STUDIES IN COMPUTATIONAL MATHEMATICS 5
editors: C. BREZINSKI and L. WUYTACK

TOPICS
IN VALIDATED
COMPUTATIONS

J. HERZBERGER
Editor

NORTH-HOLLAND

TOPICS IN
VALIDATED COMPUTATIONS

Proceedings of the IMACS-GAMM International Workshop on
Validated Computation, Oldenburg, Germany, 30 August-3 September 1993

edited by

Jurgen HERZBERGER
Fachbereich Mathematik
Universitdit Oldenburg
Germany

ST)
m%é

1994

ELSEVIER
Amsterdam — Lausanne — New York — Oxford — Shannon — Tokyo

ELSEVIER SCIENCE B.V.
Sara Burgerhartstraat 25
P.O. Box 211, 1000 AE Amsterdam, The Netherlands

Library of Congress Cataloging-in-Publication Data

IMACS-GAMM International Workshop on Validated Computations (1993
Oldenburg, Germany)

Topics in validated computations : proceedings of IMACS-GAMM
International Workshop on Validated Computations, Oldenburg,
Germany, 30 August - 3 Septmeber, 1993 / edited by Jurgen
Herzberger.

p. cm. -~ (Studies in computational mathematics ; 5)

Includes bibliographical references,

ISBN 0-444-81685-2

1. Interval analysis (Mathematics)--Congresses. 2. Numerical
calculations--Verification--Congresses. 3. Algorithms--Congresses.
I. Herzberger, Jurgen. II. Title. III. Series.

QA297.75.143 1993
512’ .5--dc20 94-36669
CIP

ISBN: 0 444 81685 2

© 1994 ELSEVIER SCIENCE B.V. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written
permission of the publisher, Elsevier Science B.V., Copyright & Permissions Department, P.O. Box 521,
1000 AM Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A. - This publication has been registered with the Copyright
Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about
conditions under which photocopies of parts of this publication may be made in the U.S.A. All other
copyright questions, including photocopying outside of the U.S.A., should be referred to the copyright owner,
Elsevier Science B.V., unless otherwise specified.

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter
of products liability, negligence or otherwise, or front any use or operation of any methods. products.
instructions or ideas contained in the material herein.

This book is printed on acid-free paper.

Printed in the Netherlands

Topics in Validated Computations
J. Herzberger (Editor)
1994 Elsevier Science B.V. 381

On Self-Validating Methods for Optimization Problems

C. Jansson
Technische Informatik III, Technische Universitit Hamburg-Harburg, Sitz: Eiflendorfer
Strafie 38, 21071 Hamburg, Germany

0. Introduction

Optimization deals with the problem of minimizing or maximizing a function of several
variables subject to inequality and/or equality constraints. Optimization problems are
central in many applications in applied mathematics, operations research, management
science and engineering. This wide applicability, the rich mathematical theory underlying
many models in optimization, and the methods to solve these models have been driving
forces behind the rapid and continuing evolution of this subject.

Usually, the methods and algorithms devoloped in optimization theory are performed on
digital computers. When solving a problem on a computer, three major sources of errors
are present. First, in many practical applications the input data are uncertain, that is
experimental, measurement, and modelling errors may be present. Secondly, during the
execution of an algorithm rounding errors and cancellation occur. Finally, even if some
input data are known exactly, conversion errors may occur.

Therefore, a central question is: How reliable are the results calculated on a computer?
There are two well-known approaches. The first approach is the backward error analysis, a
technique in which errors made in executing an algorithm are thrown back on the original
input data. Backward error analysis and their widespread use is closely connected with
Wilkinson’s work [86], [87]. The second approach is forward error analysis, that is to give
explicit bounds for the error of the computed solution, where all sources of errors are taken
into consideration. An error analysis may be very important; there are simple examples
in optimization (cf. Section 2) where well-known algorithms produce approximations of
an optimal solution which are completely wrong in the sense of backward and forward
error analysis.

Interval arithmetic provides (i) a tool for forward error analysis for many problems, (ii) for
estimating and controlling these errors automatically and rigorously, and (iii) for proving
existence and uniqueness of solutions. In this context, the term self-validating numerical
methods, inclusion methods, or verification methods is in use. Instead of approximating a
real value or an uncertain real value by a machine number, in interval arithmetic this value
is replaced by a machine interval. The disadvantage of a straightforward application of

382

interval arithmetic is that due to data dependencies dramatic overestimations may occur.
Therefore, algorithms using interval arithmetic must be designed very carefully and should
avoid this phenomenon. A number of books describe the tools of interval arithmetic, and
are recommended to readers who desire additional information on this topic. These include
Alefeld and Herzberger 1974 [3] and 1983 [4], Bauch et al 1987 [6], Moore 1979 53], and
Neumaier 1990 [59]. A summarizing representation of a new computer arithmetic taking
into consideration interval arithmetic together with optimal scalar products is given in
Kulisch and Miranker 1981 [44].

Many present-day methods that use the tools of interval arithmetic are not aiming to
replace conventional numerical methods. On the contrary, they incorporate conventional
numerical methods in an extensive way, and they are very much in the spirit of Wilkinson

1971 [88]:

“In general it is the best in algebraic computations to leave the use of interval
arithmetic as late as possible so that it effectively becomes an a posteriori
weapon.”

The major purpose of this paper is to present such self-validating methods for linear
programming problems and global optimization problems.

In Section 1 self-validating methods for linear programming problems are presented. Lin-
ear programming problems involve the optimization of a linear function subject to linear
constraints. There are numerous excellent treatments of this subject. We mention here
only the fundamental work of Dantzig 1963 [17]. Linear programming problems have the
main properties that (i) an optimal solution (if it exists) occurs at a vertex (i.e. extreme
point), (i) the set of optimal points (if it is bounded) is the convex hull of the optimal
vertices, (iii) there is only a finite number of vertices, and (iv) each local optimal point is
optimal (in the following “optimal” means always “global optima. ”). The interesting out-
put data of linear programming problems are the optimal value of the objective function
and the set of optimal vertices.

In Section 1.1 basic results and notations for linear programming problems are repeated.
In Section 1.2 a method that computes error bounds for all interesting output data is
described. There, it is assumed that some or all input data of the system matrix, the right
hand side, and the objective function vary independently between given lower and upper
bounds, and that this interval problem is basisstable; that is, all real problems contained
in the interval problem have the same optimal basis. In Section 1.3 the basisinstable case
is discussed. In Section 1.4 a case study that is reported by Wardle 1965 [85] is discussed
where we show how these methods work. Section 1.5 contains some additional remarks.

In Section 2 a self-validating method for differentiable and non-differentiable global op-
timization problems is presented. In contrast to linear programming problems we have

383

no assumptions like linearity or convexity, and in general many local minima may exist.
Murty and Kabadi 1987 [56] proved that the global optimization problem is NP-hard,
even if the objective function is quadratic. In Section 2.1 a new branch and bound algo-
rithm for the global optimization problem with bound constraints is described which is
designed for problems where derivatives are not available or very costly. Roughly speak-
ing, this algorithm consists of a repeated application of a bisection strategy in connection
with local optimization algorithms. The bounds calculated for the global minimum are
proved to be correct, all rounding errors are rigorously estimated, and in most cases the
bounds calculated for the global minimum points are rough compared to the bounds for
the global minimum value. Section 2.2 contains some convergence statements, and in
Section 2.3 numerical results for some well-known test problems are given. In Section 2.4
we introduce a new scheme for proving existence and uniqueness of a stationary point.
For this scheme it is necessary that inclusion functions of the gradient and the Hessian
are available. Then, in Section 2.5 it is shown how this scheme can be incorporated in
the branch and bound method of Section 2.1. This modified method leads in many cases
to an acceleration, and very sharp bounds for the global minimum value and the global
minimum points are calculated. Some numerical experiments of this modified method are
given in Section 2.6. Section 2.7 contains some additional remarks.

1. Linear Programming

Deputizing for the opinion of many scientist about linear programming we quote Chvatal
1983 [12], page 148:

“In linear programming problems arising from applications, the numerical
data often represent only rough estimates of quantities that are inherently
difficult to measure or predict. Market prices may fluctuate, supplies of raw
materials and demands for finished products are often unknown in advance,
and production may be affected by a variety of accidental events such as
machine breakdowns. In such cases, solving the initial LP problem is only the
starting point for further analysis of the situation.

By replacing the original data by more pessimistic or optimistic estimates of
the unknown quantities, we may create a number of variations on the original
theme. Since each of these new LP problems might possibly represent the
actual situation, it is useful to find out how the optimal solutions vary with
the changes in data. It may be, for example, that the optimal solution is
particularly sensitive to changes in only a small set of parameters; if possible,
these parameters should then be estimated with greater accuracy.”

In this section, self-validating methods for linear programming problems with interval
input data are described. A linear programming problem with interval input data can

384

be viewed as a linear parametric optimization problem where the coefficients vary inde-
pendently between the given lower and upper interval bounds. For such problems error
bounds for the variation of the objective function and the variation of the optimal vertices
are calculated. The bounds are proved to be correct, all rounding errors are rigorously
estimated, and a sensitivity analysis is given.

We assume that the reader is familiar with the basic concepts of interval arithmetic, and
we use throughout this paper the following definitions and notations. By IR,IR",R™*"
we denote the set of real numbers, real vectors, and real m x n matrices, respectively. By
IR, IIR*, IIR™*" we denote the set of real compact intervals [a] = [g, @], real interval
vectors [z] = [z, %] = ([2;,F:]), and real m x n interval matrices (4] = (4, 4] = (la ;> Ti)
respectively. For interval quantities [2] the absolute value |[z]|, comparisons <, <, the
midpoint m([z]) := (z + T)/2, and the width w([z]) := (z — T) are to be understood
componentwise. Inclusion functions (or natural interval evaluations) of real functions
f(z) have the property that for a given box [z] an inclusion function contains always the
range of f on [z]. Therefore, we use for the inclusion function of f the same symbol, and

write f([z]).

1.1. Basic Concepts of Linear Programming

A linear programming problem (cf. (12], [17], [49], [55]) is an optimization problem where
the objective function is linear in the variables, and the constraints consist of linear
equalities and/or linear inequalities. Linear programming problems can be expressed in
different forms. The standard form is

Max{ f(z) |z € X}, f(z):=¢'z, X:={z€R"|Az =, z >0}, (1.1

where A = (ay,...,a,) is a real m x n matrix with column vectors a,...,an € R™,
be IR™, c € R" and m < n. All different forms in linear programming are equivalent,
and can be put into standard form by simple transformations.

The function f(z) := c'z is called the objective function, X is called the set of feasible
solutions or feasible points, and a point z* € X with cz* > dx for all z € X is called
(global) optimal. If an optimal solution z* € X exists, then the value f* := f(z*) is called
the (global) optimum value.

Associated with the standard form (1.1) is the corresponding dual linear programming
problem

Min{g(y) |y €Y}, g(y) :=by, Y :={y e R | Ay > c}. (1.2)

385

Y is called the set of dual feasible solutions, and an optimal solution of (1.2) is also called
dual optimal. For z € X, y € Y we have

f(a) =z < (A'y)'z = y'(Az) = by = g(y),

and the main part of the well-known Duality theorem of linear programming states that,
if X and Y are non-empty, then

Max{f(z) |z € X} =Min{g(y) |lyeY }. (1.3)

The duality theory is a very important and powerful concept, and there is a close re-
lationship to sensitivity analysis. Moreover, the dual problem has important economic
interpretations.

The input data of (1.1) and (1.2) are given by the triple p = (A,b,¢). The interesting
output data are the optimal value f* and the set of optimal solutions of (1.1) and (1.2).
The sets of optimal solutions are the convex hull of their corresponding optimal vertices
provided that these sets are bounded. Therefore the interesting output data are the
optimal value f*, the set of optimal vertices X* of (1.1), and the set of optimal vertices
Y- of (1.2).

The vertices of the convex polyhedron X are algebraically characterized by the property
that at most m components are not equal zero. Solutions of Az = b, where at least n —m
variables are equal to zero, can be described by partitioning the matrix A = (ay,...,an)
into two submatrices A := (ag,,. .., as,.), AN := (@, .- -, dy,_,,) With corresponding sets
of indices B := {f1,...,8m} € {1,...,n} and N := {y,...,a-m} :=={1,...,n} \B. I
the m x m submatrix Ap is regular then B is called a basic-indez-set. N is called the set
of nonbasic indices. For a given partitioning B, N the equation Az = b can be expressed
in the form

Aprp+ Anzn = b (1.4)

where z! := (2%, z}) is partitioned analogously. By multiplying equation (1.4) with the
inverse A3' it follows that

g = Aglb — Snzn (1.5)

where Sy := Ag'Ay. With ¢! := (cj, cy) the objective function can be expressed in the

form

¢ ¢ t ta-1 t t o4-1 ¢ t
ce = chap+cyan = (A0 — Snan) + cyzn = cgAg'b — (SN — cy)an,

386

and therefore

dr = ch A — dyon (1.6)
with

dy := Skeg —cn = Al (AY) e — cn. (1.7)

Notice that the objective function f(z) = ¢‘x and the variables zp are determined by the
n — m variables z. The solution

z(B) := (if,) with zp := A3'b, an :=0 (1.8)

is called a basic solution (corresponding to the basic-index-set B) of Az = b. In addition,
if zp := Ag'b > 0, then z(B) € X and z(B) is called a feasible basic solution. The
feasible basic solutions correspond to the vertices of the convex polyhedron X.

The so-called vector of reduced costs dy determines the dependency of the objective func-
tion f(z) on the non-basic variables zy. If dy > 0 then, using (1.7), the vector

y(B) := (A5) 'cn (1.9)

satisfies ALyy(B) — ey > 0 which yields y(B) € Y. If dy > 0 then y(B) is called a dual
feasible basic solution. The dual feasible basic solutions correspond to the vertices of the
convex polyhedron Y.

If 25 := A3'b > 0 and dy := Ayy(B) — ey > 0 (that is z(B) € X and y(B) € Y), then
the basic-index-set B is called optimal. In this case, the equality

cz(B) = chzp = chA5'b = b'(AB) e = b'y(B) (1.10)

holds and by the Duality theorem (1.3) it follows that z(B) and y(B) are optimal vertices.
The set of optimal basic-index-sets is denoted by V*.

Using the well-known Complementary slackness theorem, it follows immediately that z(B)
and y(B) are the unique optimal solutions of (1.1) and (1.2) provided zg > 0, dy > 0.
In this case V* = {B}. A linear programming problem is called basisstable if there exists
a basic-index-set B with zg > 0 and dy > 0. Linear programming problems which have
an optimal solution, and which are not basisstable are called basisinstable.

Basisinstable linear programming problems are characterized by the property that there
exist optimal vertices of (1.1) and/or (1.2) which are degenerated. Former, degeneracy
seemed to be an accident but yet, degeneracy is frequently arising in practical applications
(cf. Chvatal 1983 [12], page 30, Kotiah and Steinberg 1977 [41] and 1978 [42]).

387

1.2. Basisstable linear programming problems with interval input data

To perform an error and sensitivity analysis for linear programming problems we describe
the input data by the triple

[l = ([A, (8], []) (1.11)

where [A] is an m X n interval matrix, [b] and [¢] are interval vectors with m and n
components, respectively, and m < n. The triple [p] defines a set of linear programming
problems with real input data p € [p].

We introduce the following notation: for a quantity @ which is defined in Section 1.1 Q(p)
denotes the dependency of this quantity on the parameter p € [p], and

Qlp) ={QWw Ipelpl} (1.12)

is called the corresponding solution set.

Therefore, f*(p) is the optimal value of the linear programming problem with real input
data p € [p], zB(p) = Ap'b where p = (Ap, An,b,c) € [p], and the quantities V*(p),
X*(p), Y™(p), dn(p), z(B;p), y(B;p) are defined analogously. Obviously the correspond-
ing solution sets are given by

f(])= EIRIPE[P]}
:L‘B(p]) p) € R™ | Apzp(p) = b, p= (Ag, AN, b,c) € [p] },
yB?[p])z{y(B p)GIR’"|A y(B,p)——cB,p (AB,AN,I),C,)E[P]},

(1.13)

(o) = { vty x| RO b
(

V(p]) ={Blpep,BeV(p)},

and X*([p]), Y"([p]), (B;[p]) etc. are defined analogously.

The interesting output data of the linear programming problems where p varies in [p] are
the sets f*([p]}, X*([p}), Y~ ([p]), and V*([p]). We are intérested in reliable and very
sharp lower and upper bounds for the output data. In this section we describe a method
for the basisstable case.

If B is a basic-index-set for all p € [p], then B is called a basic-indez-set of [p]; that is Ag
is regular for all Ap € [Ap]. A linear programming problem with interval input data [p] is
called basisstable if a basic-index-set B of [p] exists such that z([p]) > 0 and dx([p]) > 0.
Linear programming problems which have optimal solutions for some p € [p], and which
are not basisstable are called basisinstable.

388

The following corollary is an immediate consequence of the Duality theorem, the Com-
plementary slackness theorem, and our definitions.

Corollary 1.1: Assume that the linear programming problem with interval input data

[p] is basisstable with zp([p]) > 0 and dn([p]) > 0. Then
V(i) = {BY, X () = =(B{p)), Y*(Ip)) = y(B; [p), (1.14)
and f*([p]) € les] - @5([p]) N 18] 4 (B; [p])-

The self-validating method for basisstable linear programming problems which we describe
in this section is an immediate consequence of Corollary 1.1. The main idea is to calculate
an approximation of an optimal solution together with the corresponding basic-index-set
B with the simplex method, and then, a posteriori, to compute bounds for the solution
sets zg([p]), y(Bi[p]), and dn([p]) by using a self-validating method for linear interval
systems. Several methods for solving linear interval systems have been proposed; see for
example Alefeld and Herzberger 1983 [4], Alefeld 1994 [1], Moore 1979 [53], Neumaier
1990 [59], Rump 1983 (73], and Rump 1994 [72].

algorithm BASISSTABLE LP([p}, B, [z(B)}, (B, 1)

begin
call the simplex method for the real input data m([p}); (1.15)
if the simplex method terminates without calculating (1.16)

an approximation of an optimal solution
then STOP with WARNING (1);
call a self-validating method that calculates
inclusion vectors [zg] and [y(B)] of the
solution sets for the linear interval systems
Apzp(p) = b, Agy(B;p) = cp, p € [p] (1.17)
where B is the optimal basic-index-set calculated
by the simplex method;

if no inclusions [zp], [y(B)] can be calculated (1.18)
then STOP with WARNING (2);

Set [z(B)] := (£21) with zy := 0, [dy] := [An}[y(B)] — [en] (1.19)
and (/'] = [es]flzs] 0 [B1{y(B)}

if the inequalities [zp] > 0 and [dn] > 0 are (1.20)

not satisfied then WARNING (8);
end;

Theorem 1.2: Suppose that algorithm BASISSTABLE LP terminates without giving
any WARNING. Then the linear programming problem with interval input data [p] is ba-

389

sisstable, each problem with input data p € [p] has an optimal solution, and the following

inclusion conditions are satisfied:

V*([p]) = {B}, X*([p]) € [2(B)), Y*(Ip]) € [w(B)), and f*([p]) < [/

Proof. The proof follows from Corollary 1.1, and noticing that z(B;[p]) € [=(B)],
y(B;[pl) € [y(B)), and [cp]'e(lp]) N [B'y(B;[p]) € [f7). =

Note that this algorithm is in the spirit of Wilkinson. First, in step (1.15) an approxima-
tion of the optimal solution for the midpoint problem is calculated, and then a posteriori
in step (1.17) interval arithmetic is used.

A termination with WARNING (1) indicates that some or all point problems p € {p] have
no optimal solutions. If the algorithm terminates with WARNING (2), then in many cases
a matrix Ap € [Ap] is singular or close to singularity. Both cases point to an instable
behaviour of the linear programming problem with interval input data [p], and therefore,
the algorithm which aims to prove stability and solvability for all point problems with

p € [p] is stopped.

If the algorithm terminates with WARNING (3), then basisstability is not verified. This
termination often occurs for interval input data and is very unsatisfactory. Because in
this case it is not known whether all point problems with p € [p] have optimal solutions
or not. However, if the algorithm terminates with WARNING (2) or WARNING (3) the
calculated approximation (cf. (1.15)) is given to the user. This is just in the spirit of
Wilkinson. In the next section a method is considered which gives a satisfactory answer

to this central question.

1.3. Basisinstable linear programming problems with interval input data

The following method which calculates inclusions of the output data V=([p]), X*([r]),
Y*([p]), and f*([p]) for basisinstable linear programming problems can be viewed as a
graph-search method (cf. Papadimitriou and Steiglitz 1982 [60]) applied to the graph

G(n)) = (V*(le)), £* (o)) (1.21)
with the set of nodes V*([p]), and the set of edges

B, B’ differ in exactly one index and } (1.22)

E(lp]) = { {8, 5} ‘ there exists a p € [p] with B, B' € V*(p)

We call G*([p]) the representation graph of the linear programming problem with interval
input data [p]. Two nodes B, B’ are called to be adjacent if {B, B} € E*([p]). For

390

B € V*([p]) the set N(B) denotes the set of all nodes B’ of G*({p}) which are adjacent
to B.

The graph-search method is based on the following idea: First, a starting node B €
V*([p]) is calculated. This is done by calling algorithm BASISSTABLE LP for some
point problem with p € [p]. Following all nodes of N(B) are calculated, and then all
nodes of N(B') with B’ € N(B) are calculated, and so on. Obviously, the graph-search
method terminates by calculating all nodes of G* ([p]) which are connected to the starting

node B in o(;E*([p])|) time.

The graph G*([p]) is only given implicitly by the linear programming problem. The
following four theorems are important not only in its own right, but also as a means of
establishing the graph-search method on this implicitly defined graph. The proofs of these
theorems are far too lengthly to be included in these notes.

Theorem 1.3 states that the optimal vertices of the standard form (1.1) and the dual
problem (1.2) can be generated by the node set V*([p])-

Theorem 1.3: For any p = (A,b,c) the graph G*(p) is connected and the following
equations hold:

X*(p) ={z(B;p) | BEV*(p) }, (1.23)
Y*(p) = {y(B;p) | BEV*(p) }- (1.24)
Proof. See [25]. |

Theorem 1.4 shows that the representation graph G"([p]) is connected provided some
weak assumptions are fulfilled. Therefore, the graph-search method will generate the

whole graph G*([p]).

Theorem 1.4: Assume that the sets of optimal solutions of the standard form (1.1) and
the dual problem (1.2) are nonempty and bounded for all p € [p]. Suppose further that all
nodes B € V*([p}]) are basic-index-sets of [p]. Then G*([p]) is connected and the optimal
value function f*(p) : [p] — IR is continuous.

Proof. See [23]. []

Simple examples (cf. [25], page 100) can be constructed which demonstrate that G*([p})
is not connected provided that one of the assumptions of Theorem 1.4 is not satisfied. In
the next theorem we examine how an inclusion N(B) of N(B) can be calculated for a

391
node B € V*([p])

Theorem 1.5. Let B € V*([p]) be a basic-index-set of [p], and assume further that

(2) [zB], ly(B)], and [s,] for v € N are inclusions for the solution sets of the linear interval

systems

[ABlep = [b], [AB]'y(B) = [cB], [4B]s, = [a,], (1.25)
and

[dn] := [AN]'[y(B)] — [cn], respectively; (1.26)

(b) N(B) is the set of all index-sets
B=(B\{B}) U {1}, B B, ve N (127)

that satisfy one of the following two conditions

T Tgr

0€[dy), Spy >0 ,and =2 < Min{ 22 |55 >0, B E€B } (1.28)
S8~ ﬁﬂl,y
-d'Y E’Y' - '

0 € [zg], 85, <0 ,and == > Max ¢ — |53y <0, /" €N ¢. (1.29)
Say Sy

Then the following results hold:

(i) N(B) 2 N(B);
(ii) if p = [p], and the inclusions in (a) coincide with the corresponding exact solutions
then N(B) = N(B).

Proof. See [25]. [|

A major goal of our method is to prove a posteriori that all linear programming problems
within the tolerances are well-posed. In analogy to the definition of well-posed equations,
a linear programming problem with real input data p is called well-posed if there exists an
open ball Us(p), § > 0 such that the sets of optimal solutions of the linear programming
problems with input data § € Us(p) are nonempty, and the optimal value function f* is
continuous on Us(p). Otherwise, the linear programming problem is called ill-posed. The
following theorem characterizes well-posed linear programming problems.

Theorem 1.6. For a linear programming problem with real input data p = (4,6, ¢) the
following statements are equivalent:

(i) the problem is well-posed;
(i) the optimal solution sets of the standard form (1.1) and the dual problem (1.2) are

392

nonempty and bounded;
(iii) Rank (A) = m and the systems of inequalities

Az =b, >0, and A'y > ¢ (1.30)

have solutions ¢ € R™, y € IR™;
(iv) There exists a ball Us(p), 6 > 0 such that X(p) # 0 and Y (p) # @ for all p € Us(p).
(v) Rank (A) = m, X(p) # 0, Y(p) # 0, and for each B € V~(p) the following

two conditions are satisfied:

¥V 4' € N with d,, = 0 3 8’ € B such that sg.,s >0, (1.31)
YV B € B with zg = 0 3 4" € N such that sgy <0. (1.32)
Proof. See [25]. n

Because in the basisstable case the optimal solutions are unique, from Theorem 1.6 (ii)
it follows that basisstable linear programming problems are well-posed. Moreover, we
see that linear programming problems with Rank (A) < m are ill-posed. Because of
(iv), for ill-posed linear programming problems with input data p there exist sequences
(p)ien with p® — p such that the set of feasible solutions X (%) and/or Y (p") are
empty. Obviously, such problems cannot be solved in the usual way. Ill-posed linear
programming problems must be solved with special regularization techniques where a
priori information about the problem is needed in addition (cf. Tikhonov and Arsenin
1977 [83], Engl and Groetsch 1987 [19]).

An important characterization of well-posed problems for the basisinstable case is state-
ment (v) which says that, by passing only through the optimal basic-index-sets, we can
decide whether the problem is well-posed or not. This is a fundamental property which
is used in the following method BASISINSTABLE LP for verifying a posteriori that all
problems with p € [p] are well-posed.

algorithm BASISINSTABLE LP ([p], S(V*), S(X*), S(Y™), S(f*))

begin
select a point problem p € [p}; (1.33)
call BASISSTABLE LP (p, B, [x(B)], [y(B)], (f); (1.34)
if BASISSTABLE LP terminates with a WARNING (i) (i = 1,2,3) (1.35)

then STOP with this WARNING;
initialize lists W := {B}, S(V*):=0, S(X*) =0, S(Y*):=0,5(f*) :=0; (1.36)

while W # 0 do (1.37)
begin
choose B € W; W = W\{B}; (1.38)

call a self-validating method that calculates inclusions (1.39)

393

{z8], [y(B)], [5,] with v € IN, and [dy] of the

systems (1.25), (1.26);

if some inclusions in step (1.39) cannot be calculated (1.40)
then STOP with WARNING (4);

if Tg > 0 and dy > 0 then (1.41)
begin
if one of the following two conditions (1.42)

(1) 0 € [zg], B€ B = 3~ € N such that [sg,] <0
(ii))0 e [d,], ye N = 3 8 € Bsuch that [s3,] >0
is not valid then STOP with WARNING(5);

set [2(B)] := (&%) with zy = 0; (1.43)
set [f*(B)] := [ca]'[zs8] N [B]Ty(B)]; (1.44)
set S(V=):= S(V*) U {B}, S(X*) u {[=(B)]}, (1.45)
S(r) = S(r) U {(B)]}, SU*) = S(f+) U {1k
calculate N(B) by using Theorem 1.5; (1.46)
set S(V*) = S(V*)U{B}iset W:=W U {N (B)\S(V")}; (1.47)
end,;
end;
end;

First, in steps (1.33) and (1.34) of algorithm BASISINSTABLE LP, for a selected point
problem p € [p] a starting node B € V*([p]) is calculated by calling algorithm BASIS-
STABLE LP. If BASISSTABLE LP gives a WARNING, then we stop our algorithm.
As mentioned in Section 1.2, WARNING(1) and WARNING(2) indicate an instable be-
haviour of our problem. In the case of WARNING(3), the selected point problem p is
basisinstable or close to basisinstability. Because in each neighbourhood of a basisinstable
point problem there exists basisstable point problems, we may call BASISSTABLE LP
for another slightly perturbated point problem, and proceed in our algorithm.

In (1.36) the “working list” W contains our starting node B, and four lists S(V*), S(X*),
S(Y™), S(f*) are set empty. These lists will contain inclusions of the output data. The
while-loop (1.37) to (1.47) implements the graph-search method for the implicitly defined
graph G*([p]). The main steps are (1.38) where a node B is selected, then (1.46) where
the adjacent nodes are calculated, and (1.47) where all nodes of N(B) which are not
contained in S(V*) are stored on list W.

Note that for each B € V*([p}) there exists a p € [p] with zp(p) > 0 and dy(p) > 0.
Therefore, a necessary condition for B € V*([p]) is (1.41). Obviously, B is only admitted
to S(V*) provided that this necessary condition is fulfilled.

WARNING(4) points out that there exists a singular matrix Ap € [Ap], or such a matrix
may be close to singularity. Therefore an assumption of Theorem 1.4 is not satisfied, and
the graph G*([p]) may be not connected. The conditions in step (1.42) are an interval

394

version of the characterizaiion of well-posed problems (cf. Theorem 1.6, (v)). Hence,
WARNING(5) indicates that there may exist a problem with p € [p] which is ill-posed or
close to an ill-posed problem.

The following theorem shows that algorithm BASISINSTABLE LP verifies a posteriori
that all problems with p € [p] are well-posed, and gives inclusions of the output data.

Theorem 1.7: Suppose that algorithm BASISINSTABLE LP terminates without giving
any WARNING. Then

(i) Each problem with p € [p] is well-posed;

(ii) the optimal value function f*(p): [p] — IR is continuous;
(iii) the representation graph G*([p]) is connected;

(iv) the following inclusion conditions hold:

V*([el) € S(V*), (1.48)
X*([p]) € U {l=(B)] € S(X")}, (1.49)
Y*(p)) € U {lw(B) e S(¥n}, (1.50)
() € U Al (B)] € S(fM} (1.51)
Proof. See [25]. | |

1.4. Management of New Forest

This case study is a real world problem reported by Wardle 1965 [85] and Chvatal 1983
[12]. They discuss a felling program for New Forest, a park of 145 square miles situated
in Hampshire, England. We follow the description of Chvatal. The management of New
Forest had to choose a felling program for an area of about 8500 acres consisting of six
different crop types listed in Table 1.4.1.

Crop type Description Acres Vo(lllllgf /fcil;ed
1 High-volume hardwoods 2754 2000
2 Medium-volume hardwoods 850 1200
3 Low-volume hardwoods 855 700
4 Conifer high forest 1598 4000
5 Mixed high forest 405 2500
6 Bare land 1761

Table 1.4.1: Crop Types

395

The volume of wood is measured in Hoppus foot, abbreviated h.ft. This is the volume
of a board 1 foot square and 1 inch thick. The hardwood areas are classified w.r.t. their
undergrowth as follows:

Complete Partial No

undergrowth undergrowth undergrowth Total
High-volume hardwoods 357 500 1897 2754
Medium-volume hardwoods 197 130 523 850
Low-volume hardwoods 39 170 646 855

Table 1.4.2: Classification of Hardwood Areas

For any number of acres of any crop type two basic treatments can be choosen:

1.1) Fell and plant conifer.
1.2) Feli and plant hardwood.

For bare land these treatments become

1.1) Plant conifer.
1.2) Plant hardwood.

Additionally to these basic treatments, the management has the following options:

2. For hardwood areas with complete undergrowth: fell and retain the undergrowth.
3. For hardwood areas with partial undergrowth: fell and enrich the undergrowth.
4. Postpone treatments alltogether for any number of acres of any crop type.

The estimate of the net discounted revenue over the next ten years varies w.r.t. the chosen
treatments and crop types. The corresponding Table 1.4.3 with coefficients measured in
pounds per acre is given below.

Treatment

Crop type 1.1 1.2 2 3 4

1 287 215 228 292 204
2 207 135 148 212 148
3 157 85 98 162 112
4 487 415 — — 371
5 337 266 — — 264
6 87 1 — — 61

Table 1.4.3: Net discounted revenue (£/ acre)

396

Because of some visual requirements and a limited labor capacity, the following four
conditions must be satisfied.

a) At most 5000 acres can be treated.

b) The resulting conifer area must not exceed 3845 acres.

c) At most 2.44 million h.ft. of hardwood are allowed to be felled.

d) At most 4.16 million h.ft. of conifer and mixed high forest can be felled.
e) At least 500 acres must be planted with hardwood.

To model this problem, let us first look at Table 1.4.3. Note that for each of the six crop
types the difference between treatments 1.1 and 1.2 is exactly £72. This is because the
net discounted revenue is equal to the sum of two components:

Felling: £1 per h.ft.
Planting: £87 if conifer is planted, and
£15 if hardwood is planted.

Therefore, in the case of only felling, we need not to distinguish between treatments
1.1 und 1.2. When we concern only planting it follows immediately: The crop types
formerly occupying the forest are irrelevant, the essential fact are the total acreages of
newly planted conifer and newly planted hardwood. Hence, in the following we refer to
both treatments 1.1 and 1.2 as treatment 1.

For any crop type and any treatment we introduce a variable x;; that defines the acres of
crop type i receiving treatment j. By examining Table 1.4.3 we get the following variables:

T11, %12, T13,T14 for crop type 1 receiving treatment j =1,...,4.

T21, %22, L3, 24 for crop type 2 receiving treatment j =1,...,4.
T31, T3z, Tz, T34 for crop type 3 receiving treatment j =1,...,4.
41, Ta4q for crop type 4 receiving treatment j = 1,4.
Ts1, o4 for crop type 5 receiving treatment j =1,4.
Ze1, T4 for crop type 6 receiving treatment j =1,4.

By defining o as the acres which are planted with conifer, it follows that the acres which
are planted with hardwood equals

Ti + T12 + T3 + T + Ts1 + Ter — To.
The resulting objective function is
f(z) =213z11 + 228212 + 292243 + 204114 + 135221 + 148255 + 212293 + 148z,

+ 85231 + 98z32 + 162x33 + 112234 + 41524, + 3T1zyy + 265251 + 264154
+ 15z¢ + 6164 + T220.

397

Because we do not distinguish between treatments 1.1 and 1.2, the term 72z, must be

added.

From our discussion above it follows that we wish to maximize f(z) subject to the con-

straints

T11

T21

+ + +

I31
T12
13
T22
T23
T32
T33
Tq1

Ts51

+ + +

Te1

20, 2i; = 0
™ 2 < 5000
4.3

T12
Z22
T32

Tq4
Ts4q
Te4q

Top— T4y S 2247

2(x11 + 212 + z13) + 1.2(zn + 222 + 2q3) + 0.7(x31 + T3z + Ta3) < 2440

+ 13 + Tua
+ T3 + T2
+ x3az + T3

x4 + 2.5z5 < 4160
Z11 4 €21 + T31 + Tar + Ts1 + Ter — To 2 500
z;; 2 0 for all 4, 5.

I

il

AIA A INIAINIA

i

2754
850
835
357
500
197
130

39
170

1598
405

1761

This is a linear programming problem and the simplex method finds the (rounded) optimal

solution

ot = 365, 23, = 500, z3; = 130, 235 = 170, =3, = 621, =5, = 1040,

Ty = 1761, zj = 3287.

All remaining variables are equal zero. This felling program yields a total net discounted

revenue of £1840000.

Most of the input data for the forest problem are, due to measurements, not known exactly.
But, depending on the measuring method, more or less sharp bounds for these input data
can be given. The question is, how reliable are the predictions that are calculated by the

simplex method. In this context the most important question for managing New Forest

18:

398

(i) How changes the total net discounted revenue w.r.t. the uncertain input data?

An answer to this question gives the sensitivity of the objective function. Regarding that
many subjective and visual aspects appear in managing this forest, we may ask:

(i) How does the optimal basic solution change, and are there alternatively other basic
solutions which are optimal for some p € [p]?

A very precise measurement of some input data may be very costly or unpossible. Hence,
a third important question is:

(ili) How sensitive is the problem for different variations of some coeflicients of the input
data?

To perform a sensitivity and error analysis we applied the algorithm described in Section
1.3, where the input data are intervals that are given in the following form:

The coefficients of the system matrix A that describe the volumes of the crop types are
defined by

1 1
[aij] = [ai; — Jwra(A)laiil, aij + Frwra(A)laj].
Therefore, these coefficients are relatively perturbated such that the relative width of the

intervals equals 100wy (A) % w.r.t. the midpoint a;;.

The coefficients of the right hand side b are relatively perturbated by
[bi] := [b: — wrel(b)lb b b+ wrel()1ill,

and analogously the coefficients that define our objective function (cf. Table 1.4.3) are
given by

o) :=lei = gural@lesl + gura(@lal

By performing the algorithm of Section 1.3 for the interval problem [p] = ([Al, [8],[c])
with wg(A) = 0.001, we(b) = 0.004, and wye(c) = 0.02 (thus, the coeflicients of A, b,
and c are relatively perturbated by 0.1 %, 0.4 %, 2 %, respectively), we get the (rounded)
results that are given in Table 1.4.4 and Table 1.4.5:

Solution [z(1)] | Solution [¢()] | Solution {z®)] | Solution [)] | Solution [z(%)]
7o | [3286,3288] | [3286,3288] | [3286,3288] | [3286,3288] | [3286,3288]
en | [360,370) 340, 345] 0 0 82,94]
Z12 0 0 0 0 0
e | [499,501] [499,501] 499, 501] [499, 501] 499, 501]
z1a | [1879,1899] | [1904,1918] | [2248,2260] | [2248,2260] | [2155,2176]
a1 0 0 [567, 576] [719,721] [719,721)
T2 0 0 0 0 0
223 | [120.8,130.2] | [129.8,130.2] | [129.8,130.2] | [129.8,130.2] | [129.8,130.2]
eaq | [719,721] [719,721] [143, 155] 0 0
e | [612,630] (683, 687] (683, 687] [421,439] [168,188]
32 0 0 0 0 0
w33 | [169.7,170.3] | [169.7,170.3) | [169.7,170.3] | [169.7,170.3) | [169.7,170.3]
caa| [53,75) 0 0 [245, 265] 495, 519]
4 | [1039,1041] | [1039,1041] | [1039,1041] | [1039,1041] | [1039,1041]
zaa | [554,562] [554,562] 554, 562] [554, 562] 554, 562]
I'5y 0 0 0 0 0
ese | [404,406] [404,406] [404,406] [404, 406] [404, 406]
e | [1758,1764] | [1716,1723] | [1486,1495] | [1589,1605] | [1758,1764]
Zea 0 [35,49] 262, 278] 153, 175] 0

Table 1.4.4: Bounds, calculated for X*([P})

399

| Solution [z(})] I Solution [z(?)] | Solution [z(3)] I Solution [z®)] | Solution {z(5)]

net discounted

{1813327, (1815832, {1814581, [1813893, (1812447,
revenue

1866980] 1864302 | 1864194 | 1865025 | 1866984]

Table 1.4.5: Bounds, calculated for f* ([P])

We can draw several conclusions from these results. Some of them are mentioned here:

From Table 1.4.5 it follows that f*([P]) C [1812447,1866984]. The relative diameter of
the intervals that are calculated for the objective function as well as for the components
of the 5 interval vectors [z()] is very small w.r.t. the perturbations of [p]. Hence, it is
proved that the problem is very stable for the objective function, but it is not basisstable.

The interval vectors {z()] represent 5 different basic strategies how to manage New Forest.

The components of these vectors can be partioned in the following way:

I. Components which are equal to zero for all interval vectors (712, T22, T32, T51). There-
fore, treatment 2 is never applied.

400

II. Components which are equal for all strategies (o, %13, €23, T33, Ta1, T44, Ts4)
III. Components which vary w.r.t. our different solutions [2D] (211, 14, T21, T2a, Tan,
T34, Te1, Te4). These components may serve to take additional visual aspects into

consideration.

r(A) | r(b) | 7(¢) | Inclusion of £*([P]) | r(f*) |]S(V*)]
0.0% | 0.0% | 0.2% | (1838229, 1841909] | 0.2%
0.0% | 0.0% | 0.4% | [1835947, 1843749] | 0.4%
0.0% | 0.0% | 0.6% | [1833805, 1845589] | 0.6%
0.0% | 0.0% | 2.0% | (1820930, 1858470] | 2.0%
0.0% | 0.0% | 3.0% | [1811733, 1867670] | 3.0%
0.0% | 0.0% | 4.0% | (1791015, 1876871] | 4.6%

0.0% | 0.4% | 0.0% | [1836836, 1843303] | 0.3%
0.0% | 1.0% | 0.0% | [1831986, 1848153] | 0.9%
0.0% | 2.0% | 0.0% | [1823902, 1856236] | 1.7%
0.0% | 4.0% | 0.0% | [1807735, 1872516] |3.5%

0.2% | 0.0% | 0.0% | [1839400, 1840738] | 0.05%
0.4% | 0.0% | 0.0% | [1838729, 1841410} | 0.2%
1.0% | 0.0% | 0.0% | [1836695, 1843444] | 0.4%

0.2% | 0.2% | 0.2% | [1832330, 1847154] | 0.8%
0.2% | 0.2% | 0.6% | [1828661, 1850844] | 1.2%
0.2% | 0.2% | 2.0% | [1815822, 1863761] | 2.6%
0.2% | 0.2% | 4.0% | (1785036, 1882214] | 5.3%
0.2% | 0.4% | 0.2% | (1828923, 1850347] | 1.1%
0.2% | 0.4% | 0.4% | [1827003, 1852195] | 1.4%
0.2% | 0.4% | 0.6% | [1825262, 1854044] | 1.6%
0.2% | 0.4% | 2.0% | 1812447, 1866983] | 3.0%

f—
Gt Ot BN DN = Ov Ot N —_ [W Ot O Ot N

0.2% | 0.4% | 4.0% | [L780811, 1886677] | 5.7% 11
1.0% | 1.0% | 0.2% | [1820745, 1858556] | 2.0% 2
1.0% | 1.0% [0.4% | [1813631, 1865704} | 2.8%)
1.0% | 1.0% | 1.0% | (1803063, 1876465] | 4.0% 5
1.0% 1 1.0% | 2.0% | {1794002, 1885800] | 5.0% 5
1.0% | 1.0% { 4.0% | [1756540, 1913886] | 8.6% 12
1.0% | 2.0% | 0.2% | [1812689, 1866662] | 3.0% 2
1.0% | 2.0% | 0.4% | [1805591, 1873827] | 3.8% 5
1.0% 12.0% | 2.0% | [1777012, 1903133] | 6.9% 5

Table 1.4.6: Behaviour for different perturbations

Much more conclusions can be drawn by looking at the inclusions of the dual solutions.
But we finish this case study with Table 1.4.6 that describes the behaviour for some

401

different perturbations and gives an answer to question (iii). The coefficients are relatively
perturbated with 7(A) := 100 w.a(A)%, r(b) = 100wy (8)%, r(c) = 100- wea(c)%. r(f*)
denotes the relative width of the inclusion of f*([p]) in percent.

Thus, it is proved that this problem is stable for various perturbations. Moreover, for
small perturbations of A and b it is basisstable whereas small perturbations in ¢ yield
the basisinstable case. I thank Mrs. U. Maichle who has implemented the algorithm of
Section (1.3) using PASCAL-SC.

1.5. Remarks

The main idea of our approach for the basisstable case is due to Krawczyk 1975 [43].
But in contrast to Krawczyk, we incorporate the dual linear programming problem. For
other treatments of the basisstable case and related questions, the reader is referred to
Machost 1970 [46], Beeck 1978 [8], Steuer 1981 [82], Rump 1983 [73], Rohn 1984 [68], and
Rohn 1993 [70]. Algorithms for computing the supremum of the objective function for
linear programming problems with interval input data are proposed by Rohn 1984 [68]
and Mraz 1990 [54].

The theoretical results of Section 1.3 and the method for basisinstable linear programming
problems with interval input data was developed by the author 1985 [25]; see also Jansson
1988 [26], Jansson and Rump 1991 [34]. For a modification of this method in the case
of linear programming problems with lower and upper bounds, we refer the reader to
Maichle 1988 [47].

The main effort of the methods described in Section 1.2 and 1.3 is to compute guaranteed
bounds for the solution sets of linear interval systems. Rohn and Kreinovich 1993 [71]
have shown that the calculation of exact bounds for the solution set of a linear interval
system is NP-hard. Nevertheless, many methods (cf. [4], (6], 53], [59], [73], and [76])
for calculating very sharp bounds of the solution set were developed. Most of them need
to compute an approximate inverse, and they have the complexity O(n?). Moreover, for
some of these methods the componentwise overestimation can rigorously be estimated;
that is, guaranteed componentwise inner and outer bounds of the solution set can be
calculated (cf. Neumaier 1987 [57] and 1989 58], and Rump 1990 [74]).

The first algorithm for computing exact bounds for the solution set of a linear interval
system was proposed by Rohn 1984 [68], and 1989 [69], and some additional results are
given by Neumaier 1990 [59].

Until now, it was an important unsolved problem how guaranteed bounds for the solution
set of sparse linear interval systems can be computed without calculating an approximate
inverse. Since the inverse of a sparse matrix is in general full, the known self-validating
methods have a very limited size for large linear systems. In special situations, for example
in the case of M-matrices, the computation of an approximate inverse can be avoided

402

(cf. Alefeld and Platzoder 1983 [5], Schwandt 1984 [79] and 1985 [80], and Rump 1992
[75]). Now, in a recent paper of Rump 1993 [77], a self-validated direct sparse solver
for general real matrices has been developed. Examples with up to 1.000.000 unknowns
were presented. Such a direct sparse solver offers the possibility to develop self-validating

methods for sparse linear programming problems.

In Sections 1.2 and 1.3 it is assumed that the input data vary independently between
their given lower and upper bounds. But in some cases dependencies in the coefficients
of the objective function, the right hand side or the system matrix occur. Self-validating
methods which take into consideration linear dependencies of interval input data in the
case of square linear systems are given in [28] and [29], and Rump 1994 [72] in this volume.
For linear programming problems with dependencies in the input data, these solvers can
be used to calculate bounds for the linear interval systems which correspond to optimal

basic-index-sets.

2. Global Optimization Methods Using Interval Arithmetic

In order to motivate the calculation of guaranteed bounds for nonlinear optimization
problems, we discuss the following little application described by Becker and Wittmer
1983 [7]. This example was used as an exercise in a course on nonlinear optimization that
the author of this paper gave last summer for students studying electrical engineering. In
this course we used MATLAB [62] because of its user-friendly design and its collection of

toolboxes.

We were surprised that commercial optimization routines may produce completely wrong
approximations for the following simple problem. The problem is to minimize the costs
of a voltage stabilizer such that the ripple factor is not too large. A voltage stabilizer (see
Figure 2.1) transforms rectified alternating voltage into direct current voltage.

L

Figure 2.1

The ripple factor is given by

3450
T RLCiCLL’

r

403

and r should not exceed 10~2. By using the equations r = 10~2, and Ry, = 10°Q we get
the equation

3450

L_C’I-C’z'

The costs of the components of the voltage stabilizer are determined from list prices (dated
about 1980). The costs for the capacities are approximated by linear interpolation

(o.25+2.5-10“‘ —C-) DM
a

and the costs for the inductivity are approximated by quadratical interpolation

L2
(1.0 +5.0-107° _];73) DM

(F: Farad, H: Henry, DM: German Mark). Summing up the costs yields the problem

59.
minimize f(Cy,Cy) = 1.5 +2.5-107*(Cy + Co) + 2—52-
Ct-C3

subject to C; > 0, Cy > 0.

This simple well-conditioned problem is not a typical global optimization problem. It is
strictly convex and has therefore one local minimum which is global. With an appropriate
self-validating method it easy to verify the following guaranteed bounds for the optimal

solution:

Cy € [13.6391843461, 13.6391843724] uF,
C; € [13.6391843461, 13.6391843724] pF,
f* € [1.50852449021, 1.50852449024] DM.

For solving this problem we use the MATLAB routine fiminu. This routine is a BFGS-
quasi-Newton method. All the runs use double precision.

Our first starting point is C; = 100uF, C, = 100pF. In each iteration step MAT-
LAB gives a warning: “Matrix is close to singular or badly scaled. Results
may be inaccurate. RCOND = 8.455280e-22". After about 250 iteration steps we
stopped fminu. The last condition number is RCOND = 4.810885e-250. fminu shows the

404

same behaviour for starting points which are close to the optimal solution, like Cy = 25uF,
C, = 25uF or Cy = 19uF, Cy = 19uF or Cy = 20pF, C; = 25uF.

Our next starting point is Cy = 0.1pF, C2 = 0.1pF. The routine fminu returns the
solution €y = 4608.9uF, Cy = 4608.9uF with a function value of 3.8044 DM.

Obviously, it seems that smaller starting points give better results in terms of solvability.
Next, we choose Cy = 0.01uF, C3 = 0.01pF. Then we get the results Cy = 4.6088-10%uF
and C, = 4.6088 - 1034 F with a function value of 230440 DM.

The starting point C; = 0.1pF, Cy; = 0.5uF gives the approximation C; = 184.48uF,
C, = 37.377uF with the function value of 1.5055 DM.

Using the starting point Cy = 10uF, C2 = 10pF MATLAB gives the approximation
C, = 13.6622uF, Cy = 13.6622uF with a function value of 1.5085 DM. This result is
close to the solution. By comparing it with our inclusion we see that only three decimal
digits are correct, although the calculations are performed in double precision (~ 17
decimals).

Summarizing, fminu gives warnings that a well-conditioned problem is ill-conditioned, and
without any warning fminu produces approximations of the solution which are completely
wrong in the sense of forward and backward error analysis. We also used the routine
E04JAF of the NAG-library. The results are better, but, in principle, this BFGS-quasi-
Newton method has the same behaviour.

Obviously, the BFGS-quasi-Newton method, one of the best algorithms, has sometimes
problems with computing accurate results, even for very simple applications with practical
(not special constructed) models and input data. Moreover, we see that in such simple,
strict convex situations the attraction region may be small.

In the following, our major goal is on self-validating methods for differentiable and non-
differentiable global optimization problems that use local optimization methods but ad-
ditionally give guaranteed bounds for the global minimum. These bounds are proved to
be correct, all rounding errors are rigorously estimated.

2.1. A Branch and Bound Method Using Local Optimization Techniques

In this section we consider a branch and bound method for the global optimization problem
Min{ f(z) |z € X}, X ==[zg]:={z € R" |2 <z <T} (2.1)

where f: X — IR, and 2,7 € R" with 2 < T, and the set of feasible points X is a boz or
interval vector [z]. We denote the global minimum (if it exists) by f* and the set of global
minimum points by X~

405

Branch and bound techniques are frequently used for solving global optimization problems.
Usually, during the branching process the feasible domain is successively partitioned and
bounds for the global minimum are calculated. Branch and bound methods differ in the
way they (i) partition the feasible domain X into subregions [y], (ii) calculate bounds for
the range of f on those subregions and (iii) discard subregions for avoiding exhaustive
search.

In our branch and bound method interval evaluations (inclusion functions) are used for
bounding the range of f over subregions. Obviously, a subregion [y] contains no global
minimum point and can be discarded if a lower bound of f on [y] is greater than f(x) for
some z € X. Therefore, the early knowledge of an approximation Z of a global minimum
point or at least of a point Z such that f(Z) is close to f* has important influence upon
the efficiency. We incorporate local optimization algorithms to compute such points.

The most important difficulties by using local optimization algorithms for global opti-
mization problems are:

(i) Local optimization algorithms require a starting point in a region of attraction
to converge to a global minimum point or a stationary point. Frequently, these
attraction regions are small, and it is hard to give a suitable starting point.

(ii) It is a difficult task when to call a local optimization algorithm in a global optimiza-
tion method. Ideally, the local optimization algorithm should only be called when
an approximation of a global minimum point will actually be computed.

Our scheme attempts to avoid these difficulties by using inclusion functions for improving
starting points and by incorporating a special scheme for calling a local optimization
algorithm. Especially, it becomes apparent that local optimization methods and interval
methods benefit from each other.

For the remainder of this section, we assume that an interval evaluation f([z]) of f
is given, and f7, T denote a lower and upper bound of the global minimum value f*.
Moreover, let p: {1,...,n} = {1,...n} be a permutation and niy,ng € IN \ {0}.

In the following, the quantities f([z]), p, nit, and ny are global quantities, and they will
not be mentioned explicitely in the lists of parameters of our algorithms.

Our method consists of three algorithms. The first algorithm called BRANCH AND
BOUND manages the partitioning of the feasible domain which is stored on a list .5, and
calls the main part of our method: procedure SUBDIVISION. Additionally, BRANCH

AND BOUND contains some termination criteria, and updates the lower bound f*.

Procedure SUBDIVISION is responsable for discarding subregions which do not contain a
global minimum point. Furthermore, SUBDIVISION improves starting points for the local
optimization algorithm. One main idea here is to bisect always the box with the smaller

406

lower bound which is calculated with an inclusion function, and to store the remaining
boxes on a “working list” W. This is done until we reach a certain number (kmax = n-74)
of bisections. Bisecting in this way yields better starting points. Then SUBDIVISION
calls the third algorithm SEARCH. If some conditions are satisfied, then in SEARCH a
local optimization algorithm is started where the starting point is the midpoint of the box
bisected last, the calculated approximation is stored on list A, and the upper bound f is
updated. After finishing SEARCH, SUBDIVISION continues with bisecting boxes from
list W, and discards those boxes [y] whose corresponding lower bound f ([y]) is greater
than the update of F". All other boxes are stored on a list L. Then list L is returned
to algorithm BRANCH AND BOUND and added to list S. Hence, boxes which contain
global minimum points are never deleted. '

First,the problem is initialized in (2.2) and (2.3) of algorithm BRANCH AND BOUND
where the bounds f* and F~ are set to —oo and oo, respectively. List S contains the
original box X, and list A (which will contain the approximations calculated by the local
optimization algorithm) is empty. By passing through steps (2.4) to (2.11) we see that at
most 1y iteration steps are executed. In each iteration step for all pairs of S’ procedure
SUBDIVISION is applied, in (2.10) the lower bound f* is updated, and in (2.11) some
additional termination criteria may be added.

algorithm BRANCH AND BOUND (X, $, 4, f*, 1)

begin
WM =X, [i=-c0, [=00, f([y]V):=[-00,00]; (22)
initialize lists S := {([y](l), f([y]“)))}, A:=0; (2.3)
forz=1,...,n; do (2.4)
begin
select ' C S such that the pair ([y], f([y])) € S (2.5)
which has the smallest lower bound i([y]) is contained in 5%
set S:=S5\ 5, (2.6)
for all pairs ([y](j),f([y]m)) € S do (2.7
begin
call SUBDIVISION ([y]w, F(9), L, T, A); (2.8)
append list L at the end of list S; (2.9)
end;
£ = Max{ £ Min{ £(i) | (0}, /(D) € 5} (2.10)
if some termination criteria hold then STOP; (2.11)
end;
end;

In (2.5) there are two extreme strategies how to define S’. First, we may choose always
S’ = §. This version corresponds to a breadth-first search of the branching process.

407

Another strategy is to choose only the pair ([y], f ([y])) € S which has the smallest lower
bound f ([y]) This version corresponds to a depth-first search.

Because only n;; iteration steps are executed, the method terminates after a finite number
of bisections. There are several possibilities to add some other termination criteria. We
prefer a criterion that uses the relative error of the lower und upper bound, that is we
may terminate our method if the conditions

F—f<e, if 0e[fF1 (2.12)
|F =) /T <e, if 0¢[f,F] (2.13)
hold where €g,&1 > 0.

In BRANCH AND BOUND no bisections are performed and no subregions are discarded.
This will be done in SUBDIVISION. Here, we use a cyclic bisection rule which works as
follows: first the coordinate with index p(1) is bisected, then the coordinate with index
p(2) is bisected, ..., then the coordinate with index p(n) is bisected; and this process
is repeated ny times. Hence, every box which is not discarded in SUBDIVISION results
from at most kymax = 7 - ng bisections from the initial box [y]. A consequence is that all
boxes which are contained in list L have a width equal to w([y]) / 2.

procedure SUBDIVISION ([y], f([y]), Z, [, A)

begin
kpax =1 - d; (214)
b)) =0, (2.15)
initialize list W := {([y],f([y]), k([y]))} and list L := {; (2.16)
while W # § do (2.17)
begin
remove the last triple ([y],f([y]), k([y])) from list W; (2.18)
for k = (k([y]) + 1), ee oy kmax do (2.19)
begin
if f([y]) > J then exit for loop; (2.20)
s:=(k mod n)+1; (2.21)
bisect [y] normal to direction p(s) getting (2.22)

two boxes [y]), [y]®) with [y]® U [y]® = [y];
calculate f([y]), f([y)®); (
if £([y]") > f([y]®) then (2.24)
exchange the indices of ([y], (1)), ([y]m, F(19)); (
(

v :=)™ f(l¥]) = f([1M);
if k < kmax and f([y]?) <F then (2.27)

408

append the triple ([y](2),f([y](2)), k) to list W; (2.28)
if k = kmax and L =0 and f([y]) < T then (2.29)
call SEARCH ([y], 4,); (2.30)
for j = 1,2 do
begin
if k = kmax and f([y]?) < T then (2.31)
append ([y](j),f([y](”)) to list L; (2.32)
end;
end;
end;
end;

In (2.16) a “working list” W is initialized which stores box [y], bounds f([y]), and k([y])-
The integer k([y]) gives the index of the last bisected coordinate of [y].

At the beginning k([y}) = 0, which means no coordinate of [y} has been bisected. Later
on, the index of the coordinate which must be bisected is given by (2.21).

By passing through steps (2.17) to (2.32) we see that only in the case () > T a
pair ([y],f([y])) is discarded. Otherwise, this pair is entered in list L or list W (cf.
(2.20),(2.27), (2-28), (2.31), (2.32)). Obviously, list W contains at most kuyax triples.

Therefore, in our numerical experiments we display the maximal length of the lists S, L,
and A.

Moreover, looking at steps (2.19), (2.24), (2.25), (2.26), it follows that we always bisect
the box with the smaller lower bound in order to move to an attraction region. Then in
(2.29) and (2.30) procedure SEARCH is called. It is easy to see that list W contains at
most knay triples. Notice, that because L is empty, SEARCH is only called for that box
which is at first bisected kmax times. All other boxes which are bisected kpax times are
discarded or entered in list L (cf. (2.32)).

Steps (2.24), (2.25), and (2.26) form a rule which selects the box with the smaller lower
bound. In the rare case where both bounds are equal, the algorithm proceeds with the
first box. This case can be improved by inserting the following step after (2.23):

if _f_([y]“)) = i([y]m) then bisect [y] normal to direction p(s) yielding two
boxes [y]®, [y]® with [y]M U [4]® = [y] such that w([yps)]™) = 0.49 -
w([yp(s]?), then calculate F(lwl™), F(wl®);

This rule serves to accelerate our method especially, if a global minimum is close to or on
the common boundary of [y]®) and [y]®.

409

One central problem is to decide of when to call a local optimization algorithm. If each
call of procedure SEARCH would imply a call of the local optimization algorithm the
computational costs would grow dramatically. Therefore, in SEARCH some decision
rules are incorporated. Additionally, we assume here that parameters a, 8,7,6 > 0 are

given.

procedure SEARCH ([y], A,)

begin
§:=m(ly)); (2.33)
Fi= 1@ (2.34)
if (F<T)or (([y] Nv(Z)) = § for each already calculated (2.35)

approximate local or global minimum point Z stored
inlist Aand f<T +6- |T|)) then

begin
call a local optimization algorithm with starting point 3 (2.36)
calculating an approximation ;
if T ¢ [z] then (2.37)
begin
if ¥; < z; then 7, := z;; (2.38)
if Z; > 7; then Z; =T (239)
N end;
Fi=f@); (2.40)
f=Min{f,F}; (2.41)
v(Z) =% £ o - Max{[7 — 7|, 87|, 7}; (2.42)
append the triple (%, f, (%)) at the end of list A; (2.43)
end;

end;

In (2.33), (2.34) the function value of the midpoint of box [y] is calculated. In (2.35)
two cases occur, both of which imply the call of a local optimization algorithm. In the
first case when f < F7, this call gives, in general, a better approximation of f*. In
our experience, using only this decision rule has the disadvantage that many bisections
have to be performed in situations where the first call of the local optimization algorithm
delivers only a stationary point or a local minimum %. This is because the next call of the
local optimization algorithm needs a box such that the function value of the midpoint is
smaller than the function value of the previously calculated local minimum. Therefore,
the local optimization algorithm is also called in the case where f <f + 5|T| and box
[y] has an empty intersection with boxes v(Z) of previously calculated stationary points
or local minima Z. Notice that by choosing § := 0 the local optimization algorithm is
called only if f < F. In (2.42) the box v(Z) is defined by means of an expansion around
Z. Obviously, this expansion depends on the difference between 7 and the starting point
¥, on the absolute value of #, and on a constant 7 giving an expansion in situations where

410

some of the components of 7 are close to zero. We emphasize that, in a test set of over 50
test problems (cf. Jansson and Kniippel 1992 [32]), in almost all situations the number
of calls of the local optimization algorithm varies between the number of global minimum
points and twice this number.

In rare cases the approximation ¥ is not feasible. Therefore, in steps (2.37), (2.38),
and (2.39) the infeasible coordinates are projected onto the bounds of the set of feasible
solutions X. Then, in (2.41), we update the upper bound 7, and in (2.43) the calculated
approximation 7 together with the corresponding function value f and box v(Z) are stored
on list A.

Finally, one point for the implementation should be mentioned. So far we have ignored
the effect of rounding errors. On a computer where they are present it is important to
calculate a guaranteed upper bound of f(Z) in (2.40). Then we undoubtly know that, due
to rounding errors, we cannot loose any global minimum point. All the other calculations
in SEARCH are executed on a computer by using floating point arithmetic.

An immediate consequence of our previous discussion is the following theorem:
Theorem 2.1. Let f: X — IR, and assume further that

a) f([z]) is an inclusion function such that f(ly]) contains the range { f(y) | y € [y]}
for each box [y] € X which is representable on a computer;
b) N4, Ny S H\I \ {0} and a,,@,'y,&,so,e] Z 03

c) the local optimization algorithm terminates after a finite number of steps.
Then the following results hold:

(1) Algorithm BRANCH AND BOUND terminates after a finite number of steps;
(i) [<< T
(iif) List A contains an approximation ¥ such that f* < f@) < 7

(v) X* € Ul (i F(W) € 5%

Proof. Since the parameter n;;, ng bound the number of bisections, assumption c) yields
(i)

The assertions (ii), (iv) follow by formulae (2.10), (2.41), and the fact that boxes which
contain a global minimum point are not discarded.

Using (2.40) to (2.43) and noticing that ¥ € X, assertion (iii) follows. n

411

2.2. Convergence

In the following we state and prove some convergence results of the method described in

Section 2.1.

We assume that BRANCH AND BOUND is ezecuted by using the real number system;
that is, the effect of rounding errors is ignored for the following analysis.

The quantities that are defined in Section (2.1) depend mainly on the iteration steps
¢=1,...,n;. Inthe following we write f(7), F7(i), 8(z), A() to indicate this dependence
on i. Moreover, let

vy = {19] (9, 7([919)) e 56 }.
Theorem 2.2. Let f: X — IR be continuous, and suppose further that

a) f([z]) is an inclusion function with the following property: for each z € X and for
each sequence ([z]*)) with [2]®) — z and []®) C X, it follows that F([2]P) — f(z);

b) the local optimization algorithm is locally convergent for all z* € X*; that is, there
is a neighbourhood N(z*) such that this algorithm converges to z* for each starting
point ¢ € N(z*), and calculates z*;

¢) ng € IN/{0} and n; := oo (that is, we want to study the asymptotic behaviour of

our method for i — oo);
d) €0 :=0, & := 0 (that is, step (2.11) contains no additional termination criteria);

e) @,8,7,6 2 0;
f) In step (2.5) set §':=S;

Then the following results hold:

(i) f7(¢) is monotonically increasing, and 77 (i) is monotonically decreasing for increas-
ing z;

(ii) there exists an ip € IN such that list A(¢) contains a global minimum point z* € X*
and (i) = f~ for all i > i;

(iii) let f* #0,6 > 0 and @ = 8 = v = 0. If the global minimum points are isolated then
there exists an ¢, € IN such that all global minimum points z* € X are contained
in all lists A(7) for z > 7y;

(iv) lim /) = f*

(v) X* = Fjl U(i).

412

Proof.

(i)

(if)

Formulae (2.10) and (2.41) imply that

6+ 1) = Max{ 1), Min{ £(0]) | (lw), £(e)) € SG) } }

F+1) =Min{T(0), 7}
Hence, these bounds monotonically increase and decrease respectively.

Because all boxes which are contained in a list L(¢; [y]) have width w([y])/2"¢ from
assumption f) it follows that the width of the boxes contained in list S(i) converge
to zero as ¢ — 0o.

Since only boxes which contain no global minimum points are discarded, for each
global minimum point z* € X* there exists boxes {y](") such that

€ W™ C N, G e N, (W9, (1)) € SG.

To prove by contradiction that there exists an ¢q € IN such that T (G0) = f*, we
assume the contrary. By (z®)) we denote the finite or infinite sequence of points
that are calculated by the local optimization algorithm and stored in A(7). Two
cases occur both of which imply a contradiction:

Case 1: There exists an € > 0 such that f(z®) > f* 4 ¢ for all k. Then f (:) >
f*+efor all e

Let z* € X*. Since f is continuous and the width of the boxes contained in S(7)
converge to zero, there exists a box [y]\?), j, > j; such that

z* € [y](jz) C [y](jl), ([y](jz)’f([y](jz))) C S(jz), and
f (m([y]‘”’)) < f*4+e <TF () for all 4.

Thus, condition (2.35) is satisfied, and the local optimization algorithm is called
with a starting point that is contained in [y]¥?) C N(z*). Now using assumption
b) and setting ig := j, + 1 it follows that z* is calculated by the local optimization
algorithm and is contained in list A(é). This gives the desired contradiction and

shows that f (io) = f*.

Case 2: f(z®) > f* for all k and f(z®) — f* as k — oo. Because the sequence
(z®) is bounded by X, there exists an accumulation point T € X with k) - 7,
Because f is continuous f(T) = f*, and therefore T € X*. By assumption b) there
is a neighbourhood N(ZT) such that the local optimization algorithm converges for
each starting point in N(T). This contradicts the fact that the local optimization
algorithm has calculated the points @) and @) — %. Hence f(io) = f* for some

20 € IN.

413

(ili) « = B = v = 0 ylelds v(Z) = {Z} for all 7 that are calculated by the local
optimization algorithm. Let 2* € X* be not contained in list A(zp). With the same
arguments as in (ii) it follows that there exists a [y](*) with the following properties:

2 € [, (L™, /(™)) € SG), B1® € N(&),

and because z* is isolated (that is, there exists a neighbourhood of z* such that z*
is the unique local and global optimum point in this neighbourhood)

W nv(@) =0

for all ¥ contained in A(7:), and since §- [f*| > 0
£ (mid())) < T +6- 177

Therefore, condition (2.35) is satisfied, and the local optimization algorithm calcu-
lates z*.

(iv) Assume that lun f7(i) # f*. Because (f*(¢)) is monotonically increasing and
bounded by f , 1t follows that

lim f*(2) = f* < f™.

1=—+00 =T

Then (2.10) implies that there exists a infinite sequence of boxes ([y])) with
f(fw®) < f* and ([y](i),f([y]("))) € S(¢). Because this sequence of boxes is
bounded by X and the width w([y))) — 0 there exists a subsequence ([y]6))
with [y]t9) — y € X. Tt follows from assumption a) that F(Wl9) - fly) > [
This gives the desired contradiction.

(v) Boxes which contain a global minimum point are not discarded. Therefore X* C
ﬂ U(z). Let T € ﬂ U(i). Then there is a sequence [y]®) C U(i) with Z € [y]® and

([y](‘)) 0 with i — oo. Now using assumption a) yields f([y]?) — f(3) > f*.
Since by (i), we have f (i) = f* for i > ip, and because [y](is not discarded, it
follows that f_([y](i)) < f*. Hence, f(Z) = f*and 7 € X~.]

Statement (ii) of Theorem 2.2 shows that, theoretically, after a finite number of steps the
global minimum value f* and at least one global minimum point z* are calculated. As far
we know, a similar finite convergence property using only such weak assumptions is not
proved for other branch and bound methods. Notice that we have no assumptions like
Lipschitz continuity or differentiability. From the proof it follows that no assumptions
about the quality of the inclusion function are used. This is because the local optimization

414

algorithm is called by using only function evaluations at real points. Our method typically
computes f* and a global minimum point z* at the very beginning. This is demonstrated
by many test problems (cf. [32]). At a first glance, assumption b) used for proving
statement (ii) seems to be strong. But almost all local optimization algorithms are locally
convergent for a wide class of problems, and many Newton-type methods show locally
superlinear or quadratic convergence. Thus these methods compute approximations of
z* very fast and accurate, provided the starting point is in the corresponding attraction
region. For many classes of problems a rough approximation may be improved by a
few Newton-type steps, such that the accuracy is almost equal to the machine accuracy,
that is we just ignore the effect of rounding errors in this analysis. Hence, at least from a
theoretical point of view, we can assume that the approximations calculated on a computer
are identical with stationary points or global minimizers.

Statement (iii) of Theorem 2.2 shows that after a finite number of steps all global minimum
points are calculated. Because an addition of an arbitrary constant to the objective
function does not change the global minimum points, the assumption f* # 0 is not
restrictive. Moreover, from the proof it follows that this result holds also in the case
where a, 3, > 0 provided that the global optimum points are sufficiently separated. In
allmost all cases, there exists exactly one global minimum point, and therefore this result
seems to be more of theoretical interest. But it is also interesting from a practical point of
view: our method may calculate some approximations of local minimizers ¥ which satisfy
f(Z) < f*+6-|f*| That is, local minimum points which are almost global minimal may
be calculated, and are at the disposal of the user.

Statements (iv) and (v) show that the lower bound converges to f* and the bounds given
by the boxes stored in list S(¢) converges to X*. Our method is originally designed
for nondifferentiable problems or problems where derivatives are not available. In our
experience the convergence to X* is very slow and undesirable clusters of boxes around
each global minimum point occur provided that no interval derivatives are calculated.
This cluster problem seems to be typical for branch and bound methods, and is studied
in the univariate case by Kearfott and Du 1993 [35].

In the literature it is pointed out that many practical problems are design problems (cf.
T6rn and Zilinskas 1989 [84], pages 7, 12). For those problems it is sufficient to calculate
only a point ¥ with f(Z) & f~, and sharp bounds for X* are not necessary. Thus the
method may be terminated before such clusters appear.

Our method can be used in an interactive way. If the precision is not good enough we
can successively increase n;. And also the parameter ny, a, 8, v, 6, may be changed
interactively. This offers additionally a great flexibility in applying this method. Mainly,
the parameter n, is responsable for calculating starting points in a region of attraction.
For many problems values of ny between 2 and 4 are satisfactory. Higher values of ny are
suited, if the region of attraction is very small.

415

2.3. Numerical experiments

In this section some numerical experiments are described. Even though they are not very
extensive, they give a good guide in answering such questions as how accurate are the
bounds for different parameters n;, ng4, or questions related to the computational costs
and the storage requirements.

The algorithm described in Section 2.1 is implemented in PROFIL/BIAS [38], [39], a
C++ class library supporting interval arithmetic. PROFIL/BIAS is available for SUN
Sparc-Stations, IBM RISC Stations, HP 9000/700 series, and PC’s. All the runs use IEEE
double precision {~ 17 decimals) on a SUN Sparc-Station 1.

We perform our experiments on a set of 9 test problems. Problems 1-7 are well-known
differentiable examples. Problems 8 and 9 are non-differentiable. We emphasize that for
all examples the same set of parameters has been chosen:

a:=02, f:=01, v:=1072, §:=0.2.

The parameters are not optimized w.r.t. this set of problems. For some problems we obtain
better results by changing some of the parameters. In all examples the permutation p is

choosen such that

w([zp)]) = w([zy(;)]) for i < j,

where [z] = X is the feasible domain. Hence, first the box is bisected normal to the
direction with the largest width, then normal to the direction with the second largest

width, and so on.

Because we want to show the behaviour of our method for increasing parameters n;,
ng, we set gg := 0 and ¢; := 0, that is we disable the additional termination criteria
(2.11). In (2.5) we choose the breadth-first search S’ := S. In examples 1 to 8 interval
arithmetic evaluations are used. In example 9 a variant of Lohner’s method [45] is used
for the computation of an inclusion function. In examples 1 to 7 and 9 we used the local
optimization algorithm of Brent 1973 [10] which is a modification of Powell’s algorithm.
In example 8 we used a SQP method.

In the tables of this section, we use the following abbreviations:

416

ny denotes the number of global minima found by the algorithm, where
a dash means, that only a local minimum has been found;

n; denotes the number of calls of the local optimization method (cf.
(2.36));

I denotes the maximum of the maximal lengths of the lists S, L, A;

n.; is the total number of real function calls;

n;s is the total number of inclusion function calls;

tstu is the machine independent Standard Unit Time. The unit for STU
is the time needed to perform 1000 calls of the Shekel Function No.
5 at (4,4,4,4). On a SUN Sparc-Station 1 one unit in standard time
is about 0.25 s.

We emphasize that for all following test problems the computed approrimations T and
f(Z) of the global minimum agree with the global minimum z* and f* within at least siz
decimal digits. Moreover, the upper bound T also agrees with f(%) and f* in at least siz
decimal digits. Therefore, we display in our tables only T rounded to siz decimal digits;
z* is given in the description of the test problems.

Example 1: Branin function [84].

5.1 5 2 1
fer(z) = (:cg - mmf + ;xl - 6) + 10(1 - S—W)cosml + 10

-5<x; £10, 0Lz <15
This function has three global minimum points.

f*=0.397887, z"=4{ (3.14159, 2.27500)

{ (—3.14159, 12.27500)
(9.42478, 2.47500)

=%

N | N4 fr f ny | nr | L | neg | nig | tstu
21 2110.397887 | 0.397887 1 1| 711271 7910.600
3| 210.397887 | 0.397887 31 3| 91271139 1.267
41 2110.397887 | 0.397887 3 3| 9276201 (1.467
21 3 110.397887 1 0.397887 3 31104247143 1.200
3| 31/0.397887 10.397887 3 3110|251 231]1.400
41 310.397887 10.397887| 3| 3110|254 3091.600
2| 410.397887 | 0.397887 30 31 91233209]1.267

Example 2: Rosenbrock [23].

fr(@) = 100(z; = 27)* + (21 = 1)’

5<a <5, i=1,2
fr=0, @ =(1,1)
ny | ng || f* f ny | nr L | neg | nig | tsTo
21 2 0 }1.36492.10-22 L 1]14]101{ 31/0.267
3] 2 0 [1.36492-10~22 1 1(4]102]| 55}0.333
41 2| 0]1.36492 . 10722 Iff 114]104] 77|0.400
2] 3|0 [1.14764 - 10722 1 1]4(122) 57 (0.400
31 3 0]1.14764 .10722 1 1|41124| 890.467
2] 4§ 0]2.29523 .10~ 1 1]3]119 83(0.400
Example 3: Shekel functions [84].
fon(@) == 3 1
Smit) = — (r—a)T(z —a) +¢
0<2,;<10, j=1,...,4

For m = 10 the minimum is:

f*=-10.5364, 2*=

(4.00075, 4.00059, 3.99966, 3.99951)

ni | ng f* f nu | np | | neg | nig | tstu
2| 2 —10.8593 | —10.5364 1 11 111711 39]0.933
3] 2 —10.5918 | —10.5364 1 11 11172} 551}1.067
41 21 —-10.5501 | —10.5364 1 1] 111731 9311.267
21 34 —10.5918 | —10.5364 1 1 11144 55]0.800
31 31 —10.5447 | —10.5364 1 1115145 (123 (1.267
41 3| —10.5376 | —10.5364 1 1192148 {803 | 5.667
2| 41 —-10.5501 | —10.5364 1 11 1| 8| 9310.933

Example 4: Levy No. 12, n = 10 [23].

flevyl(l') - SIH Ty + Z

n—1

with Yi = 1+ (.’L‘,‘ — 1)/4,

—-10 < 2; <19,

This function has about 10'° feasible local minima.

;- 1) 1 + 10sin? TYir1) + (Y — 1)2

1=1,...

417

418

ni |na || f° f nuy || e | s | neg | nig | tsTu
21 211 0 |3.41336- 1071 1 11113791 8112.200
30 2| 0 |3.41336-10"1¢ 1 11113801121 |2.600
41 2| 0 |3.41336-10"16 1 1111381161 2.933
21 3| 0 [1.49337.10"12 1 1] 11146 {121 |1.667
3] 3| 0 |1.49337-10712 1 1111147181 12.133
2] 4] 0 |4.93934-10~% 1 111]3451161|2.933
Example 5: Griewank function [84], n = 10.
faw) = 3 ofd = [cos 241
=1 i=1
—600 < z; < 600, d = 4000,
=0, a"=(0,...,0)
ni | na || A ny || nL |l | neg | nig | tsTu
21 84 0 |1.31006 - 10~ 4 1 1| 1]1351341 {2.667
21101 0 |1.80300-10"13 1 1111417]4211]4.600
2112 0 [3.25184-10°13 1 111400 {501]5.133

Only for a few real methods results are known for this function. In Térn and Zilinskas
[84] the results of two methods are given:

Method ny .z | tsTU
Griewank (1981) - | 6600 -
Snyman, Fatti (1987) | 1 [23399 | 90

Both methods give no guarantee, and Griewank’s method has calculated only a local

minimum.

Example 6: Same as example 5, but n = 50.

ni | na |l f° f ny | nn || nep| nip| tstu
1/10|f O |1.14087-10722 1 1111|7644 {1101 |110.333
2110 0 {1.14087-10"12 1 1] 1176452101 | 140.333
1]15] 0 |2.25375- 1074 1 1] 1] 74311601 | 48.067
Example 7

This example is taken from Moore, Hansen, and Leclerc [50}. The authors write:

419

“Our second example concerns a real world problem which arises in the field
of chemistry. More specifically, chemists performing photoelectron spectroscopy
collide photons with atoms or molecules. These collisions result in the ejection
of photoelectrons. The chemist is left with a photoelectron spectrum which is a
plot of the number of photoelectrons ejected as a function of the kinetic energy
of the photoelectron. A typical spectrum consists of a number of overlapping
peaks of various shapes and intensities. The chemist desires to resolve the
individual peaks.

One method for isolating each peak attempts to ‘fit’ the spectrum as the
sum of peak functions. Peak functions are functions of variables which convey
information regarding the peak’s position, intensity, width, function type, and
tail characteristics. Various types of functions have been used for this purpose,
but the most common are Gaussian and/or Lorentzian.”

In [50] the authors construct a spectral curve as the sum of two Gaussian functions given
by 81 points (z;,y;):

¢ =40+013G+1),i=1,2,...,81

_(Ei__"l.)? _(£i;"2.)2
1 =2

Y = aze + asze
a; =130.89 a,; = 52.6
u; = 6.73 ug = 9.342
s51 =12 s, =0.97

The goal was to recover the six parameters ay, a,, uy, Uz, 81, and s; by minimizing the
function

1
8 (v _(Eizay 2
f(al,az,ul,uz,sl,sz) = E (016 1 +aze 2 —y;) y

=1
where range of the six parameters was defined as follows:

[a1] = [130, 135}, [ao] =[50, 55], [w]=[6, 8], [ug] =18, 10],
[s1]=11, 2}, [s2] = (0.5, 1]

The method described in [50] uses interval derivatives in an extensive way. They obtained

420

the following guaranteed bounds for the global minimum point

a; = [130.889999624668920, 130.890000237423440)
a; = [52.5999994426222910, 52.6000003353821410]
uy = [6.72999999580056230, 6.73000000523584680]
uy = [9.34199999170696670, 9.34200000792551850]
51 = [1.19999999502502950, 1.20000000672384770]
sy = [0.96999998507893725, 0.97000001469388031]

and for the global minimum value
[£*,F7] = [6.3015390640982946 - 107"°, 9.9696829305332294 - 107"].

For the guaranteed bounds of f* given in [50] supposely there is a misprint, and the lower
bound possibly should be negative.

The number of guaranteed decimal digits for the global minimum point varies between 7
and 9 and the time needed on a SUN SparcStation is reported as 109240 s.

Our method gives the following results:

ni |na |l f° f nu || ne | ls | neg | nig | tsTU
111]0/]272132-10-2 1 1 81256 53124

110 [272132-107%°| 1 1 {44 1264 | 469 | 57.8
1120 0(892363-107'(1 1 {44 208|469 52.8

The number of correct decimal digits of the approximation, calculated for n;; = ng = 1,
varies between 12 and 15:

a; = 130.8900000000426
@z = 52.59999999998969
u; = 6.730000000000008
i, = 9.342000000000636
31 = 1.199999999999803
32 = 0.9700000000003587

For other values of n;; and ny the approximations are similar. For example in case
ni = ng = 1, we see that the algorithm has calculated an approximation such that

f@,...,3) € [fF1=10,2.72132-107%],

and the time needed on a SUN SparcStation 1 is about 3 seconds. The bounds calculated
for the global minimum point are rough. Corresponding test results for a variant of this

421

method which additionally calculates sharp bounds for the global minimum points are
given in Section 2.6.

This problem is a nonlinear least square problem. Such problems can be found in many
applications in engineering science. Typically, a model (here the Gaussian functions)
and some experimental data (here the y;) are given. The problem is to determine some
parameters such that the model fits the data. Because of experimental and measuring
errors the values y; are uncertain. Other uncertainties do not occur. Obviously for this
type of problems it is important to verify that the calculated approximation dj,...,3; fit
exactly the data y; where the 4; are relatively perturbated, and the perturbation is inside
the measuring error. That is, the approximation is the exact solution of this problem
with slightly perturbated data %;. For the above approximation the least square error is

7 =272132.107%°,

the maximal absolute error is

Lz Lz

max [de w4+ e =) -y | <4.26610 1071,

=1
and the maximal relative error is

|?i e_(r;’:x:. ’ +a e_(r_;f ¥ _ |
niax 12 I 2| Yl < 1.00880 - 1071,
= yi

That is, for example, if the relative measuring error is greater than 1.00880 - 101, then
the approximation @i,..., 32 fit exactly the perturbated y; where the perturbation is
inside the measuring error. In practical applications the measuring errors are significantly
larger than 1.00880 - 10~!!. In our opinion, the calculation of sharp bounds for the global
minimum point for this type of problems is therefore not necessary.

The original range of the six parameters seems to be small for this problem. Enlarging
the range to

[al] = [Oa 200]a [a2] = [0» 100]7 [ul} = [07 10]’ [UZ] = [07 20]7
[s1] =[0.1, 5], [s2) = [0.1, 5]

our method yields the following results:

e ls

niy | na || f” f na || RL n.t | nig | tsTu
111 0 {4.07219-10718| 1 1 321542 | 155 | 26.8
211 0 14.07219-10"8 | 1 1 {215 |554|1549 | 164.1

422

Example 8: This example has been taken from Charalambous and Bandler [11], where
an approximation of a fourth-order system using a second-order model is searched. The
fourth-order system has the transfer function

(s+4)

G = o+ 45 +8)(s+5)

The second-order model’s transfer function is

T3

H(s)= —————

where z1, z2, z3 are the parameters of the model with zy,z3 € [0, 1] and =z, € [0.1,1].

The impulse responses for the system and the model are:

3 1 1
s(t) = -236" + 56'5‘ - %e_zt(fi sin 2t + 11 cos 2t)
h(z,t) = ﬁe"“ sin ot
]
The impulse responses are compared at 51 equidistant time points ¢;, 1 = 0,...,50 in the

time from 0 to 10 s.

The aim is to find a set of the three parameters of the model such that the maximal error
f(z) == max|s(;) — h(z,t;)| is minimal.
1

The solution is f* = 0.00794706 at =} = 0.684418, =} = 0.954093, and z3 = 0.122864.
Plots of s(t) and h(z*,t) are shown below, where the solid line is the impulse response of
the model and the dotted line is the system’s response.

impulse response
g T

t[s)

423

The results by using our method are displayed in the following table.

=5

N | na fr f nm L] | ne i | tstu
21 20 0.00794706 1 2(2831236| 1286 82.200
3| 2] 0.00631710 | 0.00794706 1 212831264 | 3836 |224.267
41 2110.00756954 | 0.00794706 1 2128312931 7214 }410.800
21 3/0.00631710 | 0.00794706 1 21744 1332 | 6046 | 332.800
31 310.00776569 | 0.00794706 1 2744 |1 344 | 11052 | 611.533
41 31 0.00791567 | 0.00794706 1 2744 | 358 | 16232 | 899.333
2| 4|1 0.00756954 | 0.00794706 1 214711346 | 7348 |1 410.200

Example 9: In system analysis, a problem is to minimize the maximal real part of the
eigenvalues of a matrix in order to get a maximal stable system. The systems discussed
here consist of a matrix M(z) € IR™™ with parameters z € IR®. If \;(z) are the
eigenvalues of M(z) and o(z) := max R{\:(z)}, then the aim is

min o(z).
We consider the matrix
di(z1,22) ksinzy ksinx, k cos z; k cos o
k‘SiIl 211 dg(l’],.’[g) ka:l k(CQ kmll'g
M(z)=| ksin2z; k(zi+1z2) da(z1,22) ka? kx?
kcos2zi k(zi—x2) k(zi+22)% da(21,29) ksinzi2
k cos 2z, kz,zl k4x? ksin(zy + z2) ds(z1,72)
with
dy(zy,22) = 17.5— 9¢=500((E1+4Y +(z2+4)) _ Tt

20
dy(z1,22) = 20— — (=2 + 5) cos _7_2r_ (23 + 23)
ds(z1,22) = 20— 6cos2may
4 4 1
da(z1,22) = 18— %8:62 + 5 cos 6rxi29
ds(z1,22) = 20— 6cos2mzy
E = 107
T1, T2 S [—5,5]

2 2
7:1+z2

As it can be seen in the plot of —o(z) (we turned it upside down to let the global
minimum be visible as global maximum), the function o(z) contains lots of local minima
and maxima.

424

The unique global minimum is
=159, z"=(-3.99997,-3.99997)

Applying our method by using a variant of Lohner’s method [45] for calculating bounds
for the eigenvalues, we obtain the results

nie | ng f* F Pam e &) ner | nie | tsro
27 2 15.8686 |17.1890 | — 24418151114]144.3
21 41158974 | 15.9000 1 11 11133 33| 21.5
3 41 15.8999 | 15.9000 1 1] 1]134| 49| 28.5

2.4. An Expansion Scheme

Here, we introduce a new scheme which (i) proves existence and uniqueness of a stationary
point in a small box that contains an approximation calculated by a local optimization
algorithm, and (ii) tries to verify uniqueness of this stationary point in a large box by
expansion. This scheme yields an additional criterion for discarding subboxes. In the
next section, it will be used to accelerate our branch and bound method, and to calculate
very sharp bounds for the global minimum value and the global minimum points. We
assume that inclusion functions of the first and second dervatives of f are available.

This approach uses the information of a stationary point or global minimum calculated
with floating-point arithmetic, and is very much in the spirit of Wilkinson [88]. It increases
the width of boxes where uniqueness can be verified, and it can be viewed contrary to
the interval Newton method, which tries to decrease the width of the boxes and uses no
approximations.

425

Theorem 2.3. Let 0,7 € IR be positive, ¥ € IR", R € IR™™", and let w € IR" be defined
componentwise by

o IE,I]f |§zl Z T
W= { 1 otherwise (2.44)

for i = 1,...,n. Moreover, assurne that f is twice continuously differentiable, and let
z2(0):=|R- @A+ I-R-f"E+0-[-w,w])| 0w, (2.45)
where f” is an inclusion function of the Hessian of f.

If z(¢) < o -w, then R is nonsingular, and f contains exactly one stationary point z with
f(Z) = 0 in the box ¥ + o - [~w, w]. Moreover, T € T + [-2(0), 2(0)].

Proof. Let W := ¢ - [—~w,w]. Then 0 € W, and it follows from 2(¢) < o - w that
~R-f@+{-R-f'@T+W)) - WGW.

Now, Theorem 2.3 is proved by using Theorem 7.4 of Rump (cf. [73], page 82), where f
has to be replaced by f'. |

Theorem 2.3 proves existence and uniqueness of a stationary point in a box symmetric to
an approximation Z. Usually, R is an approximate inverse of the midpoint of f*(Z + o -
[—w,w]). We mention that R may also be determined as an optimal preconditioner w.r.t.
the inclusion function of the Hessian (cf. Kearfott 1990 [36]). Notice that no assumptions
about the quality of 7 and R are required.

Our expansion scheme EXPAND (E, le(D)], [u(ic')]) depends on the parameters oo, 04,7,
and ezpansion which are not mentioned explicitly in the list of parameters of EXPAND.
An appropriate choice is:

0o =107% o1 = 107; 7 =107%; expansion = 2.

Now, we use Theorem 2.3 in the following way. First, in steps (2.46) to (2.48) for o := g0
we test the inequality z(¢) < o - w. If this inequality is not true, then we stop procedure
EXPAND with a WARNING: existence and uniqueness cannot be verified. Otherwise,
in the small box [e(Z)] (see (2.49)) around the approximation Z existence and uniqueness
of a stationary point is proved. Secondly, in steps (2.50) to (2.62) a large box is calcu-
lated where uniqueness of this stationary point is verified. We start with the larger box
Z 4 o1[—w, w]. Then two cases occur:

In the first case (cf. (2.52) to (2.56)), uniqueness of the stationary point is verified, and
we expand the box by multiplying o with factor expansion (see (2.55)). This is done until
z(0) £ o - w — uniqueness cannot be proved —, or the set of feasible points X = [z] is
equal to [u(Z)]. In the latter case, f has exactly one stationary point in [z].

426

In the second case (cf. (2.57) to (2.61)), uniqueness of the stationary point is not proved,
and we shrink the box by dividing o with ezpansion. This is done until uniqueness can
be proved, or [u(Z)] is contained in [e(Z)]. In the latter situation (cf. (2.62)) both boxes

coincide.
procedure EXPAND (7, [e(%)], [u(7F)])
begin
0 = 0g; [e(F)] :=0; [u(@)] = 0;
calculate w and z(o) according to (2.44) and (2.45);
if z(¢0) £ 0 - w then STOP with WARNING
[e(@)] i= & + [~2(0), =(o)];
o= oy;
calculate z(o);
if z2(¢) < 0 - w then
while z(0) < ¢ - w and [u(7)] G [z] do begin
(@) = (& + 0 - [-w,u]) N [
o = 0 - expansion;
calculate z(o);
end;
else
while z(0) £ o - w and [u(Z)] € [e(Z)] do begin
¢ = o/ezpansion;
calculate z(o);
[u(@)] ;=2 + 0 [-w,w];
end;
end;
if [u(@)] € [e(3)] then [u(@)] := [e(@)];

end;

(2.46)
(2.47)
(2.48)
(2.49)
(2.50)
(2.51)
(2.52)
(2.53)
(2.54)
(2.55)
(2.56)

(2.57)
(2.58)
(2.59)
(2.60)
(2.61)

(2.62)

Summarizing, procedure EXPAND calculates a small box {e(Z)] where uniqueness and

existence of a stationary point is guaranteed, and an expanded box [u(Z)]. The latter box

427

[u(Z)] has the property that uniqueness cannot be proved (provided Theorem 2.3 is used)
for the box which results from [u(%)] by multiplying the width with factor expansion.

This procedure assumes that inclusion functions of the gradient and the Hessian are
available. One way to calculate these inclusion functions is to perform the algebra of
differentiation, for example with a program like MAPLE or MACSYMA, and then to
calculate the corresponding natural interval evaluations. Another approach is automatic
differentiation (cf. Rall 1981 [63], Griewank 1991 [20]). An important property of this
technique is that gradients and Hessians can be obtained very cheaply.

There are various ways how to improve EXPAND. Here we mention only some of them:

o If EXPAND stops with a WARNING, then we may try the interval Newton method or
the iteration scheme of Rump (see [73], Page 85).

¢ At alocal or global unconstrained minimum of a twice differentiable function the Hessian
must be positive semidefinite. A necessary condition for being positive semidefinite is that
the diagonal elements of the Hessian are nonnegative. Therefore, if one of the diagonal
elements of f”(Z+ o -[—w,w]) is negative, then f is not convex in this box and EXPAND
may be stopped. This may save some evaluations of the second derivative.

¢ Theorem 2.3 may be replaced by inclusion theorems for eigenvalue problems (cf. for
example [2], [9] [45], [48], [78]) to prove that the Hessian is positive definite over a box
around a calculated approximation. Then, f is strictly convex in the corresponding region,
and the stationary point is guaranteed to be at least a local minimum.

¢ Theorems, similar to Theorem 2.3, may be used in procedure EXPAND where slopes
(cf. Rump 1994 [72]) or Hansen’s inclusion functions (cf. Hansen 1992 {23]) of the Hessian
are involved. Moreover, in Rump 1994 [72] it is shown how regularity of an interval matrix
can be proved by a special iteration. This iteration can be used to prove uniqueness of

the expanded box.

At present, these improvements are not implemented in our code, and all test results given
in Section 2.6 are obtained by using prodedure EXPAND in the simplified form (2.46) to
(2.62).

2.5. A Branch and Bound Method Using Inclusion Functions of Derivatives

The branch and bound method described in Section 2.1 uses no derivatives, and subboxes
[y] of X are only discarded if a lower bound of f on [y] is greater than f . If interval
evaluations of the first and second derivatives are available, in general, branch and bound
schemes can be accelerated and the accuracy can be improved. The proposed techniques
for some branch and bound methods are the monotonicity test, the nonconvexity test,
and the interval Newton method (cf. Hansen 1992 [23], Ratschek and Rokne 1988 (65]).
We do not use these techniques, and in the following we show how the expansion scheme

428

of Section 2.4 can be incorporated in our branch and bound scheme.

We have to modify the three procedures BRANCH AND BOUND, SUBDIVISION, and
SEARCH. The most modifications are in procedure SEARCH. Therefore, the modified
SEARCH is given completely below.

procedure SEARCH ([y], 4, ")

begin
go=m(lyl); =70 . (2.63)
if (f < 7)) or ([y)) 0 [o()?D] = 0 and [y] N [u(Z®)] = @ for each (2.64)

already calculated approximate local or global minimum point

stored in list A and f < f + 6 |f|) then begin

call a local optimization algorithm with starting point j (2.65)
calculating an approximation Z;

if (Z € [z] and 7 ¢ [w(Z)] for each already calculated approximate

local or global minimum point () stored in list A)

then call EXPAND (%, [e(T)], [u(T)]); (2.66)
else begin
if T; < z; then T; := g3 (2.67)
if ; > Z; then ; := T;; (268)
(@) i=0; [u(@)] := ; (2.69)
end; N
Fi=F@): T = Min{ T (2.70)
[o(@)] = £+ - Max{[5 — 31, [£], 1) (2.11)
append the tuple (Z, f, [v(Z)], [u(Z)], [e(T)]) at (2.72)
the end of list A;
end;

end;

Obviously, the main modifications are in step (2.64) where the call of the local optimiza-
tion algorithm is changed accordingly to the boxes [u(Z)], and in step (2.66) the call of
EXPAND.

The most important point is that with the boxes [u(Z)] calculated by EXPAND we have
an additional criterion to discard subboxes. If a subbox [y] is contained in some expanded
box [u()], then [y] can be discarded independently of the bound of f on [y]. This is,
because [u(T)] contains exactly one stationary point that is enclosed by [e(Z)] and these
boxes are stored on list A. It follows that during execution of our algorithm list A contains
very sharp inclusion boxes [e(F)] of local or global minima, list S contains boxes which
cannot be discarded by both criteria, and the set of global minimizers satisfies

X ULlul | (o], £(w]) € S YU U{ [e(@)] | [e(2)] is contained in A}. (2.73)

Hence, if list S is empty, then X* is contained in the union of the boxes [e(Z)], and

429

algorithm BRANCH AND BOUND can be stopped. Therefore, step (2.5) is replaced by

if § = 0 then begin
f* = Min{ f([e(Z)] | [e(Z)] is contained inA };
STOP algorithm BRANCH AND BOUND;
end;
else select §’ C S such that the pair ([y], f([¥])) € S,
which has the smallest lower bound f([y]), is contained in S;

Since only SUBDIVISION is responsable for discarding subregions, we have the following
modifications:

Step (2.20) is replaced by

if (f([y]) > 7 or [y} C [u(F)] for an approximation Z
already calculated and stored in list A) then exit for loop;

and steps (2.29), (2.30) are replaced by
if (k = kmax and L =0 and f([y]) < T and [y] [u(F)]

for an approximation ¥ already calculated and stored in list A) then

call SEARCH([y],4,f);

Usually, this algorithm terminates after a finite number of steps with S = () provided that
the Hessians of the global minimizers are nonsingular. Since the main modification is the
additional criterion for discarding subboxes in SUBDIVISION together with storing the
boxes [e(%)] on list A in SEARCH, it follows that the statements (i), (ii), (iii) of Theorem
2.1 are satisfied. Statement (iv) must be replaced by (2.73).

This modified method can be viewed as an accelerated version of the method described in
Section 2.1 that additionally calculates very sharp bounds for the global minimum value
and the global minimum points. If the algorithm finishes with S = @, and the precision
of the bounds is not sufficient, then one or two interval Newton steps applied to the boxes
[e(F)] of list A which satisfy f([e(Z)]) < 7" may be added.

On the contrary to the well-known interval methods in global optimization which use
inclusion functions of derivatives in an extensive way, in our method derivatives are used
only in the case where approximations of stationary points are calculated. Thus, it is
typical for our method that the number of calculations of derivatives is small compared to
other interval methods. This is demonstrated in the report [33] where numerical results
for many well-known test problems including the test set of Hansen [23] are described.

For some problems it is a priori known that they have exactly one stationary point which
is the global minimum point. For example, strictly convex problems have this property.
Obviously, in such cases our method can be stopped if the stationary point is verified
by procedure EXPAND. Then mainly the branch part of our method serves to calculate
a good starting point in the attraction region of the global minimum point. With this

430

modification sharp bounds for the introducing example that describes the optimization
of the voltage stabilizer can be calculated.

For almost all test problems known to us (cf. {32], [33]) our branch and bound method
works very efficiently. Ounly in three cases we were not so lucky. One of which was
Mandel’shtam’s problem (cf. [18]) where we had success only up to dimension 4, because
we did not find an appropriate inclusion functions.

The efficiency depends very much on choosing an appropriate inclusion function. In many
cases natural interval evaluations are sufficient. But we think that it is very important to
find other types of inclusion functions for special problems.

2.6. Numerical Experiments

In this section we give numerical test results for the method described in Section 2.5.
Here, we use the differentiable problems given in examples 1 to 7 of Section 2.3. We use
the same set of parameters for all test problems:

a:=02, 8:=01, y:=10"3, 0:=0.2, 7:= 1073, oy := 1075,
o9 := 0.1, expansion := 2.

By adapting the parameters to specific test problems, better results may be obtained. For
example, increasing the value of ezpansion reduces the number of calls of the Hessian, but
increases the number of calls of the inclusion function.

Additionally to the notations given in Section 2.3, we use n;,, n;, for the total number
of calls of the inclusion function for the gradient and the Hessian, respectively. We have
chosen n;; = 30 for all test problems. In each case the algorithm terminates with an
empty list S. It follows that for each larger value of n;; the algorithm terminates in the

same marner.

Example 1: Branin function [84].
f* €10.3978873577297382,0.3978873577297453]

. ([—3.141592653589795,—3.141592653589792])
=\ [12.274999999999999, 12.27500000000001]
[9.424777960769378, 9.424777960769383)]
< (2.474999999999999, 2.475000000000002])
[3.141592653589793, 3.141592653589794]
([2.274999999999998, 2.275000000000001])

na [nm L || ne | ni | nig | nan | tsTu
21 3 3[7]233({127| 3| 18} 2.30
3 3 31712281131 3| 181 2.20
4 3 3171{2471150| 3} 18] 2.40

Example 2: Rosenbrock [23].

f* € [0,8.799053144448318 - 10~%7]

. e [0.9999999999999999, 1]
- [0.9999999999999999, 1]

)

na i em || oL [l | nee | v | nig | nin | EsTU
2 1 114]124 1150 1113]145
3 1 114]132]152 1113145
4 1 1131119156 1] 137 1.50

Example 3: Shekel function, m = 10 [84).

F* C [-10.53640981669206, —10.53640981669203]

[4.000746531592046, 4.000746531592047]
[4.000592934138531,4.000592934138532]
(3.999663398040322, 3.999663398040322]
[3.999509800586807, 3.999509800586808]

na [nm || nL | I | ne | nug | nig | nin | EsTU
2 1 11112551931 1 71 2.85
3 1 1111174193 1 71 2.50
4 1 1111107193 1 71 2.30

Example 4: Levy No. 12, n = 10 [23].

£* C[0,4.939341111267398 - 1072

431

432

N

[0.9999999999999998, 1]
[0.9999999999999999, 1]
[0.9999999999999999, 1]
[0.9999999999999999, 1]
[0.9999999999999999, 1]
[0.9999999999999999, 1]
[0.9999999999999999, 1]
[0.9999999999999999, 1]
[0.9999999999999999, 1]
. [0.9999999999999999, 1]

nd

M

nL | b | N | nig | nig | nan | tsTu

W N

380 (141 1 4.75
146 1141} 1 3.70
344 | 141§ 1 4.50

—
—
ot v Ot

Example 5: Griewank function [84], » = 10.

f* € [0,4.551914400963142 - 107%]

[—1.752875876867703 - 107*%,9.10327788226753 - 10719]
[—2.49108923735287 - 10715, 1.273368348184274 - 10-1%]
[—3.724949921605188 - 10~1%, 8.832483289507194 - 10719
[—3.68400804229635 - 10~1,1.634425727320358 - 10~1%]
[—1.364848010712496 - 10723, 1.282129949457193 - 10-%%]
[—2.9778502051909 - 10~23, 2.646977960169689 - 1029
[—5.156808186946726 - 10715, 1.868301654538232 - 10-19)
[—5.743642108837937 - 1075, 1.762776141781241 - 10719
[—6.995533733778533 - 1071%, 9.622619705035564 - 10~1€]
[—1.77843831698901 - 1023,1.613002194478404 - 107%3]

z* C

ng [nm oL | L] ne | nig | nig | nin [tsro
10 1 1117416 {261 1 719.25
15 1 11111631322] 1 71 8.60

Example 6: Same as example 5, but n = 50.

f* € 10,3.164135620181696 - 107**]

433

[—1.804243928668264 - 1071%, 8.589598111826399 - 10~€]

[—1.513044566938841 - 1074, 3.251126042831056 - 107°]

nallnm oo | L] ne | nis | nig {nin | tsTU
15 1 111176711602 1 627.85
20 1 1115162102 1 729.15

-3

-3

Example 7: taken from [50].
f* C [0,3.678114804829197 - 107%']

[130.8899999999997, 130.8900000000002]

[52.59999999999987, 52.60000000000012]
o C [6.729999999999998, 6.730000000000003]
- [9.341999999999995, 9.342000000000006)
[1.199999999999996, 1.200000000000004]
[0.9699999999999923, 0.9700000000000075]
ng lfnm e | L ne nif | nig | nin | tsTU
1 1 1115348719129 11 14]1688.00
2 1 11164 1270119129 | 1| 14 |1681.65
3 1 11142 (296 | 19135 1] 14 {1681.90
4 1 11151 1295119147 1] 14|1687.35
2.7. Remarks

To our knowledge, Moore 1966 [51] was the first to use interval arithmetic for solving global
optimization algorithms. We would like to stress that this work was truly pioneering. A
combination of a branch and bound strategy with some of Moore’s principles was given
by Skelboe 1974 [81] and improved by Moore 1976 [52]. Some recent test results for
the method of Moore and Skelboe are given in Csendes and Pintér 1993 [16]. A very
important branch and bound method using extensively the tools of interval arithmetic
like a specialized interval Newton method, monotonicity tests, nonconvexity test, etc.
is presented by Hansen 1979, 1980, 1992 [21], [22], [23]. Some recent test results of a
modification of Hansen’s method are given by Ratz 1992 [66], [67], and a special branch
and bound method using preconditioning techniques is given by Kearfott 1992 [37]. A
special method for solving Minimax problems by using the tools of interval arithmetic
has been proposed by Zuhe et al. 1990 [89]. Methods for solving nonlinear parameter
estimation problems are described in Csendes 1988, [13], [14], [15]. A detailed convergence

434

analysis of some branch and bound methods that use interval arithmetic was first given
by Ratschek 1985 [64]. For further details, see Ratschek and Rokne 1988 [65]. This
book contains also about 290 references that are related to interval arithmetic, nonlinear
systems and global optimization problems.

Other branch and bound schemes which are not closely related to interval arithmetic are
described in the well-known textbooks of Horst and Tuy 1990 [24], Pardalos and Rosen
1987 [61], and Térn and Zilinskas 1989 {84].

For a first version of the method described in Section 2.1 see [27], [30]. A convergence
analysis together with some numerical results and comparisons with other well-known
global optimization methods is treated in [31]. Numerical results for a test set of about 50
problems is given in [32]. In these two publications it is shown that for many problems our
algorithm has a better efficiency than the best traditional methods, the latter, however,
do not deliver guaranteed results. Numerical results for the modified method described
in Section 2.5 are given in [33]. Similar methods for nonlinear systems of equations are
treated in Kniippel 1994 [40].

REFERENCES

1. G. Alefeld. Inclusion Methods for Systems of Nonlinear Equations. In J. Herzberger, editor,
Topics in Validated Computations — Studies in Computational Mathematics, Amsterdam.
North-Holland to appear.

2. G. Alefeld. Rigorous Error Bounds for Singular Values of a Matrix Using the Precise Scalar
Product. In E. Kaucher, U. Kulisch, and Ch. Ullrich, editors, Computerarithmetic. Teubner
Stuttgart, 1987.

3. G. Alefeld and J. Herzberger. Finfihrung in die Intervallrechnung. B.1. Wissenschaftsverlag,
1974.

4. G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, New
York, 1983.

5. G. Alefeld and L. Platzdéder. A Quadratically Convergent Krawczyk-Like Algorithm. SIAM
Numer. Anal., 20(1):210-219, 1983.

6. H. Bauch, K.-U. Jahn, D. Oelschldgel, H. Siisse, and V. Wiebigke. Intervallmathematik, The-
orie und Anwendungen, volume Bd. 72 of Mathematisch-naturwissenschaftliche Bibliothek.
B.G. Teubner, Leipzig, 1987.

7. H. Becker and R. Wittmer. Parameteroptimierung. In Texte des Modellversuchs zur math-
ematischen Weiterbildung, volume Heft 1. Universitit Kaiserslautern, 1983.

8. H. Beeck. Linear Programming with Inexact Data. Technical Report Bericht 7830,
Abteilung Mathematik, TU Miinchen, 1978.

9. H. Behnke. The Determination of Guaranteed Bounds to Eigenvalues with the Use of Varia-
tional Methods II. In Ch. Ullrich, editor, Computer Arithmetic and Self-Validating Numer-
ical Methods, pages 155-170. Academic Press, 1990.

10. R.P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall Inc., Englewood
Cliffs, New Jersey, 1973.

11

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

435

. C. Charalambous and J.W. Bandler. Non-linear Minimax Optimization as a Sequence of
Least pth Optimization with Finite Values of p. J. Comput. Syst. Sci., 7(4):377-391, 1976.
V. Chvatal. Linear Programming. W.H. Freemann and Company, 1983.

T. Csendes. Nonlinear Parameter Estimation by Global Optimization -— Efficiency and
Reliability. Acta Cybernetica, Tom 8(Fasc. 4):361-370, 1988,

T. Csendes. An Interval Method for Bounding Level Sets of Parameter Estimation Problems.
Computing, 41:75-86, 1989.

T. Csendes. Interval Method for Bjounding Level Sets: Revisited and Tested with Global
Optimization Problems. BIT, 30:650-657, 1990.

T. Csendes and J. Pintér. The Impact of Accelerating Tools on the Interval Subdivision
Algorithm for Global Optimization. European Journal of Operational Research, 65:314-320,
1993.

G.B. Dantzig. Linear Programming and Ertensions. Princeton University Press, Princeton,
1963.

V.F. Dem’yanov and V.N. Malozemov. Introduction to MINIMAX. John Wiley & Sons,
1974.

H.W. Engl and C.W. Groetsch. Inverse and Ill-posed Problems. Academic Press, Orlando,
1987.

A. Griewank and G.F. Corliss. Automatic Differentiation of Algorithms. Theory, Implemen-
tation, and Applications. STAM, Philadelphia, 1991,

E.R. Hansen. Global Optimization Using Interval Analysis — the One Dimensional Case.
J. Optim. Theory Appl. 29, pages 331-344, 1979.

E.R. Hansen. Global Optimization Using Interval Analysis — the Multidimensional Case.
Numer. Math. 34, pages 247-270, 1980.

E.R. Hansen. Global Optimization using Interval Analysis. Marcel Dekker, New York, Basel,
Hong Kong, 1992.

R. Horst and H. Tuy. Global Optimization. Springer-Verlag, Berlin, 1990.

C. Jansson. Zur linearen Optimierung mit unscharfen Daten. Dissertation, Universitit
Kaiserslautern, 1985.

C. Jansson. A Self-Validating Method for Solving Linear Programming Problems. Comput-
ing, Suppl. 6, pages 33—46, 1988.

C. Jansson. A Global Minimization Method: The One-Dimensional Case. Technical Report
91.2, Forschungsschwerpunkt Informations- und Kommunikationstechnik, TU Hamburg-
Harburg, 1991.

C. Jansson. Interval Linear Systems with Symmetric Matrices, Skew-Symmetric Matrices,
and Dependencies in the Right Hand Side. Computing 46, pages 265-274, 1991.

C. Jansson. Rigorous Sensitivity Analysis for Real Symmetric Matrices with Uncertain Data.
In E. Kaucher, 5S.M. Markov, and G. Mayer, editors, Computer Arithmetic, IMACS, pages
293-316. J.C. Baltzer AG Scientific Publishing Co, 1991.

C. Jansson. A Global Optimization Method Using Interval Arithmetic. In L. Atanassova
and J. Herzberger, editors, Computer Arithmetic and Enclosure Methods, IMACS, pages
259-267. Elsevier Science Publishers B.V., 1992.

C. Jansson and O. Kniippel. A Branch-and-Bound Algorithm for Bound Constrained Opti-
mization Problems without Derivatives. To appear.

436

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

50.

C. Jansson and O. Kniippel. A Global Minimization Method: The Multi-dimensional case.
Technical Report 92.1, Forschungsschwerpunkt Informations- und Kommunikationstechnik,
TU Hamburg-Harburg, 1992.

C. Jansson and O. Kniippel. Numerical results for a Self-Validating Global Optimization
Method. Technical Report 94.1, Forschungsschwerpunkt Informations- und Kommunika-
tionstechnik, TU Hamburg-Harburg, 1994.

C. Jansson and S.M. Rump. Rigorous Solution of Linear Programming Problems with
Uncertain Data. ZOR — Methods and Models of Operations Research 35, pages 87-111,
1991.

B. Kearfott and K. Du. The Cluster Problem in Global Optimization. Computing Suppl.,
(9):117-127, 1993.

R.B. Kearfott. Preconditioners for the Interval-Gauss-Seidel Method. SIAM J. Numer.
Anal., 27(3):804-822, 1990.

R.B. Kearfott. An Interval Branch and Bound Algorithm for Bound Constrained Optimiza-
tion Problems. Journ. of Glob. Opt., 2:259-280, 1992.

O. Kniippel. BIAS — Basic Interval Arithmetic Subroutines. Technical Report 93.3,
Berichte des Forschungsschwerpunktes Informations- und Kommunikationstechnik, TUHH,
1993.

0. Kniippel. PROFIL — Programmer’s Runtime Optimized Fast Interval Library. Techni-
cal Report 93.4, Berichte des Forschungsschwerpunktes Informations- und Kommunikation-
stechnik, TUHH, 1993.

0. Kniippel. Finschliefungsmethoden zur Bestimmung der Nullstellen nichtlinearer Gle-
ichungssysteme und ihre Implementierung. Dissertation, Technische Universitit Hamburg-
Harburg, 1994.

T.C.T. Kotiah and D.IL Steinberg. Occurrencies of Cycling and other Phenomena Arising
in a Class of Linear Programming Models. Comm. ACM 20, pages 107-112, 1977.

T.C.T. Kotiah and D.I. Steinberg. On the Possibility of Cycling with the Simplex Method.
Operations Research 26, pages 374-376, 1978.

R. Krawczyk. Fehlerabschdtzung bei linearer Optimierung. Interval Mathematics, 29, 1975.
U. Kulisch and W.L. Miranker. Computer Arithmetic in Theory and Practice. Academic
Press, New York, 1981.

R. Lohner. Enclosing all Eigenvalues for Symmetric Matrices. In Ch. Ullrich and J. Wolff
von Gudenberg, editors, Accurate Numerical Algorithms, pages 87-103, New York, 1989.
B. Machost. Numerische Behandlung des Simplexverfahrens mit intervallmathematischen
Methoden. Berichte der GMD Bonn 30, 1970.

U. Maichle. Lineare Intervalloptimierung und Anwendungen. Diplomarbeit, Universitit
Kaiserslautern, 1988.

G. Mayer. Enclosures for Eigenvalues and Eigenvectors. In L. Atanassova and J. Herzberger,
editors, Computer Arithmetic and Enclosure Methods, IMACS. Elsevier Science Publisher
B.V., 1992.

M. Minoux. Mathematical Programming: Theory and Algorithms. John Wiley & Sons,
Chichester, 1986.

R. Moore, E. Hansen, and A. Leclerc. Rigorous Methods for Global Optimization. In In
Recent Advances in Global Optimization, Princeton series in computer science, pages 321—

51.
52.

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.
63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

437

342, Princeton, New Jersey, 1992. Princeton University Press.

R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.

R.E. Moore. On Computing the Range of Values of a Rational Function of n Variables over
a Bounded Region. Computing 16, pages 1-15, 1976.

R.E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.

F. Mraz. Solution Function of an Interval Linear Programming Problem. Technical Report
90-03, Danmarks Teknikse Hojskole, 1990.

B.A. Murtagh. Advanced Linear Programming: Computation and Practice. McGraw-Hill-
Book Company, 1981.

K.G. Murty and S.N. Kabadi. Some NP-Complete Problems in Quadratic and Nonlinear
Programming. Mathematical Programming 39, pages 117-130, 1987.

A. Neumaier. Overestimation in Linear Interval Equations. SIAM J. Numer. Anal,
24(1):207-214, 1987.

A. Neumaier. Rigorous Sensitivity Analysis for Parameter-Dependent Systems of Equations.
J. Math. Anal. Appl. 144, pages 16-25, 1989.

A. Neumaier. Interval Methods for Systems of Equations, Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 1990.

C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plezity. Prentice-Hall, Englewood Cliffs, N.J., 1982.

P.M. Pardalos and J.B. Rosen. Constrained Global Optimization: Algorithms and Applica-
tions. Springer Lecture Notes Comp. Sci. 268, Berlin, 1987.

PRO-MATLAB User’s Guide, Vers. 32-SUN. The MathWorks Inc., 1992.

L.B. Rall. Automatic Differentiation: Techniques and Applications. In Lecture Notes in
Computer Science 120. Springer Verlag, Berlin-Heidelberg-New York, 1981.

H. Ratschek. Inclusion Functions and Global Optimization. Mathematical Programming 33,
pages 300-317, 1985.

H. Ratschek and J. Rokne. New Computer Methods for Global Optimization. John Wiley &
Sons (Ellis Horwood Limited), New York (Chichester), 1988.

D. Ratz. An Inclusion Algorithm for Global Optimization in a Portable PASCAL-XSC
Implementation. In L. Atanassova and J. Herzberger, editors, Computer Arithmetic and
Enclosure Methods, pages 329-339. Elsevier Science Publisher B. V., 1992.

D. Ratz. Automatische Ergebnisverifikation bie globalen Optimierungsproblemen. Disserta-
tion, Universitit Karlsruhe, 1992.

J. Rohn. Solving Interval Linear Systems. Freiburger Intervallberichte 84/7,, pages 1-58,
1984.

J. Rohn. Systems of Linear Interval Equations. Linear Algebra Appl. 126, pages 39-78,
1989.

J. Rohn. Stability of the Optimal Basis of a Linear Program under Uncertainty. Operations
Research Letters 13, pages 9-12, 1993.

1. Rohn and V. Kreinovich. Computing Exact Componentwise Bounds on Solutions of
Perturbated Linear Systems is NP-hard. Utep-cs-93-37, Computer Science Dept., University
of Texas at El Paso, June 1993.

S.M. Rump. Verification Methods for Dense and Sparse Systems of Equations. In J.
Herzberger, editor, Topics in Validated Computations — Studies in Computational Mathe-

438

73.

74.

75.

76.

77.

78.

79.

80.

81.
82.

83.
84.

85.

86.
87.
88.
89.

matics, Amsterdam. North-Holland to appear.

S.M. Rump. Solving Algebraic Problems with High Accuracy. Habilitationsschrift. In U.W.
Kulisch and W.L. Miranker, editors, A New Approach to Scientific Computation, pages
51-120. Academic Press, New York, 1983.

S.M. Rump. Rigorous Sensitivity Analysis for Systems of Linear and Nonlinear Equations.
Math. of Comp., 54(10):721-736, 1990.

S.M. Rump. Inclusion of the Solution for Large Linear Systems with M-Matrix. In L.
Atanassova and J. Herzberger, editors, Computer Arithmetic and Enclosure Methods, pages
339-350. Elsevier Science Publisher B.V., 1992.

S.M. Rump. On the Solution of Interval Linear Systems. Computing 47, pages 337-353,
1992.

S.M. Rump. Validated Solution of Large Linear Systems. In R. Albrecht, G. Alefeld, and
H.J. Stetter, editors, Computing Supplementum 9, Validation Numerics, pages 191-212.
Springer, 1993.

S.M. Rump. Zur Auflen- und InneneinschlieBung von Eigenwerten bei toleranzbehafteten
Matrizen. ZAMM, 73(718):T861 — T863, 1993.

H. Schwandt. An Interval Arithmetic Approach for the Construction of an almost Globally
Convergent Method for the Solution of the Nonlinear Poisson Equation on the Unit Square.
SIAM J. Sci. Stat. Comp., 5(2):427-452, 1984.

H. Schwandt. Krawczyk-like Algorithms for the Solution of Systems of Nonlinear Equations.
SIAM J. Numer. Anal. 22, pages 792-810, 1985.

S. Skelboe. Computation of Rational Interval Functions. BIT 14, pages 87-95, 1974.

R.E. Steuer. Algorithms for Linear Programming Problems with Interval Objective Function
Coefficients. Mathematics of Oper. Res. 6, pages 222-348, 1981.

A. Tikhonov and V. Arsenin. Solutions of Ill-posed Problems. Wiley, New York, 1977.

A. Térn and A. Zilinskas. Global Optimization. Springer-Verlag, Berlin, Heidelberg, New
York, 1989.

P.A. Wardle. Forest Management and Operational Research: A Linear Programming Study.
Management Science 11, pages B260-B270, 1965.

J.H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall Inc., 1963.

J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford Univerity Press, Oxford, 1969.
J.H. Wilkinson. Modern Error Analysis. SIAM Rev. 13, pages 548-568, 1971.

S. Zuhe, A. Neumaier, and M.C. Eiermann. Solving Minimax Problems by Interval Methods.
BIT 30, pages 742-751, 1990.

	_1.tif
	_2.tif
	_3.tif
	_4.tif
	_5.tif
	_6.tif
	_7.tif
	_8.tif
	Jansson.pdf
	381.TIF
	382.TIF
	383.TIF
	384.TIF
	385.TIF
	386.TIF
	387.TIF
	388.TIF
	389.TIF
	390.TIF
	391.TIF
	392.TIF
	393.TIF
	394.TIF
	395.TIF
	396.TIF
	397.TIF
	398.TIF
	399.TIF
	400.TIF
	401.TIF
	402.TIF
	403.TIF
	404.TIF
	405.TIF
	406.TIF
	407.TIF
	408.TIF
	409.TIF
	410.TIF
	411.TIF
	412.TIF
	413.TIF
	414.TIF
	415.TIF
	416.TIF
	417.TIF
	418.TIF
	419.TIF
	420.TIF
	421.TIF
	422.TIF
	423.TIF
	424.TIF
	425.TIF
	426.TIF
	427.TIF
	428.TIF
	429.TIF
	430.TIF
	431.TIF
	432.TIF
	433.TIF
	434.TIF
	435.TIF
	436.TIF
	437.TIF
	438.TIF

