
Interval Ray Tracing
- a divide and
conquer strategy
for real istic
computer graphics

Wolfgang Enger*

Institut ffir Angewandte Mathematik,
Universit/it Freiburg, W-7800 Freiburg,
Federal Republic of Germany

A new method for ray tracing parametric
surfaces is developed. The method uses a
divide-and-conquer strategy for rapid
finding of the sectors of constant intensity.
Techniques from interval analysis allow
reducing the number of ray/surface inter-
sections that must be computed. Main re-
sults are presented in terms of solving a
general system of nonlinear equations, and
thus can be extended to a large class of
problems. Examples with B-spline surfaces
demonstrate an improvement in computa-
tion time over a conventional method with
a factor between 1.5 and 3.0. Additionally,
a way of preventing "cracks" in triangu-
lating parametric surfaces is shown.

Key words: Ray tracing - Interval analysis
- Parametric surfaces - B-splines - Trian-
gulation

* Now working at ip Info Process GmbH, Gewerbe-
strasse 4, W-7801 Buchenbach, Federal Republic Of
Germany

1 Introduction

Ray tracing is a powerful approach to realistic im-
age generation. It is a conceptually simple and
powerful method, taking into account the effects
of shadows cast, multiple reflection, and refraction
for transparent objects. The most current imple-
mentations are first published by Whitted (1980).
An excellent introduction and an overview of cur-
rent research is given in Glassner (1989); some effi-
cient datastructures can be found in Miiller
(1988).
Ray-tracing techniques reduce the problem of sur-
face generation to the computation and shading
of intersection points of rays with surfaces. For
complex unstructured objects, the calculation of a
point of intersection is equivalent to solving a sys-
tem of nonlinear equations F (x) = 0 (F: R 3 --+R3).
This can be done, for instance, using Newton's
Method (see Faux and Pratt 1979 for parametric
surfaces). To overcome the problem of finding a
starting point, Toth (1985) uses the Interval Newton
Method (Krawczyk 1969).
Reduced computation time may be achieved by
generating a polygonal approximation of the sur-
face to be rendered, and then performing ray trac-
ing on the resulting polygons. In order to avoid
a drastic increase in the number of intersection
points to be calculated, the given scene may be
partitioned by a regular grid (Schmitt et al. 1988)
or, alternatively, each object may be representated
by a (binary) tree, whose leaves are "primitives,"
e.g., linear subsurfaces. One method that combines
these techniques is accelerated ray tracing
(Glassner 1984; Yamaguchi et al. 1984; Fujimoto
and Iwata 1986), where the rays are traced through
a so-called octree structure of cells. Another meth-
od for rational B6zier patches - the B6zier clipping

- is a combination of subdivision and numerical
methods (Nishita et al. 1990).
Thirion (1990) uses clusters of rays, consisting of
a fixed number of 4 x 4 or 8 x 8 rays, to reduce
the number of intersection points to be calculat-
ed.
In this paper, we present a new technique for find-
ing the intersection of a ray with a parametric sur-
face. We use the fact that pictures - especially com-
puter-generated pictures - often contain relatively
large uniformly colored sections so that it is unsat-
isfactory to perform similar calculations for all pix-
els on the screen eventhough many adjacent pixels
could be eventually colored together. Our goal is
to obtain these common regions with only a few
arithmetical operations, whereby the calculation
with clusters requires mathematical methods that

The VisuaE Computer (1992) 9:91 104
�9 Springer-Verlag 1992 9 1

extend real numbers to real intervals. Inspired to
the present investigations by Mudur and Koparkar
(1984), Koparkar and Mudur (1985), and Neumaier
(1988 a), we use methods of interval analysis to cal-
culate the set of intersection points of ray clusters
with objects in the scene, i.e., we compute an enclo-
sure for the solution set of the system of "'interval
equations" OeF(x) (F: IR a--,IRa). With this set,
we compute an enclosure for the intensity, and,
unless the intensity interval is " thin" enough, we
partition the cluster into two (or more) clusters.
Although the calculation of the solution set is more
complicated in the interval case, the saving in the
number of such calculations results in an overall
improvement in calculation time over the conven-
tional method for bicubic B-spline surfaces with
a factor between 1.5 and 3.0, depending on the
resolution and the number of colors to be pre-
sented.
For the reader who is not familiar with interval
analysis or B-splines, we present in Sects. 2-4 some
basic facts of interval analysis and an introduction
to B-splines. In Sect. 5, we apply the methods of
the first two sections to B-spline functions to obtain
a new and effective method for calculating all inter-
section points of ray clusters with objects in a
scene. A method for dividing (triangulating) para-
metrically defined surfaces avoiding "cracks" dur-
ing the subdivision process is described in Sect. 6.
The algorithms mainly based on the results of
Sect. 5 are presented in Sect. 7. Some experimental
results complete the paper (Sect. 8).
Notation: We denote by

R, R% R m • n the set of real numbers, n-vectors, and
m x n-matrices, respectively.
IR, IR n, IR m• the set of intervals, interval n-vec-
tors, and interval m x n-matrices, respectively.

2 Interval analysis: basic facts,
centered forms

In this section, we present the basic notions from
interval analysis required in our investigations.
More detailed introductions to this topic can be
found in Moore (1966), Alefeld and Herzberger
(1983), and Neumaier (1990).
We begin our discussion with the definition of in-
tervals and related notions:
A (real) interval is a set of the form

x - [_x, 23 , = { 2 e R I x < 2 <2},

where x, 2 are elements of R with x <_ 2. The (pos-
sibly empty) open interval]_x, 2[, the interior of
x, is denoted by in t (x) - (x , 2) :={~eRl_x<2<2}.
An interval is called thin if x = 2 and thick if x < 2.
The midpoint of an interval x is the point 2 with
mid(x)---2,=(2+_x)/2. The radius of x is
rad(x) ,=(2-x) /2 . The magnitude of x is
mag(x)--Ix[,=max{12112ex}. If S is a nonempty
bounded subset of R we denote by [] S:=[inf(x),
sup(x)] the hull of S, i.e., the tightest interval en-
closing S.
In order to calculate familiarily with intervals, we
extend the order relations and elementary opera-
tions from real numbers to intervals in an obvious
way.
The order relations O R e { < , _<,_>, >} are ex-
tended to interval arguments by defining x OR y:
< =) 2 OR ~ for all 2ex , yey.

Elementary operations EOe { + , - , . , / , **} are de-
fined on the set of intervals by putting

x g o y '=[] {2 EO Yl ~ex, yey}
={2 E O y l 2 e x , yey}

for all x, y e I R such that 2 EO y is defined for all
2 e x and yey.

Remarks

1. The definition of the division x/y is restricted
to intervals y not containing zero.
2. In most cases, multiplication and division of in-
tervals can be performed with only two real arith-
metic operations (Neumaier 1990).
The definitions and basic notions from interval
analysis can be easily extended to vectors and ma-
trices.
An interval m x n-matrix is a matrix A =(Aik) of
intervals A~kelR (we denote the elements of A by
Aik instead of aik).
We interpret A e I R ' • as the set of all matrices
A e R m• with AikeAik for i= 1, ..., m; k = 1, ..., n.
Interval n-vectors are considered as interval n x 1-
matrices. We define:

A = inf(A)'-=(dik); A ==- sup (A):=(xZlik);

--- mid(A):= (Aik)

rad(A) :=(rad(A~k));]AI ,=(IA~kl)

int (A):={.7teAlAik < Aik < Aik whenever _Aik 4 = Aik }

A OR B: < =)Aik OR Bik for i = l . . . m ;

k = l . . . n ; O R e { < , < , > , >}.

92

We now introduce centered forms for vector-va-
lued functions in real variables, which we use to
solve systems of "interval equations," whereby
ranges of functions have to be enclosed.
If f is a vector-valued function in n real variables,
the interval evaluation over a rectangular box
x~IR" provides an enclosure for the range f*(x)
={f (2) [2ex} with an overestimation of order
~(rad(x)). Because this may be large in adverse
circumstances, we now provide a method for en-
closing the rangef*(x) in such a way that the over-
estimation remains small for sufficiently narrow
boxes x.

Proposition 1 (Neumaier 1990). (i) The centered
form o f f with center 56x and slope saIR

L (x , ~) , = f (~) + s . (x - ~)

is an enclosure for the range f* (x) over the box
xaIR" if, for all 2ex , there is a ~ s such that f(Yc)
=f(z') + J . (f -z ') .
(ii) All centered forms have the quadratic approxi-
mation property, i.e., for narrow boxes x and Lip-
schitz continuous interval extentions of s, the overes-
timation of the range is of order ~(rad(x)Z).

In this paper we only use mean value forms

fro(x) .'=f (2) + f ' (x)(x - ~),

because the derivative is easy to compute and ff =
is an optimal choice to obtain minimal radius (Bau-
mann 1988).
Alternatively, i f f is a polynomial with interval co-
efficients, an enclosure for the range of this function
may be computed as proposed by Dussel and
Schmitt (1970).

n

Lemma 2 (Enger 1990). Let p(u).= ~ b i u i be a po-
i = 0

lynomial of n-th degree with coefficients bi~IR and
uMD___IR, u>_O. We denote by p*(u) the range of
this polynomial on ID. Then

p ' (u) = [m i n (" L , ~ , =--0) m a x (~ 6, u)] _bi u i ,
i ~ e u \ i = 0

In Sect. 5, we shall use this result for directly en-
closing the range of cubic B-splines over a parame-
ter interval.

3 Nonlinear systems of equations
A special case in our considerations is the compu-
tation of the intersection points of a single ray

(viewed as a real vector) with the objects in the
scene. This leads to a non-linear system of equa-
tions F (x) = 0 (F: R3--*R3), i.e., the computation
of an enclosure for all zeros x* of a continuous
function F: Do_CR"~R" in a given subset D of
D o .
We first present some definitions further required.

Definition 3. If A ~IR" • then we call

A regular : (=) ~ is regular for all A e A.

A strongly regular :(=) A- 1 A is regular.

A H-matrix : (=) (A) u > 0
for some positive ueR".

Here (A)u .'=min {I.AuJ I~.eA.}
and (A)ik '= - [A ik l for i + k.

Remark. Every regular real matrix is strongly regu-
lar.

Definition 4. Let F: D o _ ~ R " ~ R " . If there is an
A such that for every 2, 9 e D ~ D o : F(2) -F (9)
= . ~ (2 - 9) for some A e A , then A is called a Lip-
schitz matrix for F on D. If A is in addition closed,
convex, and bounded then A e lR" •
Note that if F is continuously differentiable on D
and x e ID then the matrix A = F'(x) is a Lipschitz
matrix for F whenever the interval extension F'(x)
is defined.

Definition 5. Let F: Do-~ R"--+ R" be Lipschitz con-
tinuous on D _c Do, i.e., t[F(~) - F(~)11 _< 6112 - ~ 1] for
all 2, y e D with a Lipschitz constant fi, and let A
be a Lipschitz matrix for F. For a suitable n x n-
matrix C, the preconditioner, and 2 e x e ID, we de-
fine the Hansen-Sengupta operator

H(x, Yc):=Yc + r(CA, - CF(2), x - 2),

where F(A, b, x):=y with

y~ = {(b,- ~ Aik Yk -- Z A~ Xk)/Au} n xi,
k < i k > i

which is called the Gaufl-Seidel operator applied
to A, b, and x.

Remark. If n is small, the recommended choice for
C is C ~ e t -1 (Neumaier 1990).

Theorem 6 (Neumaier 1990). Under the assumptions
of Definition 5, if 2axEID, then x ' ,=H(x, 2) has
the following properties:

i) Every zero x*~x of F satisfies x*ex' .
ii) I f x' = O, then F contains no zero in x.

93

iii) I f 0 4= x' ~_ int(x), then F contains a unique zero
in x.

Definition 5 and Theorem 6 show that the applica-
tion of the Hansen-Sengupta operator to an inter-
val xo leads to an interval Xl, which has at most
the same radius as Xo and no zero will be lost.
Thus, it is natural to consider the iteration

X 0 : ~ X

1)xk+l ,=H(xg, 2 k) for k = 0 , 1 , 2 , . . .

with 2 k ~ x k. Here we put x g + 1 .'=0 if x k = O.
Due to the preceding theorem and the definition
of H, we have

2) x k +l~_x k for all k>_0.

3) x * e x , F (x *) = O ~ x * e x k forall k>_0.

The next theorem gives conditions under which
the x k contracts to a solution (if one exists).

Theorem 7 (Neumaier 1990). Let A be a strongly
regular Lipschitz matrix on x e I D o for F:
Do ___ R" ~ R". Let C~R "• be such that CA is an
H-matrix. Then the Hansen-Sengupta iteration (1)
is strongly convergent for 2k=2k, i.e., either F has
a unique zero x* in x and lira x t=x* or F has no

l-+ oO

zero in x and xk= 0 for some k > O.

In order to satisfy the conditions of this theorem,
we put 2 k= 2k for all k >_ 0. As it is suggested from
Definition 4, we take the Lipschitz matrix A to be
an interval extension of the derivative F'(x). If A
is not strongly regular, the iteration breaks off with
intervals x k+ 1= X k for some k > 0. If this occurs,
the interval x k must be partitioned into two subin-
tervals and the iteration must be performed with
both intervals. This method - the covering method
- is described in more detail in Sect. 5. The H-
matrix property may be satisfied by

Proposition 8 (Neumaier 1990). Every interval
n x n-matrix A satisfying Ihl-ALl,< 1 for some u > 0
is an H-matrix, where HAIl, with ueR", u > 0 is the
scaled maximum norm

IlAIlu.'= max lAid Uk/Ui �9
i = l . . . n k

This proposition shows that A - 1 A is an H-matrix
if A- 1 A ~ I, i.e., if A is thin enough. A comparison
between Hansen-Sengupta iteration and Newton or
Krawzcyk iteration shows that the first one strong-

ly converges under the weakest assumptions (Neu-
maier 1990); thus we use the Hansen-Sengupta op-
erator instead of the (simpler) Newton- or Krawz-
cyk operators.

4 Bicubic B-splines; basic facts
In this section, we define bicubic B-spline surfaces.
For further details, we refer the interested reader
to deBoor (1978) and Farin (1990).
We define B-spline surfaces as so-called tensor
product surfaces:

Definition 9. The representation

n - m - 1 r - s - 1

s(u, v),= Z di, kMk,s(v)N,,m(u),
i = 0 k = 0

where the Mk,s(v) are (normalized) B-splines of de-
gree s over the knot vector V=(vo , vr) and the
Ni,m(U) are (normalized) B-splines of degree m over
the knot vector U = (uo u,), is called a B-spline
surface. The coefficients d~,k are called deBoor
points; in their natural ordering they form the ver-
tices of the deBoor net of the surface.
B-spline surfaces satisfy the convex hull property,
which can be used to enclose the range. By insert-
ing new knots into the knot vectors U and V, any
B-spline surface may be partitioned into a net of
Bdzier surfaces - called patches.
Computing enclosures for the range of such
patches may be accomplished in several ways. One
way is to exploit the convex hull property on the
deBoor points for smaller and smaller parameter
intervals u and v (Cohen et al. 1980; Rokne 1982;
Toth 1985). Unfortunately, this method requires
a recalculation of the deBoor points whenever the
parameter intervals decrease. Alternatively, an-
other method is to convert the patch into the power
representation and to evaluate this polynomial in
each step.
Because the bicubic case (i.e., m = s = 3) is a good
compromise between accuracy and computation
time (Neumaier 1988b), we restrict our further dis-
cussions to this case, assuming patches converted
into the power form

3 3

P(u, v).'= ~ ~ aq u i v j,
i = o j = o

where a~jeR and u, re[O, iI, i.e., P is a bicubic
polynomial with real coefficients defined on the
grid [0, 1] x [0, 1].

94

5 Interval methods for ray tracing
bicubic B-spline patches

In this section, we present the theoretical part of
our method for ray tracing objects consisting of
bicubic B-spline patches. For a given screen, we
have to compute an enclosure for the intensity by
calculating hulls for the set of the intersection
points and to trace the rays to the light sources
and (recursively) the reflected and refracted rays.
In our discussion, we have to compute intersections
of
1) A cluster of "pr imary" rays with patches.
2) A single ray with patches.
3) A cluster of "secondary" rays with patches.
The main difference is that in case of single rays
we have to compute the nearest intersection point
of a ray with all patches in finitely many steps,
whereas in case of clusters of rays we have to com-
pute those parts of the patches that possibly have
an intersection point with at least one of the rays
of the cluster. In the latter case, we need a method
that (eventually) decreases the number of the rele-
vant patches and improves the parameter intervals
of the remaining patches.
The difference between cases (1) and (3) is that the
problem for primary rays may be restricted to the
two-dimensional case if the scene is projected into
the image plane using a unique perspective projec-
tion determined by the eyepoint and the screen.
We continue the discussion of this problem later
in the section, because the first step in solving the
intersection problem is to compute enclosures for
the range of patches efficiently. As mentioned in
the previous section, B-spline patches may be en-
closed using the convex-hull property. Particulary,
this property leads to effective ray-tracing methods
if successive subdivision of patches is performed
for each single ray [-a hardware implementation
of the procedure is described in Pulleyblank and
Kapenga (1987)3. In contrast to these methods, our
method computes parameter intervals of patches
depending on a given cluster of rays. Thus, the
convex-hull property is not effectively applicable,
because the recalculation of the deBoor points for
arbitrary parameter intervals requires more com-
putation time than the preconversion of the
patches to their power representation together with
the evaluation of these polynomials whenever a pa-
rameter has been changed. Of the two possible rep-
resentations P(u,v)=Xbi(v)ui=.~cj (u)v j, we take

the first one if v has smaller radius than u and
the second one if u has smaller radius than v. The
ranges of the derivatives P,(u, v) and P~(u, v) of
P(u, v) with respect to the first and the second vari-
able are calculated in a similar way.
Note that these calculations must be performed
with outward rounding in order to avoid faults
due to rounding errors. For further details, we refer
the interested reader to Enger (1990).
Enclosures for the range of the surface normal are
calculated similarily. Because the normal of a para-
metric surface is given by the cross product of the
two partial derivatives, we obtain such an enclo-
sure using

N=|n2|=| .leo-e o.s
where P~,, for i~{x, y, z} is an enclosure for the deriva-
tive of the i-th coordinate of P(u,v) with respect to
the parameter te {u, v}.
We now present methods for computing an enclosure
for the set of the intersection points of the patch
P(u, v) with a cluster of rays R(q)=O+qD, where O
is the origin, D is the direction, and q is a parameter
interval for the rays (in finite precision arithmetic q
may be bounded; hence, q is indeed an interval). In
general, O and D are real interval vectors.
If a projection with respect to the eyepoint and the
screen is performed, the x-y-coordinate intervals of
R only depend on the x-y-coordinates of the related
screen (i.e., q==qy=0) and the z-coordinate interval
of R is given by q+e, where e is a real constant.
Hence, this is a two-dimensional problem, and the
next result follows by applying centered forms to the
patch P(u, v).

Theorem 10 (Enger 1990). Let P(u, v) (O<u, v_<l) be
a patch projected into the image plane and let R(q)
(qMR) be a cluster of primary rays. Then the parameter
intervals defining the set of intersection points of the
rays with the patch are computed by solving

O~ ~(uo, v) - Ri + P~,,(u, v) * (u - Uo)

OE Pi(u, Vo) -- R i + Pi.~(u, v) * (v -- Vo)

for i e{x ,y} with UoeU, VoeV.

q is computed from 0 e P= -R= (q).

Remarks

1) The system is solved for all relevant patches.
2) The new parameter intervals will be intersected

95

with the old ones to increase the improvement of
the parameter intervals of the patch. If the intersec-
tion leads to an empty interval, i.e., there is (certain-
ly) no intersection point of one of the rays with
the patch, the patch is discarded.
3) Uo, v0 are chosen to be the boundaries of u and
v. The system is also solved for the midpoints of
u and v to enforce a separation of the patch if
it possibly contains the silhouette, i.e., if the hull
of the z-component of the normal contains zero.
4) Because the q-interval is a measure for the dis-
tance from the origin, we may discard some addi-
tional patches in a special case (Fig. 1): let
{Pi}i=l...k be the set of all relevant patches. Then
we call a subset S of {P/} q-connected iff S is maxi-
mal with respect to the property that either S con-
tains only one patch or for each P, of S there exists
at least one P,, 4= P, of S such that the q-intervals
of these patches have an nonempty intersection.
Now, assuming that S is a q-connceted set with
a) there certainly exists an intersection point of a
ray of the cluster with a patch of S, b) the patches
of S do not contain the boundary of any surface,
and c) the patches of S do not contain the silhou-
ette, then all patches r S that lie beyond all patches
eS may be discarded. Additionally, a q-connceted
set S is called nearest, iff for all patches P e S , P'r
qe <_qe,, where q, (/is the minimal or respectively
the maximal distance from the origin.
5) The "equations" that are of the form
O e a + b (x - x o) , a, b, xeIR, XoeX may be solved
with only a few arithmetical operations if Xo is a
boundary of x (for the technical details see Enger
(1990)).

P I

Fig. 1. q-connected patches P1,-P4, (parts of the
patches P~ - P4)

96

If the cluster includes a single ray only, the above
method is not practicable, because Hansen-Sen-
gupta iteration applied to all relevant patches P
of the scene converges under the weakest condi-
tions (see Theorem 7). Due to the results of Sect. 3,
we take the Hansen-Sengupta operator
H(w, Wo) = Wo + F(CA, - CP' (Wo) , w - Wo) with

F Px,.(u, v) g,v(Uo, v)],
A =kg,.(u, Vo) g,v(u, v) j
P'(wo) = [Rx- Vo)],

R,-- g(Uo, Vo)J

Uo = a, Vo = w = (u, v) r , Wo = C = 1.

Remarks

1) q is calculated as in Theorem 10.
2) Because a regular matrix A is strongly regular
and C=/ [-1A is an H-matrix if A is "thin enough,"
a partitioning of the patches during the iteration
process (especially in the neighborhood of the sil-
houette) is sometimes necessary to achieve (nearly)
planar (sub-)patches, i.e., patches with narrow in-
terval extensions for the derivative. If no further
improvement is achieved and the accuracy require-
ment is not met, the patch is patitioned into two
subpatches (by partitioning one of the parameter
intervals) and both parts are placed onto a stack.
The iteration must then be performed with all the
parts on the stack until the stack is empty. This
method is also called the covering method (Neu-
maier 1988 a), because the solution set for the sys-
tem of equations is covered by a collection of
smaller and smaller boxes, which give increasingly
fine information about the location of the solution
set. If an intersection point is already found, all
patches with a greater distance from the eyepoint
are removed from the stack.
In case of secondary rays, an application of one
of the previously described methods is not practic-
able, because the ray-parameter interval q leads
both to wide matrix elements in the Hansen-Sen-
gupta operator and to an additional pair of equa-
tions with wide interval factors in Theorem 10. On
the other hand, solving the equations of Theo-
rem 10 for planar patches leads to good enclosures
for the parameter intervals, because all intervals
occurring in the equations are narrow. Thus, parti-
tioning all patches into (nearly) planar subpatches,
approximating each subpatch by a quadrangle and

computing the intersection points of a cluster of
rays with all relevant quadrangles according to a
method similar to those described in Theorem 10,
should lead to an effective method. Because the
computation with triangles is easier, we divide each
quadrangle into four triangles (the triangulation
of a patch is described in the next section). Unfortu-
nately, the approximation of nearly planar sub-
patches by triangles leads to a decreasing accuracy
if the subdivision process breaks off too early and
to an increasing number of triangles, and hence
to increased computation time, if the accuracy re-
quirements of the process are sharpened. Thus, the
tolerances should be chosen as a compromise be-
tween accuracy, computation time, and storage
cost (see Sect. 8).
At least, we present a method for computing the
intersections of a cluster of (secondary) rays with
triangles. Using a parametric representation of a
triangle with vertices T,, T2, T3 of the form
T (f l , &) = T , + f i . (T 2 - T ,) + (~ . (T a - T ,) , fi,&e[0, 13,
fl + ~ < 1, enclosures for the parameter intervals de-
fining the set of intersection points may be calculat-
ed in a manner similar to Theorem 10.

Proposition 11. Let T(fi, &) (fl, c~ ~IR) be a parametri-
cally defined triangle and let R (q) : = O + q . D
(O,D~IR 3, q~IR) be a cluster of rays. Then the
intervals (fl, 3, q) defining the set of intersection
points of R with T may be achieved by solving the
system

O~b+ Aw,

where w=(fl, 6, q-q~) r, b~IR, A~IR 3• with
b = 7", - R (q), A = (7"2 - r , , T 3 -- T,, R'(q)).

od as follows: starting with the root, we compare
the coodinate hull of each knot with the coodinates
of the cluster. If this leads to a nonempty intersec-
tion, we repeat the process with both sons until
we reach a leaf, i.e., a triangle. Note that the tree
and the coordinate hulls may be computed in a
precalculation step. The trees of all patches of the
scene could be combined into an unique tree. How-
ever, we have found no advantage in doing this.

/ / • C = [] { C I u C 2 } Pa tch

o o o r d i n i t e s C I . , ~ .) . ~ o o r d i n a t e s C2 8 u b p i t c h e $

/ ' a

Fig. 2. Binary patch tree

I i r ~ sub>l t - ,F,

I ' r l i n g l e .

T I = v e r ' t i c e s of" I i n . s u b p l t o h

D = i n t e r s e c t i o n or d i a g o n a l s

3) A similar argument as for q-connected patches
may reduce the number of relevant (q-connected)
triangles.
Note that in the case of a single secondary ray,
all vectors and the matrix A have real entries.

Remarks

1) In order to decrease computation time, we com-
pare the hull of the coordinates of the triangles
with the coordinates of the cluster of rays, applying
the above method only to those triangles that pro-
duce a nonempty intersection.
2) We may improve the above hull-comparison
method if we represent each patch by a binary tree
(see Fig. 2), where the root represents the patch
and each of both sons of a knot is one of the sub-
patches of the "father" patch resulting from the
subdivision process. The leaves of the tree represent
the triangles. Computing the hull of the coodinates
of each knot as the interval hull of the coordinate
hulls of the sons, we may improve the above meth-

6 Triangulation
In this section, we give a brief discussion of the
problem of triangulating a parametric surface. Be-
cause we use B-Spline surfaces represented as a
collection (or a net) of patches, we have to partition
any patch into subpatches until the subpatches are
planar within some given tolerance. Each of these
"planar" subpatches (viewed as a rectangle) is par-
titioned again into four triangles. Inasmuch as the
splitting of the patches depends on the geometry
of the surface, we have to take care of a proper
implementation to avoid "cracks" in the surface�9
We illustrate this phenomenon in Fig. 3.
Let P1 and P2 be two subpatches such that P, is
planar within the given tolerance, but P2 has to

97

A A ~ ~ s ~

Fig. 3. The splitting of adjacent subpatches

be split once more giving the new subpatches P21
and P22. The 12 triangles related to these sub-
patches are printed with dashed lines. Clearly, the
shaded section is not contained in any of these
triangles and would be lost during the tracing pro-
cess. To avoid this, we have to chose the point
Qo as the midpoint of the straight line joining the
two points Q1 and Q2 and not as the midpoint
of the (cubic) curve representing the common
boundary curve of the patches P~ and Pz. If one
of the patches P21 or P22 is split once more to
achieve the required planarity, we have to use in
the further calculations the new point Q0.new in-
stead of Qo. A similar discussion of this problem
is found in Clay and Moreton (1988).
Following Lane et al. (1980), we take advantage
of the convex-hull property of the B-Spline curves
and surfaces to obtain a criterion for planarity:
we call a patch planar iff the Euclidean distance
of the deBoor points to the plane of any three
corner points is less than a tolerance el and for
all four boundary curves the Euclidean distance
of the interior deBoor points to the line segment
joining the end points is less than a tolerance e2
(these two tolerances will be specified in Sect. 8).

7 Algorithms

The presentation of our algorithm I N T R A C Y f o r
ray tracing a scene consisting of several objects
given as parametric B-spline surfaces is not
straightforward, because we use different tech-
niques for the different classes of rays. The strategy
is as follows:
Starting with the whole screen, compute those
parts of all patches that possibly have an intersec-
tion point with one of the rays. Compute the inten-
sity interval of the actually considered screen. If
the screen could not be uniquely colored, split the

98

screen and place the parts onto a stack. In the
other case, color the screen. Proceed with the next
part from the stack until the stack is empty. The
input parameters are the set of B-spline surfaces
defining all objects of the scene and the coordinates
of the eyepoint and of the screen.
The precalculation, which is independent from the
subdivision process, includes projecting the scene
into the image plane (determined by the eyepoint
and the screen), computing the net of patches repre-
senting all surfaces, converting the deBoor points
of all these patches into the power form, and com-
puting their related trees.
Furthermore, a stack is required for storing the
information about those parts of the screen not
yet considered. This information is supplemented
by a set of data structures (one structure for all
those patches that possibly contain an intersection
point), including the actual u- and v-interval and
a pointer to the original deBoor points.

Algorithm I N T R A C Y
1) Precalculation.
2) Set B,=coordinates of the whole screen.
Initialize the stack. Mark all patches.
3) For all marked patches:

3.1 Compute the hull of the x-y-coordinates and
compare them with B. Delete the mark of the patch
and goto 3 if no solution exists.

3.2 Compute the new parameter intervals u and
v according to Theorem 10 if B is a cluster, or
perform Hansen-Sengupta iteration if B is thin. De-
lete the mark of the patch if no solution exists.
4) If no patch is marked, goto 11, else sort the
patches in order according to their minimal dis-
tance from the eyepoint.
5) Improve B by intersecting it with the hull of
the x-y-coordinates of all marked patches.
6) If B is thin, compute the coordinates and the
normal at the nearest intersection point [see re-
mark 1) below].
7) If B is not thin and a nearest set S of q-connected
patches exists, compute the hulls of the coordinates
and the normal of the patches e S as wide intervals
and delete the marks of all patches ~ S. Additional-
ly, the coodinates and the normals at the intersec-
tion points at the four "corners" of screen B are
computed using Hansen-Sengupta iteration (see
step 9 and Remark 2 below). If no nearest q-con-
nceted set exists, goto 10.
8) Call SHADE (see below) to compute the intensi-
ty interval of (sub-)screen B.

? ~,;:% 5e~ gt

9) If the intensity interval contains at most two
(discrete) graphic intensities, use the bilinear form
determined by the intensities at the corners of B
to calculate the intensity for each pixel of B and
goto 11 (see Remark 2).
10) Split B into two parts (see Remark 3 below)
and place all parts onto the stack (together with
the information about all marked patches).
11) If the stack is not empty, pop next B from
the stack and goto 3.
12) End.

Remarks

I) Hansen-Sengupta iteration is performed until
condition iii) of Theorem 6 is satisfied or the radii
of the computed parameter intervals are less than
a specified accuracy requirement. To obtain the
nearest intersection point, Hansen-Sengupta itera-
tion is repeated with all remaining patches until
a unique nearest patch is found or all patches satis-
fy the accuracy requirement (in this case an arbi-
trary one is taken; however, this did not occur
in our experience). The coordinates and the normal
are computed at the midpoints of the parameter
intervals of the remaining patches.
2) The additional computat ion of the intersections
with the four "corner rays" (the rays determined
by the corners of the screen) increases computat ion
time, but has the advantage of approximating the
intensities of all pixels by a bilinear form if the si-
multaneously calculated intensity interval for the
whole cluster is thin enough. In order to obtain
the intensities of the pixels (x, y) of screen B, we
use the bilinear form

I(x,y)=a+bx'+cy'+dx'y' with

X' :=(X- - Xmin)/(Xma x - - X m i n) ,

Y' : : (Y - - Yvain)/(Ymax-- Ymin),

where the min- and max-values are the minimal
and maximal x-y-coordinates of B and the coeffi-
cients a-d are determined by the intensities at the
corners of B. To avoid sharp transitions in intensi-
ty, we add as a dithering component a random
number taken from the interval [- 0.5, 0.5] to each
of these pixel intensities (assuming that the intensi-
ties of the graphic card are integers).
3) According to our experience, an improvement
in computat ion time is achieved if the screen is
split into four pieces instead of only two in step
10 (as long as it is possible).

4) A further improvement in computat ion time is
obtained if the screen is preparti t ioned into 8 x 8
congruent parts and the algorithm is applied to
each of these parts (except the precalculation).
We now present the routine SHADE, which com-
putes recursively the intensity interval for a (sub-)
screen B.
Hulls of the coordinates and of the normals at the
set of intersection points and the coordinates and
the normals at the four "corner intersection
points" (if it is not an unique intersection point)
are input together with the related set of marked
patches, respectively triangles. Output are an inten-
sity interval I and the intensities I 1 - I 4 at the four
"corners."
1) Set I ,=[0 , 0], and 11_4,=0. Mark all triangles
that are subsurfaces of the marked patches.
2) For all light sources

2.1 Compute the cluster of (secondary) rays from
the light source to the hull of the intersection
points.

2.2 For all nonmarked triangles, compute the
parameter intervals/3 and 6 according to Proposi-
tion 11 or directly in the case of a single ray.

2.3 If no solution exists for any triangle, calculate
the intensity interval with respect to a given illumi-
nation model and add it to I. Compute also the
intensities at the four "corners" and add them to
11-4. Goto 2.

2.4 If the ray is a single ray or if the triangles
form a nearest q-connected set, goto 2.

2.5 Set I : = [- o% + oo] and return to the calling
routine.
3) If the intersection object is a reflecting medium,

3.1 Compute the cluster of reflected rays and
the four reflected "corner" rays.

3.2 For all nonmarked triangles, compute the
parameter intervals fl and 6 according to Proposi-
tion 11 or directly in case of a single ray. Denote
by T the set of all triangles leading to a solution.

3.3 If T is empty, goto 4.
3.4 If the ray is a single ray or if the triangles

of T form a nearest q-connected set,
3.4.1 Delete the marks of all triangles (but keep

them in mind for step 4).
3.4.2 Mark all triangles of T.
3.4.3 Compute the hull of the coordinates and

the normal interval of all triangles of T.
3.4.4 Compute the intersection points and the

normals for the four "corner" reflected rays.
3.4.5 Call SHADE.
3.4.6 If the intensity interval calculated by

99

SHADE is not finite, set I : = [- o o , +oo] and re-
turn to the calling routine.

3.4.7 Add the calculated intensity interval and
the intensities at the four "corners" to I and 11-4
(with respect to the illumination model). Goto 4.

3.5 Set I . ' = [- o% + oo] and return to the calling
routine.
4) If the intersection object is a refracting medium,
execute steps 3.1-3.5 with the cluster of the re-
fracted rays.
5) Return to the calling routine.

Remarks

1) The recursive process defined by step 3.4.5 (re-
spectively 4.4.5) is executed until the maximum lev-
el of recursion has been reached.

2) An alternative method avoiding approximation
errors is described in Woodward (1989). It directly
subdivides the patches in the viewing plane. Unfor-
tunately, the use of integer arithmetic to speed up
the process seems to be crucial in this method,
which is therefore not applicable to our real arith-
metic algorithm.

8 Test results

Experiments have been performed by implement-
ing the algorithms in TURBO-PASCAL 4.0 on a
PC/XT with a V20 processor without arithmetic
coprocessor for three different scenes (SCENE 1-3)
and for several resolutions. Following Schmitt
et al. (1988), the maximum level of recursion has
been set to 2.

4

6

Fig. 4. SCENE 1

Fig. 5. SCENE 1 without dithering

100

7

Fig. 6. SCENE 2

Fig. 7. SCENE 3

Table 1. Number of patches, triangles, and computation time
required for the precalculation

No. No. No. Time
objects patches triangles min: s

SCENE 1 9 104 4 x 1106 6:5l
SCENE 2 15 103 4 x 1050 6:35
SCENE 3 21 113 4 x 846 5:34

Figures 4, 6, and 7 show the scenes (with a resolu-
tion of 640 x 480 pixels and 16 different intensities),
while Fig. 5 shows SCENE 1 without dithering; a
comparison with Fig. 4 shows that graphics are
much more realistic with dithering. SCENE 1 rep-
resents a pan and a glass on a table in front of
a mirror, SCENE 2 represents a scene with two
light sources, and SCENE 3 shows a room with
a candle on a glass-plate.
Table 1 gives the computation times for the initial
calculation (i.e., step 1 of algorithm INTRACY).
As a compromise between accuracy and storage
cost, we have obtained the best results in the trian-
gulation process with the tolerances

e 1 = 0.001 �9 dnaax ,/32 - ~ - 0.02. dmax,

where dma x is a boundary on the maximal diameter
of the coordinates of the scene. This choice leads
to an average number of 38 triangles for each
patch.
To show the influence of dithering on computation
time, we have compared the computation time f o r
ray tracing SCENE 1 with dithering (17" 10 h) and
without dithering (19:20 h). This result seems to
be surprising, because dithering requires addition-
ally computing the intensities at the corners of the
screen and a time penalty should be expected. The
reason for a faster execution time with dithering
lies in the fact that in this case we are able to
finish the recursive splitting of the screen if a com-
puted intensity interval still contains two different
representable intensities, while in the other case we

Table 2. Execution times I N T R A C Y - T R A Y (resolution of
640 x 480 pixels, 16 different intensities)

Execution time (h:min) Speed-up
factor

INTRACY TRAY

SCENE 1 17:10 42:08 2.5
SCENE 2 17:13 45:12 2.6
SCENE 2a 10:59 33:58 3.1
SCENE 3 19:30 49:51 2.6

have to split until the intensity interval contains
exactly one representable intensity. This more than
compensates the extra time needed to compute the
intensities at the four corners.
Table 2 compares the execution time needed for
our ray-tracing technique, called INTRACY, with
a "convent ional" technique called TRAY This
"conventional" technique shades the screen pixel
by pixel by computing separately the intersection
points of a single ray with triangles, supported by
the hull comparison method and the patch trees
[see Remark 2) after Proposition 11]. Because this
is the same kind of method as used for the second-
ary rays in INTRACY, the time ratios are expected
to be independent from details of the implementa-
tion. Due to lack of proper implementations, fur-
ther interesting comparisons between the author's
method and other "conventional" methods [e.g.,
the method of accelerated ray tracing presented
in Fujimoto and Iwata (1986)] are not presented
here.
In order to obtain an indication of the dependence
on the number of light sources, we have considered
SCENE 2 with one of the two light sources
switched off (SCENE 2a).
For this resolution and number of intensities, we
achieve an improvement with a factor between 2.5
and 3.0 over the conventional technique.
We now check the dependencies of the two tech-
niques on the resolution and the number of intensi-
ties. For INTRACY, we expect a logarithmic de-
pendency on the resolution, while TRAY should
have a linear dependency. The influence of the
number of intensities cannot be predicted a priori,
because it strongly depends on the structure of the
scene. Only TRAY should be independent of this
number. We illustrate this for SCENE 1 in Figs. 8
and 9. Extrapolating these results, we would expect
an improvement factor for the standard resolution
and number of intensities for workstations
(1280 x 1024 pixels, 256 intensities) of about 3.1.
In order to represent colored images, the calcula-
tion of the intensity has to be performed simulta-
neously for the three colors red, green, and blue
(assuming a RGB-model is used). In this case, we
expect only a small increase in computation time,
because the screen is already partitioned into small
parts at the "critical points" (boundary of surfaces,
areas with a strong curvature with great change
of intensity). Hence the representation of more than
one color is expected to lead to a few further split-
tings of the screen only. Therefore, the execution

101

time for representing colored images on a graphic
card with 24-bit memory/pixel will be nearly the
same as for black/white images with 256 different
intensities.
A further interesting analysis is the consideration
of the sizes of the subscreens, which are known
to display a unique color, i.e., which do not need
any further subdivision. We illustrate the frequen-
cies of the sizes for SCENE 3 in Table 3 (the distri-
bution of the sizes for the other scenes are similar).
Sizes are given in number of pixels (Nops), where
the maximum attainable size here is 4560 Nops
(with a sub-splitting of the total screen with
608 x 480 pixels into 64 congruent parts). Table 3
illustrates that equally colored subscreens are still
known in a relatively early stage, which is the
power of the presented method. Additionally, it
can be seen that only about 1/9 of the total number
of pixels requires the full subdivision process. Neth-

45
. o

40 , / / -

35 Tray / /

30 / /

g 25 /
:~ 20 / ~ /

/ i " / " Intracy f o
E 15I / /
8 t0 ~ . ~

/
5
0 j j

320 x 240 320 x 480 640 x 480

Resolution

Fig. 8. Computation time as a function of the
resolution with 16 intensities (SCENE 1)

g

"5
ID_

E
8

45

40

35

30

25

20

15

10

5

o o o o

Tray

i n t r a c y / e J e

o ~

i i i i

4 16 64 256

Number of intensities (Iogar.)

Fig. 9. Computation time as a function of the number
of intensities with a resolution of 640 x 480 (SCENE 1)

ertheless, much computation time is required to
calculate the intersection points for these pixels,
because these are generally the "critical points."
According to our experience, Hansen-Sengupta
iteration seems to be the fastest method (for
SCENE 3 an average number of 2.1 (sub-)patches
per single pixel have to be considered, whereby
an average number of only 1.6 iteration steps per
patch have to be executed).
Our algorithm can reduce aliasing to an acceptable
level with little expense. In the case of shading more
than one pixel at a time, there is no need for anti-
aliasing, because the methods of interval analysis
yield a certain enclosure for the range of the inten-
sity, while shading a single pixel with respect to
antialiasing can be performed using a method of
supersarnpling, where the pixel is partitioned into
a matrix of typically 4 x 4 subpixels. Inasmuch as
the surface parameters are stored for each pixel
and the information about the 2 x 1-pixel (respec-
tively 3 • 1-pixel) screen of the preceding step can
be used, it is easy to supersample the patch in a
local area.

9 Conclusions

In this paper, we have developed a technique that
applies methods of interval analysis to the problem
of intersecting a cluster of rays with a parametri-
cally defined surface. Our algorithm provides a
speed-up factor between 1.5 and 3.0 over a conven-
tional algorithm.
An experimental analysis has shown that much of
the CPU time is used to evaluate quadratic and
cubic polynomials. Thus, a hardware implementa-
tion for evaluating a spline with Homer 's scheme
should lead to a further significant speed-up of the
algorithm.
Because the main tools of interval analysis used
in our method are independent of the representa-
tion of the surface, the technique is also applicable
to other surfaces, e.g., algebraic surfaces defined
by an implicit function F(x, y, z)=0. A polygoniza-
tion of implicit surfaces (similar to that used in
our algorithm) can be found in Bloomenthal
(1988).
Furthermore, because of the divide-and-conquer
strategy of our algorithm, it extends trivially to
animated graphics by working in spacetime. [f the
space coordinates are extended by a further param-

102

N

Table 3. Sizes ofequally-colored subscreens ofSCENE 3

Nops Frequency N0ps Frequency Nops Frequency

1 30982 54 2 240 14
2 4222 55 1 252 3
3 627 56 37 260 14
4 2116 60 90 261 1
5 64 63 75 266 15
6 1884 64 7 270 1
7 32 70 427 280 65
8 306 72 16 285 4
9 184 78 1 300 19

10 80 80 64 320 1
11 1 84 2 343 1
12 305 90 3 344 1
14 21 100 11 380 1
15 1055 112 13 420 2
16 128 114 2 456 2
18 3 116 1 460 2
20 897 117 1 532 2
21 2 120 10 551 1
22 2 126 26 560 3
23 1 130 3 580 2
24 3 135 6 600 1
25 63 140 146 627 1
28 27 145 1 715 1
29 1 150 29 720 2
30 8 160 3 788 1
32 5 168 1 800 1
33 2 170 1 1120 8
35 330 171 1 1160 8
40 40 200 5 1520 2
42 3 215 1 2080 1
45 2 220 7 2490 1
50 35 238 4 2850 1
51 1

e te r t, time, p r e s e n t i n g a n i n t e r v a l w i th s eve ra l d is -
c re te va lues , e.g., 25 va lue s p e r s e c o n d for the T V
n o r m , the d i m e n s i o n i n c r e a s e s b y 1 w i th n o fu r t he r
c h a n g e s to the a l g o r i t h m . Th i s s h o u l d l e a d to a n
effect ive t e c h n i q u e for r a p i d l y f i nd ing the (p r o b a b l y
r e l a t i v e l y la rge) s ec t i ons o f c o n s t a n t i n t ens i ty . T h e
p r o d u c e d s p a c e t i m e boxes , i.e., e q u a l l y s h a d e d
s u b s c r e e n s r e l a t e d to a t i m e in t e rva l , s h o u l d be
s t o r e d un t i l t he p r o c e d u r e is f i n i shed a n d the p ic-
tu res a t e a c h p o i n t o f t ime s h o u l d t h e n be b u i l d
u p f r o m these boxes . A m e t h o d for c r e a t i n g e f f i -
c i en t b o u n d i n g - v o l u m e h i e r a r c h i e s s u p p o r t i n g o u r
t e c h n i q u e can be f o u n d in G l a s s n e r (1988).
A n i n t e r e s t i n g fu tu r e w o r k c o u l d be the r e s e a r c h
o n a c o m b i n a t i o n b e t w e e n the a u t h o r ' s m e t h o d
a n d the m e t h o d o f a c c e l e r a t e d r a y t r ac ing .

Acknowledgements. The author wishes to thank Professors Dr.
A. Neumaier and Dr. H. Mtiller for their helpful discussions

during the development of this method and for their sugges-
tions, which improved the content and the presentation consid-
erably.

References

Alefeld G, Herzberger J (1983) Introduction to interval compu-
tation. Academic Press, New York

Baumann E (1988) Optimal centered forms. BIT 28:80-87
Bloomenthal J (1988) Polygonization of implicit surfaces. Corn-

put Aided Geometric Design 5:341-355
deBoor C (1978) A practical guide to splines. Springer, Berlin

Heidelberg New York
Clay RD, Moreton HP (1988) Efficient adaptive subdivision

of B6zier surfaces. In: Proc Eurographics. North-Holland,
Amsterdam, pp 357-377

Cohen E, Lyche T, Riesenfeld R (1980) Discrete B-splines and
subdivision techniques in Computer Aided Geometric De-
sign and Computer Graphics. Comput Graph Image Proc
14:87 111

103

 omp ter
Dussel R, Schmitt B (1970) Die Berechnung von Schranken

fiir den Wertebereich eines Polynoms in einem Interval1.
Computing 6:35-60

Enger W (1990) Intervall Ray Tracing - ein Divide-and-Con-
quer Verfahren ffir photorealistische Computergrafik. The-
sis, Institut fiir Angewandte Mathematik, Universit/it Frei-
burg

Farin GE (1990) Curves and surfaces in computer aided geomet-
ric design, (2nd edn). Academic Press, San Diego

Faux ID, Pratt MJU (1979) Computational geometry for design
and manufacture. Ellis Horwood, Chichester

Fujimoto A, Iwata K (1986) ARTS: accelerated ray-tracing sys-
tems. IEEE Comput Graph Appl 16-27

Glassner AS (1984) Space subdivision for fast ray tracing. IEEE
Comput Graph Appl 15-22

Glassner AS (1988) Spaeetime ray tracing for animation. IEEE
Comput Graph Appl 60-70

Glassner AS (1989) An introduction to ray tracing. Academic
Press, San Diego

Koparkar PA, Mudur SA (1985) Subdivision techniques for
processing geometric objects. In: Earnshaw RA (ed) Funda-
mental algorithms for computer graphics. Springer, New
York Berlin Heidelberg, pp 751-801

Krawczyk R (1969) Newton-Algorithmen zur Bestimmung von
Nullstellen mit Fehlerschranken. Computing 4:187-201

Lane JM, Carpenter LC, Whitted T, Blinn JF (1980) Scan line
methods for displaying parametrically defined surfaces.
Commun ACM 23 : 23-34

Moore RE (1966) Interval analysis. Prentice-Hall, Englewood
Cliffs

Mudur SA, Koparkar PA (1984) Interval methods for process-
ing geometric objects. IEEE Comput Graph Appl 7-17

Mfiller H (1988) Realistische Computergrafik. Informatik-Fach-
berichte 163, Springer, Berlin Heidelberg New York

Neumaier A (1988a) The enclosure of solutions of parameter
dependent systems of equations. In: Moore RE (ed) Reliabil-
ity in computing - the role of interval methods in scientific
computing. Academic Press, San Diego, pp 269-286

Neumaier A (1988b) Einfiihrung in die Numerische Mathema-
tik. Vorlesungsskript, Tell 3, Institut ffir Angewandte Ma-
thematik, Universit/it Freiburg

Neumaier A (1990) Interval methods for systems of equations.
Cambridge University Press, Cambridge

Nishita T, Sederberg T, Kakimoto M (1990) Ray tracing
trimmed rational surface patches. Comput Graph 24:337-
345

Pulleyblank R, Kapenga J (1987) The feasibility of a VLSI chip
for ray tracing bicubic patches. IEEE Comput Graph Appl
7:33-44

Rokne J (1982) Optimal computation of the Bernstein algorithm
for the bound of an interval polynomial. Computing
28:239-246

Schmitt A, M/iller H, Leister W (1988) Ray tracing algorithms
- theory and practice. In: Earnshaw RA (ed) Theoretical
foundations of computer graphics and CAD. Springer,
NATO ASI Series F 40:997-1029

Thirion JP (1990) Utilisation de la coh6rence de rayons lumin-
eux pour le lancer de rayons. Thesis, Universit6 de Paris-Sud

Toth DL (1985) On ray tracing parametric surfaces. SIG-
GRAPH 19:171 179

Whitted T (1980) An improved illumination model for shaded
display. Commun ACM 23:343-349

Woodward C (1989) Ray tracing parametric surfaces by subdi-
vision in viewing plane. In: Strasser W, Seidel HP (eds)
Theory and practice of geometric modelling. Springer, Berlin
Heidelberg New York, pp 273-290

Yamaguchi K, Kunii TL, Fujimura K, Toriya H (1984) Octree-
related data structures and algorithms. IEEE Comput
Graph Appl 4:53-59

W. ENGER received his MSc
in mathematics in 1986 and
PhD in mathematics in 1991 at
the University of Freiburg. He
also tought courses in computer
science at the Berufsakademie
L6rrach (Germany). Currently,
he is working as a software en-
gineer at ip Info Process GmbH
in Buchenbach (Germany).
Enger is a specialist in interval
analysis. His current research
interests include numerical
mathematics, computer graph-
ics, and geometric modelling
techniques.

104

