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DIFFERENTIATION OF INTERVAL FUNCTIONS

GUNNAR SCHRODER

Abstract. This paper is concerned with differentiation of

interval functions appearing in interval analysis. Two definitions

of a derivative are given; the first one uses an isometric restricted

imbedding of the quasilinear space of intervals on the real line R,

and the other definition is independent ofthat imbedding. Properties

of those two concepts are investigated.

Interval analysis was initiated by R. E. Moore [6] and has become an

important tool in numerical problems. Further basic contributions are

those by N. Apostolatos and U. Kulisch [1], E. Hansen [3], F. Krückeberg

[4], K. Nickel [7], and others. In the present paper we shall define and

consider differentiation of interval functions; by definition, an interval

function is a mapping of IiR) into itself, where IiR) is the set of all com-

pact intervals on the real line R.

For these intervals we use the notations A=[al, a2], B=[bx, b2], etc.,

a_=[a, a], etc., and the familiar addition and multiplication A+B: =

{a+b\aeA,b&B}, A ■ B: = {ab\a e A, b e B}. The function diA, B)=

maxd«!—¿j|, \a2—b.,\} defines a metric on IiR), and (IiR), d) is a com-

plete metric space. Also \A\:=diA, 0.) is a norm on IiR), but note that

there is no inverse operation of + for the whole IiR), which entails that

we cannot get a metric from that norm in the usual fashion. Furthermore,

we define scalar multiplication a o B:=a- B. Then (I(R),+,°) is a

quasilinear space in the sense of O. Mayer [5].

By a restricted linear mapping w of a quasilinear space Qx into a

quasilinear space Q2 we mean a mapping a> : Q-c^-Qi satisfying the follow-

ing conditions.

(1) For all X, Y e g, we have i»iX+ Y)=coíX) + ojí Y).

(2) For all leßi and all aj>0 we have o>iaX)=aœ(X').

The notions of a restricted isomorphism and a restricted imbedding are

defined in a similar fashion, cf. [11].
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Theorem I. There is an isometric restricted imbedding tr of

(I{R), +,°,d) into the Banach space \R2, +, °, d), where d is the metric

generated by the norm \\(a1, a2)\\ =max{\a1\, \a2\}, and ° denotes the usual

scalar multiplication in R2.

Proof. (/(/?), +, °, d) being given, a theorem by H. Radström [8]

implies that there exists a normed vector space and an isometric restricted

imbedding of the given space into that vector space. In the present case,

the latter is even a Banach space and the mapping is simply tr[ax, a2] =

(ax, a2), which is isometric, because

d(n[ai, flj, TT[bx, b2]) = d((au a2), (bx, b2))

= maxílí?! — bx\, \a2 — 62|} = d([ax, a2], [bx, b2]).

Theorem 1 implies that with any interval function F:Ji^>-l(R),

J¿<^I(R), we can associate a mapping £: J1-+R2, .J/<=R2, defined by

F:=ttFtt^í and Jt:=Tr(Jf). On the other hand, the interval function £

can be represented by two interval functionals f, /> on JÍ such that

F{X)=[f1{X),f2{X)}. Modifying and extending ideas used by H. T.

Banks and M. Q. Jacobs [2] in connection with set-valued functions, we

may define a differentiation for interval functions as follows.

Definition 1. An interval function £:*•#->/(/?) is said to be n-

Fréchet differentiable at a point X gJ¿ if £ is Fréchet differentiable at

X=ttX, that is, if there exists a linear mapping dF(X):R2-+R2 and a

mapping r:R2—>R2 with the following properties.

(1) r(0, 0)=(0, 0), lim|!//3_.0 ||r(//)||/||i/||=0.
(2) For any H in a sufficiently small neighborhood of (0, 0) we have

F{X+H)-F(X)=dF(X)(H) + r(H).

dF(X) is called the 7r-Frechet differential of £ at X.

The 7r-Fréchet differential df(X) of an interval functional/can be de-

fined in a similar way.

It can be readily seen that 7r-Fréchet differentiability of an interval

function F implies continuity of F.

Example. The interval function F(X)=[-\,2]-X=[-\,2]-[x1, x.,]

is 77-Frcchet differentiable precisely at those X for which x2>— 2xx or

—2x1>x2>— xx\2 or —x1/2>x2, and we have

dF(X)(H) = (-In, 2h,)    if x, > -2xx,

= (2/7i, 2/;,)     if -2xj > xo > -xJ2,

= (2lh. -Ih)    if -xj2 > x2.

Let /.:I(R)—>R be defined by ?.X=?.[xi, x2]=x2—xv Then the following

proposition holds.
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Proposition 2. Let F:^^I(R) and ..// be open in R2 and suppose

that F is TT-Fréchet different ¡able at X e J¿. Then dF(X)(H) e I(R) if and

only if XF is nondecreasing in the direction of H=(hx,h2), which means

that, for all t in a sufficiently small neighborhood of 0, the function

XFlxi+thx, x2+tlu] is a nondecreasing function of t.

The proof follows from Corollary 1.4 in [10] by noting that, for fixed

H, Fréchet differentiation is differentiation with respect to the real

parameter t.

If interval functions F1 and F2 are 7r-Fréchet differentiable at Ie.#,

then the interval function F1 ■ F2, which is defined by (Fj • F2)iX)=

FriX) ■ F2iX), need not be 7r-Fréchet differentiable at X. This is illustrated

by the example F1[x1, x2}:=[\, x2], F^x^ x2]:=[jf1, x2] at [0. 1]. How-

ever, the following theorem holds.

Theorem 3. Let F¿ :JÍ—>IiR), J¿ open in R2, be ir-Fréchet differentiable

atXe.Jt, where i= 1, 2, and Fl(X)= [f(X),f2iX)], F2iX)= [f3(X),f(X)].
Suppose that there exist pairs (i,j) and (m,n), where i, m=l or 2 and

j, n = 3 or 4, such that, for all (Ar, /), k=\ or 2, /=3 or 4, (k, l)i*(i,j),

(/c, l)y£(m, n), we have

fiiX)fiiX) <fk(X)fiX) <fmiX)f„iX).

Then Fx ■ F2 is tr-Fréchet differentiable at X, and

d(F, ■ F2)(X)iH) = ifiX)dfiX)iH) +fiX)dfiX)(H),

fJX) dfH(X)(H) +f,XX) dfJX)(H)).

Proof. Since the functions Fj and F.2 are 7r-Fréchet differentiable at X,

they are continuous at X. Consequently, in a sufficiently small neighbor-

hood of A\ the function F1F., can be represented in the form

(Fi ■ F.2)( Y) = [/( Y)f( Y),fmi Y) /„( Y)].

Furthermore, we have

dififi)iX)(H) =f(X)dfiX)(H) +fJiX)dfiX)[H).

From this, the statement follows.

Clearly, there are other representations of an interval X=[xt, x2]e

I(R): for instance X=\_cp(X)+[-\, \]X(X)/2, where f(X): = (x1+x2)l2;

cf. H. Ratschek [9]. This raises the question whether the use of such a

representation and a corresponding imbedding of IiR) into R2, say,

X>->(q>(X), XiX)), would give the same concept of differentiability. We

shall prove that this holds not only for our particular representation, but

also for any restricted homeomorphism, as follows.
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Theorem 4. Let y be a homeomorphic restricted imbedding of

(I(R), +,°,d) into (R2, +,°,d). Then F:J/^I(R), JÎ open in R2, is

tr-Fréchet differentiable at X G Jt if and only if the mapping F*:^€*^-R2,

j$¿*; = y(J'¿), which is defined by F*: = yFy~'i, is Fréchet differentiable at

X*: = y(X). Then

dF(X)= (Try-1) dF*(X*)(y^);

here, (try-1) and (yrr~L) are the automorphisms induced in R2 by try'1

and ytr~l, respectively.

Proof. We have trFtt~l=try-1 (yFy~1)yn~1=Try~1F*ytr'1. We show

that, without loss of generality, we may continue Try-1 to a linear mapping

of the whole plane R2 into itself. The mapping try-1 is restricted linear and

injective on y(I(R)). If X£y(I(R)), then -XGy(I(R)). Noting this, we

may set

(Try-1) W = iry-HX) if X G y(I(R)),

= -„y-i(-X)    if X$y(I(R)).

This mapping is linear. In fact, for negative tx we have

(Try^XaA') = -iry-^-xX) = xiry-^X) = xitry-^X)    if Xe y(I(R)),

(try-l)(xX) = try-l{xX) = -xtry-^-X) = afry-^W    if X$ y(I(R)).

Since any linear mapping is Fréchet differentiable, the chain rule implies

dF(X) = (Try"1) dF*(X*)(y7T-1).

This completes the proof.

Using the representation of an interval function £ in terms of interval

functional/j and/», one can prove the following analogue of a familiar

condition for an extremum.

Proposition 5. Let F.-J/^>-I{R), .// open in R2, be tr-Fréchet differ-

entiable at XgJï and suppose that F(X)cF(Y) or F{Y)<= F(X) for all

Y in a neighborhood of X. Then dF(X)=0.

Our Definition I of Fréchet differentiability of interval functions uses a

particular imbedding of I(R) into R2, but Theorem 4 states that this is not

essential. In the last part of the paper we propose another concept of

differentiability without the use of an imbedding.

A set Ji<=-I(R) is called a convex cone in I(R) if M is the image of a

quasilinear space with respect to a restricted isomorphism.

Definition 2. Let F:Ji-^-l(R), where Jl is a convex cone in I(R).

Then F is said to be ^-differentiable at X e M if there exist a restricted

linear mapping dxF{X):J¿-+l(R) and a mapping r:J¿-+l(R) with the

following properties.
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(1) r(0.)=0., lim^0.r(//)/|//|=0..

(2) There exists an 6>0 such that, for all H^jM, \H\<e,

FiX + H) = FiX) + d,FiX)iH) + r(H).

dxFiX) is called the ö-differential of F at X.

It is interesting to note that Definition 2 is not a generalisation of

Definition 1 and conversely. However, under an additional assumption

we may establish a relation between the two definitions, as follows.

Theorem 6. Let F\jM-*IÍR), where JÍ is an open convex cone in IiR).

Suppose that Fis Tr-Fréchet differentiable at X e Jl', X^am, anddFiX)iH) e

îiR)for H e Jl. Then F is Q-differentiable at X, and

dJiX) = TT-i dFiX)rr | Ji.

Proof. It can be shown that if dyF(X) exists, it is unique. Furthermore,

for H e jM we have

FiX + H) = FiX) + dFiX)iH) + riH).

Application of -n--1 gives

FiX + H) = F(X) + 77--1 dFiX)TriH) + TT-htriH).

7T-1 dFiX)n:J¡r-*IiR) is restricted linear, and 7t-V7t(0.)=0.,

IimTT-VTK//)/!//! = 0.
H-. 0.

This completes the proof.

The proposed concept of differentiation may serve as a basis of a

calculus for interval functions, which is often needed in solving numerical

problems with the help of interval analysis.
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