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Global Optimization Using Interval 
Analysis: The One-Dimensional Case 

E. R. N A N S E N  ~ 

Communicated by A. V. Fiacco 

Abstract. We show how interval analysis can be used to compute the 
minimum value of a twice continuously differentiable function of one 
variable over a closed interval. When both the first and second deriva- 
tives of the function have a finite number of isolated zeros, our method 
never fails to find the global minimum. 
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L Introduction 

Consider a function f(x) in C 2. We shall describe a method for 
computing the minimum value of f(x) on a closed interval [a, b]. We shall 
see that, if f ' (x) and f"(x) have only a finite number of isolated zeros, our 
method always converges. In a subsequent paper, we shall show how the 
method can be extended to the case in which x is a vector of more than one 
variable. Moreover, it will be extended to the constrained case, and a 
modified method will remove the differentiability condition. The present 
paper serves to introduce the necessary ideas. 

In practice, we can only compute minima in a bounded interval. Hence, 
it is no (additional) restriction to confine our attention to a closed interval. 
The term global minimum used herein refers to the fact that we find the 
smallest value of f(x) throughout [a, b]. We shall not mistake a local 
minimum for the global one. 

Indeed, our method will usually not find local minima, unless forced to 
do so. Its efficiency would then be degraded if it did. In our method, we 
iteratively delete subintervals of [a, b] until the remaining set is sufficiently 
small. These subintervals consist of points at which either f(x) is proved to 
exceed the minimum in value or else the derivative is proved to be nonzero. 
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The tool which enables us to do this is interval analysis. It is not 
necessary for the reader to be intimately familiar with interval analysis to 
understand our paper, since we describe its relevant property in the next 
section. However,  we assume that the reader is familiar with its rudiments. 
The interested reader should consult Moore 's  book (Ref. 1). For other  
papers which consider the problem of global optimization, see Refs. 2-8. 

2. Interval Analysis 

Let g(x) be a rational function of x. On a computer,  we can evaluate 
g(x) for a given value of x by performing a specified sequence of arithmetic 
operations involving only addition, subtraction, multiplication, and division. 

Let X be a closed interval. If we use X for input, instead of x, and 
perform the same sequence of operations using interval arithmetic (see 
Ref. 1), rather than ordinary real arithmetic, we obtain a closed interval 
g(X) containing the range 

{g(x) :x ~X} 

of g(x) over X. This result will not be sharp, in general; but, if outward 
rounding (see Ref. 1) is used, then g(X) will always contain the range. 

The lack of sharpness depends on many things; but, for exact interval 
arithmetic, it goes to zero as the width of X goes to zero. 

If g(x) is not rational, we assume that an algorithm is known for 
computing an interval g(X) containing the range of g(x) for x ~ X. Methods 
for doing this are discussed in Ref. 1 and elsewhere. 

3. Taylor's Theorem 

We shall use interval analysis in conjunction with Taylor 's theorem in 
two ways. First, we expand f(x) as 

/ ( y )  = f (x )  + (y --x)f'(x) + l ( y  _ x)Zf,,(~.l). (1) 

This holds for some number (a between x and y. If x and y are contained in 
an interval X, then (1 is in X. Thus, if x is a given point in X, then 

f(y) ~f(x) + (y -x)f '(x)+~(y - x)2f ' (X),  (2) 

for all y 6 X. 
We could relax our condition that f(x)E C 2 and assume only that f(x)E 

C a. Instead of (2), we could then use a relation of the form 

f (y )  = f (x )  + (y - x)f'(~r2). 
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However, to increase the efficiency of our method, we assume that f ( x )  ~ C 2 
and use (2). 

We shall, however, use an expansion of this form with f replaced by f ' .  
We then have 

f ( y )  = f ' ( x )  + ( y  - x ) f" (~) ,  (3) 

f ( y )  e f ( x )  + (y - x ) f " ( x ) .  (4) 

This holds for all y e X, if x ~ X. 

4. Approximate Value of the Global Minimum 

As we proceed with our algorithm, we shall evaluate f ( x )  at various 
points x in [a, b]. Let f denote the currently smallest value of f found 
so far. 

We begin our algorithm by evaluating f at the endpoints of [a, b]. We 
initially choose 

f =  min[f(a),  f(b)]. 

We shall record f and the point(s) x at which f ( x )  = f .  
Any minimum in the interior of [a, b] must be a stationary point. Our 

algorithm will delete iteratively subintervals of [a, b] wherein f ~ O. It will 
also delete subintervals wherein f > ]~ since this implies that f > f*, where f* 
denotes the globally minimum value of f in [a, b]. 

5. Concavity 

As our algorithm proceeds, we shall dynamically subdivide [a, b] into 
subintervals. Let X denote such a subinterval, and denote the interval 
resulting from evaluating f '  in interval arithmetic using the argument X by 
[u, v]; that is, 

f " ( x )  = [u, v]. 

If v < 0, then f is concave in X and cannot have a minimum in the interior of 
X. Therefore, when our algorithm produces a subinterval X, we evaluate 
f " ( S ) .  If v < 0, we delete X. Note that it is not necessary to examine the 
endpoints of such an interval. An endpoint cannot be a global minimum 
unless it is one of the points a or b already examined. 

If v -> 0, we use the information about f" to eliminate all or part of X as 
described in the following sections. 
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6. Interval Newton Method Applied to f' 

Let X be a closed subinterval of [a, b]. Let x be any point in X. It  is best 
to let x be the midpoint of X. From (3), if y ~ X is a stationary point of f, then 
f ' ( y )  = 0 and y solves the equation 

f ' ( x )  + ( y - x ) f ' (~)  = o, (5) 

for some value of ~" ~ X. Hence,  any stationary point y ~ X is contained in 
the set 

S " = { y  : f ' ( x ) + ( y  - X ) f " ( ( ' ) =  O, ~' e X }  

obtained by letting ~" range over  all values in X. We now make  use of fl'(X), 
which we will have obtained while testing to see if f is concave in X (see 
Section 5). If 0 ~ f ' (X) ,  then the set S" is contained in the set 

S'= x - f ( x ) / f " ( X ) ,  (6) 

where the right-hand m em ber  of (6) is obtained by simple evaluation using 
interval arithmetic. 

This is the interval Newton method as derived in Ref. 1. However ,  
Moore  uses it to find zeros of f, rather than zeros of f ' .  If we define the 
iterative process 

N(X,,) = x n - f t ( X n ) / f t t ( X n ) ,  FI = O,  1 . . . .  , 

X,,+I = X ,  c~N(Xn) (7) 

with x,  the midpoint  of Xn, then the process never fails to converge (see 
Ref. 9) when 0 ¢ f"(Xo), in the sense that, if there is a root x '  of f '  in X0, then 
X ,  ~ x '  as n -* m. If f '  has no root in X0, then X~ is empty  for a sufficiently 
large value of n. In the fomer  case, the convergence is quadratic (see Ref. 11) 
in that, asymptotically, 

w.+l = O(w~) ,  

where w, denotes the width of X,. 
It  does not seem to have been previously observed, but the set S" is 

easily bounded even when 0 E f"(X). A solution in this case is derived in 
Ref. 10. The  result is as follows. 

Denote  

X = [XL, XR] and f"(X) = [u, v]. 

If u # 0, define 

c = x - f ' ( x ) / u ;  
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if v # 0, define 

d = x - f ' (x) /v .  

We assume that u -< 0 -< v, since otherwise we can use the s tandard  Newton  
formula  (6). W e  are interested only in points  of  S" which lie in X. Thus,  we 
want  the intersection of  X with the set that  we can obtain  to bound  S". 
As shown in Ref.  10, these points  compose  two intervals. For  f'(x)>_O, 
one  is 

s l = I  [xL'd]' i fv>Oandd>-xL'  (8-1) 
/ ap, if v = 0 or  if v > 0 and d < XL, 

(where ap is the empty  set) and the o ther  is 

[c, xg], i fu<Oandc<-xn,  (8-2)  
$2 

tap, if u = 0 or  if u < 0 and c > xn. 

For  f'(x) <- 0 these intervals are 

Sl =~[XL'c]' ifu<Oandc>--XL' (8-3) 
lOP, i fu=Oor i fu<Oandc<XL,  

and 

l [d'xn]' i fv>Oandd<-xn'  (8-4) 
$2 = / ap, if v = 0 or  if v > 0 and d > XR. 

The  solution set of  interest is S = $1 • $2, which may  be empty,  or  consist of  a 
single interval, or  consist of  two disjoint  intervals. As  shown in Ref.  10, 

X r~S" C S. 

W h e t h e r  0 ~ f"(X) or  not,  we now have a me thod  for  obta ining a set S 
containing any zero of f '  in X. Hence ,  its complemen t  S c in X cannot  contain 
a min imum off ,  and we can discard S c. Note  that, if S is empty,  we discard all 
of X. We  could now repeat  the Newton  step with S in place of 32. If S consists 
of  two intervals, we would  use each one separately.  Thus,  we would  evaluate 
f '  with a rgument  S if S is a single interval, or  with a rgument  $1 (or $2) 
otherwise.  We  would then use ei ther  (6) or  (8), whichever  is appropria te ,  and 
iterate. 

In  Ref.  10, the following theo rem is p roved  which expresses the 
convergence  of  this ex tended  Newton  method .  

T h e o r e m  6.1. Le t  the ex tended Newton  me thod  be applied to finding 
the zeros of  if(x) in an interval Xo. Assume  that, at the ith step, i =  
1, 2, 3 . . . . .  the me thod  is applied to the largest remaining subinterval.  Also  
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assume that f ( x )  is continuous and has a finite number of distinct zeros in 
X0. Then, for a sufficiently large value of i, the sum of the lengths of the 
remaining intervals is less than an arbitrarily prescribed number E > 0. 

We now sketch the outline of a proof of this theorem. For a complete 
but rather lengthy proof, see Ref. 10. 

We ignore the trivial case in which xn is a zero of f'(x). It then follows 
than x,  is not contained in N(X,,). For, if it were, there would be a point 
y ~ X~ such that [see Eq. (7)] 

xn = x,, - f (x , ) / f ' (y) .  

This implies that f (x,)= 0, which is a contradiction. When 0 ¢f'(X,,), this 
implies that the width of N(X,)  is less than half that of X,. When 0 ~ f'(X,), 
the Newton step given by (7) yields two subintervals of width less than half 
that of X,. Insubsequent  steps, these subintervals are again reduced in size. 
Eventually, all remaining subintervals become so small that none contains 
more than one zero of f'(x). It is proven in Ref. 10 that any interval not 
containing a zero of f'(x) is rapidly eliminated by the interval Newton 
process. The width of the remaining intervals goes to zero asymptotically. 

In practice, however, it will generally be more efficient not to simply 
continue using the extended interval Newton method. For, it would isolate 
all the stationary points of f(x) in [a, b]. Hence,  we would expend effort in 
finding a local (nonglobal) minimum, in which we are not interested. Instead, 
we supplement the Newton method using the following procedure. 

7. Bounding f 

We now consider how to use (1) to delete points y ~ X where f ( y )  > 
and hence where f ( y )  is not a global minimum. For  simplicity, we shall 
discuss the procedure as if we delete points where f ( y ) - - - f  (i.e., where 
equality can hold). However,  we shall retain closed intervals, and thus points 
where f (y )  = f will not be discarded. 

To speed convergence, we can allow a prescribed error el -> 0 and delete 
points for which 

/(Y)-> f - ~ l .  (9) 

Our  discussion will be valid for E1 either zero or nonzero. We can allow el to 
be nonzero only if we do not need to know the point(s) x* at which f is 
globally minimum. We discuss this aspect later. 

From (1), condition (9) holds if 

f ( x )  + ( y - x ) f ' ( x )  + ½( y - x)2f"(~) >_ f _  ~1. 
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We choose x to be the center of the interval X. Denote  

E = f - f ( x ) -  E, 

and, as before, denote  

(10) 

f ' (x)  = [u, v ] .  

We want to discard points y such that 

(y -x ) f ' ( x )+½(y  - x ) 2 z  >-E (11) 

for all z ~ [u, v]. The left-hand member  increases as z increases. Hence, if 
(11) is satisfied for z = u, it is satisfied for all z ~ [u, v]. Therefore,  we need 
only calculate those values of y satisfying 

( y _ x ) f , ( x )  ~ 2 +~(y - x )  u ->E. (12) 

Consider the discriminant 

A = [f ' (x)]  2 + 2Eu. 

If A < 0, the quadratic has no real roots. Hence,  since (12) is satisfied for 
y = x, it is satisfied for all y. Thus, we can eliminate all of X. 

If u = 0, (12) is satisfied for 

y >-x +El f ' ( x )  if f ' (x)  > 0, 

y arbitrary if f '(x) = O, 

y <- x + E / f ' ( x )  if f ' (x) < O. 

If u # 0 and A > 0, the quadratic in (12) has two real roots, say rl and r2. 
Thus, (12) is satisfied for y between rl and r2 if u < 0, and for y outside the 
interval defined by rl and r2 if u > 0. 

We have determined the values of y for which 

f ( y ) - - > f -  El. 

The set of these values of y which lie in X can be discarded. It is necessary to 
confine these points to X, since our information about f" is for points in X 
only. 

8. Updating [ 

The process described in Section 7 involves the evaluation of f(x),  
where x is the center of X. We use this information to update )~ If f (x) < 1~ we 
replace f by f (x) .  Thus, 7 is always the smallest value of f currently known. 
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9. Choice of ex 

If we are only interested in finding the value of f*,  but not x*, we can 
choose E1 > O. But, if we want to determine x*, we must choose E1 = O. 

To see this, suppose that 

-f* <,1. 

Using the procedure in Section 7 with el > 0 may eliminate a set of points y 
containing x*, but we have no way of knowing this. If we choose el = 0, we 
will never delete x*. A point x* will eventually be isolated when the set of 
points remaining (not yet deleted) is small. For  el > 0, we can iterate until the 
entire interval [a, b] is deleted. Only the point(s) 2? at which f($) = ]V will be 
retained. At  these points, we shall have ] v _ f ,  < el. That  is, we shall without 
fail determine f* to within the prescribed error  el. 

A compromise is possible which may improve efficiency. We can use 
E1 > 0 anticipating that jr will become smaller as we proceed. 

Thus, if we currently have a value ]vo for ~ but anticipate that ]V will 
eventually be reduced to ]Vl, we could choose E1 somewhat less than ]v0-]Vl. 
Then, if jr does become as small as 171, we will not have deleted a point where 
f is globally minimum. However,  if 2 ? remains greater than ]Vl, we will have to 
repeat  whose steps which used too large a value of et. We have not tried this 
procedure in practice. 

10. List of Intervals 

When we begin our algorithm, we will have a single interval [a, b]. In 
our first step, we use this entire interval as the interval X discussed in 
previous sections. As shown in Ref. 10, as long as u and v are bounded, our 
procedure will eliminate a part of this interval which, initially, we can expect 
to be a small subinterval, say Y, of [a, b]. 

The exterior of Y in X consists (in this case) of two subintervals of X. 
They constitute an initial list of intervals yet to be processed. When we 
process one of these intervals, we may get two more. If so, we add them to 
the list. Thus, the number of intervals in the list tends to grow initially. 

Eventually, however, the intervals become small enough that either 
only one new interval is obtained from an interval X or else X is entirely 
eliminated. Thus, the number of intervals in the list eventually decreases to 
one or a few intervals, depending on the number of points at which f takes on 
its globally minimum value. We assume for simplicity that there are a small 
number  of such points. 
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When we choose a new interval from the list to process by our method, 
it is best to choose the largest one in the list. This is because we want to 
obtain quickly a value of f near f*.  The smaller f i s ,  the greater portion of an 
interval X we shall be able to delete using (12). 

If an interval X in the list is small, we can" expect to have previously 
evaluated f at a point near X. Hence, we cannot expect )7 to decrease very 
much when we evaluate f in X. 

If the function f (and/or  its derivatives) is expensive in time to evaluate, 
it will pay to search the list and find the largest interval. But, if f and its 
derivatives require little effort to evaluate, the search procedure itself may 
be too time-consuming. A compromise that is easy to program is to use the 
oMest interval in the list. 

One way to get f small initially and obviate the need to worry about the 
size of the intervals is to begin the entire process with a noninterval method 
for finding a local minimum. This gives a small value of )7 initially. 

If our interval method subsequently finds a better value of/~ the local 
method could then be used to search in the neighborhood of the point in 
question. 

These variations of the method are not essential. They decrease the 
running time of our  algorithm by at most a few percent in practice. 

11. Options in the Method 

In Sections 5 and 6, we showed how to compute a set S c which could be 
deleted because 

f ' ( y ) ¢ 0 ,  f o r y ~ S  c. 

In Section 7, we showed how to compute a set, say S', which could be deleted 
because 

f ( y ) > f - E 1 ,  for y ~S' .  

These sets may have considerable overlap. In fact, it is not unusual for one of 
the sets to be contained in the other. 

Hence,  one may ask whether it is desirable to always use both methods. 
It is certainly possible to find the global minimum using either method alone. 
The best procedure might be to use only one of the methods at a given step 
and somehow predict which will delete the largest set. 

However,  if the function f and /o r  its derivatives are costly to evaluate, 
the additional work to apply the two methods will be relatively small. We 
have taken the easy way out and made this assumption. Thus, we use both 
methods at each step. 
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12. Termination 

We now consider methods for terminating our algorithm. In Section 7, 
we pointed out that, if we were not interested in the point(s) where f was 
minimum, but we wanted only to approximate the global minimum f*, then 
we could choose el > 0. We can then continue the iteration until all of the 
initial interval is deleted. The final value of f exceeds f* by no more than el. 

If we choose el > 0, we cannot determine where f is minimal. If we do 
want to know where f is minimal, we can iterate (with E1 = 0) until the 
remaining set of intervals in the list have combined length less than, say, E2. 
Thus, if at some stage there are s intervals 

X i  = [ai, bi], i = 1 , . . . ,  s, 

in the list, we require that 

~. ( b i - a i ) < - e 2  . (13) 
i=1 

This presupposes that the set of points at which f is minimal is finite. We 
assume that this is the case. If it is not the case, we can iterate until 

bi - ai <- E2 

for each i = 1 . . . . .  s. 
We may wish assurance that none of the final intervals Xi is such that 

f(x) is considerably larger than f* for all x in Xi. We can obtain this 
assurance by evaluating f at the midpoint xi of each Xi. If f(xl) differs from f 
by too large an amount, we can process the interval Xi by our method until it 
is either entirely deleted or else a value of f sufficiently close to/7 is found. 

We consider three types of minimization problems: (i) bound x* with 
error tolerance E2; (ii) bound f* with error tolerance e~; and (iii) bound both 
f* with error tolerance ex and x* with error tolerance E2. Our method solves 
the first problem if we use the termination criterion (13) discussed above. 

It solves the second problem if we choose el > 0 in (10) and iterate until 
the initial interval is entirely eliminated. The final value of f then satisfies 

f - f *  ~ El. 

The third problem requires some additional computation. We first 
proceed as in the first method until x* is bounded as required. We then 
bound f in each remaining interval by the method described in the next 
section. If the bound does not satisfy the error tolerance in one of these 
intervals, we process the interval again by our algorithm described in 
preceding sections. We continue until the error criterion on f* is satisfied for 
all remaining intervals. 
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If we could use exact interval arithmetic, the choice of el and e2 would 
be arbitrary. The theorem in Section 6 assures that our method would always 
reach the stage at which the termination criterion or criteria was satisfied. In 
practice, it is necessary to choose el and /or  e2 commensurate with the 
attainable accuracy of the computer.  

13. Bounding f* 

We now consider how to bound f, and hence f*, in the intervals 
remaining after (13) is satisfied. Let  X~ be such an interval, and let xi denote 
its center. If we replace x by x; and y by Xi in the right-hand member  of (2), 
we have 

f (y )  ~ f (xi)  + (Xi - xi)f'(xi) + ½(X,. - xi)2 f"(Xi).  (14) 

We evaluate the right-hand member  of (14) using interval arithmetic and 
obtain an interval, say, [p~, qi]. Then, 

Pl <- f (Y )~q i  

for all y c X~. 
Let  s denote the number of intervals X~ remaining, and denote 

p = rain Pi. 
l ~ i ~ s  

Then, 

p -<f* -< ]~ (15) 

If f -  p -< e 1, we are finished. If f -  p > E 1, let j denote the index of an interval 
for which p =Pi. We process X/ by our algorithm and continue until 
f - p < - E 1 .  Then, from (15), our error criterion is satisfied, and we have 
finished. 

14. Rounding Errors 

In practice, we shall make rounding errors in applying our method. This 
poses no problem in obtaining such quantities as f"(X).  We simply follow the 
standard practice in doing interval arithmetic and use outward rounding (see 
Ref. 1). Thus, for example, if we are computing f ' ( X ) ,  the actual interval 
[u, v] obtained contains f"(X).  Consequently, the steps taken in our method 
which use [u, v] yield correct results. The effect of the rounding errors is 
merely to slow convergence very slightly. 
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To assure that rounding errors do not produce incorrect results in our 
method, it is necessary to compute quantities such as f(x) or f'(x) in interval 
arithmetic. Again, this creates no difficulty when such quantities are used in 
evaluation of a formula, such as the one for the Newton step, which already 
involves interval quantities. 

In Section 8 and elsewhere, we discussed the quanti ty/z as if it were 
calculated exactly. What we want for f is a quantity such that, without fail, 
f* --</~ This is because we delete points x where f(x) >- f, and we do not want 
to delete more points than we should. In practice, we evaluate f(x) in 
interval arithmetic and obtain, say, [fL(X),fR(X)]. Therefore, when we 
evaluate f(x), we update f by replacing f by fR(x)if  f n ( x ) < f  Thus, we 
know that f* ---/~ 

15. Numerical Example 

We now consider an example discussed by Schubert in Ref. 11. We shall 
find the global minimum of 

5 
f(x) = - ~. k sin[(k + 1)x + k]. 

k=l  

We have changed the sign of his function, since we seek the global minimum, 
and he sought the global maximum. 

Schubert points out that f has global minima at x* = - 6 . 7 7 4 5 . . .  and 
x* = 5.7918 . . . .  This is correct. However, he states that f has a local 
(nonglobal) minimum at x* = -0 .4914 . . . .  This is incorrect, as can be seen 
by noting that f has period 2~-. The points x* and x* differ by 2¢r as do x* 
and x~. Hence, f has the same value at each of the three points. That is, x* is 
also a point of global minimum. 

He chooses the initial interval [ - 1 0 ,  10] and notes that there are 18 
minima of f(x) in this interval, besides x*, x* "* 2, ~3. Since f(x) has period 2~r, 
we need only search in an interval of length 27r. However, for easier 
comparison, we shall also use [ - 1 0 ,  10]. 

Actually, it is somewhat difficult to compare our method with 
Schubert's method. His method requires values of f(x) only, while our 
method requires f'(x) and f"(X) also. However, he requires knowledge of a 
Lipschitz constant, which is not generally obtainable. A comparable part of 
our method is computation of the derivative of f, which obviates the need of 
a Lipschitz constant. Removing the need for this constant makes our method 
applicable to a wider variety of functions. 

We shall simply compare the number of iterations. Even this 
comparison is not straightforward. His termination criterion is that f* be 
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determined to within el = 0.01. His method produces error  bounds on the 
x*, but their values have nothing to do with the termination criterion. Our  
situation is essentially the reverse of this. We use bounds on the x* as our 
pr imary termination criterion, when we want bounds on both x* and f*.  

His final error  bounds on the three global minima sum to about  0.15. 
We chose the slightly more  stringent condition E2 = 0.1, along with the 
condition el = 0.01. We obtained a much sharper result than required. To 
ten decimals, our  final intervals were 

x* ~ [ -  6.774576144, - 6.774576143], 

x* s [5.791789015, 5.791799064], 

x* 6 [ -  0.4913921876, - 0.4913895811]. 

These intervals have a combined length of approximately 1.3 x 10 -5. 
These results required an evaluation of f (x)  at each endpoint  of the 

original interval and 77 evaluations of f(x),  f '(x), f"(X).  An additional three 
evaluations of these quantities used in (14) gave 

f (x*)  ~ [ -  12.03124944, - 12.03124943], 

f (x*)  ~ [ -  12.03124945, - 12.03124943], 

f (x*)  ~ [ -  12.3124944, - 12.3124943]. 

Schubert 's  method required 444 evaluations of f. 
These computat ions were done on the HP-9830  computer ,  which used 

twelve decimal digit calculations. 
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