
H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 655 – 664, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Improving the Interval Ray Tracing of Implicit Surfaces

Jorge Flórez, Mateu Sbert, Miguel A. Sainz, and Josep Vehí

Institut d’Informática i Aplicacions, Universitat de Girona, Campus Montilivi
17071 Girona, Spain

{jeflorez, vehi}@eia.udg.es,
{mateu, sainz}@ima.udg.es

Abstract. This paper presents a fast and reliable method to trim non-solution
regions in an interval ray tracing process. The “trimming algorithm” uses inter-
val analysis to perform rejection tests in a set of pixels simultaneously, instead
of individual pixels at each time. With this approach, the presented algorithm
runs faster than the traditional interval ray tracing algorithm. Also, an interval
algorithm to remove aliasing in the rendering of implicit surfaces is introduced.
This algorithm obtains better visualizations than the traditional point sampling.
This algorithm can render thin features that would be impossible to obtain with
point sampling algorithms.

1 Introduction

Interval Arithmetic is a mathematical theory developed by Ramon Moore [1] that has
been used to solve problems of reliability caused by the floating-point arithmetic of
computers. Floating-point calculation causes problems of numerical imprecision in
geometric modeling and computer graphics [2, 3]. A particular application in which
there are problems of reliability is ray tracing of implicit surfaces. These problems
arise in the rendering of very special implicit functions with thin features that could
be missed in the point sampling process. This paper proposes two improvements for
the interval ray tracing algorithm. First, interval analysis is used to evaluate screen
regions to perform rejection test over many pixels simultaneously. This implies a
reduction of the number of intersection test performed in a traditional ray tracing
algorithm. Secondly, interval analysis can also be used as an alternative for point
sampling inside a pixel. A ray is infinitely thin, and a pixel covers a finite area. When
rays are cast through a pixel, there is the possibility that some rays miss parts of the
surface inside the pixel. With the approach presented in this paper, it is possible to
evaluate all the area of the surface covered by the pixel instead of considering hits.
This principle is used to implement an antialiasing algorithm that improves the tradi-
tional interval point sampling.

1.1 Interval Ray Tracing

Ray tracing is a process in which rays starting at a point (the camera or eye point) are
sent through every pixel of a screen. These rays can intersect objects behind the
screen. In that case, the first intersection point is recorded. In the intersection point,
the normal of the surface is calculated and used to determine a shade value for the
pixel. The ray is represented in a parametric way as:

656 J. Flórez et al.

p(t) = c + t (s – c), t ≥ 0 . (1)

The point c is the camera or eye position. The magnitude s – c indicates the direction
of the ray and the parameter t represents a fractional distance from c in the direction
of s - c.

An intersection test must be performed between the rays and the implicit surfaces.
Given an implicit function defined by:

f(x,y,z) = 0 . (2)

or in vector form:

f(p) = 0 where p = (x,y,z) . (3)

The intersection of the ray with the implicit surface is defined as:

f(p(t)) = 0, or, f(c + t(s - c)) = 0 . (4)

To develop a reliable intersection test using interval analysis, the ray parameter is
replaced with an interval T that represents a set of values of t. The equation used to
find the intersections looks in an interval version as:

F(T) = F(c + T(s - c)) . (5)

F(T) is known as the inclusion function of the intersection between the implicit sur-
face and the ray. The result of the evaluation of the inclusion function is an interval. If
this interval contains zero, a root could exist in the equation for the values of T. In the
other case, the interval T can be rejected. This means that F(T) gives a reliable tool to
perform rejection tests.

1.2 Previous Work

The requirement of a guaranteed ray tracing process to prevent that the intersection
test miss thin features of the surface, has been pointed out by authors like Kalra [4],
Capriani [5] and Mitchell [6]. They argue that point sampling is not a feasible algo-
rithm to perform intersection test with surfaces that have thin features.

A few authors have proposed interval arithmetic as a solution to this problem, us-
ing different strategies to create reliable intersection test based on interval analysis
[5, 6, 7, 8].

Mitchell [6] was the first author to propose an interval algorithm for the ray inter-
section test. He proposed two steps: root isolation and root refinement. Mitchell does
not use interval arithmetic in the second step because he considered that an interval
approach for root refinement was inefficient. Capriani et al [5] demonstrated that
interval arithmetic could be used in both steps of Mitchell algorithm without loss of
efficiency. They also propose other algorithms as the Newton interval method or
Alefeld-Hansen method in the ray tracing process.

Sanjuan-Estrada [7] used a branch-and-bound strategy to make the intersection test
without root isolation. They applied a rejection test using an interval inclusion func-
tion based on interval arithmetic. De Cusatis [8] suggest the use of affine arithmetic
instead of interval arithmetic to solve the intersection test.

The algorithms previously mentioned consider only one interval variable (the ray
parameter T). Those algorithms work sending one or more rays through every pixel in
the screen.

 Improving the Interval Ray Tracing of Implicit Surfaces 657

Kalra and Barr [4] proposed a method for the intersection test based on Lipschitz
constants. This method is used to prevent that the rays sampled in a pixel miss thin
features of the surfaces.

2 Elimination of Screen Space Non-solution Regions

In this section, an algorithm for a fast trimming of screen regions that do not contain
intersections with the implicit surface is presented. That is, the algorithm has to iden-
tify regions with pixels that should be shaded with the background color.

The rays are traced pixel by pixel, which makes ray tracing a slow algorithm. In-
terval arithmetic provides a way to evaluate many pixels simultaneously to accelerate
the ray intersection process. Instead of a point in the screen, it is possible to take in-
tervals for x and y coordinates to cover a set of pixels. Because the origin is still a
point, the figure obtained looks like a pyramid instead of a ray (see figure 1). This
process is similar to the beam tracing process introduced by Heckbert and Hanrahan
[9] for polygonal objects.

Fig. 1. A pyramid could be traced instead of a single ray to cover many pixels

The screen regions not trimmed must be ray traced pixel by pixel, because it is
necessary to know the color for every single pixel. The objective of the trimming
algorithm is to save time, that is, the algorithm presented is faster than an algorithm in
which one or more rays are sent for all the pixels in the screen.

2.1 Mathematical Preliminaries

Equation (5) shows the inclusion function used to determine if the interval T contains
roots. Figure 1 shows the new approach, in which s is a box instead of a point. The
camera position can be in any place in the scene, for that reason, the rays are given in
an arbitrary coordinate system uvw. The transformation of uvw coordinates to xyz
coordinates must be an interval arithmetic operation.

Let Us and Vs be intervals representing a set of pixels of the screen in uvw coordi-
nates. Let ws be the distance from the screen to the origin point c. The result of the
transformation from uvw coordinates to xyz coordinates is represented as

S = c + Us u + Vs v + Ws v . (6)

658 J. Flórez et al.

where S is an interval. A more detailed explanation of the transformation process
(without intervals) is given by Shirley [10].

The inclusion function in our case is presented in the following equation:

F(T,S) = F(c + T(S - c)) . (7)

If this condition is not accomplished, the evaluated interval S is rejected. This is used
to reject a set of pixels that do not have intersections with the implicit function. This
case occurs when 0 ∉ F(T,S), which means there are no roots for the current values of
T and S.

2.2 Algorithm Specification

With the equation (7), a set of pixels can be evaluated simultaneously with a unique
intersection test, to determine if they intersect the implicit function. The algorithm
explained in this section can reject regions without intersections in screen space. In
other words, the algorithm offers a fast trimming of non-solution zones. The complete
algorithm is presented in figure 2.

 box.size = screen.size
 add box to List_Box
 for every box in List_Box
 if width(box)< miminum_box_size

 add box to Final_List
 exit for
 endif
 S = transform (box)
 T = (0, ∞)
 add T to List_T
 for every T in List_T
 if width(T) < ∈T exit for
 if (0 ∈ F(T,S))
 bisect T into T1,T2
 add T1,T2 to List_T
 endif
 drop T from List_T
 endfor
 if empty List_T
 bisect box into box1, box2
 add box1, box2 to List_Box
 endif
 drop box from List_box
 endfor
 for every box in Final_List
 for every pixel in box
 ray tracing pixel and shading
 endfor
 endfor

Fig. 2. Algorithm for trimming non-solution boxes in screen space

 Improving the Interval Ray Tracing of Implicit Surfaces 659

The algorithm is based in a branch-and-bound strategy. The bisections are per-
formed in both the screen space and in the interval parameter T. The algorithm starts
making subdivisions of screen space in Us and Vs coordinates to generate boxes. For
every box, a new branch-and-bound algorithm is started in the interval parameter T.
Every section of T is evaluated using the inclusion function (7) and the current value
of S. The sections for which 0 ∉ F(T,S) are rejected. Otherwise, the current interval T
is subdivided and the evaluation performed in the new intervals.

The criterion used to stop the subdivision process over the parameter T is:

(T.Upper_bound – T.Lower_bound) < ∈T . (8)

where ∈T is the precision selected to stop the process.
Using a precision of 10-6, the obtained results are feasible for the example surfaces

(section 2.3).
The bisection over the boxes is terminated when a minimum size for the box is

achieved. This precision represents the minimum accepted size of the box relative to
the size of the screen, that is:

(screen size) *∈box = minimum box size . (9)

The boxes that achieve this precision are stored to be further ray traced. That is, the
ray tracing will be performed only over the non- rejected boxes that achieve the mini-
mum size box. The ray tracing algorithm used in this paper is called MRF, and it was
introduced by Sanjuan-Estrada et al [4].

The algorithm presented uses a precision of 0.05 over the size of the screen in pix-
els. This precision has proved to be enough to obtain efficient results for the tested
surfaces (section 2.3).

2.3 Experimental Results

The algorithm was tested using four surfaces (see table1 and Figure 5). The surfaces
were rendered using an Intel Pentium 4, 2.4 GHz. The resolution used to render the
images was 300 x 300 pixels. In the ray tracing process one ray is cast for every pixel
and the precision used in the intersection test is 10-6.

Table 1. Tested implicit surfaces

Surface Equation
Sphere x2 + y2 + z2 – 4 = 0
Blobby x2 + y2 + z2 + sin(4*x) + sin(4*y) + sin(4*z) – 1 = 0
Steiner (x2*y2 + y2*z2 + z2*x2)2 + x*y*z = 0
Mitchell 4(x4 + (y2 + z2)2)+ 17x2(y2 + z2) – 20(x2 + y2 + z2) + 17 = 0

The results of the test are presented in table 2. Trimming time column represents
the time of the trimming process to reject boxes in which there are no rays intersect-
ing the implicit surface. Next column gives the time of a pixel-by-pixel ray tracing
over the non-rejected boxes. The sum of both times is represented in total time col-
umn. Finally, the column “only ray tracing” shows the time of a traditional interval
ray tracing over all the pixels in the screen for every surface.

660 J. Flórez et al.

Table 2. Results for the trimming algorithm (time in seconds)

Using trimming strategy
Surface

Trimming time Ray tracing Total Time
Only ray
tracing

% Time
saved

Sphere 0.791 40.678 41.469 53.226 22.08%
Blobby 1.33 62.842 64.172 107.59 40.35%
Steiner 1.59 92.84 94.43 152.63 38.13%
Mitchell 3.6 378.02 381.62 544.953 29.97%

The precision used in the pixel-by-pixel ray tracing process was ∈T =10-6 because
the results obtained are feasible with that precision. Figure 3 shows the blobby surface
visualized using different precisions.

Fig. 3. Results for the Blobby surface for different precisions. In the first (left image) ∈T =10-2,
in the next (center image) ∈T =10-6, finally (right image) ∈T =10-10. With a precision of 10-6,
the result obtained looks the same as using a higher precision. For a precision of 10-2 (figure 6a)
the result is not acceptable.

In table 2, the total time of the algorithm using a trimming strategy summarizes the
time of the interval ray tracing in the non-rejected boxes and the trimming process
itself. In all the tested cases, the algorithm using a trimming strategy takes less time
than an interval strategy based on a ray casting for all the pixels of the screen.

The intersection test takes more time in pixels corresponding to non-rejected boxes
than rejected boxes. This is because the intersection test of rays that intersect the im-
plicit surface must reach a smaller precision to obtain the value for the intersection.
Rays that do not intersect the implicit function are rejected before this small precision
is reached. Figure 4 shows a color map of the time that the intersection test takes in

Fig. 4. Color map to represent the time that intersection test takes in different regions of the
Steiner surface

 Improving the Interval Ray Tracing of Implicit Surfaces 661

every pixel in the Steiner surface. The pixels in which the intersection test fails take
less time than pixels inside the implicit surface. Also note that in all the borders of the
surface, the algorithm takes the maximum time.

Summarizing, the trimming algorithm is faster than the traditional interval ray trac-
ing algorithm in the areas without intersections (the blue zones in figure 4). Table 3
compares the time spent by the trimming algorithm to reject non-solution boxes and
the time that a pixel-by-pixel algorithm spends (one ray per pixel) in the same non-
solutions boxes. Figure 9 shows the final results of the trimming and ray tracing algo-
rithm for the tested surfaces.

Table 3. Comparison of the trimming algorithm and the classical interval ray tracing algorithm
over the rejected boxes (time in seconds)

Surface Trimming
time

Pixel by pixel
Time

% Time Saved

Sphere 0.791 12.548 93.69
Blobby 1.33 44.748 97.027
Steiner 1.59 59.79 97.34
Mitchell 3.6 166.933 97.84

Fig. 5. Final result of the algorithm for the tested surfaces. From left to right and top to bottom,
Sphere, Blobby, Steiner, Mitchell surfaces.

3 Antialiasing Using Interval Analysis

As was mentioned in section 2, some parts of the surfaces could be missed when
methods based on point sampling are used. Figure 6 illustrates this situation.

Fig. 6. Point sampling (left) and Sampled pixel using intervals (right). The evaluation in the
sample points does not indicate the presence of the surface inside the pixel. No matter how
many regularly distributed rays are sent through the pixel, there will be zones without rays
traced and some rays could miss the surface. Using intervals, the pixel is subsampled and every
region is considered in the evaluation of the function. There is no part of the surface missed in
the evaluation.

662 J. Flórez et al.

3.1 Evaluation of the Pixel Area

Interval analysis can be used to develop an algorithm to “detect” if an implicit surface
crosses any part of the pixel.

 function detect_surface(area)
 S = transform(area)
 T = (0,∞)
 add T to List_T
 for every T in List_T
 if width(T) < ∈T exit for
 if (0 ∈ F(T,S))
 bisect T into T1,T2
 add T1,T2 to List_T
 endif
 drop T from List_T
 endfor
 if empty List_T
 return false
 else
 return T
 endif
 endfunction

Fig. 7. Algorithm to detect when a surface crosses a region of the pixel

The technique used is this algorithm is similar to the presented in section 2. The proc-
ess is based in a branch and bound strategy, in which the pixel area is subdivided and
every new area is further evaluated to find out whether it contains part of the surface. In
this case, the same inclusion function (7) is used to evaluate a region of the pixel.

When only a ray is considered, the “detection algorithm” will return an intersection
value. Using point sampling, if the ray misses the surface, there is no way to know if
the surface crosses the pixel.

This algorithm is useful to visualize special cases, for example, the intersection of
implicit surfaces. When two implicit surfaces intersect, the result is a curved line
without thickness. This line cannot be visualized using point sampling because the
rays will always miss the line. Using the presented algorithm, only an intersection test
over the pixel is needed (see figure 8).

Fig. 8. Intersection between implicit surfaces

 Improving the Interval Ray Tracing of Implicit Surfaces 663

3.2 Antialiasing Strategy

In this section, the detection algorithm is used to “inform” when a pixel must be
shaded, that is, if the pixel contains any part of the surface.

If the detection algorithm finds a part of the surface inside a pixel, a branch-and-
bound process is started over the pixel to generate subpixels. Every subpixel region is
evaluated to determine if it contains part of the surface. The subdivision process con-
tinues until a subpixel subdivision level is achieved. In that case, the normal at the
surface is calculated and used to determine the shading color. If the evaluated region
does not contain any part of the surface, the background color is assigned to the re-
gion. At the end, the shading value for every pixel is calculated according to the color
and area of every subpixel.

3.3 Experimental Results

The described antialiasing algorithm was used to generate a visualization of the Steiner
surface. This visualization is compared with the traditional interval ray tracing. The
resulting images are shown in figure 9. In the sampling algorithm, 16 rays are sent for
every pixel. In the interval antialiasing, the algorithm is stopped when the subdivision
takes a size equivalent to 1/16 of the pixel area. The time spent by the interval an-
tialiasing is 765.18 seconds, and the sampling algorithm takes 1504.31 seconds. The
time difference is because the interval antialiasing algorithm verifies if a part of the
surface is contained in every pixel before the algorithm starts to make subdivisions. In
the sampling algorithm, 16 rays are sending for every pixel in the screen.

Fig. 8. Comparison of a point sampling algorithm and the interval antialiasing algorithm intro-
duced in this paper. Using only point sampling (left) and using the interval antialiasing algo-
rithm (right).

4 Conclusions

In this paper we have introduced several improvements to the ray tracing of implicit
surfaces, using interval analysis. The first presented algorithm offers an important
improvement in efficiency. Using intervals to perform intersection tests over regions

664 J. Flórez et al.

of the screen is faster than an evaluation of individual pixels. The second algorithm
improves the quality of the visualization of the surfaces. This is obtained using an
interval evaluation of all the area of the pixel instead of sampled points. It is not pos-
sible to obtain that kind of improvement using algorithms based on the floating-point
arithmetic of the computer.

As future work, we plan to add reflections and refractions to the presented algo-
rithms. The idea is to create a more complete shader, applicable to visualize more
realistic images.

Acknowledgements

This work has been partially funded by the European Union (European Regional
Development Fund) and the Spanish Government (Plan Nacional de Investigación
Científica, Desarrollo e Innovación Tecnológica, Ministerio de Ciencia y Tecnología)
through the co-ordinated research projects DPI2002-04018-C02-02, DPI2003-07146-
C02-02, DPI2004-07167-C02-02 and TIN2004-07451-C03-01 and by the government
of Catalonia through SGR00296.

References

1. Ramon Moore. Interval analysis. Prentice-Hall, Englewood, 1966
2. Amitabh Agrawal and Aristides A. G. Requicha. A paradigm for the robust design of al-

gorithms for geometric models. Eurographics'94, Computer Graphics Forum, Vol.13,
No.3, pp.33-44, 1994

3. Helmut Ratschek and Jon Rokne. Geometric computations with interval and new robust
methods. Horwood Publishing, 2003

4. D. Kalra and A. Barr. Guaranteed ray intersection with implicit surfaces. In Computer
Graphics (Siggraph proceedings), volume 23, pages 297-- 306, 1989

5. O. Capriani, L. Hvidegaard, M. Mortensen and T. Schneider. Robust and efficient ray in-
tersection of implicit surfaces. Reliable Computing, volume 6, p. 9 – 21, 2000

6. Don Mitchell. Robust ray intersection with interval analysis. Proceedings on graphics in-
terface, pages 68-74. 1990

7. J.F. Sanjuan-Estrada, L.G. Casado and I. García. Reliable algorithms for ray intersection
in computer graphics based on interval arithmetic. XVI Brazilian symposium on computer
graphics and Image processing, pages 35-44, 2003

8. A. de Cusatis, L. de Figueiredo and M. Gatas. Interval methods for ray casting implicit
surfaces with affine arithmetic. In Proceedings of SIBGRAPI'99, pages 65--71. IEEE Pre-
ss, October 1999

9. Heckbert and Hanrahan, Beam Tracing Polygonal Objects. Proceedings of the 11th annual
conference on computer graphics and interactive techniques, pages 119-127, 1984

10. Fundamentals of computer graphics. Peter Shirley. A K Peters Ltd., 2002

	Introduction
	Interval Ray Tracing
	Previous Work

	Elimination of Screen Space Non-solution Regions
	Mathematical Preliminaries
	Algorithm Specification
	Experimental Results

	Antialiasing Using Interval Analysis
	Evaluation of the Pixel Area
	Antialiasing Strategy
	Experimental Results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

