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1 Introduction 

Ray tracing is a powerful approach to realistic im- 
age generation. It is a conceptually simple and 
powerful method, taking into account the effects 
of shadows cast, multiple reflection, and refraction 
for transparent objects. The most current imple- 
mentations are first published by Whitted (1980). 
An excellent introduction and an overview of cur- 
rent research is given in Glassner (1989); some effi- 
cient datastructures can be found in Miiller 
(1988). 
Ray-tracing techniques reduce the problem of sur- 
face generation to the computation and shading 
of intersection points of rays with surfaces. For 
complex unstructured objects, the calculation of a 
point of intersection is equivalent to solving a sys- 
tem of nonlinear equations F ( x ) = 0  (F: R 3 --+R3). 
This can be done, for instance, using Newton's 
Method (see Faux and Pratt 1979 for parametric 
surfaces). To overcome the problem of finding a 
starting point, Toth (1985) uses the Interval Newton 
Method (Krawczyk 1969). 
Reduced computation time may be achieved by 
generating a polygonal approximation of the sur- 
face to be rendered, and then performing ray trac- 
ing on the resulting polygons. In order to avoid 
a drastic increase in the number of intersection 
points to be calculated, the given scene may be 
partitioned by a regular grid (Schmitt et al. 1988) 
or, alternatively, each object may be representated 
by a (binary) tree, whose leaves are "primitives," 
e.g., linear subsurfaces. One method that combines 
these techniques is accelerated ray tracing 
(Glassner 1984; Yamaguchi et al. 1984; Fujimoto 
and Iwata 1986), where the rays are traced through 
a so-called octree structure of cells. Another meth- 
od for rational B6zier patches - the B6zier clipping 

- is a combination of subdivision and numerical 
methods (Nishita et al. 1990). 
Thirion (1990) uses clusters of rays, consisting of 
a fixed number of 4 x 4  or 8 x 8 rays, to reduce 
the number of intersection points to be calculat- 
ed. 
In this paper, we present a new technique for find- 
ing the intersection of a ray with a parametric sur- 
face. We use the fact that pictures - especially com- 
puter-generated pictures - often contain relatively 
large uniformly colored sections so that it is unsat- 
isfactory to perform similar calculations for all pix- 
els on the screen eventhough many adjacent pixels 
could be eventually colored together. Our goal is 
to obtain these common regions with only a few 
arithmetical operations, whereby the calculation 
with clusters requires mathematical methods that 
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extend real numbers to real intervals. Inspired to 
the present investigations by Mudur and Koparkar  
(1984), Koparkar  and Mudur (1985), and Neumaier 
(1988 a), we use methods of interval analysis to cal- 
culate the set of intersection points of ray clusters 
with objects in the scene, i.e., we compute an enclo- 
sure for the solution set of the system of "'interval 
equations" OeF(x) (F: IR a--,IRa). With this set, 
we compute an enclosure for the intensity, and, 
unless the intensity interval is " thin" enough, we 
partition the cluster into two (or more) clusters. 
Although the calculation of the solution set is more 
complicated in the interval case, the saving in the 
number of such calculations results in an overall 
improvement in calculation time over the conven- 
tional method for bicubic B-spline surfaces with 
a factor between 1.5 and 3.0, depending on the 
resolution and the number of colors to be pre- 
sented. 
For the reader who is not familiar with interval 
analysis or B-splines, we present in Sects. 2-4 some 
basic facts of interval analysis and an introduction 
to B-splines. In Sect. 5, we apply the methods of 
the first two sections to B-spline functions to obtain 
a new and effective method for calculating all inter- 
section points of ray clusters with objects in a 
scene. A method for dividing (triangulating) para- 
metrically defined surfaces avoiding "cracks" dur- 
ing the subdivision process is described in Sect. 6. 
The algorithms mainly based on the results of 
Sect. 5 are presented in Sect. 7. Some experimental 
results complete the paper (Sect. 8). 
Notation: We denote by 

R, R% R m • n the set of real numbers, n-vectors, and 
m x n-matrices, respectively. 
IR, IR n, IR m• the set of intervals, interval n-vec- 
tors, and interval m x n-matrices, respectively. 

2 Interval analysis: basic facts, 
centered forms 

In this section, we present the basic notions from 
interval analysis required in our investigations. 
More detailed introductions to this topic can be 
found in Moore (1966), Alefeld and Herzberger 
(1983), and Neumaier (1990). 
We begin our discussion with the definition of in- 
tervals and related notions: 
A (real) interval is a set of the form 

x -  [_x, 23 , = { 2 e R I x < 2  <2}, 

where x, 2 are elements of R with x <_ 2. The (pos- 
sibly empty) open interval ]_x, 2[, the interior of 
x, is denoted by in t (x) - (x ,  2) :={~eRl_x<2<2}.  
An interval is called thin if x = 2 and thick if x < 2. 
The midpoint of an interval x is the point 2 with 
mid(x)---2,=(2+_x)/2. The radius of x is 
rad(x) ,=(2-x) /2 .  The magnitude of x is 
mag(x)--Ix[,=max{12112ex}. If S is a nonempty 
bounded subset of R we denote by [ ] S:=[inf(x), 
sup(x)] the hull of S, i.e., the tightest interval en- 
closing S. 
In order to calculate familiarily with intervals, we 
extend the order relations and elementary opera- 
tions from real numbers to intervals in an obvious 
way. 
The order relations O R e { < ,  _<,_>, >} are ex- 
tended to interval arguments by defining x OR y: 
< = ) 2  OR ~ for all 2ex ,  yey.  

Elementary operations EOe { + ,  - , . , / ,  **} are de- 
fined on the set of intervals by putting 

x g o  y '=[  ] {2 EO Yl ~ex,  yey} 
={2 E O y l 2 e x ,  yey} 

for all x, y e I R  such that 2 EO y is defined for all 
2 e x  and yey.  

Remarks 

1. The definition of the division x/y is restricted 
to intervals y not containing zero. 
2. In most cases, multiplication and division of in- 
tervals can be performed with only two real arith- 
metic operations (Neumaier 1990). 
The definitions and basic notions from interval 
analysis can be easily extended to vectors and ma- 
trices. 
An interval m x n-matrix is a matrix A =(Aik ) of 
intervals A~kelR (we denote the elements of A by 
Aik instead of aik). 
We interpret A e I R ' •  as the set of all matrices 
A e R  m• with AikeAik for i=  1, ..., m; k =  1, ..., n. 
Interval n-vectors are considered as interval n x 1- 
matrices. We define: 

_A =_ inf(A)'-=(dik); A ==- sup (A):=(xZlik); 

--- mid(A):= (Aik) 

rad(A) :=(rad(A~k)); ]AI ,=(IA~kl) 

int (A):={.7teAlAik < Aik < Aik whenever _Aik 4 = Aik } 

A OR B: < = )Aik OR Bik for i = l . . . m ;  

k = l . . . n ; O R e { < ,  < ,  > ,  >}. 
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We now introduce centered forms for vector-va- 
lued functions in real variables, which we use to 
solve systems of "interval equations," whereby 
ranges of functions have to be enclosed. 
If f is a vector-valued function in n real variables, 
the interval evaluation over a rectangular box 
x~IR" provides an enclosure for the range f*(x)  
={f (2 ) [2ex}  with an overestimation of order 
~(rad(x)). Because this may be large in adverse 
circumstances, we now provide a method for en- 
closing the rangef*(x) in such a way that the over- 
estimation remains small for sufficiently narrow 
boxes x. 

Proposition 1 (Neumaier 1990). (i) The centered 
form o f f  with center 56x  and slope saIR 

L ( x , ~ ) , = f ( ~ ) + s . ( x - ~ )  

is an enclosure for the range f* (x )  over the box 
xaIR"  if, for all 2ex ,  there is a ~ s  such that f(Yc) 
=f(z') + J . ( f -z ' ) .  
(ii) All centered forms have the quadratic approxi- 
mation property, i.e., for narrow boxes x and Lip- 
schitz continuous interval extentions of  s, the overes- 
timation of  the range is of  order ~(rad(x)Z). 

In this paper we only use mean value forms 

fro(x) .'=f (2) + f '  (x)(x - ~), 

because the derivative is easy to compute and ff = 
is an optimal choice to obtain minimal radius (Bau- 
mann 1988). 
Alternatively, i f f  is a polynomial with interval co- 
efficients, an enclosure for the range of this function 
may be computed as proposed by Dussel and 
Schmitt (1970). 

n 

Lemma 2 (Enger 1990). Let p(u).= ~ b i u i be a po- 
i = 0  

lynomial of  n-th degree with coefficients bi~IR and 
uMD___IR, u>_O. We denote by p*(u) the range of  
this polynomial on ID. Then 

p ' ( u ) = [ m i n (  " L , ~ ,  =--0 ) m a x ( ~  6, u)]  _bi u i , 
i ~ e u  \ i = 0  

In Sect. 5, we shall use this result for directly en- 
closing the range of cubic B-splines over a parame- 
ter interval. 

3 Nonlinear systems of equations 
A special case in our considerations is the compu- 
tation of the intersection points of a single ray 

(viewed as a real vector) with the objects in the 
scene. This leads to a non-linear system of equa- 
tions F ( x ) = 0  (F: R3--*R3), i.e., the computation 
of an enclosure for all zeros x* of a continuous 
function F: Do_CR"~R"  in a given subset D of 
D o .  
We first present some definitions further required. 

Definition 3. If A ~IR" • then we call 

A regular : ( = ) ~ is regular for all A e A. 

A strongly regular :(  = ) A-  1 A is regular. 

A H-matrix : ( = )  ( A ) u > 0  
for some positive ueR". 

Here (A )u  .'=min {I.AuJ I~.eA.} 
and (A)ik '= - [A ik l  for i + k. 

Remark. Every regular real matrix is strongly regu- 
lar. 

Definition 4. Let F: D o _ ~ R " ~ R " .  If there is an 
A such that for every 2, 9 e D ~ D o :  F(2 ) -F (9 )  
= . ~ ( 2 - 9 )  for some A e A ,  then A is called a Lip- 
schitz matrix for F on D. If A is in addition closed, 
convex, and bounded then A e lR"  • 
Note that if F is continuously differentiable on D 
and x e ID  then the matrix A = F'(x) is a Lipschitz 
matrix for F whenever the interval extension F'(x) 
is defined. 

Definition 5. Let F: Do-~ R"--+ R" be Lipschitz con- 
tinuous on D _c Do, i.e., t[ F(~) - F(~)11 _< 6112 - ~ 1] for 
all 2, y e D  with a Lipschitz constant fi, and let A 
be a Lipschitz matrix for F. For  a suitable n x n- 
matrix C, the preconditioner, and 2 e x e ID, we de- 
fine the Hansen-Sengupta operator 

H(x, Yc):=Yc + r(CA, - CF(2), x - 2), 

where F(A, b, x):=y with 

y~ = {(b,- ~ Aik Yk -- Z A~ Xk)/Au} n xi, 
k < i  k > i  

which is called the Gaufl-Seidel operator applied 
to A, b, and x. 

Remark. If n is small, the recommended choice for 
C is C ~ e t  -1 (Neumaier 1990). 

Theorem 6 (Neumaier 1990). Under the assumptions 
of  Definition 5, if 2axEID,  then x ' ,=H(x,  2) has 
the following properties: 

i) Every zero x*~x  of  F satisfies x*ex' .  
ii) I f  x' = O, then F contains no zero in x. 
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iii) I f  0 4= x' ~_ int(x), then F contains a unique zero 
in x. 

Definition 5 and Theorem 6 show that the applica- 
tion of the Hansen-Sengupta operator to an inter- 
val xo leads to an interval Xl, which has at most 
the same radius as Xo and no zero will be lost. 
Thus, it is natural to consider the iteration 

X 0 : ~ X  

1)xk+l ,=H(xg,  2 k) for k = 0 , 1 , 2 , . . .  

with 2 k ~ x k. Here we put x g + 1 .'=0 if x k = O. 
Due to the preceding theorem and the definition 
of H, we have 

2) x k +l~_x k for all k>_0. 

3 ) x * e x ,  F ( x * ) = O ~  x * e x  k forall  k>_0. 

The next theorem gives conditions under which 
the x k contracts to a solution (if one exists). 

Theorem 7 (Neumaier 1990). Let  A be a strongly 
regular Lipschitz matrix on x e I D  o for  F: 
Do ___ R" ~ R". Let  C~R "• be such that CA is an 
H-matrix.  Then the Hansen-Sengupta iteration (1) 
is strongly convergent for  2k=2k,  i.e., either F has 
a unique zero x* in x and lira x t=x*  or F has no 

l-+ oO 

zero in x and xk= 0 for  some k > O. 

In order to satisfy the conditions of this theorem, 
we put 2 k= 2k for all k >_ 0. As it is suggested from 
Definition 4, we take the Lipschitz matrix A to be 
an interval extension of the derivative F'(x). If A 
is not strongly regular, the iteration breaks off with 
intervals x k+ 1= X k for some k > 0. If this occurs, 
the interval x k must be partitioned into two subin- 
tervals and the iteration must be performed with 
both intervals. This method - the covering method 
- is described in more detail in Sect. 5. The H- 
matrix property may be satisfied by 

Proposition 8 (Neumaier 1990). Every interval 
n x n-matrix A satisfying Ihl-ALl,< 1 for  some u > 0  
is an H-matrix,  where HAIl, with ueR",  u > 0  is the 
scaled maximum norm 

IlAIlu.'= max lAid Uk/Ui �9 
i = l . . . n  k 

This proposition shows that A - 1 A  is an H-matrix 
if A-  1 A ~ I, i.e., if A is thin enough. A comparison 
between Hansen-Sengupta iteration and Newton or 
Krawzcyk  iteration shows that the first one strong- 

ly converges under the weakest assumptions (Neu- 
maier 1990); thus we use the Hansen-Sengupta op- 
erator instead of the (simpler) Newton- or Krawz- 
cyk operators. 

4 Bicubic B-splines; basic facts 
In this section, we define bicubic B-spline surfaces. 
For further details, we refer the interested reader 
to deBoor (1978) and Farin (1990). 
We define B-spline surfaces as so-called tensor 
product surfaces: 

Definition 9. The representation 

n - m - 1  r - s - 1  

s(u, v),= Z di, kMk,s(v)N,,m(u), 
i = 0  k = 0  

where the Mk,s(v) are (normalized) B-splines of de- 
gree s over the knot vector V=(vo . . . .  , vr) and the 
Ni,m(U) are (normalized) B-splines of degree m over 
the knot vector U = (uo . . . . .  u,), is called a B-spline 
surface. The coefficients d~,k are called deBoor 
points; in their natural ordering they form the ver- 
tices of the deBoor net of the surface. 
B-spline surfaces satisfy the convex hull property, 
which can be used to enclose the range. By insert- 
ing new knots into the knot vectors U and V, any 
B-spline surface may be partitioned into a net of 
Bdzier surfaces - called patches. 
Computing enclosures for the range of such 
patches may be accomplished in several ways. One 
way is to exploit the convex hull property on the 
deBoor points for smaller and smaller parameter 
intervals u and v (Cohen et al. 1980; Rokne 1982; 
Toth 1985). Unfortunately, this method requires 
a recalculation of the deBoor points whenever the 
parameter intervals decrease. Alternatively, an- 
other method is to convert the patch into the power 
representation and to evaluate this polynomial in 
each step. 
Because the bicubic case (i.e., m = s = 3) is a good 
compromise between accuracy and computation 
time (Neumaier 1988b), we restrict our further dis- 
cussions to this case, assuming patches converted 
into the power form 

3 3 

P(u, v).'= ~ ~ aq u i v j, 
i = o j = o  

where a~jeR and u, re[O, iI,  i.e., P is a bicubic 
polynomial with real coefficients defined on the 
grid [0, 1] x [0, 1]. 
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5 Interval methods for ray tracing 
bicubic B-spline patches 

In this section, we present the theoretical part of 
our method for ray tracing objects consisting of 
bicubic B-spline patches. For a given screen, we 
have to compute an enclosure for the intensity by 
calculating hulls for the set of the intersection 
points and to trace the rays to the light sources 
and (recursively) the reflected and refracted rays. 
In our discussion, we have to compute intersections 
of 
1) A cluster of "pr imary"  rays with patches. 
2) A single ray with patches. 
3) A cluster of "secondary" rays with patches. 
The main difference is that in case of single rays 
we have to compute the nearest intersection point 
of a ray with all patches in finitely many steps, 
whereas in case of clusters of rays we have to com- 
pute those parts of the patches that possibly have 
an intersection point with at least one of the rays 
of the cluster. In the latter case, we need a method 
that (eventually) decreases the number of the rele- 
vant patches and improves the parameter intervals 
of the remaining patches. 
The difference between cases (1) and (3) is that the 
problem for primary rays may be restricted to the 
two-dimensional case if the scene is projected into 
the image plane using a unique perspective projec- 
tion determined by the eyepoint and the screen. 
We continue the discussion of this problem later 
in the section, because the first step in solving the 
intersection problem is to compute enclosures for 
the range of patches efficiently. As mentioned in 
the previous section, B-spline patches may be en- 
closed using the convex-hull property. Particulary, 
this property leads to effective ray-tracing methods 
if successive subdivision of patches is performed 
for each single ray [-a hardware implementation 
of the procedure is described in Pulleyblank and 
Kapenga (1987)3. In contrast to these methods, our 
method computes parameter intervals of patches 
depending on a given cluster of rays. Thus, the 
convex-hull property is not effectively applicable, 
because the recalculation of the deBoor points for 
arbitrary parameter intervals requires more com- 
putation time than the preconversion of the 
patches to their power representation together with 
the evaluation of these polynomials whenever a pa- 
rameter has been changed. Of the two possible rep- 
resentations P(u,v)=Xbi(v)ui=.~cj (u)v  j, we take 

the first one if v has smaller radius than u and 
the second one if u has smaller radius than v. The 
ranges of the derivatives P,(u, v) and P~(u, v) of 
P(u, v) with respect to the first and the second vari- 
able are calculated in a similar way. 
Note that these calculations must be performed 
with outward rounding in order to avoid faults 
due to rounding errors. For further details, we refer 
the interested reader to Enger (1990). 
Enclosures for the range of the surface normal are 
calculated similarily. Because the normal of a para- 
metric surface is given by the cross product of the 
two partial derivatives, we obtain such an enclo- 
sure using 

N=|n2|=| .leo-e o.s 
where P~,, for i~{x, y, z} is an enclosure for the deriva- 
tive of the i-th coordinate of P(u,v) with respect to 
the parameter te {u, v}. 
We now present methods for computing an enclosure 
for the set of the intersection points of the patch 
P(u, v) with a cluster of rays R(q )=O+qD,  where O 
is the origin, D is the direction, and q is a parameter 
interval for the rays (in finite precision arithmetic q 
may be bounded; hence, q is indeed an interval). In 
general, O and D are real interval vectors. 
If a projection with respect to the eyepoint and the 
screen is performed, the x-y-coordinate intervals of 
R only depend on the x-y-coordinates of the related 
screen (i.e., q==qy=0) and the z-coordinate interval 
of R is given by q+e, where e is a real constant. 
Hence, this is a two-dimensional problem, and the 
next result follows by applying centered forms to the 
patch P(u, v). 

Theorem 10 (Enger 1990). Let P(u, v) (O<u, v_<l) be 
a patch projected into the image plane and let R(q) 
(qMR) be a cluster of primary rays. Then the parameter 
intervals defining the set of intersection points of  the 
rays with the patch are computed by solving 

O~ ~(uo, v ) -  Ri + P~,,(u, v) * (u - Uo) 

OE Pi(u, Vo) -- R i + Pi.~(u, v) * (v -- Vo) 

for i e{x ,y}  with UoeU, VoeV. 

q is computed from 0 e P= -R= (q). 

Remarks 

1) The system is solved for all relevant patches. 
2) The new parameter intervals will be intersected 
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with the old ones to increase the improvement of 
the parameter intervals of the patch. If the intersec- 
tion leads to an empty interval, i.e., there is (certain- 
ly) no intersection point of one of the rays with 
the patch, the patch is discarded. 
3) Uo, v0 are chosen to be the boundaries of u and 
v. The system is also solved for the midpoints of 
u and v to enforce a separation of the patch if 
it possibly contains the silhouette, i.e., if the hull 
of the z-component of the normal contains zero. 
4) Because the q-interval is a measure for the dis- 
tance from the origin, we may discard some addi- 
tional patches in a special case (Fig. 1): let 
{Pi}i=l...k be the set of all relevant patches. Then 
we call a subset S of {P/} q-connected iff S is maxi- 
mal with respect to the property that either S con- 
tains only one patch or for each P, of S there exists 
at least one P,, 4= P, of S such that the q-intervals 
of these patches have an nonempty intersection. 
Now, assuming that S is a q-connceted set with 
a) there certainly exists an intersection point of a 
ray of the cluster with a patch of S, b) the patches 
of S do not contain the boundary of any surface, 
and c) the patches of S do not contain the silhou- 
ette, then all patches r S that lie beyond all patches 
eS may be discarded. Additionally, a q-connceted 
set S is called nearest, iff for all patches P e S ,  P'r  
qe <_qe,, where q, (/is the minimal or respectively 
the maximal distance from the origin. 
5) The "equations" that are of the form 
O e a + b ( x - x o ) ,  a, b, xeIR,  XoeX may be solved 
with only a few arithmetical operations if Xo is a 
boundary of x (for the technical details see Enger 
(1990)). 

P I  

Fig. 1. q-connected patches P1,-P4, (parts of the 
patches P~ - P4) 
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If the cluster includes a single ray only, the above 
method is not practicable, because Hansen-Sen- 
gupta iteration applied to all relevant patches P 
of the scene converges under the weakest condi- 
tions (see Theorem 7). Due to the results of Sect. 3, 
we take the Hansen-Sengupta operator 
H(w, Wo) = Wo + F(CA,  - CP'  (Wo) , w - Wo) with 

F Px,.(u, v) g,v(Uo, v)], 
A =kg,.(u, Vo) g,v(u, v) j 
P'(wo) = [Rx- Vo)], 

R,--  g(Uo, Vo)J 

Uo = a,  Vo = w = (u,  v) r ,  Wo = C = 1. 

Remarks 

1) q is calculated as in Theorem 10. 
2) Because a regular matrix A is strongly regular 
and C=/ [ -1A is an H-matrix if A is "thin enough," 
a partitioning of the patches during the iteration 
process (especially in the neighborhood of the sil- 
houette) is sometimes necessary to achieve (nearly) 
planar (sub-)patches, i.e., patches with narrow in- 
terval extensions for the derivative. If no further 
improvement is achieved and the accuracy require- 
ment is not met, the patch is patitioned into two 
subpatches (by partitioning one of the parameter 
intervals) and both parts are placed onto a stack. 
The iteration must then be performed with all the 
parts on the stack until the stack is empty. This 
method is also called the covering method (Neu- 
maier 1988 a), because the solution set for the sys- 
tem of equations is covered by a collection of 
smaller and smaller boxes, which give increasingly 
fine information about the location of the solution 
set. If an intersection point is already found, all 
patches with a greater distance from the eyepoint 
are removed from the stack. 
In case of secondary rays, an application of one 
of the previously described methods is not practic- 
able, because the ray-parameter interval q leads 
both to wide matrix elements in the Hansen-Sen- 
gupta operator and to an additional pair of equa- 
tions with wide interval factors in Theorem 10. On 
the other hand, solving the equations of Theo- 
rem 10 for planar patches leads to good enclosures 
for the parameter intervals, because all intervals 
occurring in the equations are narrow. Thus, parti- 
tioning all patches into (nearly) planar subpatches, 
approximating each subpatch by a quadrangle and 



computing the intersection points of a cluster of 
rays with all relevant quadrangles according to a 
method similar to those described in Theorem 10, 
should lead to an effective method. Because the 
computation with triangles is easier, we divide each 
quadrangle into four triangles (the triangulation 
of a patch is described in the next section). Unfortu- 
nately, the approximation of nearly planar sub- 
patches by triangles leads to a decreasing accuracy 
if the subdivision process breaks off too early and 
to an increasing number of triangles, and hence 
to increased computation time, if the accuracy re- 
quirements of the process are sharpened. Thus, the 
tolerances should be chosen as a compromise be- 
tween accuracy, computation time, and storage 
cost (see Sect. 8). 
At least, we present a method for computing the 
intersections of a cluster of (secondary) rays with 
triangles. Using a parametric representation of a 
triangle with vertices T,, T2, T3 of the form 
T ( f l , & ) = T , + f i . ( T 2 - T , ) + ( ~ . ( T a - T , ) ,  fi,&e[0, 13, 
fl + ~ < 1, enclosures for the parameter intervals de- 
fining the set of intersection points may be calculat- 
ed in a manner similar to Theorem 10. 

Proposition 11. Let T(fi, &) (fl, c~ ~IR) be a parametri- 
cally defined triangle and let R ( q ) : = O + q . D  
(O,D~IR 3, q~IR) be a cluster of  rays. Then the 
intervals (fl, 3, q) defining the set of  intersection 
points of  R with T may be achieved by solving the 
system 

O~b+ Aw,  

where w=(fl,  6, q-q~) r, b~IR, A~IR 3• with 
b = 7", - R (q), A = (7"2 - r , ,  T 3 -- T,, R'(q)). 

od as follows: starting with the root, we compare 
the coodinate hull of each knot with the coodinates 
of the cluster. If this leads to a nonempty intersec- 
tion, we repeat the process with both sons until 
we reach a leaf, i.e., a triangle. Note that the tree 
and the coordinate hulls may be computed in a 
precalculation step. The trees of all patches of the 
scene could be combined into an unique tree. How- 
ever, we have found no advantage in doing this. 

/ / • C  = [ ] { C I u C 2 }  Pa tch  

o o o r d i n i t e s  C I . , ~  . ) . ~ o o r d i n a t e s  C2 8 u b p i t c h e $  

/ ' a  

Fig. 2. Binary patch tree 

I i r ~  sub>l t - ,F,  

I ' r  l i n g  l e .  

T I = v e r ' t  i c e s  of" I i n .  s u b p l t o h  

D = i n t e r s e c t i o n  or d i a g o n a l s  

3) A similar argument as for q-connected patches 
may reduce the number of relevant (q-connected) 
triangles. 
Note that in the case of a single secondary ray, 
all vectors and the matrix A have real entries. 

Remarks 

1) In order to decrease computation time, we com- 
pare the hull of the coordinates of the triangles 
with the coordinates of the cluster of rays, applying 
the above method only to those triangles that pro- 
duce a nonempty intersection. 
2) We may improve the above hull-comparison 
method if we represent each patch by a binary tree 
(see Fig. 2), where the root represents the patch 
and each of both sons of a knot is one of the sub- 
patches of the "father" patch resulting from the 
subdivision process. The leaves of the tree represent 
the triangles. Computing the hull of the coodinates 
of each knot as the interval hull of the coordinate 
hulls of the sons, we may improve the above meth- 

6 Triangulation 
In this section, we give a brief discussion of the 
problem of triangulating a parametric surface. Be- 
cause we use B-Spline surfaces represented as a 
collection (or a net) of patches, we have to partition 
any patch into subpatches until the subpatches are 
planar within some given tolerance. Each of these 
"planar"  subpatches (viewed as a rectangle) is par- 
titioned again into four triangles. Inasmuch as the 
splitting of the patches depends on the geometry 
of the surface, we have to take care of a proper 
implementation to avoid "cracks" in the surface�9 
We illustrate this phenomenon in Fig. 3. 
Let P1 and P2 be two subpatches such that P, is 
planar within the given tolerance, but P2 has to 
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A A ~ ~ s ~  

Fig. 3. The splitting of adjacent subpatches 

be split once more giving the new subpatches P21 
and P22. The 12 triangles related to these sub- 
patches are printed with dashed lines. Clearly, the 
shaded section is not contained in any of these 
triangles and would be lost during the tracing pro- 
cess. To avoid this, we have to chose the point 
Qo as the midpoint of the straight line joining the 
two points Q1 and Q2 and not as the midpoint 
of the (cubic) curve representing the common 
boundary curve of the patches P~ and Pz. If one 
of the patches P21 or P22 is split once more to 
achieve the required planarity, we have to use in 
the further calculations the new point Q0.new in- 
stead of Qo. A similar discussion of this problem 
is found in Clay and Moreton (1988). 
Following Lane et al. (1980), we take advantage 
of the convex-hull property of the B-Spline curves 
and surfaces to obtain a criterion for planarity: 
we call a patch planar iff the Euclidean distance 
of the deBoor points to the plane of any three 
corner points is less than a tolerance el and for 
all four boundary curves the Euclidean distance 
of the interior deBoor points to the line segment 
joining the end points is less than a tolerance e2 
(these two tolerances will be specified in Sect. 8). 

7 Algorithms 

The presentation of our algorithm I N T R A C Y f o r  
ray tracing a scene consisting of several objects 
given as parametric B-spline surfaces is not 
straightforward, because we use different tech- 
niques for the different classes of rays. The strategy 
is as follows: 
Starting with the whole screen, compute those 
parts of all patches that possibly have an intersec- 
tion point with one of the rays. Compute the inten- 
sity interval of the actually considered screen. If 
the screen could not be uniquely colored, split the 
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screen and place the parts onto a stack. In the 
other case, color the screen. Proceed with the next 
part from the stack until the stack is empty. The 
input parameters are the set of B-spline surfaces 
defining all objects of the scene and the coordinates 
of the eyepoint and of the screen. 
The precalculation, which is independent from the 
subdivision process, includes projecting the scene 
into the image plane (determined by the eyepoint 
and the screen), computing the net of patches repre- 
senting all surfaces, converting the deBoor points 
of all these patches into the power form, and com- 
puting their related trees. 
Furthermore, a stack is required for storing the 
information about those parts of the screen not 
yet considered. This information is supplemented 
by a set of data structures (one structure for all 
those patches that possibly contain an intersection 
point), including the actual u- and v-interval and 
a pointer to the original deBoor points. 

Algorithm I N T R A C Y  
1) Precalculation. 
2) Set B,=coordinates of the whole screen. 
Initialize the stack. Mark all patches. 
3) For all marked patches: 

3.1 Compute the hull of the x-y-coordinates and 
compare them with B. Delete the mark of the patch 
and goto 3 if no solution exists. 

3.2 Compute the new parameter intervals u and 
v according to Theorem 10 if B is a cluster, or 
perform Hansen-Sengupta iteration if B is thin. De- 
lete the mark of the patch if no solution exists. 
4) If no patch is marked, goto 11, else sort the 
patches in order according to their minimal dis- 
tance from the eyepoint. 
5) Improve B by intersecting it with the hull of 
the x-y-coordinates of all marked patches. 
6) If B is thin, compute the coordinates and the 
normal at the nearest intersection point [see re- 
mark 1) below]. 
7) If B is not thin and a nearest set S of q-connected 
patches exists, compute the hulls of the coordinates 
and the normal of the patches e S as wide intervals 
and delete the marks of all patches ~ S. Additional- 
ly, the coodinates and the normals at the intersec- 
tion points at the four "corners" of screen B are 
computed using Hansen-Sengupta iteration (see 
step 9 and Remark 2 below). If no nearest q-con- 
nceted set exists, goto 10. 
8) Call SHADE (see below) to compute the intensi- 
ty interval of (sub-)screen B. 
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9) If the intensity interval contains at most  two 
(discrete) graphic intensities, use the bilinear form 
determined by the intensities at the corners of B 
to calculate the intensity for each pixel of B and 
goto 11 (see Remark 2). 
10) Split B into two parts (see Remark 3 below) 
and place all parts onto the stack (together with 
the information about  all marked patches). 
11) If the stack is not empty, pop next B from 
the stack and goto 3. 
12) End. 

Remarks 

I) Hansen-Sengupta iteration is performed until 
condition iii) of Theorem 6 is satisfied or the radii 
of the computed parameter  intervals are less than 
a specified accuracy requirement. To obtain the 
nearest intersection point, Hansen-Sengupta itera- 
tion is repeated with all remaining patches until 
a unique nearest patch is found or all patches satis- 
fy the accuracy requirement (in this case an arbi- 
trary one is taken; however, this did not occur 
in our experience). The coordinates and the normal  
are computed at the midpoints of the parameter  
intervals of the remaining patches. 
2) The additional computat ion of the intersections 
with the four "corner rays" (the rays determined 
by the corners of the screen) increases computat ion 
time, but has the advantage of approximating the 
intensities of all pixels by a bilinear form if the si- 
multaneously calculated intensity interval for the 
whole cluster is thin enough. In order to obtain 
the intensities of the pixels (x, y) of screen B, we 
use the bilinear form 

I(x,y)=a+bx'+cy'+dx'y' with 

X' :=(X- -  Xmin)/(Xma x - -  X m i n )  , 

Y' : : ( Y - -  Yvain)/(Ymax-- Ymin), 

where the min- and max-values are the minimal 
and maximal x-y-coordinates of B and the coeffi- 
cients a-d are determined by the intensities at the 
corners of B. To avoid sharp transitions in intensi- 
ty, we add as a dithering component  a random 
number  taken from the interval [ -  0.5, 0.5] to each 
of these pixel intensities (assuming that  the intensi- 
ties of the graphic card are integers). 
3) According to our experience, an improvement  
in computat ion time is achieved if the screen is 
split into four pieces instead of only two in step 
10 (as long as it is possible). 

4) A further improvement  in computat ion time is 
obtained if the screen is preparti t ioned into 8 x 8 
congruent parts and the algorithm is applied to 
each of these parts (except the precalculation). 
We now present the routine SHADE, which com- 
putes recursively the intensity interval for a (sub-) 
screen B. 
Hulls of the coordinates and of the normals at the 
set of intersection points and the coordinates and 
the normals at the four "corner  intersection 
points" (if it is not an unique intersection point) 
are input together with the related set of marked 
patches, respectively triangles. Output  are an inten- 
sity interval I and the intensities I 1 - I 4  at the four 
"corners." 
1) Set I ,=[0 ,  0], and 11_4,=0. Mark all triangles 
that are subsurfaces of the marked patches. 
2) For  all light sources 

2.1 Compute  the cluster of (secondary) rays from 
the light source to the hull of the intersection 
points. 

2.2 For  all nonmarked  triangles, compute the 
parameter  intervals/3 and 6 according to Proposi- 
tion 11 or directly in the case of a single ray. 

2.3 If no solution exists for any triangle, calculate 
the intensity interval with respect to a given illumi- 
nation model  and add it to I. Compute  also the 
intensities at the four "corners"  and add them to 
11-4. Goto 2. 

2.4 If the ray is a single ray or if the triangles 
form a nearest q-connected set, goto 2. 

2.5 Set I : = [ -  o% + oo] and return to the calling 
routine. 
3) If the intersection object is a reflecting medium, 

3.1 Compute  the cluster of reflected rays and 
the four reflected "corner"  rays. 

3.2 For  all nonmarked  triangles, compute the 
parameter  intervals fl and 6 according to Proposi- 
tion 11 or directly in case of a single ray. Denote 
by T the set of all triangles leading to a solution. 

3.3 If T is empty, goto 4. 
3.4 If the ray is a single ray or if the triangles 

of T form a nearest q-connected set, 
3.4.1 Delete the marks of all triangles (but keep 

them in mind for step 4). 
3.4.2 Mark all triangles of T. 
3.4.3 Compute  the hull of the coordinates and 

the normal  interval of all triangles of T. 
3.4.4 Compute  the intersection points and the 

normals for the four "corner"  reflected rays. 
3.4.5 Call SHADE. 
3.4.6 If the intensity interval calculated by 
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SHADE is not finite, set I : = [ - o o ,  +oo]  and re- 
turn to the calling routine. 

3.4.7 Add the calculated intensity interval and 
the intensities at the four "corners" to I and 11-4 
(with respect to the illumination model). Goto 4. 

3.5 Set I . ' = [ -  o% + oo] and return to the calling 
routine. 
4) If the intersection object is a refracting medium, 
execute steps 3.1-3.5 with the cluster of the re- 
fracted rays. 
5) Return to the calling routine. 

Remarks 

1) The recursive process defined by step 3.4.5 (re- 
spectively 4.4.5) is executed until the maximum lev- 
el of recursion has been reached. 

2) An alternative method avoiding approximation 
errors is described in Woodward (1989). It directly 
subdivides the patches in the viewing plane. Unfor- 
tunately, the use of integer arithmetic to speed up 
the process seems to be crucial in this method, 
which is therefore not applicable to our real arith- 
metic algorithm. 

8 Test results 

Experiments have been performed by implement- 
ing the algorithms in TURBO-PASCAL 4.0 on a 
PC/XT with a V20 processor without arithmetic 
coprocessor for three different scenes (SCENE 1-3) 
and for several resolutions. Following Schmitt 
et al. (1988), the maximum level of recursion has 
been set to 2. 

4 

6 

Fig. 4. SCENE 1 

Fig. 5. SCENE 1 without dithering 
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Fig. 6. SCENE 2 

Fig. 7. SCENE 3 



Table 1. Number of patches, triangles, and computation time 
required for the precalculation 

No. No. No. Time 
objects patches triangles min: s 

SCENE 1 9 104 4 x 1106 6:5l 
SCENE 2 15 103 4 x 1050 6:35 
SCENE 3 21 113 4 x 846 5:34 

Figures 4, 6, and 7 show the scenes (with a resolu- 
tion of 640 x 480 pixels and 16 different intensities), 
while Fig. 5 shows SCENE 1 without dithering; a 
comparison with Fig. 4 shows that graphics are 
much more realistic with dithering. SCENE 1 rep- 
resents a pan and a glass on a table in front of 
a mirror, SCENE 2 represents a scene with two 
light sources, and SCENE 3 shows a room with 
a candle on a glass-plate. 
Table 1 gives the computation times for the initial 
calculation (i.e., step 1 of algorithm INTRACY). 
As a compromise between accuracy and storage 
cost, we have obtained the best results in the trian- 
gulation process with the tolerances 

e 1 = 0.001 �9 dnaax ,/32 - ~ -  0.02. dmax, 

where dma x is a boundary on the maximal diameter 
of the coordinates of the scene. This choice leads 
to an average number of 38 triangles for each 
patch. 
To show the influence of dithering on computation 
time, we have compared the computation time f o r  
ray tracing SCENE 1 with dithering (17" 10 h) and 
without dithering (19:20 h). This result seems to 
be surprising, because dithering requires addition- 
ally computing the intensities at the corners of the 
screen and a time penalty should be expected. The 
reason for a faster execution time with dithering 
lies in the fact that in this case we are able to 
finish the recursive splitting of the screen if a com- 
puted intensity interval still contains two different 
representable intensities, while in the other case we 

Table 2. Execution times I N T R A C Y - T R A Y  (resolution of 
640 x 480 pixels, 16 different intensities) 

Execution time (h:min) Speed-up 
factor 

INTRACY TRAY 

SCENE 1 17:10 42:08 2.5 
SCENE 2 17:13 45:12 2.6 
SCENE 2a 10:59 33:58 3.1 
SCENE 3 19:30 49:51 2.6 

have to split until the intensity interval contains 
exactly one representable intensity. This more than 
compensates the extra time needed to compute the 
intensities at the four corners. 
Table 2 compares the execution time needed for 
our ray-tracing technique, called INTRACY, with 
a "convent ional"  technique called TRAY This 
"conventional" technique shades the screen pixel 
by pixel by computing separately the intersection 
points of a single ray with triangles, supported by 
the hull comparison method and the patch trees 
[see Remark 2) after Proposition 11]. Because this 
is the same kind of method as used for the second- 
ary rays in INTRACY, the time ratios are expected 
to be independent from details of the implementa- 
tion. Due to lack of proper implementations, fur- 
ther interesting comparisons between the author's 
method and other "conventional" methods [e.g., 
the method of accelerated ray tracing presented 
in Fujimoto and Iwata (1986)] are not presented 
here. 
In order to obtain an indication of the dependence 
on the number of light sources, we have considered 
SCENE 2 with one of the two light sources 
switched off (SCENE 2a). 
For this resolution and number of intensities, we 
achieve an improvement with a factor between 2.5 
and 3.0 over the conventional technique. 
We now check the dependencies of the two tech- 
niques on the resolution and the number of intensi- 
ties. For INTRACY, we expect a logarithmic de- 
pendency on the resolution, while TRAY should 
have a linear dependency. The influence of the 
number of intensities cannot be predicted a priori, 
because it strongly depends on the structure of the 
scene. Only TRAY should be independent of this 
number. We illustrate this for SCENE 1 in Figs. 8 
and 9. Extrapolating these results, we would expect 
an improvement factor for the standard resolution 
and number of intensities for workstations 
(1280 x 1024 pixels, 256 intensities) of about 3.1. 
In order to represent colored images, the calcula- 
tion of the intensity has to be performed simulta- 
neously for the three colors red, green, and blue 
(assuming a RGB-model is used). In this case, we 
expect only a small increase in computation time, 
because the screen is already partitioned into small 
parts at the "critical points" (boundary of surfaces, 
areas with a strong curvature with great change 
of intensity). Hence the representation of more than 
one color is expected to lead to a few further split- 
tings of the screen only. Therefore, the execution 
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time for representing colored images on a graphic 
card with 24-bit memory/pixel will be nearly the 
same as for black/white images with 256 different 
intensities. 
A further interesting analysis is the consideration 
of the sizes of the subscreens, which are known 
to display a unique color, i.e., which do not need 
any further subdivision. We illustrate the frequen- 
cies of the sizes for SCENE 3 in Table 3 (the distri- 
bution of the sizes for the other scenes are similar). 
Sizes are given in number of pixels (Nops), where 
the maximum attainable size here is 4560 Nops 
(with a sub-splitting of the total screen with 
608 x 480 pixels into 64 congruent parts). Table 3 
illustrates that equally colored subscreens are still 
known in a relatively early stage, which is the 
power of the presented method. Additionally, it 
can be seen that only about 1/9 of the total number 
of pixels requires the full subdivision process. Neth- 
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Fig. 8. Computation time as a function of the 
resolution with 16 intensities (SCENE 1) 
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Fig. 9. Computation time as a function of the number 
of intensities with a resolution of 640 x 480 (SCENE 1) 

ertheless, much computation time is required to 
calculate the intersection points for these pixels, 
because these are generally the "critical points." 
According to our experience, Hansen-Sengupta 
iteration seems to be the fastest method (for 
SCENE 3 an average number of 2.1 (sub-)patches 
per single pixel have to be considered, whereby 
an average number of only 1.6 iteration steps per 
patch have to be executed). 
Our algorithm can reduce aliasing to an acceptable 
level with little expense. In the case of shading more 
than one pixel at a time, there is no need for anti- 
aliasing, because the methods of interval analysis 
yield a certain enclosure for the range of the inten- 
sity, while shading a single pixel with respect to 
antialiasing can be performed using a method of 
supersarnpling, where the pixel is partitioned into 
a matrix of typically 4 x 4 subpixels. Inasmuch as 
the surface parameters are stored for each pixel 
and the information about the 2 x 1-pixel (respec- 
tively 3 • 1-pixel) screen of the preceding step can 
be used, it is easy to supersample the patch in a 
local area. 

9 Conclusions 

In this paper, we have developed a technique that 
applies methods of interval analysis to the problem 
of intersecting a cluster of rays with a parametri- 
cally defined surface. Our algorithm provides a 
speed-up factor between 1.5 and 3.0 over a conven- 
tional algorithm. 
An experimental analysis has shown that much of 
the CPU time is used to evaluate quadratic and 
cubic polynomials. Thus, a hardware implementa- 
tion for evaluating a spline with Homer 's  scheme 
should lead to a further significant speed-up of the 
algorithm. 
Because the main tools of interval analysis used 
in our method are independent of the representa- 
tion of the surface, the technique is also applicable 
to other surfaces, e.g., algebraic surfaces defined 
by an implicit function F(x, y, z)=0. A polygoniza- 
tion of implicit surfaces (similar to that used in 
our algorithm) can be found in Bloomenthal 
(1988). 
Furthermore, because of the divide-and-conquer 
strategy of our algorithm, it extends trivially to 
animated graphics by working in spacetime. [f the 
space coordinates are extended by a further param- 
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N 

Table 3. Sizes ofequally-colored subscreens ofSCENE 3 

Nops Frequency N0ps Frequency Nops Frequency 

1 30982 54 2 240 14 
2 4222 55 1 252 3 
3 627 56 37 260 14 
4 2116 60 90 261 1 
5 64 63 75 266 15 
6 1884 64 7 270 1 
7 32 70 427 280 65 
8 306 72 16 285 4 
9 184 78 1 300 19 

10 80 80 64 320 1 
11 1 84 2 343 1 
12 305 90 3 344 1 
14 21 100 11 380 1 
15 1055 112 13 420 2 
16 128 114 2 456 2 
18 3 116 1 460 2 
20 897 117 1 532 2 
21 2 120 10 551 1 
22 2 126 26 560 3 
23 1 130 3 580 2 
24 3 135 6 600 1 
25 63 140 146 627 1 
28 27 145 1 715 1 
29 1 150 29 720 2 
30 8 160 3 788 1 
32 5 168 1 800 1 
33 2 170 1 1120 8 
35 330 171 1 1160 8 
40 40 200 5 1520 2 
42 3 215 1 2080 1 
45 2 220 7 2490 1 
50 35 238 4 2850 1 
51 1 

e te r  t, time, p r e s e n t i n g  a n  i n t e r v a l  w i th  s eve ra l  d is -  
c re te  va lues ,  e.g., 25 va lue s  p e r  s e c o n d  for  the  T V  
n o r m ,  the  d i m e n s i o n  i n c r e a s e s  b y  1 w i th  n o  fu r t he r  
c h a n g e s  to  the  a l g o r i t h m .  Th i s  s h o u l d  l e a d  to  a n  
effect ive t e c h n i q u e  for  r a p i d l y  f i nd ing  the  ( p r o b a b l y  
r e l a t i v e l y  la rge)  s ec t i ons  o f  c o n s t a n t  i n t ens i ty .  T h e  
p r o d u c e d  s p a c e t i m e  boxes ,  i.e., e q u a l l y  s h a d e d  
s u b s c r e e n s  r e l a t e d  to  a t i m e  in t e rva l ,  s h o u l d  be  
s t o r e d  un t i l  t he  p r o c e d u r e  is f i n i shed  a n d  the  p ic-  
tu res  a t  e a c h  p o i n t  o f  t ime  s h o u l d  t h e n  be  b u i l d  
u p  f r o m  these  boxes .  A m e t h o d  for  c r e a t i n g  e f f i -  
c i en t  b o u n d i n g - v o l u m e  h i e r a r c h i e s  s u p p o r t i n g  o u r  
t e c h n i q u e  can  be  f o u n d  in G l a s s n e r  (1988). 
A n  i n t e r e s t i n g  fu tu r e  w o r k  c o u l d  be  the  r e s e a r c h  
o n  a c o m b i n a t i o n  b e t w e e n  the  a u t h o r ' s  m e t h o d  
a n d  the  m e t h o d  o f  a c c e l e r a t e d  r a y  t r ac ing .  
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