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ABSTRACT

Linear least-squares models are often used to describe how an
endogenous variable depends on some exogenous variables and to make
forecasts based on that description. In using such models, one should
consider various sources of uncertainty in the parameter estimates and
forecasts. Often there are uncertainties in the exogenous variables.
When these uncertainties are confined to small intervals and symmetri-
cally distributed, interval least-squares estimates of the model’s parame-
ters can furnish either bounds on the component of parameter estimation
or forecast error contributed by errors in the exogenous variables, along
with an assurance that there is little bias, or else a warning that linear
least-squares estimates and forecasts may be subject to significant bias.
Indeed, one byproduct is an index of nonlinearity that can warn of pos-
sible bias; a similar measure is available from singular value analysis.
On problems where bias is insignificant, interval least-squares solutions
provide a more detailed collinearity diagnostic than the scaled condition
number exspoused in the book of Belsley, Kuh, and Welsch.

Introduction

Often one observes, say, n instances y;, ***, ¥, of an endogenous (dependent)
variable y and corresponding values X;;, 1<i<n, 1 <j<p of some exogenous
(independent) variables X;, ---, X,. Sometimes it is convenient to assume these

variables are related by .
y=XB+e,

where the components of e =y — X[ are independently distributed with mean 0 and
common variance o. As many texts explain, when X has full rank, there is a unique b
that minimizes ||y — Xb||,, ie.,

¢)) b=X'y = XTX)xTy,
which is the maximum likelihood estimate of B when e is normally distributed. (Here
. %
||:]l; is the Euclidean norm: ||z]l; = [¥z?| , and superscript T means ‘‘tran-
i
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spose’’.) Even without the assumption of normality, b is an unbiased estimate, i.e.,
the expected value of b is f.

Often one is interested in some linear forms (or functions of linear forms) involv-
ing B. In particular, models are often used to make forecasts: one predicts that if the
independent variables had the value x™ = (x**, ---, x;®"), then the dependent
variable BTx™* + ¢ would have mean value 5Tx"™”. In general, under the above
assumptions, if ¢ € R? is an arbitrary p-vector, then ¢Th is an unbiased estimate of
cTB.

Unfortunately, the independent variables themselves are sometimes subject to
error, e.g. measurement error. For example, we may only know nxp matrices X and X
such that

(2a) X <X <X,

where the inequalities are understood componentwise. Similarly, we may only know
lower and upper bounds y and y (in R") on the dependent variable y:

(2b) XSy <y

In this case (2) it is reasonable to consider estimating by using X := 4(X + X) and
y :=%( +Yy) in (1). As many authors have noted (e.g., [8, 10, 18, 30,31, 33]), this
gives a biased estimate of B, and one should assess whether this bias may be large
enough to be worrisome, e.g. to affect decisions about whether the current linear
model is appropriate or to affect decisions based on forecasts derived from the model.

Linear models like (1), (2) that account for errors in the independent variables (X)
are often called errors-in-variables models; I shall refer to the parameter estimation
problem for such models as an errors-in-variables problem. The present work
emphasizes an interval least-squares approach to this problem, but several other
approaches are available. Hodges and Moore [18], for example, mention instrumental
variables (which approach relies on additional data), maximum likelihood (which
requires a distributional assumption), and grouping of observations (which requires
enough data to group). Approaches of more recent interest include Golub and Van
Loan’s total least squares method [16,17,19] and the orthogonal distance regression
treatment of Boggs, Byrd, and Schnabel [7], both of which I now discuss.
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Figure 1 illustrates a least-squares fit to six data points:

11 2.5]
2 1 L5
5 1 35
3 X=1l6 1) Y= |asf
9 1 75
10 1 6.5,

the dashed arrows emphasize that distance is measured vertically. Sometimes it is
more appropriate to measure distance to the nearest point on the fitted line, as in Fig-
ure 2; this is a simple instance of orthogonal distance regression (ODR) [7], the idea
of which is to find the smallest perturbations &;; to X;; and m; to y; such that
i(X‘-, j+§,~_ b =y;+M; (1<i<n). In measuring these perturbations, one can
j=1
Jspecify separate scale factors §; o and §;; for each m; and &; j; ODR then minimizes
pACH on)? + pX(A I
i LJ
For linear problems in which one is content with a rank 1 matrix of scale factors
- & for (&, M), orthogonal distance regression reduces to total least squares (TLS), which
has the advantage that b, & and n can be computed from a single singular value
decomposition. (See, e.g., [29] or [17] for discussion of the singular value decomposi-
tion and of QR factorizations, which come into play below.) The ODR algorithm in
[7] is sufficiently general that it readily accommodates independent variables (columns
of X) that are not subject to error. As hinted in [16] (in the note added in proof) and
as Stewart’s argument in the appendix of [30] shows, one can handle error-free vari-
ables in the TLS setting by ‘‘regressing out’’ the corresponding constant columns of X,
i.e., projecting y and the error-prone columns of X onto the orthogonal complement of
the column space of the constant columns. If X is partitioned as X = [K,W], where K
and W encompass, respectively, the constant (‘‘known’’) and error-prone (‘‘wiggly’’)
columns, and if we factor

Rgx R
@ X =K, W]=QR =[Q, Ow] [5"‘ Rv’;Ww],

where Q is an orthogonal matrix (QTQ = I, the identity matrix) and Q and R are parti-
tioned conformably with X, then, as indicated in [16], the ‘‘regressing out’’ amounts to
applying the TLS procedure to matrix Ryy and right-hand side Oy to get by (and, if
desired, & and m), then solving Rgxbg = 0Ly - Rxwbw. Figure 3 shows what
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happens if we apply TLS to (3) directly, allowing perturbations in the column of ones.
Figure 2 results from treating the column of ones as constant. (All scale factors ; ;
are 1 in Figures 2 and 3. The above discussion assumes X to be of full rank and the

relevant TLS problems to have solutions.)

Fig. 1. OLS: y =.603x + 1.017 Fig. 2. ODR: y = .624x + .902

Fig. 3. TLS: y = 452x + 2.164 Fig. 4. ILS: y = (.603+.133)x + (1.017+.812)

Linearity

This paper is concerned with detecting cases when the errors (2) are large enough
that decisions based on ordinary least squares parameter estimates may be unreliable.
The diagnostics proposed below may be worth examining when one uses other param-
eter estimates, but this is a topic for further study.

By differentiating (1), it is straightforward to obtain a first-order estimate of the
effects that the errors (2) in X and y can have on our linear least squares estimate b.
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As shown in [18],

db _

(52) X " xTxy [’ilj - ij}F.}
and

ob Tyy-1yT
(5b) =2 = xTx)y'xT.,

i ‘
where X; . is the ith row of X,
(5¢) r=y-Xb

is the residual vector, and /; is the jth column of the identity matrix. Left-multiplying
T T

dc ' b) and d(c'b)
9X; j 9y;

order estimates of the effects on ¢Th of a particular perturbation to X.

(5a) and (5b) by ¢T, we obtain and hence can compute first-

Using (5), it is straightforward to compute worst-case bounds on the effect that
any perturbation (2) can have on ¢Th. Moreover, one of the diagnostics suggested by
this paper arises from trying to compute rigorous worst-case bounds that are near the
best possible ones. (The results of this attempt, applied to (3) with perturbations of
+.25 to each component of y and of the first column of X are shown in Figure 4.) But
such bounds are often irrelevant, as Inman [20] has pointed out and the following
example illustrates. Suppose we have n real values f; that satisfy

-1<f<1.

Then clearly

If n = 100 and the f; are independently and uniformly distributed over [-1, 1], then

n
Pr(Y fi 2 n/2) = 2.8x107;

i=1

n 1,
the standard deviation s.d.(Y f;) = n% N3 =103 is likely to be much more
i=1
relevant. And so it often happens that standard deviations are of greater interest than
worst-case bounds.

In the linear case it is easy to relate worst-case bounds to standard deviations. If
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fi» (1 £i < n) are independently and identically distributed over [f,f] with standard

n
deviation s.d.(fy) = o, then s =Y (d; +a;f) € [s,5], where
i=1
n
5= +mm{fa,,fal}) and s = E(d +max{fa,,fa,}) are the best possible
i=1 i=1
~ n —\’Z a?
bounds on 5. Then 5 —s=(~-NY |a;| and s.d.(s)=(_—s){ g 5 |a’| .
s Iz —f :

In nonlinear cases that are close to linear, we can similarly compute a good estimate
of the standard deviation. Suppose F:R"” — IR is mildly nonlinear. Then

—‘Z‘a where  q; = —a-f—(f") f=¢+n2, and

Z, | ai I ’ (! af; s . v >

(f) | . In such cases, if we can compute good bounds on F (f),

o | VZ&

then their difference times | — | —=———+
-1l Zlal

s.d.(F (f)). Thus, to some extent we can relate standard deviations to worst-case

bounds.

s.d.(F(f)) = AF

‘—f

o =G-pE 155

will often give a good upper bound on

Interval Notation

It is now convenient to introduce some interval notation. As above, inequalities
involving vectors or matrices are understood componentwise. I(-) denotes the interval
hull of ('), i.e., the smallest Cartesian product containing (-), where (*) can be a scalar,
vector, or matrix expression. i(-) denotes a Cartesian product containing I(-), com-
puted by interval arithmetic (see, e.g., [24, 1]). Boldface letters denote interval vectors

or matrices, as in

X=[X, X]={X:X <X <X}
and

y=Dyl={y:y<ys<y}

It is convenient to use the natural extension of functions to the power sets of their
domains: if f:A > BandS c A, then f(S)={f(s):5 € S}
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Effects of Nonlinearity

Despite the word “‘linear’’ in ‘‘linear least squares’’, the linear least-squares esti-
mate (1) is a nonlinear function of X. The present work began as an attempt to spe-
cialize [15] to the linear least-squares problem, which would provide an enclosure of

(6) B* = XTy={XTy.X € [)_(,i]’)’ € [Xay]}

As mentioned above, cTb is often of greater interest than b itself, where c is an arbi-
trary linear form, so it may be more relevant to compute an enclosure of

) C* =cTXTy = {c"XTy: X e [X,X], y € [y, 3]}
Since we can take columns of the identity matrix for c, there is no loss of generality in
considering (7) rather than (6). Of course, we could compute an enclosure C of C* by
first computing an interval enclosure (i.e., Cartesian product of intervals) B of B*, then
enclosing {c¢Tb: b € B}. But this would deliver unduly pessimistic bounds because
of simultaneity, i.e., because it would also bound ¢ Tb for many b € B*.

We can get tighter bounds on ¢ =cTb +¢Tb - b°) by bounding cT® -b7)
for some nominal solution
(8a) b* =Xy,
say from the midpoints of X and y:

(8b) X =%X +X)

(8c) y' = %(X +y).

Interval Linear Equations
To assess the effects of nonlinearity on ¢Th, we are often led to considering sets
of interval linear equations, i.e., to computing (outer) approximations to sets of the

form
IA™'v) =I{A7'v: A € [A, AL, v € v, VD).

The computations reported below proceed as in [14]; for fuller discussions and exten-
sive references, see Neumaier’s papers [25,26,27]. For general interval linear equa-
tions, it is often essential to use a preconditioner M, i.e., to work with I(MA) and
I(Mv). An important, computationally useful measure of possible nearness to singu-
larity is given by
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® p = sup ||[IMA) - I]|.

Neumaier [25] has shown that if p <1 is possible, then choosing M :=2(A + Z)‘l
gives the smallest p in (9) when ||-|| is a scaled max-norm, i.e.,

(10) lull := [|Dull, = max{ | Dju; |: 1 <i <p}

for some nonsingular diagonal matrix D € R”? and all u € R?. The choice of D
can strongly affect computational results; in the computing reported below, D is
chosen as described in §5 of [14].

Normal Equations

The most straightforward way to enclose C* (see (7)) is by attacking the normal
equations (1) directly: since

C* = {cTXTX)'XT(y - Xb"): X <X
(11a) ={c™MXTXM)XT(y - Xb°): X <
it is tempting to work with (X TXM) for some preconditioner M, say
(11b) M = (X°Tx*)™,

However, the computational experience reported below suggests that an approximate
OR factorization generally gives better bounds and succeeds in delivering good bounds
in some cases where the normal-equations approach fails, i.e., where the latter
approach finds p 2 1 in (9).

OR Approach

Suppose we compute the QR factorization
(12a) X°=Q°R,
where Q° is an orthogonal matrix and R is nonsingular. Let
(12b) Z =R
Then XZ is close to orthogonal when X is not too far from X°, and
XXy - xb°) = 2Z"™X"X2) ' (x2)T(y - Xb°),

so we can express (7) as
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(12¢) C* = {cTz@"X"X2)'XZ)"(y - Xb°): X € [X,X), y € [, ¥1}.

We could approximate I{(ZTX"XZ)'(XZ)T(y ~Xb*): X <X <X,y <y <¥}),
then multiply the result by cTZ, but unless ZT¢ is a scaled unit vector, fc., a scaled
column of the identity matrix, this would yield unduly pessimistic bounds because of
the simultaneity problem described above. At least two cures are possible. We could
replace Z by ZP, where P is an orthogonal matrix chosen to make cTzP a multiple of
a standard unit vector. But if we were interested in ¢Tb for several values of ¢, this

would be inefficient.

Perhaps a better way to circumvent the simultaneity problem (to first order) is as
follows. Let X € [X, )_(] and y e [y,y] be fixed for a moment, and let
H =1 - (XZ)T(XZ), so that b := X1y =Z( — H)'(xZ)Ty. Since

U-H'=I+HU-H'=I+d-H)H,

we have

¢™h =cTb° + "z - HY ' (X2)T(y - Xb°)
(13a) =cTh + cT2X2)T(y - Xb°) + ¢TZH({I - HY'XZ)T(y - Xb°)
(13b) =cTh° + cTZX2)T(y - Xb°) + ¢TZ{U - H)Y'H(XZ)T(y - Xb°).

This suggests separately bounding
(14) I{@ZZT)XT(y - Xb%): X € [X,X], y € [, 71D
and

(15) I{cTzq -HY'HXZ)"(y -Xb°): X € X,y e y, H=1 - (ZX)T@X)}).

To bound (14), we incur no loss of accuracy if we separately bound the contribu-
tion to (14) of each row of [X, y], then sum these bounds. To bound (15), we can add
parentheses to (13) in half a dozen different ways, solve some interval linear equa-
tions, then do some interval arithmetic; but in all cases, it is convenient to start by

computing an enclosure of
I{Z™XT(y - Xb*): X € [X, X1, y € [y, 71}
Thus we are led to bounding sets of the form

(16) I@™)-bTx):x <x <X, y<y<yh
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fora, b, x, X € R andy, e R. Since
(17a) @™ -bTx) = @Tx )y - bTx%) + (v - ¥)(@Tx")

+ [(y - bTx%)a - (aTx)b]T(x -x°)

(17b) = @™x )y - bTx") + (Y- ¥)a"x")
+[(y-bT0)a — @ x)b1T(x ~ x°),

we can bound (16) accurately to first order by using interval arithmetic to evaluate one
of the right-hand sides of (17) for x <x <X, y <y <¥. The computing reported below
uses (17a). -

I first presented a QR approach to solving interval least squares problems at the
SIAM Conference on Applied Linear Algebra in 1982. Unfortunately, I now distrust
the scheme I mentioned there for overcoming the simultaneity problem (subtracting off
a linear estimate of the excess width caused by simultaneity): the bounds it delivers
are not rigorous. Recently Neumaier [28] has also proposed a QR approach to interval
least squares problems, but he only considers bounding B*, and his bounds suffer from

simultaneity.

Nonlinearity Indices

Below I report the values of three nonlinearity indices on some sample problems.
The first, denoted by py, is (9) with M given by (11b) and (8b) and with
A> {XTX: X € X}, ie,,

(18a) pw = sup | IMX - D],
where
(18b) M =xTx )1

The second, pg, is one of the two I prefer as a nonlinearity diagnostic. It is the ana-
log of (9) for the interval linear equations suggested by (12c):

(19 po = sup |l I{(X2)T(X2") - 1: X e XD

The third nonlinearity index, pg, my other choice for a nonlinearity diagnostic,
comes from singular value theory and is motivated by Stewart (see §3 and the appen-
dix of [30]). The idea is to use singular-value analysis to compute an index that will
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behave comparably to pg, with values 2 1 warning of situations where the perturba-
tions permitted X could make it rank deficient, i.e., could make its columns linearly
dependent. To compute pg, we partition X as in (4), i.e.,, X = [K, W] with K € R"¥¥
and W e RV%" (0 <pk <D, pk +pw =p), and we scale the columns of W (i.e.,
linearly change variables) so that the maximum Euclidean norm of the error in each

column is 1. Then

\pw

20) Ps = svmin(TTg W)’

where Ilg projects orthogonally onto the orthogonal complement of the column space
of K (with IIg =1 if pg =0), and svmin(:) denotes the least singular value of (:).
That is, we ‘“‘regress out’” of W any constant columns K, compute the least singular
value of what remains, and scale it appropriately (dividing it into \/pw ). The numera-
tor of (20) is both the Euclidean and the Frobenius norm of the largest perturbation to
which W could be subject, given the scaling of W; svmin(ITxW) is both the smallest
Euclidean and smallest Frobenius norm of any perturbation to W that reduces its rank;
hence their ratio, pg, is the nonlinearity index we seek. Note that if we factor X as in
(4), then

svmin(ITgW) = svmin(Ryw).

Test Data

Table 1 summarizes my test data, showing the problem dimensions, sources, and
nominal error radii: ‘/z()?l -X1), -, ‘/z(fp = X,), (¥ —y). Except as explained
below and summarized in Table 2, I used half of each variable’s least significant
reported digit as the nominal error radius. Some of the exogenous variables X; were
computed from other data. For example, as on page 598 of [13], the Anderson prob-
lem uses the model

y =B1 +X2By + X3PBs + BsX3;

that is, X; 4 =X,2_2. Since X; o > 0 for all i in this problem, it is appropriate to use
)?12,2 -X 2?2 as the error radius for X; 4, as indicated in Table 2. (This is the only
instance in my test data where there is an obvious correlation between the errors in
any pair of variables.) The data-dependent error radii in problem Spray arise because
X;j, 2 <j <4 and y; are logarithms of observed data; those in Turnover come from
the statement in [18] that ‘‘Both the independent variables are subject to significant
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measurement error, and although the size of this is not accurately known, it is believed
to be within 15 per cent.”’

Name n p Source Pages Error radii

Anderson 27 4 [13] 406, 598 0, .000s, .05, *, .05

Asphalt 31 7 [9] 109, 95-100 0, .005, .005, .005, 0, .05, .0005, .00005
Figl-4 6 2 (3 25,0,.25

Fuel 48 5 [32] 33 0, 0, .0005, .5, .5, .

Longley 16 7 [30] §4 0,5,.5.5.,50.5

Shell 50 2 [23] 198 0,7, 86.6

Spray 35 4 [13] 405, 598 0, %, %, *, *

Turmnover 30 3  [18] 191 0, *, *, .05

Water 17 5 [13] 353 0,.05,.5,0,0,.5

* = computed error radii — see Table 2.
Table 1: data sizes, sources, nominal error radii

Problem Variable  Radius
Anderson X, (X, + .0005)% - X3

Spray X, log(1 + .00005/exp(X 3))
Spray X3 log(1 + 50/exp(X3))
Spray X4 log(1 + .005/exp(X 4))
Spray y log(1 + .05/exp(y))

Turnover X, 0.15X,
Turnover X3 0.15:X 5

Table 2: formulae for data-dependent error radii

All the problems have an intercept term, ie., a column of ones. Aside from
Figl—4 (i.e., (3), where I had in mind the formula y = ax + b), I have taken X to be
the column of ones, which is obviously not subject to error. Partly because of the
intercept term — and because I start with 1 when numbering the columns of X — the
column numbers I mention often differ by one from those in the original sources.

It seems reasonable to regard a few other variables as not subject to error. In
problem Fuel, X, is a tax rate, which is known and not measured; in problem Water,
X4 and X5 are integers: the number of plant operating days in the month and the
number of people on the monthly plant payroll; in problem Longley, X7 is a column
of years. (My decision to regard the latter as constant is based on [11]. See also [2],
and [3].)

Table 1 cites Stewart [30] rather than Longley’s original paper [22] because I use
Stewart’s scaling of X, (which makes X a matrix of integers, for which one hopes
there is no roundoff error on input). [However, following [22], I used 554,894 rather
than 554,984 as the value for X 14 3.]
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Test Results R

My computational testing used the standard unit vectors (columns of I) for the
linear form ¢, so I computed bounds on the individual components of B* = x*t y, ie, I
computed [b, b] > B*. Table 3 shows the values of the nonlinearity indices (18-20)
when the error radii have the nominal values shown in Table 1; below I discuss the
effects of scaling these radii. The choices of ¢ play a role in fifth column, which
displays a measure of the sharpness of [b, b], ie., an approximate maximum excess
width percentage over all components of b. Specifically, the fifth column shows

(B — b) - B! - b

2n 100 - max{ — :1<i<p},
bf — bt

where [Q#, I;#] = ][(XTy) is computed as follows. First, based on the signs of (5a,b),
ob ob

ie. —% and —% both evaluated at (X°,y°), we choose X&® and y&® with
aX,', j ay,-

Xs,i]’k) e {)_(i.j:

and minimize (X ("")Ty("k))k‘ Then

}?,",-} and yfi"‘) € {y;,y;} to approximately maximize (X(J'"‘)Ty(*'k))k

bY = min{(XERTyER): 1 <k <p}
and
b = max{(X &Ry EDY 1 <k <p).

The values of (5a,b) at (X &k, y(i'k)) suggest that the values I report of (21) overesti-
mate the true excess width percentage (i.e., (21) with [l_)”, E”] = ]I(XTy)) by at most a
few percent.

max %
Problem PN Po Ps excess
width
Anderson 7.501 0371 0.169  105.7
Asphalt 9.739 0457 0.191 1719
Figl-4 0322 0.158 0.076 38.2
Fuel 0353 0.029 0.017 6.7
Longley 381.900 0.198 0.125 313
Shell 5427 0700 0262 231.8
Spray 2408 0.147 0.082 31.6
Turnover 2570 1106  0.551 —
Water 0.096 0.013 0.006 2.5

Table 3: values at nominal error radii

Since pgp > 1 for problem Turnover, the QR approach described above can deliver
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no bounds on Tumover’s B*. But on four of the seven other problems, it delivers
bounds that overestimate the components of B* by less than 40%. Whether one
regards such bounds as sufficiently tight surely depends on context, but it is probably
safe to say that they are not wild overestimates.

It is interesting to see how the values in Table 3 behave when one scales the
error radii. For pg <1, the ratios py/pg and ps/pg are approximately constant.
Figure 5 shows some typical plots of ps/pg versus pg. Plots of py/pg versus pg
are qualitatively similar, but the scale on the y axis is sometimes much larger: for
some problems, py/pg > 1 because of simultaneity. Thus one can compute good
bounds (i.e., bounds with a small excess-width ratio (21)) for fewer problems by the
normal equations (11) than by the QR approach (12).

X
0.8 -
Ps/ po x
0.6 + + + + + "
O = Asphalt y +
+=Longley (4 | o o o oo
x x x x X °
X = Shell o +
0.2 —
a
] I I | I
0.01 0.1 1 10 100

Figure 5: ps / pg versus pg for Asphalt, Longley, and Shell

My calculations of pg use (17a) (with y=0) to bound the components of
{(XZ)T(XZ): X e X}. Although this avoids simultaneity to first order in these com-
ponent bounds, there remains a simultaneity problem when the bounds are summed to
compute pg. Thus it should come as no surprise that usually ps < pg.

As mentioned earlier, the choice of D in (10) strongly affects pyp. The stopping
tests in the iteration that determines D are of the form ‘‘accept D* as D if
pD*) > 1,,p(D*!) or p(D¥) < T45."" On some problems I got a reduction of 20%
or more in pg by tightening t,,; from the value 0.9 recommended in [14] to 0.999; I
also reduced T4, from 0.1 to 0.001. This made plots like Figure 5 much smoother,
but sometimes made the iteration that determines D take several times as many itera-
tions. In one instance of a 20% reduction, the iteration count went from 5 to 19. All
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this makes ps more appealing than pg as a nonlinearity diagnostic.
For pg < 1/10, the excess-width ratios divided by pg, i.e.,
(b; - b;) - of - b¥)
of - b} po

(22)

are approximately constant. Figures 6 and 7 show typical plots of these values against
po; the dotted lines indicate the nominal values of pg corresponding to Table 1. The
small excess-width ratios for pg < 1/10 accord with my arguments above that (13-15)
overcomes (to first order and for small pgy) simultaneity problems in bounding C*, i.e.,

.

35 %
= 2
3 Z
4
excess-width 25 | §
ratio / pQ ’ 1
24 3 i 2
2 2 4
15 4 4 §
6
s
1= 1 |
0.01 0.1 1
Po
Figure 6: (22) versus pg for Asphalt
3.5 3
5 2
excess-width 2.5 4
ratio /
Po ) :
15 g
1] g g é .
I [ I
0.01 0.1 1

Po
Figure 7: (22) versus pg for Longley
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Bias is a common issue in papers on errors in variables. That is, one would like
to know whether the expected value of the least-squares estimate, E (X ty), differs sig-
nificantly from the true parameter vector B (or perhaps whether | cTEX Ty) - cTB |
is large enough to worry about). Hodges and Moore [18] argue that if we observe X,
where E((X -X")T(X —-X°)) is the diagonal matrix S, E(X-X*)=0, E(e) =0, and
X —X" is independent of the error e in the least-squares model y = X° + e, then

(23) EXy)=p-(n-p-DXTX")1SB;

they suggest approximating the right-hand side of (23) to roughly bound the possible
bias. The nonlinearity indices pg and pg can also warn of possible bias, because the
last term in (13) may contribute significantly to the bias when these indices are larg-
ish, say on the order of a tenth or more. To see how well correlated pg and pg are to
bias, I did some Monte Carlo calculations, with perturbations to X chosen uniformly in
the intervals defined, as in Figure 5, by scaled versions of the error radii in Table 1.
(There were 10000 trials for each error scaling. I used a random number generator
provided by Eric Grosse and based on exercise 23 in §3.2.2 of [21]. The plots look
about the same when I substitute the research UNIX® frand generator or the UNI gen-
erator from the PORT library.) Figures 8—15 plot the relative bias, i.e.,

(24) EXy) - xTy) 1 xty),

determined in my Monte Carlo calculations against pg for the problems in Table 1.
The dotted lines indicate the nominal values of pg corresponding to the error bounds
in Table 1.
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Figure 16: bias for Water

Although (23) often gives roughly similar bias estimates to those from my Monte
Carlo calculations, I distrust (23). Simple examples suggest that the last two expecta-
tions on p. 195 of [18] are incorrect.

Diagnosing Collinearity

When working any mathematical model, one should worry a bit about how
appropriate the model is. A linear least-squares model may be inappropriate if the
exogenous variables are too close to being linearly dependent. Trouble caused by near
linear dependence is generally called ‘‘collinearity’’ in the statistical literature. As dis-
cussed above, collinearity can lead to biased estimates and forecasts. It may also lead
to incorrect choices among models. There seems to be no agreement on a precise
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definition of (approximate) collinearity [4, p. 85], but it is sometimes taken to be
synonymous with ill-conditioning [5, p. 93], i.e., with a small (relative) change in X or
in y making a big change in X ty. To assess collinearity, Belsley, Kuh, and Welsch [4]
recommend scaling the columns of X to have unit Euclidean length, then computing
the spectral condition number (ratio of largest to smallest singular values) of X. Let us
call this xpgw. Belsley argues persuasively for evaluating Xggw on the original X
matrix [6]. So far as assessing numerical ill conditioning is concerned, i.e., inaccuracy
caused by roundoff errors in the computed approximation of X fy, 1 fully agree with
him. But for assessing the effects observational errors may have on parameter esti-
mates and forecasts, I think one should consider only the perturbations that these
errors could introduce. Specifically, when there are dummy variables or other vari-
ables not subject to observational error (e.g., the column of ones in problems that have
an intercept term), it is inappropriate to consider perturbations in them. Moreover, I
think it important to consider the size of the perturbations that the errors could intro-
duce. This argues for examining pg as a nonlinearity diagnostic (source of bias),
first-order or interval bounds on ¢TX'y to assess whether the perturbations could be
large enough to worry about, and xpgw as a diagnostic only for numerical ill-
conditioning — the tolerance for which should be considerably larger than the values
15 to 30 recommended in [4]. When pg is small, one can easily use (5§) to compute
approximate standard deviations for c¢TX%y (after assuming a distribution for X € X
andy € y).

When all exogenous variables save the intercept are subject to error, one obtains
Iy in (20) by scaling the exogenous variables so the maximum Euclidean norm of the
error possible in each column is one, then centering these variables (subtracting their
means). This is to be contrasted with the procedure that disquiets Belsley [6] — first
centering, then examining the condition of the centered exogenous variables.

Disallowing impossible perturbations can substantially change one’s assessment
of nonlinearity and perhaps of collinearity. The infamous Longley data provide an
example. If, as above, we disallow perturbations in the years (X7), then some linear
combinations of the parameters are reasonably well determined and, as Figure 12 indi-
cates, there is only modest bias. In support of this statement about ‘‘reasonably well
determined’’ parameters, Table 4 shows the nominal parameter estimate b° = X *ty, the
error radii, i.e., bounds on |b; — b°; |, delivered by the QR approach, and the error
radii as percentages of b; for Longley with the nominal errors in Table 1.
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i b; radius % rad
1 —348226e+06  5.432e+04 1.6
2 1.50619 1.671 110.9
3 -0.0358192 0.004688 13.1
4 -2.02023 0.06117 3.0
5 -1.03323 0.019 1.8
6 -0.0511041 0.03132 61.3
7 1829.15 26.32 14

Table 4: bounds for Longley with nominal error radii

On the other hand, if, as in [2], we allow perturbations of up to .5 in the column of
years, then pg = 7.32 and pg = 7.137, so the OR approach cannot deliver any bounds.
Moreover, as in [2], simulations like those behind Figures 8—15 then reveal substantial
bias at the nominal error radii, as shown below in Figure 16.

g N
o g L
" oo i

%

U

U LIV

1e-05 —
le-06 —
1e-07— 5

Ps

Figure 16: Longley bias when years are subject to error

Concluding Remarks

Interval least-squares estimates can furnish rigorous and reasonably tight bounds
on the the effect of errors in the exogenous variables on forecasts and, as special
cases, on parameter estimates. In cases where ps (see (20)) is small, first-order assess-
ments (5) of the effects of exogenous variable errors are probably acceptably accurate
for most purposes. Stewart’s [30] sensitivity coefficients, which are based on (5), may
also be helpful in this case. The main thing to get out of this paper is that ps (or pp,
(20), if one wants to compute interval linear least-squares estimates) may be worth
computing as a nonlinearity diagnostic — a warning of potential bias.
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