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Abstract. The method of least-square approximation is considered in the
situation when the input data for the dependent variable are given in the form
of intervals. For the multi-dimensional linear and for the polynomial cases algo-
rithms with result verification are reported that can also deal with interval input
data. Some open problems related to parameter estimation and curve fitting
under interval input data are formulated.

1. Introduction. The origin of the errors in the observations often lies in
the imprecision of the instruments for the experimental measurements. It may
be more convenient for an experimental scientist to read-off intervals that con-
tain with guarantee the true values of the measured quantities, than to read-off
single numeric values. The new developments in computer arithmetic [4], interval
analysis [1], [6] and numerical methods with result verification [5] should encour-
age experimental scientists to read-off interval-valued experimental data. In our
presentation we assume that the experimental measurements for the dependent
variables are provided in the form of intervals, which we shall shortly express by
saying that we are given interval input data. The case of more general set-valued
input data will not be considered here; we shall also not consider the situation
involving interval data for the independent variables.

Even if the bounds for the input data are small, it may happen that they
cause large deviations in the final results (especially by ill-conditioned problems,
and such are often least-square approximation problems). A possible way to
treat such problems is to consider corresponding ”set-valued problems”. A set-
valued problem involves set-valued input data X, X being usually a vector or
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a matrix, whose elements are compact sets like n-dimensional intervals, disks,
ellipsoids, polyhedrons, etc. In the special case when these elements are intervals
we talk about interval problems. A set-valued problem involving set-valued input
data X (e. g. X may be a set-valued vector or a set-valued vector function) is
considered as the set of problems with all possible numeric data x, such that
x ∈ X. In particular, let X be an interval (vector, function) and x be a number
(numeric vector, single-valued function), such that x ∈ X. If P (x) is the solution
of a ”numeric” problem that involves numeric input data x, then the solution of
the corresponding interval problem is (by definition) the set of solutions P (x),
whenever x ∈ X, i. e. P (X) = {P (x) : x ∈ X}. The mathematical analysis
of problems involving interval input data (that is of interval problems) is known
under the name interval analysis [1], [6]. A typical simple result from interval
analysis that we shall exploit in this paper is the following. If Yi, i = 1, 2, ..., N ,
are intervals, then {∑N

i=1 αiyi : yi ∈ Yi} =
∑N

i=1 αiYi, where in the right hand-
side well-known interval arithmetic operations for addition and multiplication are
employed [1], [6].

In the same manner we can treat errors due to the necessarily finite repre-
sentation of numeric input data (e. g. 1/3 should be represented in a base 10
floating-point system by an interval of the form [0.33...33, 0.33...34]). In such
cases we replace the numeric input data by interval data but now we may also
interfere to make these bounds as tight as we wish (using e. g. extended precision
formats, such as STC-formatting technique [8]).

Consider a situation when we are given guaranteed intervals for the obser-
vations of a stochastic variable. Such intervals may take into account some
systematic error in the experimental data due e. g. to the imprecision of the
measuring instruments. In such a situation it may be useful to apply the least-
square approximation method directly to the interval input data, obtaining thus
(as usually in interval analysis) the set of all approximations corresponding to
numeric data varying in the given intervals. In what follows we shall be con-
cerned with the following two aspects of the least square approximation method:
i) the treatment of interval input data for the dependent variable (making use
of interval-arithmetic), and ii) the treatment of round-off errors (by means of
computer arithmetic).

We first recall some well-known facts related to the least-square approximation
method under numeric data, considering the most simple linear one-dimensional
case. We shall make use of these facts in section 3, where the interval case will
be considered.
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2. The one-dimensional linear regression model for numeric input
data. As we know the coefficients a and b of the line

(1) l : η = aξ + b

that fits to the (numeric) input data (x, y), x = (x1, x2, ..., xN ) ∈ R
N , y =

(y1, y2, ..., yN ) ∈ R
N , in such a way that

∑
(axi + b − yi)2 is minimal, are deter-

mined by the normal equations

(
∑

x2
i )a + (

∑
xi)b =

∑
xiyi, (

∑
xi)a + Nb =

∑
yi,

wherein
∑

means summation from i to N . Denoting x = (
∑

xi)/N , y =
(
∑

yi)/N , and dividing the second equation by N we obtain

(2) (
∑

x2
i )a + Nxb =

∑
xiyi, xa + b = y.

The determinant of (2) will be further denoted by

Sxx =
∑

x2
i − Nx2 =

∑
(xi − x)2 > 0.

The slope a of the 1ine l is

a = (1/Sxx)(
∑

xiyi − Nxy),

which can also be written

a = (
∑

xiyi − x
∑

yi)/Sxx = (
∑

(xi − x)yi)/Sxx
def
= Sxy/Sxx.

For b we compute b = y − ax = y − (Sxy/Sxx)x, so that l obtains the form

(3) l : η = (Sxy/Sxx)(ξ − x) + y,

showing that l passes through the point (x, y).
The expression in the right hand-side of (3) can be rewritten in the form:

L : η = (Sxy/Sxx)(ξ − x) + y

= (1/Sxx)(
∑

(xi − x)yi)(ξ − x) + (
∑

yi)/N

=
∑

((xi − x)(ξ − x)/Sxx + 1/N) yi.

Thus the line (3) can be represented in the form

(4) l : η =
∑

γi(ξ) yi,

3



wherein the functions

(5) γi(ξ) = γi(x; ξ) = (xi − x)(ξ − x)/Sxx + 1/N, i = 1, 2, ..., N,

depend only on x and not on y.
Since γi is linear, it may have at most one zero. If xi = x, then γi = 1/N > 0.

If x �= x, then γi(ξ) has a slope (xi − x)/Sxx, such that

(xi − x)/Sxx

{
< 0, xi < x,
> 0, xi > x.

Let xi < x for i = 1, 2, ..., j and xi > x for i = j + 1, ..., N . Denoting by ξi the
zero of the linear function γi(ξ), i. e.

γi(ξi) = (xi − x)(ξi − x)/Sxx + 1/N = 0, i = 1, ..., N,

we have

(6) ξi = x + Sxx/(N(x − xi)), i = 1, ..., N.

The ordering of the xi’s with respect to x imply corresponding ordering of ξi’s.
Namely, if x lies between the knots xj and xj+1, then we have

x1 < x2 < ... < xj < x < xj+1 < ... < xN

=⇒ ξj+1 < ξj+2 < ... < ξN < x < ξ1 < ξ2 < ...ξj−1 < ξj.

These relations remain true also for xj = x, providing that in this case ξj is
understood as ∞, so that we can write

x1 < x2 < x3 < ... < xj ≤ x < xj+1 < ... < xN(7)
=⇒ ξj+1 < ξj+2 < ... < ξN < x < ξ1 < ξ2 < ... < ξj−1 < ξj .

We shall adopt the notations Dk, k = 0, 1, ..., N , for the intervals with end-points
ξi as follows:

Dj+1 = (−∞, ξj+1], Dj+2 = [ξj+1, ξj+2], ..., DN = [ξN−1, ξN ],
D0 = [ξN , ξ1], D1 = [ξ1, ξ2], ..., Dj−1 = [ξj−1, ξj], Dj = [ξj ,∞].

Let us now compute the sign of γi(ξ) in the interval Dk. In the “central interval”
D0 = [ξN , ξ1] all γi(ξ), i = l, 2, ..., N , have positive signs. In the remaining
intervals we have
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i) to the right of D0, that is for ξ ∈ Dk, 1 ≤ k ≤ j:

sign γi(ξ) =
{ −, i = 1, ..., k,

+, i = k + 1, ..., N

}
= sign (i − k − 1/2), i = 1, ..., N ;(8)

ii) to the left of D0, that is for ξ ∈ Dk, j + 1 ≤ k ≤ N :

sign γi(ξ) =
{

+, i = 1, ..., k,
−, i = k + 1, ..., N

}
= sign (k − i − 1/2), i = 1, ..., N.(9)

3. Least square approximation under interval input data. Let us now
consider the least square approximation method in the situation when interval-
valued experimental data are provided for the true values yi, i = l, 2, ....N , of the
dependent variable y.

Suppose we are given an N -dimensional vector (x1, x2, ..., xN ) = x ∈ R
N , such

that x1 < x2 < ... < xN and an N -dimensional interval vector (Y1, Y2, ..., YN ) =
Y ∈ IR

N (IR
N stands for the set of all N -dimensional interval vectors). Let

y ∈ R
N be such that y ∈ Y , and l(x, y) be the regression line (3) generated

by the input data (x, y). Denote by L the family of all regression lines l(x, y)
generated by the input data x, y, whenever the numeric vector y = (y1, y2, ..., yN )
varies in the interval vector Y = (Y1, Y2, ..., YN ), that is the set

(10) L = L(x, Y ) = {l(x, y) : y ∈ Y }.

Denote by L(ξ) = L(x, Y ; ξ) the intersection of the set L by the vertical line
through ξ. We thus define a set-valued (interval-valued) function which we shall
denote again by L. We shall thus use the same notation L both for the set of
regression lines (10) and for the corresponding set-valued function; we hope that
no confusion occurs because of this.

PROBLEM. Compute a (best possible) inclusion for the interval-valued func-
tion L.

SOLUTION. We shall first compute a (rough) inclusion for L.
According to (3) the line l(x, y) generated by the data x, y is the line passing

through the point m = (x, y) and having as slope a = a(x, y) = Sxy/Sxx =
(
∑

(xi − x)yi)/Sxx. As yi vary in Yi, i = 1, 2, ..., N , the point m = (x,N−1
∑

yi)
varies in some segment (x, Y ) and the slope a varies in some interval A. Using
interval arithmetic we obtain

Y = (1/N)
∑

Yi, A = A(x, Y ) = (
∑

(xi − x)Yi)/Sxx = SxY /Sxx.
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The sets A and Y are both obtained from the variation of the y’s and are
therefore inter-related. If we consider these sets as independent, we may construct
the following simple interval “linear” function

L̂ = {a(ξ − x) + y : a ∈ A, y ∈ Y } = A(ξ − x) + Y ,

which contains L, e. g. L(ξ) ⊆ L̂(ξ), ξ ∈ R. However, since the parameters a
and y are inter-related L̂ will only provide (rough) bounds for L.

We shall now compute the exact interval value of L at the point ξ. To this
end we shall make use of representation (4) for l, that is η =

∑
γi(ξ)yi. Using

again interval arithmetic we obtain for a fixed ξ

L(ξ) =
{∑

γi(ξ)yi : y ∈ Y
}

=
∑

γi(ξ)Yi

=
[∑

γi(ξ)y
−sign γi(ξ)
i ,

∑
γi(ξ)y

sign γi(ξ)
i

]
(11)

= [l−(ξ), l+(ξ)],

where, according to (5)

γi(ξ) = (xi − x)(ξ − x)/Sxx + 1/N, i = 1, 2, ..., N.

In formula (11) the end-points of the intervals Y are denoted by y−i ≤ y+
i ,

so that Y = [y−i , y+
i ], i = 1, 2, ..., N ; also sign γi(ξ) means “+”, if γi(ξ) ≥ 0,

and “−”, if γi(ξ) < 0; y−−
i means y+

i (right end-point) and y−+
i means y−i (left

end-point). Formula (11) shows that for every ξ, the set L(ξ) is an interval, so
that the set-valued function L may be considered as an interval function.

Denoting γ(ξ) = (γ1(ξ), γ2(ξ), ..., γN (ξ)) we may rewrite (11) in the form of
an interval vector inner product

L(ξ) = L(x, Y ; ξ) = {l(x, Y ; ξ) : y ∈ Y } =
∑

γi(ξ)Yi = γ(ξ)Y.(12)

We thus see that by means of interval arithmetic the interval function L(ξ) is
expressed in the simple form L(ξ) =

∑
γi(ξ)Yi = γ(ξ)Y . This can be easily pro-

grammed within a program system providing interval and computer arithmetic
operations, which means that the boundary functions l−(ξ), l+(ξ) of the interval
function L(ξ) can be easily computed. However, it is interesting to know what
these functions look like, that is what is the geometrical meaning of the expres-
sions (11)–(12) for L(ξ).

4. On the geometrical meaning of the expression L(ξ) = γ(ξ)Y and
its computation. To see the geometrical meaning of the expression for L(ξ) we
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have to know the signs of γi(ξ). As we saw in section 2 these signs are constant in
each of the intervals Dj+1,Dj+2, ...,DN ,D0,D1, ...,Dj−1,Dj , but may be different
for different intervals Dk according to formulas (8)–(9).

Using (8)–(9) we see that in every fixed interval Dk the boundaries l−, l+ of
the set L are segments of regression lines corresponding to certain end-points of
the input intervals Y1, Y2, ..., Yn. Thus, in the “central” interval D0 the boundary
regression line l+ is generated by the set of all right end-points of Y1, Y2, ..., Yn and
the boundary line l− is generated by the set of all left end-points of Y1, Y2, ..., Yn,
that is

L(ξ) = [l−(ξ), l+(ξ)] = [
∑

γi(ξ)y−i ,
∑

γi(ξ)y+
i ].

We may also compute the width w of L in D0. We have

w(L(ξ)) =
∑

|γi(ξ)|w(Yi) =
∑

γi(ξ)(y+
i − y−i ) =

∑
γi(ξ)y+

i −
∑

γi(ξ)y−i .

Let us compute the width of L on the whole real line under the additional
assumption that the intervals Yi have a constant width W . Then we have

w(L(ξ)) =
∑

|γi(ξ)|w(Yi) = W
∑

|γi(ξ)|
= W

∑
|(1/Sxx)(xi − x)(ξ − x) + 1/N |

≤ W (1/Sxx)|ξ − x|(1 +
∑

|xi − x|) = W + W (1/Sxx)|ξ − x|
∑

|xi − x|.
From the above formula we see that the equality relation is reached in the in-

terval D0. Indeed, using that all γi are nonnegative in D0 and the relation
∑

(xi−
x) = 0, we obtain

∑
|γi(ξ)| =

∑
γi(ξ) =

∑
(xi − x)(ξ − x)/Sxx + 1/N =

∑
1/N = 1, ξ ∈ D0.

It is easy to see that the width of L(ξ) increases as we move ξ away from x.
For the midpoint µ(L) of the interval L(ξ) we have

µ(L(ξ)) = µ(L(x, Y ; ξ) =
∑

γi(x; ξ)µ(Yi),

showing that the midpoint always lies on the regression line generated by the
midpoints of the interval input data Yi.

Let us compute the slope of L(ξ) in the most outer intervals Dj and Dj+1.
In the right-most interval Dj we have

L(ξ) =
[∑

γi(ξ)y
− sign γi(ξ)
i ,

∑
γi(ξ)y

sign γi(ξ)
i

]

=
[∑

γi(ξ)y
− sign (i−j−1/2)
i ,

∑
γi(ξ)y

sign (i−j−1/2)
i

]
.
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Replacing the expression for γi we obtain that the slope of L(ξ) in Dj is
[∑

(1/Sxx)(xi − x)y−sign (i−j−1/2)
i ,

∑
(1/Sxx)(xi − x)ysign (i−j−1/2)

i

]
.

For the left-most interval Dj+1 we obtain the same expression. On the other side,
the slope A(x, Y ) of the interval line

L̂(ξ) = A(x, Y )(ξ − x) + Y

is given by

A(x, Y ) = {a(x, y) : y ∈ Y }
=

{∑
(1/Sxx)(xi − x)yi : yi ∈ Yi

}

=
∑

(1/Sxx)(xi − x)Yi

=
[∑

(1/Sxx)(xi − x)y−sign (xi−x)
i ,

∑
(1/Sxx)(xi − x)ysign (xi−x)

i

]
.

This shows that the slope of L̂ coincides with the slope of L in the most outer
intervals. Taking into account that both L and L̂ contain the segment (x, Y ) we
obtain sufficient information about the geometrical disposition of L̂ with respect
to L.

An algorithm with result verification [5] for the evaluation of the interval-
valued function (12) at a fixed point ξ is straightforward. We first compute
highly accurate interval inclusions �γi(ξ) for the true values of γi(ξ). Due to
conversion errors the input intervals Yi may also have to be expanded to machine
intervals �Yi. Then the interval inner product

∑
�γi(ξ)�Yi should be computed

by means of a computer arithmetic operation for highly accurate interval inner
product [4]. Programs based on such an algorithm has been written both in
PASCAL-SC [3] and in FORTRAN within the program package HIFICOMP [2].

5. Multiple and polynomial regression under interval input data. A
generalization of the above considerations for the situation of a linear dependence
of a variable η on m variables ξi, i = 1, 2, ...,m, of the form

(13) η = θ0 + θ1ξ1 + θ2ξ2 + ... + θmξm

is straightforward. Assume that for the variables ξ1, ξ2, ..., ξm we are given nu-
meric data x1i, x2i, ..., xmi, i = l, ...,N , N > m and for the dependent variable η
the interval observations Yi, i = 1, 2, ..., N are given. Denote
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X =




1 x11 x21 ... xm1

1 x12 x22 ... xm2

. . . ... .
1 x1N x2N ... xmN


 , Y =




Ym1

Ym2

...
YmN


 , y =




ym1

ym2

...
ymN




and assume that y is a numeric vector, such that y ∈ Y .
Denote θ = (θ0, θ1, θ2, ..., θm)T , ξ = (1, ξ1, ξ2, ..., ξm). As we know the param-

eter θ of the hyperplane

(14) η = ξθ

of best least-square approximation of the points (xi, yi), xi = (x1i, x2i, ..., xmi),
i = 1, 2, ..., N , satisfies the linear system (XT X)θ = XT y, and if XT X is non-
singular, we may write θ = (XT X)−1(XT y), so that the hyperplane (14) can be
written in the form

(15) l : η = ξ(XT X)−1(XT y).

Following the idea of section 3 let us rewrite the above expression in the form

(16) l : η = ξ((XT X)−1XT )y = Γ(ξ)y,

where Γ(ξ) = ξ((XT X)−1XT ) is an N -dimensional vector function of the form
Γ(ξ) = (γ1(ξ), γ2(ξ), ..., γN (ξ)), such that γi(ξ) are linear functions of ξ. From
(16) we can easily obtain in interval arithmetic

(17) L = {l : y ∈ Y } = Γ(ξ)Y,

showing that the set of the hyperplanes corresponding to ail y ∈ Y can be repre-
sented by means of the simple interval arithmetic function Γ(ξ)Y .

Similarly, the parameter θ = (θ0, θ1, ..., θm)T of the regression polynomial

(18) η = θ0 + θ1ξ + θ2ξ
2 + ... + θmξm

can be obtained by formally substituting in the above formulas ξj by ξj, j =
1, ...,m, and the entries xji in the matrix X by the numbers xj

i , j = l, ...,m, i =
l, ...,N . Then again formulas (15)–(17) hold true but now Γ(ξ) = ξ((XT X)−1XT )
is an N -dimensional vector function Γ(ξ) = (γ1(ξ), γ2(ξ), ..., γN (ξ)), such that
γi(ξ) are polynomial functions of ξ of degree m.

On the base of formula (17) we can construct algorithms with result verifica-
tion for the safe and accurate computation both of the set of all regression hyper
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planes (13) and of the set of all regression polynomials (18) in the same manner
as described at the end of the previous section for the computation of the set of
all regression lines (10) by means of (12).

Another approach to the polynomial regression problem under interval in-
put data is proposed in [7]. J. Rokne considers an interval-arithmetic setting of
the problem, using thereby interval orthogonal polynomials. A modification of
Rokne’s algorithm for the more general case of polynomials of many variables has
been recently proposed [9].

6. Some open problems related to curve fitting and parameter iden-
tification under interval input data. Relation to interval interpolation.
In what follows we shall formulate some problems that might be of certain prac-
tical interest.

Problem 1 (Robust parameter identification). We saw that the interval
linear function L̂(ξ) = A(x, Y )(ξ − x) + Y presents an outer approximation of
the set L. However, from practical point of view it may be more interesting to
find intervals A1 and Y1 for a and y so that the interval function A1(ξ − x) + Y1

presents an inner approximation of L in certain interval for ξ. Various criteria
for such an approximation can be used.

Least-square approximation problems under interval data can be considered
in relation to some “interpolation” properties. Consider below an interval vector
function Y (t) = (Y0(t), Y1(t), ..., YN (t)), defined for t ∈ [0, T ], such that µ(Y (t)) =
const and w(Y (t)) is an increasing function on t, such that w(Y (0)) = 0. A
simple example of such an interval vector function is a function of the form
Y (t) = Y (0)+ [−t, t], for which we have w(Y (t)) = 2t. It seems to be of practical
interest to consider the following problems.

Problem 2. Find the smallest t such that the set-valued function Lt =
L(x, Y (t); ξ) generated by Y (t) has a nonempty intersection with the intervals
Y (t). Find the smallest t such that Lt contains an element l (linear, polynomial
function), that interpolates the intervals Yi, (that is l passes through the intervals
Yi).

We shall further denote by p(x, Y ) the set of all interpolating polynomials
{p(x, y) : y ∈ Y }, where p(x, y) is the interpolating polynomial for the data (x, y);
as before p(x, Y ) may also denote the corresponding interval-valued function.

Problem 3. Let the single-valued interpolation polynomial p(x, Y (0)) be a
polynomial of N -th degree but not a polynomial of (N − 1)-st degree. Compute
the smallest t such that the family of polynomials Pt = p(x, Y (t)) contains a
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single-valued polynomial p∗ of degree less than N . Compute the approximation
by p∗ to the single-valued vector (x, µ(Y (0)).

A generalization of this formulation can be considered for interval input data
whose centers are not fixed.

Problem 4. Let the set p(x, Y (t)) contain a polynomial of approximations
(N − 1)-st degree. Find the largest τ < t such that p(x, Y (τ)) does not contain
polynomials of (N − 1)-st degree.

Problem 5. Given the set of interpolating polynomials of N -th degree
P = P (x, Y ) = {p(x, y) : y ∈ Y } for x = (x0, x1, ..., xN ) and Y = (Y0, Y1, ..., YN ),
find the subset of all interpolating polynomials of (N − 1)-st degree that belong
to P.

Acknowledgments. The present research is partially supported by the
Committee of Science according to contract No. 755/1988 and by IIASA in the
frames of a contracted study agreement “Mathematical modelling of dynamical
processes”. Programs for interval least-square approximation and interval inter-
polation and tools for dynamic precision computation, written by E. Popova, N.
Dimitrova and P. Bochev, were used in the present study.

References

[1] G. Alefeld, J. Herzberger. Introduction to Interval Computations. Academic
Press, 1981.

[2] HIFICOMP - Subroutine Library for Highly Efficient and Accurate Compu-
tations (l.A066.02112-01 13). Program Description and User’s Guide, Sofia,
1987.

[3] U. Kulisch (Ed.). PASCAL-SC: A PASCAL Extension for Scientific Compu-
tation, Information Manual and Floppy Disks, Version IBM PC/AT (DOS).
Teubner, Stuttgart, 1987.

[4] U. Kulisch, W. L. Miranker. Computer Arithmetic in Theory and Practice,
Academic Press, New York, 1981.

[5] U. Kulisch, H. J. Stetter (Eds.). A New Approach to Scientific Computation.
Academic Press, New York, 1983.

[6] R. Moore. Methods and Applications of Interval Analysis. SIAM, Philadel-
phia, 1979.

11



[7] J. Rokne. Polynomial Least Square Interval Approximation. Computing 20,
165–176 (1978).

[8] H. J. Stetter. Sequential Defect Correction for High-accuracy Floating Point
Algorithms. Lecture notes in mathematics 1006, 1984, 186–202.

[9] R. Trifonov. Estimation of Interval Models Using Orthogonal Multinomials
(Lecture delivered at the 2nd Seminar on Dynamical models involving set-
valued parameters, 21-23 Oct. 1989, Varna).

12


