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INTEGRATION OF INTERVAL FUNCTIONS* 

OLE CAPRANI?, KAJ MADSENf AND L. B. RALLI 

Abstract. An interval function Y assigns an interval Y ( x )  = ( y  ( x ) ,  p ( x ) ]  in the extended real number 
system to each x  in its intgrval X = [ a ,  b]  of definition. The integral of Y over [ a ,  b ]  is taken to be the interval 

Y ( x )  d x  = [S,hY(x)  d x ,  j,b Y ( x )  d x ] ,  where S,h y ( x )  d x  is the lower Darboux integral of the lower endpoint 
function y, and 1,b Y ( x )  d x  is the upper ~ a r b o u x  integral of the upper endpoint function 9 .  Since these 
Darb~uxjnte~rals  always exist in the extended real number system, it follows that all interval functions are 
integrable, no matter how nasty the endpoint functions y, 9 are. The interval integral defined in this way 
includes the interval integral of R. E. Moore as the speciaicase that y, g are continuous, and hence Riemann 
integrable. 

In addition to a construction of the interval integral in a form suitable for numerical'approximation, some 
of its basic properties and other implications and applications of its definition are presented. The theory of 
interval integration given here supplies a previously lacking mathematical foundation for the numerical 
solution of integral equations by interval methods. 

1. Intervals in the extended real number system. In ordinary interval analysis 
[5], [6], the term interval refers to closed intervals of real numbers, 

with finite endpoints a ,  b. The width 

(1.2) w (X)  = w ([a, b]) = b - a,  

of an interval with real endpoints is consequently finite. To develop the theory of 
integration of interval functions given below, it is convenient to use the extended real 
number system, which includes the values f a [3]. Thus, in addition to finite intervals of 
the form (1.1) with a, b finite, there will be infinite intervals in the system of one of the 
following types: 

(i) semi-infinite intervals 

(ii) the real line 

and 

(iii) the indegenerate intervals 

(In what follows, "+a" will often be written simply .as "a".) 
All the infinite intervals will be defined to be of infinite width, that is, 
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in the extended real number system. This definition is consistent with the type of 
limiting process used to define "improper" integrals, that is, 

(1.7) Sa = lim [a, b] = [a, a ] ,  S, = lim [a, a] = [m, a ] ,  
b-a ,  a + m  

and hence, 

(1.8) w (S,) = lim w (Sa) = lim (00) = a ,  
a-tm a-a, 

so that it is reasonable in this sense to assign infinite widths to the indegenerate intervals 
S-" and S,. 

In what follows, a closed interval in the extended real number system will be called 
simply an interval. 

2. Interval arithmetic. Interval arithmetic [S], [6] as defined for finite intervals 
may also be performed in the system of intervals in the extended real number system 
defined in 8 1 if suitable rules are adopted for computing with the values *a. In essence, 
these "rules" are a shorthand notation for the results of the types of limiting processes 
to be encountered in the theory of integration presented below. McShane [3, p. 211 
gives the following rules: 

' (i) 
(ii) 

(iii) 
(iv) 

(2.1) ( 4  
(vi) 

(vii) 
(viii) 

6x1 

-a < a < a for every real number a ; 
a . a = a . a = c ~ ~ i f O < a I ~ ;  
m . a = a . a = - m i f - a S a < O ;  
( - a ) . a = a  . ( - m ) = - ~  if O < a S a ;  
( - a ) . a = a . ( - ~ ) = a  i f - ~ Z a < O ;  
a / ~  = a / ( - a )  = 0 if a is real; 
m + a = a + a = a 3 i f  a > - a ;  
- m + a = a + ( - a ) = - a i f  a < a ;  
a.O=O.a=(-a)~o=o~(-a)=o. 

Thus, rule (2. lix) takes care of the "indeterminant" form "0 . a" which can arise if 
one of the factors in a multiplication is an infinite interval. The product of two intervals 
will be defined to be 

(2.2) [a, b] . [c, d l  = [min {ac, ad, bc, bd}, max {ac, ad, bc, bd}] 

in the extended real number system. In ordinary interval arithmetic [5, p. 91, (2.2) is a 
consequence of the definition [a, b] [c, d l  = {z )z = x . y, x E [a, b], y E [c, dl} of multi- 
plication of intervals. In the extended real number system, however, one has 
{zlz = x . y, x E [-I, 11, y E [ a ,  a ] }  = {-cb, 0, m} by (2.1ii, iii, ix), and the result is not an 
interval. Use of the rule (2.2) gives [-I, 11 . [m, a] = [ - a ,  a ] ,  which circumvents this 
problem. 

As in ordinary interval arithmetic, division by intervals containing 0 will not be 
defined. The reciprocal of an interval, 

is defined for all zero-free intervals, with rule ( 2 . 1 4  used if [c, d l  is an infinite interval. 
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One has 

1 S, = [a, a]-' = , a > 0; s&' = [CO, a]-' = [o, 01; 

The indeterminant form "CO/CO" will thus not occur in the interval arithmetic under 
discussion, since division is defined by 

-- [" b1 - [a, b] . [e, dl-', Ok[c, dl,  
[c, d l  

and [c, dl-', if it exists, will have only finite endpoints by (2.3) and (2.4). 
The indeterminant form "m - m" can appear in addition or subtraction according 

, to the usual rules [5, pp. 8-91, 

[a, b] + [c, d l  = [a + c, b + dl ,  

[a, b]-[c, d]=[a-d ,  b-c], 

but only if at least one of the terms is an indegenerate interval. Thus, an additional rule 
to augment the list (2.1) is needed, which is 

[a, a] + [-CO, -a] = [a, CO] - [m, m] = [ - a ,  m], 
(2.7) (x) 

[ - a ,  b] + [ a ,  a] = [--a, b]- [ -a ,  -CO] = [ -a ,  a ] ,  

where a, b may be finite or infinite. Thus, rule ( 2 . 7 ~ )  assigns the value +a to - as an 
upper endpoint of an interval, and -a as a lower endpoint. 

Thus, the total collection of rules for interval arithmetic in the system of intervals 
defined over the extended real numbers consists of (2. li-ix), (2,7x), (2.2), (2.3), (2.5) 
and (2.6). The interval arithmetic constructed in this way contains ordinary interval 
arithmetic on finite intervals [5], [6] in .the sense that it gives the same results for finite 
intervals. The operations on infinite intervals are defined in such a way as to be 
convenient in the sequel for the construction of a theory of integration of interval 
functions. Other extensions of interval arithmetic to infinite intervals are possible, but 
will not be considered here. 

3. Interval functions. Y is said to be an interval function of x on [a, b] if it assigns a 
nonempty interval 

to each x E [a, b]. The (extended) real-valued functions - y, y are called the endpoints or 
boundary functions of Y, and the notation 

will be used, as well as the alternative notation 

for the interval (3.1). 
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The interval function Y can also be identified with its graph, which is the set of 
points 

in the x, y-plane. Geometrically, the graph (3.4) extends from the "lines" x = a on the 
left to x = b on the right, and from the "curves" defined by y = y (x) below to y = y(x) 
above (recall that extended real values are permitted). 

In the context of interval functions, a real-valued (or extended real-valued) 
function f is considered to be the degenerate interval function 

In the extended real number system, numbers c S d exist such that the graph (3.4) 
of Y is contained in the rectangle R = [a, b] x [c, d l  = {(x, y)lx E [a, b], y E [c, dl) in the 
x, y -plane; that is, 

The set of all rectangles R for which (3.6) holds will be denoted by R (Y) or by R [a ,b ]  ( Y) 
if it is desired to specify the interval of definition [a, b] of Y. 

If [a, b] is a finite interval, then Y is said to be finitely defined. If (3.6) holds with c, d 
finite, then Y is called a bounded interval function. A bounded and finitely defined 
interval function is said to be finite; the graph of a finite interval function is obviously 
contained in a finite rectangle R with area w ([a, b]) . w ([c, dl)  = (b - a )  . (d - c). 

DEFINITION 3.1. For 

c = inf {y (x)}, d = sup { j j ( x ) } ,  
x t [ a , b l  xs[a ,b l  

the interval 

is called the vertical extent of the interval function Y on [a, b]. If the interval of 
definition of Y is understood, then V Y[a,bl may be abbreviated as V Y. The rectangle 

is the "smallest" containing the graph of Y. One has 

that is, R (V Y )  is the intersection of all rectangles (3.6) which contain the graph of Y. 
Vertical extent of an interval function, as defined above, has the important 

property of being inclusion monotone with respect to the interval of definition of the 
interval function and inclusion of interval functions; Y c Z means that the graph of Z 
contains the graph of Y considered to be point sets in the x, y-plane. More precisely, 
(3.7) and the definition (3.8) of vertical extent lead directly to the following result: 

LEMMA 3.1. If I, J are intervals on the x-axis with I c J, then 

if Y, Z are interval functions on X = [a, b] such that Y c Z, then 
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4. Vertical measure and Darboux sums. 
DEFINITION 4.1. The interval 

is called the vertical measure of the interval function Y o n  [a, b]. Note that this quantity 
is interval-valued, and specifies the interval of definition of the interval function Y on 
which its vertical extent V Y is obtained. 

(The goal in this paper is to construct a theory of Riemann-type integrals of interval 
functions. The horizontal measure 

of Y on [a, b] may be useful in a Lebesgue-type integration theory, but this will not be 
pursued further here.) 

Remark 4.1. Vertical measure is inclusion monotone with respect to inclusion of 
interval functions: If Y c Z, then W [ ,  b ]  (Y)  c W[a,b] (2). 

The assertion of Remark 4.1 follows immediately from Lemma3.1. 
As usual, a set of points {xo, xl,  . . , x,} such that 

defines a partition, 

of the interval X = [a, b], where 

Obviously, 

n n 

x= U xi ,  w(X)=  1 w(xi). 
i = l  i = l  

DEFINITION 4.2. The interval 

n n 

(4.7) ~ A , Y =  E w(Xi) VYi = 1 W[x,-,,xi~ (Y)  
i = l  i = l  

is called the Darboux sum of the interval function Y corresponding to the partition A, 
of X = [a, b], where V Yi = V Yxi = V Y[xi-,,,il has been written for brevity. For 

one has 

ci = inf { y  (x)), di = sup {y(x)) x s x ,  - * E X ,  

and 

the endpoints of EAnY are thus, respectively, the lower Riemann sum of the function y 
and the upperRiemann sum of the function 9 corresponding to the partition A, of X [7]. 
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The upper and lower limits of the interval (4.10) may also be interpreted as 
(elementary) integrals of step-functions [3], p. 54, 

and 

In (4.1 I) ,  the step function ~ ( x )  will have the values 

in all nondegenerate intervals Xi of the partition A,. At each of the partition points xi 
listed in (4.3), there will be a finite number of intervals Xi-ii, 
Xi-j,+l, . . ,Xi,  Xi+l,  . - , Xi+ki which contain xi. Define 

(4.14) ~ ( x ~ ) = m i n { c , I x ~ ~ ; Y i ) ,  i = 0 , 1 ; - . , n .  

Similarly, 

(4.15) S(X) = di = SUP {jj(x)), xi-1 < x <x i  
xcx, 

in nondegenerate intervals Xi of the partition A,, and 

(4.16) S(xi) = max {dilxi EX,), i = 0, 1, . . . , n, 

at the partition points xo, xl, a . , x,. It follows that 

(4.17) s (x )Sy(x )S j j (x )SF(x ) ,  a 5 x 5 b .  

The properties of integrals of step-functions are well-documented [3, pp. 54-57]; 
for example, if s l  and s2 are step-functions on an interval X, and k is a finite constant, 
then 

(c) if sl(x) 5 sZ(x) for all x E X ,  then 

Furthermore, if s(x)  is a step-function on X, then for each partition A, of X 

The integral of a step function is also invariant under translation [3, p. 571. 
The above results may be used to prove corresponding assertions about the 

Darboux sums (4.7), taking into account the differences between real and interval 
arithmetic. 
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THEOREM 4.1. If Y, Z are interval functions on X = [a, b ]  and k is a constant, then 

(a) ZAnk . Y = k ZA,, Y; 

(4.20) (b) ZA,(Y+Z)cZA,,Y+Za,,Z; 

(c) if Y c Z on X, then ZAn Y c I ;A , ,Z  (inclusion monotonicity ). 

Proof. For finite k, (4.20a) follows directly from (4.18a); rule ( 2 . 7 ~ )  allows one to 
drop the restriction of k to finite values. For Y = [y, - y], Z = [g, 21, the inequalities 

(a) inf {y + g) 2 inf {y) + inf {t), 
xi - 

(4.21) 
xi - xi 

(b) sup { j j  + 2) 5 sup {y) + sup {F} 
Xi Xi Xx 

on the intervals X;:, i = 1,2,  , n, [3, p. 251 give 

(4.22) V( Y + z ) x ,  V Yx, + Vzx,, 

from which 

i = 1,2,  - . , n, and (4.20b) follows. Finally, the inclusion monotonocity of the vertical 
measure W (see Remark 4.1) with respect to inclusion of interval functions gives 
(4.20~). Q.E.D. 

An analogue of (4.19) is also available immediately. For m = 2, suppose that 
a S p  5 b, and that 

(4.24) = (XII, X12, ' . ' r Xlnl) 

is a partition of XI = [a, p]; similarly, 

is a partition of X2 = [p, b] .  For n = nl + n2, it follows that 

will be a partition of X = [a, b] ,  and 

This may be extended by induction to any positive integer m > 2. 
A type of mean value (or mean interval-value) theorem holds for the Darboux 

sums (4.7). 
THEOREM 4.2. If X =[a, b] is a finite, nondegenerate interval, then an interval 

F(A,) c V Yx exists for each partition- A, of X such that 

Proof. By (4.7) and (4.20a), 

say, where for ai = w(Xi)/w(X), i = 1 , 2 , .  . , n, 
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Thus, 

c = min {ci} 5 r 5 max {ci}, 
(i) (i) 

min {di} 5 s 5 max {di} = d, 
(i) ( i )  

and hence [r, s ]  c VYx. Thus, by (4.29), (4.28) holds with Y(A,) = [r, s]. Q.E.D. 

5. Step-functions and Riemann sums. For each positive integer n, let S, denote 
the set of all step-functions s, on X having n + 1 partition points xo, xl, , disposed 
according to (4.3). Furthermore, let 

The sets S,(Y), S,(Y) are nonempty, as 5, = -oo belongs to S,(Y), and Jn = +oo to 
The sets S,(Y), &(Y)  are nonempty, as S, = -oo belongs to &(Y)  and in = +m to 

' b  'b  

(5.2) 1 R(X) dx 5 /a %,(XI dx, 

and consequently 
'b  

cn = sup dx] 5 in! (Ia ~ ( x )  dx] =dn.  
sn€S, r,,eS, 

DEFINITION 5.1. For each positive integer n, let 9, denote the set of partitions 
(4.4). The interval 

is called the Riemann sum of order n of the interval function Y over [a, b].  
LEMMA 5.1. The interval Zn Y is nonempty ; furthermore, if m > n, then 

(5.5) Z,Y c Z,Y. 

Proof. The assertion of the nonemptiness of the interval (5.4) is simply a restate- 
ment of (5.3). Denoting the set of Darboux sums (4.7) by Y,, if m > n, then 

as if ZAn c Yn; then one may take the partition A, defined by 

for which XAnY = XA-Y, and thus ZAnY E Ym for m > n. The inclusion (5.5) then follows 
from (5.6) by the definition (5.4). Q.E.D. 

The properties of Darboux sums listed in Theorem 4.1 survive the intersection 
(5.4) and thus become properties of Riemann sums, giving immediately the following 
result. 

THEOREM 5.1. If Y, Za re  interval functions on X = [a, b ]  and k is a constant, then 

(a) Z , k . Y = k . X , Y ;  

(5.8) (b) Z , ( Y x Z ) c X , Y + X , Z ;  

(c) if Y c Z on X, then X,Y 5 Z,Z (inclusion monotonicity). 
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The additivity of Riemann sums with respect to the intervals over which they are 
defined will now be investigated. In order to be definite, the notation 

will be used to indicate the interval of summation X = [a, b] .  Suppose that a S p 5 b and 
X I  = [a, p] ,  X2 = [p ,  b] .  The following results apply to the expression of the sum of an 
interval function Y over X in terms of its sums over X 1  and X2.  

LEMMA 5.2. If X = [a,  b ]  is finite and nondegenerate, then 

(5.10) W [ a , p l (  Y ,  + W [ ~ , b l (  y)  c w [ a , b l (  y) ,  

that is, 

(5.11) w([a ,  P I )  ' VY[a,p] + w ( [ P ,  b l )  V Y [ p , b ]  c w([a ,  b l )  . V Y [ a , b ] .  

Proof. Let V Y[,,,] = [cl ,  d l ] ,  V YLp,b l  = [c2, d2],  V Y I a , b 1  = [c, d l .  Then, by the 
definition of vertical extent, 

(5.12) c = min {c l ,  c2), d = max {d l ,  d2). 

For a = w ([a ,  p] ) /  w ([a,  b I ) ,  one has 1 2 a 2 0 and w ([ p, b ] ) /  w ( [a ,  b ] )  = 1 - a 2 0.  
Thus, 

(5.13) w([a ,  P I )  ' V Y[a,pl + w ( [ P ,  b l )  . V Y ~ ~ , b l  

= w([a,  b ] )  . [acl+ (1 - a)c2, ad1 + ( 1  - a ) d J  

and, as 

by (5.12), (5.11) follows. Q.E.D. 
THEOREM 5.2. I f  X = [a, b ]  is finite and nondegenerate, then for each positive 

integer n 2 2 

Proof. The set Yn of Darboux sums (4.7) may be decomposed into two disjoint 
subsets for each positive integer n 2 2: the set 9': of sums corresponding to partitions 
AP, which have p as a partition point, the set of which will be denoted by 9:, and the 
complement of YP, relative to Yn, YP,' = Yn\YP,, that is, the set of all Darboux sums 
corresponding to partitions A, for which p is not a partition point. As 9': c Y,, one has 

By (4.27), for X A E Y  E YP, one can write 

where nl  + n2 = n. Consequently, as 

the first inclusion of (5.15) follows. 
Now, consider a partition AnP1 of X =[a ,  b ]  for n 2 2 ,  and let A: denote the 

partition of X obtained by adding the point p to the set {xO, X I ,  . . . , x,-1). Either p =x i  
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for some i, 0 5 i d n - 1, in which case 

nl  + nz  = n, or a nondegenerate interval Xi = [xi-1, xi] c An-1 exists such that xi-1 < p < 
xi. AS 

by Lemma 5.2 one has 

in this case. Thus, as { Z A P , Y [ ~ , ~ ] }  = 9'R, 

by (5.20) and (5.21), and the second inclusion in (5.15) now follows from 
(5.18). Q.E.D. 

A mean interval-value theorem also holds for Riemann sums. 
THEOREM 5.3. If X = [a, b ]  is finite and nondegenerate then, for each positive 

integer n, an interval Fn c V Yx exists such that 

(5.23) X n  Y = w ( X )  Fn. 
Proof. As before, let 9, denote the set of all partitions An for each positive integer 

n. Then, by (4.28), 

(5.24) xny= n x A , ~ = ~ ( x ) .  n ?(A,,), 
Ancan Ans%, 

so that (5.23) holds with 

(5.25) Fn = n F ( A , ) ~ V Y , ,  
An€% 

as each F(An)  c V YX. Q.E.D. 

6. Interval integrals. 
DEFINITION 6.1. (The interval integral). If Y is an interval function defined on 

X = [a, b] ,  then the interval integral of Y over [a, b ]  is defined to be the interval 

As usual, Y is said to be integrable over X if its interval integral (6.1) is defined. 
Remark 6.1. By Lemma 5.1, the interval integral (6.1) is a nonempty closed 

interval, since it is the intersection of a (countable) collection of nested closed intervals. 
Remark 6.2. An equivalent definition of the interval integral (6.1) is 

where, for the sets of step-functions 
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the lower Darboux integral of y over X =[a, b] is defined to be [3, p. 571 

and similarly, the upper Darboux integral of j j  over X = [a, b] is 

The set S defined in (6.3) is the set of all step-functions bounded above by y; 
similarly, S is the set of all step-functions which are greater than or equal to j j  at each 
point of X. As these sets are nonempty (recall the step-functions 5 = -a) and ?=+a)), 
the Darboux integrals (6.4) and (6.5) always exist, no matter how nasty the functions 
y, g are from the standpoint of ordinary integration theory. This observation furnishes 
ihe following result. 

THEOREM 6.1, (Theory of interval integration). If Y is an interval function 
defined on X = [a, b], then its interval integral (6.1) over [a, b] exists. 

In other words, all interval functions are integrable (in the sense of interval 
integration). The simplicity of this theory is due to the fact that intervals are accepted as 
values of integrals, including the case that the integrand is degenerate (i.e., a single real 
function). The requirement that the integral of a real function be a real number rather 
than a possibly nondegenerate interval leads to numerous difficulties and correspond- 
ingly rich theories of integration (as elucidated in [3], for example), which constitute 
some of the most important chapters of real analysis. By the introduction of interval 
values for integrals, these difficulties are resolved, and the operation of integration is 
extended to all functions, interval or real. This is analogous to the way that the 
introduction of complex numbers extends the operation of root extraction to all 
numbers, complex or real. However, just as complex analysis does not supersede real 
analysis, it is to be expected that interval analysis will develop as a complementary, 
rather than a competitive, discipline to real analysis. 

Some implications of the definitions of the interval integral given above, and some 
basic properties of interval integrals will now be investigated. 

Remark 6.3. If y, - j j  are Riemann integrable on [a, b], then 

in terms of the Riemann integrals of the lower and upper endpoint functions. 
This follows from (6.2) and the definition of a Riemann integrable function 

[3, p. 571 as one with equal upper and lower Darboux integrals; its Riemann iqegral is 
taken to be this common value, so that if y is a Riemann integrable function on 
X = [a, b], then its Riemann integral is 

Remark 6.4. In case y, g are continuous on [a, b], then the construction of the 
interval integral of Y ma; be simplified by taking only the equidistant partitions A, 
defined by the points 
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for each positive integer n, so that w(Xk) = l l n ,  and hence, by (4.20a), 

Here, the formation of the Riemann sums Z n Y  can be skipped, and the interval integral 
is given by 

[3, pp. 58-59], as continuous functions are Riemann integrable. 
The interval integral (6.10) is the one proposed by R. E. Moore for continuous 

interval functions [5, Chapt. 81, [6, pp. 50-561, as the endpoint functions of a continuous 
interval function are necessarily continuous [5, p. 181, [6, p. 331. Of course, even in the 
case y, y are continuous, one may be able to find a partition An of [a, b] other than Ln 
suchthat Z a n y  is properly contained in the Darboux sum (6.9), and hence provides a 
"more accurate" approximation to the interval integral than given by use of the 
equidistant partition. Some additional remarks about the numerical approximation of 
interval integrals will be made later. 

Some basic properties of interval integrals come directly from the properties of the 
corresponding Riemann sums (5.4) which hold under the intersections in (6.1). Thus, 
from Theorem 5.1, one has the following result. 

THEOREM 6.2. If Y, Z are interval functions on X = [a, b] and k is a constant, then 

(6.11) b b 

(b) j a ( Y ( x ) + z ( x ) ) d x c  lab Y ( x ) ~ x + ~  a Z ( X ) ~ X ;  

(c) if Y c Z on X, then 
b b 

ja Y(x) dx c la Z(x)  dx (inclusion monotonicity). 

By taking intersections over all positive integers n of the expressions in (5.19, one 
gets immediately: 

THEOREM 6.3. If Yis an interval function defined on a finite, nondegenerate interval 
X = [a, b], and p is such that a d p  S b, then 

b 

(6.12) jap Y(x) dx + jb Y(x) dx =I Y(x) dx. 
P 

Similarly, Theorem 5.3 furnishes the following mean interval-value theorem for 
interval integrals. 

THEOREM 6.4. If Yis defined on a finite, nondegenerate interualx = [a, b], then an 
interval c V Yx exists such that 

(6.13) jab Y(x).dx = w ([a, b]) - P. 

Proof. Taking intersections of both sides of (5.23) over all positive integers n gives 
(6.13) with 

m 

(6.14) P =  n P , , ~ v Y ~ .  Q.E.D. 
n = l  
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Theorem 6.4 is useful in connection with properties of indefinite integrals. 
DEFINITION 6.2. The interval function 

I a Y ( x )  = I x  Y ( t )  dt, 
a 

is called the indefinite integral of .the interval function Y over [a, x ]  for x 2 a. ( I ~ Y ( x )  is 
similarly defined over [x, b ]  for x 5 b.) 

THEOREM 6.5. I f  Y is a bounded interval function on [a, b ] ,  then I a Y ( x )  is a 
continuous interval function at any p E [a, b].  

Proof. Suppose that V Y[a,b] = [c, dl  and take, as usual, 

which is finite by hypothesis. For a < p < b, a I x 5 p ,  F[,,] c V Y [ a , b ]  exists such that 

by Theorems 6.3 and 6.4; likewise, an interval Yrp,xl c VY[a,b]  exists such that 

for p < x  5 b. Given any E > 0 ,  for S = E/IV Y [ a , b ]  I ,  the endpoints of I a Y ( p )  thus differ 
from the endpoints of I a Y ( x )  by less than E for Ix -pl< S. Continuity of I a Y ( x )  from the 
right at x = a and from the left at x = b is obtained from (6.18) and (6.17), respectively, 
as I a Y ( a )  = 0 by Theorem 6.4. Q.E.D. 

Indefinite integrals also exhibit a type of differentiability if the limits 

I L Y ( x )  = lim 
1 

(6.19) . I ,Y(x)  = lim P[p,xl 
p r x  w ( [ P ,  X I )  ~ t x  

and 

1 
(6.20) I :  Y ( x )  = lim I q Y  ( x )  = lim 

qLx w([x ,  41) q1x  

exist and are equal, where FLp,xl and FrX,,] are the intervals defined in Theorem 6.4 
and x lies interior to the interval of definition [a, b ]  of Y. (One-sided derivatives at x = a 
and x = b are defined by (6.20) and (6.19), respectively.) 

DEFINITION 6.3. If the limits I L Y ( x )  and I : Y ( x )  exist and are equal, then 

is called the derivative of the indefinite integral of Y at x. 
The following theorem gives a condition under which the derivative of an indefinite 

interval integral is equal to its integrand. 
THEOREM 6.6. If Y is a continuous interval function on [a, b ] ,  then its indefinite 

integral is differentiable, and 

I : Y =  Y ( x ) ,  a < x < b ,  
(6.22) 

I : Y ( a )  = Y ( a ) ,  I L Y ( b )  = Y ( b ) .  
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Proof. Let, for example, FLP,,] = [ ~ ( p ) ,  I (p ) ]  for p <x. If the upper endpoint 
function 7 of Y is considered as an interval function, it follows from (4.31), (5.25), and 
(6.14) that I E Vpcp,xl. As 7 is continuous if Y is a continuous interval function, 

lim Vjj[p.xl = jj(x) = lim I ( p ) .  
ptx ptx 

Similarly, limPt, g(p)  = - y (x), so that I t  Y(x) exists, and 

In the same way, one has 

which establishes (6.22). Q.E.D. 

7. Relationships between interval, Riemann, and Lebesgue integrals of real 
functions. Ordinarily, no distinction will be made between a real function y and the 
corresponding degenerate interval function [y] = [y, y ]  having equal upper and lower 
endpoint functions. It is convenient, however, to distinguish between possible integrals 
of y over an interval X = [a, b]. The notation 

will be used to denote respectively the interval integral of y as a degenerate interval 
function (which integral always exists), the Lebesgue integral of y if y is Lebesgue 
integrable over [a, b], and finally, the Riemann integral of y if it exists. 

Remark 7.1. The integral of a degenerate interval function y is a degenerate 
interval, that is, 

if and only if the real function y is Riemann integrable over [a, b], so that 

This follows directly from Remark 6.3 and the definition (6.7) of the Riemann 
integral. 

Thus, one ordinarily expects an interval integration, even of a single function, to 
result in a nondegenerate interval. For example, if xP is the characteristic function of the 
rationals, that is, 

then 

(7.5) 

xP(x) = 1 for x rational, 

xp(x) = 0 for x irrational, 

as is well known. On the other hand, some nondegenerate interval functions have 
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degenerate interval integrals. Consider the function Y defined by 

i.e., Y is an interval step-function, which includes the "risers" as well as the "treads". 
For this function 

r 1 

as the lower and upper boundary functions of Y have equal (Riemann) integrals. 
Any interval function Y may be interpreted, of course, as a set of functions, that is, 

If Y is degenerate, then the set (7.8) consists of only the single function y = y = j j .  
Otherwise, Y will contain a number of functions, among which there may be sibsets 
with certain distinguishing properties (continuity, differentiability, monotonicity, etc.). 
For the discussion of integration, the following subsets of functions will be singled out 
for special mention. 

DEFINITION 7.1. If Y is an interval function on [a, b], then the set of Lebesgue 
(Riemann) integrable functions y E Y will be called the Lebesgue (Riemann) core of Y, 
and will be denoted by CL(Y) (CR(Y)). 

One has CR(Y) c CL(Y) always, but these sets may, of course, be empty. For 
example, if M is a subset of [O,1] which is not measurable in the sense of Lebesgue, then 
its characteristic function XM is a degenerate interval function with an empty Lebesgue 
(and hence Riemann) core. The characteristic function X, of the rationals considered 
earlier (see (7.4)) provides an example of a degenerate interval function with an empty 
Riemann core, but a nonempty Lebesgue core (the function X ,  itself). 

DEFINITION 7.2. The value v(CL(Y)) (v(CR(Y))) of the Lebesgue (Riemann) core 
of Y on [a, b] is defined by 

respectively, provided that the indicated cores of Y are nonempty. 
Each set v(CL(Y)) and v(CR(Y)), when nonempty, is convex, that is, if one 

contains values rl, r2, with rl 5 r2, then it contains the entire interval [rl, r2]. This is 
because if yl has integral rl and y2 has integral r2, then the functions ye = yl + 8(y2 - yl) 
are all integrable for 0 S 8 5 1, and have integrals equal to re = rl + e(r2 - rl), 0 5 8 5 1, 
which is just another expression for the interval [rl, r2]. As a matter of fact, the theory of 
Lebesgue integration [3] leads to the conclusion that 

if it exists, is a closed interval, which will be called the Lebesgue subinterval of the 
interval integral (6.1) of Y over [a, b]. The set v(CR(Y)), on the other hand, is not 
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necessarily closed. This is considered to be a defect of Riemann integration, and led to 
the construction of the theory of Lebesgue integration. However, as v(CR(Y)) is 
convex, then its closure, 

(7.11) IR( Y) = u (CR( Y)), 

is a closed interval which, if it exists, will be called the Riemann subinterval of the 
interval integral of Y over [a, b]. 

The purpose of the introduction of the intervals (7.10) and (7.11) is to provide 
some quantiative information about the Lebesgue and Riemann cores of an interval 
function Y which measures its "integrability" in a certain fashion. In the metric 
topology for intervals [5], [6], the distance between intervals [a, b] and [c, d l  is defined 
to be 

(7.12) d([a, 61, [c, dl)  = max {la -el, Ib -dl}. 

(In the extended real number system, rule ( 2 . 7 ~ )  is used to resolve any indeterminant 
forms entering into (7.12).) 

DEFINITION 7.3. For 
b 

I ( Y )  = 1 Y(x) dx, 
a 

if the Riemann core CR(Y) of Y is nonempty, then 

is called the Riemann gap of the interval function Y on [a, b]; similarly, if CL(Y) is 
nonempty, then 

(7.15) A (Y)  = ~ ( I L (  Y), I (  Y)) 

is called the Lebesgue gap of Y on [a, b]. 
Remark 7.2. One has 

in case both numbers are defined. 
This follows from the inclusion CR(Y) c CL(Y). If only one of the numbers A (Y), 

p(Y)  is defined, it will be A(Y) by the same token. For the example (7.4) of the 
degenerate interval function x,, one has A (x,) = 1, and p(,y,) is not defined. 

THEOREM 7.1. If the endpoint functions y, jj are Riemann integrable over [a, b], 
then A (Y)  = 0; if A (Y) = 0, then - y, jj are ~ebesgue integrable, and 

Proof. By Remark 6.3, the Riemann integrability of y, jj means that p(Y)  =O; 
hence, A (Y) = 0 by (7.16). Conversely, if A ( Y )  = 0, then theintegral I ( Y )  is finite, and 
bounded sequences {y,), {jj,} c Y of Lebesgue integrable functions may be found which 
converge to y and i, respectively. It follows [3, p. 811 that y and jj are Lebesgue 
integrable on-[a, b] and, as 

- 

(7.18) lim (L) lab p. (X d~ = I y (X dx. 
n - w  -X 
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one has that 

(7.19) 

and similarly for jj, whence (7.17). Q.E.D. 
Remark 7.3. If y and jj are Lebesgue integrable on [a, b], then 

This is true because y is the "smallest" Lebesgue integrable function contained in 
the interval function Y,- and jj the "largest" in the sense that for each function 
y E CL(Y), one has y(x) - 5 y(x) 5 jj(x), a 5 x 5 b. Thus, 

b b 

(7.21) v ( c ~ ( y ) ) = [ ( L ) [  ~ ( x ) d x , ( L ) \  a )i(x)dx], 

from which (7.20) follows by (7.12). 

8. Improper integrals. In ordinary integration theory, an integral 

is said to be improper if the interval of integration [a, b] is infinite, or if its integrand is 
unbounded on X = [a, b] in the sense that given any M >0 ,  there exists a nonde- 
generate subinterval XM of X such that l y  (x)lB M for x E XM. Supposing that y is 
unbounded on X = [a, b] in the sense that given any M > O  there exists a nonde- 
Riemann) on [a, b], one defines the improper Riemann integral of y over [a, b] to be 

provided this limit exists (in the extended real number system; infinite values will be 
accepted here for improper integrals). Similarly, if y is Riemann integrable over [a, b] 
for b > a  finite, then 

by definition, again if the indicated limit exists. 
The definition of interval integrals given in Q 6 yields values of certain improper 

Riemann integrals if the integrand y is interpreted to be the degenerate interval 
function [y, y], for example, 

In the above, the value of the improper Riemann integral appears as the finite endpoint 
in each of the intervals (8.4a) and (8 .4~) .  The indegenerate interval (8.4b) indicates 
correctly that the corresponding improper Riemann integral is divergent. 
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DEFINITION 8.1. An interval integral (6.1) is said to be infinite if its value is one of 
the indegenerate intervals [-m, -m] or [m, a ] ,  indeterminant if it is equal to R = 

[-m, a ] ,  or improper if its value is a semi-infinite interval [a, m] or [-m, b]; otherwise, 
it is said to be finite. 

The relationship between improper interval and Riemann integrals will now be 
considered for the cases (8.2) and (8.3), as illustrated by (8.4a) and (8.4c), respectively. 

Suppose that y (x) is unbounded above at x = a. Thus, every Darboux sum (4.7) will 
contain a term of the form (after elimination of nondistinct partition points, if 
necessary) 

where X1 = [a, X I ]  and 

cl = inf {y (x)). 
xsx1 

The interval integral of y will hence be either improper or infinite. The following 
,theorem is illustrated by (8.4a). 

THEOREM 8.1. Suppose that y is Riemann integrable over [a, b] for a < a < b, and 
the indefinite interval integral lay ( a )  satisfies 

lim Iay ( a )  = lim y(x) dx = [O, m]; 
a l a  o l a  I a 

then the improper Riemann integral (8.2) of y over [a, b] exists, and 

Proof. One has 

by Theorem 6.3 and, by Remark 6.3, 

as degenerate intervals may be identified with the corresponding real numbers. Taking 
the limit as a l a  of both sides of (8.9) gives (8.8) Q.E.D. 

In the case of integration over an infinite interval, say [a, m], suppose, for example, 
that y is negative but that y (x)TO as x + m, as in (8.4~).  Then, each Darboux sum (4.7) 
will correspond to a partition A, with x,-1 finite, x, = + a ,  and as 

where c =infXGxn {y(x))<O, w(X,)= w ( [ ~ , - ~ ,  m])=m, .then each will contain a term 
equal to 

by t u k  (2.liii) and (2.lix). The situation illustrated by the example ( 8 . 4 ~ )  is a case of 
the following result. 
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THEOREM 8.2. Suppose that y is Riemann integrable over the finite interval [a, b ]  for 
each b > a, and the indefinite interval integral Imy ( b )  satisfies 

lim Imy ( b )  = [ - a ,  01; 
b+w 

then, the improper Riemann integral (8.3) of y over [a,  a] exists, and 

la* y ( x )  dx = [-a, (IR) I a W Y ( X )  dx] 

Proof. This follows exactly in the same way as Theorem 8.1 by writing 

and noting that 

as a degenerate interval. Q.E.D. 
Other cases of improper interval and Riemann integrals may be treated in a similar 

fashion.. 

9. Computational implications of the theory. One purpose of the theory of 
integration of interval functions developed above is to provide a theoretical framework 
for the investigation of the numerical solution of linear and nonlinear integral equations 
such as 

by interval methods. One approach along these lines is to reformulate (9.1) as an 
interval equation, 

for an interval function U which contains the desired solution u of the integral (9.1). 
Under certain conditions, the operator T will be a contraction mapping [ I ] ,  [2] ,  and the 
iteration process 

will converge to give a solution of (9.2). To implement this for the integral equation 
(9.1), one forms the interval functions G, = [g,, - g,], n = 0 ,  1 ,2 ,  . . , where 

and then (9.3) becomes 

in terms of interval integration. Of course, if g, (x ,  t )  and g, (x ,  t )  are Riemann integrable 
in t, then the endpoint functions @,+I,  fin+l of U,+I are obtained by Riemann integra- * * tion. From a numerical standpoint, in this case approximations u:+~ 5 @,+I, u , + ~  2 
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may be obtained to prescribed accuracy by any one of a number of methods, 
including the use of Darboux sums as defined in 0 4 [7], with higher order accuracy 
being obtainable from integration of Taylor polynomial approximations to the endpoint 
functions, or by other rules of numerical integration [4], [5], [6], [9], provided, of 
course, that the endpoint functions are smooth enough. 

A particularly simple case occurs if g is monotone in the sense that 

that is, the endpoint functions of U,, transform into the endpoint functions of G,, and 
if g further transforms Riemann integrable functions into Riemann integrable 
functions. Here, the iteration (9.5) can be carried out using only the endpoint functions 
if one starts with an interval Uo = [go, iio] which has Riemann integrable endpoint 
functions. An example of this approach to the solution of a nonlinear integral equation 
was given by Rall[7], in which step-functions were used as endpoint functions (and T 
was approximated by a numerical operator S such that T cS). In many cases, 
continuous solutions u are sought for integral equations (9.1), which gives rise to the 
following concept. 

DEFINITION 9.1. The continuous core Cc(U) of an interval function U on [a, b] is 
defined to be the set of continuous functions y contained in U, that is 

Evidently, Cc(U) c CR(U), the Riemann core of U defined earlier. 
If g is a continuous function of its arguments, and the interval operator T is such 

that the continuous function v defined by 

belongs to T ( U )  for u E Cc(U), then it follows that each continuous solution u of (9.1) 
will belong to Cc(T(U))  if it belongs to U and hence to Cc(U) .  Thus, it is tempting to 
try to compute the sequence (9.3) using only Cc(Un),  where Uo is taken to have 
continuous endpoint functions. However, in general, the functions gl(x, t) and gl(x, t )  
obtained from (9.4) will be only semi-continuous if UO is replaced by-cc(uo), and these 
so-called L- and U-functions may not even be Riemann integrable [3]. The theory of 
interval integration developed in this paper resolves this difficulty by allowing compu- 
tation with the interval functions Un directly, regardless of the character of their 
endpoint functions. 

Remark 9.1. If u E Cc(Uo) is a solution of (9.1), then for the sequence (9.3) 
constructed by the operations (9.4) and the interval integration (9.59, it follows from the 
condition (9.8) for continuous g that 

furthermore, for 

4, 

u =  n u,, 
n = l  

one has u E Cc(U). 
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Remark 9.2. In the favorable case that Un+l c U,, n = 0 ,1 ,2 ,  . - , and 

lim sup {w(U,(x))) = 0, 
n+m [a ,b ]  

one has that U = [u, u] = u defined by (9.10) satisfies the integral equation (9.1), since a 
degenerate interval integral of a degenerate interval function is necessarily a Riemann 
integral; furthermore, one has error bounds of the form 

for n = 0, 1 ,2 ,  . - - . 
Further applications of interval integration to the solution of integral equations will 

be investigated in subsequent papers. 
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