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Often, we need to divide n objects into clusters based on the value of a certain quantity x.
For example, we can classify insects in the cotton field into groups based on their size and
other geometric characteristics. Within each cluster, we usually have a unimodal distribution
of x, with a probability density ρ(x) that increases until a certain value x0 and then decreases.
It is therefore natural, based on ρ(x), to determine a cluster as the interval between two local
minima, i.e., as a union of adjacent increasing and decreasing segments. In this paper, we
describe a feasible algorithm for solving this problem.
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1. Formulation of the practical problem

In each area of interest, we are studying certain classes of objects: e.g., in astron-
omy, we study stars, galaxies, etc.; in entomology, we study insects. To study different
objects, we perform different measurements on these objects; as a result, each object is
characterized by the values x1, . . . , xd of the measured quantities.

Usually, for each of these variables xi , there are physical bounds that bound its
possible values, and within these bounds, all values are, in principle, possible. In prac-
tice, however, there are a few subintervals that contain the vast majority of the objects,
and values in between these subintervals are rare. In other words, most objects belong
to clusters, with few objects in between.

This fact is very useful in practice: if we want to control objects from a given
class, then, instead of designing different control strategies for different values x =
(x1, . . . , xd), we can use the fact that objects within each cluster are similar to each
other, and design a single control strategy for all the objects from a cluster.
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Practical example: cotton contains insects. Some of these insects destroy the cotton
crop, some are harmless. If we use insecticides against harmless insects, we pollute
the environment; if we do not use insecticides against harmful insects, we may lose
the crop. To characterize insects, we can measure different geometric characteristics
x1, . . . , xd , and then cluster the corresponding points x = (x1, . . . , xd). The resulting
clusters crudely correspond to species. Therefore, to distinguish between harmful and
harmless insects, it is sufficient to subdivide all the insects into clusters, and then decide,
for each cluster, whether its insects are harmful or not (for details, see, e.g., [12]).

It is therefore important to classify objects into clusters. There exist many clus-
tering techniques. In some cases, when we have a large number of objects, we can use
statistical techniques to get a statistically validated classification; see, e.g., [10].

In many real-life situations, however, there is not enough data to apply these sta-
tistically validated techniques. Instead, practitioners use heuristic clustering techniques
that use fuzzy logic, neural networks, etc.; see, e.g., [2,3,5,13]. The problem with these
methods is that their results are not completely justified; moreover, most of these meth-
ods require that we choose certain parameters, and different choices of these parameters
lead to different subdivision into clusters. So, there is a need to design justified clustering
methods.

Such methods are described in this paper. In this description, we use several ideas
first announced in [9,14,15].

2. Main idea: how to reformulate this practical problem in precise
mathematical terms

2.1. We will only consider 1-D case

In general, we have many parameters xi that describe different aspects of the ob-
jects from our class, so clustering is a multi-dimensional problem. In many practical
multi-D cases, it is possible to find a single parameter – it can be one of the parameters
xi or a combination of these parameters – that is sufficient to classify objects into clus-
ters. In some cases, one parameter is not sufficient: e.g., when we classify insects by
size, we get several classes, but some of these classes actually contain several different
clusters. In many such cases, it is sufficient to use repeated 1-D clustering: first, we clus-
ter by one parameter xi , then we subcluster the resulting clusters by another parameter
xj , etc.

To serve such situations, in this paper, we consider a 1-D clustering problem. In this
problem, we have a single parameter x that characterizes different objects from our class,
and we have several (n) objects with different values x(1), . . . , x(n) of this parameter. We
want to divide these objects into clusters.

2.2. Traditional statistical approach to clustering

The value of the parameter x depends not only on the cluster to which this object
belongs, but also on many other factors. For example, the size of an insect is determined
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not only by its species, but also by the weather conditions, by the environment, by the
presence or absence of chemicals that are damaging to these insects, etc. As a result,
different objects within the same class exhibit random variations from the average value
corresponding to this class.

It is therefore reasonable to consider, for each cluster, a probability distribution that
describes how frequently different values x occur for objects from this cluster. This is
the main idea behind statistical clustering methods: for each class, we measure a lot of
objects, determine the corresponding probability distribution; then, for each new object
with the value x, we get the probability (actually, probability density) ρi(x) that x is
from cluster i, and we assign the object x to the cluster i0 for which this probability is
the largest, i.e., for which ρi0(x) � ρi(x) for all i �= i0.

2.3. Towards a formal definition of a cluster

In this paper, we consider situations in which we do not have enough observations
to determine all the distributions ρi(x). Instead, all we observe is a sample x(1), . . . , x(n),
and we do not know which object corresponds to which cluster. If we knew the prob-
ability distributions ρi(x) and the frequency pi of objects from each cluster, then we
could say that the observed data are a sample from a mixture distribution, with the den-
sity ρ(x) = ∑

pi · ρi(x). Since we do not know neither the densities ρi(x) nor the
frequencies pi , all we can say is that the values x(k) are a sample from some probability
distribution with an unknown density ρ(x).

Let us relate this observation with the above (informal) description of a cluster:
clusters are subintervals that contain the vast majority of the objects, and values in be-
tween these subintervals are rarer than inside them. A natural corollary of this descrip-
tion is that immediately outside the cluster subinterval [a, a], the density is smaller than
inside, i.e., that the density function ρ(x) is increasing for x = a and decreasing for
x = a. A continuous function that increases at a and decreases at a > a must attain a
(local) maximum inside the interval [a, a]; vice versa, if a function has a local maximum,
then a sufficiently narrow interval around this maximum is a cluster in this sense.

Therefore, if, within an interval, there are at least two local maxima, this means
that we can form at least two clusters. Thus, it is natural to identify clusters with lo-
cal maxima of the probability density function (pdf) ρ(x). To be more precise, clusters
are neighborhoods of local maxima, neighborhoods that go both ways until the corre-
sponding local minimum – the point at which decreasing changes to increasing or vice
versa.

In other words, it is natural to define a cluster as the interval between two conse-
quent local minima of the pdf ρ(x), i.e., as a union of adjacent increasing and decreasing
segments. Within each cluster, we have a unimodal distribution of x, with a probability
density ρ(x) that increases until a certain value x0 and then decreases.
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2.4. A similar problem with known solution and why we cannot use it

If we could determine bounds on ρ(x) based on the empirical data (i.e., on the
values x(1), . . . , x(n)), then we would be able to use the known algorithms for finding
local minima and local maxima of interval-valued functions; see, e.g., [18]. The problem
is that, based on empirical data, we cannot find bounds on the pdf.

2.5. Enter Kolmogorov–Smirnov bounds

What we can find is bounds on the cumulative density function (CDF) F(x).
Specifically, based on the sample values x(1), . . . , x(n), we can determine an empirical
CDF Femp(x): for each x, Femp(x) is defined as the ratio #{k | x(k) � x}/n. This empiri-
cal distribution is the easiest to compute if we first sort the values x(k) in the increasing
order x(1) � x(2) � · · · � x(n); then:

• Femp(x) = 0 for x < x(1);

• Femp(x) = k/n for x(k) � x < x(k+1);

• Femp(x) = 1 for x � x(n).

Kolmogorov–Smirnov theorem (see, e.g., [20]) states that if the actual (unknown) PDF
F(x) is located on a known interval, then, for any given confidence level α, we can find
the value ε for which, with this confidence, we have maxx |Femp(x) − F(x)| � ε. Thus,
with this given confidence level, we know that for every x, we have

F(x) ∈ F(x) = [
F(x), F (x)

] def= [
max

(
Femp(x) − ε, 0

)
, min

(
Femp(x) + ε, 1

)]
. (1)

Based on this interval information, we want to find out whether it is possible that
ρ(x) is increasing or decreasing on a given interval of values x. The function ρ(x) =
dF(x)/dx is decreasing (increasing) if and only if F(x) is concave (convex). Thus, to
solve our problem, we must determine concave and convex zones of the interval-valued
function F(x).

In this paper, we propose a O(n·log(n)) time algorithm for determining such zones.

3. Proposed algorithm

Our algorithm uses known O(n · log(n)) time incremental convex hull algorithms
[4,7,8,16]; these algorithms, given n points p1, . . . , pn on the 2-D plane, find the con-
vex hull of these points. These algorithms are called incremental because in the time
O(n · log(n)), they not only find the convex hull of all n points p1, . . . , pn, but also, for
all k from 1 to n, convex hulls of the sets {p1, . . . , pk}.

The algorithm for checking whether there exists a convex function F(x) within
given bounds is as follows:

• First, we sort all the values x(k) in the increasing order; this sorting takes O(n · log(n))

time. Without losing generality, we will therefore assume that the values x(k) are
already sorted, i.e., that x(1) � x(2) � · · · � x(n).
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• We compute the values F k

def= max(k/n − ε, 0) and Fk
def= min((k − 1)/n + ε, 1)

(F 1 = 0); this computation takes O(n) time.

• Then, we use an incremental convex hull algorithm to compute, for every k from 1

to n, the convex hull C of the points p1, . . . , pk, where pk

def= (x(k), F k), and check

whether the points p
1
, . . . , p

k
, where p

k

def= (x(k), F k), are outside the interior of this
convex hull (i.e., on or below the piecewise-linear curve Fconv(x) describing the lower
boundary of this convex hull). Since the points are already sorted, an appropriate
version of Graham’s scan (see, e.g., [16]) will provide all these checks within O(n)

time.

To find zones of convexity and concavity, we do the following:

• First, we run the above algorithm until we find the last value k+ for which the values
p

k
are outside the interior of the convex hull, i.e., for which it is still possible to have

a convex function F(x) ∈ F(x) for x � x(k+).

• Then, we similarly process the values starting with x(n) backwards and find the small-
est value k− for which it is still possible to have a concave function F(x) ∈ F(x) for
x � x(k−).

• If k− � k+, this means that it is possible to have a unimodal distribution F(x),
and [x(k−), x(k+)] is the interval of possible locations of its mode. In cluster terms,
it means that the data is consistent with having only one cluster, with a “center” at
some point x ∈ [x(k−), x(k+)].

• If k− > k+, this means that there are several clusters; to find these clusters, we apply
the same algorithm to data starting with the (k+ + 1)st point.

4. Justification of the proposed algorithm

One can easily see that the above algorithm requires O(n · log(n)) time. (Applica-
tion of this algorithm to real-life data shows that this algorithm is not only theoretically
feasible, it is also practically is efficient and useful [9,14,15].)

Let us now show that this algorithm works correctly. Our algorithm is based on
the ability to check convexity, so it is sufficient to show that the algorithm for checking
convexity is correct.

1◦. Let us first show that if there is a convex function F(x) ∈ F(x), then none of the
points p

k
are inside the interior of the convex hull C.

Indeed, let us assume that there is a convex function F(x) ∈ F(x). Then, the area

G
def= {(x, y) | y � F(x)} above this function is convex. The function F(x) is constant

on each interval [x(k−1), x(k)); thus, for arbitrary small δ > 0, we have F(x(k) − δ) =
F(x(k−1)). From the definition of G, we conclude that (x(k)−δ, F (x(k) −δ)) = (x(k)−δ,

F (x(k−1))) ∈ G. In the limit δ → 0, we conclude that pk = (x(k), F (x(k−1))) ∈ G. Also,
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by definition of the set G, the pairs p
k

= (x(k), F (x(k))) are not inside the interior of this
area G.

By definition, the convex hull C is the intersection of all the convex sets that contain
given points, thus, C ⊆ G; hence the points p

k
cannot be inside the interior of C either.

2◦. Vice versa, let us show that if all the points p
k

are not inside the interior of the convex
hull C, then there exists a convex function F(x) ∈ F(x).

We will prove that we can take Fconv(x) as the desired function F(x). Indeed, as a
lower bound for a convex set, this function is convex.

Since the points p
k

= (x(k), F (x(k))) are not inside the interior of the convex hull,

we conclude that F(x(k)) � Fconv(x
(k)). Since the function F(x) is constant on the

interval [x(k), x(k+1)), and the function Fconv(x) is nondecreasing on this interval, we
conclude that F(x) = F(x(k)) � Fconv(x

(k)) � Fconv(x) – i.e., F(x) � Fconv(x) for
all x.

Since all the points pk = (x(k), F (x(k−1))) are inside the convex hull, we conclude
that Fconv(x

(k)) � F(x(k−1)); similarly, since the function F(x) is constant on the interval
[x(k−1), x(k)), and the function Fconv(x) is nondecreasing on this interval, we conclude
that Fconv(x) � F(x) for all x. Thus, F(x) ∈ F(x) for all x.

5. What if measurements come with interval uncertainty?

The above algorithm can be used to check whether there is a convex function F(x)

within arbitrary piecewise-constant bounds F(x) = [F(x), F (x)]. An important case of
this general situation stems from the fact that the values x(k) come from measurements,
and measurements are never 100% accurate. As a result, the measured values x̃(k) are, in
general, different from the actual (unknown) values x(k) of the measured characteristics.
Usually, we know the upper bound � for the (absolute value of) the measurement error

�xk
def= x̃(k) − x(k); thus, instead of the exact value of x(k), we only know the interval

xk = [xk, xk] = [x̃(k) − �, x̃(k) + �] of possible values of x(k).
In this case, for every x, we have F(x) ∈ [F(x), F (x)], where F(x)=

max(F emp(x) − ε, 0), F(x) = min(F emp(x) + ε, 1), F emp(x) = #{k | xk � x}/n,

and F emp(x) = #{k | xk � x}/n. Similarly to the above case, we have piecewise-
constant bounds for F(x) that change values only at xk and xk. It is therefore sufficient
to require that F(x(i)) ∈ [F(x(i)), F (x(i))] for 2n values x(i) that coincide with either the
lower endpoints xk or with upper endpoints xk of the given intervals xk.

Thus, we can apply the above algorithm – starting with the sorting of the values x(i),
i.e., in this case, of 2n values xk and xk – and find convexity zones in O(n · log(n)) time.
(A similar algorithm for detecting monotonicity zones is described in [11].)
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6. How to parallelize our algorithm

Although our algorithm is pretty fast, its running time still grows with the number
of points n. So, when the number of points is large, it is desirable to speed it up. A natural
way to speed up an algorithm is to run it in parallel. There exist algorithms that compute
the convex hull of n points in O(log(n)) time on n processors [1] (see also [6]). If we
use this algorithm, we can check, for every k, in O(log(n)) time, whether the values
x(1), . . . , x(k) are consistent with the convexity of F(x). We can use this check in two
different ways:

• we can run n checks in parallel; thus, by using O(n2) processors, we detect the desired
zones in O(log(n)) time;

• alternatively, we can use bisection on the interval [1, n] to find the last value k that is
still consistent with convexity; binary search requires log(n) checks, so we find the
zones in O(log2(n)) time by using n processors.

It is worth mentioning that a similar drastic speed-up is possible if we use parallel
computations in a similar problem of detecting areas of monotonicity [19].
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