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Abstract. This paper is devoted to the problem of fitting input-output data by a modeling function,
linear in its parameters, in the presence of interval-bounded errors in output variable. A method for
outlier detection is proposed. Another issue under consideration is the comparative simulation study
of the well-known statistical point estimates (least squares, maximum likelihood) and point estimates
calculated as the center of interval hull of uncertainty set. The results of the study allow us to draw
the conclusion that non-statistical interval based estimation is a competitive alternative to statistical
estimation in some cases.

1. Introduction

The statement of the problem of curve or surface fitting for empirical data under
the assumption that the values of dependent variable contain bounded uncertainties,
considered in this paper, originates from the idea of L. V. Kantorovich [4] and has
been extensively studied e.g. in [1], [5], [8]–[11].

The essence of the problem is to construct a linear parameterized modeling
function

y =
n∑

i= 1

ixi (1.1)

where x  R
n is a vector of input variables,   R

n is a vector of parameters to be
estimated, y is a scalar output variable.

The modeling function is constructed from empirical information in which the
table of experimental data obtained in N observations,

T = {(yj x1j xnj) | j = 1 2N}

plays the lead. It is assumed that the measurement errors of input variables xi may be
neglected, and the value of the output variable y in the j-th observation is measured
with the error which belongs to the interval [−j j].

The fact that the errors of the output variable are bounded may be expressed in
the form of the following bilateral inequalities:

yj − j ≤
n∑

i= 1

ixij ≤ yj + j j = 1N (1.2)
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All the values of the parameters vector  = (1 n) which satisfy every inequality
(1.2) form the set B of possible values of the parameters also called an “uncertainty
set.”

Solutions of the linear programming problems


i

= min
 B

i  i = max
 B

i i = 1 2  n (1.3)

provide us with the lower and upper bounds of the possible values of the model
parameters. Cartesian product of the intervals [

i
  i] gives the minimum bounding

box of the uncertainty set B. The intervals [
i
  i] are often used as interval estimates

of the parameter i, and the middle points of these intervals may serve as sought-for
point estimates

̂i = (
i
+  i)  2 (1.4)

Apart from the problem of estimation of the modeling function parameters  , the
problem of interval and point estimation of the output variable y for some known
values of the input variable x (forcasting problem) may be stated in respect to the
uncertainty set B. The bounds of the interval estimate [y

i
(x) yi(x)] can be found by

solving the linear programming problems

y
i
(x) = min

 B

n∑
i= 1

ixi yi(x) = max
 B

n∑
i= 1

ixi i = 1 2 n (1.5)

Averaging the interval estimate bounds gives the point estimate ŷ(x) of the output
variable:

ŷ(x) =
1
2

(
y(x) + y(x)

)
 (1.6)

However all the above estimation problems make sense only if the uncertainty
set B is nonempty and bounded. The unboundedness of the set B can be found out in
the rank analysis of the observation matrix X = (xij)N n, and it may be interpreted
as a lack of empirical information for the construction of the model. The emptiness
of B means inconsistency of the collected empirical information. The presence of
outliers in the observation data is one of the possible reasons of contradictions. In
this paper, a simple method for outliers detection is proposed.

Another question considered in the paper is a relationship between the interval-
based estimates and traditional statistical estimates, namely maximum likelihood
estimates and least squares estimates. We present a comparative study of the issue
based on extensive simulation. In this case, an analytical comparison would be
impossible because the estimation methods compared are based upon different
systems of hypotheses, and this is why simulation is the only available approach
[2]. Throughout this paper the estimates (1.4)–(1.6) are called non-statistical for
brevity.
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2. Outlier Detection

From practical viewpoint, a possibility to detect conflicts in collected empirical
information is one of the most important properties of the non-statistical approach
to parameter estimation described in the introduction. The indicator of contradiction
is the fact that the uncertainty set is empty.

The main sources of contradictions are

 wrong hypothesis about modeling function structure;

 presence of outliers.

To choose the way for overcoming these troubles, one must perform a comprehen-
sive data analysis. However, the results of such an analysis are determined by the
information one can get, and the outlier detection method proposed in this section
may be regarded as a tool to obtain information necessary for the analysis.

An outlier is, by definition, a peculiar, non-typical observation. It means that
the outliers must be thoroughly examined in order to reveal the causes of their
appearance. In some cases, an outlier gives information, which cannot be obtained
from other observations because it is a result of a measurement under unusual
combination of conditions. In such a situation, further extended investigation is
necessary. However, more frequently outliers are the result of blunders during the
measurement of the observed variables. In this case, an outlier should be rejected
or must be taken into account with a relatively low weight.

The core idea of the outlier detection method proposed below is as follows. An
outlier caused by a blunder may be treated as a value that is measured with an
underestimated error, i.e. whose real measurement error is greater than the declared
error. In order to correct the outlier, it is necessary to find the lower bound of its
possible actual error, which makes the corrected observation consistent with the
others. Comparing the values of the lower bound of possible real error to the values
of the declared observation error allows us to make some inferences concerning the
degree of inconsistency of the outlier with respect to the entire data set.

The lower bounds j of possible real errors providing a non-empty uncertainty
set may be treated as the product of the declared errors j and unknown scale
coefficients wj:  j = wjj, j = 1 2N. The desired values of the scale coefficients
may be found as a solution of the following problem

min
w

N∑
j= 1

wj (2.1)

yj − wjj ≤
N∑

j= 1

jxj ≤ yj + wjj wj ≥ 1 j = 1 2N (2.2)

In the solution of (2.1)–(2.2), the values of j for which the resulting scale coefficients
wj are greater than the unity correspond to outliers. If the researcher has information
that, for some observations, the errors are equal (for example, in the case they are
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obtained using the same measurement facility and techniques), the equalities of the
form wj1 = wj2 = · · · = wjK may be added to the constraints system (2.2) of the
problem (2.1). If the researcher is sure about some declared error values, he can
“freeze” the corresponding scale coefficients wj setting them to ones.

A large number of the scale coefficients wj greater than the unity in the solution
of (2.1)–(2.2) may be caused by overestimating the precision of measurement
instrument or a wrong choice of the modeling function structure.

To conclude, it should be noted that the proposed approach is closely related
to the theory of improper linear programming problems correction [3] and may be
regarded as one of possible ways to parameterize an improper linear programming
problem in order to construct its approximation by a proper linear programming
problem and to correct it at a minimal cost.

3. Experimental Comparison of Statistical and Non-Statistical Estimates

The main difference in the systems of basic hypotheses of the statistical and non-
statistical (bounding) approaches to parameter estimation is the hypothesis on error
structure.

In statistical approaches, the error is supposed to be a random variable with a
distribution selected by the researcher. In practice, the distribution is often assumed
Gaussian normal. It is well known that the least squares method (which is a particular
form of the maximum likelihood method) provides the most qualitative estimates
(consistent and efficient) in this case. However, the error normality assumption
is not always justified [6], [7]. Furthermore, in most cases the researcher has no
strong reason to take specific distribution as belonging to this or that predetermined
parametric class.

The main principle of the non-statistical approach to data processing, which
determines all the algorithms and conclusions, is that all elements of the error
interval and therefore all elements of the uncertainty set B are equally possible and
feasible [8].

We propose to clear up the descriptive strength of both statistical and non-
statistical fitting methods through simulation, which is organized in the following
way. Each iteration of the simulation consists of a model data generation step and
a step that solves a point forecasting problem for the generated data using both
statistical and non-statistical estimation methods. The deviations of the estimated
values of the output variable from its real value (forecast errors) are accumulated
through all the iterations in order to compute standard deviations of estimates
obtained by each method. In every iteration, the model data are generated by adding
simulated error (random value that belongs to the known distribution) to a value of
some known modeling function for fixed values of the explanatory variables.

The point estimates are chosen as the main objects for comparison because of
the possibility to similarly interpret the statistical and non-statistical point estimates



ON FITTING EMPIRICAL DATA UNDER INTERVAL ERROR 437

-1 10

1

-1 10

1

(a) (b)

-1 10

1

-1 10

1

(c) (d)

Figure 1. Probability density function (3.1) for  = 1 and (a)  = 0, (b)  = 1  3, (c)  = 2  3,
(d)  = 1.

(while it is too difficult in the case of interval estimates) and because they are of
great importance in practice.

As for the distribution of simulated errors in the model data, it is of interest
to examine situations best for each of the compared methods as well as some
intermediate variants. Statistical methods provide good results when the distribu-
tion of error is unimodal, in particular, for the least squares method it should be
normal. Apparently, the most adequate way to ensure the main principle of the non-
statistical estimation approach in a statistical manner is to supply the uniform error
distribution. Therefore, it is advisable to perform the comparative simulation study
under normally and uniformly distributed error as well as for some intermediate
distributions of the error.

3.1. NON-STATISTICAL ESTIMATES AND MAXIMUM LIKELIHOOD ESTIMATES

To compare non-statistical and maximum likelihood estimates, we use the following
parametric class of probability density functions (p.d.f.):

p (x) =





2 x +

 + 1
2

 − ≤ x < 0

− 
2 x +

 + 1
2

 0 ≤ x ≤ 
(3.1)

where  is the absolute value of the error bound,   [0 1] is a parameter that
determines the degree of proximity of (3.1) to the triangular p.d.f. For  = 1, the
functions (3.1) that correspond to the boundary and two intermediate values of 
are plotted in Figure 1.

The simulation process is described by the following pseudo-code.
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ALGORITHM 1.

input
y = (x ) — function in the form (1.1)
 ∗ — exact values of the model parameters
x∗ — argument value which the forecasting problem is to be solved for
 — mid-width of the error interval
Q — multiplicity of the simulated observations
K — number of simulation iterations
M — step number for p.d.f. evolution from the uniform to triangular form

output
ds

m d
n
m — standard deviation of forecast errors for statistical (maximum

likelihood) and non-statistical method respectively

begin
y∗ := (x∗  ∗)
X := GENERATE EXPERIMENT PLAN
for m := 0 to M do

ds
m := 0

dn
m := 0

m := m
M

for k := 1 to K do

{ Data generation }
j := 1
for each row x  X do

for q := 1 to Q do
e := random value from interval [− ] with p.d.f. pm (x)
xj := x
yj := (xj  ∗) + e
j := j + 1

end for
end for

{ Estimation }
̂ s := MLE(x y)
̂ n := NONSTAT(x y )
ŷs := (x∗ ̂ s)
ŷn := (x∗ ̂ n)

{ Accumulation of squared deviations }
ds

m := ds
m + (ŷs − y∗)2

dn
m := dn

m + (ŷn − y∗)2

end for
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{ Computation of standard deviation }
ds

m := ds
m  K

dn
m := dn

m  K
end for

end

The subroutine MLE, used in Algorithm 1, returns maximum likelihood esti-
mates for the data passed by its arguments. The implementation of the maximum
likelihood method by this subroutine has the following feature. For p.d.f.’s that are
close to the uniform p.d.f., the computation of the maximum likelihood estimate
entails difficulties related to non-uniqueness of the maximum of the likelihood
function. We overcome these difficulties by the regularization of the optimization
problem, which assumes adding, to the likelihood function L(), a regularizing term
in the form of  |L()|( − ∗)2, where  < 0 is the relative weight constant (in our
simulation,  = −001), and ∗ is a known vector of exact values of the modeling
function parameters.

The subroutine NONSTAT computes non-statistical estimates according to
(1.2)–(1.4).

The function GENERATE EXPERIMENT PLAN generates the values of the
input variables in the simulated measurements table. In the performed simulation,
a simple function with two input variables (one of them is dummy) and unity
parameters, y = (x ) = x + 1, was used as modeling function, i.e. ∗ = (1 1).
The generated plan of experiment X consisted of the records (x1i 1), where x1i = i,
i = 1 2  10.

The other parameters of Algorithm 1 had the following values: x∗ = (55 1);
ε = 05; M = 10; K = 5000; Q = 3.

The values of the resulting standard deviation of the statistical and non-statistical
estimates depending on m are plotted in Figure 2.

The analysis of the simulation results allows us to draw the following con-
clusions. For the error p.d.f.’s that are close to the triangular one, the maximum
likelihood estimate is more efficient than the non-statistical one. The situation
can be naturally explained by the fact that the statistical estimation method uses
additional information (in the form of error distribution) which the non-statistical
method does not use. However, when the error distribution is close to the uniform
distribution, the standard deviation of the non-statistical estimate of the predicted
value noticeably decreases, while the deviation of the statistical one grows up and
even exceeds it. This may be explained by the following: the error distribution that
are close to the uniform one gives less information for the maximum likelihood
method than the triangular one, but in such cases the basic non-statistical principle
becomes more adequate. The zero standard deviation of the statistical forecast for
m = 0 is determined by relatively large contribution of regularizing term to the
likelihood function.
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Figure 2. The standard deviation of the maximum likelihood and non-statistical forecasts
from exact value for error distribution with p.d.f. pm (x).

3.2. NON-STATISTICAL ESTIMATES AND LEAST SQUARES ESTIMATES

The procedure and parameters of the experimental comparison of the non-statistical
forecast and the least squares forecast that we used are much the same as described
in the previous subsection. The only exceptions are the error distribution and obser-
vation multiplicity.

Instead of p(x), the class Nk(a 2) of normal error distributions truncated
on a level k is used in this experiment (i.e. the error is bounded by the interval
[a− k a + k], where a is mathematical expectation,  is mean square deviation).
The values of a and  were set equal to 0 and 1 respectively. The class parameter
k plays the same part for Nk(a 2) as  for p (x). The value of k changes in the
interval [05 3] with the step 025. So, the error distribution changes from nearly
uniform to the nearly normal one as k increases.

In order to reveal the dynamics of the standard deviations of forecast errors
depending on observations multiplicity the experiment is conducted for each of the
following values of Q: 1, 3, and 9.

The results of the experiments are depicted in Figure 3.
Analyzing the standard deviations of the non-statistical and the least squares

forecast errors depending on the truncation level k and observations multiplicity Q
we can see that

 when the characteristics of the error distribution correspond to the hypotheses
of the least squares method, the least squares estimates are more efficient, but
in the range of nearly uniform distributions the efficiency of the non-statistical
estimates becomes comparable;
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Figure 3. Standard deviation of the least squares estimates and non-statistical estimates
depending on the truncation level of normal distribution of the error k and observation
multiplicity Q.

 in the range of nearly uniform error distributions, as observation multiplicity
grows up the efficiency of non-statistical estimates increases faster than that for
the least squares estimates. This fact may be considered as an evidence that the
non-statistical estimation method implicitly accumulates information about the
error.

Therefore, the results of the simulation performed allow us to conclude that,
in case of bounded errors and lack of information on error distributions, the non-
statistical estimation approach may be a competitive alternative to the classical
statistical methods of maximum likelihood and least squares. In spite of the fact
that the non-statistical estimation method uses less empirical information than
the statistical techniques, the efficiency of the point non-statistical estimates is
comparable to that of statistical estimates, at least when the error distribution is
close to uniform.
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