
Fast Algorithm for Computing the Upper
Endpoint of Sample Variance for Interval Data:
Case of Sufficiently Accurate Measurements

GANG XIANG
Department of Computer Science, University of Texas at El Paso, 500 W. University, El Paso,
TX 79968, USA, e-mail: gxiang@utep.edu

(Received: 25 September 2004; accepted: 21 May 2005)

Abstract. When we have n results x1, …, xn of repeated measurement of the same quantity, the
traditional statistical approach usually starts with computing their sample average E and their sample
variance V . Often, due to the inevitable measurement uncertainty, we do not know the exact values of
the quantities, we only know the intervals xi of possible values of xi. In such situations, for different
possible values xi ∈ xi, we get different values of the variance. We must therefore find the range V
of possible values of V . It is known that in general, this problem is NP-hard. For the case when the
measurements are sufficiently accurate (in some precise sense), it is known that we can compute the
interval V in quadratic time O(n2). In this paper, we describe a new algorithm for computing V that
requires time O(n ⋅ log(n)) (which is much faster than O(n2)).

1. Introduction

Computing sample variance is important. When we have n results x1, …, xn of
repeated measurement of the same quantity (at different points, or at different
moments of time), the traditional statistical approach usually starts with computing
their sample average

E =
x1 + · · · + xn

n
(1.1)

and their (sample) variance

V =
1
n

⋅
n∑

i= 1

(xi − E)2 =
x2

1 + · · · + x2
n

n
− E2 (1.2)

(or, equivalently, the sample standard deviation σ =
√

V); see, e.g., [14].

Problem: computing sample variance under interval uncertainty. Measure-
ments are never 100% accurate, so in reality, the actual value xi of the i-th measured
quantity can differ from the measurement result x̃i. Often, we only know the inter-
vals x1, …, xn of possible values of xi. In this case, for different possible values
xi ∈ xi, we get different values of E and V . In such situations, it is desirable to find
the ranges of possible values of E and V .

Reliable Computing
c© Springer 2006

(2006) 12: 59–64
DOI: 10.1007/s11155-006-2965-8



60 GANG XIANG

Since both E and V are continuous functions of n variables x1 ∈ x1, …, xn ∈ xn,
the range of each of these functions on the box x1 × · · · × xn is an interval. So, in
such situations, our objective is to compute the intervals E and V of possible values
of E and V:

E = [E, E]
def
=
{

x1 + · · · + xn

n
| x1 ∈ x1 & · · ·& xn ∈ xn

}
,

V = [V , V]
def
=
{

x2
1 + · · · + x2

n

n
− E2 | x1 ∈ x1 & · · ·& xn ∈ xn

}
.

The practical importance of the problem of computing sample variance under
interval uncertainty was emphasized, e.g., in [7], [8] on the example of processing
geophysical data and in [3] on the example of processing environmental data.

What is known. For E, the straightforward interval computations [9]–[11], [13]
lead to the exact range:

E =
x1 + · · · + xn

n
, i.e., E =

x1 + · · · + xn

n
and E =

x1 + · · · + xn

n
.

For V , straightforward interval computations lead to an excess width, and moreover,
the problem of computing the range V is, in general, NP-hard [5] (this result
originally appeared in [4]).

In [5], it was shown that we can compute the lower endpoint V of the desired
range in quadratic time O(n2). For the upper bound V of the desired range, in [5],
it was proven that we can compute it in quadratic time if the measurements are
sufficiently accurate in the sense that different measurement results can still be
distinguished from each other—i.e., when intervals xi corresponding to different
measurement do not intersect.

Moreover, it was proven that a quadratic time algorithm is possible not only
when the original intervals [x̃i − ∆i, x̃i + ∆i] do not intersect, but also in a more
general case when the “narrowed” intervals [x̃i − ∆i / n, x̃i + ∆i / n] do not intersect.
In fact, this quadratic time algorithm even works in the case when for some integer
c < n, no sub-collection of greater than c narrowed intervals of xi has a common
intersection [5].

For large n, n2 is still a lot of time; it is therefore desirable to speed up the
computations.

Many applications fall into one of two cases: (i) measurement error is con-
stant, either in absolute or as a fraction of x (e.g., if we the same physical instru-
ment to get all the measurement results), (ii) the real line is partitioned into pre-
assigned bins, and one learns the bin into which each observation falls (e.g., income
brackets). In either of these cases, we can compute the range of variance in time
O(n ⋅ log(n)) [2], [15], [16]. However, if we use different measuring instruments,
then the measurement error is no longer constant, so we cannot directly apply the
algorithms developed for these special cases.



FAST ALGORITHM FOR COMPUTING THE UPPER ENDPOINT... 61

In [6], it was shown that in the general case of “sufficiently accurate” measure-
ments, we can compute V in time O(n ⋅ log(n))—which is much faster than O(n2).
A natural question is: Can we similarly speed up the computation of V?

What we are planning to do. In this paper, we describe a new algorithm for
computing V that requires time O(n ⋅ log(n)) in the case when for some integer c, no
sub-collection of more than c narrowed intervals of xi has a common intersection.

2. Previously Known Quadratic-Time Algorithm: A Brief Reminder

The input to our problem is a finite list of intervals xi = [xi, xi]. There are two
standard ways to represent an interval in the computer:

• first, by describing two real numbers xi and xi;

• second, by describing the midpoint x̃i
def
= (xi + xi) / 2 and the half-width ∆i

def
=

(xi − xi) / 2 of this interval.

Once we know the midpoint and the half-width, we can reconstruct the endpoints
of the interval as xi = x̃i − ∆i and xi = x̃i + ∆i.

We have already mentioned that we consider the case when for some given
integer c, no sub-collection of more than c narrowed intervals [x̃i −∆i / n, x̃i + ∆i / n]
has a common intersection.

For this situation, the following quadratic-time algorithm for computing V was
described in [5]:

• First, we sort all 2n endpoints of the narrowed intervals x̃i − ∆i / n and x̃i + ∆i / n
into a sequence x(1) ≤ x(2) ≤ · · · ≤ x(2n). This enables us to divide the real line

into 2n + 1 zones [x(k), x(k +1)], where we denote x(0)
def
= −∞ and x(2n+1)

def
= +∞.

• Second, we compute E and E and pick all zones [x(k), x(k +1)] that intersect with
[E, E].

• For each of remaining zones [x(k), x(k +1)], for each i from 1 to n, we pick the
following value of xi:

− if x(k +1) ≤ x̃i − ∆i / n, then we pick xi = xi;

− if x̃i + ∆i / n ≤ x(k), then we pick xi = xi;

− for all other i, we consider both possible values xi = xi and xi = xi.

• As a result, we get one or several sequences of xi. For each of these sequences,
we check whether the average E of the selected values x1, …, xn is indeed within
this zone, and if it is, compute the variance by using the formula (1.2).

• Finally, we return the largest of the computed variances as V.

The proof that this algorithm requires only O(n2) time is based on the fact that
for each zone, there are at most c indices i for which the i-th narrowed interval
[xi − ∆i / n, xi + ∆i / n] contains this zone and therefore, at most c indices for which



62 GANG XIANG

we had to consider both choices xi and xi. As a result, for each zone, there are at
most 2c corresponding sequences xi.

3. New Algorithm

1◦. Let us first sort the lower endpoints x̃i − ∆i / n of the narrowed intervals into an
increasing sequence. Without losing generality, we can therefore assume that these
lower endpoints are ordered in increasing order:

x̃1 − ∆1 / n ≤ x̃1 − ∆2 / n ≤ · · ·
It is well known that sorting requires time O(n ⋅ log(n)); see, e.g., [1].

2◦. Then, similar to the previously known algorithm, we sort all the endpoints of
the narrowed intervals into a sequence x(1) ≤ x(2) ≤ · · · ≤ x(k) ≤ · · · ≤ x(2n).
Sorting means that for every i, we know which element k−(i) represents the lower
endpoint of the i-th narrowed interval and which element k+(i) represents the upper
endpoint of the i-th narrowed interval.

This sorting also requires O(n ⋅ log(n)) steps.

3◦. On the third stage, we produce, for each of the resulting zones [x(k), x(k +1)], the
set Sk of all the indices i for which the i-th narrowed interval

[x̃i − ∆i / n, x̃i + ∆i / n]

contains this zone.
As we have mentioned, for each i, we know the value k = k−(i) for which

x̃i − ∆i / n = x(k). So, for each i, we place i into the set Sk−(i) corresponding to the
zone [x(k−(i)), x(k−(i)+1)], into the set corresponding to the next zone, etc., until we
reach the zone for which the upper endpoint is exactly x̃i + ∆i / n.

Here, we need one computational step for each new entry of i into the set
corresponding to a new zone. Therefore, filling in all these sets requires as many
steps as there are items in all these sets. For each of 2n + 1 zones, as we have
mentioned, there are no more than c items in the corresponding set; therefore,
overall, all the sets contain no more than c ⋅ (2n + 1) = O(n) steps. Thus, this stage
requires O(n) time.

4◦. On the fourth stage, for all integers p from 0 to n, we compute the sums

Ep
def
=

1
n

⋅
p∑

i= 1

xi +
1
n

⋅
n∑

i= p+1

xi;

Mp
def
=

1
n

⋅
p∑

i= 1

(xi)
2 +

1
n

⋅
n∑

i= p+1

(xi)
2.

We compute these values sequentially. Once we know Ep and Mp, we can compute
Ep+1 and Mp+1 as Ep+1 = Ep + xp+1 − xp+1 and Mp+1 = Mp + (xp+1)2 − (xp+1)2.



FAST ALGORITHM FOR COMPUTING THE UPPER ENDPOINT... 63

Transition from Ep and Mp to Ep+1 and Mp+1 requires a constant number of
computational steps; so overall, we need O(n) steps to compute all the values Ep

and Mp.

5◦. Finally, for each zone k, we compute the corresponding values of the variance.
For that, we first find the smallest index i for which x(k +1) ≤ x̃i − ∆i / n. We will
denote this value i by p(k).

Since the values x̃i −∆i / n are sorted, we can find this i by using bisection [1]. It
is known that bisection requires O(log(n)) steps, so finding such p(k) for all 2n + 1
zones requires O(n ⋅ log(n)) steps.

Once i ≥ p(k), then x̃i −∆i / n ≥ x̃p(k) −∆p(k) / n ≥ x(k +1). So, in accordance with
the above justification for the quadratic-time algorithm, we should select xi = xi, as
in the sums Ep(k) and Mp(k).

In accordance with the same justification, the only values i < p(k) for which we
may also select xi = xi are the values for which the i-th narrowed intervals contains
this zone. These values are listed in the set Sk of no more than c such intervals. So,
to find all possible values of V , we can do the following.

We then consider all subsets s ⊆ Sk of the set Sk; there are no more than 2c

such subsets. For each subset s, we replace, in Ep(k) and Mp(k), values xi and (xi)
2

corresponding to all i ∈ s, with, correspondingly, xi and (xi)2.
Each replacement means subtracting no more than c terms and then adding no

more than c terms, so each computation requires no more than 2c steps. Once we
have E and V corresponding to the subset s, we can check whether E belongs to the
analyzed zone and, if yes, compute V = M − E2.

For each subset, we need no more than 2c + 2 computations, so for all no more
than 2c subsets, we need no more than (2c + 2) ⋅ 2c computations. For a fixed c, this
value does not depend on n; in other words, for each zone, we need O(1) steps.

To perform this computation for all 2n + 1 zones, we need (2n + 1) ⋅ O(1) = O(n)
steps.

6◦. Finally, we find the largest of the resulting values V—this will be the desired
value V .

Finding the largest of O(n) values requires O(n) steps.

Overall, we need

O
(
n ⋅ log(n)

)
+ O
(
n ⋅ log(n)

)
+ O(n) + O(n) + O

(
n ⋅ log(n)

)
+ O(n)

= O
(
n ⋅ log(n)

)
steps. Thus, we have proven that our algorithm computes V in O(n ⋅ log(n)) steps.

Acknowledgements

This work was supported in part by the Army Research Laboratories grant
DATM–05–02–C–0046. The author is thankful to Vladik Kreinovich for his help
with editing the text, and to the anonymous referees for valuable suggestions.



64 GANG XIANG

References

1. Cormen, Th. H., Leiserson, C. E., Rivest, R. L., and Stein, C.: Introduction to Algorithms, MIT
Press, Cambridge, 2001.

2. Cowell, F. A.: Grouping Bounds for Inequality Measures under Alternative Informational
Assumptions, Journal of Econometrics 48 (1991), pp. 1–14.

3. Ferson, S.: RAMAS Risk Calc 4.0: Risk Assessment with Uncertain Numbers, CRC Press, Boca
Raton, 2002.

4. Ferson, S., Ginzburg, L., Kreinovich, V., Longpré, L., and Aviles, M.: Computing Variance for
Interval Data Is NP-Hard, ACM SIGACT News 33 (2002), pp. 108–118.

5. Ferson, S., Ginzburg, L., Kreinovich, V., Longpré, L., and Aviles, M.: Exact Bounds on Finite
Populations of Interval Data, Reliable Computing 11 (3) (2005), pp. 207–233.

6. Granvilliers, L., Kreinovich, V., and Müller, N.: Novel Approaches to Numerical Software with
Result Verification, in: Alt, R., Frommer, A., Kearfott, R. B., and Luther, W. (eds), Numerical
Software with Result Verification, Springer Lectures Notes in Computer Science 2991, 2004,
pp. 274–305.

7. Nivlet, P., Fournier, F., and Royer, J.: A New Methodology to Account for Uncertainties in 4-D
Seismic Interpretation, in: Proceedings of the 71st Annual International Meeting of the Society of
Exploratory Geophysics SEG’2001, San Antonio, Texas, September 9–14, 2001, pp. 1644–1647.

8. Nivlet, P., Fournier, F., and Royer, J.: Propagating Interval Uncertainties in Supervised Pattern
Recognition for Reservoir Characterization, in: Proceedings of the 2001 Society of Petroleum
Engineers Annual Conference SPE’2001, New Orleans, Louisiana, September 30–October 3,
2001, paper SPE–71327.

9. Jaulin, L., Kieffer, M., Didrit, O., and Walter, E.: Applied Interval Analysis: With Examples in
Parameter and State Estimation, Robust Control and Robotics, Springer, London, 2001.

10. Kearfott, R. B.: Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers,
Dordrecht, 1996.

11. Kearfott, R. B. and Kreinovich, V. (eds): Applications of Interval Computations, Kluwer Aca-
demic Publishers, Dordrecht, 1996.

12. Moore, R. E.: Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.
13. Moore, R. E.: Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.
14. Rabinovich, S.: Measurement Errors: Theory and Practice, American Institute of Physics, New

York, 1993.
15. Starks, S. A., Kreinovich, V., Longpré, L.: Ceberio, M., Xiang, G., Araiza, R., Beck, J.,

Kandathi, R., Nayak, A., and Torres, R.: Towards Combining Probabilistic and Interval Uncer-
tainty in Engineering Calculations, in: Proceedings of the Workshop on Reliable Engineering
Computing, Savannah, Georgia, September 15–17, 2004, pp. 193–213.

16. Xiang, G., Starks, S. A., Kreinovich, V., and Longpré, L.: New Algorithms for Statistical Analysis
of Interval Data, in: Proceedings of the Workshop on State-of-the-Art in Scientific Computing
PARA’04, Lyngby, Denmark, June 20–23, 2004, Vol. 1, pp. 123–129.


