
Applications of Interval Algorithms in Engineering

Eberhard P. Hofer and Andreas Rauh
Institute of Measurement, Control, and Microtechnology

University of Ulm
D-89069 Ulm, Germany

{EP.Hofer, Andreas.Rauh}@uni-ulm.de

Abstract

The optimization of the functionality and the guarantee
of a safe operation of a technical system are important is-
sues in industry. These aspects become even more important
when we have to deal with numerous uncertainties which
heavily influence the behavior of the technical system under
consideration and — in the worst case — cause system fail-
ure. Appropriate interval tools can offer solutions to prob-
lems where system uncertainties play a key role. Over the
recent years at the Institute of Measurement, Control, and
Microtechnology existing interval tools have been extended
and new modules have been developed.

In this contribution, successful applications of interval
algorithms to real-world problems in various fields of en-
gineering are presented. The focus is on measuring tech-
niques including interval observers and sensitivity analy-
sis as well as design of optimal and robust controllers for
continuous-time and discrete-time systems.

1 Introduction

In this paper, an overview of various applications of in-

terval algorithms in engineering is given1. A common basis

of all applications is a given mathematical model of the rel-

evant technical system described by sets of algebraic equa-

tions and ordinary differential equations. In general, two

different types of problems can be considered which are

steady state analysis and analysis of the transient behavior

of a dynamical system.

For most practically relevant dynamical systems, guaran-

teed knowledge about the influence of uncertainties of both

initial states and system parameters is of importance. In the

following, different applications are presented in order to

highlight the benefits of the use of interval methods [8, 13].

1For a complete list of recent applications of interval meth-

ods investigated by the authors, the reader is referred to

http://www.interval-methods.de.

An application in automotive engineering covers the in-

fluence of unavoidable manufacturing errors on the func-

tionality of a mechanical component. As a result, quality

control in production can be improved. A further applica-

tion deals with guaranteed estimation of physical parame-

ters for characterization and model validation of a micro-

electromechanical device.

Safety-critical applications in X-by-wire systems, e.g.,

automobiles and aircrafts, influenced by sensor uncertain-

ties usually require the verification of the systems’ func-

tionality. Such uncertainties may not only affect the behav-

ior of the feedback control, but also the monitoring of the

function in the control unit and, thus, may lead to delayed

or even false reactions in case of failure. Therefore, it is

extremely important to get reliable results about the influ-

ence of sensor tolerances on the dynamic behavior of the

closed-loop system. The task is formulated as a global in-

terval optimization problem. It is solved by using advanced

interval algorithms keeping all safety-critical states within a

pre-defined limit.

In addition to safety aspects, reduction of operation costs

of a plant is always a strong issue. In an application taken

from environmental engineering the efficiency of interval

methods not only for reliable plant operation but also for

plant and controller design is shown.

Section 2 summarizes the notation used in this paper for

the description of technical systems with uncertainties. The

selected applications in engineering can be associated with

the following problems:

• Steady state analysis for time-invariant sys-
tems (Sec. 3). The applications are a rocker arm

(Sec. 3.1) and a micro relay (Sec. 3.2).

• Analysis of discrete-time dynamical systems with
time-invariant parameter uncertainties (Sec. 4).
The applications are an airbus elevator (Sec. 4.1) and a

common-rail injection (Sec. 4.2).

• Analysis of continuous-time dynamical systems
with time-varying parameter uncertainties (Sec. 5).



The application is a subsystem of biological wastewa-

ter treatment processes (Sec. 5.2).

• State and parameter estimation using interval ob-
servers (Sec. 6). The applications are an electrostatic

microactuator (Sec. 6.1) and a micropositioning sys-

tem (Sec. 6.2).

Section 7 summarizes the most important benefits that have

been achieved by the use of interval methods for the ap-

plications presented here. An outlook on future research

concludes this contribution.

2 Technical Systems with Uncertainties

The technical applications considered in this paper are

described both by the discrete-time state-space representa-

tion [
xk+1

pk+1

]
=

[
gk (xk, pk, uk, k)
gp,k (pk, Δpk)

]
(1)

and — in the case of continuous-time processes — by ordi-

nary differential equations[
ẋ (t)
ṗ (t)

]
=

[
f (x (t) , p (t) , u (t) , t)

Δp (t)

]
. (2)

In both cases, uncertainties of the initial conditions of the

state vector x have to be taken into account. For discrete-

time models they are denoted by x0 ∈ [x0] := [x0 ; x0],
for continuous-time systems by x (0) ∈ [x (0)] :=
[x (0) ; x (0)]. In both system models, control vectors are

denoted by u. All uncertain system parameters are rep-

resented by the parameter vector p which is bounded by

the intervals pk ∈
[
p

k
; pk

]
for all k ≥ 0 and p (t) ∈[

p (t) ; p (t)
]

for all t ≥ 0, respectively.

For time-varying parameter uncertainties, their variation

rates Δp are not vanishing. Uncertainties of these quantities

can be modeled by the intervals Δpk ∈
[
Δp

k
; Δpk

]
and

Δp (t) ∈ [
Δp (t) ; Δp (t)

]
, respectively. In Fig. 1, the

influence of non-vanishing parameter variation rates Δp is

depicted for the scalar case.

p (t)
p

p

t

Δp = 0

diam ([Δp]) �= 0

Figure 1. Time behavior of time-varying pa-
rameter uncertainties.

3 Steady State Analysis for Time-Invariant
Systems

In order to analyze the steady state of a discrete-time dy-

namical system, the algebraic equations

x = g (x, p, u) (3)

have to be solved. In the continuous-time case, the steady

state is determined by solving the nonlinear algebraic equa-

tions

0 = f (x, p, u) . (4)

In both scenarios, interval enclosures for all physically rel-

evant solutions x = x (p, u) with p ∈ [p] have to be deter-

mined. To deal with this problem, possible interval arith-

metic approaches are:

Solution Approach 1
(i) Subdivision of the physically relevant domain [x].
(ii) Consistency tests for all subintervals of [x] by interval

evaluation of g and f in (3) and (4).

Solution Approach 2
(i) Subdivision of physically relevant domain [x] (optional).
(ii) Application of interval Newton methods, e.g. Krawczyk

operator.

3.1 Rocker Arm

As a first application in steady state analysis of nonlinear

systems with uncertainties, the tolerances of motion of the

valve lifter depicted in Fig. 2 are determined for the known

uncertain system parameters pi, i = 1, . . . , 8,

p1 := RG ∈ [16 ; 16.01]
p2 := RS ∈ [25 ; 25.01]
p3 := Dist ∈ [42 ; 42.01]
p4 := L1 ∈ [27.5 ; 27.501]
p5 := Δε ∈ [0.7 ; 0.7]
p6 := K2 ∈ [4 ; 4.001]
p7 := L4 ∈ [34 ; 34.01]
p8 := R1 ∈ [10 ; 10.001] .

(5)

The motion of the considered valve lifter is described by

x1 := SV (pi) = p8 + p6 − p7 cos δ(pi)
x2 := VV (pi) = p7H4(pi) sin δ(pi)
x3 := BV (pi) = p7 · [H2

4 (pi) cos δ(pi)
+ H6(pi) sin δ(pi)] ,

(6)

where the functions H4, H6, and δ are explicitly given by

the geometry of the system, see [22]. In equation (6), the

variable SV denotes the position of the valve lifter, VV its

velocity, and BV its acceleration.
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Figure 2. System parameters of a rocker arm.

The goal of the steady state analysis for this system is

to determine guaranteed bounds for all variables xj , j =
1, 2, 3 according to

x1 ∈ [x1 ; x1] = [minSV (pi) ; maxSV (pi)]
x2 ∈ [x2 ; x2] = [minVV (pi) ; maxVV (pi)]
x3 ∈ [x3 ; x3] = [minBV (pi) ; maxBV (pi)] .

(7)

In the following, the results obtained by natural interval

arithmetic, mean-value rule evaluation, and optimized in-

terval arithmetic based on global optimization [3] including

mean-value rule evaluation and monotonicity tests are sum-

marized.

Natural interval evaluation

SV (Φ) = [2.23940; 2.35208]
VV (Φ) = [2.04417; 2.61488]
BV (Φ) = [−6.23038; 10.29386]

(8)

Mean-value rule evaluation

SV (Φ) = [2.29515; 2.29634]
VV (Φ) = [2.32611; 2.32874]
BV (Φ) = [2.35106; 2.41480]

(9)

For the optimized interval evaluation the following outer in-

terval enclosures and inner interval enclosures have been

determined:

Outer interval enclosures in optimized evaluation

SV (Φ) = [2.295244; 2.296247]
VV (Φ) = [2.326920; 2.327928]
BV (Φ) = [2.382394; 2.383468]

(10)

Inner interval enclosures in optimized evaluation

SV (Φ) = [2.295318; 2.296160]
VV (Φ) = [2.327011; 2.327837]
BV (Φ) = [2.382495; 2.383367]

(11)

The desired accuracy between the outer and inner interval

bounds has been chosen as ε = 10−4 for each xj . As dis-

played in the sketch in Fig. 3, the inner interval enclosures

are always completely included in the outer ones. By the

outer and inner interval bounds (10) and (11), an enclosure

of the true range of the variable xj is given. For the sake of

comparison with non-validated evaluation techniques, the

range of all xj has been approximated by a Monte-Carlo

simulation [2] using 10,000 samples. The resulting bounds

are given in (12) and Fig. 4.

Monte-Carlo simulation

SV (Φ) = [2.29529; 2.29621]
VV (Φ) = [2.32797; 2.32789]
BV (Φ) = [2.38248; 2.38339]

(12)
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Figure 3. Reduction of overestimation by
sophisticated interval techniques for range
computation.

It should be pointed out that Monte-Carlo methods —

especially for complex, higher-dimensional systems — can

only provide tight bounds for the desired range if huge num-

bers of sampling points are used. Hence, it cannot be guar-

anteed that the bounds computed by Monte-Carlo simula-

tions are contained within the inner and outer enclosures

determined using interval arithmetic.

3.2 Micro Relay

As a second application, the estimation of system pa-

rameters for the micro relay displayed in Fig. 5 is consid-

ered [6]. Based on rough a priori enclosures of the range



Figure 4. Monte-Carlo simulation as refer-
ence for the quality of the computed interval
bounds of SV .
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Figure 6. Consistent and inconsistent param-
eter sets for the micro relay within the a priori
enclosures.

of the spring constant c ∈ [5.33; 5.38] N/m and the perme-

ability μR ∈ [690; 710] of the permalloy core as well as

uncertain measurements of the displacement z of the lever,

the parameter estimates have to be improved such that only

values are obtained which are consistent with all measured

data. The measurement of the displacement has been car-

ried out 23 times for various coil currents Ic with an un-

certainty of ±0.3μm of the measured position. Using the

measurement equations

zj(μR, c) =
2γ(μR)

3

·
(

cos
(

1
3

arccos
(

1 − 27ϑ(c, Icj)
2γ(μR)3

))
− 1

)

γ(μR) =
LFeAG

2μRAFe
+ δ0

ϑ(c, Icj) =
N2AGμ0I

2
cj

4c
, j = 1, . . . , 23

(13)

the admissible set Ω of the spring constant c and the perme-

ability μR is given by

Ω =
{[

μR

c

]∣∣∣∣ |ẑj(Icj) − z(μR, c)| ≤ 0.3μm,
j = 1, . . . , 23

}
. (14)

The resulting guaranteed parameter set Ω and the bound-

ing area containing the intervals which separate the con-

sistent and inconsistent parameter values are depicted in

Fig. 6. The accuracy of the computed sets can be influenced

by specification of the maximum admissible width of each

component of the undecided intervals. Here, an accuracy of

1% of the initial parameter uncertainties has been specified.

4 Discrete-Time Dynamical Systems with
Time-Invariant Parameter Uncertainties

After the discussion of techniques and applications of

steady state analysis of dynamical systems with uncertain-

ties, the dynamics of discrete-time models and continuous-

time models is analyzed in Sections 4 and 5, respectively.

According to Section 2, a discrete-time system is given

by the state-space representation[
xk+1

pk+1

]
=

[
gk (xk, pk, uk, k)
gp,k (pk, Δpk)

]
. (15)

For time-invariant uncertainties, the relations Δpk = 0 and

pk+1 = pk hold for all k ≥ 0. For the following analysis

it is assumed that uk is either a given open-loop or closed-

loop control law. Using interval arithmetic evaluation of

the mathematical system models for all uncertain parame-

ters, guaranteed state enclosures have to be determined for

each time step k for a given finite time horizon. In the fol-

lowing list of possible solution approaches, only those are
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Figure 7. Interval arithmetic simulation of dynamical processes with subdivision into interval boxes,
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mentioned which have been used in the selected applica-

tions [4].

Solution Approach 1. The basic approach for calculation

of guaranteed state enclosures of discrete-time systems is

the recursive computation of the state intervals

[xk+1] = gk

(
[xk] , [pk] , uk, k

)
(16)

for open-loop control and

[xk+1] = gk

(
[xk] , [pk] , uk ([xk]) , k

)
(17)

in the case of closed-loop control.

Solution Approach 2. To reduce overestimation caused

by the wrapping effect, computation of the state enclosures

[xk+1] can be improved by coordinate transformations. The

simplest possibility is a linear transformation according to

[xk] = Tk · [x̃k]

[x̃k+1] = T−1
k+1 · gk

(
Tk · [x̃k] ,

[
pk

]
, uk, k

)
.

(18)

Solution Approach 3. In Fig. 7, subdivision of state inter-

vals [xk+1] is used for the computation of tight enclosures

of complexly shaped regions if the coordinate transforma-

tion in the Solution Approach 2 does not result in the desired

quality.

(i) Consistency tests by inverse mapping of the state equa-

tion according to

[xk] = ḡk

(
[xk+1] , [pk] , uk, k

)
, (19)

where the interval [xk+1] denotes the subintervals obtained

by forward computation [10].

(ii) Interval Newton methods for state equations where the

inverse mapping cannot be calculated analytically.

(iii) Merging of subintervals in case of small overestimation

of the union of the merged subintervals is described in de-

tail in [19].

Solution Approach 4. Computation of state variables

[xk+1] by explicit replacement of [xk], [xk−1], . . . , [x2], [x1]
in terms of the initial state [x0] and all parameter uncertain-

ties [p0], [p1], . . . , [pk−1], [pk], i.e.,

[xk+1] = gk

(
gk−1

(
. . .

g1

(
g0 ([x0] , [p0] , u0, 0) , [p1] , u1, 1

)
. . .

))
.

(20)



Here, mean-value rule evaluation, monotonicity tests, and

global optimization techniques are useful approaches to sig-

nificantly reduce overestimation caused by multiple depen-

dency of the state equation (15) upon the components of the

interval vectors [xk] and [pk].

4.1 Airbus Elevator

For the elevator control loop depicted in Fig. 8, interval

enclosures for the actual elevator angle δ and the servo valve

position xV are of interest for a given time horizon [5].

Figure 8. Airbus elevator.

This dynamical system can be modeled with sufficient

accuracy by the discrete-time equations

xk+1 = xk +
√

5 · 105 B

A
xvhΔt,

yk = δ = kSPAP xk,

h = sign(z)
√|z| ,

z =

⎛
⎝ 2

1 +
k∗

MQB2x2
V

2 A2

− 1

⎞
⎠ (Δps − pL sign(xV ) ),

pL = −100
A

(a + b δ) c v2
CAS ,

xV = kSV kSC(iC + iB) − xC ,

xC = kFb kC x,

iB = kR (δC − δS),
iC = kCp δS ,

δS = r δ + δoffs ,

(21)

where the reference elevator angle is denoted by δC , the

measured elevator angle by δS , the control output by iB , the

compensating current by iC , the load pressure by pL the hy-

draulic cylinder position by x, and the mechanical feedback

by xC . The functions highlighted by gray boxes in (21)

are not continuously differentiable. The uncertainties of the

position sensor in the closed-loop control are

r = [0.98 ; 1.02] and δoffs = [−0.6 ; 0.6] . (22)

For the desired accuracies εδ = 0.1◦ of the actual el-

evator angle δ and εx = 0.01mm of the servo valve po-

sition xV , interval enclosures of their time responses are

shown in Figs. 9 and 10, respectively.

Figure 9. Interval bounds for the time re-
sponse of the actual elevator angle δ.

Figure 10. Interval bounds for the time re-
sponse of the servo valve position xV .

4.2 Common-Rail Injection System

Analogously to the previous application, the sensitivity

of the closed-loop control of the common-rail injection sys-

tem in Fig. 11 is analyzed [21]. This system is described by

the discrete-time model given by the equations (23)–(26).

The reference pressure is denoted by pref , the drive voltage

by u, the tappet displacement by xc, and the measured rail

pressure by psensor.



Mathematical model of the common-rail injection system

Common-rail injection prail,k+1 = flim,p

“
prail,k +

qpump − qab1 − qab2

V κ
Δt

”

qab1 = Aflowαfurb

r
prail,k − pab

5 ρ
, ρ =

824 − 0.68 (tρ − 15)

1 − 0.06 prail,k

639 +prail,k

(23)

Aflow = min

„
π

2
xC,k

„
d +

xC,k√
2

«
,

π

16
d2

«

Magnetic valve xC,k+1 = flim,x (xC,k + (Ferr − c xC,k) Δt), Ferr = Fhyd − F0 − Fmag

Fmag = k1

0
BB@ω

flim,z

„
1 − e

− iL,k
k3

«

flim,n (k2 + 0.001 xC,k)

1
CCA

2

(24)

Fhyd = k0
prail,k − pab + k1 xC,k

k2 + xC,k

iL,k+1 = iL,k +
uin − R iL,k

L
Δt, uin = ubatt flim,u (u)

Controller u = fstat (pref ) + uP + uI,k + uD

up = KR ek, ek = pref − psensor (25)

uI,k+1 = uI,k + ek
KR

TI
fswitch (uP , uD)

uD = KRTD
ek − ek−1

Δt

Sensor characteristic psensor = r prail,k + poffs (26)

Figure 11. Common-rail injection system.

� = 10

Figure 12. Inner and outer interval enclosures
for the rail pressure prail.

The functions highlighted by gray boxes in (23)–(26)

contain system-dependent static nonlinearities as well as

saturation and switching characteristics which are not con-

tinuously differentiable. Hence, special treatment of these

terms is necessary for the application of evaluation tech-

niques which use partial derivatives of the state equations

w.r.t. parameters and states. These are, for example, evalu-

ation techniques aiming at the reduction of overestimation

such as mean-value rule evaluation and monotonicity tests

which are summarized in [4]. In the sensitivity analysis,

the uncertainty r ∈ [0.97 ; 1.03] of the parameter of the

pressure sensor is considered. The resulting interval enclo-

sures for the actual rail pressure prail are shown in Fig. 12.

The desired accuracy of the actual rail pressure prail in the

global optimization approach used for computation of inner

and outer interval bounds has been set to ε = 10.

5 Continuous-Time Dynamical Systems with
Time-Varying Parameter Uncertainties

5.1 Theoretical Background

In addition to discrete-time processes which have been

discussed in the previous Section, continuous-time systems



described by sets of ordinary differential equations ODEs

are widely used system representations in engineering. The

considered ODEs are assumed to be given in state-space

representation according to[
ẋs (t)
ṗ (t)

]
=

[
fs (xs (t) , p (t) , u (t) , t)

Δp (t)

]
, (27)

where the system parameters are time-varying, i.e.,

Δp (t) �= 0 and diam ([Δp]) �= 0 usually hold for all

t ≥ 0. For given bounded uncertainties of the initial state

vector, given bounded parameter uncertainties, and given

open-loop and closed-loop control laws u (t) and u (x (t)),
guaranteed state enclosures have to be determined at each

point of time t for a given finite time horizon.

To simplify the notation for the solution approaches dis-

cussed in the following, the extended state vector

x (t) :=
[
xT

s (t) pT (t)
]T

(28)

is introduced. This allows to rewrite the state equations (27)

in the form

f (·) :=
[
fs (x (t) , u (t) , t)

Δp (t)

]
. (29)

Solution Approach 1. The computation of state enclosures

of an initial value problem IVP by series expansion with
respect to time according to

[x (tk+1)] = [x (tk)] +hk ·φ ([x (tk)] , uk, tk) + [ek] (30)

with

φ (·) :=
ν∑

i=1

hi−1
k

i!
· di−1f (·)

dti−1
(31)

and the discretization error interval

[ek] :=
hν+1

k

(ν + 1)!
· dνf (·)

dtν

∣∣∣∣
[τk],[Bk]

(32)

is the basis for several validated ODE solvers such as

VNODE by Nedialkov [14]. Here, the bounds for the dis-

cretization error have to be evaluated for a bounding box of

all states and parameters [Bk] which can be reached in the

time interval [τk] := [tk ; tk+1]. This bounding box is usu-

ally either determined with the help of the Picard iteration

or with the help of higher order enclosure methods [15].

Solution Approach 2. Furthermore, state enclosures of

IVPs can also be computed by series expansions with re-

spect to time and initial states. This approach is imple-

mented in the Taylor-model-based solver COSY VI by

Berz and Makino [12].

Solution Approach 3. A novel approach for the compu-

tation of state enclosures [xencl (t)] := xapp (t) + [R (t)]
of IVPs — not based on series expansions — relies on

non-validated approximate solutions xapp (t) and guaran-

teed error bounds [R (t)]. This technique is implemented in

VALENCIA-IVP by Rauh and Auer [1].

5.2 Biological Wastewater Treatment

The dynamical behavior of biological wastewater treat-

ment plants has to be robust w.r.t. changes of most system

parameters [10, 19]. Furthermore, cost-effective plant op-

eration demands for a reduction of the oxygen input rate

into the aeration tank to its lowest possible value. Hence,

it is necessary to find a suitable compromise between both

prerequisites. To deal with this problem, interval arithmetic

simulation of mathematical system models such as the Acti-

vated Sludge Model No. 1 ASM1 of the International Water

Association, under consideration of time-varying uncertain

system parameters, is a useful technique. In the following,

the Solution Approach 1 using a validated explicit Euler

method with subdividing and merging of interval boxes is

applied to simulation of a subsystem model of a wastewater

treatment plant as shown in Fig. 13.
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Figure 13. Biological wastewater treatment
plant.

The state equations

Ṡ =
QW

VA
(SW − S) − μ (S, SO)

1
Y

X

Ẋ = − QW

VA
X +

QRS

VA
(XSet − X)

+ (μ (S, SO) − b) X

ṠO =
QW

VA
(SOW − SO) − μ (S, SO)

1 − Y

Y
X

+
ρO2

VA

(
1 − SO

SO,sat

)
uO2

ẊSet =
QW + QRS

VSet
X − QEX + QRS

VSet
XSet ,

(33)

where the nonlinear growth rate of substrate consuming

bacteria is modeled by the Monod kinetics

μ (S, SO) = μ̂H
S

S + KS

SO

SO + KOS
, (34)

describe the reduction of biodegradable organic substrate

by heterotrophic bacteria. The state variables are the con-
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Figure 15. Bacteria concentration X and concentration SO of dissolved oxygen.

centration S of organic substrate, the concentration X of

bacteria, and the concentration SO of dissolved oxygen in

the aeration tank as well as the bacteria concentration XSet

in the settler.

With the prescribed bounds

substrate:

{
S unbounded for t < 40, 000 s

S ≤ Smax for t ≥ 40, 000 s

oxygen:

{
SO unbounded for t < 400 s
SO ≥ SO,min for t ≥ 400 s

(35)

as robustness requirements, the computed validated state

enclosures show that oxygen input rates from the interval

uO2 = [0.5 ; 1.0] · uO2,nominal can be chosen without vio-

lation of the given bounds (35). Thus, the optimal choice of

a constant oxygen input rate w.r.t. minimization of the oper-

ating costs is uO2 = 0.5 · uO2,nominal, see Figs. 14 and 15.

Note that this numerical proof of admissibility of control

strategies for reliable plant operation using validated ODE

solvers can be carried out analogously for control laws with

time-varying oxygen input rates and for investigating pa-

rameter uncertainties. For details see [17].

6 State and Parameter Estimation Using In-
terval Observers

The applications which have been described in the pre-

vious Sections of this paper either dealt with estimation

of system parameters in steady state or with the dynami-

cal simulation of discrete-time and continuous-time systems

without including any measured data. In the following, the

concept of an interval observer [9] is discussed which relies

on state-space representations of discrete-time systems as in

eq. (1) and continuous-time systems as in eq. (2).

In addition to the system dynamics, mathematical mod-

els of the measurement process are necessary. They are



given by

yk+1 = hk+1 (xk+1, pk+1, δk+1, uk+1, k + 1) (36)

and

y (tk+1) = h (x (t) , p (t) , δ (t) , u (t) , t)
∣∣∣
t=tk+1

(37)

for discrete-time and continuous-time processes, respec-

tively. In both cases, it is assumed that new measured data

only become available at discrete points of time. For the

sake of simplicity, the vector p of parameter uncertainties is

now redefined such that it consists of the parameters of both

the dynamical system model and the measurement model.

Using the measurement equations (36) and (37), a model-

based reconstruction of the state vector x as well as the pa-

rameter vector p is performed under consideration of the

bounded measurement uncertainties δ ∈ [δ] :=
[
δ ; δ

]
.

The block diagram of the interval observer in Fig. 16

shows the two basic steps of state estimation. In the pre-
diction step, propagation of all uncertainties is performed

with the help of the mathematical model of the system dy-

namics until the point of time at which measured data are

available. Then, the correction step eliminates those parts

of the state enclosures (obtained by the prediction) which

are inconsistent with the model of the measurement process

under consideration of its uncertainties.
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Figure 16. Interval observer.

In the following applications, state and parameter esti-

mates computed by the interval observer are presented.

6.1 Electrostatic Micro Actuator

First, the electrostatic micro actuator in Fig. 17 is consid-

ered. For this device, the not directly measured initial gap

x20 between the two plates of the capacitor, the position
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Figure 17. Electrostatic micro actuator.

x2 (t), and the velocity ẋ2 (t) have to be estimated. The

dynamical system model is given by the ODEs [20]

ẋ1 =
1
R

(
Vi − x1x2

εA

)
ẋ2 = x3

ẋ3 =
−1
m

(
x2

1

2εA
+ k(x2 − x20) + bx3

) (38)

with the uncertain initial conditions

x(0) ∈
⎡
⎣[x10]

[x20]
[x30]

⎤
⎦ =

⎡
⎣ [0; 0]

[0.9; 1.1]
[0; 0]

⎤
⎦ (39)

and the time-invariant uncertain spring constant k ∈
[0.8; 1.2]. Using the measurement equations

y1 =
x1x2

εA
+ δ1 and y2 =

x2

εA
+ δ2 (40)

with the uncertainties δ1 ∈ [−3; 3] · 10−4 and δ2 ∈ [−1; 1] ·
10−4, the estimates in Fig. 18 are obtained. A significant

reduction of the initial uncertainty [x20] by the model-based

state and parameter estimation approach is obvious.
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Figure 18. Estimates of position and velocity
of the electrostatic micro actuator.



6.2 Micropositioning System

As a second application for the interval observer, the mi-

cropositioning system shown in Fig. 19 is discussed.

Figure 19. Micropositioning system.

Here, the task is the guaranteed positioning of micro-

drops on a DNA chip within given tolerances. For that pur-

pose, the positioning unit is described by dynamical second

order models in each axis. The dominating uncertainties in

this system are the static friction coefficient Fs as well as

the sliding friction coefficient μ which are depicted in the

friction characteristic in Fig. 20.

μ = μ

μ = μ

sliding friction for negative

velocity

sliding friction for positive

velocity

Ff (x2)

velocity x2

Ff (x2) = −Fs + μ · x2

Ff (x2) = Fs + μ · x2

Fs ∈
[
F s ; F s

]static friction coefficient

Figure 20. Friction characteristic.

The algorithm which is used for model-based estimation

of both position and velocity of the positioning unit relies

on validated integration of the dynamical system model in

the prediction step. Here, all points of time have to be de-

tected at which switchings between sliding and static fric-

tion occur. The exact procedure using a state transition di-

agram which is evaluated for all interval uncertainties has

been published in [18].

In Fig. 21, results for two different cases are illustrated:

(i) The black solid lines show the influence of the parameter

uncertainties in the friction characteristic in terms of worst-

case bounds of the system’s position.

(ii) Additionally, uncertain measurement information of the

position is considered (marked by black dots). Then, com-

pared to case (i), the bounds of the position estimate can be

reduced significantly.
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Figure 21. Position estimates.

7 Conclusions

The applications presented in this paper have been cho-

sen to demonstrate how interval arithmetic evaluation meth-

ods for steady state analysis as well as simulation of both

discrete-time and continuous-time systems can be applied

successfully in engineering. The common goal of all ap-

plications has been to compute guaranteed enclosures of all

physically relevant states and parameters. Besides simu-

lation of the dynamical system behavior in open-loop and

closed-loop operation, the design of a model-based inter-

val observer for guaranteed state and parameter estimation

has been described. In this approach, measurement infor-

mation can be used efficiently to eliminate parts of the state

enclosures which are inconsistent either with the mathemat-

ical model of the system dynamics or with the model of the

measurement process.

As shown in this contribution, the most important prop-

erty of interval algorithms, namely the ability to compute

guaranteed enclosures [7], is especially relevant in the anal-

ysis and the design of technical and non-technical systems.

Based on mathematical system models, the worst-case in-

fluence of uncertainties as well as the robustness, reliabil-

ity, cost-effectiveness, and safety of a system can be inves-

tigated by computation of guaranteed bounds of the corre-

sponding system states.

In order to apply interval algorithms to a wider class of

problems, further general implementations have to be made



available. Additionally, future research aiming at the de-

velopment of improved and novel interval arithmetic tools

has to consider the necessity to deal with uncertain dy-

namical systems which include discontinuities and model

switchings in the systems’ representations, e.g. hystereses

in electro-mechanical applications. Finally, the develop-

ment of interval arithmetic methods for the computation

of robust and optimal control strategies [11, 16] for high-

dimensional nonlinear systems with non-negligible influ-

ence of uncertainties will be an important field for future

developments.

Future research will be directed towards both establish-

ing interval techniques in the computing mainstream by fur-

ther developing software tools and — most important —

demonstrating successful applications.
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