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Abstract

Visualization and collision detection are two of the most
important problems connected with implicit objects. Enu-
meration algorithms can be used either directly or as pre-
processing step for many algorithms solving these prob-
lems. In general, enumeration algorithms based on recur-
sive space subdivision are reliable tools to encounter those
parts in space, where the object might be located. But the
bad performance and the huge number of computed en-
closing cells, if high precision is required, are grave draw-
backs. Implicit Linear Interval Estimations (ILIEs) in-
troduced in this paper are implicit interval (hyper-)planes
providing oriented tight bounds of the object within given
cells. It turns out that the use of ILIEs highly improves the
performance of the classical enumeration algorithm and
the quality of the results. The theoretical background as
well as a fast and simple technique to compute ILIEs are
presented. The applicability of ILIEs is demonstrated by
means of a modified enumeration algorithm that has been
implemented and tested for implicit surfaces.

Keywords: implicit surfaces; implicit curves; enumera-
tion; rendering; collision detection; affine arithmetic; in-
terval arithmetic; linear interval estimation;

1 Introduction

Using implicit equations to describe a geometric object
builds a powerful tool for the representation of curves,
surfaces, and volumes in computer graphics. Besides of
the description of mathematical, physical, geological, and
other scientific phenomena, implicit surfaces and volumes
are mainly used in CSG-Systems to design complex ob-
jects by adding, subtracting, and inverting several smooth
surfaces. Implicit surfaces used in CSG-modellers are
mainly planes and quadrics. The SvLis geometric mod-
eller [5] includes general algebraic surfaces. Recently
skeletal and blobby surfaces have been added to the CSG-
tree by Wyvill, Guy and Galin [32]. These types of im-
plicit surfaces allow a very compact description of com-
plex objects. Smooth blending, warping, and deformation
of objects are proposed as supplementary operations.

An implicit defined object in E" is given by an equation
of the form

f(x)=0, xeR"

where f can be either a polynomial or any other real
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valued function. The implicit representation has the ad-
vantage that it allows a fast test whether a point lies inside
(f(x) > 0), outside (f(x) < 0) or on (f(x) = 0) the
object. Besides of many other positive features of implicit
descriptions of objects, there is one main drawback: The
points building the object are defined as zero-set of f -
an equation which is in general not explicitly resolvable.
The computation of an approximation of this zero-set
for visualization and collision detection is topic of many
publications of the last two decades, finding fast and
guaranteed reliable solutions is one of the subjects of
recent research [22, 23, 31] .

The most expensive way to visualize an implicit ob-
ject is direct ray tracing [18] - especially for objects with
high algebraic degree. Other solutions are based on enu-
meration algorithms [3, 6, 7, 11, 12, 22, 30, 31], march-
ing squares/cubes/triangles [1, 14, 27], particle systems
[10, 17], or stochastic differential equations [25]. These
methods can be used directly for visualization, as prepro-
cessing step for further rendering, or polygonization of the
object. A wide variety of solutions exists also for the col-
lision detection problem of implicit objects. Solving an
equation system is an expensive possibility to handle this
problem [20], polygonizing the objects before the colli-
sion detection process is not reliable due to the error intro-
duced by the approximation. Using axes-aligned boxes as
piecewise enclosures of the object produced by the classi-
cal enumeration algorithm as bounding volumes presents
an often used alternative to the two solutions mentioned
before [28].

All visualization and collision detection algorithms
based on a discretization of the object suffer from uncer-
tainties. Depending on the precision, important features
like singularities may be missed. Enumeration algorithms
are based on recursive adaptive space subdivision com-
bined with an incidence test of axes-aligned boxes (cells)
and the object. If the reliability of the object-cell incidence
test is guaranteed, the result is in general a reliable enclo-
sure of the object.

Related work. The most simple enumeration algo-
rithms are based on recursive uniform space subdivision.
These algorithms do not take the topology of the object to
be detected into account. Some algorithms subdivide until
pixel size is reached to voxelize the object [6, 12, 21, 31],
others follow a hybrid approach and compute for each de-



tected cell a linear approximation of the object.

Adaptive space subdivision techniques take the curva-
ture of the object during the subdivision process into ac-
count, followed by a linearization like in the hybrid uni-
form case. Adaptive techniques are faster, but in the case
of implicit surfaces cracks could appear in the polygo-
nal approximation due to different levels of subdivision of
neighbouring cells. Bloomenthal [4] solved the problem
for cracks caused by neighbouring cells differing one level
of depth in subdivision. Recently Balsys and Suffern [3]
presented an adaptive algorithm solving the problem for
an arbitrary level of subdivision.

As mentioned before, the heart of each subdivision al-
gorithm is the reliable test if the actual box to be examined
hits the object or not. The reliability of the incidence test
is an important requirement, because it is the condition
for the reliability of further computations. Taubin [26]
developed for his “accurate algorithm for rastering alge-
braic curves” an approximation of the distance of the mid-
point of a cell and the curve to determine whether the cell
hits the curve or not. The majority of recent published
algorithms perform the test in a reliable way using inter-
val arithmetics as a tool for range analysis [6, 12, 19, 24].
f(x) is simply evaluated with respect to the interval vec-
tor corresponding to the axes-aligned box to be tested. If
the resulting interval contains zero, the box may contain
a part of the object and further subdivision is performed.
To reduce overestimations caused by interval arithmetic,
De Figuereido and Stolfi [11] replace in their algorithm
interval arithmetic by affine arithmetic. Voiculescu et al.
[31] introduce two further methods to improve the results
in the case of algebraic curves and surfaces: They show
that a reformulation of the equation into Bernstein-Bézier
form and/or the use of a modified affine arithmetic [16]
improves the result and the performance of the subdivision
algorithm.

The algorithms based on interval or affine arithmetic
mentioned above perform the incidence test with the origi-
nal curve or surface that might be of high algebraic degree
or have a non-trivial non-algebraic description. It is clear
that as higher the degree and as more complicate the de-
scription of the object is, as more expensive becomes the
validation of the incidence test.

Furthermore, pure subdivision algorithms suffer from
the high number of necessary subdivisions to reach pixel
size. An adaptive subdivision algorithm looses its reliabil-
ity due to the approximation implied in the linearisations
representing the final results.

Aims and scopes of this paper. The purpose
of the work presented here is to improve the classical
enumeration algorithm in a way that it computes fast an
optimized number of tight, oriented, piecewise linear, and
reliable enclosures for an implicit object in R™.

To do so, Implicit Linear Interval Estimations (ILIEs)
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for general implicit objects are introduced following the
same construction principles like proposed by the author
for the parametric case [9]. ILIEs are implicitly defined
interval (hyper-)planes providing for each cell a piecewise
linear enclosure of the object adapted to its topology. They
allow to reduce the cost for cell/object incidence tests dur-
ing the subdivision process and to decrease the number of
subdivisions by reducing the cell to parts containing the
corresponding ILIE. Finally, the diameter of an ILIE in-
forms about the curvature of the object inside the corre-
sponding cell. The resulting ILIEs could be used for poly-
gonization and the acceleration of a rendering algorithm.

ILIEs for curves based on affine arithmetics have been
already introduced to provide a reliable and fast plotting
tool [8]. This paper is an extension of the described tech-
niques to general implicit objects and shows examples for
implicit surfaces in 3-space.

Structure. A definition of ILIEs for general implicit
objects in R™ is given in section 2. In the same section a
method to compute ILIEs based on affine arithmetic is de-
veloped and a characterization is presented. The theoreti-
cal ideas of the previous section are applied in section 3 to
improve the classical enumeration algorithm followed by a
discussion of experimental results in section 4. The paper
is closed with conclusions and ideas for future work. Fur-
thermore, appendix A contains a short introduction into
interval and affine arithmetic, appendix B the formulas for
the examples in section 4.

Notations. In the following, R denotes the set of real
numbers and IR the set of intervals. Furthermore, if there
is no other declaration, thin small letters (v € R) de-
note real scalars, thin capital letters (I, € IR) intervals,
bold letters (x € R") real vectors, and hollow letters (I or
z € IR"™) interval vectors representing axes-aligned boxes,
also often referred to as cell. Affine forms and vectors of
affine forms are marked with a hat (u, f ).

2 Implicit Linear Interval Estima-
tions (ILIEs) for general im-
plicit objects in R"”

This section requires some basic knowledge about interval

and affine arithmetic. A short introduction can be found in
appendix A.

Definition Letbe F : f(x) =0, x = (x1,...,2,)" €
R" the implicit definition of an object in R" and
n
L(x) := Z a;x; +J (1)
i=1

withJ € IRanda; € Rji=1,...,n.



i)

(a) 2D

(b) 3D

Figure 1: Examples for ILIEs.

The interval hyperplane segment inside the axes aligned
box 1 € IR"

L:={xe€l|0€ Lx)}

is called Implicit Linear Interval Estimation (ILIE) of F
onl, iff for all x € (F N1) holds

0 € L(x)

For example, an ILIE of a curve on a square | C R?
is a fat line segment enclosing inside [ all points of the
curve: Figure 1(a) shows the enclosing ILIEs of a curve
corresponding to some given boxes, figure 1(b) shows a
surface of degree four enclosed by 32 ILIEs.

Computation of ILIEs exploiting the intrinsic
structure of affine forms One way to compute ILIEs
in an effective way is to use affine arithmetic: Like in the
straight forward use of affine arithmetic for cell/object in-
cidence tests [7, 11, 31], f(x) is evaluated with respect
to the vector of affine forms I corresponding to [. In the
algorithms of de Figueiredo et al. [11] and Bowyer et
al. [7, 31], the resulting affine form f is converted back
into an interval to determine whether zero is contained in
the resulting interval. The conversion of the result from
affine form to interval destroys all additional information
included in the affine form. In this section this additional
information is used to compute ILIEs with almost no ad-
ditional cost. The following theorem gives the theoretical
background for the computation of ILIEs for implicit ob-
jects in n-space.

Theorem Let be
e F: f(x) =0 animplicit object in E"

® I]:H?zl

o & = &i(e;) = ¥ + 2t €5, € € [~1,1], the corre-
sponding affine form to interval I;; i = 1,...,n

I; C R™ a non-degenerated interval box
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Furthermore let be

o forv;e[-1,1],j=1,..,m
f(ela' ey €ny Y1y e ;’ym) = f(f\{)
=0+ fla+ 20 g0
Define

o forx € lande; = €;(w;) = Zr(wi—al), i =1,...,n

L(x)
=f(61(£171) en(mn) [_1a1]a [ 171])
=J+ Z?:lfizl}

with

LU L
J= =Y S =Yg Y )
i=1 ¢ j=1 j=1

Then

L:={xel]|0e L(x)}

is a linear interval estimation of F on |.
Proof: All conditions and definitions of the theorem are

presumed.
It follows from the definition of affine forms, that the

relation of x and (ey,...,€,)
I€IR" — [-1,1°
T o (e —a9), o (e —29)T
=:(e1,...,en)"

is a bijection iff [ is not degenerated.
The definition of affine arithmetic guarantees that for

every point x'7 € | there exist €,7; € [-1,1],i =
1,...,n,7 =1,...,m,so that
&) = e eV )

Furthermore, it follows from the inclusion property of in-
terval arithmetics that

f(x') e L€, .. €)

= fleh, ..., €, [=1,1], ..

5 [=11])
€3

The bijective relation of affine forms and intervals allows
to rewrite L, with respect to the coordinates x

»€ns

0
n

L@y~ ab),. . (@ — 22)
O+ fiz—lir(l"i — )
+[ =20 Mg ] 20 197 ]

J+30, fixl—ﬂh

L(x) L(



0 . ) )
with J = 0 = 320 S [ 0 197 T 197

Now, (2) can be rewritten as
f(x') e L(x) 3)

L(x) is of the form > | a;x; + J, a; € R,J € IR and
from equation (3) follows for all x € [ with f(x) = 0 that
0 € L(x).

Thus, by definition, £ = {x € I | 0 € L(x) } is a linear
interval estimation of F : f(x) =0, x € I. =

Modus operandi for the computation of ILIEs:
Given an implicit object F : f(x) 0 and a cell
I [1;, I;. The following steps give an algorithm to
compute J € IR and a; € R, ¢« = 1, ..., n determining the
corresponding ILIE

Li={x€0eJ+> az;}

i=0

1. Compute the n affine forms z;, ¢+ = 1,...,n corre-
spondingto I;, i =1,...,n

2. Record the set of indices Z, := {k; € N|k; #
kj, i,j = 1,..,n} corresponding to the errors sym-
bols of Z; = 29 + zler,, i=1,...,n.

3. Compute f(}A() = f(ekl, B N = PN Elm) = fO +
Sy fren, + 200 flie,, where I = {l; €
N|l; # l;, i,j = 1,..,m} is the set of indices of
error symbols generated during the evaluation of f.
Note that Z;, and Z; are disjunct.

4. Set J = [=XEL PLE AN+ 0 -

n z? .
D1 ﬁfk’-
5. Seta; := wl—llf’“,i =1,..,n.

Characterizations ILIEs provide linear, tight, simple,
and oriented enclosures for implicit objects inside a given
cell. Figures 2 (a) and (b) illustrate the difference of an
enclosure by a cell and the corresponding ILIE.

1. An ILIE can be interpreted as “fat” linearisation of
the object inside a certain range that encloses the ob-
ject. Thus, an ILIE is a bounding volume of the object
inside the corresponding cell.

. Furthermore, the interval part of the ILIE gives reli-
able information about the deviation of the enclosed

object: The diameter d := mdiam(.] ) of

)
the ILIEL : 1 | a;z;+J = 0,J € IR can be used
as measure for the curvature.

. Using affine arithmetic, an ILIE can be computed
with almost no additional cost.
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(a) Enclosing cell (b) Corresponding ILIE

Figure 2: Comparison of enclosures of an implicit surface
patch in a given cell.

(a) Enclosing cell

(b) Corresponding ILIE

Figure 3: An implicit surface patch of degree 4 with sin-
gularities.

4. The described method to compute ILIEs works well
even if the surface has singularities inside the given
cell. (See figure 3.)

Pruning the corresponding cell to relevant parts
The ILIE provides in most cases a tighter enclosure of
the surface inside its corresponding cell, than the cell
itself. Having in mind the aim to improve the enumeration
procedure, pruning the cell to relevant parts, i.e. parts
containing the ILIE, could be useful with respect to the
reduction of necessary subdivisions (Compare figures 2
(a) and figure 4 (a)). Again interval arithmetic turns out
to be a handy tool to develop a simple algorithm for this
purpose:

Given an ILIE £ on [ € IR" like described in equation
(1), the intervals I;* defining the pruned cell I* = ], I*
can be computed using the following equations:

IF =

(2

1 O .
(—a—i(z arly +J) N IL; i=1,..,n
k=1
ki
Remark: An iterative pruning of the cell might be be
reasonable in cases where big parts of the cell have been



(a) ILIE and pruned en-
closing cell

(b) ILIEs corresponding
to several iteration steps

Figure 4: (a) shows the ILIE already presented in figure 2
inside the pruned cell. Figure (b) shows three nested ILIEs
that are results of iterated cell pruning.

pruned off: A recalculation of the ILIE with respect to the
new cell will result in a tighter and better fitting ILIE for
the enclosed part of the surface. Figure 4 (b) visualizes
such an iteration process producing in each step a tighter
ILIE. As affine arithmetic uses min-max or Chebycheff ap-
proximation to approximate non-affine operations, the it-
eration described above leads to a well oriented and tight
ILIE.

3 Using ILIEs to improve the
classical enumeration algo-
rithm

A classical enumeration algorithm based on adaptive
subdivision and interval arithmetic has the following
form:

Input: An implicit object obj defined by the equation
obj.f(x) = 0 inside the cell I (an axes-aligned box).
Output: Set of cells enclosing the object.

Algorithm Enumerate (ImplObj obj, Cell I)
if (Onotin obj.f(I)
return; //Stop if cell does not hit the object
if (termination criterion fulfilled)
write results; return;
subdivide [ into 2" sub-cells, I,
fork=1,...,2"
Enumerate( ImplObj( obj.f, I1,));
// Perform test for new parts

k=1,..,2m

Analysis of the algorithm The algorithm performs in
each step a cell-object incidence test evaluating the expres-
sion f(I) using interval or affine arithmetic. If zero lies in-
side the resulting interval, the cell might hit the object and
further subdivision is performed until a certain precision
is reached. This algorithm has several weak points, that
could be used as motivation for improvements.
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. The incidence test with the original object is a very
expensive operation due to overestimations caused by
interval and affine arithmetics, especially if the object
is of high algebraic degree.

There is no mechanism to prune the cells in a way that
only the relevant part of the cell is used for further
subdivision. This could reduce the overall number of
necessary subdivisions and enlarge the adaptive ef-
fect of the algorithm.

. The result of the algorithm is a set of axes-aligned
cells, that are not adapted to the topology of the en-
closed part of the object. An axes aligned box con-
tains no information about the position of the en-
closed surface which may lead to ambiguities if the
results are used for the polygonization of implicit sur-
faces.

. The number of necessary subdivisions and cells rep-
resenting the result increases dramatically if high pre-
cision results are required.

Improving the algorithm The classical enumeration
algorithm mentioned above can be improved significantly
with respect to the number of necessary subdivisions, time
consumption, and the quality of results using ILIEs.

The algorithm is modified in the following way: Let be
f(x) = 0 the expression describing the implicit object F,
[ the cell to be examined and x the corresponding vector
of affine forms.

e Each time f(1) is evaluated using affine arithmetic
to determine if cell 1 may hit the object or not,
the description for the ILIE corresponding to [
and F is derived from the resulting affine form
Fler, - €m iy Ym) f(%) following the

given theorem in section 2

The diameter of the ILIE is used as termination cri-
terion as it represents a good estimation for the grade
of flatness of the implicit patch.

To avoid unnecessary direct cell-object test, each of
the sub-cells resulting from a subdivision of the initial
cell is first tested, if it hits the ILIE corresponding to
its “mother cell”. Only cells passing this test in a
positive way will be used for further computations.
(See figure 5.)

The result of the whole subdivision process is, be-
sides of the set of computed cells that may contain a
part of the implicit surface, a set of ILIEs, that pro-
vides a tight piecewise linear interval enclosure of the
surface.

The application of ILIEs combined with cell pruning
allows to implement new subdivision strategies that
also reduce the amount of necessary subdivisions:



\

AN\
\

Figure 5: Avoiding unnecessary object-cell tests using
ILIEs.

=

Most known enumeration algorithms perform a uni-
form space subdivision technique. In general each
cell is subdivided into eight equal-sized sub-cells re-
gardless of the topology of the (maybe) enclosed ob-
ject. Cell pruning based on ILIEs allows to imple-
ment for example an adapted binary subdivision: The
pruned cell is subdivided only once along its longest
edge.

A modified algorithm following the propositions above
is listed below. The two lines marked with stars can be
repeated to perform iterated cell pruning.

Input: Implicit object obj including its implicit descrip-
tion obj.f, an initial cell 1.

Output: Set of linear interval estimations and axes
aligned boxes enclosing the object.

Algorithm Enumerate ( ImplObj obj, Cell I)
evaluate f(I) with affine arithmetic;

if (O not in 0bj.f(I))
return; /1 Stop if box does not hit the object.
compute ilie;
* prune [;

* recompute ilie;
if (diameter of ilie is small enough)
write results;

return; // Stop if ILIE tight enough
subdivide [ into m sub-boxes, I, k=1,...,m;
fork=1,....m

if (0 in ilie(1},)) /I Test if I}, may hit the object

Enumerate( ImplObj( obj.f, I}, ));
// Perform test for new parts

4 Experimental Results

The modified enumeration algorithm has been imple-
mented in C++ using the affine arithmetic package of van
Iwaarden [29] and the Profile interval package of Kniippel
[13]. The affine arithmetic package has been adapted and
extended to allow the extraction of “direct dependencies”,
the factors of those error symbols corresponding to the in-
put intervals describing the cell I.

Three surfaces, a stretched sphere (F7), an algebraic
surface of degree 4 called “Cross Cap” (F2), and a Barth
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(a) Prec.=1

. .
l )

(¢) [Prec.=0.01

(b) Prec.=0.1

(d) Prec.=0.001

Figure 6: Surface F; enclosed by ILIEs with different pre-
cision.

Decic (F3) which is algebraic of degree 10, have been
chosen to demonstrate the applicability of ILIEs on the
enumeration of implicit surface in IE*. Although only al-
gebraic surfaces have been chosen for demonstration, the
algorithm can be applied on any implicitly defined sur-
face. The formulas of the surfaces F; — F3 are listed in
appendix B. Figures 6 and 7 show results rendered using
POVRay. Tables 1 — 3 compare the performance of the
different algorithms. For each surface the computed pre-
cision, subdivision method, number of subdivisions, num-
ber of ILIEs/cells representing the result, and computation
time are compared. The methods are denoted in the fol-
lowing way: b’ stands for binary subdivision using ILIEs,
"0’ for octree subdivision with ILIEs and *a’ for the classi-
cal enumeration algorithm using axes-aligned cells, an in-
cidence test based on affine arithmetic, the diameter of the
cells as termination criterion, and uniform adapted octree
subdivision. The computation time! is noted in seconds
and includes a file output of the results in POVRay format.

Comparison of axes-aligned enumeration and
piecewise enclosures with ILIEs As mentioned be-
fore, the computation of ILIEs using affine arithmetic can
be done with almost no additional cost compared to an
evaluation of the implicit object description with affine

IpC, 800 MHz AMD Athlon processor



(a) Prec.=0.1
(a) Classical Subdivision

(b) [Prec.=0.01

(b) Adapted binary subdivision

Figure 8: Cross Cap enclosure of precision 0.1 using axes-
aligned cell (a) and adapted binary subdivision with ILIEs
— (b).

prec. meth. #subdiv. time (s) #ILIES/cells

(¢) Prec.=0.001 0.1 b 2799 1.05 964
0 3413 1.19 1232
Figure 7: Surface F» enclosed by ILIEs with different pre- 0.01 E iig;g 1(6)32 lg‘g;g
cision. Subdivision technique: Octree. o 18557 741 9392
a 2327561 44521 840164
0.001 b 95431 42.58 45316
prec. meth. #subdiv. time (s) #ILIES/cells 0 128857 57.23 87768
1 b 127 0.05 32
o 73 0.02 32 Table 2: Results for surface F»
a 585 0.08 152
0.1 b 559 0.16 208
0 521 0.15 248
a 58569 7.77 21016
001 b 2167 0.67 968 prec. meth. #subdiv. time (s)
0 2881 1.1 1980 0.1 b 182463  132.40
a 3558793  482.39 1330256 o 263457  188.97
0.001 b 18647 6.49 9176 0.01 b 1398047 1066.10
0 24449 9.04 18848

Table 3: Results for surface F3
Table 1: Results for surface F;
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arithmetic. The test whether a cell hits the ILIE corre-
sponding to its “mother cell” before the real object-cell
incidence test is performed, costs time on one hand, but
saves many unnecessary subdivisions and incidence tests
on the other hand.

A comparison of numbers in table 2 shows: To get com-
parable tight enclosure for the Cross Cap using just axes-
aligned cells almost 20 times more subdivisions are nec-
essary. The result consists of more than 15 times more
elements as if 0.1 is chosen as precision. Just 964 ILIEs
are necessary to enclose the surface with the given preci-
sion, where 14946 axes-aligned boxes are necessary to get
a comparable tight enclosure. Choosing 0.01 as precision,
the results are even more convincing: Almost 160 times
more subdivisions are required using the classical algo-
rithm and more than 140 times more axes-aligned boxes
than ILIEs to represent the results.

This demonstrates not only a remarkable improvement
with respect to the performance but also with respect to the
quality of the results: The amount of necessary elements
to enclose an object is as well a criterion to measure the
quality of an enclosure as its reliability and tightness. See
figure 8 for a visual comparison of the results.

Comparison of different subdivision techniques
Comparing ILIE based octree subdivision with adapted bi-
nary subdivision (see tables 1 — 3) shows that the latter
leads especially for high precision to better results with
respect to the necessary subdivisions, the number of com-
puted enclosing ILIEs as well as the performance of the
algorithm. In case of the Cross Cap (F2), binary adapted
subdivision requires on the average 24% less subdivisions
than octree subdivision. Comparing figure 7 (a) with figure
8 (b) it strikes out that ILIEs computed with octree subdi-
vision fit the surface a bit smoother that the ones computed
with binary subdivision.

Reliability of the algorithm Figure 7 (c) shows, that
elements not detected by a normal ray tracer do no disap-
pear using ILIEs: the z-axis is part of the surface.

Using iterated cell pruning Iterated cell pruning can
be used to improve the result with respect to a further re-
duction of enclosing ILIEs in the result. An iterative prun-
ing might increase the tightness of the enclosure without
decreasing the number of enclosing elements.

5 Conclusions and Future Work

Implicit Linear Interval Estimations have been introduced
to improve the classical enumeration algorithm. ILIEs al-
low to compute piecewise linear, implicit, tight, reliable,
and oriented bounds for implicit objects in R™. The exper-
imental results presented in section 4 allow the following
conclusions:
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e The use of ILIEs combined with a simple cell pruning
step reduces the amount of necessary subdivisions
compared to the classical algorithm dramatically.

e The ILIEs provide a much better enclosure of the ob-
ject than axes aligned cells in the sense that much less
elements are needed to enclose the object.

e The result is much better adapted to the topology of
the surface and represents a much better approxima-
tion.

The modified enumeration algorithm and the enclosing
ILIEs can be used as basis to develop new algorithms for
rendering, polygonization, and collision detection. The
general definition of ILIEs allows to take other methods
to compute ILIEs based on approximation methods like
e.g. Taylor Models into consideration.

A

Interval Arithmetic Intervals can be used to describe
fuzzy data, or data that becomes fuzzy during it is pro-
cessed: The whish to record errors caused by the finite
precision of floating point operations gave the initial im-
pulse to use interval arithmetic for numerical calculations.
Only a short introduction into some basic ideas of inter-
val arithmetic can be given in this context. The books of
Neumaier [15] and Alefeld et al. [2] are recommended for
further reading.

Interval arithmetic operates on the set of compact in-
tervals IR, where a compact interval I = [a,b] € IR is
defined as

Interval and Affine Arithmetics

[a,b] :={z €R|a <z <b}

For I = [a,b] € IR, inf(1) a denotes the infi-
mum, sup(I) := b the supremum, rad(l) := (b—a)/2
the radius, mid(I) := (a + b)/2 the midpoint and |I| :=
max{a, b} the absolute value of I. An interval is called
thin if inf (I') = sup(I).

For I [a,b], J =

= [c,d], the basic arithmetic
operations +, —,-,/ are defined as [ + J [a +
eb+d, T -7 [@a — db — ¢, I-J :
[min{ac, ad, be, bd}, max{ac, ad, be,bd}]. If 0 & J, di-
vision is defined as 1 / J := [a,b] - [5, 1],

The order relations ~ € {<, <, >, >} for intervals have
the definition I ~ J & z~y Vrel,yeJ.

If interval arithmetics with directed roundings is used,
the result of a direct interval evaluation ¢(I) of a function
¢(x),x € I € IR is always an enclosure of the range
Ry := {¢(z)|z € I} of ¢, that is overestimated in most
of the cases and only optimal for some special functions.

For interval vectors x € IR" the terms infimum, supre-
mum, midpoint, radius and absolute value, as well as the
comparison and inclusion relations are used component
wise. Interval vectors are often referred to as axes aligned
boxes to emphasise the geometric interpretation.



Reliable range analysis is an important application of in-
terval analysis and the overestimations caused by direct in-
terval evaluations is an often criticised drawback. Recent
research in the field of reliable arithmetics tries to reduce
the effect of overestimation allowing a flexible refinement
of the computation or taking more information about oc-
curring errors into account. One of these approaches is
affine arithmetic, that has been introduced by Stolfi and de
Figuereido will be shortly presented in the next paragraph.

Affine Arithmetic [21] Affine arithmetic reduces the
uncontrollable blow up of intervals during the evaluation
of arithmetic expressions taking dependencies of uncer-
tainty factors of input values, approximation and rounding
errors into account.

Definition [21]: A partially unknown quantity x is repre-
sented by an affine form

T:=x9+ T1€1 + T2€2 + .... + Tpepn

in the following shortly denoted by the vector (z, ..., T,,),
The x; are known real coefficients, the €; € [—1,1] are
symbolic variables, standing for an independent source of
error or uncertainty.

T is called the central value of the affine form, the x; are
the partial deviations and the €; the noise symbols.

Each interval can be expressed as affine form but an affine
form can only be approximated by an interval, as it carries
much more information. An interval describes only the
general uncertainty of the data, whereas affine arithmetic
splits this uncertainty into specific parts. Thus, a conver-
sion from affine forms to intervals implies in most cases a
loss of information.

Let & := xog + x1€1 + 262 + ... + T, be the affine form
of the fuzzy quantity x. x lies in the interval

[#] =m0 — &zo+ &, €= |l
i=1

[Z] is the smallest interval enclosing all possible values of
.

Let X = [a,b] be an interval representing the value «.
Then x can be represented as affine form

T =T+ Trek

withzg := (b+a)/2; z .= (b—a)/2.

Addition and scalar multiplication are so-called affine op-
erations and follow simple rules applied to their evaluation
with affine forms:

Let ¢ = (zo,...,z,) and § = (yo,...,Yn) be two affine
forms with respect to the same noise symbols €y, ..., €, and
a € R. Then

Ty = (woxyo,-n tyn)
ag = a(zg,....,Tn)
T+a = (zoxa,z1,..,T,)
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Non-affine operations are more difficult to determine.
Stolfi and de Figueiredo [21] propose the following gen-
eral strategy for the implementation: Split the operation
(if possible) into an affine part and a non-affine part. Cal-
culate the affine part as described in the previous section.
For all non-affine parts calculate an affine (best) approx-
imation (e.g. Tchebycheff approximation). The approxi-
mation error has to be multiplied with a new noise symbol
and has to be added to the affine form to get the affine form
of the final result.

A new noise symbol has to be introduced for round-off er-
rors. The upper bounds of all occurring round-off errors
have to be added to the partial deviation of the new sym-
bol.

B The tested surfaces

“Stretched Sphere”

Fi:a®+y*+2*-1=0

“Cross Cap”

Fo:dx?(@® +y* + 22+ 2)+ 2P +2° - 1) =0

“Barth Decic” (t = @)

Fs: 8(x? —t*yH) (v —t*2%) (2% — t'a?)

(@ +y* + 2 — 202y — 20727 — 2220)
+B+5) (@ + P+ 22 D@+ yi 2R - (2-1)2
=0
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