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Abstract. It is known that there are feasible algorithms for minimizing convex functions, and
that for general functions, global minimization is a difficult (NP-hard) problem. It is rea-

sonable to ask whether there exists a class of functions that is larger than the class of all convex
functions for which we can still solve the corresponding minimization problems feasibly. In
this paper, we prove, in essence, that no such more general class exists. In other words, we

prove that global optimization is always feasible only for convex objective functions.
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1. Introduction

It is well known that in general, global optimization is a difficult-to-solve
problem. In particular, it is known that even the problem of minimizing
an objective function fðx1; . . . ;xnÞ on a box (‘‘hyper-rectangle’’)
½x1; x1� � . . .� ½xn;xn�, a problem of interest in interval computations (Jaulin,
2001; Kearfott, 1996; Kearfott, 1996a) is NP-hard; see (Sahni, 1974) for a
relevant treatment of these complexity concepts and for the initial mention
of the reduction used in this paper, and see, e.g., (Kreinovich, 1997; Vava-
sis, 1991) for further results in reference to interval computations. Crudely
speaking, this means as the number of variables n increases, in the worst
case, the computation time required to solve the corresponding optimiza-
tion problem grows exponentially with n – and so, for large n, it is not pos-
sible to have an algorithm that correctly solves all possible global
optimization problems.
It is also well known that there exist feasible algorithms for minimizing

convex objective functions fðx1; . . . ; xnÞ; see, e.g., (Vavasis, 1991). A natural
question is: can we extend these algorithms to a larger class of objective
functions? In other words, can we extend the class of all convex functions
to a larger class for which minimization is still feasible?
Of course, if we take this question literally, the answer is clearly ‘‘yes’’:

we can extend the class of all convex functions by adding one or more
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objective functions for which we already know the solutions to the corre-
sponding minimization problems.
This answer is not very interesting from a practical viewpoint. Indeed,

the class of all convex functions is not simply a collection of unrelated
functions, it is closed under several useful operations such as addition, mul-
tiplication by a positive constant, substitution of linear combinations of
variables instead of the original variables, etc. It is therefore reasonable to
ask: is there a class of functions that is similarly closed and for which glo-
bal minimization is feasible?
In this paper, we show that convex functions are the only ones for which

this is possible – once we have a single non-convex function in our closed
class, the corresponding global minimization problem becomes NP-hard.

2. Definitions and the main result

In this paper, we consider continuous functions fðx1; . . . ; xnÞ from Rn to R

for different n.

DEFINITION. We say that a class of functions F is closed if it satisfies the
following four conditions:

– F contains all linear functions;
– F is closed under addition, i.e., if f 2 F and g 2 F, then fþ g 2 F;
– F is closed under multiplication by a positive constant, i.e., if f 2 F

and c > 0, then c � f 2 F;
– F is closed under linear substitution: if whenever fðx1; . . . ; xkÞ 2 F and

cik are real numbers, we have

fðc10 þ c11 � x1 þ . . .þ c1n � xn; . . . ; ck0 þ ck1 � x1 þ . . .þ ckn � xnÞ 2 F:

It is easy to see that the class of all linear functions is closed, and that
the class of all convex functions is closed.
By a minimization problem, we mean the following problem: given a func-

tion f 2 F and a box B, find the minimal value of the function f on the box B.

THEOREM 1. If a closed class F contains at least one non-convex function
and at least one non-linear convex function, then for this class, the problem of
finding the minimum of a given function f 2 F on a given box is NP-hard.

Since minimization is feasible for convex functions, this theorem can be
reformulated as follows: for a closed class F that contains at least one non-
linear convex function, the following two conditions are equivalent to each
other:
– all functions from the class F are convex;
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– global minimization is feasible for the class F .
The same result holds if we consider a e-minimization problem, i.e., if we

fix some real number e > 0 (called accuracy), and, instead of looking for
the exact minimum m of a function f, we look for a value em that is e-close
to m, i.e., for which j em�mjO e.

THEOREM 2. Let e > 0 and let F be a closed class that contains at least
one non-convex function and at least one non-linear convex function. Then
the problem of finding an e-approximation to the minimum of a given func-
tion f 2 F on a given box is NP-hard.

3. Proofs

3.1. PROOF OF THEOREM 1

We prove Theorem 1 in 8 parts. Let F be a closed class that contains a
non-convex function f0ðx1; . . . ; xkÞ and a non-linear convex function
f1ðx1; . . . ;xmÞ.

Part 1. We first prove that F contains a non-convex function of one variable.
Indeed, by definition, a function f of k variables is convex if

fða � aþ ð1� aÞ � bÞO a � fðaÞ þ ð1� aÞ � fðbÞ ð1Þ
for all a; b 2 Rk and for all a 2 ð0; 1Þ. Thus, non-convexity of f0 means
that there exist points a ¼ ða1; . . . ; akÞ and b ¼ ðb1; . . . ; bkÞ, and a number
a 2 ð0; 1Þ for which

f0ða � aþ ð1� aÞ � bÞ > a � f0ðaÞ þ ð1� aÞ � f0ðbÞ: ð2Þ
Since the class F is closed under linear substitution, the function

f2ðx1Þ ¼def f0ða1 þ x1 � ðb1 � a1Þ; . . . ; ak þ x1 � ðbk � akÞÞ: ð3Þ
also belongs to the class F . In terms of f2ðx1Þ, the inequality (2) takes the
form f2ðaÞ > a � f2ð0Þ þ ð1� aÞ � f2ð1Þ. Thus, the function f2ðx1Þ is non-con-
vex. The statement is proven.

Part 2. We now prove that F contains a function f3ðx1Þ of one variable
for which f3ð0Þ ¼ f3ð1Þ ¼ 0 and f3ðaÞ > 0 for some a 2 ð0; 1Þ.
We construct this function f3 from the above function f2, as

f3ðxÞ ¼ f2ðxÞ � f2ð0Þ � x � ðf2ð1Þ � f2ð0ÞÞ. Since F is closed, F contains all
linear functions, and it is closed under addition; thus, f3 2 F. It is easy to
check that f3ð0Þ ¼ f3ð1Þ ¼ 0, and that (3) implies f3ðaÞ > 0.

Part 3. We now prove that F contains a function f4ðx1Þ of one variable
for which f4ð0Þ ¼ f4ð1Þ ¼ 0 and f4ðxÞ > 0 for all x 2 ð0; 1Þ.
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We will construct this function f4 from the above function f3. We know
that f3ðaÞ > 0 and that fð0Þ ¼ 0. Let a� denote the supremum of all the
values x < a for which f3ðxÞO0. By definition of a�, we have f3ðxÞ > 0
for all x 2 ða�; a�. The supremum a� is a limit point of non-positive values
f3ðxÞ, xO a�, and it is also a limit point of positive values f3ðxÞ, x > a�.
Thus, f3ða�Þ ¼ 0.
Similarly, if we take, as aþ, the infimum of all the values x > a for

which f3ðxÞO 0. Then, f3ðaþÞ ¼ 0 and f3ðxÞ > 0 for all x 2 ½a; aþÞ. So,
f3ða�Þ ¼ f3ðaþÞ ¼ 0 and f3ðxÞ > 0 for all x 2 ða�; aþÞ. Thus, the function
f4ðxÞ ¼def f3ða� þ x � ðaþ � a�ÞÞ belongs to the class F and has the desired
property.

Part 4. We now prove that F contains a non-linear convex function f5ðxÞ
of one variable.
This can be done similarly to Part 1 of this proof. Indeed, one can easily

see that a function f of m variables is linear if

fða � aþ ð1� aÞ � bÞ ¼ a � fðaÞ þ ð1� aÞ � fðbÞ ð4Þ
for all a; b 2 Rm and for all a 2 ð0; 1Þ. Thus, non-linearity of f1 means
that there exist points a ¼ ða1; . . . ; amÞ and b ¼ ðb1; . . . ; bmÞ, and a number
a 2 ð0; 1Þ for which

f1ða � aþ ð1� aÞ � bÞ 6¼ a � f1ðaÞ þ ð1� aÞ � f1ðbÞ: ð5Þ
Since the function f1 is convex, we conclude that

f1ða � aþ ð1� aÞ � bÞ < a � f1ðaÞ þ ð1� aÞ � f1ðbÞ: ð6Þ
Since the class F is closed under linear substitution, the function

f5ðx1Þ ¼def fða1 þ x1 � ðb1 � a1Þ; . . . ; ak þ x1 � ðbk � akÞÞ ð7Þ
also belongs to the class F . In terms of f5ðx1Þ, the inequality (6) takes
the form f5ðaÞ < a � f5ð0Þ þ ð1� aÞ � f5ð1Þ. Thus, the function f5ðx1Þ is
non-linear. The class of all convex functions is closed under linear substi-
tution, so the function f5ðxÞ is also convex. The statement is proven.

Part 5. We now prove that F contains a function f6ðx1Þ of one variable
for which f6ð0Þ ¼ f6ð1Þ ¼ 0 and f6ðaÞ < 0 for some a 2 ð0; 1Þ.
Similarly to Part 2 of this proof, we take

f6ðxÞ ¼ f5ðxÞ � f5ð0Þ � x � ð f5ð1Þ � f5ð0ÞÞ: ð8Þ

Part 6. We now prove that F contains a function f7ðx1Þ of one variable for
which f7ð0Þ ¼ 0, f7ðxÞP 0 for all x 2 ð�1; 1Þ and f7ðxÞ > 0 for all x 2 ½0; 1Þ.
We will construct this function f7 from the above function f6. We know

that f6ð0Þ ¼ f6ð1Þ ¼ 0 and that f6ðaÞ < 0. Let m denote the minimum value
of the function f6ðxÞ on the interval ½0; 1�, and let a0 denote the supremum of
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all the values x 2 ð0; 1Þ at which the function f6ðxÞ attains this minimum
value m. Then, f6ðxÞPm for all x 2 ½0; 1�, and f6ðxÞ > m for all x > a0.
If we take D ¼def minða0; 1� a0Þ, then ½a0 � D; a0 þ D� � ½0; 1�. Thus, for

f7ðxÞ ¼def f7ða0 þ x � DÞ �m, we have f7 2 F, f7ð0Þ ¼ 0, f7ðxÞP 0 for all
x 2 ½�1; 1� and f7ðxÞ > 0 for all x 2 ð0; 1�.

Part 7. Finally, let us now prove that F contains a function f8ðx1Þ of one
variable for which f8ð0Þ ¼ 0 and f8ðxÞ > 0 for all x 2 ½�1; 1� for which
x 6¼ 0.
Indeed, we can take

f8ðxÞ ¼def f7ðxÞ þ f7ð�xÞ

Part 8. We now complete the proof of Theorem 1.
To prove NP-hardness of the global minimization problem for the class F ,

we will reduce a known NP-hard problem to this problem, namely, the fol-
lowing subset sum problem (Kreinovich, 1997; Papadimitriou, 1994): Given n
positive integers s1; . . . ; sn and an integer s > 0, check whether it is possible
to find a subset of this set of integers whose sum is equal to exactly s.
For each i, we can take xi ¼ 0 if we do not include the i-th integer

in the subset, and xi ¼ 1 if we do. Then the subset problem takes the
following form: check whether there exist values xi 2 f0; 1g for which
P

si � xi ¼ s.
We will reduce each instance of this problem to the problem of minimiz-

ing a function f9ðx1; . . . ; xnÞ on the box ½0; 1�n, where f is defined as follows:

f9ðx1; . . . ;xnÞ ¼
X

n

i¼1
f4ðxiÞ þ f8

X

n

i¼1
s0i � xi � s0

 !

; ð9Þ

where s0i ¼
def

si=S, s
0 ¼def s=S, and S ¼def sþ

P

si.
Since the class F is closed, the function (9) belongs to the class F . We

prove that the minimum of the function (9) is equal to 0 if and only if the
original subset problem has a solution.
Indeed, due to the choice of S, we have j

P

s0i � xi � s0jO 1. Thus, due to
Part 6 of this proof, we have f8ð

P

s0i � xi � s0ÞP 0. Due to Part 3 of this
proof, we have f4ðxiÞP 0. Thus, the function f9, as a sum of non-negative
terms, is always non-negative. The only way for this function to be equal
to 0 is when all the non-negative terms are equal to 0. Due to Parts 3 and
6, this is possible only if for every i, xi ¼ 0 or xi ¼ 1, and if

P

s0i � xi ¼ s0 –
hence

P

si � xi ¼ s. Thus, if the minimum is 0, the subset sum problem has
a solution.
Vice versa, if the subset sum problem has a solution x1; . . . ;xn, then

for these values xi, we will have f9ðx1; . . . ;xnÞ ¼ 0. Hence, in this case,
the minimum of the function (9) is equal to 0. The reduction is thus
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proven, so the minimization problem is NP-hard. Theorem 1 is thus
proven.

3.2. PROOF OF THEOREM 2

We prove Theorem 2 in three more steps.

Part 9. We begin by showing that for every d > 0, there exists a b > 0
for which f8ðxÞO d and x 2 ½�1; 1� implies jxjO d.
We can prove this by reduction to a contradiction. If the statement that

we try to prove is false, this means that there exists a d > 0 such that for
every b, there exists an xðbÞ for which f8ðxðbÞÞOb and jxðbÞjP d. All the
values xðbÞ belong to the same compact set ½�1; 1�. Thus, from the
sequence xðbÞ, we can extract a converging subsequence xðbkÞ ! x0. For
the limit x0 of this subsequence, we have f8ðx0Þ ¼ 0 and jx0jP d, which
contradicts what we proved in Part 6. This contradiction shows that our
statement is indeed true.
Part 10. Similarly, we can prove that for every d > 0, there exists a
c > 0 such that if f4ðxÞO c and x 2 ½0; 1�, then either xO d or
xP 1� d.
Part 11. We now fix e > 0, and we will reduce the subset sum problem to
the problem of finding the minimum of functions f 2 F with accuracy e.
For every instance of the subset sum problem, we will take d ¼def 0:2=S.

For this d, let b and c denote the values described in Parts 9 and 10 of this
proof. We denote e0 ¼def minðb; cÞ. Then, as the desired function f 2 F, we
take a function f10 ¼ ð3e=e0Þ � f9, where f9 is described by the formula (9).
If the subset sum problem has a solution, then the minimum of the func-

tion f10 is equal to 0. We show that if the minimum of the function f10 is
smaller or equal than 3e, then the subset problem is equal to 0. Thus, the
minimum is either equal to 0, or larger than 3e.

– In the first case, if we compute the e-approximation em to the minimum
m, we get emO e.

– In the second case, if we compute the e-approximation em to the mini-
mum m, we get em > 2e.

Thus, by comparing em with e, we will be able to tell whether the original
instance of the subset sum problem has a solution.
So, to complete the proof of Theorem 2, we must show that if the mini-

mum m of the function f10 is not larger than 3e, then the original instance
of the subset problem has a solution. Indeed, this minimum is attained for
some inputs x1; . . . ; xn 2 ½0; 1�. Since f10 ¼ ð3e=e0Þ � f9, for these inputs, the
function f9 takes the value O e0.
The expression (9) that defines the function f9 is the sum of non-negative

terms. Thus, each of these terms is not larger than e0 ¼ minðb; cÞ, and thus,
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not larger than b and not larger than c. From Part 10 and f4ðxiÞO c, we
conclude that either xi O d or xi P 1� d. In other words, if by exi, we
denote the integer that is closest to xi, we conclude that

jxi � exijO d: ð10Þ
Similarly, from f8ð

P

s0i � xi � s0ÞOb, we conclude that j
P

s0i � x0i � s0jOd.
Multiplying both sides of this inequality by S, we get

X

si � xi � s
�

�

�

�

�

�OS � d: ð11Þ

From (10), we conclude that
X

si � exi � s
� �

�
X

si � exi � s
� ��

�

�

�

�

� ¼
X

ðexi � xiÞ � si
�

�

�

�

�

�

O d �
X

si O d � S:
ð12Þ

From (11) and (12), we conclude that
X

si � exi � s
�

�

�

�

�

�O2 � d � S: ð13Þ

By definition of d, the product 2 � d � S is equal to 0.4. Thus, the absolute
value of the integer

P

si � exi � s does not exceed 0.4. The only such integer
is 0. Hence,

P

si � exi � s ¼ 0, i.e., the original instance of the subset sum
problem indeed has a solution. Theorem 2 is thus proven.

4. Conclusions

A number of global optimization algorithms are based on decomposing the
objective function into convex combinations of a set of elementary func-
tions. The results in this paper show that, if any non-convex function is
included in the set, the resulting class of unconstrained optimization prob-
lems contains NP-hard problems. For example, if f is any nonlinear convex
function in the class, then, if �f is also included in the class, the resulting
set of problems contains NP-hard problems.
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