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Abstract. Interval-valued data offer a valuable way of representing the available informa-
tion in complex problems where uncertainty, inaccuracy or variability must be taken into
account. In addition, the combination of Interval Analysis with soft-computing methods,
such as neural networks, have shown their potential to satisfy the requirements of the deci-
sion support systems when tackling complex situations. This paper proposes and analyzes
a new model of Multilayer Perceptron based on interval arithmetic that facilitates handling
input and output interval data, but where weights and biases are single-valued and not inter-
val-valued. Two applications are considered. The first one shows an interval-valued func-
tion approximation model and the second one evaluates the prediction intervals of crisp
models fed with interval-valued input data. The approximation capabilities of the proposed
model are illustrated by means of its application to the forecasting of daily electricity price
intervals. Finally, further research issues are discussed.

Key words. feed-forward neural network, function approximation, interval analysis, interval
data, interval neural networks, symbolic data analysis, time series forecasting

Abbreviations: iMLP – interval Multilayer Perceptron; INN – Interval Neural Network;
MAPE – Mean Absolute Percentage Error; MLP – Multilayer Perceptron

1. Introduction

1.1. artificial neural networks, intervals and decision sciences

Artificial neural networks have found increasing consideration in management sci-
ence, leading to successful applications in various domains, including business and
operations research (see e.g. [1–3]), forecasting (see e.g. [4–6]), and data mining (see
e.g. [7,8]).

In decision support systems, the Multilayer Perceptron (MLP) is one of the most
popular neural network models (see e.g. [2,9]). This is due to the fact that its archi-
tecture is very clear and the algorithm is parsimonious. Successful application of
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MLP to complex problems such as pattern classification, forecasting, regression,
and nonlinear systems modelling is due to the mathematical properties of feedfor-
ward neural networks and to the computational intensive methodology [10].

On the other hand, decision support systems are usually applied to situations
where inaccuracy, uncertainty or variability must be taken into account to faithfully
represent the real world. Unfortunately, classical data sets, where a set of items is
described by variables that map each item to a single (crisp) value, cannot reflect
these nuances. In these cases, other kinds of variables, such as interval variables, are
required. Intervals allow the representation of more general situations such as the
inaccuracy of the measurement instrument, the bounds of the set of possible values
of the item, the range of variation of a variable through time or through a set of
sub-items, and so on. Two different domains deal with interval data: Symbolic Data
Analysis and Interval Analysis. They will be briefly introduced below.

1.2. symbolic data analysis

As Ward et al. point up [11], nowadays, data sets increasingly suffer from the
problem of scale, either in terms of the number of variables or the number of
records. It is often desirable to reduce the size of the data maintaining their essen-
tial features as much as possible. This reduction can be performed by manually
pruning the data set basing on some domain knowledge, or via sampling, or by
dimensionality reduction methods such as principal component analysis and mul-
tidimensional scaling, or by aggregation/summarization methods, such as clustering
or partitioning.

Symbolic Data Analysis, a new paradigm related to Statistics, Data Mining and
Computer Sciences, addresses this problem. It offers a comprehensive approach
that consists of summarization of the data set by means of symbolic variables
(e.g., interval variables), resulting in a smaller and more manageable data set
which preserves the essential information, and its subsequent analysis by means of
symbolic methods. Symbolic methods include descriptive statistics, principal com-
ponent analysis, clustering, and discrimination techniques. Bock and Diday [12]
present an excellent review of the field along with illustrative examples mainly from
official statistics. However, Billard and Diday [13] draw attention to the enormous
need of new methodologies for symbolic data.

In symbolic data, individuals are described by symbolic variables such as lists
of categorical or quantitative values with or without associated weights, intervals,
histograms and frequency distributions. These variables, in contrast to the classi-
cal approach, where only one single number or category is allowed, own a great
potential in order to characterize complex real-life situations (e.g., time-varying
patterns, class descriptions, uncertain or inaccurate data, and so on) and to sum-
marize massive data sets in an efficient way. As mentioned on above, in this paper,
we will focus on intervals.
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1.3. interval analysis

Interval analysis is a field introduced by R. E. Moore [14] which assumes that, in
the real world, observations and estimations are usually incomplete or uncertain
and, consequently, they do not represent the real data exactly. According to this
field, if precision is needed, data must be represented as intervals enclosing the real
quantities. In addition, errors in numeric computations are usually enlarged due
to rounding or truncating processes. Interval analysis provides methods to control
errors in numeric computations dealing with intervals. Since the 1960s, it has been
an active focus on research (see [15] for a review of this area). Fundamentals used
in this paper are described below.

Intervals will be denoted by an uppercase letter, e.g. A, while real numbers will
be denoted by a lowercase letters, e.g. a. In addition, vectors will be denoted
by boldfaced letters, e.g. A,a, and IR will represent the set of all intervals in
the real line. An interval can be represented by its lower and upper limits as
A= [aL, aU ], or, equivalently, by its midpoint and radius as [A] =〈aC, aR〉, where
aC = (aL +aU)/2 and aR = (aU −aL)/2.

The basis of interval computations is interval arithmetic. A preliminary form of
interval arithmetic appears in [16], but modern interval arithmetic was proposed by
Moore. Let A and B be two intervals and � be an arithmetic operator, then A�B

is the smallest interval which contains a�b ∀a ∈A and ∀b∈B. More precisely, the
addition, the subtraction and the multiplication are defined by:

A+B = [aL +bL, aU +bU ], (1)

A−B = [aL −bU , aU −bL], (2)

and

A ·B = [min{aL ·bL, aL ·bU , aU ·bL, aU ·bU }, (3a)

max{aL ·bL, aL ·bU , aU ·bL, aU ·bU }], (3b)

respectively.
Finally, if f is an increasing function, then the interval output is given by

f (A)= [f (aL), f (aU )]. (4)

The sigmoid and the hyperbolic tangent functions, which are standard activation
functions in MLP, are strictly increasing functions (i.e. they satisfy the monotonic
condition).

1.4. intervals and multilayer perceptrons

According to [17], a neural network is called interval neural network (INN) if at
least one of its input, output or weight sets are interval valued; in this subsection,
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we will review the previous INN models, specifying which sets are represented as
intervals.

Ishibuchi et al. [18] propose an INN where weights, biases and output are inter-
val valued, but input data are crisp (i.e. single-valued). They also show an appli-
cation of their model to fuzzy regression analysis. Baker and Patil [19] prove the
universal approximation theorem for this kind of INN. Due to the complexity of
the learning algorithms, Ishibuchichi et al. [18] also propose a simplified architec-
ture of their INN where the weights and biases to hidden units are restricted to
single values, which seems to fit well to the training data in the example shown.

Simoff [20] proposes an INN where inputs, weights, biases and output are inter-
val valued. Simoff analyzes the properties of the model and comments on the
explosion of interval uncertainty that results from repeated operations on interval
values. However, he does not propose a learning algorithm for this model.

Beheshti et al. [17] propose a three-layer perceptron where inputs, weights, biases
and outputs are intervals, and show how to obtain optimal weights and biases for
a given training data set by means of interval computational algorithms.

Drago and Ridella [21] propose a one-layer perceptron based on interval arith-
metic with interval weights, where input data are classical (crisp) and output
data are categorical. Their perceptron allows the detection of uncertainty regions
in classification tasks. Rossi and Conan-Guez [22] do not propose a new kind
of INN, instead they propose several approaches that allow intervals being the
inputs and the outputs of a classical MLP. For example, they propose training a
MLP with the lower interval bounds and the upper interval bounds. In another
approach, Rossi and Conan-Guez [22] consider that within intervals, values are
uniformly distributed, and they propose training a classical MLP with a set of data
sampled from each interval in the original dataset. Both approaches serve well to
work with artificial data but do not enable modelling complex real life situations.

Patiño-Escarcina et al. [23] propose a one layer perceptron for classification
tasks, where inputs, weights and biases are represented by intervals. The activa-
tion function is a binary function for interval data and the output is represented
in binary form.

In this paper, we propose and analyze an INN that will be called interval Multi-
Layer Perceptron (iMLP) for dealing with interval-valued inputs and outputs, but
where weights and biases are not interval-valued but single-valued. The iMLP
will allow us to deal with uncertainty, inaccuracy or variability in datasets (that
will be represented by intervals), but using a kind of architecture very similar to
the classical MLP, which simplifies its learning procedure, retaining its ability to
approximate non-linear interval functions.

2. Structure of the iMLP

The proposed Interval Multilayer Perceptron is basically a MLP (see [9,24]) oper-
ating on interval-valued input and output data, so both models share the same
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Figure 1. Structure of the iMLP.

structure but use different transfer functions. As in the case of the MLP, an iMLP
with n inputs and m outputs is comprised of: an input layer with n input buffer
units, one or more hidden layers with a non-fixed number of nonlinear hidden
units and one output layer with m linear or nonlinear output units. Without loss
of generality, we will restrict ourselves to one hidden layer with h hidden units and
one output (m=1). The iMLP described below is comprised of two layers of adap-
tive weights (a hidden layer and an output layer). This architecture is shown in
Figure 1.

Considering n interval-valued inputs Xi = 〈xC
i , xR

i 〉 = [xC
i − xR

i , xC
i + xR

i ], with
i =1, . . . , n, the output of the j th hidden unit is obtained by forming a weighted
linear combination of the n interval inputs and the bias. As the weights of the pro-
posed structure are crisp and not intervals, this linear combination results in a new
interval given by:

Sj =wj0 +
n∑

i=1

wjiXi =
〈
wj0 +

n∑

i=1

wjix
C
i ,

n∑

i=1

|wji |xR
i

〉
. (5)

The activation of the hidden unit j is then obtained by transforming the interval
Sj using a nonlinear activation function g(·):

Aj =g(Sj ). (6)

In this study, the tanh function is used as an activation function in the hidden
layer. As the activation function is monotonic, this transformation yields to a new
interval which can be calculated as:

Aj = tanh(Sj )= [tanh(sC
j − sR

j ), tanh(sC
j + sR

j )] (7a)

=
〈

tanh(sC
j − sR

j )+ tanh(sC
j + sR

j )

2
, (7b)

tanh(sC
j + sR

j )− tanh(sC
j − sR

j )

2

〉
. (7c)
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Finally, the output of the network, Ŷ , is obtained by transforming the activa-
tions of the hidden units using a second layer of processing units. In the case of
a single output and a linear activation function with crisp weights, the estimated
output interval is obtained as a linear combination of the activations of the hidden
layer and the bias:

Ŷ =
h∑

j=1

αjAj +α0 =
〈

h∑

j=1

αja
C
j +α0,

h∑

j=1

|αj |aR
j

〉
. (8)

The resulting model can be used in two ways:

1. As an interval-valued function approximation model, whose crisp weights can
be adjusted with a supervised learning procedure by minimizing an error
function of the form:

E = 1
p

p∑

t=1

d(Y (t), Ŷ (t))+λ�(f̂ ), (9)

where d(Y (t), Ŷ (t)) is a measure of the discrepancy between the desired and
the estimated output intervals for the tth training sample, denoted by Y (t) and
Ŷ (t), respectively; and λ�(f̂ ) is a regularization term [25] of the estimated
function f̂ (X): X→Y .

2. As an instrument to evaluate the prediction interval of a pre-adjusted crisp
MLP model subject to uncertainty on its input variables, without simulating
input values. In this context, the output range is obtained in a straightforward
manner by evaluating an iMLP with the same structure and weights of the pre-
adjusted crisp MLP model, but using interval-valued inputs for characterizing
the input uncertainty.

3. Interval-valued Function Approximation with iMLP

Let {(X(1), Y (1)), (X(2), Y (2)), . . . , (X(p), Y (p))} be p training samples which con-
sists of pairs of input–output intervals, where X(i) is an interval input vector in
IR

n, and Y (i) is its corresponding interval output value in IR. We consider that
these pairs are generated according to an unknown continuous function that maps
a crisp input vector x∈R

n to a crisp output value y ∈R, that is,

f (x) : x→y. (10)

This function f is subject to output noise ε, so that in the absence of noise
∀x ∈X(i), then (f (x)+ ε)∈Y (i). The function approximation task [25] consists of
finding an estimate, say f̂ (x), of the unknown function f (x) which is supposed to
be smooth.
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3.1. cost function

As mentioned earlier, this problem can be solved by selecting an approximating
function f̂ (x,w) which depends continuously on x and w, and optimizing the
parameters w by minimizing an error function of the form given in Equation (9).

In this paper, a weighted Euclidean distance function for a pair of intervals A
and B has been used. It is defined as:

d(A,B)=β(aC −bC)2 + (1−β)(aR −bR)2. (11)

The parameter β ∈ [0,1] facilitates giving more importance to the prediction of the
output centres or to the prediction of the radii. For β =1 learning concentrates on
the prediction of the output interval centre and no importance is given to the pre-
diction of its radius. For β =0.5 both predictions (centres and radii) have the same
weights in the objective function.

3.2. learning algorithm

For the minimization of the cost function, a low-memory Quasi Newton method
[26] with random initial weights has been applied. Second order methods require
the calculation of the gradient of the cost function with respect to the adaptive
weights (w′s and α′s). These derivatives can be calculated in an effective way by
applying a backpropagation procedure, similar to the BP algorithm proposed in
[24] for the standard MLP.

The derivatives of the proposed cost function (the regularization term is not
considered for simplicity) with respect to the output layer weights are given by:

∂E

∂αj

= 2
p

p∑

t=1

[(
β(ŷ(t)C −y(t)C)

∂ŷ(t)C

∂αj

(12a)

+(1−β)(ŷ(t)R −y(t)R)
∂ŷ(t)R

∂αj

)]
, (12b)

where

∂ŷ(t)C

∂αj

=
{

1, for j =0;
aj (t)

C, for j >0.
(13)

∂ŷ(t)R

∂αj

=
{

0, for j =0;
sgn(αj )aj (t)

R, for j >0.
(14)
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The derivatives of the cost function with respect to the hidden layer weights can
be expressed as:

∂E

∂wji

= 2
p

p∑

t=1

[(
β(ŷ(t)C −y(t)C)

∂ŷ(t)C

∂wji

(15a)

+(1−β)(ŷ(t)R −y(t)R)
∂ŷ(t)R

∂wji

)]
(15b)

= 2
p

p∑

t=1

[(
β(ŷ(t)C −y(t)C)

∂ŷ(t)C

∂aj (t)C

∂aj (t)
C

∂wji

(15c)

+(1−β)(ŷ(t)R −y(t)R)
∂ŷ(t)R

∂aj (t)R

∂aj (t)
R

∂wji

)]
, (15d)

where

∂ŷ(t)C

∂aj (t)C
=αj (16)

∂aj (t)
C

∂wji

= tanh′(sj (t)C + sj (t)
R)(xi(t)

C + sgn(wji)xi(t)
R)

2
(17a)

+ tanh′(sj (t)C − sj (t)
R)(xi(t)

C − sgn(wji)xi(t)
R)

2
, (17b)

and

∂ŷ(t)R

∂aj (t)R
=|αj | (18)

∂aj (t)
R

∂wji

= tanh′(sj (t)C + sj (t)
R)(xi(t)

C + sgn(wji)xi(t)
R)

2
(19a)

− tanh′(sj (t)C − sj (t)
R)(xi(t)

C − sgn(wji)xi(t)
R)

2
. (19b)

Standard cross-validation techniques [9] are applied in order to prevent over-fitting.

4. Numerical Example

One of the main sources of interval-valued data is the summarization of high fre-
quency sampled data. For example, intradaily stock prices are often summarized
and analyzed in terms of daily ranges, giving rise to intervals.

The Spanish electricity market (see www.omel.es for more details) is organized
as a sequence of sessions where producers, distributors and resellers, qualified
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Table 1. Explanatory variables applied to the model.

Input Description

E(t) Total amount of traded energy
N(t) Nuclear generation
C(t) Coal generation
F(t) Fuel generation
G(t) Gas generation
H(t) Hydro generation
P(t −1) Electricity price for the previous day
P(t −7) Electricity price one week before

consumers and external agents perform electricity transactions. The main part of
this energy is traded on the daily market. The purpose of the daily market, as
an integral part of the electricity power production market, is to handle electric-
ity transactions for the following day by the presentation of electricity sale and
purchase bids by market participants. The clearance of this market establishes an
hourly clearing price which is paid to generators.

In this illustrative example, the daily electricity price interval is modelled as
a function of the total amount of traded energy and the production covered
by different technologies: nuclear, coal, fuel, gas and hydro (see Table 1 for a
summary of the variables considered). Regular and seasonal autoregressive com-
ponents of the time series are modelled by including delayed electricity prices
(orders 1 and 7) as input variables. All these inputs are also treated as daily
intervals.

An iMLP with 10 neurons in the hidden layer has been trained with 14 months
of data as training set (Jul-1-2003 to Aug-31-2004) and validated with 3 months
(Sep-1-2004 to Nov-30-2004). The same weight, β = 0.5, has been assigned in
the cost function to the prediction of centres and radii. Figure 2 shows the real
and estimated prices for the training set, where a Mean Absolute Percentage
Error (MAPE) of 8.86% has been obtained for the center and 25.83% for its
radius.

In the case of the validation set (see Figure 3), the MAPE has reached a value
of 11.38% for the price centre and 24.54% for the radius. The similarity of these
measures with the above in the training set confirms the generalization capability
of the proposed model.

Table 2 compares the performance of the iMLP with a naı̈ve reference model
that proposes the observed price interval one week before as daily price interval
forecast.

These results confirm the predictability of the mean daily price as a function of
the generation mix and its associated costs (similar error rates have been published
in the literature: see [27] and [28] for more elaborate reference models), accompanied
by a high degree of random volatility affected by market participants’ strategies.
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Figure 2. Training set estimation with iMLP(8,10,1).

Figure 3. Validation set estimation with iMLP(8,10,1).
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Table 2. Comparison of the forecasting performance between the
iMLP and the naive model with stationality.

Training set MAPE Validation set MAPE

Centre (%) Radius (%) Centre (%) Radius (%)

Naive model 15.85 33.82 17.86 33.44
iMLP 8.86 25.83 11.38 24.54

5. Conclusions

In this paper, a new model of MLP is proposed in order to handle interval-
valued data. The proposed model has the architecture of a standard MLP with
single-valued weights and bias, but its transfer function has been modified in order
to operate with interval-valued inputs and outputs. The resulting model maps an
input vector of intervals to an interval output by means of interval arithmetic.

Two applications of the iMLP have been considered. First, as an interval-valued
function approximation model; and second, as a model that facilitates the evalua-
tion of the prediction intervals of crisp MLP fed with interval-valued input data.

In the function approximation case, the parameters of the model are optimized
by minimizing a cost function defined in terms of discrepancies between estimated
and desired output intervals. The proposed cost function is a weighted sum of mid-
points and radii squared estimation errors. The averaging weights in the error func-
tion allow tuning the importance assigned to midpoints and to radii according to
each specific context. A backpropagation rule for the computation of the gradient
has also been derived. The computation of the prediction intervals of a crisp MLP
subject to input uncertainty is a straightforward result of the proposed architec-
ture: once the crisp MLP has been trained with single-valued inputs and outputs,
its response to interval inputs can be obtained directly by evaluating an iMLP with
the same weights.

The first application has been illustrated in this paper by applying the iMLP to
forecast daily electricity prices intervals as a function of the generation mix. The
second one remains as ongoing work. Other extensions of the present work would
include:

– The application of sensitivity analysis in order to quantify the effect of input
midpoints and radii on the outputs of the iMLP.

– The application of iMLP to fuzzy regression analysis.
– Proposing MLPs models based on the iMLP for other types of symbolic data

such as histograms, boxplots or distributions.
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