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ABSTRACT

An important part of statistical data analysis is hypothesis testing. For example, we know
the probability distribution of the characteristics corresponding to a certain disease, we have
the values of the characteristics describing a patient, and we must make a conclusion whether
this patient has this disease. Traditional hypothesis testing techniques are based on the
assumption that we know the exact values of the characteristic(s) x describing a patient. In
practice, the value ex comes from measurements and is, thus, only known with uncertainty:ex 6= x. In many practical situations, we only know the upper bound ∆ on the (absolute value

of the) measurement error ∆x
def
= ex − x. In such situation, after the measurement, the only

information that we have about the (unknown) value x of this characteristic is that x belongs
to the interval [ex−∆, ex + ∆].

In this paper, we overview different approaches on how to test a hypothesis under such interval
uncertainty. This overview is based on a general approach to decision making under interval
uncertainty, approach developed by the 2007 Nobelist L. Hurwicz.
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1. Formulation of the problem

Statistical hypothesis testing is important. An important part of statistical
data analysis is hypothesis testing.

Examples. For example, we know the probability distribution of the character-
istics corresponding to a certain disease, we have the values of the characteristics
describing a patient, and we must make a conclusion whether this patient has this
disease.

Another example is when we want to check whether a newly proposed treatment
is effective against a disease. In this case, we have a distribution corresponding to
un-treated patients, and we want to check whether the values corresponding to the
treated patients fit within the same distribution.
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Traditional approach to statistical hypothesis testing. Traditional hypoth-
esis testing techniques are based on the assumption that we know the exact values
of the characteristic(s) x describing a tested object. These techniques will be briefly
described in the following text.

Need to take measurement uncertainty into account. In practice, the value
x̃ comes from measurements and are, thus, only known with uncertainty: x̃ 6= x.
In other words, there is usually non-zero measurement error ∆x

def= x̃− x; see, e.g.,
[15].

It is therefore desirable to take into account the measurement error when testing
statistical hypotheses.

Case of probabilistic uncertainty. Traditional approach to handling measure-
ment uncertainty in science and engineering is to assume that we know the exact
probability distribution of the measurement errors. Usually, we assume that the
measurement errors are normally distributed, with 0 mean and known standard
deviation σ.

Statistical hypothesis testing techniques have been extended to situations in
which we have such a probabilistic information about measurement uncertainty.
This extension will also be briefly discussed in the following text.

Case of interval uncertainty: description. In many practical situations, we
do not know the probabilities of different values of measurement error ∆x. Instead,
we only know the upper bound ∆ on the (absolute value of the) measurement error
∆x.

In such situation, after the measurement, the only information that we have
about the (unknown) value x of this characteristic is that x belongs to the interval
[x̃−∆, x̃ + ∆].

It is therefore desirable to extend the existing statistical hypothesis testing tech-
niques to such interval situations.

Case of interval uncertainty: what is known and what we do in this pa-
per. There exist several approaches to statistical hypothesis testing under interval
uncertainty; see, e.g., [1, 3, 4, 6, 10, 12, 13] and references therein. Some of these
approaches are formally derived from reasonable assumptions, others are based on
semi-heuristic ideas.

In this paper, we provide a general overview of these approaches. We show that
all these approaches can be formally justified within a general approach to decision
making under interval uncertainty, approach developed by the 2007 Nobelist L.
Hurwicz [7].
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Comment 1. Our emphasis is on the foundations of the corresponding approaches.
Readers interested in the corresponding algorithms should consult the corresponding
papers.

Comment 2. Many of the above papers go beyond interval uncertainty, to the more
general case of fuzzy uncertainty, when we can have different intervals x correspond-
ing to different degrees of confidence.

On the methodological level, once we know how to process interval uncertainty,
we can also process fuzzy uncertainty – by processing the corresponding intervals
level-by-level. Of course, algorithmically, this may not be the best approach. How-
ever, as we have mentioned, our main objective is to concentrate on the foundational
issues. In view of this objective, in this paper, we will only concentrate on interval
uncertainty, and we refer readers interesting in the fuzzy algorithms to the corre-
sponding papers.

2. Statistical hypothesis testing: formulation of the problem

Hypothesis testing: a practical problem. In many practical situations, we
need to check whether a given object satisfies a given property. For example, based
on the results of medical test(s), we needs to decide whether a person is healthy
or has a certain disease which requires treatment. Another example is that, based
on the test results, we must decide whether a mechanical system (e.g., a bridge) is
stable and ready-to-use, etc.

The tested “object” may be more complicated than a single person or a single
bridge. For example, when we check how efficient is a given treatment for a disease,
we may want to consider the whole group of patients who undertook this treatment
as a single object

The property that is normally satisfied is called a null hypothesis H0. In medical
testing, a null hypothesis is that a person is healthy, and that the treatment is no
effective. In engineering testing, a hull hypothesis is that the tested structure is
stable.

Statistical approach to hypothesis testing: main idea. To be able to check
whether a given object satisfies the hull hypothesis, we collect the data about the
objects which are known to satisfy this hypothesis. Based on this data, we find the
probability distribution of the measured characteristic(s) for all the objects which
satisfy the hypothesis H0.

For each tested object with value(s) x of these characteristics, we thus get a
probability (density) that this x satisfies the null hypothesis. If this probability is
reasonably high, then we conclude that for this object the null hypothesis holds: a
person is healthy, a bridge is stable, etc. If this probability is low, then we conclude



Kreinovich et al. 4

that the null hypothesis does not hold – and the alternative hypothesis holds: a
person is not healthy, the bridge is not stable, etc.

In order to translate this somewhat informal idea about hypothesis testing deci-
sions into a precise criterion, let us recall how general decisions can be described.

3. Decision making: general approach

Decision making: general idea. It is known (see, e.g., [8, 11, 16]) that a rea-
sonable description of human decision making comes from the utility theory.

Specifically, we need to select between one of several decisions d1, . . . , dk.

Simplest case: when we know the exact consequences of each decision.
In situations in which we know the exact situations resulting from each of these
decisions, we can simply compare these situations and decide which of them we
prefer.

General case. In practice, often, we can only predict the probabilities of different
situations.

Example. For example, suppose that, based on the body temperature, we must
make a decision on whether a person has a certain fever-inducing disease (and thus,
whether we should start an appropriate treatment – or maybe whether we should
perform further tests).

If the temperature is high enough (e.g., 38.5), then it is reasonable to conclude
that this person has a disease. In this case, if we make a decision that this person
has a disease, we improve this person’s health; on the other hand, if we decide not
to classify this person as sick, his or her disease may worsen.

However, medium temperatures are not that definite: a person with a tempera-
ture of 37.2 is most probably healthy, but this person may also have a starting stage
of the disease.

• If we classify the person as sick and he or she is sick, we improve this person’s
health.

• On the other hand, if we classify the person as sick and in reality the person is
healthy, we may unnecessarily damage his or her health by possible side effects
of the (unnecessary) treatment.

We can determine the probabilities of different situations. Based on the
past observations, we can determine the probabilities of different situations under
different decisions. Let s1, . . . , sn denote possible situations, and let pij denote the
probability that the decision di leads to a situation sj . How can we describe the
overall effect of each decision di?



5 Hypothesis Testing: Interval Uncertainty

Utility theory approach. To describe the overall effect of a decision, let us select
two special situations:

• We select a very beneficial situation S1 which is better than all the situations
sj ; for example, as S1, we can select the situation in which I win a million
dollars.

• We also select a very bad situation S0, a situation which is worse than all the
situations s1, . . . , sn.

(In the following text, we will see that the resulting selection of the best decision
does not depend on our choice of these situations.)

For every probability p from the interval [0, 1], we can consider a “lottery” L(p)
in which the situation S1 occurs with probability p and the situation S0 occurs with
the remaining probability 1− p.

When p = 1, we get L(1) = S1. When p = 0, we get L(0) = S0. When p
continuously increases, the benefit of the lottery L(p) continuously increases, from
S0 to S1. Since every situation sj is in between S0 and S1, we thus conclude that
there exists a probability uj for which sj is equivalent to the lottery L(uj). This
value uj is called the utility of the situation sj .

How the effect of each decision is described in utility theory. Now, each
decision di leads:

• to s1 with probability pi1,

• . . . ,

• to sn with probability pin.

Since:

• s1 is equivalent to a lottery L(u1),

• . . . ,

• sn is equivalent to a lottery L(un),

the consequences of the decision di are equivalent to a composite lottery L in which:

• with probability pi1, we get a lottery L(u1),

• . . . ,

• with probability pin, we get a lottery L(un).
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In each of the lotteries L(uj), the outcomes are S0 and S1. So, in our composite
lottery L, we also get either S1 or S0. Due to the formula of full probability, the
probability of having S1 in the composite lottery L is equal to

Ei
def= pi1 · u1 + . . . + pin · un.

Thus, each decision di is equivalent to a lottery L(Ei) in which Ei is equal to the

expected value Ei =
n∑

j=1
pij · uj of the utility. This value Ei is called the expected

utility of the decision di.

How to select the best decision. Now, the consequences of a decision di are
equivalent to the appropriate lottery L(Ei). Lotteries L(u) are easy to compare:
the larger the probability u of the favorable situation S1, the better. Thus, we must
select the decision di with the largest value of expected utility Ei.

Comment. The numerical value of the utility depends on the choice of the events
S0 and S1. One can easily check that if we replace these events with another pair
S′0 and S′1, then the new values of utility u′j are related to the old ones uj by a
linear transformation u′j = a · uj + b for some constants a > 0 and b. A similar
relation occurs between expected utilities. Thus, as expected, the selection of the
best decision does not depend on the choice of the events S0 and S1,

In view of this re-scaling possibility, it is reasonable to consider utilities not only
as taking values from the interval [0, 1], but as attaining all possible real values.

4. Decision making approach to statistical hypothesis testing

How the general decision making approach relates to statistical hypoth-
esis testing. To apply the traditional decision making approach, we must know:

• all the probabilities, and

• all the utility values.

Probabilities. Let us first describe all related probabilities.

• Let π0 be the probability that a randomly selected object satisfies the hypoth-
esis H0.

• Then, π1 = 1− π0 is the probability that a randomly selected object satisfies
the alternative hypothesis H1.
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Let ρ0(x) be the probability density of x for the objects which satisfy the null
hypothesis H0, and let ρ1(x) be the probability density of x for the objects which
satisfy the hypothesis H1.

In this case, for a given x, the probability p0(x) def= P (H0 |x) that an object with
this value satisfies the null hypothesis can be determined by using the Bayes formula

p0(x) =
P (x |H0) · P0(H0)

P (x |H0) · P0(H0) + P (x |H1) · P1(H1)
=

ρ0(x) · π0

ρ0(x) · π0 + ρ1(x) · π1
.

The probability p1(x) = P (H1 |x) that an object with the value x satisfies the
alternative hypothesis can be determined as

p1(x) = 1− p0(x) =
ρ1(x) · π1

ρ0(x) · π0 + ρ1(x) · π1
.

Utilities. Let us now describe possible situations and their utilities. In the case
of hypothesis testing, there are 2 possible original situations:

• the situation when the null hypothesis holds, and

• the situation when the null hypothesis does not hold (and thus, the alternative
hypothesis holds).

Each of these original situations generates two possible situations:

• when we decide that the null hypothesis H0 holds, and

• when we decide that the alternative hypothesis H1 holds.

We therefore have 4 possible situations. Let us use the following notations for the
utilities of these situations:

• By u00, we will denote the utility of the situation in which the object actu-
ally satisfies the null hypothesis H0, and we (correctly) classify this object as
satisfying the null hypothesis H0.

• By u01, we will denote the utility of the situation in which the object actually
satisfies the null hypothesis H0, and we (incorrectly) classify this object as
satisfying the alternative hypothesis H1.

• By u10, we will denote the utility of the situation in which the object actually
satisfies the alternative hypothesis H1, and we (incorrectly) classify this object
as satisfying the null hypothesis H0.

• By u11, we will denote the utility of the situation in which the object actually
satisfies the alternative hypothesis H1, and we (correctly) classify this object
as satisfying the alternative hypothesis H1.

Usually, correct classification is better that the incorrect one, so u00 > u01 and
u11 > u10.
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From the general decision theory formulas to statistical decision making.
Once we know the measured value x, we can make two possible decisions:

• We can make the decision d0 that the object satisfies the null hypothesis H0.

• We can also make the decision d1 that the object satisfies the alternative
hypothesis H1.

We know that the object satisfies the null hypothesis H0 with probability p0(x) and
satisfies the alternative hypothesis H1 with the probability p1(x) = 1−p0(x). Thus,
the expected utility E0 of the decision d0 is equal to

E0 = p0(x) · u00 + p1(x) · u10,

and the expected utility of the decision d1 is equal to

E1 = p0(x) · u01 + p1(x) · u11.

In accordance with the general idea of decision making, we select the deci-
sion with the largest value of expected utility. In other words, we select the null-
hypothesis when E0 ≥ E1, i.e., when

p0(x) · u00 + p1(x) · u01 ≥ p0(x) · u01 + p1(x) · u11.

Since u00 > u01 and u11 > u10, we can move the term proportional to u01 to the
left-hand side and the term proportional to p10 to the right-hand side and come up
with an equivalent inequality

p0(x) · (u00 − u01) ≥ p1(x) · (u11 − u10).

Since p1(x) > 0 (it is a probability) and u00 − u01 > 0, we can divide both sides of
this inequality by p1(x) and by u00 − u01 and conclude that

p0(x)
p1(x)

≥ u11 − u10

u00 − u01
.

Substituting the Bayes expressions for p0(x) and p1(x) into this formula, we conclude
that

ρ0(x) · p0

ρ1(x) · p1
≥ u11 − u10

u00 − u01
,

i.e., that

ρ0(x)
ρ1(x)

≥ r0,

where r0
def=

u11 − u10

u00 − u01
· p1

p0
.

Thus, we arrive at the following criterion:
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Statistical hypothesis testing: resulting criterion. There exists a threshold
r0 – depending on the probabilities of different hypotheses and on the utilities of
different situations – for which:

• we select the null hypothesis H0 if the ratio
ρ0(x)
ρ1(x)

exceeds this threshold r0,

and

• we select the alternative hypothesis H1 if the ratio
ρ0(x)
ρ1(x)

is below this threshold
r0.

In statistical hypothesis testing, this criterion is known as the Neyman-Pearson
criterion.

5. Towards traditional statistical approach to hypothesis testing

From the general decision making approach to the traditional statistical
approach to hypothesis testing. Up to now, we discussed the general case of
statistical hypothesis testing, when in principle, both hypotheses H0 and H1 can be
equally frequent.

In practice, we mostly encounter situations in which most objects satisfy the
null hypothesis H0. In such situations, as we will see, statistical hypothesis testing
can be simplified. This simplified case is, in effect, what is usually described as the
traditional statistical approach to hypothesis testing; see, e.g., [17].

Let us describe how in this case, the general decision making approach leads to
the known statistical hypothesis testing formulas.

Type I and type II errors: reminder. As we have mentioned, there are two
possible errors in decision making:

• It is possible that the object satisfies the null hypothesis H0, but we erroneously
classify it as satisfying the alternative hypothesis H1. In statistical hypothesis
testing, such an error is called false positive, or type I error.

• It is also possible that the object satisfies the alternative hypothesis H1, but
we erroneously classify it as satisfying the null hypothesis H0. In statistical
hypothesis testing, such an error is called false negative, or type II error.

Situations when type I errors are prevailing: general description. In many
practical situations, the overwhelming majority of objects satisfy the null hypothesis.
In such situations, the effect of type I errors is overwhelming.
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Medical example. Let us give a typical example. Suppose that we want to detect
a (reasonably rare) disease which is curable if caught early. Usually, there is an easy-
to-implement (and reasonably cheap) procedure that provides a rough check of this
disease.

If the results of this rough check are suspicious – i.e., if we classify the patient
as (probably) satisfying the alternative hypothesis H1 – then we can apply a more
detailed test to check whether indeed a person has this disease.

For example, every woman over a certain age is recommended to regularly take a
mammogram test. If anything suspicious is found on a mammogram, she is advised
to take more complex, more expensive, and more time consuming tests such as
ultrasound testing etc.

These more sophisticated tests provide a much more reliable test of the disease.
In the ideal world, if we want to have a 100% reliable detection of the tested dis-
ease, we should apply this more sophisticated test to everyone. However, this more
sophisticated test is usually much more expensive and therefore, realistically, we
cannot afford to apply this test to everybody. Since we are operating within a given
overall budget, we can thus deduce a portion p of the population to which we can
afford to apply the more sophisticated test. This portion can be, e.g., 5%, 1%, 0.1%.

Since we consider the case when the number of objects satisfying the null hypoth-
esis H0 is prevailing, the actual portion of the objects which satisfy the alternative
hypothesis H1 is much smaller than p. Thus, the fact that we can only afford to
check p-th portion of the population means that the probability of type I error
cannot exceed p.

This probability should not be made smaller than p – because then we miss
a portion of the population for which we could afford secondary (more expensive)
testing.

Medical example: conclusion. Thus, we conclude that we should select the test
in such a way that out of the population which satisfies the null hypothesis, exactly
the p-th portion is classified as satisfying the alternative hypothesis H1.

Engineering example. The above simple argument can be repeated for engi-
neering testing. For example, to test a mechanical structure such as a bridge or an
airplane, we can perform some easy-to-implement (comparatively) inexpensive tests
to make sure that everything is OK with this structure. If something suspicious is
detected – i.e., if, based on this general test, we classify this object as satisfying the
alternative hypothesis – we then have a chance to apply a more expensive (and more
time-consuming) test to get a more reliable picture of the structure’s safety.

In the ideal world, we should apply this more sophisticated test to all the struc-
tures, but in reality, we cannot afford it. For example, a Space Shuttle undergoes
extensive (and expensive) tests every time it flies. As a result, the Space Shuttle is
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reasonably safe – but every flight costs millions and billions of dollars. We cannot
afford such detailed testing every time a normal passenger airplane flies.

Therefore, based on the available budget, we must limit detailed tests to a certain
proportion p of the planes.

General conclusion. In situations in which the objects satisfying the null hy-
pothesis are prevailing,

• we determine the value p (based on the budget restrictions), and

• we design a criterion for distinguishing between the null hypothesis H0 and
the alternative hypothesis H1 in such a way that for objects satisfying the null
hypothesis H0, the probability of misclassifying them as H1 is exactly p.

Observation: in this formulation, we do not need to have a detailed
information about H1. In the general decision making approach, we needed
to know:

• the utilities uij of different situations,

• the probabilities π0 and π1 of satisfying hypotheses H0 and H1, and

• the probability densities ρ0(x) and ρ1(x) corresponding to the two hypotheses.

In the case when the objects satisfying the null hypothesis are prevailing, we do
not now need to know the utilities uij , the probabilities π0 and π1, or the probability
density ρ1(x) corresponding to the alternative hypothesis. In this case, we only need
to know the probability density corresponding to the null hypothesis.

Since we do not need to have any detailed information about the alternative
hypothesis H1, we can simply describe it as a negation of H0. For example:

• If the null hypothesis H0 means that a person is healthy, then H1 means that
a person is not healthy.

• If the null hypothesis H0 means that a mechanical structure is stable, then the
alternative hypothesis H1 simply means that this structure is not stable.

This is exactly the situation which is considered in the traditional statistical hy-
pothesis testing.

Traditional statistical approach to hypothesis testing: a general descrip-
tion. In the traditional statistical approach to hypothesis testing, we formulate a
single hypothesis – a null hypothesis H0. For this hypothesis, we know the probabil-
ity density ρ0(x) of the population of all the objects which satisfy this hypothesis.
We are also given the required probability p of the type I error.

We then select a hypothesis testing criterion in which the probability of the type
I error is exactly p.
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Important practical case: unimodal distributions. In many practical situ-
ations, the actual distribution is normal (Gaussian) – or close to normal, e.g., uni-
modal; see, e.g., [17]. It is therefore reasonable to consider the statistical hypothesis
testing situations in which the distribution ρ0(x) is unimodal (e.g., Gaussian).

This is the main case considered in the traditional statistical hypothesis testing.
In the following text, we will therefore mainly concentrate on this case; the main
ideas can be naturally extended to a more general case.

One-sided situations. In most practical situations, the intuitive notion of ab-
normality is one-sided. For example, suppose that to screen for certain diseases, we
measure the pulse rate, the blood pressure, and/or the cholesterol level of different
feeling-well people – to make sure that we catch any sign of possible heart diseases
early. If a person has a blood pressure or cholesterol level smaller than average –
there is nothing wrong with that, this person may be in very good physical health.
On the other hand, if one of these characteristics is much higher than average, then
this is a reason to be worried.

In principle, there exist two-sided situations, but since most practical cases in-
volve one-sided situations, these are the situations on which we will concentrate in
this paper.

In one-sided situations, all the values below the mode of H0 should be classifies
as satisfying the null hypothesis. Sine the distribution corresponding to the null
hypothesis is unimodal, the further we go above the mode, the smaller the probability
that the corresponding object satisfies the null hypothesis H0. So, if we classify a
value x as belonging to H1, then every larger value – with an even smaller probability
of the null hypothesis – should also be classified as H1. Thus, a reasonable idea is
to set up a threshold t such that:

• all the values x below t are classified as H0 (“normal”); and

• all the values x above t are classified as H1 (“abnormal”, “outliers”).

In other words, we divide the real line – the set of all possible values of x – into two
zones:

• the “accept” zone A = (−∞, t) in which the null hypothesis H0 is accepted,
and

• the “reject” zone R = (t,∞) in which the null hypothesis H0 is rejected (and
thus, the alternative hypothesis H1 is accepted).

The value of the threshold t can be uniquely determined from the condition that for
objects satisfying the hypothesis H0, the probability of rejection is exactly equal to
p:

∫∞
t ρ0(x) dx = p.
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Example: normal distribution. To illustrate this idea, let us consider the case
when for the “normal” objects (i.e., objects which satisfy the null hypothesis), the
distribution of the measured quantity x is Gaussian, with mean a and standard
deviations σ.

We know that for the Gaussian distribution:

• the probability of being outside the “two sigma” interval [a − 2σ, a + 2σ] is
approximately 10%, and

• the probability to be outside the “three sigma” interval [a − 3σ, a + 3σ] is
approximately 0.1%.

Since Gaussian distribution is symmetric:

• the probability of exceeding a + 2σ is exactly half of the probability to be
outside the interval [a− 2σ, a + 2σ] – i.e., ≈ 5%, and

• the probability of exceeding a + 3σ is exactly half of the probability to be
outside the interval [a− 3σ, a + 3σ] – i.e., ≈ 0.05%.

Thus:

• for p ≈ 5%, the corresponding threshold is t = a + 2σ;

• for p ≈ 0.05%, the corresponding threshold is t = a + 3σ.

In this case, if x < t, we classify the object as normal (= accept the null hypothesis),
and if x > t, we classify the object as abnormal (i.e., reject the null hypothesis).

Need to take into account measurement uncertainty. The above criterion
works well if we know the exact value x of the measured quantity.

In practice, measurements are never absolutely accurate. As a result, instead of
the exact value x, we only know the measurement result x̃ which is only approx-
imately equal to x. Based on this approximate value x̃, how can we then make a
statistical decision?

What is known. This problem was actively researched for the situation in which
we know the probabilities of different values of measurement error ∆x = x̃−x. There
have also been several papers in which statistical hypothesis testing was extended to
the interval case when we only know the upper bound ∆ on the measurement error.

In the following sections, we will overview these results.
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6. Statistical hypothesis testing under probabilistic uncertainty

Probabilistic uncertainty: a brief description. In this section, we describe
how statistical hypothesis testing criteria should be modified if, instead of the know-
ing the exact value x of the desired quantity, we only know this value with proba-
bilistic uncertainty. In precise terms, we only know the measurement result x̃, and
we know the probability distribution of the measurement error ∆x = x̃− x.

Traditionally in science and engineering, it is assumed that this measurement
error is normally distributed, with 0 mean and known standard deviation σm. This
is the case on which we will concentrate in this paper.

How to modify traditional statistical hypothesis testing technique under
probabilistic uncertainty: main idea. Let us start with the simplest case of
traditional statistical hypothesis testing.

In the traditional approach to statistical hypothesis testing, we assume that
large values of x indicate abnormality. Thus, similar to the above description, a
reasonable idea is to select a threshold t and classify an object as normal if x̃ < t
and as abnormal if x̃ > t.

First seemingly natural idea: let us select the same threshold as before.
At first glance, it may sound reasonable to select the same threshold as before. For
example, for p = 5%, we select t = a + 2σ.

However, as we will see, this is not always a good idea.

Analysis of the situation. As we have discussed, the threshold t must be selected
in such a way that for “normal” objects, the probability of misclassification is exactly
p. In other words, the probability that the measured value x̃ satisfies the inequality
x̃ > t must be equal to p.

Thus, to find the corresponding threshold t, we must find out the probability
distribution for the measured values x̃ corresponding to normal objects.

We know that for normal objects, the actual value x is normally distributed
with mean a and standard deviation σ. The measured value x̃ differs from x by
the measurement error: x̃ = x + ∆x. We know that the measurement error ∆x is
also normally distributed, with 0 mean and standard deviation σm. It is also usually
assumed that the measurement error is independent on the measured quantity. Thus,
the measured value x̃ = x + ∆x is the sum of two independent normally distributed
random variables.

It is known that such a sum is also normally distribution, with the mean equal
to the sum of the corresponding means and the variance equal to the sum of the
corresponding variances. Thus, we conclude that the measured values x̃ are normally
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distributed with mean a and standard deviation
√

σ2 + σ2
m. So, we arrive at the

following conclusion.

Resulting criterion.

• For p ≈ 5%, the corresponding threshold is t = a + 2 ·
√

σ2 + σ2
m.

• For p ≈ 0.05%, the corresponding threshold is t = a + 3 ·
√

σ2 + σ2
m.

Comment. By comparing these formulas with the formulas corresponding to the
exact values (σm = 0), we see that the threshold changes when we take measurement
uncertainty into account.

If we keep the same threshold value as before, then the probability of exceeding
the threshold will become higher than p – so, the above seemingly natural idea does
not work.

More complex situations. We described the main idea on a simple example.
A more detailed description of how hypothesis testing should be changed under
probabilistic measurement uncertainty can be found, e.g., in [2, 5, 18].

7. Statistical hypothesis testing under probabilistic uncertainty: pre-
liminary analysis of the problem

Interval uncertainty: a brief reminder. In many practical situations, we do
not know the probabilities of different values of the measurement error ∆x = x̃− x.
In many such situations, we only know the upper bound ∆ on the (absolute value of
the) measurement error. In this case, after the measurement, the only information
that we have about the (unknown) actual value x is that x belongs to the interval
x = [x, x], where x = x̃−∆ and x = x̃ + ∆.

Hypothesis testing under interval uncertainty: a problem. If we only know
x with such interval uncertainty, then how shall we classify the corresponding object?

Let us start with a simple case of hypothesis testing, when we classify an object
as normal or abnormal by comparing the value x characterizing this object with a
threshold t.

If we knew the value x exactly, then we could classify the object

• as normal if x < t and

• as abnormal if x > t.

Under interval uncertainty, we do not know the exact value x, we only know the
interval [x, x] which is guaranteed to contain x.
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Cases when classification is easy. There are two cases when classification under
interval uncertainty is easy:

• If x < t, this means that all possible values of x from the interval [x, x] belong
to the accept set. In this case, we know that the corresponding object is
normal.

• If t < x, this means that all possible values of x from the interval [x, x] belong
to the reject set. In this case, we know that the corresponding object is
abnormal.

Case when classification is difficult. The difficult remaining case is when some
values from the interval x are below the threshold t, and some values are above the
threshold, i.e., when the threshold is inside the interval x.

How do we then classify an object?

Possible solution: withhold decision. A possible solution is to withhold de-
cision, i.e., to say that based on the measurement result, we do not have enough
information to accept or to reject the null hypothesis.

In many practical situations, this idea makes perfect sense; see, e.g., [4]. However,
in other practical situations, we do need to make a decision: e.g., we need to decide
whether to further test a patient or whether to further test a mechanical structure.
How shall we make this decision?

Interval uncertainty is more difficult to handle than a probabilistic one.
In the case of probabilistic uncertainty, we modified the traditional statistical ap-
proach to hypothesis testing. This was possible because this approach is based on
the requirement that the probability of type I error is equal to a given value p.
When we know the probability distribution of measurement error, we can still find
the probability of type I error.

In the case of interval uncertainty, however, we do not know the probabilities of
different values of the measurement error. As a result, we do not know the exact
probability of type I error, we only know that this probability is somewhere within
the corresponding interval. Thus, we cannot make definite decision based on the
assumption that the probability of type I error is equal to p.

Since we cannot easily modify the traditional approach to the statistical decision
making, we have to go back to the more general (and more complex) decision making
situation.

General decision making approach to statistical hypothesis testing: a
brief reminder. In the general decision making approach, we consider two pos-
sible decisions: a decision d0 to proclaim the object normal, and a decision d1 to
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proclaim the object abnormal. For a given value x, we compute the expected utilities
E0 and E1 of these decisions as

E0 = p0(x) ·u00 +p1(x) ·u10 = p0(x) ·u00 +(1−p0(x)) ·u10 = p0(x) · (u00−u10)+u10

and

E1 = p0(x) ·u01 +p1(x) ·u11 = p0(x) ·u01 +(1−p0(x)) ·u11 = p0(x) · (u01−u11)+u11,

where

p0(x) =
p0 · ρ0(x)

p0 · ρ0(x) + p1 · ρ1(x)
=

1

1 +
ρ1(x)
ρ0(x)

· p1

p0

.

Then, we select a decision with the largest value of the expected utility.

Decision making about hypotheses under interval uncertainty. If we know
the exact value of x, then:

• we can find the exact value of the Neyman-Pearson ratio r
def=

ρ0(x)
ρ1(x)

;

• based on this ratio r, we can find the exact value of p0(x);

• and finally, based on the value p0(x), we find the exact values of the expected
utilities E0 and E1.

Under interval uncertainty, we only know an interval [x, x] of possible values of x.
Thus:

• we can only find the range [r, r] of possible values of the ratio r;

• based on this range, we can find the range [p
0
, p0] of possible values of p0(x);

• and finally, based on the range of values for p0(x), we can find the ranges
[E0, E0] and [E1, E1] of possible values of the expected utilities E0 and E1.

Let us derive the explicit formulas for these ranges.

First step: range of the Neyman-Pearson ratio. Let us first find the range

of possible values of the ratio r =
ρ0(x)
ρ1(x)

. Since we only know that x ∈ [x, x], we can

thus conclude that this range is equal to [r, r], where

r = min
x∈[x,x]

ρ0(x)
ρ1(x)

; r = max
x∈[x,x]

ρ0(x)
ρ1(x)

.

A reasonable case is when ρ0(x) is a unimodal distribution, and ρ1(x) is also a
unimodal distributions. In this case:
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• values below the mode of ρ0(x) should be clearly classified as normal,

• values above the mode of ρ1(x) should be clearly classified as abnormal, and

• the only values which need to be classified are the values between these two
modes.

In between these two modes, the density ρ0(x) is decreasing (since the distribution
ρ0(x) is unimodal), the density function ρ1(x) is increasing, and thus, the ratio

r =
ρ0(x)
ρ1(x)

is decreasing. So, in this case,

• The ratio r of the two probability densities attains its smallest value r on the
interval [x, x] when the value of x is the largest possible, i.e., when x = x.

• Similarly, the ratio r attains its largest value r on the interval [x, x] when the
value of x is the smallest possible, i.e., when x = x.

In other words, in this case,

r =
ρ0(x)
ρ1(x)

; r =
ρ0(x)
ρ1(x)

.

Second step: range of the Bayesian probability p0(x). Based on r, we com-
pute p0(x) as

p0(x) =
1

1 +
1
r
· p1

p0

.

When r increases, the ratio
1
r

decreases, hence the denominator decreases and thus,

the ratio p0(x) increases. Thus:

• The smallest value p
0

of p0(x) is attained when r is the smallest, i.e., when
r = r.

• The largest value p
0

of p0(x) is attained when r is the largest, i.e., when r = r.

In other words,

p
0

=
1

1 +
1
r
· π1

π0

p0 =
1

1 +
1
r
· π1

π0

.
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Final step: ranges of the expected utilities. Finally, let us find the ranges of
possible values of E0 and E1. We know that E0 = p0(x) · (u00 − u10) + u10. Since
correct classification is more beneficial, we conclude that u00 > u10 and thus, E0 is
an increasing function of p0(x). Hence,

E0 = p
0
· (u00 − u10) + u10

and

E0 = p0 · (u00 − u10) + u10.

Similarly, we know that E1 = p0(x) · (u01 − u11) + u11. Since the correct classi-
fication is more beneficial, we conclude that u11 > u01 and thus, E1 is a decreasing
function of p0(x). Hence,

E1 = p0 · (u01 − u11) + u11

and

E1 = p
0
· (u01 − u11) + u11.

How to make a decision under interval uncertainty? Up to now, we only
considered decision making for situations when we know the exact values of the
expected utility. To test statistical hypotheses under interval uncertainty, we must
therefore figure out how, in general, we can make decisions under interval uncertainty
– i.e., how to make decisions in situations in which we only know the interval of
possible values of expected utility.

This general problem was solved in the early 1950s by L. Hurwicz [7, 11], who
received a 2007 Nobel prize in economics for this research. So, before applying his
results to statistical hypothesis testing, let us briefly recall the main idea behind
Hurwicz’s approach.

8. Decision making under interval uncertainty: Hurwicz approach

Formulation of the problem. Let us assume that for some situation s, we do
not know the exact value of its utility u, we only know the interval [u, u] of possible
values of this utility. How can we then make decisions based on this interval?

Main idea underlying utility theory: a brief reminder. As we have men-
tioned, the main idea behind utility theory is that to gauge the quality of each
situation, we compare it with “lotteries” L(p) – characterized by exactly known
probability values p. In these terns, a situation with a utility u is a situation which
is equivalent to a lottery L(u).
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How this general idea can be applied to decision making under interval
uncertainty. In line with this general idea, to gauge the quality of a situation
described by an interval [u, u], we should find a lottery L(u) which is (in some
reasonable sense) equivalent to this situation. In other words, for each interval
[u, u], we must find a utility value u which is (in some reasonable sense) equivalent
to this interval.

Up to now, the problem sounds similar to the classical utility theory. The main
difference is that in the classical utility theory, we ask the decision maker to tell
us what is the probability u for which the given situation s is equivalent to the
lottery L(u). For the case of an interval-valued utility, the decision maker clearly is
unable to narrow down this interval to a single value. Thus, to find a value which is
equivalent to an interval, we can no longer rely on the decision maker: we have to
find this value ourselves.

Idea: invariance. Our objective is to develop a mapping e(u, u) that maps every
interval [u, u] into a single equivalent value u = e(u, u). What properties should this
mapping have?

As we have mentioned, the numerical values of the utility depend on the choice
of the two basic situations S0 and S1. Different choices of these two situations lead
to different scales for representing utility. Different scales u(s) and u′(s) are related
to each other by linear transformations u′(s) = a · u(s) + b for some a > 0 and b.

It is therefore reasonable to require that the desired mapping does not change
under such re-scalings. Let us formulate this property in precise terms. Suppose
that we start in the original scale. In this case, we have the interval [u, u]. Based
on this interval, we find the equivalent value u = e(u, u).

Suppose now that we use a different scale to represent the same situation, a scale
which is related to the original one by a linear transformation u′(s) = a · u(s) + b.
In this new scale, the endpoints u and u of the interval take new numerical values
u′ = a · u + b and u′ = a · u + b. When we apply the combination function e to these
new values u′ and u′, we get an equivalent value u′ = e(u′, u′), i.e.,

u′ = e(a · u + b, a · u + b).

It is reasonable to require that this new value represent the exact same equivalent
utility u as before, but expressed in the new scale, i.e., that u′ = a · u + b for
u = e(u, u).

Substituting the expressions u′ = e(a · u + b, a · u + b) and u = e(u, u) into the
formula u′ = a · u + b, we conclude that for every u < u, a > 0, and b, we have

e(a · u + b, a · u + b) = a · e(u, u) + b.

Let us show that this natural invariance condition leads to a very specific expression
for the combination function u.
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Consequences of invariance. Let us pick one possible interval, e.g., an interval
[0, 1]. This means that the actual utility of a situation is somewhere between 0 and
1.

Let us denote the utility value e(0, 1) equivalent to this interval by α. From
the common sense viewpoint, this value cannot be negative – since every possible
value u ∈ [0, 1] is greater than any negative number. Similarly, this equivalent value
cannot be larger than 1. Thus, we must have α ∈ [0, 1].

Let [u−, u+] be an arbitrary non-degenerate interval. One can easily check that
this interval can be obtained from the interval [0, 1] by an appropriate linear re-
scaling: namely, from the conditions that [a · 0 + b, a · 1 + b] = [u−, u+] we conclude
that a · 0 + b = b = u−. Then, from a · 1 + b = a + b = u+, we conclude that
a = u+−b = u+−u−. For the resulting values u = 0, u = 1, a = u+−u−, and b = u−,
the above invariance implies that e(u−, u+) = (u+ − u−) · α + u−. By combining
terms proportional to u− and to u+, we conclude that u = α ·u+ +(1−α) ·u−. This
is exactly the formula derived by L. Hurwicz. So, we arrive at the following solution
to the problem of decision making under uncertainty:

Decision making under uncertainty: Hurwicz solution. When we only know
an interval [u, u] of possible values of utility corresponding to a given situation (or a
given decision), then we characterize this situation (decision) by a single equivalent
utility value

u = α · u + (1− α) · u,

and we select a decision for which the equivalent value u is the largest.

How do we select α: Hurwicz interpretation. The above approach requires
that we fix the value of the parameter α. This parameter must be selected in such
a way as to best represent the user’s preferences. To help with this selection, L.
Hurwicz provided the following reasonable interpretation of this parameter.

Let us recall that in case of the interval uncertainty, we do not know the exact
value of the utility characterizing each decision, we only know the interval [u, u] of
possible values characterized by this utility.

• In the most optimistic case, we get the largest possible value u of this utility.

• In the most pessimistic case, we get the smallest possible value u of this utility.

• In reality, we will most probably get some value which is strictly between u
and u.

It turns out that these cases are directly related to the choice of the parameter α:

• When α = 1, this means the equivalent utility value is equal to u = u. In
other words, we judge each decision by it most optimistic outcome.
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• When α = 1, this means the equivalent utility value is equal to u = u. In
other words, we judge each decision by it most pessimistic outcome.

• When 0 < α < 1, this means the equivalent utility value u is strictly in between
the pessimistic value u and the optimistic value u.

In view of this relation, the general Hurwicz criterion for decision making under
interval uncertainty is also called optimism-pessimism criterion – because to make
a decision, it uses a linear combination of the optimistic and pessimistic estimates.

Geometric interpretation of Hurwicz criterion. An interesting geometric
interpretation of Hurwicz criterion is described in [9, 12, 13].

Let us assume that we want to check whether a given situation characterized by
the utility interval u = [u, u] is better or worse than a standard one, with the utility
value u0. In terms of hypothesis testing, we can say that we have a null hypothesis
that the standard situation (characterized by the value u0) is better.

When the utility interval is degenerate, i.e., when [u, u] = [u, u] and a given
situation is characterized by the exact value u of the utility, then the answer to this
question is straightforward:

• When the value u belongs to the “accept” set A
def= (−∞, u0], then we accept

the hypothesis – and thus claim that the standard situation u0 is better than
the given one.

• When the value u belongs to the “reject” set R
def= (u0,∞), then we reject the

hypothesis – and thus claim that the standard situation u0 is worse than the
given one u.

What happens in the non-degenerate case, when u < u? When the entire utility
interval is inside the accept set A, then we accept the null hypothesis; when the entire
interval is inside the reject set, then we reject the null hypothesis. The problem is
when the interval contains points both from the accept set and from the reject set.

A reasonable idea is to find out what proportion of the interval u is in the accept

set, i.e., to estimate the ratio r
def=

|u ∩A|
|u| , where |u| denotes the width of the

interval u.

• If this ratio is sufficiently high – i.e., if it exceeds a certain threshold r0 – then
we accept the hypothesis.

• If this ratio is too small – i.e., if it is below a threshold r0 – then we reject the
hypothesis.
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Let us show that this reasonable idea is indeed equivalent to the Hurwicz criterion.
Indeed, here |u| = |[u, u]| = u− u. Also, u∩A = [u, u0], hence |u∩A| = u0− u and

r =
u0 − u

u− u
. Thus, the condition r ≥ r0 is equivalent to u0 − u ≥ r0 · (u − u), i.e.,

to u0 ≥ r0 · u + (1− r0) · u. Thus, according to this reasonable idea, we accept the
hypothesis if u0 ≥ u, where the “equivalent utility” u of the interval [u, u] is equal
to r0 · u + (1 − r0) · u. One can see that this is exactly the Hurwicz criterion, with
the optimism-pessimism coefficient equal to r0.

A similar idea is to find out what proportion of the interval is in the reject set,

i.e., to estimate the ratio r
def=

|u ∩R|
|u|

• If this ratio is sufficiently low – i.e., if it is does not exceed a certain threshold
r0 – then we accept the hypothesis.

• If this ratio is sufficiently high – i.e., if it is exceeds a threshold r0 – then we
reject the hypothesis.

One can check that this idea is also equivalent to the Hurwicz criterion – with
α = 1− r0.

9. Statistical hypothesis testing under interval uncertainty: applica-
tions of Hurwicz approach

Let us show how the Hurwicz approach to decision making under interval uncer-
tainty can help in statistical hypothesis testing.

General case. In the general case, for each of the two possible decisions d0 and
d1, we have intervals [E0, E0] and [E1, E1] of possible values of the corresponding
expected utility. In accordance withe the general Hurwicz approach, we select the
null hypothesis is

α · E0 + (1− α) · E0 > α · E1 + (1− α) · E1,

i.e., if

(α · p0 + (1− α) · p
0
) · (u00 − u10) + u10 > (α · p

0
+ (1− α) · p0) · (u01 − u11) + u11,

where

p
0

=
1

1 +
1
r
· π1

π0

; p1 =
1

1 +
1
r
· π1

π0

; r =
ρ0(x)
ρ1(x)

; r =
ρ0(x)
ρ1(x)

.

This is the interval version of the Neyman-Pearson criterion.
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Extreme cases. Let us consider the extreme cases α = 1 (optimism) and α = 0
(pessimism).

Optimism case. In the optimism case, when α = 1, we make decisions based on
the best-case scenario. In this case, we select the null hypothesis when

p0 · (u00 − u10) + u10 > p
0
· (u01 − u11) + u11.

Pessimism case. In the pessimism case, when α = 0, we make decisions based
on the worst-case scenario. In this case, we select the null hypothesis when

p
0
· (u00 − u10) + u10 > p0 · (u01 − u11) + u11.

Case corresponding to the traditional statistical approach: reminder.
Let us describe how the above criterion can be simplified in the cases corresponding
to the traditional statistical approach.

When we know the exact value x, then the classification depends on whether the
probability for a normal object to exceed x is smaller than or great then the given
fraction p. This probability is equal to

∫∞
x ρ0(t) dt and is can therefore be described

in terms of the cumulative distribution function F0(x) def=
∫ x
−∞ ρ(t) dt, as 1− F0(x).

Thus:

• If 1 − F0(x) > p, then we cannot classify x as abnormal, because then, we
would have to classify all objects exceeding x as abnormal, and the resulting
expenses for additional checking would be too high. So, in this case, we classify
the object x as normal.

• If 1 − F0(x) ≤ p, then we can afford checking this object and all the objects
with higher value x, so we can afford to classify this object as abnormal.

These probabilities can be translated into benefits (utility values). If we classify
an object with the value x as abnormal, this means that all the objects for which
the value is x or higher will be thoroughly checked. The benefit of doing this is
proportional to the number of objects who will be thus checked, i.e., to 1−F0(x). If
the resulting benefit (utility) does not exceed p, we can afford to perform all these
checks. If the benefit exceeds p, this means that we cannot afford so much checking
– and thus, we have to classify the object as normal.

How to generalize the traditional statistical approach to the case of inter-
val uncertainty. In case of interval uncertainty, we do not know the exact value
x, we only know an interval [x, x] which contains x. Different values x from this
interval leads to different utility values 1−F0(x). When x increases, the probability
1− F0(x) of exceeding x decreases. Thus:
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• the largest possible value of 1− F0(x) corresponds to the smallest possible x,
i.e., to x = x, and

• the smallest possible value of 1− F0(x) corresponds to the largest possible x,
i.e., to x = x.

So, the interval [u, u] of possible values of utility u is proportional to

[1− F0(x), 1− F0(x)].

According to the Hurwicz criterion, this interval is equivalent to the utility value
u for which u = α · (1− F0(x)) + (1− α) · (1− F0(x)), i.e., u = 1− (α · F0(x) + (1−
α) · F0(x)). Thus, we select the null hypothesis if u ≤ p, and we reject it if u > p.

So, we arrive at the following criterion:

Resulting criterion for statistical hypothesis testing under interval un-
certainty. Suppose that we have a one-sided statistical hypothesis testing situ-
ation. Suppose also that the probability distribution of objects which satisfy the
null hypothesis H0 is described by a probability density function ρ0(x) and by the
cumulative distribution function F0(x). Suppose also that we have an object for
which we do not know the exact value of the quantity x, we only know the range
[x, x] of possible values of this quantity.

Suppose also that we describe the user’s decision making by an optimism-pessimism
value α ∈ [0, 1], and that desired type I error is p. In this case:

• we accept the null hypothesis if 1− (α · F0(x) + (1− α) · F0(x)) ≤ p, and

• we reject the null hypothesis if 1− (α · F0(x) + (1− α) · F0(x)) > p.

Extreme cases. Let us consider the extreme cases α = 1 (optimism) and α = 0
(pessimism).

Optimism case. In the optimism case α = 1, we make our decision based on the
value x:

• we accept the null hypothesis if 1− F0(x) ≤ p, and

• we reject the null hypothesis if 1− F0(x) > p.

Pessimism case. In the optimism case α = 0, we make our decision based on the
value x:

• we accept the null hypothesis if 1− F0(x) ≤ p, and

• we reject the null hypothesis if 1− F0(x) > p.
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In the pessimism case, we are making a decision in such a way as to guarantee that
for all possible values x from the interval [x, x], the probability of exceeding x is p
or smaller; see, e.g., [1].

10. Case when we also know distributions with interval uncertainty

Motivations. In the previous text, we assumed that we only know the value x
(characterizing a given object) with interval uncertainty, but that the probabilities of
normal and abnormal populations are known exactly. In practice, these probabilities
also come from measurements and estimates and are, thus, also only know with
uncertainty.

Let us therefore consider the case when, in addition to knowing x with interval
uncertainty, we also know the probabilities with interval uncertainty.

Traditional statistical approach to hypothesis testing: case of interval un-
certainty. Let us start with the simplest case of the traditional statistical approach
to hypothesis testing. In this approach, we assume that we know the cumulative
distribution function (cdf) F0(x). Interval uncertainty means that instead of the
exact values of the cdf, for each x, we only know the bounds [F 0(x), F 0(x)] on the
cdf. Such an interval-valued cdf is known as a probability box, or p-box, for short.

In general, the benefit of accepting x (and larger values) is proportional to 1−
F0(x), where F0(x) is an increasing function. In our case, we also know that x ∈
[x, x], and that F0(x) ∈ [F 0(x), F 0(x)]. Thus, the smallest possible value of the
utility is attained:

• when x attains the largest possible value, and

• when F0(x) attains the largest possible value.

So, u = 1−F 0(x). Similarly, the largest possible value u of the corresponding utility
is attained:

• when x attains the smallest possible value, and

• when F0(x) attains the smallest possible value.

So, u = 1− F 0(x).
Thus, the interval [u, u] of possible values of utility u is proportional to

[1− F 0(x), 1− F 0(x)].

According to the Hurwicz criterion, this interval is equivalent to the utility value
u for which u = α·(1−F 0(x))+(1−α)·(1−F 0(x)), i.e., to 1−(α·F 0(x)+(1−α)·F 0(x).
Thus, we select the null hypothesis if u ≤ p, and we reject it if u > p.

So, we arrive at the following criterion:



27 Hypothesis Testing: Interval Uncertainty

Resulting criterion for statistical hypothesis testing under interval uncer-
tainty. Suppose that we have a one-sided statistical hypothesis testing situation.
Suppose that we known the bounds [F 0(x), F 0(x)] on the (unknown) cumulative
distribution function which characterizes all objects that satisfy the null hypothesis
H0. Suppose that we have an object for which we do not know the exact value of
the quantity x, we only know the range [x, x] of possible values of this quantity.

Suppose also that we describe the user’s decision making by an optimism-pessimism
value α ∈ [0, 1], and that desired type I error is p. In this case:

• we accept the null hypothesis if 1− (α · F 0(x) + (1− α) · F 0(x)) ≤ p, and

• we reject the null hypothesis if 1− (α · F 0(x) + (1− α) · F 0(x)) > p.

Extreme cases. Let us consider the extreme cases α = 1 (optimism) and α = 0
(pessimism).

Optimism case. In the optimism case α = 1, we make our decision based on the
values x and F 0(x):

• we accept the null hypothesis if 1− F 0(x) ≤ p, and

• we reject the null hypothesis if 1− F 0(x) > p.

Pessimism case. In the optimism case α = 0, we make our decision based on the
values x and F 0(x):

• we accept the null hypothesis if 1− F 0(x) ≤ p, and

• we reject the null hypothesis if 1− F 0(x) > p.

In the pessimism case, we are making a decision in such a way as to guarantee that
for all possible values x from the interval [x, x] and for all possible cdfs F0(x) ∈
[F 0(x), F 0(x)], the probability of exceeding x is p or smaller.

General case. In the general case, the uncertainty comes from not know the exact
value of the expression

p0(x) =
1

1 +
1
r
· π1

π0

,

where r
def=

ρ0(x)
ρ1(x)

. In the previous text, we assumed that we the only uncertainty

is in x; in other words, we assume that instead of the exact value x, we only the
interval [x, x] of possible values of x. In addition to this, instead od knowing the
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exact values of the probabilities π0, π1, p0(x), and p1(x), we only know the intervals
[π0, π0], [π1, π1], [p

0
(x), p0(x)], and [p

1
(x), p1(x)] containing these values. In this

case, we have

p
0

=
1

1 +
1
r
· π1

π0

; p0 =
1

1 +
1
r
· π1

π0

,

where – under the previous assumption that ρ0(x) increases with x and ρ1(x) de-
creases with x – we conclude that

r =
ρ
0
(x)

ρ1(x)
; r =

ρ0(x)
ρ
1
(x)

.

11. A similar problem in which we actually observe interval ranges

A general problem that we considered so far: brief reminder. The main
objective of this paper is to overview different approaches to hypothesis testing under
interval uncertainty. Up to now, we considered the situations in which the quantity
used in the classification has the exact value. For example, a patient has a certain
count of white blood cells.

Case of interval uncertainty that we considered so far. Traditional hypoth-
esis testing deals with the cases in which we know the exact value of this quantity.
In the above text, we considered situations in which we do not know the exact value
x of the quantity, we only know the interval x = [x, x] of possible values of this
quantity. Based on this interval, we need to make a decision.

Another case of interval data. In practice, there are other types of situations
in which we only observe intervals. Namely,

• so far, we assumed that the quantity has the exact value, and the interval
uncertainty comes from the fact that we do not know this exact value;

• in many practical situations, the quantity does not have the exact value, it
changes and it has a range of possible values.

Such situations are typical in many medical measurements. For example, such fre-
quently used characteristics as the pulse rate, the body temperature, the blood
pressure do not have the exact value: they change from moment to moment, they
change during the day, they change from one activity to another, they simply change
because of the stress of being in a doctor’s office. It is therefore not reliable to use
a single measured value of such a characteristic to make a medical diagnosis. A
more reliable way is to measure, e.g., blood pressure throughout the day, and to
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report the corresponding range of the values – i.e., the interval [x, x] formed by the
corresponding measurement results.

This case when we actually observe the actual interval range of a changing quan-
tity is different from the above case – when observe an interval that contains the
actual (unknown) value of the un-changing quantity.

Hypothesis testing in situations in which we observe the actual ranges:
formulation of the problem. In such situations, we have the following problem:

• based on the previous observations, we know the probability distribution of
the intervals corresponding to the test hypothesis – and maybe the probability
distribution of the intervals corresponding to the alternative hypothesis;

• we then observe an interval [x, x] corresponding to the tested object;

• based on this interval, we must decide whether the object satisfies the tested
hypothesis.

Hypothesis testing in situations in which we observe the actual ranges:
how to solve this problem. The above problem is, in effect, the standard sta-
tistical testing problem. The only difference from the simplified version of statistical
testing that we considered earlier is that in that version, we had only one observed
quantity x, while here, in effect, we have two observed quantities: x and x.

In effect, instead of 1-D random variable x, we now have a 2-D random variable
(x, x). Thus, instead of 1-D distribution(s) and 1-D observations, here we have 2-
D distribution(s) and 2-D observations. We can still use the standard statistical
techniques to handle this situation; see, e.g., [3, 6].

Comment. In our description, we characterized an interval [x, x] as a pair (x, x) of
its endpoints. From the purely computational viewpoint, this makes perfect sense,
because in the computer, the natural way to represent the interval [x, x] is by de-
scribing its lower endpoint x and its upper endpoint x.

However, from the viewpoint of understanding, an interval [x, x] is the set of
all possible values – and it is thus different from a pair of its endpoints. From this
viewpoint, we have a distribution of sets, and based on a new observation set, we need
to check whether the observed set belongs to this distribution. Thus reformulated
problem becomes a particular case of problems related to random sets; see, e.g., [14].

Need to combine two types of interval uncertainty. The above case is mainly
developed for situations in which we know the exact range [x, x] [3, 6]. In practice,
the range comes from measurement, and measurements are never 100% accurate.
As a result, the measured values are, in general, different from the actual values of
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the measured quantity – and hence, the range estimation based on these measured
values is, in general, different from the actual range.

If we knew the exact values x1, . . . , xn, then we could simply compute the end-
points of the range as x = min(x1, . . . , xn) and x = max(x1, . . . , xn). If we measure
the values xi with an accuracy ε > 0, then instead of the actual (unknown) values
x1, . . . , xn we get the measurement results x̃1, . . . , x̃n for which |x̃i−xi| ≤ ε for all i.
Based on these measurement results, we compute the estimates x̃ = min(x̃1, . . . , x̃n)
and x̃ = max(x̃1, . . . , x̃n).

From |x̃i − xi| ≤ ε, we conclude that |x̃− x| ≤ ε and |x̃− x| ≤ ε. Thus, we only
know both endpoints with uncertainty ε.

In set terms, we can say that instead of the exact range interval x = [x, x], we
only know an interval x̃ = [x̃, x̃] for which the Hausdorff distance dH(x, x̃) ≤ ε, i.e.,
for which

[x̃ + ε, x̃− ε] ⊆ [x, x] ⊆ [x̃− ε, x̃ + ε].

Combining two types of interval uncertainty: a problem. So, we arrive at
the following problem:

• based on the previous observations, we know the probability distribution of
the intervals corresponding to the test hypothesis – and maybe the probability
distribution of the intervals corresponding to the alternative hypothesis;

• we then observe an interval [x̃, x̃] which is ε-close to actual (unknown) range
corresponding to the tested object;

• based on this interval, we must decide whether the object satisfies the tested
hypothesis.

Combining two types of interval uncertainty: towards practically use-
ful algorithms. From the methodological viewpoint, we know how to solve this
problem: we can use, e.g., the above Hurwicz approach.

The remaining practical problem is to transform this general methodology into
efficient algorithms.
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