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INTEGRATION OF INTERVAL FUNCTIONS 11. THE FINITE CASE* 

Abstract. Caprani, Madsen and Rall [Siam J. Math. Anal., 12 (1981), pp. 321-3411 have shown previ- 
ously that the use of interval values leads to a simple theory of integration in which all functions, interval and 
real, are integrable. Here, a simplified construction of the interval integral is given for the case that the 
integrand and interval of integration are finite; the interval integral is shown to be the intersection of the 
interval Darboux sums corresponding to the partitions of the interval of integration into subintervals of equal 
length. A rate of convergence of these interval Darboux sums to the interval integral is given for Lipschitz 
continuous integrands. An alternate approach to interval integration in the unbounded case via finite interval 
integrals is presented. The results give theoretical support to interval methods for the solution of integral 
equations and finding extreme values of functionals defined in terms of integrals. 

1. Introduction. The construction of the interval integral, given in the general 
case in [I], can be simplified drastically in the case that the interval of integration is 
finite and the integrand is a bounded interval function. (Definitions of the necessary 
concepts will be given below.) In particular, the use of the extended real number system 
is not required, so all computations can be done by ordinary interval arithmetic [3], [4]. 
Furthermore, it is not necessary to consider all partitions of the interval of integration 
into subintervals as the partition into subintervals with equal lengths will be shown to 
suffice. This eliminates an inherently nonconstmctive portion of the definition of the 
interval interval, the formation of the so-called interval Riemann sums. 

In addition to the simplification of the construction of the interval interval in this 
case, rates of convergence of the Darboux sums based on the equipartition of the 
interval of integration to the interval integral will be derived for sufficiently smooth 
integrands. Another approach to improper interval integrals will also be given. 

2. Interval functions. Following the definitions in [I], an interval function Y 
defined on an interval X= [a, b] assigns .the interval value 

to each real number x E X, where y,y are real functions called respectively the lower and 
upper boundary functions (or endpznt functions) of Y. 

The vertical extent of Yon Xis defined to be the interval 

In this paper only intervals of integration with finite width w(X) = b- a and 
bounded interval functions such that w(vY(X))< +oo will be considered. This is the 
finite case. 

The notation Y=[y,y] will also be used for interval functions. Real functions y 
may be identified with &e interval functions y = [ y, y]  with equal endpoint functions, 
which are called degenerate interval functions [I]. 
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3. Interval integrals. In general, the interval integral of an interval function Y 
over the interval X= [a, b] is the interval 

Jx 
Y(x) dx=JbY(x) dx= [ y(x)  dx, 1 y(x)  dx] , 

a -X - X 

where jxy(x)dx denotes the lower Darboux integral of the lower endpoint function y 
over tlie interval X and T,~(x)dx gives the upper Darboux integral of the upp& 
endpoint function J over X [2]. As these Darboux integrals always exist in the extended 
real number system, it follows that all interval (and hence all real) functions are 
integrable in this sense. The definite and indefinite interval integrals have many proper- 
ties similar to those of the Riemann integral [I]. 

The construction of the interval integral, carried out in [l] in the spirit of interval 
analysis, is done in three steps. The first step consists of partition of the interval X into 
subintervals = [xi_ ,, xi], i = 1,2,. - 0 ,  n by means of points 

to obtain the partition 

of X and the corresponding interval Darboux sum 

Next, for each positive integer n, let 9, denote the set of all partitions (3.3). The 
interval Riemann sum of order n is then defined to be 

Finally, the interval integral of Y over Xis gven by 

which is nonempty, as the interval Riemann sums form a decreasing sequence of 
nonempty closed sets [I], and agrees with (3.1). This construction will be simplified in 
the finite case. 

4. The finite case. The interval integral (3.6) will be said to be finitely defined if 
the integrand Y is a bounded interval function and the interval of integration X= [a, b] 
is finite. The equipartition , ,  of Xis defined by the points 

so that 

b-a 
x i=a+ih ,  h=- i=O, 1;- . ,n,  

n ' 

b-a- w(X) 
W ( X , ) = X ~ - X ~ - ~  =---- -h, i=1,2; - - ,n .  

n n 

The corresponding interval Darboux sum is 
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THEOREM 4.1. In the finite case, 

Thus, this construction requires only the formation of the single interval Darboux 
sum (4.3) for each positive integer n and skips the (nonconstructive) calculation of 
interval Riemann sums (3.5) entirely. Furthermore, (4.4) agrees with the definition of 
the interval integral given by R. E. Moore [2], [3], in the case that the endpoint 
functions y,y of Y are assumed to be continuous. Theorem 4.1 will be proved in $6 
based on Gsults on subintervals established in the next section. 

5. Two lemmas on subintervals. The first lemma simplifies the proof of the mean 
interval-value theorem for interval integrals over a finite interval of integration. 

LEMMA 5.1. If Zi=[ci,di] c Z = [ c , d ]  are finite intervals, i =  1,2; - ,n,  and a i 1 0  
with Zy= '=, a,= 1, then 

Proof. T h s  follows at once from the elementary inequalities 

for convex combinations of real numbers. Q.E.D. 
On the assumption that Theorem 4.1 holds this gives the mean interval-value 

theorem [l] for the interval integral (4.4) as 

by Lemma 5.1 and from (4.4) 

where YC v Y( X). 
The excess width of an interval Z =  [c, d l  over a subinterval Z'=[cr, d'] C Z is 

defined to be 

(5 -5) e(Z,Zr)  =max{cf-c,d-d'). 

It is evident that 

A symmetric interval is an interval ,C qf the form S= [-s, s], where s 20 .  
LEMMA 5.2. If Z' C Z, then for each symmetric interval S =  [-s, s] with s l e ( Z ,  Z'), 

one has 

In particular, 

Proof. The inclusion (5.7) follows from the definition (5.5) and the definition of 
interval addition [2], [3]; (5.8) follows immediately by (5.6). Q.E.D. 
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6. Proof of Theorem 4.1. It is to be shown that definitions (3.6) and (4.4) of the 
interval integral agree in the finite case. Set 

(6.1) I= f i  ~ Y ( x ) .  
n = l  n  

As the interval integral (3.6) is contained in each Darboux sum Z A n  Y(X), it follows 
that 

and thus 

Suppose that a partition point p,  xi-, l p l x ,  is introduced into an interval 4. By 
Lemma 5.1, one has 

(6.4) w[xi-,,~l-vy([xi-,,~l)+w[p,xil~vy([~,xil)cw(~~)~ v y ( 4 ) .  

Consider an arbitrary interval Darboux sum Z A m  Y(X) for some positive integer m. For 
each n>m, the partition points x,, x 2 , - . ~ x m - ,  of the interval Darboux sum are 
interior to at most m- 1 subintervals of Z n  Y(X), with total length not exceeding 
((m - l)/n)w(X). After deletion of these subintervals from En, the remaining partition 
points of , ,  will belong to the subintervals of A,. By (6.4) and Lemma 5.2, 

As (6.5) holds for each partition Am and positive integer nmm, from ( 3 3 ,  

As w(vY(X))< +m, taking the intersectioin of both sides of (6.6) with respect to n 
gives 

(6.7) ICE Y ( X ) + [ O , O ] = ~  Y(x). 
m m 

From (6.7) it follows that 

Comparison of (6.3) and (6.8) yields (4.4). Q.E.D. 
This result can also be established using the relationships expressed in terms of 

elementary integrals of step functions as upper and lower limits of the interval Darboux 
sums [l] as in [2, pp. 54-56]. 

7. A rate of convergence for smooth integrands. As in ordinary interval analysis, 
an interval function Y=[y,y] is continuous if the real functions y,y are continuous. 
Similarly, Y is Lipschitz coitinuous if a Lipschitz constant L>O exists for both y and 7, 
that is, b(x)-y(z)IlLlx-zl and Iy(x)-J(z)IlLlx-zl for x,zEX. 

- 
- - ,1 
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Interval integrals of continuous interval functions can be expressed in terms of the 
Riemann (R) integrals of their endpoint functions [I]: 

One may also write 

for a Riemann integrable function y and a given partition A, of X=[a,b]. If y is 
continuous, then on each subinterval Xi, i = 1,2, - - - , n, 

(7.3) @)Jr y(x)dx=y(ti)(xi-xi-,)=~(ti)~(~). tit& 
X I -  l 

[2, p. 2091. Furthermore, 

(7a4) ~Y(~i)=[ci,diI=[~(l7i),~(Si)] , 4i, SiEXi. 
Thus, if y is Lipschitz continuous, then 

and 

(7.6) ( ~ ) / ~ ~ ( x ) d x - c ~ - w ( X , ) =  [ y ( ~ i ) - y ( v i ) ]  . w ( ~ ) ~ L . w ( x ~ ) ' .  
a 

Applying (7.5) and (7.6) to J and y respectively for the equipartition with w(Xi)= 
w(X)/n gives the following inequality for the excess width of 5, Y(X) over the interval 
integral (7.1) of Y. 

THEOREM 7.1. If Y is a Lipschitz continuous interval function, then 

The use of interval Darboux sums as approximations to the interval integral is an 
extension of the crude method of upper and lower Riemann sums [5] for the approxi- 
mation of the integral of a Riemann integrable real function. The Darboux sums are 
generally easy to inclose and give rigorous upper and lower bounds for the value of the 
integral, but the rate of convergence as given by (7.7) is slow. Of course, the use of 
partitions other than the equipartition may be of benefit in some cases, but for sn~ooth 
functions, the improvement may be marginal. For example, for 

the equipartition for n = 2 gives 

The interval Riemann sum in this case corresponds to the use of the partition point 
x,  = 1 / 0  and has the value 
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Although this is better than (7.9), extra labor was required to determine the optimal 
partition, and this additional effort increases rapidly with n. 

8. Inner improper interval integrals. In [I] an interval integral was said to be 
unbounded if its value is an infinite interval. These unbounded interval integrals arise if 
the integrand or the interval of integration is unbounded. Relationships were developed 
in [ l]  between the value of the finite endpoint of a semi-infinite, or improper interval 
integral and the improper Riemann integral of the corresponding endpoint function of 
the integrand. Here, an approach to improper interval integration will be made via 
finitely defined interval integrals. 

Case I. Y(x) is an unbounded interval function on a finite interval of integration 
X= [a, b]; that is, v Y(X) = +m, w(X)< +m. Here, the functions 

(8.1) Y,(x) = Y(x) fl [-N, N ]  

are defined for each positive integer N. The corresponding finitely defined interval 
integrals 

are finite and may be obtained from (4.4). For M>N, 

(8.3) INY(X) cIMY(X), 

because the interval integral is inclusion monotone, and YN( X) C YM( X) for M> N [I]. 
The inner improper interval integral in this case is defined to be 

the inclusion following again from YN(X) C Y(X) and inclusion monotonicity of the 
interval integral. It follows that the inner improper interval integral exists (in the 
extended real number system) if the interval of integration is finite. The following 
examples are taken from [I]. 

(a) ~ ( x )  =x-'I3, a real function, X= [0, 11. 

Thus, 

(b) Y(x) =x-I, X= [0, 11. Here, 

and 

1 
(8-8) (1)/'x-'dx= o [m,  m]  =/ o x-'dx, 

an infinite integral. The standard definition of the improper Riemann (IR) integral of 
real functions over a finite interval ([2, p. 881) gives the following result. 
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THEOREM 8.1. If the endpoint functions y,J of Y have improper Riemann (IR) 
integrals over the finite interval X= [a, b], then - 

dx, (lR)JbJ(x) a dx] . 

Of course, in case Y is bounded, or the real function y is bounded and Riemann 
(R) integrable, one may take 

respectively. 
Finitely defined interval integrals may also be used to construct an improper 

integral over infinite intervals of integration. For simplicity of notation, take Y(x) = [O,0] 
outside X and the interval of integration to be the real line R =  [-GO, GO]. 

DEFINITION 8.1. If 

(8.1 1 )  I+ Y= lim (l)JNy(x)dx, I-Y= lim ( I ) ? Y ( ~ ) ~ ~  
N+ w 0 N+-m N 

exist, then the improper interval integral of Y over R = [-GO, GO] is defined to be 

Justification. By use of the rules for extended interval arithmetic given in [l], the 
interval (8.12) is well defined if the limits (8.1 1) exist, as the formulas [a - GO, .] = [- 
GO,  .I, [ - ,  GO - GO] = [ a ,  GO] resolve any "indeterminant forms" which may arise. The 
actual interval of integration may be indicated in (8.12) if different from R. 

The following example is also taken from [l]. 
(c) Y(x) = -e-x, X= [0, GO]. Here, 

and, since I- Y = [0, 01, 

(8.14) ( I ) , / ~ ( - ~ - ~ ) ~ X = I + Y =  [-I,-]], 
0 

a finite interval, while the value of the interval integral [I] is the infinite interval 

(8.15) ~ m ( - e - x ) d x = [ - m , - l ] .  

Finally, the definition of the improper Riemann integral over an infinite interval 
of integration ([2, p. 941) gives the following result. 

THEOREM 8.2. If the endpoint functions y,y - of Y have improper Riemann integrals 
over R = [- GO, GO], then 

(I)/" ~ ( x )  dx= dx, ( I R ) / ~ J ( X )  dx] . 
- m - 00 
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