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A Robust and Fast Convergent Interval Analysis 
Method for the Calculation of Internally 

Controlled Switching Instants 
Nicola 

Abstract- An interval analysis-based method for the root- 
finding of nonmonotonic polynomials is presented in this paper. 
It has been developed for numerical time-domain analysis of 
switched nonlinear networks, where internally controlled switch- 
ing instants must be calculated as zeros of strongly nonmonotonic 
nonlinear functions. The method in based on an interval extension 
of Newton’s operator resulting from the application of the mean- 
value theorem (m.v.t.) at the highest order to the polynomials 
whose zeros are sought. It is demonstrated that such interval 
extension is the most efficient one with respect to not only all 
those derived from the application of m.v.t. at any order lower 
than the maximum one but also to that one obtained with the 
centered form of the first derivative of the polynomial. A recursive 
algorithm for roots finding is presented which uses this optimal 
interval Newton’s contraction mapping. Some examples drawn 
from switching converters time-domain analysis are proposed to 
outline the robustness and the sharp convergence of the method 
and its improvements with respect to other interval operators. 

I. INTRODUCTION 
NE of the main problems encountered in numerical 0 time-domain analysis of switched nonlinear networks 

consists in the calculation of the first (or earliest) zero t* of a 
strongly nonlinear function f ( t ) ,  corresRonding to a current 
or voltage, within a given time interval I = [tl, tz].  The 
interest in the first zero t* only comes from the fact that t* 
may be the instant where the state of some controlled switch 
(BJT, MOSFET, GTO, IGBT, etc.) or uncontrolled switch 
(diodes) changes because of either (a) a zero-voltage or a 
zero-current condition (spontaneous commutation) or (b) the 
action of a feedback circuitry (forced commutation) which 
suddenly drives a switch commutation if some voltage or 
current exceeds a given threshold. In both cases the first 
zero t* of some voltage or current f ( t )  corresponds to an 
Internally Controlled Switching Instant (ICSI), after which a 
new circuital configuration is entered which is modeled by 
a new set of equations. Some eventualities, occumng very 
frequently in switching converters and regulators, dramatically 
reduce the possibilities of computing ICSI’s by means of 
the numerical methods based on real analysis: i) it is not 
known a priori if I includes zeros of f ( t ) ;  ii) f ( t )  may be 
nonmonotonic within I ;  iii) I may contain more than one zero 
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of f ( t ) ;  iv) the values of f ( t )  at the extremes of I may have 
the same sign. Consequently, Newton’s, bisection and other 
methods working on real funtions can merely fail, unless either 
an optimal guess is found or a large amount of computations 
is accepted. But, in addition to the uncertainty of the former 
hypothesis, the complexity of modern switching circuits makes 
unacceptable also the latter one if fast numerical simulation are 
looked for. Furthermore, some chaotic behaviors have been 
recently detected in switched nonlinear networks that can be 
properly observed only if a large number of switching periods 
(even thousands!) is run. 

In this paper the author shows how Interval Analysis (IA) 
can be applied to solve efficiently the root-finding problem 
framed above. By means of IA robust and fast convergent 
algorithms can be settled which do not require guess solutions 
at all, even in presence of strong nonmonotonic nonlinearities 
and of the conditions i)-iv) listed above. In the books [1]-[9] 
an exhaustive treatment of IA theory and applications may 
be found. The essence of IA-based computations lies in the 
seek for the closest upper and lower extremes which bound 
the interval of values where the exact result of a computation 
certainly lies. Working with IA offers the advantage of getting 
as a result of each computation two informations at a time: 
an approximated value of the solution and an estimation of 
the actual worst case error of the computation. Major efforts 
have been made, since the birth of IA as an autonomous 
discipline around late sixties, to identifiy optimal interval 
forms, operators and decomposition techniques enabling the 
minimization of the width of intervals including the range of 
rational functions (see for example [15], [16]). Such topic is 
indeed of crucial importance for making interval computation- 
based algorithms efficient. IA has encountered until today 
large interest in the framework of numerical solution of 
nonlinear problems and it has been applied also to problems 
concerning analysis and design of linear and nonlinear circuits. 
Nowadays some programming languages including reliable 
intervals handling capabilities are also available [6]. The 
efficiency of interval computations is strictly connected to 
machine numbers rounding and is much sensitive to the 
form adopted for the calculation of the interval extension of 
rational and irrational functions. A large number of papers 
in literature is devoted to this last aspect (see for example 

In Section I1 an algorithm for the first-zero-search is pro- 
posed, based on Newton’s interval operator for interval con- 
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traction mapping. In Section I11 some fundamental properties 
of Newton’s operator and the optimality of its maximum order 
m.v.t. form are outlined. In Section IV some applications of 
the method are proposed to show its performances. In the 
Appendix a simple criterion for the automatic calculation of 
centered forms of polynomials is given. Readers are supposed 
to know at least the elementary concepts of IA, otherwise they 
are addressed to the referenced literature. 

It is worth remarking that numerical computation of ICSI’s, 
which are zeros of currents andor voltages whose waveforms 
are real-valued combinations of complex exponential functions 
[18], requires that any function is in polynomial form. Hence, 
in the following, we shall consider the problem of root finding 
of polynomials assuming that a suitable method for polyno- 
mial approximation of functions (e.g., Pad6 approximants or 
Chebyshev polinomials) is available. 

11. FIRST ROOT FINDING OF POLYNOMIALS BY 
MEANS OF INTERVAL CONTRACTION MAPPING 

Given the real polynomial p ( t )  = po + p l t  + . . * + p N t N  
in the real variable t let us suppose to be interested in the 
calculation of itsJirst root t* within the interval I = [a,  b]:  t* = 
min {t E I l p ( t )  = O}. Let p ( I )  and p’(I) be, respectively, 
the range of the polynomial p ( t )  and of its first derivative 
p’( t )  on 1. From the application of m.v.t. it follows that 
t” = 7 - p ( ~ ) / p / ( ~  + Q(t* - 7 ) ) )  for any T E I and for 
some 6’ E [0,1]. Since neither the exact value of 6’ nor t* are 
known, the interval extension 

N ( I )  = 7 - p ( 7 ) / P / ( I )  (1) 

can be introduced, which represents an interval version of 
Newton’s operator, where P‘ is an interval extension of p’ on 
I. The interval Newton’s operator (1) is defined provided the 
condition 0 @ P’(I) is fulfilled. The point T is usually chosen 
as the middle point of I ,  m(I ) .  Since g(I) C P’(1) (see [I]) 
it follows that t* E N ( I ) .  Consequently, given IO = I ,  the 
operator (1) can be used for the iterative intewal contraction 
mapping towards t* defined by the recursive formula: 

The general properties of the contraction mapping (2) are 
deeply discussed in the books listed in the references. Herein 
we restrict the attention to few aspects which are important 
for the convergence in the root-finding problem (proofs can 
be found in 111): 

1) if an interval I contains a simple root t* of p ,  then 

2) whenever N ( I )  is defined, i.e., 0 @ P’(I), then either 
N ( I )  n I = 0, in which case I does not contain a zero 
of p ,  or N ( I )  n I is a nonempty interval which contains 
a zero of p if I does. 

The property 1) assures that zeros can be always found 
by means of interval Newton’s method, when they exist. 
In this case it has been shown ([I]) that the convergence 

t* E N ( 1 ) ;  

of Newton’s contraction mapping (2) is quadratic in exact 
interval arithmetic. The property 2) is very important because 
it can be used as an efficient nonexistence test of zeros. 
Such preliminar operation is really useful for fast circuit time- 
domain simulation since it permits to skip the root search if 
there are not zeros, i.e., internally controlled switching instants, 
in the interval under inspection. It has been shown in [17] 
that the convergence of interval Newton’s method is quadratic 
even for this exclusion property. 

From above it is clear that the condition 0 E P’(1) is crucial 
since it makes N ( I )  undefined. This can be the consequence 
of two distinct situations: (a) 0 E j?(I) or (b) 0 $! p / ( I )  but 
0 E P’(1). In the case (a) p ( t )  is not monotonic on I and this 
requires a segmentation of I in two subintervals I ,  and IR 
such that I ,  U IR = I and IL n I ,  = 0. The iterative mapping 
(l), (2) can restart from IL.  If IL does not contain zeros of 
p then IR is inspected and further interval decompositions 
must be resorted to whenever Newton’s operator (1) is not 
defined. In the case (b) the interval decomposition would not 
be striclty necessary and it could be avoided by adopting a 
sufficiently narrow interval extension P’( I )  ) which bounds 
the exact range $ ( I )  as closely as possible. For this reason 
the miminization of the interval extensions of polynomials 
is always looked for. We will consider such problem in the 
next section. A further suppression of superfluous interval 
segmentations can be gained if a left-oriented self-calling 
strategy is adopted, according to the flow diagram of Fig. 1. 
Such algorithm, called in the sequel Jirst-rootsearch(p, I ) )  
seeks the first zero of the polynomial p in 1 and stops when 
the relative width A, = w(I,)/m(In) of the last interval 
computed I,, which includes the solution t* ) is smaller than 
the required one A. Some elements of the algorithm are worth 
to be discussed. If path 2 is entered then a sequence of interval 
segmentations and nested self calls to first-root-search will 
occur until path 1 is run. Throughout such zooming in a 
left-priority criterion is followed, namely after each interval 
segmentation, the left half is always inspected first. If the zero 
is found then the algorithm stops, otherwise the right half is 
inspected. If no zeros are found within a right half I ,  of a 
segmented interval at any hierarchical level of recursive calls 
to Jirstxootsearch, then two possibilities arise: if the right 
end of I, corresponds to the right end of I ,  then stop because 
I does not contain zeros of p ( t ) ;  otherwise move backwards 
and run a first_rootsearch call on the lowest order right-side 
subinterval among the preceding levels of segmentation. Such 
mechanism is illustrated in Fig. 2, where all the left and right 
halves of each interval up to the third segmentation level 
have been depicted for easy of explanation, while it must 
be clear that segmentations are actually performed only when 
needed. 

111. HIGHER ORDER m.v.t. FORMS OF INTERVAL 
POLYNOMIALS AND NEWTON’S OPERATOR 

The amount of segmentations and the number of iterations 
required by the the root search method illustrated above can 
be sensibly reduced by minimizing the width w ( N ( 1 ) )  of the 
interval Newton’s operator (1). In addition to the basic form 
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Fig. 1. Block 

(1) a number of modified versions of Newton’s operator and 
other interval operators for contraction mappings have been 
proposed in literature. One of the most popular is Krawczyk‘s 
operator ([lo], [ 1 l]), defined as follows: 

Other versions of Krawczyk’s operator have been also pro- 
posed for systems of nonlinear equations in more than one 
variable ([ 121, [13]). Krawczyk’s operator brings the ad- 
vantage of presenting the interval extension P’(I) at the 
numerator of a fraction: however, the condition 0 Q P’(1) 
must be fulfilled to get the inclusion K ( I )  n I c I ,  which 
is necessary for interval contraction. The performances of 
Krawczyk’ s and other operators have been considerably ex- 
perienced especially in the framework of tests of existence, 
uniqueness and convergence in nonlinear problems. They are 
somehow more complicated than basic Newton’s operator 

(1) but offer small width and avoid the presence of the 
inverse interval (P’(I))-’, even if segmentations are required 
whenever 0 E P’(1). Newton’s operator may offer indeed 
faster convergence if an appropriate form for P’(I) ,  or even an 
alternative interval extension, is adopted in (1). For example, 
Oliveira has proposed in [14] an altemative form of interval 
Newton’s operator where the interval extension O ( I )  = 
p ’ ( ~ )  + 1/2(P”(I)(I  - T ) )  is used instead of P’(I) ,P”(I)  
being the interval extension of the second derivative p”. O ( I )  
can be obtained by applying m.v.t. at second-order to the 
polynomial p .  It makes the width of Newton’s operator N ( I )  
narrower than that of Krawczyk’s one K ( I ) .  Notice that the 
above interval extension O(1) does not correspond to the 
interval extension which can be obtained by applying the 
m.v.t. at first-order to the derivative p’,P’(I) = ~ ’ ( 7 )  + 
P”(I) ( I  - T ) .  In this section we will stress this last point and 
will show that the improvement of Newton’s operator can be 
further sharpened, accounting for some properties of interval 
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2. Search mechanism with selective interval segmentation. 

level 1 
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extensions obtained by means of m.v.t.. Let define the nth 
order m.v.t. form of a polynomial of degree N as follows: 

P ( t )  = 
n-1 ~ 

1 
+ P ) ( T ) ( t  - T ) h  + +)(T + e(t - T ) ) ( t  - 7)n (3) k !  n! 

k=O 

Qt E I and for some 8 E [0, I], with 7 = m(1) and n 5 N .  If 
p ( t * )  = 0, then from (3 )  we have (see below). 

As far as n < N ,  the exact value of B which fulfils the (3) is 
unknown, while t* is the unknown zero that we are seelung. 
Consequently, the nth order m.v.t. interval Newton's operator 
can be defined as follows: 

Nn(I) = 
7 -  P ( T )  

(4) 

Nn (I) is a more general form of Newton's operator (1) and 
includes as special cases both the basic operator (l), for n = 0, 
and Oliveira's one, for n = 1. Since the interval extension 
P(n)  of the nth derivative p(")  in (4) is a rational interval 
function of degree N - n, it might be expected that w(Nn ( I ) )  
decreases as n increases. But this is not always true. In fact, let 
us consider the nth and (n+q)th-order m.v.t. forms of interval 
Newton's operator and interval extension of the polinomial p ;  
for any positive integer q such that (n + q )  5 N 

where R = [-T,T] = ( I  - T )  = (I - m(1)). The widths of 
interval extensions N, ( I ) ,  Pn (I), and NnSq (I), YntL(I) de- 
crease according to the widths of interval extensions Pn- l ( l )  
and pL+,- ( I ) ,  respectively. The interval extension 

deserves some attention. It is obtained from the nth-order 
m.v.t. form Pn(l)  by cutting off the term p(7) and shifting 
the coefficients of powers from 1 to n into the coefficients 
of powers from 0 to n - 1. Consequently, the coefficients of 
PnpI(I) are all smaller than the corresponding ones of the 
(n - 1)th-order m.v.t. form of the derivative p ' ,  

-1 

and then 

Vn 5 N .  For this reason we shall call pLPl(1) reduced 
(n  - 1)th order m.v.t. interval extension of p'. To compare the 
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widths of N n ( I ) ,  Nn+q(I), Pn(I )  and Pnsp(I) we adopt the 
highest order m.v.t. form (centered form) for P( ' ) ( I ) ,  namely 

and assume 

a = P ( n ) ( I ) ;  

Since [u,b] . Rk = [u,b] . [--rk,rk] = [-r',r'],Vu,b and 
k ,  we get 

N - n  n! 
+ 1 (n  + q ) ! ( k  - q ) !  

k=q 

N - n  \ 

Due to the equality m(@) = m(q)  = p ( % ) ( ~ )  and 
to the property of inclusion monotonicity of interval 
arithmetics [l], we have W(N~+~(I)) < w(Nn(l)) and 
w(P,+,(I)) < w(P+"(I))  if and only if ~ ( ' 4 " )  < w(@). The 
first sum appearing in the expression of w(9) is always 
smaller than the sum of the first q - 1 terms of w ('P) , as 

n! n! 1 < - = -  
( k  + n)! - k!n!  k ! '  

The second sum in the expression of w(9), instead, may 
be greater than the sum of the corresponding terms in the 
expression of w(@), as the inequality 

n! n! 1 < - = -  
k !  ( k  - q)!(n + q ) !  - k ! n !  

is not necessarily fulfilled, unless n + q = N ,  namely when the 
m.v.t. is applied up to the maximum order (the degree N of 
p ( t ) ) .  In this case, in fact, the second sum in the expression of 
w ( 9 )  reduces to one term only, corresponding to k = N - n, 
so that 

1 - _  n! n! - --< - n! 
- 

( I ;  - q)!(n + q ) !  N !  ( N  - n)!n! k !  

and then w (9) < w (a). Notice that if N is large there are more 
possibilities that w (9) > w (a), especially if n is small. This is 
the case encountered in the time domain simulation of switch- 
ing converters, where voltage and current waveforms may 
have a bandwidth next to (or even greater than) the switching 

frequency so that high order approximating polynomials are 
required for correct waveforms representation. 

From above we conclude that higher-order m.v.t. forms of 
polynomial interval extensions and interval Newton's operator 
are not always better than first-order ones, unless the maximum 
order N corresponding to the polynomial degree is resorted 
to. Furthermore, the maximum order m.v.t. interval extension 
PN ( I )  corresponds to a centered form, whose optimality for 
bounding the range of polynomials has been already shown in 
literature ([ 151, [ 16]), whereas the optimal Newton's operator 
(4) defined according to the application of m.v.t. at maximum 
order to the polynomial p is obtained by means of the reduced 
( N  - 1)th-order m.v.t. form 

k=l 

instead of the ( N  - 1)th-order m.v.t. form (centered form) 

of the derivative p'. The improvement achieved using 
P N P l ( I )  increases with the polynomial degree N .  In 
conclusion: 

1) The width of polynomial interval extensions and New- 
ton's operators descending from the application of m.v.t. 
at nth-order, 0 5 n 5 N ,  to the polynomial p is not 
always monotonically decreasing with respect to the 
order n; 

2) polynomial interval extension and Newton's operator 
descending from the application of m.v.t. at maximum 
order (n  = N )  to the polynomial p always guarantees 
the smallest width with respect to those ones of all lower 
order m.v.t. forms (n  < N ) ;  

3) the maximum order m.v.t. form of interval Newton's 
operator is always better than Newton's operator using 
the centered form for the interval extension of the 
derivative p'. 

Before closing the discussion it is worth stressing some 
computational aspects connected to the use of lower order 
m.v.t. Newton's operators. We recall that we are interested 
in Interval Analysis for applications where large numbers of 
root searches are required, as in switching circuit time-domain 
analysis, under the worst case conditions i)-iv) listed in the 
Introduction. To this regard the main demand is for a roots- 
finding technique running as fast as possible, taking into ac- 
count the great variety of situations that can occur. In general, 
the lower the number of arithmetic operations, the faster the 
algorithm. We have seen above that higher order reduced m.v.t. 
forms for p' in Newton's operator N ,  ( I )  certainly involve less 
interval segmentations and ensures sharper contractions, but 
require the calculation of higher denvatives of p ( t ) .  Does this 
involve additional computations? As far as a centered form 
is adopted for the residual interval extension P(") ( I )  in (5 )  
the answer is no, because even in this case all derivatives of 
p must be computed indeed. If a natural interval extension is 
adopted for P(n) ( I ) ,  instead, one could expect that there could 

-1 
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TABLE I 
ROOT SEARCH BY MEANS OF KRAWCZYK’S OPERATOR, SECOND- AND EIGHTH-ORDER m V.t FORM OF NEWTON’S OPERATOR (EXAMPLE 1) 

Krawczyk’s operator (speed up factor: 1) 
1 [0.00000000000000 0.43237002816005] 0.432370028 16005 2.00000000000000 
2 [0 04305082165896 0 382328346674161 0 33927752501520 1 59517696338860 
3 [0 11991569404060 0 305438683413551 0 18552298937295 087232199411396 
4 [0 19020324981479 023515112732385) 004494787750906 0 21134319957598 
5 [0 21157906899495 0 213775308143691 0 00219623914875 0 01032663241 187 
6 [O 21267470540409 0 21267967173455] 000000496633046 0 00002335149571 
7 [0 212677 18855666 0 212677 18858 1981 000000000002532 0 0000000001 1908 
8 1021267718856932 0212677188569321 0 0 

Newton’s operator 2nd order m v t form (speed up factor 1 5 )  
1 [0 07955033 185890 0 229772759734261 0 15022242787536 097129785624246 
2 10 20951277690184 0.227852040757461 0 01833926385562 0 0838625473067 1 
3 [0 2 1265597 12801 1 0.2 127690087540 I]  000011303747390 0 00053140966893 
4 [0 2126771 877999 1 0 2 12677 191897101 0 000000004097 19 0 00000001926483 
5 [0 21267718856932 0 212677188569321 0 0 

Newton’s operator 8th order m v.t form (speed up factor 2 2) 
1 10 19519984495482 022301453975115] 002781469479633 0 13301644234875 
2 10 21263764305055 0212745024740531 000010738168998 000050487101666 
3 IO21267718799493 021267718955449] 000000000155957 0 00000000733303 
4 LO21267718856932 0212677188569321 0 0 

be a convenience in terms of reduced derivative computations. 
But the coefficients of p(”)  must be calculated in any case 
even to evaluate the natural interval form of P(,) (I), which 
certainly yields wider interval Newton’s operator and then 
involves more segmentations and causes slower contraction. In 
addition, the width of N, ( I )  does not monotonically decrease 
with respect to the order n of the m.v.t. form. It could 
be interesting to establish exactly which is the minimum 
intermediate order m.v.t. form resulting more convenient than 
first-order m.v.t. form by a computational point of view. This 
is very difficult since all depends on the location and size of 
the interval I along the real axis and on the complex influence 
of several factors, like the intervals width, the amount of 
segmentations and the amount of real and interval arithmetic 
operations. However, with regard to the intervals width, max- 
imum order m.v.t. interval extensions of polynomials and 
maximum order m.v.t. interval Newton’s operator give always 
the best results if adopted, respectively, for P(1)  in the 
test of root existence and for interval contraction mapping 
(1)-(2), without involving more computations than first-order 
form. Consequently, computational optimality, i.e. smaller 
computing times, is also expected by maximum order m.v.t. 
forms. The results presented in the next section confirm such 
prediction. 

Further reduction of interval width can be gained in several 
ways. For example, the powers of R in (5) can be nested to 
obtain the nested forms 

where the interval R appears always raised to the first power; 
this usually yields a narrower interval extension [I]. In the 
Appendix it is shown how the coefficients of centered forms 

can be easily calculated by means of Tartaglia’s triangle. An 
alternative way of getting narrower interval extensions (5 )  
consists in performing exact calculation of the powers Rk ,  
which are made easier by the simmetry of the interval R. The 
applications discussed in the next section have been carried 
out by adopting the nested-forms (10) throughout the block 
diagram of Fig. 1. 

IV. APPLICATIONS 

The algorithm first-rootsearch has been developed and 
applied by the author in the framework of switched nonlinear 
networks analysis [18]; the examples proposed in the following 
are drawn from that application, which can be considered as a 
worst case since nonmonotonic and fast oscillating waveforms 
are usually present. A rounded machine interval arithmetic 
has been implemented under MATLABB environment which 
computes separately intervals endpoints [31. 

Example I :  Let us first consider a polynomial of eighth 
degree, whose coefficients bo, PI ,  3 * . , pa]  are 

[1.82507, -4.99980, - 16.90853, - 7.32341,35.81879, 
7.94845, -37.15860,10.20117,4.11101] 

for which the first root within the interval I = [0,0.5] is 
sought. This polynomial approximates the current of the diode 
in the ON state in a Cuk converter working in discontinuous 
quasi-resonant mode [18]; when this current drops to zero 
the diode spontaneously turns OFF. The results shown in 
Table IV have been obtained by means of the contraction 
mappings using, respectively, Krawczyk’s operator ([lo], [ 111) 
and second- and eighth-order m.v.t. form of Newton’s operator 
(5) .  Clearly eighth-order m.v.t. form of Newton’s operator 
offers best convergence. Speed up factors have been extimated 
by running 100 consecutive root searches. To this regard it 
must be noted that the better performances of eighth-order 
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TABLE I1 
INTERVAL EXTENSION F k - l ( ~ )  AS A FUNCTION OF THE ORDER n OF m.v.t. FORM NEWTON’S OPERATOR (EXAMPLE 2) 

P;-l ([0.3,0.5])Xl i r5  
[-0.02225380457556 0.00824067728537] 
[-0.01812369396265 0.0041 10566672461 
[-0.01536534878401 0.00135222149382] 
[-0.01402840053520 O.ooOo1527324502] 
[-0.01372758653003 -0.OOO28554076016) 
[-0.01366215328463 -0.00035097400555] 
[-0.01365512623547 -0.00035800105472] 
[-0.01365419308381 -0.00035893420638) 

FL-1 (lo,ll)xlr5 
[a. 74396902274725 0.7 178 18375 148 U] 
[- 1.6633765849OO38 1.6372259373013 11 
[-2.27656509985747 2.25041445225840] 
k2.11729929407766 2.09114864647859) 

[-0.61009843110183 0.583947783502761 
[-0.23368602840502 0.20753538080595] 
[-0. 16078355510459 0.1346329(M50552] 

[-1.31718611727510 1.29103546%7603] 

w(F’n-1 ([O,l]))xlr5 
1.46178739789544 
3.30060252220170 
4.5269795521 1588 
4.20844794055626 
2.60822158695113 
1.19404621460458 
0.44 12214092 1097 
0.2954164626101 1 

m.v.t. form of Newton’s operator with respect to second order 
one descend exclusively from the smaller width of $ ( I ) ,  
since higher order m.v.t. forms do not involve additional 
computations whenever centered form is adopted for resid- 
ual interval extension P(”)(I)  in (5).  Krawczyk’s operator, 
instead, requires always more computations than Newton’s 
one, whatever form is adopted for P’(I) in the expression of 
K ( I ) .  In Table I it is shown that eighth-order m.v.t. operator 
guarantees the excellent accuracy of 5 . within two 
iterations only. The actual accuracy of t* , namely the relative 
error A, = (t* - te) / te  with respect to the exact root t,, can 
turn out even some orders of magnitude better. In fact, if I ,  
is sufficiently small then p ( t )  is quasi-linear within I ,  and 
P(I,) S p(I,), so that A, << A,. 

Example 2: The second example refers to a more critical 
polynomial, whose coefficients are 

lo5 x [-0.00208,0.00050,0.06855, -0.02769, -0.38485, 
-0.35249,2.90658, -3.53902,1.33307]. 

This polynomial approximates the diode voltage in the OFF 
state for the Cuk converter mentioned before [18]; the diode 
turns ON when this voltage falls to zero. In this case Newton’s 
operaton is undefined, since 0 E Fkp1(I) for I = [0,0.5], 
while Krawczyk‘s operator gives a starting interval K ( I )  = 
[- 1.905028006521238,2.295185527505336] which includes 
I .  Therefore, both operators require interval segmentation. In 
the interval I = [0.3,0.5] Newton’s operator is defined if 
the m.v.t. form is fifth-order at least, as shown in Table 11. 
Therein it is shown also that, while for I = [0.3,0.5] the 
width W ( ~ ~ - ~ ( I ) )  is monotonic with respect to the order n 
of the m.v.t. form, for I = [0,1] it is not so: only from sixth- 
order upwards the width is smaller than that one of first-order 
form. This affects directly computing times, which however 
greatly depend also on the location of the interval along the 
real axis. For example, in Table I11 the interval width and 
the times required to find the first root within [-1, 01 and 
[0,1] by means of nth-order m.v.t. Newton’s operators are 
compared, for n = 1, . . . ,8. All values are scaled to get unity 
for n = 8. Note that t ,  is monotonic for I = [0,1], but not for 
I = [ - 1, 01 , in spite of larger widths. In Table IV the results of 
the root search performed by means of Krawczyk’s and eighth- 

TABLE 111 
INTERVAL WIDTH AND NORMALIZED COMPUTING TIMES OF NEWTON’S 

METHOD FROM FIRST- TO EIGHTH- m.V.t. ORDER R. (EXAMPLE 2) 

Z=[-l,OI Z=[O,ll 
order n W O  

1 3.61 
2 5.40 
3 4.66 
4 2.76 
5 1.50 
6 1.08 
7 1.01 
8 1.00 

‘n W;3 ‘n 
1.03 4.87 1.55 
1.17 11.00 1.35 
1.21 15.10 1.24 
1.17 14.03 1.21 
1.15 8.70 1.17 
1.14 3.97 1.14 
1.10 1.47 1.11 
1.00 1.00 1.00 

order m.v.t. Newton’s operators are compared. The algorithm 
firstmotsearch with eighth-order m.v.t. Newton’s operator 
requires one segmentation only to find the root within the 
interval I = [0,0.5]; moreover, no computations are performed 
on the left half interval 1, = [0,0.25] since 0 @ P z v ( I ~ ) .  
The speed up factor of m.v.t. forms Newton’s operator with 
respect to Krawczyk‘s one ranges from 1.35 (first order) to 
2.5 (eighth order). 

V. CONCLUSION 
A robust and fastly convergent interval analysis-based 

method for root finding of nonmonotonic polynomials has been 
proposed in this paper. It has been developed for numerical 
time-domain analysis of switched nonlinear networks, which 
involves numerous calculation of the zeros of strongly 
nonlinear nonmonotonic waveforms. A special form of interval 
Newton’s operator for interval contraction mapping has been 
adopted which guarantees high accuracy within few iterations. 
Its performances are sensibly better than those ones of other 
interval operators without involving additional computations. 
It has been demonstrated that the width of polynomial interval 
extensions and interval Newton’s operators obtained using 
mean-value-theorem is not monotonic with respect to the 
forms order, but maximum order forms give always the 
smallest interval width. This directly affects computational 
efficiency. A simple method for the determination of the 
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TABLE IV 
ROOT SEARCH BY MEANS OF KRAWCZYK’S AND m.V.t. NEWTON’S OPERATORS (EXAMPLE 2) 

iteration 12 I ,  w(I,) w(In)/?n(In) 
Krawczyk‘s operator (speed up factor 1) 

1 [030186385880138 05000000000oooO1 0 19813614119862 0 49418897989691 
2 [0 30846447005464 0 5 0 ~ 0 0 0 0 0 W I  019153552994536 0 47382547295471 
3 [O 32998503458193 0 50000000000000j 017001496541807 040968200228744 

0.1 1604662506891 0 26256277391997 4 [O 38395337493109 0 5oooO0000000001 
5 [045331747298518 0500000000000001 004668252701482 0 09793700071 108 
6 [0 47890580751849 0 483076751799301 000417094428081 000867155904317 
7 [048095522544547 0480977143446481 0 00002191 80010 1 000004557077342 
8 [0 48096618338739 0 480966183972271 000000000058487 0 00000000121604 
9 [O 48096618367983 0 4809661 83679831 0 0 

Newton’s operator 8th-order m v.t form (speed up factor. 2 5) 
1 [O 46130915014280 0 500000000000001 0 03869084985720 0 08049616473838 
2 [0 48095748835321 0 480975645624231 0 00001815727302 0 00003775163238 
3 [0 48096618367578 0 480966183684251 000000000000847 000000000001762 
4 [0 48096618367983 0 480966183679831 0 0 

centered form of a polynomial by means of Tartaglia’s tiangle 
has been also indicated. 

The theoretical properties discussed in Section 111 and 
the results presented in Section IV outline some important 
facts concerning the problem of roots finding by means of 
interval Newton’s operator. Whenever using Interval Analysis 
two main elements must be accounted for: the width of 
intervals and the amount of arithmetic computations. It is a 
diffused belief, supported by theory and experiences indeed, 
that interval operators ensuring smaller interval width must 
be somehow more complicated, and then require additional 
computations, with respect to basic ones. This is often judged 
as a sufficient reason to renounce using enhanced versions of 
interval operators for contraction mapping. In despite of that, 
we have seen that maximum order m.v.t. form of Newton’s 
operator joins both the objectives of small width and low 
amount of computations. 

Finally, it is worth stressing one last point. Interval arith- 
metics is obviously more honerous than real arithmetics, 
since each interval computation requires a number of real 
computations. The main drawback of real type iterative meth- 
ods for roots finding lies in the demand for monotonicity 
or for a suitable guess solution, whereas they allow faster 
computations in safe conditions. It is the author’s opinion 
that further improvements can be attained in roots finding 
problems by cleverly matching preliminar interval analysis- 
based existence, inclusion and monotonicity tests with real 
analysis-based computations. 

APPENDIX A 
Let consider the polynomial 

p ( t )  = PO + P l t  + P l t  + p2t2  + ‘ . ’ + p r v t N ,  

of which the coefficients of the centered form 

p c ( t )  = p ( t )  = c o + c ~ ( t - r ) + C 2 ( t - r ) 2 + - . + C N ( t - 7 ) ~  

are sought. 
After the change of variable t’ = t - r we obtain 

?r(t’) = po +Pl( t ’  - r) +pz( t ’  - T ) 2  + . . . + P N ( t ’  - 7 ) N  

and 

The coefficients of each Newton’s binomial (t’ - r)’” in ?r(t’), 
for k = 0 ; ’ .  , N ,  can be easily calculated by means of 
Tartaglia’s triangle. The coefficient ck in ?rc(t’) equals the 
sum of the coefficients of tlk in ~ ( t ’ )  coming from Newton’s 
binomials. The coefficient of t l s  in (t’ - T)‘, with s 5 k ,  
is obtained as the product of p k ( - 7 ) k - s  by the sth element, 
from right to left, of the ( k  + 1)th row, from the top to the 
bottom, of Tartaglia’s triangle. 
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