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3-D Deformable Image Registration: A Topology
Preservation Scheme Based on Hierarchical

Deformation Models and Interval
Analysis Optimization

Vincent Noblet, Christian Heinrich, Fabrice Heitz, and Jean-Paul Armspach

Abstract—This paper deals with topology preservation in
three-dimensional (3-D) deformable image registration. This
work is a nontrivial extension of [34], which addresses the case
of two-dimensional (2-D) topology preserving mappings. In both
cases, the deformation map is modeled as a hierarchical dis-
placement field, decomposed on a multiresolution B-spline basis.
Topology preservation is enforced by controlling the Jacobian of
the transformation. Finding the optimal displacement parameters
amounts to solving a constrained optimization problem: The
residual energy between the target image and the deformed source
image is minimized under constraints on the Jacobian. Unlike
the 2-D case, in which simple linear constraints are derived, the
3-D B-spline-based deformable mapping yields a difficult (until
now, unsolved) optimization problem. In this paper, we tackle the
problem by resorting to interval analysis optimization techniques.
Care is taken to keep the computational burden as low as possible.
Results on multipatient 3-D MRI registration illustrate the ability
of the method to preserve topology on the continuous image
domain.

Index Terms—B-splines, deformable matching, global optimiza-
tion, hierarchical parametric deformation models, interval anal-
ysis, three-dimensional (3-D) image registration, topology preser-
vation, voxel–based registration.

I. INTRODUCTION

DEFORMABLE – intersubject – registration of three-di-
mensional (3-D) medical images has received consider-

able attention during the last decade [44], as a key step for the
construction and use of individualized or probabilistic anatom-
ical atlases [11], [17], [19], [42], [45]. Potential applications
include atlas-based image segmentation and labeling [5], [17],
[35], [36], [39], atlas-based image registration or fusion [36],
motion analysis in 3-D image sequences [39], statistical analysis
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of normal and pathological variations in anatomy [8], [30], [42],
[43], follow-up of lesion evolution over time [6], [28], atlas-
based volume estimation [1], [37], and the study of the growth
and development of normal or abnormal anatomical structures
[41], [43].

A desirable property of intersubject medical image warping
is the preservation of the topology of anatomical structures
since, in the continuous domain, anatomical structures have the
same topology for any individual (at least for nonpathological
cases) [4], [46]. Topology preservation ensures that connected
structures remain connected and that the neighborhood rela-
tionship between structures is maintained. It also prevents the
appearance or disappearance of existing or new structures.
By enforcing this constraint, the space of possible solutions
is restricted to physically acceptable deformations. Topology
preservation is related to the continuity and invertibility of
the transformation (which should be a homeomorphism or
one-to-one mapping). This property is enforced by the posi-
tivity of the Jacobian of the transformation and the invariance of
the boundary of the image [12], [34, Section 2 and Appendix C].

Thirion [39], [40] proposes a low-cost method for con-
straining the bijectivity property in a nonpreserving trans-
formation. The method is based on the computation of the
direct deformation (from image 1 to image 2), the reverse
deformation (from image 2 to image 1) and the residual
deformation . To maintain bijectivity, the residual
deformation is redistributed equally between and to
obtain . The method is fast and simple but does not
mathematically ensure the preservation of the topology on the
continuous image domain.

Topology preserving mappings have been considered by [10],
[11], [13], [31], in the framework of viscous fluid models, corre-
sponding to incompressible matter. The Navier–Stokes viscous-
fluid partial derivative equations (PDEs) describing the physical
medium are solved on a discrete spatial grid. This physical con-
tinuum model gives excellent results, allows both nonlinearities,
large displacements and is topology preserving. Unfortunately,
although topology preservation holds for the continuous trans-
formation, it is no longer guaranteed when solving the PDE
on the discrete image grid. It is, thus, necessary to check the
Jacobian and to use a concatenation procedure consisting in
propagating the floating image whenever the transformation be-
comes singular [13]. A similar tracking of the Jacobian is used
in [42], [43], to control the volume transformation in a sur-
face-based brain warping scheme. In [47], Trouvé restricts the
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desired transformations to a subgroup of invertible mappings by
exploiting Lie group theory. The problem is solved numerically
using gradient descent and may be rewritten as a PDE, shown to
be linked to the fluid model of Christensen [11]. Trouvé’s model
is more general and the associated numerical scheme is stable,
so that no Jacobian tracking is needed. A related approach is
used in [24] to match landmarks using large deformation dif-
feomorphisms.

Inspired by Grenander’s General Pattern Theory [18],
Miller and Younes [32] have recently devised a comprehensive
framework for the representation of deformable templates. A
deformable template (e.g., an image to be warped) is an object
on which a group of transformations acts, creating a whole
family of new objects. The groups studied in [32] include
finite dimensional matrix groups as well as infinite dimensional
diffeomorphisms. The approach enables both variations in
the geometry of the object (deformations) and in the images
values themselves. It is also suited to both landmark and dense
deformable matching.

A common framework for fast deformable matching of 3-D
images is the linear decomposition of the transformation on
hierarchical basis functions. The transformation is described
by a limited number of parameters, yielding a significant
reduction of the computational burden with respect to dense
PDE-based approaches. For instance in [10], [16], [17], elastic
matching is expressed as an expansion over a basis of Green’s
or sinusoidal functions, eigen-elements of the elastic operator.
In [38], Szeliski introduces a hierarchical basis of spline inter-
polators for two-dimensional (2-D) nonrigid image registration.
Chen et al. [8] extend this idea in 3-D for hierarchical matching
of MR images. In [48] a Cai–Wang wavelet model is used to
represent 2-D motion fields in image sequence analysis. A hi-
erarchical spline representation, associated to a multiresolution
representation of the deformation field over nested subspaces
is considered in [33], [35]. A similar approach is described
in [26], [27]. A robust estimation framework, associated to
a hierarchical representation of the deformation field using
piecewise affine models is proposed in [22].

Unfortunately, parametric deformation models relying on
linear decompositions over basis functions do not by themselves
enforce properties such as one-to-one mapping. Ashburner [2],
[3] solves the issue for piecewise affine mappings, in a Bayesian
framework, where the Gibbs potential associated to the prior
distribution, is a function of the Jacobian. By penalizing non-
invertible solutions through low probabilities, the mapping
is ensured to preserve almost surely the topology. A similar
approach is used in [9] with a 3-D Fourier representation, using
a regularization framework to penalize small Jacobians.

A hard positivity constraint on the Jacobian has been imple-
mented by the authors in 2-D, for a hierarchy of spline basis
functions [34]. It is shown that the sign of the Jacobian on the
whole continuous image domain may simply be controlled by
linearly constraining the optimization on a finite number of
points. In the present paper we extend this approach to the 3-D
case. This extension is not trivial, due to the nonlinearity of the
Jacobian in 3-D. Rather than simply constraining the positivity
of the Jacobian, we devise a procedure allowing to enclose
the Jacobian between two user-defined bounds. The resulting
optimization problem is much more cumbersome than in 2-D
and is tackled using interval analysis techniques. We employ a

blockwise descent scheme. The main point is to determine the
upper bound on the step in the line minimization procedure.
The proposed approach guarantees the preservation of topology
for the computed transformation on the whole continuous
image domain (even though the image is only observed on a
finite discrete spatial grid).

The paper is organized as follows. In Section II, the mul-
tiresolution deformation model and the underlying optimization
problem are briefly presented (for details we refer to [34]). The
interval analysis based procedure yielding the upper bound on
the line minimization step for the optimization problem is de-
tailed in the appendices. A number of examples on 3-D MR
brain images are given in Section III to demonstrate how the
method works. We also report on CPU times. Conclusions and
perspectives are given in Section IV.

II. MULTIRESOLUTION DEFORMATION MODEL AND THE

CORRESPONDING OPTIMIZATION PROBLEM

A. Multiresolution Deformation Model

Let and consider an image defined on
. The mapping between the source and the target

image writes , where is the displacement
vector field and the Hilbert space of finite energy deformation
fields.

We consider a decomposition of the displacement vector field
over a sequence of nested subspaces

, defining a multiresolution approximation of
[29]. Space defines the coarsest scale representation. A basis
of may be generated from a scaling function . To handle a
3-D deformation field, three multiresolution decompositions are
considered, one for each component of the displacement. Every
element of the basis of writes

(1)

At scale , i.e., in space , the displacement field will be
parameterized by the vector as

(2)
Only first-degree polynomial spline scaling functions will

be considered in this work (see Fig. 1), but the methods and al-
gorithms used may be easily extended to higher degree B-spline
functions (see Appendix I). Let be the support of .
We have

where

and ; ; (see Fig. 2).
The displacement fields are nested: Any deformation field at
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Fig. 1. Polynomial spline scaling function �(t) of degree 1 and a corresponding basis vector � (x).

Fig. 2. Box 
 and related S s subboxes.

scale may also be expressed as a deformation field at a finer
scale [29], [34].

B. Underlying Optimization Problem

The cost function related to the displacement field is de-
fined as , where is the
target image and the source image. For a given scale , the
optimization problem writes: , where

stands for the admissible parameter set. The energy landscape
is highly multimodal. Iterating on the scale in a coarse to

fine sequence of displacements (see Section II-D) is the means
of (hopefully) escaping local minima at an acceptable compu-
tational cost (as opposed to using stochastic algorithms leading
to an unacceptably high-computational cost for the problem at
hand). At scale , the optimization procedure is initialized
with the solution of the optimization problem at scale (see
Fig. 3).

We apply a blockwise descent algorithm, the block being
, for given values of . Inside the

block, the direction of descent is computed as the oppo-
site of the gradient of the cost function where

During the line minimization, the cost function only needs to
be evaluated on since this function is not modified out-
side . Moreover, there exists an upper bound on the step
size, above which the bounding conditions on the Jacobian are
not verified (see Section II-C). The complete optimization algo-
rithm is given below in Section II-D.

C. Admissible Parameter Set

The admissible parameter set is the set of all coordinate
vectors yielding admissible values of the Jacobian over ,
i.e.

(3)

where

and and are user-defined bounds (for topology preser-
vation, must be set to positive values).

In the case of a blockwise descent, condition 3 needs only to
be checked on the box since the parameters to be modi-
fied do not affect . The box will be partitioned
in –type subboxes, and condition 3 will be checked on
those subboxes. Attention will now be focused on , leading
eventually to the expression of the Jacobian on .

The basis functions are
impinging on box and, to compute the Jacobian on ,
the indexes spanning the sums in (2) may be restricted to the
sets: ; ; .

Let us define (see Fig. 4)
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Fig. 3. Hierarchical optimization procedure in the 2-D case for the spline of degree 0 (Haar basis).

Fig. 4. Linear functions p and p as elementary components yielding uuu .

It is straightforward [see (1) and (2)] that on , we have

...

The same kind of expressions hold for and . With the
help of a symbolic computation software, we get

where the s are polynomial expressions of the com-
ponents of involved in . Moreover, it may be
easily shown that any is an affine function of any set

(see Appendix I).
Considering that the blockwise descent takes place along

direction ( is a coordinate vector defined on the space
) with a step , we may

express the Jacobian as

For higher order splines, remains an affine function of
when are fixed (see Appendix I), and, thus, the following
method may be adapted.

Let us define
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Fig. 5. Bound � is computed as a lower bound of inff� ; � g.

Admissible steps are such that

(4)

The Jacobian values and also match condition
4, since they are the result of a previous optimization step en-
forcing this very condition. Moreover, it is straightforward that

is concave and is convex (as the infimum and
supremum of a set of affine functions). Hence, the set of ad-
missible values of is convex and determining the admissible
steps amounts to determining the upper bound of this set (see
Fig. 5).

Since is defined considering , we get a set of eight
s ( encloses eight subboxes, see the beginning of this

section). The effective bound is derived as the infimum of this
set.

D. Summing Things Up

The optimization algorithm eventually writes:

Optimization algorithm yielding
Loop on scale
compute from
do
loop on

update of

compute direction of descent
compute
update by minimization of along

with a step
end loop on
until convergence of
end loop on scale .

The most cumbersome problem at this point is the computa-
tion of to devise an algorithm yielding the maximal admis-
sible step

Fig. 6. Density of probability of the L norm of the displacement error at
different scales. As expected, the displacement error concentrates toward the
origin as the scale increases. At scale 5, more than 96% of the voxels are affected
by an error lower than 1 voxel.

along the direction of descent while keeping the computational
burden as low as possible.

The Jacobian as a function of on a given
box has no nice property such as convexity and may have local
minima and maxima. Hence, we have to resort to a global opti-
mization algorithm. Interval analysis techniques are well suited
to the case at hand. A general flavor of such techniques is given
in Appendix III. We refer the reader to [23] for more details.

The main objective is to bracket , i.e., to determine
and reasonably close enough such that . This
is achieved in two steps (initialization and refinement) in the
interval analysis framework. The details of this quite technical
procedure are developped in Appendix II to which the interested
reader is referred.

III. ILLUSTRATION ON 3-D BRAIN IMAGE REGISTRATION

The contribution of topology preservation is illustrated here
on 3-D MR brain image registration. The assessment of inter-
subject (deformable) image warping is a delicate problem, due
to the general lack of ground truth. The general behavior of
the method is first assessed using a simulated deformation field
playing the role of a ground truth. The method is then applied
to real registration problems where no ground truth is available.

A. Method Performance Assessment Using a Simulated
Ground Truth

The general behavior of the method is assessed using simu-
lated deformation fields. A topology preserving blockwise sinu-
soidal transformation is applied to a 3-D image, hence creating
a ground truth. The transformation is chosen to be blockwise si-
nusoidal so that it cannot be perfectly matched with a B-spline
based transformation at the scales envisaged.

The estimated transformation field at a given scale may be
compared to the sought transformation using an error vector
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TABLE I
CPU TIME AND DISPLACEMENT ERROR AT SUCCESSIVE SCALES. IT MUST BE NOTICED THAT THE VALUE OF THE COST FUNCTION

HAS NO PARTICULAR MEANING, SINCE IT DEPENDS ON THE SIZE OF THE IMAGE AND ON THE RANGE OF THE GRAY VALUES

TABLE II
INFLUENCE OF THE BOUNDS J ; J ON THE DISPLACEMENT OF THE ESTIMATED FIELD

field (the error vector field is the difference between the esti-
mated and the sought fields). The mean distributions1 of the
norm of the displacement error at each foreground voxel for dif-
ferent scales ( ) are depicted Fig. 6. The CPU time and
displacement errors at successive scales related to those simu-
lations are reported Table I. As expected, the registration gets
more precise as the scale increases, since the set of authorized
transformations enlarges.

It may be noticed that about 85% of the total CPU time of
a registration up to scale 5 is dedicated to computation of the
bounds . At scale 6 (CPU time: 30 min), the cost function still
decreases but the displacement error gets worse since interpo-
lation artifacts become nonnegligible in the registration process
(they are no longer averaged out).

The effect of the bounds may be illustrated consid-
ering the mean displacement of the estimated field (see Table II,
see also Fig. 8). As expected, moving the bounds and
toward 1 increases the registration error and decreases the mean
displacement: The set of authorized transformations is reduced
since the constraints are more severe and large displacements
expected for a precise registration are no longer tolerated be-
cause they are no longer compatible with the condition on the
Jacobian bounds.

B. Real Case Brain Image Registration

No ground truth is available in this case to evaluate the quality
of registration. Mere visual inspection of gray levels is mis-

1Nine different registrations have been achieved and their distributions aver-
aged.

leading for such an evaluation. Gray levels tend to be similar,
since the residual energy is minimized during the optimization
procedure. As a consequence, a perfect matching of gray levels
does not necessarily mean that the registration is relevant, since
the deformation field may have no physical meaning, i.e., the
topology of brain structures may not be preserved. The defor-
mation field has to be examined, in conjuction with gray levels.
This may be achieved for example by warping a synthetic grid
using the estimated transformation. To highlight the contribu-
tion of topology preservation, we also consider the warping of
anatomical atlases, which is a standard procedure to produce au-
tomatic segmentations in medical images.

Fig. 7 displays the results of a 3-D interindividual deformable
registration: Fig. 7(a) is registered on Fig. 7(d) without any con-
straint [Fig. 7(b)] and with the positivity constraint on the Jaco-
bian [Fig. 7(c)]. To enlighten the effect of topology preserva-
tion, both resulting deformation fields are applied to a regular
grid located in the interhemispheric plan (Fig. 8). The deforma-
tion field obtained from a registration with no constraint leads
to a tearing of the mesh2 [Fig. 8(b)], which proves topology vi-
olation. Violations of topology mainly concern regions:

• around the mouth because of the movement caused by
breathing;

• around the neck because of the lack of information in this
region in one of the images.

2In fact, no tearing may happen with the transformation at hand since
this transformation is necessarily continuous. Only folding is involved when
topology is violated. Folding has the same visual effect as tearing. In the sequel,
we will only speak about tearing for the sake of simplicity.
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Fig. 7. Nonrigid matching of MR images from two different individuals. (a) Source image. (b) Result of the deformable matching without any constraint. (c) Result
of the deformable matching with the positivity contraint J > 0. (d) Target image.

Imposing a positivity constraint on the Jacobian regularizes the
deformation field [Fig. 8(c)] and avoids tearing of the mesh.

Another good illustration of the contribution of topology
preservation is observed on atlas-based MRI segmentation
(Fig. 9). Atlas-based segmentation consists in registering a
patient MRI on a reference MRI, associated to a 3-D reference

segmentation map (the atlas). The atlas is then warped on the
patient data, using the estimated deformable mapping [5], [17],
[35], [36]. Atlas warping is one of the most robust method for
performing automatic segmentation of anatomical structures
but it is sensitive to the quality of the reference segmentation
as well as to registration errors or to violations of the topology
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Fig. 8. Visualization of the deformation field on a regular grid placed in the interhemispheric plan. (a) Source image. (b) Grid warped without any constraint.
(c) Grid warped with the positivity constraint J > 0. (d) Grid warped with the constraint 0:5 < J < 2. As expected, the deformation field is much smoother in
(d) than (c).

Fig. 9. Application to atlas-based automatic brain segmentation. (a) Reference brain mask (atlas). (b) Brain mask warped without any constraint. (c) Brain mask
warped with the positivity constraint J > 0.

of the underlying anatomical structures. Holes and tearing are
present in the warped segmentation brain mask when no con-
straint is imposed as may be seen on Fig. 9(b). Fig. 10 shows
another example of topology violation during registration in an
atlas-based segmentation attempt. The violation is illustrated
by a tearing of ventricles.

We also registered both images using a cost function in-
cluding a term penalizing the Jacobian as

if
if .

The registration result was visually very close to the registration
obtained when enforcing positivity of the Jacobian on the un-
derlying continuous space. The CPU time was five times lower.
Nevertheless, the positivity of the Jacobian was no longer ver-
ified between voxel sites, which may cause a problem espe-

cially when registering low-resolution images and applying the
resulting transformation to higher resolution images.

All the registrations were performed on 3-D MR brain
images up to scale (which corresponds to 90 000 param-
eters) with a computational burden lower than 15 min for real
clinical cases on a 2.4-GHz PC workstation (a Levenberg-Mar-
quardt descent algorithm was used). Let us notice that the com-
putation time is larger for real registrations than for registrations
using simulated deformation fields (see Table I). Trilinear inter-
polation was used in all cases.

IV. CONCLUSION AND PERSPECTIVES

In this article, we have devised a procedure allowing topology
preservation for the registration of 3-D images. We considered a
hierarchical B-spline deformation field model. Topology preser-
vation on the whole continuous domain is enforced by a pos-
itivity constraint on the Jacobian of the transformation. More
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Fig. 10. Nonrigid matching between two different patients and application to atlas-based ventricle segmentation. (a) Source image. (b) Target image. (c) Result
of matching without any constraint. (d) Result of matching with the positivity constraint J > 0. (e) Segmented registered ventricle without any constraint.
(f) Segmented registered ventricle with the positivity constraint.

generally, we sought to enclose the Jacobian between two user-
defined bounds.

The optimal registration map is found by minimizing the
residual energy between the warped source image and the target
image. Taking into account the bounding conditions on the
Jacobian amounts to considering constraints in the optimization
problem: We apply a blockwise descent scheme where an
upper bound on the displacement step has to be determined.
Determining this bound involves a cumbersome optimization
problem in the 3-D image case which is solved using interval
analysis techniques. Registration results are given, which were
obtained at an acceptable computational cost.

Three perspectives to this work may be given. First, the cost
function should be modified from

to

This stems from the fact that both images do not play a sym-
metrical role when considering the current version of the en-
ergy: The energy is computed with respect to a uniform inte-

gration measure with respect to the target image and con-
sidering one image or the other one as the target image will not
give registration maps which are inverse of each other, which
is unsatisfactory. The integration measure should be modified
so as to be symmetrical with respect to both images, which is
achieved by the measure (see also [7]). This
modification of the cost function has no influence on the deter-
mination of the bound of the displacement step and, hence, may
be straightforwardly incorporated in the proposed topology pre-
serving procedure.

A second and more demanding perspective is topology-pre-
serving registration of multimodal images, where corresponding
voxels are linked by intensities which are not necessarily sim-
ilar. This will lead to questioning the choice of the function to
be optimized.

Finally, comparisons with other nonrigid registration tech-
niques should be achieved in the spirit of [21]. Quantitative tech-
niques [wavelet analysis of image registration (WAIR) [14], [15]
and canonical variate analysis (CVA) [25]] for comparing reg-
istration methods have recently been proposed.

APPENDIX I
JACOBIAN IS AN AFFINE FUNCTION

OF THE DISPLACEMENT STEP

In this Appendix, we show that the Jacobian is
an affine function of the displacement step when are
fixed. This property holds whatever the spline considered.
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Fig. 11. Polynomial spline scaling functions of degree 0, 1, 2, 3.

Considering (2) and the blockwise descent scheme (descent
takes place on the block ), the coordi-
nates of the displacement field write

where are functions which may be computed
straightforwardly from (2). The Jacobian may be expressed as
shown in the equation at the bottom of the page.

It may be shown that is a first-order polynomial in
the block-variables (all higher
order terms cancel out) which may be written

. Besides,

block is updated along direc-

tion as

. The Jacobian then reads

which proves that is an affine function of the displacement
step .

We may also give some hints on how to extend the algo-
rithm to higher degree B-splines. We will consider the case of
a second-order degree spline (see Fig. 11) for the sake of
simplicity, but the extension to higher degree splines is straight-
forward.

Let where is the rectangle function (the
box spline). The spline is a piecewise second-degree poly-

nomial, where are the second-degree polynomials
playing the role of is the first-degree case. The support

of is split into –type subboxes.
Hence, the proposed algorithm still holds, the main modifica-
tion being in the number of subboxes to be considered when
updating a block of variables.

APPENDIX II
DETERMINATION OF THE MAXIMAL ADMISSIBLE STEP

ALONG THE DIRECTION OF DESCENT

The goal of this Appendix is to propose an algorithm yielding
the maximal admissible step

along the direction of descent while keeping the computational
burden as low as possible.

The main objective is to bracket , i.e., to determine and
reasonably close enough such that . This is

achieved in two steps (initialization and refinement) which are
detailed in the sequel.

A. Preliminaries

As usual in the interval analysis framework, and
will not be computed but bracketed. We, thus, consider

functions , , and such that

Processing of and are akin. Hence, we will
only deal with the former one in the sequel when both are to be
addressed.

The interval analysis based global optimization algorithm
yields , and a point such that

The overall precision of the procedure (i.e.,
and, as a consequence, ) is user-controlled.

B. Initialization Step

The goal of the initialization step is to give quickly a relevant
upper bound of , so that the refinement step may proceed.
Particular points in will be picked and the corresponding
Jacobians considered, possibly giving upper bounds on .
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Let and be the Jacobian at as an affine
function of . It should be noticed that may not be uniquely
defined if lies at the border between two (or more) different

boxes.
It is straightforward that since the vector
to be updated is the output of a previous updating scheme

fulfilling the bounding condition on the Jacobian. Moreover, we
have

Relation holds as well. It should
be noticed that both arguments may simultaneously not exist.
This is for example the case if the slope of is positive and

infinite.
Particular points of have to be considered. We chose

the eight vertices of each of the eight boxes.

C. Refinement Step

The current guess for the bracketing of is refined
by scanning and on each of the eight boxes
according to the following algorithm.

Refinement step for the computation of
Purpose: tight bracketing of .
Initialization: , from the ini-
tialization step.
Method:
loop on see remark 1 below
if (acknowledge )
make proposal starting with

update
end if
if (acknowledge )
make proposal starting with

update
end if
end loop on .
Output:

as its current value;
as the infimum of all intermediate

proposals on .

Remark 1: Particular attention is paid to the box which de-
termines the initial guess: This box will be processed first and
not considered for acknowledgment (i.e., proposals will system-
atically be made). The goal is to make sure that will not
eventually be given a vanishing value and to reduce the com-
putational burden: The odds are good that processing the other
boxes will merely amount to going through the acknowledgment
phase, hence avoiding the global optimization process which is
time consuming.

Subprocedures: The algorithm is based on the following pro-
cedures. 1) Acknowledgment: Acknowledging for a current
value must guarantee that . This
condition is fulfilled if we have , which is the
condition that will be checked. The condition has only to be
checked for since it is necessarily true for and
since is concave. 2) Proposal: is bracketed, with an
initial guess according to the iterative algorithm depicted
in Fig. 12. 3) Updating : This means taking the infimum value
between the current value and the proposal.

Output: The output of the algorithm is an interval bracketing
. The lower bound will be considered for the minimization

of energy .
Remark 2: The convergence of the procedure bracketing

toward its solution is guaranteed by the concavity of (see
Fig. 12). Convergence of the interval analysis algorithm (i.e.,
bracketing for a given ) is guaranteed since each
box is split into a finite number of subboxes ( is of finite
size and is split into subboxes which have a size larger than a
user-defined limit).

APPENDIX III
OVERVIEW OF INTERVAL ANALYSIS

The goal of interval analysis techniques is to devise algo-
rithms addressing for example global optimization problems,
the resolution of systems of equations, or the characterization
of sets defined by inequalities.

The main tools are basic operations based on intervals (pos-
sibly intervals in , which are called boxes) such as union,
intersection, addition, product, inverse, inclusion functions and
contractors. These techniques are convenient for problems of
small dimensionality only (typically, up to 10) because of a
rapidly growing computational burden.

In this section, we shortly describe some of the basic tools
and the global optimization algorithm we used. We focus on
polynomial cost functions which are the functions at hand. The
reader is referred to [20], [23] for additional details.

A. Inclusion Functions

Let , being a box of the type
, and (no-

tations are taken from [23]). An inclusion function on is
such that

In other words, an inclusion function on is a function
yielding an interval containing the image of by . We require
the inclusion functions to be convergent: When shrinks to a
point, must shrink to a point as well.

Let us consider the example of a polynomial on
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Fig. 12. Bracketing of � . The affine function � is the Jacobian at the point P (� ) as a function of �. The lower bound � is updated (i.e., let �  �

(� ) ) if J ((� ) ) > J ; the upper bound � is updated if J ((� ) ) < J . Iterations proceed until convergence (see Appendix III-C).

For the case at hand, i.e., a polynomial defined on a box , we
make a change of variable of the type , which yields
a polynomial . A possible choice for an inclusion function is

where is the indicator function with values in {0, 1}. This is
the inclusion function we used. There are many other possible
choices for inclusion functions [23].

B. Contractors

A contractor is an algorithm replacing a box by a smaller
box still containing the solution of the problem. We con-
sidered the following contractor, among other possible choices.

Let us consider the variable . The gradient component
is an affine function (in the particular case of first-de-

gree splines used here) of whose coefficients are polynomials
in that may be bracketed using inclusion functions.
This yields , where and

(see Fig. 13).
For , . Hence, no minimum

can be attained in the box
and may be updated with . Likewise, can be
updated with . The same scheme applies to
The procedure is repeated about ten times in a row.

C. Global Optimization

The branching algorithm achieving global optimization han-
dles two lists of boxes [23, “OPTIMIZE” algorithm, p. 119].

Fig. 13. Bracketing the gradient of f .

is a working list of boxes to be processed, in turn, is a list
of small size boxes, each of them possibly enclosing the global
minimum of the cost function, is an upper bound of the global
minimum ( is updated as the algorithm proceeds). As an ini-
tialization, contains the initial box to be scanned, is empty
and .

To process the list (iterate while is not empty).

• Pop a box from .
• Run a local optimization algorithm on
yielding and .
• Let .
• Split the box into subboxes (see Ap-
pendix III-D) and with each of those sub-
boxes:
– contract the box;
– compute the inclusion function on the
box;
– throw the box away if the lower bound
is larger than ;
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– push the subbox in if the box is
smaller than a user-defined size;
– if the subbox is still there, push it
in .

Processing the list amounts to computing an inclusion func-
tion on each (small–sized) box and eventually deriving an in-
terval bracketing and a point such that ,
being equal to the upper bound on .

D. Miscellaneous

In this section, we detail some particular options we took with
a view to reducing the computation time.

1) The local iterative optimization algorithm retained is of
Gauss–Seidel type. Each variable is updated in turn till
convergence. This is easy and fast, since the polynomials
defining the Jacobian are quadratic in each variable.

2) Each local minimum reached using this procedure is en-
closed in a subbox of minimal (user-defined) size and the
larger box containing it is splitted along the subbox’s hy-
perplanes (the larger box may be split into up to 27 sub-
boxes).

3) We used only one type of inclusion function. It is more
efficient to compute the bounds on the Jacobian on a box
roughly (and fast) and to bisect more often than to com-
pute more precise bounds and deal with less subboxes
(this is due to the reduced dimensionality of the problem).

4) Reducing the size of the boxes (contraction) is very im-
portant regarding computation time.
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