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Abstract. This paper presents a fast and reliable method to trim non-solution 
regions in an interval ray tracing process. The “trimming algorithm” uses inter-
val analysis to perform rejection tests in a set of pixels simultaneously, instead 
of individual pixels at each time. With this approach, the presented algorithm 
runs faster than the traditional interval ray tracing algorithm. Also, an interval 
algorithm to remove aliasing in the rendering of implicit surfaces is introduced. 
This algorithm obtains better visualizations than the traditional point sampling. 
This algorithm can render thin features that would be impossible to obtain with 
point sampling algorithms. 

1   Introduction 

Interval Arithmetic is a mathematical theory developed by Ramon Moore [1] that has 
been used to solve problems of reliability caused by the floating-point arithmetic of 
computers. Floating-point calculation causes problems of numerical imprecision in 
geometric modeling and computer graphics [2, 3]. A particular application in which 
there are problems of reliability is ray tracing of implicit surfaces. These problems 
arise in the rendering of very special implicit functions with thin features that could 
be missed in the point sampling process. This paper proposes two improvements for 
the interval ray tracing algorithm. First, interval analysis is used to evaluate screen 
regions to perform rejection test over many pixels simultaneously. This implies a 
reduction of the number of intersection test performed in a traditional ray tracing 
algorithm. Secondly, interval analysis can also be used as an alternative for point 
sampling inside a pixel. A ray is infinitely thin, and a pixel covers a finite area. When 
rays are cast through a pixel, there is the possibility that some rays miss parts of the 
surface inside the pixel. With the approach presented in this paper, it is possible to 
evaluate all the area of the surface covered by the pixel instead of considering hits. 
This principle is used to implement an antialiasing algorithm that improves the tradi-
tional interval point sampling. 

1.1   Interval Ray Tracing 

Ray tracing is a process in which rays starting at a point (the camera or eye point) are 
sent through every pixel of a screen. These rays can intersect objects behind the 
screen. In that case, the first intersection point is recorded. In the intersection point, 
the normal of the surface is calculated and used to determine a shade value for the 
pixel. The ray is represented in a parametric way as: 
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p( t ) = c + t (s – c),   t ≥ 0 . (1) 

The point c is the camera or eye position. The magnitude s – c indicates the direction 
of the ray and the parameter t represents a fractional distance from c in the direction 
of s - c.  

An intersection test must be performed between the rays and the implicit surfaces. 
Given an implicit function defined by: 

f(x,y,z) = 0 . (2) 

or in vector form: 

f(p) = 0   where  p = (x,y,z) . (3) 

The intersection of the ray with the implicit surface is defined as: 

f(p( t )) = 0,  or,  f(c + t(s - c)) = 0 . (4) 

To develop a reliable intersection test using interval analysis, the ray parameter is 
replaced with an interval T that represents a set of values of t. The equation used to 
find the intersections looks in an interval version as: 

F(T) = F(c + T(s - c)) . (5) 

F(T) is known as the inclusion function of the intersection between the implicit sur-
face and the ray. The result of the evaluation of the inclusion function is an interval. If 
this interval contains zero, a root could exist in the equation for the values of T. In the 
other case, the interval T can be rejected. This means that F(T) gives a reliable tool to 
perform rejection tests. 

1.2   Previous Work 

The requirement of a guaranteed ray tracing process to prevent that the intersection 
test miss thin features of the surface, has been pointed out by authors like Kalra [4], 
Capriani [5] and Mitchell [6]. They argue that point sampling is not a feasible algo-
rithm to perform intersection test with surfaces that have thin features. 

A few authors have proposed interval arithmetic as a solution to this problem, us-
ing different strategies to create reliable intersection test based on interval analysis  
[5, 6, 7, 8].  

Mitchell [6] was the first author to propose an interval algorithm for the ray inter-
section test. He proposed two steps: root isolation and root refinement. Mitchell does 
not use interval arithmetic in the second step because he considered that an interval 
approach for root refinement was inefficient. Capriani et al [5] demonstrated that 
interval arithmetic could be used in both steps of Mitchell algorithm without loss of 
efficiency. They also propose other algorithms as the Newton interval method or 
Alefeld-Hansen method in the ray tracing process. 

Sanjuan-Estrada [7] used a branch-and-bound strategy to make the intersection test 
without root isolation. They applied a rejection test using an interval inclusion func-
tion based on interval arithmetic. De Cusatis [8] suggest the use of affine arithmetic 
instead of interval arithmetic to solve the intersection test. 

The algorithms previously mentioned consider only one interval variable (the ray 
parameter T). Those algorithms work sending one or more rays through every pixel in 
the screen.  
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Kalra and Barr [4] proposed a method for the intersection test based on Lipschitz 
constants. This method is used to prevent that the rays sampled in a pixel miss thin 
features of the surfaces. 

2   Elimination of Screen Space Non-solution Regions 

In this section, an algorithm for a fast trimming of screen regions that do not contain 
intersections with the implicit surface is presented. That is, the algorithm has to iden-
tify regions with pixels that should be shaded with the background color. 

The rays are traced pixel by pixel, which makes ray tracing a slow algorithm. In-
terval arithmetic provides a way to evaluate many pixels simultaneously to accelerate 
the ray intersection process. Instead of a point in the screen, it is possible to take in-
tervals for x and y coordinates to cover a set of pixels. Because the origin is still a 
point, the figure obtained looks like a pyramid instead of a ray (see figure 1). This 
process is similar to the beam tracing process introduced by Heckbert and Hanrahan 
[9] for polygonal objects.  

 

Fig. 1. A pyramid could be traced instead of a single ray to cover many pixels 

The screen regions not trimmed must be ray traced pixel by pixel, because it is 
necessary to know the color for every single pixel. The objective of the trimming 
algorithm is to save time, that is, the algorithm presented is faster than an algorithm in 
which one or more rays are sent for all the pixels in the screen. 

2.1   Mathematical Preliminaries 

Equation (5) shows the inclusion function used to determine if the interval T contains 
roots. Figure 1 shows the new approach, in which s is a box instead of a point. The 
camera position can be in any place in the scene, for that reason, the rays are given in 
an arbitrary coordinate system uvw. The transformation of uvw coordinates to xyz 
coordinates must be an interval arithmetic operation.  

Let Us and Vs be intervals representing a set of pixels of the screen in uvw coordi-
nates. Let ws be the distance from the screen to the origin point c. The result of the 
transformation from uvw coordinates to xyz coordinates is represented as 

S = c + Us u + Vs v + Ws v . (6) 
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where S is an interval. A more detailed explanation of the transformation process 
(without intervals) is given by Shirley [10].   

The inclusion function in our case is presented in the following equation: 

F(T,S) = F(c + T(S - c)) . (7) 

If this condition is not accomplished, the evaluated interval S is rejected. This is used 
to reject a set of pixels that do not have intersections with the implicit function. This 
case occurs when 0 ∉ F(T,S), which means there are no roots for the current values of 
T and S. 

2.2   Algorithm Specification 

With the equation (7), a set of pixels can be evaluated simultaneously with a unique 
intersection test, to determine if they intersect the implicit function. The algorithm 
explained in this section can reject regions without intersections in screen space. In 
other words, the algorithm offers a fast trimming of non-solution zones. The complete 
algorithm is presented in figure 2. 

 box.size = screen.size 
 add box to List_Box 
 for every box in List_Box 
   if width(box)< miminum_box_size 

     add box to Final_List 
     exit for 
   endif 
   S = transform (box) 
   T = (0, ∞) 
   add T to List_T 
   for every T in List_T 
     if  width(T) < ∈T exit for 
     if (0 ∈ F(T,S))  
       bisect T into T1,T2 
       add T1,T2 to List_T 
     endif 
     drop T from List_T 
   endfor   
   if empty List_T  
     bisect box into box1, box2 
     add box1, box2 to List_Box 
   endif 
   drop box from List_box 
 endfor 
 for every box in Final_List 
  for every pixel in box 
   ray tracing pixel and shading 
  endfor 
 endfor 

Fig. 2. Algorithm for trimming non-solution boxes in screen space 
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The algorithm is based in a branch-and-bound strategy. The bisections are per-
formed in both the screen space and in the interval parameter T. The algorithm starts 
making subdivisions of screen space in Us and Vs coordinates to generate boxes. For 
every box, a new branch-and-bound algorithm is started in the interval parameter T. 
Every section of T is evaluated using the inclusion function (7) and the current value 
of S. The sections for which 0 ∉ F(T,S) are rejected. Otherwise, the current interval T 
is subdivided and the evaluation performed in the new intervals.  

The criterion used to stop the subdivision process over the parameter T is: 

(T.Upper_bound – T.Lower_bound) < ∈T . (8) 

where ∈T  is the precision selected to stop the process.  
Using a precision of 10-6, the obtained results are feasible for the example surfaces 

(section 2.3).  
The bisection over the boxes is terminated when a minimum size for the box is 

achieved. This precision represents the minimum accepted size of the box relative to 
the size of the screen, that is: 

(screen size) *∈box = minimum box size . (9) 

The boxes that achieve this precision are stored to be further ray traced. That is, the 
ray tracing will be performed only over the non- rejected boxes that achieve the mini-
mum size box. The ray tracing algorithm used in this paper is called MRF, and it was 
introduced by Sanjuan-Estrada et al [4]. 

The algorithm presented uses a precision of 0.05 over the size of the screen in pix-
els. This precision has proved to be enough to obtain efficient results for the tested 
surfaces (section 2.3). 

2.3   Experimental Results 

The algorithm was tested using four surfaces (see table1 and Figure 5). The surfaces 
were rendered using an Intel Pentium 4, 2.4 GHz. The resolution used to render the 
images was 300 x 300 pixels. In the ray tracing process one ray is cast for every pixel 
and the precision used in the intersection test is 10-6. 

Table 1. Tested implicit surfaces 

Surface Equation 
Sphere x2 + y2 + z2 – 4 = 0 
Blobby x2 + y2 + z2 + sin(4*x) + sin(4*y) + sin(4*z) – 1 = 0 
Steiner (x2*y2 + y2*z2 + z2*x2)2 + x*y*z = 0 
Mitchell 4(x4 + (y2 + z2)2)+ 17x2(y2 + z2) – 20(x2 + y2 + z2) + 17 = 0 

The results of the test are presented in table 2. Trimming time column represents 
the time of the trimming process to reject boxes in which there are no rays intersect-
ing the implicit surface. Next column gives the time of a pixel-by-pixel ray tracing 
over the non-rejected boxes. The sum of both times is represented in total time col-
umn. Finally, the column “only ray tracing” shows the time of a traditional interval 
ray tracing over all the pixels in the screen for every surface.  
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Table 2. Results for the trimming algorithm (time in seconds) 

Using trimming strategy 
Surface 

Trimming time Ray tracing Total Time 
Only ray 
tracing 

% Time 
saved 

Sphere 0.791 40.678 41.469 53.226 22.08% 
Blobby 1.33 62.842 64.172 107.59 40.35% 
Steiner 1.59 92.84 94.43 152.63 38.13% 
Mitchell 3.6 378.02 381.62 544.953 29.97% 

The precision used in the pixel-by-pixel ray tracing process was ∈T =10-6 because 
the results obtained are feasible with that precision. Figure 3 shows the blobby surface 
visualized using different precisions.  

 

Fig. 3. Results for the Blobby surface for different precisions. In the first (left image) ∈T =10-2, 
in the next (center image) ∈T =10-6, finally (right image) ∈T =10-10. With a precision of 10-6, 
the result obtained looks the same as using a higher precision. For a precision of 10-2 (figure 6a) 
the result is not acceptable. 

In table 2, the total time of the algorithm using a trimming strategy summarizes the 
time of the interval ray tracing in the non-rejected boxes and the trimming process 
itself. In all the tested cases, the algorithm using a trimming strategy takes less time 
than an interval strategy based on a ray casting for all the pixels of the screen.  

The intersection test takes more time in pixels corresponding to non-rejected boxes 
than rejected boxes. This is because the intersection test of rays that intersect the im-
plicit surface must reach a smaller precision to obtain the value for the intersection. 
Rays that do not intersect the implicit function are rejected before this small precision 
is reached. Figure 4 shows a color map of the time that the intersection test takes in  
 

 

Fig. 4. Color map to represent the time that intersection test takes in different regions of the 
Steiner surface 
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every pixel in the Steiner surface. The pixels in which the intersection test fails take 
less time than pixels inside the implicit surface. Also note that in all the borders of the 
surface, the algorithm takes the maximum time.  

Summarizing, the trimming algorithm is faster than the traditional interval ray trac-
ing algorithm in the areas without intersections (the blue zones in figure 4).  Table 3 
compares the time spent by the trimming algorithm to reject non-solution boxes and 
the time that a pixel-by-pixel algorithm spends (one ray per pixel) in the same non-
solutions boxes. Figure 9 shows the final results of the trimming and ray tracing algo-
rithm for the tested surfaces. 

Table 3. Comparison of the trimming algorithm and the classical interval ray tracing algorithm 
over the rejected boxes (time in seconds) 

Surface Trimming 
time 

Pixel by pixel 
Time 

% Time Saved 

Sphere 0.791 12.548 93.69 
Blobby 1.33 44.748 97.027 
Steiner 1.59 59.79 97.34 
Mitchell 3.6 166.933 97.84 

 

Fig. 5. Final result of the algorithm for the tested surfaces. From left to right and top to bottom, 
Sphere, Blobby, Steiner, Mitchell surfaces. 

3   Antialiasing Using Interval Analysis 

As was mentioned in section 2, some parts of the surfaces could be missed when 
methods based on point sampling are used. Figure 6 illustrates this situation.  

 

Fig. 6. Point sampling (left) and Sampled pixel using intervals (right). The evaluation in the 
sample points does not indicate the presence of the surface inside the pixel. No matter how 
many regularly distributed rays are sent through the pixel, there will be zones without rays 
traced and some rays could miss the surface. Using intervals, the pixel is subsampled and every 
region is considered in the evaluation of the function. There is no part of the surface missed in 
the evaluation. 
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3.1   Evaluation of the Pixel Area 

Interval analysis can be used to develop an algorithm to “detect” if an implicit surface 
crosses any part of the pixel.  

 function detect_surface(area) 
   S = transform(area) 
   T = (0,∞) 
   add T to List_T 
   for every T in List_T 
     if  width(T) < ∈T exit for 
     if (0 ∈ F(T,S))  
       bisect T into T1,T2 
       add T1,T2 to List_T 
     endif 
     drop T from List_T 
   endfor 
   if empty List_T  
     return false 
   else  
     return T 
   endif 
 endfunction 

Fig. 7. Algorithm to detect when a surface crosses a region of the pixel 

The technique used is this algorithm is similar to the presented in section 2. The proc-
ess is based in a branch and bound strategy, in which the pixel area is subdivided and 
every new area is further evaluated to find out whether it contains part of the surface. In 
this case, the same inclusion function (7) is used to evaluate a region of the pixel. 

When only a ray is considered, the “detection algorithm” will return an intersection 
value. Using point sampling, if the ray misses the surface, there is no way to know if 
the surface crosses the pixel.  

This algorithm is useful to visualize special cases, for example, the intersection of 
implicit surfaces. When two implicit surfaces intersect, the result is a curved line 
without thickness. This line cannot be visualized using point sampling because the 
rays will always miss the line. Using the presented algorithm, only an intersection test 
over the pixel is needed (see figure 8). 

 

Fig. 8. Intersection between implicit surfaces 
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3.2   Antialiasing Strategy 

In this section, the detection algorithm is used to “inform” when a pixel must be 
shaded, that is, if the pixel contains any part of the surface.  

If the detection algorithm finds a part of the surface inside a pixel, a branch-and-
bound process is started over the pixel to generate subpixels. Every subpixel region is 
evaluated to determine if it contains part of the surface. The subdivision process con-
tinues until a subpixel subdivision level is achieved. In that case, the normal at the 
surface is calculated and used to determine the shading color. If the evaluated region 
does not contain any part of the surface, the background color is assigned to the re-
gion. At the end, the shading value for every pixel is calculated according to the color 
and area of every subpixel.  

3.3   Experimental Results 

The described antialiasing algorithm was used to generate a visualization of the Steiner 
surface. This visualization is compared with the traditional interval ray tracing. The 
resulting images are shown in figure 9. In the sampling algorithm, 16 rays are sent for 
every pixel. In the interval antialiasing, the algorithm is stopped when the subdivision 
takes a size equivalent to 1/16 of the pixel area. The time spent by the interval an-
tialiasing is 765.18 seconds, and the sampling algorithm takes 1504.31 seconds. The 
time difference is because the interval antialiasing algorithm verifies if a part of the 
surface is contained in every pixel before the algorithm starts to make subdivisions. In 
the sampling algorithm, 16 rays are sending for every pixel in the screen. 

  

Fig. 8. Comparison of a point sampling algorithm and the interval antialiasing algorithm intro-
duced in this paper. Using only point sampling (left) and using the interval antialiasing algo-
rithm (right). 

4   Conclusions 

In this paper we have introduced several improvements to the ray tracing of implicit 
surfaces, using interval analysis. The first presented algorithm offers an important 
improvement in efficiency. Using intervals to perform intersection tests over regions 
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of the screen is faster than an evaluation of individual pixels. The second algorithm 
improves the quality of the visualization of the surfaces. This is obtained using an 
interval evaluation of all the area of the pixel instead of sampled points. It is not pos-
sible to obtain that kind of improvement using algorithms based on the floating-point 
arithmetic of the computer. 

As future work, we plan to add reflections and refractions to the presented algo-
rithms. The idea is to create a more complete shader, applicable to visualize more 
realistic images. 
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