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This work introduces a tessellation-based model for the declivity analysis of geographic
regions. The analysis of the relief declivity, which is embedded in the rules of the model,
categorizes each tessellation cell, with respect to the whole considered region, according to
the (positive, negative, null) sign of the declivity of the cell. Such information is represented in
the states assumed by the cells of the model. The overall configuration of such cells allows the
division of the region into subregions of cells belonging to a same category, that is, presenting
the same declivity sign. In order to control the errors coming from the discretization of the
region into tessellation cells, or resulting from numerical computations, interval techniques are
used. The implementation of the model is naturally parallel since the analysis is performed
on the basis of local rules. An immediate application is in geophysics, where an adequate
subdivision of geographic areas into segments presenting similar topographic characteristics
is often convenient.
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1. Introduction

In [1], it is proposed a general tessellation-based model for categorizer tools that are
able to subdivide a certain geographic region into subregions presenting similar charac-
teristics, that is, belonging to the same range concerning a set of given observable prop-
erties. The number of the characteristics that should be studied determines the number of
layers of the model. In each layer, a probably different analysis of the region is obtained.
An appropriate projection of all layers into the base layer of the model leads to a mean-
ingful subdivision of the region and a categorization of the subregions that consider the
simultaneous occurrence of all characteristics, according to some priorities. To control
the errors coming from discretization and resulting from the numerical computations,
interval techniques [7] are used to obtain a reliable categorization. This model is called
an Interval Categorizer Tessellation-Based Model (ICTM).
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In this paper, we present the so-called Topo-ICTM, which is a bi-dimesional
1-layer ICTM to analyze the variation of declivity signal of the function that maps the
topography of a given region, subdividing this region into subregions presenting the
same behavior with respect to declivity of the relief. Each such subregion is said to be-
long to a given declivity category according to the (positive, negative, null) sign of the
declivity of the relief function.1 An immediate application is in Geophysics, where an
adequate subdivision of geographic areas into segments presenting similar characteris-
tics is often convenient [2].

To automate this kind of topological analysis based on the proposed model, we
have developed the system Topo-ICTM, implemented in C/C++ (Linux). An envis-
aged application is to help in survey activities concerning oil exploitation in the basin of
Pelotas, which is classified as of high risk due to the nature of its geological data.

There are many methods for image segmentation [3,4,6,8] and the most commonly
used techniques can be classified into two categories: (i) region extraction techniques,
which look for maximal regions satisfying some homogeneity criterion, and (ii) edge
extraction techniques, which look for edges occurring between regions with different
characteristics. The main problem with most of these methods is that they are heuristic
and frequently different methods give different results, and, therefore, it is desirable to
produce reliable methods (see, e.g, [2,9]).

The model presented in this paper evolved directly from the analysis of [2], which
has presented a method that is based in a one-dimensional analysis to subdivide geophys-
ical areas into monotonicity subregions, considering just one direction. The tessellation-
based model presented here performs a bi-dimensional analysis of the declivity, using
local rules for the creation and categorization of subregions, giving the relative situation
of each subregion with respect the whole area, according to the states assumed by the
tessellation cells. The analysis can be easily refined either to focus a subregion of a cer-
tain declivity category, or to change the input parameters (number of tessellation cells,
etc.), or to consider a cell neighborhood of larger radium, for instance.

The paper is organized as follows. Section 2 introduces the matrix operations that
define the behavior of Topo-ICTM. It is subdivided into subsections describing the steps
of the categorization process. Section 3 presents the conclusion and further work.

2. The formalization of the Topo-ICTM model

This section introduces the interval categorizer tessellation-based model for the
declivity-based categorization of a topographic region, called Topo-ICTM, formalized
in terms of matrix operations. The data input for the model are extracted from satellite
photos of the geographic region being analyzed, where the heights are given in certain
points referenced by their latitude and longitude coordinates. This geographic region is
represented by a regular tessellation that is determined by subdividing the total area into

1 In this paper, whenever it can be understood from the context, we may use the term “declivity” to mean
“signal of the declivity function”.
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sufficiently small rectangular subareas, each one represented by one cell of the tessel-
lation. This subdivision is done according to a cell size established by the geophysics
analyst and it is directly associated to the refinement degree of the tessellation.

Definition 1. A tessellation is a matrix M with nr rows and nc columns. The entry at
the xth row and the yth column is called the xy-cell of M.

2.1. The interval spectrum matrices

In topographic analysis, usually there are too much data, most of which is geophys-
ically irrelevant. We then take, for each subdivision, the average value of the heights at
the points supplied by the satellite photos, which are the entries of the spectrum matrix
of the tessellation M.

Definition 2. The spectrum matrix of a tessellation M is the nr × nc matrix Mabs =
[mabs

xy ], where the entry mabs
xy is the absolute value of the average height of the points

represented by the xy-cell of M.

We are interested in comparing the spectral values corresponding to different cells,
so we are not interested in absolute values, only in relative ones. To simplify the data
of the spectrum matrix, we normalize them by dividing each mabs

xy by the largest mmax of
these values.

Definition 3. The relative spectrum matrix M rel is defined as the nr × nc matrix given
by M rel = Mabs/mmax.

The heights are measured pretty accurately, so the only errors in the values mxy

come from the discretization of the area in terms of the discrete set of tessellation cells.
In other words, it is desirable to know the values of the relief function hξυ for all ξ and
υ, but only the values hxy ≡ mrel

xy = mabs
xy /mmax for 11, . . . , 1nr, . . . , nc1, . . . , ncnr ,

determined by division of the region in nrnc cells, are used in the effective calculations.
In the following, we apply interval mathematics techniques to control the errors

associated to the cell values.2 For each ξυ, which is different from xy, it is reasonable
to estimate hξυ as the value mrel

xy at the point xy which is closest to ξυ, meaning that ξυ

belongs to the same segment of area as xy. For each cell xy, let �x and �y be the largest
possible errors of the corresponding approximations considering the west–east direction
and the north–south direction, respectively.

For fixed y, when ξ > x, the point xy is still the closest until we reach the midpoint
xmidy = ((x + (x + 1))/2)y between xy and (x + 1)y. It is reasonable to assume that
the largest possible approximation error |mrel

xy − hξy| for such points is attained when
the distance between xy and ξy is the largest, i.e., when ξy = xmidy. In this case, the
approximation error is equal to |hxmidy − mrel

xy|.
2 To see examples of the advantages of using intervals in solving similar problems see, e.g., [2,5].
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Lemma 1. For fixed y, if ξ > x, then the approximation error ε is bounded by 0.50 ×
|mrel

(x+1)y − mrel
xy |.

Proof. If the points xy and (x + 1)y belong to the same segment of area, then the
dependence of nξy on ξy should be reasonably smooth for ξ ∈ [x, (x + 1)]. On a
narrow interval [x, (x + 1)], we can, with reasonable accuracy, ignore the quadratic and
higher terms in the expansion of h(ξ+�ξ)y and approximate hξy by a linear function.
For a linear function ξ �→ hξy , the difference hxmidy − mrel

xy is equal to the half of the
difference mrel

(x+1)y − mrel
xy . On the other hand, if the points xy and (x + 1)y belong

to different segments, then the dependence hξy should exhibit some non-smoothness,
and it is reasonable to expect that the difference mrel

(x+1)y − mrel
xy is much higher than the

approximation error. In both cases, the approximation error ε is bounded by 0.50 ×
|mrel

(x+1)y − mrel
xy |. �

Lemma 2. For fixed y, if ξ < x, then the approximation error ε is bounded by 0.50 ×
|mrel

xy − mrel
(x−1)y|.

Proposition 1. For the approximation error εx ,

εx � �x = 0.5 · min
(∣∣mrel

xy − mrel
(x−1)y

∣∣,
∣∣mrel

(x+1)y − mrel
xy

∣∣).

Proof. It follows from lemmas 1 and 2. �

As a result, considering a given y, besides of the central values mrel
xy , for each x, we

get intervals mx[ ]
xy containing all the possible values of hξy , for x − 1

2 � ξ � x + 1
2 .

Corollary 1. Considering a fixed y, for each x, if x− 1
2 � ξ � x+ 1

2 , then hξy ∈ mx[ ]
xy =

[mx−
xy ,mx+

xy ], where mx−
xy = mrel

xy − �x and mx+
xy = mrel

xy + �x .

Using an analogous argumentation, for a fixed x, it follows that:

Proposition 2. For the approximation error εy ,

εy � �y = 0.5 · min
(∣∣mrel

xy − mrel
x(y−1)

∣∣,
∣∣mrel

x(y+1) − mrel
xy

∣∣).

Corollary 2. Considering a fixed x, for each y, if y − 1
2 � υ � y + 1

2 , hxυ ∈ m
y[ ]
xy =

[my−
xy ,m

y+
xw], where m

y−
xy = mrel

xy − �y and m
y+
xy = mrel

xy + �y .

Definition 4. If mx±
xy = mrel

xy ± �i and m
y±
xy = mrel

xy ± �j , the interval spectrum ma-

trices Mx[ ]
and My[ ]

, associated with the relative spectrum matrix M rel, are defined,
respectively, by the nr × nc interval matrices

Mx[ ] = [
mx[ ]

xy

] = [[
mx−

xy ,mx+
xy

]]
and My[ ] = [

my[ ]
xy

] = [[
my−

xy ,my+
xy

]]
.
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2.2. The declivity registers and the state matrix

We proceed to a declivity categorization inspired by [2]. We assume from the start
that the relief approximation functions introduced by the tessellation-based model are
piecewise linear functions. We cast the whole process as a kind of constraint satisfac-
tion problem, where the tessellation-based model is in charge of finding a piecewise
linear relief approximation function (and corresponding set of limit points between the
resulting subregions) that fits the constraints imposed by the interval spectrum matrix.
To narrow the solution space to a minimum, we take a qualitative approach to the relief
approximation functions, clustering them in equivalence classes according to the sign of
their declivity (positive, negative, null), thus making the tessellation-based model build
a single qualitative solution to that constraint satisfaction problem, namely, the class of
approximation functions compatible with the constraints of the interval spectrum matrix.
We proceed as follows:

Proposition 3. Let Mx[ ]
and My[ ]

be interval spectrum matrices. For a given xy, if:

(i) mx+
xy � mx−

(x+1)y, then there exists a non-increasing relief approximation function
between xy and (x + 1)y (direction west–east).

(ii) mx−
(x−1)y � mx+

xy , then there exist a nondecreasing relief approximation function
between (x − 1)y and xy (direction west–east).

(iii) m
y+
xy � m

y−
x(y+1), then there exists a non-increasing relief approximation function

between xy and x(y + 1) (direction north–south).

(iv) m
y−
x(y−1) � m

y+
xy , then there exists a nondecreasing relief approximation function

between x(y − 1) and xy (direction north–south).

Proof. A sketch of the proof is given. In (i), take, for example, µxy = mx+
xy , µ(x+1)y =

mx−
(x+1)y and use a linear interpolation to define the values µky for x < k < x + 1. The

proofs of (ii)–(iv) are similar. �

For each cell, four directed declivity registers3 – reg.e (east), reg.w (west), reg.s
(south) and reg.n (north) – are defined, indicating the admissible sign declivity of the
function that approximates the relief function in any of these directions, taking into
account the values of the neighbor cells. The analysis of declivity is done according
to proposition 3.

Definition 5. A declivity register of an xy-cell is a tuple reg = (reg.e, reg.w, reg.s,
reg.n), where the values of the directed declivity registers are given by:

3 This paper uses the dot notation of the object-oriented programming languages to represent the compo-
nents of a data structure (e.g., reg.e denotes the component e of the data structure reg).
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(a) For non border cells, considering the conditions given by proposition 3: reg.e = 0,
if 3(i) holds; reg.w = 0, if 3(ii) holds; reg.s = 0, if 3(iii) holds; reg.n = 0, if 3(iv)
holds; reg.e, reg.w, reg.s, reg.n = 1, otherwise.

(b) For east, west, south and north border cells: reg.e = 0, reg.w = 0, reg.s = 0 and
reg.n = 0, respectively.4 The other directed declivity registers of border cells are
also determined according to item (a).

Definition 6. The declivity register matrix is defined as an nr ×nc matrix Mreg = [mreg
xy ],

where the entry at the xth row and the yth column is the value of the declivity register
of the corresponding cell.

Corollary 3. Considering the west–east direction, any relief approximation function
mxy is either (i) strictly increasing between xy and (x + 1)y if m

reg.e
xy = 1 (in this case,

m
reg.w
(x+1)y = 0); or (ii) strictly decreasing between xy and (x + 1)y if m

reg.w
(x+1)y = 1 (in this

case, m
reg.e
xy = 0); or (iii) constant between xy and (x+1)y if m

reg.e
xy = 0 and m

reg.w
(x+1)y = 0.

Similar results hold for the north–south direction.

Definition 7. Let wreg.e = 1, wreg.s = 2, wreg.w = 4 and wreg.n = 8 be weights to be
associated to the directed declivity registers. The state matrix is defined as an nr × nc

matrix given by Mstate = [mstate
xy ], where the entry at the xth row and the yth column is

the value of the corresponding cell state, calculated as the value of the binary encoding
of the corresponding directed declivity registers, given as

mstate
xy = wreg.e × mreg.e

xy + wreg.s × mreg.s
xy + wreg.w × mreg.w

xy + wreg.n × mreg.n
xy .

Thus, for given xy, the correspondent cell can assume one and only one state pre-
sented in figure 1, represented by the value mstate

xy = 0, . . . , 15.

Figure 1. The schema of the all possible cell state values.

4 This is consistent with the relief function being a constant in the border cells.
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Table 1
Conditions of non limiting cells xy.

Id Conditions

1 m
reg.e
(x−1)y

= m
reg.e
xy = 1

2 m
reg.w
xy = m

reg.w
(x+1)y

= 1

3 m
reg.e
(x−1)y

= m
reg.e
xy = m

reg.w
xy = m

reg.w
(x+1)y

= 0

4 m
reg.s
x(y−1)

= m
reg.s
xy = 1

5 m
reg.n
xy = m

reg.n
x(y+1)

= 1

6 m
reg.s
x(y−1)

= m
reg.s
xy = m

reg.n
xy = m

reg.n
x(y+1)

= 0

Figure 2. Schemas of limiting cells.

2.3. The limiting matrix and the constant-declivity subregions

A limiting cell is defined as the one where the relief function changes its declivity,
presenting critical points (maximum, minimum or inflection points). To identify such
limiting cells, we use a limiting register associated to each cell. The border cells are
assumed to be limiting.

Definition 8. The limiting matrix is defined as the nr × nc matrix given by M limit =
[mlimit

xy ], where the entry at the xth row and the yth column is determined as mlimit
xy = 0,

if one of the conditions listed in table 1 holds, and mlimit
xy = 1, otherwise.

Analyzing the limiting matrix it is easy to detect the existence of known relief
configurations (see, e.g., figure 2). The presence of limiting cells allows the subdivision
of the whole area into declivity categories.

Definition 9. The constant declivity subregion associated to the non limiting cell xy,
denoted SRxy , is inductively defined as follows: (i) xy ∈ SRxy ; (ii) If x′y′ ∈ SRxy ,
then all its neighbor cells that are not limiting cells also belong to SRxy .
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Table 2
The limiting matrix M limit

xy associated to a given region R.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1
2 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1
3 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1
4 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1
5 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1
6 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3. The declivity categorization of region R.

Observe that SRxy = SRx ′y ′ if and only if x′y′ ∈ SRxy (respectively, xy ∈
SRx′y′). Definition 9 leads to a recursive algorithm similar to the ones commonly used
to fulfill polygons. Table 2 shows the limiting matrix produced by the model in the cat-
egorization process5 of a given region R. The related declivity categorization is shown
in figure 3.

3. Conclusion

ICTM is a general tessellation-based model that is able to produce a reliable cat-
egorization of subregions of a given geographic region according to multiple character-
istics known in sufficiently many points. The categorization determined by each char-
acteristic is performed in one layer of the model, generating different subdivisions of
the analyzed region. For instance, a region can be analyzed according to its topography,
vegetation, demography, economic data, etc. The general tessellation-based model is not
restricted to analyze bi-dimensional regions. The set of analyzed points may belong to
a multi-dimensional space, determining the multi-dimensional character of each layer.
A projection-like procedure of the categorization obtained in each layer into the base

5 The numerical and graphical results were produced by the system Topo-ICTM.
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layer will lead to a meaningful reliable categorization combining the analysis performed
for each characteristic. This allows many interesting analysis on the mutual dependence
of these characteristics.

In the case of Topo-ICTM, it considers just one characteristic, namely the declivity
of the function that maps the relief of the considered region, performing a bi-dimensional
analysis, which considers latitude and longitude. The dimension nr × nc of the tessella-
tion may be arbitrary or chosen according to specific criteria established by the applica-
tion. In any case, the categorization obtained may be refined by either defining another
tessellation dimension or taking each resulting subregion to be analyzed separately. The
analysis may be performed until a convenient number of subregions is obtained, charac-
terizing the dynamism of the model. The formalization using matrices of registers results
that the information recorded in those registers is easily recovered by the indexing ele-
ments of the matrices, at any time. The implementation of the model is naturally parallel
since the analysis is performed on the basis of local rules. As the input numeric data
are usually susceptible to errors, interval arithmetic should be applied. Further work
consists in the development of ICTM tools to support knowledge discovery based on
categorization processes.
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