ⊂ U(λ0) is fulfilled.

In what follows the task of finding successful subset re-
lations is modeled as a constrained optimization problem.
The checking algorithm presented first will then be built in
a framework optimization algorithm and numerical results
provided.

3.1 A checking algorithm

The checking algorithm is a branch–and–bound proce-
dure using interval arithmetic based inclusion functions [1,
13]. The point–to–point transformation T : R

n → R
n is re-

placed by its natural interval extension T : I
n → I

n where
I
n stands for the set of all closed and axis-aligned rectangles

in R
n. Note that T (x) ∈ T (I) whenever I ∈ I

n with x ∈ I .
For I, J ∈ I

n, I ⊂ J implies T (I) ⊂ T (J). The width of
the rectangle I for which the i-th component is [xi, xi] is de-
fined as w(I) = max{|xi − xi|

∣∣ i = 1, 2, . . . , n}. For any
bounded subset S in R

n, note that w(T (Ij)) → 0 holds for
all interval sequences {Ij} with Ij ⊂ S for all j = 1, 2, . . .
and w(Ij) → 0. To enclose the rounding errors and to pro-
vide verified numerical results we use the outward rounding
that gives computer representable result intervals containing
all the points of the real operations.

ALGORITHM 1 The Checking Routine

Inputs: – ε: the user set limit size of subintervals,
– W : the argument set,
– U : the aimed set for which T (W) ⊂ U

is to be checked.

1. Calculate the initial interval I ⊃ W
2. Push the initial interval into the stack
3. while (the stack is nonempty)
4. Pop an interval I out of the stack
5. Calculate the transformed interval J = T (I)
6. if I ∩ W �= ∅, and the condition J ⊂ U does not

hold, then
7. if the width of interval I is less than ε then
8. push the subintervals into the output list (J)
9. else bisect I along the widest side: I = I1 ∪ I2

10. push the subintervals into the stack
11. endif
12. endif
13. end while
14. print that T (W) ⊂ U is proven and stop

For details as well as for a formal proof of the correctness
of Algorithm 1, see our paper [4].

3.2 The accompanying optimization prob-
lem

Each relation Tj(Wj) ⊂ Uj , j = 1, 2, . . . , M is ana-
lyzed separately. The j–th execution of Algorithm 1 may
result in an interval Ij = Ij(λ) such that Ij ∩ Wj �= ∅
but Tj(Ij) ⊂ Uj does not hold true. This means that
the j–th execution of Algorithm 1 ends at Step 8 — let
J = J (λ) = {j1, . . . , j�} ⊂ {1, 2, . . . , M} denote the
set of such indices. Otherwise, for j �∈ {j1, . . . , j�}, the
j–th execution of Algorithm 1 ends at Step 14.

Consider the optimization problem

min
λ∈Λ

g(λ)

where

g(λ) = p

⎛
⎝ ∑

j∈J (λ)

max
v∈Tj(Ij(λ))

inf
u∈Uj(λ)

|u − v|

⎞
⎠ , (10)

with p(r) = r + 1 if r is positive and p(r) = 0 otherwise.
Here Ij(λ) is the interval returned by the checking routine
for j ∈ J (λ) (and the empty set for j �∈ J (λ)), Λ ⊂ R

m

is the search set (the compact set of admissible parameter
values), and p : R → R is the penalty function. Note that
the j’s summation term maxv∈Tj(Ij(λ)) infu∈Uj(λ) |u−v| of
the argument of the penalty function in (10) is a nondiffer-
entiable function of λ and stands for the Hausdorff distance
of the transformed subinterval Tj(Ij(λ)) to the set Uj(λ),
a value proportional to the measure of how much condition
J ⊂ U (i.e. condition Tj(Ij(λ)) ⊂ Uj(λ), j ∈ J (λ) in
Step 6 of Algorithm 1) is violated.

The computation of this Hausdorff distance requires
some geometry. It is an elementary task provided that n = 2
and that the boundary of each Uj(λ) consists of a moderate
number of finite or infinite straight line segments.

The penalty function p adds a fixed penalty term in case
at least one of the constraints is not satisfied. Hence, if an
optimization algorithm leads to a parameter vector λ0 with
g(λ0) = 0, then – at the same time – the built-in check-
ing routine provides a guaranteed reliability computational
proof of the respective subset relations Tj(λ0)(Wj(λ0)) ⊂
Uj(λ0), j = 1, 2, . . . , M . Unfortunately, due to the high
degree of nonlinearity of the problem, it is well possible
that the output of the optimization algorithm is inconclu-
sive, even if minλ∈Λ g(λ) = 0.

The emerging global optimization problem has been
solved by a reliable clustering stochastic optimization
method which goes back to [3]. This method is able to find
all global optimizer points in search domains of moderate
dimension and does not use the differentiability of the ob-
jective function. For a detailed discussion of this optimiza-
tion model and of the relevant techniques of global opti-
mization, see our paper [4].

In all the applications below, a typical parameter is a co-
ordinate of a vertex of a quadrangle. The search domains
for the coordinates of the individual vertices are suggested
by the position of the periodic points of the Hénon map [7]
as well as by basic facts on homoclinic saddles.

4. Applications

4.1 A local improvement

Galias and Zgliczynski [9] considered the following con-
figuration of five quadrangles

Qi = conv{V Qi

ul , V Qi
ur , V Qi

ll , V Qi

lr } , i = 1, 2, 3, 4, 5,

the closed convex hulls of their respective upper left, upper
right, lower left, and lower right vertices. The coordinates
of these vertices are

V Q1
ul = (−0.95, 0.39) , V Q1

ur = (−0.81, 0.38) ,

V Q1
ll = (−0.95, 0.29) , V Q1

lr = (−0.77, 0.28) ,

V Q2
ul = (−0.80, 0.39) , V Q2

ur = (−0.31, 0.34) ,

V Q2
ll = (−0.75, 0.29) , V Q2

lr = (−0.22, 0.24) ,

V Q3
ul = (0.24, 0.30) , V Q3

ur = (0.44, 0.25) ,

V Q3
ll = (0.07, 0.20) , V Q3

lr = (0.36, 0.15) ,

V Q4
ul = (0.638, 0.28) , V Q4

ur = (0.72, 0.28) ,

V Q4
ll = (0.518, 0.07) , V Q4

lr = (0.62, 0.07) ,

V Q5
ul = (0.74, 0.23) , V Q5

ur = (0.88, 0.21) ,

V Q5
ll = (0.70, 0.12) , V Q5

lr = (0.85, 0.10) .

All these data were found by human experimentation.
The covering graph and the expanded covering graph are

those shown in Figure 2.
All the covering relations and properties

H(Q4) ∩ Q5 = ∅ , (11)

Q5 ∩H(Q5) = ∅ (12)

were checked by interval computation. Properties (11)
and (12) are crucial in proving that property (P) is ful-
filled. In fact, since all the outgoing edges from Q1, Q2,
and Q3 have the same weight, it is enough to consider ϕ–
trajectory segments x′

0, x
′
1, . . . and x′′

0 , x′′
1 , . . . induced by

the different chains of coverings Q4
1=⇒ Q4=⇒ . . . and

Q4
3=⇒ Q5=⇒ . . ., respectively. If

Q4
1=⇒ Q4

1=⇒ Q4=⇒ . . . , (13)

then x′
3 ∈ H(Q4) by x′

2 ∈ Q4. But x′′
3 ∈ Q5 and recall

(11). If

Q4
1=⇒ Q4

3=⇒ Q5=⇒ . . . , (14)

then x′
4 ∈ Q5. But x′′

4 ∈ H(Q5) by x′′
3 ∈ Q5 and recall

(12). We see that, in both cases, relations (4)–(6) resp. (7)–
(9) are satisfied. Thus Theorem 2 applies and yields that
[9]

h(H) > 0.338 .

The distinction between subcases (13)–(14) is necessary be-
cause the direct way is blocked by H2(Q4) ∩ Q5 �= ∅.

Keeping Q1, Q2, Q3, and Q5 fixed, we look for a new

quadrangle Q̃4 so that Q̃4
2=⇒ Q5 and thus the modified

expanded covering graph has only a single new vertex be-
tween Q̃4 and Q5. In other words, we try to replace element
c45 = 3 of the original covering matrix

Q1 Q2 Q3 Q4 Q5

Q1 2
Q2 2 2 2
Q3 2 2
Q4 1 3
Q5 1

.

by c̃45 = 2. If also property (cf. (11))

H(Q̃4) ⊂ R
2 \ Q5 (15)

is fulfilled, then Theorem 2 applies in a direct way and
yields that

h(H) > 0.357 ,

the logarithm of the dominant eigenvalue of the modified
expanded covering matrix Ã.

We are facing an optimization problem with constraints

(15) and Q1
2=⇒ Q̃4 , Q̃4

1=⇒ Q̃4 , Q̃4
2=⇒ Q5 . The tangent

of the slope of the parallel half–lines determining union Ẽ4

of the two attached stripes is taken for 10. This particular
choice for the tangent was motivated by our earlier experi-
ence [2]. Thus we have eight parameters, the horizontal and
the vertical coordinates of the four vertices of quadrangle
Q̃4. Fortunately, the optimization was successful and the
vertices of the modified quadrangle Q̃4 are

V Q̃4
ul = (0.638, 0.28) , V Q̃4

ur = (0.75, 0.28) ,

V Q̃4
ll = (0.518, 0.07) , V Q̃4

lr = (0.65, 0.07)

– we rounded the nine–digit numbers supplied by the com-
puter and checked the constraints again.

4.2 A global search

Now we are looking for the quadrangles Q1, Q2, Q3, Q4

with the covering matrix

Q1 Q2 Q3 Q4

Q1 1 2
Q2 2 2
Q3 2 2
Q4 2 2

.

In order to apply Theorem 2, we add inclusion (cf. (15))

H(Q1) ⊂ R
2 \ Q2

as a constraint to those determined by the covering relations.
As before, the tangent of the slope of the parallel half–

lines is taken for 10. The vertical coordinates of the 16 ver-
tices of the four quadrangles are also fixed. They are chosen
according to the position of the unstable manifold of the fa-
mous homoclinic saddle point P = (0.631 . . . , 0.189 . . .)
[14] of H. This is an example of how a priori knowledge
on the geometry helps to decrease the number of parame-
ters in the relevant constraint satisfaction problem. More
explanation will be given in Subsection 4.3 below.

We were lucky again. The solution

V Q1
ul = (0.52, 0.30) , V Q1

ur = (0.78, 0.30) ,

V Q1
ll = (0.38, 0.05) , V Q1

lr = (0.65, 0.05) ,

V Q2
ul = (0.24, 0.30) , V Q4

ur = (0.51, 0.30) ,

V Q2
ll = (0.07, 0.20) , V Q4

lr = (0.33, 0.13) ,

V Q3
ul = (−0.62, 0.34) , V Q2

ur = (−0.38, 0.34) ,

V Q3
ll = (−0.51, 0.24) , V Q2

lr = (−0.20, 0.24) ,

V Q4
ul = (−0.92, 0.38) , V Q3

ur = (−0.67, 0.38) ,

V Q4
ll = (−0.89, 0.28) , V Q3

lr = (−0.63, 0.28)

given by the computer is illustrated in Figure 6.

The characteristic polynomial of the expanded covering
matrix is

p(λ) = λ8 − λ7 − λ6 + λ5 − λ4 + λ3 − λ2, (16)

and the accompanying entropy estimate is

h(H) > 0.382. (17)

The expanded covering graph of the four–quadrangle con-
figuration found by the computer is shown in Figure 3(a).

The (expanded) covering graph of the eight–quadrangle
configuration found in Galias [8] by hand is shown in Fig-
ure 3(b). Note that assumption (b) is satisfied in Galias’s ex-
ample with k∗ = 1. Hence the (expanded) covering matrix
is actually the transition matrix of the embedded shift dy-
namics. Remarkably, the characteristic polynomial is (16)
again. This means we could reproduce Galias’s estimate
(17) by using only four quadrangles, the half of the number
of the quadrangles he needed.

4.3 On the underlying geometry

The first global search we completed successfully is il-
lustrated in Figure 5. We looked for two quadrangles with
the covering matrix

Q1 Q2

Q1 2 2
Q2 2 2

Q0
1Q1

1

Q0
2

Q1
2

Q0
3

Q1
3

Q0
4

Q1
4

(a) Found by the computer

S3 S1 S2

S8

S5S6

S7

S4

(b) Found by Galias

Figure 3. Expanded covering graphs with the
same characteristic polynomial

and had 16 parameters again, this time the vertical and the
horizontal coordinates of the eight vertices. (As before, the
tangent of the slope of the parallel lines was taken to be 10.)
The positive outcome of the optimization procedure means
embeddability of the full shift on two symbols—shortly: the
existence of Σ2–chaos—in the second iterate of H.

Analogies to the first steps of constructing the maximal
invariant set in Smale’s classical, piecewise affine horseshoe
[14] and the strong resemblance of Figure 5 to the schematic
picture of the piecewise linear horseshoe in Figure 4(a) sug-
gests we might look for the four–quadrangle configuration
shown schematically in Figure 4(b).

Q2 Q1

H2(Q1)

H2(Q2)

(a) Full shift on two symbols

Q1Q2Q3Q4

H2(Q1)H2(Q2)

H2(Q3) H2(Q4)

(b) Towards full shift on four symbols

Figure 4. Piecewise affine horseshoes

But this would only repeat the entropy estimate

h(H) ≥ 2−1 log 2 > 0.346

obtained on the basis of Figure 5. The possibility of im-
proving the 2−1 log 2 lower bound is opened via replacing
the c11 = 2 element of the covering matrix that corresponds
to Figure 4(b) by c̃11 = 1, i.e., via considering the covering
matrix investigated in the previous subsection. The c̃11 = 1
choice is promising because the homoclinic saddle point P ,

a fixed point of H, is contained in Q1 ∩ H2(Q1). (A peri-
odic point of period two is contained in Q3∩H2(Q3), and a
periodic point of period 4 is contained in Q4 ∩H2(Q2) and
in Q2 ∩ H2(Q4) each.) This was the line of argumentation
that motivated Subsection 4.2 above.

Remaining at two quadrangles, we firmly hope our opti-
mization procedure leads to a proof of the following conjec-
ture generalizing of what is presented in Figure 5 for � = 2.

Conjecture 1 The full shift on two symbols embeds in the
�–s iterate of H if and only if � = 2, 4 or � ≥ 6.

Abstract theory implies embeddability only for � suffi-
ciently large. The proof of the Conjecture begins by show-
ing that the sufficiently large number equals 12. This is also
computer-assisted, accompanying the abstract argumenta-
tion in [14]. Cases � = 2, 4, 6, 7, 8, 9, 10, 11 had to be
checked individually. The remaining cases � = 1, 3, 5 are
excluded by Szymczak [15].

5. Conclusion

In the last paper of Galias [8] devoted to the subject, he
presents the configuration of 29 polygons leading to the rig-
orous entropy estimate

h(H) > 0.430 .

This is quite near to the generally approved value of
h(H) = 0.465 . . . conjectured on the basis of the number
of periodic points of low periods. All the 29 polygons are
narrow quadrangles (or quadrangles with some of the ver-
tices “chopped off”) situated along the unstable manifold
of the homoclinic saddle. They were found by hand, based
on earlier computer search for periodic points of low peri-
ods. If a global search is concentrated only on finding 29
segments of the unstable manifold, we need 58 parameters.
This is too much for our optimization procedure which can
hardly work with more than 20 parameters. So we are not
able to reproduce Galias’s best lower bound by our method
at the moment. It remains open if a bootstrap application of
our optimization procedure, keeping the number of parame-
ters under say 10 at each step of the gradual improvements
by the consecutive local searches, can reach a better entropy
estimate.

Nevertheless, we think that in the near future automatic
methods for rigorous chaos detection – including those that
lead to rigorous estimates for quantitative chaos indicators
– will be competitive to those requiring repeated human in-
terference.

6. Acknowledgements

This work has been partially supported by the Hungarian
National Science Foundation Grant OTKA No. T048377,

T046822, and T049819. Barnabás Garay is also affiliated to
Analogic and Neural Computing Laboratory, Computer and
Automation Institute, H-1111 Budapest. The authors are
grateful to the two anonymous referees for their suggestions
that improved the presentation of the paper considerably.

References

[1] G. Alefeld and G. Mayer. Interval analysis: Theory and
applications. J. Comput. Appl. Math., 121:421–464, 2000.

[2] B. Bánhelyi, T. Csendes, and B. M. Garay. Optimiza-
tion and the Miranda approach in detecting horseshoe-type
chaos by computer. International Journal of Bifurcation
and Chaos, 2007. Accepted for publication, available at
www.inf.u-szeged.hu/∼csendes/publ.html.

[3] T. Csendes. Nonlinear parameter estimation by global op-
timization - efficiency and reliability. Acta Cybernetica,
8:361–370, 1988.

[4] T. Csendes, B. M. Garay, and B. Bánhelyi. A verified op-
timization technique to locate chaotic regions of a Hénon
system. Journal of Global Optimization, 35:145–160, 2006.

[5] M. Dellnitz and O. Junge. Handbook of Dynamical Sys-
tems, volume 3, chapter Set oriented numerical methods for
dynamical systems. North-Holland, 2002.

[6] Z. Galias. Rigorous numerical studies of the existence of
periodic orbits for the Hénon map. J. Universal Comp. Sci,
4:114–124, 1998.

[7] Z. Galias. Interval methods for rigorous investigations of pe-
riodic orbits. Int. J. Bifurcation and Chaos, 11:2427–2450,
2001.

[8] Z. Galias. Obtaining rigorous bounds for topological en-
tropy for discrete time dynamical systems. In Proc. Internat.
Symposium on Nonlinear Theory and its Applications, pages
619–622, 2002.

[9] Z. Galias and P. Zgliczynski. Abundance of homoclinic and
heteroclinic connections and rigorous bounds for the topo-
logical entropy of the Hénon map. Nonlinearity, 14:903–
932, 2001.

[10] M. Gidea and P. Zgliczynski. Covering relations for multi-
dimensional dynamical systems. J. Differ. Eq., 202:32–58,
2004.

[11] K. Mischaikow and M. Mrozek. Chaos in the Lorenz equa-
tions: a computer-assisted proof. Bull. Amer. Math. Soc.,
32:66–72, 1995.

[12] M. Pireddu and F. Zanolin. Fixed points for dissipative–
repulsive systems and topological dynamics of mappings de-
fined on n–dimensional cells. Advanced Nonlinear Studies,
5:411–440, 2005.

[13] H. Ratschek and J. Rokne. New Computer Methods for
Global Optimization. Ellis Horwood, 1988.

[14] C. Robinson. Dynamical Systems. Stability, Symbolic Dy-
namics, and Chaos. RCR Press, 1999.

[15] A. Szymczak. A combinatorial procedure for finding iso-
lated neighbourhoods and index pairs. Proc. R. Soc. Edinb.
A, 127:1075–1088, 1997.

[16] P. Zgliczynski. Computer assisted proof of chaos in the
Rössler equations and in the Hénon map. Nonlinearity,
10:243–252, 1997.

Figure 5. Two quadrangles found by computer

Figure 6. Four quadrangles found by computer

[17] P. Zgliczynski. Computer assisted proof of the horseshoe dy-
namics in the Hénon map. Random Comput. Dynam., 5:1–
17, 1997.

Nonlinear Adaptive Control of an Uncertain Wastewater Treatment Model

Neli Dimitrova, Mikhail Krastanov
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 8, 1113 Sofia, Bulgaria
nelid@bio.bas.bg, krast@math.bas.bg

Abstract

A nonlinear model of an anaerobic digester wastewater
treatment process is considered. Assuming that the model
parameters are unknown but bounded, the asymptotic sta-
bilizability of the control system is studied and a new adap-
tive stabilizing feedback control law is proposed. Computer
simulations are also presented to illustrate the theoretical
results.

1. Introduction

The interest to biological wastewater treatment (WWT)
processes has recently highly increased due to the strong
necessity of keeping the quantity of organic matter in in-
dustrial and urban effluents up to a critical level. This ne-
cessity has led to the development of adequate mathemati-
cal models and to the application of various techniques for
monitoring, optimization and control of the processes.

The biological WWT processes have very specific fea-
tures, induced by the presence of living organisms, whose
activity depends on their physiological features as well as
on the organisms environment.This is especially the case of
mixed cultures where the interaction between the species is
fairly complex. In the most cases the reproducibility of la-
boratory and practical experiments is not guaranteed, hence
the experimental data are noisy and the reason for the noise
is difficult to specify. As a consequence, it is impossible
to determine the exact values of the parameters in the cor-
responding mathematical model. Additionally, the influent
substrate concentrations of the WWT plants can also not re-
main constant over a long time period, because the quality
of the wastewater depends e. g. on the raw materials of the
production process, weather and seasonal changes [1]. In
conclusion, WWT models are described by highly uncer-
tain nonlinear dynamic systems and pose a challenge to the
development of suitable control techniques.

One of the approaches for control design is the so called
local approach. It is based on linearization of the sys-

tem around a desired operating point [7]. This approach
is known to be inefficient due to the strong nonlinearity of
the models. Another strategy, the so called linearizing con-
troller, is proposed in [2]; it transforms the nonlinear system
into a linear one and uses perfect model knowledge. Global
control strategies assuming model uncertainty are proposed
for example in [13]. The latter are based on new techniques
for monitoring and control (cf. for example [1], [2], [5], [8],
[12] and the references there).

To the authors’ knowledge, the application of adaptive
feedback control laws seems to be a very appropriate tool
for asymptotic stabilization in the case of model uncertain-
ties. Such a feedback is designed in [11] for a simple model,
the so-called “single substrate/single biomass” model of a
continuous stirred tank bioreactor with unknown kinetics.
The feedback stabilizes asymptotically the system to a pre-
viously chosen operating point and depends on both state
variables – the substrate and the biomass concentrations.
The real-life experiments show the practical relevance of
the proposed approach.

In this paper, we also study the asymptotic stabilizability
problem by using adaptive stabilizing feedback control
laws. We consider a four-dimensional nonlinear model of
an anaerobic digester wastewater treatment process, based
on two microbial populations and two organic substrates.
This model has been proposed in [9] as a theoretical base
for general purpose studies. Assuming that all model para-
meters are unknown but bounded, a new adaptive stabilizing
feedback law is proposed. Then an explicit Lyapunov func-
tion is constructed to prove that the closed-loop system is
asymptotically stable in a neighborhood of an equilibrium
point, which corresponds to a previously chosen operating
point. Since the biomass concentrations are usually not on-
line measurable, in order to realize practically the proposed
feedback, the so called software sensors (observers) can be
used [2], [3], which are robust with respect to disturbances
and uncertainties [1], [8].

The paper is organized as follows. Section 2 presents the
nonlinear WWT model. Steady states analysis involving
model uncertainty is given in Section 3. A nonlinear adap-

Table 1. Definition of the model variables and
parameters

t time [day]
s1 concentration of the organic substrate,

characterized by the chemical oxygen
demand (COD) [g/l]

s2 concentration of volatile
fatty acids (VFA) [mmol/l]

x1 concentration of acidogenic bacteria [g/l]
x2 concentration of methanogenic bacteria [g/l]
u dilution rate [day−1]
si
1 influent concentration of s1 [g/l]

si
2 influent concentration of s2 [mmol/l]

k1 yield coefficient for COD
degradation [g COD/g x1]

k2 yield coefficient for VFA
production [mmol VFA/g x1]

k3 yield coefficient for VFA
consumption [mmol VFA/g x2]

μmax maximum acidogenic biomass
growth rate [day−1]

μ0 maximum methanogenic biomass
growth rate [day−1]

ks1 saturation parameter associated
with s1 [g COD/l]

ks2 saturation parameter associated
with s2 [(mmol VFA/l)1/2]

kI inhibition constant associated
with s2 [mmol VFA/l]

α proportion of dilution rate
reflecting process heterogeneity

tive feedback is proposed in Section 4 and a theorem on the
asymptotic stabilizability of the control system is proven.
Computer simulations in Maple demonstrating the theoreti-
cal results and the robustness of the proposed feedback are
performed in Section 5.

2. General model description

We consider a model of an anaerobic digestion process,
based on two microbial populations and two substrates, and
described by the following system of nonlinear ordinary dif-
ferential equations

ds1

dt
= u(si

1 − s1) − k1μ1x1 (1)

dx1

dt
= (μ1 − αu)x1 (2)

ds2

dt
= u(si

2 − s2) + k2μ1x1 − k3μ2x2 (3)

dx2

dt
= (μ2 − αu)x2. (4)

The state variables s1, s2 and x1, x2 denote substrate and
biomass concentrations, respectively: s1 represents the or-
ganic substrate, characterized by its chemical oxygen de-
mand (COD), s2 denotes the volatile fatty acids (VFA), x1

and x2 are the acidogenic and methanogenic bacteria [1],
[3], [4], [9], [14]. The definition of the model parameters is
given in Table 1.

The parameter α ∈ [0, 1] represents the proportion of
bacteria that are affected by the dilution; α = 0 and α = 1
correspond to an ideal fixed bed reactor and to an ideal con-
tinuous stirred tank reactor, respectively (cf. for example
[1]). The dilution rate u is considered as a control variable
which takes its values in a compact interval U of nonnega-
tive real numbers.

The specific growth rate functions μ1 = μ1(s1) and
μ2 = μ2(s2) are assumed to be of Monod and Haldane type,
respectively: μ1 and μ2 are defined for s1, s2 ∈ [0,+∞),
μj(0) = 0 and μj(sj) > 0 whenever sj > 0, j = 1, 2. Both
functions are continuously differentiable and bounded, and

μ1(s1) is nondecreasing,

μ1(s1) ≤ μmax for all s1 > 0;

μ2(s2) has a maximum at s̃2 > 0,

lim
s2→+∞μ2(s2) = 0,

μ2(s2) is strongly concave for s2 < s̃2.

As mentioned above, this model is proposed in [9] to
describe the basic biological transformations in the reactor.
In practice, for more accurate description of the process,
this basic model can be extended by additional differential
equations, see e. g. [1], [3], [4], [14].

3. Steady states analysis

Denote by ω the vector of the exact values of the model
parameters, i. e. ω = (α, k1, k2, k3), and let μ1 and μ2 be
the specific biomass growth rates as defined above. Exclu-
ding the trivial solutions s1 = si

1, s2 = si
2, x1 = 0 and

x2 = 0 (called wash-out states) the equilibrium points of
the system can be parameterized on u and ω as follows:

s1(u;ω) = μ−1
1 (αu) (5)

x1(u;ω) =
si
1 − s1(u;ω)

αk1
(6)

s2(u;ω) = μ−1
2 (αu) (7)

x2(u;ω) =
si
2 − s2(u;ω) + k2αx1(u;ω)

αk3
; (8)

here u belongs to the interval U(ω) = (0, u1(ω)] with

u1(ω) =
1
α

min
{
μ2 (s̃2) , μ1(si

1)
}

.

In (7), we have chosen for s2(u;ω) that solution of the equa-
tion μ2(s2) = αu, which lies to the left of the maximum
point s̃2 of μ2, that is s2(u;ω) < s̃2; the reason is that the
value of the other root of μ2(s2) = αu tends to +∞ as
u → 0. For simplicity, we denote the steady state vector by

ζ(u;ω) = (s1(u;ω), x1(u;ω), s2(u;ω), x2(u;ω)).

As mentioned above, the exact values of the parameter
vector ω and of the biomass growth rates μ1 and μ2 are
not known. Practical experiments and parameter estimation
results (cf. [1], [8], [11], [15]) give only bounds for these
quantities. For that reason, our basic assumptions are:

Assumption A1. The model parameters α, k1, k2 and
k3 are not exactly known but bounded within compact real
intervals [α], [k1], [k2] and [k3], respectively, i. e.

[α] = [α−, α+], 0 < α− ≤ α+ ≤ 1;
[kj] = [k−

j , k+
j], 0 < k−

j ≤ k+
j , j = 1, 2, 3.

Denote by [ω] the corresponding vector with interval com-
ponents,

[ω] = ([α], [k1], [k2], [k3]) .

Assumption A2. Instead of the exact specific growth
rates μ1 and μ2, we know bounds for them, namely

[μ1](s1) = [μ−
1 , μ+

1](s1) = [μ−
1 (s1), μ+

1 (s1)],
[μ2](s2) = [μ−

2 , μ+
2](s2) = [μ−

2 (s2), μ+
2 (s2)].

For any fixed u let Ω(u) be the set of all steady states,
when the model parameters vary in the corresponding inter-
vals, that is

Ω(u) = {ζ(u; ω̃) | ω̃ ∈ [ω]} .

It is easy to see that the set Ω(u) is defined for u belonging
to the interval

U :=
⋂

ω̃∈[ω]

U(ω̃) = (0, u+
1],

where

u+
1 =

1
α+

min
{
μ−

2 (s̃−2), μ−
1 (si

1)
}

and s̃−2 is the point where the function μ−
2 (s2) takes its ma-

ximum.

Assumption A3. Let the set U of admissible values of
the control u be a compact interval containing U in its inte-
rior, that is U ⊆ int U .

Let us fix an interval [s−1 , s+
1] contained in the projection

of the set
⋃

u∈U Ω(u) on the s1-axis, that is

s−1 > inf
{
(μ+

1)−1(α−u) : u ∈ U
}

,
s+
1 ≤ max

{
(μ−

1)−1(α+u) : u ∈ U
}

.
(9)

Further, we fix an operating point s∗1 from the interval
(s−1 , s+

1),
s∗1 ∈ (s−1 , s+

1).

Then there exists u∗ ∈ U, such that s∗1 = s1(u∗;ω), where
ω is the vector of the exact values of the unknown model
parameters.

Assumption A4. In a neighborhood of s∗1, the following
inequality holds true

d

ds1

(
μ1(s1)
μ+

1 (s1)

)
> 0. (10)

Assumption A4 is technical. It is not restrictive. As we
shall see in Section 5, for the explicit Monod function μ1

the inequality (10) is satisfied for all s1 > 0.

In the next section we shall construct an adaptive feed-
back law, stabilizing asymptotically the system to the equi-
librium point ζ∗ := ζ(u∗;ω). This equilibrium point cor-
responds to the exact, but unknown parameter vector ω.

4. Adaptive asymptotic stabilization

We shall study the asymptotic stabilizability of the sys-
tem (1)–(4) in a compact neighborhood Ω of the point ζ∗.
First, we extend the system (1)–(4) by adding the following
differential equation

dβ

dt
= −Cβ(1 − β)μ+

1 (s1)(s1 − s∗1)x1 (11)

with the initial condition β(0) ∈ (0, 1). Here C is an arbit-
rary positive constant.

Define the following adaptive feedback control law

k(s1, β) =
1

α− β μ+
1 (s1). (12)

The main result of the paper is the following

Theorem 1. Let the assumptions A1, A2, A3 and A4
hold true. Then there exists a compact neighborhood Ω of
the point ζ∗ such that for each point ζ ∈ Ω the feedback
k(·, ·) stabilizes asymptotically the control system (1)–(4)

and (11) to (ζ∗, β∗) with β∗ =
α−

α
· μ1(s∗1)
μ+

1 (s∗1)
.

Proof. Let us substitute in (1)–(4) and (11) the control
input u by the feedback k(·, ·) and denote by Σ(ω) the ob-
tained closed-loop system (with exact but unknown values
for the model parameters). For convenience we set

ζ = (s1, x1, s2, x2) and χ = (ζ, β).

One can directly verify that the set Ω0 with

Ω0 =
{
χ = (s1, x1, s2, x2, β)| si

1 > s1 > 0,

s2 > 0, x1 > 0, x2 > 0, β ∈ (0, 1)}
is strongly invariant with respect to (1)–(4) and (11) (cf.
for example [6]). This means that every trajectory of Σ(ω)
starting from a point χ ∈ Ω0 remains in Ω0. In particu-
lar, the coordinates of all points of this trajectory will never
vanish.

The continuity of k(·, ·) implies the existence of some
positive constants b−s1

, b+
s1

b−β and b+
β such that

b−s1
< s∗1 < b+

s1
, b−β < β∗ < b+

β ,

and the values of the feedback k(·, ·) are admissible control
values at each point of the set Ω1, where

Ω1 = {χ = (s1, x1, s2, x2, β) ∈ Ω0 :
b−s1

≤ s1 ≤ b+
s1

, b−β ≤ β ≤ b+
β },

i. e. k(s1, β) ∈ U for each point χ ∈ Ω1.
Using the fact that

si
1 = s∗1 + αk1x

∗
1

(see (6)), the first and the second equation of the closed-loop
system Σ(ω) can be written as follows:

d

dt
s1 = −k(s1, β)(s1 − s∗1 + αk1(x1 − x∗

1))

− k1(μ1(s1) − αk(s1, β))x1 (13)
d

dt
x1 = (μ1(s1) − αk(s1, β))x1. (14)

Consider the function

V1(s1, x1, β) =
1

α(1 − α)
(s1 − s∗1 + αk1(x1 − x∗

1))
2

+ k2
1 (x1 − x∗

1)
2 +

2k1

Cα−

∫ β

β∗

w − β∗

w(1 − w)
dw.

Clearly, the values of this function are nonnegative. If we
denote by F1(s1, x1, β) the right-hand side of (13)–(14) and
(11), take into account the definition of the feedback control
and apply the mean-value theorem, then it can be directly
checked that

〈grad V1(s1, x1, β), F1(s1, x1, β)〉

= − 2β

α(1 − α)α− μ+
1 (s1) · (s1 − s∗1)

2

−2k1x1

α

(
μ′

1(ξ1) − α

α− β∗μ+
1

′
(ξ2)

)
· (s1 − s∗1)

2

− 4k1β

(1 − α)α− μ+
1 (s1) · (s1 − s∗1)(x1 − x∗

1)

− 2αk2
1β

(1 − α)α− μ+
1 (s1) · (x1 − x∗

1)
2

for each point χ = (s1, x1, s2, x2, β) of Ω1, where ξi, i =
1, 2, are suitably chosen points between s1 and s∗1; the prime

in μ1 and μ+
1 means

d

ds1
.

The discriminant D1(s1, x1, β) of the last expression,
considered as a quadratic function with respect to s1 − s∗1
and x1 − x∗

1, is equal to

− 4k3
1βx1

(1 − α)α− μ+
1 (s1) ·

(
μ′

1(ξ1) − α

α− β∗μ+
1

′
(ξ2)

)
.

According to Assumption A4,

μ′
1(s

∗
1) −

α

α− β∗μ+
1

′
(s∗1) = μ+

1 (s∗1) ·
d

ds1

(
μ1(s∗1)
μ+

1 (s∗1)

)
> 0;

the last inequality implies that the inequality

μ′
1(ξ1) − α

α− β∗μ+
1

′
(ξ2) > 0

will also be valid in a sufficiently small neighborhood S1 of
s∗1, and therefore D1(s1, x1, β) < 0. Thus

〈grad V1(s1, x1, β), F1(s1, x1, β)〉 < 0

for each point χ = (s1, x1, s2, x2, β) from the set

Ω̃1 \ {(ζ∗, β) : β ∈ (0, 1)}
with

Ω̃1 = {(ζ, β) ∈ Ω1 : s1 ∈ S1}.
Consider now the equations (3)–(4) with s1, x1 and u

substituted by s∗1, x∗
1 and u∗ =

1
α

μ2(s∗2) respectively. By

means of the relation

si
2 = αk3x

∗
2 + s∗2 − αk2x

∗
1

(see (8)), we obtain the following system:

d

dt
s2(t) = −u∗(s2 − s∗2 + αk3(x2 − x∗

2))

− k3(μ2(s2) − μ2(s∗2))x2 (15)
d

dt
x2(t) = (μ2(s2) − μ2(s∗2))x2. (16)

For each ν ∈ (0, s̃2) define the set

Ων
2 := {χ = (s1, x1, s2, x2, β) ∈ Ω̃1 : s2 ≤ s̃2 − ν},

where s̃2 is the point where μ2(s2) takes its maximum.
Consider the function

V2(s2, x2) = (s2 − s∗2 + αk3(x2 − x∗
2))

2

+ α(1 − α)k2
3(x2 − x∗

2)
2.

According to the mean-value theorem, there exists a point θ
between s2 and s∗2 such that

〈grad V2(s2, x2), F2(s2, x2)〉
= −2(u∗ + k3(1 − α)μ′

2(θ)x2) · (s2 − s∗2)
2

−4k3μ2(s∗2) · (x2 − x∗
2)(s2 − s∗2) (17)

−2αk2
3μ2(s∗2) · (x2 − x∗

2)
2,

where by F2(s2, x2) we have denoted the right-hand side of

(15)–(16) and μ′
2 =

d

ds2
μ2.

Let D2(s2, x2) be the discriminant of the expression
(17), considered as a quadratic function with respect to
s2 − s∗2 and x2 − x∗

2. The function μ2(·) is increasing and
strictly concave on Ων

2 . Moreover, its derivative μ′
2(s2) is a

decreasing function which vanishes at the point s̃2. Hence,

μ′
2(θ) > μ′

2(s̃2 − ν) > μ′
2(s̃2) = 0.

This and the definition of Ων
2 imply that on the set

Ων
2 \ {ζ∗, β) : β ∈ (0, 1)},

the following inequality holds true

〈grad V2(s2, x2), F2(s2, x2)〉 < 0,

because

D2(s2, x2) < −4α(1 − α)k3
3μ2(s∗2)μ

′
2(s̃2 − ν)x2 < 0.

For each ε > 0 define further the function

V ε(χ) = V1(s1, x1, β) + εV2(s2, x2). (18)

Clearly, V ε(·) is a smooth function which is nonnegative on
the set Ων

2 and V ε(χ∗) = 0 with χ∗ := (ζ∗, β∗).
Denote by F (·) the right-hand side of the closed-loop

system Σ(ω). For an arbitrary and fixed point χ ∈ Ων
2 , the

scalar product
〈grad V ε(χ), F (χ)〉

is a quadratic function with respect to the variables s1 − s∗1,
x1 − x∗

1, s2 − s∗2, x2 − x∗
2, whose coefficients depend on

the components of χ. To check that it is negative definite,
we calculate consecutively the leading principal minors of
the corresponding symmetric matrix generated by the coef-
ficients of the quadratic form:

Δε
1(χ) = − 2

α(1 − α)
k(s1, β) − 2k1

α
x1 ·

5.8

6

6.2

6.4

6.6

6.8

i
n
f
l
u
e
n
t

s
1

0 50 100 150 200 250

t

Figure 1. Plot of si
1.

·(μ′
1(ξ1) − α

α− β∗μ+
1

′
(ξ2)) < 0

Δε
2(χ) = −D1(s1, x1, β) > 0

Δε
3(χ) < 2εD1(s1, x1, β)

·(u∗ + k3x2(1 − α)μ′
2(s̃2 − ν)) + o1(ε)

Δε
4(χ) = ε2D1(s1, x1, β)D2(s2, x2) + o2(ε2).

If ε > 0 is sufficiently small, then the inequalities

Δε
3(χ) < 0, Δε

4(χ) > 0

hold true. Hence, for each χ ∈ Ων
2 \ {(ζ∗, β) : β ∈ (0, 1)},

〈grad V εχ), F (χ)〉 < 0.

Let us choose γ > 0 as large as possible and such that

Ω := {χ ∈ R5 : V ε(χ) ≤ γ } ⊆ Ων
2 .

Clearly, Ω is a compact neighborhood of the point χ∗ =
(ζ∗, β∗). Applying the LaSalle’s invariance principle
(cf. for example [10]), it follows that every solution of the
system (1)–(4), (11) is defined in the interval [0,+∞) and
approaches the largest invariant set of (1)–(4), (11), which
is contained in the set

Ω ∩ {
χ = (ζ, β) ∈ R5 : ζ = ζ∗, β ∈ (0, 1)

}
.

It is easy to see that this invariant set consists of the sin-
gle point (ζ∗, β∗). Therefore the feedback k(·, ·) stabilizes
asymptotically the control system (1)–(4), (11) to the point
(ζ∗, β∗) on the set Ω.

This completes the proof.

5. Numerical simulation

We assume that the specific growth rates μ1(s1) and
μ2(s2) are represented explicitly by the following Monod

54

56

58

60

62

64

66

68

70

i
n
f
l
u
e
n
t

s
2

0 50 100 150 200 250

t

Figure 2. Plot of si
2.

1.25

1.3

1.35

1.4

1.45

1.5

s1

0 50 100 150 200 250

t

Figure 3. Time evolution of s1(t). The horizon-
tal line segment goes through s∗1.

and Haldane model functions:

μ1(s1) =
μmaxs1

ks1 + s1

μ2(s2) =
μ0s2

ks2 + s2 +
(

s2

kI

)2 .

Let the values of the model parameters (see Table 1) μmax,
ks1 , μ0, ks2 and kI be enclosed by the intervals [μmax],
[ks1], [μ0], [ks2] and [kI], respectively. Then

[μ1](s1) =
[

μ−
maxs1

k+
s1 + s1

,
μ+

maxs1

k−
s1 + s1

]

[μ2](s2) =

⎡
⎢⎢⎢⎣ μ−

0 s2

k+
s2 + s2 +

(
s2

k−
I

)2 ,
μ+

0 s2

k−
s2 + s2 +

(
s2

k+
I

)2

⎤
⎥⎥⎥⎦ .

1.25

1.3

1.35

1.4

1.45

1.5

1.55

s1

0 2 4 6 8 10 12 14 16 18 20

t

Figure 4. Fragment of s1(t) for t ∈ [0, 20]. The
horizontal line segment goes through s∗1.

As mentioned before, Assumption A4 is satisfied for all
s1 > 0 because

d

ds1

(
μ1(s1)
μ+

1 (s1)

)
=

μmax

μ+
max

· ks1 − k−
s1

(ks1 + s1)2
> 0.

Let ω = (α, k1, k2, k3, kI , ks1 , ks2 , μ0, μmax) be now
the vector of the exact values of the model parameters, and
[ω] be the enclosing interval vector. The exact equilibrium
points s1(u;ω) and s2(u;ω) from (5) and (7) can be expli-
citly computed

s1(u;ω) =
αuks1

μmax − αu

s2(u;ω) =
2αuks2

μ0 − αu +
√

Δ(u;ω)

Δ(u;ω) = α2

(
1 − 4

ks2

k2
I

)
u2 − 2αμ0u + μ2

0

with u ∈ U(ω) = (0, u1(ω)],

u1(ω) =
1
α

min
{
μ2(s̃2), μ1(si

1)
}

, s̃2 = kI

√
ks2 .

When ω varies in [ω], the admissible interval U is presented
by U = (0, u+

1] with

u+
1 =

1
α+

min

{
μ−

0

1 + 2
√

k+
s1/k−

I

,
μ−

maxs
i
1

k+
s1 + si

1

}
.

Further, the interval [s−1 , s+
2] (which is included in the pro-

jection of the set
⋃

u∈U Ω(u) on the s1-axis) is given by

s−1 > inf
{

α−k−
s1

u

μ+
max − α−u

: u ∈ U
}

= 0

s+
1 ≤ max

{
α+k+

s1
u

μ−
max − α+u

: u ∈ U
}

.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

0 50 100 150 200 250

t

Figure 5. Time evolution of k(t). The horizon-
tal line segments go through the three differ-
ent values for u∗.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k

2 4 6 8 10 12 14 16 18 20

t

Figure 6. Fragment of k(t) for t ∈ [0, 20]. The
horizontal line segment goes through u∗.

Consider the following intervals for the model parameters:

[α] = [0.3, 0.6]
[k1] = [9.5, 11.5] [k2] = [27.6, 29.6]
[k3] = [1064, 1084] [ks1] = [6.5, 7.9]
[ks2] = [8.28, 10.28] [kI] = [15, 17]
[μ0] = [0.64, 0.84] [μmax] = [1, 1.4].

These intervals are chosen to enclose the experimentally
validated values of the parameters given in [1].

In practice, the influent concentrations si
1 and si

2 are not
exactly known. For the computer simulation we assume that
they are piece-wise constant functions taking the following
numerical values [1]:

si
1 =

⎧⎨
⎩

5.7, 0 ≤ t ≤ t1
6.9, t1 < t ≤ t2
6, t2 < t ≤ t3;

0.5

0.6

0.7

0.8

0.9

1

x1

0 50 100 150 200 250

t

Figure 7. Time evolution of x1(t). The hori-
zontal line segments go through the three dif-
ferent values of the equilibrium point x∗

1.

si
2 =

⎧⎨
⎩

53, 0 ≤ t ≤ t1
70, t1 < t ≤ t2
59, t2 < t ≤ t3.

The graphics of si
1 and si

2 are presented on Figures 1 and 2
with t1 = 90, t2 = 180 and t3 = 270.

Using the above numerical quantities, we compute

U ⊇ (0, 0.6985], [s−1 , s+
1] ⊆ (0, 5.7].

Further, we choose and fix the operating point

s∗1 = 1.4.

To simulate the theoretical results from the previous sec-
tion and to demonstrate the robustness of the feedback with
respect to the model uncertainties we proceed as follows. In
the initial moment (t0 = 0) we choose random values for
the model parameters from the corresponding intervals and
consider them as the exact vector ω. These values are kept
constant for t ∈ [t0, t1). At t = t1, another set of random
values for the model parameters is chosen to represent again
the exact vector ω; these are kept constant for t ∈ [t1, t2).
Similarly, at t = t2 a third set of randomly chosen parame-
ter values is used to represent ω, which remain constant to
the end of the computer experiment (at t = t3). In all cases
the closed loop system (1)–(4), (11) is solved numerically.
Figures 3 to 10 visualize the numerical outputs.

Figure 3 presents the time profile of the state variable
s1(t). The horizontal line segment corresponds to the pre-
viously chosen operating point s∗1. Figure 4 represents a
fragment of the solution s1(t) for t ∈ [0, 20] to show the
damped oscillations of the curve around the operating point.
Similar behaviour of s1(t) is observed in small time inter-
vals after t1 and t2 (when the model coefficients change

1.02

1.03

1.04

1.05

1.06

x1

90 95 100 105 110 115 120

t

Figure 8. Fragment of x1(t) for t ∈ [88, 120].
The horizontal line segments go through the
corresponding values of x∗

1.

randomly in the corresponding intervals, and the influents
si
1, si

2 take different values).
Figures 5 and 6 show the time evolution of the feedback

k(·, ·). The horizontal line segments go through the three

different values of the point u∗ =
1
α

μ1(s∗1), corresponding

to the three different sets of values for the parameters, si
1

and si
2. Figure 6 shows the damped oscillation of the curve

k(t) around u∗ for t ∈ [0, 20].
Figure 7 visualizes the time evolution of the phase vari-

able x1. The horizontal line segments pass through the three
different values of the equilibrium point x∗

1. A fragment of
the curve x1(t) around t = t1 is presented on Figure 8 to
show its damped oscillations when the model parameters
and si

1, si
2 change. Figure 11 visualizes the solution x2(t);

its behaviour around t1 is similar to that of x1(t).
On Figures 9 and 10, the time profile of the state vari-

able s2(t) is visualized. The horizontal line segments pass
through to the three different values of the steady state s∗2,
which correspond to the three choices of the model parame-
ters and si

1, si
2. Figure 7 presents a piece of the curve s2(t)

for t ∈ [0, 20], showing the damped oscillation of the so-
lution around the corresponding steady state value. Similar
behaviour of s2(t) is observed in small time intervals after
t2 and t3 (where changes in the model parameters and in the
influent concentrations occur).

On Figures 3, 4, 7 and 9 to 11, the symbol diamond �
denotes the corresponding component of the initial point at
t0 = 0. The same symbol on Figures 5 and 6 denotes the
value of the feedback k(·, ·) at the initial point.

Varying the influent concentrations si
1, si

2 and the model
coefficients simultaneously at the same time moments t1
and t2 is not restrictive. It is made for better quality and

2.5

3

3.5

4

4.5

5

5.5

s2

0 50 100 150 200 250

t

Figure 9. Time evolution of s2(t). The horizon-
tal line segments go through the three differ-
ent values of the equilibrium point s∗2.

3

4

5

6

7

s2

0 2 4 6 8 10 12 14 16 18 20

t

Figure 10. Fragment of s2(t) for t ∈ [0, 20].
The horizontal line segment goes through the
corresponding value of s∗2.

clarity of the plots. All computer experiments confirm the
reliability of the proposed nonlinear control feedback: the
closed-loop system stabilizes to the corresponding equilib-
rium point in practically reasonable time period.

6. Conclusion

The interest to biological wastewater treatment (WWT)
processes has recently highly increased due to the strong
necessity of keeping the quantity of organic matter in in-
dustrial and urban effluents up to a critical level. This ne-
cessity has led to the development of adequate mathema-
tical models and to the application of various techniques
for monitoring, optimization and control of the processes.
The present paper is devoted to the design of an adaptive

0.08

0.1

0.12

0.14

x2

0 50 100 150 200 250

t

Figure 11. Time evolution of x2(t). The hori-
zontal line segments go through the three dif-
ferent values of the equilibrium point x∗

2.

stabilizing feedback control law. A four-dimensional non-
linear model of an anaerobic digester wastewater treatment
process is studied. This model has been build and validated
in [9] to serve as a theoretical base for general purpose stu-
dies. Assuming that all model parameters are unknown but
bounded, the asymptotic stabilizability of the control sys-
tem is studied and a new adaptive nonlinear feedback law is
proposed. This adaptive feedback stabilizes asymptotically
the closed-loop system towards an (unknown) equilibrium
point ζ∗ such that its projection on the s1-axis is equal to a
previously chosen operating point s∗1. Practically, the ope-
rating point s∗1 is chosen according to given environmental
rules for guaranteeing an admissible level of the quantity of
the organic matter released in industrial and urban effluents.
The robustness of the adaptive feedback is demonstrated by
assuming step changes in the influent concentrations si

1 and
si
2. The theoretical results are illustrated numerically in the

environment of the computer algebra system Maple.

Acknowledgements. The authors are grateful to the
anonymous referees for the invaluable advices and com-
ments.

References

[1] V. Alcaraz-González, J. Harmand, A. Rapaport,
J. P. Steyer, C. Pelayo-Ortiz. Software sensors for
highly uncertain WWTPs: a new apprach based on
interval observers. Water Research, 36:2515–2524,
2002.

[2] G. Bastin, D. Dochain. On-line Estimation and Adap-
tive Control of Bioreactors. Elsevier, Amsterdam,
1990.

[3] O. Bernard, Z. Hadj-Sadok, D. Dochain. Advanced
monitoring and control of anaerobic wastewater treat-
ment plants: dynamic model development and identi-
fication. Proc. Fifth IWA Intern. Symp. WATERMATEX

2000, Gent, Belgium, 3.57–3.64, 2000.

[4] O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi,
J.-P. Steyer. Dynamical model development and para-
meter identification for an anaerobic wastewater treat-
ment process, Biotech. Bioeng., 75:424–438, 2001.

[5] C. Ciccarella, M. Dalla, A. Germani. A Luenberger-
like observer for nonlinear systems. Int. J. Control,
57:536–556, 1993.

[6] F. Clarke, Yu. Ledyaev, R. Stern, P. Wolenski. Non-
smooth Analysis and Control Theory. Graduate Text
in Mathematics, vol. 178, Springer, Berlin, 1998.

[7] E. Heinzle, I. J. Dunn, G. B. Ryhiner. Modelling
and control for anaerobic wastewater treatment. Ad-
vances in Biochemical Engineering and Biotechnol-
ogy, 48:79–114, 1993.

[8] J.-L. Gouzé, A. Rapaport, Z. Hadj-Sadok. Interval
observers for uncertain biological system. Ecological
Modelling, 133:45–56, 2000.

[9] F. Grognard, O. Bernard. Stability analysis of a
wastewater treatment plant with saturated control.
Wat. Sci. Tech., 53:149–157, 2006.

[10] H. K. Khalil. Nonlinear Systems. Macmillan Publi-
shing Company, New York, 1992.

[11] L. Maillert, O. Bernard, J.-P. Steyer. Nonlinear adap-
tive control for bioreactors with unknown kinetics. Au-
tomatica, 40:1379–1385, 2004.

[12] I. Petersen, A. Savkin. Robust Kalman filtering for sig-
nals and systems with large uncertainties. Birkhäuser,
Boston, 1999.

[13] A. Rapaport, J. Harmand. Robust regulation of a class
of partially observed nonlinear continuous bioreac-
tors. Jrn. of Process Control, 12:291–302, 2002.

[14] O. Schoefs, D. Dochain, H. Fibrianto, J.-P. Steyer.
Modelling and identification of a distributed-
parameter system for an anaerobic wastewater
treatment process. Chemical Eng. Research and
Design, 81(A9):1279–1288, 2003.

[15] I. Simeonov. Modelling and control of anaerobic di-
gestion of organic waste. Chemical and Biochemical
Engineering Q., 8:45–52, 1994.

Interval Fuzzy Rule-Based Hand Gesture Recognition

Benjamı́n R. Callejas Bedregal
Depto de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte

Campus Universitário, 59.072-970 Natal, Brazil
bedregal@dimap.ufrn.br

Graçaliz P. Dimuro, Antônio C. Rocha Costa
Programa de Pós-Graduação em Informática

Universidade Católica de Pelotas
Felix da Cunha 412, 96010-000 Pelotas, Brazil

{liz,rocha}@ucpel.tche.br

Abstract

Abstract. This paper introduces an interval fuzzy rule-
based method for the recognition of hand gestures acquired
from a data glove, with an application to the recognition of
hand gestures of the Brazilian Sign Language. To deal with
the uncertainties in the data provided by the data glove, an
approach based on interval fuzzy logic is used. The method
uses the set of angles of finger joints and of separation be-
tween finger for the classification of hand configurations,
and classifications of segments of hand gestures for rec-
ognizing gestures. The segmentation of gestures is based
on the concept of monotonic gesture segment, sequences of
hand configurations in which the variations of the angles
of the finger joints have the same sign (non-increasing or
non-decreasing), separated by reference configurations that
mark the inflexion points in the sequence. Each gesture is
characterized by its list of monotonic segments. The set of
all lists of segments of a given set of gestures determines a
set of finite automata able to recognize such gestures.

1. Introduction

Sign languages are the gestural languages used by deaf
people in their daily face-to-face communication. Differ-
ently to the problems found in the processing of oral lan-
guages used by hearing people, the visual-gestural nature
of sign languages gives rise to many specific problems for
their automated recognition. Also, as it happens with spo-
ken languages, sign languages are not universal, since they
vary a lot from country to country. Although there is an
extensive literature about methods and systems for gesture
recognition in general, and hand gesture recognition in par-
ticular (see Section 6), it is possible to observe that, in spite
of the existence of many works in the recognition of (Amer-
ican, Chinese, Arabian, etc.) Sign Languages, the automatic
recognition of the Brazilian Sign Language (LIBRAS) [10]
has not been extensively studied [33].

In this paper, we propose an interval fuzzy rule-based
method for the recognition of hand gestures acquired from
a data glove, extending the work presented in [4] to deal not
only with the uncertainties in the recognition process, which
is provided by the fuzzy logic theory [42], but also with
the imprecision of the data provided by the glove, which is
treated by Interval Mathematics [28]. We apply the method
to the recognition of hand gestures of LIBRAS.

The method uses the set of angles of finger joints and of
the separation between fingers (given as intervals that en-
close the uncertainties of the data obtained by the glove
sensors) for the classification of hand configurations, and
classifications of sequences of hand configurations for rec-
ognizing gestures. The segmentation of gestures is based
on the concept of monotonic gesture segment, sequences
of gestures in which the variations of the angles of the
finger joints have the same sign (non-increasing or non-
decreasing), separated by reference hand configurations that
mark the inflexion points in the sequence. Each gesture is
characterized by a list of monotonic segments, which deter-
mine a set of finite automata, which are able to recognize
the gestures being considered.

The paper is organized as follows. Section 2 presents a
basic overview of fuzzy systems. Some concepts related to
Interval Mathematics are discussed in Sect. 3. Our interval
fuzzy rule-based method for hand gesture recognition is in-
troduced in Sect. 4. The case study is presented in Sect. 5.
A comparison with related work is introduced in Sect. 6.
The Conclusion is in Sect. 7.

2. Fuzzy systems

Fuzzy sets were introduced in 1965 by Zadeh [42] for
representing vagueness in everyday life, providing an ap-
proximate and effective means for describing the character-
istics of a system that is too complex or ill-defined to be
described by precise mathematical statements. In a fuzzy
approach the relationship between elements and sets fol-
lows a transition from membership to non membership that

is gradual rather than abrupt.
A fuzzy system implements a function (usually nonlin-

ear) of n variables, given by a linguistic description of the
relationship between those variables. Figure 1 illustrates
the architecture of standard fuzzy systems. The fuzzificator
computes the membership degrees of the crisp input val-
ues to the linguistic terms (fuzzy sets) associated to each
input linguistic variable. The rule base contains the infer-
ence rules that associate linguistic terms of input linguistic
variables to linguistic terms of output linguistic values. The
information manager is responsible for searching in the rule
base which rules are applicable for the current input. The
inference machine determines the membership degrees of
the output values in the output sets, by the application of
the rules selected in the rule base. The defuzzificator gives
a single output value as a function of the output values and
their membership degrees to the output sets. Applications
were found in control systems [12], decision making [11],
expert systems [37], etc.

Rule Base

Inference Machine

Information Manager

Fuzzificator Defuzzificator

Input
Values

Output
Values

Figure 1. A standard fuzzy systems

However, many approximate methods do not produce a
single final result, presenting several alternative solutions
to a single problem (e.g., the different classes to which a
given input may belong). Among them, several fuzzy rule-
based methods for pattern recognition [27, 32], fuzzy rela-
tions, fuzzy clustering, fuzzy neural systems [25] were de-
veloped, with applications to signature verification [18], and
face recognition [23], for example. Such methods consider
an architecture like the one shown in Fig. 2. For applica-
tions to gesture recognition, see Sect. 6.

Rule Base

Inference Machine

Information Manager

Fuzzificator

Membership
Degrees

Input
Values

Figure 2. A fuzzy rule based system

Interval fuzzy rule-based systems consists of a general-
ization of such systems, by considering interval data type

and interval membership degree values.

3. Interval Mathematics: some concepts

Interval Mathematics [28] is a mathematical theory that
aims at the automatic and rigorous controlling of the errors
that arise in numerical computations.

Any real number x ∈ R that is uncertain for some
reason (e.g., if it is obtained by a measuring instrument
with limited resolution) is represented by a real interval
X = [x1; x2], with x1, x2 ∈ R and x1 ≤ x ≤ x2. The
set of intervals is denoted by IR. x1 and x2 denote, respec-
tively, the left and right endpoints of X .

A machine interval has floating point numbers as end-
points and outward roundings are used to guarantee that the
resulting output interval of any computation process con-
tains the actual result, with the range of the output interval
being the indicative of the maximum error occurred in the
process.

The arithmetical operations ∗IR ∈ {+,−,×,÷} are de-
fined, for all X,Y ∈ IR, as:

X ∗IR Y = {x ∗ y | x ∈ X, y ∈ Y }. (1)

For instance, if X = [x1; x2] and Y = [y1; y2], then

X − Y = [x1 − y2; x2 − y1] [28].

The range of a real function f : R → R over a real
interval X ∈ IR is given by

f̄(X) = {f(x) | x ∈ X}. (2)

An interval representation of f is an interval function
F : IR → IR such that for each X ∈ IR, f(x) ∈ F (x)
whenever x ∈ X [36]. Although there is not a unique inter-
val representation for a given real function, it always hold
that f̄(X) ⊆ F (X).

It is not always possible to represent interval functions
in the cartesian plan. However, in some cases, an interval
function F (X) can be given by an interval of real functions

F (X) = [inf{f(x) | x ∈ X}; sup{g(x) | x ∈ X}], (3)

where f and g are real functions such that f ≤ g, which is
denoted by [f, g] [36].

In this work, we consider that the membership functions
are interval functions F expressed as in (3), with f = g,
denoted by [f], which is the best interval representation of
the function f , i.e., for any other interval representation F
of f , [f](X) ⊆ F (X), for any X ∈ R [36].

For the purpose of this work, the sign of a real interval
X = [x1; x2] ∈ IR is defined as:

sign([x1, x2]) =

⎧⎨
⎩

+ if x1 ≥ 0 and x2 > 0,
− if x1 < 0 and x2 ≤ 0,
0 otherwise.

(4)

The absolute value of a real interval X = [x1;x2] ∈ IR is
given as:

| [x1;x2] |= max{| x1 |, | x2 |}. (5)

4. The interval fuzzy rule-based method

We consider a hypothetical data glove with 19 sensors,
as shown in Fig. 3. The fingers are labelled as: F1 (little
finger), F2 (ring finger), F3 (middle finger), F4 (index fin-
ger) and F5 (thumb). The joints in the fingers are labelled
as J1 (the knuckle), J2 and J3, for each finger. A separation
between two fingers is labelled as Sij to indicate that it is a
separation between the fingers Fi and Fj.

F1

F5

F4 F3 F2

J2

J3

J2

J1

J3

S12S23S34

S45

J1 J1J1J1

J2J2J2

J3J3J3

Figure 3. Localization of sensors in the data
glove

Since any movement can be represented as a sequence of
frames, a hand movement using a data glove is represented
as a sequence of hand configurations, one for each discrete
time instant. That is, at each time instant, the data glove
sensors should provide the set of angles of joints and finger
separation that characterizes a hand configuration. These
angles are represented as interval angles [x − ε;x + ε] that
enclose the uncertainties in the processing, where x is the
angle given by a sensor and ε > 0, ε ∈ R, is the equipment
tolerance, given by the manufacturer.

In order to simulate this data transfer, a random genera-
tor of hand configurations was implemented, generating at
each instant one hand configuration represented by a tuple
of interval angles corresponding to each sensor (see Fig. 3):

((F1J1,F1J2,F1J3),S12,(F2J1,F2J2,F2J3),S23,
(F3J1,F3J2,F3J3),S34,(F4J1,F4J2,F4J3),S45,

(F5J1,F5J2,F5J3))

Given a hand configuration c and a sensor s, denote the
interval value of each sensor angle by s(c), e.g., F1J1(c),
S45(c) etc.

4.1 Fuzzification

When dealing with imprecise data represented by real in-
tervals in IR, one has the problem that IR does not present
a natural total order. Considering that fuzzy systems usu-
ally work with totally ordered data, the designer often has
difficulty to express the membership degrees as a function
in the cartesian plan, for interval-valued data.

To solve this problem, interval fuzzy logic [13, 6, 3] was
introduced to deal with interval membership degrees, i.e.,
subintervals of [0;1] that allow the expression of the uncer-
tainty of the expert about the classification of the data in
linguistic terms. In this work, the membership functions
are given as explained in Sect. 3, that is, interval functions
of type [f], where f is a real membership function.

To each sensor corresponds a linguistic variable, whose
values are linguistic terms representing typical angles of
joints and separations.

For the joints in the fingers (linguistic variables F1J1,
F1J2, F1J3 etc.) the linguistic terms are: STRAIGHT (St),
CURVED (Cv) and BENT (Bt). Figures 4 and 5 show the
(interval) fuzzification for those variables.

For the separations between fingers F1 and F2, F2 and
F3, F4 and F5 (linguistic variable S12, S23, S45), the
linguistic terms are: CLOSED (Cl), SEMI-OPEN (SOp)
and OPEN (Op). For the separations between fingers F3
and F4 (linguistic variable S34), the linguistic terms are:
CROSSED (Cr), CLOSED (Cl), SEMI-OPEN (SOp) and
OPEN (Op). Figures 6 and 7 show the (interval) fuzzifica-
tion for those variables.

4.2 The interval inference process

The more generic and accepted way to consider fuzzy
generalization of classical connectives are based on trian-
gular norms (t-norms, t-conorms, fuzzy negations and fuzzy
implications (residuum)) [22]. In [6, 3] those concepts were
defined in an interval approach.

In this paper, we use the generalization of the Gödel t-
norm, given by

G([a, b], [c, d]) = [min{a, c};min{b, d}]. (6)

For example, consider the membership function for the
joints of the index finger F4 (Fig. 5) and the rule

If F4J1 is STRAIGHT and
F4J2 is CURVED and
F4J3 is CURVED

Then F4 is StCvCv

Angle (º)

0

15

1
STRAIGHT CURVED BENT

-45 5
M

em
be

rs
hi

p
D

eg
re

e
10 20 25 30 45

Figure 4. Fuzzification of the linguistic variable of the joint F5J2 in the thumb finger F5

M
em

be
rs

hi
p

D
eg

re
e

Angle (º)

0

157 60

1

75 9080 85

STRAIGHT CURVED BENT

Figure 5. Fuzzification of the linguistic variables of remaining finger joints

Angle (º)

0

15

1

CLOSED
SEMI-OPEN OPEN

5

M
em

be
rs

hi
p

D
eg

re
e

10 5530 50 105

Figure 6. Fuzzification of the linguistic variable of the separation S45 between the index finger F4
and the thumb finger F5

Angle (º)0

15

1

CLOSED

SEMI-OPEN OPEN

5

M
em

be
rs

hi
p

D
eg

re
e

10 20
2

55-5 -1 1

CROSSED

(a) Angle (º)

0

15

1

CLOSED

SEMI-OPEN OPEN

5

M
em

be
rs

hi
p

D
eg

re
e

10 20 252 55

(b)

Figure 7. Fuzzification of the linguistic variables of the separations: (a) S34 between the middle
finger F3 and the index finger F4, and (b) between remaining fingers

If the angles provided by the data glove for the joints J1,
J2 and J3 are 7o, 15o and 13o, respectively, and the tolerance
is ε = 1o, then the interval membership degrees are:

ϕF4J1([6; 8]) =
[
15 − 8

8
; 1

]
= [0.875; 1],

ϕF4J2([14; 16]) =
[
14 − 7

8
; 1

]
= [0.875; 1],

ϕF4J3([12; 14]) =
[
12 − 7

8
;
14 − 7

8

]
= [0.625; 0.875].

Figure 8 illustrates the processes for obtaining the inter-
val membership degree of joint J3 in the index finger F4.

Then, by the interval t-norm G defined in (6), we obtain

G(G([0.875; 1], [0.875; 1]), [0.625; 0.875]) = [0.625; 0.875]

meaning that F4 is in StCvCv with interval degree
[0.625;1]. If one uses the product interval t-norm, i.e.,

P ([a; b], [c; d]) = [ac; bd], (7)

the interval membership degree of finger F4 to StCvCv
would be [0.546;0.875].

We observe that, in the fuzzification process, we con-
sidered only trapezoidal fuzzy sets and the interval Gödel
t-norm, motivated just by simplicity.

4.3 The recognition process

The hand gesture recognition process is divided into four
steps: (1) recognition of finger configurations; (2) recogni-
tion of hand configurations; (3) segmentation of the ges-
ture in monotonic hand segments; (4) recognition of the se-
quence of monotonic hand segments.

For the Step 1 (recognition of finger configurations), 27
possible finger configurations are considered, for each fin-
ger. These configurations are codified in the format XYZ,
where X, Y and Z are the values of the linguistic variables
corresponding to the first joint J1, the second joint J2 and
the third joint J3, respectively.

For example, StStSt indicates that the three joints
are STRAIGHT, StCvCv indicates that the first joint is
STRAIGHT whereas the others are CURVED etc.

The hand configuration is the main linguistic variable
of the system, denoted by HC, whose linguistic terms are
names of hand configurations, which names are application
dependent. For instance, in Sect. 5, names of Brazilian Sign
Language (LIBRAS) hand configurations (see Fig. 10) were
used for such linguistic terms.

The 27 possible finger configurations determine 27 infer-
ence rules that calculate membership degree of each finger
to each configuration. For example, see the rule for the in-
dex finger in the previous subsection.

Step 2 (recognition of hand configurations) determines
the hand configuration, considering each finger configura-
tion and separation between fingers. For example, the rule
for the hand configuration [G] (Fig. 10) is:

If F1 is BtBtSt and S12 is Cl and
F2 is BtBtSt and S23 is Cl and
F3 is BtBtSt and S34 is Cl and
F4 is StStSt and S45 is Cl and
F5 is StStSt

Then HC is [G]

In Step 3 (segmentation of the gesture in monotonic hand
segments), we divide each gesture in a sequence of k limit
hand configurations l1, . . . , lk, where l1 is the initial gesture
configuration and lk is the terminal gesture configuration.

The limit configurations are such that, for each sensor s
and i = 1, . . . , k − 1, it holds that:

(i) | s(li+1) − s(li) |≤ 2ε, where the absolute value of
an interval was defined in (5) and ε is the equipment
tolerance.

(ii) For each c between li and li+1,

sign(s(c) − s(li)) = sign(s(li+1) − s(li)).

(iii) For each c′ after li+1,

sign(s(c′) − s(li+1)) �= sign(s(li+1) − s(li)),

where the sign of an interval was given in (3). A sign
equal to 0 is compatible with both negative and posi-
tive signs.

The limit hand configurations are the points that divide
the gesture into monotonic segments, that is, segments in
which each sensor produces angle variations with constant
(or null) sign. For each segment lili+1, li and li+1 are its
initial and terminal hand configurations, respectively.

The procedure for step 3 is the following. To find any
monotonic segment lili+1, the next n configurations sent
by the data glove after li are discarded, until a configuration
cn+1, such that

sign(s(cn+1) − s(cn)) �= sign(s(cn) − s(li))

(or, cn+1 is the last configuration of the gesture). Then, cn

(resp., cn+1) is the terminal hand configuration li+1 of the
considered monotonic segment, and also coincides with the
initial configuration of the next segment li+1li+2 (if there is
one). The process starts with li = l1, which is the initial
gesture configuration, and is repeated until the end of the
gesture, generating the list of k limit hand configurations.

In Step 4 (recognition of the sequence of monotonic
hand segments), the recognition of each monotonic segment

M
D

Angle (º)

0

157 60

1

75 9080 85

STRAIGHT CURVED BENT

[12;14]

[0
.6

25
;0

.8
75

]

Figure 8. Interval membership degree (MD) of joint J3 in the index finger F4

lili+1 is performed using a list of reference hand configura-
tions r1, r2, . . . , rm that characterizes the segment, where
r1 and rm are the initial and terminal hand configurations
of the segment, respectively.

A monotonic segment is recognized by checking that if it
contains its list of reference hand configurations. The pro-
cess is equivalent to a recognition based on a linear finite
automaton (shown in Fig. 9), where li = r1 and li+1 = rm.

1r mr
2r

Figure 9. Automaton for the recognition of
monotonic segments

5. Case study: hand gestures of LIBRAS

As any other sign language, LIBRAS (Brazilian Sign
Language) is a natural language endowed with all the com-
plexity normally found in the oral-auditive languages.

In the various works on automatic recognition of sign
languages that have been developed along the years (see
Sect. 6) the recognition of hand gestures has occupied a
prominent place. To support that recognition process, a ref-
erence set of hand configurations is usually adopted, driven
either from the linguistic literature on sign languages, or dy-
namically developed by the experimenters with an ad hoc
purpose. For our purposes, we have chosen a standard set
of hand configurations (some of them shown in Fig. 10),
taken from the linguistic literature on LIBRAS [10].

Our method requires that each sign be thoroughly char-
acterized in terms of its monotonic segments and the se-
quences of hand configurations that constitute such seg-
ments, and that the identification of the monotonic segments

Figure 10. Some LIBRAS hand configura-
tions [10]

and hand configurations be manually provided to the sys-
tem. Although a capture device such as a data glove can
be used to help to identify the typical values of the angles
of the finger joints, the final decision about the form of the
membership functions that characterize the linguistic terms
has to be explicitly taken and manually transferred to the
system. We illustrate the application of the method by the
definition of the necessary parameters for the recognition of
the hand gestures that constitute the signs CURIOUS and
BIRD in LIBRAS.

CURIOUS is a sign performed with a single hand placed
right in front of the dominant eye of the signer, with the
palm up and hand pointing forward. The initial hand con-
figuration is the one named [G1] in Fig. 10. The gesture
consists of the monotonic movement necessary to perform
the transition from [G1] to [X] and back to [G1] again,
such movements been repeated a few times (usually two or
three). A possible analysis of the gestures that constitute the
sign CURIOUS is presented in Table 1.

To support the recognition of the monotonic segments
of CURIOUS, we have chosen to use an intermediate hand
configuration, [G1X], which does not belong to the refer-
ence set (Fig. 10) and whose characterization in terms of
the set of membership functions for linguistic terms was de-
fined in an ad hoc fashion, for the purpose of the recogni-
tion of CURIOUS. Together with [G1] and [X], it should be
added to the list of hand configurations used by the system.

Table 1. Analysis of hand gestures
Steps Sign CURIOUS Sign BIRD
Initial Configuration [G1] [bC]
Monotonic Segment S1 [G1]-[G1X]-[X] [bC]-[bO]
Monotonic Segment S2 [X]-[G1X]-[G1] [bO]-[bC]
Recognition Automaton Fig. 11(a) Fig. 11(b)

S1:
G1 G1X X

S2:
X G1X G1

CURIOUS S1 S2 S1 S2

(a)

S1:
bC bO

S2:
bO bC

BIRD S1 S2 S1 S2

(b)

Figure 11. Recognition automata of hand
gestures of the signs CURIOUS and BIRD

The sign BIRD is performed with one single hand,
placed at the neutral signing space (mid arm distance from
the signer), with the palm facing forward, fingers pointing
up. A possible analysis of the hand gestures that constitute
that sign is shown in the third column of Table 1. Observe
that, since the difference in angles of finger joints between
[bC] and [bO] is small enough, it was not necessary to re-
quire from the recognition process the identification of any
special intermediate hand configuration.

The recognized signs are presented in a written form, us-
ing the HamNoSys [34] notation (a notation system devel-
oped for the linguistic study of sign languages) (see more
details in [5]).

6. Considerations on the fuzzy approach for
gesture recognition and related work

Fuzzy set theory is the oldest and most widely part of
soft computing, which deals with the design of flexible in-
formation processing systems, providing soft decision by
taking into account characteristics like tractability, robust-
ness, low cost, etc., and have close resemblance to human
decision making [27]. The significance of fuzzy set theory
in the realm of pattern recognition was fully discussed in the
literature (see, e.g, [27, 32]), where it was shown that it is
adequately justified in the following cases: (i) representing
linguistically phrased input features for processing; (ii) pro-
viding an estimate (representation) of missing information
in terms of membership values; (iii) representing multiclass
membership of ambiguous patterns and in generating rules
and inferences in linguistic form; (iv) extracting ill-defined
image regions, primitives, and properties and describing re-
lations among them as fuzzy subsets.

Observe that fuzzy set theory provides a notion of em-
bedding [27], since one finds a better solution to a crisp
problem by looking in a large space at first, which has dif-
ferent (usually less) constraints, and, therefore, allows the
algorithm more freedom to avoid errors forced by commis-
sion to definite answers in intermediate stages.

Applications of fuzzy pattern recognition and image pro-
cessing have been reported in various domains [7, 30], like
speech recognition, remotely sensed images, medical im-
agery, and atmospheric sciences and, in particular, in ges-
ture recognition [8, 39]. Various hybrid approaches were
also found for gesture recognition (see, e.g., [1, 9]), by
combining the merits of individual techniques. For ex-
ample, neuro-fuzzy models [1, 9] allow one to incorpo-
rate the generic advantages of artificial neural networks and
fuzzy logic-like massive parallelism, robustness, learning,
and handling of uncertainty and impreciseness, into the sys-
tem. Also, it is found to perform better than either a neural
network or a fuzzy system considered individually [43].1

Other hybridizations of fuzzy sets have been investigated
using other soft computing tools like genetic algorithms and
rough sets [31], but not significantly for gesture recognition.

A popular fuzzy method for gesture recognition is the
Bimber’s algorithm [8], which is applicable to any object
that can be tracked. This method stores each representa-
tion of a gesture as an analysis of 56 attributes. Each new
input gesture is analyzed for the same 56 attributes and is
compared to each stored representation to find the closest
match. The main features of the method are its usability

1There exist non-fuzzy approaches for gesture recognition that aim at
better performances, like, e.g., the work in [35, 29], based on Hidden
Markov Models, or in [20], which uses Finite State Machines. However,
one may claim that they do not present the flexibility of fuzzy techniques
in handling uncertainties.

(e.g. with 2D or 3D input devices or in combination with
finger status information, etc.), the minimum of information
needed to recognize a gesture, and, consequently, the high
speed of its scanning and comparison process, and the ex-
ceptionally low failure rate (less than 1%). The algorithm
is very useful for gesture recognition based games. Some
variants on Bimber’s algorithm in an attempt to further im-
prove its performance were present in [2]. The orientation-
modified algorithm produced lower failure rates and, addi-
tionally, the speed at which a gesture is performed seems to
have no bearing on whether or not it will be recognized.

Considering in particular sign languages, we observe
that, unlike general gestures, sign language is highly struc-
tured so that it provides an appealing test bed for new ideas
and algorithms before they are applied to gesture recogni-
tion. The recognition methods usually include rule-based
matching, artificial neural networks [15], Hidden Markov
Models [17, 24, 38, 40] and decision trees [14, 21, 26].
Most of these works are mainly concerned with the dif-
ficulty presented by a large vocabulary sign language and
how to reduce the recognition time without a great loss of
accuracy.

Fuzzy methods, however, are worried mainly with repre-
senting the uncertainties involved at every stage of the pro-
cess, like, e.g., in [41], where the test of the system used
just 16 words of Japanese Sign Language and the system
correctly distinguished all words, or in [19], where the sys-
tem was tested with 21 Auslan signs correctly recognized.

As those other fuzzy methods for sign recognition men-
tioned before, we are concerned in representing all the un-
certainties related to recognition process, in other to in-
crease the the quality of the results.2 Then, the innovation
of our method is the use of the association of fuzzy logic
to interval mathematics to deal also with the imprecision of
data provided by the data glove, which are then represented
by real intervals. To avoid the difficulty in expressing the
membership degrees for interval-valued data, we use inter-
val membership degrees (as, e.g., in [13, 6, 3]), i.e., subin-
tervals of [0;1] that allow the expression of the uncertainty
of the expert about the classification of the data in linguistic
terms. Also, we remark the contribution of this work to the
automatic recognition of LIBRAS, which has been rarely
studied [33]. In addition, we aim to meet the interest of lin-
guistic studies in LIBRAS, since the system represents the
recognized signs in the HamNoSys [34] linguistic notation
(see [5], for details), which is not usual in other systems.

7. Conclusion and final remarks

This paper presented a fuzzy rule-based for the recogni-
tion of hand gestures. The method is highly dependent on

2At the moment, we are not interested in the evaluation of our method
in relation to recognition time.

a detailed previous analysis of the features of the gestures
to be recognized, and on the manual transfer of the results
of that analysis to the recognition system. This makes it
suitable for the application to the recognition of hand ges-
tures of sign languages, because of the extensive analysis
that linguists that have already done of those languages.

Prototypes of a random gesture generator and of the ges-
ture recognizer were implemented in the programming lan-
guage Python, using the module PyInterval [16] for Interval
Mathematics. The output of the recognition system was fed
into a simple translator able to render the recognized hand
gestures as they are annotated in the HamNoSys system.
This initial experimentation indicated promising results in
the direction of a system capable of providing a HamNoSys
rendering of the recognized gestures.

Future work is concerned with the recognition of arm
gestures, by including the analysis of the angles of arm
joints, so recognition of more complete gestural features of
signs can be achieved.

Acknowledgments

This work was partially supported by CNPq (Proc.
470871/2004-0, 470556/2004-8). The authors are very
grateful to the referees for their valuable suggestions.

References

[1] O. Al-Jarrah and A. Halawani. Recognition of gestures in
arabic sign language using neuro-fuzzy systems. Artificial
Intelligence, 133:117–138, 2001.

[2] L. Anderson, J. Purdy, and W. Viant. Variations on a fuzzy
logic gesture recognition algorithm. In Proc. ACM SIGCHI
Intl. Conf. Advances in computer entertainment technology,
pages 280–283, New York, 2004. ACM Press.

[3] B. C. Bedregal and A. Takahashi. Interval valued versions
of T-conorms, fuzzy negations and fuzzy implications. In
IEEE Proc. Intl. Conf. Fuzzy Systems, Vancouver, 2006.

[4] B. C. R. Bedregal, A. C. R. Costa, and G. P. Dimuro. Fuzzy
rule-based hand gesture recognition. In M. Bramer, editor,
Artificial Intelligence in Theory And Practice, number 217
in IFIP Series, pages 285–294, Boston, 2006. Springer.

[5] B. C. R. Bedregal, G. P. Dimuro, and A. C. R. Costa. Fuzzy
rule-based hand gestures recognition for sign language pro-
cessing. In S. O. Rezende and A. C. R. S. Silva Filho,
editors, Proc. of the Work. on Computacional Intelligence
(WCI’06) in Intl. Joint Conf. 10th IBERAMIA, 18th SBIA,
9th SBRN, Ribeirão Preto, 2006. ICMC-USP.

[6] B. C. R. Bedregal and A. Takahashi. The best interval repre-
sentations of T-norms and automorphisms. Fuzzy Sets and
Systems, 157(24):3220–3230, 2006.

[7] J. C. Bezdek and S. K. Pal, editors. Fuzzy Models for Pattern
Recognition: Methods that Search for Structures in Data.
IEEE Press, New York, 1992.

[8] O. Bimber. Continuous 6DOF gesture recognition: A fuzzy-
logic approach. In Proc. of the 7th Intl. Conf. in Central Eu-
rope on Computer Graphics, Visualization and Interactive
Digital Media, volume 1, pages 24–30, 1999.

[9] N. D. Binh and T. Ejima. Hand gesture recognition using
fuzzy neural network. In Proc. ICGST Intl. Conf. Graphics,
Vision and Image Processing, pages 1–6, Cairo, 2005.

[10] L. F. Brito. Por uma Gramática de Lı́nguas de Sinais. Tempo
Brasileiro, Rio de Janeiro, 1995. (in Portuguese).

[11] C. Carlsson and R. Fuller. Fuzzy Reasoning in Decision
Making and Optimization. Springer, Heidelberg, 2002.

[12] G. Chen and T. T. Pham. Fuzzy Sets, Fuzzy Logic, and Fuzzy
Control Systems. CRC Press, Boca Raton, 2001.

[13] D. Dubois and H. Prade. Interval-valued fuzzy sets, possi-
bility theory and imprecise probability. In Proc. Intl. Conf.
Fuzzy Logic and Tech., pages 314–319, Barcelona, 2005.

[14] G. Fang, W. Gao, and D. Zhao. Large vocabulary sign
language recognition based on fuzzy decision trees. IEEE
Trans. Systems, Man and Cybernetics, 34:305–314, 2004.

[15] S. S. Fels and G. E. Hinton. Glove-talk: A neural network in-
terface between a data-glove and a speech synthesizer. IEEE
Transactions on Neural Networks, 4:1–8, 1993.

[16] P. S. Grigoletti, G. P. Dimuro, and L. V. Barboza. Módulo
Python para matemática intervalar. In Proc. 29th Con-
gresso Nacional de Matemática Aplicada e Computa-
cional, Campinas, 2006. (in Portuguese, available at
http://ppginf.ucpel.tche.br/gracaliz/papers).

[17] K. Grobel and M. Assan. Isolated sign language recognition
using hidden markov models. In Proc. Intl. Conf. System,
Man and Cybernetics, pages 162–167, 1997.

[18] M. Hanmandlu, M. H. M. Yusof, and V. K. Madasu. Off-
line signature verification and forgery detection using fuzzy
modeling. Pattern Recognition, 38(3):341–356, 2005.

[19] E. J. Holden and R. A. Owens. Visual sign language recogni-
tion. In Theor. Found. Comp. Vision, pages 270–288, 2000.

[20] P. Hong, M. Turk, and T. S. Huang. Gesture modeling and
recognition using FSM. In Proc. of IEEE Conf. Face and
Gesture Recognition, pages 410–415, Grenoble, 2000.

[21] M. W. Kadous. Machine recognition of auslan signs using
powergloves: towards large-lexicon recognition of sign lan-
guage. In Proc. Work. Integration of Gesture in Language
and Speech, pages 165–174, 1996.

[22] E. P. Klement, R. Mesiar, and E. Pap. Triangular Norms.
Kluwer Academic Press, Dordrecht, 2000.

[23] K. Kwak and W. Pedrycz. Face recognition using a fuzzy
fisherface classifier. Pattern Recognition, 38(10):1717–
1732, 2005.

[24] R. H. Liang and M. Ouhyoung. A real-time continuous ges-
ture recognition system for sign language. In Proc. 3rd Intl.
Conf. Automatic Face and Gesture Recognition, pages 558–
565, 1998.

[25] C. T. Lin and C. S. G. Lee. Neural Fuzzy Systems: A neuro-
fuzzy synergism to intelligent systems. Prentice Hall, Upper
Saddle River, 1996.

[26] H. Matsuo, S. Igi, S. Lu, Y. Nagashima, Y. Takata, and
T. Teshima. The recognition algorithm with non-contact
for japanese sign language using morphological analysis. In
Proc. of the Intl. Gesture Workshop, pages 273–284, 1997.

[27] S. Mitra and S. K. Pal. Fuzzy sets in pattern recognition and
machine intelligence. Fuzzy Sets and Systems, 156:381–386,
2005.

[28] R. E. Moore. Methods and Applications of Interval Analysis.
SIAM, Philadelphia, 1979.

[29] X. Ou, X. Chen and J. Yang. Gesture recognition for remote
collaborative physical tasks using tablet PCs. In Proc. of the
9th IEEE Intl. Conf. on Computer Vision, Work. on Multime-
dia Tech. in E-Learning and Collaboration, Nice, 2003.

[30] S. K. Pal. Fuzzy image processing and recognition: uncer-
tainty handling and applications. Intl. Journal Image Graph-
ics, 1:169–195, 2001.

[31] S. K. Pal and A. Skowron, editors. Rough-Fuzzy Hybridiza-
tion: A New Trend in Decision Making. Springer, Heidel-
berg, 1999.

[32] W. Pedrycz. Fuzzy sets in pattern recognition: Accomplish-
ments and challenges. Fuzzy Sets and Systems, 90:171–176,
1997.

[33] H. Pistori and J. J. Neto. An experiment on handshape
sign recognition using adaptive technology: Preliminary re-
sults. In Advances in Artificial Intelligence: Proc. 17th Braz.
Symp. Artificial Intelligence, São Luis, 2004, number 3171
in LNCS, pages 464–473, Berlin, 2004. Springer.

[34] S. Prillwitz, R. Leven, H. Zienert, T. Hanke, J. Henning,
E. Richter, and J. Martin. HamNoSys. V. 2.0; Hamburg No-
tation System for Sign Languages. An introductory guide.
Number 5 in Intl. Studies on Sign Language and Communi-
cation of the Deaf. Signum, Hamburg, 1989.

[35] G. Rigoll, A. Kosmala, and S. Eickeler. High perfomance
real-time gesture recognition using Hidden Markov Models.
In I. Wachsmuth and M. Frölich, editors, Gesture and Sign
Language in Human-Computer Interaction, number 1371 in
LNAI, pages 69–80, Berlin, 1998. Springer.

[36] R. H. N. Santiago, B. C. Bedregal, and B. M. Acióly. For-
mal aspects of correctness and optimality of interval compu-
tations. Formal Aspects of Computing, 18:231–243, 2006.

[37] W. Siler and J. J. Buckley. Fuzzy Expert Systems and Fuzzy
Reasoning. John Wiley & Sons, New York, 2004.

[38] T. Starner, J. Weaver, and A. Pentland. Real-time ameri-
can sign language recognition using desk and wearable com-
puter based video. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(12):1371–1375, 1998.

[39] M. Su. A fuzzy rule-based approach to spatio-temporal hand
gesture recognition. IEEE Transactions on Systems, Man
and Cybernetics, 30:276–281, 2000.

[40] C. Vogler and D. Metaxas. Toward scalability in asl recog-
nition: breaking down signs into phonemes. In Proc. Intl.
Gesture Workshop, pages 400–404, 1999.

[41] T. Yamaguchi, M. Yoshihara, M. Akiba, M. Kuga,
N. Kanazawa, and K. Kamata. Japanese sign language
recognition system using information infrastructure. In
Proc. Joint 4th IEEE Intl. Conf. Fuzzy Systems, 2nd Intl.
Fuzzy Eng. Symp., volume 5, pages 65–66, Yokohama, 1995.

[42] L. A. Zadeh. Theory of approximate reasoning. In J. Hayes,
D. Michie, and L. I. Mikulich, editors, Machine Intelligence,
pages 149–194. Ellis Horwood, 1970.

[43] L. A. Zadeh. Fuzzy logic, neural networks, and soft com-
puting. Comm. ACM, 37:77–84, 2006.

Analyzing Properties of Fuzzy Implications Obtained via the Interval
Constructor

Benjamin C. Bedregal, Regivan H. N. Santiago
Federal University of Rio Grande do Norte

Department of Informatics and Applied Mathematics
Campus Universitário s/n, 59.072-970 Natal, Brazil,

{benjamin, regivan}@dimap.ufrn.br

Renata H. S. Reiser, Graçaliz P. Dimuro
Catholic University of Pelotas

Pos-Graduate Programme in Computer Science
Rua Feliz da Cunha, 412, 96.010-000 Pelotas, Brazil

{reiser,liz}@ucpel.tche.br

Abstract

This work considers an interval extension of fuzzy impli-
cations based on the best interval representation of usual
fuzzy implications. The related properties of fuzzy im-
plications can be naturally extended and the interval re-
presentation meets the optimality property and preserves
the behaviors of the implications in the interval endpoints.
Our discussion mainly focuses on the best interval repre-
sentation of three important classes of fuzzy implications:
S-implications, R-implications and QL-implications. We
analyze sufficient and necessary conditions for these three
classes of implications as inclusion-monotonic functions in
both arguments satisfying the minimal properties of fuzzy
implications.

1. Introduction

Interval-valued fuzzy sets were introduced independen-

tly by Zadeh [39] and others authors [18, 21, 31] in the se-

venties. This integration of Fuzzy Theory [38] with Inter-

val Mathematics [26] has been studied from different view-

points [12, 13, 33, 23, 28, 37, 29, 27, 17]. For example,

Lodwick at [25] points out four ways to integrate fuzzy and

interval approaches. One of them uses membership functi-

ons with intervals values, in order to model the uncertainty

in the process of determining exact membership grades with

the usual fuzzy membership functions.

Fuzzy implications play an important role in fuzzy logic,

both in the broad sense (heavily applied to fuzzy control,

analysis of vagueness in natural language and techniques

of soft-computing) and in the narrow sense (developed as

a branch of many-valued logic that is able to investigate

deep logical questions). However, there is no consensus

among researchers which extra properties fuzzy implicati-

ons should satisfy. In the literature, several fuzzy implica-

tion properties have already been considered and their in-

terrelationship with the other kinds of connectives are ge-

nerally presented (see, e.g., [8]).

On the other hand, Santiago et al. [32] formalized two

of some usual notions of interval computations, namely, the

notions of correctness and optimality, explicitly required in

[19]. That work described how those notions could be rela-

ted to the notion of continuity on the real numbers and also

to the notions of continuity proposed by Moore and Scott.

The concept of representation, meaning “correct function”,

was introduced to emphasize the idea that interval compu-

tations represent computationally real entities. The most

important result of that paper is the notion of canonical in-

terval representation, which is an interval function that is

optimal and correct. The resulting relations of those con-

cepts with the usual continuity on the real numbers pointed

out a method to extend real functions to suitable interval

functions that preserve some desired properties, mainly, the

continuity in terms of Moore and Scott.

Following the idea of extracting interval counterparts

from real functions, using the approach above, Bedregal and

Takahashi [6, 7] provided interval counterparts for fuzzy

connectives. However, for fuzzy implications [7], the

authors considered just those properties proposed by Fodor

and Roubens [16] and the classes of R-implications. In this

paper, we also consider S-implications and QL-implications

and prove that they are preserved by their canonical interval

representations.

The paper is organized as follows. In Sect. 2, the de-

finition of the best interval representation of a real func-

tion is summarized. Interval extensions of fuzzy t-norms,

t-conorms and fuzzy negation are discussed in Sect. 3. Sec-

tion 4 provides an analysis of properties of fuzzy implica-

tion. Section 5 shows that the minimal properties of fuzzy

implications may be extended from interval fuzzy degrees.

Interval fuzzy implications generated by interval fuzzy con-

nectives are discussed in Sect. 6. Sect. 7 is the Conclusion.

2 Best Interval Representations

Consider the real unit interval U = [0, 1] ⊆ R. Let U =
{[a, b] | 0 ≤ a ≤ b ≤ 1} be the set of subintervals of U .

An interval has two projections l : U −→ U and r : U −→
U , defined by l([a, b]) = a and r([a, b]) = b, respectively.

Denote l(X) and r(X) by X and X , respectively.

Several natural partial orders may be defined on U [9].

The most used orders in the context of interval mathematics

that are considered in this work are:

1. Kulisch-Miranker or Product: X ≤ Y if and only if

X ≤ Y and X ≤ Y .

2. Inclusion order: X ⊆ Y if and only if X ≥ Y and

X ≤ Y

Definition 2.1 Considering X ∈ U and x ∈ U , X repre-

sents x if x ∈ X . Given X, Y ∈ U and x ∈ X ∩ Y ,
X is a better representation of x than Y , if X ⊆ Y 1. A
function F : Un −→ U is an interval representation of a
function f : Un −→ U if, for each �X ∈ Un and �x ∈ �X ,
f(�x) ∈ F (�X) [32]. An interval function F : Un −→ U is a
better interval representation of the function f : Un −→ U
than G : Un −→ U, denoted by G � F , if, for each
�X ∈ Un, the inclusion F (�X) ⊆ G(�X) holds.

These simple notions emphasizes the idea that interval

mathematics is a kind of language that expresses or descri-

bes real numbers and their associated functions.

Definition 2.2 For each real function f : Un −→ U , the
interval function ̂f : Un −→ U, defined by

̂f(�X) = [inf{f(�x) : �x ∈ �X}, sup{f(�x) : �x ∈ �X}], (1)

is called the best interval representation of f [32].

The interval function ̂f is well defined and for any other

interval representation F of f , F � ̂f . ̂f returns a narrower

1Trivially, this notion could be extended for tuples of intervals.

interval than any other interval representation of f , i.e., ̂f is

the optimal representation of f (see Hickey et al. [19]).

Although the range of real functions applied to intervals,

f([a, b]), can be seen as an operator (see [26], p.19) that pre-

serves interesting properties of real functions, sometimes

the resulting value is not an interval, and, thus, it is not a va-

lid object in Moore arithmetic. Since we aim at to obtain an

operator that transforms real functions into interval functi-

ons, the range is not a suitable operator for this purpose. The

range f([a, b]) and the best interval representation ̂f [a, b]
coincide only when f is continuous: if f is continuous, then

for each �X ∈ Un, ̂f(�X) = {f(�x) : �x ∈ �X} = f(�X).
An interval can be seen as a set of real numbers, or as a

kind of number and also as an information of a real number.

Each of these notions implies a way to classify intervals and

to establish a criteria of proximity, namely, a topology. Seen

as a kind of number, the associated topology is called Moore

Topology, which is obviously an inheritance of a topology

established on the Euclidean Plane, where the standard no-

tion of proximity is defined in terms of the distance:

Definition 2.3 (Moore Topology) Given two intervals
[a, b], [c, d] ∈ IR, the distance between [a, b] and [c, d] is
defined by

d([a, b], [c, d]) = max(| a − c |, | b − d |). (2)

Seen as an information about a real number x, the crite-

ria of proximity is established using quasi-metrics [1]. The

resulting topology and the resulting notion of continuity is

called Scott topology and Scott continuity, respectively:

Definition 2.4 (Scott Topology) Given two intervals
[a, b], [c, d] ∈ IR, the quasi-distance between [a, b] and
[c, d] is defined by

q([a, b], [c, d]) = max(c − a, b − d, 0). (3)

These notions of continuity and proximity for intervals

depend on the chosen interpretation of an interval, and its

respective influence on the algorithm convergence. The

study of these relations and of the associated topology with

respect to the viewpoint of “intervals as set of real numbers”

is under analysis in the paper [5]. The relation between the

continuity on real numbers and the above continuities is sta-

ted in the following theorem, proved in [32](p. 240).

Theorem 2.1 Let f : R −→ R be a function. The following
statements are equivalent:

(i) f is continuous;

(ii) ̂f is Scott continuous;

(iii) ̂f is Moore continuous.

Clearly, Theorem 2.1 can be adapted to our context, i.e.,

considering Un instead of R.

3 Interval t-norms, interval t-conorms and
interval fuzzy negations

The generalizations proposed in [6] applies the princi-

ples discussed in the previous section. An interval t-norm

(t-conorm) is considered an interval representation of a t-

norm (t-conorm). This generalization fits with the idea that

interval membership degrees may be thought as approxima-

tions of exact degrees [37].

Observe that a triangular norm (conorm), t-norm (t-
conorm) for short, is a function T : U2 → U that is com-

mutative, associative, monotonic and has 1 (0) as identity.

A function N : U → U is a fuzzy negation if

N1: N(0) = 1 and N(1) = 0.

N2: If x ≥ y then N(x) ≤ N(y), ∀x, y ∈ I .

In addition, fuzzy negations satisfying the involutive pro-

perty are called strong fuzzy negations [22, 8]:

N3: N(N(x)) = x, ∀x ∈ U .

When the t-norm is considered, it is also possible to es-

tablish a partial order on fuzzy negations in a natural way.

Let N1 and N2 be fuzzy negations. Then:

N1 ≤ N2 if ∀x ∈ U : N1(x) ≤ N2(x). (4)

Remark 3.1 If N1 ≤ N2 and x ≥ y then N1(x) ≤ N2(y).

In the following, we show how to extend the concepts

presented above by using the notion of best interval repre-

sentation, according to [6, 7].

Definition 3.1 A function T : U2 → U is an interval t-

norm (interval t-conorm) if it is commutative, associative,
monotonic with respect to the product and inclusion order,
and has [1, 1] ([0, 0]) as identity.

Proposition 3.1 If T is a t-norm (t-conorm) then ̂T : U2 →
U is an interval t-norm.

Definition 3.2 An interval function N : U −→ U is an in-

terval fuzzy negation if, for any X , Y in U, the following
properties hold:

N1: N([0, 0]) = [1, 1] and N([1, 1]) = [0, 0];

N2: If X ≥ Y then N(X) ≤ N(Y);

N3: If X ⊆ Y then N(X) ⊇ N(Y).

If N also satisfies the involutive property, then it is a strong

interval fuzzy negation:

N4: N(N(X)) = X , ∀X ∈ U.

Theorem 3.1 Let N : U −→ U be a fuzzy negation. Then
̂N is an interval fuzzy negation. In addition, if N is a strong

fuzzy negation then ̂N is a strong interval fuzzy negation.

Proof: It is immediate that N1 is satisfied. Also:

N2: If X ≥ Y then Y ≤ X and Y ≤ X . Therefore, by

N2, it follows that:

̂N(X) = [N(X), N(X)] ≤ [N(Y), N(Y)] = ̂N(Y).

N3: If X ⊆ Y then X ≤ Y and Y ≤ X . Therefore, by

N2, it follows that:

̂N(X) = [N(X), N(X)] ⊆ [N(Y), N(Y)] = ̂N(Y).

N4: If N is strong, then

̂N(̂N(X)) = ̂N([N(X), N(X)])
= [N(N(X)), N(N(X))] = X. �

4 Fuzzy implication

Several definitions for fuzzy implication together with

related properties have been studied (see, e.g., [2, 4, 8, 14,

16, 20, 24, 30, 34, 35, 36]). The unique consensus in these

definitions is that the fuzzy implication should behave ana-

logously as the classical implication does for the crisp case.

Then, a binary function I : U2 −→ U is a fuzzy implication
if I meets the minimal boundary conditions:

I(1, 1) = I(0, 1) = I(0, 0) = 1 and I(1, 0) = 0. (5)

Several reasonable extra properties that may be required

for fuzzy implications are listed below:

I1: If x ≤ z then I(x, y) ≥ I(z, y);

I2: If y ≤ z then I(x, y) ≤ I(x, z);

I3: I(0, y) = 1 (falsity principle);

I4: I(x, 1) = 1 (right neutrality principle);

I5: I(1, x) = x (left neutrality principle);

I6: I(x, I(y, z)) = I(y, I(x, z)) (exchange principle);

I7: x ≤ y if and only if I(x, y) = 1 (boundary condition);

I8: I(x, x) = 1 (identity property);

I9: I(x, y) ≥ y;

I10: I is a continuous function (continuity property);

I11: I(x, y) = I(x, I(x, y)).

Other two properties related to fuzzy implications with

strong negation may be also considered [8]:

I12: If N is a strong negation, then the contrapositive pro-

perty holds: I(x, y) = I(N(y), N(x)).

I13: Consider N : U −→ U . If N(x) = I(x, 0) then N
is a strong fuzzy negation.

In order to connect some fuzzy implications with some t-

norms, an interesting study related to the law of importation

is considered in [4]:

I14: Let T be a t-norm. Then, the law of importation con-

cerned with T holds: I(T(x,y),z)=I(x,I(y,z)).

4.1 Generating fuzzy implications from
fuzzy connectives

There are three usual ways to generate fuzzy implicati-

ons from the other connectives. Let T be a t-norm, S be a

t-conorm and N be a fuzzy negation. Then the equalities

IT (x, y) = sup{z : T (x, z) ≤ y} (6)

IS,N (x, y) = S(N(x), y) (7)

IT,S,N (x, y) = S(N(x), T (x, y)) (8)

are fuzzy implications, called R-implication or residuum of

T , S-implication and QL-implication, respectively.

The R-implication arises from the notion of residuum

in Intuitionistic Logic [3] or, equivalently, from the notion

of residue in the theory of lattice-ordered semigroups [15].

This is well-defined only if the t-norm is left-continuous.

It is possible to define an S-implication from conjunction

and negation (or disjunction and negation) using the corres-

ponding tautology of classical logic. Thus, S-implications

are based on the classical logical equivalence:

α → β ≡ ¬α ∨ β. (9)

Notice that, in some papers [8, 16, 15], an S-implication

requires strong fuzzy negation. In this work this condition

is not required, based on the approach considered in [22, 2].

QL-implications have the form used in quantum logic

and are based on the“if-then-else” rules [15].

Several results about fuzzy implication and related to the

properties I1, . . ., I14 may be studied. According to the

results presented in [16], it is immediate that:

Proposition 4.1 If I : U2 → U is an R-implication then
the function I satisfies the properties I2, I6, I7 and I9.

Based on the results presented in [3], it follows that:

Proposition 4.2 When I : U2 → U is an S-implication, the
properties I1, I2, I5, I7 and I9 hold.

Proposition 4.3 If I : U2 → U is an QL-implication then
I satisfies the properties I2, I5 and I12.

5 Interval fuzzy implications

In Interval Mathematics, any value may be identified

with a degenerate interval. Then, the minimal properties

of fuzzy implications can be naturally extended for interval

fuzzy degrees. A function I : U2 −→ U is a interval fuzzy
implication if the following conditions are satisfied:

I([1, 1], [1, 1]) = I([0, 0], [0, 0]) = I([0, 0], [1, 1]) = [1, 1],
I([1, 1], [0, 0]) = [0, 0].

The properties stated in the previous section can be na-

turally extended for intervals. Notice that, since we have

two natural partial orders on U and two continuity notions,

some properties can have two extensions.

5.1 Extended properties

I1: If X ≤ Z then I(X, Y) ≥ I(Z, Y);

I2: If Y ≤ Z then I(X, Y) ≤ I(X, Z);

I3: I([0, 0], Y) = [1, 1];

I4: I(X, [1, 1]) = [1, 1];

I5: I([1, 1], X) = X;

I6: I(X, I(Y, Z)) = I(Y, I(X, Z));

I7: X ≤ Y if and only if I(X, Y) = [1, 1];

I8: 1 ∈ I(X, X);

I9: I(X, Y) ≥ Y ;

I10a: I is a Moore continuous function;

I10b: I is a Scott continuous function;

I11a: I(X, Y) ⊆ I(X, I(X, Y));

I11b: I([x, x], Y) = I([x, x], I([x, x], Y));

I12: Let N be a strong fuzzy negation. When I is

contrapositive with respect to N, then I(X, Y) =
I(N(Y), N(X)).

I13: If N : U −→ U, N(X) = I(X, [0, 0]) then N is a

strong interval fuzzy negation.

I14: I(T(X, Y), Z) = I(X, I(Y, Z)), if T is an interval t-

norm.

From any fuzzy implication it is always possible to ob-

tain an interval fuzzy implication canonically. The interval

fuzzy implication, obtained in this way, also meets the op-

timality property and preserves the same properties satis-

fied by the fuzzy implication. In the following two propo-

sitions, the best interval representation of fuzzy implication

is shown as an inclusion-monotonic function in both argu-

ments and the related proofs can be constructed straight-

forward from the definition of ̂I .

Proposition 5.1 If I is a fuzzy implication then ̂I is an in-
terval fuzzy implication.

Proposition 5.2 Let I be a fuzzy implication. Then for each
X1, X2, Y1, Y2 ∈ U. If X1 ⊆ X2 and Y1 ⊆ Y2 then
̂I(X1, Y1) ⊆ ̂I(X2, Y2).

Theorem 5.1 Let I be a fuzzy implication. If I satisfies
a property Ik, for some k= 1, . . . , 10, then ̂I satisfies the
property Ik.

Proof:

I1: If u ∈ ̂I(X, Y), then there exist x ∈ X and y ∈ Y such

that I(x, y) = u. If X ≤ Z, then there exists z ∈ Z
and x ≤ z. So, by I1, u = I(x, y) ≥ I(z, y). On the

other hand, if v ∈ ̂I(Z, Y), then there exist z ∈ Z and

y ∈ Y such that I(z, y) = v. If X ≤ Z, then x ≤ z,

for some x ∈ X . So, by I1, I(x, y) ≥ I(z, y) = v.

Therefore, for each u ∈ ̂I(X, Y), there is v ∈ ̂I(Z, Y)
and u ≥ v. In addition, for each v ∈ ̂I(Z, Y), there

is u ∈ ̂I(X, Y) such that u ≥ v. Hence, ̂I(X, Y) ≥
̂I(Z, Y).

I2: If u ∈ ̂I(X, Y), then there exist x ∈ X and y ∈ Y such

that I(x, y) = u. If Y ≤ Z, then there exists z ∈ Z
such that y ≤ z. So, by I2, u = I(x, y) ≤ I(x, z). On

the other hand, if v ∈ ̂I(X, Z), then there exist z ∈ Z
and x ∈ X such that I(x, z) = v. If Y ≤ Z, then y ≤
z, for some y ∈ Y . So, by I2, I(x, y) ≥ I(x, z) = v.

Therefore, for each u ∈ ̂I(X, Y), there is v ∈ ̂I(X, Z)
such that u ≤ v, and, for each v ∈ ̂I(X, Z) ,there is

u ∈ ̂I(X, Y) such that u ≤ v. Hence, ̂I(X, Y) ≤
̂I(X, Z).

I3: Trivially, by I3, for each y ∈ Y , I(0, y) = 1, and then

{I(0, y) : y ∈ Y } = [1, 1]. Thus, since ̂I([0, 0], Y)
is the narrowest interval containing {I(0, y) : y ∈ Y },

then ̂I([0, 0], Y) = [1, 1].

I4: Trivially, by I4, for each x ∈ X , I(x, 1) = 1 and then

{I(x, 1) : x ∈ X} = [1, 1]. Thus, since ̂I(X, [1, 1]) is

the narrowest interval containing {I(x, 1) : x ∈ X},

then ̂I(X, [1, 1]) = [1, 1].

I5: Trivially, by I5, for each x ∈ X , I(1, x) = x and then

{I(1, x) : x ∈ X} = X . Thus, since ̂I([1, 1], X) is

the narrowest interval containing {I(1, x) : x ∈ X},

then ̂I([1, 1], X) = X .

I6: If u ∈ ̂I(X, ̂I(Y, Z)) then there exist x ∈ X , y ∈ Y
and z ∈ Z such as I(x, I(y, z)) = u. But, by I6,

u = I(y, I(x, z)). So, u ∈ ̂I(Y, ̂I(X, Z)) and, there-

fore, ̂I(X, ̂I(Y, Z)) ⊆ ̂I(Y, ̂I(X, Z)). Analogously, if

u ∈ ̂I(Y, ̂I(X, Z)) then there exist x ∈ X , y ∈ Y
and z ∈ Z such that I(y, I(yx, z)) = u. But, by

I6, u = I(x, I(y, z)). So, u ∈ ̂I(X, ̂I(XY,Z)) and,

therefore, ̂I(Y, ̂I(X, Z)) ⊆ ̂I(X, ̂I(Y, Z)). Hence,
̂I(X, ̂I(Y, Z)) = ̂I(Y, ̂I(X, Z)).

I7: If X ≤ Y then for each x ∈ X and y ∈ Y , x ≤ y,

and then, by I7, I(x, y) = 1. Therefore, ̂I(X, Y) =
{I(x, y) : x ∈ X and y ∈ Y } = {1} = [1, 1]. Conver-

sely, if ̂I(X, Y) = [1, 1], then {I(x, y) : x ∈ X and

y ∈ Y } = {1}, and then, for each x ∈ X and y ∈ Y ,

I(x, y) = 1. Thus, I(X,Y) = 1, and hence, by I7,

X ≤ Y .

I8: If x ∈ X then I(x, x) = 1, and then 1 ∈ ̂I(X, X).

I9: By I9, for each x ∈ X and y ∈ Y , I(x, y) ≥ y. So,
̂I(X, Y) ≥ Y .

I10a,I10b: It is straightforward, from Theorem 2.1.

I11a: If u ∈ ̂I(X, Y), then there exist x ∈ X and

y ∈ Y such that I(x, y) = u. So, by I11, u =
I(x, I(x, y)), and, therefore, u ∈ ̂I(X, ̂I(X, Y)).
Hence, ̂I(X, Y) ⊆ ̂I(X, ̂I(X, Y)).

I11b: By I10a, ̂I([x, x], Y) ⊆ ̂I([x, x], ̂I([x, x], Y)).
So, it remains to prove that ̂I([x, x], Y) ⊇
̂I([x, x], ̂I([x, x], Y)). Let u ∈ ̂I([x, x], ̂I([x, x], Y)),
then there exists y ∈ Y such that u = I(x, I(x, y)).
But, by I11, I(x, I(x, y)) = I(x, y). So,

u ∈ ̂I([x, x], Y), and, therefore, ̂I([x, x], Y) ⊇
̂I([x, x], ̂I([x, x], Y)). �

The preservation of properties I12 – I14 will be proved

separately, since another connective will be considered.

Proposition 5.3 Let I be a fuzzy implication and N be a
fuzzy strong negation, where I is contrapositive concerned
with N , i.e., I satisfies I12. Then ̂I is contrapositive con-
cern with ̂N , i.e., ̂I satisfies I12.

Proof: If u ∈ ̂I(X, Y), then there exist x ∈ X
and y ∈ Y such that I(x, y) = u. But, by I12,

I(x, y) = I(N(y), N(x)). Since N(y) ∈ ̂N(Y)
and N(x) ∈ ̂N(X), then u ∈ ̂I(̂N(Y), ̂N(X)). So,
̂I(X, Y) ⊆ ̂I(̂N(Y), ̂N(X)). On the other hand, if

u ∈ ̂I(̂N(Y), ̂N(X)), then there exist v ∈ ̂N(Y) and

w ∈ ̂N(X) such that I(v, w) = u. But, since v ∈ ̂N(Y)

and w ∈ ̂N(X), there exist y ∈ Y and x ∈ X , such that

N(y) = v and N(x) = w. So, I(N(y), N(x)) = u. But,

by I12, I(N(y), N(x)) = I(x, y). Then, u ∈ ̂I(X, Y) and
̂I(X, Y) = ̂I(̂N(Y), ̂N(X)). �

Proposition 5.4 Let I be a fuzzy implication. If I satisfies
the property I13, then the interval function N : U −→ U,
defined by N(X) = ̂I(X, [0, 0]), is a strong interval fuzzy
negation, i.e., ̂I satisfies the property I13.

Proof: By I13, N : U −→ U , defined by N(x) = I(x, 0),
is a strong fuzzy implication, and, therefore, by Theorem

3.2, ̂N is a strong interval fuzzy negation. We will prove

that N = ̂N . Consider X ∈ U. If u ∈ N(X), then

there exists x ∈ X such that I(x, 0) = u, and, therefore

N(x) = u. So, u ∈ ̂N(X). Conversely, if u ∈ ̂N(X),
then there exists x ∈ X and N(x) = u. But, by I13,

I(x, 0) = u. So, u ∈ ̂I(X, [0, 0]), i.e., u ∈ N(X).
Therefore, N = ̂N . �

Proposition 5.5 Let I be a fuzzy implication and T be a
t-norm, with I satisfying the law of importation concerned
with T (I14). Then ̂I satisfies the property I14 concerned
with ̂T .

Proof: If u ∈ ̂I(̂(T)(X, Y), Z) then there exist

v ∈ ̂(T)(X, Y) and z ∈ Z with u = I(v, z). But, if

v ∈ ̂(T)(X, Y), then there exist x ∈ X and y ∈ Y
such that v = T (x, y). So, u = I(T (x, y), z), and,

therefore, by property I14, u = I(x, I(y, z)). Thus,

since x ∈ X and I(y, z) ∈ ̂I(Y, Z), u ∈ ̂I(X, ̂I(Y, Z)).
Therefore, ̂I(̂(T)(X, Y), Z) ⊆ ̂I(X, ̂I(Y, Z)). On

the other hand, if u ∈ ̂I(X, ̂I(Y,Z)) then there exist

x ∈ X and v ∈ ̂I(Y,Z) such that u = I(x, v). But, if

v ∈ ̂I(Y, Z), then there exist y ∈ Y and z ∈ Z such

that v = I(y, z). So, u = I(x, I(y, z)), and, there-

fore, by property I14, u = I(T (x, y), z). Thus, since

T (x, y) ∈ ̂T (X, Y) and z ∈ Z, u ∈ ̂I(̂(T)(X, Y), Z).
Therefore, ̂I(̂(T)(X, Y), Z) = ̂I(X, ̂I(Y, Z)). �

6 Generating interval fuzzy implications
from interval fuzzy connectives

In [10, 11, 17] it is possible to find some definitions of

interval valued implications. However, the approach propo-

sed here is in a different context. In this section, the interval

fuzzy implications are generated from interval fuzzy con-

nectives, obtained through the interval constructor.

6.1 Interval R-implications

An interval fuzzy implication I is an interval R-
implication if there is an interval t-norm T defined as

I(X, Y) = sup{Z ∈ U : T(X, Z) ≤ Y }. (10)

In this case we denote it by IT instead of I.

Proposition 6.1 Let T be a t-norm. Then:

I
̂T = ̂IT . (11)

Proof: See [7]. �

Proposition 6.2 Let I be an interval fuzzy implication. If I

is an interval R-implication then I satisfies I2, I6, I7 and I9.

Proof: Considering Def. 2.2 and Prop. 6.2, the proof can

be constructed analogously to Prop. 4.1. �

6.2 Interval S-Implications

An interval fuzzy implication I is an interval S-
implication (IS,N) if there are an interval t-conorm S and

an interval fuzzy negation N such that

I(X, Y) = S(N(X), Y). (12)

Proposition 6.3 Let S be a t-conorm and N be a fuzzy ne-
gation. Then:

I
̂S, ̂N = ̂IS,N . (13)

Proof: Considering X, Y ∈ U, then

I
̂S, ̂N (X, Y) = ̂S(̂N(X), Y)

= ̂S([N(X), N(X)], Y)
= [S(N(X), Y), S(N(X), Y)]
= [IS,N (X,Y), IS,N (X,Y)].

Therefore, I
̂S, ̂N (X, Y) = ̂IS,N (X, Y). �

Proposition 6.4 Let I be an interval fuzzy implication. If I

is an interval S-implication then I satisfies I1, I2, I5, I7 and
I9.

Proof: It is analogous to Prop. 4.2. �

6.3 Interval QL-implications

An interval fuzzy implication I is an interval QL-
implication (IT,S,N) if there are an interval t-norm T, an in-

terval t-conorm S and an interval fuzzy negation N such that

I(X, Y) = S(N(X), T(X, Y)). (14)

Proposition 6.5 Let T be a t-norm, S be a t-conorm and N
be a fuzzy negation. Then:

I
̂T ,̂S, ̂N = ÎT,S,N . (15)

Proof: We prove that ÎT,S,N ⊆ I
̂T ,̂S, ̂N . Considering

X, Y ∈ U, then

I
̂S, ̂N, ̂T (X, Y)

= ̂S(̂N(X), ̂T (X, Y))

= ̂S([N(X), N(X)], [T (X,Y), T (X, Y))
= [S(N(X), T (X,Y)), S(N(X), T (X, Y))].

The results follows immediately, since, for each x ∈ X, y ∈
Y , it holds that

S(N(X), T (X, Y))≤S(N(x), T (x, y))≤S(N(X), T (X, Y)).

Analogously, it is possible to prove that I
̂T ,̂S, ̂N ⊆ ÎT,S,N .�

Proposition 6.6 Let I be an interval fuzzy implication. If I

is an interval QL-implication then I satisfies I2, I5 and I12.

Proof: It is analogous to Prop. 4.3. �

7 Conclusion and Final Remarks

Following the ideas of [12, 33, 23, 28, 37, 29, 27, 25, 17],

throughout this paper, intervals were used to model the un-

certainty of a specialist’s information related to truth values

in the fuzzy propositional calculus. The basic systems are

based on interval t-norm, i.e., using subsets of the real unit

interval as the standard sets of truth degrees, continuous t-

norms as standard truth interval functions of conjunction

and their residua as standard truth interval functions of im-

plication.

This paper summarizes the results presented in [6, 7]. As

in the previous works, it applies the concept of best inter-

val representation as a method for the construction of fuzzy

interval connectives. It also introduces the classes of R-

implications, S-implication and QL-implications. One of

the main results in the paper is Theorem 5.1, which states

that if a fuzzy implication satisfies a property, then its inter-

val counterpart, built as its best interval representation, also

satisfies the analogous property.

In addition, we discussed under which conditions gene-

ralized fuzzy implications applied to interval values pre-

serve properties of canonical forms generated by interval

t-norms (t-conorm). We strong urge the reader to become

familiar with properties of R-implications, S-implications

and QL-implications that are preserved by the interval re-

presentation.

This paper is not only useful to analyze deductive sys-

tems in mathematical depth, but it is also a foundation for

methods of fuzzy logic in a broad sense, that means, a

branch of many-valued logics based on the paradigm of in-

ference under vagueness and imprecision.

8 Acknowledgments

This paper was partially supported by the Brazilian

funding agencies CNPq (Proc. 470871/2004-0) and FA-

PERGS. We are very grateful to the referees for their va-

luable comments that helped us to improve the paper.

Referências

[1] B. Acióly and B. Bedregal. A quasi-metric topology compa-

tible with inclusion monotonicity on interval space. Reliable
Computing, 3(3):305–313, 1997.

[2] M. Baczynski. Residual implications revisited. Notes on the

Smets-Magrez. Fuzzy Sets and Systems, 145(2):267–277,

2004.

[3] M. Baczynski and B. Jayaran. On the characterization of

(S,N)-implications generated from continuous negations. In

Proc. 11th Conf. on Information Processing and Manage-
ment of Uncertainty in Knowledge-based Systems, pages

436–443, Paris, 2006.

[4] J. Balasubramaniam. Yager’s new class of implications Jf

and some classical tautologies. Information Sciences, 2006.

[5] B. Bedregal and R. Santiago. Characterizing and specifying

optimal and correct interval functions. Formal Aspects of
Computing, 2007. (Submitted).

[6] B. Bedregal and A. Takahashi. The best interval representa-

tion of t-norms and automorphisms. Fuzzy Sets and Systems,

157(24):3220–3230, 2006.

[7] B. Bedregal and A. Takahashi. Interval valued versions of

t-conorms, fuzzy negations and fuzzy implications. In IEEE
Proc. Intl. Conf. Fuzzy Systems, Vancouver-Canada, 2006.

[8] H. Bustince, P. Burilo, and F. Soria. Automorphism, ne-

gations and implication operators. Fuzzy Sets and Systems,

134:209–229, 2003.

[9] R. Callejas-Bedregal and B. Bedregal. Intervals as a do-

main constructor. TEMA, 2(1):43 – 52, 2001. (Available at

http://www.sbmac.org.br/tema).

[10] G. Cornelis, G. Deschrijver, and E. Kerre. Implication in in-

tuitionistic fuzzy and interval-valued fuzzy set theory: cons-

truction, classification, application. Intl. Journal Approxi-
mate Reason., 35:55–95, 2004.

[11] G. Deschrijver and E. Kerre. Implicators based on binary

aggregation operators in interval-valued fuzzy set theory.

Fuzzy Sets and Systems, 153(2):229–248, 2005.
[12] D. Dubois and H. Prade. Fuzzy Sets and Systems. Academic

Press, New York, 1996.
[13] D. Dubois and H. Prade. Interval-valued fuzzy sets, possibi-

lity theory and imprecise probability. In Proc. Intl. Conf.
Fuzzy Logic and Technology, pages 314–319, Barcelona,

2005.
[14] J. Fodor. On fuzzy implication operators. Fuzzy Sets and

Systems, 42:293–300, 1991.
[15] J. Fodor. Contrapositive symmetry of fuzzy implications.

Fuzzy Sets and Systems, 69:141–156, 1995.
[16] J. Fodor and M. Roubens. Fuzzy Preference Modelling

and Multicriteria Decision Support. Kluwer Academic Pu-

blisher, Dordrecht, 1994.
[17] B. V. Gasse, G. Cornelis, G. Deschrijver, and E. Kerre. On

the properties of a generalized class of t-norms in interval-

valued fuzzy logics. New Mathematics and Natural Compu-
tation, 2:29–42, 2006.

[18] I. Grattan-Guiness. Fuzzy membership mapped onto interval

and many-valued quantities. Z. Math. Logik. Grundladen
Math., 22:149–160, 1975.

[19] T. Hickey, Q. Ju, and M. Emdem. Interval arithmetic:

from principles to implementation. Journal of the ACM,

48(5):1038–1068, 2001.
[20] R. Horcik and M. Navara. Validation sets in fuzzy logics.

Kybernetika, 38(2):319–326, 2002.
[21] K. Jahn. Intervall-wertige mengen. Math. Nach., 68:115–

132, 1975.
[22] E. Klement, R. Mesiar, and E. Pap. Triangular Norms.

Kluwer Academic Publisher, Dordrecht, 2000.
[23] G. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logics: Theory

and Applications. Prentice Hall, Upper Saddle River, 1995.
[24] J. Leski. ε-insensitive learning techniques for approximate

reasoning system. Int. Jour. of Computational Cognition,

1(1):21–77, 2003.
[25] W. Lodwick. Preface. Reliable Computing, 10(4):247–248,

2004.
[26] R. Moore. Methods and Applications of Interval Analysis.

SIAM, Philadelphia, 1979.
[27] R. Moore and W. Lodwick. Interval analysis and fuzzy set

theory. Fuzzy Sets and Systems, 135(1):5–9, 2003.
[28] H. Nguyen, V. Kreinovich, and Q. Zuo. Interval-valued de-

grees of belief: applications of interval computations to ex-

pert systems and intelligent control. Intl. Journal of Uncer-
tainty, Fuzziness, and Knowledge-Based Systems, 5(3):317–

358, 1997.
[29] H. Nguyen and E. Walker. A First Course in Fuzzy Logic.

Chapman & Hall/CRC, Boca Raton, 1999.
[30] D. Ruan and E. Kerre. Fuzzy implication operators and ge-

neralized fuzzy methods of cases. Fuzzy Sets and Systems,

54:23–37, 1993.
[31] R. Sambuc. Fonctions φ-floues. Application l’aide au diag-

nostic en pathologie thyroidienne. PhD thesis, Univ. Mar-

seille, Marseille, 1975.

[32] R. Santiago, B. Bedregal, and B. Acióly. Formal aspects of

correctness and optimality in interval computations. Formal
Aspects of Computing, 18(2):231–243, 2006.

[33] I. Turksen. Interval valued fuzzy sets based on normal

forms. Fuzzy Sets and Systems, 20:191–210, 1986.
[34] R. Yager. On the implication operator in fuzzy logic. Infor-

mation Sciences, 31:141–164, 1983.
[35] R. Yager. On global requirements for implication operators

in fuzzy modus ponens. Fuzzy Sets and Systems, 106:3–10,

1999.
[36] R. Yager. On some new classes of implication operators and

their role in approximate reasoning. Information Sciences,

167:193–216, 2004.
[37] Y. Yam, M. Mukaidono, and V. Kreinovich. Beyond [0,1] to

intervals and further: Do we need all new fuzzy values? In

Proc. 8th Intl. Fuzzy Systems Assoc. World Congress, pages

143–146, Taipei, 1999.
[38] L. A. Zadeh. Fuzzy sets. Information and Control, pages

338–353, 1965.
[39] L. A. Zadeh. The concept of a linguistic variable and its ap-

plication to approximate reasoning - I. Information Sciences,

6:199–249, 1975.

Interval Analysis of Linear Analog Circuits

Alexander Dreyer
Fraunhofer Institute for Industrial Mathematics (ITWM)

Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
alexander.dreyer@itwm.fraunhofer.de

Abstract

Reliable methods for the analysis of tolerance-affected
analog circuits are of great importance in nowadays micro-
electronics. It is impossible to produce circuits with exactly
those parameter specifications proposed in the design pro-
cess. Interval arithmetic can be used to obtain a worst-case
analysis of the influence of component tolerances.

This paper focuses on a new approach for interval-valued
frequency-response analysis of linear analog circuits, which
consist of current and voltage sources as well as resistors,
capacitances, inductances, and all variants of controlled
sources. Part and parcel of this strategy is the handling of
fill-in patterns for those parameters related to uncertain com-
ponents. Such systems can efficiently be solved by successive
application of the Sherman-Morrison formula. The approach
is also extended to complex-valued systems from frequency-
domain analysis of linear circuits. Crude bounds can be ob-
tained by treating real and imaginary part as different vari-
ables. The latter is improved by considering the correlations
in order to obtain tighter enclosures of the solution.

1 Motivation

Numerical simulations of analog circuits can be used to

analyze a circuit’s behaviour without the need for a physi-

cal implementation. But actual circuit properties may differ

from the results obtained by floating-point simulations, due

to errors caused by rounding, component tolerances, and sim-

plified models. Simulations based on interval arithmetic can

be used as a unified framework to bound all these errors, but

tend to be too conservative.

In this paper a new approach for computing tight bounds

for a worst-case analysis of tolerance-affected analog circuits

is introduced. In this area, component tolerances result from

the fact, that the desired properties cannot be met exactly

during manufacturing of the actual circuit. For this purpose

mathematical methods will be described, which are tuned es-

pecially to handle systems arising from linear analog circuits.

This includes an approach, which is capable of computing

tight bounds to a frequency-response analysis with respect to

variations due to a large number of tolerance-affected compo-

nents. Finally, the results are illustrated by giving an example

application.

2 Worst-case Analysis and Intervals

Conventional methods for the worst-case analysis of

tolerance-affected parameters include sampling and the

Monte Carlo method. In the sampling method, the range of

the behavior of the circuit is approximated by solving the cir-

cuit equations for a finite number of points in each parameter

interval.

The Monte Carlo approach is a statistical method, which

has the ability to simulate the real production process. The

generation of random numbers with respect to given prob-

ability distribution of the parameters can be used to gener-

ate a sufficiently large number of parameter sets. This re-

sults in a large number of simulations, which can be used to

measure the circuit performance spread and to characterize

the response statistically [11]. Using a uniform distribution

of the component tolerances, worst-case results can be esti-

mated with this method.

Alternatively, upper and lower bounds for the uncertain

parameters can be interpreted as the endpoints x, x of a

closed interval [x, x] ⊆ R, such that interval arithmetic is

applicable (e. g. see [6, 8]). During computation of a desired

result any expression is constructed by subsequent calls of bi-

nary operations and basic functions. For each of which, outer

bounds to the range can be computed by exploiting the re-

spective monotonic or piecewise monotonic properties. Con-

servative approximations for more complex expressions can

be evaluated by combination of these elementary functions.

Following, an interval-valued magnitude is denoted by [x];
a vector of intervals – or box – is consequently written as [x],
while [R] is the set of intervals over the reals.

3 Fill-in Patterns of Linear Circuits

In the case of linear analog circuits with uncertain param-

eters Kirchhoff’s laws and element relations are summarized

in a matrix equation of the following form:

A(p) · x = b , (1)

where x denotes the vector of internal currents and voltages,

and p = (p1, . . . , pnp) corresponds to tolerance-affected

components, which are bounded by intervals [pi]. Solving

such an interval equation system means determining close

bounds to the smallest box [x∗] with

[x∗] ⊇
{

(A(p))−1 · b
∣∣∣ pi ∈ [pi]

}
. (2)

Note that uncertain values of independent current and voltage

sources can also be modeled as interval-valued parameters

on the right-hand side b. These kind of parameters can be

moved to the matrix by the cost of introducing new rows and

columns.

Earlier efforts for solving interval-valued linear circuit

equations, were already capable of computing outer bounds

to [x∗], for instance see [9], but also [10] and [14]. But

these did not utilize the special matrix structure arising from

the analysis of analog circuits. Therefore, a new approach

was developed, which obeys this additional information.

First of all we will assume that the parameter dependence

of A(p) can be written as a sequence of rank-one updates of

a parameter-independent matrix A0 ∈ R
n×n:

A(p) = A0 +
np∑
i=1

pi · (ui · vT

i) , (3)

with ui,vi ∈ R
n, and A(p) is invertible for all p ∈ [p].

This is not a restriction at all, because this structure is al-

ready inherent to a linear circuit. Using the sparse tableau
formulation (STA) [15] to generate the linear circuit equa-

tions, each pi will occur only once and ui,vi are just unit

vectors, which define the corresponding matrix element. In

the case of modified nodal analysis (MNA) [15] the matri-

ces pi · (ui ·vT
i) correspond to the well-known fill-in patterns

used during equation setup.

4 Mathematical Methods

In this section, a method for treating uncertain linear cir-

cuit elements is proposed. As seen in Section 3, for most

common formulations for circuit equations result in linear

systems in fill-in pattern form of Equation 2. It has already

been pointed out independently by Dreyer [1] and Ganesan

et al. [5], that this form emits useful monotonicity prop-

erty. Furthermore, it can be utilized for efficient solving of

interval-valued circuit equations [2], see also [3] for more

details and proofs.

4.1 Methods for Resistive Circuits

The Sherman-Morrison formula can be used to calculate

the inverse of a perturbed matrix. Under certain conditions

repeated inversions can be avoided by reusing the original

inverse.

Theorem 4.1 (Sherman-Morrison) Let A ∈ R
n×n be in-

vertible and u,v ∈ R
n. Then the matrix A + u · vT is

invertible if and only if 1 + vTA−1u �= 0. In this case we
have:

(A + u · vT)−1 = A−1− 1
1 + vTA−1u

A−1uvTA−1 . (4)

Equation 4 has already been used in the field of ana-

log circuits analysis for calculating the influence of a sin-

gle matrix entry to the solution [7, 16]. It can immediately

be used to analyze the pertubations of A(p)−1b with re-

spect to a single uncertain parameter p, which may vary in

the interval [p, p]. The corresponding fill-in pattern can then

be written as A(p) = A(p0) + (p − p0) · uvT for a de-

sired p0 ∈ [p, p]. If the matrix A(p) is invertible for all p
in range, the conditions for Equation 4 are perfectly met.

Hence, for all p ∈ [p, p], we have

A(p)−1b = A−1
0 b − f(p)A(p0)−1uvTA(p0)−1 b , (5)

with f(p) =
p − p0

1 + (p − p0) · vTA(p0)−1u
, (6)

whereas the latter has valuable properties. If its denominator

is nonzero, then f(p) is continuous. Moreover, for p �= p0,

it becomes 1/
(
1/(p − p0) + vTA(p0)−1u

)
, which is clearly

monotonically increasing. Due to continuity, this also holds

for p = p0, and hence the components of the vector A(p)−1b
are monotonic in p.

If regularity of A(p) can be established for multi-

valued p ∈ [p], monotonicity of A(p)−1b with re-

spect to all components of p can be proved by ap-

plying the Sherman-Morrison formula for each param-

eter independently, while the remaining ones are kept

fixed. Then the interval-solution [x∗] is the smallest

box containing A(c)−1b for all corner points c of the

box [p], where corners ([x1, x1], . . . , [xm, xm]) is defined

as {(c1, . . . , cm) | ci = xi or ci = xi }. In addition, the fol-

lowing theorem shows, that A(p)−1b can be bounded more

tightly by a convex set.

Theorem 4.2 (Convex-hull theorem for fill-in patterns)
Let [p] ∈ [R]np , and let A(p) = A0 +

∑np

i=1 pi · (ui · vT
i)

with ui,vi ∈ R
n be invertible for all p ∈ [p].

Then A(p)−1 · b lies in a convex set, corre-
sponding to corners of [p], in particular its convex
hull conv

{
A(p)−1 · b ∣∣p ∈ [p]

}
equals

conv
{
A(c)−1 · b ∣∣ c ∈ corners ([p])

}
.

Proof: Following, we will denote xc := A(c)−1 · b.

One only has to show, that for a given p ∈ [p], the vec-

tor x0 := A(p)−1 · b is a convex-combination of the ele-

ments of {xc | c ∈ corners ([p]) }. We shall prove that the

system of linear equations∑
c∈corners([p])

λc xc = x0 ,
∑

c∈corners([p])

λc = 1 (7)

has a non-negative solution (λc)c∈corners([p]). By Farkas’s

Lemma [13] it is sufficient to show the following: for

each q ∈ R
n, and q0 ∈ R, where qT · xc + q0 ≥ 0 holds

for all corners c, the scalar value qT · x0 + q0 must be non-

negative.

Assume now, q and q0 could be chosen in such a way

that qT · xc + q0 ≥ 0, for all c ∈ corners ([p]) . Analo-

gously to the case of Equation 5, the monotonicity argument

shows, that qT · x0 is bounded by the smallest interval con-

taining all {qT · xc | c ∈ corners ([p]) }. Therefore, there ex-

ists a vector c ∈ corners ([p]) with qT · xc ≤ qT · x0, and

hence qT · x0 + q0 ≥ qT · xc + q0 ≥ 0 yields the desired re-

lation. �

Note, that application of Theorem 4.2 is only possible, if

regularity of A(p) can be established for all p ∈ [p]. For this

purpose it sufficies again to look at the box corners:

Lemma 4.3 (Regularity test) Let ui,vi ∈ R
n, and the ma-

trix A0 ∈ R
n×n be invertible. Furthermore, let [p] ∈ [R]np .

Then

A(p) = A0 +
np∑
i=1

pi · (ui · vT

i) (8)

is invertible for all p ∈ [p], if and only if sign(detA(c)) is
non-zero and constant for all c ∈ corners ([p]) .

Proof: First, only a single parameter p with pattern uvT is

considered. Examining the equivalent matrix products(
1 0

pu A0 + puvT

)
·
(

1 −vT

0 1

)
=

(
1 −vT

0 A0

)
·
(

1 + pvTA−1
0 u 0

A−1
0 pu 1

) (9)

one concludes, that the determinant of both sides yields

det (A0 + puvT) · 1 = detA0 ·
(
1 + pvTA−1

0 u
)

. (10)

Hence, it follows for the case of multiple parameters,

that detA(p) is continuous and monotonic in each param-

eter pi for all i. Therefore, a sign change of the determinant

at the corner points can only occur if and only if it is zero

somewhere in [p]. �

Combining this fact with the previous theorem yields Al-

gorithm 1, which processes 2np linear systems in order to

treat all corners. The advantage of this procedure is, that

it does not need interval computations. Of course, inter-

val arithmetic can be used to bound rounding errors. In the

case that these do not have to be tracked, existing numerical

solvers, like those of analog circuit simulators [4, 12], can be

utilized for tolerance analysis.

Algorithm 1 Real-valued linear system solver

Input: A(p) ∈ R
n×n, b ∈ R

n, and [p] ∈ [R]np

(in the form of Theorem 4.2)

Output: S = {x1, . . . ,x2np} s. th. A(p)−1 b ∈ conv(S),
for all p ∈ [p]

select q ∈ [p]
set s := sign(detA(q))
if s = 0 then

return failed

set S := ∅
for c ∈ corners ([p]) do

if sign(detA(c)) �= s then
return failed

else
replace S := S ∪ {A(c)−1 · b}

return S

As example, we consider a simple voltage divider circuit

whose circuit equations can be written as follows⎛
⎝ 1

R1
− 1

R1
1

− 1
R1

1
R1

+ 1
R2

0
1 0 0

⎞
⎠ ·

⎛
⎝ V1

V2

IV0

⎞
⎠ =

⎛
⎝ 0

0
V0

⎞
⎠, (11)

for fixed V0 = 1 V and uncertain R1/1 Ω ∈ [9, 11],
and R2/1 Ω ∈ [90, 110]. Since there is a one-to-one cor-

respondence between the endpoints of Ri and 1/Ri, one can

immediately apply Algorithm 1 to the system.

Hence, the convex set can be obtained by solving

equations for four corner points. Intervals bounding the

range of currents and voltages can easily be obtained by

component-wise computing minimum and maximum values:

this yields V1 = 1 V, as well as V2/1 V ∈ [0.891, 0.925]
and IV0/1 mA ∈ [−10.1,−8.27] for the remaining quanti-

ties.

The approach described above is suitable for small param-

eter numbers np only, because the interval-valued problem is

put down to the solution of 2np real-valued linear systems.

In order to treat a large number of parameters, we use a kind

of intervalization of the Sherman-Morrison formula to ob-

tain a less accurate, but faster algorithm. In the case of a

single uncertain parameter an interval-valued version of the

Sherman-Morrison formula can be formulated.

Theorem 4.4 (Interval-valued Sherman-Morrison)
Let A(p) = A0 + p · uvT ∈ R

n×n with u,v ∈ R
n,

and [p] ∈ [R]. Let the matrix A(p0) be invertible for
some p0 ∈ [p]. Then the matrix A(p) is invertible for
all p ∈ [p] if and only if

d([p]) = 1 + ([p] − p0) · (vTA(p0)−1u) �
 0 . (12)

In this case, one can calculate for right-hand side b ∈ R
n

the solution [x∗] = (A0 + [p] · uvT)−1 b as

[x∗] = A(p0)−1b − [m] · (A(p0)−1uvTA(p0)−1b
)

(13)

with [m] = [f(min[p], f(max[p])], where f(p) is defined
as f(p) = (p − p0) /

(
1 + (p − p0) · vTA(p0)−1u

)
.

Proof: Since the condition for the application of Equation 5

is fulfilled by Equation 12 the solution A(p)−1b is in the

form of Equation 13. The endpoints of [m] follows from the

fact, that f(p) is monotonically increasing. �

For illustration, the voltage divider from above is treated

again, using fixed R2 = 100Ω. Hence, we have⎛
⎝ 1

R1
− 1

R1
1

− 1
R1

1
R1

+ 0.01 0
1 0 0

⎞
⎠ ·

⎛
⎝ V1

V2

IV0

⎞
⎠ =

⎛
⎝ 0

0
1

⎞
⎠, (14)

interpreting
1

R1
as parameter with p ≡ 1 Ω

R1
, which lies

in [p, p] = 1/[9, 11] = [0.0909, 0.1112], the fill-in pattern

and the matrix A0 with respect to p0 = 0.1 are given by

u =

⎛
⎝ 1

−1
0

⎞
⎠, v =

⎛
⎝ 1

−1
0

⎞
⎠, A0 =

⎛
⎝ 0.1 −0.1 1

−0.1 0.11 0
1 0 0

⎞
⎠

One immediately computes

A−1
0 b =

⎛
⎝ 1

0.909
−0.009

⎞
⎠, A−1

0 u =

⎛
⎝ 1
−9.0909

0.0909

⎞
⎠,

and vTA−1
0 u = 9.0909. The system is invertible for all p,

because d([p, p]) = [0.917, 1.102] does not include zero.

Hence, the factor [m] = [−0.0099, 0.0101] may be calcu-

lated. Using Equation 13 we get tight bounds to the solution:

for the voltages V1 = 1V, as well as V2/1 V ∈ [0.900, 0.918]
and the current IV0/1 mA ∈ [−9.2,−9.0] .

Reintroducing the second uncertain parameter 1
R2

from

the example, one can clearly set q ≡ 1 Ω
R2

in the inter-

val [q] = [0.009, 0.012], q0 = 0.01 with fill-in pattern y · zT,

where both vectors y and z equal the second unit vector. For

tracking the variations of (A0 + p · uvT + q · yzT)−1 b due

to both p and q the interval-valued Sherman-Morrison for-

mula may be applied a second time, now assuming A(p) to

be the fixed matrix. But for this purpose one cannot continue

to use a real-valued matrix A0, instead one has to bound all

possible matrices A(p) = A0 + p · uvT in range.

One also has to bound A(p)−1y for all p in range,

which can be done in the same way as calculating A(p)−1b
above as A([p])−1y = (0, [8.181, 10], [0.891, 0.9244])T

.

Analogously, the value given in Equation 12 is equal

to 1 + ([q] − q0) · (zTA([p])−1y) = [0.990, 1.012].
Like in the one-dimensional case, one can compute

the value (q − q0) · (1 + (q − q0) · zTA([p])−1y)−1
and

also (q − q0) · (1 + (q − q0) · zTA([p])−1y)−1
. The smallest

interval containing both forms [m̃] = [−0.00092, 0.0012],
the factor which is needed for calculating the final solu-

tion A([p])−1b − [m̃] · (
A([p])−1y

) · (
zTA([p])−1b

)
. It

leads to V1 ≈ 1 V, and the ranges V2/1 V ∈ [0.8908, 0.926]
and IV0/1 mA ∈ [−10.2,−8.24] . These are slightly larger

than the intervals obtained above. The reason for this is,

that the parameter interval [p] occurs more than once dur-

ing the evaluation procedure, because A([p])−1b as well

as A([p])−1y depend on it.

This approach is extented to np parameters in Algo-

rithm 2. The number of evaluations of Formula 13 is of

order O(n2
p). Hence, it is suited to problems with a lot of

parameters, which is an advantage over Algorithm 1. But the

lower complexity is payed back by reduced accuracy, because

interdependencies are not removed completely.

Algorithm 2 Quick real-valued linear system solver

Input: A(p1, . . . , pnp) = A0 +
∑np

i=1 pi · (ui·vT
i) ∈ R

n×n,

b ∈ R
n, and

(
[pi], . . . , [pnp]

) ∈ [R]np

Output: [x] ⊇ {
A(p1, . . . , pnp)−1 b

∣∣ pi ∈ [pi] for all i
}

for i := 1, . . . , np do
select qi ∈ [pi]
set [p̃i] = [pi] − qi

if detA(q1, . . . , qnp) = 0 then
return failed

set S := {[1, 1] · A(q1, . . . , qnp)−1 · ui | i = 1, . . . , np }
set [x] := [1, 1] · A(q1, . . . , qnp)−1 · b
for [u] ∈ S do

replace S := S \ {[u]}
/* Regularity test */
if 1 + [p̃i] · (vT

i · [u]) �
 0 then
set m := min[p̃i]/ (1 + min[p̃i] · maxvT

i · [u])
set m := max[p̃i]/ (1 + max[p̃i] · minvT

i · [u])
replace S := {[s] − [m,m]·[u]·(vT

i ·[s]) | [s] ∈ S }
replace [x] := [x] − [m,m]·[u]·(vT

i ·[x])
else

return failed

return [x]

4.2 Frequency-response Analysis

The small-signal analysis of analog circuits can be

achieved by solving of complex-valued linear systems. The

matrix also emerges from superposition of fill-in patterns,

which can be defined via real vectors, but instead of real-

valued parameters like resistances or conductances, the pa-

rameters are typically of the form C · s (capacitance)

or 1
L·s (inductance), for a complex-valued Laplace fre-

quency s = 2π i f , and uncertain values C resp. L.

For a fixed frequency f this results in a linear complex-

valued system C · y = d, with C ∈ C
n×n , d ∈ C

n

and variables y ∈ C
n. In order to apply the (real) inter-

val techniques from above it is necessary to reformulate the

complex-valued equation system by the equivalent real rep-

resentation A · x = b with

A =
(

ReC −ImC
ImC ReC

)
, x =

(
Rey
Imy

)
, b =

(
Red
Imd

)
.

In the real representation, matrix elements corresponding to

the same parameter are spread over lower and upper parts of

the system. Hence, the structure cannot be captured with a

single fill-in pattern form only, but two of them will do.

A(p) = A0 +
np∑

ν=1

pν · (uup,ν ·vT

up,ν +ulow,ν ·vT

low,ν) (15)

The pair of vectors ulow,ν ,vlow,ν on the one hand,

and uup,ν ,vup,ν on the other, share the property, that

ulow,ν =
(

0−1

1 0

)
·uup,ν and vlow,ν =

(
0−1

1 0

)
·vup,ν . (16)

Now, the methods developed for resistive systems above can

be applied, if all occuring fill-in patterns are treated indepen-

dently. For this purpose, new parameters pup,ν , plow,ν are

introduced, such that A(p) of Equation 15 becomes

A0+
np∑

ν=1

pup,ν ·(uup,ν ·vT

up,ν)+
np∑

ν=1

plow,ν ·(ulow,ν ·vT

low,ν) .

Since, the dependency between lower and upper part of A(p)
is lost, this approach leads to an overestimation of the range

as illustrated in Figure 1.

Exploiting the structure of corresponding fill-in patterns,

can be utilized to obtain the tighter wrapping of the solution

set, shown by the dashed triangle in Figure 1. In order to

give explicit fomulae for the triangle’s corners, we first have

to show some lemmas for the case of one parameter p. In

order to simplify notation, one may assume temporarily that p
varies in the interval [0, p], which may be obtained by suitable

choice of the matrix A0 in Equation 15.

�

x1

x1/2

x2

Figure 1. Parameter variance. Real represen-
tation (quadrangle), tight wrapping (dashed);
x1, x1/2, and x2 correspond to A(p, p)−1,
1
2 (A(p, p)−1 + A(p, p)−1), and A(p, p)−1, resp.

Lemma 4.5 Let p0 ∈ R, and let A ∈ R
2×2 be a matrix such

that A + p · 1 be invertible for all p ≥ p0 ∈ R. Furthermore,
assume that

A =
(

a −b
b a

)
.

Then there exist λ1, λ2 ≥ 0 , such that the equal-
ity (A + p · 1)−1 = λ11 + λ2 · (A + p0 · 1)−1 holds.

Proof: Since A + p · 1 is invertible, det(A + p · 1) =
(a + p)2 + b2 �= 0 . Hence, Cramer’s rule yields

(A + p · 1)−1 = 1
(a+p)2+b2 · (AT + p · 1) =

1
(a+p)2+b2 (AT + p0 · 1 + (p − p0) · 1) =

(a+p0)
2+b2

(a+p)2+b2 · (A + p0 · 1)−1 + p−p0
(a+p)2+b2 · 1 .

Positivity of the squares and p ≥ p0 concludes the proof. �

This auxiliary result is used to prove the next lemma.

Lemma 4.6 Let A ∈ R
2n×2n be invertible, U,V ∈ R

2×2n

and also let 0 ≤ p0 ∈ R such that A + p ·UVT is invertible
for all 0 ≤ p ≤ p0. Furthermore, assume that both A,U,
and V are of the form(

A1 −A2

A2 A1

)
,

(
u1 −u2

u2 u1

)
, and

(
v1 −v2

v2 v1

)
,

respectively, for Ai ∈ R
n×n, and ui,vi ∈ R

n. Then there
exist λ1, λ2 ≥ 0 such that

(A + p · UVT)−1 =

A−1 − λ1A−1UVTA−1

− λ2 ·
(
A−1 − (A + p0 · UVT)−1

)
.

(17)

Proof: One may assume, that p, p0 are strictly positive. The

Sherman-Morrison-Woodbury theorem – a generalization of

Theorem 4.1 – proves that (A + p · UVT)−1
is

A−1 − A−1U
(
p−11 + VTA−1U

)−1
VTA−1. (18)

For the matrix VTA−1U, and 1/p ≥ 1/p0 Lemma 4.5 shows

that there exist λ1, λ2 ≥ 0 with(
p−11 + VTA−1U

)−1
= λ11+λ2 ·

(
p−1
0 1 + VTA−1U

)−1
,

which can be applied to Equation 18. We obtain

(A + p · UVT)−1 =

A−1 − λ1A−1UVTA−1

− λ2A−1U
(
p−1
0 1 + VTA−1U

)−1
VTA−1 ,

(19)

that equals Equation 17 again by Sherman-Morrison-

Woodbury. �

Lemma 4.7 Let ulow,vlow,uup,vup ∈ R
2 n be vectors,

such that Equation 16 holds. Furthermore, let A0 ∈ R
2 n×2 n

be an invertible matrix arising from a real representation.
If at least one of A0 + p ·ulow ·vT

low or A0 + p ·uup ·vT
up

is invertible for p ≥ 0, then there exist λ ∈ R such that

(A0 + pulowvT

low)−1 +
(
A0 + puupv

T
up

)−1 =

2 · (A−1
0 − λA−1

0

(
ulowvT

low + uupv
T
up

)
A−1

0

) (20)

In case that the regularity can be established for all val-
ues p ∈ [0, p] with p > 0, then λ is strictly positive.

Proof: First, note that the condition of Equation 16 imme-

diately yields vT

lowA−1
0 ulow = vT

upA
−1
0 uup. Using

λ =
1
2

p

1 + pvT

lowA−1
0 ulow

=
1
2

p

1 + pvT
upA

−1
0 uup

(21)

Equation 20 follows from application of Sherman-Morrison

to each summand of the left-hand side. The positivity of λ is

a consequence of the fact that the denominator must not be

zero, but it contains 1. �

Under these conditions, one can reformulate Theorem 4.2

for the complex-valued case.

Theorem 4.8 Let ulow,vlow,uup,vup ∈ R
2 n be vectors,

such that the conditions of Equation 16 hold. Furthermore,
let A0 ∈ R

2 n×2 n be a matrix arising from a real represen-
tation.

If A(plow, pup) = A0 +plow ·ulow ·vT

low +pup ·uup ·vT
up

is invertible for all plow ∈ [p, p] and pup ∈ [p, p], then the
inverse A(p, p)−1 varies in

conv
(
A(p, p)−1,A(p, p)−1,

1
2

(
A(p, p)−1+A(p, p)−1

))
.

Proof: First of all, note that A(plow, pup) is still a matrix

arising from a real representation, which is of the form(
A1 −A2

A2 A1

)
, for suitable matrices A1,A2 ∈ R

n×n.

Again, one may assume that p = 0 and p > 0. For abbre-

viation define matrices A1/2 = 1
2

(
A(p, p)−1+A(p, p)−1

)
as well as A(p)−1 = A(p, p)−1. Since one can always

find U and V fitting into the conditions of Lemma 4.6, such

that UVT equals ulowvT

low+uupv
T
up, that lemma can be com-

bined with Lemma 4.7. Hence, there exist λ1, λ2 ≥ 0 such

that A(p)−1 equals

A−1
0 + λ1

(
A−1

1/2 − A−1
0

)
+ λ2

(
A(p)−1 − A−1

0

)
. (22)

On the other hand, one can swap A(p) and A0 and replace p
by p − p. Thus, there are non-negative μ1, μ2, which can be

used to construct A(p)−1 alternatively as

A(p)−1=A(p)−1 + μ1

(
A−1

1/2 − A(p)−1
)

+

μ2

(
A−1

0 − A(p)−1
)
.

(23)

Inspecting linear combinations of Equation 22 and 23 shows

that A(p)−1 lies in the desired convex set. �

One can immediately generalize Theorem 4.8 for the

case of several parameters. For illustration consider the

real representation A(p1, p2, p1, p2) of a complex-valued

linear matrix in fill-in pattern form, which is depending

on p1 ∈ [p
1
, p1] and p2 ∈ [p

2
, p2]. Assuming invertibil-

ity A(p1, p2, p1, p2)−1 · b lies in conv(x1, x2, x1/2) with

x1 = A(p
1
, p2, p1

, p2)−1 · b
x2 = A(p1, p2, p1, p2)−1 · b

x1/2 =
1
2

(
A(p

1
, p2, p1, p2)−1+A(p1, p2, p1

, p2)−1
)
b.

Invoking the procedures again with respect to p2 for each vec-

tor x ∈ {x1,x2,x 1
2
} , we obtain nine points, which form up

the convex set containing A(p1, p2, p1, p2)−1 ·b. The general

case is illustrated in Algorithm 3.

For instance, the algorithm is exemplified by analyzing

AC equations for a serial circuit. It has the same topological

structure as the simple voltage divider, but one of the resistors

is replaced by a capacitor. The same is true for the equations,⎛
⎝ 1

R1
− 1

R1
1

− 1
R1

1
R1

+ C1 s 0
1 0 0

⎞
⎠ ·

⎛
⎝ V1

V2

IV0

⎞
⎠ =

⎛
⎝ 0

0
V0

⎞
⎠, (24)

which is to be treated for a constant frequency of 1000 Hz,

such that we have complex-valued s = 2 π i · 1000 s−1 with

an exact independent voltage source of V0 = 1 V, and two

Algorithm 3 Complex-valued linear systems solver

Input: A(p,p) ∈ R
2n×2n, real representation, b ∈ R

2n,

and [p] ∈ [R]np

Output: R = {x1, . . . ,x3np}
such that A(p,p)−1b ∈ conv(R), for all p ∈ [p]

select p0 ∈ [p]
set s := sign(detA(p0,p0))
if s = 0 then

return failed

/* Initialize matching sets */
set S[p] := {{(p

1
, p

1
)}, {(p1, p1

)}, {(p
1
, p1), (p1, p1

)}}
for i = 2, . . . , np do

set T := ∅
for S ∈ S[p] do

T :=T∪
{
{(p, p

i
,q, p

i
)}, {(p, pi,q, pi)}

∣∣∣(p,q)∈S
}

T := T ∪
{⋃

(p,q)∈S

{
(p, p

i
,q, pi), (p, pi,q, p

i
)
}}

replace S[p] := T
/* Start computations */
set R := ∅
for S ∈ S[p] do

set T := ∅
for (p,q) ∈ S do
/* Regularity test */
if detA(p,q) �= s then

return failed

else
set T := T ∪ {(A(p,q))−1 · b}

replace R := R ∪ { 1
#(T) ·

∑
x∈T x}

return R

tolerance-affected parameters given as C1/1 μF ∈ [0.8, 1.2]
and R1/1 Ω ∈ [80, 120]. For analyzing the range using Al-

gorithm 3, 16 linear systems have to be solved. The results

can be used to make up the nine points defining the convex

set (Figure 2). The smallest rectangle in the complex plane

containing all possible values of the current IV0 is obtained

by computing the interval hull of real and imaginary parts of

all points as IV0/1 mA ∈ [−3.75,−1.74]+ i [−5.52,−3.69].

-0.001-0.002-0.003

-0.005

-0.004

-0.003

-0.002

-0.001�

Figure 2. Range of the solution IV0 .

Absolute and phase values can be estimated from the cor-

ners as |IV0 | /1 mA ∈ [4.3, 6.5], and ϕ/1◦ ∈ [−132,−112].
This is an approximation, which gives sufficiently accurate

bounds for practical applications (see also [9, Section 3.3.2]).

Lower and upper bounds obtained from Algorithm 3 for the

frequency response with respect to frequencies from 1 Hz up

to 1 MHz can be found in Figure 3 (solid lines).

1.0E0 1.0E1 1.0E2 1.0E3 1.0E4 1.0E5 1.0E6
Frequency�Hz�

0

0.002

0.004

0.006

0.008

0.01

0.012

M
a
g
n
i
t
u
d
e
�
A
�

1.0E0 1.0E1 1.0E2 1.0E3 1.0E4 1.0E5 1.0E6
Frequency�Hz�

-180

-160

-140

-120

-100
P
h
a
s
e
�
°
�

Figure 3. Outer bounds to absolute and phase
value of of current IV0 , obtained using Algo-
rithm 3 (solid), faster variant (dashed).

Like in the real-valued case, the accurate approach of Al-

gorithm 3 is not the method of choice for practical problems.

For avoiding too conservative bounds, a combination with the

ideas of Algorithm 2 is suitable.

For bounding of A(p, p)−1b for all p ∈ [p, p]
the points A(p, p)−1b , A(p, p)−1b , A(p, p)−1b,

and A(p, p)−1b are needed by Theorem 4.8. Starting

at (p, p), an initial solution A(p, p)−1b can be computed by

plain linear system solving.

In this case 1 + (p − p) · uT
up A(p, p)−1 uup > 0 means

that 1 + ([p, p] − p) · uT
up A(p, p)−1 uup cannot contain

zero. Then Theorem 4.4 implies that A(p, p) is invertible

for all p. Hence, the next point – namely A(p, p)−1b – can

be calculated using the Sherman-Morrison formula of Equa-

tion 4. Analogously, the vector A(p, p) is obtained, and fi-

nally A(p, p) may be generated by a second application of

Sherman-Morrison, like in the case of a real-valued system

with two parameters.

More than one parameter can be treated, if the sets of real-

valued vectors are replaced by the smallest interval-vector

containing all points after each step. Therefore, from the sec-

ond step on, all computations are done using interval arith-

metic. Like in Algorithm 2 several auxiliary results have to

be updated accordingly. Again the loss of accuracy due to

wrapping intermediate results by interval vectors pays off by

reducing the computational complexity to n2
p.

Back to the serial circuit example, we can now ap-

ply this procedure to Equation 24 for the same data as

above, i. e. for constant frequency of 1000 Hz, such that we

have s = 2 π i · 1000 s−1, with exact independent voltage

source of V0 = 1V, and two tolerance-affected parame-

ters C1/1 μF ∈ [0.8, 1.2] and R1/1 Ω ∈ [80, 120] . Again,

we have to deal with a reciprocal parameter 1
R1

, whose range

is then the interval [0.0083, 0.0125] . Since we deal with con-

stant frequency, we can interprete C1 s/i as new parameter

varying in [0.8 10−6, 1.2 10−6]·2 π 1000 = [0.0050, 0.0076].
The algorithm yields bounds (in units of 1 mA) for the cur-

rent IV0 ∈ [−4.26,−1.74] + i [−5.55,−3.69], which prop-

erly includes [−3.75,−1.74] + i [−5.52,−3.69], the rectan-

gle computed using Algorithm 2.

The response for the frequencies from 1 Hz up to 1 MHz
is compared to the results from Algorithm 3 in Figure 3. The

curves denoting lower and upper bounds for both computa-

tions, respectively, indicate similar qualitative behavior. Al-

though the results obtained using the faster variant are less

accurate, they allow to draw conclusions about the perfor-

mance of the circuit.

5 Real-world Example Application

Following, the ability to treat real-world examples is

demonstrated. A prototype implementation was done as an

extension to the toolbox Analog Insydes [4], an add-on pack-

age to the computer algebra system Mathematica [17], for

modeling, analysis, and design of analog circuits. The oper-

ational amplifier μA741, whose schematics is illustrated in

Figure 4, is considered as application. The small-signal be-

havior of its transistors is modeled by the simplified equiv-

Q1
Q2

Q3 Q4

Q5 Q6

Q7

Q8

R1 R2R3

Q9

Q10
Q11

R4

Q12

Q131

Q132

R5

Q14
Q15

Q16
Q17

R6

R7

R8R9

R10

R11

R12

Q18 Q19

Q20

Q21

Q24
Q23

C1

Q222Q221

�

�

V1

�

�

V2

�

�
Vid

��

Vos

R13

� �

Vic

V

Figure 4. Operational amplifier μA741.

CbeRpi

C

E

B

CbcCbx

Ro

gm�vpivpi

Figure 5. Simplified small-signal equivalent
schematics for a bipolar-junction transistor.

alent circuit of Figure 5, which consists of resistors, capaci-

tors, and controlled sources. The method developed in Sec-

tion 4.2 is compared to Kolev’s method M1 [10]: the solu-

tion [x∗] of frequency-response problem with real represen-

tation of the form

A(p) ·x = b with A(p1, . . . , pnp) = A0 +
np∑
i=1

pi Ai (25)

can be bounded as [x∗] ⊆ x0 + [−1, 1] · y∗, with center

vector x0 = A(p0)−1b, where p0 is the center of [p]. The

vector y∗ is the solution of(
1 − ∣∣A(p0)−1

∣∣ · R) · y =
∣∣A(p0)−1 · Ap

∣∣ · r[p] (26)

where r[p], whose components are defined as (pi − p
i
)/2

for each parameter range [p
i
, pi]. The remaining matrices

are R =
∑np

i=1 |Ai| r[p] and Ap =
(
A1 x0, . . . ,Anp x0

)
.

The method is applicable, if all components of y∗ are posi-

tive.

Both approaches are applied to the linear system given in

modified nodal formulation, which consists of 33 equations

and 33 (complex-valued) variables. Since the small-signal

behaviour is valid for constant operating point only, such cir-

cuit elements are varied, which preserve the operating point.

Hence, we assign tolerances of 30% to the capacitance val-

ues.

Using the method based on successive application of

the interval-valued Sherman-Morrison formula an interval-

valued AC analysis is performed for 40 frequency values be-

tween 1 Hz and 100 Hz in about 370 seconds on the test sys-

tem. It is slower than Kolev’s M1, which finishes on the same

framework within seven seconds. This is due to the fact, that

overall number of computations of the latter roughly corre-

sponds to those used for just initializing the first approach,

without additional loops. Moreover, interval arithmetic is not

handled efficiently in the current implementation.

The frequency response of the output voltage at node 26
is presented in Figure 6. In either case, we obtain inter-

pretable results, but the featured method leads to tighter

1 2 5 10 20 50 100
Frequency�Hz�

0

50

100

150

200

M
a
g
n
i
t
u
d
e
�
k
V
�

1 2 5 10 20 50 100
Frequency�Hz�

-80

-60

-40

-20

0

P
h
a
s
e
�
°
�

Figure 6. Frequency response bounds us-
ing the faster variant of Algorithm 3 (solid),
M1 (dashed), original design point (dotted).

bounds than M1. This is mainly due to the fact, that the over-

estimation when successively applying the interval-valued

Sherman-Morrison formula tends to be small for those tem-

porary right-hand sides arising from fill-in pattern vectors.

6 Conclusions

Serveral techniques for obtaining outer bounds to the so-

lution set of analog circuits with uncertain parameters have

been presented. They were implemented as extension for the

Mathematica-based electronic-design automation tool Ana-
log Insydes.

The exact methods, which can be used to compute the con-

vex hull of the region in question, are not of practical use,

because of their exponential computation time. If short run-

time is a crucial constraint, then Kolev’s method M1 is still

the prefered method for calculating meaningful outer bounds

for a worst-case analysis.

The newly proposed approach, which is based of suc-

cessive application of the interval-valued Sherman-Morrison

formula, may be employed in case more accurate bounds are

desired in acceptable time.

Acknowledgements

This work has been partially supported by the Rheinland-

Pfalz cluster of excellence Dependable Adaptive Systems and
Mathematical Modelling (DASMOD).

References

[1] A. Dreyer. Combination of symbolic and interval-numeric

methods for analysis of analog circuits. In Proc. 8th Inter-
national Workshop on Symbolic Methods and Applications in
Circuit Design (SMACD 2004), Wroclaw, Poland, Sept. 2004.

[2] A. Dreyer. Interval Analysis of Analog Circuits with Com-
ponent Tolerances. Shaker Verlag, Aachen, Germany, 2005.

Doctoral thesis.
[3] A. Dreyer. Interval methods for analog circuits. Tech-

nical Report 97, Berichte des Fraunhofer ITWM,

Kaiserslautern, Germany, 2006. online available at

http://www.itwm.fraunhofer.de.
[4] Fraunhofer ITWM. http://www.analog-insydes.de.

Analog Insydes website.
[5] A. Ganesan, S. R. Ross, and B. R. Barmish. An extreme point

result for convexity, concavity and monotonicity of parame-

terized linear equation solutions. Linear Algebra an its Appli-
cations, 390:61–73, Oct. 2004.

[6] E. R. Hansen. Global optimization using interval methods,

volume 165 of Monographs and textbooks in pure and applied
mathematics. Marcel Dekker, New York, 1992.

[7] E. Hennig. Symbolic Approximation and Modeling Tech-
niques for Analysis and Design of Analog Circuits. Shaker

Verlag, Aachen, Germany, 2000. Doctoral thesis.
[8] R. B. Kearfott. Rigorous Global Search: Continuous Prob-

lems, volume 13 of Nonconvex optimization and its applica-
tions. Kluwer Academic Publishers, Dordrecht, The Nether-

lands, 1996.
[9] L. V. Kolev. Interval Methods for Circuit Analysis. World

Scientific, Singapore, 1993.
[10] L. V. Kolev. Worst-case tolerance analysis of linear DC and

AC electric circuits. IEEE Transactions on Circuits and Sys-
tems, 49(12):1–9, 2002.

[11] V. Litkovski and M. Zwolinski. VLSI Circuit Simulation and
Optimization. Chapman & Hall, London, UK, 1997.

[12] MicroSim Corporation. MicroSim PSpice & Basics User’s
Guide, 1996.

[13] C. H. Papadimitriou and K. Steiglitz. Combinatorial opti-
mization: algorithms and complexity. Prentice Hall, 1982.

Papadimitriou.
[14] M. W. Tian and C.-J. R. Shi. Worst-case tolerance analysis of

linear analog circuits using sensitivity bands. IEEE Transac-
tions on Circuits and Systems I, 47, Aug. 2000.

[15] J. Vlach and K. Singhal. Computer Methods for Circuit Anal-
ysis and Design. Van Nostrand Reinhold, New York, 2nd edi-

tion, 1993.
[16] T. Wichmann. Symbolische Reduktionsverfahren für nicht-

lineare DAE-Systeme. Berichte aus der Mathematik. Shaker

Verlag, Aachen, Germany, 2004. Doctoral thesis.
[17] S. Wolfram. The Mathematica Book, volume 4. Wolfram

Media/Cambridge University Press, 4th edition, 1999.

A Reliable Convex-Hull Algorithm for Interval-Based Hierarchical Structures

Eva Dyllong
University of Duisburg-Essen
Institute of Computer Science

Lotharstrasse 65
47048 Duisburg, Germany

dyllong@inf.uni-due.de

Abstract

This paper presents a new approach for constructing the
convex polyhedral enclosure of an interval-based hierar-
chical structure of any dimension. To reduce the number
of points in the hull construction considered, only relevant
vertices on the boundary-called presumable extreme points-
are involved. Additionally, a suitable update of the presum-
able extreme points enhances the performance whenever
the maximum level of the hierarchical structure is changed.
This method utilizes interval arithmetic and combines adap-
tation of the concept of presumable extreme points to higher
dimensions with a convex-hull algorithm based on an inter-
val linear solver.

1. Introduction

Hierarchical data structures are utilized in many practi-
cal applications. In the field of solid modeling, for exam-
ple, the octree data structure provides a common technique
for reconstructing a scene. This technique relies on the use
of hierarchical structures of axis-aligned bounding boxes to
represent objects.

There are several reasons for using an octree-based ob-
ject representation. First of all, such an approach does not
depend on the nature of the real solid, which is a useful
property for objects with complex structures that are diffi-
cult to describe using exact mathematical expressions. The
adaptive enclosure of a real solid depending only on the
chosen maximum level of the tree and the efficient execu-
tion of Boolean operations are additional benefits of the hi-
erarchical structure.

On the other hand, in most simulations the applicability
of the axis-aligned octree structure to an object representa-
tion is limited. One reason for this is that, in a dynamically
changing environment, a lot of arbitrary motion transfor-

mations are needed, and in general these are computation-
ally difficult to realize for a structure based on axis-aligned
bounding boxes. Whenever an object moves, its octree-
based enclosure must be recalculated to reflect the new po-
sition of the object, or unaligned octrees must be used. The
update of an axis-aligned octree is not as straightforward as
for other object representations, such as boundary represen-
tations. On the other hand, distance computations between
two objects in a scene, which are frequently used in many
applications, become difficult and slow for unaligned oc-
trees during a simulation. For this reason, several methods
have been proposed to reduce the cost of such computa-
tions [11]. Using the convex hull of an octree allows one to
apply algorithms for computing the distance between con-
vex polyhedra and, by doing so, to speed up the computa-
tion.

As mentioned above, for moving objects it is advanta-
geous to use a polyhedral instead of spatial hierarchical
representation. However, the second representation is the
preferred underlying data structure subsequent to the recon-
struction of a scene.

In this paper, we focus on computing an adaptive and re-
liable polyhedral enclosure of an object at each level of the
tree. This approach yields as a result a polyhedral hierar-
chical representation of an object. An additional benefit of
the presented method is its applicability to any dimension
of the hierarchical data structure. It should be noted that the
resulting convex hull hierarchy is different from the bound-
ing volume hierarchy of convex hulls which was introduced
in [4] to speed up the distance calculation between complex
polyhedral models and which is based on surface convex
decomposition.

Our method is a generalization of the approach presented
in [3] which works solely for two- or three-dimensional
structures. Compared with [3], the new method does not
provide different approaches for each dimension, but a uni-
fied algorithmic framework to create a reliable interval-
based convex hull hierarchy of an n-tree in any dimension.

Moreover, by using interval-based hierarchical struc-
tures, we make sure that all object points are enclosed,
which is an important premise in the field of motion plan-
ning, particularly in regard to collision testing. The compu-
tation of convex hull of a finite set of points is a well-known
problem that was considered by several researchers [14].
Nevertheless, there are only a small number of papers re-
garding the reliability or accuracy of a convex hull construc-
tion, mostly dealing with the two-dimensional case [12].

2 Interval-Based Hierarchical Structure

Solid objects are generally three dimensional. But in
geometry they can have any number of dimensions even
though we cannot visualize objects in more than three. An
n-tree data structure is a particular tree that can store an n-
dimensional object. A common example is the quadtree, an
established structure for storing a two-dimensional object,
especially an image. Among other approaches, like bound-
ary representation or constructive solid geometry, octrees
are frequently applied to model a solid object [8].

2.1 Hierarchical Object Representation

An octree is an efficient data structure used to repre-
sent spatial data hierarchically in a tree-based structure with
eight child nodes. The idea is to subdivide a cube recur-
sively, including objects of three-dimensional space into
eight mutually disjoint voxels until the required closeness
to the object is achieved [13]. Each node is checked to see
whether it is full (black), partially empty (gray) or empty
(white) of solid material. If the nodes are empty or full, they
do not need to be subdivided in further processing. In the
case of partial emptiness, the nodes need to be subdivided to
create a higher level of the octree. The subdivision process
is repeated until all the nodes are either full or empty or un-
til the maximum resolution level has been reached. To ob-
tain an outer hierarchically structured approximation of the
object, partially occupied leaf nodes are filled. An object
representation using the octree data structure is illustrated
in Figure 1.

Similar trees can be constructed for n-dimensional ob-
jects. In such cases, any gray node has to be subdivided
into 2n children nodes that correspond to the 2n subspaces
of the space occupied by the gray one.

2.2 Interval-Based Handling of the Struc-
ture

Since explicit pointer-based octree storage is more ex-
pensive in terms of memory requirements than compact lin-
ear encoding, we use depth-first (DF-) representation of

Figure 1. An example of the octree data struc-
ture.

octrees. In this representation an octree is stored by list-
ing consecutively the octree nodes encountered when start-
ing at the root and exploring as far as possible along each
subtree before backtracking process. The symbols used
are G (gray node), B (black node), and W (white node).
Since there are only three different characters, two bits
per node are sufficient for storing the octree. The oc-
tree in Figure 1, for example, yields the DF-representation
GGBWBBBWBBBBBGBWBWWWWWWBB.

An octree node belonging to an arbitrary hierarchy level
geometrically defines an axis-aligned cube. In the case of an
axis-aligned octree, all cubes have as vertices machine num-
bers that are multiples of powers of two. But this need not
be true after a rotation. To account for rounding errors, the
vertices should be replaced by small intervals with machine
numbers, or each side of the cube should be stored as an
interval to obtain a reliable enclosure of the corresponding
object. We use intervals to describe both the space occupied
by a node of the spatial hierarchical structure and the space
occupied by a vertex of the corresponding hierarchical poly-
hedral structure. Furthermore, we use interval arithmetic to
carry out elementary operations on both structures.

Interval arithmetic is a common technique for providing
a reliable solution to many numerical problems. In interval
arithmetic numbers are replaced by intervals representing
the imprecision associated with each number. Basic arith-
metical operations, such as the sum, difference, product or
inverse of intervals, or even elementary functions, like sine,
cosine, etc., are well defined in interval arithmetic. Unfor-
tunately, the loss of dependencies between variables is an
often criticized drawback of this technique. It results in an
overestimation of intervals that increases with the number
of interval evaluations.

We reduce the problem of overestimation by isolating

the basic arithmetical expressions and implementing them
in such a way that they yield a result that is as close as it
can be to the best possible machine representation, e.g. by
converting an expression to scalar product one. Since scalar
products occur frequently and are important basic opera-
tions in many geometric computations, it is advantageous to
perform the scalar product calculation with the same preci-
sion as the basic arithmetical operations. By using the exact
scalar product, we can delay the onset of qualitative errors
and improve the robustness of the implementation [2, 3].

3 The Concept of Presumable Extreme
Points

The convex hull of a geometric object is the smallest con-
vex set containing the object. In the case of a finite set of
points, the hull can be identified with the smallest convex
polyhedron that contains the points. The vertices of this
polyhedron are called the extreme points of the convex hull.

A simple and straightforward method for determining
the convex hull of an octree is to build the set of all ver-
tices of cubes that define the octree nodes containing the ob-
ject and then to construct the convex hull from these points.
However, this is not an efficient method. If the maximum
level of the tree changes, the points defining the vertices
vary, and a completely new set of points has to be inves-
tigated. Furthermore, there are several vertices in the set
under consideration that certainly belong to the interior of
the object and are therefore not important for the convex
hull computation.

We reduce the number of points considered by investi-
gating a superset of the set of vertices that belong to exactly
one black or one gray tree node as these points build a
relevant subset of boundary points for determining the
convex hull.

Proposition. The set of extreme points of the convex
hull of an n-tree at level k consists of vertices that belong
to exactly one black or one gray tree node of the tree at
level k.

Proof. Assume, there is an extreme point e of the convex
hull at level k that belongs to at least two black or gray
nodes at level k. The vertices of these nodes builds a
convex hull H which is a subset of the convex hull of the
n-tree at level k since the hull considers only a subset of
the tree points. The point e belongs either to the interior
of the hull or to its boundary. If e is an interior point, it
can not be an extreme point of either hulls. If it is on the
boundary of H and belongs to at least two black or gray
nodes, there are vertices of these nodes which lie on the
same hyperplane as e because of the special architecture
of an n-tree. Furthermore, e is an interior point of the
section of the hyperplane generated by these vertices since

solely its neighbor nodes have been picked out for the
construction of H. Thus, e can not be an extreme point of
H and particularly of the convex hull of the n-tree. From
this it follows that there is no such point e and the proof is
complete.

In the following, a vertex is said to be a presumable ex-
treme point of a tree node if none of the adjacent nodes
include points of the object, or if the vertex is an update
– as specified below – of such a point at a higher tree
level. In further processing, we use just the presumable ex-
treme vertices to obtain a convex polyhedral enclosure of
the corresponding tree-based object representation. In addi-
tion, an adapted update of the presumable extreme vertices
contributes to performance enhancement of this approach
whenever the maximum level has changed.

While the maximum level of the tree increases, only gray
nodes containing presumable extreme vertices take part in
the update process. Figure 2 shows examples of how the
update process is performed. For the sake of clarity, a two-
dimensional case of a bintree has been chosen. A bintree
is a data structure that partitions the underlying space by
halving it recursively across the various dimensions. There
is a one-to-one mapping between bintrees and n-trees.

The rectangle on the left with the black mark shows a
gray node of a bintree at level k containing a presumable
extreme vertex. On the opposite side of the diagram are
listed the seven conceivable cases of the two children nodes
at level k + 1. The arrows illustrate the update of the pre-
sumable extreme vertex. Both marks are kept when they
are linked with an arrow and when they belong to a gray or
black node after subdivision. The crossed black marks are
canceled.

level k level 1k+

update

Figure 2. Update of a presumable extreme
vertex.

Extreme vertices that belong to black nodes have been
retained unchanged at all higher levels. The update of a
gray node with a presumable extreme vertex in the upper
right, upper left or bottom left corner works in an analogous
manner.

The root node with black marks in each corner initiates
the update processing. There are four black marks in each

corner of the root node of a quadtree, eight black marks in
each corner of the root node of an octree, or generally 2n

black marks in each corner of an n-tree, we start with. We
number consecutively the initialized black marks and store
the corner number together with each updated black mark.
Using the primary corner number allows one to make the
update of a presumable extreme vertex only in some direc-
tions. For example, the update of the mark in the bottom
right corner of a quadtree will only be done to the left or
bottom-up directions. In the case of an n-tree at level l, we
use the transformation of the n-tree into the corresponding
bintree and perform the required updates of the black marks
successively in n directions to obtain the set of presumable
extreme vertices of the n-tree at level l + 1.

4 Convex Polyhedral Enclosures

The convex polyhedral enclosure at each level of the tree
is defined by a convex polytope. A convex polytope is the
convex hull of a finite set of points. A hyperplane h sup-
ports a polytope if the polytope intersects h and lies in a
closed half-space of h. The intersection of a polytope and a
supporting hyperplane is called a face of the polytope. The
dimension of a face is the dimension of the smallest affine
space that contains the face. A k-face is a face of dimension
k and is also a polytope. For a given n-dimensional poly-
tope, its (n−1)-faces are called facets, its (n−2)-faces are
called ridges, its 1-faces are edges, and its 0-faces are ver-
tices. For a normal vector n and an offset a, a point p is be-
yond the corresponding hyperplane h if 〈n, p〉 > a, p lies on
the affine space if 〈n, p〉 = a, and p is beneath h otherwise.
A convex combination of a set of points is a linear combina-
tion with positive coefficients and the unit sum. The convex
hull of a set of points S, conv(S), is the smallest subset of
S closed under convex combinations. For a more detailed
introduction to the theory of convex polytopes see [17].

To compute the convex polyhedral enclosures at each
level of the tree, we use a method based on a simplifica-
tion of the general dimension beneath-beyond convex-hull
algorithm described in [1]. In order to add a new point p to a
convex hull, the incremental algorithm identifies the facets
below the point. These are the visible facets to the point.
The boundary of the visible facets builds the set of horizon
ridges for the point. If there are no visible facets to point
p, the point is inside the convex hull and can be discarded.
Otherwise, the algorithm constructs new facets of the con-
vex hull from horizon ridges and the processed point p and
does not explicitly build the convex hulls of lower dimen-
sional faces. A new facet of the convex hull is a facet with
point p as its apex and a horizon ridge as its base. The cone
of point p is the set of all new facets. The approach is based
on the following theorem:

Theorem (simplified beneath-beyond) Let H be a con-
vex polytop in Rn and let p be a point in Rn − H . Then F
is a facet of conv(p ∪ H) if and only if

1. F is a facet of H and p is below F , or

2. F is not a facet of H and its apex is p and its base is a
horizon ridge of H .

Special treatment is required in the degenerate case when
p lies in the affine hull of some face of H . For more details
see [1].

To ensure the accuracy and correctness of the beneath-
beyond algorithm it is crucial to determine in which of the
two half-spaces defined by a facet of H the point p lies (the
side test), and to decide whether p belongs to the affine sub-
space spanned by a subset of the vertices of H (the affine
test for degenerate cases).

Algorithm Construction of a convex polyhedral enclo-
sure of an n-tree at level k. The algorithm is initialized
with the root node of the n-tree, which contains (presum-
able) extreme points in each corner of the node.

1. Update the set S of presumable extreme points from
level k − 1 of the tree.

2. Create an initial hull from a linearly independent sub-
set of the point set S.

3. For each facet f of the hull with a non-empty outside
set O, i.e. with a non-empty set of points lying above
the facet f :

• Select a furthest point q of O with respect to f .

• Find the visible facets and horizon ridges to q.

• Remove all visible facets to q.

• Make a cone of new facets from q to the horizon
ridges.

4. Repeat step 3 until all outside sets are empty.

In [1] a floating-point implementation of the two prim-
itive tests may initially yield inconsistencies that are cor-
rected afterwards. However, interval arithmetic can provide
the tests in a reliable manner. To provide guaranteed results
of the beneath-beyond algorithm, we utilize an interval-
based linear solver as proposed in [10]. For testing the posi-
tion of q with respect to f , a normal vector x of f that points
to the half-space containing the initial hull has to be deter-
mined. Such a vector can be computed by solving an under-
determined linear system. A point p is beneath (beyond/in)
the facet f spanned by the points conv(p1, . . . , pD) iff the
scalar product 〈p − p1, x〉 is larger than (smaller than/equal
to) zero. In the case of interval points [pi], the interval

point [p] is beneath (beyond) the facet [f] iff inf(〈[p] −
[p1], [x]〉) > 0 (sup(〈[p] − [p1], [x]〉) < 0). The side test
can also be realized by determining the sign of an appro-
priate D-by-D determinant. If the sign of the expression
〈p− p1, x〉 cannot be guaranteed, then we may suspect that
p lies in the affine hull of the points p1, . . . , pD. This as-
sumption can be checked by solving the linear system

A(D) · x(D) ≡ (p1, . . . , pD) ·

⎛
⎜⎝

ξ1

...
ξD

⎞
⎟⎠ = p − p1 (1)

with A(D) ∈ Rn×D and
∑D

i=1 ξi = 0. Since the points
pi are interval vectors, an enclosure [x] = ([ξ1], . . . , [ξD])T

for the solution set of a linear system with an interval matrix
[A] on the left-hand side, and an interval vector [p] − [p1]
on the right-hand side has to be determined. Given [x], we
can assert that p does not lie in the affine hull if [x] = ∅,
or [x] �= ∅ but 0 �∈ ∑D

i=1[ξi]. If none of the assertions is
fulfilled, then the system has to be resolved with rational
arithmetic; for details see [10].

5. Illustrative Examples

We have implemented the hull algorithm described
above in C++ programming language using the interval
arithmetic of C-XSC (a C++ class library for eXtended Sci-
entific Computation) [7]. For visualization we utilize the
library OpenGL and the graphical widget toolkit Qt [16, 6].

The implementation provides an n-tree data structure,
in particular several facilities for creating the octree rep-
resentation of an object. A tree can be imported from an
ASCII file containing the DF-representation of the tree or
containing another type of hierarchical representation, such
as subpavings from SIVIA (Set Inversion Via Interval Anal-
ysis) [9]. Figure 3 shows an example of an octree defined
by a DF-representation in Section 2.2 and its convex hull at
level 2.

Furthermore, an axis-aligned tree can be created manu-
ally node by node. An interval polynomial expression can
be also put as an input. An octree at level 5 computed for
the interval polynomial expression

x2 − y3 + z2 = [0.95, 1.01] (2)

if using our implementation is illustrated in Figure 4.
To reliably decide which parts of the scene belong to an

object, a common inclusion test applying interval arithmetic
is used. Alternatively, to test the sign of a multivariate poly-
nomial in a box, an interval version of the criterion from
Walach and Zeheb has been implemented [15, 5].

Constructive solid geometry trees (CSG trees) can also
be used as an input to form complex objects. The following

figures demonstrate the result of a transformation of CSG
objects into interval-based octrees. Figures 5 and 6 illus-
trate a scene containing rotated interval-based octrees and
their polynomial enclosures at level 7, respectively.

The tool implemented has been upgraded with accurate
distance routines for interval-based hierarchical structures,
or rather separation routines since dist(A, B) = min ‖a −
b‖2, a ∈ A, b ∈ B is not a metric on the set of closed
subsets in Euclidean space, as the Hausdorff distance is.
Nevertheless, we call them just distance routines. Finally,
the computation time required for the distance computation
between two hierarchical object representations has been
compared with the time needed for distance computation
between their polyhedral enclosures [6]. Owing to the re-
duction of points that define an object, a noticeable saving
in computation time was expected as a result of building its
polyhedral enclosure. In the case of the octree described in
Figure 1, for example, there are thirteen cube nodes each
with eight vertices and twelve rectangle facets to be consid-
ered during the distance computation as opposed to eleven
vertices and seventeen triangular facets in the case of its
convex enclosure.

Therefore, the time reduction in the case of moving ob-
jects is all the more significant and was detected in sev-
eral examples through distance computation times that were
decreased by a factor often equal to ten or greater as re-
ported in [6]. For example, for the scene with two octree-
encoded parts of spheres at level 5 depicted in Figure 7
altogether 2089182 basic geometrical operations, like dis-
tance calculation between a point and a line, visibility tests
etc., are needed for distance investigation compared with
156436 operations required for a scene containing the con-
vex enclosures of the spheres. In the latter case, the running
time on Intel(R) Pentium(R) M processor with 1.6 GHz is
1.59 s. After several improvements in order to performance
enhancement of the distance routines for octrees moving
under rigid motions that have been made, the octree-based

Figure 3. The octree described in Figure 1
and its convex hull at level 2.

Figure 4. An octree at level 5 defined by the
interval expression (2).

scene still remains 353578 operations, i.e. twice as much as
in case of polyhedral enclosures.

Nevertheless, the distance algorithm for octrees com-
putes the actual distance between two objects, while the
algorithm for polyhedra computes only the lower bound ob-
tained by enclosing the objects in their convex hulls. Hence,
a comparison of our improved distance algorithm for oc-
trees in different coordinate systems with the branch-and-
bound approach described in [11] would be worthwhile and
is intended.

6 Conclusions

In this paper we have presented a new algorithm for
constructing a reliable hierarchical polyhedral enclosure at
each level of an interval-based n-tree. The use of inter-
val arithmetic guarantees that no part of the n-dimensional
object is ever missed in the enclosure. This is an impor-
tant property for many applications, including path plan-
ning. The approach utilizes an efficient update of presum-
able extreme points on the boundary combined with a gen-
eral dimension convex hull method based on the beneath-
beyond algorithm and an interval linear solver. The result is
the smallest machine-representable convex polyhedral en-
closure containing the n-tree representation of an object at
each level of the tree. An efficient construction of a convex
polyhedral hierarchical structure is an advantage for further
processing. For example, it can be used to speed up distance
calculations between objects in a scene.

7. Acknowledgments

This research was carried out within the scope of the re-
cent project ”Interval-based approaches for adaptive hierar-
chical models in modeling and simulation systems” funded

Figure 5. A scene with rotated octrees of
level 7.

by the German Research Council (DFG).
We would like to thank the anonymous referees for their

helpful suggestions and corrections that improved the ear-
lier version of this paper.

References

[1] Barber, C. B., Dobkin, D. P, Huhdanpaa, H.: The
Quickhull algorithm for convex hulls. ACM Trans-
actions on Mathematical Software 22(4): 469–483,
1996.

[2] Dyllong, E.: Akkurate Abstandsalgorithmen
mit Ergebnisverifikation. Ph.D. thesis, Univer-
sity of Duisburg-Essen, VDI Reihe 20, Nr. 390,
Düsseldorf, 2004.

[3] Dyllong, E., Luther, W.: Verified convex hull and
distance computation for octree-encoded objects.
Journal of Computational and Applied Mathematics
199(2): 358-.364, 2006.

[4] Ehmann, S., Lin, M.C.: Accurate and fast proxim-
ity queries between polyhedra using convex surface
decomposition. Computer Graphics Forum (Proc. of
Eurographics2001) 20(3): 500-510, 2001.

[5] Fausten, D., Luther, W.: Verifizierte Lösungen
von nichtlinearen polynomialen Gleichungssyste-
men. Technical Report SM-DU-477, University of
Duisburg, 2000.

Figure 6. The polyhedral enclosures of the ro-
tated octrees of level 7.

[6] Grimm, C.: Verläßliche Abstandsalgorithmen für
intervallbasierte Octreemodelle und ihre konvexen
Einschlüsse – Ein Effizienzvergleich. Diploma the-
sis, University of Duisburg-Essen, 2006.

[7] Hammer, R., Hocks, M., Kulisch, U., and Ratz, D.:
C++ Toolbox for Verified Computing. Basic Numer-
ical Problems. Springer, Berlin, 1995.

[8] Hoffmann, C. M.: Geometric and Solid Modeling.
Morgan Kaufmann, 1989.

[9] Jaulin, J., Kieffer, M., Didrit, O., Walter, E.: Ap-
plied Interval Analysis. Springer, London, 2001.

[10] Krivsky, S., Lang, B.: Using Interval Arithmetic for
Determining the Structure of Convex Hulls. Numer-
ical Algorithms 37(1-4): 233–240, 2004.

[11] Major, F., Malenfant, J. and Stewart, N. F.: Dis-
tance between objects represented by octtrees de-
fined in different coordinate systems. Computers
and Graphics 13(4): 497–503, 1989.

[12] Ratschek, H., Rokne, J.: Geometric computations
with interval and new robust methods: applications
in computer graphics, GIS and computational ge-
ometry. Horwood Publishing, Chichester, 2003.

[13] Samet, H.: The Design and Analysis of Spatial Data
Structures. Addison-Wesley Publishing Company,
1990.

Figure 7. A scene with two octree-encoded
spheres.

[14] Seidel, R.: Convex hull computations. In: Hand-
book of discrete and computational geometry, CRC
Press LLC, Boca Raton, pp. 361–375, 1997.

[15] Walach, E., Zeheb, E.: Sign Test of Multivariate
Real Polynomials. IEEE Trans. on Circuits and Sys-
tems 27(7): 619–625, 1980.

[16] Zhang, M.: Konvexe Einschlüsse von hierarchis-
chen intervallbasierten Modellen. Diploma thesis,
University of Duisburg-Essen, 2005.

[17] Ziegler, G. M.: Lectures on Polytopes. Graduate
Texts in Mathematics (vol. 152). Springer, New
York, 2006.

Parametric Linear System of Equations, Whose Elements are Nonlinear
Functions

El-Owny, H.
Bergische Universität Wuppertal

Faculty C - Department of Mathematics and Computer Science
Scientific Computing / Software Engineering

Gaußstraße 20
42097 Wuppertal

Germany
hassan.el-owny@math.uni-wuppertal.de

Abstract

This paper addresses the problem of solving parametric
linear systems of equations whose coefficients are, in the
general case, nonlinear functions of interval parameters.
Such systems, are encountered in many practical problems,
e.g in electrical engineering and mechanical systems. A
C-XSC[8] implementation of a parametric fixed-point
iteration method for computing an outer enclosure for
the solution set is proposed in this paper. Numerical
examples illustrating the applicability of the proposed
method are solved, and compared with other methods.

Keywords: parametric linear systems, validated interval
software, C-XSC, nonlinear functions, Generalized Interval
Arithmetic.

1. Introduction

In many practical applications [3], parametric interval
systems involving uncertainties in the parameters have to
be solved. In most engineering design problems, linear pre-
diction problems, models in operation research, etc. [15]
there are usually complicated dependencies between coef-
ficients. The main reason for this dependency is that the
errors in several different coefficients may be caused by the
same factor [16, 11]. More precisely, consider a parametric
system

A(p) · x = b(p), (1)

where A(p) ∈ R
n×n and b(p) ∈ R

n depend on a parameter
vector p ∈ R

m. The elements of A(p) and b(p) are, in

general, nonlinear functions of m parameters

aij(p) = aij(p1, · · · , pm),
bi(p) = bi(p1, · · · , pm), (i, j = 1, · · · , n). (2)

When p varies within a range [p] ∈ IR
m, the set of solutions

to all A(p) · x = b(p), p ∈ [p], is called parametric solution
set, and is represented by

∑p
:=

∑
(A(p), b(p), [p]) := {x ∈ R

n|A(p) · x = b(p)

for some p ∈ [p]}. (3)

Since the solution set has a complicated structure which is
difficult to find [17], one looks for the interval hull �(

∑
)

where
∑

is a nonempty bounded subset of R
n. For

∑ ⊆
R

n, define � : PR
n −→ IR

n by1

�(
∑

) := [inf
∑

, sup
∑

] = ∩{[x] ∈ IR
n|

∑
⊆ [x]}.

It is well-known that [17]∑
(A(p), b(p), [p]) ⊆

∑
(A([p]), b([p])),

where

A([p]) := �{A(p) ∈ R
n×n|p ∈ [p]},

b([p]) := �{b(p) ∈ R
n|p ∈ [p]}

are the non-parametric interval matrix, respectively vector,
that correspond and are obtained from the parametric ones.

1PR
n is the power set over R

n. Given a set S the power set of S is the
set of all subset of S

Hence, A([p]) ·x = b([p]) is the non-parametric system cor-
responding to the parametric one, and non-parametric solu-
tion set is defined by

∑g
:=

∑
(A([p]), b([p])) := {x ∈ R

n|A · x = b

for some A ∈ A([p]), b ∈ b([p])} (4)

The calculation of �(
∑

) is also quite expensive, so it
would be a more realistic task to find an enclosure of it, this
means computation of [y] ∈ IR

n such that [y] ⊇ �(
∑p) ⊇∑p. Probably the first general purpose method computing

outer (and inner) bounds for �(
∑p) is based on the fixed-

point interval iteration theory developed by S. Rump. In
[20] Rump applies the general verification theory for sys-
tem of nonlinear equations for solving parametric linear
systems involving affine-linear dependencies. This method
was generalized in [18] by proving that a sharp enclosure
of the iteration matrix expands the scope of application of
the method over problems involving the so-called column-
dependent matrices. Meanwhile, there were many attempts
to construct suitable methods for solving parameter depen-
dent interval linear systems [3, 11, 15, 16, 17, 19, 9, 14]. We
do not intend to give here a complete overview of methods
used for solving linear systems with dependent data. Most
of the methods developed so far address linear systems in-
volving affine-linear dependencies between the parameters.
Very few articles [3, 10] studied the general case where
aij(p) and bi(p), (i, j = 1, · · · , n) are nonlinear functions
of a parameter vector p.

The goal of this paper is computing an outer solution of
the parametric system (1) in the case of nonlinear func-
tions, with the aid of a C-XSC [7, 8, 6, 12] implementation
for a Generalized Interval Arithmetic , which has been pro-
posed by Hansen in 1975 [4] (the main goal of Generalized
Interval Arithmetic is to reduce the dependency problem in
the interval arithmetic, in addition to enclosing ranges of
nonlinear interval functions by linear interval forms).

We use the following notations. R, R
n, R

n×n, IR, IR
n,

IR
n×n, to denote the set of real numbers, the set of real

vectors with n components, the set of real n × n matri-
ces, the set of intervals, the set of intervals vectors with
n components and the set of n × n intervals matrices, re-
spectively. For a real interval [x] we mean a real compact
interval [x] = [x, x] := {x ∈ R|x ≤ x ≤ x}, where x
and x denote the lower and upper bounds of the interval [x],
respectively. For an interval [x] define the mid-point

x̌ = mid([x]) = (x + x)/2

and the radius

rad([x]) = (x − x)/2.

Definition of real intervals and operations with such inter-
vals can be found in a number of references [1, 5, 13]. How-
ever, we present the main interval arithmetic operation. For
[x], [y] ∈ IR

[x] + [y] = [x + y, x + y],
[x] − [y] = [x − y, x − y],
[x] · [y] = [min(xy, xy, xy, xy), max(xy, xy, xy, xy)],

1/[y] = [1/y, 1/y] if 0 �∈ [y],
[x] /[y] = [x] · [1/y, 1/y] if 0 �∈ [y].

2. The dependency problem

The dependency problem arises when one or several
variable occur more than once in an interval expression. De-
pendency may lead to catastrophic overestimation in inter-
val computations. For example, if the interval [x] = [1, 2]
is subtracted from itself, [x] − [x] = [−1, 1] is obtained as
a result. The result is not the interval [0, 0] as expected.
Actually, interval arithmetic can not recognize the mul-
tiple occurrence of the same variable [x]. The result is
{x − y|x ∈ [x], y ∈ [x]} instead of {x − x|x ∈ [x]}. In
general, when a given variable occurs more than once in an
interval computation, it is treated as a different variable in
each occurrence. A Generalized Interval Arithmetic method
has been developed by Hansen [4] in 1975. Its purpose is to
reduce the effect of the dependency problem when comput-
ing with interval arithmetic, in addition to enclosing ranges
of nonlinear interval functions by linear interval forms. In
[6] we have realized this method in the environment of C-
XSC.

3. Theoretical Background

In this section we give a brief summary of the theory of
the enclosure method for our problem, in case of the sys-
tem (1) involving affine-linear dependencies between the
parameters.

Theorem 1. Popova [17] Consider parametric linear sys-
tem (1), where A(p) and b(p) are defined by

aij(p) := a
(0)
ij +

m∑
ν=1

pνa
(ν)
ij ,

bi(p) := b
(0)
i +

m∑
ν=1

pνb
(ν)
i , (i, j = 1, 2, · · · , n).

Let R ∈ R
n×n, [y] ∈ IR

n, x̃ ∈ R
n be given and define

[z] ∈ IR
n and [C(p)] ∈ IR

n×n by

[z] := R · (b(0)−A(0)x̃)+
m∑

ν=1

[pν](Rb(ν) − RA(ν) · x̃),

[C(p)] := I − R · A(0) −
m∑

ν=1

[pν](R · A(ν)),

where A(0) :=
(
a
(0)
ij

)
, · · · , A(m) :=

(
a
(m)
ij

)
∈ R

n×n,

b(0) :=
(
b
(0)
i

)
, · · · , b(m) :=

(
b
(m)
i

)
∈ R

n. Define [v] ∈
IR

n by means of the following Single step method

1 ≤ i ≤ n : [vi] = {�{[z] + [C] · [u]}}i where

[u] := ([v1], · · · , [vi−1], [yi], · · · , [yn])�.

If [v]
◦⊂ [y]1, then R and every matrix A(p), p ∈ [p]

is regular, and for every p ∈ [p] the unique solution
x̂ = A−1(p)b(p) of A(p) · x = b(p) satisfies x̂ ∈ x̃ + [v].

The above theorem generalizes theorem 4.8 from [20] by
requiring of the range of C(p) instead of using an interval
extension C([p]) [18].

4. Main Results

In this section, a method for computing an outer solution
for the system (1), in the general case, is suggested. The
derivation of the method is based on the approach employed
in [4, 6].
Let f : [x] ⊂ R

m −→ R be a continuous function. The
function f(x) can be enclosed by the following linear inter-
val form

[Lf (x)] := [cf] +
m∑

ν=1

ζν [vf
k], x ∈ [x] (5)

where [cf] and [vf
ν], ν = 1, · · · , m are real intervals, and

ζν ∈ [−rad([xν]), rad([xν])]. The form (5) can be deter-
mined in an automatic way using the algorithms of [6]. It
has the inclusion property

f(x) ∈ [Lf(x)], x ∈ [x].

Example 1. Let

f(x) =
x1 + x2

x1 − x2

with x1 ∈ [5, 10], x2 ∈ [1, 2].

1
◦⊂ is the inner inclusion relation

Using Algorithms of [6], the linear interval form (5) can
be computed for the above function. It will be as follows

[Lf] := [1.5, 1.5] + [−0.167,−0.05]ζ1 + [0.277, 0.8334]ζ2

where ζ1 ∈ [−2.5, 2.5], ζ2 ∈ [−0.5, 0.5].
When we reduced the linear interval form [Lf] to an or-

dinary interval, we obtain

reduce([Lf])=reduce([1.5, 1.5]+[−0.167,−0.05][−2.5, 2.5]
+[0.277, 0.8334][−0.5, 0.5])

= [0.666, 2.334].

We assume that aij(p) and bi(p), i, j = 1, · · · , n in (2)
are continuous functions. In accordance with (5), the cor-
responding linear interval forms are

[Lij(p)] := [caij]+
m∑

ν=1

ζν [vaij
ν]
 aij(p) (6)

[li(p)] := [cbi]+
m∑

ν=1

ζν [vbi
ν]
 bi(p), (7)

where ζν ∈ [−rad([pν]), rad([pν])], ν = 1, · · · , m.
According to the above two relations, we introduce the

m + 1 numerical interval matrices[
A(0)

]
:= ([caij]) ,

[
A(1)

]
:=

(
[vaij

1]
)
, · · · · · · ,[

A(m)
]

:= ([vaij
m]) ∈ IR

n×n (8)

and the corresponding numerical interval vectors[
�(0)

]
:=

(
[cbi]

)
,

[
�(1)

]
:=

(
[vbi

1]
)

, · · · · · · ,[
�(m)

]
:=

(
[vbi

m]
) ∈ IR

n. (9)

Hence, a new parametric interval matrix and a right-hand
side parametric interval vector can be represented by

[A(ζ)] = [A(0)] +
∑m

ν=1 ζν [A(ν)],

[�(ζ)] = [�(0)] +
∑m

ν=1 ζν [�(ν)].

⎫⎬
⎭ (10)

According to the parametric system (1), where its elements
are defined by (2). We can write a new parametric interval
system in the following form

[A(ζ)] · x = [�(ζ)],(
[A(0)]+

m∑
ν=1

ζν [A(ν)]

)
· x = [�(0)]+

m∑
ν=1

ζν [�(ν)],(11)

where the new parametric vector ζ varies within the range
[ζ] ∈ IR

m.

Example 2. Let

(−(p1 + p2)p2 p2p4

p4p5 p3p5

)
· x =

(
p1p2

p2p3

)
, (12)

with [p] = ([0.96, 0.98], [1.92, 1.96], [0.96, 0.98], [0.48, 0.5],

[0.48, 0.5])T ∈ IR
5.

According to Algorithms presented in [6], the linear in-
terval forms (6) and (7) can be computed for every element
of the matrix and the right hand side of the system (12), re-
spectively.

[L11(p)] := [−5.6559,−5.6453]+ [−1.9601,−1.9199]ζ1

+[−4.8501,−4.8499]ζ2

[L12(p)] := [0.95059, 0.95061]+ [0.47999, 0.5]ζ2

+[1.9399, 1.94]ζ4

[L21(p)] := [0.24009, 0.24011]+ [0.47999, 0.5]ζ4

+[0.4899, 0.49]ζ5

[L22(p)] := [0.47529, 0.47531]+ [0.47999, 0.5]ζ3

+[0.96999, 0.97]ζ5

[l1(p)] := [1.8817, 1.8818] + [1.9199, 1.9601]ζ1

+[0.96999, 0.97]ζ2

[l2(p)] := [1.8817, 1.8818] + [0.95999, 0.98001]ζ2

+[1.9399, 1.94]ζ3

where ζ1 ∈ [−0.01, 0.01], ζ2 ∈ [−0.02, 0.02], ζ3 ∈
[−0.01, 0.01], ζ4 ∈ [−0.01, 0.01] and ζ5 ∈ [−0.01, 0.01].

From (8), the 6 numerical interval matrices can be de-
fined as follows

[A(0)] :=
(

[−5.6559,−5.6453] [0.9505, 0.95061]
[0.24009, 0.24011] [0.47529, 0.47531]

)
,

[
A(1)

]
:=

(
[−1.9601,−1.9199] [0, 0]

[0, 0] [0, 0]

)
,

[
A(2)

]
:=

(
[−4.8501,−4.8499] [0.4799, 0.5]

[0, 0] [0, 0]

)
,

[
A(3)

]
:=

(
[0, 0] [0, 0]
[0, 0] [0.4799, 0.5]

)
,

[
A(4)

]
:=

(
[0, 0] [1.9399, 1.94]

[0.4799, 0.5] [0, 0]

)
,

[
A(5)

]
:=

(
[0, 0] [0, 0]

[0.4899, 0.49] [0.9699, 0.97]

)
,

and from (9), the corresponding numerical interval vectors

can be defined as follows

[�(0)] :=
(

[1.8817, 1.8818]
[1.8817, 1.8818]

)
,

[
�(1)

]
:=

(
[1.9199, 1.9601]

[0, 0]

)
,

[
�(2)

]
:=

(
[0.9699, 0.97]

[0.9599, 0.98001]

)
,

[
�(3)

]
:=

(
[0, 0]

[1.9399, 1.94]

)
,

[
�(4)

]
=

[
�(5)

]
:=

(
[0, 0]
[0, 0]

)
.

We get a new parametric interval system by substituting the
above numerical interval matrices and the corresponding
numerical interval vectors in (11).

The following theorem is a modification of theorem 1.

Theorem 2. Consider the parametric linear system (1),
where A(p) and b(p) are given by (2). Let [A(ζ)] ∈ IR

n×n

and [�(ζ)] ∈ IR
n be given by (10) with ζ ∈ R

m, and
let R ∈ R

n×n, [y] ∈ IR
n, x̃ ∈ R

n be given and define
[z] ∈ IR

n and [C(ζ)] ∈ IR
n×n by

[z] := R · ([�(0)] − [A(0)] · x̃) +
m∑

ν=1

R · ([�(ν)] − [A(ν)] · x̃)[ζν],

[C(ζ)] := I − R · [A(0)] −
m∑

ν=1

(R · [A(ν)])[ζν].

Define [v] ∈ IR
n by means of the following Single step

method

1 ≤ i ≤ n : [vi] = {�{[z] + [C(ζ)] · [u]}}i where

[u] := ([v1], · · · , [vi−1], [yi], · · · , [yn])�.

If [v]
◦⊂ [y], then R and every matrix A(ζ) ∈ [A(ζ)],

ζ ∈ [ζ] is regular, so every matrix A(p), p ∈ [p] is regular,
and for every p ∈ [p] the unique solution x̂ = A−1(p)b(p)
of A(p) · x = b(p) satisfies x̂ ∈ x̃ + [v].

Now, we give an algorithm for computing an outer solu-
tion for the system (1)

Algorithm 1. Parametric interval linear systems
1. Initialization

b̌ :=mid(reduce([b(ζ)])); Ǎ :=mid(reduce([A(ζ)]))
2. Computation of an approximate mid-point solution

x̃ = R · b̌; (R ≈ Ǎ−1)
3. Computation of an enclosure [C] ∈ IR

n×n

[C] := I − R · [A(0)] − Pm
ν=1(R · [A(ν)])[ζν]

4. Computation of an enclosure [z]
[z]:=R·([�(0)]−[A(0)] · x̃)+

Pm
ν=1 R·([�(ν)]−[A(ν)] · x̃)[ζν]

5. Verification step
[v] := [z]
max= 1
repeat

[y] := [v]
for i = 1 to n do
[vi] = [zi] + [C(Row(i))] · [v]

max++

until [v]
◦⊂ [y] or max≥ 10

6.

if ([v]
◦⊂ [y]) then

x̂ ∈ x̃ + [v]
else no inclusion can be computed

5. Numerical Examples

Example 3.⎛
⎝ −(p1 + 1)p2 p1p3 p2

p2p4 p2
2 1

p1p2 p3p5
√

p2

⎞
⎠ · x =

⎛
⎝ 1

1
1

⎞
⎠ ,

[p] = ([1, 1.2], [2, 2.2], [0.5, 0.51], [0.39, 0.40], [0.39, 0.40])T

∈ IR
5

New Method Kolev’s Method [10]

[0.055479, 0.066083] [0.055081, 0.066443]
[0.076096, 0.090512] [0.075930, 0.090906]
[0.557139, 0.606451] [0.555988, 0.607462]

Example 4.(−(p1 + p2)p4 p2p4

p5 p3p5

)
· x =

(
1
1

)
,

[p] = ([0.96, 0.98], [1.92, 1.96], [0.96, 0.98], [0.48, 0.5],

[0.48, 0.5])T ∈ IR
5

New Method Kolev’s Method

[0.374648, 0.456641] [0.367181, 0.464108]
[1.621478, 1.729391] [1.613711, 1.737157]

Example 5.⎛
⎝ −(p1 + 1)p2 p1p3 exp(p2)

p2p4 p2
2 1

p1p2 p3p5
√

p2

⎞
⎠ ·x =

⎛
⎝ cos(p1)

1
1

⎞
⎠ ,

[p] = ([1, 1.2], [2, 2.2], [0.5, 0.51], [0.39, 0.40], [0.39, 0.40])T

∈ IR
5

New Method Kolev’s Method

[0.261268, 0.3257415] [0.260297, 0.326198]
[0.103746, 0.146084] [0.102870, 0.147174]
[0.169010, 0.241066] [0.166773, 0.244037]

6. Conclusions

The problem of solving parametric linear systems of
equations whose elements are nonlinear function of interval
parameters is very important in practical applications. Well-
known classical methods, such as interval version of Gauss
elimination, fail since they compute enclosure for the solu-
tion set (4) which is generally much larger than solution
set (3). A simple method for determining an outer solution
to the linear system considered has been suggested in sec-
tion (4). An algorithm is presented and some examples are
solved and compared with Kolev’s method, from these ex-
amples we saw that our method gives (may be not at all) bet-
ter enclosures than the method by Kolev [10]. Our method
can be applied to big real life problems such as structural
engineering [2] without any problems.

References

[1] Alefeld, G.; Herzberger, J.: Introduction to Interval
Computations. Academic Press, 1983.

[2] Corliss, G.; Foley, C.; R. B. Kearfott: Formulation
for Reliable Analysis of Structural Frames. Reliable
Computing, vol. 13, no. 2, pp.125-145, 2007.

[3] Dessombz O., et al.: Analysis of mechanical systems
using interval computations applied to finite element
methods, Journal of Sound and Vibration 239 (2001)
5, 949-968.

[4] Hansen, E. R. : Generalized Interval Arithmetic,
in Nickel, K. L. (ed.), Interval Mathematics, Vol.
29 of lecture notes in computer science, page 7-18,
Springer-Verlag, Berlin, 1975.

[5] Hansen, E. R. : Global Optimization Using Interval
Analysis. Marcel Dekker, Inc. 1992.

[6] El-Owny, H.: Hansen’s Generalized Interval Arith-
metic Realized in C-XSC , Preprint 2006/2, Universität
Wuppertal, 2006.
(http://www.math.uni-wuppertal.de/wrswt/preprints/
prep−06−2.pdf)

[7] Hofschuster, W.; Krämer, W.; Wedner, S.; Wi-
ethoff, A.: C-XSC 2.0 - A C++ Class Library for
Extended Scientific Computing. Preprint 2001/1,

Wissenschaftliches Rechnen / Softwaretechnologie,
Universität Wuppertal, 2001.
(http://www.math.uni-wuppertal.de/wrswt/preprints/
prep−01−1.pdf)

[8] Hofschuster, W.; Krämer, W., C-XSC 2.0 - A C++
Class Library for Extended Scientific Computing. In:
Numerical Software with Result Verification, R. Alt,
A. Frommer, B. Kearfott, W. Luther (eds), Springer
Lecture Notes in Computer Science 2991, pp. 15-35,
2004.

[9] Kolev, L.: A Method for Outer Interval Solution of
Linear Parametric Systems. Reliable Computing, vol.
10, nr. 3, pp. 227-239, 2004.

[10] Kolev, L.: Solving Linear Systems Whose Elements
are Nonlinear Functions of Intervals. Numerical Al-
gorithms 10, nr. 1-4, pp. 199-212, 2004.

[11] Krämer, W.; Popova, E. D.: Zur Berechnung von
verlässlichen Außen- und Inneneinschließungen bei
parameterabhängigen linearen Gleichungssystemen.
PAMM - Proceedings in Applied Mathematics and
Mechanics, vol. 4, issue 1, pp. 670-671, 2004.

[12] Krämer, W.: Generalized Intervals and the Depen-
dency Problem. PAMM - Proceedings in Applied
Mathematics and Mechanics, vol. 6, pp. 683-684,
2006.

[13] Moore, R.: Interval analysis. Prentice-Hall, Inc. En-
glewood Cliffs, N. J. , 1966.

[14] Neumaier, A.; Pownuk, A.: Linear Systems with Large
Uncertainties with Applications to Truss Structures.
Reliable Computing, vol. 13, issue 2, pp. 149-171,
2007.

[15] Popova, E.; Datcheva, M.; Iankov, R.; Schanz T.:
Mechanical Models with Interval Parameters. In K.
Gürlebeck L. Hempel C. Könke (Eds.) IKM2003:
Digital Proceedings of 16th International Conference
on the Applications of Computer Science and Math-
ematics in Architecture and Civil Engineering, ISSN
1611-4086, Weimar, 2003.
(http://euklid.bauing.uni-weimar.de/papers/36/
M36.pdf)

[16] Popova, E.: Improved Parametric Fixed-Point Iter-
ation, Preprint Inst. of Mathematics & Informatics,
BAS, Sofia, 2003.

[17] Popova, E.; Krämer, W.: Parametric Fixed-Point It-
eration Implemented in C-XSC. Preprint 2003/3, Uni-
versität Wuppertal, 2003.

[18] Popova, E.: Generalizing the Parametric Fixed-Point
Iteration. Proceeding in Applied Mathematics and
Mechanics (PAMM) 4, issue 1, pp. 680-681, 2004.

[19] Popova, E.; Krämer, W.: Inner and Outer Bounds for
the Solution Set of Parametric Linear Systems. Journal
of Computational and Applied Mathematics, vol. 199,
issue 2, pp. 310-316, 2007.

[20] Rump, S.: Verification methods for dense and sparse
systems of equations. In: Topic in Validated Computa-
tions, Herzberger, J. (ed.), Oldenburg, North-Holland,
1994.

Guaranteed Bounds for Uncertain Systems: Methods Using Linear
Lyapunov-like Functions, Differential Inequalities and a Midpoint Method

Marc Gennat and Bernd Tibken
Faculty of Electrical, Information and Media Engineering
University of Wuppertal, D-42097 Wuppertal, Germany

{gennat,tibken}@uni-wuppertal.de

Abstract

In general, models of biological or technical applica-
tions are represented by nonlinear systems. Moreover, these
systems contain multiple uncertain or unknown parameters.
These uncertainties are the reason for some numerical and
analytical problems in finding guaranteed bounds for the
solution of the state space representation. Unfortunately,
several industrial applications are demanding exactly these
guaranteed bounds in order to fulfil regulations set by the
state authorities. To get an idea of the solution of sys-
tems with uncertainties the numerical integration of the sys-
tem’s differential equations has to be done with randomly
selected values for the unknown parameters. This compu-
tation is done several times, in some circumstances more
than a thousand times. This approach is well known as the
Monte-Carlo method, but this stochastic approach cannot
deliver guaranteed bounds for the domain of the system’s
solution. Thus, we developed a method to find guaranteed
bounds which uses linear Lyapunov-like functions to solve
this problem. In this work we combine this method with
a theory first introduced by Müller. Differential inequali-
ties are used by Müller to obtain guaranteed bounds. Inter-
secting the results of both methods provides improved and
tight bounds for the original uncertain system. Another ap-
proach is shown using a midpoint method providing guar-
anteed bounds. We achieve guaranteed and finite simula-
tion bounds as a result of our approaches. The results can
be used as an initial interval for further methods based on
interval arithmetic. An example of a bioreactor with two
state variables is shown in this paper to illustrate the meth-
ods.

1 Introduction

The simulation of nonlinear systems with uncertain or

unknown parameters is demanded by many technical, bio-

logical and chemical applications. This is the main reason

why we have developed a novel method to derive guaran-

teed bounds for such systems. The simulation for such sys-

tems cannot be done in one calculation cycle as it is done in

the case of known parameters. The time dependent set of all

simulated state variables with all possible parameter combi-

nations is required. We consider a system of nonlinear or-

dinary differential equations which represents an uncertain

dynamical system in state space representation

ẋ(t) = f(x(t); p) with x(0) = x0, (1)

where the vector x ∈ R
n and function f(x(t); p) represent

the time dependent state vector and the nonlinearity, respec-

tively. The vector of uncertain or unknown parameters is

given by p ∈ R
q, which is contained in an interval vector,

in other words the uncertain parameters can vary between a

lower bound p and an upper bound p with p ∈ [p, p].

2 Simulation Method Using Müller’s Theo-
rem

In order to find guaranteed bounds we apply results from

the theory of differential inequalities, which was first pre-

sented by Müller [3, 4]. The aim is to find lower and upper

functions to bound the right hand side of the original sys-

tem, which is afflicted with uncertain or unknown param-

eters. In order to bound ẋ(t) = f(x(t); p) the right hand

side of the given system must be enclosed componentwise

by lower and upper bound functions

ui(t) ≤ xi(t) ≤ wi(t) ∀ 0 < t < δ with δ > 0, (2)

where ui(t) represents the lower bound function and wi(t)
the upper bound function for the i-th state space function.

To find these functions the differential inequalities with u̇(t)
and ẇ(t) have to fulfil componentwise the conditions

u̇i(t) ≤ fi(z; p) if u(t)≤z≤w(t) and ui(t) = zi, (3)

ẇi(t) ≥ fi(z; p) if u(t)≤z≤w(t) and wi(t) = zi (4)

with i = 1, · · · , n. To do that, the right hand sides fi(z; p)
must be modified to match the requirements. This is done

by replacing the state variables zν by the state variables

for the lower and upper bound functions uν or wν with

ν = 1, · · · , n, ν �= i, to minimize the right hand side for

u̇i and to maximize for ẇi. If ν is equal to i, zi must be set

to ui for the differential equation of u̇i respectively it must

be set to wi for the right hand side of ẇi. Moreover, the un-

certain or unknown parameter intervals pi must be replaced

by the infimum of the parameter range p
i

or the supremum

pi with i = 1, · · · , q. The replacement of the parameters

and state variables for the right hand side of the differential

inequalities (3) and (4) must satisfy the minimization

u̇i(t) = min
s.t. zi = ui(t)

u(t) ≤ z ≤ w(t)
p ≤ p ≤ p

fi(z; p) (5)

and the maximization

ẇi(t) = max
s.t. zi = wi(t)

u(t) ≤ z ≤ w(t)
p ≤ p ≤ p

fi(z; p). (6)

This leads to right hand sides of u̇i and ẇi, where the state

variables z are replaced by u or w to minimize (5) and maxi-

mize (6). Only the i-th state variable in the i-th lower bound

function must be set to ui and the i-th state variable in the i-
th upper bound function to wi. At last the uncertain param-

eters must be chosen in a way to minimize or maximize the

lower and upper bound functions. With these optimizations

performed componentwise for each state space function of

the original system (1) we achieve a system of differential

equations, which has twice as many equations as the origi-

nal system. To compute the lower and upper bounds for the

uncertain system, the new system⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u̇1(t)
...

u̇n(t)
ẇ1(t)

...

ẇn(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

min f1(z; p)
...

min fn(z; p)
max f1(z; p)

...

max fn(z; p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

of the order of 2 n has to be solved. Thus, we obtain as a

result of the simulation the lower bounds u(t) and the up-

per bounds w(t) for each component of the uncertain sys-

tem. Unfortunately, this method may lead to unstable upper

bounds for t → ∞ in general, but for small time instances

the method by Müller provides very good results in the form

of guaranteed and tight bounds for the given system (1).

3 Simulation Method Using a Midpoint
Method for Differential Inequalities

The state space representation (1) for the system class

under consideration is assumed to have the form

ẋ(t)=f(x(t); p)=

⎛
⎜⎝ f1(x1(t),· · ·, xn(t); p1,· · ·,pq)

...

fm(x1(t),· · ·, xn(t); p1,· · ·,pq)

⎞
⎟⎠. (8)

We have to find upper and lower bounds for the given sys-

tem. These bounds should provide a guaranteed enclosure

of all possible solutions with all variations of the uncertain

parameters. We assume f has continuous derivatives of at

least one order. Thus, we define the differential equation

with the midpoint of the uncertain parameters p̌ = mid(p)
as

˙̌x(t) = f(x̌(t); p̌) with x̌(0) = x(0) = x0. (9)

To bound the right hand side of (1) we first have to refor-

mulate the problem using the new state variable z(t) =
x(t) − x̌(t), which represents the deviation from the state

variable x. Thus, the system can be defined as

ż(t) = ẋ(t) − ˙̌x(t) = f(x(t); p) − f(x̌(t); p̌). (10)

At this point we use an advanced interval method which

comes from bounding the remainder in a Taylor series [3, 7,

8, 13]. In this particular case we rewrite ż(t) as

ż(t) = f(x̌(t); p̌)+
(

∂f

∂x, p
(ξx(t); ξp)

)T(
x − x̌
p − p̌

)
−f(x̌(t); p̌)

=
∂f

∂x
(ξx(t); ξp)(x − x̌) +

∂f

∂p
(ξx(t); ξp)(p − p̌)

=
∂f

∂x
(ξx(t); ξp)(z) +

∂f

∂p
(ξx(t); ξp)(p − p̌) (11)

where ξx lies between x and x̌ and ξp lies between p and

p̌. The given system can then be rewritten as a linear time

variant system

ż(t) = A(t) · z + b(t) with

A(t) =
∂f

∂x
(ξx(t); ξp) and

b(t) =
∂f

∂p
(ξx(t); ξp)(p − p̌),

where A(t) is an interval matrix and b(t) an interval vector.

For bounding the solution for all possible parameters we

have to initialize ξx and ξp as intervals. To make sure that

ξx and ξp cover all possible points, we define ξx and ξp as

intervals with

ξx(t) = [z(t) − x̌(t) ; z(t) − x̌(t)] = [x(t) ; x(t)] and

ξp = [p ; p].

The right hand side of (11) provides an interval solution

which leads to a guaranteed enclosure of the solution of

the right hand side of the original problem (1) by adding

z and x̌, the solution of the midpoint differential equation

(9). In general this interval set is afflicted with overestima-

tion. Thus, we have to rewrite the differential equation (11)

as

v̇(t) = inf(ẋ(t) − ˙̌x(t)) (12)

= inf
(

∂f

∂x
(ξx(t); ξp)v(t) +

∂f

∂p
(ξx(t); ξp)(p − p̌)

)
,

ẇ(t) = sup(ẋ(t) − ˙̌x(t)) (13)

= sup
(

∂f

∂x
(ξx(t); ξp)w(t) +

∂f

∂p
(ξx(t); ξp)(p − p̌)

)
,

where inf returns the infimum and sup the supremum value

of an interval. Now we can define an extended system

of differential equations, which provides the guaranteed

bounds directly. The extended system is given as

˙̌x(t) = f(x̌(t); p̌) (14)

v̇(t) = inf
(

∂f

∂x
([x̌ + v(t), x̌ + w(t)]; p)[v(t), w(t)]

+
∂f

∂p
([x̌ + v(t), x̌ + w(t)]; p)(p − p̌)

)
(15)

ẇ(t) = sup
(

∂f

∂x
([x̌ + v(t), x̌ + w(t)]; p)[v(t), w(t)]

+
∂f

∂p
([x̌ + v(t), x̌ + w(t)]; p)(p − p̌)

)
(16)

with x̌(0) = x(0) = x0, v(0) = w(0) = 0 and in the i-th
equation of v̇(t) the interval [vi(t), wi(t)] has to replaced

by vi respectively wi in the in the i-th equation of ẇ(t) [3].

Reducing overestimation for the computation of v̇(t) and

ẇ(t) is a difficult job, which can be done by an appropriate

factorisation of the right hand sides of the extended system.

Primary objective is to reduce the number of evaluations

of interval variables. If each interval variable is evaluated

only one time, one will obtain the best bounds for the given

system with minimal overestimation. This objective cannot

be fulfilled for all classes of systems, nevertheless one can

use the technique of bisection for reducing overestimation

[8, 11, 13].

4 Upper Bounds by Linear Lyapunov-like
Functions

The state space representation (1) for the system class

under consideration is assumed to have the form

ẋ(t) = f(x(t); p) = A x(t) + b g(x(t); p) + d(17)

where A ∈ R
n×n is the system matrix of the linear part, the

function g(x(t); p), Rn×R
m 	→ R represents the nonlinear

part, b ∈ R
n is a constant vector and the vector d contains

all constant parts that do not depend on the state variables,

inputs or parameters. We assume further that the system

given by (17) leaves the positive orthant of R
n invariant.

Thus, we have x(t) ≥ 0 ∀ t if x(0) ≥ 0 is fulfilled. Our

goal is to find an easy way to compute upper bounds for

the state variables. This is a difficult problem, which can in

principle be solved through the Monte-Carlo Method [1, 2]

with the drawback that the bounds are not guaranteed. A

recent method is interval arithmetic [7, 8, 11, 12, 13], which

also may lead to unstable upper bounds.

4.1 Finding an Auxiliary Function

In order to overcome these problems we define a linear

Lyapunov-like function

v(t) = cT x(t), (18)

with cT = (c1, · · · , cn), ci ≥ 0 with i = 1, · · · , n and

‖c‖> 0. Now we compute the time derivative of (18) along

the trajectories of (17). This results in

v̇(t) = cT ẋ(t) = cT (A x(t) + b g(x(t); p) + d)
= cT A x(t) + cT b g(x(t); p) + cT d. (19)

If we now assume

cT b = 0 and (20)

all components (cT A)i < 0 with i = 1, · · · , n, (21)

we compute

v̇(t) = (cT A) x(t) + cT d, (22)

thus the nonlinear function g is eliminated, because the

condition (20) demands cT b = 0. Due to the fact that

x(t) > 0 ∀ t and the assumption (21), we can find an upper

bound for the right hand side of (22). This results in

v̇(t) = cT d −
[−cT A x(t)

cT x(t)

]
· v(t)

v̇(t) = cT d − γ v(t) (23)

with γ =
−cT A x(t)

cT x(t)
.

Our aim is to bound v̇(t) upwards, thus we have to maxi-

mize the right hand side of (23) which leads to minimizing

γ, according to

γ = min
x>0 , x�=0

(
−cT A x

cT x

)
, which is equivalent to

γ = min
x>0,cT x=1

(−cT A x
)
. (24)

The linear optimization problem (24) has the solution

γ = min
(−(cT A)1

c1
,
−(cT A)2

c2
, · · · ,

−(cT A)n

cn

)
. (25)

Now we are in the position to find an upper bound for the

linear Lyapunov-like function itself. Therefore we have to

compute a solution for the differential inequality

v̇(t) ≤ cT d − γ · v(t). (26)

Using the Gronwall Lemma [6] we calculate an upper

bound as

v(t) ≤ v(0)e−γt + cT d

t∫
0

e−γ(t−τ)dτ (27)

which results in

v(t) ≤ v(0)e−γt +
1
γ

cT d
(
1 − e−γt

)
= ṽ(t) . (28)

Thus, ṽ(t) is an upper bound for the linear Lyapunov-like

function v(t). As a result of the guaranteed bound (28) the

state variables bounds are given by

0 ≤ xi ≤ ṽi(t)
ci

∀ i = 1, · · · , n . (29)

This equation represents the guaranteed bounds for the state

variables of the given nonlinear system.

4.2 Optimizing the Bounds

The essential part of the problem is solved. Guaranteed

bounds for nonlinear systems with unknown or uncertain

parameters are found. But we can do more. We use c to op-

timize the bounds for time to infinity (t → ∞). According

to (29) we find guaranteed bounds for the state variables as

0 ≤ xi(t) ≤ ṽi(t)
ci

. So we can formulate the minimization

of each state variable xi for an infinite time interval as an

optimization problem

min
c

(
lim

t→∞

(
ṽi(t)
ci

))
subject to (30)

cT b = 0, c > 0,

(cT A)i < 0 for i = 1, · · · , n and

γ = min
i

(−(cT A)i

ci

)
. (31)

The constrained optimization problem (30, 31) leads to a

vector c for optimal bounds of the state variables for t →
∞. Moreover, ṽi(t) can be simplified as

lim
t→∞ ṽi(t) = lim

t→∞

⎛
⎝v(0) e−γt︸︷︷︸

→0

+
cT d

γ
− cT d

γ
e−γt︸︷︷︸
→0

⎞
⎠=

cT d

γ
.

Using this extension the optimization problem is rewritten

as

min
c

(
cT d

γ ci

)
subject to (32)

cT b = 0, c > 0,

(cT A)i < 0 for i = 1, · · · , n and

γ = min
i

(−(cT A)i

ci

)
.

The last constraint, γ = mini

(
−(cT A)i

ci

)
, is non-

differentiable and we rewrite the problem as an extended

optimization problem. This results in

min
c,γ̂

(
cT d

γ̂ ci

)
subject to (33)

cT b = 0, c > 0,

all components of (cT A)i < 0 for i = 1, · · · , n and

γ̂ ≤
(−(cT A)i

ci

)
for i = 1, · · · , n.

For each state variable xi a single constrained optimization

has to be done, which provides optimal c and γ̂ for the spec-

ified state variable. The simulation results using c and γ̂
lead to optimal bounds for this state variable. Moreover,

these bounds can be used as a starting point for other meth-

ods, e.g. interval arithmetic. These methods profit a lot

from optimal bounds, because overestimation is a serious

problem in simulations of nonlinear systems with uncertain

parameters.

5 Example

The term bioreactor [18, 19] refers to a system that

supports a biologically active environment. A bioreac-

tor is a vessel in which a chemical process is carried out,

which involves micro-organisms or bio-chemically active

substances derived from such micro-organisms. This pro-

cess can either be aerobic or anaerobic. The given example

is a system of two state variables, which represent the con-

centration of the bio-chemically active substances, such as

bacteria, and the concentration of nutrient substrate. The

system is given by

Ṡ(t) = D (Sr − S(t)) − μ

Y
X(t), S(0) = S0, (34)

Ẋ(t) = (μ − D)X(t), X(0) = X0 with (35)

μ = μm
S(t)

K0 + S(t) + K1S2(t)
and x =

(
S(t)
X(t)

)
as the state space vector. The initial conditions for the sub-

strate concentration are given by S0 = 1 and the concentra-

tion of the bio-chemically active substances, in other words

the bacteria concentration is given by X0 = 1. The other

parameters are given by μm = 0.2, Y = 0.5 and SR = 100.

The uncertain parameters are the saturation coefficient K0

and K1, which can vary in the intervals K0 = [0.16, 0.24]
and K1 = [0.008, 0.012], thus the midpoints of these inter-

vals are Ǩ0 = 0.2 and Ǩ1 = 0.01.

5.1 Guaranteed Bounds corresponding to
Müller’s Theorem

The guaranteed bounds for the given example corre-

sponding to Müller’s Theorem can be calculated by the

simulation of the upper and lower bound functions for the

differential equations (5) and (6). To calculate the re-

quired minimization and maximization we rewrite the orig-

inal state space representation as

ż1 = D (Sr − z1(t)) − μm

Y

z1(t)z2(t)
K0 + z1(t) + K1z2

1(t)
and

ż2 =
(

μm
z1(t)

K0 + z1(t) + K1z2
1(t)

− D

)
z2(t)

with z1 = S(t), z2 = X(t), z1(0) = S0 and z2(0) = X0.
Referring to the extended system of differential equations
(7) the minimization and maximization of (5) and (6) leads
to

u̇1 = D (Sr − u1(t)) − μm

Y

u1(t)w2(t)

K0min + u1(t) + K1minu2
1(t)

u̇2 = μm
u1(t)u2(t)

K0max + w1(t) + K1maxw2
1(t)

− D u2(t)

Figure 1. Simulations of the substrate con-
centration using the Midpoint Method with bi-
section

ẇ1 = D (Sr − w1(t)) − μm

Y

w1(t)u2(t)

K0max + w1(t) + K1maxw2
1(t)

ẇ2 = μm
u1(t)w2(t)

K0min + u1(t) + K1minu2
1(t)

− D w2(t),

where the uncertain parameters K0 and K1 have to be re-

placed by the infimum and supremum of the parameter in-

tervals. This replacement has to be done to fulfil the require-

ments of the minimization and maximization of (5) and (6).

Using this expanded system, upper and lower bounds for

the original system can be computed.

5.2 Guaranteed Bounds Using a Midpoint
Method for Differential Inequalities

For this method we applied the heterotrophic yield Y as
the uncertain parameter, which can vary in the interval Y =
[0.45, 0.55], thus the midpoint of this interval is Y̌ = 0.5.

To apply our method we have to compute the derivatives ∂f
∂x

and ∂f
∂p . The derivatives are

∂f1

∂S
= −D+

μmXvar(
K0

Svar
+ 1 + K1 · Svar

)2

Yvar

(−K0

S2
var

+ K1

)

∂f1

∂X
=

−μm

K0
Svar

+ 1 + K1 · Svar

1

Yvar

∂f1

∂Y
=

μm

K0
Svar

+ 1 + K1 · Svar

Xvar

Y 2
var

∂f2

∂S
=

μm

(K0
Svar

+ 1 + K1 · Svar)2
Xvar

(−K0

S2
var

+ K1

)

Figure 2. Simulations of the bacteria concen-
tration using the Midpoint Method with bisec-
tion

∂f2

∂X
=

(
−μm

K0
Svar

+ 1 + K1 · Svar

− D

)
Xvar

∂f2

∂Y
= 0.

The abbreviations zν = [x̌ν + vν , x̌ν + wν] for ν = 1, 2
will be used in the sequel. With the derivatives, the extended
system has the form

˙̌x1 = D (Sr − S) − μ

Y
X (36)

˙̌x2 = (μ − D)X (37)

v̇1 = inf

(
∂f1

∂S
(z)v1 +

∂f1

∂X
(z)[v2, w2]+

∂f1

∂Y
(Y−Y̌)

)
(38)

v̇2 = inf

(
∂f2

∂S
(z)[v1, w1] +

∂f2

∂X
(z)v2

)
(39)

ẇ1 = sup

(
∂f1

∂S
(z)w1 +

∂f1

∂X
(z)[v2, w2]+

∂f1

∂Y
(Y−Y̌)

)
(40)

ẇ2 = sup

(
∂f2

∂S
(z)[v1, w1] +

∂f2

∂X
(z)w2

)
. (41)

In Fig. 1 and Fig. 2 the black line represents the simulation

result using Y̌ as the midpoint of the uncertain parameter.

The dotted lines represent the upper and lower bounds. The

solution of the right hand side of this system leads to much

overestimation, thus the direct implementations of (36-41)

diverge just before the 60th time step. With the appropriate

factorisation of the right hand sides the overestimation can

be reduced significantly. The simulation of the factorised

extended system is represented by the undotted lines and

provides guaranteed bounds with much less overestimation.

5.3 Guaranteed Bounds provided by Lin-
ear Lyapunov-like functions

Taking the matrices and vectors following from the

model (34,35) the notation leads to

x(t) =
(

S(t)
X(t)

)
A =

(−D 0
0 −D

)

b =
(− 1

Y
1

)
d =

(
D SR

0

)
and the nonlinear function is defined as

g(t) = μm
S(t)

K0 + S(t) + K1S2(t)
X(t). (42)

We are applying the constrained optimization

min
c,γ

(
cT d

γ ci

)
subject to (43)

cT b = 0, c > 0,

(cT A)i < 0 for i = 1, 2 and

γ ≤
(−(cT A)i

ci

)
for i = 1, 2.

The constrained optimization leads to a vector c with a cor-

responding optimal γ, which delivers optimal bounds for

the state variable simulation for t → ∞. In this example

the optimization leads to c = (Y 1)T and γ = 0.1. In

Section 4 we proved the existence of a bounded ṽ(t), which

can be used to determine the range of the state variables.

According to (28) ṽ(t) is derived as

ṽ(t) = v(0)e−γt +
1
γ

Y cT d
(
1 − e−γt

)
⇒ ṽ(t) = (Y + 1)e−0.1t + 10 Y D SR

(
1 − e−0.1t

)
.

Using ṽ(t) to determine the upper bound of the substrate

concentration, we get

0 ≤ S(t)≤ ṽ(t)
c1

⇒

0 ≤ S(t)≤
(

1 +
1
Y

− 10DSR

)
e−0.1t+ 10DSR. (44)

Bounds for bacteria concentration result in

0 ≤ X(t)≤ ṽa(t)
c2

⇒
0 ≤ X(t)≤ (Y +1− 10 Y DSR)e−0.1t+ 10 Y DSR. (45)

These bounds can be used to provide the guaranteed enclo-

sure of the solution of the original systems state variables.

6 Simulation Results

In this section the Monte-Carlo method [1, 2] is com-

pared with our methods using linear Lyapunov-like func-

tions, Müller’s Theorem and the midpoint method. Our ap-

proaches are providing guaranteed bounds for the given un-

certain system. We achieve excellent results by intersect-

ing the upper bounds from the methods using both Müller’s

Theorem and linear Lyapunov-like functions.

In Fig. 3 and Fig. 4 the upper bound provided by lin-

ear Lyapunov-like functions is much higher than any of the

Monte-Carlo simulations. This comes from the constrained

optimization, where we ask for the best upper bound at

t → ∞ and the simulation results are computed only up to

100 time units. Nevertheless the upper bound provided by

Müller’s Theorem is bounding both state variables as tight

as possible.

The simulation results shown in Fig. 5 represent the sub-

strate concentration. In this simulation the upper bound

provided by linear Lyapunov-like functions and Müller’s

Theorem has the same value starting at approximately 200

time units. Comparing this to the Monte-Carlo simulation

with the highest values it is obvious that there is no bet-

ter upper bound than the given one. In Fig. 6 one can see

the simulation of the bacteria concentration up to 400 time

Figure 3. Simulations of the substrate con-
centration up to 100 time units
A: according to linear Lyapunov-like func-
tions
B: corresponding to Müller’s Theorem
C: provided by the Monte-Carlo method

units. In this simulation the upper bound of Müller’s The-

orem is unstable and diverging. This is a common problem

and a drawback of this method but by intersecting this re-

sult with the upper bound provided by linear Lyapunov-like

functions, the resulting set includes all possible variations

of the uncertain parameters and simultaneously represents

guaranteed bounds.

7 Conclusions

In this paper we proposed an algorithm for a guaranteed

simulation of nonlinear systems with uncertain parameters,

which uses linear Lyapunov-like functions. To achieve op-

timal bounds for t → ∞ we applied constrained optimiza-

tion. A short overview on the algorithm and an application

have been given. Moreover, we applied a second method

for bounding uncertain nonlinear systems, which is using

Müller’s Theorem. A third approach was given with a mid-

point method which exhibits overestimation. We got ex-

cellent bounds by intersecting the results of the first two

mentioned methods. We have implemented the algorithms

in Matlab [15] to perform the simulations. But these out-

puts does not provide validated simulation results, because

the Matlab ODE solvers does not mention roundoff errors.

There are some methods which provide validated results.

One of these methods is presented by Lohner [5] and called

the AWA-algorithm.

Figure 4. Simulations of the bacteria concen-
tration up to 100 time units
A: according to linear Lyapunov-like func-
tions
B: corresponding to Müller’s Theorem
C: provided by the Monte-Carlo method

Using our methods guaranteed simulations of nonlinear sys-

tems with uncertain parameters are computed. This was

demonstrated for a nonlinear system based on a bioreactor.

The future work is to combine these approaches with other

methods based on interval arithmetic [11, 12]. Especially

the midpoint method needs to be improved to get tighter

bounds.

References

[1] J.M. Hammersly, D.C. Handscomb, “Monte Carlo

Methods”, John Wiley & Sons, 1964.

[2] H. Kahn, “Applications of Monte Carlo”, Atomic En-
ergy Commission Report-3259, April, 1956.

[3] W. Walter, “Differential- und Integralungleichungen”,

Springer-Verlag, Berlin, 1964.

[4] M. Müller, “Über die Eindeutigkeit der Integrale eines

Systems gewöhnlicher Differenzialgleichungen und die

Konvergenz einer Gattung von Verfahren zur Approxi-

mation dieser Integrale”, Sitzungsbericht Heidelberger

Akad. d. Wiss., 1927.

[5] R. Lohner, “Einschließung der Lösung gewöhnlicher

Anfangs- und Randwertaufgaben und Anwendungen”,

PhD-Thesis, Universität Karlsruhe, 1988.

Figure 5. Simulations of the substrate con-
centration up to 400 time units
A: according to linear Lyapunov-like func-
tions
B: corresponding to Müller’s Theorem
C: provided by the Monte-Carlo method

[6] T. H. Gronwall, “Note on the derivatives with respect to

a parameter of the solutions of a system of differential

equations”, Ann. of Math. 20, pp. 292 - 296, 1918/19.

[7] G. Alefeld, J. Herzberger, “Introduction To Interval

Computations”, Academic Press, New York, 1983.

[8] E. Hansen, “Global Optimization Using Interval Anal-

ysis‘”, Marcel Dekker, New York, 1992.

[9] B. Tibken, M. Gennat, “Simulation of Nonlinear

Systems with Uncertain Parameters Using Linear

Lyapunov-like Functions”, Proceedings of MCS 2004,

pp. 83-88, Krakow, Poland.

[10] B. Tibken, M. Gennat, “A Novel Method of Nonlinear

System-Simulation with Uncertain Parameters Provid-

ing Guaranteed Bounds”, Proceedings of ACC 2005,

pp. 709-713, Portland, OR, USA.

[11] B. Tibken, A. Bulach, J. Heeks, E.P. Hofer, “Neue

Intervallarithmetische Methoden zur Garantierten Pa-

rameterschätzung”, Statusseminar, Technische Anwen-

dungen von Erkenntnissen der Nichtlinearen Dynamik,

Frankfurt, 1999.

[12] H. Aschemann, A. Rauh, M. Kletting, E. P. Hofer,

M. Gennat, B. Tibken, “Interval Analysis and Nonlin-

ear Control of Wastewater Plants with Parameter Un-

Figure 6. Simulations of the bacteria concen-
tration up to 400 time units
A: according to linear Lyapunov-like func-
tions
B: corresponding to Müller’s Theorem
C: provided by the Monte-Carlo method

certainty”, Proceedings of IFAC World Congress 2005,

Prague, Czech Republic, 2005.

[13] O. Didrit, L. Jaulin, M. Kieffer, E. Walter,“Applied In-

terval Analysis”, Springer-Verlag, London, 2001.

[14] D.W. Jordan, P. Smith, “Nonlinear Ordinary Differen-

tial Equations”, Clarendon Press, Oxford, 1977.

[15] L. Shampine, M. Reichelt, “The Matlab ODE Suite”,

SIAM J. Sci. Comput., 81, 1, pp. 1-22, 1997.

[16] U. Jeppson, “A General Description of the IAQW Ac-

tivated Sludge Model 1”, Lund Institute of Technology,

Lund, Sweden.

[17] M. Köhne, “Analyse und Regelung biologischer Ab-

wasserreinigungsprozesse in Kläranlagen”, Automa-

tisierungstechnik 46, at 5/98, R. Oldenbourg Verlag,

1998.

[18] B. Tibken, “Rechnergestützter Beobachterentwurf

für Bilineare Systeme”, PhD-Thesis, TU Hamburg-

Harburg, 1991.

[19] C. Posten, personal communication.

On the Approximation of Linear AE-Solution Sets

Alexandre Goldsztejn∗

University of California, Irvine
Irvine CA, USA

agoldy@ics.uci.edu

Gilles Chabert
INRIA

Sophia-Antipolis, France
Gilles.Chabert@sophia.inria.fr

Abstract

When considering systems of equations, it often happens
that parameters are known with some uncertainties. This
leads to continua of solutions that are usually approximated
using the interval theory. A wider set of useful situations
can be modeled if one allows furthermore different quan-
tifications of the parameters in their domains. In particu-
lar, quantified solution sets where universal quantifiers are
constrained to precede existential quantifiers are called AE-
solution sets.

A state of the art on the approximation of linear AE-
solution sets in the framework of generalized intervals (in-
tervals whose bounds are not constrained to be ordered in-
creasingly) is presented in a new and unifying way. Then
two new generalized interval operators dedicated to the ap-
proximation of quantified linear interval systems are pro-
posed and investigated.

1 Introduction

One of the most fundamental application of interval anal-
ysis is to allow one dealing with uncertain parameters (see
[12, 15, 8] for some introductions to interval analysis).
While a system of equations may have a discrete number of
solutions given a value of its parameters, it is likely to have
a manifold of solutions when parameters are constrained to
belong to some intervals. When the problem to be solved
consists of finding the solutions of systems of equations,
considering interval domains for parameters gives rise to
the definition of united solution sets:

Σ(f,a,b) := {x ∈ R
n|∃a ∈ a, ∃b ∈ b, f(a, x) = b},

(1)
where vectorial notations are used to obtain a compact ex-
pression (i.e. f : R

p × R
n → R

m). In the special case

∗This work was mainly done during the author’s thesis at the University
of Sophia Antipolis and his post-doctoral study at the University of Central
Arkansas.

where f is linear, the parameters (ai)i∈{1,...,p} are arranged
into a matrix A := (Aij)i,j∈{1,...,n} while an interval ma-
trix A := (Aij)i,j∈{1,...,n} is used to provide the interval
domains, leading to the notation

Σ(A,b) := {x ∈ R
n|∃A ∈ A, ∃b ∈ b, Ax = b}. (2)

An important part of interval analysis is dedicated to the
approximation of united solution sets, and in particular of
linear united solution sets. Methods such as the interval
Gauss-Seidel and Krawczyk operators, the interval Gauss
elimination (cf. [15] and references therein), the Hansen-
Bliek algorithm (cf. [16] and references therein), etc., are
widely used to build some outer approximations of linear
united solution sets.

A wider set of useful situations can be modeled by al-
lowing different quantifiers for parameters. A general quan-
tification of parameters is only little studied today in the
framework of numerical analysis1. Constraining universal
quantifiers to precede existential ones offers a compromise
between the modeling power and the difficulty of the prob-
lems met in the study of the solution set. Such solution
sets are called AE-solution sets2 (cf. [28, 4, 3] for the ap-
proximation of linear and non-linear AE-solution sets and
[9] for some applications). While interval analysis is well
fitted to the approximation of united solution sets, it has
been demonstrated that the formalism of generalized inter-
vals (i.e. interval whose bounds are not constrained to be
ordered) is the right framework for the approximation of
AE-solution sets.

A state of the art of the methods dedicated to the approx-
imation of linear AE-solution sets using generalized inter-
vals is first proposed. This state of the art introduces a new
convention for the representation of quantifiers using gener-
alized intervals, allowing to homogenize the approximation
of united solution sets in the framework of classical interval
analysis and the study of AE-solution sets in the framework

1The quantifier elimination, with its well-known limitations, is a formal
method which allows studying general quantifications (cf. [2]).

2This denomination coming from the succession of universal (All)
quantifiers preceding existential (Exists) ones.

of generalized intervals. Then two new generalized inter-
val operators dedicated to the outer approximation of linear
AE-solution sets are presented.

2 Generalized intervals

Generalized intervals are intervals whose bounds are not
constrained to be ordered, for example [−1, 1] and [1,−1]
are generalized intervals. They have been introduced in [17,
10] (see also [11, 28]) so as to improve the algebraic and the
order structures of intervals. The set of generalized intervals
is denoted by KR and is divided into three subsets:

• The set of proper intervals with bounds ordered in-
creasingly. These proper intervals are identified with
classical intervals. The set of proper intervals is de-
noted IR := {[a, b] | a ≤ b}. Strictly proper intervals
satisfy a < b.

• The set of improper intervals with bounds ordered de-
creasingly. It is denoted by IR := {[a, b] | a ≥ b}.
Strictly improper intervals satisfy a > b.

• The set of degenerated intervals {[a, b] | a = b} =
IR ∩ IR. Degenerated intervals are identified to reals.

Therefore, from a set of reals {x ∈ R|a ≤ x ≤ b} with
a ≤ b, one can build the two generalized intervals [a, b] and
[b, a]. It will be convenient to switch from one to the other
keeping the underlying set of reals {x ∈ R|a ≤ x ≤ b}
unchanged. To this purpose, the following three operations
are introduced:

• the dualization is defined by dual [a, b] = [b, a];

• the proper projection is defined by pro [a, b] =
[min{a, b}, max{a, b}];

• the improper projection is defined by imp [a, b] =
[max{a, b}, min{a, b}].

The generalized intervals are partially ordered by an in-
clusion which extends the inclusion of classical intervals.
Given two generalized intervals x = [x,x] and y = [y,y],
the inclusion is defined by

x ⊆ y ⇐⇒ y ≤ x ∧ x ≤ y. (3)

For example, [−1, 1] ⊆ [−1.1, 1.1] (this matches the set in-
clusion), [1.1,−1.1] ⊆ [1,−1] (the inclusion between the
underlying sets of reals is reversed for improper intervals)
and [2, 0.9] ⊆ [−1, 1]. The latter case is known to provide
the following interpretation: given x,y ∈ IR, x ∩ y = ∅
is equivalent to dual x ⊆ y (which is also equivalent to
dual y ⊆ x). As degenerated intervals are identified to re-
als, if x is proper then x ∈ x ⇐⇒ x ⊆ x. On the other

hand, if x is not proper then for all x ∈ R the inclusion
x ⊆ x is false (hence a characterization of a set E of the
form x ∈ E =⇒ x ⊆ x means that E ⊆ x in the case where
x is proper, while E = ∅ in the case where x is not proper).
From this inclusion are defined generalized interval meet
and join operation: [a, b]∧ [c, d] := [max{a, c}, min{b, d}]
and ∨ := [min{a, c}, max{b, d}]. Note that it is important
to use different symbols to differentiate these latter opera-
tions with the union and intersection of classical intervals:
e.g. [−1, 1] ∩ [2, 3] = ∅ while [−1, 1] ∧ [2, 3] = [2, 1].

The generalized interval arithmetic (also called Kaucher
arithmetic) extends the classical interval arithmetic. When
only proper intervals are involved, this arithmetic coin-
cides with the interval arithmetic: for x,y ∈ IR one has
x ◦ y = {x ◦ y ∈ R | x ∈ x, y ∈ y}. When proper and im-
proper intervals are involved, some new operations are in-
troduced. The expressions of the generalized interval addi-
tion and subtraction are the same as their classical counter-
parts:

[a, b] + [c, d] = [a + c, b + d], (4)

[a, b] − [c, d] = [a − d, b − c]. (5)

The expression of the generalized interval multiplication is
given in Table 1 and Table 2, where

P = {x ∈ KR|0 ≤ x ∧ 0 ≤ x}
−P = {x ∈ KR|0 ≥ x ∧ 0 ≥ x}
Z = {x ∈ KR|x ≤ 0 ≤ x}

dual Z = {x ∈ KR|x ≥ 0 ≥ x}.

Table 1. Generalized interval multiplication
x · y y ∈ P y ∈ Z

x ∈ P [x y,x y] [x y,x y]

x ∈ Z [x y,x y]
[min{x y,x y},
max{x y,x y}]

x ∈ −P [x y,x y] [x y,x y]

x ∈ dualZ [x y,x y] 0

The generalized interval division x/y is defined for in-
tervals x and y which satisfy 0 /∈ (pro y). It can be charac-
terized by x/y = x× (1/y), where 1/y = [1/y, 1/y].

The generalized interval arithmetic has better algebraic
properties than the classical interval arithmetic: the addition
in KR is a group. The opposite of an interval x is −dual x,
i.e.,

x + (−dual x) = x − dual x = [0, 0]. (6)

Table 2. Generalized interval multiplication
x · y y ∈ −P y ∈ dual Z

x ∈ P [x y,x y] [x y,x y]

x ∈ Z [x y,x y] 0

x ∈ −P [x y,x y] [x y,x y]

x ∈ dualZ [x y,x y]
[max{x y,x y,
min{x y,x y}}]

The multiplication in KR restricted to generalized intervals
whose proper projection does not contain 0 is also a group.
The inverse of such a generalized interval x is 1/(dual x),
i.e.,

x · (1/dual x) = x/(dual x) = [1, 1]. (7)

Although addition and multiplication in KR are associative,
they are not distributive. The addition and multiplication in
KR are linked by the following distributivity law, called the
conditional distributivity (see [29, 18, 28]). Whatever are
x,y, z ∈ KR,

x ·y+(imp x) ·z ⊆ x ·(y+z) ⊆ x ·y+(pro x) ·z. (8)

The three following particular cases will be of practical in-
terest in this paper:

• Subdistributivity: if x ∈ IR then x · (y + z) ⊆ x · y +
x · z.

• Superdistributivity: if x ∈ IR then x · (y + z) ⊇ x ·
y + x · z.

• Distributivity: if x ∈ R then x · (y+ z) = x ·y+x · z.

Another useful property of the generalized interval arith-
metic is its monotonicity with respect to inclusion: what-
ever are ◦ ∈ {+, ·,−,÷} and x,y,x′,y′ ∈ KR,

x ⊆ x′ ∧ y ⊆ y′ =⇒ (x ◦ y) ⊆ (x′ ◦ y′). (9)

More specifically the following equivalence holds:

x ⊆ x′ ⇐⇒ x + y ⊆ x′ + y. (10)

Finally, generalized interval vectors x ∈ KR
n and gener-

alized interval matrices A ∈ KR
n×n together with their

additions and multiplications are defined similarly to their
real and classical interval counterparts. The operations pro
and dual are applied componentwise to these objects.

3 Linear AE-solution sets

AE-solution sets generalize united solution sets allowing
different quantification of the parameters in their interval
domains, with the constraint that universal quantifiers pre-
cede existential quantifiers. For example, given A ∈ IR

2×2

and b ∈ IR
2, the following solution set is an AE-solution

set:

{x ∈ R
2|∀A11 ∈ A11, ∀A21 ∈ A21, ∀A22 ∈ A22,

∀b1 ∈ b1, ∃A12 ∈ A12, ∃b2 ∈ b2, Ax = b}.
(11)

As quantifiers of the same kind commute, an AE-solution
set is completely defined by one interval and one quantifier
for each parameter Aij and bk. A useful representation of
linear AE-solution sets is given in [28]: Aα and bα are
defined for α ∈ {∀, ∃} as

(Aα)ij =
{

Aij if Qij = α
0 otherwise

(12)

and

(bα)k =
{

bk if Qk = α
0 otherwise

, (13)

where Qij , Qk ∈ {∃, ∀} are the quantifiers of the corre-
sponding parameters. Thanks to these definitions, the gen-
eral expression of a linear AE-solution can be given in the
following way:

{x ∈ R
n|∀A∀ ∈ A∀, ∀b∀ ∈ b∀, ∃A∃ ∈ A∃,

∃b∃ ∈ b∃, (A∀ + A∃)x = (b∀ + b∃)}. (14)

For example, the AE-solution set (11) can be defined by

A∃ =
(

0 A12

0 0

)
, A∀ =

(
A11 0
A21 A22

)
, (15)

b∃ =
(
0 b2

)T
, b∀ =

(
b1 0

)T
. (16)

Applied with (15) and (16), Definition (14) is obviously
equivalent to (11). Finally, a second useful representation
of AE-solution sets is introduced using generalized inter-
vals. Each parameter has to be associated both an interval
and a quantifier. Generalized intervals provide a very good
representation of this couple of data. One associates a gen-
eralized interval to each parameter with the following inter-
pretation:

• The proper projection of the generalized interval is the
interval domain of this parameter.

• The quantifier associated to the parameter depends on
the proper/improper quality of the generalized interval:
Aij ∈ IR ⇐⇒ Qij = ∃ and hence inf Aij >
supAij ⇐⇒ Qij = ∀. Also, bk ∈ IR ⇐⇒ Qk =
∃ and hence inf bk > supbk ⇐⇒ Qk = ∀.

These two different definitions of linear AE-solution sets
are obviously related by

A = A∃ + dual A∀ (17)

b = b∃ + dual b∀. (18)

The convention chosen here to relate quantifiers and
proper/improper qualities is different to the one used in [28].
The new convention has the great advantage of unifying the
framework of AE-solution sets with the classical framework
of united solution sets. The notation Σ(A,b) can now be
generalized to AE-solution sets: Σ(A,b) is now defined
for A ∈ KR

n×n and b ∈ KR
n and corresponds to the AE-

solution set obtained using the conventions stated above. In
particular, if A ∈ IR

n×n and b ∈ IR
n then

Σ(A,b) = {x ∈ R
n|∃A ∈ A, ∃b ∈ b, Ax = b}, (19)

so the united solution set is defined as a particular AE-
solution set in a homogeneous way. If A ∈ IR

n×n
and

b ∈ IR
n then

Σ(A,b) = {x ∈ R
n|∀A ∈ pro A, ∃b ∈ b, Ax = b} (20)

and it is called a tolerable solution set. If A ∈ IR
n×n and

b ∈ IR
n

then

Σ(A,b) = {x ∈ R
n|∀b ∈ pro b, ∃A ∈ A, Ax = b} (21)

and it is called a controllable solution set. As another ex-
ample, the AE-solution set (11) can be written Σ(A′,b′)
with

A′ =
(

dual A11 A12

dual A21 dual A22

)
(22)

and

b′ =
(

dual b1

b2

)
. (23)

Remark. With these definitions, the new convention for the
relationship between quantifiers and proper/improper qual-
ities and the convention proposed in [28] are related by
Σ(A,b) = Ξ(dual A,b). This change of notation allows
an homogenization between the classical interval analysis
and the framework of generalized intervals dedicated to the
approximation of AE-solution sets. As shown in [5], this
homogenization is effective also in the context of non-linear
united and AE-solution sets, where a generalized interval
Newton operator dedicated to the approximation of non-
linear AE-solution sets has been proposed.

Not only do generalized intervals provide us with a
very convenient modeling language for AE-solution sets,
but they are also a powerful analytical framework for their
study. In particular, the following characterization theorem
discovered and proved by Shary is of central importance. Its
statement differs from the one proposed in [28] only by the

new convention chosen for the relation between the quanti-
fiers and the proper/improper qualities of generalized inter-
vals. Also, the proof proposed here is reproduced from the
one given in [28] using the new convention. This proof pro-
vides a interesting insight of the relationship between the
group structure of the generalized interval addition and its
interpretation in the context of AE-solution sets.

Theorem 1. Let A ∈ KR
n×n and b ∈ KR

n. Then

x ∈ Σ(A,b) ⇐⇒ (dual A)x ⊆ b. (24)

Proof. By definition of an AE-solution set, x ∈ Σ(A,b) is
equivalent to

∀A∀ ∈ A∀, ∀b∀ ∈ b∀, ∃A∃ ∈ A∃, ∃b∃ ∈ b∃,
(A∀ + A∃)x = b∀ + b∃. (25)

where A∀, A∀, b∀ and b∀ are defined as in (12) and (13),
so A = A∃+dual A∀ and b = b∃+dual b∀. Now, (A∀+
A∃)x = (b∀ + b∃) is equivalent to A∀x− b∀ = −A∃x+ b∃.
Furthermore, obviously both A∀x−b∀ = {A∀x−b∀|A∀ ∈
A∀, b∀ ∈ b∀} and −A∃x + b∃ = {−A∃x + b∃|A∃ ∈
A∃, b∃ ∈ b∃} hold because each parameter has only one
occurrence in the whole system. As a consequence, (25) is
equivalent to

A∀x − b∀ ⊆ −A∃x + b∃. (26)

Now, adding dual (A∃x) + dual b∀ and using the group
property of the generalized interval addition, one proves
that (26) is equivalent to

A∀x + dual (A∃x) ⊆ b∃ + dual b∀. (27)

Finally, noticing that A∀x + dual (A∃x) = A∀x +
(dual A∃)x = (A∀ + dual A∃)x, the last equality be-
ing a consequence of the distributivity of the addition and
multiplication in KR, one obtain the equivalent inclusion
(dual A)x ⊆ b.

The characterization (24) is an elegant generalization of
the previously known characterizations in the special cases
of united, tolerable and controllable solution sets:

• If A ∈ IR
n×n and b ∈ IR

n then (dual A)x ⊆ b is
equivalent to Ax ∩ b �= ∅ which is the well-known
characterization of united solution sets.

• If A ∈ IR
n×n

and b ∈ IR
n then (dual A)x ⊆ b is

equivalent to (pro A)x ⊆ b which is the well-known
characterization of tolerable solution sets.

• If A ∈ IR
n×n and b ∈ IR

n
then (dual A)x ⊆ b is

equivalent to (pro b) ⊆ Ax which is the well-known
characterization of controllable solution sets.

As a direct consequence of Theorem 1, we have A ⊆ A′

and b ⊆ b′ imply Σ(A,b) ⊆ Σ(A′,b′). In particular
Σ(A,b) ⊆ Σ(pro A, pro b) which states that universal
quantifiers are more restrictive than existential ones.

4 Approximation of linear AE-solution sets

As in the classical interval theory for the approximation
of linear united solution sets, the approximation of linear
AE-solution sets can be done both through the characteriza-
tion of the solutions of some auxiliary interval equation or
using contracting interval operators. The following subsec-
tions give a survey of these methods. The use of the new
convention relating the quantifiers and the proper/improper
quality of generalized intervals allows us to give an homog-
enized presentation with the classical interval framework.

Throughout this section, A ∈ KR
n×n and b ∈ KR

n

are considered. They correspond to a linear AE-solution set
Σ(A,b).

4.1 Auxiliary interval equations

This section presents three generalized interval equa-
tions whose solutions can be interpreted as some approx-
imation of linear AE-solution sets. The technique which
consists in solving some auxiliary interval equation to build
approximation of AE-solution set is called the formal al-
gebraic approach to AE-solution set approximation (see
[24, 13, 23, 14, 26, 21, 22, 4]).

Remark. It must be noted that, in spite of the usefulness of
the formal algebraic approach to AE-solution set approxi-
mation, no rigorous rounding process has yet been proposed
to allow correctly rounded approximations.

4.1.1 Auxiliary interval equation dedicated to inner
approximation

While inner approximation is not studied in the classical in-
terval analysis of linear united solution sets, it arises nat-
urally in the generalized interval analysis of linear AE-
solution sets. The following theorem provides a way to
build an inner approximation of some linear AE-solution
set. The proof is reproduced from the one given by Shary
in [28] but using the new convention relating the quantifiers
and the proper/improper quality of generalized intervals.

Theorem 2. Every proper solution x ∈ IR
n of the interval

equation

(dual A)x = b (28)

is an inner approximation of Σ(A,b), i.e. x ⊆ Σ(A,b).

Proof. Let a proper interval vector x be a formal solution
of the equation (28) and x̃ ∈ x. Then, in view of the
monotonicity of the generalized interval arithmetic, we have
(dual A)x̃ ⊆ (dual A)x = b, that is x ∈ Σ(A,b) by The-
orem 1.

Remark. Using the convention relating the quantifiers and
the proper/improper quality of generalized intervals pre-
viously used in [28, 21, 4], the equation (28) is written
Ax = b in the latter papers. However, Kupriyanova gave
in [13] the same expression and the same interpretation for
the equation (28) but in the restricted case of united solution
sets.

4.1.2 Auxiliary interval equations dedicated to outer
approximation

Two generalized interval equations have been proposed for
the outer approximation of linear AE-solution sets. The fol-
lowing theorem is proposed by Shary in [26] (see also [28]).

Theorem 3. Suppose that ρ(|I − pro A|) < 1. Then,
the following interval equation has an unique solution x ∈
KR

n:
x = (I − A)x + b. (29)

Furthermore, if the solution x is proper then it contains
Σ(A,b); if the solution x is not proper then Σ(A,b) is
empty.

Equation (29) is written x = (I − dual A)x + b in
[28, 21, 4]. Thanks to the newly introduced convention
relating the quantifiers and the proper/improper quality of
generalized intervals, one can now see the similitude of this
equation with the Krawczyk operator dedicated to linear
united solution sets: in the case where A and b are proper,
iterating the fixed point form of Equation (29) corresponds
to the Krawczyk operator where the intersection with the
last approximation would not be performed.

4.1.3 Solving generalized interval equations

Several ways can be used to solve the auxiliary interval
equations presented in the previous section. The most sim-
ple, though very efficient, is to write them in a fixed point
form and to iterate this fixed point form. If this iteration
converges then its limit is a solution of the fixed point form,
and hence of the original equation. A widely used fixed
point form of (28) is

∧
i∈{1,...,n}

xi =
1

dual Aii

(
bi −

∑
j∈[1..n]

j �=i

dual (Aijxj)
)
.

(30)
and is defined provided that 0 /∈ pro Aii for all i ∈
{1, . . . , n}. It is proved in [4] that this fixed point iter-
ation converges to the unique solution of (28) if pro A
is an H-matrix (see also [14]). Equation (29) is already
in fixed point form. The fixed point iteration is proved
to converge to the unique solution of (29) provided that
ρ(|I − pro A|) < 1 (see [26, 28]).

Other resolution processes have been proposed: Shary
has proposed in [23, 25] to immerse the interval equation
to be solved in R

2n where a system of 2n real equations
is obtained making explicit the expression of the general-
ized interval arithmetic. The resulting real system is not dif-
ferentiable and a dedicated solving process have been pro-
posed by Shary. Also, Sainz et al. have proposed in [21]
to change the auxiliary interval equation to an optimization
problem which can be handled using existing optimization
softwares. Finally, the group structures of the generalized
interval arithmetic allow in some situation to solve equa-
tions and systems of equations. This has been studied e.g.
in [18].

4.2 Generalized interval operators

Only one generalized interval operator is available for
the outer approximation of linear AE-solution sets: Shary
has proposed a generalized interval Gauss-Seidel operator
in [27] (see also [28]). It has the same interpretation as
its classical interval counterpart, but extended to linear AE-
solution sets. Using the newly introduced convention relat-
ing the quantifiers and the proper/improper quality of gen-
eralized intervals, Shary’s generalized interval Gauss-Seidel
operator now has the same expression as its classical coun-
terpart.

Theorem 4. Provided that 0 /∈ pro Aii for all i ∈
{1, . . . , n}, the generalized interval Gauss-Seidel operator
Γ(A,b,x) is defined by Γ(A,b,x) := y with

yi :=
1

Aii

(
bi −

∑
j<i

Aijyj −
∑
j>i

Aijxj

)
, (31)

If Γ(A,b,x) is proper then Σ(A,b) ∩ x ⊆ Γ(A,b,x).
Otherwise Σ(A,b) ∩ x = ∅.

Remark. Using the other convention relating the quan-
tifiers and the proper/improper quality of generalized
intervals, the generalized interval Gauss-Seidel opera-
tor is written (1/dual Aii)

(
bi − ∑

j<i(dual Aij)yj −∑
j>i(dual Aij)xj

)
in [28].

Theorem 4 is the typical situation where the newly in-
troduced convention shows its usefulness: the classical and
generalized interval Gauss-Seidel operators now share both
their expression and their interpretation. Note however that
the classical interval Gauss-Seidel operator can be applied
in situations where 0 ∈ pro Aii thanks to the use of an ex-
tended division while the generalized interval Gauss-Seidel
operator proposed by Shary needs 0 /∈ pro Aii for all
i ∈ {1, . . . , n}. This gap will be filled in Section 6.

Remark. The generalized interval Gauss-Seidel operator
can be used with outer rounding, hence rigorously preserv-
ing the inclusion of the AE-solution set.

4.3 Preconditioning

Preconditioning consists in studying an auxiliary solu-
tion set where the approximation methods both keep their
interpretation and have a better behavior. Two kinds of
preconditioning have been proposed for linear AE-solution
sets. First, Shary proved that

Σ(A,b) ⊆ Σ(CA, Cb), (32)

where C ∈ R
n×n is regular, hence generalizing the precon-

ditioning process used in the context of united solution sets.
Indeed by (32), an outer approximation of Σ(CA, Cb) is
also an outer approximation of Σ(A,b). While such a pre-
conditioning process improves the stability of the Gauss-
Seidel operator, it is even more important when using The-
orem 3 where the condition ρ(|I − pro A|) < 1 is actually
very restrictive. Using the midpoint inverse precondition-
ing, i.e. C = (mid A)−1, Theorem 3 can be applied with
any interval matrix that satisfies pro A is strongly regular
(see [28] for more details).

Another preconditioning process dedicated to inner ap-
proximation has been proposed by the first author in [4].
There, the following inclusion is proved3:

{x̃+Cu|u ∈ Σ(imp AC, b−dual Ax̃)} ⊆ Σ(A,b), (33)

where C ∈ R
n×n is regular. As a consequence, if u

is an inner approximation of the auxiliary AE-solution
set Σ(imp AC, b − dual Ax̃) then the following inclusion
holds:

{x̃ + Cu|u ∈ u} ⊆ Σ(A,b). (34)

Therefore, computing an inner approximation u of the aux-
iliary AE-solution set Σ(imp AC, b − dual Ax̃) gives rise
to an inner approximation of the original AE-solution set
Σ(A,b) under the form of a parallelepiped {x̃ + Cu|u ∈
u}. Inner approximation methods (in particular the fixed
point iteration) often have a better behavior when applied to
Σ(imp AC, b − dual Ax̃) using e.g. C = (mid A)−1.

5 Generalized interval Krawczyk operator

Thanks to the new conventions used in the present pa-
per, it is now clear that the auxiliary interval equation (29)
is similar to the Krawczyk operator for linear united solu-
tion sets. It is therefore natural to introduce a generalized
interval Krawczyk operator.

Theorem 5. The generalized interval Krawczyk operator is
defined by

K(A,b,x) :=
(
(I − A)x + b

)
∧ x, (35)

3The inclusion (33) is actually an obvious consequence of Proposition
4.1 and Proposition 4.2 of [4]

where an non-proper interval vector is interpreted as the
emptyset. If K(A,b,x) is proper then Σ(A,b) ∩ x ⊆
K(A,b,x). Otherwise Σ(A,b) ∩ x = ∅.

Proof. Consider any x ∈ x ∩ Σ(A,b). Then by The-
orem 1 the inclusion (dual A)x ⊆ b holds. The gen-
eralized interval distributivity gives rise to (dual A)x =
x+(dual A−I)x. Therefore x+(dual A−I)x ⊆ b holds.
Now, adding −dual

(
(dual A − I)x

)
= (I − A)x to each

side of the inclusion gives rise to x ⊆ (I−A)x+b. Finally
the interval inclusion isotonicity proves x ⊆ (I −A)x + b
and hence x ⊆ K(A,b,x) because x ⊆ x. As a con-
sequence, if K(A,b,x) is proper then x ∈ K(A,b,x).
On the other hand if K(A,b,x) is not proper then no x
can satisfy x ⊆ K(A,b,x) and therefore Σ(A,b) ∩ x is
empty.

The generalized interval Krawczyk operator presents
several advantages on its generalized interval equation
counterpart (29): first it can be applied with no restric-
tion on A. Second, an initial enclosure can be provided
in order to enclose Σ(A,b) ∩ x. If no initial enclo-
sure is available and if A is strongly regular then one
can use [−1, 1] 〈pro A〉−1 |pro b| which is a enclosure of
Σ(pro A, pro b) (cf. [15]).

6 Improved generalized interval Gauss-
Seidel operator

The generalized interval Gauss-Seidel (IGS in this sec-
tion) operator presented in Section 4.2 cannot be applied if
0 ∈ pro Aii for some i. The situation was similar with
the first version of classical IGS operator proposed in [20].
Latter, an improved classical IGS have been proposed in [7]
which allows dealing with zero-containing intervals. This
section presents an improved version of the generalized in-
terval Gauss-Seidel operator that can deal with any gener-
alized interval matrix, hence extending the ideas of [7] to
linear AE-solution sets.

6.1 One dimensional case

Following the presentation given in [15] in the context of
united solution sets, the improved generalized IGS operator
is first defined in the case n = 1. In this situation, the AE-
solution set Σ(a,b) is defined by two generalized intervals
a,b ∈ KR. Given furthermore a proper interval x ∈ IR,
the improved generalized IGS operator is defined as

Γ(a,b,x) := �
(
Σ(a,b)

⋂
x
)
. (36)

The next proposition provides a computable expression of
Γ(a,b,x).

Proposition 1. In the following expressions, an improper
interval is interpreted as an emptyset.

1. If 0 /∈ pro a then Γ(a,b,x) = (b/a)
∧

x.

2. If 0 ⊆ a then define E as the open interval
] min{0,b/a,b/a} , max{0,b/a,b/a}[4. Then,
Γ(a,b,x) = �(x\E).

3. If a ⊆ 0 then Γ(a,b,x) =[
max{b/a,b/a} , min{b/a,b/a}]∧

x.

Proof. Cf. [5] pages 105-107.

Remark. As in [15], the expression of Γ(a,b,x) is not de-
tailed in the cases where a = 0 or a = 0. Also, one can
check that when 0 ∈ a and b is proper, the expression pro-
posed here coincides with the one proposed in [15] in the
context of one dimensional linear united solution sets.

The next example illustrates Proposition 1.

Example 1. Consider a = [1,−1] and b = [−1, 3] and the
one dimensional AE-solution set Σ(a,b) =

{
x ∈ R | (∀a ∈ [−1, 1]

)(∃b ∈ [−1, 3]
)(

ax = b
)}

. (37)

Determining this simple AE-solution set can be done
graphically. Fix a value of a in [−1, 1]. Then the
set

{
x ∈ R | (∃b ∈ [−1, 3]

)(
ax = b

)}
can be easily deter-

mined: it is the set of solutions of the equation ax = b for
some b ∈ [1, 3] (it is plotted on the left hand side graphic
of Figure 1 for a = 1). Therefore, in order to obtain the
set of x ∈ R that satisfies

(∃b ∈ [−1, 3]
)(

ax = b
)

for any
a ∈ [−1, 1], it remains to intersect all the strips obtained for
a ∈ [−1, 1]. Three of these strips and the resulting inter-
section are plotted on the right hand side graph where we
can see that Σ(a,b) = [−1, 1]. It can be noted that the
AE-solution set is bounded while 0 ∈ pro a. Now, given an
initial x = [−∞,∞], the generalized IGS Γ(a,b,x) leads
to

[
max{b/a,b/a} , min{b/a,b/a}], which is equal to

[−1, 1]. This is indeed equal to Σ(a,b).

Link with a generalized interval division

Proposition 1 can be used to extend the generalized interval
division to cases where the numerator’s proper projection
contains zero: in these cases b/a is defined by

] −∞, min{0,b/a,b/a}]⋃
[max{0,b/a,b/a}, +∞[if 0 ⊆ a (38)

[
max{b/a,b/a} , min{b/a,b/a}] if a ⊆ 0. (39)

4This open interval is well defined because the first bound is always
lower or equal than the second. Note furthermore that]0, 0[= ∅ while
�∅ = ∅.

Figure 1.

Then, the generalized IGS expression can be written
Γ(a,b,x) = �(1/a ∩ x), where an improper 1/a is in-
terpreted as an empty set for the intersection with x. An
other extension of the generalized interval division has been
proposed in [10] and further studied in [19]. The study of
the relationship between these two extensions remains to be
conducted.

6.2 The general case

A n dimensional generalized IGS can now be con-
structed: consider A ∈ KR

n×n, b ∈ KR
n and x ∈ IR

n.
Then the generalized IGS Γ(A,b,x) is defined in the fol-
lowing way: for i ∈ {1, . . . , n}

Γ(A,b,x)i := Γ
(
Aii , bi−

∑
j<i

Aijyj −
∑
j>i

Aijxj , xi

)
,

(40)
where Γ(a,b,x) is defined in Subsection 6.1. The next the-
orem provides the interpretation of this improved general-
ized IGS.

Theorem 6. Let A ∈ KR
n×n, b ∈ KR

n×n and x ∈
IR

n×n. Then

Σ(A,b)
⋂

x ⊆ Γ(A,b,x) ⊆ x (41)

Proof. Cf. [5] pages 107-108.

The usefulness of the improved generalized IGS opera-
tor is illustrated by the following example. As in [3], both
interval Gauss-Seidel operators are applied not only on the
diagonal entries of the matrix but on all entries, leading to
n × n applications of the one dimensional operator instead
of only n applications.

Example 2. Consider

A =
(

1 [−1, 1]
2 [1,−1]

)
, b =

(
[1,−1]
[−1, 1]

)
. (42)

Figure 2.

The AE-solution set Σ(A,b) is displayed on Figure 2. Note
that this AE-solution set is bounded while pro A is not reg-
ular which is not possible in the context of united solution
sets. The initial box is set to ([−10, 10], [0, 20]). The in-
terval Gauss-Seidel without the improvement proposed in
this paper leads to the contracted box ([−1, 1], [0, 20]). The
improved Gauss-Seidel leads to ([−1, 1], [0, 4]) and hence
provides an additional contraction.

7 Conclusion

AE-solution sets generalize the united-solution sets al-
lowing different quantifications of parameters, the univer-
sal quantifiers preceding the existential ones. They allow
to model useful situations. It has become clear that gen-
eralized intervals are the right framework for the study of
AE-solution sets. Thanks to the proposition of a new con-
vention for the association of a quantifier to a generalized
interval, the studies of united solution sets and AE-solution
sets have been homogenized. This has allowed to propose a
generalized interval Krawczyk operator and an extension of
Shary’s generalized interval Gauss-Seidel to interval matri-
ces with zero-containing intervals on the diagonal.

The interval Gauss elimination and Hansen-Bliek algo-
rithm have not been considered in this paper. They have
been investigated by the authors in [6] and [1] respectively.
However, their generalization to AE-solution sets is not as
direct as the techniques presented in the present paper, and
still some work remains to be conducted in this direction.

References

[1] G. Chabert and A. Goldsztejn. Extension of the Hansen-
Bliek Method to Right-Quantified Linear Systems. Reliab.
Comp., 13(4):325–349, 2007.

[2] G. Collins. Quantifier elimination by cylindrical alge-
braic decomposition–twenty years of progress. In Quanti-
fier Elimination and Cylindrical Algebraic Decomposition,
pages 8–23, 1998.

[3] A. Goldsztejn. A Branch and Prune Algorithm for the Ap-
proximation of Non-Linear AE-Solution Sets. In SAC ’06:
Proceedings of the 2006 ACM symposium on Applied com-
puting, pages 1650–1654.

[4] A. Goldsztejn. A Right-Preconditioning Process for the
Formal-Algebraic Approach to Inner and Outer Estimation
of AE-solution Sets. Reliab. Comp., 11(6):443–478, 2005.

[5] A. Goldsztejn. Définition et Applications des Extensions des
Fonctions Réelles aux Intervalles Généralisés. PhD thesis,
Université de Nice-Sophia Antipolis, 2005.

[6] A. Goldsztejn and G. Chabert. A Generalized Interval LU
Decomposition for the Solution of Interval Linear Systems.
In Proceedings NM&A 2006, Borovets, Bulgaria, August
2006.

[7] E. Hansen and S. Sengupta. Bounding solutions of systems
of equations using interval analysis. BIT, 21:203–211, 1981.

[8] B. Hayes. A Lucid Interval. American Scientist, 91(6):484–
488, 2003.

[9] M. Jirstand. Nonlinear control system design by quantifier
elimination. Journal of Symbolic Computation, 24(2):137–
152, 1997.

[10] E. Kaucher. Uber metrische und algebraische Eigenschaften
einiger beim numerischen Rechnen auftretender Raume.
PhD thesis, Karlsruhe, 1973.

[11] E. Kaucher. Interval Analysis in the Extended Interval Space
IR. Computing, Suppl. 2:33–49, 1980.

[12] R. B. Kearfott. Interval Computations: Introduction, Uses,
and Resources. Euromath, Bulletin 2(1):95–112, 1996.

[13] L. Kupriyanova. Inner estimation of the united solution set
of interval linear algebraic system. Reliab. Comp., 1(1):15–
31, 1995.

[14] S. Markov, E. Popova, and C. Ullrich. On the solution of
linear algebraic equations involving interval coefficients. It-
erative Methods in Linear Algebra, IMACS Series on Com-
putational and Applied Mathematics, 3:216–225, 1996.

[15] A. Neumaier. Interval Methods for Systems of Equations.
Cambridge Univ. Press, Cambridge, 1990.

[16] A. Neumaier. A simple derivation of the Hansen-Bliek-
Rohn-Ning-Kearfott enclosure for linear interval equations.
Reliab. Comp., 5:131–136, 1999.

[17] H.-J. Ortolf. Eine Verallgemeinerung der Intervallarith-
metik. Geselschaft fuer Mathematik und Datenverarbeitung,
Bonn, 11:1–71, 1969.

[18] E. Popova. Multiplication distributivity of proper and im-
proper intervals. Reliab. Comp., 7(2):129–140, 2001.

[19] E. D. Popova. Extended Interval Arithmetic in IEEE
Floating-Point Environment. Reliab. Comp., 4:100–129,
1994.

[20] F. Ris. Interval analysis and applications to linear algebra.
PhD thesis, Oxford, 1972.

[21] M. Sainz, E. Gardenyes, and L. Jorba. Formal Solution to
Systems of Interval Linear or Non-Linear Equations. Reliab.
Comp., 8(3):189–211, 2002.

[22] M. Sainz, E. Gardenyes, and L. Jorba. Interval Estimations
of Solutions Sets to Real-Valued Systems of Linear or Non-
Linear Equations. Reliab. Comp., 8(4):283–305, 2002.

[23] S. Shary. Algebraic Approach to the Interval Linear Static
Identification, Tolerance and Control Problems, or One
More Application of Kaucher Arithmetic. Reliab. Comp.,
2:3–33, 1996.

[24] S. Shary. Algebraic Solutions to Interval Linear Equa-
tions and their Application. In Proceedings of the IMACS
- GAMM International Symposium on Numerical Methods
and Error Bounds, Oldenburg, 1995. Editors: G. Alefeld
and J. Herzberger, 1996.

[25] S. Shary. Algebraic approach in the ”outer problem” for
interval linear equations. Reliab. Comp., 3:103–135, 1997.

[26] S. Shary. Outer estimation of generalized solution sets to
interval linear systems. Reliab. Comp., 5:323–335, 1999.

[27] S. Shary. Interval Gauss-Seidel Method for Generalized
Solution Sets to Interval Linear Systems. Reliab. Comp.,
7:141–155, 2001.

[28] S. Shary. A new technique in systems analysis under interval
uncertainty and ambiguity. Reliab. Comp., 8:321–418, 2002.

[29] SIGLA/X group. Modal intervals. Reliab. Comp., 7:77–111,
2001.

Rigorous Inner Approximation of the Range of Functions

Alexandre Goldsztejn∗

University of California, Irvine
Irvine CA, USA

agoldy@ics.uci.edu

Wayne Hayes
University of California, Irvine

Irvine CA, USA
wayne@ics.uci.edu

Abstract

A basic problem of interval analysis is the computation
of a superset of the image of an interval by a function, called
an outer enclosure. Here we consider the computation of
an inner enclosure, which is a subset of the image. Inner
approximations are harder than the outer ones in general:
proving that a box is inside the image is equivalent to prov-
ing existence of solutions for a collection of systems of equa-
tions. Based on this remark, a new construction of the inner
approximation is proposed that is particularly efficient for
small domains. Then, it is shown than one can apply these
ideas in the context of ordinary differential equations, hence
providing some tools of potential interest for the theory of
shadowing in dynamical systems.

1 Introduction

Interval analysis is naturally used to construct subsets
(also called outer approximations, enclosures) of the range
of real functions, i.e., intervals that rigorously contain the
image of some domain by the function (see [18, 11] for an
introduction to interval analysis). Constructing inner ap-
proximations of the range of a real function—i.e., intervals
that are rigorously contained inside the image of some do-
main by the function—needs additional developments. Al-
though many authors have investigated the construction of
inner approximations in the case of functions f : R

n −→ R

(see [27, 15] and references therein), a lot of work remains
in the case of vector-valued functions f : R

n −→ R
m.

There is a direct relationship between inner approxima-
tion and existence theorems for systems of equations. In-
deed, if one is able to build an inner approximation I ⊆
range(f,x) then 0 ∈ I is obviously a sufficient condition
for (∃x ∈ x)(f(x) = 0). On the other hand, it seems
that many existence theorems can naturally be used to build
some inner approximation: defining g(x) = f(x) − z,

∗This work was done mainly while the first author was a post-doctoral
fellow at the University of Central Arkansas.

I ⊆ range(f,x) holds if g(x) is proved to have a zero in x
for all z ∈ I (this technique seems to be first proposed in
[5] and further used in [9]). Hence, a parameterized version
of an existence theorem would be useful.

This observation leads to a branch and prune algorithm
[9], hence allowing inner approximation of the range of vec-
tor valued functions f : R

n −→ R
n. Such bisection algo-

rithms are well-suited when the dimension of the image is
small, or when the evaluation of the function and its deriva-
tives are inexpensive. Otherwise, it may be useful to build
an inner approximation of a small interval domain in one
computation, in a similar way as the mean-value extension
to intervals provides an outer approximation in one com-
putation. The present paper provides such a construction.
That is, when the interval domain is small enough (roughly
speaking when the mean-value extension computes an ac-
curate outer approximation) one will be able to build both
inner and outer approximations of the image of the inter-
val domain by a function f : R

n −→ R
n. To this end, we

need only an interval enclosure of the image of the center of
the domain, and an interval Lipschitz matrix for the whole
domain. Hence, the inner approximation comes for almost
no additional computational cost beyond that of the outer
approximation.

Some potential applications of such inner approxima-
tions are foreseen in the context of shadowing dynamical
systems [13]. Therefore, some techniques dedicated to the
computation of some Lipschitz interval matrix of the solu-
tion operator to the IVP with respect to the initial condition
are finally presented. In this context, the computation of
a Lipschitz interval matrix involves the evaluation of the
Taylor expansion (of dimension n2 + n), and is hence very
expensive. Computing an inner approximation for the same
cost as the outer approximation is therefore valuable in this
context.

2 Interval Analysis

We assume familiarity with basic interval analysis [23, 1,
28, 17, 16, 11]. Following [19], intervals, interval vectors

and interval matrices are denoted by boldface letters.

Definition 1 (Lipschitz interval matrix (LIM)). Let φ :
R

n −→ R
m be a continuous function and Y ⊆ R

n. The
interval matrix J ∈ IR

n×m is a LIM for φ and Y if and
only if (∀x, y ∈ Y

)(
φ(x) − φ(y) ∈ J · (x − y)

)
, (1)

or equivalently(∀x, y ∈ Y
)(∃J ∈ J

)(
φ(x)−φ(y) = J · (x− y)

)
. (2)

The existence of a LIM J for φ and Y implies that the
function is Lipschitz inside Y with constant ||J||. If φ is
continuously differentiable then

∂φ(x)
∂x

∣∣∣
y
, (3)

i.e., the partial derivative of φ(x) with respect to x evaluated
at y, is denoted by φ′(y) when no confusion is possible.
In this case, it is well known that any interval matrix that
contains {φ′(x) | x ∈ Y} is a LIM for φ and Y [28]. Let
us also recall that a LIM gives rise to the following interval
enclosure (usually called the mean-value extention):

range
(
f,x

) ⊆ f(x̃) + J · (x − x̃), (4)

where J is a LIM for f and x ∈ IR
n, and x̃ ∈ x.

3 Inner and Outer Approximations of the
Range of Real Functions

This section presents an inner approximation process for
functions f : R

n −→ R
n. We first construct box approx-

imations (i.e., axis-aligned interval vectors). Then, more
general parallelepipeds are used to allow inner approxima-
tion in a wider set of situations.

3.1 Box approximations

The well-known Poincaré-Miranda theorem (cf. [30]1) is
a generalization of the Intermediate Value Theorem to con-
tinuous functions f : R

n −→ R
n. Interval analysis is well

suited for a rigorous application of the Poincaré-Miranda
theorem. Theorem 1 below, proposed by Frommer et al. in
[4] following the idea proposed by Moore and Kioustelidis
in [24] CITATION?, is a computationally efficient corol-
lary of the Poincaré-Miranda theorem.

Definition 2. Define x(i−) ∈ IR
n and x(i+) ∈ IR

n as
follows: x(i±)

k = xk for k �= i and either x(i−)
i = inf xi or

x(i+)
i = supxi for k = i.

1A scanned version of [30] is available at http://www.goldsztejn.com/
downloads.htm

Hence, x(i±) is a pair of opposite faces of the interval
box x.

Theorem 1 (Frommer et. al.[4]). Let x ∈ IR
n be an in-

terval vector and f : x −→ R
n be a continuous function.

Consider a real vector x̃ ∈ x. Let J ∈ IR
n×n be a LIM for

f and x. Suppose that, for all i ∈ {1, . . . , n}, both

sup
(
fi(x̃) + Ji: · (x(i−) − x̃)

) ≤ 0 (5)

and
0 ≤ inf

(
fi(x̃) + Ji: · (x(i+) − x̃)

)
, (6)

where Ji: ∈ IR
1×n is the ith row of J. Then there exists

x ∈ x such that f(x) = 0.

The following definition allows Theorem 1 to be conve-
niently reformulated to aid the forthcoming Corollary 1.

Definition 3. Let x, z ∈ IR
n, x̃ ∈ x and J ∈ IR

n×n.
Define for i ∈ {1, . . . , n} define the reals

bi := sup
(
zi + Ji: · (x(i−) − x̃)

)
(7)

bi := inf
(
zi + Ji: · (x(i+) − x̃)

)
. (8)

Define, I(
x, x̃, z,J

)
and O(

x, x̃, z,J
)

in the following
way:

I(
x, x̃, z,J

)
:=

{
b if ∀i ∈ {1, . . . , n},bi ≤ bi

∅ otherwise
(9)

O(
x, x̃, z,J

)
:= z + J(x − x̃). (10)

if bi ≤ bi holds for all i ∈ {1, . . . , n} then I(
x, x̃, z,J

)
:=

b (where bi = [bi,bi]). Otherwise I(
x, x̃, z,J

)
:= ∅,

while O(
x, x̃, z,J

)
:= z + J(x − x̃).

Then Theorem 1 can be stated in the following way: if
0 ∈ I(

x, x̃, z,J
)

then there exists x ∈ x such that f(x) =
0. The following corollary of Theorem 1 allows one to build
inner approximations of the image of x by f . Both inner
and outer approximations are considered in Corollary 1 in a
homogenized way.

Corollary 1. Let x ∈ IR
n be an interval vector and f :

x −→ R
n be a continuous function. Consider a real vector

x̃ ∈ x and an interval vector z ∈ IR
n that contains f(x̃).

Let J ∈ IR
n×n be a LIM for f and x. Then

I(
x, x̃, z,J

) ⊆ range
(
f,x

) ⊆ O(
x, x̃, z,J

)
. (11)

Proof. The second inclusion is obvious from (10) and the
definition of J. Now consider the first inclusion. If
I(

x, x̃, z,J
)

is empty then the first inclusion trivially holds.
Now suppose that I(

x, x̃, z,J
)

is not empty and consider
any fixed z ∈ I(

x, x̃, z,J
)

and define the auxiliary func-
tion g(x) := f(x) − z. We just have to prove that g has

a zero in x. The interval matrix J is obviously also a LIM
for g and x. By the definition of I(

x, x̃, z,J
)

the following
two inequalities hold ∀i ∈ {1, . . . , n}:

sup
(
zi + Ji: · (x(i−) − x̃)

)
≤ zi ≤

inf
(
zi + Ji: · (x(i+) − x̃)

)
.

(12)

Because fi(x̃) ∈ zi, we have inf zi ≤ fi(x̃) ≤ sup zi and
therefore,

sup
(
fi(x̃) + Ji: · (x(i−) − x̃)

)
≤ zi ≤

inf
(
fi(x̃) + Ji: · (x(i+) − x̃)

)
.

(13)

Subtracting the fixed number zi and noticing that fi(x) −
zi = gi(x), we obtain

sup
(
gi(x̃) + Ji: · (x(i−) − x̃)

)
≤ 0 ≤

inf
(
gi(x̃) + Ji: · (x(i+) − x̃)

)
.

(14)

As this holds for all i ∈ {1, . . . , n}, we can apply Theorem
1 so that g has a zero in x, which concludes the proof.

Remark 1. Corollary 1 allows building a box inner approxi-
mation. Such inner approximations were first computed us-
ing a mean-value extension to generalized intervals (i.e. in-
terval whose bounds are not constrained to be increasingly
ordered) in [6, 8]. Surprisingly, the inner approximations
built in [6, 8] are exactly identical to the one built using
Corollary 1. This coincidence has been the basis for the
comparison between existence theorems proposed in [7].
Corollary 1 does not need the introduction of generalized
intervals, which is an important advantage w.r.t. the tech-
niques proposed in [6, 8].

It is worth stressing that the rigorous outer rounding for
interval arithmetic leads to rigorous inner approximation
thanks to Theorem 1. I(

x, x̃, z,J
)

can be nonempty only
if the interval matrix J is close enough to the identity ma-
trix. Formally, J has to be an interval H-matrix2 (cf. [7]).
This is very restrictive and preconditioning is the usual way
to weaken this restrictive necessary condition. The next
section shows how the preconditioning usually associated
to Theorem 1 leads to parallelepiped approximations when
Corollary 1 is used.

3.2 Parallelepiped Approximations

Throughout this section, we consider a function φ :
R

n −→ R
n and a set Y0 wrapped between two paral-

lelepipeds

A0 := {M0u | u ∈ a0} , (15)

B0 := {M0u | u ∈ b0} , (16)

2A H-matrix is a diagonally dominant matrix which has been scaled.

where a0,b0 ∈ IR
n and M ∈ R

n×n (i.e., A0 ⊆ Y0 ⊆ B0).
We aim to construct two parallelepipeds

A1 := {M1u | u ∈ a1} , (17)

B1 := {M1u | u ∈ b1} , (18)

such that

A1 ⊆ Y1 ⊆ B1 where Y1 := range
(
φ, Y0

)
. (19)

We require the matrices M0 and M1 to be nonsingular. The
only description of Y0 we have are the wrapping paral-
lelepipeds A0 and B0. Therefore, we are going to compute
A1 and B1 such that

A1 ⊆ range
(
φ, A0

)
and range

(
φ, B0

) ⊆ B1, (20)

which obviously implies (19). To apply Corollary 1, we
need to work in some auxiliary bases, where parallelepipeds
will be represented by their characteristic boxes. This is
represented in the following diagram, where the left hand
side represents the actual action of φ, and the right hand side
represents the action of φ in the auxiliary bases, leading to
the function ψ := M−1

1 ◦ φ ◦ M0 (matrices are identified
with the linear mappings they represent).

A0 ⊆ Y0 ⊆ B0

φ

��

a0 ⊆ Ỹ0 ⊆ b0

ψ

��

M0��

A1 ⊆ Y1 ⊆ B1 a1 ⊆ Ỹ1 ⊆ b1

M1��

In the auxiliary bases, we have a0 ⊆ Ỹ0 ⊆ b0, where
Ỹ0 :=

{
M−1

0 y | y ∈ Y0

}
, and we need to construct a1 and

b1 such that a1 ⊆ Ỹ1 ⊆ b1, where Ỹ1 := range
(
ψ, Ỹ0

)
.

So we can use Corollary 1 and obtain a1 and b1 such that

a1 ⊆ range
(
ψ, a0

) ⊆ Ỹ1 ⊆ range
(
ψ,b0

) ⊆ b1. (21)

Therefore, coming back in the original basis (through M1)
the interval vectors a1 and b1 give rise to the inner and outer
approximations A1 and B1 that satisfy (20) and eventually
(19). The matrix M1, which gives the parallelepipeds A1

and B1 their shape, can be chosen arbitrarily. Some possible
choices are proposed in Subsection 3.3.

To apply Corollary 1 with the function ψ, we need a LIM
for this function and b0. The next proposition aids the com-
putation of such a LIM.

Proposition 1. Let J be a LIM for φ : R
n −→ R

n and
B := {Mu | u ∈ b}, where M ∈ R

n×n and b ∈ IR
n.

Consider M ′ ∈ R
n×n. Then, J′ := M ′ · J ·M is a LIM for

ψ := M ′ ◦ φ ◦ M and b.

Proof. For any u, v ∈ b, we have

ψ(u) − ψ(v) = M ′φ(Mu) − M ′φ(Mv) (22)

= M ′(φ(Mu) − φ(Mv)
)
. (23)

Now, both Mu, Mv ∈ B, and J is a LIM for φ and B, so
there exists J ∈ J such that φ(Mu) − φ(Mv) = J(Mu −
Mv). Therefore

ψ(u) − ψ(v) = M ′J(Mu − Mv) (24)

= M ′JM(u − v). (25)

Finally, as J′ ⊇ {M ′JM | J ∈ J}, we can find J̃ ∈ J′

such that ψ(u) − ψ(v) = J̃(u − v), so J′ is a LIM for ψ
and b.

The construction of the parallelepiped inner and outer
approximations is formalized by the following theorem.

Theorem 2. With the notations defined at the beginning of
the section, consider a ∈ a0 and b ∈ b0 and define

a1 := I(
a0, a, Ψa,J′) (26)

b1 := O(
b0, b, Ψb,J′), (27)

with J′ := M−1
1 JM0, where J is a LIM for φ and B0, and

Ψa and Ψb are interval vectors that contain respectively
ψ(a) and ψ(b) with ψ := M−1

1 ◦ φ ◦ M0. Then

A1 ⊆ range
(
φ, Y0

) ⊆ B1. (28)

Proof. Proposition 1 proves that J′ is a LIM for ψ and
b0 (and therefore also for ψ and a0 because a0 ⊆ b0).
From the definitions of a1 and b1, we can apply Corollary
1 which proves

a1 ⊆ range
(
ψ, a0

)
and range

(
ψ,b0

) ⊆ b1. (29)

By the definition of ψ, we have both

range
(
ψ, a0

)
= range

(
M−1

1 φ, A0

)
(30)

range
(
ψ,b0

)
= range

(
M−1

1 φ, B0

)
. (31)

Therefore, applying the linear mapping M1 to each
inclusion (29), we obtain A1 ⊆ range

(
φ, A0

)
and

range
(
φ, B0

) ⊆ B1, which concludes the proof by
(20).

All one needs in order to apply Theorem 2 is:

(i) Interval enclosures Ψa and Ψb of ψ(a) and ψ(b). In
general, it will be easy to compute some interval en-
closures Φa and Φb of φ(M0a) and φ(M0b). Then one
can use Ψa := M−1

1 Φa and Ψb := M−1
1 Φb.

(ii) A LIM J for φ and B0. It will be easier to compute
a LIM J for φ and M0b0 (the interval vector M0b0

being the smallest interval vector that contains B0 so
B0 ⊆ M0b0).

In the case where φ = φK ◦ · · · ◦ φ2 ◦ φ1, Theorem 2
can be applied inductively in the following way. Let Ak and
Bk be respectively inner and outer approximations of the
image of Y0 by the function φk ◦ · · · ◦ φ2 ◦ φ1, with k <
K . Then, knowing Ak and Bk, we can compute Ak+1 and
Bk+1 using Theorem 2. This process obviously preserves
the interpretations of the approximations, hence leading to
AK ⊆ range

(
φK ◦ · · · ◦ φ2 ◦ φ1, Y0

) ⊆ BK .

Remark 2. In the case where Ak = ∅ for some k ∈
{1, . . . , K} then Ak = ∅ for k ∈ {k, . . . , K}. So, only
the outer approximation component of Theorem 2 is used.

3.3 On the Choice of the Parallelepiped
Characteristic Matrix

The characteristic matrix M1 decides the shape of the
parallelepiped approximations A1 and B1. Any M1 will
satisfy the theorems, but some choices give better approxi-
mations than others.

As mentioned at the end of Subsection 3.1, I(
x, x̃, z,J

)
can be nonempty only if J is an interval H-matrix. The
LIM of ψ that will be used is M−1

1 (JM0). As a conse-
quence of the theory of strongly regular interval matrices
[28], JM0 has to be strongly regular and one should choose
M1 = mid (JM0). This relates in an interesting way on
one hand the midpoint inverse preconditioning usually used
with Theorem 1, and on the other hand the shape of the par-
allelepiped approximations that are built using Corollary 1.

Finally, if JM0 is not strongly regular, then no inner ap-
proximation is possible. If an outer approximation has to
be computed, then M1 = mid (JM0) may not be an ap-
propriate choice, and outer approximation certainly needs a
better choice for the auxiliary basis M1. In this case, the
QR-factorization method, widely used in the context of or-
dinary differential equation solving, can be used for a better
choice of M1 [31, 26].

3.4 A Linear Mapping Example

Consider the rotation f(x) = Rθx where Rθ is the angle
θ rotation matrix. We choose θ = π/10. We use two Lip-
schitz interval matrices. The first is obtained by evaluating
the derivative of f with interval arithmetic:

J :=
(

0.951056516295154
3 −0.309016994374947

8

0.309016994374948
7 0.951056516295154

3

)
,

(32)

Figure 1. Inner and outer approximations of a
linear map.

The second, denoted by J′, is obtained by adding
[−0.001, 0.001] to each entry of J. The characteristic ma-
trix M1 is chosen as proposed in the previous subsection,
i.e., M1 = mid (JM0). The initial parallelepipeds A0 and
B0 are equal to {Mx|x ∈ x} with

M :=
(

2 1
1 2

)
and x :=

(
[7, 9]

[−5,−3]

)
. (33)

The parallelepiped approximations for the first 18 steps are
displayed on the left hand side of Figure 1. Solid paral-
lelepipeds are computed using J. Inner and outer approx-
imations are too close to be distinguishable. Dotted paral-
lelepipeds are computed using J′. This time, due to the poor
quality of the LIM, inner and outer approximations quickly
separate.

After 107 iterations, i.e., after 5 × 105 complete ro-
tations, the inner and outer parallelepiped approximations
computed using J are still less than 10−6 apart.

4 Inner and Outer Approximations of the So-
lutions to Uncertain Initial Value Problems

The initial value problem (IVP) consists of computing
an approximation of the solution to some ordinary differen-
tial equation (ODE) for some initial value. The solution at
time t can can be expressed naturally as a function of the
initial value, function called the ODE solution operator (cf.
subsection 4.1). So when one deals with a set of initial con-
ditions, one needs to approximate the image of a set by the

ODE solution operator. The results stated in the previous
section can then be used, leading in particular to rigorous
inner approximations. Up to our knowledge, the only work
that proposes to compute such inner approximations is [20].
However, inner approximation is just mentioned in [20] and
no detail can be found on the way such inner approxima-
tions can be computed.

4.1 General Framework

We follow the definitions of interval IVPs set out in [25].
First, given a function f : R

n −→ R
n and a vector y0 ∈

R
n, the IVP consists of computing a function y that satisfies

y′(t) = f
(
y(t)

)
, (34)

y(0) = y0 ∈ R
n. (35)

The function f is assumed to be N ≥ 1 times continuously
differentiable. In practice, one wishes to compute an ap-
proximation of y(h) for a given time step h > 0.

Remark 3. Here, we do not consider explicitly the construc-
tion of a solution step-after-step but instead focus on one
single step. The composition of several steps can be done
applying the method described at the end of Subsection 3.2.

Equation (34) is called the defining equation, and (35)
the initial value. To simplify the presentation, we assume
existence and uniqueness of the solution to (34) for all ini-
tial conditions. It is convenient to describe the solution of
the IVPs with respect to the initial condition using a func-
tion φh : R

n −→ R
n such that y(t + h) = φh(y(t)). This

mapping is well defined in R
n because we assumed exis-

tence and uniqueness of the solution to (34). The function
φh is called the time-h solution operator of the ODE (34).
Thanks to the definition of the ODE solution operator, the
IVP problem can be cast into the problem that consists of
computing some approximation of φh(y0).

We now consider a set of initial conditions Y0, called an
uncertain initial condition, and (35) is replaced by

y(0) ∈ Y0 ⊆ R
n. (36)

We aim to construct some approximation of

Yh := {y(h) | y satisfies (34) and (36)} (37)

= range
(
φh, Y0

)
. (38)

We call this problem an uncertain initial value problem
(UIVP). In practice, we suppose that Y0 is approximated by
an inner and an outer parallelepiped, i.e., A0 ⊆ Y0 ⊆ B0

where A0 := {Uu | u ∈ a0} and B0 := {Uu | u ∈ b0}.
Then, we aim to construct two parallelepipeds Ah :=
{V v | v ∈ ah} and Bh := {V v | v ∈ bh} such that Ah ⊆
Yh ⊆ Bh. Such approximations can be computed by apply-
ing Theorem 2 in order to construct inner and outer approx-
imations of range

(
φh, Y0

)
. Therefore, all we need are

(i) an outer approximation z of φh(y0), and

(ii) a LIM of φh and Y0.

To compute (i), one can use the usual interval methods for
computing enclosing approximation of IVP. To obtain (ii),
an enclosure of the derivatives of the solution operator can
be computed. Its computation can be expressed as a n2 + n
components IVP. Therefore, the same interval methods can
also be used to compute (ii). However, n2 + n quickly
becomes too big for a direct use of interval IVP solvers
(which use the derivatives of the ODE to be integrated,
hence leading to O(n4) Taylor coefficients to be evaluated
in this case). The next subsection provides direct methods
to compute a LIM for the ODE solution operator.

4.2 Lipschitz Interval Matrices for the
ODE Solution Operator

This subsection presents some techniques to compute a
LIM for φh and Y0. Throughout the subsection, we con-
sider two boxes y0 and y[0,h] that contains respectively Y0

and Y[0,t], i.e., y0 contains all initial conditions and y[0,h]

contains all trajectories for t ∈ [0, h] and for any initial
condition in y0. First, y0 := M0b0 is the optimal enclo-
sure of Y0 and is easy to compute. The computation of
y[0,h] can be more problematic. For small enough time
step h, y[0,h] can be computed using a rigorous first or-
der approximation: it is indeed sufficient that y[0,h] satisfies
y0 + hf(y[0,h]) ⊆ y[0,h] so that the Picard-Lindelöf oper-
ator proves existence and uniqueness of the solution inside
y[0,h] for any initial value in y0 (see e.g. Section 5 in [25]).
Higher order and more efficient methods can also be used
to compute y[0,h].

4.2.1 Lipschitz Interval Matrices for Linear ODE

We first consider the case of a linear ODE, i.e., f(y) = Ay
with A ∈ R

n×n. In this case φh(y0) = ehAy0. Therefore,
a LIM for φh is easily obtained:

Theorem 3. Any interval matrix J ∈ IR
n×n that contains

ehA is a LIM for φh and R
n.

Proof. Consider any x, y ∈ R
n. The φh(y) − φh(x) =

ehAy− ehAx which is equal to ehA(y−x). Because ehA ∈
J by hypothesis, we have φh(y) − φh(x) ∈ J(y − x).

Remark 4. An interval matrix J that contains ehA can be
constructed using truncated Taylor expansions with House-
holder norms for an accurate computation of the remainder
[29], or by using Padé approximations [2].

Example 1. We consider the linear ODE defined by

y′(t) = Ay(t) with A =
(

0 1
−1 0

)
. (39)

Following the example presented in Subsection 3.4, we fix
h = π

10 . Using some rigorous interval approximation of
e

π
10 A we obtain a LIM very close to (32). Using an initial

condition y(0) ∈ {Mx|x ∈ x} with (33), the parallelepiped
approximations are also similar to the one plotted in the left
hand side of Figure 1.

4.2.2 Lipschitz Interval Matrices for Nonlinear ODE

In this section, some enclosures of the derivative of the so-
lution operator w.r.t. the initial condition are computed in-
stead of some LIM (the solution operator is actually dif-
ferentiable w.r.t. the initial condition, cf. Theorem 14.3 in
[10]). Let us recall that ∂φh(x)

∂x

∣∣
y

and ∂f(x)
∂x

∣∣
y

are denoted
by φ′

h(y) and f ′(y) respectively (no confusion will be pos-
sible because φh(y) will not be differentiated w.r.t. time).
The following theorem can be found e.g. in [3]. It will pro-
vide us with a first enclosure of the derivative of the solution
operator.

Theorem 4. If y(t) and z(t) each satisfy the differential
equation y′(t) = f(y(t)) on [t0, t1], and f is Lipschitz con-
tinuous with constant L. Then ∀t ∈ [t0, t1],

||y(t) − z(t)|| ≤ ||y(t0) − z(t0)||eL(t−t0). (40)

Remark 5. As both y(t) ∈ y[0,h] and z(t) ∈ y[0,h] for any
t ∈ [0, h], a Lipschitz constant for the restriction of f to
y[0,h] can be used in Theorem 4. As a consequence, one
can use L = ||f ′(y[0,h])||.

The next corollary of Theorem 4 provides a crude enclo-
sure of the derivative of the solution operator. It will not be
used in practice, but it will be the basis to construct other
more accurate enclosures.

Corollary 2. Suppose that f is Lipschitz continuous in
y[0,t] with constant L, and define the interval matrix J[0,t]

by (J[0,t])ij :=
[−ehL, ehL

]
. Then, J[0,t] ⊇ {φ′

t(y0) | y0 ∈
y0} for all t ∈ [0, h].

Sketch of the proof. By definition, φ′
t(y0) satisfies

φt(y0 + εδ) − φt(y0) = εφ′
t(y0) · δ + O(ε2), (41)

where δ ∈ R
n and 0 < ε ∈ R. Choose δ = ej , where ej is

the jth base vector and note that (φ′
t(y0)·ej)i =

(
(φ′

t(y0)
)
ij

.
One obtains(

φt(y0 + εej)
)

i
− (

φt(y0)
)
i
= ε

(
φ′

t(y0)
)

ij
+O(ε2). (42)

As a consequence,

|(φt(y0 + εej)
)
i
− (

φt(y0)
)

i
| = ε|(φ′

t(y0)
)
ij
| + O(ε2),

(43)
which contradicts Theorem 4 if |(φ′

t(y0)
)
ij
| > etL.

To obtain a better enclosure of the derivatives of φ, Tay-
lor expansions of φh and φ′

h w.r.t. time are now consid-
ered. To this end, the auxiliary functions y[k](x) are in-
troduced: as f is N times continuously differentiable, y(t)
is N + 1 times continuously differentiable and y(k)(t), for
k ∈ {1, . . . , N +1}, can be computed as a function of y(t).
For example in dimension one,

y′(t) = f
(
y(t)

)
, (44)

y′′(t) = f ′(y(t)
)
f
(
y(t)

)
, (45)

y′′′(t) = f ′′(y(t))f(y(t))2+f ′(y(t))2f(y(t)), (46)

etc. In order to easily manipulate these expressions, we de-
fine y[k](x) such that

y[0]
(
y(t)

)
= y(t), (47)

y[k]
(
y(t)

)
= y(k)(t). (48)

So, identifying (48) with equations (44–46), we obtain

y[1](x) = f(x), (49)

y[2](x) = f ′(x)f(x), (50)

y[3](x) = f ′′(x)f(x)2 + f ′(x)2f(x). (51)

As f is assumed N times continuously differentiable, y[k]

is well-defined and continuously differentiable for k ∈
{1, . . . , N}. The general recursive expressions for y[k] are
easily obtained:

y[1](x) = f(x), (52)

y[i](x) =
∂y[i−1](x)

∂x
· f(x). (53)

The functions y[k] can be evaluated either by computing for-
mally their expressions or using automatic differentiation
(see e.g. [31, 25]).

Remark 6. The functions f [k](x) := 1
k!y

[k](x) instead of
y[k](x) are defined in [25]. Including 1

k! in the expressions
is important in implementations as it usually allows stabiliz-
ing the recursive evaluation of the expressions while slightly
reducing the computational cost of the evaluation.

Then, we obtain an expression of φh(y0) w.r.t. y0 using
Taylor’s theorem:

φh(y0) =
N−1∑
k=0

hk

k!
y[k](y0) + r(y0), (54)

where we use Cauchy’s remainder

r(y0) :=
∫ h

0

(h − t)N−1

(N − 1)!
y[N]

(
φt(y0)

)
dt, (55)

the integration being understood componentwise. The next
theorem provides a way to improve the first enclosure com-
puted, thanks to Corollary 2.

Theorem 5. Let y[0,h] and J[0,h] be such that

y[0,h] ⊇ {φt(y0) | t ∈ [0, h], y0 ∈ y0} (56)

J[0,h] ⊇ {φ′
t(y0) | t ∈ [0, h], y0 ∈ y0} . (57)

Then,

N−1∑
k=0

hk

k!
∂y[k](x)

∂x

∣∣∣∣
y0

+
hN

N !
∂y[N](x)

∂x

∣∣∣∣
y[0,h]

· J[0,h] (58)

is an enclosure of {φ′
h(x) | x ∈ y0}.

Proof. Differentiating (54) w.r.t. y0 gives rise to the follow-
ing expression for φ′

h(y0):

N−1∑
k=0

hk

k!
∂y[k](y0)

∂y0
+

∂r(y0)
∂y0

. (59)

Now, let us explicit the expression of ∂r(y0)
∂y0

differentiating

inside the integration and using the chain rule: ∂r(y0)
∂y0

=

∫ h

0

(h − t)N−1

(N − 1)!
∂y[N](x)

∂x

∣∣∣∣
φt(y0)

· ∂φt(x)
∂x

∣∣∣∣
y0

dt. (60)

Now, using (56) and (57),

A ≤ ∂y[N](x)
∂x

∣∣∣∣
φt(y0)

· ∂φt(x)
∂x

∣∣∣∣
y0

≤ A, (61)

where

[A, A] :=
∂y[N](x)

∂x

∣∣∣∣
y[0,t]

· J[0,h] ∈ IR
n×n. (62)

From (60) and (61), and because h − t ≥ 0 holds for all
t ∈ [0, h], the following inequalities hold:∫ h

0

(h − t)N−1

(N − 1)!
Adt ≤ ∂r(y0)

∂y0
≤

∫ h

0

(h − t)N−1

(N − 1)!
A dt,

(63)
and hence obviously

A

∫ h

0

(h − t)N−1

(N − 1)!
dt ≤ ∂r(y0)

∂y0
≤ A

∫ h

0

(h − t)N−1

(N − 1)!
dt.

(64)
Finally, noting that∫ h

0

(h − t)N−1

(N − 1)!
dt =

hN

N !
, (65)

one concludes the proof.

Remark 7. As for evaluating y[k], evaluating ∂y[k](x)
∂x can be

done computing its formal expression or using automatic
differentiation (see e.g. [31, 25]).

Remark 8. The interval matrix J[0,h] needed in Theorem 5
is computed using Corollary 2. It is useful to improve this
first crude enclosure by

J[0,h] ←
(N−1∑

k=0

[0, h]k

k!
· ∂y[k](x)

∂x

∣∣∣∣
y0

(66)

+
[0, h]N

N !
· ∂y[N](x)

∂x

∣∣∣∣
y[0,h]

· J[0,h]

)
(67)

⋂
J[0,h], (68)

which obviously maintains J[0,t] ⊇ {φ′
t(y0) | y0 ∈ y0} for

all t ∈ [0, h] due to Theorem 5. Repeated application can
improve the enclosure.

In the special case of first order (58) is

I + hf ′(y[0,h]) · J[0,h]. (69)

For small enough values of h, this simple expression to-
gether with the improvement process of Remark 8 can al-
ready provide useful enclosures of {φ′

h(x) | x ∈ y0}. Let
us first illustrate Theorem 5 with the special case of a linear
ODE.

Example 2. Let f(y) = A · y. In this case, we have y(t) =
etA · y0, y′(t) = A · y(t), y′′(t) = A2 · y(t) and so on.
Finally, one proves that y(k)(t) = Ak · y(t) and therefore
y[k](x) = Ak · x. As a consequence,

∂y[k]

∂x
(x) = Ak. (70)

Formula (58) therefore gives rise to

I +
N−1∑
k=1

hk

k!
Ak +

hN

N !
AN · J[0,h], (71)

where Corollary 2 allows (J)ij = [−eh||A||, eh||A||]. This
can be interpreted as a rigorous truncation of the series ehA.

Example 3. The Lorenz system is defined by⎛
⎝x′(t)

y′(t)
z′(t)

⎞
⎠ =

⎛
⎝ σ

(
y(t) − x(t)

)
x(t)

(
ρ − z(t)

) − y(t)
x(t)y(t) − βz(t)

⎞
⎠ . (72)

We use the usual values σ = 10, ρ = 28 and β = 8/3, for
which the system exhibits chaotic behavior [21]. The uncer-
tain initial condition is chosen to be y0 =

(
10±10−10, 10±

10−10, 10 ± 10−10
)
. Then applying Theorem 5 with 20th

order expansions and a timestep of h = 0.02 gives rise to
one-timestep distance between the inner and outer approxi-
mations of less than 4 × 10−14.

4.2.3 Related Work

Only a very few references deal with the problem of a rig-
orous computation of a LIM for an ODE solution operator.
The parallelepiped method proposed by Kruckeberg in [20]
implicitly uses

∞∑
k=0

hkJk
f

k!
, (73)

where Jf ⊇ {f ′(x) | x ∈ y0}, as a LIM for φh. How-
ever the proof of this property is not detailed in [20] (see
formula 29 page 953). And more important, no rigor-
ous truncation of (73) is available. The rigorous trunca-
tion proposed in [29] cannot be applied to (73) because
{exp(hJf) | Jf ∈ Jf} is not equal to (73), while no sim-
plification (e.g. Horner scheme) can be applied to (73) un-
til one has proved the simplified formula is also a LIM for
φh (i.e., it is likely to happen that the overestimation of
{exp(hJf) | Jf ∈ Jf} in the expression (73) is necessary
to obtain a LIM).

Stauning [31] proposes (formula 6.17 and 6.18 page 69)
the following LIM:

I +
N−1∑
k=1

1
k!

∂y[k]

∂y
(y0)hk +

1
N !

∂y[N]

∂y
(y[0,h])hN (74)

However, (74) is not a LIM for φh and y0 in general (in
the case of a linear system, (74) just truncates the series etA

without providing any remainder). The correct formula is
the one provided in Theorem 5.

Makino [22] notes that Taylor models cannot help com-
puting a LIM for φh and just mentions a potential method
for the computation of J (cf. page 92 of [22]).

Finally, the authors have recently discovered the work of
Zgliczynski [32] where the derivative of the solution oper-
ator is rigorously enclosed. Though both works are simi-
lar, our presentation seems simpler while providing some
similar enclosures. The exact relationship between the two
methods remains to be investigated.

5 Conclusion

While the outer approximation of the range of a func-
tion is a basic application of interval analysis, the inner ap-
proximation of the range remains today a problem not well
solved. A new procedure for the computation of such an
inner approximation has been proposed, based on a corol-
lary of the Poincaré-Miranda theorem: for roughly no ad-
ditional cost, one is now able to compute an inner approxi-
mation together with the outer approximation given by the
mean-value extension. The inner approximation will not be

3A scanned version of [20] is available at http://www.goldsztejn.com/
downloads.htm

empty only in the situations where the mean-value exten-
sion provides a sharp enclosure. In particular, the interval
Lipschitz matrix used has to be an H-matrix. A specific
preconditioning process has been proposed to help fulfilling
this necessary condition, leading to parallelepiped approx-
imations. Due to some potential applications in the theory
of shadowing dynamical systems, some properties that al-
low us to compute Lipschitz interval matrices in the context
of ordinary differential equations have been presented.

Experiments are currently underway to apply these de-
velopments to the rigorous shadowing of dynamical sys-
tems (cf. [13, 14]), using ideas similar to those proposed
in Section 3.5.4 of [12].

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Com-
putations. Computer Science and Applied Mathematics,
1974.

[2] P. Bochev and S. Markov. A Self-Validating Numerical
Method for the Matrix Exponential. Computing, 43(1):59–
72, 1989.

[3] J. C. Butcher. The Numerical Analysis of Ordinary Differ-
ential Equations. Wiley, New York, 1987.

[4] A. Frommer, B. Lang, and M. Schnurr. A Comparison of the
Moore and Miranda Existence Tests. Computing, 72:349–
354, 2004.

[5] A. Goldsztejn. Verified Projection of the Solution Set of
Parametric Real Systems. In Proc. of COCOS 2003.

[6] A. Goldsztejn. Définition et Applications des Extensions des
Fonctions Réelles aux Intervalles Généralisés. PhD thesis,
Université de Nice-Sophia Antipolis, 2005.

[7] A. Goldsztejn. A Comparison of the Hansen-Sengupta and
Frommer-Lang-Schnurr Existence Theorems. Computing,
79(1):53–60, 2007.

[8] A. Goldsztejn, D. Daney, M. Rueher, and P. Taillibert.
Modal Intervals Revisited: a Mean-Value Extension to Gen-
eralized Intervals. In Proc. of QCP 2005.

[9] A. Goldsztejn and L. Jaulin. Inner Approximation of the
Range of Vector-Valued Functions. Submitted to Reliable
Computing.

[10] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary
Differential Equations I. Springer-Verlag, 2000.

[11] B. Hayes. A Lucid Interval. American Scientist, 91(6):484–
488, 2003.

[12] W. Hayes. Rigorous Shadowing of Numerical Solutions of
Ordinary Differential Equations by Containment. PhD the-
sis, University of Toronto, 2001.

[13] W. Hayes and K. R. Jackson. Rigorous Shadowing of
Numerical Solutions of Ordinary Differential Equations by
Containment. SIAM J. Numer. Anal., 41(5):1948–973, 2003.

[14] W. Hayes and K. R. Jackson. A Survey of Shadowing Meth-
ods for Numerical Solutions of Ordinary Differential Equa-
tions. Applied Numerical Mathematics, 53(1-2):299–321,
2005.

[15] P. Herrero, M. Sainz, J. Vehı́, and L. Jaulin. Quantified
Set Inversion Algorithm with Applications to Control. In
Proc. of Interval Mathematics and Constrained Propagation
Methods, volume 11(5) of Reliab. Comp., 2005.

[16] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Inter-
val Analysis with Examples in Parameter and State Estima-
tion, Robust Control and Robotics. Springer-Verlag, 2001.

[17] R. B. Kearfott. Interval Arithmetic Techniques in the Com-
putational Solution of Nonlinear Systems of Equations: In-
troduction, Examples, and Comparisons. Computational So-
lution of Nonlinear Systems of Equations, Amer. Math. Soc.,
26:337–358, 1990.

[18] R. B. Kearfott. Interval Computations: Introduction, Uses,
and Resources. Euromath, Bulletin 2(1):95–112, 1996.

[19] R. B. Kearfott, M. T. Nakao, A. Neumaier, S. M. Rump,
S. P. Shary, and P. Van Hentenryck. Standardized Notation
in Interval Analysis. 2002.

[20] F. Kruckeberg. Ordinary Differential Equations. In
E. Hansen, editor, Topics in Interval Analysis, pages 91–97.
Oxford University Press, 1969.

[21] E. N. Lorenz. Deterministic Nonperiodic Flow. Journal of
the Atmospheric Sciences, 20(2):130–141, 1963.

[22] K. Makino. Rigorous Analysis of Nonlinear Motion in Par-
ticle Accelerators. PhD thesis, Michigan State University,
1998.

[23] R. Moore. Interval Analysis. Prentice-Hall, 1966.
[24] R. Moore and J. Kioustelidis. A Simple Test for Accuracy

of Approximate Solutions to Nonlinear (or Linear) Systems.
SIAM J. Numer. Anal., 17(4):521–529, 1980.

[25] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Vali-
dated Solutions of Initial Value Problems for Ordinary Dif-
ferential Equations. Applied Mathematics and Computation,
105(1):21–68, 1999.

[26] S. N. Nedialkov and K. R. Jackson. A New Perspec-
tive on the Wrapping Effect in Interval Methods for Initial
Value Problems for Ordinary Differential Equations. In Per-
spectives on Enclosure Methods, pages 219–264. Springer-
Verlag, 2001.

[27] V. M. Nesterov. Interval and Twin Arithmetic. Reliab.
Comp., 3(4):369–380, 1997.

[28] A. Neumaier. Interval Methods for Systems of Equations.
Cambridge Univ. Press, Cambridge, 1990.

[29] E. Oppenheimer and A. Michel. Application of Interval
Analysis Techniques to Linear Systems. II. The Interval Ma-
trix Exponential Function. IEEE Transactions on Circuits
and Systems, 35(10):1230–1242, 1988.

[30] H. Poincaré. Sur Certaines Solutions Particulières du
Problème des Trois Corps. Comptes rendus de l’Académie
des sciences, 97:251–252, 1883.

[31] O. Stauning. Automatic Validation of Numerical Solutions.
PhD thesis, Technical University of Denmark, 1997.

[32] P. Zgliczynski. C1-Lohner Algorithm. Foundations of Com-
putational Mathematics, 2(4):429–465, 2002.

Ensuring Numerical Quality in Grid Computing

Andreas Frommer, Matthias Hüsken
Bergische Universität Wuppertal

Applied Computer Science and Scientific Computing
D-42097 Wuppertal, Germany

frommer@math.uni-wuppertal.de, huesken@math.uni-wuppertal.de

Abstract

Certain numerically intensive applications executed
within a grid computing environment crucially depend on
the properties of floating-point arithmetic implemented on
the respective platform. Differences in these properties may
have drastic effects. This paper identifies the central prob-
lems related to this situation. We propose an approach
which gives the user valuable information on the various
platforms available in a grid computing environment in or-
der to assess the numerical quality of an algorithm run on
each of these platforms. In this manner, the user will at least
have very strong hints whether a program will perform re-
liably in a grid before actually executing it.

Our approach extends the existing IeeeCC754 test suite
by two “grid-enabled” modes: The first mode calculates a
“numerical checksum” on a specific grid host and executes
the job only if the checksum is identical to a locally gen-
erated one. The second mode provides the user with infor-
mation on the reliability and IEEE 754-conformity of the
underlying floating-point implementation of various plat-
forms. Furthermore, it can help to find a set of compiler
options to optimize the application’s performance while re-
taining numerical stability.

1. Introduction

Although the numerical problems caused by represen-

tation issues of real numbers on a computer have always

been an important issue, it has taken a long time to be-

come common knowledge that software developers must be

aware of the pitfalls of floating-point arithmetic and num-

ber conversion and that they have to account for the behav-

ior of the floating-point arithmetic when developing soft-

ware. Fortunately, disasters due to problems with conver-

sion and arithmetic like the two listed in [1] (a failure of

the patriot anti-missile system and the explosion of an Ar-

iane 5 rocket) have become seldom, but reliability of the

underlying floating-point implementation is still an issue of

highest importance. This is especially true when thinking

of reliable computing and interval arithmetic as all practical

implementations assume the underlying floating-point im-

plementation to be error-free and standards-compliant.

Today, every major hardware platform and almost all

available software development tools (like compilers and

mathematical libraries) implement floating-point arithmetic

to be IEEE 754 compliant. Unfortunately, results generated

on different platforms still can not be assumed to be totally

comparable due to the fact that no-one can guarantee that a

given floating-point implementation is indeed correct (i. e.,

error-free). But what starts making things really involved

is that, usually, different operations specified in IEEE 754

might be implemented either in hardware or software (for

details see Section 2). So when running an application on

different platforms, parts of the floating-point computations

might be handled by completely different processors or soft-

ware libraries (or at least different versions of the same li-

brary). Finally, to further complicate the situation, some

compiler options can completely eliminate IEEE compli-

ance,1 a fact many users are still unaware of. So, numerical
reliability is still an important issue today.

The picture outlined so far is of particular importance in

distributed computing, where, anyway, compatibility issues

still are one of the most challenging subjects. The concept

of Grid computing [5] offers an (at least partially) standard-

ized approach to distributing applications in a large-scale

environment. But this effort does not address the problem

of numerical reliability raised above.

In the following sections, we will develop approaches

to ensure (or, at least, to increase the probability) that re-

sults generated by executing an application on different grid

nodes will be identical and, ideally, be conforming to the

IEEE standard. We view our developments as a useful tool

1This mainly applies to options affecting exception handling like

-ffast-math or -fno-trapping-math in g++ or options that en-

able higher optimization settings as these affect those parts of the floating-

point implementation that are internally generated by the compiler.

for application programmers who are aware of the particular

behavior of floating-point arithmetic and who have devel-

oped software assuming that floating-point arithmetic be-

haves predictably and, preferably, according to the IEEE

standard. In Section 3 we propose a method of checking

a grid node for numerical compatibility and preventing a

submitted job from running when a corruption of results is

likely to occur. Section 4 deals with the use of the informa-

tion systems already present in grid toolkits to generate in-

formation on the numerical reliability of the grid nodes and

to store it (and to make it available) in these systems. Spe-

cial emphasis will be put on the influence of compiler op-

tions. Section 5 presents a side use of one of the approaches

in Section 4 that can be used to enhance the performance

of a given application while still retaining numerical qual-

ity. Finally, we present some test results within the research

grid at our department and the LCG (LHC Computing Grid)

and conclude with a summary.

2. IeeeCC754

Since publication of the IEEE standards 754 [7] and 854

[8], quite a number of tools for testing floating-point imple-

mentations have been developed. The grid tools presented

in this paper are extensions to one of the latest test pack-

ages which is also one of the most comprehensive so far:

IeeeCC754, which has been and is still further developed by

the Computer Arithmetic and Numerical Techniques group

at the University of Antwerp under leadership by A. Cuyt

and B. Verdonk (cf. [15] and [16]). IeeeCC754 is based

on ideas and principles of some other packages (a detailed

description can be found in [15] and [16]) by combining

and extending most of their properties, enabling it to test all

operations defined in IEEE 754 and 854 at arbitrary preci-

sions in all four rounding modes (provided that the floating-

point implementation supports these) and detect the under-

flow mode used in the implementation.

IeeeCC754 itself is implemented in C++ and has been

used to test a variety of hardware platforms (Intel compat-

ible, SUN Sparc, embedded processors, proprietary chips,

. . .) in combination with several compilers (GNU g++, In-

tel icpc, SUN CC, SUN f95, . . .). It has also been used to

test a number of multiprecision libraries for compatibility

with the principles of the IEEE 754 and 854 floating-point

standards.

The package is divided into two parts: A driver program

and a suite of precision- and range-independent test vec-

tors. The main idea is the following: The driver program

takes a test vector, converts the operands and the (correct)

result into the binary floating-point format (with the desired

precision), executes the specified operation and compares

the computed result to the expected value. Furthermore,

for each operation it is checked whether the implementa-

tion returned the exception flags required by the standard. If

something is found to be non-compliant, an error message

is printed into a log file, and the driver program continues

with the next test vector. When all test vectors have been

processed, a summary is generated and it is checked which

underflow mode is implemented.2 Figure 1 illustrates the

architecture of IeeeCC754.

Testsets Driver program Output

Conversion to
UCB format

Testing engine:

- convert vector
- execute test

- check result
- print error

Coonen
format

UCB
format

UCB
format

Logfile

format

Figure 1. Architecture of IeeeCC754

IeeeCC754 uses two test vector formats which employ

“extended Coonen” and “extended UCBTEST” syntax. An

exact description in Backus-Naur form (BNF) as well as a

short history of both formats can be found in [15] and [16].

The driver program supports three modes: The first

one takes input in extended Coonen syntax and executes

the testing stage, the second one takes test vectors in ex-

tended UCBTEST syntax as input and runs the tests, and

finally there is a conversion mode to translate test vectors

from extended Coonen syntax to extended UCBTEST syn-

tax. IeeeCC754 features comprehensive testsets in extended

Coonen format for all operations listed in IEEE 754.

IeeeCC754 distinguishes between basic operations and

conversions. This distinction is motivated by the observa-

tion that on most systems certain operations like addition,

multiplication and division are realized in (and mapped to)

hardware functions, while code for other operations will be

generated by the compiler and executed in software, e. g.

conversions between decimal and binary format or between

different floating-point formats. The basic operations as

used in IeeeCC754 consist of +, −, ∗, /, square root and

remainder. On platforms with SUN, Intel and AMD proces-

sors, the hardware provides implementations of these oper-

2Obviously, the underflow mode can only be determined if floating-

point operations that produce underflow have been executed. This is

noteworthy as certain kinds of operations never will result in underflow

(cf. [2]).

ations, and testing usually reveals no errors. As for conver-

sions, the code generated is highly dependent on the com-

piler and the runtime libraries to which the program will be

dynamically linked to. Testing results vary from platform

to platform, with the most errors usually found in decimal

to binary (and vice versa) conversions as these are the func-

tions that are the most complex to implement and most ex-

pensive to execute. For further details we refer to [16].

Summarizing, IeeeCC754 is a valuable tool to test to

what degree a given floating-point implementation con-

forms to the IEEE 754 standard. The new modes presented

in the next sections have been integrated into the IeeeCC754

development tree, due to the kind permission of the Univer-

sity of Antwerp to modify and extend their sources.

3. IeeeCC754 checksum mode

3.1. General approach

Our first approach to providing numerical quality in a

grid environment is motivated by the heterogeneous nature

of the platforms encountered in a grid. Even if a specific

architecture (like “i386 running Linux”) is requested when

submitting a job, one cannot know in advance the exact

specifications of the target host (like exact processor type,

kernel version etc.). So, it is almost impossible to predict

the job’s results as far as floating-point behavior is con-

cerned. To make things worse, most probably the platform

on which the user locally develops his or her application

will not totally conform to IEEE 754 in all aspects. Further-

more, even when the compiler is in principle able to gener-

ate IEEE compliant numerical code, this does not have to

be the case when using certain optimization levels to gain

higher application performance. Typically, compilers tend

to drop certain aspects of IEEE 754 at higher optimization

levels (such as generating floating-point exceptions) due to

their computational cost. The influence of compiler options

on floating-point arithmetic is completely dependent on the

specific compiler and might even change from one compiler

release to the next. Some examples of applications suffer-

ing loss of IEEE 754 compliance due to compiler options

can e. g. be found in [12] or [4].

What can be done to get reliable and predictable results

under these circumstances? The only facts the user knows

about his or her application’s performance is how it per-

forms locally, i. e. when run on his or her local machine.

Information about the degree of compliance to IEEE 754

of the local platform can be obtained by running standard

mode IeeeCC754, even when running higher optimization

levels (cf. Section 5). In this manner, some control on

the local performance of the application can be achieved.

Our approach to transfer this knowledge to the grid starts

by calculating a “numerical checksum” of the local system,

incorporating the set of compiler options that were used to

generate the final application. When submitting the applica-

tion to the grid, prior to actually executing it, the numerical

checksum of the target grid host is computed and compared

to the local checksum. If the checksums differ, it is likely

that the results generated on that system will be different to

those that would have been calculated when running the ap-

plication on the local system. So the user will not be able to

rely on the results when executing jobs on this specific grid

host and, consequently, the grid job should be rejected and

its execution canceled.

On the other hand, it is clear that even when getting iden-

tical checksums it can never be guaranteed that the applica-

tion will indeed yield exactly the same results when run on

a (positively) tested grid host or when run locally. But since

the IeeeCC754 test suite is fairly comprehensive, the user at

least gains a very strong hint that most likely the application

will behave as expected.

As an important note we would like to stress that this ap-

proach will not (and cannot) provide the user with any infor-

mation on the IEEE compliance of the underlying floating-

point implementation(s) even if the checksums are equal. It

simply provides a security means enabling the user to cancel

(or to not start) jobs that are likely to perform unsatisfacto-

rily. When information on IEEE 754 compliance is desired,

standard mode IeeeCC754 should be used.

3.2. Implementation details

To calculate the checksum, we extended IeeeCC754 with

an additional mode, the checksum mode. In this mode,

IeeeCC754 reads test vectors in extended UCBTEST for-

mat (which means the test vectors have to be converted first,

see below). During the testing stage, instead of producing

error log files in plain text format, a binary format is used to

keep the checksum compact.

The checksum consists of a header (21 bytes long) which

includes the number of total vectors tested, the number of

errors that occurred, the underflow mechanism used (and

if it was used consistently), and finally the endianess of

the platform on which the checksum was generated. Ad-

ditionally, for every error that was encountered while ex-

ecuting IeeeCC754 (i. e., executing the operations under

consideration led to a violation of IEEE 754), another 14

bytes will be written including information about error type

etc. This (binary) encoding is done in such a way that it

is possible to retrieve almost all the information from the

checksum that would also have been produced with stan-

dard mode IeeeCC754 except the floating-point numbers

(i. e. operands and expected and returned results) them-

selves. For the deployment of the checksum mode in a grid

environment it might not be strictly necessary to retain this

information, but it enables the user to actually locate the ar-

eas (i. e. operations) where differences occur by using the

decoding program which was developed together with the

checksum mode.

Due to the different philosophies behind the standard

modes and the checksum mode,3 we introduced a few small

changes to the default behavior when extending IeeeCC754.

First, standard IeeeCC754 has been designed to test the

conformity of the single and double floating-point formats

defined in IEEE 754. Intel-compatible processors execute

floating-point operations in an extended format which uses

extra bits for exponent and mantissa (at least by default).

The operands (in single or double precision) are copied to

the internal format, the operation is executed with extended

precision and then rounded back to default precision. Al-

though this yields results with higher accuracy (which is

numerically desirable), it breaks IEEE 754 conformity (be-

cause computing with a longer mantissa may lead to dif-

ferent results when rounding). System calls exist to change

the default behavior and switch the processor to IEEE single

or double mode, but even then the exponent is given more

bits and thus can vary in a bigger range. During testing

IeeeCC754 sets the correct modes via these system calls.

We disable the switching of floating-point modes when run-

ning on Intel-compatible hardware, since in most cases a

“normal user” will simply use the default single and double

datatypes provided by the programming language. Thus,

more errors will be encountered when executing single and

double precision tests. This is not a problem by itself (the

goal of the checksum mode is to generate a security mea-

sure, not to provide conformity information), but it leads to

a considerably larger checksum.

Another issue on platforms with Intel-compatible pro-

cessors demands attention: Although the hardware imple-

ments functions for the computation of square root and re-

mainder which yield (mostly) IEEE 754 compliant results,

some compilers generate their own version of these opera-

tions. In particular, when using g++ (the GNU compiler) or

icpc (the Intel compiler) on a Linux i386 platform, square

root and remainder are realized in software. To test the qual-

ity of the processor’s floating-point implementation, stan-

dard IeeeCC754 uses assembler calls for these operations.

Again, we try to mimic the computing environment most

users will see and rely on the operations which the compiler

provides by default. Typically, this leads to some additional

errors.

When using IeeeCC754 checksum mode, there are a few

points worth considering. Obviously, a certain overhead

will be produced by transferring IeeeCC754 itself, the test-

sets and the local checksum to the grid node. The size of

3The standard modes test the principal ability of a floating point imple-

mentation to support IEEE 754, whereas the checksum mode checks the

compatibility of different nodes from a “user-centric” programming envi-

ronment point of view.

the (probably already quite large, see above) checksum file

will be further increased (and to a much larger extent) when

using high optimization levels. Another issue (which is also

related to the checksum file size) is the number of test vec-

tors to be considered. It is possible to create rather small

testsets by omitting certain operations or precisions. E.g., it

is quite feasible to drop all vectors concerning long4 preci-

sion on Intel-compatible platforms since most probably the

native format will not be used (or may not even be acces-

sible) by the user anyway. In the same manner, quadruple

precision test vectors might be dropped on SUN platforms

when the application makes no use of them. Furthermore, if

only the default rounding mode is used (which is “round to

nearest” as specified by IEEE 754), it makes sense to gen-

erate only vectors that test this mode. Although possible in

theory, it is not advisable to omit the complete testset for

a given operation since valuable (and necessary) informa-

tion might be lost. In particular, it is dangerous to omit test

vectors from the conversion test sets as certain conversions

might be used by the compiler implicitly without the user

ever being aware of it.

As a small testset generates less overhead in a grid and

reduces the size of the checksum file at the same time, it is

planned to offer a specially designed testset which contains

only test vectors that are known to lead to errors with a high

probability. Before this testset can be released, many more

test results will be necessary to ensure that (if possible) al-

most no information is lost due to the reduction.

We propose another approach to drastically reduce the

size of the checksum file: Header and error information are

generated as described above, but instead of interpreting all

this information as the checksum, we compute a hash value

(MD5 [11] or SHA-1 [10]) of the encoded error information

and add that value to the header. Header and hash value

are now the new checksum. It is of fixed size (21 bytes

plus the length of the hash value which is 128 bits for MD5

and 160 bits for SHA-1). This is the most desirable way

to deploy the checksum mode in a grid (together with a re-

duced testset) because of its efficency – checksums can be

as big as 140 KB (which corresponds to more than 10,000

errors!). Still, for analysis purposes the original long check-

sum should be used.

Two drawbacks related to this approach should be men-

tioned: When computing hash functions, there is inherently

always a small probability that two different checksums

might result in the same hash value. Although modern hash-

ing functions (which are mainly used to ensure file integrity)

are designed to avoid collisions especially for binary input

data, a small risk remains that an application will be exe-

cuted although the grid node is to be considered unreliable

(due to different checksums).

4“long” is the extended format that is used internally in Intel-

compatible processors.

Furthermore, by computing the hash value of the check-

sum, it is no longer possible to retrieve information on the

areas in which a given grid node differs from the local plat-

form with regard to numerical reliability.

4. IeeeCC754 info mode

4.1. General approach

While the checksum mode aims at providing a means to

prevent the execution of applications on grid nodes which

are likely to produce unreliable results, we propose another

approach that makes use of the information modules present

in most grid toolkits. These systems publish different pieces

of information about the nodes present in a grid. The in-

formation published is typically used by resource managers

which try to find the best currently available resources for

a job that has been submitted, but they also help users and

system administrators to identify and solve problems typi-

cally encountered in a grid.

Information systems are present in every major grid

toolkit, so it seems quite obvious to publish information

of the numerical properties of a grid node into these sys-

tems. The question is which information about an under-

lying floating-point implementation (that cannot be derived

from other already existing information like processor type)

is useful enough to be worth being published into a grid?

In the following, we explain the implementation of the

IeeeCC754 info mode and propose three approaches that

provide information that could be helpful when published

on a grid.

The info mode actually consists of two parts – an exten-

sion to IeeeCC754 which in particular introduces an ade-

quate output format, and a set of python scripts which con-

trol the generation of test results, collect statistics and pro-

duce output which can be published.

In many regards, the IeeeCC754 info mode is very simi-

lar to the checksum mode (see above). It expects testsets in

extended UCBTEST format, and on Intel-compatible plat-

forms it uses the same floating-point environment a “normal

user” sees (i. e., it relies on the compiler-generated software

versions for square root and remainder and does not switch

to IEEE compliant single and double formats via system

calls). The main difference is the output format used: As

the goal of the info mode is to generate statistics, a line of

output is generated for every test vector being considered

(standard IeeeCC754 and check mode only produce output

when an error has been detected). The output format is de-

fined as follows:

• For successful tests:

+ prec op mode
• For errors:

- prec op mode error

where the first character shows whether testing resulted in a

success (+) or in an error (-), prec denotes the precision of

the result, op denotes the operation that has been tested, and

mode denotes the rounding mode. Furthermore, in case an

error was encountered, the type of error is recorded. Here

we find the second big difference to the other IeeeCC754

modes: We classify all errors that can occur into two groups.

One contains all errors that deal with exception flags, be it

flags that have been returned but should not or exceptions

that are expected but were not raised. The other group con-

sists of results where at least one bit of the actually returned

floating-point number is wrong, irrespective of the bit po-

sition (sign, exponent or mantissa). The motivation behind

this distinction is simple: In a common development envi-

ronment, exception flags are only available to the user when

explicitly requested (usually via system calls). Then, the

execution of an application is not affected by errors due to

erroneously set exceptions flags at all. On the other hand,

when at least one bit of the returned floating-point number

is set to a wrong value, a non-compliant numerical error is

introduced in the computation which may result in a loss

of accuracy. With the classification approach, one can dis-

tinguish between severe and not so relevant errors. In info

mode, an x is printed if an error in the exception class oc-

curred, an r when the computed binary representation of

the result is not correct, and finally xr when both types of

errors occurred.

4.2. The generation framework

The “generation framework” is designed to be as flexible

as possible to enable output of a wide range of information

for arbitrary grid information systems. It includes function-

ality to execute the testing stage with a given set of compiler

options as well as functionality to find the “best” set of com-

piler options according to different criteria (cf. Section 5).

The functionality is shown in figure 2.

Selection of the relevant information is done by either

choosing specific test vectors from the testsets or, in a more

flexible manner, by filters: In the parsing stage, the frame-

work reads the results from IeeeCC754 and stores them in

a hierarchical data structure optimized for fast selection of

certain criteria. Afterwards, a filter is applied to the data.

A filter consists of two components: A list of criteria that

specifies which of the test results should be considered, and

a filter function that is successively applied to every result

that satisfies the given criteria. The filter function is respon-

sible for generating the actual statistical information. In our

approaches, we use a fairly simple filter function that com-

putes the success rates concerning the two error classes de-

scribed above (exception errors and errors in the binary rep-

resentation). After filtering, the data is passed to an output

module that translates the information into a format which

Perform data
selection

Apply

filter

Generate
output

Read
statistics

Compile with

given options

IeeeCC754

info mode

Figure 2. Generation framework

is recognized by the target grid information system (or e. g.

into plain text format for testing purposes).

In the following, we present three approaches to publish

helpful information in a grid context. Instead of describing

the actual output that would be produced by an appropri-

ate output module, we outline what type of information the

variants will generate.

4.3. Variant 1: Hardware

The first variant generates information on the IEEE 754

compliance of the hardware. More specifically, it considers

only the four basic arithmetic operations +, −, ∗ and / and

computes the percentage of successful tests with regard to

the error classification (as described above). The tests may

be performed by any compiler which maps the four oper-

ations to hardware functions with optimization turned off.

Information will be displayed for each operation along with

total results. As the actual calculations in the testing stage

are performed in hardware, no information on the compiler

used will be printed. Information on the hardware (proces-

sor type etc.) will not be generated as they should be present

in the grid information system anyway.

The information generated by this approach might be

used as another security measure to detect faulty processors

in a grid. Another use case incorporates resource managers:

It is possible to evaluate the numerical information and ex-

ecute numerically demanding jobs only on platforms where

the info mode information is present and a certain success

rate required by the user is given (i. e. when a certain per-

centage of the tests was completed without errors).

4.4. Variant 2: Compiler options

While originally developed to publish information into

a grid information system, the IeeeCC754 info mode has

an interesting side use: For a given combination of plat-

form and compiler, it is possible to evaluate different sets of

optimization flags and choose the set that fits best (accord-

ing to some criteria). So we can take our favorite compiler

options, run IeeeCC754 info mode with these options and

retrieve information on how the optimizing process affects

floating-point reliability. To take things further, one might

try to find a set of optimization flags that yields the high-

est possible performance while retaining the desired level

of numerical stability (as far as floating-point calculations

are concerned). This process is described in detail in Sec-

tion 5, for our second info mode variant we take a slightly

different approach.

IeeeCC754 standard mode testing results show that usu-

ally only a small percentage of errors is encountered. How-

ever, the requirement for small error rates is that optimiza-

tion is disabled. As already mentioned, certain aspects of

IEEE compliant floating-point arithmetic will be dropped at

higher optimization levels due to the computational costs.

An examination of the error rates in correlation to optimiza-

tion levels reveals that typically only few errors are intro-

duced until reaching a certain optimization level. From this

point on, hundreds of errors will be encountered, sometimes

to the extent that not a single (decimal) digit of a result is

correct. Interestingly, these error rates behave quite differ-

ently when distinguishing once again between errors related

to exceptions or to the binary representation: When consid-

ering exceptions, even low optimization levels usually gen-

erate high error rates, whereas error percentages with regard

to the binary representation of results increase at a much

slower rate. As an example, when using g++ 3.3 and only

counting errors that relate to the binary representation, er-

ror rates range from 2% to 5% after compilation with -O0,

-O1 or -O2 whereas using -O3 results in an error rate of

40%. Regarding the total number of errors encountered (in-

cluding exception flag errors), errors rates increase to 25%

and 60% respectively.

Furthermore, compilers are able to produce code specifi-

cally tuned to the different types of processors and floating-

point units (and, nowadays, multimedia extensions that fea-

ture fast floating-point implementations). This not only in-

creases application performance, but also affects the quality

of floating-point calculations, unfortunately not always in a

positive sense.

These observations lead to our second approach: For a

given compiler, we compute a suggestion which compiler

options should be used under the assumptions that

• the highest possible performance should be obtained,

• the user does not rely on the implementation raising

exception flags,

• the rounding mode will not be switched by the user,

• the error rate should be very small.

The information that will actually be displayed for a grid

node would consist of recommended options for some cur-

rent and widely used compilers, e. g. g++ 3.3 and g++ 4.0.

While it can not be guaranteed that the recommendation is

the optimal set of options, users get at least a hint which set

of compiler options yields a reasonably good result.

4.5. Variant 3: Fingerprint

While for numerically sensitive applications it is highly

desirable to check every grid node via the checksum mode

before executing the application, this approach is hardly

feasible in a large scale grid due to the overhead that is gen-

erated when transferring the necessary data (the IeeeCC754

executable, testsets, and the local checksum). Therefore,

our third variant with regard to grid information systems

consists of a mixture of checksum and info modes. The idea

is to store a “numerical fingerprint” of a platform on the grid

so that resource management systems can use this informa-

tion to dispatch jobs with special numerical requirements.

From the considerations outlined so far, it is clear that there

are some serious challenges related to this approach:

• Fingerprints can be stored only for a very limited num-

ber of compilers.

• It is not feasible to supply fingerprints for a wide range

of compiler options, so one would have to define a

small set of standard configurations of compiler op-

tions (e. g. only ”-O0”).

• This approach can only work if the release of

IeeeCC754 and the testset used are identical; otherwise

there would be no possibility to draw conclusions from

comparing checksums. This obstacle can be overcome

by defining fixed testsets and assigning version num-

bers both to IeeeCC754 and the testsets. These version

numbers must be stored together with the fingerprint.

• The checksum must be small, i. e. a solution like the

MD5- or SHA-hashes as proposed in Section 3 must

be used. Here, the same considerations related to the

computing of hash values apply – there is a small

chance that identical hash values might be generated

for different checksums.

Under these circumstances, it becomes possible to pro-

vide for a means of security similar to the checksum mode

without transferring and executing IeeeCC754 for every

submitted job. Thus no jobs must be canceled because of

numerical incompatibility, they will not be submitted at all.

The drawback is that the number of matching hosts might

be small, and fingerprints must be supported by the resource

broker in the first place.

Although using fingerprints proves valuable as a security

measure (cf. Section 6), there remains need for research: To

allow for a wider range of compatible grid nodes and more

flexibility in general, it would be desirable to rate the qual-

ity of a node in a (ideally user-readable) way that allows for

some “fuzziness” in the resource selection process. Unfor-

tunately, all approaches considered so far do not yield a con-

fidence level beyond that of variant 1. Especially, the main

advantage of the checksum mode (a guarantee that a grid

node behaves identical at least on a comprehensive testset)

is lost. Future developments will concentrate on investigat-

ing the possibilities in this direction.

So far, we have realized proof-of-concept implemen-

tations of the described approaches that use MDS2 (the

LDAP-based information system of the Globus Toolkit ver-

sion 2 [13]). Later on it is planned to provide output mod-

ules for MDS4 (the information system of Globus Toolkit

version 4 which is based on web-services) and Unicore [14].

5. Optimization of compiler options

The number and kind of errors found when executing

any variant of IeeeCC754 is highly dependent on the op-

timization options passed to the compiler. The higher the

optimization level, the more features of IEEE 754 arith-

metic will be dropped as they usually degrade performance

(as discussed before). Unfortunately, as long as there is no

further knowledge available, the only way to guarantee the

best possible floating-point reliability is to turn off any op-

timization whatsoever. On the other hand, using high opti-

mization levels can result in drastically reduced computing

times. We provide for a means to automatically optimize

the set of compiler options with the following approach:

As explained in the last section, the framework built

around the IeeeCC754 info mode enables the user to eval-

uate any number of compiler options settings. The opti-

mization mode takes a (possibly large) choice of compiler

options and executes the IeeeCC754 info mode for all possi-

ble combinations of options. Afterwards, every run is eval-

uated according to the specified filter settings. We imple-

mented a supplementary framework mode that, in addition

to calculating the error rate of a specific test run, bench-

marks application performance by measuring the runtime of

IeeeCC754. To get reliable results, a few runs are executed

with identical settings and the average time is computed.

All generated information is stored together with the setting

of compiler options.

When all combinations have been processed, the choice

of the best setting can be simply done by sorting. A weight-

ing of the different values is achieved by supplying an ap-

propriate comparison operator. We use the following order:

1. Success rate with regard to the binary result

(larger is better).

2. Runtime (smaller is better).

3. Number of options (smaller is better).

4. Success rate regarding exception flags

(larger is better).

The rationale behind this approach is the assumption that

numerical reliability is considered the highest goal, closely

followed by high performance. The reason for consider-

ing the number of compiler options is that when two sets

of compiler options yield the same level of performance ac-

cording to the first two criteria, it is simply more conve-

nient to use the set with fewer options. If any two sets show

the same performance even after comparing the number of

options, finally the reliability values concerning exceptions

flags are considered.

While the information gained by applying the described

approach is valuable in itself, it should be noted that it can

only yield general information with respect to performance.

The main caveat is that the same set of compiler options can

result in substantially different performances for different

target applications. This simple observation somehow puts

the results into perspective. As a remedy, instead of timing

IeeeCC754, it is possible to record the runtimes of the actual

application for which an “optimal” set of compiler options

is sought for. In this mode the optimization framework takes

a set of compiler options, compiles IeeeCC754 and the tar-

get application with these options, generates the statisti-

cal data related to numerical quality by running IeeeCC754

and measures the runtime of the application. In this man-

ner it becomes possible to find a set of compiler options

that yields very good performance of the application while

guaranteeing the highest possible reliability with respect to

floating-point operations. However, for this approach it is

necessary that the application completes within a reason-

able period of time – it is infeasible to test a broad range of

possible combinations of compiler options when the appli-

cation takes several hours (or even more than a few minutes)

to complete. A possible remedy is to benchmark runtimes

with a short running “toy” example application that resem-

bles the target application more closely than IeeeCC754.

6. Test results

The tests were performed on two grids, the first being a

small research and test grid at our department, the second

the LCG (LHC Computing Grid) which provides the anal-

ysis infrastructure for CERN’s Large Hadron Collider [9].

Our own test grid consists of several Linux workstations,

all running some version of SuSE Linux, with hardware

platforms ranging from Intel Pentium III and IV to AMD

Athlon 32- and 64-bit processors. The LCG currently in-

volves more than 200 sites in over 30 countries worldwide

[6], the platforms deployed on the sites being too numerous

to list.

Test results for the IeeeCC754 checksum mode are

shown in table 1. The “local system” consisted of a Linux

workstation with an Intel Pentium IV 2.8 GHz processor

and 1 GB of memory (running SuSE Linux 8.2). All

IeeeCC754 info mode runs were also performed on this sys-

tem. In all following tests we only regard test vectors for

single and double precision with rounding to nearest (since

this is the configuration an application developer will en-

counter by default).

-O0 -O1 -O2 -O3

local 1 1 1 100%
g++ 3.3

LCG 2-3% 2-3% 2-3% 100%

local 0% 0% 100% 100%
g++ 4.0

LCG n/a n/a n/a n/a

Table 1. Error rates (checksum mode)

For the checksum mode tests, the GNU compiler g++

version 3.3 was used. Four IeeeCC754 executables with dif-

ferent degrees of optimization were compiled (using -O0,

-O1, -O2, and -O3 resp.). The tests for g++ 3.3 (with low

optimization levels) completed quite satisfactorily: Only 2-

3% out of several hundred job runs on the LCG failed due

to a different checksum. In our local test grid, only one

job failed due to a quite outdated version of Linux on that

system. These failures emphasize the need for measures of

numerical qualities on a grid. As for the executable with

the highest optimization level (the one compiled with -O3),

not a single job could be successfully completed on either

grid. Further investigation will be necessary before conclu-

sions can be drawn, but the results show that the perfor-

mance gained by using high levels of optimization comes at

a price – by losing (some or all) IEEE 754 conformity when

executed locally and by losing any predictability when sub-

mitting applications into a distributed environment. For g++

4.0, the local tests yielded results similar to those with g++

3.3 except that even for -O2 all checksums were different.

In the LCG, all submitted IeeeCC754 checksum executa-

bles compiled by g++ 4.0 failed to run. Analysis of the

error logs revealed that the failure was due to missing li-

braries – starting from version 3.4 g++ uses a newer ver-

sion of libstdc++ which is currently not installed on the

LCG.

Summarizing test results for the IeeeCC754 info mode

runs is quite difficult as the different variants aim at provid-

ing information on a specific grid host. To get a feel for

what information can be expected, we give examples gener-

ated on our “local system”. For variant 1 (cf. Section 4.3) an

example output in MDS2/LDAP format is shown in figure 3.

Here, “success” stands for the percentage of correctly com-

puted results compared to the total number of operations,

while “result” gives the success rate of runs when only re-

garding the returned floating-point value. The high number

of errors is due to the internal use of a higher precision for-

mat for intermediate calculations on Intel-compatible plat-

forms.

Mds-IEEE-HW-all-success=97.28
Mds-IEEE-HW-all-result=98.99
Mds-IEEE-HW-add-success=99.49
Mds-IEEE-HW-add-result=99.49
Mds-IEEE-HW-mult-success=96.76
Mds-IEEE-HW-mult-result=99.12
Mds-IEEE-HW-div-success=95.37
Mds-IEEE-HW-div-result=97.96

Figure 3. Example MDS output

For variant 2 (cf. Section 4.4), we computed recom-

mendations for an “optimal” set of compiler options (as

would be shown in a grid information system). These

recommendations were generated using a mixture of vari-

ant 2 and the optimization approach presented in Sec-

tion 5: We specified some compiler options known to yield

high performance and some that prevent the compiler from

dropping certain aspects of IEEE 754 floating-point arith-

metic. The resulting sets of options were “-O2 -msse”

(with a success rate of 97.24% when disregarding errors

due to exception flags and 76.34% otherwise) for g++ 3.3

and “-O3 -mtune=pentium4 -ffloat-store” for

g++ 4.0 (with rates of 97.24 and 76.36%) respectively. Fi-

nally, showing test results (i. e. numerical fingerprints) for

variant 3 of the IeeeCC754 info mode is omitted as the prop-

erties of the underlying numerical checksum have already

been discussed in detail.

7. Summary

In this paper, we presented a couple of approaches to pro-

vide security measures with regard to floating-point arith-

metic when executing applications in a grid context which

demand a high level of numerical reliability. The checksum

mode of IeeeCC754 provides a means to ensure that an ap-

plication will only be executed on a grid node if this grid

node supports the same floating-point behavior as the local

system. The different variants of the info mode aim at stor-

ing information relevant to evaluating the numerical quality

of a grid node in the grid information systems which can

be exploited either automatically (e. g. by resource brokers)

or manually (users or administrators trying to get measures

of numerical reliability on a grid). Additionally, while not

being directly grid-related, we showed an approach to tune

a given application for optimum performance while retain-

ing numerical quality. Together these approaches can help

to ensure that numerical computations on a grid can be exe-

cuted in a reliable manner.

The proposed IeeeCC754 checksum mode is about to be

tested and integrated within the scope of the German D-

GRID Initiative [3]. Furthermore, extensive tests of the info

mode variants are planned.

Acknowledgements This work was partially sup-

ported by the BMBF (Bundesministerium für Bildung und

Forschung) within the projects “Qualitätensicherung und

Ressourcenoptimierung im GRID-Computing” and “En-

twicklung von Anwendungen und Komponenten zur Daten-

auswertung in der Hochenergiephysik in einer nationalen e-

Science Umgebung im Rahmen eines Verbundvorhabens”

(D-GRID, HEP community, WP2).

References

[1] http://www.ima.umn.edu/˜arnold/455.f96/
disasters.html.

[2] A. Cuyt, P. Kuterna, B. Verdonk, and D. Verschaeren. Un-

derflow revisited. Calcolo, 39:169–179, 2002.
[3] D-GRID Initiative. http://www.d-grid.de/.
[4] F. de Dinechin and G. Villard. High precision numerical ac-

curacy for physics research. Nuclear Instruments and Meth-
ods in Physics Research Section A, 559(1):207–210, 2006.

[5] I. Foster and C. Kesselmann, editors. The Grid 2: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,

2nd edition, 2003.
[6] GridCafé. http://gridcafe.web.cern.ch/

gridcafe/GridatCERN/LCG.html.
[7] IEEE. ANSI/IEEE Std 754-1985, Standard for Binary

Floating-Point Arithmetic, 1985.
[8] IEEE. ANSI/IEEE Std 854-1987, Standard for Radix-

independent Floating-Point Arithmetic, 1987.
[9] LCG – The LHC Computing Grid Project. http://lcg.

web.cern.ch/LCG/.
[10] NIST. Secure Hash Standard. Federal Information Process-

ing Standards Publication 180-2, 2002.
[11] R. L. Rivest. The MD5 Message-Digest algorithm. http:

//www.ietf.org/rfc/rfc1321.txt, 1992.
[12] M. Taufer, D. Anderson, P. Cicotti, and C. L. Brooks. Ho-

mogeneous Redundancy: a Technique to Ensure Integrity of

Molecular Simulation Results Using Public Computing. In

19th IEEE International Parallel and Distributed Process-
ing Symposium, 2005.

[13] The Globus Toolkit. http://www.globus.org/
toolkit.

[14] Unicore. http://unicore.sourceforge.net.
[15] B. Verdonk, A. Cuyt, and D. Verschaeren. A precision- and

range-independent tool for testing floating-point arithmetic

I: basic operations, square root and remainder. ACM Trans.
Math. Softw., 27:92–118, 2001.

[16] B. Verdonk, A. Cuyt, and D. Verschaeren. A precision-

and range-independent tool for testing floating-point arith-

metic II: conversions. ACM Trans. Math. Softw., 27:119–

140, 2001.

�� ������	
 ������ �� ��� �	���	�� ��������	��� ����� ������

��������	�
�������
������� ��������	� �� ����������
���	�	�	� �� ������� ���������

���	��� ! "#$%"& �������! ������
��������	�'
�������(��	'������'��

������) ��������
������� ��������	� �� ����������
���	�	�	� �� *�+��	��� ,������

���	��� -! "#$%"& �������! ������
.

���+ ��������� ��������	�
/����	� �� ��	��+�	��� ��� *�+��	�� ,������

�+��	���� 01! "2$"23 �������! ������
������)'���������(��	'������'��

�����	��

�� ������� 	�
�����	� ����
� � ��� �	���	�� �
�������
�
	�
� ����� �� ���
�� ���
�
�
	� �	��� ������ ����� ��
��
�	�� �
�������
	� ���	�
�� � !"��# $�� ����� ���
�
����� ������ � 	 ���� � ���
�����	� ����
���� �����
��# % ������ � ��� �&��
�
� 	��
���
�
�
�����	� ����
����
������ 	�� ������ � �������� ������� 	�� ��� ���	�
�
��
� �
���#

�� �����������

,	����� �� ��	����� +�	���� ��� ������� 	�� �4� �	��	��
�	� 	�� +�	���� 5���� �� ������ ������ 6��� �'�' �����
7-#89' ,���� 	�� ���5��+ ���+� ���� �+���	��	 ��� ����:��
��+��	��� 	�� ���������	���� �� ���� +�	���� ���� 5���
��	 ������ �� +��� ������ ��� +��������� 6��� �'�' ;�$
)�����+ 7-8! <����� 72&8! =��+ 7--8! 7- 8! >���! ������
��� ?������� 728! 7"8! @�)�� ��� ��������� 7 8! A��+����!
B���� ���
����C�� 72 8! ��������� 7218! ��������� ���
,������ 72%8! D�������� ���
������ 7-28! ��� B���� 7-389'

��� �������� �� 	�� ��	����� +��	��	�� +�	���� 5����
�	� 	�� �E�����	 ��	����� +�	���� �� ���+�$>������	� 	���
6;��>9 6���
������� ��� ��������� 7%8! ��� B���� 7-389!
	� ��+����� �� 	�� �+�����	 ��	����� +�	���� �� ���+�$
����	�� 	��� 6����9 6���
������� ��� ��������� 708!
72289 ��� 	� ����� �� 	�� ��	����� ������	��$������	�� +�	�$
��� �� ���+� 	��� 6����*2 ��� ����*-9 6���
�������
718 ���
������� ��� ��������� 72#89' ����! 	�� �E�����	
��	����� +�	���� �� D��	�F+ 	��� 6;�D9 ��� 	� ��+�����
�� �+�����	 ��	����� +�	���� �� �����$,�+���� 	��� 6���,9
���� 5��� �������� 6��� ��������� 72089'

��� ��+������ �������� �� ������	����� +�	���� ���

������� 	�� �4� ���� 	�� �+���	���� �� 	�� ���	 ����� ��
+��	��	�� +�	����! �'�' 	�� +�	���� 5���� �� 	�� 5������
��������	��	��� ���+��� 6��� ,��' -9' G� ������� 	�� ��	�����
������� �� 	�� �E�����	 ��� �+�����	 5������ ��������	��	���
6>H/9 +�	���� 6;�>H/ ��� ��>H/9 6��� ,��' 9' ��� ��$
	����� ����	���� �5	����� 5� ���� +�	���� ���	��� �	� ������
6��� ������+ 2 ��� ������+ - �� ,��' 9' /��	���+���!
��+��	�� �+���+��	�	��� �� 	�� ��	����� >H/ +�	���� ��
I��	���$����	 ��	����� ���	�+�	�� 	���	��� �	� 	�� ��������$
	�	��� �� ���	��� ��	� �� 	�� ���+ �� +������ ��	������ ��	 ��
������� 	�� ��	����� ����	���� ���� ���	���� ��� �����5��
��+������ ������' ��� ��	�� �� 	�� ��	����� ����	���� �5$
	����� ��� ���� ��	�+�	�� 6��� ������+ ��� ������+ 3 ��
,��' 9' /������! �� 	�� 5���� �� ��+� �E�+���� � ��+����
� ��+5�� �� 	�� +��	��	�� +�	���� ������	�� �	� 	�� ��	��$
��� +�	���� ���������� �� ��� �������� ������ 6��� ,��' 39
��� ������	 ��+� ��+���� 6��� ,��' &9'

�� �� ��	
 �	
�� !���
�" 	�� ��� ������#
���	
 ��� "�����

��� ���	��� ����� ���5��+ 6�4�9 �� �� 	�� ���+

�� � � ��� �� � � ��� � ��� 629

���� � � ��� ��! � � �! � � � ��� � �� ! � � ��� ����� �
�
� ' G� ��� ����+� 	��	 	�� ����	��� �� 629 �E��	� ��� ��

���J��'
D�! ��	 �� ������ � ����	��� ��	���� � ��� �����	 	��

+��� ����	� ��! ��! ' ' ' ! ��! ���� �� � �	 ��� ���� � �
�� 	�

 �� ��� 	 � ���' ����+� 	��	 	�� ��	���� � �
	�
�

��� �	�	� ��+��� �����E�+�	���� ����! ������!
' ' ' ! ���� �� 	�� �E��	 ����	��� �	 	�� �������� �+��� ����	�
���� 	� 5� ���� 	� ��	 	�� �����E�+�	��� �� �� � ��'

�� �� ��� ���� 6��� �'�' ?�����! DK���		 ��� G�����
738 ��� A������� 72389! 	�� ����	���	��� ������� �� ���$
���	����� 5������ ��������	��	��� +�	��� �� 5���� �� 	��
�������+��	 �� 	�� �E��	 ����	��� � ��� ��� � � ������ ���
�� 	�� �4� 5� � ��� � � ���! ���� � ��� �� 	�� D�	��
5������$���������� ��	������	��� ������+��� �� ������ �
��� � ��� �� 	�� ��	������	��� ����� 	��+' ����! ��������	��	$
��� � ��� � ��	

�� ��� � �� ��� � �� ���
 6-9

G� ����+� 	��	 	�� ������+��� � ��� �� ���� 	��	
� ������ � � ������! � � �� 	�

 � �! ��� ��� � � �� � �	!
���� 	 ����	�� 	�� �	�� ����! � ��� �� �� 	�� ���+

� ��� � �	� � � ���� � ��� ���� � � � ��
�
� ��� 	� � � � ��� � � 	�

��
��� ���� �

��� 	�� ��	������	��� ����� � ��� �� ����� 5� 	�� ���+���

� ��� � �	� � ������ �� ����	���
� ��� 	� � � � ��� ��

�� � 	��
�

���� � ��� � ������ ���

G� �������� 6-9 ��� � � ��� �����

 � ����' ?����! �
����

�� ������ � �� ������ � �� ������ � � � �� 	�

 � �� 6 9

��� ������+��� 	�� ��������	��	��� ��J�����! :����� ���
� � �� 	�

 � � � ��	

� ���� �
��

� � �

�
���
�� � ������

�	�
���
�� � ������ � ������� 639

�	����
���
�� � ���� � ����� �

���� �� � ������ ���! � ���� � ����� 	 � ��� ���� � �����
	 ������ ����! ���

�
���
�� � �

��	��
��

�� �

�
�
�

�
����

��
�� �

����

� 6&9

�
���
�� �

	
��

�� �

����

� �
���
�� � �

������
��

�� �

����

� 6"9

���� �

�
	
	

�
�������
�����

��

���� � � 	
�� � � �

 619

�� 	�� ��+������ �������� �� 	�� ������	����� +�	����
��� ������� 	�� �4� �	 ���� 	� �������� ���� 	� �� � � 	

��������	 �����! �'�' ��� � � � �� � � 	' ?����! ��� � � 	
� ����

� ���� �
��

� � �

���� ������

�	���� ������ � ������� 609
�	������� ���� � ����� �

����

��� � �
��	��

��
�� �

�
�
�

�
����

��
�� �

����

� 6%9

��� �
	

��
�� �

����

� ��� � �
������
��

�� �

����

� 62#9

��� ��� � � � � ����

� ���� �
��

� � �

���� ������

�	���� ���� � ����� 6229
�	������� ���� � ����� �

����

��� � �
��	��

��
�� �

�
�
�

�
����

��
�� �

����

� 62-9

��� �
	

��
�� �

����

� ��� � �
������
��

�� �

����

 62 9

��� ������ ������ � ������! � � 	�
�

 � � �� 609
��� 6229! � ������ � ������� �� 609 ��� � ���� � ����� ��
6229 ��� �������� �	� 	�� �����E�+�	���� ���� � � �
	�
�

 � �� ���� � � ������ ����� ��� �� � � ���� ���!
������	�����' /��	���+���! � ������	 	�� ����� 	��+�
	������� ���� � ����� ��� 	������� ���� � �����' ����
����� 	� 	�� �������� ���+���� 	��	 ��	��+��� 	�� ������	�+
�� 	�� �E�����	 ������	����� �$�	�� 5������ ��������	��	���
+�	���L

�� �
��

� � �

������� � 	���� ������ ����� � 6239

��� 	�� �+�����	 ��� ����� 5���

�� �
��

� � �

������� � 	���� ���� ���
 62&9

<�	 �� ��	� 	��	 	�� �E�����	 ������	����� ��� �	��
>H; +�	��� �� �� ���	 	�� ������	����� ���$�	�� ���+�$
>������	� +�	���' ��� �E�����	 ������	����� 	� �	�� >H/
+�	��� �� 	�� ������	����� 	� �	�� D��	�F+ +�	��� 6	��
��+���� ���������� ���� ��	 ���� ��� 	�� �E�����	 ��	����� 	�
�	�� +�	��� �� >H; 	���9' /��	���+���! 	�� �E�����	 ���$
���	����� >H/ +�	���� ��� � � ��� �����	���	��� ���	�$
5��'

$� �� �����	
 ������ �� ��� ��� "�����

<�	 �� ����	� �� ��� �� �� ��	� �� ���� 	�� ����	���
� ��� �� �� 	�� �4� 629 �� ��:��� �� ������L

�� � �� � � � � � � � �� � � � �

�� �
�
� � ���� �	�

 � �� �

 � �� �
�� � �� � ��� ��� �� � �� � � 	�
�

 � �

�

<�	 � ��� � � ��� ���� � � 5� ��	����� �E	������� ��
� ��� �� ��� � ��� � ���� 	 � ��� ��� � ���� 	 ������ ���! ��$
����	�����'

G� ���� ����+� 	��	

� � ��� � � �� ��:��� ��� ���	������ ��� ��� � � ��
��� � � �� 6��� � ������	 �� ���	����	� �� ��	�����
����	��� ��� �'�' ����� 7-#89!

� � ��� � � �� +���	���� �	� ������	 	� ���������! �'�'

�� � �	 � �� � �	 � � ���� ��� � � ��	� �	� �

� ��� ���� � � �� ��� ��� ���� � � �� 	���� �E��	� �
����	��	 � � � ���� 	��	

 �� ��� � �� � � � �� � � �� �� �

���� �!� ����	�� 	�� ��	� �� !
6�� ! � �!�� !	�

 � !� �

 	��� �!� �� ��:��� 5�
 �!� � ���

�� ��	������
 �!��9!

� ���� � � �� ��:��� ��� ��� � � �� ��� � � ���

� ���� � � �� +���	���� �	� ������	 	� ���������'

��� ��	����� ������� �� �E�����	 >H/ +�	��� � ��:��
�� ������

�� �
��

� � �

������� � 	���� ������ �����

�	������������ � ��� �	� � 62"9
���� � ��� �	�� �������� �

��� � � �� � � 	�

 ���

���� 	 � ���! �� � �	 � ��! � � �� 	�

 ��! ��� !
� � 	�
�

 � �! ��� ����� 5� 6%9! ��� ��� ��� ��� ����� 5�
62#9'

�� ���	������! ��� � ����� � ���+ 62"9 � ���� 	�� �����$
��� +�	����L

� � � 	 6	�� ��+� ���+��� �� ��� 	�� �E�����	 ��	����� ���
�	�� +�	��� �� ���+�$>������	� 	��� 7%89

�� � ���� � 	� ������ �����

�
	

		������ � ��� 	� �

���� � ��� 	�� �������� �

� � �

�� � ���	 �
	� ������ �����

�
	

	
�����	 � ���
	� �

���	 � ���
	�� �������� �

� � �

�� �
	

������ � ����	 � ���
�

�	� ������ �����

�
	

�
	������
 � ��� 	�

���
 � ��� 	�� ��������

��� ��	����� ������� �� �+�����	 >H/ +�	��� ��� 5�
����� 5� 	�� ���+���

�� �
��

� � �

������� � 	���� ���� ���

�	������������ � ��� �	� � 6219
���� � ��� �	�� �������� �

��� � � �� � � 	�

 ���

���� 	 � ���! �� � �	 � ��! � � �� 	�

 ��! ��� !
� � 	�
�

 � �! ��� ����� 5� 62-9! ��� ��� ��� ��� ����� 5�
62 9'

�� ���	������! ��� � ����� � ���+ 6219 � ���� 	�� �����$
��� +�	����L

� � � 	

�� � ���� � 	� ���� ���

�	

		������ � ��� 	�

���� � ��� 	�� �������� �

� � �

�� �
	

������ � ���	� �

	� ���� ���

�

�
	
�����	 � ���
	�

���	 � ���
	�� �������� �

� � �

�� �
	

		
�	����� � ����	 �
���
�

�
�

		
	� ���� ���

�

	������
 � ��� 	�

���
 � ��� 	�� ��������

�� ���� �	�� �� 	�� ��	����� ������� �� 	�� �+�����	 >H/
+�	��� � ���� 	� ����� � ���	�+ �� ��������� ��	�����
�J��	���� �� 	�� �������� ���+

� � " ��� � � �

����

� � � ���� � ���
� � ���� �	�

 � ���

 � � ���� � ��� �
" � � ����� � ����� ��

� �

��� �� ��� ��� ��������	 	�� ��	� �� ��� ���� ��	������
��� ��� �$��+�������� ���� ��	����� ���	���! ������	�����'
G� ��� 	�� ��	�	��� � �!�! ��� �� ��	����� ! � �#� #�! 	�
+��� 	�� ��	 �� ��	������ ���� ��� ���	����� �� !! �'�'
� �!� � ��#� �� � # � # � � � #' �� �	��� ����! � �!� ��
	�� ��	 �� ��5��	������ �� !' �� � ����+� 	��	 	�� ��	�����
����	��� " �� � ���	���	��� +������! 	��� 	�� ��� ����
:E��$����	 	�����+ �+����� 	��	 	�� �	���	��� �������

� ����� � "
	
�� � ���

� $ � �� 	�

 � 6209

��������� 	� �� ���J�� ���+��	 � �! �'�' ���
���

� ��� � � �!

��� �� ��5�	���� ������ �� � ��� � � ����'
��� �	���	��� ������� 6209 ��� 	�� ��	����� ������� �� 	��

�+�����	 >H/ +�	��� 6219 �� �� 	�� ���+

� �����
� �

��
� � �

������� � 	����
	
��� �

���
�

�	������������ � ��� �	� 62%9
���� � ��� �	�� �������� �

$ � �� 	�

 �

��� � ������� ������ � ���
� � ����! ���� ���� �� 	�� ��$

��	��� �5	����� �	 ����' <�	 �� ��	� 	��	 	�� ��	������ ����
��� ����	��	 ������ 	�� �	���	��� �������' �� ����	��� � �	��
	�� �	���	��� ������� ��	�� ��+� �������� ����� 5���������'

/�� 	�� ��	����� ������� �� �E�����	 ��� �+�����	 +�	����
�� >H/ 	��� � ��� ����� 	��	 	�� �E��	 ����	��� �� 	�� �4�
5������ 	� 	�� ��	������ �5	����� �	� 	�� +�	���� ������$
���� 6��� ������+ 2 ��� ������+ -9' /��	���+���! � ���
��	�+�	� 	�� ��	�� �� 	�� ��	����� ����	���� 6��� ������+
��� ������+ 39'

 �����" � �� � ��� � ��' � ���� � �� �� � � 	�
�

 � ��	'
���� �� ��� �&	�� ����
� � ��� � ��� ��� 629 �� �	��

� ���� � ���

�� � � �� � � 	�

 ��' ����� �� � � ���� 	�� ��	
���
��� ��� ����� 62"9#

 �����" � �� � ��� � ��' � ���� � �� �� � � 	�
�

 � ��	'
���� �� ��� �&	�� ����
� � ��� � ��� ��� 629 �� �	��

� ���� � ���

�� � � �� � � 	�

 ��' ����� �� � � ���� 	�� ��	
���
��� ��� ����� 6219#

 �����" $ �� ���
�����	�� �� �� � � �� 	�

 � � � 	 	��
����' �� � �	 � �� �� � � �� 	�

 ��' 	 � ���' 	�� ��
�� � � �� ��	�

 �� 	�� ��	
��� ��� ��� ����� 62"9'
����

 ���� � ! ���
� � �����������

 ����

�% ���
� � �������������

 ���� � &	��

����� ��� ����	��� !' % 	�� & 	��
���������� � 	#

 �����" % �� ���
�����	�� �� �� � � �� 	�

 � � � 	 	��
����' �� � �	 � �� �� � � �� 	�

 ��'

	 � ���� � ' 	 � 	��

�����

	� '
	

����
� � � ��

	�� �� �� � � �� � � 	�

 �� 	�� ��	
��� ��� ���
����� 6219' ����

 ���� � ! ���
� � �����������

 ����

�% ���
� � �����������

 ���� � &	����

����� ��� ����	��� !' % 	�� & 	��
���������� � 	#
/�� 	�� ������ �� 	�� �5��� 	�����+� ��� 72-8'

%� &�"���	
 �'	"!
��

�� 	��� ���	��� � ������	 ��+� ��+������ �����	� ��� 	��
��	����� +��	��	�� +�	���� +��	����� �� 	��� �����' G�
	��	�� 	�� ������	�+� ����� ��� ������	�%�
�����
� ���	 ��	$
	�� �� 	�� H����� ������ �������� ��� �� 	�� *MM ��������
�� ���' �������� �������	� �������� +���� 	�� ���	� +���
�	 �����5�� 	� ��������	 	�� ����	 ��	� �� 	�� ���+ �� +������
��	������! ��� 	�� I��	���$����	 ��	����� ���	�+�	�� ��� �5$
	��� 	�� �����	� �� 	�� ���+ �� ������ ��	������'

('	"!
� �
*������� 	�� 	��	 ���5��+ �� 	�� ���+

�� � �
��� � ��� � 	
 6-#9

��� �E��	 ����	��� �� 63'29 �� ����

� � (����
 6-29

G� ��	����	� 6-#9 ��� � � ��� 	�' ?����!�� � ��� 	� ���
� 	��� � ��� � �	� 	� ��� �� � ��
��� 	
���'

/����� 2 ���� � ��+������� �� 	�� ��	�� �� 	�� ��	�����
����	��� � �	� �5	����� ���+ 	�� ��	����	��� �� 	�� ���5��+
���������� 5� 	�� ��	����� �E�����	 +�	����! �'�' 	�� ��	�����
������� �� �E�����	 >H/ +�	��� ��� � � 	�
 ��� 	�� �E�����	
+�	��� �� D��	�F+ 	��� ��� � � 	�
�

 � � ������ ��������	
������ �� 	�� �	������ 	'

h

1E-02
1E-03

1E-04
1E-05

1E-06

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

EIBDF k = 1

EIBDF k = 2

EIN k = 1

EIN k = 2

EIN k = 3

EIN k = 4

EIN k = 5

EIN k = 6

/����� 2' G��	�� �� 	�� ��	����� ����	��� � �	� �5	�����
���+ 	�� ��	����	��� �� 6-#9 ��' 	�� �	������ 	'

/����� - ����� � ��+������� �� 	�� �E�����	 ��	����� +�	�$
���! �'�' 	�� ��	����� +�	���� �� ���+�$>������	� 	���! 	��
��	����� +�	���� �� D��	�F+ 	��� ��� 	�� ��	����� �������
�� �E�����	 >H/ +�	���! ��� 	�� �+�����	 ��	����� +�	����!
�'�' 	�� ��	����� +�	���� �� ���+�$����	�� 	���! 	�� ��	��$
��� +�	���� �� �����$,�+���� 	��� ��� 	�� ��	����� �������
�� �+�����	 >H/ +�	��� ��� ��+� ������ �� ����+�	�� � ���
	�� �	������ 	 � �;$�'

<�	 �� ��	� 	��	 	�� ����	��� �5	����� 5� 	�� ;�>H/
+�	���� ��� � � 	 ��� 	�� ;�D +�	���� ��� � � 	! ����
	 � 	;$
! 	 � 	;$ ��� 	 � 	;$� ���� ��+���� ��	�� ���
��� ��	 ���	��������5�� �� /����� 2'

�� ��� ��� ��� 	�� ��	����� ������� �� �E�����	 >H/
+�	��� ����� 	�� ��	����� ����	���� �� �����	�5�� ��	��
���� ��� 	�� ����+�	�� � � 	�
' /�� � � 	�� ��	�� ���
�� �� �����	������ �� ��� 	�� ������ �� ���� 5��������
��� 5� 	�� ���	 	��	 	�� �E�����	 ������	����� >H/ +�	���
�� ���	�5�� ��� � � 6��� �'�' ?�����! D����		 ��� G�����
738 ��� A������� 72389' ��� ��	����� ������� �� �+�����	
>H/ +�	��� ����� 	�� �����	�5�� ��	����� ����	���� ���� ���
� � 	' �� � �
 � ���� 	�� ��+���� ��������5�� ��	��	���
�� ��� 	�� �E�����	 ����'

N� 	�� �	��� ���� ��	 �� ��	� 	��	 ��� ��� ����� �� 	��
�	������ 	 	�� ��	����� ������� �� �E�����	 >H/ +�	��� �����
	�� 5��	 �����	� �� 	�� ����� �� ��� �E�����	 ��	����� +�	����
���� ��� � �
' /�� � � � ����++��� 	�� �E�����	
��	����� +�	���� �� D��	�F+ 	��� ��	��� 	��� 	�� �E�����	
��	����� +�	���� �� ���+�$>������	� 	���'

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

EIBDF EIAB EIN

IIBDF IIAM IIMS

/����� -' G��	�� �� 	�� ��	����� ����	��� � �	� �5	�����
���+ 	�� ��	����	��� �� 6-#9 ��' 	�� ��+5�� � �� +�	���

�	���! ���� 	 � �;$�'

<�	 �� ���� ��	� 	��	 	�� �+�����	 ��	����� +�	���� ��
�����$,�+���� 	��� ��� 	�� 5��	 +�	���� �� 	�� ����� �� 	��
�+�����	 ��	����� +��	��	�� +�	����' G� ���� ����++���
	�� ��	����� ������	��$������	�� +�	���� �� ���+� 	��� 6���
;E�+��� -9' �����	���	���! 	�� ��	����� ������� �� >H/

+�	��� ��� ��	 +��	 ��� �E���	�	���� 5�	 � ����� �	 �����$
	��� 	� ������	 	�� ���������	���� +��	����� �� ��� �����'

('	"!
� �
�� �� �E�+��� �� +��	���+�������� �4� � �������� 	��

�J��	���� �� +�	��� �� 	�� ���� ����� 5� ?��� 6��� �'�' ?���
7&8! ��������� 72"89' G� ����+� 	��	 	�� ������ �� 	�� ���+�
�� ������ �� 	�� ���	�� �� 	�� ;��	�! 	�� ����� #� �� �� ����
�	� 	�� ,��O� ��5�	 ����� ��� 	�� ���+� ��	�	�� �	� 	��
����	��	 ������� ������	�)�! ����)�����	�� 	�� +��� +�$
	��� �� 	�� ,��' ��������! � ����+� 	��	 �� 	�� ����������
���+� �� ��������� 	�� �E�� # ���� ������ 	�� ���	�� �� 	��
,�� ��� 	�� ,�� �������� ������ 	�� ;��	� ����� 	�� �����$
��� ��5�	' /������! � 	��� ��	� ������	 � �+��� �������	���
�� 	�� ����O� ��5�	 	� 	�� �����	��'

����� ���� ����+�	���� 	�� �J��	���� �� +�	��� �� 	��
���� 6������ 	�� ?��� �J��	����9 ��� �� 	�� ���+

 	#

 *	
�
+

 �

 *
�
	 ,

�

� +	

#� 6--9

 	�

 *	
� �
+ #

 *
� ,

�

��

���� # � # �*� � � � � �*� � * � �) �)�� ��� ���! ���
� �

�
#	 � �	' /��	���+���! 	�� ����+�	��� + ��� , ��

6--9 ��� ��	������� �� ������

+ �
)�

) �)�
� , � "

�� ���

�) �)��
	 � 6- 9

����) �� 	�� +��� +�	��� �� 	�� ����! " �� 	�� �����	�$
	����� ����	��	! ��� ��! �� ����	� 	�� +����� �� 	�� ;��	�
��� 	�� ����! ������	�����'

��� +�	��� �� 	�� ���� 6--9 �� ����� 5� 	�� ���	�+ ��
��������	��� �J��	���� �� 	�� :��	 �����

 -�
 *

� -
�
 -	
 *

� -��

 -

 *

�
+-� �
	 ,

�

� +	

-�� 6-39

 -�
 *

� �
+-
 � ,

�

-	�

�	� 	�� ���	��� �����	����

-� ��� � #�� -	 ��� � ��� 6-&9
-
 ��� � .��� -� ��� � .���

����

-� � #! -	 � �! -
 �
 #

 *
! -� �

 �

 *
! � �

�
-	� � -		'

<�	 �� ��	� 	��	 �� + � � 6�'�' 	�� ���������5�� ���	
�� ���	��5�	���� �� ������	��9! 	��� 	�� ���������� ����	���!
������ � �����	����� �����! �� ����� 5� 	�� ���+����

-� � ,
�
� ��� �*� � -	 � ,

�
� ��� �*� � 6-"9

-
 � �, �
� ��� �*� � -� � ,

�
� ��� �*�

�	 :��	 � 	��� 	�� ���	��� �����	���� 6-&9 �� ������

-� ��� � 	� -	 ��� � �� -
 ��� � �� -� ��� � 	! 6-19

��� ������� 	�� ����+�	��� + ��� , �� 6- 9 �� + � �!
, � 	' G� ��	����	� 6-39 �	� 6-19 ��� * � ��� ��' ?����!
�� � ��� �� ��� � 	��� /� ��� � �	� 	�! /	 ��� � ��� ��!
/
 ��� � ��� �� ��� /� ��� � �	� 	�' ��� �4� 6-39 �	�
6-19 ��� 5��� ������ �� ������� �	����' ?����! ��� ���� ��$
	����	��� ��	����� 	�� ���������	� ��	�� ��� 5��� �����:��'

¿

1 2 3 4 5 6 7 8

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

EIAB = EIBDF k = 1 EIAB k = 2

EIAB k = 3 EIBDF k = 2

IIAPC1 kp = kc = 1 IIAPC1 kp = kc = 2

IIAPC1 kp = kc = 3

/����� ' G��	�� �� 	�� ��	����� ����	��� /��*� �5	�����
���+ 	�� ��	����	��� �� 	�� ?��� �J��	���� 6-39 �	� 6-19!
�	�+ � �! , � 	! 5� 	�� ;��> +�	���� ��� � � 	�
� !
	�� ;�>H/ +�	���� ��� � � 	�
 ��� 	�� ����*2 +�	����
��� �� � �� � 	�
� 6�� � �� $ 	�� ��+5��� �� �	��� ���
������	�� ��� ������	��! ������	�����9! ���� 	 � 	;$�'

¿

1 2 3 4 5 6 7 8

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

EIAB k = 2 EIN k = 2

EIBDF k = 2 IIAPC1 kp = kc = 2

IIMS k = 2

/����� 3' G��	�� �� 	�� ��	����� ����	��� /��*� �5	�����
���+ 	�� ��	����	��� �� 	�� ?��� �J��	���� 6-39 �	� 6-19!

�	�+ � �! , � 	! 5� 	�� ;��> +�	���! 	�� ;�D +�	���!
	�� ;�>H/ +�	���! 	�� ����*2 +�	��� ��� 	�� ���,

+�	���! ���� � � �� � �� �
 ��� 	 � 	;$�'

�� 	�� /����� 	�� ��	�� �� 	�� ��	����� ����	����
/� �*� �5	����� 5� 	�� ��	����� �E�����	 +�	���� �� ���+�$
>������	� 	��� ��� 	�� ��	����� ������	��$������	�� +�	����
�� ���+� 	��� 	���	��� �	� 	�� �����	� ����� 5� 	�� ��	�����
������� �� �E�����	 >H/ +�	��� ��� � � 	�
���� 	 � 	;$
�! ��� ������	��' ��� /����� 3 ���� � ��+������� �� 	��
��	�� �� 	�� ��	����� ����	��� /� �*� �5	����� 5� 	�� ��	��$
��� �E�����	 ��� �+�����	 +��	��	�� +�	���� ���������� ���
� �
 ��� 	 � 	;$�'

D�! ��	 �� 	��� 6��� ?��� 7&8! ��������� 72"89 	�� ���	���
�����	���� 6-&9 �� ������

-� ��� � ��
������
� -	 ��� � ��

������
-
 ��� � �

������ -� ��� � ��
�������� 6-09

��� ������� 	�� ����+�	���+ ��� , �� 6- 9 ��
+ � �
����������	
! , � 	
	�	�	����	���	�

G� ��	����	� 6-39 �	� 6-09 ��� * � ��� ��' G� ����
�� � ��� �� ���

/� � �����
������
�� � ���
������
�� �
/	 � �����

������! � ���

������� �
/
 � ����

������! � ��

������� �
/� � �����
��������! � ���
��������� �

���� � ��� +���� 	�� ��+5�� �5	����� 5� �����������
���� ��� $ 5� ����������' /��	���+���! 	�� ��	�� �� �����$
:�� �� �������� ��� ���� ��	����	��� ��	����� ��� 	�� ��	�����
��������	�	��� ��+ ��� , ��� ����'

��� �����	� �5	����� ���+ 	�� ��	����	��� �� 	�� ?���
�J��	���� 6-39 �	� 6-09 ���� 5� 	�� �E�����	 ��	����� +�	�$
��� ��� 	�� ����+�	�� � �
 ��� ����� �� /����� &' /��	���$
+���! �� /����� " 	�� ����	���� -�! -	! ��� 	�� ������	���
-
! -� �� 	�� ���� �� ����	���� �� * ! ���� * � ��� �� ���
�����' ��� ��5�	 �� ���� �� /����� 1'

¿

1 2 3 4 5 6 7 8

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

EIAB k = 2 EIN k = 2

EIBDF k = 2

/����� &' G��	�� �� 	�� ��	����� ����	��� /��*�
�5	����� ���+ 	�� ��	����	��� �� 	�� ?���
�J��	���� 6-39 �	� 6-09! �	�+ � �
��!

, � 	
	�! 5� 	�� ;��> +�	���! 	�� ;�D +�	���!
��� ;�>H/ +�	���! ���� � �
 ��� 	 � 	;$�'

-1,5

-1

-0,5

0

0,5

1

1,5

0 1 2 3 4 5 6 7 8 9

¿

 u 1 u 2 u 3 u 4

/����� "' ����	���� -�! -	� ��� ������	��� -
! -� �� 	�� ����!
�5	����� ���+ 	�� ��	����	��� �� 	�� ?��� �J��	���� 6-39 �	�
6-09 ��� * � ��� ��! �	�+ � �
��! , � 	
	�! 5� 	�� ����*2

+�	��� ��� �� � �� �
! ���� 	 � 	;$�

-1,5

-1

-0,5

0

0,5

1

1,5

-1,5 -1 -0,5 0 0,5 1 1,5

u 1

u 2

/����� 1' ��� ��5�	 �5	����� ���+ 	��
��	����	��� �� 	�� ?��� �J��	���� 6-39 �	�

6-09 ��� * � ��� ��! �	�+ � �
��!
, � 	
	�! 5� 	�� ����*2 +�	��� ���

�� � �� �
! ���� 	 � 	;$�

)� *���
�����

�� 	�� ����� 	�� ��	����� ������� �� >H/ +�	��� �� ���$
�����' /��	���+���! ��� 	�� ��	����� +��	��	�� +�	���� ���$
���	�� 5� ��	���� ��� ��+����� ��� 	�� ��:������ �� 	��
���������	� ������	�+� �� �����' /��+ 	�� �������� �� 	��
��+������ �����	� � ��� ��� ��+� �����������'

/���	! �� ��� +���	 �������! 	�� �+�����	 ��	����� +�	�$
���! �E���	 �� 	�� ��	����� ������� �� 	�� >H/ +�	���! �����
5�		�� �����	�! �'�' ��	����� ����	���� �� � �+����� ��	�! 	���
	�� �E�����	 ���� ������� �	� 	�� ��+� ��+5�� � �� +�	���
�	��� ��� 	�� ��+� �	������ 	'

,�����! 	�� ��	����� +�	���� �� >H/ 	��� ��� ��	 ��
���� �� �	��� +��	��	�� +�	����' /�� 	�� ��+� ��+5��
�� �	��� 	�� �E�����	 ��	����� +�	���� �� D��	�F+ 	��� ���

��+���	 5�		�� 	��� 	�� +�	���� �� ���+�$>������	� 	���
6��� ���� 	��� 	�� �E�����	 ��	����� +�	���� �� >H/ 	��� ���
	�� ����+�	�� � � 9' ��� ��	����� ������� �� �E�����	 >H/
+�	��� �� 	�� 5��	 �� 	�� ����� �� ��� �E�����	 ��	����� +�	�$
��� ��� � � 	�
' ,�+������ ��� 	�� ��+� ��+5�� �� �	���
	�� �+�����	 ��	����� +�	���� �� �����$,�+���� 	��� ����
��+���	 5�		�� �����	 	��� 	�� ��	����� +�	���� �� ���+�$
����	�� 	��� 6��� �� +��� ����� 	�� �+�����	 ��	����� +�	�$
��� �� >H/ 	���9'

/������! ��� 	�� �E�����	 ��� �+�����	 ��	����� +��	��	��
+�	���� ���������� � ��� 	��	 �� � 	��� 	�� ����	�� ��+$
5�� � +�	��� �	���! 	��� � �5	��� 	�� ��	����� ����	����
�	� 	�� �+����� ��	��'

��� �������� �� 	�� ��+5�� � �� +�	��� �	��� ��� 	��
��+� �	������ 	 ���	��5�	�� 	� 	�� �������� �� 	�� ��	�� ��
	�� ��	����� ����	����' � ��+���� �����	 ��� 5� �5������ ��
� ������ 	�� �	������ 	 ��� 	�� ��+� ����� �� ����+�	�� �'
���� 5�������� �� 	��� +����� ��� ����	 ��	����	��� ��	��$
����' N	������ ��� ���� ���	������ �4� 	�� ���	�5�� ��	��$
��� +�	��� �	� 	�� ���������	� ��+5�� � �� +�	��� �	���
��� 	�� �	������ 	 ������ 5� ������ 	� ��	 	�� 5��	 �����	$
�5�� �����	' ��������! ��� � ����� �	������ 	���� �E��	� ��
��	�+�� ��+5�� �� +�	��� �	���! ��� ��� � ����� ��+5�� ��
+�	��� �	��� 	�� ��	�+�� �	������ ��� 5� �����'

+���������

728 �' >��� ��� A' ������' 4���:�� ��	����	��� �� NH;� ���
I�� �	� ��������	��� ����5���� +�	���� �� 	����� +�����'
(��
	���)����
��! 3639L "2P "%! 2%%0'

7-8 �' ;�)������+' ��� ,���	��� �� ���	��� 4���� ���5��+� ��$
��� ��	����� ���	�+�	��' *	����	�
�	�)����� $�	���! 233!
2%02'

7 8 A' @�)��! �' ���������! ��� >' ,������' �����$ ��� /���$
,	��� �+�����	 ��	����� ��	���� �� =����$A�		� ����')��
���	�
�	� *�����
� +�
���� 	�� $�������! "L32P&%!
-###'

738 ;' ?�����! ,' �' D����		! ��� @' G�����' +��
�� ��
�
�	�� !
�������
	� "��	�
�� � � ,���
�� �������' ,�������$
4�����! >�����! ?�����5���! 2%01'

7&8 @' G' ?���' =��������� �� 	�� ����� 	�����' %�# -# *	��# �!
2010'

7"8
' ?�������! �' >���! ��� A'������' *��	������� 	��G���$
���� ;����	 �� 	�� ,���	��� �� NH;� ��� ��	������' (��
	���
)����
��! 0L-2P32! -## '

718 �'
�������' ������	� *���
���� *����� � %�	�� $���
	�� ���
� ���������	�
�
� ���).. /	���	��' ��H 	�����!
������� ��������	� �� ����������! -##"'

708 �'
������� ��� �' ���������' �+�����	 ��	����� ���	�$
�	�� ��	���� ��� ,������ 	�� ���	��� 4���� ���5��+')��
���	�
�	� *�����
� +�
���� 	�� $�������! 0629L21P #!
-##-'

7%8 �'
������� ��� �' ���������' N� ;E�����	 ��	����� ��	�$
��� �� ���+�$>������	� ����')����	�
�	� *�����
�
+�
���� 	�� $�������! 06-9L3"P&1! -##-'

72#8 �'
������� ��� �' ���������' �����+������� �� 	�� ���
,��	�+ ��� ,������ 	�� ���	��� 4���� ���5��+ 5� ��	�����
���	��	�� ��	���� 7�� ������8' �� !
	��! 2#L221P2 3!
-##&'

7228 �'
������� ��� �' ���������' N� �� /�+����� �� �+$
�����	 ��	����� ��	���� �� ���+�$����	�� ����')����	�
�
�	� *�����
� +�
���� 	�� $�������! 2-6-9L2#%P22 !
-##"'

72-8 �'
������� ��� �' ���������' N� 	�� ��	����� ��	����
�� 	�� >H/ ���� ��� ,������ 	�� ���	��� 4���� ���5��+' ��
!
	��! --L %P&%! -##1'

72 8 ,' �' A��+����!
' �' B����! ��� ;' *'
����C��' ,���$
��� �������� ��������	��� �J��	���� 5� ��	����� +�	���� 7��
=������8' !��	�� %, +++(! - #6"9! 2%1"'

7238 �' A�������' ,����
�	� *����� � ��
�
	� �	��� ����
���� � ��
�	�� !
�������
	� "��	�
�� 0
� ��
��1' �GD!
G����! 2%0"'

72&8 ='
' <�����' ;�������� 	�� ����	���� �� �������� ���	���
��� 5������� ����� ���5��+�' �� ;' G' A������! �' G'
A������! ��� *' �������! ���	���!)������ %�
�����
�2 +�
�
���
3�)����	�
� 	�� ����	��
�� /	���	���' G����$
���5��� ,����� �� *�+��	�� ,������! ,	�		���	! 2%01'

72"8 �' ���������' ,����
�	� +���
�� � ��� ,���� ������'
=�����! H�������	! 2%0&'

7218 �' ���������' �+�����	 ��	����� ��	���� ��� ,������ 	��
���	��� 4���� ���5��+' ,����
�	� %���
����! 1L-32P-&2!
-##3'

7208 �' ���������' N� ���	��	�� ��	����� ��	���� ��� ,������
	�� ���	��� 4���� ���5��+' -���	� �)����	�
�	� 	��
%���
�� *	����	�
��! 2%%L--%P- 1! -##1'

72%8 �' ��������� ��� >' ,������' N��$ ��� ��$,	��� �+$
�����	 ��	����� ��	���� �� =����$A�		� ����')����	�
�
�	� *�����
� +�
���� 	�� $�������! &L& P"&! 2%%%'

7-#8 =' ;' �����' ������	� %�	���
�' ����	���$?���! ;�������
*�����! D
! 2%""'

7-28 D' ,' D�������� ��� A' ='
������' �� ��	����� ?��+�	�$
N5��������� +�	��� ��� ��+��	��� �������� 5����� �� 	��
����	��� �� �� ���	��� ����� ���5��+ ��� �� �������� ��������$
	��� �J��	���' (��
	���)����
��! &6 9L-0%P 2#! 2%%%'

7--8 =' =��+' ��	����� +�	���� ��� ���	��� ����� ���5��+� ��
NH;O�' ��
' ?���5�����! ���	��! $�
��
� �	�
�	���)��
���	�
��' ������
��� � ��� �*%)+�4%** ������	�
�	�
������ � �	�
�	���)����	�
��' ��������' 4���
�	��! 2%%3'

7- 8 =' =��+' N� � ����� �� ��������� +�	���� ��� ���	��� �����
���5��+�')����
��! & L "%P 11! 2%%3'

7-38
' �' B����' ������	� %�	���
� 0
� (���
	�1' D����! D�����$
5����! 2%02'

A workload analysis tool for discrete-time semi-Markovian servers

Sebastian Kempken
Abteilung Informatik

Universität Duisburg-Essen
47048 Duisburg, Germany
kempken@inf.uni-due.de

Abstract

In this paper, we describe the software toolkit Inter-
VerdiKom which implements a variety of reliable work-
load analysis techniques for queues with general or semi-
Markovian arrival processes used in stochastic traffic mod-
eling. We compute the workload at a network element in an
open queuing network using transient and steady state anal-
ysis methods in interval arithmetic. We also present a mod-
eling approach that employs a genetic programming opti-
mization technique, providing an accurate model for real-
life data in a compact state space, which is required for a
successful verification. The resulting overflow probabilities
of both the model and the empirical data are compared.

1. Introduction

The ongoing integration of services in Internet protocol
(IP) networks requires an adequate support for quality of
service (QoS) demands. At the same time, the number of
traffic profiles that need to be modeled increases. Unfor-
tunately, the characteristics of traffic in telecommunication
networks are unpredictable from a number of viewpoints.
For instance, the amount of transmission time and volume is
unknown to network providers when transmission demands
arise. Furthermore, sender and receiver cannot predict the
amount of network resources available for the duration of
the transmission. Randomly changing workload, routes and
system parameters are both relevant and expected under
normal operating conditions. In the end, failure events are
unpredictable as well. However, the quality of the network
services strongly depends on those properties.

Therefore, traffic modeling requires an appropriate ba-
sis for describing the data flow over time. We consider a
stochastic approach employing random variables for mod-
eling data arrivals at a given network element. On the
one hand, one may consider the interarrival times between
events like arrivals of packets, flows, connections or any

other relevant units. This is the classical approach regard-
ing queuing and service systems. On the other hand, time-
slotted models can be applied that rely on the counting func-
tion of events (arrivals) in fixed time intervals [12, 4, 5].

Key characteristics of the arrival process are the dis-
tribution and the autocorrelation of the process. In or-
der to model both adequately, we consider semi-Markovian
stochastic processes (SMP) [7]. Furthermore, SMPs can
be used to create both an interarrival / service time-based
and a time-slotted model. Reliable and efficient analysis
techniques for the resulting SMP/GI/1 queues are available;
such models can be analyzed by matrix-analytical [11] or
factorization techniques [12, 5, 14, 8, 18].

In this paper, we show how both modeling of realistic
data and appropriate analysis techniques have to be com-
bined to provide an integrated software toolkit for reliable
traffic analysis: The recently developed software toolkit In-
terVerdiKom provides a versatile modeling approach for re-
alistic data and also appropriate and reliable analysis tech-
niques that compute the workload probabilities using fac-
torization approaches. In previous work, we found that a
successful verification of the workload analysis for semi-
Markov models depends on the number of states of the
model, which has to be kept sufficiently small [17].

Hence, we apply a modeling technique employing a ge-
netic optimization approach to derive proper SMP models
for real-life high definition (HD) video traffic in a compact
state space in Section 2. Subsequently, we perform a ver-
ified workload analysis of the resulting queue models for
both transient and steady states (Section 3) by means of in-
terval arithmetic. Some general remarks on the toolkit are
given in Section 4. In the end, we compare the results cal-
culated for the overflow probability of a given network el-
ement for both the model and the original empirical data
trace (Section 5).

2. Modeling of video traces

We introduce a discrete-time homogeneous semi-
Markov process as a special case of a general semi-Markov
process (cf. [10]). Such a process is given by a family of
random variables {(St, σt)|t ∈ N} if

P (St+1 = a, σt+1 = j|Sk = ak, σk = ik, 1 ≤ k ≤ t)
= P (St+1 = a, σt+1 = j|σt = it)

holds for all t ∈ N and {σt} is a Markov chain. St repre-
sents the actual value at time t, and the distribution of St+1

depends on the states σt and σt+1 only. In the following, we
restrict ourselves to the case of a finite Markov chain. If the
underlying chain {σt} has M states, the semi-Markov pro-
cess is called SMP(M). A simplification can be achieved by
using a special case SMP (SSMP): Here, the state-specific
distribution of S depends not on the actual transition be-
tween states but on the current state only (cf. [7]). Please
note that every SMP with M states can always be described
as an SSMP with M2 states. To do so, we identify each
transition from state i to state j of the SMP as a state (i, j)
of the SSMP (cf. [4]).

In the following, the entries of the state transition matrix
P of the underlying Markov chain are given by pij , which
is the probability of a transition of the Markov chain from
state i to state j. The stationary probabilities for the system
being in state i are given by pi and can be computed by
solving the following system of equations:

M∑
i=1

pipij = pj for j = 1, . . . ,M ;
M∑
i=1

pi = 1 (1)

We consider a video trace of length N to be given as a
sequence of amounts of data to be transmitted per time in-
terval Rj , j = 1, . . . , N , for instance, the number of bytes
required for one frame or group of pictures. It is our inten-
tion to model two key characteristics of the video trace as
accurately as possible: the distribution and the autocorre-
lation. The autocorrelation function of such a trace can be
estimated by

AR(n) =
1

σ2
R(N − n)

N−n∑
j=1

(Rj − E(R))(Rj+n − E(R)).

(2)
The autocorrelation function of an SSMP model is given by

AS(n) =

∑M
i=1

∑M
j=1 piEi(S)p(n)

ij Ej(S) − E2(S)
σ2

S

. (3)

E(S) is the expectation value of the whole process, while
Ei(S) denotes the expectation value if the underlying
Markov chain is in state i. p

(n)
ij is the n-step transition prob-

ability, that is, the probability that the process will change

from state i to state j in n steps. In [7], we describe a way to
efficiently evaluate the autocorrelation of an SSMP by writ-
ing it as an exponential sum AS(n) =

∑M
i=2 αiλ

n
i with λi

representing the eigenvalues of the transition matrix. The
first eigenvalue λ1 results to 1, since P is a stochastic ma-
trix. The values αi can be determined from some values
of the autocorrelation function by solving a Vandermonde-
type equation system.

We derive the SSMP parameters of a model for a given
video trace – that is, the transition probabilities and the
state-specific distribution – from an optimization process.
We apply an evolutionary programming technique that does
not derive the parameters from given data deterministically
but instead provides an efficient test of new parameters
and checks which fit best. To do so, a population is de-
fined. Each member of this population (individual) repre-
sents a possible parameter configuration, and fitness values
are computed for each one. The members with a high fitness
level are reproduced, mutated and combined (crossover).
They form the members of the next generation of the popu-
lation. This depicts a simple but efficient optimization tech-
nique for a broad range of non-linear optimization prob-
lems, hence it may also be applied to the present task of
parameter estimation. We found that this approach yields
better results in a small state space than other deterministic
modeling approaches [9]. Further details about genetic pro-
gramming techniques can be found in, for instance, [20, 2].

First, we have to find a number of states M for the
SSMP(M) model whose parameters are to be determined.
In [7], we provided a verified method for the inclusion of
the autocorrelation function. The bounds are given by in-
terval coefficients of an exponential sum. We noticed that
only a small number of coefficients are required to provide
a verified enclosure of the autocorrelation function. Since
the autocorrelation function of an SSMP(M) may be given
as a sum of M exponential terms (with one term being set
to zero due to the eigenvalue 1 of a stochastic matrix), we
assume that only a correspondingly small number of states
is required to model the autocorrelation function of the data
trace. However, it remains an open question whether the
accuracy of the SSMP model may be improved more effi-
ciently by considering more states or by choosing the other
parameters of a model with a given number of states more
carefully.

We randomly assign each value of the empirical data
trace to a state of the Markov chain of the SSMP. The states
can be considered abstract and have no special meaning. If
such an assignment is given for the whole sequence, all pa-
rameters of an SSMP model can be derived from it. The
transition probabilities pij are computed by counting. Let
the number of transitions from state i to state j be given by

nij ; then the probabilities are estimated by:

pij :=
nij∑M

k=1 nik

(4)

Likewise, the state-dependent distributions can be estimated
from the data values assigned to a particular state.

Our idea is to optimize the assignment iteratively so that
the autocorrelation function of the original data AR and
the function of the SSMP derived from the assignment AS

match as closely as possible. To evaluate the quality of
a particular assignment scheme and the derived SSMP re-
spectively, we apply a fitness function:

gR(S) :=
1∑N

i=1(AR(i) −AS(i))2
(5)

We start with a population of several random assign-
ments and apply the following algorithm :

1. For each individual, construct an SSMP model with M
states according to the given assignment scheme.

2. Compute the fitness of each individual.

3. Build up a new generation of individuals.

(a) The best individual – that is, the one with the
highest fitness value – is taken into the next gen-
eration unchanged.

(b) A mating pool is constructed from a selection of
the population. Each individual has a probability
proportional to its fitness value for selection for
the mating pool.

(c) With given probabilities, some mutators are ap-
plied to the members of the mating pool (see be-
low).

(d) Genetic material is exchanged between random
members of the mating pool (crossover, see be-
low).

(e) The changed and unchanged members of the
mating pool form the next generation of the pop-
ulation.

The genetic operators (mutation and crossover) and their
probability are important to the optimization process. In our
case, we used four types of mutation operators:

• Swap. Two random values in the sequence are ex-
changed.

• Reverse. A randomly chosen, continuous part of the
sequence is reversed.

• Shuffle. A randomly chosen, continuous part of the
sequence is shuffled.

• Block. A randomly chosen, continuous part of the se-
quence is replaced by a block of identical random val-
ues.

In our experiments, we applied the so-called 2-point
crossover: A randomly chosen continuous part of the ge-
netic sequence is replaced by a sequence taken from another
individual with the same length and relative position.

The main drawback of the evolutionary approach is that
there is no rigorous criterion indicating that an optimal as-
signment has been reached. Hence, the optimization pro-
cess could be extended almost infinitely. However, we abort
this process when no improvement in terms of the highest
fitness value of the current population could be achieved for
a given number of iterations. As a result, we yield a ma-
trix of transition probabilities that reflects the autocorrela-
tion behavior of the empirical trace.

Next, we have to compute the discrete state-specific dis-
tributions for the arrival process. The SSMP approach al-
lows us to adapt the autocorrelation and the state-specific
distributions separately, since the autocorrelation depends
only on the mean values per state. Hence, we have to pre-
serve the mean value when performing a discretization of
the GoP size distribution. For reasons of simplicity, we
chose a uniform quantization of the values starting at 0.

We denote the number of values Sk to be discretized into
d equidistant steps by K, and the difference between the
discretization points as

Δ =
max(GoP-Size)

d − 1
.

We yield d points sl = lΔ, l = 0, . . . , d. We denote the
discretized variable by SΔ. The probability P (SΔ = sl) is
influenced by each value that differs less than Δ from sl:

P (SΔ = sl) =
K∑

k=1;|Sk−sl|<Δ

Δ − |Sk − sl|
KΔ

(6)

3. Analysis

Using the modeling approach described, we are able to
provide an adequate model for a single given video stream
in terms of distribution and autocorrelation in a compact
state space. Please note that multiple streams can be ana-
lyzed as well, since the superposition of multiple SMPs is
also an SMP. However, the state space increases heavily: If,
for instance, two SMPs with M1 and M2 states are to be
multiplexed, the resulting SMP has M1 × M2 states.

We now analyze the workload at a given network ele-
ment such as a switch or router. In general, such a device
accepts data from multiple input links and distributes them
over a number of output links in the direction of their desti-
nation. The output line is chosen according to the particular

routing protocols. Usually, there is also a buffer available
for each output link that stores all outgoing packets in case
of collisions or temporary overload.

Thus, the usual router or switch model includes an output
link with a given forwarding capacity S, a buffer of size B
and an input process describing all packets that arrive at the
switch and are transmitted over the output link.

In our case, we describe the input process using an SSMP
and assume the service capacity S to be constant over time.
We analyze the system in time slots of equal length L and
consider the amount of data arriving at and leaving the
switch per slot. For instance, the maximum amount of data
transmitted from the switch is given by S × L.

We consider a time-slotted queueing system. In the fol-
lowing text, the amount of data arriving in the time slot be-
ginning at t is given by At. We describe the arrival process
A by an SSMP and determine its parameters according to
the method described in the previous section for fitting them
to given empirical data. The difference variable U describ-
ing the workload change per time slot is therefore given by
Ut = At − S. Our intention is to compute probabilities for
certain workload levels, that is, the waiting time for newly
arriving data packets and also the amount of data stored in
the buffer of the network element.

3.1. Wiener-Hopf factorization

The Wiener-Hopf factorization approach provides a
means to compute the steady state workload probabilities.
This approach is efficient in terms of memory requirements
and computation complexity compared to matrix-analytical
methods. A verification of the results computed is feasible
by Brouwer’s fixed point theorem, as is explained below.

We consider the difference distribution uij(k) given in
matrix notation:

uij(k) = P (Ut+1 = k, σt+1 = j|σt = i), i, j ∈ Z, k ∈ Z

(7)
with the states of the embedded Markov chain σ ∈
Z := {1, . . . ,M}. We assume that the distribution of
An is limited by g and Sn by h correspondingly: An ∈
{0, . . . , g}, Sn ∈ {0, . . . , h}.

The basic idea of the Wiener-Hopf factorization, which
is presented in detail e.g. by Hasslinger [5], is to consider
two phase distributions. If no arrivals occur for a period of
time, this period is considered as an “idle phase”. Corre-
spondingly, a “phase of workload level k” describes a pe-
riod of time with a workload always higher than or equal
to k. We consider the idle phase distribution lij(k) repre-
senting the probability that an idle phase lasts for k slots
and starts in state i and ends in state j, and the distribution
vij(k) representing the probability that a phase with work-
load level k, that is, the waiting time of a current arrival,

and initial state j occurs in a phase with initial state i. We
write these two distributions in matrix notation:

l(k) = (lij(k));v(k) = (vij(k)); i, j ∈ Z, k ∈ N0

There is a relation between these two distributions such that
a phase of workload level ν+μ and initial state i is followed
by a phase of level μ and initial state j with a probability of
lij(μ). This leads to the following equations (cf. [5]):

v(ν) = u(ν) +
min(h−ν,g)∑

μ=1

v(ν + μ)l(μ),

ν = h, . . . , 0;

l(ν) = u(−ν) +
min(g−ν,h)∑

μ=0

v(μ)l(μ + ν),

ν = g, . . . , 1;
v(ν) = 0, ν > h,

l(ν) = 0, ν > g

We may compute these distributions with the
Grassmann-Jain algorithm [3]. We start with an ap-
proximation for

l
(0)
ij (k) =

uij(k)∑−1
n=−g uij(n)

; i, j ∈ Z.

Now we compute an approximation for v
(0)
ij (k) from the

results above. We continue to compute the distributions by
alternating between the computation of l(k) and v(k) until
we reach convergence.

The convergence of this approach has only been proven
for the GI/G/1 case. Here, we apply a computer-based proof
using interval arithmetic. We enclose the results yielded
by the floating-point approximation in tight intervals (e.g.
diameter 10−14) and perform a step of the iteration using
interval variants of the corresponding equations. If all of
the newly computed values [vij(k)] are contained in the old
intervals, Brouwer’s fixed point theorem guarantees that the
limit value of the iteration is included in the new intervals.

From the distributions vij(k) and lij(k), we are able to
derive the workload probabilities of the observed queue. We
outline the method below, further details are given in [1].
The utilization of interval arithmetic in our implementation
guarantees verified enclosures of the results.

We compute the steady state distribution of the embed-
ded Markov chain in idle phases lj and the distribution of
the length of the idle phases l(k) from the following system

of equations:

lj :=
M∑
i=1

lilij , j ∈ Z, ;
M∑

j=1

lj = 1; (8)

l(k) :=
M∑

i,j=1

lilij(k), k ∈ N0 (9)

Let Wi(z) =
∑∞

k=0 wi(k)zk denote the generating
function of the probability wi(z) that the workload of the
queue is z in a busy period with initial state i, Ni the num-
ber of demands served per busy period and E(Ni) the cor-
responding expectation value. Then the following relations
hold:

E(Ni) = 1 +
M∑

j=1

h∑
n=0

vij(n)E(Nj); (10)

Wi(z)E(Ni) = 1 +
M∑

j=1

h∑
n=0

vij(n)znWj(z)E(Nj).

(11)

This leads to

W(z) =
∑M

i=1 liE(Ni)Wi(z)∑M
i=1 liE(Ni)

(12)

providing the generating function for the workload proba-
bilities at an arbitrary arrival time.

3.2. Transient analysis

Transient analysis of stochastic systems is a basic
method related to both steady state analysis and simulation.
It describes the evolution of the system from a given start-
ing point over time and also its long-term development. If
the system is ergodic, a convergence to a steady state is ob-
served.

In comparison to simulation, the transient analysis pro-
vides directly complete distribution functions at embedded
time points for the states of the system being observed. Sim-
ulation follows randomly chosen paths of the system devel-
opment, therefore the results are subject to statistical devia-
tions within confidence levels.

We consider the workload of a time-slotted semi-
Markovian server with M states. Let the current state of
the system at the beginning of time slot t be given by σt and
the current workload by wt. In this case,

Wt = (wt, σt) ∈ N0 × Z := {1, . . . ,M} (13)

provides all necessary information on the current state of the
system relevant to the future development of its workload.
Z represents the set of states of the Markov chain.

As a matter of fact, changes in the current workload level
will occur according to the particular arrival and service dis-
tributions. At and St are random variables that count the
number of arrivals and service events during the time slot
t. We assume that the service occurs at the end of the time
slot. In this case, Ut = At − St describes the increase or
decrease of the workload during time slot t. The new work-
load is given by Lindley’s equation [13]:

wt+1 = max(wt + Ut, 0) = max(wt + At − St, 0) (14)

with w0 = 0.
In our case, we may assume that At and St are bounded:

0 ≤ At ≤ g, 0 ≤ St ≤ h,−h ≤ Ut ≤ g

We describe the arrival and service distributions accord-
ing to a semi-Markov process:

ai(k) = P (At = k|σt = i) for 0 ≤ k ≤ h, i ∈ Z

s(k) = P (St = k) for 0 ≤ k ≤ g

⇒ui(k) = P (At − St = k|σt = i) for − g ≤ k ≤ h

ai(k), which is the state-specific arrival distribution, is
defined by the probability of k arrivals in a time slot if the
system is in state i at the beginning of the slot. We as-
sume the service distribution to be independent of the state
of the system. From one time slot to another, the system
may change the state of the Markov process according to
the transition matrix P = (pij), i, j ∈ Z:

pij = P (σt+1 = j|σt = i)

According to the previously defined behavior of a semi-
Markovian server, we obtain the transition probabilities of
the state Wt to Wt+1:

P (Wt+1 = (l, j)|Wt = (k, i)) = ui(l − k)pij (15)

We assume the workload to be limited to a maximum
of N . In practice, network elements that are to be modeled
also have only a limited buffer capacity. Any additional data
that arrives if the buffer is full is dropped. Therefore, we
introduce two additional equations for the boundary states
of a workload level of 0 and N :

P (Wt+1 = (0, j)|Wt = (k, i)) =
−k∑

n=−g

ui(n)pij (16)

P (Wt+1 = (N, j)|Wt = (k, i)) =
h∑

n=N−k

ui(n)pij (17)

Hence, we may iteratively compute the state probabil-
ities of the queue. As a stability condition, we require the
mean service capacity to be larger than the mean arrival rate:

E(A) < E(S) ⇔ E(U) < 0 (18)

In this case, the transient distribution of the workload con-
verges to the steady state solution, as has already been
shown by Lindley [13]. This convergence implies that for
every ε > 0 there is a point n such that

|wn(k) − w(k)| < ε.

This is true for every 0 ≤ k ≤ N with wn(k) representing
the probability of workload k at time n computed by tran-
sient analysis and w(k) being the steady state probability of
a workload level k, which can be determined, for instance,
using Wiener-Hopf factorization as presented above. If the
parameter N chosen is sufficiently large, we may neglect
the additional probabilities of higher workloads.

Using interval arithmetic as a reliable technique, we are
able to do a “worst-case” analysis for given values ε (cf.
[7]): We consider the maximum difference between the
outer bounds of the intervals computed by transient and
steady state analysis. If this difference is less than ε, we
know that at most n iterations are required. A more precise
implementation of either the transient or steady state analy-
sis method resulting in smaller rounding errors may yield a
smaller number n that is a better approximation of the exact
number of iterations required.

When we determine the workload distribution using
transient analysis, we assume the queue to be empty at the
beginning. In contrast, the steady state analysis provides
results for the system being at a “normal” workload level.
The number n we gained from the comparison of transient
and steady-state analysis may be considered as an indicator
for the length of a “warm-up” phase of the queue – that is,
the time required to reach a level of workload normal for
the amount of data to be processed.

4. InterVerdiKom

InterVerdiKom provides the user with a means to apply
the analysis techniques presented to queuing systems for
both steady state and transient analysis. Altogether, these
methods include

• reliable steady state workload analysis based on factor-
ization of the characteristic polynomial of an SMP/G/1
or GI/G/1 queue,

• Wiener-Hopf factorization with verified workload dis-
tribution results for GI/G/1 and SMP/G/1 queues,

• reliable computation of the transient and steady state
queue size probability distribution for GI/G/1 queues,

• verified transient analysis of GI/G/1 and SMP/G/1
queues in terms of workload probabilities in a compact
state space.

The methods mentioned are implemented in C++ with
the additional C-XSC library for extended scientific com-
puting, providing interval arithmetic functionality. Through
use of the Qt library by Trolltech, the graphical user inter-
face is platform-independent. However, due to the use of
the library C-XSC the InterVerdiKom tool functions only
on supported platforms (currently UNIX / Linux and Mac-
intosh). A Microsoft Windows version may be technically
possible using the Cygwin environment. Integration with
other analytical tools is provided by text-based files, as in-
put and output data is given in standard text files.

5. Examples

As an example, we consider the overflow probabilities
at a given network element such as a switch or router. We
estimate the model parameters for a high definition (HD)
video stream encoded in H.264 / AVC format. Please note
that the techniques presented may be applied to any other
variable bit rate format as well.

We consider the “Horizon” and “From Mars to China”
(Mars) data traces provided by van der Auwera and
Reisslein [19, 16], which are publicly available for evalu-
ation purposes on their web site1. Some statistical details
about the traces are given in Table 1.

Characteristic “Horizon” “Mars”
Length (GoP) 4,099 4,310
Min size (Byte) 2,624 10,832
Max size (Byte) 2,918,216 8,803,048
Mean size (Byte) 613,777 1,939,697
Standard dev. σ (Byte) 210,718 1,110,315

Table 1. Trace characteristics

Beginning with the video trace files, we first combine the
individual frame size values to a series of GoP sizes. We
consider a group of pictures as the basic transmission unit
for several reasons: On the one hand, it is more accurate to
model a sequence of GoP sizes instead of frames because,
due to the coding scheme used, MPEG frame sizes show a
periodic behavior. This periodic behavior requires a high
number of SMP states to be modeled adequately. How-
ever, this characteristic is easy to reconstruct from given
GoP sizes [15]. On the other hand, the particular frames
in MPEG streams are not transmitted in the same order as
they are played back in the video sequence, but re-sorted in
order to make the use of bi-directional coding feasible.

The sequence of GoP sizes is modeled as an SSMP ac-
cording to the approach presented in Section 2: The pa-
rameters and state-specific distributions are derived from

1http://trace.eas.asu.edu/

Clip Horizon Mars
Capacity InterVerdiKom Empirical trace InterVerdiKom Empirical trace
S = E(G) + 1σ(G) 0.1571 0.2189 0.2991 0.2121
S = E(G) + 2σ(G) 0.0364 0.0478 0.0413 0.0637
S = E(G) + 3σ(G) 0.0168 0.0242 0.0091 0.0141
S = E(G) + 4σ(G) 0.0107 0.0173 0.0017 0.0021

Table 2. Overflow probabilities P (W > 0) = 1 − P (W = 0)

0 10 20 30 40 50 60 70 80 90 100

�0.2

0

0.2

0.4

0.6

0.8

1
Empirical data
SSMP model

Figure 1. Autocorrelation function, “Horizon”
clip

the empirical data trace using a genetic programming al-
gorithm. We see that the autocorrelation of the original
data trace and the SSMP model match quite well (see Fig-
ures 2, 1). Since the state-specific distributions are directly
computed from the original trace, they are correct up to a
discretization error. To make the succeeding calculations
feasible, we therefore have to make a compromise between
accuracy and computation complexity. In the examples pre-
sented, we consider the size distributions in steps of 50, 000
bytes.

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1
Empirical data
SSMP model

Figure 2. Autocorrelation function, “Mars”
clip

We may now analyze the overflow probabilities – that is,
the probability of a workload higher than zero – for various

output capacities for both the model and the original data
trace. For the latter, we compute the workloads

Wn = max(0, Wn−1 + Gn − S) (19)

with Gn being the GoP sizes from the empirical trace and
S the fixed service capacity, which is assumed to be

S = E(G) + kσ(G) (20)

with parameter k ∈ N.
The distribution of the workloads is also discretized to

match the model steps. In the two examples, we consider
SSMP models with 5 states. As mentioned, the number
of states is a parameter to the optimization process. In the
present case, we found that the resulting models are accu-
rate enough to reflect the autocorrelation behavior and also
small enough to be analyzed with verification techniques.
The workload distribution of the SSMP model is computed
according to the Wiener-Hopf method presented in Section
3.1. The utilization of this approach yields tight intervals
for the workload distribution, as can be seen in Table 3 for
one exemplary computation. We give a comparison of the
overflow probabilities in Table 2, which are given by the
first digits only for the sake of clarity.

The results show that, considering the fact that only a
small number of states is used in the model, the outcoming
overflow probabilities give an adequate approximation of
the values of the empirical trace.

P (W = 0) 9.9831351786183220
5639799 · 10−1

P (W = 50, 000) 1.7171549896538977
455072 · 10−6

P (W = 100, 000) 1.3676240731993988
27163 · 10−6

P (W = 150, 000) 5.7985805112780075
481317 · 10−5

P (W = 200, 000) 1.1615787147768189
08304 · 10−4

P (W = 250, 000) 5.0563285174409542
149103 · 10−5

Table 3. Workload probabilities for SSMP(5)
model of “Mars” clip, S = E(G) + 4σ(G)

The transient analysis method presented in Section 3.2
allows us to perform a verified “worst-case” analysis of the

required number of arrivals n so that the workload distribu-
tion computed by iteration and steady state analysis match
for a given tolerance ε. To do so, we determine the maxi-
mum difference between the outer bounds of the intervals
derived by transient and steady state analysis. After n itera-
tions, this difference is less than ε.

We consider an example with 4 states. The transition
matrix is given by

P = (pij) =

⎛
⎜⎜⎝

0.7 0.3 0.0 0.0
0.2 0.7 0.1 0.0
0.0 0.1 0.8 0.1
0.0 0.0 0.3 0.7

⎞
⎟⎟⎠

and the state-dependent arrival distributions Ai are:
P (A1 = 71) = 0.1 . . . P (A1 = 80) = 0.1
P (A2 = 81) = 0.05 . . . P (A2 = 100) = 0.05
P (A3 = 91) = 0.05 . . . P (A3 = 110) = 0.05
P (A4 = 101) = 0.05 . . . P (A4 = 120) = 0.05

The service capacity is assumed to be either at 100 units
or 105 units per time slot, both with a probability of 0.5.
The resulting numbers n for some values ε are displayed in
Table 4.

ε = 10(·) −1 −2 −3 −4 −5 −6 −7
n 21 46 79 123 175 232 292

Table 4. Required number of iterations for dif-
ferent values ε

6. Conclusion and further work

In this paper, we have presented reliable and accurate
analysis techniques for semi-Markovian queuing systems
implemented in the toolkit InterVerdiKom.

We presented a new approach to derive the parameters of
an SSMP queuing system that employs a genetic program-
ming technique. Using this approach, we are able to form
SSMP models with a small number of states that can reflect
the autocorrelation behavior of an empirical trace. Since
the complexity of the SSMP models has been a problem in
previous work ([6, 17]) preventing the outcome of verified
results in some cases, the technique proposed in this paper
allows the verified analysis of realistic video traces with a
more complex behavior.

The steady state workload distribution of an SMP/G/1
queue can be determined by Wiener-Hopf factorization.
The usage of interval arithmetic provides reliable outcomes
and allows verification of the numerical results necessary
for quality of service purposes. Furthermore, we presented
a means for analyzing transient states of the queue. Here,

interval arithmetic provides round-off error control, thus
providing a worst-case analysis technique for the conver-
gence behavior. The duration of the “warm-up” phase of
an empty queuing system can also be estimated using both
transient and steady state analysis.

Our toolkit InterVerdiKom provides implementations of
these methods and their use through a convenient graphi-
cal user interface. We also included the modeling approach
presented in here to provide an integrated set of video traffic
modeling and analysis methods.

Further work is planned on the analysis of arrival dis-
tributions in terms of the convolutions and superpositions
of several distributions and also the aggregation of multi-
ple semi-Markov processes. We also want to expand our
tool to allow various forwarding strategies like reservation,
prioritization, fair bandwidth sharing and packet drop poli-
cies. Also, we intend to enhance InterVerdiKom to include
analysis techniques for queuing networks.

7. Acknowledgments

This research was carried out in an ongoing project
funded by the German Research Council (DFG).

References

[1] D. Fausten and G. Haßlinger. Verified numerical analysis
of the performance of switching systems in telecommuni-
cation. In Numerical Software with Result Verification, pp.
209–228, 2004.

[2] D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion and Machine Learning. Kluwer Academic Publishers,
Boston, MA, 1989.

[3] W. K. Grassmann and J. L. Jain. Numerical solutions of
the waiting time distribution and idle time distribution of the
arithmetic GI/G/1 queue. Operations Research, 37(1):141–
150, 1989.

[4] G. Haßlinger. Semi-Markovian modelling and performance
analysis of variable rate traffic in ATM networks. Telecom-
munication Systems, 7:281 – 298, 1997.

[5] G. Haßlinger. Waiting times, busy periods and output mod-
els of a server analyzed via Wiener-Hopf factorization. Per-
formance Evaluation, 40:3–26, 2000.

[6] G. Hasslinger and D. Fausten. Verified performance analysis
of real time video multiplexing. In Performance and Control
of Next-Generation Communications Networks, 2003.

[7] S. Kempken and W. Luther. Verified methods in stochas-
tic traffic modeling. In Reliable Implementation of Real
Number Algorithms: Theory and Practice, LNCS. Springer,
2006. (to appear)

[8] S. Kempken, W. Luther, and G. Haßlinger. A tool for ver-
ified analysis of transient and steady states of queues. In
Proceedings of the First International Conference on Perfor-
mance Evaluation Methodologies and Tools (VALUETOOLS
’06), 2006. (electronic publication)

[9] S. Kempken and W. Luther. Modeling of H.264 high def-
inition video traffic using discrete-time semi-Markov pro-
cesses. In Proceedings of the 20th International Teletraffic
Congress, 2007. (to appear)

[10] L. Kleinrock. Queueing Systems, volume 1/2. Wiley, 1975.
[11] G. Latouche and V. Ramasvami. Introduction to matrix an-

alytic methods in stochastic modeling. ASA-SIAM, 1999.
[12] S. Li. A general solution technique for discrete queueing

analysis of multi-media traffic on ATM. IEEE Transactions
on Communication, 39:1115–1132, 1991.

[13] D. Lindley. The theory of queues with a single server. In
Proc. Cambridge Philos. Soc., volume 48, pp. 277 – 289,
1952.

[14] W. Luther and S. Kempken. Reliable computation of work-
load distributions using semi-Markov processes. In Pro-
ceedings of the 13th International Conference on Analytical
and Stochastic Modelling Techniques and Applications, pp.
111 – 116, 2006.

[15] O. Rose. Simple and efficient models for variable bit rate
MPEG video traffic. Performance Evaluation, 30:69 – 85,
1997.

[16] P. Seeling, M. Reisslein, and B. Kulapala. Network per-
formance evaluation with frame size and quality traces of
single-layer and two-layer video: A tutorial. IEEE Commu-
nications Surveys and Tutorials, 6(3):58 – 78, 2004.

[17] D. Traczinski. Faktorisierungslösungen für die Workload in
Bediensystemen mit Ergebnisverifikation. PhD thesis, Uni-
versität Duisburg-Essen, 2005.

[18] D. Traczinski, W. Luther, and G. Haßlinger. Polynomial fac-
torization for servers with semi-Markovian workload: Per-
formance and numerical aspects of a verified solution tech-
nique. Stochastic Models, 21:643–668, 2005.

[19] G. van der Auwera, P. David, and M. Reisslein. Bit rate-
variability of H.264/AVC FRExt. Technical report, Arizona
State University, 2006.

[20] D. Whitley. A genetic algorithm tutorial. Statistics and Com-
puting, 4(2):65–85, 1994.

[21] H. Takagi and D.-A. Wu. Multiserver queue with semi-
Markovian batch arrivals with application to the MPEG
frame sequence. Proc. Internet Performance and Control
of Network Systems SPIE 4865, pp. 178 – 189, 2002.

−∞
+∞

32 64

16 32

2.1 Source localization from bounded-
error data

Figure 1. Source (o, unknown location θ) and
sensors (x, known location r�)

θ ∈ R
2 r� ∈ R

2 � = 1 . . . L
�

� y�.

� |r� − θ|
A

1

y� = y (θ, A, n , �)w� � = 1 . . . L

y (θ, A, n , �) =
A

|r� − θ|n .

w� ∈ [w]
(2) , n

A n

p = (θ , A, n)
y (θ, A, n , �) y (p, �)

P ⊂ [p]0

(2)
[p]0
p∗

P

P = {p ∈ [p]0 | y (p, �) ∈ [y�] , � = 1 . . . L} ,

[y�] = y�/ [w]
�

P y�

P P

P ⊂ P ⊂ P.

P

ε
P P

�
P� P�

P� = {p ∈ [p]0 | y (p, �) ∈ [y�]} ,

p �
P (3)

P�, � = 1 . . . L

P =
L⋂

�=1

P�.

P�

ε

2.2 Distributed localization: interval con-
straint propagation

� y� θ A n
[y�] [θ] [A]

[n]

(2)

y� − A

|r� − θ|n = 0.

(7)

[y′
�] = [y�] ∩ [A]

|r� − [θ]|[n]
,

[A′] = [A] ∩ [y′
�] |r� − [θ]|[n]

,[
n′] = [n] ∩ (log ([A′]) − log ([y′

�])) / log (|r� − [θ]|) ,

[
θ′1

]
= [θ1] ∩

(
r�,1 ±

√
([A′] / [y′

�])
2/[n′] − (r�,2 − [θ2])

2

)
,

[
θ′2

]
= [θ2] ∩

(
r�,2 ±

√
([A′] / [y′

�])
2/[n′] − (r�,1 − [θ1])

2

)
.

[θ1] [θ2]

P (3)

�

+,−,×, /

ln (·) exp (·)

3.1 F16 format

F16

F32

F16

2−15 = 6 × 10−5

216 − 25 = 65504

s exponent fractionF16

F32

5 10

s exponent fraction

8 23

1

1

Figure 2. F32 and F16 floating-point numbers

F16

F32

F32

3.2 F16 intervals

+∞
−∞

−∞
+∞

F16

F16

×

F16

•

•

Figure 3. NIOS II architecture

[100 , 200]

Table 1. NIOS-II main features

L = 5000
100 ×100

θ∗ = (50 , 50) A = 100
e = 4

y� > 5

� [y�]

[9.303, 58.698]

[17.856, 112.664]

[18.644, 117.640]

Table 2. Example of measurements provided
by three sensors of the network

4.1 Qualitative results: F32 vs F16 accuracy

F16

F32

F32

F16

2 3

F32 F16

F32 F16

θ 2000 5000

F32 F16

F16 F16

F32

F16

F32

P 1%
F16

0 0.5 1 1.5
0

50

100

150

200

250

300

Average: 0.4180 m

Distributed - F16

0 0.5 1 1.5
Average: 0.4172 m

Distributed - F32

0

50

100

150

200

250

300

Figure 4. Localisation error (in meters): F32

vs F16

4.2 Quantitative results: F16 interval vs
F32 standard instructions

F32 F16

∞ ∞

18 × 18
F16

F32

F32

F16

0 1 2 3 4 5
Average: 1.5117 m

0

50

100

150

200

250

300
Distributed - F16

0 1 2 3 4 5
Average: 1.4940 m

Distributed - F32

0

50

100

150

200

250

300

Figure 5. Diameter of the solution box (in me-
ters): F32 vs F16

cpi

cpi

F16 F32

Table 3. Instructions size in block

cpi

Table 4. Algorithm 1, unknown path loss ex-
ponent: P4 and P4-M vs NIOS-II for 5 itera-
tions

cpi

Table 5. Algorithm 2, known path-loss expo-
nent: P4 and P4-M vs NIOS-II for 5 iterations

4.3
2.5

4.3

F16

Guaranteed Robust Tracking with Flatness Based Controllers Applying Interval
Methods

Marco Kletting, Eberhard P. Hofer
Institute of Measurement, Control, and Microtechnology

University of Ulm
D-89081 Ulm, Germany

{Marco.Kletting, Ep.Hofer}@uni-ulm.de
Felix Antritter

Institute of Automatic Control,
University of Erlangen-Nürnberg

Cauerstrasse 7
D-91058 Erlangen, Germany

Felix.Antritter@rt.eei.uni-erlangen.de

Abstract

Flatness based tracking controller design (see e.g. [4,
5, 16]) is one of the most important tools for the control of
nonlinear systems. A drawback of this approach is the lack
of methods for the robustness analysis of such controllers
with respect to uncertain parameters in the plant. In [1] the
application of interval methods has been proposed for the
guaranteed robustness analysis of flatness based tracking
controllers. This approach allows to explicitly calculate the
deviations from the reference trajectory which are caused
by uncertain parameters in the plant in a guaranteed way.
In this contribution the analysis using interval methods is
extended to the case when a nonlinear tracking observer is
necessary to estimate unmeasured states. Furthermore it
is shown that unknown sensor offsets can be included into
this robustness framework. The approach is illustrated for
a magnetic levitation system.

1 INTRODUCTION

Flatness based controller design [4, 5, 16] is a power-
ful tool for motion planning and trajectory tracking for lin-
ear and nonlinear systems. Especially, for nonlinear sys-
tems there is a wide acceptance of this approach, which has
been applied successfully to numerous problems of indus-
trial relevance. However, a major drawback is the lack of
techniques that allow to investigate the robustness of flat-
ness based tracking controllers against, e.g., parameter un-

certainties in the plant and measurement uncertainties due
to non-ideal sensors.

Roughly speaking, the flatness property of a nonlinear
system is characterized by the existence of an — possibly
fictitious — flat output that allows a differential parameter-
ization of the states and inputs. Based on the differential
parameterization a tracking controller for a given reference
trajectory for the flat output can be designed. In general,
not all system states which are necessary to implement the
tracking controller can be measured . In this case a nonlin-
ear tracking observer as proposed in [6] can be used. These
relations are discussed in a general manner for single-input
systems and are applied to a magnetic levitation system,
where only the load position can be measured.

Interval methods [4,5] are used to analyze the dynamic
behavior of the controlled system, which is described by a
system of nonlinear differential equations.

Applying these techniques the maximum admissible
range of parameter uncertainties in the plant is determined
such that the position of the load along the prescribed tra-
jectory is guaranteed to be within specified tolerances.

More detailed, subintervals of the parameter uncertain-
ties are considered for a verified integration [1] over the de-
sired time span. A subinterval is admissible if the result-
ing enclosures over the complete time span lie completely
inside the specified tolerances for robustness. If the enclo-
sures are completely outside the specified tolerances for at
least one point of time, the corresponding subinterval is not
admissible. Further splitting is required to decide about the
admissibility of all remaining intervals. In addition to un-

certainties of parameters of the plant also interval uncer-
tainties of the initial conditions and the available measured
data can be considered. For the verified integration a Tay-
lor model based solver as implemented in COSY-VI [3] is
used.

The methodology for robustness analysis is restricted to
single-input systems in this contribution. However, with
obvious extensions it can also be applied to multi-input sys-
tems and a wide class of controllers and dynamical systems.

This paper is organized as follows. In Section 2.1, flat-
ness based control and the construction of tracking ob-
servers is introduced shortly. In Section 3 these relations
are applied to a magnetic levitation system. Section 4 de-
scribes briefly the Taylor model based verified integration of
nonlinear uncertain systems, which is required for the Ro-
bustness analysis presented in Section 5. Simulation results
are shown in Section 6. Finally, conclusions and an outlook
on future research are given in Section 7.

2 FLATNESS BASED CONTROLLER DE-
SIGN

2.1 Flatness

Flatness based controller design has been introduced e.g.
in [4] (differential algebraic setting) and [5] (differential ge-
ometric setting). Various aspects of flatness are illustrated
e.g. in [16]. In this contribution the following relations for
nonlinear single input systems are used, where explicitely
the dependence of the relations on the parameters are stated:
For a flat system

ẋ = f(p, x, u) (1)

with x ∈ R
n, u ∈ R and the parameter vector p ∈ R

np

the flatness property implies the existence of a flat output
yf ∈ R, such that

yf = hf (p, x) (2)

x = ψx(p, yf , ẏf , . . . , y
(n−1)
f) (3)

u = ψu(p, yf , ẏf , . . . , y
(n)
f) (4)

holds, with hf , ψu, ψx smooth at least on an open subset of
R, R

n and R respectively. Introducing the new coordinates

ζ = (ζ1, . . . , ζn) = (yf , ẏf , . . . , y
(n−1)
f) , (5)

the flat system (1) can be transformed via the well defined
diffeomorphism

ζ = Φ(p, x) (6)

into controller normal form

ζ̇i = ζi+1, i = 1, 2, . . . n − 1
ζ̇n = α(p, ζ, u) .

(7)

Setting v = y
(n)
f yields

u = ψu(ζ, v) (8)

in view of (4) and (5). In [8] it has been shown that

α(p, ζ, ψu(p, ζ, v)) = v (9)

holds and thus by application of the feedback law (8), sys-
tem (1) is diffeomorphic to the Brunovský normal form

ζ̇i = ζi+1, i = 1, 2, . . . n − 1
ζ̇n = v

(10)

with new input v.

2.2 Flatness Based Feedforward Con-
troller

Due to the derived relations in Section 2.1 a (sufficiently
smooth) reference trajectory yf,d : [t0, t0 + T] → R for the
flat output yf can be assigned almost arbitrarily (excluding
singularities of the differential parameterization (3)–(4)). If
the reference trajectory yf,d satisfies the boundary condi-
tions

x(t0) = ψx(p0, yf,d(t0), ẏf,d(t0), . . . , y
(n−1)
f,d (t0)) (11)

then a corresponding feedforward controller that provides
yf (t) = yf,d(t) for t ∈ [t0, t0 + T] is given by

ud(t) = ψu(p0, yf,d(t), ẏf,d(t), . . . , y
(n)
f,d (t)) . (12)

For (11) and (12) it has been assumed that the parameters
of the plant (1) match a nominal parameter vector p0.

2.3 Flatness Based Tracking Controller
design

To stabilize the tracking of a given reference trajectory
yf,d for the flat output, the tracking error e is introduced as

e = yf − yf,d = ζ1 − ζ1,d (13)

In view of (10) it follows that

e(i) = ζi+1 − ζi+1,d, i = 0, 1, . . . , n − 1 . (14)

Thus, when setting the new input v in (10) to

v = ζ̇n,d −
n−1∑
i=0

λi(ζi+1 − ζi+1,d) = ζ̇n,d −
n−1∑
i=0

λie
(i) ,

(15)
the tracking error obeys the differential equation

0 = e(n) +
n−1∑
i=0

λie
(i) (16)

which can be achieved to be stable by suitable choice of the
λi. Substituting (15) into the differential parameterization
(4) of the input yields in view of (5) the feedback law

u = ψu(p, yf , ẏf , . . . , y
(n−1)
f , yf,d, ẏf,d, . . . , y

(n)
f,d) . (17)

Using the diffeomorphism (6), the feedbacklaw (17) can be
implemented as

u = ψ′
u(p0, x, yf,d, ẏf,d, . . . , y

(n)
f,d) = ψ′′

u(p0, x, t) , (18)

where again the plant parameters p are assumed to be equal
to the nominal parameter vector p0. As a consequence, for
the feedback controller (18), the controlled system can be
summarized as

ẋ = f(p, x, ψ′′
u(p0, x, t)) = ffb(p, x, t) , (19)

where p �= p0 can occur due to not exactly known param-
eters. To improve the robustness of the tracking controller
an integral error feedback is often introduced, i.e. the error
feedback (15) is extended according to

ėI = ζ1 − ζ1,d (20)

v = ζ̇n,d −
n−1∑
i=0

λie
(i) − λ−1eI .

This feedback can clearly be implemented as a state feed-
back of the kind

ėI = hf (p, x) − yf,d(t) (21)

u = ψ′′
u,I(p0, x, eI , t) .

2.4 Tracking using a Nonlinear Tracking
Observer

For the implementation of the feedback (18), in general,
all states have to be available for measurement. If only the
output

y = h(p, x) (22)

with y ∈ R
m is available for measurement, a nonlinear

tracking observer with time varying observer gain L(t)

˙̂x = f(p0, x̂, u) + L(t)(y − h(p0, x̂)) (23)

= f(p0, x̂, u) + L(t)(h(p, x) − h(p0, x̂))
= fobs(p, x, x̂, u, t)

as proposed in [6] can be used. The observer (23) basically
consists of a model of the plant and a feedback of the differ-
ence of the measured output and the estimated output. For
the model of the plant also the nominal parameter values p0

are used. The time varying observer gain L(t) is designed
such that the linearization of the estimation error dynamics
about the reference trajectory yf,d which result to

Δ ˙̂x − Δẋ = (A(t) − LC(t))(Δx̂ − Δx) (24)

Figure 1. Magnetic levitation system.

with

A(t) =
∂f

∂x

∣∣∣
xd,ud

, C(t) =
∂h

∂x

∣∣∣
xd,ud

(25)

are stable. For the stabilization of (24), i.e. of the estima-
tion error dynamics in the vicinity of the reference trajectory
yf,d, methods for linear time varying systems as proposed
in [7] can be used. Using the tracking observer (23) the
feedback (18) can be estimated using the observer states x̂

û = ψ̂(p0, x̂, t) . (26)

Thus, the controlled system can be summarized as[
ẋ
˙̂x

]
=

[
f(p, x, ψ̂(p0, x̂, t), t)

fobs(p0, x, x̂, ψ̂(p0, x̂, t), t)

]
= ffbo(p, x, x̂, t) .

(27)

It can easily be deduced that when using an observer to-
gether with the controller (21) which includes integral error
feedback the following structure results⎡

⎣ėI

ẋ
˙̂x

⎤
⎦ =

⎡
⎣ hf (p, x) − yf,d(t)

f(p, x, ψ̂(p0, x̂, t), t)
fobs(p0, x, x̂, ψ̂(p0, x̂, t), t)

⎤
⎦

= ffbo,I(p, x, x̂, eI , t) . (28)

The controlled systems (27) and (28) have a similar
structure as (19). This structure can be analysed using the
methods discussed in Sections 4 and 5.

Some additional modifications for the tracking con-
trollers with observer can be introduced that do not change
the resulting structure and will be discussed in Section 3.

3 MAGNETIC LEVITATION SYSTEM

A simplified model of a magnetic levitation system (see
Figure 1) is given by [13]

ẋ1 = x2 (29)

ẋ2 =
k

m

u2

(c − x1)2
− g .

0 0.02 0.04 0.06 0.08 0.1
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

t in s

x 1 in
 c

m

Figure 2. Reference trajectory for the position
x1 (black) and the bounds for admissible de-
viations (grey).

The system is already given in controller normal form and
thus a flat output of (29) is given by

yf = x1 . (30)

The relations (3)–(4) can directly be derived from (29)

(x1, x2) = (yf , ẏf) (31)

u = (c − yf)
√

m

k
(ÿf + g) . (32)

For the load of the levitation system a set point change is
considered, i.e. a tajectory has to be planned such that the
following boundary conditions are satisfied

(x1(0 s), x2(0 s)) = (−0.4 cm, 0
cm
s

) (33)

(x1(0.1 s), x2(0.1 s)) = (−0.2 cm, 0
cm
s

) .

In view of the differential parameterization (31) this yields
the following boundary conditions for a corresponding tra-
jectory yf,d for the flat output

yf,d(0 s) = −0.4 cm, ẏf,d(0 s) = 0
cm
s

(34)

yf,d(0.1 s) = −0.2 cm, ẏf,d(0.1 s) = 0
cm
s

which can be satisfied by assigning for yf,d a third order
polynomial. The resulting trajectory for yf can be seen in
Figure 2.

Based on the results in Section 2.1 a tracking controller
for system (29) is given by

u = (c − x1) · (35)√
m

k
(ÿf,d − λ1(x2 − yf,d) − λ0(x1 − yf,d) + g) .

It is assumed that the flat output of (29) is available for mea-
surement, i.e.

y = h(x) = x1 + ε , (36)

0 0.02 0.04 0.06 0.08 0.1
−1

0

1

2

3

4

t in s

x 2 in
 c

m
/s

Figure 3. Reference trajectory for the veloc-
ity x2 (black) and the bounds for admissible
deviations (grey).

where, however, ε describes an unknown but constant sen-
sor offset. For the given output a nonlinear tracking ob-
server, as discussed in Section 2.4, can be derived. It has
the form

˙̂x1 = x̂2 − l1(t)(x1 + ε − x̂1) (37)

˙̂x2 =
k

m

u2

(c − x̂1)2
− g − l2(t)(x1 + ε − x̂1) ,

where the unknown sensor offset ε in (36) is explicitely in-
cluded in the model. The feedback law (35) which stabilizes
the tracking can then be estimated as

û = (c − x1 + ε) · (38)√
m

k
(ÿf,d − λ1(x̂2 − yf,d) − λ0(x1 + ε − yf,d) + g) ,

where the measured output (36) was used to estimate x1

and x2 is estimated using the observer state x̂2. A tracking
controller with integral error feedback as discussed in Sec-
tion 2.1 is given by (using again the observer (37) and the
measured output (36))

ėI = x1 + ε − yf,d

û = (c − x1 + ε) · (39)(m

k
(ÿf,d − λ1(x̂2 − yf,d) − λ0(x1 + ε − yf,d) . . .

. . . − λ−1eI) + g)
)− 1

2

in view of (21). With the parameter vector p =
(k, m, c, g, ε) the controlled systems (29), (37)–(38) and
(29), (37), (39) exhibit the structure as in (27) and (28) re-
spectively.

Assume that there are constraints for the at most toler-
able deviations from the reference trajectory for the con-
trolled system which are specified in the following manner

|xi(t) − xi,d(t)| < δi, i = 1, 2; ∀ t ∈ [0 s, 0.1 s] . (40)

In the sequel it will be shown that, using interval methods,
it is possible to determine the admissible parameter interval
[p, p] with p0 ∈ [p, p] such that the tracking controllers can
meet the specification (40). This question can be solved us-
ing the tools introduced in the next section. Also a more for-
mal statement of the robustness requirement will be given.

4 VERIFIED INTEGRATION BASED ON
TAYLOR MODELS

The controlled systems (27) and (28) respectively can
be described by a set of time varying nonlinear ordinary
differential equations

ẋ(t) = fx(x(t), p(t), t), (41)

where x ∈ R
nx is the state vector (including eventually the

controller state for the integral error feedback) and p ∈ R
np

the parameter vector. The parameter vector p and the initial
conditions x(0) are assumed to be uncertain with p ∈ [p, p]
and x(0) ∈ [x(0), x(0)]. If the parameters may vary over
time within their bounds and if upper and lower bounds of
the variation rate are known then

ṗ(t) = Δp with Δp ∈ [Δp, Δp] (42)

holds.
The state vector can be extended by the parameter vector
according to

ż(t) =f(z(t), u(t)) with z(t) = [x(t)T , p(t)T]T and

f =
[

fx(x(t), p(t))
Δp

]
(43)

with f : D �→ R
n, D ⊂ R

n = R
nx × R

np . Uncertain
parameters which are time-invariant are described by Δp =
0.

For the robustness analysis a verified integration of the
system model has to be performed. In this paper a Taylor
model based integrator as implemented in COSY VI is used.
The goal is to find a Taylor model

T = Pρ,z + Iz (44)

consisting of Taylor polynomial P and interval bounds I
for the remainder error for the flow of the differential equa-
tion

ż(t) = f(z(t), t) (45)

in the time interval [t0; t1] with z(t0) ∈ [z01; z02], where
z(t0) may also be a Taylor model [3, 10, 11]. The initial
interval box at t = 0 can be expressed as a Taylor model

z(0) = c0 + Dz0 with zi,0 ∈ [−1; 1], i = 1, 2, . . . n (46)

where c is the midpoint of z(0) and D is a diagonal
Matrix with di,i = 0.5 · diam(z(0)). In contrast to algo-
rithms such as implemented in VNODE [15] not only an
Expansion in time t but also in the initial conditions z0 is
performed, which reduces the dependency problem and the
wrapping effect. In each time-step the set is described by a
Taylor model,which allows for a more flexible enclosure of
non-convex sets.

First equation (45) is rewritten into Integral form

z(t) = z(t0) +
∫ t

t0

f(z(τ), τ)dτ . (47)

Which leads to a fix-point equation

A(z)(t) = z(t0) +
∫ t

t0

f(z(τ), τ)dτ . (48)

The goal is now to find a Taylor model of order ρ for the
flow of the differential equation, such that

A(Pρ,z + Iz) ⊆ Pρ,z + Iz (49)

is fulfilled. A more detailed description of the algorithm can
be found in [3].

As already mentioned, the expansion in initial conditions
reduces the dependency problem and the wrapping effect.
In order to limit a long-term growth of the truncation error
and for further reduction of overestimation the following
strategies can be applied:

• Shrink Wrapping: The Interval remainder is absorbed
in the polynomial part [11]

• Preconditioning: The solution of the ODE is studied
in a different coordinate system in order to minimize
long-term error growth [10]

• State-space extension by the remainder term during
simulation

• Splitting of the remainder term during simulation [12]

• Splitting of the reference domain during simulation

5 ROBUSTNESS ANALYSIS OF THE
TRACKING CONTROLLER

The goal is to determine parameter values

Ωin ={[
x0

p0

]
= z(0)

∣∣∣∣ |xi(t) − xi,d(t)| ≤ δi∀t ∈ [t0, t0 + T],

i = 1, 2
}

,

(50)

for which it can be guaranteed that the conditions for ro-
bustness in equation (40) are fulfilled and those parameter
values

Ωout ={[
x0

p0

]
= z(0)

∣∣∣∣ |xi(t) − xi,d(t)| > δi∀t ∈ [t0, t0 + T],

i = 1, 2
}

,

(51)

for which it can be guaranteed that these conditions are not
fulfilled. Uncertain parameters are given by p, x(0) are the
possibly uncertain initial conditions and δi are the allowed
tolerances around the reference trajectories of the position
x1 and velocity x2.

The determination of Ωin and Ωout can be done by split-
ting the vector z(0) in subintervals

z̃l(0), l = 1, 2, . . . , L,

L⋃
l=1

z̃l(0) = z(0) (52)

and performing a verified simulation with a Taylor model
based ode-solver as implemented in COSY VI. The algo-
rithm is described in Fig. 4. First an interval z̃l(0) is se-
lected for the robustness analysis, then a splitting criterion
is evaluated and the selected interval box is split. For the
split intervals a verified integration of the system model is
performed. Then, three different cases have to be distin-
guished:

1. If for any t ∈ [0, T], the resulting trajectory is com-
pletely outside the specified tolerances the correspond-
ing interval box is inconsistent and can be deleted.

2. If on the other hand the resulting trajectory lies com-
pletely inside the tolerance for all t ∈ [0, T], the corre-
sponding interval box is admissible.

3. Intervals which lead to trajectories which are not com-
pletely outside but also not completely inside for all
t ∈ [0, T] have to be split further until a user given
maximum number of splitting operations is reached.

In the following, criteria for selection and splitting of the
intervals shall be discussed in more detail. Each subinterval
z̃l(0) can again be expressed as a Taylor model with the unit
box z0 as reference domain according to

z̃l(0) = c̃0l + D̃lz0 with zi,0 ∈ [−1; 1],i = 1, 2, . . . n

l = 1, 2, . . . , L
(53)

where c̃0l is the midpoint of z̃l(0) and D̃l is a diagonal Ma-
trix with D̃l = 0.5 · diag (diam(z̃l(0))).

If L > 1, the most appropriate subinterval for the split-
ting has to be selected at first. This could be the interval

with the largest pseudo-volume, which is the product of the
diameters of the resulting interval vector components. An-
other strategy is to calculate the pseudo volume of the in-
terval enclosure of the Taylor model T̃l(z0) resulting from
each subinterval z̃l(0) in the last integration step of the pre-
ceding integration and select the subinterval z̃l(0) which led
to the largest pseudo volume.

After the selection of an interval z̃l(0) a splitting direc-
tion has to be determined by checking the sensitivity of the
Taylor model T̃l(z0) from the selected interval z̃l(0) at the
last integration step of the previous integration with respect
to each component zi,0,i = 1 . . . n of the reference domain.

The component μ of the reference domain z0 for which
the Taylor model T̃l(z0) is most sensitive is determined by
the following heuristics. First all wi,j

wi,j = diam(zi,0)

∣∣∣∣∣∂T̃lj(z0)
∂zi,0

∣∣∣
z0=mid(z0)

∣∣∣∣∣ i, j = 1, . . . ,n,

have to be calculated and the component μ is determined by

μ = argmax︸ ︷︷ ︸
l=,...,n

n∑
i=1

wi,j . (54)

As the intervals z̃l(0) and z0 are related by equation (53) the
interval z̃l(0) selected for splitting is also split in the com-
ponent μ. In equation (54), the results are the coefficients
of the linear parts of the Taylor model T (z0) multiplied by
the factor 2, because mid(zi,0) = 0 and diam(zi,0) = 2 for
zi,0 ∈ [−1; 1] , i = 1 . . . , n.

6 SIMULATION RESULTS

For the simulation the nominal parameters of system (29)
have been assumed to be (see [9])

k0 = 58.041
kg cm3

s2 A2
, g0 = 981

cm
s2

(55)

m0 = 0.0844 kg, c0 = 0.11 cm

The algorithm described in the previous section has been
applied to the magnetic levitation system which is con-
trolled using the tracking controllers [(37), (38)] and [(37),
(39)] respectively. For simplicity the parameters of the lev-
itation system are assumed to match then nominal ones in
(55). Only the parameter k is assumed to be uncertain but
bounded by the interval k ∈ [54.042; 62.042] kg cm3

s2 A2 . The
sensor is assumed to have an unknown offset ε which is as-
sumed to be bounded by ε ∈ [−0.01; 0.01]cm.The order
of the Taylor models was chosen to be 6 in time and initial
states. Additionally QR-Preconditioning was applied. The
tolerances for the deviations from the reference trajectory
(see (40)) are: δ1 ∈ [−0.03; 0.03] cm, δ2 ∈ [−0.5; 0.5] cm

s .
δ1 is chosen very small as the final equililibrium position is
desired to be approached very exactly.

Figure 4. block diagram of the algorithm for
the determination of the admissible parame-
ters

To speed up the convergence of the estimation error the
observer (37) has been initialized using the measured output
(36), i.e.

x̂1(0) = y(0) (56)

As x2 cannot be measured the observer state x̂2 is initialized
with the reference trajectory, i.e.

x̂2(0) = x2,d(0) = ẏf,d(0) (57)

The simulation results for the controller [(37), (38)] can
be seen in Figure 5. For the consistent set of parameters the
robustness specifications (40) are met. For the inconsistent
parameters the specifications are not met. Remaining unde-
cided parameter sets could be split up further, if necessary.
It can be deduced that the controller [(37), (38)] cannot meet
the specification (40) for the complete uncertainty intervals
of k and ε and thus the parameters k and ε would have to
be determined more exactly if the specifications have to be
met in any case.

In Figure 6 the resulting consistent parameters are com-
pared for the controllers [(37), (38)] and [(37), (39)]. It can
be seen that for the desired specifications the two controllers
yield different subsets of the uncertainty intervals. It can be
concluded e.g. that if there is a large uncertainty in the offset
ε of the sensor and the parameter k can be determined very
well, then the controller [(37), (38)] should be preferred (in-
dicated by the dashed box). If on the other hand the un-
certainties in the sensor offset are small but the uncertainty

in the parameter k is relatively large, then the controller
with integral error feedback should be preferred. Thus the
proposed robustness analysis can indeed yield hints on the
choice of the used controller.

inconsistent

consistent

undecided

Figure 5. Simulation results for controller
without integral error feedback.

Figure 6. Comparison of the results.

It should be mentioned however, that the resulting pa-
rameter sets as shown in Figures 5 and 6 strongly depend
on the specifications (40). This can be verified when look-
ing at Figure 7 and 8. Here the resulting trajectories using
the controller [(37), (39)] for k = 56.5 and ε = 0.004 —a
parameter combination which belongs to the set unadmiss-
ble parameter values— are depicted. It can be seen that the
robustness specification is violated only by the velocity and
mostly in the first part of the trajectory. As a consequence,
if the tolerable deviation e.g. on the velocity in the first
part of the trajectory can be relaxed or a specification which
allows some kind of a transition time for the states — as
also depicted in Figure 7 and 8 — a much larger admissi-
ble parameter set would result for this controller. With the
proposed approach also such a specification could be inves-
tigated.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

time in s

po
si

tio
n

x 1

Resulting trajectory for k=56.5 and ε=0.004
Time−varying tolerances
Nominal Trajectory for k=58.042 and ε=0
Time−invariant tolerances

Figure 7. Modified tolerances.

0 0.02 0.04 0.06 0.08 0.1
−2

−1

0

1

2

3

4

time t

ve
lo

ci
ty

 x
2

Resulting trajectory for k=56.5 and ε=0.004
Time−varying tolerances
Nominal Trajectory for k=58.042 and ε=0
Time−invariant tolerances

Figure 8. Modified tolerances.

7 CONCLUSION AND FUTURE RE-
SEARCH

In this paper the robustness of flatness based tracking
controllers using only output feedback for a magnetic lev-
itation system has been analyzed. Verified integration of
subsets of the uncertain parameter interval led to guaran-
teed enclosures of the admissible sets of parameters which
lead to trajectories within the specified tolerances The al-
gorithm can be applied directly to systems with uncertain
initial conditions. It can also be extended to other con-
trol strategies. Future research will include the optimiza-
tion of splitting and selection strategies and the implemen-
tation of other validated ODE solvers like VNODE [15],
VALENCIA-IVP [2] or VSPODE [14].

References

[1] F. Antritter, M. Kletting, and E. P. Hofer. Robustness analy-
sis of flatness based tracking controllers using interval meth-
ods. Int. J. Control (To Appear), 2007.

[2] E. Auer, A. Rauh, E. P. Hofer, and W. Luther. Validated
Modeling of Mechanical Systems with SmartMOBILE: Im-
provement of Performance by ValEncIA-IVP. accepted for
Dagstuhl Seminar Proceedings 06021 Reliable Implementa-
tion of Real Number Algorithms: Theory and Practice, to
appear in Springer LNCS.

[3] M. Berz and K. Makino. Verified Integration of ODEs and
Flows Using Differential Algebraic Methods on High-Order
Taylor Models. Reliable Computing, 4:361–369, 1998.

[4] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness
and defect of nonlinear systems: introductory theory and
examples. Int. J. Control, 61:1327–1361, 1995.

[5] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. A Lie-
Bäcklund approach to equivalence and flatness of nonlinear
systems. Trans. Aut. Control, 44:922–937, 1999.

[6] M. Fliess and J. Rudolph. Local tracking observers for flat
systems. Proceedings of the Symposium on Control, Opti-
mization and Supervision, CESA ’96 IMACS Multiconfer-
ence, Lille, France, pages 213–217, 1996.

[7] E. Freund. Zeitvariable Mehrgrößensysteme. Lecture
notes in operations and mathematical science 57, Springer-
Verlag, New York, 1971.

[8] V. Hagenmeyer and E. Delaleau. Exact feedforward lineari-
sation based on differential flatness: The siso case. In Non-
linear and Adaptive Control (NCN4 2001), Lecture notes in
Control and Information Sciences, volume 281, pages 161–
170. Springer, Berlin, Heidelberg, 2001.

[9] V. Hagenmeyer and E. Delaleau. Exact feedforward lin-
earization based on differential flatness. Int. J. Control,
76:537–556, 2003.

[10] M. B. K. Makino. Suppression of the Wrapping Effect by
Taylor Model-based Verified Integrators: Long-term Stabi-
lization by Preconditioning . International Journal of Differ-
ential Equations and Applications (2006, in print).

[11] M. B. K. Makino. Suppression of the Wrapping Effect by
Taylor Model-based Verified Integrators: Long-term Stabi-
lization by Shrink Wrapping. International Journal of Dif-
ferential Equations and Applications (2006, in print).

[12] M. Kletting, A. Rauh, H. Aschemann, and E. P. Hofer. In-
terval Observer Design Based on Taylor Models for Non-
linear Uncertain Continuous-Time Systems. 12th GAMM-
IMACS International Symposium on Scientific Computing,
Computer Arithmetic, and Validated Numerics SCAN 2006,
Duisburg, Germany, Book of abstracts, pp. 101-102, 2006.

[13] J. Levine, J. Lottin, and J. C. Ponsart. A nonlinear approach
to the control of magnetic bearings. IEEE Trans. on Control
Systems Technology, pages 545 – 552, 1996.

[14] Y. Lin and M. A. Stadtherr. Deterministic Global Optimiza-
tion for Dynamic Systems Using Interval Analysis. Pre-
sented at 12th GAMM-IMACS International Symposium on
Scientific Computing, Computer Arithmetic, and Validated
Numerics SCAN 2006, Duisburg, Germany, 2006.

[15] N. S. Nedialkov and K. R. Jackson. Methods for Initial
Value Problems for Ordinary Differential Equations. In U.
Kulisch, R. Lohner and A. Facius eds., Perspectives on En-
closure Methods, pages 219-264, Springer-Verlag, Vienna,
2001.

[16] H. Sira-Ramirez and S. K. Agrawal. Differentially Flat Sys-
tems. Marcel Dekker, New York, 2004.

Interval Observer Design Based on Taylor Models for
Nonlinear Uncertain Continuous-Time Systems

Marco Kletting, Andreas Rauh, Eberhard P. Hofer
Institute of Measurement, Control, and Microtechnology

University of Ulm
D-89081 Ulm, Germany

{Marco.Kletting, Andreas.Rauh, EP.Hofer}@uni-ulm.de
Harald Aschemann

Chair of Mechatronics
University of Rostock

D-18059 Rostock, Germany
Harald.Aschemann@uni-rostock.de

Abstract

In most applications in control engineering not all state
variables can be measured. Consequently, state estimation
is performed to reconstruct the non-measurable states tak-
ing into account both system dynamics and the measure-
ment model. If the system is subject to interval bounded
uncertainties, an interval observer provides a guaranteed
estimation of all states. The estimation consists of a recur-
sive application of prediction and correction steps.

The prediction step corresponds to a verified integra-
tion of the system model describing the system dynamics
between two points of time at which measured data is avail-
able. In this paper, a Taylor model based integrator is used.

Considering the state enclosures obtained in the predic-
tion step, the correction step reconstructs states and param-
eters from the uncertain measurements with the help of a
measurement model. The enclosures of states and parame-
ters determined by the interval observer are consistent with
both system and measurement models as well as all uncer-
tainties.

1 INTRODUCTION

Interval methods are powerful tools for the calculation
of guaranteed bounds for the state variables of systems with
interval bounded uncertainties. In most applications in con-
trol engineering, a measurement of all states is either im-
possible or avoided because of reasons of sensor reliabil-
ity and cost-effectiveness. Especially in nonlinear control,

also the knowledge of non-measured system state variables
is required. Therefore, state observers are employed to
compute estimates for the whole state vector. If the sys-
tem is influenced by interval uncertainties, an interval ob-
server [8, 11, 15] determines guaranteed enclosures of all
state variables and parameters. The observation consists of
the recursive application of two steps and involves a system
model describing the system dynamics and a measurement
equation describing the sensor characteristics. The first step
is the so-called prediction step, and the second step is de-
noted as correction step. After the extended state vector,
consisting of state vector and the vector of uncertain pa-
rameters, are predicted by the uncertain system model, the
extended state vector is estimated from the measured val-
ues in the correction step. The correction step is initialized
with the result of the prediciton step. The prerequisite is
that the system model, the measurement model, and all un-
certainties provide guaranteed enclosures. In [5] an interval
observer for cooperative systems has been proposed, where
the state variables are enclosed by a single interval box. The
approach in [6] is based on a branch and bound algorithm
and the sets describing the state enclosure are given by mul-
tiple interval boxes. In [9] also an interval observer for co-
operative systems has been proposed, in contrast to [5] mul-
tiple interval boxes are used for the state enclosures. The
interval observer, which is proposed in this paper involves
a Taylor model based integration [3, 13, 14] of the system
dynamics in the prediction step. The state enclosures are
given by Taylor models consisting of a multivariate polyno-
mial and an interval remainder term. For a tight enclosure
of non-convex sets with interval boxes often many boxes

are required. In case of Taylor models often a single Taylor
model is sufficient to obtain the same enclosure quality. One
of the advantages of interval boxes is that operations like the
computation of the intersection of two intervals are easily
performed, which is especially important for the implemen-
tation of the correction step. To determine a tight enclosure
of a set describing the intersection of a Taylor model and
an interval is however more difficult, thus the implementa-
tion of the correction step becomes more sophisticated. The
paper is organized as follows: In Section 2, the problem
formulation is given. In Section 3, the algorithm of the in-
terval observer is presented in detail. The performance of
the interval observer is demonstrated by simulation results
in Section 4. Finally, conclusions and an outlook on future
research are given in Section 5.

2 PROBLEM FORMULATION

Consider the following nonlinear uncertain system

ẋ(t) = fx(x(t), p(t), t), (1)

where x ∈ R
nx is the state vector and p ∈ R

np the vector
of the uncertain parameters. The parameter vector p and
the initial conditions x(0) are assumed to be uncertain with
p ∈ [p; p] and x(0) ∈ [x(0); x(0)]. If the parameters vary
over time within their bounds and if upper and lower bounds
of their variation rates are known, then

ṗ(t) = Δp with Δp ∈ [Δp; Δp] (2)

holds. The state vector is extended by the parameter vector
and the time variable t according to

z(t) = [x(t)T , p(t)T , t]T (3)

leading to an extended state space representation

ż(t) =f(z(t))

with f(z(t)) =

⎡
⎣ fx(x(t), p(t), t)

Δp
1

⎤
⎦ (4)

with f : D �→ R
n, D ⊂ R

n = R
nx × R

np × R
1. Com-

ponents pi of the vector of uncertain parameters which are
time-invariant are characterized by Δpi = 0.

In addition to the system dynamics, the interval observer
requires a sensor model that describes the relation between
the measurements and the true system states. The measure-
ment equation is then given by

y (tk+1) =h̃ (z (t) , q (t))
∣∣∣
t=tk+1

+ δ (t)
∣∣∣
t=tk+1

=h (z (t) , q (t) , δ (t))
∣∣∣
t=tk+1

(5)

with h : D �→ R
m, D ⊂ R

n × R
nq × R

m. The variable
tk+1 denotes points of time with measurement information.
The parameter vector q ∈ R

nq of the measurement equation
is bounded by q ∈ [q, q]. The additive measurement error
δ ∈ R

m is bounded by δ ∈ [δ, δ].
An interval observer determines a guaranteed enclosure

of the extended state vector consting of the system states
and the uncertain parameters. The basic concept of the in-
terval observer is illustrated in Fig. 1. In general, the param-
eters q can be estimated by the interval observer as well.

Figure 1. Flow diagram of the interval ob-
server.

At a given point of time tk the set describing the en-
closure of extended state vector is predicted by a verified
integration of the system model up to tk+1. At tk+1, the
state variables are reconstructed from the uncertain mea-
surements in the correction step based on the measurement
model. The correction step is initialized with the enclosure
of the extended state vector computed in the prediction step.
Therefore, an improved enclosure is obtained. This proce-
dure is repeated recursively. The prediction is performed
until the next measurements are available, then the next cor-
rection step is applied.

3 INTERVAL OBSERVER BASED ON TAY-
LOR MODELS

3.1 Prediction Step

In the prediction step, a verified integration of the system
model is performed. In this work, a Taylor model based
integrator [3, 13, 14] is used which is described briefly in
the following.

3.1.1 Basic Algorithm

The goal is to derive a Taylor model [3] consisting of a
Taylor polynomial P and bounds for an interval remainder
Term I . This interval remainder is the remainder error for
the flow of the differential equation

ż(t) = f(z(t)) (6)

in the time interval [t0; t1] with a given solution at
z(t0),where z(t0) may be an interval box but also a Taylor
model. The initial interval box at t = 0 can be expressed as
a Taylor model

z(t = 0) = c + Dz0 with z0,i ∈ [−1; 1] , i = 1 . . . , n ,
(7)

where c is the midpoint of z(t = 0) and D is a diagonal
matrix with di,i = 0.5 · diam(z(t = 0)). In contrast to
algorithms such as those implemented in VNODE not only
a series expansion in time t but also in the initial extended
state vector z0 is performed, to reduce the dependency prob-
lem and the wrapping effect. In each time-step, the set en-
closing the flow of the differential equation is described by
a Taylor model, which allows for a more flexible enclosure
of non-convex sets.

The integral of the (6) is given by

z(t) = z(t0) +
∫ t

t0

f(z(τ))dτ . (8)

From the integral form a fix-point equation

O(z)(t) = z(t0) +
∫ t

t0

f(z(τ))dτ (9)

is obtained. The goal is now to determine a Taylor model of
order ρ for the flow of the differential equation, such that

O(Pρ,z + Iz) ⊆ Pρ,z + Iz (10)

is fulfilled. A more detailed description of the algorithm can
be found in [3].

3.1.2 Reduction of the Wrapping Effect

As already mentioned, the expansion in initial conditions
reduces the dependency problem and the wrapping effect.
In order to limit the long-term growth of the truncation error
and to further reduce overestimation the following strategies
can be applied.

• Shrink Wrapping: The interval remainder is absorbed
in the polynomial part [14].

• Preconditioning: The solution of the ODE is studied
in a different coordinate system in order to minimize
long-term error growth [13].

• State-space extension by the remainder term during
simulation.

• Splitting of the remainder term during simulation.

• Splitting of the reference domain during simulation.

In the following, splitting of the reference domain into
subintervals shall be discussed in more detail.

Consider a Taylor model T (z0) with the reference do-
main z0. The reference domain can be split into subintervals
z̃0. For each subinterval a new Taylor model T (z̃0) is ob-
tained. To determine the component in which the reference
domain has to be split, a sensitivity analysis is performed.
The component μ of the reference domain z0 is chosen for
splitting in which the Taylor model T (z0) is most sensitive.
For that purpose, all wi,j

wi,j =diam(z0,i)
∣∣∣∣∂Tj(z0)

∂zi,0

∣∣∣
z0=mid(z0)

∣∣∣∣
i = 1, . . . ,n, j = 1, . . . , n.

(11)

have to be calculated and the component μ is determined by

μ = argmax︸ ︷︷ ︸
j=1,...,n

(
n∑

i=1

wi,j

)
. (12)

In equation (11), the results are the coefficients of the lin-
ear part of the Taylor model T (z0) multiplied by the fac-
tor 2, because mid(z0,i) = 0 and diam(z0,i) = 2 for
z0,i ∈ [−1; 1] , i = {1 . . . , n}. For numerical and im-
plementation reasons it is advantageous to have the unit box
[−1, 1]n as a reference domain in each integration step [14].
To obtain again the unit box as a reference domain, z̃0 is ex-
pressed as a Taylor model according to

z̃0 =T̃ (z0) = c̃ + D̃ z0

with z0,i ∈ [−1; 1] , i = 1 . . . , n ,
(13)

where c̃ is the midpoint of z̃0 and D̃ is a diagonal matrix
with d̃i,i = 0.5 · diam(z̃i,0). The components of the vector
of the original reference domain z0 of T (z0) are replaced by
the components of T̃ by substituting T̃i(z0) for z0,i, which
results in a modified Taylor model T̂ (z0) = T (T̃ (z0)). The
scaling to the unit box is done after each splitting operation.

If the state enclosure is already given by several Taylor
models, the most appropriate Taylor model for the splitting
of the reference domain has to be selected. This is done
by calculating the interval enclosure of each Taylor model
and the corresponding pseudo volume, which is the product
of the diameters of the components of the resulting interval
vector. The Taylor model with the largest pseudo volume is
selected for splitting.

Figure 2. Interval observer based on subin-
tervals.

3.2 Correction Step

In the correction step, guaranteed enclosures of the state
variables are reconstructed from the measurements and in-
tersected with the results from the prediction step. In gen-
eral, the relation between the measurements and the state
variables is nonlinear, see equation (5).

If a state variable can be measured directly, the imple-
mentation of the correction step is fairly easy, if an interval
observer based on subintervals [8, 11] is used. Then only,
an intersection of the predicted result with the difference of
the measured value and the measurement uncertainty is re-
quired. This is illustrated in Fig. 2. However, if an interval
observer based on Taylor models is considered, even in this
case, the correction step is not trivial, as depicted in Fig. 3.

3.2.1 Basic Correction Step

In order to perform the correction step, the Taylor models
T (z0) of the state variables are subsitituted for z in the mea-
surement equation

y(tk+1) =h (z (t) , q (t) , δ (t))
∣∣∣
t=tk+1

=h (T (z0), q (t) , δ (t))
∣∣∣
t=tk+1

.
(14)

The right hand side of this equation represents again a Tay-
lor model. Next, the measurement equation is rewritten ac-
cording to

h (T (z0), q (t) , δ (t)))
∣∣∣
t=tk+1

− y(tk+1) = 0 . (15)

Figure 3. Interval observer based on Taylor
models.

Equation (15) is solved for z0 with an interval Newton
method [7, 10], which leads to a tightened reference domain
z̃0 ⊆ z0. For n > m, equation (15) is underdetermined
and cannot be inverted directly. One solution approach is
to solve the equation (15) only for m variables while the re-
maining n−m variables are considered to be constant inter-
vals. Another possibility is to consider a sufficient number
of previous measurements y(t ≤ tk) and the correspond-
ing Taylor models of the right hand side of equation (14) to
obtain the missing n − m equations.

The components of the vector of the original reference
conditions z0 are replaced by the Taylor model of z̃0 with
z0,i ∈ [−1, 1] as reference domain as mentioned in Sec-
tion 3.1.

If in the prediction step splitting of the reference do-
main has been applied and the predicted set is therefore
represented by several Taylor models first the measure-
ment equation is evaluated for all Taylor models. If for
the interval bound B of the Taylor model resulting from

h̃(T (z0), q(t))
∣∣∣
t=tk+1

B

(
h̃(T (z0), q(t))

∣∣∣
t=tk+1

)
∩

(
y(tk+1)−δ(t)

)∣∣∣
t=tk+1

= ∅
(16)

holds, the corresponding Taylor model is inconsistent with
the measurement and the measurement errors. Therefore, it
is deleted.

This approach can also be used for consideration of time-
varying interval bounded parameters with interval bounded
variation rates, as described in Section 2.1. The upper and
lower bounds of the parameters can be considered as bounds
for a measurement yp(t) ∈ [p, p] for all t. If these parameter

bounds are exceeded during the simulation, i.e. inf(p(t)) <
p or sup(p(t)) > p for any t, they can be limited by the
same approach that is implemented for the correction step
of the observer.

3.2.2 Consistency Tests

To improve the correction step, consistency tests can be per-
formed additionally. The reference domain z0 is split into
subintervals ẑ0 and the measurement equation (5) is rewrit-
ten according to

h̃ (z (t) , q (t))
∣∣∣
t=tk+1

= y(tk+1) − δ(t)
∣∣∣
t=tk+1

. (17)

Next, consistency tests are performed by evaluation of equa-
tion (17) for all Taylor models T (z̃0). Now, three different
cases have to be distinguished:

1. If B

(
h̃ (T (z̃0), q (t))

∣∣∣
t=tk+1

)
⊆

(
yk+1 − δk+1

)
holds, then ẑ0 is consistent.

2. If B

(
h̃ (T (z̃0), q (t))

∣∣∣
t=tk+1

)
∩

(
yk+1 − δk+1

)
= ∅

holds, then ẑ0 is inconsistent and can be deleted.

3. All remaining subintervals z̃0 have to be split further.

The obtained subset of the reference domain consists of sev-
eral subintervals and for each subinterval Taylor models are
obtained. In order to avoid an exponential growth of the
number of Taylor models during simulation time, efficient
merging strategies have to be applied. Subintervals can be
merged in case of small overestimation of the union of the
merged subintervals [16]. Another possibility is to replace
the result by a single interval box which encloses all subin-
tervals. This is a special case of the previously stated merg-
ing routine. In this work, another approach is proposed. The
goal is to enclose the obtained set by a rotated box. The al-
gorithm consists of the following steps:

1. Determine all interval vertices and midpoints .

2. Calculate the balance point c and the covariance matrix
V of the distribution of these points.

3. Determine the eigenvectors of the covariance matrix.

4. The initial enclosure is determined by the balance
point c and the and the eigenvectors of the covariance
matrix V and can be expressed as a Taylor model

T (z0) = c+V z0 with z0,i ∈ [−1; 1], i = 1 . . . , n ,
(18)

where c corresponds to the balance point. V is a matrix
containing the eigenvectors normalized to length 1 and
z0 is the unit interval box.

5. Check whether all subintervals are included in the ini-
tial enclosure. This is done by transforming all subin-
tervals z̃0 to z̃

′
0 by a subtraction of c and multiplication

with V −1, i.e.,

z̃
′
0 = V −1(z̃0 − c) . (19)

If not all z̃
′
0 are contained in the unit interval box

[−1, 1]n, the initial enclosure does not contain all in-
tervals and has to be inflated until all intervals are con-
tained.

6. If all intervals are contained, i.e.,

V −1(z̃0 − c) ⊆ [−1, 1]n for all z̃0 , (20)

a contraction is performed as long as significant further
improvements can be achieved.

7. This enclosure or rotated box can be expressed again
as a Taylor model according to

T̃ (z0) = c + Ṽ z0 with z0,i ∈ [−1; 1], i = 1 . . . , n .
(21)

8. The components z0,i of the vector of the original ini-
tial conditions z0 are replaced with the components of
T̃ (z0) by substituting T̃i(z0) for z0,i which results in a
modified Taylor model T̂ (z0) = T (T̃ (z0)).

If the set of subintervals describing the reference domain
after the consistency test is highly non-convex, it has to be
approximated by several rotated boxes. This will be consid-
ered in future research.

4 SIMULATION RESULTS

In this Section, estimation results for two nonlinear sys-
tems are shown. In the first example, the algorithm with
the basic correction step as described in Section 3.2.1 is
applied. In the second example consistency tests are per-
formed additionally.

4.1 Non-Isothermal Stirred Tank Reactor

Consider a jacketed non-isothermal stirred tank reactor
[4], in which the van der Vusse reaction is taking place. The
reaction kinetics are described by

A
k1→ B

k2→ C and

2A
k3→ D.

(22)

Component A represents the reactant cyclopentadine, B is
the desired product cyclopentenol, component C is the un-
wanted side product cyclopentanediol, and D is dicyclopen-
tadine, the product of the undesirable parallel reaction. The

concentration of the reactant A is given by ca. The concen-
tration of the component B is given by cb. The temperature
in the reactor is denoted by ν, and the jacket temperature
by νK . The system is modeled by a set of four nonlinear
differential equations

ċa = D(ca0 − ca) − k1ca − k3c
2
a ,

ċb = −Dcb + k1ca − k2cb ,

ν̇ = D(ν0 − ν) +
kwAr

ρCpVR
(νK − ν)

− 1
ρCp

(k1caΔHrab + k2cbΔHrbc + k3c
2
aΔHrad) ,

˙νK =
1

mkCpk
(Q̇k + kwAR(ν − νK))

(23)

with ca(0) ∈ [0.25; 0.75]mol/l, cb(0) ∈ [0.25; 0.75]mol/l,
ν(0) ∈ [100; 110]◦C, νK(0) ∈ [100; 110]◦C. The co-
efficients ki, i = {1, 2, 3}, of the reaction kinetics are
temperature-dependent according to

ki(ν) = ki,0e
− Ei

ν+273.15 . (24)

The time-invariant parameter E1 is assumed to be uncertain
with E1 ∈ [−1.01;−0.99] · 9758.3K, while the values of
E2 and E3 are assumed to be known exactly. All nominal
parameter values can be found in [4].

The measurement equation for the temperature in the re-
actor is given by

y(tk+1) = ν(t)
∣∣∣
t=tk+1

+ δ(t)
∣∣∣
t=tk+1

. (25)

The measurement uncertainty δ(t) is assumed to be
[−1; 1]◦C for all t and it is further assumed that measure-
ments are available every 0.01h. The measured values have
been generated by a verified simulation of the system model
with nominal values of the initial state vector and parameter
E1. A uniformly distributed noise, which was bounded by
δ(t) ∈ [−1; 1], was added to the resulting values for ν(t).
The simulation results for three different orders of the Tay-
lor models and three different numbers of subintervals are
shown. For all three simulations QR preconditioning has
been chosen. In Figs. 4 (a) – 4 (c) the estimation results
for ca, vk, and E1 are compared. In Figs. 4 (a) and 4 (b)
the result of a simulation without inclusion of measurement
information is also included for comparison. Despite large
uncertainties in the initial conditions of the state variables
ca,vk, and also the uncertain parameter E1, the intervals are
tightened significantly already after a few time-steps. It can
be seen that ca is very sensitive with respect to E1 as it tight-
ens significantly as soon as a large range of E1 is excluded
by the interval observer. The most conservative results stem
from the simulation of order 3 in time and in the initial state

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

3

t in h

c a in
 m

ol
/l

Simulation, order 6, 1 interval, 437 sec
Estimation, order 3, 6 intervals, 195 sec
Estimation, order 6, 1 interval, 479 sec
Estimation, order 4, 4 intervals, 248 sec

(a) Time-dependent concentration ca.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
95

100

105

110

115

t in h

ν k in
 °

C

(b) Time-dependent temperature νK .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−9900

−9850

−9800

−9750

−9700

−9650

t in h

E
1

(c) Estimation of the uncertain time-invariant parameter E1.

Figure 4. Estimation results.

vector and with 6 subintervals. Increasing to the order 6
without interval splitting improves the results, but the com-
putating time is more than two times longer. The tightest
results have been achieved for order 4 with 4 subintervals,
where the computing time was between the previous two.
The results show that only increasing the order does not al-
ways lead to the tightest enclosures. A combination with
interval splitting is more efficient concerning both simula-
tion quality and computation time.

4.2 Isothermal Stirred Tank Reactor

An isothermal gas-phase reactor [1] is charged with an
initial amount of gaseous reactands A and B, in which both
substances react according to the reversible reaction kinet-
ics

2A � B . (26)

The system model which considers the partial pressures z1

of component A and z2 of component B is given by

ż1(t) = −2k1z
2
1 + 2k2z2

ż2(t) = k1z
2
1 − k2z2

(27)

with z1(0) ∈ [0; 5] bar and z2(0) ∈ [0.5; 1.5] bar.The total
pressure can be measured. The measurement equation is
given by

y(tk+1) = z1(t)
∣∣∣
t=tk+1

+ z2(t)
∣∣∣
t=tk+1

+ δ(t)
∣∣∣
t=tk+1

.

(28)
The additive measurement uncertainty is given by δ ∈
[−0.1; 0.1] bar for all t. A fixed step-size T = 2.5 s
was used. It is assumed that only a single measurement at
t = 200 s is available.

Three different simulations have been performed. One
without consistency tests in the correction step (case A),
one with consistency tests and replacement of the resulting
subintervals of the reference domain by a single interval box
(case B), and one by replacement of the resulting subinter-
vals by a rotated box (case C). The order of the Taylor mod-
els in time and in the initial state vector was 5 in all simula-
tions. Additionally, QR-preconditioning has been applied.
Fig. 5(a) shows the remaining subintervals of the reference
domain after the consistency test together with the interval
vertices, midpoints, and the balance point. Fig. 5(b) depicts
the corresponding initial enclosure and Fig. 5(c) the final
enclosure, which is used as a new reference domain replac-
ing the original reference domain z0 by the corresponding
Taylor model of the rotated box. The simulation that em-
ploys only the basic correction step (case A) leads to the
most conservative enclosures. The results with consistency
test and replacement of the remaining boxes by one inter-
val box (case B) are slightly tighter. For the enclosure of
z2, significant improvement is achieved if the rotated box

(a) Result of the consistency tests.

(b) Initial enclosure.

(c) Final enclosure.

Figure 5. Inclusion by rotated box.

is used as an approximation of the remaining interval boxes
(case C).

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

t in s

z 1 in
 b

ar

Case A
Case B
Case C

Figure 6. Time-dependent enclosures of z1.

0 200 400 600 800 1000
0.5

1

1.5

2

2.5

3

t in s

z 2 in
 b

ar

Case A
Case B
Case C

Figure 7. Time-dependent enclosures of z2.

5 CONCLUSIONS

In this paper, an interval observer based on Taylor mod-
els for guaranteed state and parameter estimation for nonlin-
ear uncertain continuous-time systems has been presented.
The interval observer calculates those regions of the ex-
tended state vector, which consist of the system state vari-
ables and the uncertain parameters, that are consistent with
the system model, the measurement model, the measure-
ments, and all uncertainties. Two applications have been
discussed in order to illustrate the performance of the al-
gorithm. It has been shown how an efficient correction
step can be implemented, when the sets are described by
one or several Taylor models. Further research will con-
centrate on the optimization of the correction step, merging
and reapproximation routines, and a comparison of interval
observers based on other verified ODE solvers, e.g. VN-
ODE, VALENCIA-IVP [2], or VSPODE [12]. Concerning

the last point, it is expected that the performance of each in-
terval observer strongly depends on the considered system.

Acknowledgements

The authors would like to thank Martin Berz and Kyoko
Makino for making the COSY VI integrator available.

References

[1] T. Alamo, J. Bravo, and E. F. Camacho. Guaranteed State
Estimation by Zonotopes. In Proc. of the 42nd IEEE Confer-
ence on Decision and Control, Maui, Hawai USA, Decem-
ber 2003, pp. 5831–5836.

[2] E. Auer, A. Rauh, E. P. Hofer, and W. Luther. Validated
Modeling of Mechanical Systems with SMARTMOBILE:
Improvement of Performance by VALENCIA-IVP. Proc. of
Dagstuhl Seminar 06021: Reliable Implementation of Real
Number Algorithms: Theory and Practice, Lecture Notes in
Computer Science, 2006,(in print).

[3] M. Berz and K. Makino. Verified Integration of ODEs and
Flows Using Differential Algebraic Methods on High-Order
Taylor Models. Reliable Computing, 4:361–369, 1998.

[4] S. Engell. Entwurf nichtlinearer Regelungen. Oldenbourg
Verlag, Munich, Germany, 1995 (in German).

[5] J. L. Gouze, A. Rapaport, and Z. M. Hadj-Sadok. Robust-
ness analysis of flatness based tracking controllers using in-
terval methods. Int. J. Control,2000, 133:45-56.

[6] L. Jaulin. Nonlinear Bounded-Error State Estimation of
Continuous-Time Systems. Automatica, 38:1079–1082,
2002.

[7] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Inter-
val Analysis. Springer-Verlag, London, Great Britain, 2001.

[8] M. Kieffer, L. Jaulin, and E. Walter. Guaranteed Recursive
Nonlinear State Bounding Using Interval Analysis. Interna-
tional Journal of Adaptative Control and Signal Processing,
6(3):193–218, 2002.

[9] M. Kieffer and E. Walter. Nonlinear Parameter and State Es-
timation for Cooperative Systems in a Bounded-Error Con-
text. Proc. International Dagstuhl Seminar: Software with
Result Verification. Revised Papers edited by R. Alt, A.
Frommer, R.B. Kearfott, W. Luther, Springer, Lecture Notes
in Computer Science 2991, 2004, pp. 107-123.

[10] M. Kletting, A. Rauh, H. Aschemann, and E. P. Hofer. Con-
sistency Techniques for Simulation of Wastewater Treat-
ment Processes with Uncertainties. In DVD Proc. of IFAC
World Congress 2005, Prague, Czech Republic, 2005.

[11] M. Kletting, A. Rauh, H. Aschemann, and E. P. Hofer. Inter-
val Observer Design for Nonlinear Systems with Uncertain
Time-Varying Parameters. In Proc. of 12th IEEE Intl. Con-
ference on Methods and Models in Automation and Robotics
MMAR, pages 361–366, Miedzyzdroje, Poland, 2006.

[12] Y. Lin and M. A. Stadtherr. Deterministic Global Op-
timization for Dynamic Systems Using Interval Analysis.
12th GAMM-IMACS International Symposium on Scien-
tific Computing, Computer Arithmetic, and Validated Nu-
merics SCAN 2006, Duisburg, Germany, Book of abstracts,
p. 74, 2006.

[13] K. Makino and M. Berz. Suppression of the Wrapping Effect
by Taylor Model-Based Verified Integrators: Long-Term
Stabilization by Preconditioning. International Journal of
Differential Equations and Applications (2006, in print).

[14] K. Makino and M. Berz. Suppression of the Wrapping Effect
by Taylor Model-Based Verified Integrators: Long-Term
Stabilization by Shrink Wrapping. International Journal of
Differential Equations and Applications (2006, in print).

[15] T. Raissi, N. Ramdani, and Y. Candau. Set Membership
State and Parameter Estimation for Systems Described by
Nonlinear Differential Equations. Automatica 40 (2004)
1771-1777.

[16] A. Rauh, M. Kletting, H. Aschemann, and E. P. Hofer. Re-
duction of Overestimation in Interval Arithmetic Simulation
of Biological Wastewater Treatment Processes. Journal of
Computational and Applied Mathematics, 199(2):207–212,
2007.

Strong Unboundedness of Interval Linear Programming Problems

Jana Konı́čková
Czech Technical University in Prague

Faculty of Civil Engineering
Department of Mathematics

Thákurova 7, 166 29 Praha 6, Czech Republic
konicko@fsv.cvut.cz

Abstract

A linear programming problem whose coefficients are
prescribed by intervals is called strongly unbounded if each
linear programming problem obtained by fixing coefficients
in these intervals is unbounded. In the main result of this
paper a necessary and sufficient condition for strong un-
boundedness of an interval linear programming problem is
described. In order to have a full picture we also show con-
ditions for strong feasibility and strong solvability of this
problem. The necessary and sufficient conditions for strong
feasibility, strong solvability and strong unboundedness can
be verified by checking the appropriate properties by the
finite algorithms. Checking strong feasibility and check-
ing strong solvability are NP-hard. We show that checking
strong unboundedness is NP-hard as well.

1. Introduction

We study an interval linear programming (ILP) problem

max{cT x;Ax = b, x ≥ 0}, (1)

A ∈ AI , b ∈ bI , c ∈ cI , (2)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, AI is an interval

matrix, bI and cI are interval vectors. The interval matrix

AI is defined by

AI = {A;A ≤ A ≤ A} = [A,A] = [Ǎ − Δ, Ǎ + Δ],

where Ǎ = (A + A)/2 is the center matrix of AI , Δ =
(A − A)/2 is the radius matrix of AI .

The interval vectors bI , cI are defined analogously:

bI = {b; b ≤ b ≤ b} = [b, b] = [b̌ − δ, b̌ + δ],
cI = {c; c ≤ c ≤ c} = [c, c] = [č − γ, č + γ].

A system AIx = bI is called strongly feasible if each

system Ax = b with data satisfying A ∈ AI , b ∈ bI has

a nonnegative solution. The ILP problem is called strongly
feasible if system AIx = bI is strongly feasible. The ILP

problem is called strongly solvable if each problem (1) with

data satisfying (2) has an optimal solution. The ILP prob-

lem is called strongly unbounded if each problem (1) with

data satisfying (2) is unbounded.

The necessary and sufficient conditions for strong feasi-

bility and strong solvability of the ILP problem are given

by Rohn ([2], [5]). These problems are NP-hard (proved by

Rohn [2], [6]). These results are mentioned in Section 2.

In this paper a necessary and sufficient condition for

strong unboundedness of the ILP problem is given (The-

orem 13). We show that checking strong unboundedness

is NP-hard (Theorem 17). In Section 3 several results on

weak solvability of interval linear inequalities are presented,

which we use in the proof of Theorem 13.

We define

Ym = {y ∈ IRm; yj ∈ {−1, 1} for each j},
i.e., Ym is the set of all ±1 vectors in IRm. Obviously, the

cardinality of Ym is 2m. For each y ∈ Ym we denote

Ty = diag(y1, . . . , ym) =

⎛
⎜⎜⎜⎝

y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...

0 0 . . . ym

⎞
⎟⎟⎟⎠ .

For each x ∈ IRm we define its sign vector sgn x by

(sgn x)i =
{ −1 if xi < 0,

1 if xi ≥ 0,

(i = 1, . . . ,m); obviously, sgn x ∈ Ym. For the sign vector

z = sgn x the relation |x| = Tzx holds. For each y ∈ Ym

we define

Ay = Ǎ − TyΔ,

by = b̌ + Tyδ.

The definition implies that

(Ay)ij =

{
Aij if yi = −1,

Aij if yi = 1,

(by)ij =

{
bi if yi = −1,

bi if yi = 1,

(i = 1, . . . ,m, j = 1, . . . , n).
The subsystem Ayx = by is called extremal subsystem.

Then the i-th equation of this subsystem has either the form

(Ax)i = bi (if yi = −1), or the form (Ax)i = bi (if

yi = 1). Extremal subsystems Ayx = by are used in finite

characterizations of strong feasibility and strong unbound-

edness.

2. Strong feasibility, strong solvability of the
ILP problem

In this section we show the necessary and sufficient con-

ditions for strong feasibility and strong solvability of the

ILP problem, and complexity results for these problems,

which are proved by Rohn. In the strong feasibility con-

dition the extremal subsystems are used.

Theorem 1 (Rohn [2], [5]) A system AIx = bI is strongly
feasible if and only if for each y ∈ Ym the system

Ayx = by

has a nonnegative solution.

Theorem 2 (Rohn [5]) The ILP problem (1), (2) is strongly
solvable if and only if the following conditions are satisfied:

1. The ILP problem is strongly feasible.

2. The problem max{cT x;Ax ≤ b, Ax ≥ b, x ≥ 0} has
an optimal solution.

Theorem 3 (Rohn [2], [6]) Checking strong feasibility of
interval linear equations is NP-hard.

Theorem 4 (Rohn [2], [6]) Checking strong solvability of
an interval linear programming problem is NP-hard.

3. Strong unboundedness of the ILP problem

In the proof of the main result we use the duality theory

(see Dantzig [1], Vanderbei [7]). The dual problem of the

primal ILP problem (1), (2) is

min{bT p; AT p ≥ c}, (3)

A ∈ AI , b ∈ bI , c ∈ cI . (4)

The dual problem (3) is called feasible if AT p ≥ c has a so-

lution. A system (AI)T p ≥ cI is called strongly unsolvable
if there is no A ∈ AI , c ∈ cI such that the system AT p ≥ c
has a solution. The dual problem (3), (4) is called strongly
infeasible if the system (AI)T p ≥ cI is strongly unsolvable.

A vector p ∈ IRm is called a weak solution of a system

of interval linear inequalities (AI)T p ≥ cI if it satisfies

AT p ≥ c for some A ∈ AI , c ∈ cI . A system (AI)T p ≥
cI is called weakly solvable if some system AT p ≥ c, A ∈
AI , c ∈ cI is solvable (i.e., if there exists a weak solution of

a system (AI)T p ≥ cI). Gerlach [3] proved the following

characterization of weak solution of AIx ≤ bI .

Theorem 5 (Gerlach 1981 [3], [2]) A vector x is a weak
solution of AIx ≤ bI if and only if it satisfies

Ǎx − Δ|x| ≤ b. (5)

The following theorem is an analogue of the Gerlach theo-

rem for the case of reverse inequality.

Theorem 6 A vector p is a weak solution of (AI)T p ≥ cI

if and only if it satisfies

ǍT p + ΔT |p| ≥ c. (6)

PROOF. If p solves AT p ≥ c for some A ∈ AI , c ∈ cI ,

then

c ≤ c ≤ AT p = (Ǎ + (A − Ǎ))T p =
= ǍT p + (A − Ǎ)T p ≤ ǍT p + |A − Ǎ|T |p| ≤
≤ ǍT p + ΔT |p|, (7)

which is (6). Conversely, let (6) hold for some vector p. We

denote z = sgn p, then Tzp = |p| and substituting it into (6)

we get

ǍT p + ΔT |p| = ǍT p + ΔT Tzp = (ǍT + ΔT Tz)p =
= (Ǎ + TzΔ)T p ≥ c. (8)

Obviously, (Ǎ + TzΔ) ∈ AI , c ∈ cI , hence p is a weak

solution of (AI)T p ≥ cI . �

Weak solvability of a system AIx ≤ bI was character-

ized by Rohn, this result is based on the Gerlach theorem.

Theorem 7 (Rohn [2]) A system AIx ≤ bI is weakly solv-
able if and only if the system

(Ǎ − ΔTz)x ≤ b (9)

is solvable for some z ∈ Yn.

For a system with reverse inequality we have a similar

condition.

Theorem 8 A system (AI)T p ≥ cI is weakly solvable if
and only if the system

AT
y p ≥ c (10)

is solvable for some y ∈ Ym (Ay = Ǎ − TyΔ).

PROOF. Let the system (AI)T p ≥ cI be weakly solvable.

Then there exists a vector p ∈ IRm which is a solution of

the system AT p ≥ c for some A ∈ AI , c ∈ cI , then vector

p is a weak solution. Denote z = sgn p, then |p| = Tzp.

According to Theorem 6, and (8) in its proof, the inequality

(Ǎ + TzΔ)T p ≥ c holds. We denote y = −z, obviously

Tz = −T−z , hence

(Ǎ + TzΔ)T p = (Ǎ − T−zΔ)T p =
= (Ǎ − TyΔ)T p ≥ c, (11)

which is (10). Conversely, if p satisfies AT
y p ≥ c for some

y ∈ Ym, then it is a weak solution of (AI)T p ≥ cI and this

system is weakly solvable. �

As we have seen in the proof of Theorem 8, the weak

solvability condition can be formulated in the following

form.

Theorem 9 A system (AI)T p ≥ cI is weakly solvable if
and only if the system

(Ǎ + TyΔ)T p ≥ c (12)

is solvable for some y ∈ Ym.

The following remark is the consequence of the proof of

Theorem 8.

Remark 10 If p is a weak solution of the system (AI)T p ≥
cI , then it satisfies (Ǎ + TyΔ)T p ≥ c for y = sgn p, and
(Ǎ − TyΔ)T p ≥ c for y = − sgn p.

For the proof of the main result we need the negated form

of Theorem 8.

Theorem 11 A system (AI)T p ≥ cI is strongly unsolvable
if and only if there is no y ∈ Ym such that the system

AT
y p ≥ c (13)

is solvable.

The main result of this paper, the strong unboundedness

condition, is the consequence of the following theorem.

Theorem 12 Let the ILP problem (1), (2) be strongly feasi-
ble. Then the following assertions are equivalent.

1. For each A ∈ AI , b ∈ bI , c ∈ cI the problem
max{cT x;Ax = b, x ≥ 0} is unbounded.

2. There is no A ∈ AI , c ∈ cI such that the system
AT p ≥ c has a solution.

3. There is no y ∈ Ym such that the system AT
y p ≥ c has

a solution.

4. For each y ∈ Ym the problem max{cT x;Ayx =
by, x ≥ 0} is unbounded.

PROOF. We use the duality theory for the primal prob-

lem max{cT x;Ax = b, x ≥ 0} and the dual problem

min{bT p; AT p ≥ c}. The unboundedness of the primal

problem implies the infeasibility of the dual problem. If the

dual problem is infeasible, then the primal problem is either

unbounded or infeasible. Under assumption of strong feasi-

bility of the primal ILP problem we obtain the equivalence

of assertions 1 and 2 and also equivalence of assertions 3

and 4. The equivalence of assertions 2 and 3 holds accord-

ing to Theorem 11. �

The equivalence of assertions 1 and 4 in Theorem 12

holds without the assumption of strong feasibility, conse-

quently we get the main result:

Theorem 13 The ILP problem (1), (2) is strongly un-
bounded if and only if for each y ∈ Ym the problem

max{cT x;Ayx = by, x ≥ 0} (14)

is unbounded.

PROOF. If the ILP problem is strongly unbounded, then it is

strongly feasible and according to Theorem 12, its assertion

4 holds. Conversely, if condition 4 of Theorem 12 holds,

then from the strong feasibility condition in Theorem 1 it

follows that the ILP problem is strongly feasible. Hence the

ILP problem is strongly unbounded. �

If we apply Theorem 13 to the interval linear program-

ming problem max{∑n
i=1 xi;Ax = b, x ≥ 0}, A ∈

AI , b ∈ bI , we get the following condition for the sets of

feasible solutions, given by Mráz [4]. We denote X(A, b) =
{x;Ax = b, x ≥ 0}.

Theorem 14 (Mráz [4]) The set X(A, b) is unbounded for
each A ∈ AI , b ∈ bI if and only if the set X(Ay, by) is
unbounded for each y ∈ Y .

4. Complexity result

In this section we show the complexity result for check-

ing strong unboundedness of the ILP problem. In the proof

of this result we use the complexity result for interval linear

inequalities, which was proved by Rohn.

Theorem 15 (Rohn [2]) Checking weak solvability of in-
terval linear inequalities is NP-hard.

Consequently, the problem of checking whether the sys-

tem of interval linear inequalities

(AI)T p ≥ cI

has at least one solution is NP-hard.

We need the negated form of Theorem 15.

Theorem 16 The problem of checking whether there is no
A ∈ AI , c ∈ cI such that the system of linear inequal-
ities AT p ≥ c has a solution (strong unsolvability) is
NP-hard.

Finally, we have the following complexity result.

Theorem 17 Checking strong unboundedness of an inter-
val linear programming problem is NP-hard.

PROOF. When the NP-hard problem of checking strong un-

solvability of interval linear inequalities can be reduced

in polynomial time to the problem of checking strong un-

boundedness of the ILP problem, then the second problem

is NP-hard as well.

Consider the interval linear programming problem

min{0T p; AT p ≥ c}, (15)

A ∈ AI , c ∈ cI . (16)

Checking strong infeasibility of this problem is NP-hard

(see Theorem 16 and the definition of strong infeasibility

of the dual ILP problem (3), (4)). The problem (15), (16) is

the dual problem for the primal interval linear programming

problem

max{cT x;Ax = 0, x ≥ 0}, (17)

A ∈ AI , c ∈ cI . (18)

For each A ∈ AI , c ∈ cI the primal problem (17), (18)

has the solution x = 0, hence this ILP problem is strongly

feasible. Consequently, according to the duality theory,

the primal problem (17), (18) is strongly unbounded if and

only if the dual problem (15), (16) is strongly infeasible.

Hence checking strong unboundedness of the ILP problem

is NP-hard. �

5. Conclusion

Characterization of strong unboundedness and the com-

plexity result for this problem complete the results on basic

properties of an ILP problem, which are the characterization

of strong feasibility, characterization of strong solvability,

and the complexity results for these problems. The neces-

sary and sufficient conditions for strong feasibility, strong

solvability and strong unboundedness can be verified by

the finite algorithms, these problems are NP-hard. Hence,

unless the famous conjecture P �= NP is false, there does

not exist a necessary and sufficient condition for checking

respective property which could be verified in polynomial

time.

Acknowledgement

This work was supported by the research project MSM

6840770001.

References

[1] G. B. Dantzig. Linear Programming and Extensions. Prince-

ton University Press, Princeton, 1963.
[2] M. Fiedler, J. Nedoma, J. Ramı́k, J. Rohn, and K. Zimmer-

mann. Linear Optimization Problems with Inexact Data.

Springer, New York, 2006.
[3] W. Gerlach. Zur Lösung linearer Ungleichungssysteme bei

Störung der rechten Seite und der Koeffizientenmatrix. Math.
Operationsforsch. Statist. Ser. Optim., 12:41–43, 1981.

[4] F. Mráz. Nonnegative solutions of interval linear systems.

In L. Atanassova and J. Herzberger, editors, Computer Arith-
metics and Enclosure Methods, pages 299–308. Elsevier Sci-

ence Publishers B. V. (North-Holland), 1992.
[5] J. Rohn. Strong solvability of interval linear programming

problems. Computing, 26:79–82, 1981.
[6] J. Rohn. Linear programming with inexact data is NP-hard.

Zeitschrift für angewandte Mathematik und Mechanik, 78,

Supplement 3:S1051–S1052, 1998.
[7] R. J. Vanderbei. Linear Programming: Foundations and Ex-

tensions. Kluwer Academic Publishers, Boston, 1996.

intpakX - An Interval Arithmetic Package for Maple

Walter Krämer
University of Wuppertal

Scientific Computing / Software Engineering
42119 Wuppertal, Germany

kraemer@math.uni-wuppertal.de

Abstract

intpakX is a Maple package for (multiple pre-
cision) interval arithmetic. It contains data types,
basic arithmetic and standard functions for real
interval arithmetic and complex disc arithmetic.
Moreover, it implements a handful of algorithms
for validated numerical computing and graphical
output functions for the visualization of results.
The package intpakX thus gives the user the op-
portunity to do validated computing with a Com-
puter Algebra System.

The package may be used to solve (set valued)
numerical problems in a computer algebra envi-
ronment with mathematical rigor. But it is also a
valuable didactical tool which allows the illustra-
tion of various interval methods/algorithms.

The latest version of intpakX offers the possi-
bility to compute and to visualize the exact solu-
tion set of two and three dimensional linear inter-
val systems [3]. This new feature will be discussed
in some detail.

1. Introduction

The first very basic intpak version was cre-
ated in 1993 by R. Corless and A. Connell [2] as an
effort to incorporate real intervals into Maple. In
1999, the extension intpakX was released by I.
Geulig and W. Krämer [4] incorporating a range of
applications, several visualization tools, and an ad-
ditional part for complex (interval) numbers. Re-
lease intpakX v1.0 is a completely redesigned
package, combining the formerly separate pack-
ages in one new version [5]. It has been released
by Waterloo Maple as Maple PowerTool Interval
Arithmetic [1]. Meanwhile, a further extension is
available [3]. It allows the user to visualize exact

solution sets of linear systems of equations with in-
terval coefficients in two and in three dimensions.

The most important feature of the package is
the introduction of new (multiple precision) data
types into Maple for real intervals and complex
disc intervals. A range of operators and applica-
tions for these data types (see below) have been im-
plemented (with separate names), so that the new
interval types do not rely on the (rough) standard
Maple notion of an interval. Also rounding is done
separately to provide the correct rounding mode as
needed in interval computation. So, intpakX in-
tervals can be used safely with the implemented
operators.

The graphical functions included in intpakX
make it more convenient to use Maple graphics for
interval computations. They use Maple graphics
features to offer special output for the visualiza-
tion of the intervals resulting from the concerned
intpakX functions.

As mentioned above, intpakX defines Maple
types for real intervals and complex disc intervals.

On the level of basic operations, intpakX
includes the four basic arithmetic operators, in-
cluding extended interval division as an extra
function. Furthermore there are power, square,
square root, logarithm and exponential functions
(note that square is implemented separately from
general multiplication as needed for intervals), a
set of standard functions and union and intersec-
tion. Reimplementations of the Maple construc-
tion, conversion and unapplication functions are
added.

As applications, Verified Computation of Zeros
(Interval Newton Method) with the possibility to
find all zeros of a function on a specified interval,
and Range Enclosure for real-valued functions of
one or two variables are implemented, the latter us-
ing either interval evaluation or evaluation via the
mean value form and adaptive subdivision of inter-

vals. The user can choose between a non-graphical
and a graphical version of the above algorithms
displaying the resulting intervals of each iteration
step.

Additionally, there is a range of operators for
complex disc arithmetic. Besides the basic arith-
metic operators, there are area-optimal multiplica-
tion and division as an alternative to carry out these
operations. As a further function, the complex ex-
ponential function has been implemented. Range
enclosure for complex polynomials serves as an
application for complex interval arithmetic.

The latest version of intpakX also offers the
possibility to compute and to visualize the exact
solution set of two and three dimensional linear
interval systems. This extension of intpakX is
the outcome of a Bachelor-Thesis written by Sven
Braun [3].

The package intpakX is freely available
on the web [16]. To get the source code
of the Braun-package [3], write a mail to
kraemer@math.uni-wuppertal.de.
How to install intpakX and how to use
this Maple Power Tool in your own work-
sheets is described in the source files,
which are publicly available on the web (see
http://www.math.uni-wuppertal.de/
˜xsc/software/intpakX/). From this link
you get the most recent version of inpakX (the
version presented by Maplesoft may an older
version). In addition, the preprint Introduction
to the Maple Power Tool intpakX, available
on the web [7]. Its intention is to be a primer to
intpakX.

Please note: intpakX assumes that the basic
operations provided by Maple are accurate to at
least one unit in the last place (ulp) with respect to
the actual value of Maple’s environment variable
Digits (number of decimal digits Mapel uses to
represent software floating-point numbers). If so, it
is guaranteed that intpakX computes enclosures
for ranges of expressions build from these basic op-
erations. Up to now, a violation of the assumption
is not known by the authors of intpakX.

A similar statement (1 ulp accuracy) about the
accuracy of Maple functions like exp, log, sin,
Bessel, etc., is probably not correct. Therefore
intpakX uses several guard digits in its compu-
tations. Nevertheless computation of expressions
involving such functions can not be guaranteed to
enclose the true range! Despite this limitation, we
are convinced that intpakX is a valuable didac-
tical tool to illustrate interval algorithms/methods.
As soon as error bounds for Maple funcions will be

available, intpakX will use the bounds to com-
pute guaranteed enclosures.

Some critical remarks on the reliability of the
computer algebra system Maple may be found in
[8]. Examine the state of the art in automating
mathematics critically. Current programs (Maple,
Mathematica and so on) (may) have many flaws
and shortcomings. Don’t rely blindly on the out-
comes of nontrivial mathematical software. The
validity of intpakX results depends strongly on
the correctness of the outcome of Maple com-
mands. For example, the Interval Newton Method
provided by intpakX depends on the correctness
of Maple’s differentiation facility when creating
the derivative of the function under consideration.
In the following example the mathematically cor-
rect value of the first derivative of the continuously
differentiable function f(x) at the point x = 0 is
1/2 but Maple computes the erroneous value 0:

>f:=proc(x)
if x=0 then 1
else (exp(x) - 1)/x
end if

end proc:
D(f)(0); #first derivative at 0

0

We refer once more to [8].
Two applications using intpakX will be dis-

cussed in the following sections. The source
code segments presented below should be self-
explanatory to a large extend. End-of-line-
comments start with #, and > indicates a Maple
input line. To become deeper acquainted with
intpakX’s commands, please consult [7].

2. Using intpakX to compute orbits of
a chaotic dynamical system

In this section, we will demonstrate a simple but
powerful application of intpakX to discrete dy-
namic systems (see also [9]).

The computation of an orbit of a dynamic sys-
tem is known to be highly unstable if the sys-
tem exhibits chaotic behavior. In this case, even
for the very simplest systems, ordinary floating-
point computations will eventually deliver results
which are completely wrong quantitatively, when
compared with the true trajectory on which the
computation began. Similarly, ordinary interval
arithmetic (i.e. intervals of floating-point numbers)
yields poor enclosures after few iterations. In
most cases the computation breaks down because
of overflow. Using intpakX’s multiple precision

intervals, we can compute enclosures of orbits for
a considerably longer time with high accuracy.

Consider the simple dynamic system as given
by the logistic equation:

xn+1 = a · xn · (1 − xn) , n ≥ 0 (1)

for some a ∈ [0, 4] and x0 ∈ (0, 1).
On the computer, we can compute this iteration

with (i) ordinary floating-point arithmetic, (ii) ordi-
nary interval arithmetic, or (iii) multiple precision
interval arithmetic. However, for the cases (ii) and
(iii) it would be better to first rewrite the right hand
side of (1) such that it is better suited for the appli-
cation of interval arithmetic: For narrow intervals
it is well known in interval analysis that a tighter
interval enclosure can be obtained by using a mean
value form instead of an interval evaluation of the
originally given expression.

The ordinary interval evaluation of a function
f(x) over an interval X , denoted as f(X), is ob-
tained via replacing all occurrences of x in f by the
interval X and via replacing all operations by the
corresponding interval operations. The mean value
form is defined by fm(X) := f(y)+f ′(X)(X−y)
with some fixed value y ∈ X , e.g., the midpoint.
Thus, in the cases (ii) and (iii) we may replace the
right hand side of (1) by its mean value form, i.e. ,
by

Xn+1 = a · (yn(1 − yn) + (1 − 2Xn) · (Xn − yn))
with yn ≈ mid(Xn) = midpoint of Xn,

(2)
where Xn is an interval in case (ii) and a multiple

precision interval in case (iii). Rewriting (1) as (2)
does not improve the quality of ordinary floating-
point computation, which is still executed using
(1).

The following Maple source code uses
intpakX package to compute orbits for this
equation. The results show the approximations
xn obtained by ordinary point evaluations of (1)
and the enclosures Xn as obtained by multiple
precision interval arithmetic using (1), and (2).

Repeat the computation of x500 using a 10, 15,
20, ... decimal digits arithmetic. The resulting ap-
proximations to x500 are all very different. Proba-
bly no one is close to the true (mathematical) value.
The iteration exhibits chaotic behaviour. What is
the true value of x500?

>restart;
>for k from 10 by 5 to 90 do
> Digits:= k;
> nmax:= 500;
> a:= 3.75;
> x:= 0.5;
> for n from 1 to nmax do
> x:= a x (1 - x);
> od;

> Digits:= 10;
> print(k, 1.0 x); #10 leading digits
>od;

10, 0.9301133984
15, 0.8270007028
20, 0.8160192991
25, 0.8788721414
30, 0.8767493458
35, 0.9316056390
40, 0.4593190043
45, 0.6394313121
50, 0.5435332961
55, 0.3102681501
60, 0.7008367401
65, 0.6438360607
70, 0.2379718249
75, 0.8715584686
80, 0.3517828121
85, 0.2767537630
90, 0.2767538774

Simple idea: all iterates are rational numbers.
Why not using Maple’s rational number arith-
metic? Let us try:

>nmax:= 15;
> 15
>a:= --;
> 4
> 1
>x:= -;
> 2
>for n from 1 to nmax do
> st:= time();
> x:= a x (1 - x);
> nodd:= ceil(log10(op(1, x)))
> + ceil(log10(op(2, x)));
> if n < 5 then
> print();
> print(n, x, nodd, time() - st);
> fi;
> if n = 6 then print() fi;
> if nmax - n < 5 then
> print(n, nodd, time() - st) fi;
>od;

nmax := 15
15

a := --
4
1

x := -
2

15
1, --, 4, 0.008

16

225
2, ----, 7, 0.

1024

2696625
3, -------, 14, 0.008

4194304

60580179500625
4, --------------, 28, 0.004

70368744177664

11, 3698, 0.192
12, 7398, 0.748
13, 14796, 1.180
14, 29592, 3.853
15, 59184, 15.733

Numerators and denominators become very
soon very large integers. To represent x15 59184
decimal digits are necessary! Also, the comput-
ing time increases dramatically. It takes already
15 seconds to get x15. This leads to the conclusion
that using Maple it is not possible to compute more
than say the first 20 iterates. It is far out of reach to
compute (the rational number) x500.

Now let us try to make use of the intpakX
package. It provides a multiple precision interval
arithmetic. Operator symbols denoting the interval
operations are &+, &−, &∗, and &/ (Maple does
not allow operator overloading for the basic arith-
metical operators).

>libname:=
>"/home/kraemer/intpakX/lib", libname
libname := "/home/kraemer/intpakX/lib",

"/home/kraemer/maple10/lib"
>with(intpakX): #use the package
>nmax:= 500; #enclose x_500
>Digits:= nmax; #use 500 digits
>a:= construct(3.75); #degenerate interval
>x:= construct(0.5); #degenerate interval
>st:= time(); #start timer
>for n from 1 to nmax do
> x := (a &* x) &* 1 &- x; #interval
>od; #expression
>time() - st; #time used
>Digits := 10;
>1.0 &* x; #print a ten-digit enclosure

nmax := 500
Digits := 500

a := [3.75, 3.75]
x := [0.5, 0.5]

0.356
[0.2767538773, 0.2767538775]

We see a very satisfactory result. Using a
500 digits multiple precision interval arithmetic
intpakX shows within one third of a second that
x500 ∈ [0.2767538773, 0.2767538775]. Probably
less digits would be enough (try to find the minimal
number!).

As already pointed out: Using a Mean-Value-
Form for the iteration function reduces the number
of digits needed to get an accurate enclosure pretty
much:

#Create Mean-Value-Form
> f:= (x,y)-> a*(y*(1-y)+(1-2*x)*(x-y));
#Create corresponding interval expr.
>F:= inapply(f(x), x):
f := proc (x, y)

options operator, arrow;
a*(y*(1-y)+(1-2*x)*(x-y))

end proc
>nmax:= 500; #comupte x_500
>Digits:= 90;
>a:= construct(3.75); #degenerat interval

>x:= construct(0.5);
>for n from 1 to nmax do
> y:= midpoint(x);
> x:= F(x,y); #use Mean-Value-Form
>od;
>Digits:= 10;
>1.0 &* x; #ten-digit enclosure

nmax := 500
Digits := 90

a := [3.75, 3.75]
x := [.5, .5]

[.2767538753, .2767538798]

Using the Mean-Value-Form an 80 digits in-
terval arithmetic leads to the enclosure x500 ∈
[.2767538753, .2767538798].

Multiple precision interval computations allow
to verify (long) orbits of the dynamical system
whereas results computed by point computations
may be totally incorrect.

3. Compute and visualize solution sets
of systems of linear interval equa-
tions

In this section we denote by I IR, I IRn, and
IIRm×n the sets of real intervals, of interval vec-
tors with n components, and interval matrices with
m rows and n columns, respectively.
To solve the interval linear system of equations

Ax = b ,

with A = [A, A] ∈ IIRn×n being an interval ma-
trix and b = [b, b] ∈ IIRn being an interval vector,
means to compute the solution set

Σ(A, b) :=

{x ∈ IRn|Ȧx = ḃ for some real Ȧ ∈ A, ḃ ∈ b}. (3)

For regular interval matrices A it holds

Σ(A, b) = {Ȧ−1ḃ ∈ IRn|Ȧ ∈ A, ḃ ∈ b}.

If A is not regular, the solution set may be empty
or unbounded.

The computation of Σ(A, b) is very costly.
Therefore, in the field of selfverifying numerical
methods often an interval vector including the true
solution set is computed. The best possible one is
the interval hull ihull(Σ) :=

⋂
X∈IIRn,X⊇Σ

X . But
computing ihull(Σ) is computationally still very
costly [10]. In an interval setting the typical task
is to compute a more or less sharp interval vector
z ∈ IIRn containing ihull(Σ).

Let us now discuss the Alefeld/Mayer/Rohn
[14, 1] characterization of the solution set of an in-
terval system of linear equations. Let Ok denote a
closed orthant of IRn (there are 2n orthants).

Theorem 1 (Alefeld/Mayer [1], 1995) For regular
interval matrices A it holds

• Σ(A, b) is not convex.

• If Σ(A, b) ∩ Ok �= ∅, it is convex, compact,
connected, and a polytope.

3.1 How to compute Σ(A, b) ∩ Ok?

A fixed orthant O is characterized by the sign
vector s = (si) ∈ Sn (i.e. si ∈ {−1, +1}
for i = 1(1)n) corresponding to the signs of the
components of an interior point of O. Hence,
if O denotes some orthant O, fixed by the signs
s1, s2, . . . , sn, then x = (xi) ∈ O fulfills

xi

{
≥ 0 if si = +1,
≤ 0 if si = −1.

For i, j = 1(1)n, let

cij :=

{
aij if sj = +1,
aij if sj = −1

, dij :=

{
aij if sj = +1,
aij if sj = −1.

Denote by Hi, Hi, i = 1(1)n, the half spaces

Hi :=

⎧⎨
⎩y ∈ IRn|

n∑
j=1

cijyj ≤ bi

⎫⎬
⎭ ,

Hi :=

⎧⎨
⎩y ∈ IRn|

n∑
j=1

dijyj ≥ bi

⎫⎬
⎭ .

Theorem 2 (Rohn, 1989)

Σ(A, b) ∩ O =

n⋂
i=1

(H i ∩ Hi) ∩ O.

Note that Hi, Hi depend on the choice of the
orthant O (2n possibilities). Denote the half
spaces Hi, Hi corresponding to orthant Ok by

Hk
i , H

k

i , k = 1(1)2n. Then we have the follow-
ing representation of the exact solution set of the
interval system of linear equations:

Σ(A, b) =

2
n⋃

k=1

(

n⋂
i=1

(Hk
i ∩ H

k

i) ∩ Ok)

︸ ︷︷ ︸
∅ or a convex polytope

.

To find the corners of the sets Σ(A, b) ∩ Ok,
the linear inequalities are transformed into systems
of linear equations augmented by n further linear
equations describing the actual orthant Ok . So for

each orthant we get
(
3n

n

)
equations. To find all

corners of Σ(A, b) we have to solve 2n
(
3n
n

)
linear

n × n point systems. Thus, for n = 2 we have to
solve 60 2 × 2 and for n = 3 we have to solve
672 3 × 3 systems of linear equations.

Theorem 3 The solution x to a (regular) point
system is a corner of the convex set Σ(A, b)∩Ok if
and only if x simultaneously fulfills all inequalities
corresponding to the orthant Ok.

3.2 How to plot Σ(A, b)?

We are now ready to outline the method used in
the packages realized by Braun and Paw to com-
pute the exact solution set of a linear inteval system
in 2 or 3 dimensions:

a) Check whether A ∈ IIRn is regular:

– 0 /∈ det A or

– ρ(|I − ṘA|) < 1 (Ṙ ≈ (mid(A))−1)
(see [15])

Give a warning if this check fails (note that it
is still possible that the interval matrix of the
system is regular).

b) Compute all vertices of the sets Σ(A, b)∩Ok.
This results in unordered sets of points in IR2

or IR3, respectively.

c) To plot the polytope in each orthant the ver-
tices of each face of the polytope have to be
found and sorted appropriately.

The spectral radius check ρ(|I − ṘA|) < 1 must
fail if the matrix A is not strongly regular [11].
As pointed out by a referee, checking regularity
should be improved by a direct application of the
Oettli/Prager Theorem [12]. So far, this check is
not included in our package. For details of the im-
plementation see the source codes of the packages
[3, 13], which are available from the author.

3.3 Examples

The new command realized in the
Braun package and used in this section is
IESolutionSet With Plots(). Here,
IE denotes interval equation. Parameters are
the interval matrix, the interval right hand side,
an optional list of orthants where the solution
set is to be plotted, and an optional parameter
ShowPlanes, additionally enabling the plotting
of the coordinate planes within the same figure.

Figure 1. Neumaier’s example.

Figure 1 shows the 3D solution set of Ax = b
with

A :=

⎛
⎝ 3.5 [0, 2] [0, 2]

[0, 2] 3.5 [0, 2]
[0, 2] [0, 2] 3.5

⎞
⎠ ,

b :=

⎛
⎝ [−1,−1]

[−1,−1]
[−1,−1]

⎞
⎠ . (4)

This example is taken from the book of Neumaier
[11]. A corresponding graphics is shown on the
cover sheet of the book cited. The figure shows a
screen shot of the outcome of [13].

Parts of the 3D solution set of Ax = b with

A :=

⎛
⎝ [−4,−3] [1.5, 2] [0.1, 0.1]

[−1, 6] [3, 3] [0.1, 0.1]
[0, 0] [0.5, 0.5] [1, 1]

⎞
⎠ ,

b :=

⎛
⎝ [−1, 0.75]

[0.5, 2.5]
[1, 1.8]

⎞
⎠ (5)

are shown in Figure 2. Here, the intersection of the
solution set with Orthant 1 is bounded by segments
of 9 planes. Thus, Figure 5 shows the most general
shape of such an intersection.

Figure 3 shows the 3D solution set of Ax = b
with

A :=

⎛
⎝ [−4,−3] [1.5, 2] [0.1, 0.2]

[−1, 6] [3, 3] [0, 0]
[0, 0] [0.7, 0.7] [1, 1]

⎞
⎠ ,

1,0 1,0

0,75 0,75

0,5 0,5
y x

0,25 0,25

0,0 0,0

0,6

0,7

0,8

0,9

1,0

1,1

1,2

z

1,3

1,4

1,5

1,6

1,7

1,8

3D solution set

Figure 2. Most general shape of the
solution set of a linear interval system
restricted to a single orthant.

b :=

⎛
⎝ [−1, 0.75]

[0.5, 2.5]
[1, 1.8]

⎞
⎠ . (6)

Again, the intersection of the solution set with the
first orthant is bounded by segments of 9 planes.

Now we do no longer restrict the solution set to
the first orthant. The full solution set of Ax = b
with

A :=

⎛
⎝ [−4,−3] [1.5, 2] [0.1, 0.1]

[−1, 6] [3, 3] [0, 0]
[0, 0] [0.5, 0.5] [1, 1]

⎞
⎠ ,

b :=

⎛
⎝ [−1, 0.75]

[0.5, 2.5]
[1, 1.8]

⎞
⎠ . (7)

is shown in Figure 4.
The solution set corresponding to

A :=

⎛
⎝ 3 [0, 2] 2

[0, 2] 3 [0, 2]
2 [0, 2] 3

⎞
⎠ ,

b :=

⎛
⎝ [1, 1]

[1, 1]
[1, 1]

⎞
⎠ (8)

is shown in Figure 5.

1,0

0,75

x0,5

1,25
1,0

y

0,25

0,75
0,5

0,25
0,0

0,0

0,25

0,5

0,75

1,0

z

1,25

1,5

1,75

3D solution set

Figure 3. Most general shape in Or-
thant 1.

1,25 1,0

1,0
0,75

0,75

0,5

x0,5

y 0,25
0,25

0,00,0

−0,25

0,5

0,75

1,0 z

1,25

1,5

1,75

3D solution set

Figure 4. Complete 3D solution set.

−1,0

x

−0,5

1,0

z

0,8

0,6

0,4

0,2

0,0

−0,2
0,0

−0,4

−0,6

−0,8

−1,0

0,25 0,5

y

0,75 1,0
0,51,0

3D solution set

Figure 5. Complete 3D solution set
corresponding to (8).

−1,4

−0,4

−1,2

−1,0

z
−0,8

−0,6

−1,5

−1,0

−1,5

x
−1,0y

−0,5 −0,5

0,5
−0,2

0,00,0

0,2

0,4

0,6

0,8

1,0

1,2

0,0

0,5

1,0

1,5

1,0

1,5

1,4

3D solution set

Figure 6. Complete solution set to-
gether with coordinate planes.

Using the (optional) parameter
ShowPlanes when calling the new func-
tion IESolutionSet With Plots() allows
to show not only the solution set of the linear
interval system but also the coordinate planes
(establihed by two different coordinate axes per
plane). Figure 6 presents such a view for the
linear interval sytsem (6). Note: The package is
mainly intended for interactive use. The coloured
visualization on the computer sreen and the addi-
tional possibilities to rotate, to zoom, to modify
the transparency give a much better impression of
the solution sets than the figures presented in this
paper.

4. Conclusions

Bringing together capabilities of a computer
algebra environment and well known methods
from the field of reliable computing makes the
intpakX package an outstanding scientific tool.
Its source code (Maple programming language) is
freely available. The package has been used by
the author of this paper for several times in teach-
ing selverifying numerical methods. The visual-
ization facilities coming with intpakX are e.g.
very well suited to investigate overestimations in
range enclosures, verified root finding algorithms,
solution sets of linear interval systems, and oth-
ers. Of course, the package may be (and should
be) extended in many directions. However, the dy-
namical system application presented in this pa-
per shows that the implementation as it is can be
used to solve non-trivial problems with mathemat-

ical rigor. Thus, intpakX is not only a valu-
able didactical tool but also a first step in showing
that formula manipulation capabilities and selfver-
ifying numerical methods should be combined in
future releases of computer algebra packages like
Maple, Mathematica, MuPad, and so on.

5. Acknowledgement

The author would like to thank his stu-
dents/members of research group Ilse Geulig,
Markus Grimmer, and Sven Braun for spending a
fairly long time to complete the process of devel-
oping the package intpakX. Thanks also to Marc
Janz, and Gregor Paw. Furthermore, the referees
have been very helpful in improving the presenta-
tion of the paper.

References

[1] G. Alefeld and G. Mayer. On the symmetric
and unsymmetric solution set of interval systems.
SIAM J. Matrix Anal. Appl., 16, 1995.

[2] W. Barth and E. Nuding. Optimale Lösung von In-
tervallgleichungssystemen. Computing, 12, 1974.

[3] S. Braun. Visualisierung der exakten Lösungs-
mengen von linearen Intervallgleichungssystemen
in Maple. Master’s thesis, University of Wupper-
tal, 2006.

[4] I. Geulig and W. Krämer. Intervallrechnung in
Maple - Die Erweiterung intpakX zum Paket
intpak der Share-Library. Technical report,
Preprint IWRMM 1999/2, University of Karl-
sruhe, 1999.

[5] M. Grimmer. Interval arithmetic in Maple with
intpakX. PAMM - Proceedings in Applied Math-
ematics and Mechanics, 2:442–443, January 2003.

[6] M. Kofler. Maple: An Introduction and Reference.
Addison-Wesley, 1997.

[7] W. Krämer. Introduction to the Maple power
tool intpakX. Technical report, Preprint BUW
WRSWT 2006/9, University of Wuppertal, 2006.
pp. 1–31. Accepted for publication in Bulgarian
Serdica Journal of Computing, 2007.

[8] W. Krämer. Pitfalls in Maple. Technical re-
port, Preprint BUW WRSWT 2006/7, University
of Wuppertal, 2006.

[9] W. Krämer, R. Lohner, and U. Kulisch. Numeri-
cal Toolbox for Verified Computing II – Advanced
Numerical Problems. Springer Verlag, to appear.
Draft version, about 400 pages, 1995. Available
from lohner@rz.uni-karlsruhe.de.

[10] V. Kreinovich and A. Lakeyev. Linear interval
equations: Computing enclosures with bounded
relative or absolute overestimation is np-hard. Re-
liable Computing, 2, 1996.

[11] A. Neumaier. Interval Methods for Systems of
Equations. Cambridge University Press, Cam-
bridge, 1990.

[12] W. Oettli and W. Prager. Compatibility of approx-
imate solution of linear equations with given error
bounds for coefficients and right-hand sides. Nu-
mer. Math., pages 405–409, 1964.

[13] G. Paw. Ein intuitiv bedienbares Java-Applet
zur Visualisierung exakter Lösungsmengen von
mengenwertigen numerischen Problemen. Mas-
ter’s thesis, University of Wuppertal, 2006.

[14] J. Rohn. Systems of linear interval equations. Lin-
ear Algebra and Its Application, 126:39–78, 1989.

[15] S. Rump. Verification methods for dense and
sparse systems of equations. In Topics in Validated
Computations. Elsevier, Amsterdam, 1994.

[16] . WRSWT research group. intpakX. Link at the
University of Wuppertal:
http://www.math.uni-wuppertal.de/
˜xsc/software/intpakX/.

Towards Interval Techniques for Processing Educational Data

Olga Kosheleva1,2, Vladik Kreinovich1,3, Luc Longpré1,3,
Mourat Tschoshanov1,2,4, and Gang Xiang1,3

1NASA Pan-American Center for Earth
and Environmental Studies

2Department of Teacher Education
3Department of Computer Science

4Department of Mathematical Sciences
University of Texas at El Paso

El Paso TX 79968, USA
contact olgak@utep.edu, vladik@utep.edu

Abstract

There are many papers that experimentally compare ef-
fectiveness of different teaching techniques. Most of these
papers use traditional statistical approach to process the
experimental results. The traditional statistical approach is
well suited to numerical data but often, what we are pro-
cessing is intervals (e.g., A means anything from 90 to 100).
We show that the use of interval techniques leads to more
adequate processing of educational data.

1. Formulation of the Problem

Practical problem: comparing teaching techniques.
Teaching is very important, and teaching is not always very
effective. There exist many different pedagogical tech-
niques that help teach better, and new teaching techniques
are being invented all the time.

To select the techniques which are the most efficient for
a given educational environment, we must experimentally
compare effectiveness of different teaching techniques in
this and similar environments.

Setting up such an experiment in a meaningful way is
a very difficult task. One needs to make sure that the stu-
dents assigned to two different methods represent the same
population, that the topics selected for the course are the
same for both methods – otherwise, we will not get a fair
and convincing comparison. In statistics, and especially in
applications of statistics to social phenomena like teaching,
there is a vast literature on experiment design.

In this paper, we will assume that the experiment has
already been designed in a proper way, so that the compar-
ison is reasonably fair, and we will concentrate on the next
problem: how can we process the results of this experiment?
based on these results, what conclusions can we make about
the compared techniques?

A natural way to compare teaching techniques: com-
pare the grades. A natural way to measure the effective-
ness of a technique on an individual student is by record-
ing the grade that this student received when being taught
by this particular technique. To describe which method is
better in general, it is therefore reasonable to describe the
distribution of the grades for students taught under different
techniques.

To get a complete picture, it is desirable to know the full
grade distributions; however, in practice, researchers usu-
ally compute the mean and standard deviation.

In some cases, we have meaningful system of numerical
grades. In some situations, there is a well-developed stan-
dardized test which provides a reasonably objective numer-
ical measure of the student knowledge. For example, in the
USA, there is the SAT test which is used to gauge the stu-
dent’s degree of preparation for undergraduate studies, the
GRE test which is used to gauge the student’s preparedness
for graduate studies, the TOEFL test which gauges the de-
gree to which non-native speakers know English, etc. Such
tests provide a numerical grade from, say 0 to 800, and the
difference between 640 and 650 is indeed meaningful.

The development of such a standardized test is a very
difficult task. Moreover, once the test is given, and its an-
swers are widely known, it is not possible to re-use it; so,

next time this test needs to be given, a new version of this
test has to be designed. As a result, situations in which such
standardized tests exist are extremely rare.

In most pedagogical situations, there is only a small
number of possible grades. Typically, instructors assign
grades from a small discrete set of possible grades. For ex-
ample, in the US system, typical grades are A (excellent),
B (good), C (satisfactory), D (sometimes used as passing
grade), and F (fail); they are called letter grades.

In another system with which several of us are very fa-
miliar, namely, the Russian system, typical grades are 5 (ex-
cellent), 4 (good), 3 (satisfactory), 2 (bad), and 1 (some-
times used for awful). These grades are not described by
letters; however, they serve the exact same purpose as the
US letter grades. So, to enhance the useful distinction be-
tween meaningful numerical grades (like SAT scores) and
grades from a small set, we will follow the US tradition and
call grades from a small set letter grades.

Both in the US and in the Russian grading systems, there
are sometimes refined versions of these systems with the
possibility of adding + or −: e.g., 4+ is somewhat better
than 4, A− is somewhat worse than A.

Letter grades often comes from points. One of the main
methods of assigning these letter grades is based on so-
called points. Specifically, an instructor assigns points for
different assignments and tests. These points add up during
the course. At the end, the total amount of points deter-
mines the letter grade. There are many ways to translate
from points to resulting grades. In the US, a typical transla-
tion is as follows:

• 90 points or above means A;

• at least 80 but less than 90 means B;

• at least 70 but less than 80 means C;

• at least 60 but less than 70 means D;

• less than 60 means F.

Why not keep the original points? The amount of points
gained provides a much more refined description of the stu-
dent knowledge than the resulting letter grade. So, a natu-
ral question is: why not simply use the original number of
points instead of the letter grades?

The answer to this question is actually contained in the
above explanation of why we cannot use too refined a scale:
the main reason is the need to make the grades more objec-
tive. When several instructors teach different sections of a
class, they spend a lot of effort trying to make sure that they
have the same criteria for A, B, and C. When a department
is accredited, accreditors looks at samples of A, B, and C

papers to make sure that these sample would indeed get the
corresponding letter grade at other schools as well.

This unification of letter grades is very difficult, so diffi-
cult that beyond letter grades, there is definitely no unifor-
mity. A student who get a solid A (say, 95) with one of the
instructors will most probably still get an A with others, but
that A may vary from 91 to 99, depending on the instructor.

Because of this well-understood subjectivity, the points
are usually not archived and not used to compare stu-
dents taught by different instructors. Only letter grades are
recorded.

Alternative approach: grades based on perceptions. In
some disciplines, it is easy to reasonably objectively assign
points to individual assignments: e.g., a well-formulated
mathematical problem is either solved or not, its solution
is either correct or not, and if there is a partial solution, it is
possible to come up with an agreed-upon objective scale of
points.

In other disciplines, however, e.g., in writing essays
about a difficult philosophical concept, it is difficult to as-
sign points. In such disciplines, it makes sense to make
judgements like “understands well”, “understands the main
concept reasonably well, but still has misconceptions”, etc.
These judgments are then translated into points or directly
into letter grades.

Again, instructors try their best to make these judgments
objective. This unification is very difficult, so difficult that
there is no way to extend this unification beyond the small
scale of letter grades, into something more refined.

Statistical processing of letter grades: a problem. Let us
get back to our problem. We want to compare two (or more)
teaching techniques. So, we apply two different techniques
to two groups of students, and we compare the results.

Because of the above explanations, at the end of the ex-
periment, we only have letter grades: we have letter grades
of students who were taught according to the first technique,
and we have letter grades of students taught according to the
second technique. To compare the techniques, we must per-
form a statistical analysis of these letter grades.

Statistical processing of letter grades: traditional ap-
proach. The traditional statistical approach to statistical
processing of the grades is motivated by the existing ways
of processing these data.

For example, students who study well receive different
honors. These honors are usually based on simply averag-
ing the grades: the higher the average, the higher the honors.
In the Russian system, “letter grades” are actually numbers
so they can be directly averaged. In the US system, there
is a standard translation of letter grades into numbers: A
means 4, B means 3, C means 2, D means 1, and F means
0. After this translation, letter grades become numbers, so
we can easily compute their average.

Similarly, to gauge the degree to which a class learns a
material, we can compute the average grade of this class.

In accordance with this idea, the vast majority of these
papers that experimentally compare different teaching tech-
niques by treating them as numbers:

• first, we translate the grades into numbers; and

• then, we process these numbers by using traditional
statistical techniques; see, e.g., [18, 21].

Problems with the traditional approach: general de-
scription. The traditional statistical approach is well suited
for processing numerical data. However, in processing edu-
cational data, often what we are processing is:

• either intervals: e.g.

– the A grade usually means anything from 90 to
100,

– the B grade means anything between 80 and 90,
and

– the C grade mean anything between 70 and 80;

• or fuzzy-type perceptions, words from the natural lan-
guage like “understood well” or ”understood reason-
ably well”.

Problems with the traditional approach: example. In se-
lecting a teaching method, it is important not only to make
sure that the average results m are good – e.g., that the aver-
age grade on a standard test is good – but also to ensure that
the results are consistently good – i.e., in statistical terms,
that the standard deviation σ of the grade is low.

If the standard deviation σ is high, that would mean
while some students learn really well under this technique,
there are many others who are left behind, and we cannot
afford that.

So, to compare several teaching techniques based on the
grades the student got, we must compare not only their av-
erages, but also the standard deviations.

The following simple example will show that when we
replace an interval with a single value, we lose important in-
formation that could influence the computation of the stan-
dard deviation, and we could get erroneous results.

Suppose that in one method, all the students got Bs,
while in the other method, half of the students got Bs and
half of the students got As. Which of the two methods
shows more stable results, with a smaller standard devia-
tion?

In the traditional statistical approach, we interpret A as 4
and B as 3.

• In the first method, the resulting grades are x1 = . . . =
xn = 3, so the average grade is equal to

m =
x1 + . . . + xn

n
= 3,

the population variance is equal to

V = σ2 =
1
n
·

n∑
i=1

(xi − m)2 = 0,

and the standard deviation is equal to σ =
√

V = 0;

• In the second method, the average is equal to

m =
3 + 4

2
= 3.5,

so for each i, (xi − m)2 = 0.25, hence the population
variance is equal to

V = σ2 =
1
n
·

n∑
i=1

(xi − m)2 = 0.25,

and the standard deviation is equal to σ =
√

V = 0.5.

So, if we use the traditional statistical approach, we con-
clude that while the second method has a higher average, it
is less stable than the first one.

In reality, if we go back from the “interval” letter grades
like A, B, and C to the original numbers of points, it may
turn out the second method is not only better on average,
but also much more stable. Indeed, suppose that:

• in the first method, half of the students got 80 points,
and half got 88 points; and

• in the second method, half of the students got 89
points, and half of the student got 91 points.

In terms of As and Bs, this is exactly the situation as de-
scribed above. However, when we compute the standard
deviation for these numbers of points, we get a different re-
sult than when we process the letter grades:

• In the first method, the average is equal to

m =
80 + 88

2
= 84,

so for each i, (xi − m)2 = 16, hence the variance is
equal to

V = σ2 =
1
n
·

n∑
i=1

(xi − m)2 = 16.

• In the second method, the average is equal to

m =
89 + 91

2
= 90,

so for each i, (xi − m)2 = 1, hence the variance is
equal to

V = σ2 =
1
n
·

n∑
i=1

(xi − m)2 = 1 � 16.

What needs to be done. It is desirable to develop tech-
niques for processing educational data that would take into
account that the grades are not exactly equal to the corre-
sponding numerical values but may differ from these val-
ues.

In other words, we need techniques that would provide
guaranteed answers to questions like: Is the first method
better than the second one?

It is OK to have an answer “we do not know”, but if
the answer is “yes”, we want to be sure that no matter what
additional information we learn about these experiments the
answer will remain the same.

Such techniques are outlined in this paper.

2. Interval Approach

Processing interval data: analysis of the situation. The
main reason why we had the above problem is that letter
grade � represents not a single value of the number grade x,
but rather an interval x = [x, x] of possible values of the
numbers of points. For example:

• the letter grade A represents the interval [90, 100];

• the letter grade B represents the interval [80, 90];

• the letter grade C represents the interval [70, 80].

So, for the educational data, instead of the exact value x
of each number of points, we often only know the intervals
[x, x] corresponding to the letter grade �. This is true for the
American system, this is true for the Russian system, this is
true for any grading system in which the number of points
is used to describe the resulting “letter grade”.

Processing interval data: formulation of the problem.
Our objective is, given a set of letter grades �1, . . . , �n, to
compute a certain statistical characteristic C such as aver-
age, standard deviation, correlation with other characteris-
tics (such as the family income or the amount of time that a
student spends on homeworks), etc.

The desired statistical characteristic is defined in terms
of numerical values, as C = C(x1, . . . , xn). For example,

the average is defined as m =
x1 + . . . + xn

n
, the variance

is defined as V =
1
n
·

n∑
i=1

(xi − m)2, etc.

For the educational data, instead of the exact values xi,
we often only know the intervals xi corresponding to the
letter grade �i. For different possible values x1 ∈ x1, . . . ,
xn ∈ xn, we get different values of the corresponding char-
acteristic C.

Our objective is to to find the range of possible values of
the desired characteristic when xi ∈ xi, i.e., the interval

C = {C(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

This problem is a particular case of the general problem
of interval computations. The need to perform compu-
tations under interval uncertainty occurs in many areas of
science and engineering. In many such areas, we therefore
face the following problem:

• we know:

– n intervals x1, . . . ,xn and

– an algorithm y = f(x1, . . . , xn) that transforms
n real numbers (inputs) into a single number y
(result of data processing);

• we must estimate the range of possible values of y, i.e.,
the interval

y = {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

This problem is called the main problem of interval compu-
tations; see, e.g., [5, 6, 7, 10, 13].

We can therefore conclude that the problem of process-
ing educational data under interval uncertainty is a particu-
lar case of the more general problem of interval computa-
tions.

How we can process interval data: general descrip-
tion. Many efficient techniques have been developed to
solve generic interval computations problems; see, e.g.,
[5, 6, 7, 10, 13].

How we can process interval data: case of statistical
characteristics. In particular, several algorithms have been
developed for the case when the the function f(x1, . . . , xn)
is one of the standard statistical characteristics such as av-
erage m or standard deviation V ; see, e.g. [4, 11, 12] and
references therein.

Computing average under interval uncertainty. In par-
ticular, since the average is a monotonic function of each of
its variables, its value is the largest when each xi attains the

largest possible value xi = xi, and its value is the small-
est when the variance attains its smallest possible value xi.
Thus, for the average m, the interval takes the form [m,m],
where

m =
x1 + . . . + xn

n
; m =

x1 + . . . + xn

n
.

If all the letter grades are A, B, C, or D, then the width
xi−xi of each corresponding interval is 10, so m = m+10.
In this situation, it is sufficient to compute one of the bounds
m or m, the other bound can be easily reconstructed from
this one.

If one of the grades is a F grade, for which the interval
of possible values is [0, 60] with a width 60 > 10, then we
must compute both bounds.

Computing variance under interval uncertainty. For the
variance V , there exist efficient algorithms for computing
the lower bound V , but the problem of computing the up-
per bound V is, in general, NP-hard. However, for edu-
cational data, the intervals either coincide or intersect at a
single point; as a result, none of the intervals is a subset of
the interior of any other: [xi, xi] �⊆ (xj , xj). For the case
when the intervals satisfy this subset property, there exists
an efficient algorithms for computing V ; see, e.g., [12].

Specifically, to compute V for intervals which satisfy the
subset property, we first sort the intervals in lexicographic
order

[xi, xi] � [xj , xj] ↔ xi < xj ∨ (xi = xj &xi ≤ xj).

For the points intervals, this simply means that we sort the
letter grades into an increasing sequence. As a result, we
get x1 ≤ x2 ≤ . . . ≤ xn and x1 ≤ x2 ≤ . . . ≤ xn.
For every k from 1 to n, we pick xi = xi for i ≤ k and
xi = xi for i > k; then, we compute the average m =
x1 + . . . + xn

n
of the selected xi, and check whether this

average satisfies the inequality xk ≤ m ≤ xk+1. If it does,
then the population variance of the corresponding sequence
x1, . . . , xn is exactly the desired upper bound V .

According to [4, 12], to compute the lower bound V ,
similarly, for every k, we select:

• xi = xi when xi ≤ xk, and

• xi = xi when xi ≥ xk.

We then compute the average m of the selected xi and check
whether this average satisfies the inequality xk ≤ m ≤ xk.
If it does, then we assign xi = m for all the un-assigned
value i, and the population variance of the corresponding
sequence x1, . . . , xn is exactly the desired lower bound V .

Numerical example: computing V . For 3 sorted grades
C, B, and A, we get x1 = 70, x1 = 80, x2 = 80, x2 = 90,

x3 = 90, x3 = 100. For this data, let us first compute V .
For k = 1, we pick x1 = x1 = 70, x2 = x2 = 90, and

x3 = x3 = 100. Here, m = (x1 + x2 + x3)/3 = 86
2
3

.

Since x1 = 60 ≤ m ≤ x2 = 90, the upper bound V is

equal to the population variance
1
n

·
∑

(xi − m)2 of the

values x1 = 70, x2 = 90, and x3 = 100, hence V = 155
5
9

.

Numerical example: computing V . For V , we also start
with k = 1. For this k, in accordance with the above al-
gorithm, we assign the values x2 = x2 = 80 and x3 =
x3 = 90. Their average m = 85 is outside the interval
[x1, x1] = [70, 80], so we have to consider the next k.

For k = 2, we assign x1 = x1 = 80 and x3 = x3 =
90. The average m = 85 of these two values satisfies the
inequality x2 = 80 ≤ m ≤ x2 = 90; hence we assign
x2 = 85, and compute V as the population variance of the

values x1 = 80, x2 = 85, and x3 = 90, hence V = 16
2
3

.

Computing other statistical characteristics under inter-
val uncertainty. Similar algorithms are known for other
statistical characteristic such as median, higher moments,
covariance, etc. [4, 11, 12].

3. Fuzzy Approach: In Brief

Formulation of the problem. In the interval approach,
each letter grade is characterized by a set (interval) of pos-
sible values of points. For example, a letter grade A corre-
sponds to the interval [90, 100], etc.

On average, 90 is a reasonable and convenient threshold,
but in reality, this threshold is somewhat arbitrary. Instruc-
tors often do not cut off at 90 sharp and assign A to all those
who got 90.1 and B to those who got 89.9. In many cases,
if there are good students whose grades are almost 90 (say,
89.1), they will get an A grade. In such cases, the thresh-
old is made flexible: the instructor looks for a gap between
clearly A and clearly B students (such a gap usually exists),
and assigns A to all the students whose grades are higher
than this gap and B to those students whose grades are be-
low this gap.

As a result, even if a student has an A, we cannot say
with 100% confidence that this student’s number of points
was above 90. The resulting situation can be described by
the technique of fuzzy uncertainty see, e.g., [8, 16]. In this
technique, for each number of points x and for each letter
grade (e.g., A), we have a degree μA(x) ∈ [0, 1] with which
x corresponds to A.

• When x ≥ 90, we are absolutely sure that the letter
grade is A, so μA(x) = 1.

• When x ≤ 87, we are absolutely sure that the letter
grade is not A, so μA(x) = 0.

• When 87 < x < 90, there is a possibility that A was
assigned as a letter grade, so we get μA(x) ∈ (0, 1).

This value μA(x) is called a membership degree – the de-
gree to which the value of x points is a member of the
(fuzzy) set of all the values which correspond to the A
grade.

To find these membership degrees, we can, e.g., use lin-
ear interpolation, and define μA(x) on the interval [87, 90]
as a linear function which takes the value 0 on x = 87 and
the value 1 for x = 90.

For each membership α, we can determine the set of val-
ues x that are possible with at least this degree of possibil-
ity – the α-cut {x |μA(x) ≥ α} of the original fuzzy set.
Vice versa, if we know α-cuts for every α, then, for each
object x, we can determine the membership degree μA(x)
with which x belongs to the original fuzzy set as the largest
values α for which x beliongs to the corresponding α-cut
[1, 8, 14, 15, 16].

A fuzzy set can be thus viewed as a nested family of its
α-cuts.

How we can process fuzzy data: general idea. If instead
of a (crisp) interval xi of possible numbers of points, we
have a fuzzy set μi(x) of possible grades, where i is A, B,
C, D, or F, then we can view this information as a family of
nested intervals xi(α) – α-cuts of the given fuzzy sets.

Our objective is then to compute the fuzzy number cor-
responding to this the desired characteristic C(x1, . . . , xn).

In this case, for each level α, to compute the α-cut of this
fuzzy number, we can apply the interval algorithm to the α-
cuts xi(α) of the corresponding fuzzy sets. The resulting
nested intervals form the desired fuzzy set for C.

How we can process fuzzy data: case of statistical char-
acteristics. For statistical characteristics such as variance,
more efficient algorithms are described in [3].

4. Towards Combining Probabilistic, Interval,
and Fuzzy Uncertainty

Need for such a combination. In the case of interval uncer-
tainty, we consider all possible values of the grades, and do
not make any assumptions about the probability of differ-
ent values within the corresponding intervals. However, in
many cases, we can make commonsense conclusions about
the frequency of different grades.

For example, if a student has almost all As but only one
B, this means that this is a strong student, and most probably
this B is at the high end of the B interval. On the other hand,
if a student has almost all Cs but only one B, this means
that this is a weak student, and most probably this B is at

the lower end of the B interval. It is desirable to take such
arguments into account when processing educational data.

Let us describe how we can do this.

Comment. To avoid misunderstanding, it is worth mention-
ing that commonsense conclusions are not always possible:
in some cases, we can make such commonsense conclu-
sions; in some cases, we cannot. For example, if the first
student has one A, two Bs and one C, and the second stu-
dent has two As and two Cs, it is not clear which of two
students is better, so it is difficult to make any conclusions
about the quality of these grades.

Simplest case: normally distributed grades. Let us first
consider the reasonable case when the actual points are nor-
mally distributed, with an (unknown) mean m and an un-
known standard deviation σ. In other words, we assume
that the cumulative probability distribution (cdf) F (x) def=

Prob(ξ < x) has the form F0

(
x − m

σ

)
, where F0(x) is

the cdf of the standard Gaussian distribution with 0 mean
and unit standard deviation. Our objective is to determine
the values m and σ.

If we knew the values of the points xi, then we could
apply the above statistics and estimate m and σ =

√
V . In

many situations, we do not know the values of the points,
we only know the values of the letter grades. How can we
then estimate m and σ based on these letter grades?

Case of normally distributed grades: towards an algo-
rithm. Based on the letter grades, we can find, for the
threshold values 60, 70, etc., the frequency with which we
have the number of points smaller that this threshold. If we
denote by f the proportion of F grades, by d the proportion
of D grades, etc., then the frequency of x < 60 is f , the
frequency of x < 70 is f + d, the frequency of x < 60 is
f + d + c.

It is well known that the probability can be defined as a
limit of the corresponding frequency when the sample size
n increases. Thus, when the sample size is large enough, we
can safely assume that the corresponding frequencies are
close to the corresponding probabilities, i.e., to the values
F (x). In other words, we conclude that:

F0

(
60 − m

σ

)
≈ f ; F0

(
70 − m

σ

)
≈ f + d;

F0

(
80 − m

σ

)
≈ f+d+c; F0

(
90 − m

σ

)
≈ f+d+c+b.

If we denote by ψ0(t) the function that is inverse to F0(t),
then, e.g., the first equality takes the form (60 − m)/σ ≈
ψ0(f), i.e., σ ·ψ0(f)+m ≈ 60. Thus, to find the unknowns
m and σ, we get a system of linear equations:

σ · ψ0(f) + m ≈ 60; σ · ψ0(f + d) + m ≈ 70;

σ ·ψ0(f +d+c)+m ≈ 80; σ ·ψ0(f +d+c+b)+m ≈ 90,

which can be solved, e.g., by using the Least Squares
Method.

Comment. In some cases, the distribution is non-Gaussian,
and we know its shape, i.e., we know that

F (x) = F0

(
x − m

σ

)
,

where F0(t) is a known function, and m and σ are unknown
parameters. In this case, we can use the same formulas as
above.

Simplified case when all the grades are C or above. In
many cases, only C and above are acceptable letter grades.
In such situations, f = d = 0 and c + b + a = 1, so
we get a simplified system of two linear equations with two
unknowns:

σ · ψ0(c) + m = 80; σ · ψ0(c + b) + m = 90.

Subtracting the first equation from the second one, we con-
clude that

σ =
10

ψ0(b + c) − ψ0(c)
.

This formula can be further simplified if the distribution
F0(x) is symmetric (e.g., Gaussian distribution is symmet-
ric), i.e., for every x, the probability F0(−x) that ξ ≤ −x
is equal to the probability 1 − F0(x) that ξ ≥ x. Thus, we
can conclude that ψ0(1 − x) = −ψ0(x) for every x. In
particular, since c + b + a = 1, we conclude that

−ψ0(c + b) = ψ0(1 − (c + b)) = ψ0(a).

Thus, the formula for σ takes the form:

σ = − 10
ψ0(a) + ψ0(c)

. (1)

Similarly, if we divide the equation (90−m)/σ = ψ0(b+c)
by (80 − m)/σ = ψ0(c), we conclude that

90 − m

80 − m
=

ψ0(b + c)
ψ0(c)

= −ψ0(a)
ψ0(c)

,

hence

m = 80 +
10

1 +
ψ0(a)
ψ0(c)

. (2)

Relation to fuzzy logic. As we can see from the formulas
(1) and (2), the standard deviation is an increasing function
of the sum ψ0(a) + ψ0(c), while the mean m is monoton-
ically increasing with the ratio ψ0(a)/|ψ0(c)|. This makes
sense of we take into account that ψ0(a) monotonically de-
pends on the proportion a of grades in the A range: the more

grades are in the A range and the fewer grades are in the C
range, the larger the average grade m, so m should be kind
of monotonically depending on the degree to which it is true
that we have A grades and not C grades.

It is worth mentioning that the operations of sum as “or”
and ratio as “a and not c” appear when we try to interpret
neural networks in terms of fuzzy logic [2]; see also Ap-
pendix.

5. Conclusions and Future Work

Processing incomplete pedagogical data: formulation of
the problem and what we did (a brief summary). In the
above text, we considered the following pedagogical situa-
tion:

• we have two (or more) techniques for teaching the
same material;

• we have a way to gauge the degree to which students
learned this material;

• we need to select a techniques for which, on average,
the students learn better.

In this paper, we consider the situation in which the degree
to which a student learned the material is determined by this
student’s letter grade for this class. This letter grade is, of
course, an incomplete description of the student’s knowl-
edge. In this paper, we described new algorithms which
take into account this incompleteness.

Natural next question: how can we make the pedagogi-
cal data more complete? From the mathematical and com-
putational viewpoint, the above setting already leads to non-
trivial computational problems. From this viewpoint, the
natural next idea may be to improve these algorithms, make
them more efficient and more general – in other words, how
to best process the existing incomplete data.

From the pedagogical viewpoint, however, a natural next
question is how we can supplement the letter grades to get
a more complete picture of the students’ knowledge.

How to make pedagogical data more complete: main
idea. For most classes, a large part of the material studied
in the class is important not (or not only) only by itself, but
(also) because it provides a basis for the important things
which will be learned in the following classes.

This fact was emphasized by Vygotsky (see, e.g., [20]),
according to whom the class’ success is determined not only
by the students’ mastery of the class material, but also by
the increased student abilities to learn new related material.
To enhance transition to next classes, it is desirable to pre-
pare students for future courses by appropriate examples.

Example. Success in high school mathematics can be
judged not only by the students’ grades on the correspond-
ing subjects, but also by how prepared the students are in
the long run for studying advanced topics such as calculus.
From this viewpoint, it is desirable to include simple opti-
mization and area-computational exercises in algebra and
geometry – as examples for which later-learned calculus
techniques will work much faster [19].

Related future work. To test the success of this tech-
nique, to compare different techniques of teaching lower-
level classes (e.g., algebra or geometry), we must take into
account not only the student grades in these classes, but also
the students’ grades in the following more advanced classes
(e.g., calculus).

In view of this need, we must extend our statistical tech-
niques in such a way that they not only take into account
interval, fuzzy, and probabilistic uncertainty in the letter
grades for the current class, but also the corresponding un-
certainty in letter grades for the future classes.

Acknowledgments. This work was supported in part
by NASA under cooperative agreement NCC5-209, NSF
grants EAR-0225670 and DMS-0532645, Star Award from
the University of Texas System, Texas Department of Trans-
portation grant No. 0-5453, and the University Research
Institute grant from the University of Texas at El Paso.

The authors are thankful to participants of SCAN’06 for
valuable discussions, and to the anonymous referees for im-
portant suggestions.

References

[1] G. Bojadziev and M. Bojadziev. Fuzzy Sets, Fuzzy Logic, Ap-
plications, World Scientific, Singapore, 1995.

[2] S. Dhompongsa, V. Kreinovich, and H. T. Nguyen. How to
interpret neural networks in terms of fuzzy logic?, In: Pro-
ceedings of the Second Vietnam-Japan Bilateral Symposium
on Fuzzy Systems and Applications VJFUZZY’2001, Hanoi,
Vietnam, December 7–8, 2001, pp. 184–190.

[3] D. Dubois, H. Fargier, and J. Fortin J. The empirical vari-
ance of a set of fuzzy intervals, In: Proceedings of the 2005
IEEE International Conference on Fuzzy Systems FUZZ-
IEEE’2005, Reno, Nevada, May 22–25, 2005, pp. 885–890.

[4] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and
M. Aviles. Exact bounds on finite populations of interval data.
Reliable Computing, 11(3):207–233, 2005.

[5] L. Jaulin, M. Keiffer, O. Didrit, and E. Walter. Applied Inter-
val Analysis, Springer-Verlag, London, 2001.

[6] R. B. Kearfott. Rigorous Global Search: Continuous Prob-
lems. Kluwer, Dordrecht, 1996.

[7] R. B. Kearfott and V. Kreinovich (eds.). Applications of Inter-
val Computations, Kluwer, Dordrecht, 1996.

[8] G. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice
Hall, New Jersey, 1995.

[9] O. M. Kosheleva and M. Ceberio. Processing educational
data: from traditional statistical techniques to an appropriate
combination of probabilistic, interval, and fuzzy approaches.
In: Proceedings of the International Conference on Fuzzy
Systems, Neural Networks, and Genetic Algorithms FNG’05,
Tijuana, Mexico, October 13–14, 2005, pp. 39–48.

[10] V. Kreinovich, D. Berleant, and M. Koshelev, website on in-
terval computations
http://www.cs.utep.edu/interval-comp

[11] V. Kreinovich, L. Longpré, S. A. Starks, G. Xiang, J. Beck,
R. Kandathi, A. Nayak, S. Ferson, and J. Hajagos. Interval
versions of statistical techniques, with applications to envi-
ronmental analysis, bioinformatics, and privacy in statistical
databases. Journal of Computational and Applied Mathemat-
ics, 199(2):418–423, 2007.

[12] V. Kreinovich, G. Xiang, S. A. Starks, L. Longpré, M. Ce-
berio, R. Araiza, J. Beck, R. Kandathi, A. Nayak, R. Torres,
and J. Hajagos. Towards combining probabilistic and interval
uncertainty in engineering calculations: algorithms for com-
puting statistics under interval uncertainty, and their computa-
tional complexity. Reliable Computing, 12(6):471–501, 2006.

[13] R. E. Moore. Methods and Applications of Interval Analysis.
SIAM, Philadelphia, 1979.

[14] R. E. Moore and W. A. Lodwick. Interval analysis and fuzzy
set theory. Fuzzy Sets and Systems, 135(1):5–9, 2003.

[15] H. T. Nguyen and V. Kreinovich. Nested intervals and
sets: concepts, relations to fuzzy sets, and applications. In:
R. B. Kearfott and V. Kreinovich (eds.). Applications of Inter-
val Computations, Kluwer, Dordrecht, 1996, pp. 245–290.

[16] H. T. Nguyen and E. A. Walker. A First Course in Fuzzy
Logic. CRC Press, Boca Raton, Florida, 2005.

[17] M. Q. Patton. Qualitative Research and Evaluation Methods,
Sage Publ., Thousand Oaks, California, 2002.

[18] D. J. Sheskin. Handbook of Parametric and Nonparametric
Statistical Procedures, Chapman & Hall/CRC, Boca Raton,
Florida, 2004.

[19] M. Tchoshanov, S. Blake, and A. Duval. Preparing teachers
for a new challenge: Teaching Calculus concepts in middle
grades. In: Proceedings of the Second International Confer-
ence on the Teaching of Mathematics (at the undergraduate
level), Hersonissos, Crete, Greece, 2002.

[20] L. Vygotsky. Thought and Language. M.I.T. Press, Cam-
bridge, Massachusetts, 1962.

[21] H. M. Wadsworth Jr (ed.) Handbook of Statistical Methods
for Engineers and Scientists. McGraw-Hill Publishing Co.,
New York, 1990.

A. Statistical Formulas Have a Fuzzy Mean-
ing: Detailed Explanation

Reminder. In the main text, we have derived statistical for-
mulas for the mean and standard deviation, and we men-
tioned that these formulas can be interpreted in terms of
fuzzy logic – if we use sum as “or” and ratio as “a and
not c”.

Comment. In principle, we could use arbitrary fuzzy t-
norms, t-conorms, and fuzzy negations, but then we would

then not get the statistical formulas. Our point is not that
we can use different fuzzy operations, but that statistical
formulas can be interpreted in terms of reasonable fuzzy op-
erations.

Selecting an “or” operation. The degree of belief a in a
statement A can be estimated as proportional to the num-
ber of arguments in favor of A. In principle, there exist in-
finitely many potential arguments, so in general, it is hardly
probable that when we pick a arguments out of infinitely
many and then b out of infinitely many, the corresponding
sets will have a common element. Thus, it is reasonable to
assume that every argument in favor of A is different from
every argument in favor of B. Under this assumption, the
total number of arguments in favor of A and arguments in
favor of B is equal to a + b. Hence, the natural degree of
belief in A ∨ B is proportional to a + b.

Selecting an “and” operation. Different experts are reli-
able to different degrees. Our degree of belief in a statement
A made by an expert is equal to w & a, where w is our de-
gree of belief in this expert, and a is the expert’s degree of
belief in the statement A. What are the natural properties of
the “and”-operation?

First, since A&B means the same as B &A, it is rea-
sonable to require that the corresponding degrees a& b and
b& a should coincide, i.e., that the “and”-operation be com-
mutative.

Second, when an expert makes two statements B and C,
then our resulting degree of belief in B∨C can be computed
in two different ways:

• We can first compute his degree of belief b∨c in B∨C,
and then us the “and”-operation to generate our degree
of belief w & (b ∨ c).

• We can also first generate our degrees w & b and w & c,
and then use an “or”-operation to combine these de-
grees, arriving at (w & b) ∨ (w & c).

It is natural to require that both ways lead to the same degree
of belief, i.e., that the “and”-operation be distributive with
respect to ∨.

It is also reasonable to assume that the value w & a is a
monotonically (non-strictly) increasing function of each its
variables.

It can be shown [2] that every commutative, distributive,
and monotonic operation & : R × R → R has the form
a& b = C · a · b for some C > 0. This expression can be
further simplified if we introduce a new scale of degrees of

belief a′ def= C · a; in the new scale, a& b = a · b.

Selecting a crisp truth value. We know that “true” and
“true” is “true”, and that “false” and “false” is “false”. Thus,
it is reasonable to call a positive degree of belief e0 is a crisp
value if e0 & e0 = e0.

This implies that e0 = 1.

Selecting implication and negation. From the common-
sense viewpoint, an implication A → B is a statement C
such that if we add C to B, we get A. Thus, it is natural to
define an implication operation as a function →: R ×R →
R for which, for all a and b, we have (a → b)& a = b. One
can easily check that a → b = b/a.

Negation ¬A can be viewed as a particular case of im-
plication, A → F , for a crisp (specifically, false) value F .
Thus, we can define negation operation as a → e0, i.e.,
as 1/a.

Towards Combining Probabilistic, Interval, Fuzzy Uncertainty, and Constraints:
An Example Using the Inverse Problem in Geophysics

V. Kreinovich1, S. A. Starks2,
R. Araiza1, and G. Xiang1

Depts. 1Computer Science and
2Electrical & Computer Eng.

Univ. of Texas at El Paso
El Paso, TX 79968, USA
contact vladik@utep.edu

A. A. Velasco and
M. G. Averill

Dept. Geological Sci.
Univ. of Texas at El Paso
El Paso, TX 79968, USA

mgaverill@utep.edu

G. R. Keller
School of Geology & Geophysics

University of Oklahoma
100 East Boyd

Norman, OK 73019, USA
grkeller@ou.edu

Abstract

In many real-life situations, we have several types of
uncertainty: measurement uncertainty can lead to proba-
bilistic and/or interval uncertainty, expert estimates come
with interval and/or fuzzy uncertainty, etc. In many sit-
uations, in addition to measurement uncertainty, we have
prior knowledge coming from prior data processing and/or
prior knowledge coming from prior interval constraints.

In this paper, on the example of the seismic inverse prob-
lem, we show how to combine these different types of uncer-
tainty.

1. Seismic Inverse Problem: A Brief Descrip-
tion

In evaluations of natural resources and in the search
for natural resources, it is very important to determine
Earth structure. Our civilization greatly depends on the
things we extract from the Earth, such as fossil fuels (oil,
coal, natural gas), minerals, and water. Our need for these
commodities is constantly growing, and because of this
growth, they are being exhausted. Even under the best con-
servation policies, there is (and there will be) a constant
need to find new sources of minerals, fuels, and water.

The only sure-proof way to guarantee that there are re-
sources such as minerals at a certain location is to actually
drill a borehole and analyze the materials extracted. How-
ever, exploration for natural resources using indirect means
began in earnest during the first half of the 20th century.
The result was the discovery of many large relatively easy
to locate resources such as the oil in the Middle East.

However, nowadays, most easy-to-access mineral re-
sources have already been discovered. For example, new

oil fields are mainly discovered either at large depths, or
under water, or in very remote areas – in short, in the areas
where drilling is very expensive. It is therefore desirable to
predict the presence of resources as accurately as possible
before we invest in drilling.

From previous exploration experiences, we usually have
a good idea of what type of structures are symptomatic for
a particular region. For example, oil and gas tend to con-
centrate near the top of natural underground domal struc-
tures. So, to be able to distinguish between more promising
and less promising locations, it is desirable to determine the
structure of the Earth at these locations. To be more pre-
cise, we want to know the structure at different depths z at
different locations (x, y).

Data that we can use to determine the Earth structure.
In general, to determine the Earth structure, we can use
different measurement results that can be obtained without
actually drilling the boreholes: e.g., gravity and magnetic
measurements, analyzing the travel-times and paths of seis-
mic ways as they propagate through the earth, etc.

To get a better understanding of the Earth structure, we
must rely on active seismic data – in other words, we must
make artificial explosions, place sensors around them, and
measure how the resulting seismic waves propagate. The
most important information about the seismic wave is the
travel-time ti, i.e., the time that it takes for the wave to travel
from its source to the sensor. To determine the geophysical
structure of a region, we measure seismic travel times and
reconstruct velocities at different depths from these data.
The problem of reconstructing this structure is called the
seismic inverse problem.

2. Known Algorithms for Solving the Seismic
Inverse Problem: Description, Successes,
Limitations

We want to find the values of the velocity v(�x) at dif-
ferent 3-D points �x. Based on the finite number of mea-
surements, we can only reconstruct a finite number of pa-
rameters. So, we use a rectangular grid structure to divide
the 3-D volume into box-shaped cells. We assume that the
value of the velocity vj is the same within each cell, and we
reconstruct the velocities vj within different cells.

Algorithm for the forward problem: brief description.
Once we know the velocities vj in each cell j, we can
then determine the paths which seismic waves take. Seis-
mic waves travel along the shortest path – shortest in terms
of time. It can be easily determined that for such paths,
within each cell, the path is a straight line, and on the bor-
der between the two cells with velocities v and v′, the di-
rection of the path changes in accordance with Snell’s law
sin(ϕ)

v
=

sin(ϕ′)
v′ , where ϕ and ϕ′ are the angles between

the paths and the line orthogonal to the border between the
cells. (If this formula requires sin(ϕ′) > 1, this means that
this wave cannot penetrate into the neighboring cell at all;
instead, it bounces back into the original cell with the same
angle ϕ.)

In particular, we can thus determine the paths from the
source to each sensor. The travel-time ti along i-th path can
then be determined as the sum of travel-times in different

cells j through which this path passes: ti =
∑
j

�ij

vj
, where

�ij denotes the length of the part of i-th path within cell j.

This formula becomes closer to linear if we replace the

original unknowns – velocities vj – by their inverses sj
def=

1
vj

, called slownesses. In terms of slownesses, the formula

for the travel-time takes the simpler form ti =
∑
j

�ij · sj .

It is worth mentioning, however, that the resulting sys-
tem of equations is not linear in the unknowns sj . In-
deed, the actual geometry of the shortest path between
the two given points depends on the actual values of the
velocities vj – i.e., equivalently, on the slownesses sj .
Thus, the lengths �ij of the segments of these shortest
paths also depend on the slownesses s1, . . . , sm. To be
more precise, we should therefore explicitly take this de-
pendence into account and re-write the above system as
ti =

∑
j

�ij(s1, . . . , sm) · sj for an appropriate non-linear

dependence �ij(s1, . . . , sm).

�
�
�
�
��
�
�
�
�
��

�
�
�
�
�
�
�
�
���� ��

�

	

�

	

d

d
ϕ

ϕ′ s′

s

Algorithm for the inverse problem: general description.
There are several algorithms for solving this inverse prob-
lem; see, e.g., [11, 24, 28]. The most widely used is the
following iterative algorithm proposed by John Hole [11].

At each stage of this algorithm, we have some approxi-
mation to the desired slownesses. We start with some rea-
sonable initial slownesses, and we hope that after several it-
erations, we will be able to get slownesses which are much
closer to the actual values.

At each iteration, we first use the currently known slow-
nesses sj to find the corresponding paths from the source
to each sensor. Based on these paths, we compute the pre-
dicted values ti =

∑
j

�ij · sj of travel-times.

Since the currently known slownesses sj are only ap-
proximately correct, the travel-times ti (which are predicted
based on these slownesses) are approximately equal to the
measured travel-times t̃i; there is, in general, a discrepancy

Δti
def= t̃i−ti �= 0. It is therefore necessary to use these dis-

crepancies to update the current values of slownesses, i.e.,
replace the current values sj with corrected values sj+Δsj .
The objective of this correction is to eliminate (or at least
decrease) the discrepancies Δti �= 0. In other words, the
objective is to make sure that for the corrected values of the
slowness, the predicted travel-times are closer to t̃i.

Of course, once we have changed the slownesses, the
shortest paths will also change; however, if the current val-
ues of slownesses are reasonable, the differences in slow-
ness are not large, and thus, paths will not change much.
Thus, in the first approximation, we can assume that the
paths are the same, i.e., that for each i and j, the length �ij

remains the same. In this approximation, the new travel-
times are equal to

∑
�ij · (sj +Δsj). The desired condition

is then
∑

�ij · (sj + Δsj) = t̃i. Subtracting the formula
ti =

∑
j

�ij · sj from this expression, we conclude that the

corrections Δsj must satisfy the following system of (ap-
proximate) linear equations:

∑
�ij · Δsj ≈ Δti.

Solving this system of linear equations is not an easy
task, because we have many observations and many cell
values and thus, many unknowns, and for a system of lin-
ear equations, computation time required to solve it grows

as a cube c3 of the number of variables c. So, instead of
the standard methods for solving a system of linear equa-
tions, researchers use special faster geophysics-motivated
techniques (described below) for solving the corresponding
systems. These methods are described, in detail, in the next
subsection.

Once we solve the corresponding system of linear equa-
tions, we compute the updated values Δsj , compute the
new (corrected) slownesses sj +Δsj , and repeat the proce-
dure again. We stop when the discrepancies become small;

usually, we stop when the mean square error
1
n

n∑
i=1

(Δti)2

no longer exceeds a given threshold. This threshold is nor-
mally set up to be equal to the measurement noise level,
so that we stop iterations when the discrepancy between the
model and the observations falls below the noise level – i.e.,
when, for all practical purposes, the model is adequate.

Algorithm for the inverse problem: details. Let us de-
scribe, in more detail, how the above auxiliary linear system
of equations with unknown Δsj is usually solved. In other
words, for a given cell j, how do we find the correction Δsj

to the current value of slowness sj in this cell?

Let us first consider the simplified case when there is
only path, and this path is going through the j-th cell. In this
case, cells through which this path does not go do not need
any correction. To find the corrections Δsj for all the cells
j through which this path goes, we only have one equation∑
j

�ij ·Δsj = Δti. The resulting system of linear equations

is clearly under-determined: we have a single equation to
find the values of several variables Δsj . Since the system
is under-determined, we have a infinite number of possible
solutions. Our objective is to select the most geophysical
reasonable of these solutions.

For that, we can use the following idea. Our single obser-
vation involves several cells; we cannot distinguish between
the effects of slownesses in different cells, we only observe
the overall effect. Therefore, there is no reason to assume
that the value Δsj in one of these cells is different from the
values in other cells. It is thus reasonable to assume that
all these values are close to each other: Δsj ≈ Δsj′ . The
least squares method enables us to describe this assumption
as minimization of the objective function

∑
j,j′

(Δsj −Δsj′)2

under the condition that
∑

�ij · Δsj = Δti. The minimum
is attained when all the values Δsj are equal. Substituting
these equal values into the equation

∑
j

�ij ·Δsj = Δti, we

conclude that Li ·Δs = Δti, where Li =
∑
j

�ij is the over-

all length of i-th path. Thus, in the simplified case in which
there is only one path, to the slowness of each cell j along

this path, we add the same value Δsj =
Δti
Li

.

Let us now consider the realistic case in which there are
many paths, and moreover, for many cells j, there are many
paths i which go through the corresponding cell. For a given
cell j, based on each path i passing through this cell, we
can estimate the correction Δsj by the corresponding value

Δsij
def=

Δti
Li

. Since there are usually several paths going

through the j-th cell, we have, in general, several different
estimates Δsj ≈ Δsij . Again, the least squares approach
leads to

∑
i

(Δsj − Δsij)2 → min, hence to Δsj as the

arithmetic average of the values Δsij .

Comment. To take into account that paths with larger �ij

provide more information, researchers also used weighted
average, with weight increasing with �ij .

Successes of the known algorithms. The known algo-
rithms have been actively used to reconstruct the slow-
nesses, and, in many practical situations, they have led to
reasonable geophysical models.

Limitations of the known algorithms. Often, the veloc-
ity model that is returned by the existing algorithm is not
geophysically meaningful: e.g., it predicts velocities out-
side of the range of reasonable velocities at this depth. To
avoid such situations, it is desirable to incorporate the ex-
pert knowledge into the algorithm for solving the inverse
problem.

In our previous papers [2, 3, 13], we described how to do
it. Specifically, we proposed a O(c log(c)) time algorithm
for taking interval prior knowledge into account.

In this paper, we provide a detailed motivation for that al-
gorithm, and we use this motivation to design a new, faster,
linear-time (O(c)) for solving this problem.

3. Case of Interval Prior Knowledge: Descrip-
tion and Known Algorithm

Interval prior knowledge. For each cell j, a geophysicist
often provides us with his or her estimate of possible val-
ues of the corresponding slowness sj . Often, this estimates
comes in the form of an interval [sj , sj] that is guaranteed
to contain the (unknown) actual value of slowness.

It is desirable to modify Hole’s algorithm in such a way
that on all iterations, slownesses sj stay within the cor-
responding intervals. Such a modification is described in
[2, 3, 13].

Analysis of the problem and our main idea. Once we
know the current approximations s

(k)
j to slownesses, then,

along each path i, we want to find the corrections Δsij

which provide the desired compensation, i.e., for which

c∑
j=1

�ij · Δsij = Δti. (1)

In Hole’s algorithm, we select Δsij =
Δti
Li

. With the ad-

ditional knowledge, we may not be able to do this, because
we want to make sure that the corrected values of slowness
stay within the corresponding intervals

sj ≤ s
(k)
j + Δsij ≤ sj , (2)

i.e., equivalently, that

Δj ≤ Δsij ≤ Δj , (3)

where Δj
def= sj − s

(k)
j and Δj

def= sj − s
(k)
j . Since s

(k)
j ∈

[sj , sj], we conclude that Δj ≤ 0 and Δj ≥ 0 – i.e., all
lower endpoints are non-positive and all upper endpoints
are non-negative.

How can we achieve this goal?
For each cell j, after an iteration of, say, Hole’s algo-

rithm, we have a corrected value of the slowness s
(k+1)
j =

s
(k)
j +Δsij which approximates the actual (unknown) slow-

ness sj : sj ≈ s
(k+1)
j . We also know that sj should be

located in the interval [sj , sj]. Similar to our previous anal-
ysis, it is therefore reasonable to use the Least Squares
Method to combine these two piece of information: i.e.,
we look for the value sj ∈ [sj , sj] for which the square

(sj −s
(k)
j)2 is the smallest possible. In geometric terms, we

look for the value within the given interval [sj , sj] which is

the closest to s
(k+1)
j . Thus:

• If the value s
(k+1)
j is already within the interval, we

keep it intact.

• If the value s
(k+1)
j is to the left of the interval, i.e., if

s
(k+1)
j < sj , then the closest point from the interval is

its left endpoint sj .

• Similarly, if the value s
(k+1)
j is to the right of the inter-

val, i.e., if s
(k+1)
j > sj , then the closest point from the

interval is its right endpoint sj .

In other words, e.g., for Δti > 0, we first find the universal
value Δs and then, for those j for which Δs > Δj , we
replace this value with Δj .

As a result, we arrive at the values Δsij which are all
equal to Δs – except for those values for which Δj < Δs;
for these values, Δsij = Δj .

Complications coming from a straightforward appli-
cation of this idea. Originally, before we took interval
prior knowledge into account, we had a full compensa-
tion for Δti. Now that we decreased some slownesses

Δsij , the resulting value of
c∑

j=1

�ij · Δsij is, in general,

smaller than Δti. Thus, there is a remaining discrepancy

Δt′i
def= Δti −

c∑
j=1

�ij · Δsij > 0.

To eliminate this discrepancy, we need to repeat the same
procedure: divide Δt′i by Li and again cut down those slow-
nesses that start going outside the corresponding intervals.
Because of this cutting down, we may still get some dis-
crepancy remaining, etc.

So, if we apply this idea in a straightforward way, we
may need a large number of iterations to fully compensate
for the original travel time discrepancy. The need for a large
number of iterations leads to a drastic increase in computa-
tion time – which, for the seismic inverse problems, is al-
ready large.

It is therefore desirable to avoid these iterations and di-
rectly come up with a solution which provides the needed
compensation of the travel time and at the same time, keeps
all the corrected slownesses within the corresponding inter-
vals.

Formulation of the problem in precise terms. For
Δti > 0, we would like to find a value Δs > 0 such that
if we take Δsij = Δs for all j for which Δs ≤ Δj and
Δsij = Δj for all other j, then we will satisfy the equation
(1).

For Δti < 0, we would like to find a value Δs < 0 such
that if we take Δsij = Δs for all j for which Δs ≥ Δj and
Δsij = Δj for all other j, then we will satisfy the equation
(1).

Analysis of the problem. In the desired solution, we have
Δsij = Δj for the values j for which Δj is smaller than a
certain threshold.

This desired solution is easier to describe if we first soft
all the values Δj into a non-decreasing sequence

Δ(1) ≤ Δ(2) ≤ . . . ≤ Δ(c).

Then, in the desired solution, there is some index p for
which Δsi(j) = Δ(j) for all j ≤ p. The common value
Δs for the indices j > p can be found from the condition
(1), i.e., from the condition that Ap +Lp ·Δs = Δti, where

we denoted Ap
def=

p∑
i=1

�(i)j · Δ(j) and Lp
def=

c∑
j=p+1

�i(j).

Therefore, we will get Δs =
Δti − Ap

Lp
.

For the correctly selected index p, all values Δ(j) for
which we “cut off” must be smaller than this Δs, and all

the other values Δ(j) must be larger than (or equal to) this
Δs. Since the values Δ(j) are sorted in increasing order, it
is sufficient to check that Δ(p) < Δs ≤ Δ(p+1).

If for some p, we get Δs > Δ(p+1), this means that need
to cut some more – otherwise, for j = p + 1, we will still
have the value outside the desired interval. On the other
hand, if we get Δs ≤ Δ(p), then there was no reason to cut
off at p-th level – so we need to cut less.

Designing an algorithm. This analysis can be naturally
be translated into an algorithm. First, we sort the values
Δj ; sorting takes time O(c · log(c)); see, e.g., [7]. Then, for

every p from 0 to n, we compute the value Δs =
Δti − Ap

Lp

and check whether Δ(p) < Δs ≤ Δ(p+1). Once we
know Ap, computing Ap+1 requires just one step – since
we need to add one term to the sum. Thus, we to com-
pute all c such values, we need O(c) steps – to the total of
O(c · log(c)) + O(c) = O(c · log(c)). So, we arrive at the
following algorithm.

Resulting algorithm. It is sufficient to describe the case
when Δti > 0 (the case when Δti < 0 is treated similarly).
In this case, we first sort all c values Δj along the i-th path
into a non-decreasing sequence

Δ(1) ≤ Δ(2) ≤ . . . ≤ Δ(c).

Then, for every p from 0 to c, we compute the values Ap

and Lp as follows: A0 = 0, L0 = Li,

Ap = Ap−1 + �i(p) · Δ(p), Lp = Lp−1 − �i(p).

After that, for each p, we compute Δs =
Δti − Ap

Lp
and

check whether Δ(p) < Δs ≤ Δ(p+1). Once this condition
is satisfied, we take Δsi(j) = Δ(j) for j ≤ p, and Δsi(j) =
Δs for j > p.

When Δti < 0, we similarly sort the values Δj into a
decreasing sequence, and find p so that the first p correc-
tions are “maxed out” to Δj , and the rest c − p corrections

are determined from the condition Δs =
Δti − Ap

Lp
.

Comment. Once we have computed these corrections for
all the paths, then for each cell j, we take the average (or
weighted average) of all the corrections coming from all the
paths which pass through this cell.

Example showing efficiency (and feasibility) of the new
approach. Let us consider a simple example of two ver-
tical layers of height d (see above picture), with s > s′.
We assume that the structure below the second layer is so

heavy that all the signals simply bounce back from the bot-
tom of the second layer (in real geological situations, this
is what happens, e.g., at the Moho surface). For simplicity,
we consider only one signal.

Usually, the closer to the surface, the more information
we have about the layer. In this example, we assume that
we know s exactly, but we only know an approximate value

s̃ ′ for s′ (Δs′ def= s̃ ′ − s′ �= 0). We start with the known
values s and s̃ ′ and perform iterations following both the
original Hole’s algorithm and the new interval method.

When the angles ϕ and ϕ′ are small (ϕ � 1, ϕ′ � 1),
then sin(ϕ) ≈ ϕ, sin(ϕ′) ≈ ϕ′, and we can analytically
trace the computations; for details, see [3]. For example,
the horizontal distance between the source and the sensor is
2d · (tan(ϕ) + tan(ϕ′)) ≈ 2d · (ϕ + ϕ′).

In the original Hole’s algorithm, the discrepancy in the
travel times is uniformly divided between the whole path.
As a result, we replace the original approximate slowness

s̃ ′ = s′ + Δs′ with a more accurate estimate s′ +
Δs′

2
.

Hence, the approximation error decreases by a factor of 2.
So, e.g., in 7 iterations, we can reduce this error to < 1%
level.

In the new method, we take into account that the value
s is already known, i.e., that it is within the given interval
[s, s]. In this case, the entire discrepancy is corrected by
changing only the value s′. Hence, we get the correct value
s′ in a single iteration.

4. Case of Interval Prior Knowledge: A New
Linear Time Algorithm

Motivation: a linear-time algorithm exists for a simi-
lar problem of minimizing variance without linear con-
straints. As we have mentioned, the original Hole’s code
formulas are related to minimize the variance under a linear
constraint (1).

In general, the problem of minimizing variance under in-
terval uncertainty has many other practical applications be-
yond geophysics. (The only difference is that in most appli-
cations, there is no linear constraint similar to (1)). In par-
ticular, this general problem has application in geophysics
[22, 23].

For this general problem, we have also proposed an O(c ·
log(c)) algorithm; see, e.g., [15, 16] and references therein.

Recently, we have designed a new algorithm that com-
putes the desired minimum in linear time O(c) [27]. In this
paper, we show that a similar linear-time algorithm can be
proposed for the case when we want to minimize the vari-
ance under an additional linear constraint.

An auxiliary algorithm behind the existing linear-time
algorithm. The linear-time algorithm from [27] is based

on the known fact that we can compute the median of a set
of n elements in linear time; see, e.g., [7].

The use of median in this algorithm is similar to the one
from [6, 10].

A new linear-time algorithm. The proposed algorithm is
iterative. At each iteration of this algorithm, we have three
sets:

• the set J− of all the indices j from 1 to c for which we
already know that in the desired solution, the corre-
sponding value Δsij will be cut off (i.e., Δsij = Δj);

• the set J+ of all the indices j for which we already
know that in the desired solution, the corresponding
value Δsij will not be cut off (i.e., Δsij < Δj);

• the set J = {1, . . . , c} − J− − J+ of the indices j for
which we are still undecided.

In the beginning, J− = J+ = ∅ and J = {1, . . . , c}. At
each iteration, we also update the values of two auxiliary

quantities A− def=
∑

j∈J−
�ij ·Δj and L+ def=

∑
j∈J+

�ij . In prin-

ciple, we could compute these values by computing these
sums, but to speed up computations, on each iteration, we
update these two auxiliary values in a way that is faster than
re-computing the corresponding two sums. Initially, since
J− = J+ = ∅, we take A− = L+ = 0.

At each iteration, we do the following:

• first, we compute the median m of the set J (median
in terms of sorting by Δj);

• then, by analyzing the elements of the undecided set J
one by one, we divide them into two subsets

P− def= {j : Δj ≤ Δm}, P+ def= {j : Δj > Δm};

• we compute a− def= A− +
∑

j∈P−
�ij · Δj and

�+
def= L+ +

∑
j∈P+

�ij ;

• then, we compute Δs =
Δi − a−

�+
; also, among all the

values from P+, we select the smallest value, which
we will denote by Δ(p+1);

• if Δs > Δ(p+1), then we replace J− with J− ∪ P−,
A− with a−, and J with P+;

• if Δs ≤ Δm, then we replace J+ with J+ ∪ P+, L+

with �+, and J with P−;

• finally, if Δm < Δs ≤ Δ(p+1), then we replace J−

with J− ∪ P−, J+ with J+ ∪ P+, and J with ∅.

At each iteration, the set of undecided indices is divided in
half. Iterations continue until all indices are decided, after
which we return Δsij = Δsj when Δj ≤ Δm and Δsij =
Δs otherwise.

Proof that the new algorithm for computing V requires
linear time. At each iteration, computing median requires
linear time, and all other operations with J require time t
linear in the number of elements |J | of J : t ≤ C · |J | for
some constant C. We start with the set J of size c; on the
next iteration, we have a set of size c/2, then c/4, etc. Thus,
the overall computation time is ≤ C ·(c+c/2+c/4+. . .) ≤
C · 2c, i.e., linear in c.

5. Case of Fuzzy Prior Knowledge

Main idea. As we have mentioned, one of the reasons
why the mathematically valid solution is not geophysically
meaningful is that at some points, the velocity is outside the
interval of values which are possible at this depth for this
particular geological region.

Additional information provided by experts: general
case. To take this expert knowledge into consideration, it
is reasonable to explicitly solicit, from the experts, the in-
formation about possible values of slownesses – and then
modify the inverse algorithms in such a way that the veloc-
ities are consistent with this knowledge.

Specifically, for each cell j, a geophysicist provides us
with his estimate of possible values of the corresponding
slowness sj . As we have mentioned, an expert often de-
scribes this information by using words from the natural
language, like “most probably, the value of slowness is
within 6 and 7, but it is somewhat possible to have values
between 5 and 8”. To formalize this knowledge, it is natural
to use fuzzy set theory, a formalism specifically designed
for describing this type of informal (“fuzzy”) knowledge;
see, e.g., [4, 8, 14, 21]

As a result, for every cell j, we have a fuzzy set μj(s)
which describes the expert’s prior knowledge about sj . For
every cell j and for each possible value sj , the number
μj(sj) describes the expert’s degree of certainty that sj is a
possible value of the corresponding slowness.

An alternative user-friendly way to represent a fuzzy set
is by using its α-cuts {s |μj(s) > α} (or {s |μj(s) ≥ α});
see, e.g., [5, 14, 19, 20, 21]. For example, the α-cut cor-
responding to α = 0 is the set of all the values which are
possible at all, the α-cut corresponding to α = 0.1 is the set
of all the values which are possible with degree of certainty
at least 0.1, etc. In these terms, a fuzzy set can be viewed as

a nested family of intervals [sj(α), sj(α)] corresponding to
different level α.

Comment. For some cells – e.g., in some cells which are
close to the surface and for which the geophysical struc-
ture is well known – we may even know the exact values sj

of slowness. Since a crisp number is a particular case of a
fuzzy set, this information can also be expressed in fuzzy
terms – by saying that for each of these cells, the geophysi-
cist provides us with a crisp set {sj}.

In terms of α-cuts, this means that for every degree α,
the corresponding intervals are degenerate intervals [sj , sj].

How to use this expert knowledge in solving the seis-
mic inverse problem: precise formulation of the corre-
sponding optimization problem. In general, the solution
(s1, s2, . . .) is satisfactory if s1 is a possible value of slow-
ness in the first cell, and s2 is a possible value of slowness in
the second cell, etc. The corresponding membership func-
tions μj(sj) describe to what extent sj is the possible value
of slowness in the j-th cell. So, if we use the simplest pos-
sible min operation to describe “and”, we conclude that the
degree with which a solution is satisfactory can be described
by the value min(μ1(s1), μ2(s2), . . .).

When we solve the inverse problem, it is reasonable to
look for a solution for which this degree of satisfaction is
the largest possible: min(μ1(s1), μ2(s2), . . .) → max .

How can we solve this problem: reduction to the case of
interval uncertainty. Maximizing the overall degree of
satisfaction means that we want to find the largest value α
for which μj(sj) ≥ α for all j, i.e., for which, for every
cell j, the slowness sj belongs to the corresponding interval
[sj(α), sj(α)].

For each α, we thus face an auxiliary interval uncertainty
problem: for each cell, we know the corresponding inter-
val, and we want to find a solution to the seismic inverse
problem for which all the slownesses are within the corre-
sponding intervals. It is worth mentioning that this interval
problem can be of separate practical interest: it is a particu-
lar case of the fuzzy uncertainty problem corresponding to
the case when the only information coming from an expert
is an interval [sj , sj] of possible value of each slowness sj .

Once we know how to solve this interval problem, we
can easily solve the original fuzzy problem as follows. For
each α = 0, α = 0.1, α = 0.2, etc., we solve the inter-
val problem with the corresponding intervals [sj(α), sj(α)].
Eventually, we will reach such a value of α that the process
no longer converges – so the inverse problem with these too
narrow interval restriction does not have a solution. Then,
the solution corresponding to the previous value α – i.e.,
to the largest value α for which the process converged – is

returned as the desired solution to the seismic inverse prob-
lem.

6. Case of Probabilistic Prior Knowledge

Often, prior information comes from processing previ-
ous observations of the region of interest. In this case, be-
fore our experiments, for each cell j, we know a prior (ap-
proximate) slowness value s̃j , and we know the accuracy
(standard deviation) σj of this approximate value s̃j . It is
known that this prior information can lead to much more ac-
curate velocity models; see, e.g., [18]. How can we modify
Hole’s algorithm so that it takes this prior information into
account?

Due to the prior knowledge, for each cell j, the ratio
(s(k)

j + Δsij) − s̃j

σj
is normally distributed with 0 mean and

variance 1. Since each path i consists of a reasonable num-
ber of cells, we can thus conclude that the sample variance
of this ratio should be close to σj , i.e., that

1
n
·

c∑
j=1

((s(k)
j + Δsij) − s̃j)2

σ2
j

= 1. (4)

So, to find the corrections Δsij , we must minimize the ob-
jective function (variance)

V
def=

1
n
·

c∑
j=1

Δs2
ij −

⎛
⎝ 1

n
·

c∑
j=1

Δsij

⎞
⎠

2

. (5)

under the constraints (1) and (4).
By applying the Lagrange multiplier method to this

problem, we can reduce this problem to the unconstrained
minimization problem

1
n
·

c∑
j=1

Δs2
ij −

⎛
⎝ 1

n
·

c∑
j=1

Δsij

⎞
⎠

2

+

λ ·
⎛
⎝ c∑

j=1

�ij · Δsij − Δti

⎞
⎠ +

μ · 1
n
·

c∑
j=1

(s(k)
j + Δsij − s̃j)2

σ2
j

→ min . (6)

Differentiating this equation by Δsij and equating the
derivative to 0, we conclude that

2
n
·Δsij − 2

n
·Δs+λ ·�ij +

2μ

n · σ2
j

·(s(k)
j +Δsij − s̃j) = 0,

where

Δs
def=

1
n
·

c∑
j=1

Δsij . (7)

Once we fix λ, μ, and Δs, we get an explicit expression
for the values Δsij . Substituting these expressions into the
equations (1), (4), and (7), we get an easy-to-solve system
of 3 non-linear equations with 3 unknowns, which we can
solve, e.g., by using Newton’s method.

Now, instead of explicit formulas for a transition from
s
(k)
j to s

(k+1)
j , we need a separate iteration process – so the

computation time is somewhat larger, but we get a more
geophysically meaningful velocity map – that takes prior
knowledge into account.

7. Case of Multiple-Type Prior Knowledge

Practical need for prior knowledge: reminder. In many
real-life problems, it is difficult or even impossible to di-
rectly measure the desired physical quantities. In such sit-
uations, we measure other quantities, which are related to
the desired ones by known formulas, and then reconstruct
the values of the desired quantities from these measurement
results.

The reconstructed values of the desired quantities are
sometimes outside the range of what an expert would con-
sider reasonable. In such situations, it is desirable to de-
scribe the expert’s knowledge (about what is reasonable) as
a precisely formulated constraint on the desired values, and
to incorporate these constraints into the reconstruction pro-
cess.

In the previous sections, we have shown that different
types of expert knowledge can be naturally formalized in
interval, fuzzy, and probabilistic terms. We also showed, on
the example of the seismic inverse problem, how each of
these types of expert knowledge can be used in the solution
process.

Practical need for multiple-type prior knowledge. Pre-
viously, we (implicitly) assumed that we have only one type
of expert knowledge – e.g., only interval knowledge, or only
fuzzy knowledge, etc. In some practical situations, how-
ever, we may have multiple-type expert knowledge: e.g.,
one expert provides interval bounds, another expert pro-
vides probabilistic knowledge, etc.

This multiple-type prior knowledge is especially impor-
tant for cyberinfrastructure. The main objective of cyberin-
frastructure is to be able to seamlessly move data between
different databases (where this data is stored in different for-
mats), to feed the combined data into a remotely located
program (which may require yet another data format), and
to return the result to the user; see, e.g., [1, 12, 25]. It is also
important to gauge the quality and accuracy of this result.

We often have different models for describing uncertainty
of different databases and programs; it is therefore impor-
tant to be able to consider multiple-type prior knowledge;
see, e.g., [9, 17].

How to use multiple-type prior knowledge in the seis-
mic inverse problem. We have mentioned that in the tra-
ditional approach, we minimize (5) under the constraint (1).
Different types of prior knowledge mean adding constraints
on Δsij . Probabilistic prior knowledge is naturally formal-
ized as a constraint (4), and interval prior knowledge is nat-
urally formalized as a constraint (2). Thus, when both prob-
abilistic and interval prior knowledge are present, we must
minimize (5) under the constraints (1), (2), and (4).

If we replace the equality in (4) by an inequality (≤ 1
instead of = 1), then we get a problem of minimizing a con-
vex function under convex constraints, a problem for which
there are known efficient algorithms; see, e.g., [26].

For example, we can use a method of alternating pro-
jections, in which we first add a correction that satisfy the
first constraint, then the additional correction that satisfies
the second constraint, etc. In our case, we first add equal
values of Δsij to satisfy the constraint (5), then we restrict
the values to the nearest points from the interval [sj , sj] – to
satisfy the constraint (2), and after that, find the extra cor-
rections that satisfy the condition (4), after which we repeat
the cycle again until the process converges.

8 Conclusion

The paper deals with the difficult seismic inverse prob-
lem, in which a 3-D field (velocities of the seismic waves)
has to be reconstructed. The classical approach is to trans-
form this problem into a huge non-linear system of equation
and to use iterative techniques to solve the problem. Often,
the classical approach leads to solutions that are not real-
istic. However, the expert has an idea of what he should
not get and he can express this idea as a set of constraints.
The main contribution of the paper is to add these additional
knowledge, given by the expert, to the classical approach,
inside the iterative method.

Acknowledgments. This work was supported in part
by NASA under cooperative agreement NCC5-209, NSF
grants EAR-0225670 and DMS-0532645, Star Award from
the University of Texas System, and Texas Department of
Transportation grant No. 0-5453.

The authors are thankful to participants of SCAN’06 for
valuable discussions and to the anonymous referees for use-
ful suggestions.

References

[1] R. Aldouri, G. R. Keller, A. Gates, J. Rasillo, L. Salayandia,
V. Kreinovich, J. Seeley, P. Taylor, and S. Holloway. GEON:
Geophysical data add the 3rd dimension in geospatial studies.
In: Proceedings of the ESRI International User Conference
2004, San Diego, California, August 9–13, 2004, Paper 1898.

[2] M. G. Averill, K. C. Miller, G. R. Keller, V. Kreinovich,
R. Araiza, S. A. Starks. Using expert knowledge in solving
the seismic inverse problem. In: Proceedings of the 24nd In-
ternational Conference of the North American Fuzzy Informa-
tion Processing Society NAFIPS’2005, Ann Arbor, Michigan,
June 22–25, 2005, pp. 310–314.

[3] M. G. Averill, K. C. Miller, G. R. Keller, V. Kreinovich,
R. Araiza, and S. A. Starks. Using expert knowledge in solv-
ing the seismic inverse problem. International Journal of Ap-
proximate Reasoning (to appear).

[4] G. Bardossy and J. Fodor. Evaluation of Uncertainties and
Risks in Geology. Springer Verlag, Berlin, 2004.

[5] G. Bojadziev and M. Bojadziev. Fuzzy Sets, Fuzzy Logic, Ap-
plications, World Scientific, Singapore, 1995.

[6] P. van der Broek and J. Noppen. Fuzzy weighted average: al-
ternative approach. In: Proceedings of the 25th International
Conference of the North American Fuzzy Information Pro-
cessing Society NAFIPS’2006, Montreal, Quebec, Canada,
June 3–6, 2006.

[7] Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-
troduction to Algorithms. MIT Press, Cambridge, MA, 2001.

[8] R. Demicco and J. Klir (Eds.). Fuzzy Logic in Geology. Aca-
demic Press, New York, 2003.

[9] A. Gates, V. Kreinovich, L. Longpré, P. Pinheiro da Silva, and
G. R. Keller. Towards secure cyberinfrastructure for sharing
border information. In: Proceedings of the Lineae Terrarum:
International Border Conference, El Paso, Las Cruces, and
Cd. Juárez, March 27–30, 2006.

[10] P. Hansen, M. V. P. de Aragao, and C. C. Ribeiro. Hyperbolic
0-1 programming and optimization in information retrieval.
Math. Programming. 52:255–263, 1991.

[11] J. A. Hole. Nonlinear high-resolution three-dimensional
seismic travel time tomography. J. Geophysical Research
97:6553–6562, 1992.

[12] G. R. Keller, T. G. Hildenbrand, R. Kucks, M. Webring, A.
Briesacher, K. Rujawitz, A. M. Hittleman, D. R. Roman, D.
Winester, R. Aldouri, J. Seeley, J. Rasillo, R. Torres, W. J.
Hinze, A. Gates, V. Kreinovich, and L. Salayandia. A com-
munity effort to construct a gravity database for the United
States and an associated Web portal”, In: A. K. Sinha (ed.),
Geoinformatics: Data to Knowledge, Geological Society of
America Publ., Boulder, Colorado, 2006, pp. 21–34.

[13] G. R. Keller, S. A. Starks, A. Velasco, M. Averill, R. Araiza,
G. Xiang, and V. Kreinovich. Towards combining probabilis-
tic, interval, fuzzy uncertainty, and constraints: on the exam-
ple of inverse problem in geophysics. In: Proceedings of the
Second International Conference on Fuzzy Sets and Soft Com-
puting in Economics and Finance FSSCEF’2006, St. Peters-
burg, Russia, June 28–July 1, 2006, pp. 47–54.

[14] G. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice
Hall, New Jersey, 1995.

[15] V. Kreinovich, L. Longpré, S. A. Starks, G. Xiang, J. Beck,
R. Kandathi, A. Nayak, S. Ferson, and J. Hajagos. Interval
versions of statistical techniques, with applications to envi-
ronmental analysis, bioinformatics, and privacy in statistical
databases. Journal of Computational and Applied Mathemat-
ics, 199(2):418–423, 2007.

[16] V. Kreinovich, G. Xiang, S. A. Starks, L. Longpré, M. Ce-
berio, R. Araiza, J. Beck, R. Kandathi, A. Nayak, R. Torres,
and J. Hajagos. Towards combining probabilistic and interval
uncertainty in engineering calculations: algorithms for com-
puting statistics under interval uncertainty, and their computa-
tional complexity. Reliable Computing, 12(6):471–501, 2006.

[17] L. Longpré and V. Kreinovich. How to efficiently process un-
certainty within a cyberinfrastructure without sacrificing pri-
vacy and confidentiality. In: N. Nedjah, A. Abraham, and L.
de Macedo Mourelle (Eds.), Computational Intelligence in In-
formation Assurance and Security, Springer-Verlag, Berlin-
Heidelberg (to appear).

[18] M. Maceira, S. R. Taylor, C. J. Ammon, X. Yang, A. Ve-
lasco. High-resolution Rayleigh wave slowness tomography
of Central Asia. Journal of Geophysical Research, Vol. 110,
paper B06304, 2005.

[19] R. E. Moore and W. A. Lodwick. Interval analysis and fuzzy
set theory. Fuzzy Sets and Systems, 135(1):5–9, 2003.

[20] H. T. Nguyen and V. Kreinovich. Nested intervals and
sets: concepts, relations to fuzzy sets, and applications. In:
R. B. Kearfott and V. Kreinovich (eds.). Applications of Inter-
val Computations, Kluwer, Dordrecht, 1996, pp. 245–290.

[21] H. T. Nguyen and E. A. Walker. A First Course in Fuzzy
Logic. CRC Press, Boca Raton, Florida, 2005.

[22] P. Nivlet, F. Fournier, and J. Royer. A new methodology
to account for uncertainties in 4-D seismic interpretation. In:
Proc. 71st Annual Int’l Meeting of Soc. of Exploratory Geo-
physics SEG’2001, San Antonio, TX, September 9–14, 2001,
1644–1647.

[23] P. Nivlet, F. Fournier, and J. Royer. Propagating interval
uncertainties in supervised pattern recognition for reservoir
characterization. In: Proc. 2001 Society of Petroleum Engi-
neers Annual Conf. SPE’2001, New Orleans, LA, September
30–October 3, 2001, paper SPE-71327.

[24] R. L. Parker. Geophysical Inverse Theory. Princeton Univer-
sity Press, Princeton, New Jersey, 1994.

[25] A. K. Sinha (ed.), Geoinformatics: Data to Knowledge, Ge-
ological Society of America Publ., Boulder, Colorado, 2006.

[26] S. A. Vavasis. Nonlinear Optimization: Complexity Issues.
Oxford University Press, New York, 1991.

[27] G. Xiang, M. Ceberio, and V. Kreinovich. Computing Pop-
ulation Variance and Entropy under Interval Uncertainty:
Linear-Time Algorithms. University of Texas at El Paso, De-
partment of Computter Science, Technical Report UTEP-CS-
06-28b, November 2006.

[28] C. A. Zelt and P. J. Barton. Three-dimensional seismic re-
fraction tomography: A comparison of two methods ap-
plied to data from the Faeroe Basin. J. Geophysical Research
103:7187–7210, 1998.

Adding Constraints to Situations When, In Addition to Intervals, We Also Have
Partial Information about Probabilities

Martine Ceberio
Vladik Kreinovich

Gang Xiang
Dept. of Computer Science

University of Texas at El Paso
El Paso, TX 79968, USA
contact vladik@utep.edu

Scott Ferson
Applied Biomathematics
100 North Country Road

Setauket, NY 11733, USA
scott@ramas.com

Cliff Joslyn
Distributed Knowl. Syst. Team

Computer Research Group
Los Alamos National Lab

Mail Stop B265
Los Alamos, NM 87545, USA

joslyn@lanl.gov

Abstract

In many practical situations, we need to combine prob-
abilistic and interval uncertainty. For example, we need to

compute statistics like population mean E =
1
n
·

n∑
i=1

xi or

population variance V =
1
n

·
n∑

i=1

(xi − E)2 in the situa-

tions when we only know intervals xi of possible values of
xi. In this case, it is desirable to compute the range of the
corresponding characteristic.

Some range computation problems are NP-hard; for
these problems, in general, only an enclosure is possible.
For other problems, there are efficient algorithms. In many
practical situations, we have additional information that
can be used as constraints on possible cumulative distri-
bution functions (cdfs). For example, we may know that the
actual (unknown) cdf is Gaussian. In this paper, we show
that such constraints enable us to drastically narrow down
the resulting ranges – and sometimes, transform the origi-
nally intractable (NP-hard) computational problem of com-
puting the exact range into an efficiently solvable one.

This possibility is illustrated on the simplest example of
an NP-problem from interval statistics: the problem of com-
puting the range V of the variance V .

We also describe how we can estimate the amount of in-
formation under such combined intervals-and-constraints
uncertainty.

1. Formulation of the Problem

Statistical analysis is important. Statistical analysis of
measurement and observation results is an important part of

data processing and data analysis. When faced with new
data, engineers and scientists usually start with estimating
standard statistical characteristics such as the mean E, the
variance V , the cumulative distribution function (cdf) F (x)
of each variable, and the covariance and correlation between
different variables. In the traditional statistical analysis, we
estimate the value of each characteristic by computing the
corresponding statistic C(x1, . . . , xn), such as:

• population mean E =
1
n
·

n∑
i=1

xi;

• population variance V =
1
n
·

n∑
i=1

(xi − E)2;

• histogram cdf Fn(x) =
#i : xi ≤ x

n
(where #i : P (i)

denotes “the number of i for which P (i) is true”);

• population covariance

Cx,y =
1
n
·

n∑
i=1

(xi − Ex) · (yi − Ey).

Limitations of traditional statistical techniques and the
need to consider interval uncertainty. Traditional meth-
ods of statistical analysis assume that the measured values
x̃1, . . . x̃n are the actual values x1, . . . , xn of the measured
quantities. These methods work well if the variability of
each variable is much higher than the measurement errors

Δxi
def= x̃i − xi. For example, the accuracy with which we

measure a person’s height (≈ 1 cm) is much smaller than
the variability in height between different people.

In many practical situations, however, the measurement
errors are of the same order of magnitude as variability and

therefore, cannot be ignored. Often, the only information
that we have about the measurement errors is that they are
upper bounded by Δi – and we have no information about
the probabilities of different values Δxi ∈ [−Δi,Δi]. In
such situations, the only information we have after the mea-
surements about the (unknown) actual value xi is that xi

belongs to the intervals xi
def= [x̃i − Δi, x̃i + Δi].

In the case of interval uncertainty, instead of the actual
(exact) values xi, we only know the intervals xi of possible
values of xi. In this case, we must find the range

C = C(x1, . . . ,xn) def=

{C(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}
of possible values of the given statistic.

Adding interval uncertainty to statistical techniques:
what is known. There is a lot of research for computing
such ranges. Some range computation problems are NP-
hard – even the problem of computing the range for the pop-
ulation variance is, in general, NP-hard; see, e.g., [6, 9]. For
such problems, in general, we can only compute an enclo-
sure for the desired range.

For other problems, there are efficient algorithms; see,
e.g., [2, 6, 9, 11] and references therein. For example, effi-
cient algorithms are possible:

• for computing the range E of the population mean E,

• for computing the lower endpoints V of the range of
variance,

• for computing the upper endpoint V of the range of
variance when the intervals xi are not contained in
each other, i.e., [xi, xi] �⊆ (xj , xj) for all i and j,

• etc.

Limitations of the existing approach. To explain the
main limitation of the existing approach, let us briefly sum-
marize what this approach is doing:

• we start with a statistic C(x1, . . . , xn) for estimating a
given characteristic S;

• we evaluate this statistic under interval uncertainty, re-
sulting in C = C(x1, . . . ,xn).

The main limitation of this idea is that a statistic is only an
approximation to the desired statistical characteristic, i.e.,
C(x1, . . . , xn) ≈ S. For example, the population mean is
only approximately equal to the mean value of the random
quantity; similarly, the population variance is only an ap-
proximation to the actual variance, etc.

The approximation error C(x1, . . . , xn) − S �= 0 is not
always taken into account when we take the interval range
C as the range of the actual values of S.

For example, in this approach, if the values xi are known
exactly, then as a range of the population average, we will

get a single number E =
1
n
·

n∑
i=1

xi – while in reality, the

actual mean can differ from this population average.

Seemingly natural solution can lead to excess width. A
natural solution is that, instead of the original statistic C,
we consider the bounds C− and C+ of the corresponding
confidence interval [C−, C+].

By definition of the confidence interval, this interval
contains the actual value of the characteristic S with an
appropriate certainty. For example, under reasonable as-
sumptions (e.g., if the distribution is Gaussian), the interval

[E − k0 · σ,E + k0 · σ], where σ
def=

√
V and k0 (usually,

2, 3, or 6) is a given constant.

Thus, if we compute the interval range [C−, C
−

] and

[C+, C
+
] for the statistics C− and C+, then the corre-

sponding interval [C−, C
+

] is an enclosure for S (with ap-
propriate certainty). The ranges for C− and C+ can indeed
be often efficiently computed [1, 5, 6, 9].

The problem with this idea is that a confidence interval
is often defined so as to contain the actual value – but not
necessarily as the narrowest interval that contains this value.
As a result, the interval [C−, C

+
] may contain excess width.

New idea. Let us instead find the actual range

S = {S(F) : F is possible}

of the characteristic S. Estimating this range is the main
problem that we will be solving in this paper.

To solve this main problem, we must be able to solve the
following closely related problem: how to describe class F
of all the probability distributions F which are consistent
with the given observations [xi, xi]?

2. How to Describe Possible Probability Distri-
butions: p-Boxes

Case of exactly known probability distribution. The
class of all probability distributions is infinite-dimensional;
thus, to exactly describe a probability distribution, we need
infinitely many parameters. In a computer, we can only
store and process finitely many numbers; thus, if we want
to represent probability distributions in a computer, we must
select finitely many characteristics that will actually be rep-
resenting this distribution.

To make this representation useful in practical applica-
tions, we must select characteristics which are practically
useful. In many practical example, there is a critical thresh-
old x0 after which some undesirable event happens: a chip
delays too much, a panel cracks, etc. In such situations, we
want to make sure that the probability of exceeding x0 is
small. The resulting characteristic Prob(xi ≤ x0) is the
value of the cumulative distribution function (cdf) F (x) for
x = x0.

Thus, from the practical viewpoint, it is beneficial to de-
scribe a probability distribution by its cdf F (x).

Case of partially known probability distribution.
When, for every x, we know the exact value of F (x), we
thus know the actual probability distribution exactly. So,
when we only have partial information about the probability
distribution, this means that we do not know the exact val-
ues of F (x). Instead, we may know, for every x, an interval
F(x) = [F (x), F (x)] that contains the actual (unknown)
value F (x).

Thus, a natural way to describe partial information about
a probability distribution is to describe, for every x, a func-
tion x → F(x). This function is called a p-box [2].

3. Estimates for Statistical Characteristics
Based on the Use of p-Boxes

New idea (reminder). We have several observations
x1, . . . , xn of a given random variable. These observations
may be exact – in which case, we know the exact values of
xi – or, more generally, they may consist of known inter-
vals xi which contain the actual (unknown) values xi of the
observed quantity.

Our objective is to estimate the value of a statistical char-
acteristic S based on these observations. Our new idea is
that we estimate S in two steps:

• first, we describe the class of all probability distribu-
tions which are consistent with the given observations;
since we agreed to represent such classes as p-boxes,
we must transform observations x1, . . . , xn into a p-
box;

• second, we estimate the range of the desired character-
istic S based on this p-box.

Kolmogorov-Smirnov (KS) p-box. In statistics, there is
a known way to produce bounds on cdfs (i.e., a p-box) from
observations: use Kolmorogov-Smirnov (KS) inequalities;
see, e.g., [7, 10].

The main idea behind KS inequalities is rather straight-
forward. Namely, for each x0, we have

• the actual (unknown) probability p = F (x0) that x ≤
x0, and

• the observed frequency Fn(x0) =
#i : xi ≤ x0

n
.

It is known that when n tends to infinity, then the distri-
bution for the frequency tends to normal. Thus, for large
n, this distribution is approximately normal. Hence, with
given certainty α, we have p− k · σ ≤ Fn(x0) ≤ p + k · σ,

where σ =

√
p · (1 − p)

n
is the standard deviation of this

simple random variable and k = k(α) is a factor that de-
termines the confidence level. So, with certainty α, we get
bounds on p = F (x0) in terms of Fn(x0).

We can now use these bounds for x0 = x1, . . . , x0 =
xn, and use monotonicity of the cdf F (x) to get bounds
[Fn(x) − ε, Fn(x) + ε] for all x ∈ [xi, xi+1].

Graphically, for a histogram

�

�

Fn(x)

x1 x2 x3

the Kolmogorov-Smirnov p-box takes the form:

�

�

Fn(x)

x1 x2 x3

For interval-valued data [xi, xi], instead of single his-
togram, we have a p-box [Fn(x), Fn(x)] formed by:

• the histogram Fn(x) generated by the values
x1, . . . , xn, and

• the histogram Fn(x) generated by the values
x1, . . . , xn.

To get a guaranteed bound (with appropriate certainty), we
perform the same ε-enlargement to this p-box, producing a
new p-box

F(x) = [max(Fn(x) − ε), 0),min(Fn(x) + ε, 1)].

Computing bounds for variance based on the KS p-box.
Most known algorithms for computing the lower and upper
bounds for the population variance under the interval uncer-
tainty (see, e.g., [6, 9]) use the results of the calculus-type
analysis of optimal values. Specifically, we use the follow-
ing facts:

• if the function V attains a maximum or minimum
for some value xi which is strictly inside the interval

[xi, xi], then
∂f

∂xi
= 0;

• if V attains a maximum for xi = xi, then
∂f

∂xi
≤ 0;

• if V attains a minimum for xi = xi, then
∂f

∂xi
≥ 0;

• if V attains a maximum for xi = xi, then
∂f

∂xi
≥ 0;

• if V attains a minimum for xi = xi, then
∂f

∂xi
≤ 0.

For the actual variance V =
∫

x2 dF (x) − (∫
x dF (x)

)2
,

a similar reasonably simple calculus-type analysis leads to
the following conclusions:

• the minimum V of the variance V is attained when the
cdf F (x) ∈ F(x) first follows the upper cdf F (x), then
stays horizonal, and then follows the lower cdf F (x):

�

�

Fn(x)

x1 x2 x3

• the maximum V of the variance V is attained when the
cdf F (x) ∈ F(x) first follows the lower cdf F (x), and
then jumps (vertically) to the upper cdf F (x):

�

�

Fn(x)

x1 x2 x3

Comment. The only difference with the case of popula-
tion variance – in which we have finitely many variables
x1 ∈ x1, . . . , xn ∈ xn – is that now we have an unknown
function F (x) ∈ F(x) – i.e., in effect, infinitely many vari-
ables F (x) ∈ F(x) corresponding to different values x.

Computational complexity of computing V and V . For
the bounds on the population variance:

• we can compute V in linear time O(n) [12];

• computing V is, in general, NP-hard;

• when [xi, xi] �⊆ (xj , xj), we can compute V in linear
time [12].

For the actual variance, if we use KS p-box, then the only
remaining question is when to make a jump. For n data
points, there are n possible interval containing this jump.
For each interval, finding the best location is an easy-to-
solve (quadratic) optimization problem with one variable,
so its complexity does not depend on n. Thus, by applying
the above observation:

• we can compute V in linear time O(n), and

• we can compute V in linear time O(n);

Conclusion. When we go from computing the range of
the population variance to computing the range of the actual
variance, we not only make our estimates more adequate –
we also, in general, make computations much faster.

4 How to Handle Additional Constraints

Possibility of additional information. In the previous
text, we assumed that the only information we have about
the cdf F (x) is that it is contained in the given p-box:
F (x) ∈ F(x). However, often, we have additional infor-
mation about F (x).

This information that can be used as constraints on pos-
sible cdfs F (x) ∈ F(x). It is desirable to use these con-
straints when estimating statistical characteristics – simi-
larly to the way constraints can be combined with traditional
interval computations; see, e.g., [3].

Types of additional information. Often, we sometimes
know the shape of F (x), i.e., we know that F (x) =
F0(x, a1, . . . , an) for a known function F0 and for some
parameters ai. Usually, we do not know the exact values
of each of these parameters; we may know the intervals
ai = [ai, ai] that contain the actual (unknown) values of
these parameters.

A typical situation is when this dependence is linear in
ai, i.e., when

F (x) = F0

(
n∑

i=1

ai · ei(x)

)
.

To be more precise, the known dependence may not be lin-
ear in terms of the given parameters, but it may be described
in this form if we use appropriate parameters.

For example, if we know that the actual distribution is

Gaussian, this means that F (x) = F0

(
x − a

σ

)
for some

parameters a and σ. With respect to the given parameters
a and σ, this dependence is not linear, but if we select new

parameters a1
def=

1
σ

and a2
def= − a

σ
, then we get the desired

linear form: F (x) = F0(a1 · x + a2).

How to take this additional information into account:
first seemingly natural solution. We have mentioned
that a natural way to represent a class of probability distribu-
tions is to find an appropriate p-box. Thus, it seems natural
to find a p-box containing this class, i.e., for every x, to find
the interval of possible values of F (x) corresponding to the
given class.

Once the p-box is found, we can then estimate the range
of the desired characteristic – e.g., of the variance V – based
on this p-box.

Limitations of the above seemingly natural approach.
This approach indeed provided a guaranteed bound (enclo-
sure) for the desired range – but it may also have excess
width.

For example, if we start with the family of all normal
distributions with 0 average and standard deviation σ from
a given interval [σ, σ], then the actual mean is always 0.
However, as one can easily check, the corresponding p-box
has non-zero width; as a result, it contains distribution with
non-zero mean – and thus, the enclosure for the mean com-
puted by using this p-box will contain non-zero values.

Towards exact estimates. Once we have a KS p-box
[F (x), F (x)] based on observations, we know that the ac-
tual (unknown) cdf F (x) must be within this interval for
all x:

F (x) ≤ F (x) ≤ F (x).

By definition, the KS p-box is obtained from the values at
x = xi via monotonicity: when xi < x < xi+1, we take
F (x) = F (xi) and F (x) = F (xi+1). Thus, to guarantee
that F (x) ∈ F(x) for all x, it is sufficient to check that this
enclosure occurs for x = x1, . . . , xn, i.e., that

F (xi) ≤ F (xi) ≤ F (xi).

We know that F (x) = F0

(
n∑

i=1

ai · ei(x)
)

, so we can con-

clude that

F (xi) ≤ F0

(
n∑

i=1

ai · ei(x)

)
≤ F (xi).

Since the cdf F0(x) is monotonic, we can apply the inverse
function F−1

0 to all the sides and get an equivalent inequal-
ity:

F−1
0 (F (xi)) ≤

n∑
i=1

ai · ei(x) ≤ F−1
0 (F (xi)). (1)

Thus, if we know the dependence S(a1, . . . , an) of the de-
sired characteristic S on the parameters ai, then we can find
the range of this characteristic by finding the minimum and
the maximum of the corresponding function S(a1, . . . , an)
under the constraints (1) and ai ≤ ai ≤ ai.

In particular, if the dependence S(a1, . . . , an) is linear
in ai, then the problems of finding the minimum S and the
maximum S are linear programming problems – i.e., prob-
lems which can be efficiently solved by known feasible al-
gorithms.

Example. In practice, there are examples when the actual
dependence S(a1, . . . , an) is not linear, but this dependence
can be reduced to linear by an appropriate transformation.

For example, for the case of the Gaussian distribution,
we may be interested in the variance V = σ2. In this

case, as we have mentioned, a1 =
1
σ

, hence σ =
1
a1

, and

V =
1
a2
1

. This dependence is non-linear; however, this de-

pendence is strictly increasing. Thus:

• finding the minimum of V is equivalent to finding the
maximum of a1 and

• finding the maximum of V is equivalent to finding the
minimum of a1.

The problem of finding the minimum and maximum of a1

under linear constraints is already a linear programming
problem.

Conclusion. The use of additional information about
the probability distribution not only eliminates the excess
width; it may also transform the originally NP-hard prob-
lem of estimating the range of the variance into a feasible
one.

5. Gauging Amount of Uncertainty

Formulation of the problem and a seemingly natural
solution. Every time we have uncertainty, an important
question is how to gauge the amount of uncertainty; see,
e.g., [4]. In the traditional statistical approach, the uncer-
tainty in a probability distribution is usually described by
Shannon’s entropy

S = −
∫

ρ(x) · log(ρ(x)) dx,

where ρ(x) = F ′(x) is the probability density function of
this distribution.

We have already mentioned that in the situations when
we have partial information about the probability distribu-
tion F (x) – e.g., when we only know that F (x) belongs to
a non-degenerate p-box F(x) = [F (x), F (x)], a reasonable
estimate for an arbitrary statistical characteristic S is the
range of possible values of S over all possible distributions
F (x) ∈ F(x).

It therefore seems natural to apply this approach to en-
tropy as well – and return the range of entropy as a gauge
of uncertainty of a p-box; see, e.g., [4, 13].

Limitations of the above (seemingly natural) solution.
The problem with the above approach is that every non-
degenerate p-box includes discrete distributions, i.e., dis-
tributions which take discrete values x1, . . . , xn with finite
probabilities. For such distributions, Shannon’s entropy is
−∞.

Thus, for every non-degenerate p-box, the resulting in-
terval [S, S] has the form [−∞, S]. Thus, once the distri-
bution with the largest entropy S is fixed, we cannot distin-
guish between a very narrow p-box or a very thick p-box –
in both case, we end up with the same interval [−∞, S].

It is therefore desirable to develop a new approach that
would enable us to distinguish between these two cases.

Our idea: go back to the foundations. To design this
new characteristic, let us go back to the foundations, check
how Shannon came up with his measure of uncertainty, and
see how Shannon’s derivations can be modified to the case
of p-boxes.

Traditional approach to gauging amount of informa-
tion: reminder. The traditional Shannon’s notion of the
amount of information is based on defining information as
the (average) number of “yes”-“no” (binary) questions that
we need to ask so that, starting with the initial uncertainty,
we will be able to completely determine the object.

Discrete case, when we have no information about prob-
abilities. Let us start with the simplest situation when we
know that we have n possible alternatives A1, . . . , An, and
we have no information about the probability (frequency)
of different alternatives. Let us show that in this case, the
smallest number of binary questions that we need to deter-

mine the alternative is indeed q
def= �log2(n)�.

Comment. The value �x� is the smallest integer which is
larger than or equal to x. It is called the ceiling of the num-
ber x.

After each binary question, we can have 2 possible an-
swers. So, if we ask q binary questions, then, in principle,
we can have 2q possible results. Thus, if we know that our
object is one of n objects, and we want to uniquely pin-
point the object after all these questions, then we must have
2q ≥ n, i.e., q ≥ log2(n). To complete the derivation, it is
let us show that it is sufficient to ask q questions.

Indeed, let’s enumerate all n possible alternatives (in ar-
bitrary order) by numbers from 0 to n − 1, and write these
numbers in the binary form. Using q binary digits, one can
describe numbers from 0 to 2q − 1. Since 2q ≥ n, we can
this describe each of the n numbers by using only q binary
digits. So, to uniquely determine the alternative Ai out of
n given ones, we can ask the following q questions: “is the
first binary digit 0?”, “is the second binary digit 0?”, etc, up
to “is the q-th digit 0?”.

Case of a discrete probability distribution. Let us now
assume that we also know the probabilities p1, . . . , pn of
different alternatives A1, . . . , An. If we are interested in an
individual selection, then the above arguments show that we
cannot determine the actual alternative by using fewer than
log(n) questions. However, if we have many (N) similar
situations in which we need to find an alternative, then we
can determine all N alternatives by asking N · log2(n)
binary questions.

To show this, let us fix i from 1 to n, and estimate the
number of events Ni in which the output is i.

This number Ni is obtained by counting all the events
in which the output was i, so Ni = n1 + n2 + . . . + nN ,
where nk equals to 1 if in k-th event the output is i and 0
otherwise. The average E(nk) of nk equals to pi · 1 + (1−
pi) ·0 = pi. The mean square deviation σ[nk] is determined
by the formula σ2[nk] = pi · (1 − E(nk))2 + (1 − pi) ·
(0 − E(nk))2. If we substitute here E(nk) = pi, we get
σ2[nk] = pi · (1 − pi). The outcomes of all these events
are considered independent, therefore nk are independent
random variables. Hence the average value of Ni equals to
the sum of the averages of nk: E[Ni] = E[n1] + E[n2] +
. . . + E[nN] = Npi. The mean square deviation σ[Ni]

satisfies a likewise equation σ2[Ni] = σ2[n1] + σ2[n2] +
. . . = N · pi · (1 − pi), so σ[Ni] =

√
pi · (1 − pi) · N .

For big N the sum of equally distributed independent
random variables tends to a Gaussian distribution (the well-
known central limit theorem), therefore for big N , we can
assume that Ni is a random variable with a Gaussian distri-
bution. Theoretically a random Gaussian variable with the
average a and a standard deviation σ can take any value.
However, in practice, if, e.g., one buys a voltmeter with
guaranteed 0.1V standard deviation, and it gives an error
1V, it means that something is wrong with this instrument.
Therefore it is assumed that only some values are practi-
cally possible. Usually a “k-sigma” rule is accepted that the
real value can only take values from a − k · σ to a + k · σ,
where k is 2, 3, or 4. So in our case we can conclude
that Ni lies between N · pi − k · √

pi · (1 − pi) · N and
N · pi + k · √pi · (1 − pi) · N . Now we are ready for the
formulation of Shannon’s result.

Comment. In this quality control example the choice of
k matters, but, as we’ll see, in our case the results do not
depend on k at all.

Let a real number k > 0 and a positive integer n be
given. The number n is called the number of outcomes.
By a probability distribution, we mean a sequence {pi} of
n real numbers, pi ≥ 0,

∑
pi = 1. The value pi is called

a probability of i-th event. Let an integer N is given; it is
called the number of events. By a result of N events we
mean a sequence rk, 1 ≤ k ≤ N of integers from 1 to
n. The value rk is called the result of k-th event. The to-
tal number of events that resulted in the i-th outcome will
be denoted by Ni. We say that the result of N events is
consistent with the probability distribution {pi} if for ev-
ery i, we have N · pi − k · σi ≤ Ni ≤ N + k · σi,

where σi
def=

√
pi · (1 − pi) · N. Let’s denote the num-

ber of all consistent results by Ncons(N). The number
�log2(Ncons(N))� will be called the number of questions,
necessary to determine the results of N events and denoted
by Q(N). The fraction Q(N)/N will be called the average
number of questions.

Theorem (Shannon; see, e.g., [8]). When the number of
events N tends to infinity, the average number of questions
tends to

S(p) def= −
∑

pi · log2(pi).

Case of a continuous probability distribution. After a
finite number of “yes”-“no” questions, we can only distin-
guish between finitely many alternatives. If the actual situ-
ation is described by a real number, then, since there are in-

finitely many different possible real numbers, after finitely
many questions, we can only get an approximate value of
this number.

Once we fix the accuracy ε > 0, we can talk about the
number of questions that are necessary to determine a num-
ber x with this accuracy ε, i.e., to determine an approximate
value r for which |x − r| ≤ ε.

Once an approximate value r is determined, possible ac-
tual values of x form an interval [r − ε, r + ε] of width
2ε. Vice versa, if we have located x on an interval [x, x] of
width 2ε, this means that we have found x with the desired
accuracy ε: indeed, as an ε-approximation to x, we can then
take the midpoint (x + x)/2 of the interval [x, x].

Thus, the problem of determining x with the accuracy
ε can be reformulated as follows: we divide the real line
into intervals [xi, xi+1] of width 2ε (xi+1 = xi + 2ε), and
by asking binary questions, find the interval that contains x.
As we have shown, for this problem, the average number of
binary question needed to locate x with accuracy ε is equal
to S = −∑

pi · log2(pi), where pi is the probability that x
belongs to i-th interval [xi, xi+1].

In general, this probability pi is equal to
∫ xi+1

xi
ρ(x) dx,

where ρ(x) is the probability distribution of the unknown
values x. For small ε, we have pi ≈ 2ε · ρ(xi), hence
log2(pi) = log2(ρ(xi)) + log2(2ε). Therefore, for small
ε, we have

S = −
∑

ρ(xi)·log2(ρ(xi))·2ε−
∑

ρ(xi)·2ε ·log2(2ε).

The first sum in this expression is the integral sum for the

integral S(ρ) def= − ∫
ρ(x) · log2(x) dx (this integral is

called the entropy of the probability distribution ρ(x)); so,
for small ε, this sum is approximately equal to this integral
(and tends to this integral when ε → 0). The second sum
is a constant log2(2ε) multiplied by an integral sum for the
interval

∫
ρ(x) dx = 1. Thus, for small ε, we have

S ≈ −
∫

ρ(x) · log2(x) dx − log2(2ε).

So, the average number of binary questions that are needed
to determine x with a given accuracy ε, can be determined
if we know the entropy of the probability distribution ρ(x).

Case of p-boxes: description of the situation. Our main
motivation is that the traditional approach of interval-valued
entropy does not allow us to distinguish between narrow and
wide p-boxes. For a wide p-box, it is OK to make a wide
interval like [−∞, S], but for narrow p-boxes, we would
like to have narrower estimates. Let us therefore consider
narrow p-boxes.

Since entropy is defined for smooth (differentiable) cdfs
F (x), it is reasonable to start with the case when the cen-
tral function of a p-box is also smooth. In other words, we

consider p-boxes of the type

F(x) = [F0(x) − ΔF (x), F0(x) + ΔF (x)],

where F0(x) is differentiable, with derivative ρ0(x) def=
F ′

0(x), and ΔF (x) is small.

Formulation of the problem. For each ε > 0 and for
each distribution F (x) ∈ F(x), we can use the above for-
mulas to estimate the average number Sε(F) of “yes”-“no”
question that we need to ask to determine the actual value
with accuracy ε. Our objective is to compute the range

[S, S] = {Sε(F) : F ∈ F}.

Known result. It is known (see, e.g., [8]) that asymptoti-
cally,

S ∼ −
∫

ρ0(x) · log2(ρ0(x)) dx − log2(2ε).

New result. Our new result is that

S ∼ −
∫

ρ0(x) · max(2ΔF (x), 2ε · ρ0(x)) dx.

Comment. This result holds when ε and the width of ΔF
both tends to 0. If instead we fix the width ΔF and let
ε → 0, then S → ∞ but S remains finite.

Idea of the proof. When we discretize the distribution,
we get pi ≈ ρ0(xi) · Δxi, hence

−
∑

pi · log2(pi) ≈ −
∫

ρ0(x) · log(ρ0(x) · Δx) dx.

To minimize the entropy, we can take the discrete distri-
bution with values x1, . . . , xn as far away from each other
as possible. A distribution which is located at xi and xi+1

and has 0 probability to be in between is described by a cdf
F (x) which is horizontal on [xi, xi+1]. Thus, we must se-
lect a cdf F (x) ∈ F(x) for which these horizontal segments
are as long as possible. The length of a horizontal segment
is bounded by the geometry of the p-box:

��
�

�
�

�
�

�
�
�

�
Δxi

2ΔF (x)
F (x)

�
�

�

F (x)
�� 2ε

Thus, this length cannot exceed
2ΔF (x)
ρ0(x)

. If this length

is > 2ε, then we can take this interval between the se-
quential values xi. If this length is < 2ε, then we can

still take Δxi = 2ε. Thus, in general, we take Δxi =

max
(

2ΔF (x)
ρ0(x)

, 2ε

)
. Substituting this expression into the

above asymptotic formula, we get the desired asymptotic
for S.

6 Conclusions

This paper mainly deals with the following problem:
When we have several observations of given random vari-
ables, these observations being known as intervals, how is
it possible to compute enclosures for some characteristics
such as mean values or standard deviation of the true popu-
lation.

In our paper, we describe feasible algorithms for solving
several practically important cases of this problem.

Acknowledgments

This work was supported in part by NASA under cooper-
ative agreement NCC5-209, NSF grants EAR-0225670 and
DMS-0532645, Star Award from the University of Texas
System, and Texas Department of Transportation grant No.
0-5453.

The authors are thankful to participants of SCAN’06 for
valuable discussions, and to the anonymous referees for im-
portant suggestions.

References

[1] E. Dantsin, A. Wolpert, M. Ceberio, G. Xiang, and
V. Kreinovich. Detecting outliers under interval uncertainty:
a new algorithm based on constraint satisfaction. In: Pro-
ceedings of the International Conference on Information Pro-
cessing and Management of Uncertainty in Knowledge-Based
Systems IPMU’06, Paris, France, July 2–7, 2006, pp. 802–
809.

[2] S. Ferson. RAMAS Risk Calc 4.0. CRC Press, Boca Raton,
Florida, 2002.

[3] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Inter-
val Analysis. Springer-Verlag, London, 2001.

[4] G. J. Klir. Uncertainty and Information: Foundations of Gen-
eralized Information Theory. J. Wiley, Hoboken, New Jersey,
2005.

[5] V. Kreinovich, L. Longpré, P. Patangay, S. Ferson, and
L. Ginzburg. Outlier detection under interval uncertainty: al-
gorithmic solvability and computational complexity. Reliable
Computing, 11(1):59–76, 2005.

[6] V. Kreinovich, L. Longpré, S. A. Starks, G. Xiang, J. Beck,
R. Kandathi, A. Nayak, S. Ferson, and J. Hajagos. Interval
versions of statistical techniques, with applications to envi-
ronmental analysis, bioinformatics, and privacy in statistical
databases. Journal of Computational and Applied Mathemat-
ics, 199(2):418–423, 2007.

[7] V. Kreinovich, E. J. Pauwels, S. Ferson, and L. Ginzburg.
A feasible algorithm for locating concave and convex zones
of interval data and its use in statistics-based clustering. Nu-
merical Algorithms 37:225–232, 2004.

[8] V. Kreinovich, G. Xiang, and S. Ferson. How the concept of
information as average number of “yes-no” questions (bits)
can be extended to intervals, p-boxes, and more general uncer-
tainty. In: Proceedings of the 24th International Conference
of the North American Fuzzy Information Processing Society
NAFIPS’2005, Ann Arbor, Michigan, June 22–25, 2005, pp.
80–85.

[9] V. Kreinovich, G. Xiang, S. A. Starks, L. Longpré, M. Ce-
berio, R. Araiza, J. Beck, R. Kandathi, A. Nayak, R. Torres,
and J. Hajagos. Towards combining probabilistic and interval
uncertainty in engineering calculations: algorithms for com-
puting statistics under interval uncertainty, and their computa-
tional complexity. Reliable Computing, 12(6):471–501, 2006.

[10] H. M. Wadsworth, Jr. (ed.). Handbook of statistical methods
for engineers and scientists. McGraw-Hill Publishing Co.,
New York, 1990.

[11] P. Walley. Statistical Reasoning with Imprecise Probabilities.
Chapman & Hall, New York, 1991.

[12] G. Xiang, M. Ceberio, and V. Kreinovich. Computing Pop-
ulation Variance and Entropy under Interval Uncertainty:
Linear-Time Algorithms. University of Texas at El Paso, De-
partment of Computter Science, Technical Report UTEP-CS-
06-28b, November 2006.

[13] G. Xiang, O. Kosheleva, and G. J. Klir. Estimating infor-
mation amount under interval uncertainty: algorithmic solv-
ability and computational complexity. In: Proceedings of
the International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems
IPMU’06, Paris, France, July 2–7, 2006, pp. 840–847.

Fast and Accurate Multi-Argument Interval Evaluation of Polynomials

Andreas Frommer and Bruno Lang
Fachbereich Mathematik und Naturwissenschaften

Bergische Universität Wuppertal
D-42097 Wuppertal, Germany

{frommer,lang}@math.uni-wuppertal.de

Abstract

The verification of the existence of certain spherical t-
designs involves the evaluation of a degree-t polynomial Jt

at a very large number of (interval) arguments. To make the
overall verification process feasible computationally, this
evaluation must be fast, and the enclosures for the function
values must be affected with only modest over-estimation.
We discuss several approaches for multi-argument interval
evaluation of the polynomial Jt and show how they can be
adapted to other polynomials p. One particularly effective
new method is based on expanding the polynomial p around
several points ξj and truncating each resulting expansion
pξj to a lower-degree polynomial.

1. Introduction

The task of evaluating a polynomial at a large number of
arguments occurs repeatedly during the verification of the
existence of certain spherical t-designs [2]. An N -point 3D
spherical t-design consists of N points xi on the unit sphere
S2 ⊂ R

3 such that the quadrature formula

∫
S2

p(x)dμ ≈ 4π

N
·

N∑
i=1

p(xi)

is exact for all polynomials p of degree ≤ t. See [6] for an
overview of known spherical t-designs for moderate values
of t and [3] for a connection between spherical t-designs
and group theory.

In [2] it was shown that N = (t + 1)2 points xi are a
spherical t-design if c(x1, . . . ,xN) = 0, where the compo-
nents of the function c : R

2N−3 → R
N−1, ci = G1−Gi+1,

are combinations of the rows of a matrix G ∈ R
N×N . (Each

point is typically given by its polar angles ϕ ∈ [0, 2π],
θ ∈ [0, π], and for symmetry reasons three of these angles
can be fixed to ϕ1 = ϕ2 = 0, θ1 = π. Thus c depends on

2N − 3 scalar arguments.) The entries of the matrix G are
defined as

Gij = Jt(xT
i · xj),

with the degree-t polynomial Jt given by

Jt(u) =
t∑

i=0

(2i + 1)Li(u), (1)

where the Li are the Legendre polynomials

L0(u) = 1,

L1(u) = u,

Li(u) = 2i−1
i u · Li−1(u) − i−1

i Li−2(u),
i ≥ 2.

⎫⎪⎪⎬⎪⎪⎭ (2)

In order to prove the existence of a spherical t-design
with N = (t + 1)2 points, we apply the Krawczyk opera-
tor [8] (modified to handle non-square problems) to verify
and enclose a zero of c. This modified Krawczyk operator
essentially takes the form

K([z], z̃) = z̃ − R · c̃(z̃) + (I − R[C′]) · ([z] − z̃), (3)

where c̃(z) is a restriction of the function c to a suitable
subset of N − 1 arguments, [z] is an (N − 1)-dimensional
interval vector, z̃ is some point in [z], R is a nonsingular
(N − 1)-by-(N − 1) matrix, and [C ′] is an enclosure of the
derivative of c̃ over [z]; for more details see [1]. The exis-
tence of a zero of c (i.e., of an N -point spherical t-design)
is guaranteed if

K([z], z̃) ⊂ [z] (4)

for some [z].
Since each Krawczyk step involves in particular the eval-

uation of the polynomial Jt at a large number of arguments,
the evaluation must take the following observations into ac-
count.

• The number of arguments can be very large: Even if
we make full use of symmetry, Jt must be evaluated at

n = N(N + 1)/2 arguments, where N = (t + 1)2.
Considering the example t = 40 (t = 80), Jt is eval-
uated at more than one million (twenty-one million)
arguments.

Therefore, the multi-argument evaluation of the poly-
nomial must be fast, and in particular the time-con-
suming switching of the rounding mode (needed in
machine interval arithmetic) should be reduced to a
minimum.

• For verified results, the function value c̃(z̃) in Eqn. (3)
also must be enclosed in an interval, and therefore
Eqn. (4) cannot hold when the diameter of that enclo-
sure significantly exceeds the diameter of [z], which
typically is of the order 10−8.

Thus the evaluation of the polynomial must provide
“reasonably sharp” enclosures for the values Jt(xi

T ·
xj).

Note that the argument u = xi
T · xj ∈ [−1, 1] is the

cosine of the angle between the two points on the sphere.
As can be seen in Fig. 1 for the case t = 40, the polyno-
mial J40 takes moderate values in the interior of the argu-
ment range [−1, 1] and grows for u approaching +1, reach-
ing J40(+1) = 1 681. The growth is even stronger for the
derivative of Jt, reaching J ′

40(1) = 706 020.
For any pair of points, the value u = xi

T · xj must be
computed from the polar angles ϕi, θi, ϕj , and θj . Due
to speed constraints this computation cannot be done with
1 ulp precision. Rather, the argument [u] may have a width
up to ≈ 10ε, where ε ≈ 2.2 · 10−16 denotes the machine
precision. Thus we cannot expect the enclosure for Jt(u) to
have a diameter smaller than |J ′

t(u)| · diam [u], which can
be as large as 706 020 · 10ε ≈ 1.5 · 10−9 for t = 40.

From Fig. 2 we see that some of the coefficients in the
standard representation Jt(u) =

∑
jkuk are very large, in-

dicating severe cancellation. Thus the evaluation of Jt re-
quires special care even in the interior of the interval, where
moderate values for J ′

t(u) indicate reasonable conditioning
of the problem.

These problems become even more pronounced with in-
creasing t. For t = 80, the largest values of the function
and the derivative are J80(+1) = 6 561 and J ′

80(+1) ≈
10 760 040, and the coefficients of J80 do exceed 1030.

2. Methods for evaluating Jt

In this section we discuss several methods for evaluating
a polynomial Jt simultaneously at a large number of (inter-
val) arguments. We assess the behavior of these methods
with respect to the width of the resulting enclosures, as well
as to time.

-20

-10

 0

 10

 20

 30

 40

 50

-1 -0.5 0 0.5 1

u

Function values (t = 40)

Jt

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-1 -0.5 0 0.5 1

u

Absolute values (t = 40)

dJt
Jt

Figure 1. The polynomial J40 and its deriva-
tive J ′

40 over the relevant range of arguments.

All runs were made on a 2.8 GHz Pentium4 Linux PC
with 1 GB of main memory. Since the verification of spher-
ical designs relies heavily on linear algebra computations
(both floating-point and interval), the INTLAB [11] envi-
ronment, which is built on top of MATLAB, was the nat-
ural choice for the interval operations. In our experiments,
we used version 5.2 of INTLAB (with “fast” interval matrix
operations) and version 7.1.0.183 of MATLAB.

The INTLAB operators for interval vectors and matri-
ces employ a minimum number of switchings of the round-
ing modes. Therefore, interval operations in INTLAB are
very efficient if they can be cast in terms of vectors or ma-
trices. By contrast, frequent switchings of the rounding
mode, together with the MATLAB overhead for interpret-
ing instructions, puts a severe penalty on operations with
(floating-point or interval) scalars. Note that other interval
libraries also provide optimized vector and matrix opera-
tions, although the benefits of using them may be less pro-
nounced than in INTLAB.

2.1. The recursive formulation

The first way for evaluating Jt is based on the defining
equations (1) and (2).

Note that both equations are amenable to multi-argument
evaluation by replacing [u] with a vector or a matrix. Then 1

 1
 100

 10000
 1e+06
 1e+08
 1e+10
 1e+12
 1e+14
 1e+16
 1e+18

 0 5 10 15 20 25 30 35 40

Number of coefficient

Absolute value of coefficient (t = 40)

derivative dJt
Jt

Figure 2. Size of the coefficients of J40 and
the derivative J ′

40.

stands for an object of the same shape as [u] with all ones,
and the multiplication [u] · Li−1([u]) is to be understood
entry-wise. In our application, [u] can be taken to be the N -
by-N matrix whose (i, j) entry is an enclosure for xi

T ·xj .
A straight-forward implementation interleaving (2) with

the summation in (1) computes the quantities in the order
L0, J0, L1, J1, . . . , Lt, J t and requires four additional
variables [Li−2], [Li−1], [Li], and [J], each having the
shape of [u].

Evaluating the polynomial at all arguments simultane-
ously makes this method fast, but the results suffer from
severe over-estimation, as can be seen in Fig. 3. For t ≥ 20
this approach is not viable to achieve (4).

2.2. Expanding Jt in the monomial base

By virtue of (1) and (2), the coefficients of the standard
representation

Jt(u) =
t∑

k=0

jk uk

can be computed as

jk =
t∑

i=k

(2i + 1)�i,k, 0 ≤ k ≤ t,

where

�0,0 = 1,

�1,0 = 0,

�1,1 = 1,

�i,0 =
1 − i

i
�i−2,0, i ≥ 2,

�i,k =
2i − 1

i
�i−1,k−1 +

1 − i

i
�i−2,k, i ≥ 2, k > 0.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

-1 -0.5 0 0.5 1

L-J recursion

t = 40
t = 20
t = 10
t = 5

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

-1 -0.5 0 0.5 1

L-J recursion

t = 40
t = 20
t = 10
t = 5

Figure 3. Width of the enclosures for Jt([u])
for point arguments [u] = u ∈ [−1, 1] (up-
per picture) and for interval arguments with
diam [u] = 10ε (lower picture), obtained with
the method discussed in Sect. 2.1. ε denotes
the machine precision, ε ≈ 2.2 · 10−16.

These computations are done using rational arithmetic, and
the resulting coefficients jk are then enclosed in tight inter-
vals [jk]. Subsequently, a simple Horner scheme

[J] := [jt] · 1
for k = t − 1 : −1 : 0

[J] := [J] · [u] + [jk] · 1

may be used to evaluate the function. Here, only one addi-
tional object [J], which has the shape of [u], and a (t + 1)-
element interval vector [j] are required.

Due to the reduced number of operations this approach
is roughly twice as fast as the recursive formulation. How-
ever, the widths of the resulting enclosures Jt([u]) are al-
most identical to those shown in Fig. 3, except for the miss-
ing spikes at multiples of powers of 2 in the point case, and
therefore this method is impractical as well.

2.3. Chebyshev representation

The Legendre polynomials can be represented with the
Chebyshev polynomials [4] Tk, which obey the well-known

three-term recurrence relation

T0(u) = 1,

T1(u) = x,

Tk(u) = 2u · Tk−1(u) − Tk−2(u), k ≥ 2.

⎫⎪⎬⎪⎭ (5)

The conversion from Legendre to Chebyshev polynomials
is given by

Lk(u) = 2g0gkTk(u) + 2g1gk−1Tk−2(u) + . . .

+
{

2g(k−1)/2g(k+1)/2T1(u), k odd,
g2

k/2, k even

with

g0 = 1,

g� =
1 · 3 · · · (2� − 1)

2 · 4 · · · (2�)
, � ≥ 1.

Thus

Jt(u) =
t∑

k=0

GkTk(u), (6)

where

Gk =
t∑

i=0

(2i + 1)γi,k

with

γk,k−2i = 2gigk−i, 0 ≤ k ≤ t, 0 ≤ i < k/2,

γk,0 = g2
k/2, k even.

Again, the coefficients Gk are computed with rational arith-
metic and enclosed in tight intervals [Gk], and then the func-
tion is evaluated in a straight-forward manner by interleav-
ing (5) with the summation in (6). This implementation re-
quires four [u]-shaped objects and a (t+1)-element interval
vector [G].

However, the widths of the resulting enclosures Jt([u])
are again almost identical to those shown in Fig. 3.

2.4. Alternative evaluation of the Cheby-
shev polynomials

In addition to the standard recurrence (5), the Chebyshev
polynomials also obey the log-depth recurrence

T0(u) = 1,

T1(u) = u,

T2k(u) = 2Tk(u)2 − 1, k ≥ 1,

T2k+1(u) = 2Tk(u) · Tk+1(u) − T1(u), k ≥ 1.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7)

Using this recurrence, Jt is computed according to (6) sub-
sequently to (7).

The log-depth recurrence is one means to achieve the
tight enclosures that are necessary for fulfilling Eqn. (4), see
Fig. 4. Evaluating the Chebyshev polynomials with this re-
currence requires storing most of the [T k], i.e., O(t) objects
of [u]’s shape. If [u] contains millions of interval arguments
then the memory requirements may become prohibitive.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

-1 -0.5 0 0.5 1

t = 40
t = 20
t = 10
t = 5

Figure 4. Width of the enclosures for
Jt([u]), computed with the log-depth Cheby-
chev recurrence, for interval arguments with
diam [u] = 10ε.

2.5. Parameter-dependent linear system

In order to have only machine-representable coefficients,
we rewrite the fundamental recursion Eqn. (2) as

iLi(u) = (2i − 1)uLi−1(u) − (i − 1)Li−2,

i = 2, 3, . . . , t.

The vector L(u) = (L0(u), . . . , Lt(u))T thus satisfies the
linear system

(A0 +u ·A1)L(u) = (1, 0, . . . , 0)T (=: e1 ∈ R
t+1), (8)

where A0 and A1 together have just three non-zero diago-
nals,

A0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1
1 0 2

2 0 3
. . .

. . .
. . .

t − 1 0 t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
−1 0

−3 0
−5 0

. . .
. . .

−(2t − 1) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

According to Eqn. (8), the range of L(u) for u varying in
some interval [u] corresponds to the parametrized solution
set Σp := {� ∈ R

t+1 : ∃u ∈ [u] : (A0 + uA1) · � = e1}.
This set is usually much smaller than the ordinary inter-
val solution set Σ := {L ∈ R

t+1 : ∃A ∈ A0 + [u]A1 :
A · L = e1}. In [7, 9], based on the methods intro-
duced in [10], special techniques have been developed to
compute an interval enclosure for Σp: If for some ma-
trix R ∈ R

(t+1)×(t+1) (usually a computed inverse of
mid(A0 + [u]A1)), some vector L̂ ∈ R

t+1 (an approxi-
mate solution to mid(A0 + [u]A1)L = e1, obtained for
example by floating-point evaluation of Eqn. (2)) and some
interval vector [y] (typically obtained using some steps of
ε-inflation) one has

R · (e1 − A0L̂) − [u] · (R · (A1L̂))
+ (I − R · A0 − [u] · (R · A1)) · [y] ⊆ [y], (9)

then Σp ⊆ L̂ + [y] =: [L]. We could then obtain an inter-
val enclosing the range of Jt(u) for u ∈ [u] by evaluating∑t

i=0(2i + 1)[Li]. This will, however, still suffer from se-
vere over estimation, since the interval arithmetic evaluation
of the sum ignores the fact that all components [Li] enclose
ranges of functions depending on the same parameter.

It is thus appropriate to also include the summation from
Eqn. (1) in the formulation of a parametrized linear system,
now for J(u) = (J0(u), . . . , Jt(u))T . We have

B · J(u) = D · L(u),

where

B =

⎛⎜⎜⎜⎝
1
−1 1

. . .
. . .
−1 1

⎞⎟⎟⎟⎠ ,

D = diag(1, 3, 5, . . . , 2t + 1).

Inserting into Eqn. (8) yields

((A0 + uA1)D−1B) · J(u) = e1. (10)

Not all entries of the diagonal matrix D−1 are exactly rep-
resentable in floating-point. In order to avoid roundings, we
multiply Eqn. (10) from the left with the diagonal matrix D̃
with

D̃ = D · diag(1, 1, 1, 3, 5, . . . , 2t − 3),

which turns Eqn. (10) into the system

(Ã0 + u · Ã1) · J(u) = e1,

where the matrices

Ã0 = D̃A0D
−1B, Ã1 = D̃A1D

−1B

have integer coefficients only. For u varying in [u], we com-
pute an enclosure [J] of its parametrized solution set Σ̃p =
{J ∈ R

t+1 : ∃u ∈ [u] : (Ã0 + uÃ1) · J = e1} by testing
Eqn. (9) for the new system. We took R as a floating-point
inverse of mid(Ã0 + [u]Ã1), the approximate solution Ĵ
was obtained by evaluating the recursion Eqn. (2) for mid[u]
in floating-point with subsequent floating-point summation
according to Eqn. (1). The ε-inflation was started with an
initial interval vector [y] centered at zero and with radius
vector |Ĵ | + η, η = 10−15. If not successful, the test was
repeated with the radius doubled until the test succeeded for
the first time.

As can be seen in Fig. 5, this method can yield even
tighter enclosures than the log-depth Chebyshev described
in Sect. 2.4. But in contrast to all the methods discussed so
far, the formulation as a parameter-dependent linear system
cannot be implemented in such a way that all evaluations
Jt(u) can be done simultaneously. Therefore the rounding
mode must be switched much more often than in the other
approaches, and, in addition, the total number of operations
increases also. Due to these two effects this method is much
slower than the other ones.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

-1 -0.5 0 0.5 1

t = 40
t = 20
t = 10
t = 5

Figure 5. Width of the enclosures for
Jt([u]), computed with parameter-dependent
linear systems, for interval arguments with
diam [u] = 10ε.

2.6. Multi-point Horner scheme

This method is based on the observation that even the
simple Horner scheme can provide a very sharp enclosure
if the argument is small; cf. Fig. 3.

In a preprocessing step we fix m + 1 points −1 = ξ0 <
ξ1 < . . . < ξm = 1 and determine the expansions of Jt

�
uξj−1 ξj ξj+1

•• • • ×××× ×

Figure 6. The sets Uj (denoted by •’s) and
Uj+1 (×’s).

around these points,

Jt(u) =
t∑

k=0

jk,j(u − ξj)k

︸ ︷︷ ︸
=: Jt,ξj (u)

, j = 0, . . . , m. (11)

To obtain the coefficients jk,j , we apply the complete
Horner scheme in rational arithmetic and enclose the result-
ing fractions in tight intervals [jk,j]. For practical reasons,
we take m = 2d and equidistant points ξj = −1 + j · 21−d,
j = 0, . . . , 2d.

To evaluate Jt at a length-n vector [u] containing multi-
ple arguments, we

1. determine a permutation π that sorts the n midpoints
of [u] in increasing order,

2. for each j = 1, . . . , m, determine the set Uj of those
argument intervals having their midpoint in [ξj−1, ξj];
cf. Fig. 6,

3. for each j = 1, . . . , m, do multi-argument evaluations
of both expansions Jt,ξj−1 and Jt,ξj for all arguments
in Uj (e.g., with Horner’s scheme) and intersect the
two resulting enclosures.

Since each argument [u] requires the evaluation of two
degree-t polynomials, the cost for this approach is approx-
imately twice that of plain Horner evaluation, plus the ad-
ministrative overhead for preprocessing and for partitioning
of the arguments into the sets Uj . Note that the preprocess-
ing is done only once. It takes less than 1 second (5 seconds)
for t = 40 (t = 80) and m = 512 using e.g., the GNU Mul-
tiprecision Arithmetic Library [5], and therefore contributes
only a small fraction to the overall time. The partitioning of
the n arguments into the m sets takes O(n(log n + log m))
operations, if done as described above. There are other par-
titioning methods not involving an initial sort and requiring
a total of O(n log m) operations, but sorting and counting
seems to be the most efficient technique in INTLAB.

Except for the preprocessing and the partitioning of the
arguments, the evaluation time is almost independent from
the number of expansion points, m + 1. Since there are
2m multi-argument Horner evaluations, the rounding mode
must be switched more often if m increases. Therefore m

should not be chosen too large. In our experiments, we used
m = 512.

Figure 7 shows that the multi-point Horner scheme can
provide very tight enclosures over the whole range of argu-
ments.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

-1 -0.5 0 0.5 1

t = 40
t = 20
t = 10
t = 5

Figure 7. Width of the enclosures for Jt([u]),
computed with a 513-point Horner scheme,
for interval arguments with diam [u] = 10ε.

2.7. Truncated multi-point Horner scheme

The time for the multi-point Horner scheme can be re-
duced further by making use of the fact that the higher-order
terms jk,j(u − ξj)k contribute only marginally to the sum
Jt,ξj (u) if the argument u is close to the expansion point ξj .

To this end, given an (interval) argument vector [u], we
determine the effective degree ∂j of the expansion Jt,ξj by

∂j = min

{
i :

t∑
k=i+1

jk,j [Δj]k ⊆ [−ε, ε]

}
, (12)

where [Δj] = [u − ξj , u − ξj] and u (u, resp.) denotes
the smallest lower (largest upper) bound of any component
interval in the vector [u]. If the input intervals are very nar-
row then u � ξj−1 − ξj and u � ξj+1 − ξj since Jt,ξj is
evaluated only at arguments from Uj and Uj+1.

By virtue of Eqn. (12), we have

t∑
k=i+1

jk,j([u] − ξj)k ⊆ [−ε, ε]

for each of the arguments [u] in Uj and Uj+1, and therefore
we can replace the multi-argument evaluation (11) with

Jt([u]) ⊆
∂j∑

k=0

jk,j([u] − ξj)k + [−ε, ε]

for these arguments. This truncated evaluation yields al-
most exactly the same results as those shown in Fig. 7, but

 10000

 1000

 100

 10

 1

 0.1

 0.01

 0.001
 2e+06 200001 20001 2001 201 21

Number of points

t = 10

param. lin.
multi-point Horner
truncated Horner

Chebyshev
1-point Horner

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2e+06 200001 20001 2001 201 21

Number of points

t = 40

Figure 8. Times (in seconds) for evaluating
the polynomials J10 (upper picture) and J40

(lower picture) with the methods discussed
in Sects. 2.1–2.7 at varying numbers of argu-
ments.

since the effective degree ∂j can be significantly lower than
t, the enclosures are obtained faster. To give an example,
t = 40 and m = 512 led to an average effective degree
∂ ≈ 11.4. Increasing the number of expansion points, m,
will in general reduce the effective degree, at the cost of
increased work for preprocessing and partitioning.

2.8. Timing data

Figure 8 gives the times taken by the methods discussed
above to evaluate the polynomials J10 and J40 at inter-
val vectors with lengths n ranging from 21 to 2 000 001.
The Chebyshev evaluation using the log-depth recursion
(Sect. 2.4) had to be restricted to vector lengths ≤ 500 000
due to memory limitations; the method based on parameter-
dependent linear systems (Sect. 2.5) was applied to shorter
vectors only to avoid excessive run-times.

At small-to-medium vector lengths, alternative Cheby-
shev evaluation is the fastest of the viable methods. For t =
40, it is roughly eight times slower than plain Horner evalu-
ation, which cannot be used due to extreme over-estimation.
For large vector lengths, (truncated) multi-point evaluation

(Sects. 2.6 and 2.7) becomes the method of choice, and for
t = 40 and n � 106 the truncated method, due to an average
effective degree ∂ < 12, outperforms the Horner evaluation
even with respect to time.

Except for very small and very large values of the vector
length n, the time for the (truncated) multi-point evaluation
is almost constant. It mainly reflects the overhead for par-
titioning the arguments into the sets Uj and the number of
switchings of the rounding mode (this number depends only
on m, unless n is very small and most of the Uj are empty,
which means that the corresponding Horner evaluations can
be skipped completely). By contrast, the cost for arithmetic
operations is proportional to n. Therefore arithmetic opera-
tions dominate the overall time for very long vectors.

3. Application of the methods in similar con-
texts

The methods discussed in the preceding section also can
be applied in slightly different settings, as explained in the
following.

3.1. Evaluating derivatives on wider inter-
vals

Computing the matrix [C′] in Eqn. (3) also requires an
evaluation of the derivative J ′

t([z]). This can be done with
each of the techniques discussed in Sect. 2.

It should be noted that the diameter of the arguments [z]
in the derivative evaluation is considerably larger than the
diameter of the arguments in the evaluation of the function
Jt. Typical values are diam[z] ∼ 10−8, whereas in the eval-
uation of Jt we have diam[u] ≈ 10ε ∼ 10−15. For all
the methods, increasing the width of the arguments leads
to a roughly proportional growth of the enclosures for Jt;
see Fig. 9, which clearly shows the 107-fold increase of
diam(Jt) when diam[u] is increased by the same factor, as
compared to Fig. 7. Note that the plots in Fig. 9 are also for
Jt to facilitate the comparison. The width of the enclosure
for the derivative is larger by another factor of ≈ 500 (for
t = 40).

In our application, even diam[C′] ∼ 1 is no serious ob-
stacle to achieving (4) since the matrix I−R·[C′] in Eqn. (3)
has small entries (R is chosen to approximate the inverse of
mid[C′]), and thus the matrix–vector multiplication reduces
the width.

3.2. Multi-argument evaluation of general
polynomials

The truncated multi-point Horner evaluation adapts in a
straight-forward manner to the evaluation of general poly-
nomials p at a large number of arguments, provided that

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

-1 -0.5 0 0.5 1

513-point Horner scheme

t = 40
t = 20
t = 10
t = 5

Figure 9. Width of the enclosures for Jt([u]),
computed with multi-point Horner evaluation,
for interval arguments with diam [u] = 108ε.

1. the coefficients γk in the monomial expansion p(u) =∑
γkuk are given or can be computed exactly, and

2. the arguments u are contained in a given compact in-
terval [α, β].

To avoid unnecessary rounding errors, the expansion points
ξj should be machine numbers. In fact they should be rep-
resentable with a short mantissa in order to avoid excessive
growth of the numerators and denominators in the coeffi-
cients γk,j of the polynomials pξj (·) = p(· − ξj).

Note that the expansion points ξj need not be equidis-
tant. For example, an adaptive subdivision strategy might
be used where the distance of the points is controlled via
the “local” effective degree, which in turn depends on the
higher derivatives of p. To give an example, 65 out of the
513 expansion points (with increasing distances toward the
midpoint of the interval [−1, 1]) are sufficient to yield en-
closures for J40 that are almost identical to those reported
in Fig. 7.

If there are no a priori bounds on the arguments then α
and β, and thus the expansion points ξj and the coefficients
γk,j , may be determined within the multi-argument evalua-
tion. This just adds the overhead for preprocessing to each
evaluation call.

By contrast, if only enclosures for the coefficients γk are
available then this approach in general will lead to severe
over-estimation already in the computed γk,j , and therefore
in the final enclosures as well.

4. Concluding remarks

We have presented a truncated multi-point Horner
scheme for evaluating a certain degree-t polynomial Jt at a
large number of (interval) arguments. This method relies on
computing the expansions of the polynomial around several

points and then truncating these expansions to an appropri-
ate “effective degree”. Our experiments showed that our ap-
proach is very efficient (indeed, it can be faster than using
the standard Horner scheme) and yields very tight enclo-
sures for the function values. The method is easily adapted
to the multi-argument evaluation of other polynomials given
in the standard monomial representation.

Using the truncated multi-point Horner scheme, we were
able to prove the existence of (t + 1)2-point spherical de-
signs for t values up to t = 80 [1]. This is a major improve-
ment as compared with the previous limitation to t ≤ 20
[2], given that the evaluation of the function c alone scales
with the fifth power of t.

Acknowledgements

The authors would like to thank Knut Petras for pointing
them to the log-depth recursion for the Chebyshev polyno-
mials.

References

[1] X. Chen, A. Frommer, and B. Lang. Fast and rigorous veri-
fication of shperical t-designs, 2006. In Preparation.

[2] X. Chen and R. S. Womersley. Existence of solutions to sys-
tems of underdetermined equations and spherical designs.
SIAM J. Matrix Anal. Appl., 2006. To appear.

[3] P. de la Harpe and C. Pache. Spherical designs and finite
group representations (some results of E. Bannai). European
J. Combin., 25(2):213–227, 2004.

[4] L. Fox and I. B. Parker. Chebyshev Polynomials in Numeri-
cal Analysis. Oxford University Press, London, UK, 1968.

[5] GNU MP—the GNU multiprecision arithmetic library, May
2006. http://www.swox.com/gmp/manual/.

[6] R. H. Hardin and N. J. A. Sloane. McLaren’s improved snub
cube and other new spherical designs in three dimensions.
Discrete Comput. Geom., 15:429–441, 1996. Updated 2002,
http://www.research.att.com/˜njas/doc/snub.ps.

[7] W. Krämer and E. D. Popova. Zur Berechnung von ver-
lässlichen Außen- und Inneneinschließungen bei parame-
terabhängigen linearen Gleichungssystemen. Proc. Appl.
Math. Mech., 4:670–671, 2004.

[8] R. Krawczyk. Newton-Algorithmen zur Bestimmung von
Nullstellen mit Fehlerschranken. Computing, 4:187–201,
1969.

[9] E. D. Popova. Parametric interval linear solver. Numer. Al-
gorithms, 37(1–4):345–356, 2004.

[10] S. M. Rump. Verification methods for dense and sparse
systems of equations. In J. Herzberger, editor, Topics
in Validated Computations, pages 63–136. Elsevier North-
Holland, Amsterdam, 1994.

[11] S. M. Rump. INTLAB—INTerval LABoratory. In T. Csen-
des, editor, Developments in Reliable Computing, pages 77–
104. Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1999.

Vectorised/Semi-Parallel Interval Multiplication

Eoin Malins, Marek Szularz, Bryan Scotney
University of Ulster at Coleraine, Coleraine, Northern Ireland, UK

eoin@infc.ulst.ac.uk, marek@infc.ulst.ac.uk, bw.scotney@ulster.ac.uk

Abstract

To date, two principle methods for the multiplication of
two intervals have been proposed. Namely, the multiplica-
tion of all four bounds and finding their minima/maxima; or
by pre-processing the bounds and determining which mul-
tiplicands to use based upon their signs. In either case, a
minimum of four multiplications are required for complete
coverage and special cases such as [0, 1] × [-∞, 1] can
result in the less than enlightening [-∞, +∞]. This paper
describes a new method of interval multiplication that never
requires more than two multiplications, has no special cases
and elegantly handles the above case. We continue by de-
scribing reformulations of the brute-force and 9-case meth-
ods which, through making use of SIMD technology, paral-
lelise and vectorise their operation, ultimately allowing the
complete removal of branching. We conclude with an analy-
sis of the algorithms and their performance, compared with
the two forementioned traditional techniques.

1. Introduction

In an ideal world, the product of two intervals would
require only two multiplications, those of the bounds
guaranteed to produce the upper and lower endpoints.
To date, several techniques have been proposed (Inter-
val Multiplication, Double-Precision Multiplication and
Case-based Multiplication), each requiring 8, 4 or 2.21

floating-point multiplications respectively. We review the
above methods and propose a new one in which by using
integers to pre-process the bounds allows a reduction to
this ideal of only two.

There is a growing trend in processor design towards the
addition of ‘multimedia’ (SIMD (Single Instruction Mul-
tiple Data)) units, where a single operation is executed in
parallel on multiple independent pieces of data. Though
the data which may be processed in this manner includes

1This is an average, explained in Section 3.

floating-point, sadly such systems do not natively lend
themselves to interval operations, as while they are able
to perform the same task on multiple data elements, all re-
sults must be rounded in the same direction. However, these
units can facilitate interval operations by way of restructur-
ing the nature of these operations and the supporting rou-
tines, (such as determining the minimum/maximum value)
on which they rely.

By use of these techniques and re-examining the con-
dition table for the 9-case method, in the following pages
we describe and demonstrate reformulations of the tradi-
tional brute-force and 9-case interval multiplication algo-
rithms which are completely vectorised. We conclude with
a synopsis of the factors involved in the implementation of
said algorithms followed by their relative performances.

2. Brute-Force Interval Multiplication

Several techniques for interval multiplication have been
described by Moore in [3]. The simplest approach (shown
in 1) dictates that each bound should be multiplied by every
other bound; the lower and upper bounds of the resultant
interval being (respectively) the minima and maxima of this
calculation. In order to compensate for rounding error and
thus ensure that the result fully encloses all possible values,
the lower bound (denoted by x) must be rounded towards
-∞ (denoted by ∇) whilst the upper bound (x) is rounded
towards +∞ (Δ).

Z = X × Y = [min{∇xy, ∇xy, ∇xy, ∇xy},
max{Δxy, Δxy, Δxy, Δxy}] (1)

This method requires eight floating-point multiplications
and six comparisons in order to determine the minima and
maxima.

Should a double precision product be available, an im-
provement on this method, shown by Stine and Schulte in
[7] allows the result to be computed as:

Z = X × Y = [∇min{xy, xy, xy, xy},
Δmax{xy, xy, xy, xy}] (2)

This allows a reduction from 8 multiplications to only 4;
whilst the number of comparisons remains the same.

While simple to implement, this system suffers from
overheads in that twice as many floating point operations
are calculated than ultimately used and due to this, six IF
statements must be evaluated to compensate. In an ideal
world, an interval multiplication would only require two
multiplications.

3. Case Based Multiplication

Implied by Moore in [3] and described by Schulte and
Swartzlander in [6], an improvement on the above methods
allows in 8 out of 9 cases a further reduction from 4 to only 2
multiplications. This is achieved by examining the signs of
the operands prior to multiplication. Given the data shown
in Table 1 it is possible to select which multiplicands which
will always produce the smallest/largest bounds.

Case Conditions z z
1 x ≥ 0, y ≥ 0 xy xy
2 x ≥ 0, y < 0 xy xy
3 x < 0, y ≥ 0 xy xy

4 x < 0, y < 0 xy xy
5 x < 0 ≤ x, y ≥ 0 xy xy
6 x < 0 ≤ x, y < 0 xy xy

7 x ≥ 0, y < 0 ≤ y xy xy
8 x < 0, y < 0 ≤ y xy xy
9 x < 0 ≤ x, y < 0 ≤ y min of max of

(xy, xy) (xy, xy)

Table 1. Nine cases for interval multiplication.
[7]

In [5] Schulte, Bickerstaff and Swartzlander point out
that although this decreases the number of multiplications,
its software implementation requires a large number of con-
ditional branches to determine the sign bits. Specifically,
this implementation comes at the cost of if-then-else state-
ments which are nested three deep.

It should be noted that the above system suffers from
a ‘special case’ (case 9) in which the multiplicands can-
not be determined in advance and so the system must fall
back to multiplying out all possible combinations and sub-
sequently sorting them. Again, should double precision re-
sults prove unavailable, all the overheads in Equation (2)
will once more be incurred. Namely: 8 multiplication oper-
ations, followed by 6 comparison operations.

4. Integer Multiplication

Our technique for interval multiplication involves the
matrix multiplication of integers which symbolically rep-
resent the interval bounds. As with any symbolic operation,
it is not the values which are important but the signs and
ratios of these values. At the expense of performing this
calculation prior to multiplying the bounds, we can always
correctly identify which combination of multiplicands will
produce the smallest and largest bounds; thus reducing the
number of floating point operations from a worst-case of
eight to the ideal of only two.

Whilst admittedly there are overheads incurred in the
pre-processing, it should be borne in mind that any of the
above techniques use some variety of pre or post process-
ing in order to determine the correct bounds. The primary
advantages of this technique are:

• Maximum of two floating-point multiplications per op-
eration

• Fixed number of operations per multiplication
• No special cases
• Low cost hardware implementation

For example, given the following intervals:

X = [−1.32, 102.46] (3)

Y = [22.10, 112.41] (4)

X × Y = [−1.32, 102.46] × [22.10, 112.41] (5)

The integer representation of the absolute values of these
would be sorted as follows:

[1, 3] × [2, 4] (6)

Which, reapplying their relevant signs would become:

[−1, 3] × [2, 4] (7)

Or more generally:

[x, x] × [y, y] (8)

Calculating the outer product on the above integer values
gives:

(−1
3

)
· (2 4

)
=

(−2 −4
6 12

)
(9)

Which is generalised to the following:
(

x
x

)
· (y y

)
=

(
xy xy
xy xy

)
(10)

Thus the minimum (-4) and maximum (12) values refer to
xy and xy, i.e. the interval [xy, xy] ([-148.38, 11517.53])
which is the product of X·Y.

4.1 Operation comparison

Figure 1 shows the only six valid types of interval, their
magnitude increasing from left to right with zero lying at
any point in the graphs. All of the cases described by the
9-case method in Table 1 fall within one of these types. For
example, case 1 from Table 1, is such that x > 0 and ex-
hibits x < xy < yx thus conforming to interval type A
from Figure 1.

Figure 1. Valid interval types

Exhaustively covering every possible interval which can
be processed by the 9-case method, Table 2 takes each case
from the 9-case method and determines which of the six in-
terval types the case utilises. An example of input operands
for each case and type is given (X and Y) and the sub-
sequent integer multiplication values calculated using the
generalised form given in Equation (10). Taking the min-
imum and maximum values (imin and imax respectively),
the bounds which these integers represent produce a prod-
uct which in every case is identical to that of the 9-case
method.

4.2. Special Cases

According to the interval specification in [1] the calcula-
tion:

[0, 1] × [−∞, 1] = [−∞, 1] (11)

Is defined as:

[0, 1] × [−∞, 1] = [−∞,+∞] (12)

This is due to the multiplication of ±∞ by 0 being unde-
fined and as such, when using floating-point arithmetic, the
product is defined as the special value ‘NaN’ (Not A Num-
ber). Subsequent comparisons between NaN and the real
values generated from the other three boundary candidates
will also result in NaN. Thus, as a NaN does not contain
any meaningful boundary data, in order to ensure that all
possible values are enclosed the bounds must be extended
to [−∞, +∞]. However, given the limits of interval bound

n set out in Equation (13), we can see Equation (11) pro-
vides a better result.

[0, 1] × [−n, 1] = [−n, 1] (13)

lim
n→∞ [−∞, 1] (14)

An advantage of our technique is its ability to gracefully
handle problems such as the above. Using the technique
described earlier, we can show:

X = [0, 1] (15)

Y = [−∞, 1] (16)

Would be sorted2 as:

[1, 2] × [3, 2] (17)

Upon reapplying the signs to become:

[1, 2] × [−3, 2] (18)

Calculating the outer product on the above integer values
gives:

(
1
2

)
· (−3 2

)
=

(−3 2
−6 4

)
(19)

I.e: (
x
x

)
· (y y

)
=

(
xy xy
xy xy

)
(20)

Thus the minimum (-6) and maximum (4) values refer
to xy and xy, which are the correct combination of bounds
for this interval multiplication. Thus, multiplying the values
these refer to gives the result: [-∞, 1]

5. Vectorisation

A vector may be described as a one-dimensional array, or
single path, thus a vectorised program is a single instruction
path which executes without branching. As CPU speeds
have increased, the time for instructions to be completed
has decreased proportionately to the extent where some in-
structions cannot be executed in the time allotted to them.
In an attempt to rectify this, most architectures will cut the
instruction into simpler sub-tasks which are faster to pro-
cess and are executed serially in a pipeline. Whilst for the
majority of tasks this is a satisfactory solution, many opera-
tions such as a change of rounding direction or code branch
(IF statement) force pipeline stalls or even flushes.

2As x and y are the same value, they are both assigned the same integer
representation.

Case Type X X {xy, xy, xy, xy} imin imax integer/9-case result
1 A [1, 2] [3, 4] {3, 4, 6, 8} 3 8 [xy,xy]

B [1, 3] [2, 4] {2, 4, 6, 12} 2 12 [xy,xy]
C [1, 4] [2, 3] {2, 3, 8, 12} 2 12 [xy,xy]
A’ [3, 4] [1, 2] {3, 6, 4, 8} 3 8 [xy,xy]
B’ [2, 4] [1, 3] {2, 6, 4, 12} 2 12 [xy,xy]
C’ [2, 3] [1, 4] {2, 8, 3, 12} 2 12 [xy,xy]

2 A’ [1, 2] [-4, -3] {-4,-3,-8,-6} -8 -3 [xy,xy]
3 A [-2, -1] [3, 4] {-6,-8,-3,-4} -8 -3 [xy,xy]
4 A [-4, -3] [-2, -1] {8, 4, 6, 3} 3 8 [xy,xy]

B [-4, -2] [-3, -1] {12, 4, 6, 2} 2 12 [xy,xy]
C [-4, -1] [-3, -2] {12, 8, 3, 2} 2 12 [xy,xy]
A’ [-2, -1] [-4, -3] {8, 6, 4, 3} 3 8 [xy,xy]
B’ [-3, -1] [-4, -2] {12, 6, 4, 2} 2 12 [xy,xy]
C’ [-3, -2] [-4, -1] {12, 3, 8, 2} 2 12 [xy,xy]

5 A [-1, 2] [3, 4] {-3, -4, 6, 8} -4 8 [xy, xy]
B [-1, 3] [2, 4] {-2, -4, 6, 12} -4 12 [xy, xy]
C [-1, 4] [2, 3] {-2, -3, 8, 12} -3 12 [xy, xy]

6 C [-4, 1] [-3, -2] {12, 8, -3, -2} -3 12 [xy, xy]
A’ [-2, 1] [-4, -3] {8, 6, -4, -3} -4 8 [xy, xy]
B’ [-3, 1] [-4, -2] {12, 6, -4, -2} -4 12 [xy, xy]

7 A’ [2, 3] [-4, 1] {-8, 2, -12, 3} -12 3 [xy, xy]
B’ [1, 3] [-4, 2] {-4, 2, -12, 6} -12 6 [xy, xy]
C’ [2, 3] [-1, 4] {-2, 8, -3, 12} -3 12 [xy, xy]

8 A [-4, -3] [-2, 1] {8, -4, 6, -3} -4 8 [xy, xy]
B [-4, -3] [-2, 1] {8, -4, 6, -3} -4 8 [xy, xy]
C’ [-3, -2] [-4, 1] {12, -3, 8, -2} -3 12 [xy, xy]

9 B [-4, 1]/[-2, 3] [-3, 2]/[-1, 4] {12, -8, -3, 2}/{2, -8, -3, 12} -8 12 [xy, xy]/ [xy, xy]
C [-4, 2]/[-2, 4] [-3, 1]/[-3, 1] {12, -4, -6, 2}/{6, -2, -12, 4} -6/-12 12/6 [xy, xy]/ [xy, xy]
B’ [-3, 2]/[-1, 4] [-4, 1]/[-2, 3] {12, -3, -8, 2}/{2, -3, -8, 12} -8 12 [xy, xy]/ [xy, xy]
C’ [-3, 1]/[-1, 3] [-4, 2]/[-2, 4] {12, -6, -4, 2}/{2, -4, -6, 12} -6 12 [xy, xy]/ [xy, xy]

Table 2. Valid intervals and products for each of the nine cases, as compared to the results of the
integer method.

IF statements cause a particular problem as with so little
time for the condition to be evaluated and instructions wait-
ing further up the pipeline, it is undesirable to simply pause
execution while the appropriate branch is determined. To
this end, a specialist piece of hardware, the ‘branch predic-
tion unit’ attempts to guess which path the branch will take
and begin speculative execution of that branch. Whilst this
is sufficient for structures such as for loops, where the loop
control variable must be evaluated regularly, and the branch
is liable to be the same as the previous iteration, the branch
prediction logic can ‘learn’ from experience. (i.e. if the loop
went around the previous 50 times, it is liable to go round
on iteration 51 and so this path starts speculative execution).
Should the prediction prove incorrect, the pipeline must be
flushed and all intermediate results cleared and re-executed

with the correct data.

This poses a particular problem for interval arithmetic
due to the number of IF statements required and the execu-
tion path being data dependent, something which changes
with each multiplication. Subsequently the branch predic-
tor cannot learn what to expect and a misprediction results
in a pipeline flush, which on a modern architecture such as
the Pentium 4 is 40 instructions deep.

Along with deeper pipelines, modern processor design is
leaning towards the inclusion of SIMD (Single Instruction
Multiple Data) units. The following Sections detail how
SIMD data structures can be used to vectorise interval code
and remove these costly branching operations.

5.1. Vectorised Brute-Force

The single-precision brute-force algorithm given in
Equation (1) makes use of eight floating point multiplica-
tions followed by six comparisons in order to determine
which products are the minima/maxima for the given pair
of intervals.

Current SIMD technology can simultaneously process
four single precision floats and so the initial multiplications
may be replaced by two SIMD multiplications, provided the
rounding direction is set appropriately. However the six
comparisons prove a more interesting problem as without
IF statements, it is not immediately clear how to return the
minimum value in code such as that shown in Figure 2.

int min(int a, int b)
{

if(a < b)
{

return a;
}else{

return b;
}

}

Figure 2. Function to return the smaller of two
ints.

By making use of masking and SIMD operations, it is
possible to produce code which performs the same function
as that shown in Figure 2 but which does not require IFs
and the branches these produce. An example similar to that
given in [4] for an Altivec architecture is shown in Figure 3.

vector int Min(vector int a, vector int b)
{

vector bool mask = vec cmplt(a, b)
/* Generate mask for smaller value */

vector int result = vec sel(a, b, mask)
/* Select a or b using the mask */

return result
}

Figure 3. Non-branching implementation of
Figure 2

The code in Figure 3 takes two vectors containing signed
ints and using the instruction vec cmplt(2) returns a
bitmask highlighting the smaller value. When passed to
vec sel(3) with the input vectors, the bitmask selects
and returns the single vector which has been masked off.
SIMD capabilities vary between architectures, the Intel ar-
chitectures for example, do not contain the vec sel instruc-

tion, so it may be more or less difficult to implement these
functions depending upon the choice of platform.

The pseudocode in Figure 4 shows an implementation of
the brute-force interval multiplication which makes use of
relatively simple functions. For the product of two input
intervals X and Y the resultant upper/lower bound will be
generated in the every element of the array.

interval X = [1, 3]
/* X = [x, x] */
interval Y = [2, 4]
/* Y = [y, y] */

union vector
{

128 bits v
float f[4]

}product,
dataA, dataB
rot1, imed_val
rot2, vec_min

dataA = {x, x, x, x}
/* dataA = [1, 1, 3, 3] */
dataB = {y, y, y, y}
/* dataB = [2, 4, 2, 4] */

rounding mode = ROUND DOWN
/* Set rounding mode down */

product = SIMD mult(dataA, dataB)
/* product = [2,4,6,12] */

rotl = rotate right 1(product)
/* rot1 = [12,2,4,6] */

imed val = cmplt(product, rotr1)
/* product : 2,4,6,12

rot1 : 12,2,4, 6
imed val = 2,2,4, 6

/*

rot2 = rotate right 2(imed val)
/* imed val : 2,2,4,6

2,2,4,6 >> 6,2,2,4 >> 4,6,2,2
rot2 = 4,6,2,2

/*

vec min = cmplt(imed val, rot2)
/* vec min = [2,2,2,2] */

Figure 4. Vectorised/semi-parallel implemen-
tation of the brute force algorithm.

In this system, a set of unions each contain a 128-bit
vector and an array containing four floating point vari-
ables. The union allows the vector to be processed in the
SIMD XMM registers, whilst still allowing access to its
individual components via the array. With the rounding
mode set to ROUND DOWN, two vectors, dataA and dataB
are assembled so their SIMD multiplication via function
SIMD mult(2) will result in the vector variable product
containing products of the input bounds; (i.e. xy, xy, xy

and xy). In order to determine the smallest of the four
floats contained within product, six comparisons are nec-
essary, though on the Intel architecture, only 4 may be
performed at a time. In order to make the comparisons,
we must set up a second vector rot1 containing the same
data, but in a different order. To do this, our pseudo-
instruction rotate right 1(1) takes product and ‘ro-
tates’ the values it contains by a specified amount and direc-
tion to produce the vector rot1. For example, rotating the ar-
ray 1,2,3,4 right by one would result in 4,1,2,3. The instruc-
tion cmplt(2) (compare less than) then compares the val-
ues contained in product with those in rot1 and in each case
returns the smaller of these, in the vector imed val. At this
point, four of the required six comparisons have been made
and to perform the remaining two, a second rotate (this time
of imed val) is required. By rotating imed val right (or left)
by two elements, the uncompared pairs of elements are now
aligned with each other. With a final cmplt(2) comparing
the elements of imed val and rot2, all values have been com-
pared and all elements in min val contain the same (mini-
mum) value. Thus, the lower bound of the output inter-
val can be set to any of the elements of min val. In order
to compute the upper bound, the same technique would be
followed, though having changed the initial rounding mode
to ‘ROUND UP’ and using cmpgt(2) (compare greater
than) instead of cmplt(2). This technique, ensures that
no branching is required and eliminates pipeline stalls.

5.2. Vectorised 9-case implementation

The following implementation of the 9-case method de-
scribes a means of completely removing branching from the
algorithm and minimizing the number of and types of com-
parison necessary to determine the case to be executed.

While branching is not such an issue for the Brute-
Force algorithm, as it takes place after the calculation of
the floating-point values, when branching takes place be-
fore sending data to the FPU, there is a significant overhead.
The cost of a misprediction, especially when feeding rela-
tively high-latency units such as floating-point multipliers
can result in multiple pipeline stalls or flushes.

Though the Min/Max operations had a series of IF state-
ments removed, vectorising code which makes use of nested
IFs is a significantly more complex task. However, given
the conditions described in Table 1 we can see there are ad-
ditional implied conditions which will simplify our task. To
take an example from case 1 (x ≥0, y ≥ 0); as x is greater
than zero, the upper bound of this interval (x) must also be
greater than zero. By filling in the implied conditions as
well, we gain Tables 3 and 4.

As Tables 3 and 4 demonstrate, each of the conditions
distinctly identifies one of the original cases in Table 1. As
both tables are independently capable of uniquely identi-

Bound < 0
x x y y

1 F F F F
2 F F T T
3 T T F F
4 T T T T
5 T F F F
6 T F T T
7 F F T F
8 T T T F
9 T F T F

Table 3. Expanded
bound < 0 con-
ditions for 9-case
interval multiplica-
tion.

Bound ≥ 0
x x y y

1 T T T T
2 T T F F
3 F F T T
4 F F F F
5 F T T T
6 F T F F
7 T T F T
8 F F F T
9 F T F T

Table 4. Expanded
bound ≥ 0 con-
ditions for 9-case
interval multiplica-
tion.

fying each case and Bound ≥ 0, or Bound < 0, are used
equally frequently, either may be used. As the same opera-
tion is applied to each of the interval bounds, this lends it-
self to a SIMD implementation. By simultaneously compar-
ing each of the operands to zero, a bit-pattern determining
which of the above cases is in operation is produced. Cast-
ing this bit pattern to an integer variable produces a value in
the range 0 (case 1) to 15 (case 4).

At this point, although we could have a case statement
to perform the necessary calculations based upon the case
in hand, this would be the equivalent of 9 logical IF state-
ments, something we are trying to avoid. Instead, the in-
teger is used as an index to a 16-element array containing
pointers to functions. Each of these functions contains code
necessary to calculate the bounds for one case. Thus, the
array elements are arranged such that the integer generated
indexes the correct function. Though there are only 9 cases
(0,3,12,15,8,11,2,14,10), but 15 possible integers; the re-
maining (invalid) array elements are filled by pointers to a
function which returns [NaN, NaN].

It should be noted that normally, function calls generate
an additional overhead. The time taken to call a function
(setting its arguments, loading cache/memory, jumping to
the new instructions, executing them and jumping back) is
normally a very small part of the overall execution time.
When the called function is relatively simple but used heav-
ily, the function call overhead and the execution time are
similar and overheads quickly mount up. In the vectorised
9-case method, though individual cases were generated as
separate functions, the structure which indexes them (the
array of pointers) is static and so assembles to produce code
which makes use of a JMP table, but no function calls and
the overhead which these incur.

6. Testing

Each of the above algorithms were required to perform
the same task, with the same data: to calculate the product
of two random intervals in the range [−∞, +∞] 1×108

times.
Each routine was implemented as a discrete function, ac-

cepting two pointers to intervals as parameters and return-
ing another pointer as the result. A loop would generate
two random intervals passing each to the above functions
before repeating. As each function made the same calcu-
lation with the same values, their individual performances
could be determined by the length of time the program spent
in each function, as determined by gprof3. They were im-
plemented using C90 compiled with GCC v3.2 on an Intel
PentiumIII Xeon4. In order to ensure that no function would
gain from using the rounding mode set by its predecessor,
the rounding mode was saved changed and restored within
each function.

During testing it was discovered that creating the data
structures (DataA and DataB) for SIMD multiplication
caused a 22% performance decrease, compared to multiply-
ing the bounds in a sequential fashion. As such, two extra
algorithms were included: Vec.Raw† and Vec.9-cases‡.
Whilst both are fully vectorised, the former operates by
producing the initial products via four sequential scalar
multiplications and not via SIMD, whilst the latter makes
use of Vec.Raw† for its special case; thus both bypass
the overheads incurred in the generation of SIMD data
structures.

7. Results

Table 5 shows the vital statistics on implementations of
the above algorithms. As the performance of the majority
of these algorithms are data-dependent and this data was
randomly generated, the static code complexity may differ
from that of the executed path and to this end, the best and
worst case scenarios were recorded. The code complexity
was measured in terms of the number of binary operators in
the code (comparisons such as =, ≤, > etc.), the number of
IF/ELSE statements (and if these were nested), the number
of integer and floating-point multiplications required and fi-
nally the number of variable assignments. An individual
call to a SIMD operation is counted as a single operation,
regardless of the number of values which it operates upon.
These results can be seen to compare favourably to even
the double-length products by Wolff von Gudenberg in [8],
without requiring the custom hardware suggested.

3Gprof is the GNU Graph PROFiler [2].
4Family 6, model 7, stepping 3, 500MHz with 1MB L2 cache.

Table 6 reflects the efficiency of the compiled code in
terms of the size of the resultant executable, the number of
low-level instructions which this contains and the efficiency
of the function required to do this. The latter being as the
number of μs taken to execute the function, averaged over
1×108 calls. Therefore, the less time spent in the function,
the greater the efficiency of the algorithm.

8. Conclusion

In conclusion, we have presented a single operation to
uniquely identify interval cases (Section 5.2); vectorised
formulations and implementations of traditional interval
multiplication operations (Sections 5.1 and 5.2); and a
means of reducing interval multiplication to only two float-
ing point calculations (Section 4). As can be seen from
Table 6, the 9-case method is the fastest, followed (re-
spectively) by the brute-force, vectorised 9-case, vectorised
brute-force and integer implementations.

The integer method (described in Section 4) provides the
poorest performance as the speed gained by avoiding check-
ing the signs on the bounds and removing the special case
does not outweigh the overhead incurred by declaring, us-
ing and sorting the additional integer variables. FPU perfor-
mance has improved considerably in recent years and so we
must conclude the integer algorithm would be best suited to
systems where there is a high FPU latency.

The performance of the vectorised implementations sur-
passed the forementioned integer technique and whilst these
techniques may look better on paper, it would appear that
the costly branching instructions which we strove to re-
move were in fact replaced with something even more
costly, namely: multiple assignments per function. This
was highlighted with the vectorised brute-force method
(Section 5.1). Setting up data structures dataA and dataB
and subsequently performing a SIMD multiply operation
on them caused a 22% performance hit, compared to sim-
ply declaring something akin to: product.f[0] = x

* y; product.f[1] = x * y; etc. for all four el-
ements in the array product. A further decrease in perfor-
mance was due to the four rotate operations required by the
vectorised brute-force method. These are not supported on
the Intel architecture upon which it was implemented and
so had to be emulated by a sequence of assignments, in-
creasing both program size and latency. This subsequently
impacted the vectorised 9-case method which falls back to
the brute force algorithm for the ‘special case’ (case 9).

The original 9-case method proved so successful not
only due to its ability to reduce the number of floating-point
operations required, but also due to the minimal number of
intermediate variables and assignments it requires. As such,
the performance decrease incurred by branching was out-
weighed by the fact the program did not need to pause to

Algorithm Binary IF/ELSE Nested Int. FP Assign-
Operations statements IFs Mult. Mult. ments

Brute-Force 6 6 0 0 8 10/17
9-cases 2/6 2/6 1/5 0 2/4 3/7
Integer 28 26 0 4/8 2 22/42

Vec. Raw 4 0 0 0 2 41
Vec. Raw† 4 0 0 0 8 31

Vec. 9-cases 1/5 0 0 0 2 8/46
Vec. 9-cases‡ 1/5 0 0 0 2 8/36

Table 5. Code complexity

Algorithm Program Assembled Time spent
size (Bytes) instructions in Algorithm (μs)

Brute-Force 15120 75 1.9144
9-cases 15442 127 1.5028
Integer 15730 246 4.5078

Vectorised Raw 15678 99 4.1442
Vectorised Raw† 15249 93 3.4028
Vectorised 9-case 16662 384 2.6940
Vectorised 9-case‡ 15249 378 2.3056

Table 6. Code complexity and operations

wait for registers to become available or shuffle much data.
The brute-force method was also relatively successful, how-
ever despite its simplicity, the additional floating point oper-
ations and comparisons reduced its performance compared
to the 9-case algorithm.

Whilst we were unable to improve upon the standard 9-
case method, we were able to provide a fully vectorised al-
gorithm (vectorised 9-case algorithm, described in Section
5.2) which provided similar performance to the brute-force
algorithm. Given the current trends in architecture evolu-
tion and some further work, we believe it is an interesting
approach and may prove more successful in the future.

These approaches differ in several ways to that of pre-
vious work such as Wolff von Gudenberg’s SIMD-aware
interval arithmetic system [8]. Though the techniques
we have outlined above also include counts of the multi-
ply/compare operations required per system; we have in-
cluded a novel means of interval multiplication and made
use of the available SIMD hardware to vectorise the brute-
force and 9-case operations. Furthermore, the above algo-
rithms have been implemented in a real-world environment
thus providing performance statistics whilst taking into ac-
count the overheads incurred. These implementations have
made use of SIMD technology without resorting to custom
interval-acceleration hardware such as unrounded floating-
point modes.

9. Further work

While the performance of the described algorithms has
been disappointing when compared to the 9-case method, it
should be borne in mind that this technique has had many
years to optimised. We are still convinced that vectorisation
is a worthy cause and there is still scope for optimisation
in these algorithms. Scalar processors have had a variety
of rotate operations for many years and the Altivec SIMD
architecture enhancements already support this. As SIMD
architectures evolve many other processors will undoubt-
edly provide similar support, allowing many of the assign-
ments used in the vectorised brute-force method to be re-
placed with a single instruction. This will not only improve
performance for the vectorised brute-force method, but also
the vectorised 9-case function which relies upon it for its
‘special case’. Acceleration via the property ∇(value) =
−(�(−value)) will also be investigated to reduce the num-
ber of changes to the rounding mode from 3 (up, down, re-
store) to only two (up and restore). Finally, given the fixed
number of operations to compute the product of two inter-
vals via the integer method, we expect this to lend itself to
a hardware implementation and are working towards this.

References

[1] D. Chiriaev and G. W. Walster. Interval arithmetic specifica-
tion. www.mscs.mu.edu/ globsol/Papers/spec.ps, 1998.

[2] J. Fenlason and R. Stallman. GNU gprof - The GNU Profiler.
The Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111, USA, 1998.

[3] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.
[4] I. Ollmann. Altivec (a.k.a velocity engine). Technical report,

Caltech, 2001.
[5] M. Schulte, K. Bickerstaff, and E. Swartzlander. Hardware

interval multipliers. Journal of Theoretical and Applied In-
formatics, 3(2):73–90, 1996.

[6] M. J. Schulte and E. E. Swartzlander. Software and hardware
techniques for accurate, self-validating arithmetic. In Appli-
cations of Interval Computations, pages 381–404, 1996.

[7] J. E. Stine and M. J. Schulte. A combined interval and floating
point multiplier. In Great Lakes Symposium on VLSI, pages
208–215. IEEE Computer Society, 1998.

[8] J. Wolff von Gudenberg. Hardware support for interval arith-
metic. In G. Alefeld, A. Frommer, and B. Lang, editors, Sci-
entific Computing and Validated Numerics: Proceedings of
the International Symposium on Scientific Computing, Com-
puter Arithmetic and Validated Numerics - SCAN ’95, pages
32–37, Berlin, 1996. Akademie Verlag.

On the interval Gaussian algorithm

Günter Mayer
Universität Rostock

Institut für Mathematik
Universitätsplatz 1, 18055 Rostock, Germany

guenter.mayer@uni-rostock.de

Abstract

We give a survey on criteria for the feasibility and non–
feasibility of the interval Gaussian algorithm. In particular,
we consider generalized diagonally dominant matrices, ap-
propriate sparse matrices, and Hessenberg matrices. More-
over, we recall alternative representations and pivoting.

1. Introduction

In order to verify and to enclose solutions of linear sys-

tems Ax = b a variety of methods are available as can

be seen from any text book or survey on interval com-

putations such as [4], [7], [31], [40], or [44]. This re-

mark refers also to the solution set Σ of linear systems if

A ∈ R
n×n, b ∈ R

n are allowed to vary within interval

quantities [A] and [b], respectively. One such method is

the interval Gaussian algorithm which constructs an inter-

val vector [x]G = IGA([A], [b]) such that

Σ = {x | Ax = b, A ∈ [A], b ∈ [b] } ⊆ [x]G

holds. Roughly speaking the algorithm uses the formulae of

the conventional Gaussian algorithm and replaces the real

entries and operations by intervals and corresponding inter-

val operations (cf. Section 2). Since, in general, the set Σ is

not an interval (cf. [44]), and also due to data dependency,

[x]G often overestimates this set. But there are also classes

of input data [A], [b] such that [x]G results in the interval

hull of Σ – at least if roundings are excluded; cf. for instance

[11]. The conventional Gaussian algorithm may break down

by division by zero. If this failure does not occur we call the

algorithm feasible, otherwise infeasible. This terminology

is also used for the interval Gaussian algorithm where ‘divi-

sion by zero’ is replaced by ‘division by an interval which

contains zero’.

The feasibility of the conventional Gaussian algorithm is

guaranteed by the following necessary and sufficient condi-

tion which can be found, for instance, in [47]:

Theorem 1 Let A ∈ R
n×n, b ∈ R

n. Then the Gaussian
algorithm is feasible if and only if all leading principal sub-
matrices of A are non–singular.

Unfortunately, a similar criterion is missing for the interval

version of the algorithm. Assuming that the interval Gaus-

sian algorithm is feasible if and only if it is for every pair

(A, b) ∈ [A] × [b] was shown to be false by a famous 3 × 3
counterexample due to Reichmann [49]. Up to now only

necessary or sufficient global criteria are known for the ex-

istence of [x]G. It is the purpose of this paper to summarize

them in order to create a platform from which one can start

for new ones. Emphasize was laid in creating categories

which should help to order the criteria. Here the reviews

[14] and [35] were helpful – at least up to the date of their

appearance. We add, of course, all newer criteria known to

us hoping not to have missed too many.

The algorithm was suggested already by Dwyer [13].

Moore [40] presented the formulae for 2× 2 interval matri-

ces while Hansen and Smith [29], Apostolatos and Kulisch

[10], Nickel [45], Wißkirchen [60] mentioned the algorithm

or partly worked with the interval bounds. Alefeld and

Herzberger [3] listed the formulae of Section 2 explicitly.

Starting with their appearance in 1974 and lasting up to now

a variety of contributions were made on the subject. They

contain a lot of techniques applicable also in other fields of

interval analysis. In so far, the results sometimes might have

a purely theoretical touch. The ideas, however, are interest-

ing and useful.

Our paper is organized as follows: First we repeat the

essential formulae of the algorithm – mainly for notational

reasons. We also recall two alternatives which are due to

Schwandt [57] and Neumaier [42]. In Section 3 we list cri-

teria of feasibility which are based on generalized diago-

nally dominant matrices, among them H– and M–matrices.

Section 4 is devoted to perturbations and Section 5 consid-

ers particular sparse matrices. Section 6 deals with Hes-

senberg matrices. It contains a new formulation of Reich-

mann’s result in [48] and a representation of the possible

structure of the matrices. Section 7 collects some remarks

on pivoting while Section 8 presents criteria of infeasibility.

Section 9 contains some final remarks. By lack of space we

list all the theorems without proof but with references.

2. Representations

We first describe our notation. We use square brackets

for intervals [a] = [a, a], and [a]ij , [b]i for the entries of in-

terval matrices [A] and interval vectors [b], respectively. We

denote by IR, IR
n, and IR

n×n the set of intervals, inter-

val vectors with n components and n× n interval matrices.

By e(k) we mean the k–th column of the n × n identity

matrix I . We equip R
n and R

n×n with the usual entry-

wise defined partial ordering ≤ and write x < y for vectors

if strict inequality holds for all components. For intervals

[a] we define the mignitude 〈[a]〉 = min { |a| ∣∣ a ∈ [a] },

the absolute value |[a]| = max { |a|, |a| }, the midpoint

mid([a]) = (a + a)/2 and the diameter d([a]) = a − a.

With [A] ∈ IR
n×n we associate the Ostrowski matrix

〈[A]〉 = (cij) ∈ R
n×n which is given by cii = 〈[a]ii〉 and

cij = −|[a]ij | if i �= j. In addition, we will use the absolute

value |[A]| = (|[a]ij |) ∈ R
n×n of an interval matrix [A].

We call [A] ∈ IR
n×n irreducible if |[A]| is irreducible. The

spectral radius of a matrix A ∈ R
n×n is denoted by ρ(A).

The interval Gaussian algorithm starts with [A](1) =
[A] ∈ IR

n×n, [b](1) ∈ IR
n and – if it is feasible – results

in a final vector [x]G = IGA([A], [b]) ∈ IR
n via intermedi-

ate quantities [A](k), [b](k), k = 2, . . . , n, in the following

way:

[a](k+1)
ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[a](k)
ij , i = 1, . . . , k,

j = 1, . . . , n,

[a](k)
ij − [a](k)

ik [a](k)
kj

[a](k)
kk

, i, j = k + 1, . . . , n,

0 otherwise

[b](k+1)
i =

⎧⎪⎨
⎪⎩

[b](k)
i , i = 1, . . . , k,

[b](k)
i − [a](k)

ik

[a](k)
kk

[b](k)
k , i = k + 1, . . . , n,

k = 1, . . . , n − 1,

[x]Gi =
(

[b](n)
i − ∑n

j=i+1[a](n)
ij [x]Gj

)
/ [a](n)

ii ,

i = n, n − 1, . . . , 1.

In [57] Schwandt presented the multiplicative representa-

tion

[x]G = [D](1)([U](1)([D](2)([U](2)(. . . ([U](n−1) ×
([D](n)([L](n−1)(. . . ([L](2)([L](1)[b])) . . .),

(1)

where

[D](k) = I − e(k)(e(k))T (1 − 1

[a](k)
kk

),

[L](k) = I −
(
e(k)(0, . . . , 0, [a](k)

k+1,k, . . . , [a](k)
nk)/[a](k)

kk

)T

,

[U](k) = I − e(k)(0, . . . , 0, [a](k)
k,k+1, . . . , [a](k)

kn) ;

cf. also [2]. Neumaier obtained [x]G in [42], [44] recur-

sively via the partition

[A] =
(

[a]11 [c]T

[d] [A′]

)
, [c], [d] ∈ IR

n−1,

and the Schur complement S[A] = [A′] − [d][c]T /[a]11 ∈
IR

(n−1)×(n−1), provided that 0 �∈ [a]11. He defines the

triangular decomposition ([L], [U]) of [A] to exist, if either

n = 1, [L] = 1, [U] = [A] �� 0 or

[L] =
(

1 0
[d]/[a]11 [L′]

)
, [U] =

(
[a]11 [c]T

0 [U ′]

)
,

where 0 �∈ [a]11 and where ([L′], [U ′]) is the triangu-

lar decomposition of S[A]. With the decomposition [b] =
([β], [b′]T)T , [β] ∈ IR, [b′] ∈ IR

n−1 he finally ends up

with the recursion

[x]G = IGA([A], [b]) =

(
[x]G1
[x′]G

)
,

where

[x′]G = IGA(S[A], [b′] − [β][d]/[a]11),

[x]G1 = ([β] − [c]T [x′]G)/[a]11 .

If the triangular decomposition ([L], [U]) exists [x]G can

equivalently be expressed by

[x]G = IGA
(
[U], IGA([L], [b])

)
.

3. Generalized diagonally dominant matrices

Our first class of matrices leads us to a definition which

was introduced in [41] for real matrices.

Definition 1 A matrix [A] ∈ IR
n×n is called generalized

diagonally dominant, if there is a real vector u > 0 such
that 〈[A]〉u ≥ 0. If, in addition, [A] is irreducible and
(〈[A]〉u)i > 0 holds for at least one component i then [A]
is called generalized irreducibly diagonally dominant. If u
can be chosen to be u = e = (1, 1, . . . , 1)T ∈ R

n then the
specification ‘generalized’ can be dropped.

Note the slight difference between ‘irreducibly diagonally

dominant’ and ‘irreducible and diagonally dominant’ which

is relevant for our first necessary and sufficient criterion

given in [36]. In order to formulate it we need the sign

matrix S ∈ R
n×n of [A] which is defined by sij =

sign(mid([a]ij)), and the extended sign matrix S′ ∈ R
n×n

which is constructed by means of S and the following algo-

rithm:

S′ := S
for k := 1 to n − 1 do

for i := k + 1 to n do

for j := k + 1 to n do

if s′ij = 0 then s′ij := −s′iks′kks′kj .

Theorem 2 Let [A] ∈ IR
n×n be irreducible and general-

ized diagonally dominant. Moreover, let [b] ∈ IR
n and S′

be the extended sign matrix . Then [x]G exists if and only if
[A] is generalized irreducibly diagonally dominant or if

s′ij s′ik s′kk s′kj =
{

1, if i �= j
−1, if i = j

(2)

holds for some triple (i, j, k) with k < i, j.

In order to apply Theorem 2 to matrices which are not nec-

essarily irreducible we introduce the so–called reducible

normal form of [A]. To this end let P be a permutation

matrix such that

R(|[A]|) = P |[A]|PT =

⎛
⎜⎜⎜⎜⎝

R11 O . . . O

R21 R22
. . .

...
...

...
. . . O

Rr1 Rr2 . . . Rrr

⎞
⎟⎟⎟⎟⎠

is ‘the’ reducible normal form of |[A]| defined for real ma-

trices as in [19], e.g. Here, Rss, s = 1, . . . , r, are square

diagonal blocks which are 1×1 zero matrices or irreducible.

It is known that the reducible normal form is unique up to

permutations of rows and columns within the block rows

and block columns and up to permutations of specific block

rows and block columns. With the same permutation ma-

trix P as above the matrix R([A]) = P [A]PT is called re-

ducible normal form of [A] with blocks [R]st.

Let π be the permutation associated with P and let i1, i2
be any two indices of [A] whose images π(i1), π(i2) belong

to the same block [R]ss of R([A]). If i1 < i2 always im-

plies π(i1) < π(i2) then we call P order preserving within

blocks.

With this terminology we can formulate our next theo-

rem.

Theorem 3 Let [A] ∈ IR
n×n, [b] ∈ IR

n and let
P ∈ R

n×n be a permutation matrix such that R([A]) =
([R]st) = P [A]PT is ‘the’ reducible normal form of [A]

with blocks [R]st, s, t = 1, . . . , r. Assume that P is order
preserving within blocks. Then the following properties are
equivalent.

(i) IGA([A], [b]) exists.

(ii) IGA(P [A]PT , P [b]) = IGA(R([A]), P [b]) exists.

(iii) IGA([R]ss, (P [b])s) exists for s = 1, . . . , r, where
(P [b])s denotes the part of P [b] which corresponds to
[R]ss.

Theorem 3 may become false if P is not order preserving

within blocks as is shown in [36] by an example.

Based on this result Theorem 2 can be generalized to ma-

trices whose Ostrowski matrix may be reducible. Partly by

virtue of this generalization we get the following sufficient

condition for which we recall that a real matrix A ∈ R
n×n

is an M–matrix if aij ≤ 0 for i �= j, det(A) �= 0 and

A−1 ≥ O. An interval matrix [A] ∈ IR
n×n is called an

M–matrix if all matrices A ∈ [A] are M–matrices. It is

an H–matrix if 〈[A]〉 is an M–matrix. Since M–matrices

are particular H–matrices and since the latter ones are par-

ticular generalized diagonally dominant matrices (cf. [12]),

parts of Theorem 4 are not very astonishing.

Theorem 4 Let [A] ∈ IR
n×n, n ≥ 2, and let [b] ∈ IR

n. In
each of the following cases [x]G exists.

a) [A] is an M–matrix; cf. [3], [11].

b) [A] is an H–matrix; cf. [1].

c) [A] is generalized σ diagonally dominant, where σ
can be replaced by any of the following specifications:
‘strictly’, ‘irreducibly’, ‘Ω–’. (For a definition in the
first and the latter case see [36].)

d) [A] is generalized diagonally dominant and 〈[A]〉 is
non–singular.

e) [A] is irreducible and generalized diagonally domi-
nant, and (2) holds with S instead of S′.

Theorem 4d) follows since 〈[A]〉 + εI are M–matrices for

all positive values ε. Hence (〈[A]〉 + εI)−1 ≥ O, and, as

a limit, 〈[A]〉−1 ≥ O holds, too. Thus [A] is an H–matrix

and Theorem 4b) applies.

If one drops the property ‘generalized’ in Theorem 2 or

4 one ends up with results in [15], [16] and [37].

In [36] and [38] the following necessary and sufficient

condition was proved:

Theorem 5 Let [A] = I + [−R,R] ∈ IR
n×n, O ≤ R ∈

R
n×n, [b] ∈ IR

n. Then [x]G exists if and only if ρ(R) < 1
which in turn is equivalent to [A] being an H–matrix.

Although in Theorem 5 the structure of [A] seems to be very

specific one can always obtain it from a general interval ma-

trix [A] without singular element matrices. Just precondi-

tion [A] and [b] by the midpoint inverse C = (mid([A]))−1
.

But note that by data dependencies C[A] may contain singu-

lar matrices, whence the interval Gaussian algorithm breaks

down for C[A] while it could have been feasible for the

original matrix [A]. As an example in this direction con-

sider

[A] =
(

[1, 3] [−3,−1]
[1, 3] [1, 3]

)

with

C[A] =
1
2

(
[1, 3] [−1, 1]

[−1, 1] [1, 3]

)
.

4. Perturbations

If [x]G = IGA([A], [b]) exists for some matrix [A] it

is clear by the continuity of the interval arithmetic that

IGA([B], [c]) exists for arbitrary vectors [c] and matrices

[B] which are sufficiently close to [A], where ‘close’ refers

to the usual Hausdorff metric q([a], [b]) = max { |a −
b|, |a−b| } which is used to define the matrix q([A], [B]) =
(q([a]ij , [b]ij)) ∈ R

n×n. Neumaier quantified this observa-

tion in [43], [44]:

Theorem 6 Let [A], [B] ∈ IR
n×n, [b] ∈ IR

n. If [x]G =
IGA([A], [b]) exists and if ρ(|[A]G|q([A], [B])) < 1 then
IGA([B], [c]) exists for arbitrary [c] ∈ IR

n.

The interval matrix [A]G is obtained from (1) if one replaces

there [b] by the matrix I · [−1, 1].

5. Particular sparse matrices

In this section we consider tridiagonal matrices and re-

lated ones. In order to characterize these matrices we use

the concept of an undirected graph of a real matrix A ∈
R

n×n with the nodes 1, . . . , n; cf. for instance [25]. We call

j a neighbor of the node i (�= j) if i and j are connected by

an edge. The number of neighbors of i are the degree of i in

the underlying graph. Let Gk denote the k–th elimination

graph of [A], i.e., the undirected graph of |[A](k)| in which

the nodes 1, . . . , k − 1 and the corresponding edges have

been removed and for which we assume that [a](k−1)
ij �= 0

implies [a](k)
ij �= 0, i, j ≥ k (no accidental zeros!); cf. [25].

If in Gk the node k has the smallest degree and if this holds

for all k = 1, . . . , n then we say that [A] is ordered by mini-

mum degree. If the graph of such a matrix has tree structure

(i.e., there are no cycles of length ≥ 3) the following result

holds.

Theorem 7 Let [A] ∈ IR
n×n, [b] ∈ IR

n. If the (undi-
rected) graph of |[A]| is a tree which is ordered by minimum
degree then [x]G exists if and only if xG exists for all matri-
ces A ∈ [A].

Theorem 7 was published in [14] and contains Reichmann’s

condition in [49] for tridiagonal matrices, Garloff’s theorem

in [22] on tridiagonal matrices which contain only regular

and totally non–negative element matrices, and Schäfer’s

result in [53] and [54] on arrowhead matrices.

6. Hessenberg matrices

In [48] Reichmann derives a sufficient criterion for inter-

val upper Hessenberg matrices for which we use the follow-

ing notation

σ([a]) =

⎧⎨
⎩

1 if a ≥ 0
−1 if a ≤ 0

0 otherwise

, [a] ∈ IR\{0} .

Theorem 8 Let [b] ∈ IR
n, n ≥ 2, and let [A] ∈ IR

n×n

be an upper Hessenberg matrix satisfying 0 �∈ [a]ii, i =
1, . . . , n and [a]i+1,i �= 0, i = 1, . . . , n − 1. Then [x]G

exists if for each i = 1, . . . , n−1 and each j = i+1, . . . , n
one of the following two (mutually excluding) conditions
holds.

(i) [a]ij = 0 ⇒ [a]pj = 0, p = 1, . . . , i − 1;

(ii) [a]ij �= 0
⇒ σ([a]ii)σ([a]i+1,j) = −σ([a]i+1,i)σ([a]ij).

Theorem 8 looks slightly different from Reichmann’s cri-

terion (Satz 4.1) in [48]. If one corrects a typing error in

[48] one can easily see the equivalence. (For the typing er-

ror compare condition (2) I) of Satz 4.1 in [48] with the first

implication in ‘2. Fall 1:’ of its proof. This proof is correct

if [ak,i+1] in condition (2) I) is replaced by [ak,j]. For the

equivalence take into account that the assumption 0 �∈ [a]ii
implies aii > 0 or aii < 0 depending on i = 1, . . . , n.

Therefore, σ([a]ii) = sign([a]ii) with ‘sign’ as defined in

[48]. Moreover, from [a]ij �= 0 together with (i) of Theo-

rem 8 we get [a]i+1,j �= 0.)

For upper Hessenberg matrices only one element must

be eliminated in each elimination step k. Hence [A](k) and

[A](k+1) only differ by the row k + 1. Condition (i) says

that with a zero entry all other entries further up in the same

column are zero. Condition (ii) allows only particular sign

patterns for the matrices A ∈ [A]. It seems to be closely

related to (2) if S′ is replaced by the sign matrix S in Sec-

tion 3. But note that S is defined via midpoints while σ([a])
uses endpoints unless 0 ∈ [a]. Moreover, (2) needs to hold

only once in contrast to the property in (ii).

The conditions and assumptions of Theorem 8 imply

[a](k+1)
ij = 0, if [a](k)

ij = 0 and j ≥ i + 1

and

σ([a](k+1)
ij) = σ([a](k)

ij), if [a](k)
ij �= 0 and j ≥ i + 1.

Moreover, they yield

σ([a](k+1)
ii) = σ([a](k)

ii) and 0 �∈ [a](k+1)
ii .

This means that the sign pattern (in the sense above) re-

mains fixed in the upper triangle during the whole elimina-

tion process. To show this by induction is the crucial part of

Reichmann’s proof for Theorem 8.

If [a]ij �= 0 for some i, j with i < j then (i) implies

[a]kj �= 0 for all k with i < k < j. (3)

If, in addition, σ([a]ij) = 0 then σ([a]pj) = 0, p =
i + 1, . . . , j − 1, by virtue of (ii) and induction. In par-

ticular, σ([a]j−1,j) = 0. This contradicts (ii) for i = j − 1
since σ([a]j−1,j−1)σ([a]jj) �= 0. Hence if the assumptions

of Theorem 8 are fulfilled no entry in the upper triangle

of [A] contains zero in its interior, i.e., either [a]ij = 0 or

σ([a]ij) �= 0 holds for i ≤ j. Using (ii) if j = i+1, and (ii)

and (3) with k = i+1 if j > i+1 we also get σ([a]i+1,i) �=
0 provided that [a]ij �= 0. Thus σ([a]i+1,i) = 0 can only

occur if [a]ij = 0, j = i + 1, . . . , n, whence by (i) the

whole block ([a]kj)k=1,...,i, j=i+1,...,n is zero.

Assume now σ([a]ii) = 1, i = 1, . . . , n (in addi-

tion to 0 �∈ [a]ii) which can always be obtained by an

appropriate scaling. Then the non–zero sign pattern of

[A] is completely controlled by the signs of the entries

in the first lower subdiagonal. This can be seen for in-

stance when starting with the last row and filling up the

sign pattern row by row. In order to illustrate the possi-

ble sign structure we assume for simplicity that no entry

in the upper triangle is zero. Then σ([a]i+1,i) �= 0, i =
1, . . . , n − 1. Precondition now [A] by a signature ma-

trix D = diag(d1, . . . , dn), di = ±1, from the left such

that σ([a]ii) = 1, i = 1, . . . , n, as above. Then precondi-

tion from the left and the right by a signature matrix D̂ =
diag(d̂1, . . . , d̂n) in the following recursive way: d̂1 = ±1
is arbitrary. If d̂1, . . . , d̂i are known choose d̂i+1 = ±1
such that σ(d̂i+1di+1[a]i+1,id̂i) = −1. Consider now

[Â] = D̂D[A]D̂. Since σ([â]ii) = 1 = −σ([â]i+1,i) con-

dition (ii) reads σ([a]i+1,j) = σ([a]ij), j = i + 1, . . . , n,

from which we necessarily get the sign pattern⎛
⎜⎜⎜⎜⎜⎝

+ + + . . . +
− + + . . . +
0 − + . . . +
...

. . .
. . .

. . .
...

0 . . . 0 − +

⎞
⎟⎟⎟⎟⎟⎠ , (4)

i.e., the signs of the entries of each Ã ∈ [Â] are nonpositive

in the first lower subdiagonal, positive in the diagonal, and

nonnegative in the whole strict upper triangle. Therefore, if

[A] fulfills the assumptions of Theorem 8 and has no zero in

the upper triangle then the sign pattern of its element matri-

ces grows out from (4) changing there the signs according

to a multiplication of [A] with a signature matrix D1 from

the left and a signature matrix D2 from the right. Note that

IGA([A], [b]) exists if and only if IGA(D1[A]D2, D1[b]) ex-

ists, where D1, D2 are arbitrary non–singular diagonal ma-

trices from R
n×n; cf. [36] or [38].

It is obvious that Theorem 8 can also be applied to

irreducible tridiagonal matrices (cf. [48]): Assume again

0 �∈ [a]ii, i = 1, . . . , n, and [a]i+1,i �= 0, i = 1, . . . , n− 1.

Then by Theorem 8 [x]G exists if σ([a]ii)σ([a]i+1,i+1) =
−σ([a]i+1,i)σ([a]i,i+1) whenever [a]i,i+1 �= 0.

For tridiagonal matrices condition (i) of Theorem 8 is

always fulfilled.

In [50] M–matrices, H–matrices and upper Hessenberg

matrices are combined in a simple way to obtain larger ones

for which the existence of [x]G is shown.

It is tempting to generalize condition (ii) to arbitrary (i.e.,

non–Hessenberg) matrices via

[a]ij �= 0
⇒ σ([a]ii)σ([a]pj) = −σ([a]pi)σ([a]ij), p, j ≥ i + 1.

Already 3× 3 examples with 0 �∈ [a]ij , i, j = 1, 2, 3, show,

however, that this attempt must fail in general.

7. Pivoting

Up to now pivoting is not very well studied for the in-

terval Gaussian algorithm. Wongwises suggests in [61] to

choose as pivot in [A](k) the entry [a](k)
pk which satisfies

〈[a](k)
pk 〉 = max { 〈[a](k)

ik 〉 ∣∣ k ≤ i ≤ n } . (5)

If several entries share this property she decides for that one

among them which has the smallest diameter. In [30] Heb-

gen selects the pivot according to the ratio

d([a](k)
pk)

/ 〈[a](k)
pk 〉

= min { d([a](k)
ik)

/ 〈[a](k)
ik 〉 ∣∣ k ≤ i ≤ n, 0 �∈ [a](k)

ik } .

(6)

In order not to stick automatically at the original entry [a](k)
kk

if it is degenerate Hebgen proposes for this case the entry

which is degenerate and comes closest to one.

With Ratschek’s χ–function

χ([a]) =

⎧⎨
⎩

a/a if |a| ≤ |a|,
a/a if |a| > |a|,
0 if a = a = 0

one gets d([a])/〈[a]〉 = χ([a])−1 − 1 as long as 0 �∈ [a].
Therefore, condition (6) can equivalently be expressed by

χ([a](k)
pk) = max {χ([a](k)

ik)
∣∣ k ≤ i ≤ n, 0 �∈ [a](k)

ik } .

Note that (6) is invariant with respect to scaling, i.e., with

respect to multiplying rows by real numbers �= 0. In [61] it

is reported that in many cases (5) yields smaller widths for

[x]G than (6).

8. Infeasibility

For many years only criteria for the feasibility of the in-

terval Gaussian algorithm were interesting. In [36] Reich-

mann’s example [A] ∈ IR
3×3, [a]ii = 1 for i = 1, 2, 3,

[a]ij = [0, γ] for i �= j and γ = (−1+
√

5)/2 (cf. [48]) was

the starting point to look for non–trivial criteria which guar-

antee the failure of the algorithm. By ‘non–trivial’ we mean

interval matrices [A] for which the conventional Gaussian

algorithm is feasible for each element matrix A ∈ [A]. Our

final theorem is a first result in this direction. It contains

Reichmann’s example and Neumaier’s one in [44] as par-

ticular cases.

Theorem 9 Let [A] ∈ IR
n×n contain I with aii = 1, i =

1, . . . , n. Choose cik ∈ {aik, aik}, cki ∈ {aki, aki} such
that

cikcki = max{aikaki, aikaki} für i > k, k = 1, . . . , n−1.

Define

c
(k)
kk = 1 −

k−1∑
j=1

ckjcjk

c
(j)
jj

, k = 1, 2, . . . , n,

as long as c
(k−1)
k−1,k−1 > 0.

If c
(k)
kk ≤ 0 for some k, then [x]G does not exist.

Note that the assumption aii = 1 is not very restrictive since

it can always be fulfilled by preconditioning [A] with an ap-

propriate diagonal point matrix, provided that 0 �∈ [a]ii, i =
1, . . . , n and 0 ∈ [a]ij , i �= j. Even if these two latter con-

ditions do not hold I ∈ [A] can be fulfilled by precondition-

ing [A] with its midpoint inverse C = (mid([A]))−1 with

the same remark as for Theorem 5.

Unfortunately, the converse of Theorem 9 does not hold

as one can see by the example [a]ii = 1, [a]ij = [−δ, δ] for

i �= j, 1/2 ≤ δ < γ, γ as above.

9. Final remarks

Up to now we did not discuss the interval Gaussian al-

gorithm under the aspect of quality of enclosure. Here, the

papers [11], [27], [33], [45], [46], [51], [52], [56] might be

of interest. We either did not consider the computation of

[x]G when taking into account rounding errors. Some re-

marks on this topic can be found in [48], [56], [62]. Appli-

cations, extensions and modifications of the interval Gaus-

sian algorithm can be found for instance in [2] (Newton’s

method), [9] (Krawczyk–like method), [17] (parallel in-

terval multisplitting method), [18] (Lanczos process), [24]

(block Gauss elimination), [32] (interval input–output anal-

ysis in economics), [34] (interval iterative methods), [53]

(linear complementarity problem), [57], [58] (Buneman al-

gorithm), [59] (cyclic reduction). This list is by no means

complete. In [28] and [39] ideas are presented with which

one tries to overcome the early break down of the interval

Gaussian algorithm by division by zero. In [8] the algo-

rithm was presented at an elementary level. Precondition-

ing in connection with the interval Gaussian algorithm is

considered for instance in [26], [27], [44], [51].

We finally remark that similar results as in the present

paper for the interval Gaussian algorithm can also be de-

rived for the interval Cholesky method introduced in [5] in

order to enclose the symmetric solution set

Σsym = {x ∈ R
n | Ax = b, A = AT ∈ [A], b ∈ [b]}

for [A] = [A]T . Here we assume that all symmetric element

matrices A ∈ [A] are positive definite. For details see [5],

[6], [14], and [55].

Further structured matrices A ∈ [A] are studied in [20],

[21] (circulant matrices) and in [23] (Toeplitz matrices us-

ing Trench’s and Bareiss’ algorithm).

References

[1] G. Alefeld. Über die Durchführbarkeit des Gaußschen

Algorithmus bei Gleichungen mit Intervallen als Ko-

effizienten. Computing Suppl., 1:15–19, 1977.

[2] G. Alefeld. On the convergence of some interval–

arithmetic modifications of Newton’s method, SIAM
J. Numer. Anal., 21:363–372, 1984.

[3] G. Alefeld, J. Herzberger. Einführung in die Intervall-
rechnung. Reihe Informatik 12, Bibliographisches In-

stitut, Mannheim, 1974.

[4] G. Alefeld, J. Herzberger. Introduction to Interval
Computations. Academic Press, New York, 1983.

[5] G. Alefeld, G. Mayer. The Cholesky method for inter-

val data. Linear Algebra Appl., 194:161 – 182, 1993.

[6] G. Alefeld, G. Mayer. On the symmetric and unsym-

metric solution set of interval systems. SIAM J. Matrix
Anal. Appl., 16:1223–1240, 1995.

[7] G. Alefeld, G. Mayer. Interval Analysis: Theory and

Applications. J. Comp. Appl. Math., 121:421–464,

2000. Special Issue: Numerical Analysis in the 20th
Century, Vol. I. Approximation Theory. Eds.: L. Wuy-

tack, J. Wimp.

[8] G. Alefeld, G. Mayer. The Gaussian algorithm for

linear systems with interval data. In Linear Algebra
Gems: Assets for Undergraduate Mathematics. Eds.:

D. Carlson, C. R. Johnson, D. C. Lay, A. D. Porter.

The Mathematical Association of America, MAA

Notes # 59, 2001, pp. 197–204.

[9] G. Alefeld, L. Platzöder. A quadratically conver-

gent Krawczyk–like algorithm. SIAM J. Numer. Anal.,
20:210–219, 1983.

[10] N. Apostolatos, U. Kulisch. Grundzüge einer Inter-

vallrechnung für Matrizen und einige Anwendungen.

Elektron. Rechenanl., 10:73–83, 1968.

[11] W. Barth, E. Nuding. Optimale Lösung von Intervall-

gleichungssystemen. Computing, 12:117–125, 1974.

[12] A. Berman, R. J. Plemmons. Nonnegative Matrices in
the Mathematical Sciences. Classics in Applied Math-

ematics 9, SIAM, Philadelphia, 1994.

[13] P. S. Dwyer. Linear Computations. Wiley, New York,

1951.

[14] A. Frommer. A feasibility result for interval Gaussian

elimination relying on graph structure. In Symbolic
Algebraic Methods and Verification Methods. Eds.:

G. Alefeld, J. Rohn, S. Rump, T. Yamamoto. Springer-

Mathematics, Springer, Wien, 2001, pp. 79–86.

[15] A. Frommer, G. Mayer. A new criterion to guaran-

tee the feasibility of the interval Gaussian algorithm.

SIAM J. Matrix Anal. Appl., 14:408–419, 1993.

[16] A. Frommer, G. Mayer. Linear systems with Ω–

diagonally dominant matrices and related ones. Linear
Algebra Appl., 186:165–181, 1993.

[17] A. Frommer, G. Mayer. Parallel interval multisplit-

tings. Numer. Math., 56:255–267, 1989.

[18] A. Frommer, A. Weinberg. Verified error bounds for

linear systems through the Lanczos Process. Reliable
Computing, 5(3):255–267, 1999.

[19] F. S. Gantmacher. Matrizentheorie. Springer, Berlin,

1986.

[20] J. Garloff. Untersuchungen zur Intervallinterpola-

tion. Thesis, Universität Freiburg, Institut für Ange-

wandte Mathematik, Freiburger Intervall–Berichte,

80/5, 1980.

[21] J. Garloff. Zur intervallmäßigen Durchführung der

schnellen Fourier–Transformation. Z. Angew. Math.
Mech., 60:T291–T292, 1980.

[22] J. Garloff. Totally nonnegative interval matrices. In In-
terval Mathematics 1980. Ed.: K. L. E. Nickel. Aca-

demic Press, New York, 1980, pp. 317–327.

[23] J. Garloff. Solution of linear equations having a

Toeplitz interval matrix as coefficient matrix. Opus-
cula Mathematica, 2:33–45, 1986.

[24] J. Garloff. Block methods for the solution of linear in-

terval equations. SIAM J. Matrix Anal. Appl., 11:89–

106, 1990.

[25] A. George, J. W. Liu. Computer Solution of Large
Sparse Positive Definite Systems. Prentice Hall, En-

glewood Cliffs, 1981.

[26] E. R. Hansen. Gaussian elimination in interval sys-

tems. Preprint. 1997.

[27] E. R. Hansen. The hull of preconditioned interval

linear equations. Reliable Computing, 6(2):95–103,

2000.

[28] E. R. Hansen. Sharpening interval computations. Reli-
able Computing, 12(1):21–34, 2006.

[29] E. R. Hansen, R. Smith. Interval arithmetic in matrix

computations, Part II. SIAM J. Numer. Anal., 4:1–9,

1967.

[30] M. Hebgen. Eine scaling–invariante Pivotsuche für In-

tervallmatrizen. Computing, 12:99–106, 1974.

[31] R. B. Kearfott. Rigorous Global Search: Continuous
Problems. Kluwer, Dordrecht, 1996.

[32] T. Maier. Intervall–Input–Output–Rechnung. Mathe-

matical Systems in Economics, 101, Hain, König-

stein/Ts., 1985.

[33] G. Mayer. Enclosing the solution set of linear systems

with inaccurate data by iterative methods based on

incomplete LU–decomposition. Computing, 35:189–

206, 1985.

[34] G. Mayer. Enclosing the solutions of systems of linear

equations by interval iterative processes. Computing
Suppl., 6:47–58, 1988.

[35] G. Mayer. Old and new aspects of the interval

Gaussian algorithm. In Computer Arithmetic, Scien-
tific Computation and Mathematical Modelling. Eds.:

E. Kaucher, S. M. Markov, G. Mayer. IMACS Annals

on Computing and Applied Mathematics 12, Baltzer,

Basel, 1991, pp. 329–349.

[36] G. Mayer. A contribution of the feasibility of the

interval Gaussian algorithm. Reliable Computing,

12(2):79–98, 2006.

[37] G. Mayer, L. Pieper. A necessary and sufficient crite-

rion to guarantee the feasibility of the interval Gaus-

sian algorithm for a class of matrices. Appl. Math.,
38(3):205–220, 1993.

[38] G. Mayer, J. Rohn. On the applicability of the interval

Gaussian algorithm. Reliable Computing, 4(3):205–

222, 1998.

[39] J. Mayer. An approach to overcome division by zero in

the interval Gaussian algorithm. Reliable Computing,

8(3):229–237, 2002.

[40] R. E. Moore. Interval Analysis. Prentice Hall, Engle-

wood Cliffs, N.J., 1966.

[41] J. J. Moré. Nonlinear generalizations of matrix diago-

nal dominance with applications to Gauss–Seidel iter-

ations. SIAM J. Numer. Anal., 9:357–378, 1972.

[42] A. Neumaier. New techniques for the analysis of linear

interval equations. Linear Algebra Appl., 58:273–325,

1984.

[43] A. Neumaier. Further results on linear interval equa-

tions. Linear Algebra Appl., 87:155–179, 1987.

[44] A. Neumaier. Interval Methods for Systems of Equa-
tions. Cambridge University Press, Cambridge, 1990.

[45] K. Nickel. Die Überschätzung des Wertebereichs einer

Funktion in der Intervallrechnung mit Anwendungen

auf lineare Gleichungssysteme. Computing, 18:15–36,

1977.

[46] K. Nickel. Interval–Analysis. In The State of the Art in
Numerical Analysis. Ed.: D. A. H. Jacobs. Academic

Press, London, 1977, pp. 193–225.

[47] J. M. Ortega. Numerical Analysis. A Second Course.

Classics in Applied Mathematics 3, SIAM, Philadel-

phia, 1990.

[48] K. Reichmann. Ein hinreichendes Kriterium für die

Durchführbarkeit des Intervall–Gauß–Algorithmus

bei Intervall–Hessenberg–Matrizen ohne Pivotsuche.

Z. Angew. Math. Mech., 59:373–379, 1979.

[49] K. Reichmann. Abbruch beim Intervall–Gauss–Algo-

rithmus. Computing, 22:355–361, 1979.

[50] K. Reichmann. Abbruch beim Intervall–Gauss–Al-

gorithmus. Freiburger Intervall–Berichte, 79/5:1–30,

1979.

[51] J. Rohn. On overestimations produced by the interval

Gaussian algorithm. Reliable Computing, 3(4):363–

368, 1997.

[52] S. M. Rump. Verified solution of large systems and

global optimization problems. J. Comp. Appl. Math.,
60:201–218, 1995.

[53] U. Schäfer. Das lineare Komplementaritätsproblem
mit Intervalleinträgen. Thesis, Universität Karlsruhe,

Karlsruhe, 1999.

[54] U. Schäfer. The feasibility of the interval Gaussian al-

gorithm for arrowhead matrices. Reliable Computing,

7(4):59–62, 2001.

[55] U. Schäfer. Two ways to extend the Cholesky decom-

position to block matrices with interval entries. Reli-
able Computing, 8(1):1–20, 2002.

[56] F. Schätzle. Überschätzung beim Gauss–Algorithmus

für lineare Intervallgleichungssysteme. Freiburger
Intervall–Berichte, 84/3:1–122, 1984.

[57] H. Schwandt. An interval arithmetic approach for the

construction of an almost globally convergent method

for the solution of nonlinear Poisson equation on the

unit square. SIAM J. Sci. Statist. Comput., 5:427–452,

1984.

[58] H. Schwandt. The solution of nonlinear elliptic Dirich-

let problems on rectangles by almost globally conver-

gent interval methods. SIAM J. Sci. Statist. Comput.,
6:617–638, 1985.

[59] H. Schwandt. Cyclic reduction for tridiagonal systems

of equations with interval coefficients on vector com-

puters. SIAM J. Numer. Anal., 26:661–680, 1989.

[60] P. Wißkirchen. Ein Steuerungsprinzip der Intervall-

rechnung und dessen Anwendung auf den Gaußschen

Algorithmus. GMD–Bericht No. 20, Bonn, 1969.

[61] P. Wongwises. Experimentelle Untersuchungen zur
numerischen Auflösung von linearen Gleichungssys-
temen mit Fehlererfassung. Thesis, Universität Karls-

ruhe, Karlsruhe, 1974. Institut für Praktische Mathe-

matik, Interner Bericht 75/1, 1975.

[62] P. Wongwises. Experimentelle Untersuchungen zur

numerischen Auflösung von linearen Gleichungssys-

temen mit Fehlererfassung. In Interval Mathematics.

Eds.: G. Goos, J. Hartmanis. Lecture Notes in Com-

puter Science 29, Springer, Berlin, 1975, pp. 316–325.

Numerical Computation of the Mapping Degree using Computational Homology

Kansaku Nakakura
Graduate School of Mathematical Sciences

The University of Tokyo
3-8-1 Komaba, Meguro, Tokyo, 153-8914 Japan

kansaku@qf7.so-net.ne.jp

Sunao Murashige
Department of Complex Systems

School of Systems Information Science
Future University-Hakodate

116-2 Kamedanakano, Hakodate, Hokkaido, 041-8655 Japan
murasige@fun.ac.jp

Abstract

This paper describes numerical computation of the map-
ping degree deg(f,Bd) for a continuous map f : Bd → R

d

on the d-dimensional ball Bd where d ∈ Z and ≥ 2.
The mapping degree can be defined using a homomorphism
which is induced on homology groups. We propose an effi-
cient method to compute the homomorphism without direct
calculation of homology groups, and obtain the mapping
degree using computational homology.

1. Introduction

The mapping degree deg(f,Bd) is an integer index de-
fined for a continuous map f : Bd → R

d on the d-
dimensional ball Bd where d ∈ Z and ≥ 2. The map-
ping degree plays an important role in functional analy-
sis, topology, and their applications to systematically un-
derstand some typical properties of a map, for example, ex-
istence and number of equilibrium points, bifurcation, com-
plexity of dynamical system, and so on [1, 2, 3]. In partic-
ular, Kronecker’s existence principle (for example, see [2],
p.520), namely

deg(f,Bd) �= 0 ⇒ ∃x∗ ∈ Bd : f(x∗) = 0 , (1)

can be directly applied to numerical verification of solutions
of f(x) = 0.

Since it is not straightforward to obtain the mapping de-
gree for a general map, it is significant to develop a numer-
ical method to compute the degree [4, 5, 6, 7, 8]. Most of
previous works on numerical calculation of the mapping de-
gree are based on analytical definition of the degree. On the
other hand, it is also possible to define the mapping degree
using homology groups as shown in section 2. Homolog-
ical definition of the degree is irrelevant to smoothness of
the map f or regularity of the Jacobi matrix ∂f/∂x in Bd,
and the computational methods of the homology group have
been developed recently [9].

This work tries to compute the mapping degree with ho-
mological definition using computational homology.

2. Homological definition of the mapping de-
gree

The mapping degree deg(f,Bd) ∈ Z for a continuous
map f : Bd → R

d (0 /∈ f(∂Bd)) on the d-dimensional
ball Bd can be defined using the well-known relation of the
homology group

Hd−1(Sd−1) ∼= Z for d ∈ Z and ≥ 2 , (2)

where Hd−1 and Sd−1 denote the d − 1-dimensional ho-
mology group and sphere, respectively. For this defini-
tion, set Bd = [−m,m]d with a fixed positive integer m,
Sd−1 = ∂([−1, 1]d), and

‖x‖max := max
1≤i≤d

|xi| , x = (xi) ∈ R
d . (3)

Then we can define f̄ : Sd−1 → Sd−1 as

f̄(x) :=
f(mx)

‖f(mx)‖max
. (4)

From the relation (2), we can fix u ∈ Hd−1(Sd−1) such that
Zu = Hd−1(Sd−1). Then, the induced homomorphism

f̄∗d−1 : Hd−1(Sd−1) → Hd−1(Sd−1) , (5)

uniquely determines an integer α such that

f̄∗d−1(u) = αu , u ∈ Hd−1(Sd−1) . (6)

This integer α is independent of choice of u. Then the map-
ping degree is defined by

deg(f,Bd) := α . (7)

This work shows a method to calculate the induced ho-
momorphism f̄∗d−1 using computational homology, and
obtain deg(f,Bd) .

3. Computation of an induced homomorphism
f∗ using computational homology

Computational homology [9] enables us to calculate an
induced homomorphism f∗ : H∗(X) → H∗(Y) between
homology groups H∗(X) and H∗(Y) for a continuous map
f : X → Y . Some terminologies used in computational
homology are summarized in the appendix. The computa-
tional method of f∗ is composed of the following four steps:

Step 1. Set a continuous map f : X → Y on cubical sets
X and Y .

Set the domain X and the range Y of a continuous map
f : X → Y such that these are ‘cubical sets’ given by Def-
inition A.1 in the appendix. The homology group H(X)
of a cubical set X can be efficiently computed using the
algorithm ‘collapse’ which reduces unnecessary bases of
chain groups with the corresponding homology group kept
[10, 11]. The computational complexity of this algorithm
is O(n3) where n = |K(X)| is the size of the chain group
and K(X) denotes a set of all elementary sets included in a
cubical set X , as shown in Definition A.1.

Step 2. Compute the multivalued map F : X → 2Y .
The next step is to determine the multivalued map F :

X → 2Y for a continuous map f : X → Y such that the
following conditions are satisfied:

(i) For ∀x ∈ X , f(x) ∈ F (x).

(ii) For ∀x ∈ X , F (x) is a cubical set.

(iii) For Q ∈ K(X) and ∀x, y ∈ Q̊, F (x) = F (y) .

(iv) For P,Q ∈ K(X), P ⊂ Q ⇒ F (P̊) ⊂ F (Q̊).

(v) F is acyclic.

where Q̊ for Q ∈ K(X) is given in Definition A.1, and an
acyclic multivalued map F : X → 2Y is defined using a
homology group as follows:

Definition 3.1 (acyclic multivalued map)
The multivalued map F : X → 2Y is acyclic if, for

∀x ∈ X ,

Hd(F (x)) ∼=
{

Z for d = 0 ,
0 for d �= 0 .

(8)

�

Conditions (ii) and (iv) are required for preservation of
topological properties of the original map f , (iii) is neces-
sary for numerical examination of the acyclic condition as
shown in step 3, and (iv) and (v) guarantee that F uniquely
determines the chain homomorphism ϕ : C(X) → C(Y)
such that f∗ = ϕ∗ : H∗(X) → H∗(Y). Here C(X) de-
notes a set of chain groups of X .

It is straightforward to construct the multivalued map F ,
which satisfies conditions (i), (ii), (iii) and (iv), using the
interval arithmetic. For X ⊂ R

d, Y ⊂ R
d′

and a continuous
map f : X → Y , such a multivalued map F : X → 2Y is
given by

F (x) = Y ∩
(⋂

{f̌(Q) | x ∈ Q ∈ K(X)}
)

, (9)

where Q = I1 ×· · ·× Id, f̌ := (f̌1, . . . , f̌d′) denotes a map
obtained using the interval arithmetic for f , and

f(Q) = f(I1, . . . , Id)
= (f1(I1, . . . , Id), . . . , fd′(I1, . . . , Id)) .(10)

Here f̌i is computed such that its image is an elementary
interval. The computational complexity for construction of

the multivalued map F is O(n2 + nm) where n = |K(X)|
and m = |K(Y)| .

Step 3. Examine the acyclic condition for the multival-
ued map F .

Condition (v) in step 2, namely the acyclic condition for
the multivalued map F , is satisfied with sufficiently fine di-
vision of the domain X . As shown in Definition 3.1, we can
examine this condition by directly computing the homology
group of F (x) for ∀x ∈ X . Here it should be noted that this
examination is enough for finite number of x ∈ X , not for
∀x ∈ X , because condition (iii) in step 2 is satisfied.

The computational complexity of the acyclic condition
for F is at least O(nm3) where n = |K(X)| and m =
|K(Y)| . Most of the computing time for f∗ is used for
construction of the multivalued map F and examination of
the acyclic condition of F .

Step 4. Construct the chain homomorphism ϕ and ob-
tain f∗ = ϕ∗.

If the multivalued map F satisfies conditions (i)∼(v),
we can inductively construct the chain homomorphism ϕ :
C(X) → C(Y) such that

ϕk−1 ◦ ∂k = ∂k ◦ ϕk , (11)

and ∣∣∣ϕk(Q̂)
∣∣∣ ⊂ F (Q̊) for ∀Q ∈ Kk(X) . (12)

First, set ϕk = 0 for k < 0, and, in the case of k = 0,
arbitrarily choose P ∈ K0(F (Q)) for ∀Q ∈ K0(X) and set

ϕ0(Q̂) := P̂ . (13)

Next, for k ≥ 1, calculate c ∈ Ck(F (Q̊)) such that

∂k(c) = ϕk−1 ◦ ∂k(Q̂) , (14)

and obtain ϕk by

ϕk(Q̂) := c . (15)

These chain homomorphisms ϕ0, ϕ1, · · · , ϕd determine the
induced homomorphism f∗.

Next section applies this method to computation of the
mapping degree.

4. Computation of the mapping degree using
computational homology

4.1. A method to obtain the mapping de-
gree from a chain homomorphism ϕ

For a continuous map f : Bd → R
d, we can set

f̄ : Sd−1 → Sd−1 as (4), and calculate the corresponding
chain homomorphism ϕ : C(Sd−1) → C(Sd−1) through
steps 1∼4 in section 3 using computational homology. Then
ϕd−1 determines the mapping degree deg(f,Bd) as fol-
lows:

A base v of Hd−1(Sd−1) ∼= Z is given by

v = ∂d

⎛⎝ ∑
l1,...,ld=±1

Q̂l1,...,ld

⎞⎠ , (16)

where Ql1,...,ld = [l1, l1 + 1]× · · · × [ld, ld + 1] ∈ Kd, and
Q̂ : Kd → Z and the cubical boundary map ∂d are defined
in Definition A.2 and A.3, respectively. Using this base v,
we can determine the mapping degree deg(f,Bd) = α ∈ Z

by

ϕd−1(v) = αv . (17)

4.2. An example to numerically obtain the
mapping degree

As an example, consider the map f : B2 = [−1, 1]2 →
R

2 defined by

f(x1, x2) = (x1
2 + 2x1 + 4x2 , x2

2 + 3x2) . (18)

Figures 1 (a) and (b) show the corresponding map f : S1 →
S1 where S1 = ∂B2 = ∂[−1, 1]2 where both the domain
S1 and the range S1 are divided into eight elements. In
figs.1 (b), (c) and (d), the axis of abscissa denotes the do-
main S1 and that of ordinate the range S1, respectively. Fig-
ure 1 (c) depicts the multivalued map F computed using the
interval arithmetic for f̄ . For this multivalued map F in
fig.1 (c), the acyclic condition is not satisfied on the ele-
ment at the right end of the domain. Then the domain S1 is
subdivided into finer elements so that the acyclic condition
is satisfied on all elements as shown in fig.1 (d), in which
the corresponding chain homomorphism ϕ1 is also drawn
by the broken line. Using (16), (17) and this ϕ1, we can
obtain

ϕ1([0, 1] + [1, 2] + · · · + [15, 16])

= [0, 1] − [0, 1] + ([0, 1] + [1, 2] + [2, 3] + [3, 4])
+[4, 5] + ([5, 6] + [6, 7]) + [7, 8]

= [0, 1] + [1, 2] + · · · + [7, 8] .
(19)

Thus the mapping degree deg(f,Bd) = 1.

4.3. An efficient method to examine the
acyclic condition for a map f̄ : Sd → Sd

As stated in section 3, it takes much computing time to
examine the acyclic condition using the homology group.
This subsection proposes an efficient method to check the
acyclic condition for a map f̄ : Sd → Sd given by (4)
without direct computation of the homology group.

The induced homomorphism f̄∗ : H∗(Sd) → H∗(Sd)
on the homology group can be computed using the multi-
valued map

F (x) = Sd ∩
(⋂

{f̌(Q) | x ∈ Q ∈ K(Sd)}
)

(20)

where f̌ denotes a map obtained using the interval arith-
metic for f , as shown in step 2 of section 3. Here, since
f̌(Q) is a rectangle as shown in fig.2,

⋂{f̌(Q) | x ∈ Q ∈
K(Sd)} is also a rectangle. Thus we need to examine the
acyclic condition for R ∩ Sd(�= ∅) where R is a rectangle.
For that, fix integers c±1 , c±2 , . . . , c±d (c−i < c+

i), set

X = [c−1 , c+
1] × [c−2 , c+

2] × · · · × [c−d , c+
d] (21)

and consider R∩∂X(�= ∅) where the boundary ∂X is given
by

∂X =
d⋃

i=1

(X+
i ∪ X−

i) (22)

with

X+
i =

(i−1∏
j=1

[c−j , c+
j]

)
× [c+

i , c+
i] ×

(d∏
j=i+1

[c−j , c+
j]

)
,

X−
i =

(i−1∏
j=1

[c−j , c+
j]

)
× [c−i , c−i] ×

(d∏
j=i+1

[c−j , c+
j]

)
.

Also R ⊂ R
d can be expressed as

S 1domain

x

x0
8

765

4

3 2 1

1

2

f

range

y

y0
8

765

4

3 2 1

1

2

S 1

(a) The domain and the range of f̄

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

ra
ng

e

domain S 1

S1

(b) The map f̄ : S1 → S1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

domain S 1

ra
ng

e
S1

(c) The multivalued map F
(solid : f̄ , gray : the image of F)

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16
domain S 1

ra
ng

e
S1

(d) The multivalued map F with fine subdivision of the
domain (solid : f̄ , gray : the image of F ,

broken : the chain homomorphism ϕ1)

Figure 1. Computation of the multivalued
map F for the map f in (18)

x

x
10

-1

-1

1

1

2 y

y
10

-1

-1

1

1

2

S 1domain range S 1

A

A()

f A()
f

f

^

Figure 2. The image of f̌ in (20)

R = [a1, b1] × · · · × [ad, bd] (ai, bi ∈ Z) . (23)

Since R∩ ∂X = (R∩X)∩ ∂X , we can assume that c−i ≤
ai, bi ≤ c+

i . Then we can get the following proposition:

Proposition 4.1 ∂X ∩ R is not acyclic if and only if, for
i = 1, . . . , d, ai = c−i ⇔ bi = c+

i .

Proof. (Necessity) We show the contraposition of the ne-
cessity. There exists i such that ai = c−i , bi �= c+

i or ai �=
c−i , bi = c+

i . Here suppose ai �= c−i , bi = c+
i . With suit-

able change of numbering, we can set a1 �= c−1 , b1 = c+
1 .

Define ϕ : ∂X ∩ R → ∂X+
1 ∩ R as

ϕ(x1, . . . , xd) := (c+
1 , x2, . . . , xd) , (24)

and let ψ : ∂X+
1 ∩R ↪→ ∂X∩R be an inclusion map. Since

∂X+
1 ∩ R is acyclic, the necessary condition is satisfied if

ϕ ◦ψ � 1∂X+
1 ∩R and ψ ◦ϕ � 1∂X∩R . Furthermore, since

ϕ ◦ ψ = 1∂X+
1 ∩R, it is enough to show ψ ◦ ϕ � 1∂X∩R .

For that, define F : (∂X ∩ R) × [0, 1] → ∂X ∩ R as

F (x1, . . . , xd, t) := ((1 − t)x1 + tc+
1 , x2, . . . , xd) , (25)

and show im F ⊂ ∂X ∩ R . For (x, t) = (x1, . . . , xd, t) ∈
(∂X ∩ R) × [0, 1], F (x, t) ∈ R because

a1 ≤ x1 ≤ (1 − t)x1 + tc+
1 ≤ c+

1 = b1 . (26)

On the other hand, since x ∈ ∂X , there exists i such that
x ∈ X+

i ∪X−
i . In the case of i = 1, x ∈ X+

1 because c−1 <
a1 ≤ x1 . Thus x1 = c+

1 , and F (x, t) = (c+
1 , x2, . . . , xd) ∈

X+
1 . In the case of i > 1, xi = c±i , and so F (x, t) =

((1 − t)x1 + tc+
1 , x2, . . . , c

±
i , . . . , xd) ∈ X±

i . From these,
F (x, t) ∈ ∂X . Since F is a homotopy between ψ ◦ ϕ and
1∂X∩R, we can get ψ ◦ ϕ � 1∂X∩R .

(Sufficiency) With suitable change of numbering, we can
express R as

R =
(r∏

i=1

[c−i , c+
i]

)
×

(d∏
i=r+1

[ai, bi]
)

, (27)

where (c−i < ai ≤ bi < c+
i , i = r + 1, . . . , d). Here r ≥ 1

because ∂X ∩ R �= ∅ . Set X ′ as

X ′ = [c−1 , c+
1] × · · · × [c−r , c+

r] , (28)

and define ϕ : ∂X ∩ R → ∂X ′ by

ϕ(x1, . . . , xd) := (x1, . . . , xr) , (29)

and ψ : ∂X ′ → ∂X ∩ R by

ψ(x1, . . . , xr) := (x1, . . . , xr, ar+1, . . . , ad) , (30)

respectively. First we can show that im ϕ ⊂ ∂X ′ and
im ψ ⊂ ∂X ∩ R . When x = (x1, . . . , xd) ∈ ∂X ∩ R,
x ∈ ∂X and there exists i such that xi = c±i . Since x ∈ R,
i ≤ r. Thus im ϕ ⊂ ∂X ′. When x = (x1, . . . , xr) ∈ ∂X ′,
there exists i ≤ r such that xi = c±i , and so ψ(x) ∈ ∂X .
Since ψ(x) ∈ R, im ψ ⊂ ∂X ∩ R.

∂X ′ is not acyclic because it is homeomorphic to Sr−1.
Thus we just need to show ϕ ◦ψ � 1∂X′ , ψ ◦ϕ � 1∂X∩R.
Since ϕ ◦ ψ = 1∂X′ , it is enough to show ψ ◦ ϕ � 1∂X∩R.
Define F : (∂X ∩ R) × [0, 1] → ∂X ∩ R as

F (x1, . . . , xd, t) :=

(x1, . . . , xr, tar+1 + (1 − t)xr+1, . . . , tad + (1 − t)xd) .
(31)

We can show im F ⊂ ∂X ∩ R . When (x, t) =
(x1, . . . , xd, t) ∈ (∂X ∩ R) × [0, 1], x ∈ ∂X and so there
exists i such that xi = c±i . Since x ∈ R, i ≤ r. From
these, F (x, t) ∈ ∂X . In addition,

ar+j ≤ tar+j + (1 − t)xr+j ≤ xr+j ≤ br+j , (32)

and so we can get F (x, t) ∈ R . Since F is a homotopy
between 1∂X∩R and ψ ◦ ϕ, ψ ◦ ϕ � 1∂X∩R. �

This proposition shows that we can examine the acyclic
condition of F (x) with the computational complexity O(d).
On the other hand, direct computation of the homology
group for the acyclic condition requires much more com-
putational cost. For example, the worst case is F (x) = Sd

for which

|K(Sd)| = 5d+1 − 3d+1 (33)

and the computational complexity only for ‘collapse’ used
in step 1 of section 3 is O(125d) .

5. Numerical examples

5.1. Example 1 (non-singular case)

The first example is the inclusion map f : Bd ↪→ R
d on

the domain Bd = [−1, 1]d given by

f(x) = x , x ∈ Bd . (34)

The mapping degree for this is deg(f,Bd) = 1 and could be
obtained using the proposed method. The computing time
is shown in fig.3, in which ‘method 1’ and ‘method 2’ ex-
amine the acyclic condition (8) with and without direct cal-
culation of the homology groups, respectively. Method 2
corresponds to the proposed method using Proposition 4.1.
This result suggests that the proposed method efficiently re-
duces the computing time with increase of the dimension
d.

In order to obtain the chain homomorphism ϕd, this
method requires computation of ϕ0, ϕ1, · · · , ϕd−1, as
shown in step 4 of section 3. This leads to much computa-
tional cost for a system of large dimension. For this exam-
ple (34), we could not obtain the degree for the dimension
d ≥ 6 due to the memory size. This problem remains as a
future work.

5.2. Example 2 (singular at the center of a
domain B)

The second example is the map f : B2 = [−1, 1]2(⊂
C) → C given by

f(z) = zn (n = 0, 1, · · ·) , (35)

where z = x1 + i x2 ∈ C and (x1, x2) ∈ R
2 is identified

with z ∈ C. For example, in the case of n = 2,

f(x1, x2) = (x2
1 − x2

2 , 2x1x2) . (36)

 0.1

 1

 10

 100

 1000

 2 3 4 5

co
m

pu
tin

g
tim

e
 [s

ec
]

dimension d

method 1

method 2

Figure 3. The computing time for example 1,
the inclusion map (34). solid (method 1) : the
acyclic condition (8) is examined with direct
calculation of the homology group. broken
(method 2) : (8) is examined using the pro-
posed method.

The mapping degree of this map is deg(f,B2) = n, and the
Jacobi matrix ∂f/∂x is singular at the origin z = 0. Figure
4 shows the computing time for different degree n. It is
found that the computing time increases with the degree n,
because more subdivision of the domain is required. Also,
since the dimension d = 2, the computing time by method
1 is almost the same as that by method 2.

This is just an illustrative example to show that the pro-
posed method can be applied to this type of singular case.
Aberth’s method can also produce the degree for this case
[6, 8].

5.3. Example 3 (singular at a point on the
boundary ∂B)

The last example is the map f : B2
c → R

2 given by

f(x1, x2)

=
(

1
10x1 + 1

100x2
2 + c2 , 1

100x1x2 + 1
10x2

)
.
(37)

This corresponds to a two-dimensional case of a mathemat-
ical model of water waves progressing into one direction
with a constant speed c in water of infinite depth [8, 12].
Here the domain B2

c (⊂ R
2) defined by

B2
c := [−1 − 10c2, 1 − 10c2] × [−1, 1] , (38)

is the rectangle of which the center xc given by

 1

 10

 100

 1000

 10000

 0.1
 0 5 10 15 20

degree n

co
m

pu
tin

g
tim

e
 [s

ec
]

method 1

method 2

Figure 4. The computing time for example 2,
(35). See caption in fig.3.

xc = (−10c2, 0) , (39)

is located at one of solutions of f(x) = 0. Then the map-
ping degree deg(f,B2

c) is given by

deg(f,B2
c) =

{
1 (0 ≤ c2 < 0.99) ,

−1 (0.99 < c2) .
(40)

At c2 = 0.99, 0 ∈ f(∂B2
c) and the degree cannot be

defined. Also it should be noted that the Jacobi matrix
∂f/∂x is singular at a point on the boundary ∂B2

c for
0.88 ≤ c2 ≤ 1.1.

Figure 5 compares the computing time for different val-
ues of the parameter c2. It is found that the computing
time using the proposed method ‘method 2’ is less than that
using ‘method 1’, although the difference is small. Also
it should be noted that the computing time increases for
0.9 < c2 < 1. It is because there exist two other solutions
xa = (−10, 10

√
1 − c2) and xb = (−10, −10

√
1 − c2)

near the boundary ∂B2
c , the denominator ‖f‖max of f̄ de-

fined by (4) is close to zero at x � xa or xb, and the interval
arithmetic overestimates the corresponding intervals. For
1 < c2 < 1.1, there exist only one solution xc and the
computing time remains small even when the Jacobi matrix
∂f/∂x is singular at a point on the boundary ∂B2

c .

These examples show that the proposed method can be
applied even when the Jacobi matrix ∂f/∂x is singular at a
point in a domain B or on its boundary ∂B.

 1.0

 0.1
 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

co
m

pu
tin

g
tim

e
 [s

ec
]

method 2

method 1

parameter c 2

Figure 5. The computing time for example 3,
(37). See caption in fig.3.

6. Conclusions

This work has considered numerical computation of the
mapping degree deg(f,Bd) for a continuous map f :
Bd → R

d on the d-dimensional ball Bd using computa-
tional homology. The degree can be determined using the
corresponding map f = f/‖f‖ : Sd−1 → Sd−1 and the
induced homomorphism f∗ : H∗(Sd−1) → H∗(Sd−1) on
the homology group H∗(Sd−1). In order to reduce the com-
putational cost, we have proposed the method to obtain the
degree without direct calculation of homology groups. Nu-
merical examples using simple maps indicate that the pro-
posed method works even for singular cases.

For practical application of this method, the problem of
computational complexity still remains for a system of large
dimension. In order to overcome this problem, we plan to
reconsider construction of the chain homomorphism ϕ in
future works.

References

[1] J. Cronin, Fixed points and topological degree in non-
linear analysis, Amer. Math. Soc., Providence, RI,
1964.

[2] E. Zeidler, Nonlinear functional analysis and its appli-
cations I, Fixed-point theorems, Springer, 1986.

[3] E.H. Rothe, Introduction to various aspects of degree
theory in Banach spaces, American Mathematical So-
ciety, 1986.

[4] F. Stenger, “Computing the topological degree of a
mapping in R

n”, Numeri. Math., vol.25, pp.23–38,
1975.

[5] R.B. Kearfott, “An efficient degree-computation
method for a generalized method of bisection”,
Numeri. Math., vol.32, pp.109–127, 1979.

[6] O. Aberth, “Computation of topological degree using
interval arithmetic, and applications”, Mathematics of
Computations, vol.62, no.205, pp.171–178, 1994.

[7] R.B. Kearfott, J. Dian and A. Neumaier, “Existence ver-
ification for singular zeros of complex nonlinear sys-
tems”, SIAM J. Numeri. Anal., vol.38, no.2, pp.360–
379, 2000.

[8] S. Murashige, “A practical method of numerical cal-
culation of the mapping degree”, IEICE Trans. Funda-
mentals, vol.E89-A, no.6, pp.1813–1819, 2006.

[9] T. Kaczynski, K. Mischaikow and M.Mrozek, Com-
putational homology, Applied Mathematical Sciences,
vol.157, Springer-Verlag, New York, 2004.

[10] T. Kaczynski, M. Mrozek and M. Ślusarek, “Homol-
ogy computation by reduction of chain complexes”,
Comput. Math., vol.35, pp.59–70, 1998.

[11] W. Kalies, K. Mischaikow and G. Watson, “Cubical
approximation and computation of homology”, Banach
Center Publications, vol.47, pp.115–131, 1999.

[12] M.S. Longuet-Higgins, “Bifurcation in gravity
waves”, J. Fluid Mech., vol.151, pp.457–475, 1985.

A Some definitions in computational homol-
ogy [9]

Definition A.1 (cubical set)
Define an elementary interval I ⊂ R by I = [l, l + 1] or

I = [l, l] (l ∈ Z), and the associated elementary cell I̊ by

I̊ :=
{

[l, l] for I = [l, l] ,
(l, l + 1) for I = [l, l + 1] .

(41)

Define an elementary cube Q ⊂ R
d and the associated ele-

mentary cell Q̊ by

Q := I1 × · · · × Id

Q̊ := I̊1 × · · · × I̊d

(42)

where I1, . . . , Id denotes elementary intervals. The dimen-
sion dimQ of Q = I1 × · · · × Id is defined by the number
of elementary intervals such that Ij = [l, l + 1] (l ∈ Z).
If X ⊂ R

d can be written as a finite union of elementary
cubes, then X is called a ‘cubical set’.

Let Kd be a set of all elementary cubes in R
d, and we

use the following notations:

Kd
k := {Q ∈ Kd : dimQ = k} ,

K :=
∞⋃

d=1

Kd ,

K(X) := {Q ∈ K : Q ⊂ X} ,

Kk(X) := {Q ∈ K(X) : dimQ = k} ,

(43)

where X ⊂ R
d is a cubical set. Also, let |K(X)| be the

number of elements of K(X).
�

Definition A.2 (cubical chain group)
The cubical chain group Ck(X) of k-dimension for a

cubical set X ⊂ R
d is defined by

Ck(X) := {α1Q̂1+· · ·+αnQ̂n : αi ∈ Z , Qi ∈ Kk(X)} ,
(44)

where Q̂ : Kd
k → Z for Q ∈ Kd

k is defined by

Q̂(P) :=

{
1 P = Q ,

0 P �= Q ,
(45)

and Ck(X) = 0 for k > d or < 0.
For c ∈ Ck(X) given by

c = α1Q̂1 + · · · + αnQ̂n , αi ∈ Z\{0} , (46)

the support |c| is defined by

|c| :=
n⋃

j=1

Qj . (47)

�

Definition A.3 (cubical boundary map)
The cubical boundary map ∂k : Ck(X) → Ck−1(X) for

a cubical set X ⊂ R
d is defined by

∂k(Q̂) :=
k∑

j=1

(−1)j−1(Q̂+
j − Q̂−

j) , (48)

where Q = I1 × · · · × Id ∈ Kk(X),

Q−
j := I1 × · · · × Iij−1 × [lj , lj] × Iij+1 × · · · × Id ,

Q+
j := I1 × · · · × Iij−1 × [lj + 1, lj + 1] × Iij+1

× · · · × Id ,
(49)

and Ii1 , . . . , Iik
are subsequences of I1, . . . , Id such that

Iij
= [lj , lj +1]. This definition can be linearly extended to

a general c ∈ Ck(X). �

VALENCIA-IVP: A Comparison with Other Initial Value Problem Solvers

Andreas Rauh, Eberhard P. Hofer
Institute of Measurement, Control,

and Microtechnology
University of Ulm

D-89069 Ulm, Germany
{Andreas.Rauh, EP.Hofer}@uni-ulm.de

Ekaterina Auer
Faculty of Engineering, IIIS

University of Duisburg-Essen
D-47048, Germany
auer@inf.uni-due.de

Abstract

Validated integration of ordinary differential equations
with uncertain initial conditions and uncertain parameters
is important for many practical applications. If guaran-
teed bounds for the uncertainties are known, interval meth-
ods can be applied to obtain validated enclosures of all
states. However, validated computations are often affected
by overestimation, which, in naive implementations, might
even lead to meaningless results. Parallelepiped and QR
preconditioning of the state equations, Taylor model arith-
metic, as well as simulation techniques employing split-
ting and merging routines are a few existing approaches
for reduction of overestimation. In this paper, the recently
developed validated solver VALENCIA-IVP and several
methods implemented there for reduction of overestimation
are described. Furthermore, a detailed comparison of this
solver with COSY VI and VNODE, two of the most well-
known validated ODE solvers, is presented. Simulation re-
sults for simplified system models in mechanical and bio-
process engineering show specific properties, advantages,
and limitations of each tool.

1 Introduction

In this paper, a detailed comparison of different validated

solvers for initial value problems (IVPs) for ordinary differ-

ential equations (ODEs) is presented. The performance of

the interval arithmetic solver VALENCIA-IVP (VALidation

of state ENClosures using Interval Arithmetic for Initial

Value Problems1) proposed by the authors in [1], is com-

pared with COSY VI [9] and VNODE [10]. For this com-

parison, the dynamics of a double pendulum and a subsys-

tem model of biological wastewater treatment processes are

analyzed as representative examples. Since validated ODE

1http://www.valencia-ivp.com

solvers allow for computation of enclosures which are guar-

anteed to contain all possible system states, they are advan-

tageous compared to stochastic or grid-based techniques if

the behavior of safety critical systems or the worst-case in-

fluence of parameter uncertainties are of interest.

The basic principle of VALENCIA-IVP is to describe

state enclosures by non-validated approximate solutions of

the IVP and the corresponding guaranteed error bounds.

These bounds are determined by a fixed-point iteration

without separate calculation of discretization errors. The

main difference to commonly used validated methods for

simulation of dynamical systems [7, 9, 10] is that only the

first partial derivatives of the ODEs with respect to states,

parameters, and time are required. These first derivatives

are necessary for mean-value rule evaluation as well as

advanced interval techniques such as monotonicity tests,

splitting, and merging of subintervals which are applied

to reduce overestimation in VALENCIA-IVP. First results

in the context of multibody modeling and simulation soft-

ware [1] have shown that the achievable simulation quality

of VALENCIA-IVP is comparable to results of VNODE.

A new extension of VALENCIA-IVP is presented in this

paper which excludes state intervals resulting from overesti-

mation by a consistency test based on backward integration.

Additionally, this exclusion strategy is combined with ex-

isting splitting and merging techniques. The selected ODE

solvers are compared with respect to their specific algorith-

mic properties, the achievable simulation qualities, and the

required CPU times for exemplarily chosen applications.

In Section 2, the problem of validated simulation of

continuous-time systems with uncertain initial states and

uncertain parameters is formulated. Additionally, the main

algorithmic properties of VNODE and COSY VI are

summarized briefly. In Section 3, the basic algorithm of

VALENCIA-IVP is described and a proof of the conserva-

tiveness of the obtained interval bounds is presented. The

focus of Section 4 is a consistency test for VALENCIA-IVP

aiming at the reduction of overestimation. In Section 5, sim-

ulation results for the three above-mentioned ODE solvers

are compared using two examples. It is shown that the ba-

sic version of VALENCIA-IVP could reduce CPU time in

comparison to COSY VI and overestimation in compari-

son to VNODE for several important scenarios. The paper

is concluded in Section 6 by an outlook on future research.

2 Validated Solvers for Ordinary Differential
Equations

2.1 Problem Formulation

The goal of this article is to compare validated solvers

for IVPs described by time-varying ODEs

ẋs (t) = fs (xs (t) , p (t) , t) (1)

with the state vector xs (t) ∈ R
ns , the vector p (t) ∈ R

np

of (uncertain) system parameters, and the nonlinear state-

space representation fs : D �→ R
ns , D ⊂ R

ns ×R
np ×R

1.

The initial states are denoted by xs (0) = x0
s. Since in most

practical applications only conservative bounds of the initial

conditions and the system parameters are known, they are

assumed to be bounded by the intervals

[
x0

s

]
:=
[
x0

s ; x0
s

]
and [p (t)] :=

[
p (t) ; p (t)

]
. (2)

Furthermore, the system parameters p may be time-varying

which is expressed by the additional differential equation

ṗ (t) = Δp (t) , (3)

where the variation rates

Δp (t) ∈ [Δp (t)] :=
[
Δp (t) ; Δp (t)

]
(4)

do not have to be known exactly. To simplify the application

of validated ODE solvers, an extended state vector x (t) =[
xT

s (t) pT (t)
]T ∈ R

n, n = ns + np, consisting of the

original system states and parameters is introduced. The

resulting state-space representation is then denoted by

ẋ (t) = f (x (t) , t) =
[
fs (xs (t) , p (t) , t)

Δp (t)

]
(5)

with f : D �→ R
n, D ⊂ R

n × R
1. Treating the time

variable t separately from the extended state vector x (t) is

especially advantageous for modeling of dynamics of time-

varying systems for which fixed bounds of states and/or pa-

rameters, e.g. as defined in (2), are known.

2.2 VNODE

To use VNODE, it is necessary to discretize the time

horizon and transform the given IVP into an autonomous

one. The state equations f are assumed to be continuously

differentiable up to a given order (q − 1) > 0. The algo-

rithm of VNODE consists of two stages [10]:

Stage One. Existence and uniqueness of the solution of

an IVP is proven by calculation of guaranteed a priori en-

closures of all reachable states in the time interval between

two subsequent discretization points. This is done with the

help of Banach’s fixed point theorem and the high order en-

closure method [11] which generalizes the usual techniques

based on the Picard iteration [8].

Stage Two. A tight enclosure of the solution is computed

using the interval enclosure at the preceding time step and

the local error which encloses all discretization errors at the

current step. Here, VNODE offers the choice between the

direct Taylor series algorithm, Lohner’s QR-factorization

algorithm, and the interval Hermite-Obreschkoff algorithm.

All methods make use of the mean value theorem to com-

pute tighter ranges of Taylor coefficients. Owing to the open

structure of this object oriented solver, new algorithms can

be easily added to its core.

VNODE uses PROFIL/BIAS [5] for interval arithmetic

and FADBAD/TADIFF [2,3] to obtain Taylor coefficients

and their Jacobians. Growth of the computed interval diam-

eters with progressing simulation time is inevitable as long

as only explicit integration techniques are applied.

2.3 COSY VI

The Taylor model based ODE solver COSY VI per-

forms high order Taylor expansions of the solution in time

and initial conditions to reduce overestimation [9]. It seeks

to improve conventional validated solvers with respect to

modeling of the local functional behavior and control of

the long-term growth of integration errors. The first task

is solved using the Picard iteration in combination with

Schauder’s fixed-point theorem. The long-term growth

of integration errors is controlled by the shrink wrapping

method, which minimizes the interval remainder of the Tay-

lor model of the solution using appropriate transformations

of the polynomial part, and with the help of different pre-

conditioning methods, which consider the Taylor model in

appropriate coordinate systems.

If suitable orders and step sizes are chosen, a significant

reduction of overestimation is possible for highly nonlinear

systems [4]. A drawback of this solver is high computa-

tional time for systems with many variables.

3 VALENCIA-IVP

In VALENCIA-IVP, the validated enclosures of all

reachable states are assumed to be defined by

[xencl (t)] = xapp (t) + [R (t)] , (6)

where xapp (t) denotes an arbitrary non-validated approxi-

mate solution to the IVP. Validated bounds [R (t)] of the ap-

proximation errors are determined by the iteration scheme

presented in the following Subsection.

3.1 Iteration Scheme and Proof for Con-
servativeness of the State Enclosures

Most validated techniques to enclose solutions of IVPs

rely on integration of the set of ODEs ẋ (t) = f (x (t) , t)
on a finite time interval according to

x (t) = x (0) +

t∫
0

f (x (τ) , τ) dτ

⊆ x (0) + [0 ; t] · f ([B] , [0 ; t])

(7)

with t ∈ [0 ; T] and x (0) ∈ [
x0
]
. The range

f ([B] , [0 ; t]), which is obtained after substituting the

bounding box [B] enclosing all reachable states in the con-

sidered time interval [0 ; t] for x (τ) in the integrand in (7),

represents a conservative enclosure of all possible time

derivatives of x (t) in this time interval. This property as

well as the Picard iteration[
B(κ+1)

]
=
[
x0
]
+ [0 ; t] · f

([
B(κ)

]
, [0 ; t]

)
, (8)

which is usually applied to calculate time-invariant bound-

ing boxes [B], are necessary for derivation and proof of the

iteration scheme of VALENCIA-IVP [1]. Superscript in-

dices (κ) denote the number of the iteration step. After ini-

tialization of the bounding box with
[
B(0)

]
=
[
x0
]
, the

iteration formula is evaluated until
[
B(κ+1)

] ≈ [
B(κ)

]
if[

B(1)
] ⊆ [

B(0)
]
. Otherwise, the initial interval box

[
B(0)

]
has to be inflated until this inclusion property holds. Almost

all information about the system dynamics is disregarded if

the interval bounds [B] are assumed to be constant. Hence,

the replacement of [B] by time-varying state enclosures (6)

with unknown error terms [R (t)] in VALENCIA-IVP leads

to improved state enclosures.

Theorem 1 Consider an IVP as defined in Subsection 2.1
with f : D �→ R

n, D ⊂ R
n × R

1 open, f ∈ C1(D, Rn).
Then, all reachable states at the point of time t are con-
tained in the interval enclosure (6), if the error bounds
[R (t)] are computed by the following two-stage procedure.

1. Iterative computation of an interval enclosure of all
possible time derivatives

[
Ṙ (t)

]
of the error term by

[
Ṙ(κ+1) (t)

]
= −ẋapp (t) + f

([
x

(κ)
encl (t)

]
, t
)

= −ẋapp (t) + f
(
xapp (t) +

[
R(κ) (t)

]
, t
)

=: r
([

R(κ) (t)
]
, t
)

. (9)

This iteration converges to a verified enclosure of
[
Ṙ (t)

]
if[

Ṙ(κ+1) (t)
]
⊆
[
Ṙ(κ) (t)

]
. The iteration (9) is continued

until
[
Ṙ(κ+1) (t)

]
≈
[
Ṙ(κ) (t)

]
.

2. Verified integration of
[
Ṙ(κ+1) (t)

]
, 0 ≤ t ≤ T , with

respect to time according to

[
R(κ+1) (t)

]
⊆
[
R(κ+1) (0)

]
+

t∫
0

[
Ṙ(κ+1) (τ)

]
dτ

=
[
R(κ+1) (0)

]
+

t∫
0

r
([

R(κ) (τ)
]
, τ
)

dτ

replaced by the guaranteed bound

[
R(κ+1) (t)

]
⊆
[
R(κ+1) (0)

]

+ t · r
([

R(κ) ([0 ; t])
]
, [0 ; t]

)
.

(10)

These updated error bounds are required for evaluation of
the formula (9) in the next iteration step. Uncertainties of
the initial conditions are accounted for by choosing [R (0)]
such that

[
x0
] ⊆ xapp (0) + [R (0)]. �

Proof 1 Using the Picard iteration (8), a bounding box
[B] of all states which are reachable in the time interval
t ∈ [0 ; T] can be determined according to Banach’s fixed-
point theorem. Substituting [xencl] for the bounding box [B]
on both sides of (8) leads to
[
x

(κ+1)
encl ([0 ; T])

]
=

[
x0
]
+ [0 ; T] · f

([
x

(κ)
encl ([0 ; T])

]
, [0 ; T]

)
.

(11)

Let the approximation error in (6) be defined by

[R ([0 ; T])] := [R (0)] + [0 ; T] ·
[
Ṙ ([0 ; T])

]
, (12)

where
[
Ṙ ([0 ; T])

]
is a conservative interval enclosure of

all possible time derivatives in the considered time interval.
Then, the iteration formula (11) is equivalent to

xapp ([0 ; T]) +
[
R(κ+1) ([0 ; T])

]
=

[
x0
]
+ [0 ; T] · f

([
x

(κ)
encl ([0 ; T])

]
, [0 ; T]

)
.

(13)

According to definition (12),
[
Ṙ(κ+1) ([0 ; T])

]
is a

guaranteed interval enclosure of all possible time deriva-
tives of

[
R(κ+1) ([0 ; T])

]
in the time interval [0 ; T].

Analogously, f
([

x
(κ)
encl ([0 ; T])

]
, [0 ; T]

)
includes the

time derivative of the right hand side of (13). Therefore,
differentiation with respect to time on both sides of (13)
and solving for

[
Ṙ(κ+1)

]
leads directly to the iteration for-

mula (9). Finally, evaluation of the sum of the approximate
solution xapp (t) and the bounds of the approximation error
using outward rounding of the resulting interval provides a
verified state enclosure of the solution of the IVP. �

Since no series expansion of the solution of the IVP

is necessary in VALENCIA-IVP, no computation of guar-

anteed bounds for discretization errors (cf. VNODE) is

needed. Note that the interval enclosure [R] could also be

obtained without the formulas (9) and (10) by verified inte-

gration of the ODE

Ṙ (t) = −ẋapp (t) + f
(
xapp (t) + R (t) , t

)
(14)

using an arbitrary validated solver. Here, the approximation

errors are obtained by substituting (6) for x (t) in (5).

3.2 Basic Algorithm

In the following, the key components of VALENCIA-

IVP are discussed with the focus on computation of suitable

approximate solutions xapp (t) and methods for reduction

of overestimation in the iteration formula (9).

In general, one can use arbitrary non-validated approx-

imations xapp (t) in VALENCIA-IVP, which are obtained

either analytically or numerically. Without loss of general-

ity, xapp (t) is computed for the interval midpoints of the

uncertain initial states and system parameters as initial con-

ditions, i.e., xapp (0) = mid
([

x0
])

= 1
2

(
x0 + x0

)
.

Analytical approximations can be obtained after lin-

earization of nonlinear ODEs or by neglection of nonlinear

terms and can be improved by suitable perturbation tech-

niques. However, especially for high-dimensional prob-

lems, numerical approximations are often advantageous,

since they are more flexible and not restricted to a specific

class of state equations.

A non-validated numerical approximation
{
xN

i

}
, i =

0, . . . , L, for the original IVP with xN
0 = mid

([
x0
])

can

be calculated over the grid {ti} with tL = T by any non-

validated IVP solver. Since analytic expressions for xapp (t)
and its time derivative ẋapp (t) are required in (9), they are

determined by minimization of a distance measure

D =
L∑

i=1

d
(
xN

i − xapp (ti)
) e.g.

=
L∑

i=1

∥∥xN
i − xapp (ti)

∥∥2

2
,

for all numerically determined points xN
i . The current C++

version of VALENCIA-IVP uses the computationally inex-

pensive linear interpolation

xapp (t) = xN
i +

xN
i+1 − xN

i

ti+1 − ti
· (t − ti) (15)

with the time derivative

ẋapp (t) =
xN

i+1 − xN
i

ti+1 − ti
(16)

for t ∈ [ti ; ti+1], i = 0, . . . , L − 1, where
{
xN

i

}
is com-

puted by an explicit Euler method with constant step size.

The iteration (9) is initialized by choosing interval enclo-

sures for [R (t)] and
[
Ṙ (t)

]
such that

[
x0
] ⊆ xapp (0) +

[R (0)]. The evaluation of (9) is continued if
[
Ṙ(1) (t)

]
⊆[

Ṙ(0) (t)
]
, see Theorem 1. Otherwise, the interval widths

of the initial guesses for [R (t)] and
[
Ṙ (t)

]
are increased to

check if the iteration converges for larger error bounds.

To improve convergence of the iteration and to reduce

the width of the error bounds, the time span [0 ; T] is split

into shorter time intervals. Obviously, the validated integra-

tion w.r.t. time in formula (10) has to be replaced by

[
R(κ+1) (ti+1)

]
=
[
R(κ+1) (0)

]

+
i∑

j=0

(tj+1 − tj) · r
([

R(κ) ([tj ; tj+1])
]
, [tj ; tj+1]

)
(17)

for all ti, i = 0, . . . , L − 1. If numerical approximations

are used, the grid {ti} (not necessarily equally spaced) is

predefined by the non-validated ODE solver.

To obtain tightest possible bounds in evaluation of the

iteration formula (9), the intersection of natural interval
evaluation with mean-value rule evaluation

r (z) ∈ r (zm) +
∂r

∂z

∣∣∣∣∣
z=[z]

· ([z] − zm) for all z ∈ [z] , (18)

where

[z] =
[

[R (ti)]
[ti ; ti+1]

]
and zm = mid ([z]) , (19)

is computed. Additionally, a monotonicity test is per-

formed by VALENCIA-IVP for further reduction of over-

estimation. If a component ri, i = 1, . . . , n, is monotonic

w.r.t. at least one zj , j = 1, . . . , n + 1, [zj] can be replaced

by its interval bounds during range computation. E.g., if

inf
(

∂ri

∂zj

)
> 0, [zj] can be replaced by zj to compute the

infimum of the range of ri over [z] and by zj to compute its

supremum. All other cases are summarized in Tab. 1.

Optionally, if monotonicity cannot be proven for ri, all

arguments of ri with interval diameters which are signif-

icantly larger than zero can be split into subintervals, for

which mean-value rule evaluation and monotonicity tests

are applied again. In this iterative range calculation, the

Table 1. Monotonicity test in VALENCIA-IVP.
inf
(

∂ri

∂zj

)
> 0 sup

(
∂ri

∂zj

)
< 0

inf
{

ri (z)
∣∣∣
zj=ξj

}
ξj = zj ξj = zj

sup
{

ri (z)
∣∣∣
zj=ξj

}
ξj = zj ξj = zj

component j∗i of [z] defined by

j∗i = arg max
j=1,...,n+1

⎧⎨
⎩diag

⎧⎨
⎩diam

⎧⎨
⎩

∂ri

∂z

∣∣∣∣∣
z=[z]

⎫⎬
⎭
⎫⎬
⎭·diam {[z]}

⎫⎬
⎭ ,

(20)

is split at its interval midpoint [1,6]. For this component, the

maximum reduction of overestimation is expected. Split-

ting is continued with the input intervals which lead to the

smallest infimum/ largest supremum to improve the bounds

of ri until a user-defined number of subintervals is reached

or until ri is monotonic for all arguments. Finally, the union
of all subintervals for ri is used as the improved enclo-

sure [1]. All partial derivatives required for that purpose are

determined by algorithmic differentiation using FADBAD.

4 Consistency Test in VALENCIA-IVP for
Reduction of Overestimation

In this Section, the consistency test used in VALENCIA-

IVP is described for a time interval t ∈ [ti ; ti+Nc
], where

Nc > 1 is the number of forward evaluation steps after

which the consistency test is performed. This test aims at

reducing overestimation that appears due to the replacement

of the exact (often complexly shaped) regions in the state-

space by axis-parallel interval boxes. It detects and elimi-

nates subintervals originating from overestimation.

4.1 Basic Framework for the Consistency
Test in VALENCIA-IVP

Step 1: Forward Evaluation from ti to ti+Nc
. First, a for-

ward evaluation of the set of state equations is performed

using the basic version of VALENCIA-IVP to obtain the

interval enclosure [x (ti+Nc)]. For an efficient consistency

test, sufficient overestimation has to be present in this en-

closure. Therefore, it is not necessary to perform the consis-

tency test for each ti. Typical values are 10 ≤ Nc ≤ 1000.

Step 2: Subdivision of Interval Boxes at t = ti+Nc
.

After the forward evaluation, the resulting interval enclo-

sure is split into subintervals [x̃j (ti+Nc)] ⊂ [x (ti+Nc)],
j = 1, . . . , Lc, by the splitting strategies summarized in

Subsection 4.2. The user-defined maximum number of

subintervals is denoted by Lc. Typical values of this pa-

rameter suitable for most systems are 20 ≤ Lc ≤ 1000.

Step 3: Backward Evaluation from ti+Nc to ti. At

this stage, backward integration of each subinterval de-

termined in Step 2 is performed using the basic version

of VALENCIA-IVP. During backward integration, the in-

tersection with the guaranteed state enclosures determined

by the forward evaluation is computed. This leads to

tighter state enclosures due to reduced overestimation and

increases the probability to detect inconsistent subintervals.

Step 4: Elimination of Inconsistent Subintervals. For

each subinterval [x̃j (ti+Nc
)] from the Steps 2 and 3, three

different cases have to be distinguished, see Fig. 1.

Case (A): Subintervals which certainly originate from over-
estimation. Such subintervals are deleted. The intersection

of the result of the backward integration of these subinter-

vals with the state enclosure of the forward evaluation is

empty in at least one component of the state vector for at

least one point of time in the time interval [ti ; ti+Nc
].

Case (B): Subintervals which are consistent with [x (ti)].
These subintervals belong to the solution. Their backward

integration leads to time responses which are completely

included in the result of the forward integration for all

t ∈ [ti ; ti+Nc
].

Case (C): All other subintervals. Further splitting is re-

quired to check consistency.

[x̃j (ti+Nc
)] ⊂ [x (ti+Nc

)]
subintervals

t

x (t)

interval enclosure
x (ti+Nc

) ∈ [x (ti+Nc
)]

(2) subdividing and merging
of interval boxes

(C)

(B)

(A)

(1) forward evaluation from ti to ti+Nc

(3) backward evaluation from ti+Nc
to ti

ti ti+Nc

x (ti) ∈ [x (ti)]

Figure 1. Consistency test in VALENCIA-IVP.

4.2 Splitting Procedure

The splitting procedure relies on two different selection

criteria. The first one is to prefer large subintervals near

the boundary of the set computed in the forward evaluation

for t = ti+Nc
. The alternative is to select subintervals with

small relative overlapping with the result of the forward step

over the complete time interval [ti ; ti+Nc
]. In both cases,

only subintervals which are larger than some user-defined

pseudo volume (product of the diameters of all components

of an interval vector) are split.

4.3 Merging Strategy and Propagation of
Subintervals

The subsequent forward evaluations are performed sepa-

rately for each subinterval which is not inconsistent. To pre-

vent an unlimited growth of the necessary computational ef-

fort, application of merging strategies is inevitable. Subin-

tervals are replaced by their interval hull if this replacement

leads to small additional overestimation. For that purpose,

the pseudo volume of the exact union of two interval boxes[
x(α)

]
and

[
x(β)

]
given by

Ve = vol
([

x(α)
])

+vol
([

x(β)
])

−vol
([

x(α)
]
∩
[
x(β)

])
(21)

and the pseudo volume

Vh = vol
([

x(α)
]
∪
[
x(β)

])
(22)

of their common interval hull are compared. The interval

boxes [xα] and [xβ] are replaced by their interval hull if

Vh − Ve

Ve
· 100% ≤ δhull,limit . (23)

Typical values for the limit value in (23) are δhull,limit ∈
[0.1% ; 5%], see also [6]. Application of this merging rou-

tine limits the number of interval boxes and, thus, the com-

putational effort. Besides, a user-defined simulation quality

can be achieved.

5 Simulation Results

In the following, simulation results for COSY VI,

VALENCIA-IVP, and VNODE are compared using two

practically relevant examples. All solvers were compiled

and all simulations were performed on a standard PC (Intel

Pentium IV, 3.0 GHz, 1 GB RAM) under CYGWIN. Saving

of intermediate results was switched off for each solver.

5.1 Application 1: Double Pendulum

The first application for the validated ODE solvers is a

double pendulum (Fig. 2) with two massless arms l1 = l2 =
1 m and two point masses m1 = m2 = 1 kg. The dynami-

cal system model is summarized in (24) with the state vector

ψ (t) =
[
ψ1 ψ2 ψ3 ψ4

]T
. The initial angles ψ0

1 and

ψ0
2 (in rad) as well as the initial angular velocities ψ0

3 = ψ̇0
1

and ψ0
4 = ψ̇0

2 (in rad
s) are given according to

inf
([

ψ0
])

=
[
0.99 3π

4 − 11π
20 0.43 0.67

]T
and sup

([
ψ0
])

=
[
1.01 3π

4 − 11π
20 0.43 0.67

]T
.

Even without monotonicity tests and iterative range com-

putations (denoted by AIM), VALENCIA-IVP leads to

m2

m1 l2

xl1

y

ψ2

ψ1

Figure 2. A double pendulum.

tighter bounds than VNODE. For COSY VI with constant

step sizes and QR preconditioning, the step size should be

reduced below 0.002 s to obtain significantly better bounds

than the ones computed with VALENCIA-IVP. However,

this leads to high computing times, see Tabs. 2 and 3. In

Tab. 2, the comparison has been performed with a constant

step size h = 0.002 for all solvers. QR preconditioning and

a series expansion of order 12 were used in VNODE and

COSY VI (with identical orders for expansion in time and

initial states). The effects of other fixed and variable step

sizes are summarized in Tab. 3. Variable step sizes do not

lead to much tighter bounds; only CPU times are reduced

for both COSY VI and VNODE.

Table 2. Comparison for the double pendu-
lum (h = 0.002).

break-down reduction factor CPU time

time at t = 0.5 over [0; 0.5]
VNODE (QR) 0.5221 1.0 9.62 s

COSY VI (QR) 0.6300 1.50·104 1.00 h

VALENCIA: MVR 0.5600 1.32·102 1.31 s

VALENCIA: AIM 0.5920 7.65·102 14.0 s

The investigation of (small) constant step sizes is espe-

cially important for model based state and parameter esti-

mation. In these applications, dynamical interval observers

relying on the integration of ODEs are used to perform pre-

diction steps between the points of time at which measured

data are available [13]. The grid is therefore predefined

by the sampling frequency of the measurement device and,

thus, cannot be controlled by the ODE solver.

In order to reduce the computing time in VALENCIA-

IVP further, we plan to include strategies for automatic step

size control for cases that do not require the step size to be

constant. The comparison of computing times for VNODE

and COSY VI clearly shows the benefits of step size con-

trol which are expected to be the same for VALENCIA-IVP.

In contrast to VNODE, QR preconditioning in

COSY VI improves the state enclosures and break-down

times only for relatively small and variable step sizes in this

example. Here, preconditioning even leads to a consider-

able performance decrease for larger step sizes, see Tab. 3.

Preconditioning is not essential in this case, since the poly-

ψ̇ (t) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 m1l1 + m2 (l1 + l2 cos (ψ2)) m2l2 cos (ψ2)
0 0 m2 (l1 cos (ψ2) + l2) m2l2

⎤
⎥⎥⎦
−1

·

⎡
⎢⎢⎣

ψ3

ψ4

−g (m1 + m2) sin (ψ1) + m2l2 sin (ψ2) (ψ3 + ψ4)
2

−gm2 sin (ψ1 + ψ2) − m2l1 sin (ψ2) ψ2
3

⎤
⎥⎥⎦

(24)

nomial parts of Taylor models are a means to represent not

axis-parallel regions in the state space. However, QR pre-

conditioning is often advantageous since it reduces overes-

timation caused by axis-parallel interval remainder bounds

of Taylor models. At last, the simulation with COSY VI

could be sped up further by adapting the orders of the series

expansions in the initial states according to the relevance of

their interval diameters2.

Table 3. Comparison for the double pendu-
lum (cont’d).

VALENCIA-IVP: Version 0.92 2d (December 19, 2006), MVR AIM

step size, preconditioning break-down time CPU time over [0;0.5]

0.02 0.4400 0.4400 0.18 s (*) 3.00 s (*)

0.002 0.5600 0.5920 1.31 s 14.0 s

0.0002 0.5872 0.6124 11.0 s 101 s

VNODE-2.0, constant/ variable step sizes, order 12

0.02 tol=1e-16 0.4857 1.02 s (*)

0.002 tol=1e-16 0.5221 9.62 s

0.0002 tol=1e-16 0.5284 97.1 s

variable w
it

h
Q

R

tol=1e-16 0.5330 6.38 s

COSY VI: Version of March 22, 2004; COSY 9 (2004)

constant/ variable step sizes, order 12 for expansion in states and time

0.02 tol=1e-16 0.4800 24.6 s (*)

0.002 tol=1e-16 1.1320 3 min

0.0002 tol=1e-16 1.1212 31 min

variable tol=1e-16 1.1212 31 min

variable w
it

h
o
u
t

Q
R

tol=1e-1 0.7882 27.36 s

0.02 tol=1e-16 0.3800 7 min (*)

0.002 tol=1e-16 0.6300 1 hour

0.0002 tol=1e-16 2.0610 7 hrs 59 min

variable tol=1e-16 2.0610 7 hrs 59 min

variable

w
it

h
Q

R

tol=1e-1 2.2905 16 min

(*) computing times until break-down of the corresponding solver

COSY VI: variable step size h ∈ [0.0002 ; 0.02], initial step size 0.02

The consistency test in VALENCIA-IVP with Nc = 50
and Lc = 50 leads to significant reduction of overesti-

mation and a break-down time of approx. 0.9915. Espe-

cially, it can prevent growth of the enclosures over simula-

tion time. For example, in the region marked by (*) in Fig. 3

(which is enlarged in the lower part), the consistency test in

2The recently released version of COSY VI (version of Nov. 10,

2006; COSY 9 of August, 2006) which supports the selection of dif-

ferent orders for the series expansion in the components of the ini-

tial state vector will be studied in future comparisons. All state equa-

tions used for the comparison of the selected solvers are available via

http://www.valencia-ivp.com.

VALENCIA-IVP helps to compute interval bounds which

are contracting over simulation time with a quality similar

to COSY VI.

ψ̇
2
(t

)
ψ̇

2
(t

)

VALENCIA
(cons.)

VALENCIA
(cons.), enlarged

t

t

10

−15

−10

−5

0

5

0 0.2 0.4 0.6 1.00.8

15
VALENCIA
(basic)

COSY VI
h = 0.0002

VNODE

0.6 0.7

(*)

0.62 0.64 0.66

10

0.68
7

8

9

Figure 3. Enclosures for the angular velocity
ψ̇2(t) of the double pendulum (h = 0.0002).

5.2 Application 2: Subsystem Model of
Biological Wastewater Treatment

The second application is a subsystem model of biolog-

ical wastewater treatment. In this subsystem, the concen-

tration S of biodegradable organic substrate is reduced by

heterotrophic bacteria with concentration X under external

oxygen supply with the flow rate uO2. The concentration

of dissolved oxygen in the aeration tank is denoted by SO.

The bacteria concentration in the settler (modeled as a per-

fect separator of sludge and purified water) is denoted by

XSet. A portion of the activated sludge is fed back into the

aeration tank (flow rate QRS of return sludge); the excess

sludge QEX is removed from the process, see Fig 4.

aeration tank
volume: VA
S, X , SO

settler
volume: VSet

XSet

uO2

QRS

QW

QW − QEX

QEX

QW + QRS

Figure 4. Block diagram of a simplified bio-
logical wastewater treatment process.

Simplification of the ASM1 (Activated Sludge Model

No. 1 of the International Water Association) leads to a set

of four nonlinear ordinary differential equations

Ṡ =
QW

VA
(SW − S) − μ (S, SO)

1
Y

X

Ẋ = − QW

VA
X +

QRS

VA
(XSet − X)

+ (μ (S, SO) − b) X

ṠO =
QW

VA
(SOW − SO) − μ (S, SO)

1 − Y

Y
X

+
ρO2

VA

(
1 − SO

SO,sat

)
uO2

ẊSet =
QW + QRS

VSet
X − QEX + QRS

VSet
XSet ,

(25)

where the nonlinear growth rate of substrate consuming

bacteria is modeled by the Monod kinetics

μ (S, SO) = μ̂H
S

S + KS

SO

SO + KOS
. (26)

A more detailed description and a complete list of all pa-

rameters can be found in [12].

In practice, most parameters are uncertain due to varia-

tions of amount and composition of the inflow into the aera-

tion tank as well as various weather conditions. Especially,

the temperature of the wastewater has a strong influence on

the maximum specific growth rate μ̂H and on the decay rate

b of the biomass. In the following, μ̂H is chosen as the

only uncertain parameter with μ̂H ∈ [0.9 ; 1.1] μ̂H,nom.

Aside from bounds of these parameters, also uncertainties

of their variation rates can often be specified according

to (2)–(4). In VALENCIA-IVP, this case can be handled by

introduction of additional state variables for the parameters

and limitation of their range after computation of the error

bounds [R (t)] by intersection with the limit values which

are expressed in terms of bounds for the approximation er-

ror intervals. VNODE can be extended analogously. In this

case, the intersection with the known bounds of the parame-

ter intervals is necessary after calculation of the state enclo-

sures in Stage Two. However, for COSY VI, this intersec-

tion cannot be performed directly since the current version

of this solver does not provide a possibility to reformulate

the result of this intersection as a Taylor model without loss

of the information stored in the Taylor model before the lim-

itation. Therefore, the following comparison is restricted to

the time-invariant case.

Table 4. Comparison of the ODE solvers for
the wastewater treatment process.

COSY VI: Variable step size h ∈ [0.02 ; 100]
order (t, x0) CPU time (t = 500) break-down time

5, 5 15.52 s 5935

10, 10 162.32 s 5188

17, 5 84.45 s 6168

COSY VI: Constant step size h = 0.25
10, 10 2353.00 s ≈ 5100
VNODE: Variable step size

order CPU time (t = 500) break-down time

5 0.797 s 1800

10 0.344 s 811

17 0.469 s 543

VNODE: Constant step size h = 0.25
10 18.7 s 1939

VALENCIA-IVP: Constant step size, without consistency test

step size h CPU-time (t = 500) break-down time

0.25 67 s 885

0.025 478 s 1335

VALENCIA-IVP: Constant step size, with consistency test

0.25 5680 s > 6000

The results for the wastewater treatment process are

summarized in Tab. 4. It can be observed that for orders ≥ 5
of the series expansion in time, break-down times of at least

5, 000 s can be achieved for COSY VI with variable step

sizes h ∈ [0.02 ; 100] s. Although changes of the cho-

sen orders do not have much influence on the quality of the

state enclosures, the required computing times vary signifi-

cantly (see Tab. 4). For suitable constant step sizes, only the

computing time is increased, without much influence on the

simulation quality. For VNODE, constant step sizes lead

to tighter bounds compared to a simulation with the same

order and a variable step size. Using higher orders of the

series expansion leads to worse results because of increased

overestimation in the computation of Taylor coefficients due

to the rational terms in the ODEs.

For VALENCIA-IVP (approximate solutions calculated

by an explicit Euler method with the step sizes defined in

Tab. 4) without consistency test, break-down times are com-

parable to VNODE with variable step sizes. However, the

bounds for the rapidly changing concentration SO are worse

for VALENCIA-IVP (see Fig. 5). This shows that applica-

tion of the consistency test is almost inevitable for stiff sys-

tems. To reduce the problems caused by the stiffness of the

system, the consistency test was performed with Nc = 100,

Lc = 100, and h = 0.25. Now, VALENCIA-IVP produces

the best bounds of all selected solvers for S, X , and XSet.

The applied monotonicity test and iterative range compu-

tation are especially efficient for reduction of the depen-

dency problem for rational terms such as the Monod kinet-

ics (26) without the necessity for symbolic simplification of

the ODEs. Future optimizations of the consistency test will

aim at improved implementations (such as automatic selec-

tion of Nc and Lc) and further strategies to reduce com-

puting times, especially since the pseudo volume of the en-

closures at t = 500 could be reduced by a factor of 470
compared to the basic version of VALENCIA-IVP.

t

0 1000 2000 3000 4000 5000
0.50

0.54

0.58

0.62

S
S

(t
)

(a) Substrate concentration S.

VNODE

COSY VI

VALENCIA
(cons.)

VALENCIA
h = 0.25
VALENCIA
h = 0.025

VALENCIA
(cons.)

×10−3

6

4

2

0

S
O

(t
)

t

40001000 2000 3000 50000

(b) Oxygen concentration SO .

Figure 5. State enclosures for the wastewater
treatment process.

6 Conclusions and Outlook on Future Work

In this paper, a new consistency test for the validated

ODE solver VALENCIA-IVP was introduced. Using two

applications, it was shown that the basic version of this

solver can produce simulation results which are comparable

to the ones obtained by VNODE. For several applications,

VALENCIA-IVP needs less CPU time than COSY VI. It

was demonstrated that the new consistency test for elimina-

tion of state intervals which result from overestimation is a

promising approach for simulations of higher-dimensional

problems. The basic idea of this test can in general be ap-

plied to any other validated ODE solver. Especially, an im-

plementation in fast validated solvers such as VNODE will

be an interesting topic for future research. Additionally,

improvements of the consistency test by implicit integra-

tion techniques as well as automatic selection of the num-

ber of subintervals and the time horizon for backward inte-

gration will be considered to reduce computing time. An-

other direction for future research will be the extension of

VALENCIA-IVP towards systems of differential-algebraic

equations.

References

[1] E. Auer, A. Rauh, E. P. Hofer, and W. Luther. Validated

Modeling of Mechanical Systems with SMARTMOBILE:

Improvement of Performance by VALENCIA-IVP. In

Proc. of Dagstuhl Seminar 06021: Reliable Implementation
of Real Number Algorithms: Theory and Practice, Lecture

Notes in Computer Science, 2006. In print.
[2] C. Bendsten and O. Stauning. FADBAD, a Flexible C++

Package for Automatic Differentiation Using the Forward

and Backward Methods. Technical Report 1996-x5-94,

Technical University of Denmark, Lyngby, 1996.
[3] C. Bendsten and O. Stauning. TADIFF, a Flexible C++

Package for Automatic Differentiation Using Taylor Series.

Technical Report 1997-x5-94, Technical University of Den-

mark, Lyngby, 1997.
[4] M. Berz and K. Makino. Performance of Taylor Model

Methods for Validated Integration of ODEs. Lecture Notes
in Computer Science, 3732:65–74, 2005.

[5] O. Knüppel. PROFIL/BIAS — A Fast Interval Library.

Computing, 53:277–287, 1994.
[6] I. Krasnochtanova. Optimized Interval Algorithms for Sim-

ulation and Controller Design for Nonlinear Uncertain Sys-

tems Applied to Processes in Biological Wastewater Treat-

ment, 2005. Master Thesis, University of Ulm.
[7] W. Kühn. Rigorous Error Bounds for the Initial Value Prob-

lem Based on Defect Estimation. Technical report, 1999.

http://www.decatur.de/wolfgang/papers
/index.html.

[8] R. Lohner. Einschließung der Lösung gewöhnlicher
Anfangs- und Randwertaufgaben und Anwendungen. PhD

thesis, Universität Karlsruhe, 1988.
[9] K. Makino and M. Berz. Suppression of the Wrapping Ef-

fect by Taylor Model-Based Verified Integrators: The Single

Step. International Journal of Pure and Applied Mathemat-
ics, 2005. In print. Online.

[10] N. S. Nedialkov. The Design and Implementation of an
Object-Oriented Validated ODE Solver. Kluwer Academic

Publishers, 2002.
[11] N. S. Nedialkov, K. R. Jackson, and J. D. Pryce. An Ef-

fective High-Order Interval Method for Validating Existence

and Uniqueness of the Solution of an IVP for an ODE. Re-
liable Computing, 7:449–465, 2001.

[12] A. Rauh, M. Kletting, H. Aschemann, and E. P. Hofer. Re-

duction of Overestimation in Interval Arithmetic Simulation

of Biological Wastewater Treatment Processes. Journal of
Computational and Applied Mathematics, 199(2):207–212,

2007.
[13] A. Rauh, M. Kletting, and E. P. Hofer. Model-Based State

and Parameter Estimation for Micro-Mechatronic Systems

with Interval Bounded Uncertainties. In A. Weckenmann,

editor, CD-Proc. of 10th CIRP Intl. Conference on Computer
Aided Tolerancing, Erlangen, Germany, 2007, Reports from

the Chair Quality Management and Manufacturing Metrol-

ogy, QFM Report 16. Shaker Verlag, Aachen, 2007.

Interval Techniques for Design of Optimal and Robust Control Strategies

Andreas Rauh, Johanna Minisini, and Eberhard P. Hofer
Institute of Measurement, Control, and Microtechnology

University of Ulm
D-89069 Ulm, Germany

{Andreas.Rauh, Johanna.Minisini, EP.Hofer}@uni-ulm.de

Abstract

In this paper, an interval arithmetic optimization pro-
cedure for both discrete-time and continuous-time systems
is presented. Besides computation of control strategies for
systems with nominal parameters, robustness requirements
for systems with interval bounded uncertainties are consid-
ered. Considering these uncertainties, control laws are ob-
tained which directly take into account the influence of dis-
turbances and deviations of system parameters from their
nominal values. Compared to Bellman’s discrete dynamic
programming, errors resulting from gridding of state and
control variable intervals as well as errors due to round-
ing to nearest grid points are avoided. Furthermore, the
influence of time discretization errors is taken into account
by validated integration of continuous-time state equations.
Optimization results for a simplified model of a mechanical
positioning system with switchings between models for both
static and sliding friction demonstrate the efficiency of the
suggested approach and its applicability to processes with
state-dependent switching characteristics.

1 Introduction

In recent years, different optimization techniques for dy-

namical systems have been developed for both discrete-

time and continuous-time systems. The most important

optimization procedures for continuous-time systems de-

scribed by ordinary differential equations (ODEs) are based

on Pontryagin’s maximum principle [14] and the Hamilton-

Jacobi-Bellman equation [5, 8]. The maximum principle

leads to a boundary value problem for a set of ODEs while

the Hamilton-Jacobi-Bellman equation is a nonlinear partial

differential equation. In both cases, it is necessary to apply

numerical techniques in order to determine optimal solu-

tions for nonlinear real-world models describing technical

applications.

For discrete-time systems, Bellman’s dynamic program-

ming is the most universal approach which — at least theo-

retically — leads to globally optimal solutions [2, 3]. How-

ever, this approach suffers from the so-called curse of di-

mensionality which means that for increasing dimensions

of the state-space the computational effort grows exponen-

tially since most implementations rely on gridding of the

admissible range of both state and control variables.

Originally, this procedure has been developed for

discrete-time systems. In order to apply dynamic program-

ming techniques to nonlinear continuous-time processes,

time discretization is required. If the resulting discretization

error is neglected, often considerable deviations from the

original continuous-time systems arise. Hence, such phe-

nomena have to be taken into account during optimization.

In this contribution, interval arithmetic methods [6, 10] are

applied to enclose the arising discretization errors by guar-

anteed interval bounds. Additionally, uncertainties of sys-

tem parameters are considered simultaneously to analyze

the robustness of the solutions and to determine control

strategies which make the controlled system robust against

parameter variations.

To reduce problems caused by the curse of dimensional-

ity, intelligent strategies to search for the global optimum of

the performance index have to be applied. These strategies

include disregarding all control sequences which are either

not admissible due to violation of restrictions of the state

variables or which are not optimal with respect to the perfor-

mance index. Control sequences which are not optimal are

eliminated already during the optimization process in order

to make sure that the search for globally optimal control

strategies is only performed for control variable intervals in

which the optimum is included. This reduces the computa-

tional burden significantly but does not eliminate the curse

of dimensionality completely. In contrast to other imple-

mentations of dynamic programming, gridding is avoided.

Instead, the suggested approach leads to an adaptive refine-

ment of the control variable intervals near the optimum of

the performance index.

Intermediate solutions which are constant for several

subsequent time steps are determined to reduce the compu-

tational effort by elimination of control strategies which are

not optimal in early stages of the optimization. In the case

of multiple control variables, further suboptimal solutions

are obtained by selection of a small number of control vari-

ables for the optimization while all other control variables

are assumed to be fixed.

In Section 2, a detailed formulation of the consid-

ered optimization problems is given for discrete-time and

continuous-time systems. The recently developed interval

arithmetic optimization routine is introduced in Section 3.

In Section 4, possibilities for combination of the optimiza-

tion technique with classical controller design are discussed

to reduce the controlled systems’ sensitivity w.r.t. parameter

variations. For demonstration purposes, optimal control of a

simplified continuous-time mechanical positioning system

with state-dependent switchings between different dynam-

ical models which consider viscous friction together with

Coulomb friction [17] is discussed in Section 5. Finally, in

Section 6, an outlook on future research is given.

2 Optimal and Robust Control of Dynamical
Systems

In this Section, the problem of optimal and robust con-

trol of both continuous-time and discrete-time processes is

formulated. In both cases, transfer of the initial state vec-

tor to the desired final state vector should be performed such

that a predefined performance index is minimized by choos-

ing an admissible control strategy. In general, the two dif-

ferent problems of parameter optimization on the one hand

and structure optimization on the other hand can be distin-

guished.

In the parameter optimization problem, parameters of a

controller with a fixed structure, e.g. a P-, PI-, PID-, or

linear state controller, have to be determined. In contrast,

the result of the structure optimization problem is an op-

timal open- or closed-loop control strategy which is deter-

mined without making any assumptions about the structure

of the controller. Although the presented optimization rou-

tines can be applied to both problems, this paper focuses on

structure optimization.

2.1 Optimal Control of Discrete- and
Continuous-Time Processes

For discrete-time dynamical systems

xk+1 = gk (xk, pk, uk, k) , (1)

gk : D �→ R
nx , D ⊂ R

nx ×R
np ×R

nu ×R
1, with the state

vector xk ∈ R
nx and the vector pk ∈ R

np of system param-

eters, an initial state x0 should be transferred into a desired

final state x (kmax), such that the performance index

J =
kmax∑
k=0

gJ,k (xk, pk, uk, k) (2)

is minimized by calculation of an admissible control se-

quence uk ∈ R
nu . Analogously, continuous-time processes

described by the state equations

ẋ (t) = f (x (t) , p (t) , u (t) , t) , (3)

f : D �→ R
nx , D ⊂ R

nx ×R
np ×R

nu ×R
1, with the state

vector x (t) ∈ R
nx and the vector p (t) ∈ R

np of system

parameters can be considered. Again, an initial state x0

should be transferred into a desired final state x (T), such

that the performance index

J =fT (x (T) , p (T) , T)

+

T∫
0

f0 (x (t) , p (t) , u (t) , t) dt
(4)

is minimized. For that purpose, the control law u (t) ∈ R
nu

has to be determined.

Both optimization problems are summarized in the

Figs. 1 and 2, where the time horizon is denoted by k ∈
[0 ; kmax] in the discrete-time case and by t ∈ [0 ; T] in

the continuous-time case. Note that the terminal cost func-

tion fT (x (T) , p (T) , T) from definition (4) is included in

the term gJ,kmax in (2).

In addition to exactly known initial and final states, also

free boundary conditions or states from a certain predefined

region of initial or final states can be investigated. In many

practical situations, uncertainties of the system parameters

have to be taken into account during the optimization pro-

cess. If guaranteed bounds for these values are known, the

uncertain system parameters can be described by the inter-

vals pk ∈
[
p

k
; pk

]
and p (t) ∈ [

p (t) ; p (t)
]
, resp., which

represent the maximum possible tolerances. Furthermore,

parameters which are not constant over the complete time

horizon of the optimization process have to be modeled by

additional discrete-time state equations

pk+1 = pk + Δpk (5)

with the bounded variation rates

Δpk ∈
[
Δp

k
; Δpk

]
(6)

or by additional ordinary differential equations

ṗ (t) = Δp (t) (7)

with

Δp (t) ∈ [
Δp (t) ; Δp (t)

]
(8)

x (kmax) = xfx (k = 0) = x0

xk+1 = gk
(
xk, pk, uk, k

)

J =
kmax∑
k=0

gJ,k
(
xk, pk, uk, k

) !
= min

Figure 1. Optimization problem for discrete-time dynamical systems.

ẋ (t) = f (x (t) , p (t) , u (t) , t)

x (T) = xTx (0) = x0

J = fT (x (T) , p (T) , T) +
T∫
0

f0 (x (t) , p (t) , u (t) , t) dt
!
= min

Figure 2. Optimization problem for continuous-time dynamical systems.

in the case of continuous-time problems.

During the optimization procedure, limitations of all

control variables uk and u (t) have to be considered. In

this paper, it is assumed, that the vector of control vari-

ables is bounded by the intervals uk ∈ [uk ; uk] and

u (t) ∈ [u (t) ; u (t)], resp. These bounds do not need to

be constant over the prescribed time horizon.

2.2 Robustness Specifications

As already pointed out, one of the main properties of

the presented optimization procedure is that it can directly

deal with interval uncertainties of the system parameters.

Hence, robustness of the controlled system w.r.t. parameter

variations as well as optimality of a control sequence under

consideration of parameter uncertainties have to be defined.

Robustness specifications are assumed to be given by

worst-case bounds of all system states which must not be

violated during transfer of the initial state into the desired

final state using a control sequence which is completely in-

side its bounds for all points of time [16]. Furthermore,

only the definition of either free final states or bounded re-

gions of admissible final states makes sense in the case of

uncertain parameters, since, in general, one common con-

trol sequence for all possible values of the uncertain param-

eters will not be able to eliminate the influence of parameter

uncertainties completely.

In the case of simultaneous consideration of the above-

mentioned bounds of the state variables and an optimiza-

tion criterion as defined in (2) and (4), a control sequence

is said to be optimal if it does not violate any of the speci-

fied bounds; at the same time the optimal control sequence

must lead to the smallest possible upper bound of the per-

formance index if the maximum influence of the uncertain-

ties is investigated.

The interval arithmetic optimization algorithm presented

in the following aims at calculating control sequences

within the prescribed bounds of the control variable inter-

vals. The resulting trajectories of the state variables have to

be included completely in the regions of admissible states

for each possible parameter value.

3 Interval Arithmetic Optimization Algo-
rithm

The interval arithmetic optimization algorithm presented

in this Section is an extension of a procedure presented

by the authors in [15]. In addition to the original ver-

sion, the new version can not only deal with discrete-

time systems with nominal parameters; both discrete- and

continuous-time dynamical models including parameter un-

certainties as well as limitations of state variables represent-

ing time-domain robustness specifications can be handled.

For continuous-time processes, a piecewise constant con-

trol law with a predefined sampling time, which is indepen-

dent of the step sizes used by the underlying validated ODE

solvers, is computed.

Step OPT 1 Based on evaluation from the final to the ini-

tial point of time, i.e., from k = kmax to k = 0, or t = T
to t = 0, resp., enclosures of all states are determined by

backward evaluation of the state equations.

For discrete-time systems, the state equation (1) is solved

for the state xk under the assumption that an interval enclo-

sure for xk+1 is known. If an analytical solution

xk = g̃k (xk+1, pk, uk, k) (9)

does not exist, interval Newton methods are used instead.

Analogously, for continuous-time systems backward inte-

gration of the state equations

ẋ (t) = f (x (t) , p (t) , u (t) , t) (10)

is performed for given x (T) until t = 0 is reached. In both

cases, the computation is performed for the known interval

bounds of the uncertain parameters and the limited range of

the control variable intervals.

Simultaneously, interval enclosures of the corresponding

performance indices

Jk = Jk+1 + gJ,k (xk, pk, uk, k)

= Jk+1 + gJ,k

(
f̃k (xk+1, pk, uk, k) , pk, uk, k

) (11)

and

Jt =fT (x (T) , p (T) , T)

+

T∫
t

f0 (x (τ) , p (τ) , u (τ) , τ) dτ
(12)

are determined, where the terminal cost functions are de-

noted by Jkmax = gJ,kmax (xkmax , pkmax , ukmax , kmax)
and JT = fT (x (T) , p (T) , T). The costs for transfer from

the time step k to kmax (or from t to T) are denoted by Jk

(or Jt). The general idea of the presented optimization al-

gorithm is the minimization of the performance index J0

by repeated splitting of the control variable intervals. This

procedure leads to an approximation of the optimal control

sequences {u∗
k} and u∗ (t) as well as the optimal trajecto-

ries {x∗
k} and x∗ (t) for all k ∈ [0 ; kmax] and t ∈ [0 ; T].

Using interval techniques for backward evaluation of the

state equations, validated enclosures of the regions of attrac-

tion are calculated which can be transferred into the desired

final state under consideration of all possible values of the

uncertain system parameters. Hence, the intervals [Jk] and

[Jt] represent worst-case bounds of the range of the perfor-

mance index for all control variables from the admissible

range [u ; u]. Thus, the influence of interval uncertainties

is directly expressed in terms of the maximum variations

of the system states and the performance index. Backward

evaluation of the state equations is omitted if the final states

are unbounded.

Step OPT 2 Afterwards, the state equations are evaluated

from the initial to the final point of time. Together with

the results of Step OPT 1, candidates for control sequences

are eliminated which do not allow to transfer a given ini-

tial state x0 or region of initial states [x0] into the desired

final state or region of final states. Additionally, control

sequences are eliminated which are not optimal after com-

parison of the performance index intervals of several candi-

dates.

Step OPT 3 The interval widths for {[xk]} and [x (t)] as

well as {[uk]} and [u (t)] of candidates for optimal control

strategies are reduced by repeated forward and backward

evaluations in Steps OPT 1 and OPT 2 as long as further

improvement is possible.

Step OPT 4 During the global optimization procedure

two strategies have proven successful. First, sequences

{[uk]}sup or {[u (t)]}sup are selected such that the corre-

sponding supremum of the performance index is smaller

than the supremum of all other candidates. This leads to

a fast reduction of the upper bound of the maximum neces-

sary costs. For both discrete- and continuous-time systems,

the control variable interval is split at the point of time k̃
according to

k̃ = arg max
j=0,...,kmax−1

{
diam

([
∂J

∂uj

])
· diam ([uj])

}

(13)

with diam ([uj]) = uj − uj , for which the largest reduc-

tion of the diameter of the performance index interval is

expected. For continuous-time systems with piecewise con-

stant control strategies u (tk) equation (13) is evaluated af-

ter discretization of the state equations with the same step

size that is used for validated integration. Second, the se-

quences {[uk]}inf or {[u (t)]}inf with the smallest infimum

of the performance index are selected to improve the lower

bound of the necessary costs. Here, k̃ is chosen again as

in (13). Suboptimal control laws are obtained by perform-

ing the optimization under the assumption of control strate-

gies which are constant for several subsequent time steps.

The optimization is stopped if the diameter of the

performance index interval of the best known approxi-

mation of the optimal control sequence is smaller than a

user-defined value and, at the same time, if the distance

of the performance index from the estimate of its global

infimum falls below another user-defined value.

Step OPT 5 Output of the best known approximation

for the optimal control sequences {u∗
k} and u∗ (t). Note

that this approximation of the optimal control sequence is

not ensured to be globally optimal. However, the results

of the previous steps provide guaranteed lower and upper

bounds of the costs which are necessary to perform the

control task. By choosing appropriate stopping criteria for

the optimization process, the user can make sure that the

deviation between the approximation of the optimal control

strategy and the global infimum of the performance index

(assuming piecewise constant control strategies in both

cases) is smaller that a prescribed value.

For the purpose of interval evaluation of discrete-time
systems, recursive interval evaluation of the state equa-

tions, global optimization techniques, as well as consis-

tency tests and state space transformations aiming at the

reduction of overestimation are used. For continuous-time
systems, arbitrary validated ODE solvers such as VNODE

(using Taylor series expansions of the solution of an initial

value problem IVP based on higher-order time derivatives

of the ODE) [11, 12], COSY VI (Taylor model based solver

with additional series expansion in initial states) [4, 9],

or VALENCIA-IVP [1] can be applied. Compared to the

discrete-time case, guaranteed bounds for discretization er-

rors determined by ODE solvers which rely on time dis-

cretization only represent an additional uncertain parameter

in the optimization process.

4 Combination with Classical Controller De-
sign

As it will be shown in the following application, closed-

loop controllers can be applied successfully to reduce the in-

fluence of parameter variations on a controlled system’s per-

formance. In general, such controllers can be parameterized

with the help of the previously described algorithm. For a

given controller structure, either constant or time-varying

controller parameters can be computed.

5 Application: Mechanical Positioning Sys-
tem with Friction

5.1 Modeling and Simulation of Dynam-
ical Systems with State-Dependent
Switching Characteristics

In this Section, the proposed optimization technique is

applied to a system with state-dependent switchings be-

tween different dynamical models. This system represents

a simplified model of a mechanical positioning unit with a

sliding mass m as well as the given initial position x1 (0) =
0 and given initial velocity x2 (0) = 0. The state-dependent

switching characteristic reflects the different dynamical be-

havior of the system in static and sliding friction. During the

optimization, an optimal accelerating force u (t) = Fa (t)
should be determined such that the region of admissible fi-

nal states [x1 (T)] = [0.9 ; 1.1], [x2 (T)] = [−0.1 ; 0.1]
is reached for T = 5 for all uncertain parameters of the

friction characteristic Ff (x2).
According to [17], where a general simulation procedure

for systems with state-dependent switchings has been intro-

duced, the positioning system is described by

ẋ (t) =
[
0 1
0 0

]
x (t) +

[
0

1
m (Fa (t) − Ff (x2))

]
(14)

with the state vector x =
[
x1 x2

]T
. The friction char-

acteristic Ff (x2) is modeled by three discrete model states

S = {S1, S2, S3}, which are

• sliding friction for motion in “negative” (backward) di-

rection (= S1),

• static friction (= S2), and

• sliding friction for motion in “positive” (forward) di-

rection (= S3).

In Fig. 3, the influence of interval parameters for the

static friction coefficient [Fs] :=
[
Fs ; Fs

]
as well as the

sliding friction coefficient [μ] :=
[
μ ; μ

]
is depicted. The

resulting sliding friction force is given by

Ff (x2) =
{ − [Fs] + [μ] · x2 for S1 = true

+ [Fs] + [μ] · x2 for S3 = true
(15)

and the static friction force by

Ff (x2) ∈ [Fmax
s] :=

[−Fs ; Fs

]
for S2 = true .

(16)

μ = μ

μ = μ

sliding friction for motion

in positive direction

sliding friction for motion

in negative direction

Ff (x2)

x2

[
F s ; F s

]

Ff (x2) = Fs + μ · x2

Ff (x2) = −Fs + μ · x2

[Fmax
s] =

[−F s ; F s

]static friction

Figure 3. Friction characteristic with uncer-
tain sliding friction coefficient [μ] and uncer-
tain static friction coefficient [Fs].

The state transition diagram in Fig. 4 displays the three

model states together with the conditions for all possible

transitions between these states. In the case of parameter

uncertainties, several states S can be active simultaneously.

The transition conditions T j
i from state Si to state Sj are ex-

pressed in terms of the state variables x1 and x2, the system

parameters, and the control variable. In the transition dia-

gram in Fig. 4, the union operator for n-dimensional inter-

val vectors [v] and [w] is defined component-wise according

to

[v] ∪ [w] = [min {v, w} ; max {v, w}] . (17)

sliding friction

motion”
“forward

ẋ2 (t) = Fa (t) − Ff (x2)
ẋ1 (t) = x2 (t)

ẋ2 (t) = 0
ẋ1 (t) = 0

ẋ2 (t) = Fa (t) − Ff (x2)
ẋ1 (t) = x2 (t)

x2 = 0

(
x2 > 0

) |((
Fa ≥ Fs

)
&

(
x2 = 0

))

((
inf

(
[Fa]

) ≤ − inf
(
[Fs]

))
&

(
inf

(
[x2]

)
< 0

) ∣∣∣
(
inf

(
[x2]

)
= 0

))
((

sup
(
[Fa]

) ≥ inf
(
[Fs]

))
&(

inf
(
[x2]

)
= 0

))

(
sup

(
[x2]

)
> 0

) ∣∣∣

((
Fa ≤ −Fs

)
&

(
x2 = 0

))(
x2 < 0

) |

(
[x2] ∩ 0
= ∅)

(
[Fa] ∩ [Fmax

s]
= ∅)&(
[Fa] ∩ [Fmax

s]
= ∅)&(
[x2] ∩ 0
= ∅)

sliding friction

motion”
“backward

no motion

static friction

(
sup

(
[Fa]

) ≥ inf
(
[Fs]

))
&

(
[x2] ∩ 0
= ∅)

(
inf

(
[Fa]

) ≤ − inf
(
[Fs]

))
&

(
[x2] ∩ 0
= ∅)

inf
(
[Fa]

) ≤ − inf
(
[Fs]

)
sup

(
[Fa]

) ≥ inf
(
[Fs]

)

[Fa] ∩ [Fmax
s]
= ∅

Figure 4. State-dependent switching model of friction characteristic (interval implementation).

Analogously, the intersection operator is defined as

[v] ∩ [w] =

⎧⎪⎪⎨
⎪⎪⎩

[max {v, w} ; min {v, w}]
if max {vi, wi} ≤ min {vi, wi}

∀i = 1, . . . , n
∅ otherwise .

(18)

As an example, the highlighted transition condition

T 2
2 = [Fa] ∩ [Fmax

s]
= ∅ (19)

in Fig. 4 indicates that the system remains in static friction

if |Fa| ≤ F s.

In the following, an extension of a Taylor series based

integration algorithm is described which allows for compu-

tation of validated enclosures of all reachable states in the

case of state-dependent switchings by detecting all points of

time at which transition conditions are activated or at which

one of the discrete model states is deactivated. Note that

the following procedure can also be applied to any other

validated ODE solver if appropriate adjustments are made.

For further information about interval methods for the com-

putation of guaranteed state enclosures for dynamical sys-

tems with state-dependent switchings, the reader is referred

to [13, 18] and the references therein.

Step SIM 1 A bounding box [Ba,k] of all reachable states

in the time interval [tk ; tk+1] is calculated by a Picard it-

eration for the state equation fa (x (t) , p, u (t) , t) which is

the union of all models which are active at t = tk, i.e.,

Ffa
⊇

⋃
i∈Ia

FfSi
, (20)

where

Ia =
{
i
∣∣ Si = true

}
for t = tk . (21)

In (20), Ffa and FfSi
represent the exact value sets

Ffa
=

{
y
∣∣y = fa ([x (tk)] , [p] , [u (tk)] , tk)

}
(22)

and

FfSi
=

{
y
∣∣y = fSi ([x (tk)] , [p] , [u (tk)] , tk)

}
(23)

of fa and fSi
under consideration of all interval arguments.

The subscript a indicates that the state equation consists of

the union of all active models.

Step SIM 2 If an additional transition condition is acti-

vated for one of the active models Si, i ∈ Ia, the bounding

box [Ba,k] in Step SIM 1 has to be re-computed. I.e., if

Ĩa
= Ia, all additionally activated models have to be taken

into account, where

Ĩa = Ia ∪
{

j
∣∣ (

T j
i ([Ba,k] , u ([tk,k+1])) = true

)

∩
(
i ∈ Ia

)}
.

(24)

Then, the modified state equation fa (x (t) , p, u (t) , t) is

determined such that

Ffa
⊇

⋃
i∈Ĩa

FfSi
, (25)

with

Ffa =
{
y
∣∣y = fa ([Ba,k] , [p] , u ([tk,k+1]) , [tk,k+1])

}
,

FfSi
=

{
y
∣∣y = fSi

([Ba,k] , [p] , u ([tk,k+1]) , [tk,k+1])
}

,

and

[tk,k+1] := [tk ; tk+1] .

If Ĩa = Ia in (24), evaluation is continued with Step SIM 3.

Step SIM 3 Interval enclosures of the state vector

[xk+1] at tk+1 are computed by validated integration of

fa (x (t) , p, u (t) , t) as defined in Step SIM 2. In Tay-

lor series based methods, the analytical expression for

fa (x (t) , p, u (t) , t) is also used to compute the required

Taylor coefficients, see also [17].

Step SIM 4 All model states have to be deactivated which

can no longer be active at tk+1. Afterwards the simula-

tion is continued with Step SIM 1 for the next time interval

[tk+1,k+2] := [tk+1 ; tk+2].

5.2 Optimization Results

In this Subsection, optimization of the dynamical sys-

tem (14) is performed under consideration of the bounds

u(t) = Fa (t) ∈ [−1 ; 1] (26)

of the control variable. A piecewise constant control strat-

egy u (t) = const. for t ∈ ΔT · [(k − 1) ; k] is assumed,

where T = 5.0, ΔT = 0.1, and k = 1, . . . , 50 are given.

The performance index is defined as

J =

tf∫
0

(
(x1 (t) − 1)2 + x2 (t)2 + u (t)2

)
dt

+ 100ΔT

kmax∑
k=1

(uk − uk−1)
2

.

(27)

The optimization routine presented in this paper is ap-

plied to three different problems which are depicted in

the Figs. 5–7. In all three cases, the dynamical sys-

tem model (14) with the interval parameters Fs ∈
[0.015 ; 0.050] and μ ∈ [0.001 ; 0.010] is considered.

First, the optimization is performed for the nominal sys-

tem parameters F s and μ. The resulting time response for

x1 (t) and x2 (t) is denoted by case (A). Second, the re-

sulting control sequence is applied to the uncertain system

model leading to the time responses denoted by case (B).
The corresponding upper bound of the performance index

is given by J ≤ 5.37. Third, the optimization is performed

directly for the uncertain parameters (case (C)). In this case,

the resulting upper bound of the performance index is J ≤
7.61. Due to the direct consideration of the uncertainties in

the optimization procedure, time responses for both state

variables are obtained which are overlapping completely

with the desired region of admissible final states given by

[x1 (T)] = [0.9 ; 1.1] and [x2 (T)] = [−0.1 ; 0.1].

fo
rc

e
F

a

0
t

2 3 41 5

1.0

0.5

−0.5

−1.0

0.0

with uncertainty

nominal case

Figure 5. Optimized input variable (accelerat-
ing force Fa).

p
o

si
ti

o
n

x
1

0
0

t
2 3 41 5

0.5

1.0

1.5

0.9

1.1

case (A)

case (B)

case (C)

Figure 6. Resulting position x1.

v
el

o
ci

ty
x

2

case (A)

case (B)

case (C)

0
t

2 3 41 5

0.5

1.0

0.0

−0.5

0.1

−0.1

Figure 7. Resulting velocity x2.

In the cases (A) and (C), the optimization has been per-

formed with up to 20,000 evaluations of the set of state

equations for the complete time horizon using a prototyp-

ical MATLAB implementation relying on the interval arith-

metic toolbox INTLAB [19, 20]. In order to reduce the com-

puting time, the evaluation of the state equations has been

vectorized such that they are evaluated for up to 20 different

control sequences simultaneously.

5.3 Extension by State Controller

Since in the previously discussed cases, it is not pos-

sible to find one common control strategy for all possi-

ble system parameters such that the intervals of the fi-

nal position and final velocity are completely included in

[x1 (T)] = [0.9 ; 1.1] and [x2 (T)] = [−0.1 ; 0.1], an ex-

tension of the system by a closed-loop state controller is

investigated. The feedback gain K of the linear state con-

troller is determined by pole placement λ1 = λ2 = −1
using Ackermann’s formula for the nominal system param-

eters which leads to K =
[
1 1.999

]
. According to the

block diagram in Fig. 8, the resulting accelerating force is

defined as

u (t) = K · (xd (t) − x (t)) + uopt (t) , (28)

where uopt is the result of the optimization for nominal sys-

tem parameters. The reference trajectory xd (t) corresponds

to the result of the optimization for nominal parameters.

positioning
systemK

−
u

uopt

+

+

[
x1

x2

]
d

[
x1

x2

]

Figure 8. Block diagram for extension by lin-
ear state feedback controller.

As it is shown in the Figs. 10 and 11, the modified con-

trol law now leads to trajectories which are completely in-

cluded in the region of admissible final states. This property

has been proven by the extension of the Taylor series based

ODE solver summarized in Subsection 5.1.

6 Conclusions and Outlook on Future Work

In this paper, an interval arithmetic optimization al-

gorithm which is applicable to both discrete-time and

fo
rc

e
F

a

uopt: open-loop

K · (xd − x)

0
t

2 3 41 5

1.0

0.5

0.0

−0.5

−1.0

Figure 9. Accelerating force with state con-
troller.

p
o

si
ti

o
n

x
1

0
0

t
2 3 41 5

0.5

1.0

1.5

0.9

1.1

nominal case

with state controller

without state controller

Figure 10. Uncertainty of position x1 with
state controller.

v
el

o
ci

ty
x

2

nominal case

without state controller

with state controller

0
t

2 3 41 5

0.5

1.0

0.0

−0.5

0.1

−0.1

Figure 11. Uncertainty of velocity x2 with
state controller.

continuous-time dynamical systems has been presented.

Furthermore, it has been applied to a simplified model of

a mechanical positioning system in which state-dependent

switching characteristics are included. For validated simu-

lation of such systems, an extension of a Taylor series based

validated integration algorithm is used in which the points

of time are detected at which transition conditions between

the discrete model states are activated or at which one of

these model states becomes invalid.

In future research, the optimization routine will be

extended by suitable approximations of the solution of

continuous-time optimal control problems by application of

Pontryagin’s maximum principle to approximations of the

considered nonlinear dynamical systems. The approxima-

tion techniques which will be applied are based on Car-

leman linearization which approximates nonlinear systems

by higher-dimensional (bi-)linear models [7]. The goal of

these extension is to speed up the optimization process and

to reduce the computational burden in the case of high-

dimensional real-world processes. Furthermore, the re-

cently developed validated ODE solver VALENCIA-IVP

will be included in the optimization routines presented in

this paper in order to benefit from its main advantage which

is the computation of tight state enclosures of uncertain

continuous-time systems with small computational effort.

References

[1] E. Auer, A. Rauh, E. P. Hofer, and W. Luther. Vali-

dated Modeling of Mechanical Systems with SMARTMO-

BILE: Improvement of Performance by VALENCIA-IVP.

In Proc. of Dagstuhl Seminar 06021: Reliable Implementa-
tion of Real Number Algorithms: Theory and Practice, Lec-

ture Notes in Computer Science, 2006. In print.

[2] R. Bellman. Dynamic Programming. Princeton University

Press, Princeton, N. J. , 1957.

[3] R. Bellman, editor. Mathematical Optimization Techniques.

University of California Press, Berkeley, California, 1963.

[4] M. Berz and K. Makino. Verified Integration of ODEs and

Flows Using Differential Algebraic Methods on High-order

Taylor Models. Reliable Computing, 4:361–369, 1998.

[5] A. A. Feldbaum. Optimal Control Systems. Academic Press,

New York, 1965.

[6] L. Jaulin, M. Kieffer, O. Didrit, and É. Walter. Applied In-
terval Analysis. Springer, London, 2001.

[7] K. Kowalski and W.-H. Steeb. Nonlinear Dynamical Sys-
tems and Carleman Linearization. World Scientific, Singa-

pore, 1991.
[8] G. Leitmann. An Introduction to Optimal Control. McGraw-

Hill, New York, 1966.
[9] K. Makino. Rigorous Analysis of Nonlinear Motion in Par-

ticle Accelerators. PhD thesis, Michigan State University,

1998.
[10] R. Moore. Methods and Applications of Interval Analysis.

SIAM, Philadelphia, 1979.
[11] N. S. Nedialkov. Computing Rigorous Bounds on the Solu-

tion of an Initial Value Problem for an Ordinary Differential
Equation. PhD thesis, Graduate Department of Computer

Science, University of Toronto, 1999.
[12] N. S. Nedialkov. The Design and Implementation of an

Object-Oriented Validated ODE Solver. Kluwer Academic

Publishers, 2002.
[13] N. S. Nedialkov and M. v. Mohrenschildt. Rigorous Sim-

ulation of Hybrid Dynamic Systems with Symbolic and In-

terval Methods. In Proc. of American Control Conference
ACC, pages 140–147, Anchorage, USA, 2002.

[14] L. S. Pontrjagin, V. G. Boltjanskij, R. V. Gamkrelidze, and

E. F. Misčenko. The Mathematical Theory of Optimal Pro-
cesses. Interscience Publishers, New York, 1962.

[15] A. Rauh and E. P. Hofer. Interval Arithmetic Optimiza-

tion Techniques for Uncertain Discrete-Time Systems. In

E. P. Hofer and E. Reithmeier, editors, Proc. of 13th Inter-
national Workshop on Dynamics and Control, Modeling and

Control of Autonomous Decision Support Based Systems,

pages 141–148, Wiesensteig, Germany, 2005. Shaker Ver-

lag, Aachen.
[16] A. Rauh, M. Kletting, H. Aschemann, and E. P. Hofer. Ro-

bust Controller Design for Bounded State and Control Vari-

ables and Uncertain Parameters Using Interval Methods. In

Proc. of International Conference on Control and Automa-
tion ICCA’05, pages 777–782, Budapest, Hungary, 2005.

[17] A. Rauh, M. Kletting, H. Aschemann, and E. P. Hofer. In-

terval Methods for Simulation of Dynamical Systems with

State-Dependent Switching Characteristics. In Proc. of
IEEE International Conference on Control Applications
CCA 2006, pages 355–360, Munich, Germany, 2006.

[18] R. Rihm. Über Einschließungsverfahren für gewöhnliche
Anfangswertprobleme und ihre Anwendung auf Differential-
gleichungen mit unstetiger rechter Seite (in German). PhD

thesis, University of Karlsruhe, Germany, 1993.
[19] S. M. Rump. IntLab (Version 5.3). http://www.ti3.

tu-harburg.de/˜rump/intlab/.
[20] S. M. Rump. INTLAB — INTerval LABoratory. In

T. Csendes, editor, Developments in Reliable Computing,

pages 77–104. Kluver Academic Publishers, 1999.

Deterministic Global Optimization for Dynamic Systems Using Interval Analysis

Youdong Lin and Mark A. Stadtherr
Department of Chemical and Biomolecular Engineering
University of Notre Dame, Notre Dame, IN 46556, USA

ylin@nd.edu, markst@nd.edu

Abstract

A new approach is described for the deterministic global
optimization of dynamic systems, including problems in pa-
rameter estimation and optimal control. The method is
based on interval analysis and Taylor models, and employs
a sequential approach using a type of branch-and-reduce
strategy. A key feature of the method is the use of a new vali-
dated solver for parametric ODEs, which is used to produce
guaranteed bounds on the solutions of dynamic systems
with interval-valued parameters. This is combined with a
new technique for domain reduction based on using Taylor
models in an efficient constraint propagation scheme. The
result is that problems can be solved to global optimality
with both mathematical and computational certainty. Ex-
amples are presented to demonstrate the computational ef-
ficiency of the method.

1. Introduction

There are many applications of optimization for dynamic

systems, including parameter estimation from time series

data, determination of optimal operating profiles for batch

and semi-batch processes, optimal start-up, shut-down, and

switching of continuous system, etc. To address such prob-

lems, one approach is to discretize any control profiles that

appear as decision variables. There are then basically two

types of methods available: (a) the complete discretization

or simultaneous approach, in which both state variables and

control profiles are discretized, and (b) the control parame-

terization or sequential approach, in which only the control

profiles are discretized. In this paper, only the sequential ap-

proach is considered. Since these problems are often non-

convex and thus may exhibit multiple local solutions, the

classical techniques based on solving the necessary condi-

tions for a local minimum may fail to determine the global

optimum. This is true even for a rather simple temperature

control problem with a batch reactor [10]. Therefore, there

is a need to develop global optimization algorithms which

can rigorously guarantee optimal performance.

The deterministic global optimization of dynamic sys-

tems has been a topic of significant recent interest. Espos-

ito and Floudas [5, 6] used the αBB approach for address-

ing this problem. In this method convex underestimating

functions are used in connection with a branch-and-bound

framework. A theoretical guarantee of attaining an ε-global

solution is offered as long as rigorous underestimators are

used, and this requires that sufficiently large values of α
be used. However, the determination of proper values of

α depends on the Hessian of the function being underesti-

mated, and, when the sequential approach is used, this ma-

trix is not available in explicit functional form. Thus, Es-

posito and Floudas [5, 6] did not use rigorous values of α
in their implementation of the sequential approach, and so

did not obtain a theoretical guarantee of global optimality.

This issue is discussed in more detail by Papamichail and

Adjiman [18]. Recently, alternative approaches have been

given by Chachuat and Latifi [3] and by Papamichail and

Adjiman [18, 19] that provide a theoretical guarantee of ε-

global optimality. However, this is achieved at a high com-

putational cost. Singer and Barton [21] have recently de-

scribed a branch-and-bound approach for determining an ε-

global optimum with significantly less computational effort.

In this method, convex underestimators and concave over-

estimators are used to construct two bounding initial value

problems (IVPs), which are then solved to obtain lower and

upper bounds on the trajectories of the state variables [20].

However, as implemented, the bounding IVPs are solved

using standard numerical methods that do not provide guar-

anteed error estimates. Thus, from a computational stand-

point, this approach cannot be regarded either as providing

rigorously guaranteed results.

We present here a new approach for the deterministic

global optimization of dynamic systems. This method is

based on interval analysis and Taylor models and employs a

type of sequential approach. A key feature of the method is

the use of a new validated solver [8] for parametric ODEs,

which is used to produce guaranteed bounds on the so-

lutions of dynamic systems with interval-valued parame-

ters. This is combined with a new technique for domain

reduction based on using Taylor models in an efficient con-

straint propagation scheme. The result is that problems can

be solved to global optimality with both mathematical and

computational certainty.

The remainder of this paper is organized as follows. In

Section 2 we present the mathematical formulation of the

problem to be solved. Section 3 provides background on

Taylor models. In Section 4 we review the new validated

method [8] for parametric ODEs. Section 5 will then out-

line the algorithm for deterministic global optimization of

dynamic systems. Finally, in Section 6, we present the re-

sults of some numerical experiments that demonstrate the

effectiveness of the approach presented.

2. Problem statement

In this section we give the mathematical formulation of

the nonlinear dynamic optimization problem to be solved.

Assume the system is described by the nonlinear ODE

model ẋ = f(x, θ). Here x is the vector of state vari-

ables (length n) and θ is a vector of adjustable parameters

(length p), which may be a parameterization of a control

profile θ(t). The model is given as an autonomous system;

a non-autonomous system can easily be converted into au-

tonomous form by treating the independent variable (t) as

an additional state variable with derivative equal to 1. The

objective function φ is expressed in terms of the adjustable

parameters and the values of the states at discrete points tμ,

μ = 0, 1, . . . , r. That is, φ = φ [xμ(θ), θ; μ = 0, 1, . . . , r],
where xμ(θ) = x(tμ, θ). If an integral appears in the ob-

jective function, it can be eliminated by introducing an ap-

propriate quadrature variable.

The optimization problem is then stated as

min
θ,xμ

φ [xμ(θ), θ; μ = 0, 1, . . . , r] (1)

s.t. ẋ = f(x, θ)
x0 = x0(θ)
t ∈ [t0, tr]
θ ∈ Θ.

Here Θ is an interval vector that provides upper and

lower parameter bounds (uppercase will be used to denote

interval-valued quantities, unless noted otherwise). We as-

sume that f is (k − 1)-times continuously differentiable

with respect to the state variables x, and (q + 1)-times

continuously differentiable with respect to the parameters

θ. We also assume that φ is (q + 1)-times continuously

differentiable with respect to the parameters θ. Here k
is the order of the truncation error in the interval Taylor

series (ITS) method to be used in the integration proce-

dure (to be discussed in Section 4), and q is the order of

the Taylor model to be used to represent parameter depen-

dence (to be discussed in Section 3). When a typical se-

quential approach is used, an ODE solver is applied to the

constraints with a given set of parameter values, as deter-

mined by the optimization routine. This effectively elimi-

nates xμ, μ = 0, 1, . . . , r, and leaves a bound-constrained

minimization in the adjustable parameters θ only.

The proposed method can be extended easily to opti-

mization problems with general state path constraints, and

more general equality or inequality constraints on param-

eters. This is done by adapting the constraint propagation

procedure discussed in Section 5.1 to handle the additional

constraints.

3. Taylor models

Makino and Berz have described a remainder differential

algebra (RDA) approach that uses Taylor models for bound-

ing function ranges and control of the dependency problem

of interval arithmetic [11]. In this method, a function is rep-

resented using a model consisting of a Taylor polynomial

and an interval remainder bound.

One way of forming a Taylor model of a function is by

using a truncated Taylor series. Consider a function f : x ∈
X ⊂ R

m → R that is (q + 1) times partially differentiable

on X and let x0 ∈ X . The Taylor theorem states that for

each x ∈ X , there exists a ζ ∈ R with 0 < ζ < 1 such that

f(x) =
q∑

i=0

1
i!

[(x − x0) · �]i f (x0) (2)

+
1

(q + 1)!
[(x − x0) · �]q+1

f [x0 + (x − x0)ζ] ,

where the partial differential operator [g · �]k is

[g ·�]k =
∑

j1+···+jm=k
0≤j1,··· ,jm≤k

k!
j1! · · · jm!

gj1
1 · · · gjm

m

∂k

∂xj1
1 · · · ∂xjm

m

.

(3)

The last (remainder) term in Eq. (2) can be quantitatively

bounded over 0 < ζ < 1 and x ∈ X using interval

arithmetic or other methods to obtain an interval remain-

der bound Rf . The summation in Eq. (2) is a q-th order

polynomial (truncated Taylor series) in (x − x0) which we

denote by pf (x − x0). A q-th order Taylor model Tf for

f(x) then consists of the polynomial pf and the interval re-

mainder bound Rf and is denoted by Tf = (pf , Rf). Note

that f ∈ Tf for x ∈ X and thus Tf encloses the range of f
over X .

In practice, it is more useful to compute Taylor models

of functions by performing Taylor model operations. Arith-

metic operations with Taylor models can be done using the

RDA operations described by Makino and Berz [11, 12],

which include addition, multiplication, reciprocal, and in-

trinsic functions. Therefore, it is possible to compute a Tay-

lor model for any function representable in a computer envi-

ronment by simple operator overloading through RDA oper-

ations. In performing RDA operations, only the coefficients

of pf are stored and operated on. However, rounding er-

rors are bounded and added to Rf . It has been shown that,

compared to other rigorous bounding methods, the Taylor

model can be used to obtain sharper bounds for modest to

complicated functional dependencies [11, 17].

An interval bound on a Taylor model T = (p, R) over

X is denoted by B(T), and is found by determining an in-

terval bound B(p) on the polynomial part p and then adding

the remainder bound; that is B(T) = B(p) + R. The range

bounding of the polynomials B(p) = P (X − x0) is an

important issue, which directly affects the performance of

Taylor model methods. Unfortunately, exact range bound-

ing of an interval polynomial is NP hard, and direct evalua-

tion using interval arithmetic is very inefficient, often yield-

ing only loose bounds. Thus, various bounding schemes

[13, 17] have been used, mostly focused on exact bound-

ing of the dominant parts of P , i.e., the first- and second-

order terms. However, exact bounding of a general interval

quadratic is also computationally expensive (in the worst

case, exponential in the number of variables m). Thus, we

have adopted here a very simple compromise approach, in

which only the first-order and the diagonal second-order

terms are considered for exact bounding, and other terms

are evaluated directly. That is,

B(p) =
m∑

i=1

[
ai (Xi − xi0)

2 + bi(Xi − xi0)
]

+ Q, (4)

where Q is the interval bound of all other terms, and is ob-

tained by direct evaluation with interval arithmetic. In Eq.

(4), since Xi occurs twice, there exists a dependency prob-

lem. For |ai| ≥ ω, where ω is a small positive number, we

can rearrange Eq. (4) such that each Xi occurs only once;

that is,

B(p) =
m∑

i=1

[
ai

(
Xi − xi0 +

bi

2ai

)2

− b2
i

4ai

]
+ Q. (5)

In this way, the dependence problem in bounding the inter-

val polynomial is alleviated so that a sharper bound can be

obtained. If |ai| < ω, direct evaluation will be used instead.

4. Validating solver for parametric ODEs

When a traditional sequential approach is applied to the

optimization of nonlinear dynamic systems, the objective

function φ is evaluated, for a given value of θ, by ap-

plying an ODE solver to the constraints to eliminate the

state variables x. In the global optimization algorithm

described here, we will use a sequential approach based

on interval analysis. This approach requires the evalua-

tion of bounds on φ, given some parameter interval Θ.

Thus, we need an ODE solver that can compute bounds on

xμ, μ = 0, 1, . . . , r, for the case in which the parameters

are interval valued. Interval methods (these are validated

methods or verified methods) for ODEs [14], provide a nat-

ural approach for computing the desired enclosure of the

state variables at tμ, μ = 0, 1, . . . , r. An excellent review

of interval methods for IVPs has been given by Nedialkov

et al. [15]. Much work has been done for the case in which

the initial values are given by intervals, and there are sev-

eral available software packages that deal with this case.

However, relatively little work has been done on the case in

which parameters are also given by intervals. In our method

for deterministic global optimization of dynamic systems,

we will use a new validated solver for parametric ODEs [8],

called VSPODE (Validating Solver for Parametric ODEs),

which is used to produce guaranteed bounds on the solu-

tions of dynamic systems with interval-valued initial states

and parameters. In this section, we review the key ideas

behind the new method used in VSPODE, and outline the

procedures used. Additional details are given by Lin and

Stadtherr [8].

Consider the parametric ODE system

ẋ = f (x, θ), x0 ∈ X0, θ ∈ Θ, (6)

where t ∈ [t0, tr] for some tr > t0. The interval vec-

tors X0 and Θ represent enclosures of initial values and

parameters, respectively. It is desired to determine a vali-

dated enclosure of all possible solutions to this initial value

problem. We denote by x(t; tj , Xj ,Θ) the set of solutions

x(t; tj , Xj ,Θ) = {x(t; tj , xj , θ) | xj ∈ Xj , θ ∈ Θ} ,
where x(t; tj , xj , θ) denotes a solution of ẋ = f(x, θ)
for the initial condition x = xj at t = tj . We will

outline a method for determining enclosures Xj of the

state variables at each time step j = 1, . . . , r, such that

x(tj ; t0, X0,Θ) ⊆ Xj .

Assume that at tj we have an enclosure Xj of

x(tj ; t0, X0,Θ), and that we want to carry out an inte-

gration step to compute the next enclosure Xj+1. Then,

in the first phase of the method, the goal is to find a step

size hj = tj+1 − tj > 0 and an a priori enclosure (coarse

enclosure) X̃j of the solution such that a unique solu-

tion x(t; tj , xj , θ) ∈ X̃j is guaranteed to exist for all

t ∈ [tj , tj+1], all xj ∈ Xj , and all θ ∈ Θ. We apply

the traditional interval method, with high order enclosure,

to the parametric ODEs by using an interval Taylor series

(ITS) with respect to time. That is, we determine hj and

Xj such that for Xj ⊆ X̃
0

j ,

X̃j =
k−1∑
i=0

[0, hj]iF [i](Xj ,Θ)+[0, hj]kF [k](X̃
0

j ,Θ)⊆X̃
0

j .

(7)

Here X̃
0

j is an initial estimate of X̃j , k denotes the order of

the Taylor expansion, and the coefficients F [i] are interval

extensions of the Taylor coefficients f [i] of x(t) with re-

spect to time. Satisfaction of Eq. (7) demonstrates [4] that

there exists a unique solution x(t; tj , xj , θ) ∈ X̃j for all

t ∈ [tj , tj+1], all xj ∈ Xj , and all θ ∈ Θ.

In the second phase of the method, we compute a tighter

enclosure Xj+1 ⊆ X̃j , such that x(tj+1; t0, X0,Θ) ⊆
Xj+1. This will be done by using an ITS approach to com-

pute a Taylor model T xj+1 of xj+1 in terms of the param-

eter vector θ and initial state vector x0, and then obtaining

the enclosure Xj+1 = B(T xj+1) by bounding T xj+1 over

θ ∈ Θ and x0 ∈ X0. To determine enclosures of the inter-

val Taylor series coefficients f [i](xj , θ) a novel approach

combining RDA operations with the mean value theorem is

used to obtain the Taylor models T f [i] . Now using an inter-

val Taylor series for xj+1 with coefficients given by T f [i] ,

one can obtain a result for T xj+1 in terms of the parameters

and initial states. In order to address the wrapping effect

[14], results are propagated from one time step to the next

using a new type of Taylor model, in which the remainder

bound is not an interval, but a parallelepiped. That is, the

remainder bound is a set of the form P = {Av | v ∈ V },

where A ∈ R
n×n is a real and regular matrix. If A is

orthogonal, as from a QR-factorization, then P can be in-

terpreted as a rotated n-dimensional rectangle. Complete

details of the computation of T xj+1 are given by Lin and

Stadtherr [8].

The approach outlined above, as implemented in

VSPODE, has been tested by Lin and Stadtherr [8], who

compared its performance with results obtained using the

popular VNODE package [16]. For the test problems used,

VSPODE provided tighter enclosures on the state variables

than VNODE, and required significantly less computation

time.

5. Deterministic global optimization method

In this section, we summarize a new method for the de-

terministic global optimization of dynamic systems. As

noted above, when a sequential approach is used, the state

variables are effectively eliminated using the ODE con-

straints, in this case by employing VSPODE, leaving a

bound-constrained minimization of φ(θ) with respect to the

adjustable parameters (decision variables) θ. The new ap-

proach can be thought of as a type of branch-and-bound

method, with a constraint propagation procedure used for

domain reduction. Therefore, it can also be viewed as a

branch-and-reduce algorithm. The basic idea is that only

those parts of the decision variable space Θ that satisfy the

constraint c(θ) = φ(θ) − φ̂ ≤ 0, where φ̂ is a known up-

per bound on the global minimum, need to be retained. We

now describe a constraint propagation procedure, based on

the use of Taylor models, that exploits this constraint infor-

mation for domain reduction.

5.1. Constraint propagation on Taylor mod-
els

Partial information expressed by a constraint can be used

to eliminate incompatible values from the domain of its

variables. This domain reduction can then be propagated

to all constraints on that variable, where it may be used to

further reduce the domains of other variables. This pro-

cess is known as constraint propagation. In this subsection,

we describe a constraint propagation procedure using Tay-

lor models. In this discussion, an underline is used to indi-

cate the lower (left) endpoint of an interval, and an overline

is used to indicate the upper (right) endpoint.

Let Tc be the Taylor model of the function c(x) over the

interval x ∈ X , and say the constraint c(x) ≤ 0 needs to

be satisfied. In the constraint propagation procedure (CPP)

described here, B(Tc) is determined and then there are three

possible outcomes: 1. If B(Tc) > 0, then no x ∈ X will

ever satisfy the constraint; thus, the CPP can be stopped

and X discarded. 2. If B(Tc) ≤ 0, then every x ∈ X will

always satisfy the constraint; thus X cannot be reduced and

the CPP can be stopped. 3. If neither of previous two cases

occur, then part of the interval X may be eliminated; thus

the CPP continues, using an approach based on the range

bounding strategy for Taylor models described above.

For some component i of x, let ai and bi be the polyno-

mial coefficients of the terms (xi − xi0)
2

and (xi − xi0) of

Tc, respectively. Note that, xi0 ∈ Xi and is usually the mid-

point xi0 = m(Xi); the value of xi0 will not change during

the CPP. For |ai| ≥ ω, the bounds on Tc can be expressed

using Eq. (5) as

B(Tc) = ai

(
Xi − xi0 +

bi

2ai

)2

− b2
i

4ai
+ Si, (8)

where Si is an interval bound on all the other terms of Tc.

We can reduce the computational effort to obtain Si by rec-

ognizing that this quantity is just B(Tc) less the i-th term in

the summation of Eq. (5), and B(Tc) was already computed

earlier in the CPP. Therefore, for each i, Si is determined by

the interval cancellation (dependent subtraction) operation

(denoted by) using

Si = B(Tc) 	
[
ai

(
Xi − xi0 +

bi

2ai

)2

− b2
i

4ai

]
. (9)

Now define the intervals Ui = Xi − xi0 + bi

2ai
and Vi =

b2i
4ai

−Si, so that B(Tc) = aiU
2
i −Vi. The goal is to identify

and retain only the part of Xi that contains values of xi for

which it is possible to satisfy c(x) ≤ 0. In other words, the

part of Xi that is going to be eliminated is guaranteed not to

satisfy the constraint c(x) ≤ 0. Since B(Tc) = aiU
2
i − Vi

bounds the range of c(x) for x ∈ X , the part of Xi in which

it is possible to satisfy c(x) ≤ 0 can be bounded by finding

Xi such that all elements of aiU
2
i are less than or equal to

at least one element of Vi. That is, we require that

aiU2
i ≤ Vi. (10)

Then, the set Ui that satisfies Eq. (10) can be determined to

be

Ui =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∅ if ai > 0 and Vi < 0[
−

√
Vi

ai
,
√

Vi

ai

]
if ai > 0 and Vi ≥ 0

[−∞,∞] if ai < 0 and Vi ≥ 0[
−∞,−

√
Vi

ai

]
∪

[√
Vi

ai
,∞

]
if ai < 0 and Vi < 0.

(11)

The part of Xi to be retained is then Xi = Xi ∩(
Ui + xi0 − bi

2ai

)
. If |ai| < ω, then Eq. (5) should not

be used, but if |bi| ≥ ω, then Eq. (4) can, and a procedure

similar to that used above can be developed to detemine the

part of Xi to be retained [7]. If both |ai| and |bi| are less

than ω, then no CPP will be applied on Xi.

The overall CPP is implemented by beginning with i = 1
and proceeding component by component. If, for any i,
the result Xi = ∅ is obtained, then no x ∈ X can sat-

isfy the constraint; thus, X can be discarded and the CPP

stopped. Otherwise the CPP proceeds until all components

of X have been updated. Note that, in principle, each time

an improved (smaller) Xi is found, it could be used in com-

puting Si for subsequent components of X . However, this

requires recomputing the bound B(Tc), which, for the func-

tion c(x) that is of interest here, is expensive. Thus, the

CPP for each component is done using the bounds B(Tc)
computed from the original X . If, after each component is

processed, X has been sufficiently reduced (by more than

ω1 = 10% by volume), then a new bound B(Tc) is ob-

tained, now over the smaller X , and a new CPP is started.

Otherwise, the CPP terminates.

5.2. Global optimization algorithm

As with any type of procedure incorporating branch-and-

bound, an important issue is how to initialize φ̂, the upper

bound on the global minimum. There are many ways in

which this can be done, and clearly, it is desirable to find a φ̂
that is as small as possible (i.e., the tightest possible upper

bound). To initialize φ̂, we run p2 local minimizations (p
is the number of adjustable parameters) using a local opti-

mization routine from randomly chosen starting points, and

then choose the smallest value of φ found to be the initial

φ̂. For this purpose, we use the bound-constrained quasi-

Newton method L-BFGS-B [2] as the local optimization

routine, and DDASSL [1] as the integration routine. Addi-

tional initialization steps are to set either a relative conver-

gence tolerance εrel or an absolute convergence tolerance

εabs, and to initialize a work list L. The work list (stack)

L will contain a sequence of subintervals (boxes) that need

to be tested and initially L = {Θ}, the entire parameter

(decision variable) space.

The core steps in the iterative process involve the test-

ing of boxes in the work list. This is an objective range test

combined with domain reduction done using the CPP de-

scribed above. Beginning with k = 0, at the k-th iteration a

box is removed from the front of L and is designated as the

current subinterval Θ(k). The Taylor model Tφk
of the ob-

jective function φ over Θ(k) is computed. To do this, Taylor

models of xμ, the state variables at times tμ, μ = 1, . . . , r,

in terms of θ are determined using VSPODE, as described

in Section 4. Note that Tφk
then consists of a q-th order

polynomial in the decision variables θ, plus a remainder

bound. The part of Θ(k) that can contain the global min-

imum must satisfy the constraint c(θ) = φ(θ) − φ̂ ≤ 0
Thus the constraint propagation procedure (CPP) described

in Section 5.1 is now applied using this constraint. Recall

that there are three possible outcomes in the CPP:

1. Testing for the first possible outcome, B(Tc) > 0,

amounts to checking if the lower bound of Tφk
, B(Tφk

), is

greater than φ̂. If so, then Θ(k) can be discarded because it

cannot contain the global minimum and need not be further

tested.

2. Testing for the second possible outcome, B(Tc) ≤ 0,

amounts to checking if the upper bound of Tφk
, B(Tφk

), is

less than φ̂. If so, then all points in Θ(k) satisfy the con-

straint and the CPP can be stopped since no reduction in

Θ(k) can be achieved. This also indicates, with certainty,

that there is a point in Θ(k) that can be used to update φ̂.

Thus, if B(Tφk
) < φ̂, a local optimization routine, start-

ing at some point in Θ(k), is used to find a local minimum,

which then provides an updated (smaller) φ̂, that is, a better

upper bound on the global minimum. In our implementa-

tion, the midpoint of Θ(k) is used as the starting point for

the local optimization. A new CPP is then started on Θ(k)

using the updated value of φ̂.

3. If neither of the previous two outcomes occurs, then

the full CPP described in Section 5.1 is applied to reduce

Θ(k). Note that if Θ(k) is sufficiently reduced (by more

than ω1 = 10% by volume) in comparison to its volume

at the beginning of CPP, then new bounds B(Tφk
) are ob-

tained, now over the smaller Θ(k), and a new CPP is started.

After the CPP terminates, a convergence test is per-

formed. If (φ̂−B(Tφk
))/|φ̂| ≤ εrel, or (φ̂−B(Tφk

)) ≤ εabs,

then Θ(k) need not be further tested and can be discarded.

Otherwise, we will check to what extent Θ(k) has been re-

duced compared to its volume at the beginning of the ob-

jective range test. If the subinterval is reduced by more than

ω2 = 70% by volume, it will be added to the beginning of

the sequence L of boxes to be tested. Otherwise, it will be

bisected, and the resulting two subintervals added to the be-

ginning of L. Various strategies can be used to select the

component to be bisected. For the problems solved here,

the component with the largest relative width was selected

for bisection. The volume reduction targets ω1 and ω2 can

be adjusted as needed to tune the algorithm; the default val-

ues given above were used in the computational studies de-

scribed below.

At the end of this testing process, k is incremented, a

box is removed from the front of L, and the testing process

is begun again. At termination, L will become empty, and

φ̂ is the ε-global minimum.

The method described above is an ε-global algorithm. It

is also possible to incorporate interval-Newton steps in the

method, and to thus make it an exact (ε = 0) algorithm.

This requires the application of VSPODE on the first- and

second-order sensitivity equations. An exact algorithm us-

ing interval-Newton steps has been implemented by Lin and

Stadtherr [7] for the special case of parameter estimation

problems, such as shown in Section 6.1. However, this has

not yet been fully implemented for more general cases, such

as those in Section 6.2.

6. Computational studies

In this section, two example problems are presented

to demonstrate the computational performance of the ap-

proach described above. Both example problems were

solved on an Intel Pentium 4 3.2 GHz machine running Red

Hat Linux. The VSPODE package [8], with a k = 17 or-

der interval Taylor series, q = 3 order Taylor model, and

QR approach for wrapping, was used to integrate the dy-

namic systems in each problem. Using a smaller value of k
will result in the need for smaller step sizes in the integra-

tion and so will tend to increase computation time. Using

a larger value of q will result in somewhat tighter bounds

on the states, though at the expense of additional complex-

ity in the Taylor model computations. The algorithm was

implemented in C++.

6.1. Catalytic cracking of gas oil

This problem involves parameter estimation in a model

representing the catalytic cracking of gas oil (A) to gasoline

(Q) and other side products (S), as described by Tjoa and

Biegler [22] and also studied by several others [3, 6, 19, 21].

The reaction is

A
k1 ��

k3
��

��
��

��
� Q

k2
����

��
��

�

S

Only the concentrations of A and Q were measured. This re-

action scheme involves nonlinear reaction kinetics. A least

squares objective was used for parameter estimation, result-

ing in the optimization problem

min
θ

φ =
20∑

μ=1

2∑
i=1

(x̂μ,i − xμ,i)
2

s.t. ẋ1 = −(θ1 + θ3)x2
1

ẋ2 = θ1x
2
1 − θ2x2

t ∈ [0, 0.95]
xμ = x(tμ)
x0 = (1, 0)T

θ ∈ [0, 20]× [0, 20]× [0, 20],

where x̂μ is given experimental data. Here the state vec-

tor, x, is defined as the concentration vector (A, Q)T and

the parameter vector, θ, is defined as (k1, k2, k3)T. The

measurement data x̂μ was generated using values of the pa-

rameters, θ = (12, 8, 2)T, with a small amount of random

error added, and can be found in Esposito and Floudas [6].

We solved this problem with the ε-global optimization pro-

cedure discussed above, and also with the exact (ε = 0)

algorithm [7] that incorporates interval-Newton steps.

A summary of computational results, with comparisons

to other methods, is given in Table 1. In all cases, the global

minimum found was 2.6557×10−3 with the parameter val-

ues of θ = (12.2139, 7.9798, 2.2217)T, which is consistent

with the result of Esposito and Floudas [6]. For the ε-global

algorithm, 14.3 seconds were required to solve the prob-

lem. For the exact global algorithm using interval-Newton,

11.5 seconds were required. For this problem, the exact

algorithm required less computation than the ε-global algo-

rithm. However, this may or may not be the case on other

problems [7].

Papamichail and Adjiman [19] solved this problem to

ε-global optimality in 35478 seconds (Sun UltraSPARC-II

360 MHz; Matlab), and Chachuat and Latifi [3] obtained an

ε-global solution in 10400 seconds (unspecified machine;

prototype implementation). Singer and Barton [21] solved

this problem to ε-global optimality for a series of abso-

lute tolerances, so their results are not directly compara-

ble. However, the computational cost of their method on

Table 1. Results for the catalytic cracking of gas oil problem.

CPU time (s)

Method Reported Adjusted∗

This work (exact global optimum: ε = 0) 11.5 11.5

(Intel P4 3.2GHz)

This work (εrel = 10−3) 14.3 14.3

(Intel P4 3.2GHz)

Papamichail and Adjiman (2002) (εrel = 10−3) 35478 4541

(SUN UltraSPARC-II 360MHz)

Chachuat and Latifi (2003) (εrel = 10−3) 10400 −
(Machine not reported)

Singer and Barton (2006) (εabs = 10−3) 5.78 2.89

(AMD Athlon 2000XP+ 1.667GHz)

∗Adjusted = Approximate CPU time after adjustment for machine used (based on SPEC benchmark)

this problem appears to be quite low. These other meth-

ods all provide for ε-convergence only. The use of physical

state bounds, known independently of the statement of the

optimization problem, is an important feature of the method

used by Singer and Barton [21], and this contributes to its

efficiency on some problems. We have not made use of any

physical state bounds in the example problems presented

here.

6.2. Oil shale pyrolysis problem

This example is a fixed final time formulation of the oil

shale pyrolysis problem originally formulated by Luus [9]

and also considered by Esposito and Floudas [5] and Singer

and Barton [21]. The problem formulation is:

min
θ(t)

φ = −x2(tf) (12)

s.t. ẋ1 = −k1x1 − (k3 + k4 + k5)x1x2

ẋ2 = k1x1 − k2x2 + k3x1x2

ki = ai exp
(−bi/R

θ

)
, i = 1, . . . , 5

x0 = (1, 0)T

t ∈ [t0, tf] = [0, 10]
θ ∈ [698.15, 748.15].

The values for ai and bi/R are defined in [5].

In Problem (12), a reciprocal operation on the control

variable is required to calculate the ki, which imposes a

significant overhead when the related Taylor model com-

putations are done. Thus, for the control variable we use

the simple transformation θ̄ = 698.15/θ. The transformed

problem then becomes:

min
θ̄(t)

φ = −x2(tf) (13)

s.t. ẋ1 = −k1x1 − (k3 + k4 + k5)x1x2

ẋ2 = k1x1 − k2x2 + k3x1x2

ki = ai exp
(−θ̄bi/R

)
, i = 1, · · · , 5

x0 = (1, 0)T

t ∈ [t0, tf] = [0, 10]
θ̄ ∈ [698.15/748.15, 1].

The control θ̄(t) was parameterized as a piecewise con-

stant profile with a specified number of equal time inter-

vals. Four problems were considered, corresponding to

one, two, three and four time intervals in the parameteri-

zation. Each problem was solved to an absolute tolerance

of εabs = 10−3. The results are presented in Table 2.

Singer and Barton [21] solved the one- and two-interval

cases with εabs = 10−3 using two different implementa-

tions (with and without branch-and-bound heuristics). Best

results in terms of efficiency were achieved using the heuris-

tics, with CPU times of 26.2 and 1597.3 seconds (1.667

GHz AMD Athlon XP2000+) on the one- and two-interval

problems, respectively. This compares to CPU times of 3.2

and 26.8 seconds (3.2 GHz Intel Pentium 4) for the method

given here. Even after accounting for the roughly factor

of two difference in the speeds of the machines used, the

method described here appears to be significantly more ef-

ficient, by well over one order of magnitude in the two-

interval case. The three- and four-interval problems were

solved here in 251.6 and 2443.5 CPU seconds, respectively,

and apparently have not been solved previously using a rig-

orously guaranteed method. The worst-case exponential

complexity seen in these results reflects the fact that global

optimization for nonlinear problems is in general NP-hard.

Table 2. Results for the oil shale pyrolysis problem.

of time intervals φ∗ θ̄
∗

CPU (s) Iterations

1 -0.3479 (0.984) 3.2 21

2 -0.3510 (0.970, 1.000) 26.8 178

3 -0.3517 (1.000, 0.963, 1.000) 251.6 1 531

4 -0.3523 (1.000, 0.9545, 1.000, 1.000) 2443.5 12 874

7. Concluding remarks

We have presented here a new approach for the deter-

ministic global optimization of dynamic systems, including

parameter estimation and optimal control problems. This

method is based on interval analysis and Taylor models and

employs a type of sequential approach. A key feature of

the method is the use of a new validated solver [8] for para-

metric ODEs, which is used to produce guaranteed bounds

on the solutions of dynamic systems with interval-valued

parameters. This is combined with a new technique for do-

main reduction based on using Taylor models in an efficient

constraint propagation scheme. The result is that problems

can be solved to global optimality with both mathematical

and computational certainty. On parameter estimation prob-

lems, an exact (ε = 0) algorithm, using interval-Newton

steps, can be applied at a cost comparable to, and per-

haps less than, the ε-global algorithm. The new approach

can provide significant improvements in computational ef-

ficiency, potentially well over one order of magnitude, rela-

tive to other recently decribed methods.

Acknowledgments

This work was supported in part by the State of Indiana

21st Century Research and Technology Fund under Grant

#909010455, and by the Department of Energy under Grant

DE-FG02-05CH11294.

References

[1] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical
Solution of Initial-Value Problems in Differential-Algebraic
Equations. SIAM, Philadelphia, 1996.

[2] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory

algorithm for bound constrained optimization. SIAM J. Sci.
Comput., 16:1190–1208, 1995.

[3] B. Chachuat and M. A. Latifi. A new approach in determin-

istic global optimisation of problems with ordinary differen-

tial equations. In C. A. Floudas and P. M. Pardalos, editors,

Frontiers in Global Optimization, pages 83–108, Dordrecht,

The Netherlands, 2004. Kluwer Academic Publishers.

[4] G. F. Corliss and R. Rihm. Validating an a priori enclosure

using high-order Taylor series. In G. Alefeld and A. From-

mer, editors, Scientific Computing: Computer Arithmetic,
and Validated Numerics, pages 228–238. Akademie Verlag,

Berlin, 1996.
[5] W. R. Esposito and C. A. Floudas. Deterministic global op-

timization in nonlinear optimal control problems. J. Global
Optim., 17:97–126, 2000.

[6] W. R. Esposito and C. A. Floudas. Global optimization for

the parameter estimation of differential-algebraic systems.

Ind. Eng. Chem. Res., 39:1291–1310, 2000.
[7] Y. Lin and M. A. Stadtherr. Determinstic global optimiza-

tion for parameter estimation of dynamic systems. Ind. Eng.
Chem. Res., 45:8438–8448, 2006.

[8] Y. Lin and M. A. Stadtherr. Validated solutions of initial

value problems for parametric ODEs. Appl. Numer. Math.,
in press, 2007.

[9] R. Luus. Optimal control by dynamic programming using

systematic reduction in grid size. Int. J. Control, 51:995–

1013, 1990.
[10] R. Luus and D. E. Cormack. Multiplicity of solutions result-

ing from the use of variational methods in optimal control

problems. Can. J. Chem. Eng., 50:309–311, 1972.
[11] K. Makino and M. Berz. Efficient control of the dependency

problem based on Taylor model methods. Reliab. Comput.,
5:3–12, 1999.

[12] K. Makino and M. Berz. Taylor models and other vali-

dated functional inclusion methods. Int. J. Pure Appl. Math.,
4:379–456, 2003.

[13] K. Makino and M. Berz. Verified global optimization with

Taylor model-based range bounders. Transactions on Com-
puters, 11:1611–1618, 2005.

[14] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood

Cliffs, NJ, 1966.
[15] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated

solutions of initial value problems for ordinary differential

equations. Appl. Math. Comput., 105:21–68, 1999.
[16] N. S. Nedialkov, K. R. Jackson, and J. D. Pryce. An effec-

tive high-order interval method for validating existence and

uniqueness of the solution of an IVP for an ODE. Reliab.
Comput., 7:449–465, 2001.

[17] A. Neumaier. Taylor forms – Use and limits. Reliab. Com-
put., 9:43–79, 2003.

[18] I. Papamichail and C. S. Adjiman. A rigorous global opti-

mization algorithm for problems with ordinary differential

equations. J. Global Optim., 24:1–33, 2002.
[19] I. Papamichail and C. S. Adjiman. Global optimization of

dynamic systems. Comput. Chem. Eng., 28:403–415, 2004.

[20] A. B. Singer and P. I. Barton. Bounding the solutions of pa-

rameter dependent nonlinear ordinary differential equations.

SIAM J. Sci. Comput., 27:2167–2182, 2006.
[21] A. B. Singer and P. I. Barton. Global optimization with

nonlinear ordinary differential equations. J. Global Optim.,
34:159–190, 2006.

[22] T. B. Tjoa and L. T. Biegler. Simultaneous solution and opti-

mization strategies for parameter estimation of differential-

algebraic equation systems. Ind. Eng. Chem. Res., 30:376–

385, 1991.

Computing the Jordan canonical form in finite precision arithmetic

Toshio Suzuki
University of Yamanashi

Faculty of Education & Human Sciences
Kofu 400-8510, Japan

suzuki@yamanashi.ac.jp

Tomohiro Suzuki
University of Yamanashi

Information Processing Center
Kofu 400-8511, Japan

stomo@yamanashi.ac.jp

Abstract

The authors propose a criterion how to decide a cluster
of eigenvalues to be a multiple eigenvalue or nearly multi-
ple eigenvalues in finite precision arithmetic. If the matrix
has a multiple eigenvalue, the eigenvector and the general-
ized ones are computed by their method, and therefore the
Jordan canonical form can be derived. Results of numerical
experiments for several kinds of matrices are shown.

1. Introduction

In [6] we showed that if the eigenvalue of a matrix is
defective and derogatory, our method works effectively to
compute the eigenvalue, the eigenvectors and generalized
eigenvectors. But there exists a problem for general matri-
ces to decide numerically whether a cluster of eigenvalues
is a multiple eigenvalue or a set of nearly multiple eigenval-
ues. G. H. Golub & J. H. Wilkinson [1] and Bo Kångström
& A. Ruhe [3] did not treat this problem directly but they
tried to compute the invariant subspaces corresponding to
clusterd eigenvalues. The fact that the eigenvalues are close
enough is assured there by some measure essentially the sin-
gular value decomposition (say). Concerning this problem,
S. M. Rump yields preferable results in [4] with exception-
ally poor results for defective eigenvalues.

In this paper we propose a method to distinguish a multi-
ple eigenvalue from nearly multiple eigenvalues. In section
2, we consider powers of a matrix as a submatrix for the
invariant subspace corresponding to clustered eigenvalues.
In section 3, we state representation formula of the eigen
projection and eigen nilpotents. We propose in section 4
our method as an application of the results of preceding two
sections and the results of numerical experiments for several
kinds of matrices are shown. Some concluding remarks are
in the last section.

2. Powers of the matrix with eigenvalues
whose magnitudes are less than 1

Let G = (gij) be a non symmetric p × p matrix with
eigenvalues {λj}p

j=1 and ‖G‖2 = 1. Put λ̄ = 1
p

∑p
j=1 λj

and let δ = max
j

|λj − λ̄| < 1. Then the following proposi-

tion holds.
Proposition ∀�z ∈ Cp with ‖�z‖2 = 1,

‖(G−λ̄I)p�z‖2 =

⎧⎨
⎩

0 if λj = λ̄, j = 1, 2, · · · , p,
(λ̄ is a multiple eigenvalue.)

O(δ2) otherwise.

Remark. We can say that if δ is small enough, that is,
δ2 ≈ m(ε) (machine epsilon), then G looks like a Jor-
dan block of height p under finite precision arithmetic, if
‖(G − λ̄I)p−1�z‖2 ≈ 1 .
Proof. Let R = U∗GU with a unitary U by the Schur
theorm:

R =

⎛
⎜⎜⎜⎜⎝

λ1 r1 ∗ . . . ∗
0 λ2 r2 . . . ∗
...

...
. ∗

0 0 . . . λp−1 rp−1

0 0 . . . 0 λp

⎞
⎟⎟⎟⎟⎠ = Λ + N,

with diagonal matrix Λ and nilpotent N , that is, Np = 0.

We put (R − λ̄I)p = ((Λ − λ̄I) + N)p =
p∑

k=0

Tk, where

each Tk is the sum of terms which are the products of k
(Λ − λ̄I)’s and p − k N ’s.

Obviously T0 = Np = 0. Put Λ − λ̄I = Λ̄ then

T1 = Λ̄Np−1 + N Λ̄Np−1 + · · · + Np−2Λ̄N + Np−1Λ̄

=

⎛
⎜⎜⎝

0 0 t1p

0 0 0
...

...
.

0 0 . . . 0 0

⎞
⎟⎟⎠ ,

where t1p =
p∑

j=1

(λj − λ̄)r1r2 · · · rp−1 is derived by a ma-

nipulation. Since
p∑

j=1

(λj − λ̄) = 0, we have T1 = 0. From

the defintion of Tk, we have ‖Tk‖ = O(δk)‖N‖p−k for
k ≥ 2. Thus ‖(R − λ̄I)p‖ =

∑p
k=2 O(δk)‖N‖p−k =

O(δ2)‖N‖p−2, provided that δ < ‖N‖. Hence ‖(G −
λ̄I)p�z‖2 = ‖(U∗GU − λ̄I)p�z‖2 = ‖(R − λ̄I)p�z‖2 =
O(δ2)‖N‖p−2. Here the norm of a matrix is the operator
norm on the complex Euclidean space Cp. QED.

3. Representation formula of the eigen projec-
tion and eigen nilpotents

Let A = (aij) be a non symmetric n × n matrix with
the set of eigenvalues σ = {λj , j = 1, · · · , n}. Let
σ1 = {λj , j = 1, · · · , p} be an isolated cluster of eigen-
values in the complex plane. Put λ̄ = 1

p

∑p
j=1 λj and

let δ = max
0≤j≤p

|λj − λ̄| < 1. Put σ2 = σ \ σ1. Let

R = min
λj∈σ1,λk∈σ2

|λj − λk| � δ. Let C be a circle with

center λ and radius r in the complex plane which encloses

all elements of σ1. We will take r such that 2δ < r <
R

2
afterall. Here we often set λ = λ̄ but it does not necessary
for our theory as is seen in [5].

It is known that the following integrals give a projection
on the invariant subspace corresponding to eigenvalues in
σ1. The integral is called the eigen projection if k = 0, and
they are called eigen nilpotents for k ≥ 1 in the case that λ̄
is a multiple eigenvalue. (c.f T. Kato [2])

Dk
λ̄�z =

−1
2π

∮
C

(ζ − λ̄)k(A − ζI)−1�zdζ , for �z ∈ Cn

and k = 0, 1, 2, · · · , p − 1.
Dk

λ̄
satisfy the chain rule: (A − λ̄I)Dk

λ̄
�z = Dk+1

λ̄
�z for

k = 1, · · · , p − 1. Here Dp

λ̄
�z = 0, that is, Dp−1

λ̄
�z is the

eigenvector corresponding to λ̄. We denote by PC the eigen
projection D0

λ̄
.

Even if σ1 is not a multiple eigenvalue, PC is also the
projection on the invariant subspace corresponding to eigen-
values in σ1, that is, PC�z, which is independent of λ̄ but de-
pends on the circle C, is a vector in the invariant subspace
corresponding to eigenvalues in σ1.

Corresponding to them, we define the following numer-
ical integrations: Let {μj , j = 0, · · ·m − 1} be m points
cyclotomically shifted on C. We use here λ′ instead of λ̄ as
a more general parameter.

D̂k
λ′�z =

−r

m

m−1∑
j=0

eiθj(μj − λ′)k(A − μjI)−1�z,

P̂C�z = D̂0
λ�z =

−r

m

m−1∑
j=0

eiθj(A − μjI)−1�z.

where θj = 2πj
m , j = 0, · · ·m − 1.

D̂k
λ′�z is a linear combination of (A − μjI)−1�z, j =

1, 2, · · · , m− 1. λ′ is a parameter independent of λ. P̂C�z is
given from the values (A − μjI)−1�z at m points on C.

The following two results are known [5]. Here, we use
the notation λh instead of λ̄ if σ1 is a multiple eigenvalue.

1. ‖D̂k
λh

�z − Dk
λh

�z‖ = O

(∣∣∣ r

R

∣∣∣m−k
)

(0 ≤ k < m),

where Dk
λh

�z = 0 (p ≤ k), provided R > r.

2. Putting �u = D̂p−1
λ′ �z and λ̃ = (A�u, �u)/(�u, �u), we have∣∣∣∣∣λh − λ̃ + (p − 1)λ′

p

∣∣∣∣∣ = O(|λh − λ′|2).

Taking λ′′ = λ̃+(p−1)λ′

p as the new λ′, we can derive an

iterative process using D̂p−1
λ′ �z, which yields a convergent

sequence {λ′′} to λh of order 2.
Note that the accuracy of these values depends on those

of (A − μjI)−1�z, j = 0, . . . , m − 1.
We have the following theorem of representation formu-

las for those numerical integrations. Though it was proved
including some other properties in the unpublished private
note of S.T. Kuroda, we give here an elementary proof of it.
Theorem (The formulation of this theorem is due to S.T.
Kuroda.)

P̂C�z =
[
I −

(
A − λI

r

)m]−1

�z, (1)

D̂k
λ′�z = (A − λ′I)kP̂C�z. (2)

Proof. Since

D̂k
λ′ =

−r

m

m−1∑
j=0

eiθj(μj − λ′)k(A − μjI)−1, and

P̂C = D̂0
λ =

−r

m

m−1∑
j=0

eiθj(A − μjI)−1,

with θj = 2πj
m , putting w = eiθ and ν = λ − λ′, we have

D̂k
λ′ =

−r

m

m−1∑
j=0

wj(μj − λ′)k(A − μjI)−1

=
r

m

m−1∑
j=0

[(λ − λ′) + rwj]kwj(rwjI − (A − λI))−1

=
1
m

m−1∑
j=0

[ν + τwj]k(I − A − λI

r
w−j)−1

=
1
m

m−1∑
j=0

{
k∑

s=0

(k
s)νk−s(rwj)s

}

×
{

m−1∑
t=0

[(
A − λI

r

)
w−j

]t [
I −

(
A − λI

r

)m]−1
}

=
1
m

m−1∑
t=0

k∑
s=0

⎡
⎣(k

s)
(

A − λI

r

)t

rsνk−s
m−1∑
j=0

wjsw−jt

⎤
⎦

×
[
I −

(
A − λI

r

)m]−1

=
k∑

s=0

(k
s)

(
A − λI

r

)s

rsνk−s

[
I −

(
A − λI

r

)m]−1

= [(A − λI) + νI]k
[
I −

(
A − λI

r

)m]−1

= [(A − λI) + λI − λ′I]k
[
I −

(
A − λI

r

)m]−1

= (A − λ′I)k

[
I −

(
A − λI

r

)m]−1

.

To put k = 0 yields (1) and (2) is obvious.

4. Applications and numerical experiments

Because G = APC is the restriction of A on the invari-
ant subspace corresponding to the eigenvalues in σ1, the
proposition in section 2 holds for APC . If we take m points
properly, AP̂C is a good approximation of G = APC .
Then the D̂k

λ̄
’s are also good approximations of (G− λ̄I)k ,

k = 1, 2, · · ·. Note that if q < p then (G − λ̄I)q =
N q + O(δ)Nq−1 + O(δ2)Nq−2 + · · · .

4.1. Two assertions on the problem

According to the previous theorem, we can apply the pre-
ceding proposition to the matrix which operates on the in-
variant subspace corresponding to σ1. Then we have the
following result on the problem of how we can conclude σ1

to be a multiple eigenvalue or nearly multiple eigenvalues
under finite precision arithmetic.

Let ε be a certain number which should be considered to
be as small enough as zero under the computational circum-
stances. We have the following two conclusions assuming
that a number τ is 0 if τ ≤ ε.

The first one is mathematically exact.
Assertion 1. If ‖D̂p

λ̄
�z‖ = γ > 0 with small γ (that is

‖D̂p

λ̄
�z‖ = γ > ε) provided that ‖D̂p−1

λ̄
�z‖ = O(1), then

σ1 is a cluster of nearly multiple eigenvalues with its radius
≥ √

γ.
We propose the following second statement to be used in

practical cases of general matrices, considering the applica-
bility after observing parameters and the resulting data.
Assertion 2. If ‖D̂p

λ̄
�z‖ = 0, that is ‖D̂p

λ̄
�z‖ ≤ ε, and

‖D̂p−1

λ̄
�z‖ = O(1) then σ1 is a multiple eigenvalue with

error less than
√

ε. Moreover if p ≥ 2 then it is defective of
height p.

For example, if every computation is carried with errors
of the order O(10−d), then we conclude that ”the resulting
value is zero” is true within error less than O(10−

d
2).

Remark. Assertion 2 does not necessarily stand for all
cases. There are some exceptional special cases. For ex-

ample, if λj = λ + t exp(
2πi

p
j), j = 0, 1, · · · , p − 1 then

‖D̂p

λ̄
�z‖ = O(tp) holds. It is known that a matrix A with a

defective eigenvalue λ of multiplicity p is perturbed with
a small ε and a certain F into A + εF , then the defec-

tive eigenvalue λ splits into λj = λ + (ε)
1
p exp(

2πi

p
j),

j = 0, 1, · · · , p − 1. In this case the error bound should
be expressed to be O(10−

d
p). See Example 5 in 4.2

4.2. Numerical experiments for 4.1

In [4], S.M. Rump proposed a method which can be ap-
plied to compute the Jordan canonical form. It is imple-
mented in Matlab and yields accurate eigenvalues. But it is
not satisfactory for defective eigenvalues of height greater
than 2, although the mean of clusterd eigenvalues is remark-
ably accurate.

It can be concluded theoretically that the accuracy of the
numerical computation of our method depends on that of
the linear equations (A − μjI)�w = �z. We show numerical
results with the condition numbers of linear equations in
each experiment.

In the test computation, we used Matlab to compute the
mean λ̄ of the eigenvalues in σ1 and to solve m linear
equations. Though Matlab yields poor values for defective
eigenvalues, λ̄ has a good accuracy.
Test matrices and vectors:

Let J be a matrix with a certain required form. Us-
ing a random nonsingular matrix X , A is defined by A =
XJX−1 in our experiments. Most of our numerical exper-
iments were carried out for the 100 × 100 matrix A.

The components of the initial vector z are taken ran-
domly with its magnitude ≤ 1.

Our first example is to certify the assertion 1.
Example 1. Matrices with nearly multiple k eigenvalues.

Matrix: n = 100, k = 4, σ1 = {λj = 2.0a +
t exp(i 2π

9 j)(j = 0, 1, 4, 5)} and all the other eigenvalues

are within the unit circle in the complex plane. The subma-
trix of J corresponding to the eigenvalues in σ1 is the 4× 4
matrix such that λ1, · · · , λ4 are diagonal, the super diagonal
components are 1 and all the others are 0.

The condition numbers of A − μjI, j = 0, . . . , m − 1 :
max= 7.03 × 104, min= 5.94 × 104, mean= 6.31 × 104.
The values of ‖D̂0

λ̄
z‖, ‖D̂1

λ̄
z‖ and ‖D̂2

λ̄
z‖ for each t are the

Table 1. norms of principal vectors (k = 4)
t ‖D̂3

λ̄
z‖ ‖D̂4

λ̄
z‖ ‖D̂5

λ̄
z‖

10−3 3.560 5.907 × 10−6 5.315 × 10−6

10−4 3.562 5.910 × 10−8 5.317 × 10−8

10−5 3.562 5.911 × 10−10 5.317 × 10−10

10−6 3.562 5.910 × 10−12 5.330 × 10−12

10−7 3.562 9.654 × 10−14 5.621 × 10−14

0 3.562 8.979 × 10−14 2.226 × 10−14

same, that is, approximately equal to 6.46, 6.25 and 3.96
respectively. So we omitted them from Table 1.

Note in Table 1 that ‖D̂4
λ̄
z‖ = O(t2) and ‖D̂l

λ̄
z‖ =

O(1), l = 0, 1, 2, 3. As for the cases t =
10−3, 10−4, 10−5, 10−6 we conclude that σ1 is not a multi-
ple eigenvalue. From the values of ‖D̂3

λ̄
z‖ and ‖D̂4

λ̄
z‖, we

can decide that the diameter of the cluster is of order O(t).
The second example is the case of a multiple eigenvalue.

It shows that our method works well for numerical compu-
tation of the Jordan canonical form.
Example 2. Matrix with a k-fold defevtive eigenvalue.(cf.
S. M. Rump[4]-Table 9, test matrix.)

Matrix: Let 2 be a multiple and defective eigenvalue of
A. Let J be a canonical form of the 100 × 100 matrix with
the Jordan block corresponding to 2 and all the other eigen-
values are within the unit circle on the complex plane.

Parameters: m = 24 and r = 2−3 = 0.125.
Using the function eig in MATLAB, we get k approxi-

mated eigenvalues. λ̄ is computed from them.

Table 2. Condition number of A − μjI

k Max. Min. Avg.
2 1.68 × 104 1.68 × 104 1.68 × 104

3 1.30 × 105 1.12 × 105 1.21 × 105

4 1.61 × 106 1.22 × 106 1.40 × 106

5 3.05 × 107 2.54 × 107 2.71 × 107

Because the values of ‖D̂0
λ̄
z‖’s for each k are O(1), they

are omitted from Table 3.
We conclude in Table 3 that ‖D̂k

λ̄
z‖ = 0 by our the-

ory. Combining with the fact that ‖D̂l
λ̄
z‖ = O(1), l =

0, · · · , k − 1, we can conclude that the eigenvalue 2 is a
defective eigenvalue of height k.

Table 3. norms of principal vectors (m = 24)
k ‖D̂1

λ̄
z‖ ‖D̂2

λ̄
z‖ ‖D̂3

λ̄
z‖ ‖D̂4

λ̄
z‖ ‖D̂5

λ̄
z‖

2 4.433 2.6E-14 8.6E-15 1.4E-16 1.2E-17
3 2.140 1.0E-1 1.3E-14 3.5E-15 1.9E-16
4 2.249 1.911 7.8E-2 3.0E-14 1.1E-14
5 10.96 6.060 2.790 2.158 3.6E-13

Next example is the cases of various size of matrices. It
shows that our method does not depend on the size but on
the condition number of matrices.
Example 3. Matrices of various dimensions. (Rump[4]-
Table 7, test matrix.)

This example comprises a 10-fold eigenvalue 2 in five
Jordan blocks each of size 2, for different dimensions n.
Furthermore, the matrix is generated to have one eigen-
value 1 and n− 11 randomly distributed eigenvalues within
[−1, 1]

Parameters: m = 24 and r = 2−3 = 0.125.
Using the function eig in MATLAB, we get 10 approx-

imated eigenvalues. λ̄ is computed from them.
The condition numbers of A − μjI, j = 0, . . . , m − 1

were independent of t. (See Table 4).

Table 4. Condition number of A − μjI

n Max. Min. Avg.
50 6.15 × 105 5.37 × 105 5.74 × 105

100 3.20 × 108 2.86 × 108 3.05 × 108

200 9.88 × 104 9.24 × 104 9.57 × 104

500 1.25 × 106 1.19 × 106 1.22 × 106

Table 5. norms of principal vectors (m = 24)
n ‖D̂0

λ̄
z‖ ‖D̂1

λ̄
z‖ ‖D̂2

λ̄
z‖ ‖D̂3

λ̄
z‖

50 54.83 39.51 4.6E-12 2.2E-12
100 1121 1021 4.0E-8 1.7E-8
200 18.46 12.49 1.9E-13 9.3E-14
500 17.59 8.458 4.6E-13 2.5E-13

The norms of the principal vectors computed by our
method for various size n are seen in Table 5. They show
that the efficiency of our method depends only on the con-
dition numbers of A − μjI, j = 0, · · ·m − 1.

In example 4 we can see the norms of eigen nilpotent
vectors for non defective matrices.
Example 4. Non-defective matrices with a cluster of k-
eigenvalues.

Matrix: n = 100, k = 5. σ1 = {λj = 2.0 +
t exp(i 2π

5 j), j = 0, . . . , 4} and the remaining 95 eigenval-

ues are randomly distributed in the unit disk on the complex
plane.

Parameters m = 24 and r = 2−3 = 0.125.
The condition numbers of A − μjI, j = 0, . . . , m − 1:
max= 2.97 × 103, min= 2.63 × 103, mean= 2.79 × 103.

Table 6. norms of principal vectors

t ‖D̂0
λ̄
z‖ ‖D̂1

λ̄
z‖ ‖D̂2

λ̄
z‖ ‖D̂3

λ̄
z‖ ‖D̂4

λ̄
z‖

10−3 4.7 4.4E-3 4.5E-6 4.5E-9 4.4E-12
10−4 4.7 4.4E-4 4.5E-8 4.5E-12 (10−16)
10−5 4.7 4.4E-5 4.5E-10 4.5E-15 (10−18)
10−6 4.7 4.4E-6 4.5E-12 (10−17) (10−18)
10−7 4.7 4.4E-7 4.5E-14 (10−17) (10−18)
10−8 4.7 4.4E-8 (10−16) (10−17) (10−18)

0 4.7 2.1E-14 (10−16) (10−17) (10−18)

These values for simple eigenvalues could be explained
by the representation formula for eigen-projection.

Note that ‖D̂0
λ̄
z‖ = O(1) and ‖D̂l

λ̄
z‖ = O(tl), l =

1, 2, · · ·.(See Table 6.)
It is sure, of course that there are exceptional cases for

which Assertion 2 does not stand. There exists a well known
example that a small(ε-) perturbation to the matrix with a
defective eigenvalue of multiplicity p causes the multiple
eigenvalue to split into p eigenvalues on a circle of radius
ε

1
p . (cf. Remark followed to Assertion 2.) The following

Example 5 is one of them, that is, an example answering if
a cluster of cyclotomically shifted p eigenvalues on a circle
can be decided to be separated ones. The conclusion is that
if low precision arithmetic is employed in numerical com-
putations then even eigenvalues distributed on a circle with
rather large radius are hardly distinguished: but the fact that
they are not a multiple eigenvalue is revealed gradually as
we employ higher precision arithmetic.
Example 5. Perturbed matrix with a defective eigenvalue
of multiplicity k.

Matrix: n = 100!%σ1 = {λj = 2.0 + t exp(i 2π
5 j), j =

0, . . . , k − 1} and all the other eigenvalues are apart from
2.0. Parameters: m = 24!$r = 2−2 = 0.25. The results of
the case of k = 5 is seen in Table 7. Condition numbers of
A − μjI, j = 0, . . . , m − 1 :
max =2.65 × 105, min = 2.44 × 103, mean = 2.54 × 105.

The values of ‖D̂0
λ̄
z‖ and ‖D̂1

λ̄
z‖ are almost the same

for each t, that is, 4.70 and 3.69, respectively. So they are
omitted from Table 7.

We can find no differences in Table 7 among values for
various t’s because the double precision arithmetic has too
low precision to cover such a value (10−3)5 = 10−15. In
this case, according to Assertion 2, we conclude that λ = 2
is a multiple and defective eigenvalue of height 5.

The results of the case of k = 4 is seen in Table 8.

Table 7. norms of principal vectors (k = 5)
t ‖D̂2

λ̄
z‖ ‖D̂3

λ̄
z‖ ‖D̂4

λ̄
z‖ ‖D̂5

λ̄
z‖

10−3 3.510 3.366 2.748 2.5E-13
10−4 3.512 3.368 2.749 2.9E-13
10−5 3.513 3.368 2.749 2.1E-13
10−6 3.513 3.368 2.749 3.7E-13
10−7 3.513 3.368 2.749 1.9E-13

0 3.513 3.368 2.749 2.2E-13

Condition numbers of A − μjI, j = 0, . . . , m − 1:
max = 7.03 × 104, min = 5.94 × 104, mean = 6.31 × 104.

Table 8. norms of principal vectors (k = 4)
t ‖D̂3

λ̄
z‖ ‖D̂4

λ̄
z‖ ‖D̂5

λ̄
z‖

10−3 3.561 6.4E-12 6.2E-12
10−4 3.562 4.2E-14 1.8E-14
10−5 3.562 1.9E-14 1.5E-14
10−6 3.562 1.2E-13 1.9E-14
10−7 3.562 7.0E-14 2.1E-14

0 3.562 8.9E-14 2.2E-14

The values of ‖D̂0
λ̄
z‖, ‖D̂1

λ̄
z‖ and ‖D̂2

λ̄
z‖ are almost the

same for each t, that is, 6.46, 6.25 and 3.95, respectively. So
they are omitted from Table 8.

Note that, in the case of t = 10−3, ‖D̂l
λ̄
z‖ = O(t4), l =

4, 5 and ‖D̂3
λ̄
z‖ = O(1). According to Assertion 1, we con-

clude here that the diameter of the set of the nearly multiple

eigenvalues is greater than
√
‖D̂4

λ̄
z‖(≈ 10−6). It is not so

accurate but the conclusion is true.
The results of the case of k = 3 is seen in Table 9.
Condition numbers of A − μjI, j = 0, . . . , m − 1 :

max = 9.03 × 103, min = 8.33 × 103, mean = 8.59 × 103.

Table 9. norms of principal vectors (k = 3)
t ‖D̂2

λ̄
z‖ ‖D̂3

λ̄
z‖ ‖D̂4

λ̄
z‖ ‖D̂5

λ̄
z‖

10−3 1.587 1.9E-9 1.8E-9 1.5E-9
10−4 1.587 1.9E-12 1.8E-12 1.5E-12
10−5 1.587 9.1E-15 1.0E-15 9.3E-16
10−6 1.587 6.1E-15 2.5E-15 1.7E-15
10−7 1.587 1.0E-14 2.4E-15 1.24E-15

0 1.587 3.6E-15 2.0E-15 1.5E-15

The values of ‖D̂0
λ̄
z‖ and ‖D̂1

λ̄
z‖ are almost the same for

each t, that is, 1.9 and 1.8, respectively. So they are omitted
from Table 9.

Note that, in the cases of t = 10−3 and t = 10−4,
‖D̂l

λ̄
z‖ = O(t3), l = 3, 4, 5 and ‖D̂l

λ̄
z‖ = O(1), l =

0, 1, 2. According to Assertion 1, we conclude here that
the diameter of the set of the nearly multiple eigenvalues is

greater than
√
‖D̂3

λ̄
z‖(≈ 10−4.5, 10−6). It is not so accu-

rate but the conclusion is true.
From Example 5, it seems that the small perturbation of

order of machine epsilon for defective eigenvalues does not
affect to this eigen value problem in our method, because
such a perturbed defective eigenvalue is computed as a de-
fective eigenvalue itself by Assertion 2. Nearly multiple
eigenvalues would be distinguished using proper high pre-
cision arithmetic computation by Assertion 1.

4.3. Concluding remarks

1. A method how to decide a cluster of eigenvalues to be
multiple or nearly multiple is proposed. The numerical ex-
periments for some kinds of matrices show that the method
corresponding to Assertion 1 works well theoretically.
2. Though the test matrices are made by A = XJX−1 with
a random nonsingular matrix X , the test matrices may be
well posed in the sense that the off diagonal components
of R derived by Schur theorem are of order O(1). So our
test computation seems to show the high efficiency of our
method. We know, of course, that there are many matrices
that cannnot be treated by our method.
3. Considering the results of Example 5 and the following
remark, one may expect by pursuing along this way to get
the method to know how long the precision of arithmetic is
required to conclude that a cluster of eigenvalues is a multi-
ple eigenvalue within the prerequisite error bound.
4. In order to see the limit of our method we should try
more experiments for various ill-conditioning examples to
observe what kinds of data characterize the ill-conditioning
of the matrices in the practical numerical computation. And
we need more theoretical investigation.

References

[1] Golub, G. H. and Wilkinson, J. H., Ill-conditioned
eigensystems and the computation of the Jordan
canonical form, SIAM Review,18 (1976), 578-619.

[2] Kato, T., Perturbation Theory, Springer Verlag, New
York, second edition, 1976.

[3] Kångström, Bo and Ruhe, A., An Algorithm for Nu-
merical Computation of the Jordan Normal Form of a
Complex Matrix, ACM Trans. Math. Software, Vol. 6,
No.3 (1980),398-429

[4] Rump, S. M. Computational error bounds for multiple
or nearly multiple eigenvalues, Linear Algebra and its
Applications 324 (2001), 209-226.

[5] Suzuki, T. and Watanabe, E., Numerical computation
of the Jordan canonical form, Proc. The Third IMACS
International Symposium on Iterative Method in Sci-
entific Computation, Jackson Hole, Wyoming, USA,
IMACS Series in Computational and Applied MAthe-
matics. Vol.4 (1998),65-70.

[6] Suzuki, T. and Suzuki, T., An eigenvalue problem for
derogatory matrices, J. Computational and Applied
Mathematics 199 (2007), 245-250.

The Fundamental Theorems of Interval Analysis

M.H. van Emden and B. Moa
Department of Computer Science
University of Victoria, Canada

Abstract

Expressions are not functions. Confusing the two
concepts or failing to define the function that is com-
puted by an expression weakens the rigour of interval
arithmetic. We give such a definition and continue
with the required re-statements and proofs of the fun-
damental theorems of interval arithmetic and interval
analysis.

1 Introduction

Make things as simple as possible,
but not simpler.

Albert Einstein.

The raison d’être of interval arithmetic is rigour.
Yet it appears that the most fundamental fact, some-
times referred to as the “Fundamental Theorem of In-
terval Arithmetic”, is not rigorously established. The
fact in question can be described as follows.

Let e be an expression with 〈x1, . . . , xn〉 as an or-
dered set of variables (i.e. a finite sequence of distinct
variables). Let f be the function in Rn → R that is
computed by e. Let the result of evaluating e with
intervals I1, . . . , In substituted for x1, . . . , xn be an in-
terval Y . Then

{f(x1, . . . , xn) | x1 ∈ I1, . . . , xn ∈ In} ⊂ Y (1)

Although this fact is fundamental to everything that
is done in interval arithmetic, we have failed to find
in the literature a definition of what it means for an
expression to compute a function. In Section 1.2 we
review the literature that we consulted.

In (1) the interval Y is typically considerably wider
than the range of function values. Interval analysis
relies on the fact that, as I1, . . . , In become narrower,
the sides in (1) become closer to each other. A theorem
to this effect, such as 2.1.1 or 2.1.3 in [9] deserves to
be called Fundamental Theorem of Interval Analysis
rather than interval arithmetic.

Both theorems should rest on the foundation pro-
vided by a definition of the function computed by an

expression. We give such a definition for sets; as in-
tervals are sets, the definition applies to intervals as a
special case.

1.1 Expressions and functions

An expression is an entity consisting of symbols; it
is an element of a formal language in the sense of com-
puter science. Some of these symbols denote opera-
tions; others are constants or variables and denote reals
or intervals, according to the chosen interpretation.

Unlike an expression, a numerical function is an el-
ement of the function space Rn → R, for a suitable
positive integer n. Variables only occur in expressions,
where they can re-occur any number of times. Vari-
ables do not occur in functions; in fact, the notion of
“occurs in” is not applicable to functions in Rn → R.
Instead, a function in Rn → R is a map from n-tuples
of reals to reals; the elements of the n-tuples are prop-
erly called arguments, rather than “variables”.

An additional reminder of the need to distinguish
between expressions and functions is that different ex-
pressions can compute the same function. Yet another
reminder is that there exist functions that are not com-
putable, whereas all expressions are, like programs, in-
structions for computations. Contrary to programs in
general, expressions of the type of interest to interval
arithmetic can be evaluated in finite time. Hence the
functions computed by these expressions belong to the
computable subset of functions.

Of course, “the set of expressions” could be made
precise by means of a formal grammar. For the purpose
of this paper, it is sufficient to define an expression as
follows.

1. A variable is an expression.
2. If E is an expression and if ϕ is a unary operation

symbol, then ϕE is an expression.
3. If E1 and E2 are expressions and if � is a binary

operation symbol, then E1 � E2 is an expression.
To make the definition formal, we would have to spell
out the appearance of the variables and of the operation
symbols.

In whatever way expressions are defined, the result-
ing set is disjoint from the set Rn → R, whatever n
is. What is needed to turn the Fundamental Fact (1)
into a theorem is to define “function computed by an
expression” as a mapping from the set of expressions
in n variables to Rn → R. As observed above, this
mapping is neither injective nor surjective. This map-
ping can be called the semantics of the language of
expressions.

1.2 Remarks on the literature

Moore [8] avoids the problem of defining the func-
tion defined by an expression by not making the dis-
tinction. As explained in the previous section, this is
not correct. Jaulin et. al. [6], Theorem 2.2, assume
that the problem is taken care of by composition of
functions, but make unjustified simplifications. Com-
position is indeed a promising approach, which we will
pursue in Section 4.

Neumaier [9] does distinguish between expressions
and functions, but the expressions as he defined them
fail to be computable. In fact, following the definition
he gave in page 13, every real number is an element
of the set of arithmetical expressions. The simplicity
arises from the fact that all real numbers are defined as
(sub)expressions. This introduces infinite expressions:
whatever notation is chosen for the reals, most (in the
sense of a subset of measure one) are infinite. In this
way effective computability is lost.

Moreover, Neumaier starts with an arithmetic ex-
pression f , and then defines the interval evaluation
of f , which he denotes by the same symbol f . To
deal with partial functions, he introduced a NaN sym-
bol, and the results of operations on this symbol. He
then defined the restriction of f to its real domain
Df = {x ∈ Rn | f(x) �= NaN} to be the real eval-
uation of f . We do not see the need for this indirect
approach: partial functions are a perfectly natural and
hardly novel generalization of functions that are total.

Ratschek and Rokne also distinguish expressions
from functions. In [12] they refer to their earlier book
[11] for a definition. This is a mistake, because on
page 23, after a heuristic discussion of the connection
between expression and functions, they refer to texts in
logic and universal algebra for a definition. However,
these assume that all functions are total. This is not
always the case for the expressions of interest to inter-
val arithmetic; consider for example

√
x. As only a few

exotic varieties of logic allow function symbols to be
interpreted by partial functions, it is better for interval
arithmetic to use set theory as basis for its fundamen-
tal theorems. In fact, these exotic varieties are subject
to considerable controversy [2, 10], so not suitable as a

fundament for interval analysis.

2 Set theory preliminaries

This section establishes the concepts, terminology
and notation for this paper. It is necessary because the
present investigation is unusual in that all functions are
what are usually called “partial functions”. To avoid
having to qualify with “partial” every time a function
is mentioned, we define “function” to mean what is
usually referred to as “partial function”. In other re-
spects, we adhere closely to standard expositions of set
theory, such as [3, 1] and standard introductions such
as found in authoritative texts such as [7].
Definition 1 A function f consists of a source, a tar-
get, and a map. The source and target are sets. The
map associates each element of a subset of the source
with a unique element of the target.

The set of functions with source S and target T is
denoted by the term S → T . If a function f ∈ S → T
associates x ∈ S with y ∈ T , then one may write y as
f(x). When only the association under f between x
and y is relevant, we write x
→ y.

Example 1 The square root is a function in R → R
that does not associate any real with any negative real
and associates with x ∈ R the unique non-negative y ∈
R such that y2 = x if x ≥ 0.

The term f(x) is undefined if there is no y ∈ T
associated with x ∈ S by f ∈ S → T . We take {f(x) |
x ∈ S} to mean

{y ∈ T | ∃x ∈ S and f associates y with x}.
That is, {f(x) | x ∈ S} is defined even though f(x)
may not be defined for every x ∈ S.

Example 2 {√x | x ∈ R} is defined and is the set of
non-negative reals.

{x/y | x ∈ {1} and y ∈ R} is defined and is R\{0}.
The subset of S consisting of x with which f ∈ S →

T associates a y ∈ T is called the domain of f , denoted
dom(f). If dom(f) = S, then f is said to be a total
function. {f(x) | x ∈ S} is called the range of f .
We introduced the unusual terms “source” for S and
“target” for T because of the need to distinguish them
from “domain” and “range”.
Definition 2 The set of functions with source S and
target T is denoted S → T and is called a “type” or
“function space”.

Again, this differs from the usual meaning of S → T ,
where it only contains total functions. To say that f
“is of type” S → T means that f ∈ S → T .

Definition 3 Let f ∈ S → T and g ∈ T → U . The
composition g ◦ f of f and g is the function in S → U
such that g ◦ f associates x ∈ S with z ∈ U iff there
exists a y ∈ T such that f maps x to y and g maps y
to z.

This is the conventional definition of composition.
It requires the target of f to be the same set as the
source of g. Because of this requirement it is not clear
what composition Jaulin et. al. have in mind in [6],
Theorem 2.2.

It follows from Definition 3 that the domain of def-
inition of f ◦ g is a subset of that of f .

Example 3 f ◦g ◦h has {0} as domain if f ∈ R → R
is such that it maps x
→ √

x, g ∈ R → R is such that
it maps x
→ −x, and h ∈ R → R is such that it maps
x
→ |x|. In other words,

√
(−|x|) is undefined for all

x ∈ R except when x = 0.

Let f ∈ S → T . The elements of S are called “argu-
ments” of f . Note that if a function associates an x in
S with a y in T , it only so associates a single element of
S. In that respect, all functions are “single-argument”
functions. But S and T may be any sets whatsoever.
Suppose f ∈ Rn → R. Now the single elements in
the source of f , the arguments of f , are n-tuples of
reals. Thus we interpret the usual f(x1, . . . , xn) as
f(〈x1, . . . , xn〉).
Definition 4 Let f1 ∈ S1 → T1 and f2 ∈ S2 →
T2. The Cartesian product of f1 and f2, denoted
f1 × f2, is a function in S1 × S2 → T1 × T2

having domain dom(f1) × dom(f2) = {〈x1, x2〉 |
x1 ∈ dom(f1) and x2 ∈ dom(f2)}, and mapping every
〈x1, x2〉 in dom(f1) × dom(f2) to 〈f1(x1), f2(x2)〉.
Definition 5 Let f be a function in S → T . Let F be
a total function in P(S) → P(T). F is a set extension
of f iff {f(x) | x ∈ X} ⊂ F (X) for all subsets X
of S. The total function in P(S) → P(T) with map
X
→ {f(x) | x ∈ X} is a set extension and is called
the canonical set extension of f . We will use f(D) to
denote {f(x) | x ∈ D}.

3. Intervals are sets — interval exten-
sions are set extensions

As we saw, partial functions have set extensions that
are total. This is of particular interest in numerical
computation, where some important functions, such as
division and square root, are not everywhere defined.

In some treatments of interval arithmetic this leads
to the situation in which division by an interval con-
taining zero is not defined. This is not necessary: if

one regards an interval as a set and an interval exten-
sion as a set extension, then the interval extension is
everywhere defined. This is the approach taken in [5],
which will be summarized here.

A well-known fact is that the closed, connected sets
of reals have one of the following forms: {x ∈ R | x ≤
b}, {x ∈ R | a ≤ x}, {x ∈ R | a ≤ x ≤ b}, as well
as R itself. Here a and b are reals. Note that the
empty subset of R is an interval also, as no ordering is
assumed between a and b.

The closed, connected sets of reals are defined to be
the real intervals. They are denoted [−∞, b], [a,∞],
[a, b], and [−∞,∞]. These notations are just a short-
hand for the above set expressions. They are not meant
to suggest that, for example, −∞ ∈ [−∞, b] = {x ∈ R |
x ≤ b}. This is not the case because [−∞, b] is a set of
reals and −∞ is not a real.

The floating-point numbers are a set consisting of
a finite set of reals as well as −∞ and ∞. The real
floating-point numbers are ordered as among the reals.
The least (greatest) element in the ordering is −∞ (∞).
The floating-point intervals are the subset of the real
intervals where a bound, if it exists, is a floating-point
number. We assume that there are at least two finite
floating-point numbers. As a result, the empty subset
of R is also a floating-point interval.

The floating-point intervals have the property that
for every set of reals there is a unique least floating-
point interval that contains it. This property can be
expressed by means of the function � so that �S is
the smallest floating-point interval containing S ⊂ R.
Given a real number x, we denote by x− the greatest
floating-point number not greater than x, and by x+

the least floating-point number not less than x.
By themselves, set extensions are not enough to ob-

tain interval extensions. They need to be used in con-
junction with the function �, as in the following defi-
nition of interval addition:

X + Y = �{z ∈ R | ∃x ∈ X, y ∈ Y .x + y = z} (2)

for all floating-point intervals X and Y . Compared
with a definition such as

[a, b] + [c, d] = [(a + c)−, (b + d)+], (3)

(which is equivalent for bounded intervals) (2) has the
advantage of being applicable to unbounded intervals
without having to define arithmetic operations between
real numbers and entities that are not real numbers.
Moreover, (2) includes the required outward rounding.

Similarly to (2) we have
Definition 6

X + Y
def
= �{z ∈ R | ∃x ∈ X, y ∈ Y .x + y = z}

X − Y
def
= �{z ∈ R | ∃x ∈ X, y ∈ Y .z + y = x}

X ∗ Y
def
= �{z ∈ R | ∃x ∈ X, y ∈ Y .x ∗ y = z}

X/Y
def
= �{z ∈ R | ∃x ∈ X, y ∈ Y .z ∗ y = x}

√
X

def
= �{y ∈ R | ∃x ∈ X.y2 = x}

Theorem 1 The functions defined in Definition 6
map floating-point intervals to floating-point intervals,
are defined for all argument floating-point intervals,
and are set extensions of the corresponding functions
from reals to reals.

This is a summary of several results in [5].
Definition 7 Let I be the set of intervals. F ∈ In → I
is an interval extension of f ∈ Rn → R iff F is the
restriction to domain In ⊂ Rn → R of a set extension
of f . F is the canonical interval extension of f is de-
fined to be F (B) = {f(x) | x ∈ B} whenever this is an
interval.

4. Semantics of expressions via set the-
ory

As all but a few exotic varieties of logic restrict func-
tions to be total, we develop the semantics of expres-
sions on the basis of set theory, even though most treat-
ments of set theory also restrict functions to be total.
However, as we have seen, functions in the usual set
theory are easily generalized so that totality is not as-
sumed. Modifying logic so that function symbols can
be interpreted by partial functions has graver repercus-
sions [2, 10].

Suppose that the expression e has the form e1 +
e2 and that e1 computes f1 : Rm → R and that e2

computes f2 : Rn → R. In such a situation, Jaulin
et al. [6] (Theorem 2.2), suggest that the function f
computed by e is the composition of +, f1 and f2.

But such a composition is not possible, as the types
do not match, as required in Definition 3. We can make
a composition if we form the Cartesian product of f1

and f2 and if we make additional assumptions about
e1 and e2. To prepare these assumptions we need the
following definition.
Definition 8 Let {v1, . . . , vn} be the set of variables in
expression e. The variable sequence of e is 〈v1, . . . , vn〉
if the first occurrences of the variables in e are ordered
according to this sequence.

Consider the special case where m = n and where
e1 and e2 have the same variable sequence. Let δ ∈
Rn → Rn ×Rn with mapping

〈x1, . . . , xn〉
→ 〈〈x1, . . . , xn〉, 〈x1, . . . , xn〉〉

As will be shown in Lemma 1, the function computed
by e1+e2 is +◦(f1×f2)◦δ. The types of δ, f1×f2, and
+ do match: they are, respectively, Rn → (Rn ×Rn),
(Rn × Rn) → R2, and R2 → R. Thus it is clear the
composition is defined and that its type is Rn → R.

But it is of course a very special case if e1 and e2

have the same variables in the same order of first oc-
currence. To further illustrate what is needed to define
a composition of +, e1, and e2, consider another special
case: e1 and e2 have no variables in common, and their
variable sequences are 〈v1, . . . , vm〉 and 〈w1, . . . , wn〉,
respectively. As will be shown in Lemma 1, the func-
tion computed by e1 + e2 is again + ◦ (f1 × f2) ◦ δ,
except that δ is in Rm+n → Rm ×Rn and has as map

〈x1, . . . , xm, y1, . . . , yn〉
→ 〈〈x1, . . . , xm〉, 〈y1, . . . , yn〉〉

Now the types of δ, f1×f2, and +, are, respectively,
Rm+n → (Rm×Rn), (Rm×Rn) → R2, and R2 → R.
Thus it is clear that the composition is defined and that
its type is Rm+n → R.

Finally, an example where the subexpressions share
some, but not all variables. Consider the example
where e1 is x ∗ y, e2 is y ∗ z, e is e1 + e2, and
δ ∈ R3 → (R2 × R2) is such that δ maps as follows:
〈x1, x2, x3〉
→ 〈〈x1, x2〉, 〈x2, x3〉〉 for all x1, x2, x3 ∈ R.
Now the functions f1 and f2 computed by e1 and e2

are the same function in R2 → R: it has as map
〈s, t〉
→ s ∗ t for all reals s and t. Yet the function
computed by e1 + e2 does not have as map s ∗ t + s ∗ t:
it is a different function, which is, however, described
by the same formula + ◦ (f1 × f2) ◦ δ.

These three examples suggest how to define in gen-
eral, for any pair 〈e1, e2〉 of expressions and any domain
D of interpretation, a “distribution function” that rep-
resents the pattern of co-occurrences of variables in e1

and e2.

Definition 9 Given expressions e1 and e2 with vari-
able sequences 〈v1, . . . , vm〉 and 〈w1, . . . , wn〉, respec-
tively. Let D be a set of values suitable for substitution
for the variables. Let {i1, . . . , ip} and let {j1, . . . , jq} be
a partition in {1, . . . , n} such that {wi1 , . . . , wip

} occur
in e1 and {wj1 , . . . , wjq} do not occur in e1

1.
The distribution function δ for the pair 〈e1, e2〉 and

D is the function in Dm+q → Dm × Dn that has as
map

〈x1, . . . , xm, yj1 , . . . , yjq
〉
→ 〈〈x1, . . . , xm〉, 〈y1, . . . , yn〉〉

for all x1, . . . , xm, y1, . . . , yn in D.

1Hence the variable sequence of any expression of the form
e1〈operation symbol〉e2 is 〈v1, . . . , vm, wj1 , . . . , wjq 〉.

Definition 10 An interpretation for an expression
consists of a set D (the domain of the interpretation)
and a map M that maps every n-ary operation symbol
in the expression to a function in Dn → D.

A set extension I ′ of I is said to be continuous if
every symbol p is mapped to a continuous set extension
of M(p). I ′ is said to be canonical if every n-ary oper-
ation symbol p is mapped to a canonical set extension
of M(p).

The distribution function specifies enough of the
way variables are shared between two expressions to
support the central definition of this paper:

Definition 11 Let e be an expression and let I be an
interpretation that maps each n-ary operation symbol
in e to a function in Dn → D, for n ∈ {1, 2}. We
define by recursion on the structure of e, distinguishing
three cases.

Suppose e is a variable. The function computed by
e under I is the identity function on D.

Suppose e is ϕe1 where ϕ is a unary operation sym-
bol. The function computed by e under I is f◦f1, where
f is the function in D → D that is the result of map-
ping by I of ϕ and where f1 is the function computed
by e1 under I.

Suppose e has the form e1 � e2, where � is a binary
operation symbol. Suppose δ is the distribution function
for 〈e1, e2〉 and D. The function computed by e under
I is � ◦ (f1 × f2) ◦ δ, where � is the result of mapping
by I of �.

The definition assumes that no constants occur in
expressions. We can simulate a constant by replacing it
by a new variable and substituting the constant for that
variable. In this way the definition does not suffer a
loss of generality for expressions consisting of variables,
constants, unary operators, and binary operators. At
the expense of cumbersome notation (or sophisticated
methods to avoid this), the function δ can be extended
to cover n-ary operation symbols with n > 2.

The definition should conform to our intuition about
expression evaluation. Suppose that D is the set of in-
tegers, that the functions computed by e1 and e2 yield
2 and 3, respectively. Then the definition should en-
sure that the function computed by e1 + e2 yields 5
when the interpretation maps + to addition over the
integers. The following lemma confirms this intuition
in general for arbitrary binary operation symbols.

Lemma 1 Let e1 � e2 be the expression in Defi-
nition 11. Suppose that 〈a1, . . . , am〉 ∈ Dm is
substituted for 〈x1, . . . , xm〉 and that 〈b1, . . . , bn〉 ∈
Dn is substituted for 〈y1, . . . , yn〉. Let 〈c1, . . . , cq〉
be such that 〈a1, . . . , am, c1, . . . , cq〉 is substituted for
〈x1, . . . , xm, y1, . . . , yq〉.

It is the case that

f(〈a1, . . . , am, c1, . . . , cq〉)
= f1(〈a1, . . . , am〉)�f2(〈b1, . . . , bn〉),

where f is the function computed by e1 � e2 according
to Definition 11.

Proof:

f(〈a1, . . . , am, c1, . . . , cq〉) =
(� ◦ (f1 × f2) ◦ δ)(〈a1, . . . , am, c1, . . . , cq〉) =
(� ◦ (f1 × f2))δ(〈a1, . . . , am, c1, . . . , cq〉)) =
(� ◦ (f1 × f2))〈〈a1, . . . , am〉, 〈b1, . . . , bn〉〉 =
�((f1 × f2)(〈〈a1, . . . , am〉, 〈b1, . . . , bn〉〉) =

f1(〈a1, . . . , am〉)�f2(〈b1, . . . , bn〉).

Lemma 2 Let I be an interpretation for expression e
and let I ′ be a set extension of I. Let f (f ′) be the
function computed by e under the interpretation I (I ′).
Then f ′ is a set extension of f .

Though a minor lemma in set theory, the special
case where the domains of I and I ′ are the reals and
intervals respectively, it plays the role of the Funda-
mental Theorem of Interval Arithmetic2.

Proof: We proceed by induction on the depth of the
expression. Suppose the lemma holds for all expres-
sions of depth at most n − 1. Let n be such that at
least one of e1 and e2 is of depth n−1 and the other is
of depth at most n − 1. Suppose I has domain D and
map M . Let e be e1 � e2 and suppose that M maps �
to �. Let δ be the distribution function of e1 and e2 in
that order. Let f1 and f2 be the functions computed
by e1 and e2, respectively, under I. Let f ′

1 and f ′
2 be

the functions computed by e1 and e2, respectively, un-
der I ′. This gives as induction assumption that f ′

1 and
f ′
2 are set extensions of f1 and f2.

Let f and f ′ be the functions computed from
e1 � e2 under interpretations I and I ′, respec-
tively. Let A1, . . . , Am, B1, . . . , Bn be subsets of D
containing the elements a1, . . . , am, b1, . . . , bn. Let
c1, . . . , cq be such that δ maps 〈a1, . . . , am, c1, . . . , cq〉
to 〈〈a1, . . . , am〉, 〈b1, . . . , bn〉〉.

Supposing that �′ is a set extension of �, we have

f(〈a1, . . . , am, c1, . . . , cq〉) =
f1(a1, . . . , am)�f2(b1, . . . , bn) ∈

f ′
1(A1, . . . , Am)�′f ′

2(B1, . . . , Bn) =
f ′(A1, . . . , Am, C1, . . . , Cq),

2Except that the statement in [4] inadvertently states instead
the definition of interval extension.

which is the function computed by e under I ′. Both
equalities are justified by Lemma 1.
Theorem 2 Let e be an expression with a variable se-
quence 〈x1, . . . , xn〉. Let I be an interpretation for e,
and I ′ a canonical set extension of I. Let f (f ′) be the
function computed by e under the interpretation I (I ′).
If each variable xi occurs only once in e, then f ′ is the
canonical set extension of f .

Proof: Following the same steps and notation as in
the previous proof, we have

f ′(A1, . . . , Am, B1, . . . , Bn) =

(by Lemma 1)

f ′
1(A1, . . . , Am)�′f ′

2(B1, . . . , Bn) =

(by the induction assumption)

f1(A1, . . . , Am)�′f2(B1, . . . , Bn) =

(using that f ′
1 and f ′

2 are canonical set extensions and
that e1 and e2 have no variables in common)

{y ∈ D | ∃y1 ∈ f1(A1, . . . , Am),
∃y2 ∈ f2(B1, . . . , Bn).y = y1�y2} =

{y ∈ D | ∃a1 ∈ A1, . . . ,∃am ∈ Am,

∃b1 ∈ B1, . . . ,∃bn ∈ Bn.

y = f1(a1, . . . , am)�f2(b1, . . . , bn) =
f(a1, . . . , am, b1, . . . , bn)} =

f(A1, . . . , Am, B1, . . . , Bn).

5. Continuous set extensions

A fundamental fact in interval analysis can be stated
intuitively as

We can get arbitrarily close to the range of
the point evaluation of an expression e by
computing the interval evaluation of e with
a sufficiently narrow interval.

So far we were only concerned with interval arithmetic.
This fact, being a continuity property, gets us into the
realm of analysis. So it is here that interval analysis
begins.

As the validity of the statement and proof of such a
property depends on a rigorous definition of the func-
tion computed by an expression, it is wise to revisit the
concepts and the theorems.
Definition 12 Let F be a family of sets of D. A se-
quence S = 〈Sn〉n∈N of subsets of D converges with
respect to F if it is nested, belongs to F , and satisfies⋂

n∈N Sn = {a}, where a is an element of D. We say
that the singleton set {a} is the limit of S.

Definition 13 Let F ∈ P(S) → P(T), and let F1 and
F2 be two families of sets of S and T , respectively.

Let A = 〈An〉n∈N be any convergent sequence w.r.t.
F1 with limit {a}. F is continuous w.r.t. F1 and F2

in {a} iff 〈F (An)〉n∈N is a convergent sequence w.r.t.
F2.

Continuity is a very strong requirement. This raises
the concern that no interesting examples might exist.
The next lemma shows that this concern is unnecessary.

Definition 14 Let f ∈ Rn → R, and let ‖.‖ be the
Euclidean norm on Rn. The function f is Cauchy-
continuous at c ∈ Rn iff for every ε > 0 there exists a
δ > 0 such that ‖x− c‖ ≤ δ and x ∈ dom(f) imply that
|f(x) − f(c)| ≤ ε.

A sequence 〈xi〉i∈N with xi ∈ Rn for all i ∈ N is
Cauchy-convergent to ξ ∈ Rn iff for every ε > 0 there
exists an n such that ‖ξ − xi‖ ≤ ε for all i > n.

Lemma 3 Let f ∈ Rn → R be Cauchy-continuous
at every x ∈ dom(f) and suppose f has a canonical
interval extension F . Then F is continuous w.r.t. the
family of boxes of Rn, and the family of intervals of R.

Proof : Suppose that x is an element of Rn, and that
〈Bn〉n∈N is a sequence of boxes in In that converges
to x w.r.t. the family of boxes of Rn. To prove that
F is continuous w.r.t. the family of boxes of Rn, and
the family of intervals of R, we have to show that the
sequence 〈F (Bn)〉n∈N converges w.r.t. the family of in-
tervals of R. It is clear that this sequence is nested
and belongs to the family of intervals of R. So, we
only need to show that

⋂
n∈N F (Bn) is a singleton. In

fact, ⋂

n∈N
F (Bn) = {f(x)}.

The following inclusion is obvious: {f(x)} ⊂⋂
n∈N F (Bn). Let y be an element of

⋂
n∈N F (Bn).

This implies that for every n ∈ N , there exists xn

in Bn such that f(xn) = y. Because (Bn)n∈N is a
nested sequence of boxes that intersect in {x}, the se-
quence (xn)n∈N Cauchy-converges to x. Since f is
Cauchy-continuous at x, we have f(x) = y. Therefore,⋂

n∈N F (Bn) ⊂ {f(x)}, which proves the lemma.

Lemma 4 Let f ∈ S → T , and let F1 and F2 be two
families of sets of S and T , respectively. Let F be a
continuous set extension of f w.r.t. F1 and F2 and let
A = 〈An〉n∈N be a convergent sequence w.r.t. F1 with
limit {a}. Then F ({a}) = {f(a)}.

Proof : As F is continuous w.r.t. F1 and F2,
〈F (An)〉n∈N is a convergent sequence w.r.t. F2 with
limit, say, {b}. As F is a set extension of f we have

that {f(x) | x ∈ Ai} ⊂ F (Ai), for all i ∈ N . As a ∈ Ai

for all i ∈ N , we have that f(a) ∈ {f(x) | x ∈ Ai} for
all i ∈ N . Hence f(a) ∈ ⋂

i∈N F (Ai) = {b}. So we
must have f(a) = b.

We are interested in interval extensions that are not
canonical, yet are continuous.

Starting from a family F of sets of a set D, we can
construct a family of sets Fn of Dn, for any natural
number n, by taking all the Cartesian products of any
n sets in F . So, for any natural number n, and for
any function F ∈ P(Dn) → P(D), we can study the
continuity of F w.r.t. Fn that was constructed from F .
In this way, we treat the continuity of F by referring
to F instead of Fn.

In what follows, we suppose that the family of sets F
of the domain D of an interpretation is given, and that
the continuity of a set extension of an n-ary operation is
based on this family. So, we will not use “w.r.t.” from
now on. In the case where D is R, F is the family of
intervals in R.

Definition 15 Let I be an interpretation with domain
D and map M . A set extension I ′ of I is said to be
continuous if every symbol p is mapped to a continuous
set extension of M(p). I ′ is said to be a canonical
interval extension of I iff every symbol p is mapped to
a canonical interval extension of M(p).

Theorem 3 Let e be an expression. Let I be an inter-
pretation for e, and let I ′ be a continuous set extension
of I. Let f (F) be the function computed by e under
the interpretation I (I ′). Then F is a continuous set
extension of f .

Proof: From Lemma 2, the function F is a set ex-
tension of f . So we only need to prove that F is contin-
uous. To do so, we proceed by induction on the depth
of the expression e. The theorem holds when e has no
subexpressions, that is, when e is a variable. In that
case f and F are the identity functions, independently
of I and I ′. The identity function in P(D) → P(D) is
continuous.

This takes care of the base of the inductive proof.
Let the induction assumption be that the theorem
holds for all expressions of depth at most d − 1. Let
e be the expression e1 � e2, where one of the subex-
pressions has depth d − 1 and the other has depth at
most d − 1. Suppose that the interpretation I has
domain D and maps � to �. Let the interpretation
I ′ have P(D) as domain and let it map � to �′, a
continuous set extension of �. Let δ be the distribu-
tion function with D for e1 and e2 in that order. Let
c1, . . . , cq be such that δ maps 〈a1, . . . , am, c1, . . . , cq〉
to 〈〈a1, . . . , am〉, 〈b1, . . . , bn〉〉.

Let F , F1, and F2 be the functions computed
under I ′ by e, e1, and e2, respectively. Suppose
that 〈Ai

1〉i∈N , . . . , 〈Ai
m〉i∈N and 〈Bi

1〉i∈N , . . . , Bi
n〉i∈N

are sequences of subsets of D that converge respec-
tively to {a1}, . . . , {am} and {b1}, . . . , {bn}. Ac-
cording to the induction assumption F1 and F2

are continuous set extensions. This implies that
〈〈F1(Ai

1, . . . , A
i
m), F2(Bi

1, . . . , B
i
n)〉〉i∈N converges to

{〈f1(a1, . . . , am), f2(b1, . . . , bn)〉}, by Lemma 4.
Let 〈Ci〉i∈N be any such that δ(Ci) =

〈〈Ai
1, . . . , A

i
m〉, 〈Bi

1, . . . , B
i
n〉〉 and such that 〈Ci〉i∈N

converges to {〈〈a1, . . . , am〉, 〈b1, . . . , bn〉}
We show that F is a continuous set exten-

sion of f by showing that 〈F (Ci)〉i∈N converges
to {f(〈a1, . . . , am, c1, . . . , cq〉)}. To do so, we need
to show that the sequence 〈F (Ci)〉i∈N is nested,
and that

⋂
i∈N F (Ci) is the right value, namely

{f(〈a1, . . . , am, c1, . . . , cq〉)}.
F (Ci+1) =

(by Definition 11)

(�′ ◦ (F1 × F2) ◦ δ)(Ci+1) =

(by application of δ)

(�′◦(F1×F2))(〈〈Ai+1
1 , . . . , Ai+1

m 〉, 〈Bi+1
1 , . . . , Bi+1

n 〉〉) =

(by Definition 4)

�′(〈F1(〈Ai+1
1 , . . . , Ai+1

m 〉), F2(〈Bi+1
1 , . . . , Bi+1

m 〉)〉) ⊂
(by the induction assumption and continuity of �′)

�′(〈F1(〈Ai
1, . . . , A

i
m〉), F2(〈Bi

1, . . . , B
i
m〉)〉) = F (Ci),

which proves that 〈F (Ci)〉i∈N is nested. As for the
convergence to the right value, we observe the follow-
ing:

⋂

i∈N
F (Ci) =

(by Definition 11)
⋂

i∈N
(�′ ◦ (F1 × F2) ◦ δ)(Ci) =

(by application of δ)
⋂

i∈N
(�′ ◦ (F1 × F2))(〈〈Ai

1, . . . , A
i
m〉, 〈Bi

1, . . . , B
i
n〉〉) =

(by Definition 4)
⋂

i∈N
�′(〈F1(〈Ai

1, . . . , A
i
m〉), F2(〈Bi

1, . . . , B
i
m〉)〉) =

(by continuity of �′)

�′(〈
⋂

i∈N
F1(〈Ai

1, . . . , A
i
m〉),

⋂

i∈N
F2(〈Bi

1, . . . , B
i
m〉)〉) =

(by the induction assumption)

�′(〈{f1(〈a1, . . . , am〉)}, {f2(〈b1, . . . , bn〉)}〉) =

(by Lemma 4)

{f1(〈a1, . . . , am〉)}�{f2(〈b1, . . . , bn〉)} =

(because f is the function computed by e1 � e2)

{f(〈a1, . . . , am, c1, . . . , cq〉)},

which shows that F = �′ ◦ (F1×F2)◦ δ is a continuous
set extension of f , the function computed by e.

Corollary 1 Let f ∈ Rn → R be the function com-
puted by an expression e under an interpretation I that
assigns Cauchy-continuous functions to the operation
symbols in e. Let F be the function computed by e un-
der the canonical interval extension of I. Let 〈Ai〉i∈N
be nested boxes converging to {a}. Then 〈F (Ai)〉i∈N is
a sequence of nested intervals converging to {f(a)}.

In interval analysis, this corollary plays the role of Fun-
damental Theorem.

Proof: Since the image of any box by a Cauchy-
continuous function is an interval, the interval exten-
sion associated with each operation symbol is canonical
(every Cauchy-continuous function has a canonical in-
terval extension). Using Lemma 3, these interval exten-
sions are continuous. By Theorem 3, F is continuous.
By Definition 13, 〈F (Ai)〉i∈N converges to {f(a)}.

6 Conclusions

The fact that the result of an expression evaluation
in intervals gives a result that contains the range of val-
ues of the function computed by the expression cannot
be a mathematical theorem without a mathematical
definition of what it means for a function to be com-
puted by an expression. In this paper we give such a
definition and prove the theorem on the basis of it.

Another fundamental assumption in the use of in-
tervals is that, as we make the intervals in an interval
evaluation of an expression narrower, the interval re-
sult gets closer to the range of values of the function
computed by the expression. We use our definition to
prove a theorem to this effect.

Our starting point in all this is that intervals are sets
and that, therefore, interval extensions of functions are
set extensions of functions. The latter concept is an old

one in set theory and is more widely applicable. Our
definition and two main theorems are stated in terms
of sets, so apply to intervals as special cases.

This is of course only of interest to those who be-
lieve in sets as foundation of mathematics. A radically
different approach to the fundamental theorems of in-
terval analysis is found in Paul Taylor’s work (see for
example [13]). Here the starting point is topology, ax-
iomatically founded rather than set-theoretically.

If it seems that our proposed foundations for inter-
val methods are overly complex in comparison with the
way they are given in the literature, we are comforted
by Einstein’s dictum: Make things as simple as possi-
ble, but not simpler.

7 Acknowledgements
This research was supported by the University of

Victoria and by the Natural Science and Engineering
Research Council of Canada. We owe a great debt of
gratitude to our anonymous reviewer whose extremely
detailed and helpful report has helped us to improve
this paper.

References

[1] N. Bourbaki. Théorie des Ensembles (Fascicule de
Résultats). Hermann et Cie, 1939.

[2] S. H. Cheng and C. B. Jones. On the usability of
logics which handle partial functions. In Proc. of the
3rd. Refinement Workshop, pages 51–69, 1991.

[3] P. R. Halmos. Naive Set Theory. D. Van Nostrand,
1960.

[4] E. Hansen. Global Optimization Using Interval Anal-
ysis. Marcel Dekker, 1992.

[5] T. Hickey, Q. Ju, and M. van Emden. Interval arith-
metic: from principles to implementation. Journal of
the ACM, 48(5):1038 – 1068. 2001.

[6] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied
Interval Analysis. Springer-Verlag, 2001.

[7] J. L. Kelley. Topology. D. Van Nostrand, 1955.
[8] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.
[9] A. Neumaier. Interval Methods for Systems of Equa-

tions. Cambridge University Press, 1990.
[10] D. L. Parnas. Predicate logic for software engineering.

IEEE Trans. Softw. Eng., 19(9):856–862, 1993.
[11] H. Ratschek and J. Rokne. Computer Methods for the

Range of Functions. Ellis Horwood/John Wiley, 1984.
[12] H. Ratschek and J. Rokne. New Computer Methods

for Global Optimization. Ellis Horwood/John Wiley,
1988.

[13] P. Taylor. Interval analysis without intervals (ex-
tended abstract). In G. Hanrot and P. Zimmermann,
editors, Real Numbers and Computers 7, pages 41–45,
2006. Nancy.

Expression Defined Accuracy

A. Pokorny
Elektrobit Automotive

D 91058 Erlangen
andreas.pokorny@elektrobit.com

J.Wolff von Gudenberg
University of Würzburg

Department of Informatics
Am Hubland

D 97074 Würzburg
wolff@informatik.uni-wuerzburg.de

Abstract

In numerical computations the accuracy of the result
quite often depends on a few expressions. In numerical lin-
ear algebra, e.g., summations or dot products should very
often be computed with additional precision or accuracy.
Corresponding algorithms have been developed for a long
time and only recently revisited. The usage of these algo-
rithms would be facilitated, if we had a means in a pro-
gramming language to specify the accuracy requirements
of an expression evaluation.

In this paper we present a precision aware C++ tem-
plate library (PTL) for matrix / vector operations that pro-
vides several algorithms with different accuracy or preci-
sion characteristics for matrix multiplication and related
operations. A matrix is a template parameterized with
the number of rows and columns, the element type, a type
representing the shape, and an evaluation strategy. Cur-
rently only two shapes are implemented, fixed or dynami-
cally adaptable dense arrays. We distinguish between row
and column vectors. The access to submatrices and -vectors
is accomplished by an overloaded function template. It is
possible to adapt the expression system to types declared in
other libraries or declared by the user.

The concept of expression templates is extended in a way
that allows the user to specify rules for the evaluation strat-
egy. The expression tree is constructed by overloading the
operators for the expression type. In a second but still
compile-time step the evaluation strategy is chosen and the
trees are transformed and prepared for run-time execution.
The strategy is determined by the tag type of the result, but
it can be explicitly set using the index operator.

The evaluation strategies can be combined with loop un-
rolling or loop fusion. Note that the latter not only in-
creases the precision but also the accuracy of the result,
since this strategy directly implements the dotprecision ex-
pression evaluation in the XSC languages.

The library provides evaluation strategies for matrix and

vector expressions with k-fold precision and with least bit
accuracy. Efficiency and accuracy of the algorithms are
tested vs. the Gnu multiple precision library GMP.

1. Introduction

An efficient, reliable, accurate library for matrix or vec-
tor arithmetic is the backbone of many scientific codes. The
design and implementation of such libraries, hence, is an
everlasting topic in research and development of scientific
algorithms. In this paper we present a library for linear al-
gebra that allows to evaluate expressions with varying pre-
cision or accuracy. We use the term precision to specify
the number of bits used in an operation on input data and
accuracy to characterize the number of correct bits of the
result. Note that these may be different in expressions. If
the expression a + b − a is evaluated with double precision
(53 bit) for a = 1e50 and b = 1, e.g., the result is 0 with
no bit of accuracy. That simple example may motivate the
quest for more accurate expression evaluation algorithms
which indeed have been developed a long time ago [5]. A
key component of those algorithms often is the computation
of accurate sums or dot products which have quite recently
been revisited in two papers [12, 11].

In our precision aware template library PTL we use the
concept of expression templates [14] to evaluate linear al-
gebra operations. We separate expression evaluation into 4
steps: In the first step the expression tree is built, then the
evaluation strategy is determined, thirdly the expression is
transformed according to the strategy, and finally evaluated.
Rules are used to check for the validity of the generated ex-
pression. These rules can be extended by the user. Usually
the strategy is given by the resulting object, but it can be
freely chosen, and new strategies may be added. Transfor-
mation rules for standard strategies and data types are pro-
vided by the library. The user can specify rules for adaption

of foreign types. After the appropriate transformation the
evaluation is straightforward.

In the following section 2 we give more details about this
4-step expression evaluation, how it is implemented in our
PTL. A discussion and comparison with other libraries is
performed in section 3.

2. Rule Based Expression Templates for Linear
Algebra

2.1. Overview

The library provides data type templates for matrices and
vectors parameterized with value type, shape and dimen-
sion. In the frontend operators and functions for these types
are overloaded to obtain a basic expression type. The ex-
pressions are transformed and evaluated according to vari-
ous strategies by the backend. (see Figure 1)

2.2. Concepts of Data Types

In our precision aware linear algebra library (PTL) ex-
pressions can be evaluated via different strategies in order
to fulfill the increased accuracy or precision requirements
we have in mind. Hence data types, i.e. vectors and matri-
ces, are parameterizedwith their element type that usually is
a scalar type, a fixed or dynamic dimension type, the shape
of storage allocation which currently means densely packed
rectangular structures, and the strategy type for evaluation.

This leads to the definition of the matrix concept where
we use the proposed N2081 syntax[4].

concept matrix < typename value_type > {
typename result_type;
typename dimension_type;
typename storage_type;
typedef matrix_tag result_tag;
typename strategy_type;

result_type operator()
(size_t row, size_t column) const;

result_type & operator()
(size_t row, size_t column);

dimension_type dimension() const;

}

Listing 1. matrix concept

The strategy type and the second () operator are optional.
We model row vectors and column vectors as different

concepts, each with static or dynamic dimension, hence 4
similar templates exist.

For the element type (value type) arithmetic opera-
tors and a parameterless constructor are required. Hence
the standard floating-point types as well as appropriate user
defined types can be used.

2.3. Expression Handling

Currently we provide the standard operators for matrix-
vector arithmetic with different strategies available for ma-
trix and matrix-vector multiplication. Since we have sepa-
rate types for row and column vectors, we have 14 different
overloadings of the multiplication operator. Some of these
mean dot products and deserve a specific handling, others,
like multiplication with a scalar value, do not.

We need a delayed and flexible evaluation of expres-
sions, therefore we proceed in four steps:

1. The expression is parsed and checked for validity. If it
is invalid an appropriate error message has to be pro-
duced.

2. The evaluation strategy is taken from the target object,
either implicitly or by direct call of the index operator.

3. The expression is transformed according to the strat-
egy.

4. Code for the evaluation strategy is generated.

A general overview of our treatment of expressions is
given in Figure 1.

da
ta

st
ru

ct
ur

es Frontend

operators and functions

basic expression

representation
rule system

B
ackend

transformation of expressions

basic system GMP accurate

Figure 1. Treatment of Expressions

2.4. Expression Encoding

An expression consisting out of binary or unary opera-
tions is parsed into a syntax tree where inner nodes are op-
erators and the leaves are the operands. The subtrees are
expressions as well, either unary or binary. Because their
structure is known, they can be obtained by inheritance from
the general expression type constrained by an instantiation
with themselves. This is known as the curiously recurring
template pattern [3].

The basic expression template together with its
substructures for binary or unary expressions realizes the
expression type. The substructures are parameterized by
the operand type(s), the dimension type as well as the re-
sult and operator tag. The operators are overloaded so that
each application of an operator generates an expression tree.

2.5. Rules

The result type of an overloaded operator is a function
of the operand types. Validity of the instantiation has to be
checked as well as appropriate actions or transformations
have to be performed. Usually the conditions are checked
by each operator. But since there are similar or even identi-
cal constraints for different operators, we separate the rules
for binary or unary operators into two meta functions that
are applied at compile time to the result type. (A meta func-
tion is a template and application means partial instantia-
tion.) These rules refer to the language rule “Substitution
failure is not an error” (SFINAE), i.e. instantiations that
would lead to illegal types are not performed by the com-
piler and thus do not provoke an error.

The SFINAE language feature is used by the boost en-
able if utility [1] that provides a means to build a powerful
compile time overload resolution system. We further inten-
sively use the boost meta programming library [1].

A rule is a partial specialization of a template for unary
or binary operators, respectively. That basic template meta
function depends on the operand type or types, the operator
type tag and a hidden type parameter with default void,
it is derived from the false constant of the boost metapro-
gramming library (mpl::false). Every single speciali-
sation, i.e. each concrete rule should therefore inherit from
mpl::true , the true constant.

One rule splits all matrix and vector dot product mul-
tiplications in the input tree into 2 operations, the binary
inner product and the unary accumulation or summation.
Hence, this rule leads to different expression trees for the
same source code depending on the data types, see figure
2. That gives way to define more accurate versions of dot
products.

An other rule can be applied for all operator tags which
require equal dimensions. In the body that defines the

assignment tag

A multiplication tag

entry tag

C

entry tag

B

assignment tag

A accumulation tag

inner product tag

entry tag

C

entry tag

B

Figure 2. Two Expression Trees for A = C ∗B;
up) C :=vector, B :=scalar
bottom) C :=matrix, B :=vector

result type the corresponding runtime checks, using
assertions, are performed, if at least one dimension is dy-
namic. Several other meta functions are called to assemble
all aspects of the actually encoded expression type.

In each rule a part of the expression tree is gener-
ated. The handle value tag meta function ensures
that values are wrapped into unary expressions in order to
match our expression representation. Sometimes the tree is
slightly reorganised. Combined assignment operators like
“+=”, e.g. are split into operation and assignment to in-
crease the flexibility of the subsequent evaluation. In the
default case they are reunited by the compiler optimization.

So far the rule framework can handle only types that
inherit from one of the basic expression types. The
adapt type template enables the insertion of literals,
primitive variables or user defined types into the expres-
sion tree as left or right hand operands. That meta func-
tion is structured like the rule templates, i.e. it defines a
result type that is returned by an init function. It has
to be instantiated with a foreign type and the operator tag in
an operator or function definition. Additional wrappers and

adapter functions are necessary, if a foreign type is used as
target of an assignment, since the assignment operator can-
not be globally overloaded.

The rule framework has factored out the tedious compat-
ibility tests at many places. The rules only depend on the
properties of an expression how they are visible as template
parameters of basic expressions. The genuine semantics of
the operators in a matrix vector library is not relevant at this
point.

2.6. Expression Transformation and Evalu-
ation

Expressions are transformed and evaluated with respect
to a given strategy. The expression tree, a strategy type and
a target object for the results are specified, and then the eval
function proceeds as follows

• append assignment node, if needed

• transform input tree

• optionally generate temporary data structure

• evaluate

• optionally assign temporary data structure

The expression tree is transformed into a tree out of ba-
sic nodes that may be unary or binary nodes, respectively.
The first template parameter of a node is the strategy tag. A
strategy is thus defined as a collection of partially special-
ized binary or unary node templates, that use the tag type
of the strategy as first parameter. Each valid combination
of operand types and operator tag matches to a particular
structure tempalte. Usually a new strategy extends the de-
fault single strategy basic system. In the default strat-
egy the evaluation of a unary node with the accumulation
tag set generates a simple for loop to sum all entries of a
vector. The strategy kfold dot product in turn calls a
more sophisticated algorithm, see section 2.7.

Because these two strategies only refer to one node in
the expression tree, they could have been called on the orig-
inal tree. But since some strategies may need a differently
structured tree, we provide an explicit transformer tem-
plate with a given strategy and an expression tree type as
template arguments. That template calls the meta func-
tions get unary node, get binary node to con-
struct the new tree. These inherit from get node, a tem-
plate whose two arguments are a strategy and a meta func-
tion class.

Inside get node we check for a single strategy, if the
instantiation is defined, and delegate the call to the par-
ent strategy, if not. The default implementation for the
unary_node and binary_node template is derived

from a structure called undefined. The partial special-
izations of these node templates that belong to a strategy,
are not derived from that structure. Hence the check we
perform for a strategy is implemented with the derivation
test is base and derived of Boost.TypeTraits.

Note that sequences of strategies can be stored as type
lists using an overloaded comma operator. In this case the
meta function get node has to test all strategies of the
sequence, as described above. If there is no partial special-
ization for any of the tested strategies, the whole sequence
is transformed with a meta function that returns the base
strategy, if there is any.

Depending on the implemented operator tag, the node
class templates of the default strategy provide different
methods for evaluation. The assignment nodes, which are
always at the root of the tree provide an execute method. For
other operator tags paranthesis operators, are implemented,
that provide access to the data or the result of the evaluation
of the respective subtree.

2.7. Strategies for Dot Products

The standard strategy transforms a dot product multipli-
cation into two operations, the componentwise inner prod-
uct and the accumulation, and then calculates these 2 oper-
ations with standard precision. As dot products often occur
in expressions that are crucial for the overall accuracy of
the result various more precise or even more accurate algo-
rithms have been developed in the past.

The simplest modification is to compute each operation
with doubled or k-fold precision. This can be simulated
without changing the data format by error free floating-
point multiplication and summation. These operations
which deliver a result and a remainder term as output are
well-known for a long time [10] and have been reconsid-
ered in [12].

Let us treat the function two sum for error free addition
in more detail.

template<typename T>
void two_sum(T a, T b, T& sum, T& rem) {

sum = a + b;
T z = sum - a;
rem = (a - (sum - z)) + (b - z);

}

We then have a+b = sum+rem and mantissae of sum
and rem do not overlap. Since in real arithmetic sum =
a + b and rem = 0, we have to stop the compiler from
aggressive optimization in this function.

In a similar way we can define error free multiplica-
tion that uses a splitting aof the factors into two half-long
floating-point numbers.

For the accumulation of a vector (pi) the error free addi-
tion can be cascaded.

s[1] = p[1];
for(i=2;i<=n;i++) {

two_sum(s[i-1], p[i], s[i], q[i]);
}

After this first path, we have in real, unrounded arith-
metic

s =
n∑

i=1

pi = sn +
n∑

i=2

qi

Note that we have not lost any information up to this point,
we only condensed the main part of the sum in sn and kept
all the remainders. The mantissae of sn and qn do not over-
lap. Hence, we can continue with the accumulation of sn

and the qi.
The template function sum k vert<int K> performs

this accumulation up to depth K thus producing a result in k-
fold precision. For a dotproduct the vector is prepared from
the values and remainders of the error free inner product
operation.

These strategies enlarge the precision of the result, fur-
ther iteration can be used to guarantee a specific accuracy.
e.g. Bohlender already proved in [2] that maximal accuracy
is achieved for n−1 iterations. In [11] these algorithms are
revisited and many more variants are proposed. We imple-
mented one of those as our strategy accurate system.

2.8. Instantiation of Expressions with Dot-
products

The main message of the paper is to show that instanti-
ation of expression templates according to different strate-
gies is possible. We, therefore, illustrate the treatment of

y[kfold dot product<K>]=A*x
in more detail. Consider the following program frag-

ment 1:

int main ()
{

ptl::fixed_matrix<float,10,10> A(0.0f);
A = init_mat();
ptl::fixed_cvector<float,10> x(0.0f);
x = init_col();

y[kfold_dot_product<4>] = A*x;
}

Listing 2. Matrix vector multiplication

The matrix and column vector templates are instantiated
as unary expressions for which the ∗ operator is overloaded
to obtain the following expression.

binary_expression<
unary_expression<

1In the listings we have abbreviated the names, and left out some const
modifiers

fixed_matrix<float,10,10>
, fixed_dimension<10,10>
, matrix_tag
, value_tag>

, unary_expression<
fixed_cvector<float,10>
, fixed_dimension<10,1>
, column_vector_tag
, value_tag>

, fixed::dimension<10,1>
, column_vector_tag
, multiplication_tag>

Listing 3. Expression tree

At this stage the rule for scalar products fires and rear-
ranges the expression tree.

template<class LT,class RT,class OpT>
struct rule_2<LT,RT,OpT,

typename boost::enable_if<
boost::mpl::and_<

is_same<mul_tag,OpT>
, have_mul_dimensions<LT, RT>
, have_mul_result_tags<LT,RT>
, mul_incl_scalar_product<LT,RT>
>

>::type
>
: boost::mpl::true_

{
typedef mul_dimension<LT, RT> dim_picker;
typedef binary_expression<

typename handle_value_tag<LT>::type
, typename handle_value_tag<RT>::type
, typename dim_picker::type
, typename mul_result_tags<LT,RT>::type
, inner_product_tag>
inner_expression_type;

typedef unary_expression<
inner_expression_type
, typename dim_picker::type
, typename mul_result_tags<LT,RT>::type
, accumulation_tag>
result_type;

static result_type init(LT l, RT r)
{

return result_type(
inner_expression_type (

handle_value_tag<LT>::handle(l)
, handle_value_tag<RT>::handle(r)
, dim_picker::init(l.dim(), r.dim())
)

, dim_picker::init(l.dim(), r.dim())
);

}
};

Listing 4. Rule transforms expression tree

template<class Strategy, class T, class DT
, class RTag, class OTag>

struct transformer<Strategy,
unary_expression<T, DT, RTag, OTag>,void>

{
typedef transformer<Strategy,T> transed;

typedef typename get_unary_node<
Strategy
, typename transed::type
, DT
, RTag
, OTag
>::type type;

static type init(
unary_expression<T,DT,RTag,OTag> expr){
return type(expr.dimension(),

transformed::init(expr.operand));
}

};

Listing 5. Backend transformation of the tree

The transformer meta function transforms the ex-
pression tree into a tree of nodes that can be evaluated ac-
cording to the given strategy. We only show the code for
unary expressions.

The left hand side of the assignment defines the evalua-
tion strategy that influences the transformation of the tree.
The following node structure template will be instantiated
during the transformation process.

template<size_t K,class Indexer,
class DimT,class ResultTag,class ET>

struct unary_node<kfold_dot_product<K>,
Indexer,DimT,ResultTag,accumulation_tag,ET>

: basic_node<DimT,ResultTag
,accumulation_tag>,
defined

{
...

void prepare_values(CT cursor, CT end) {
...

for(size_t i = 1; cursor != end;
++cursor, ++i) {

value_type h;

two_product(
indexer.left_value(cursor.left)
, indexer.right_value(cursor.right)
, h
, values[i]);

two_sum(acc, h,
acc, values[offset+i-1]);

subtraction tag

accumulation tag

inner product tag

entry tag

A

entry tag

x

entry tag

b

Figure 3. Strategy dotproduct evaluation

}
values.back() = acc;

}

result_type operator()(size_t row,
size_t column) {

prepare_values(cursor, end);
return sum_k_vert<K-1>(values);

}
};

Listing 6. Evaluation of expression tree

When the tree is assigned or access by the () operator,
code is generated for the proper strategy.

2.9. Dotproduct Expressions

Dotproduct expressions [15], i.e. dot products built with
more than one operator, can be evaluated with arbitrary
accuracy, if the summation is defered further. They fre-
quently occur in error correction methods where high accu-
racy is essential. For this purpose we define a new strategy
dotexpression that further transforms the expression
tree.

The difference is illustrated for the defect term d = Ax−
b in Figure 3 and Figure 4. We recall the semantics of our
accumulation tag is that all arguments are collected
and summed up according to the strategy.

For Figure 4 i.e.for the new strategy dotexpression
this means that the exact sum with one final rounding is
computed.

In Figure 3 on the other hand the final subtraction suf-
fers from high cancellation, even if the accumulation of the
matrix-vector product has been performed with full accu-
racy.

accumulation tag

inner product tag

entry tag

A

entry tag

x

negation tag

entry tag

b

Figure 4. Strategy dotexpression evaluation

2.10. Strategies for Efficiency

For efficiency we implemented the unrolling of loops,
a block based strategy and two different SIMD strategies
(3DNOW and SSE2) exploiting the new architectures and
extensions of the instruction set for vector processing. First
tests show a moderate acceleration for unrolling. The other
strategies currently suffer from temporary objects and copy-
ing, so more sophisticated implementations will have to be
developed.

These strategies compute the expression blockwise,
without imposing special memory alignment and storage
layout requirements on the participating data structures.
Therefore blocks have to be filled elementwise prior to the
calculation, at the leaves and in certain nodes inside the tree.
A node of these strategies always returns blocks containing
the values of adjacent results. This overhead was not opti-
mized by the compiler, so depending on the chosen block
size the resulting binary code was either slower or as fast as
an elementwise evaluation without these instructions. We
believe that a different evaluation approach could avoid the
unnecessary load and store operations, but that topic was
not investigated any further.

2.11. Validation and Test

To validate our implementation of the dot product strate-
gies, we generated ill-conditioned dot products and com-
pared the results with a GMP strategy that evaluates the ex-
pressions with arbitrary precision.

We also measured the time for various strategies. As
expected the time for the accurate strategy depends on the
condition number. The other algorithms do not produce
trustable results.

Runtime of x*y with conditioned vectors (input type:
double, length: 500, on AMD64 3000+ with GNU/Linux
and g++-4.1.1 using GMP-4.2.1; all libraries and bench-
marks were compiled with “-O3 -march=athlon64”)

The figure displays the runtime of an accumulation for
increasing condition number.

0

5

10

15

20

25

30

1 1020 1040 1060 1080 10100 10120

tim
e

[1
0−

5
s]

condition number

Figure 5. Conditioned Runtime

• Recursive sum, no expression templates();

• default evaluation() ;

• kfold dot product< 2 >() ;

• kfold dot product< 3 >() ;

• Accurate Sum with double() ;

• kfold dot product< 4 >() ;

• Accurate Sum with long double() ;

• GMP 256 bit () ;

• GMP 512 bit() ;

All graphs but the recursive sum and default evaluation are
restricted to runs satisfying: erelative ≤ 1 × 10−15

2.12. Extension of the Library

Although the architecture of the PTL library is quite in-
volved, it is relatively easy to extend. New functions can be
entered by

1. defining a new operator tag

2. specifying a rule for the correct use

3. defining two frontend functions one for foreign types
and one for known types

4. extending a strategy by defining a new specialisation
of a node structure

A new strategy can be introduced by compile time exten-
sion of the basic strategy tag type. For the new tag type all
instantiations of nodes that differ from the extended strategy
have to be specialized. This leads to a new transformation
of the expression tree.

3. Related Libraries

The most established C++ library for linear algebra is the
matrix template library MTL2 [13]. Its architecture is sim-
ilar to the STL. Matrices and vectors are defined as param-
eterized containers. For the optimization it uses the basic
linear algebra instruction set [7] and a template library for
small fixed size objects in particular. Template meta pro-
grams are used to reorder or unroll loops, the operations are
executed step by step, expression templates are not used.
There is only one strategy for evaluation, the standard way.

A complete reorganisation of the MTL is currently on the
way. The MTL4 will implement a cursor concept instead of
iterators, i.e. a strict separation of accessing the data, their
position in the sequence, and the way of traversing it. In
contrast to the array notation the cursor concept can store
compile time data and use these for optimization. With re-
spect to the evaluation of expressions there are no important
differences to MTL2.

The boost ublas library [6] on the other hand uses ex-
pression templates but mainly to provide an interface for
each subexpression that is comparable with that of an STL
container. The actual operation is decoupled from the struc-
ture, a functor template parameter can be instantiated. This
construction allows for defered evaluation of expressions.
But a general choice of a backend is not possible, there is
only one strategy.

Closest to our approach is the generic linear algebra sys-
tem GLAS [9]. Expression templates are used to encode
expressions and delegate their evaluation to different back-
ends. The evaluation strategies do not belong to the data
containers, but are specified via a function call applied to
the left hand side of the assignment. In contrast to PTL
strategies cannot be combined.

Acknowledgement

We wish to thank the referees for their detailed and help-
ful comments,

References

[1] D. Abrahams, B. Dawes. Boost. http://www.boost.org,
2005.

[2] G. Bohlender. Floating-point computation of func-
tions with maximum accuracy. IEEE Trans. Comput-
ers, C26 No 7:621–632, 1977.

[3] J. Coplien. Curiously recurring template patterns.
C++ Report, 7(2):24–27, 1995.

[4] D. Gregor and B. Strous-
trup. Concepts http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2006/n2081.pdf

[5] R. Hammer et al. C++ Toolbox for Verified Comput-
ing. Springer, 1995.

[6] M. Koch and J. Walter. Boost ublas.
http://www.boost.org/libs/numeric/ublas/, 2000.

[7] A. Lumsdaine and J.G. Siek. A rational approach
to portable high performance: The basic linear al-
gebra instruction set (blais) and the fixed algo-
rithm size template (fast) library. Parallel/High-
Performance Object-Oriented Scientific Computing
(POOSC), 1998.

[8] D. Marsden and J. de Guzman. Fusion 2.0.
http://spirit.sourceforge.net, 2005.

[9] K. Meerbergen, T. Knappen. Generic linear algebra
system. http://glas.sourceforge.net/, 2006.

[10] D. Knuth. The Art of Computer Programming
Addison-Wesley, 1969

[11] T. Ogita, S. Oishi, S.M. Rump. Accurate floating-
point summation. Technical Report 05 1, Hamburg
University of Technology, 2005.

[12] S.M. Rump, S. Oishi, T. Ogita. Accurate sum and
dot product. SIAM Journal on Scientific Computing,
26(6):1995–1988, 2005.

[13] J. Siek. Matrix template library 2.
http://www.osl.iu.edu/research/mtl/, 1998.

[14] T. L. Veldhuizen. Expression templates. C++ Report,
7(5):26–31, June 1995. Reprinted in C++ Gems, ed.
Stanley Lippman, 1998.

[15] J. Wolff v. Gudenberg. Reliable expression evaluation
in Pascal-SC. In R. E. Moore, editor, Reliability in
Computing, pages 81–98. Academic Press, 1988.

Originally released as an electronic publication on CD.

 IEEE Computer Society, 2006

 Order Number E2821

 ISBN-13: 978-0-7695-2821-2

 ISBN-10: 0-7695-2821-X

Library of Congress Number 2007929345

