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Abstract. An overview of interval arithmetical tools and basic techniques is presented that can be used 
to construct deterministic global optimization algorithms. These tools are applicable to unconstrained 
and constrained optimization as well as to nonsmooth optimization and to problems over unbounded 
domains. Since almost all interval based global optimization algorithms use branch-and-bound 
methods with iterated bisection of the problem domain we also embed our overview in such a setting. 
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1. Introduction 

Let Z be the set of real compact intervals, R be the set of reals, X = R” or X E I” 
be a box (precisely, a parallelepiped), and f : X+ R be the objective function. 
Let f* be the global minimum of f over X if it does exist and X* be the set of 
global minimizers off over X. The determination off* or X* or a subset of X* is 
called the unconstrained optimization problem (in the global sense). If X is of a 
more general shape, usually defined by constraint functions, the determination of 
f *, etc. is called the constrained optimization problem (in the global sense). We 
also call f * or X* the solution set of our problem. 

Solving a global optimization problem requires the comparison of a continuum 
of values and to pick out just the elements of the solution set. Since interval 
computation is a means for handling continua, it provides competitive methods 
for tackling global problems. 

The first interval techniques for treating general global problems were estab- 
lished by Moore [28], [29], [31], Skelboe [42], Hansen [9], [lo], Stroem [43], 
Dussel [7], Caprani and Madsen [4], Ichida and Fujii [16], Mancini [22], Mancini 
and McCormick [23], Mancini and Wilde [24], [25], Oelschlagel and Siisse [34], 
Siisse [44], Robinson [40], etc. Although some of these references were focusing 
on special problems like convex or signomial programming they were providing 
concepts which could give insight into more general problems and be applied to 
them. 
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The overview, we provide in this paper, can only cast a quick glance at the 
various topics that are to be enumerated. Their thorough investigation, however, 
may be found in Mohd [27], Ratschek and Rokne [38], Hansen [ll]. 

The interval techniques we want to discuss may best be demonstrated within a 
branch-and-bound setting, which involves an iterated bisection of the domain, X. 
A related prototype algorithm is presented in Section 2. In Section 3, the basic 
features of interval computation, that is, exact and machine interval arithmetic 
are explained. Inclusion functions are developed in Section 4. They are interval 
valued functions that enable to include real valued functions. Practically, is a 
real-valued function f given, inclusion functions of f the width of them is as 
narrow as required can be constructed without too much effort. This point is 
especially important for convergence properties. In Section 5, the tools for 
determining the solution set directly, such as midpoint test, monotonicity test, etc. 
are discussed. In Section 6, an interval Newton-like method is sketched which is 
to be applied to the gradient off or to the Lagrangian function in order to find the 
stationary or Kuhn-Tucker points of the problem. In Section 7, the convergence 
properties of the prototype algorithm are employed. In Section 8, termination 
criteria are addressed. Problems over unbounded domains are found in Section 9, 
and in Section 10 one can see how interval tools fit into nonsmooth optimization 
strategies. Finally, the constrained problem is discussed in Section 11. 

There remain a few interval approaches to optimization that do not fit into the 
prototype based frame of our paper but are, nevertheless, worth of mentioning. 
Let us, for example, pick out two of them: In Mancini and Wilde [24], [25], 
interval tools are not only connected with primal problems but also with dual 
ones. Another idea is taken up by Dixon and Fitzharris [6] who use interval 
arithmetic in order to stabilize conjugate gradient methods for minimizing quad- 
ratic forms. 

2. A Prototype Algorithm 

This extremely simplified prototype we present is to be seen rather as a suitable 
foothold for describing the various interval tools and their interaction with the 
optimization problem. If the reader wants to get to know really workable and 
ripened interval algorithm he is referred, for instance, to [lo], [ll], [12], [41]. 

The following algorithm for solving the optimization problem needs the domain 
for the optimization problem, X E I”, and the objective or cost function, 
f : X+ R, as input parameters. Although some epsilons are unavoidable in Step 5 
(termination) they are marginal at the moment and suppressed. As X is a box, we 
first think of the unconstrained optimization problem, but we will use the same 
prototype for the constrained case in Section 11 as well as for the unbounded case 
in Section 9. The “solutions” that are addressed in Step 3 refer to elements of X*, 
that is, to global minimizers. This prototype, however, can be used as a zero 
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finding algorithm for systems of nonlinear equations when “solution” means a 
zero of f in X, cf. Section 6. 

THE PROTOTYPE ALGORITHM. 
1. Put X into an ordered list 9 (which has been empty before). 
2. Bisect the first box of 9 into two subboxes VI and V, . 
3. Delete Vi if it can be proven that K contains no solution or diminish Vj if it can 

be proven that a part of y contains no solution (i = 1,2). 
4. Put v (as whole or diminished) into list 9 if v has not been deleted in Step 3 

(i = 1,2). 
5. Stop if termination criteria hold. 
6. Goto Step 2. 

As we shall see later, all the global minimizers will be contained in the boxes of 
the list, 9, at any stage of the computation. Hence, it will be intended to get the 
union of the boxes of 9 converging to X*. 

The steps of the Algorithm are very loose and offer a good deal of freedom. 
Rather different methods can be derived from the prototype depending on how 
the steps are completed. The most important are: 

Step 2 (Bisection). In general, the box is subdivided by bisecting it at the longest 
edge. This procedure is a necessary condition for getting convergence to X*, cf. 
Section 8. However, some authors provide a cyclic bisection where the bisection 
directions are exchanged cyclically ([31]). A general theory of bisection has been 
developed by Kearfott [18]. 

Step 3. How can be verified that VI or V, or parts of these boxes contain no 
solutions? It is one of the great strengths of interval arithmetic to be able to 
provided computationally executable ways of performing such tests. Their de- 
scription will be one of the central topics of the overview (cf. Sections 4-6), the 
more as non-interval methods do not have many comparable tests, which usually 
depend on existence and knowledge of Lipschitz constants of the functions. It is 
typical for the interval based tests that they have some kind of failure rate, that 
decreases as the range of application of the test becomes smaller. Hence it can 
happen, that such a test fails for the box VI U V, but is successful for the subboxes 
VI and V,. 

Step 4. It is important at which positions and boxes VI and V. are put into the list. 
If they are put at the end of the list one gets an ordering of the list by age and has 
a uniform subdivision strategy apart from the different sizes of the boxes by step 
3. Such an ordering implies convergence of the Algorithm to the solution set, see 
Section 7. It is also very widespread to relate with every box Y of 9 a lower 
bound off over Y, which can be determined with interval arithmetic means. The 
boxes of 2 are then ordered by increasing lower bounds. In this case one gets a 
typical branch-and-bound mechanism (cf. [15]) which may be more effective than 
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the uniform subdivision but which may cause non-convergence under rare circum- 
stances. A third strategy is the ordering by short-livedness where VI and V, enter 
the list at its head. This means that one box after the other is worked off. This 
procedure needs minimal storage. 

Step 5. Interval arithmetic is an ideal tool for establishing various sorts of 
termination criteria which are mainly requirements for a prescribed accuracy of 
the computation of the global minimum value or the global minimizers. Therefore 
an error estimation is connected with the termination of the computation, cf. 
Section 8. Also uniqueness tests can be applied to the boxes of the final list, cf. 
Section 8. 

3. Interval Arithmetic, Machine Interval Arithmetic 

In this section, a minimum knowledge of interval arithmetic is imported. A 
thorough introduction to the whole area of interval arithmetic can be found in 
[31], [l], [3]. The development of interval tools appropriate for dealing with 
optimization problems is presented in [36], [38], [ll]. 

Let R be the set of reals and Z be the set of real compact intervals (these are the 
ones normally considered). Operations in Z defined by the expression 

A*B={a*b:aE-A,bEB}forA,BEZ (1) 

where the symbol * stands for +, -, ., and I, and where A/B is only defined if 
OgB. 

Definition (1) is motivated by the fact that the intervals A and B included some 
exact values, (Y and ~3, respectively, of the calculation. The values (Y and p are 
generally not known. The only information that is usually available consists of the 
including intervals A and B, i.e., a! E A, p E B. From (1), it follows that 

(~*PEA*B 

which is called inclusion principle of interval arithmetic. Moreover, A * B is the 
smallest set that contains the real Q * p. 

The real and the corresponding interval operations are denoted by the same 
symbols. So-called point intervals, i.e., intervals consisting of exactly one point, 
[a, a], are denoted by a. Expressions like Aa, a f A, A/a, (-l)A, etc., for 
a E R, A E Z are therefore defined. The expression (-l)A is written as -A. 

Definition (1) is equivalent to the following constructive rules: 

[a, b] + [c, d] = [a + c, b + d] , 
[a, b] - [c, d] = [a - d, b - c] , 
[a, bl[c, 4 = C min ( UC, ad, bc, bd), max(ac, ad, bc, bd)] , 
[a, b]l[c, d] = [a, b][lld, l/c] if Og[c, d] . 

These rules show that subtraction and division in Z are not the inverse operations of 
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addition and multiplication, respectively, as is the case in R. For example, 
[0, l] - [0, l] = [-1, 11, [l, 2]/[1,2] = [l/2,2]. This property is one of the main 
differences between interval arithmetic and real arithmetic. Another main differ- 
ence is given by the socalled subdistributive law, 

A(B+C)GAB+ACfor A,B,CEl. 

The distributive law is valid in some special cases, e.g., 

a(B+C)=aB+aCif aER and B,CEZ. 

The following property follows directly from (1): Let A, B, C, D E I, and * be 
any interval operation; then 

ACB,CcDimpliesA*CcB*D(ifB*Disdefined). (2) 

The last-mentioned property is called inclusion isotony of the interval oper- 
ations. A summary of the algebraic behaviour of intervals is given in [35]. 

Machine interval arithmetic can be considered as an approximation of interval 
arithmetic on computer systems and is based on the inclusion isotony of the 
interval operations in the following manner: Let us assume again that (Y and B are 
the unknown exact values of any stage of the calculation and only including 
intervals are known, (Y E A, B E B. Then A and B might not be representable on 
the machine. So, A and B are replaced by the smallest machine intervals that 
contain A and B, that is, A C A,, B C B, . 

The left and right endpoints of a machine interval are machine numbers. (2) 
impliesA*BCA,*B,. 

The interval A, * B, need not be a machine interval and is therefore approxi- 
mated by (A, * B,), , which is representable on the machine. This leads to the 
inclusion principle of machine interval arithmetic, 

cxEA,pEB implies ‘Y*PE(A,+,*B~)~. 

Thus, the basic principle of interval arithmetic is kept in machine interval 
arithmetic, i.e., the exact unknown result is contained in the corresponding 
known interval, and rounding errors are under control. 

There are several software systems and software packages in which machine 
interval arithmetic is implemented, e.g., TRIPLEX-ALGOL-60, Pascal-SC, or 
ACRITH for some IBM computers, and ARITHMOS for some Siemens compu- 
ters, FORTRAN-SC, etc. See, for instance, [21] as guide for further information. 

4. Inclusion Functions and Natural Interval Extensions 

Inclusion functions are a means for dealing with ranges of functions, in particular 
if the dependency of the range on the domain is to be investigated. Practically, 
inclusion functions are constructed via natural interval extensions almost au- 
tomatically ([28]). 
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Let again X E I” and f : Xi, R. The set of compact intervals contained in X is 
denoted by Z(X). Let f(Y) = {f(x) : x E Y} for Y E Z(X) be the range off over Y. 
A function F is called an inclusion function for f if 

f(Y) C F(Y) for any YE Z(X) . 

Inclusion functions for vector-valued functions are to be understood component- 
wise. Inclusion functions can be constructed in any programming language in 
which interval arithmetic is simulated or implemented, see the following para- 
graphs. F is called isotone if for Y, Z E Z(X), 

Y C Z implies F(Y) C F(Z) . 

Let g be any function pre-declared in some programming language (like sin, 
cos, exp etc.). Then the corresponding predeclared interval function G is defined 
bY 

G(Y) = g(Y) for any Y E Z contained in the domain of g . 

Since the monotonicity intervals of pre-declared functions g are well-known it is 
easy to realize the interval functions G on a computer. Nevertheless, the influence 
of rounding errors may be considered, so that (G( Y,)), instead of G(Y) will be 
computed on a machine. 

Let f(x) be any function expression in the variable x E R”. So, f(x) may be an 
explicit formula or described by an algorithm not containing logical connectives. 
For simplicity, we assume that f(x) is representable in a programming language. 
Let YE I” or let Y be an interval variable over I”. Then the expression which 
arises if each occurrence of x in f(x) is replaced by Y, if each occurrence of a 
pre-declared function g in f(x) is replaced by G, and if the arithmetic operations 
in f(x) are replaced by the corresponding interval arithmetic operations, is called 
the natural interval extension of f(x) to Y, and it is denoted by f(Y). Due to (1) 
we get the inclusion principle for (programmable) functions 

a E Y implies f(a) E f(Y). (3) 

Therefore, f(Y) seen as a function in Y is an inclusion function for the function 
f(x). (Note: Natural interval extensions could be precisely defined only via 
recursion. Further, one would have to distinguish between the expressions f(x) or 
f(Y) and the functions defined by these expressions. One would also have to take 
care of the case that a forbidden division by 0 could be implied by the expression 
f(Y). However, we chose this outline for simplicity.) 

For example, if f(x) = x1 sin x2 - x3 for x E R3 then f(Y) = Y, sin Y2 - Y, is the 
natural interval extension of f(x) to YE Z’. 

Due to the algebraic properties of interval arithmetic, different expressions for 
a real function f can lead to interval expressions which are different as functions. 
For example, if fi(x) = x - x2 and f*(x) = x( 1 - x) for x E R then f,(Y) = Y - 
Y* = [- 1, l] and f*(Y) = Y(l - Y) = [0, l] for Y = [0, 11. For comparison, 
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f(Y)=[O,1/4]. I n g eneral, the problem arises as to how to find expressions of a 
given function that lead to natural interval extensions as good as possible. A 
partial solution to this problem can be found in [36]. 

A measure of the quality of an inclusion function F for f : X-, R is the 
so-called excess-width ([28]) 

w(F( Y)) - w( f( Y)) for all Y E Z(X) , 

where ~([a, b]) = b - a is the width of an interval. F is called of order (Y > 0 if 

w(F(Y)) - &J(Y)) = O(w(Ya)) for YE Z(X) 

where the width of a box Y = Y1 x * * * x Y, is defined by w(Y) = 
maxi=l m , w(Yi). In order to obtain good computational results it is necessary 
to choose inclusion functions having as high an order CY as possible, see for 
example, [36]. If f is programmable then, in general, the natural interval 
extension is of order 1 ([28], [36]). If f is differentiable and if G(l) is an inclusion 
function of Vf satisfying w[ G@‘(Y)] =S Kw(Y) for Y E Z(X) and some K > 0 then 
F(Y) = f(c) + (Y - c)~G(~)(Y) w h ere c is any point of Y is an inclusion function 
of order 2. It is called mean value form and obeys to the so-called class of centered 
forms, cf. [20], [36] for details. 

From the definition, F(Y) is a compact interval as long as Y E Z(X). Hence, 
F(Y) has two endpoints (boundaries) which will be denoted by min f(Y) and 
max F(Y). 

5. Box-Discarding Tests 

A point x* is a global minimizer off over X E I” if f(x*) 6 f(x) for all x E X. In 
general, it is not possible to replace this condition completely by local conditions 
as in the case with local minimizers or in the strictly convex case. Hence it is a 
basic feature of global methods to eliminate areas that can not contain solution 
points. In this section one can see how effective interval methods are for 
constructing such discarding processes. 

The following tests are mainly due to [9], [lo], but see also [31], [45], [22]. The 
following box-discarding tests are to be applied to the bisected subboxes V= 
VI, V, of Step 3 of the Prototype Algorithm. 

1. Midpoint Test. It is one of the simplest tests, if occurs in several variants and 
can also be found at non-interval optimization algorithms. 

The test needs an inclusion function F of f and preassumes that, from the 
beginning of the computation, to any box Y which has entered the list %’ some 
function value f(c) with c E Y is determined (frequently, c is th_e midpoint of Y). 
This allows to keep track of the lowest function value, say f, which has been 
determined up to the current iteration. Then the midpoint test reads as follows: 

If f”< min F(V) then delete V 
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It is obvious that V contains no global minimizer off over X, since f”< f(x) for 
any x E V due to the properties of an inclusion function. 

2. Monotonicity Test. Let f be continuously differentiable and Vf its gradient 
function. If f is strictly monotone in one of the variables over V = VI x . * . x V, , 
the box V cannot contain a global minimizer off over X = X1 x . . . x X, except 
that the edge of X touches the edge of V. In this latter case it can happen that a 
global minimizer lies on the intersection of the two edges. Let V(ilz) for z E R 
that box which occurs if the component Vi of V is replaced with z. 

For the execution of the test we need for i = 1, . . . , m an inclusion function of 
the i-th component of Vf, say Gil’. Let further y = [ui, wi] and Xi = [xi, yJ. 
Then the monotonicity test for strictly monotone increasing says: 

Forsomei=l,..., m, if 0 < min Gil’(V) then ’ 
(i) if xi < ui then discard V , 

(ii) if xi = ui then replace V by the edgepiece V(ilu,). 
The test for strictly monotone decreasing is analogous. 

An interesting variant for the univariate case can be found in [26], where firstly 
derivates of f or - in more involved cases - of a Hermitean interpolation 
polynomial are determined recursively till a derivative has constant sign. This 
information is then used to gain solutions. A related simple version for polyno- 
mials is given in [47]. 

3. A Non-Convexity Test. Let f be twice continuously differentiable. The mathe- 
matical background of this test uses the simple fact that, if one of the main- 
diagonal elements of the Hessian matrix off is always negative for points of V, no 
point of V exists for which f is convex. Hence, there is no global minimizer off 
over X in V, except that V and X have common edge pieces. 

Let F(‘) be an inclusion function for the Hessian matrix off, let H = F(‘)(V) 
with diagonal elements Hii = [pi, ~~1. Let the components of V and X as well as 
the notation V(ilz) be as in 2., then the non-convexity test is: 

For some i = 1,. . . , m, if gi ~0 then 
(i) if xi < ui and wi <yi then discard V, 
(ii) if xi = ui and wi < yi then replace V by V(ilu,), 

(iii) if xi < ui and wi = yi then replace V by V(ilw,), 
(iv) if xi = ui and wi = yj then replace V by the two boxes V(ilu,), V(ilw,). 

4. Znterval Newton Methods. They are applied to Vf in order to localize its zeros. 
The interval Newton methods are appropriate for generating box-discarding and 
box-diminishing tests as well as for proving existence and uniqueness of zeros. If 
V is small enough, interval Newton methods may act like classical, non-interval 
Newton methods, as the iterates of V shrink to the zeros. In the next section we 
present one sample of an interval Newton method, i.e., the one that is based 
upon the Krawczyk operator. 
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6. The Krawczyk Operator 

The interval Newton method (more precisely, interval Newton-like method) 
which is based upon the Krawczyk operator [19] is an excellent global tool for 
localizing zeros of differentiable functions g : X--, R” where X E I”. (We think of 
g as the gradient function of f or as the Lagrangian function in Section 11.) We 
have chosen this operator for our discussion since it is well balanced between its 
computational and theoretical simplicity on the one hand, and the quality of the 
obtained numerical results on the other hand ([33]). A good overview of methods 
for solving nonlinear equations is given by [l], [33]. 

Let G(l): Z(X)+ ZmXrn be an isotone inclusion function of the Jacobian matrix 
of g. Then the Kruwczyk operator is defined for any YE Z(X) as 

K(Y) := c - Ag(c) + {Id - AG’l’(Y)}(Y - c) 

where A E R”“” is an arbitrary nonsingular matrix, c E Y any point and Id the 
identity matrix. [33] shows that K(Y) gives best results when c is the midpoint of 
Y and A = Gil where G, is the midpoint of G”‘(Y) (to be understood com- 
ponentwise) and, clearly, nonsingular. Hence, we shall assume this special choice 
of the parameters c and A in the sequel. 

The Krawczyk operator has the following properties ([17], [19], [30]): 
1. If x* is a zero of g in Y then x* E K(Y). 
2. If Y n K(Y) = 0, there is no zero of g in Y. 
3. If K(Y) c Y then Y contains a zero of g. 
4. If K(Y) C int Y then Y contains exactly one zero of g (int Y denotes the 

interior of Y). 
In order to consider the iterative aspects of K, we set Y, : = Y, Y,, + 1 : = K( Y,), 

n = 0, 1,2, . . . . Further 1) ]I may be any norm on the space R”. Then we get: 
5. If K(Y) c Y and ](Id - AG(l < 1, then the sequence (Y,)z=, is nested, Y 

contains a unique zero x*, which lies in any Y,, the sequence (Y,)zEO 
converges to x*, and the sequence (w(Y,,))~=, converges to 0 linearly. Modifi- 
cations of the iteration steps may lead to quadratical convergence. 

Note that all the assumptions that occur in the listed properties are computa- 
tionally verifiable. 

Supplementing the box-discarding and box-diminishing tests of the previous 
section we add to item 4 (interval Newton methods) the following two tests which 
are to be applied to the boxes V= VI, V, of Step 3 of the Prototype Algorithm. It 
is assumed that f is twice continuously differentiable and we set g := Vf when 
constructing K. The tests are: 

(i) if K(V) tl V= 0, delete V, 
(ii) If K(V) n V # 0, replace V by K(V) II V. 

Due to the properties of K, (i) and (ii) are obvious. 
It is, however, not recommended to apply several iterations of K to V in the 

Prototype since there is no guarantee that the zeros of g are all global minimizers 
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such that the computational costs of determining them too fast may not be 
justified ([lo]). 

There exist global strategies for computing all zeros of g which are similar to 
the Prototype Algorithm. They combine box-deleting and box-diminishing tests 
with bisections and start with K-iterations as soon as the conditions which are 
cited under point 5 are verified. The description of such an algorithm can be 
found in [30]. 

7. Convergence Properties of the Prototype Algorithm 

By specifying the bisection process and the ordering of the list 2 in the Prototype 
and by admitting or refusing the midpoint test we get three well-known al- 
gorithms, which show, however, varied convergence behaviour. Algorithm 1 may 
result from the Prototype by ordering the list by increasing lower bounds ([29]), 
[42]). Algorithm 2 results from Algorithm 1 by adding the midpoint test ([16]). 
Algorithm 3 orders the list by decreasing age of the boxes or by decreasing box 
widths and uses the midpoint test ([9], [lo]). In all three cases, the boxes are 
bisected at the longest edge. The results presented in this section are proven in 
[321, [351, [371). 

At the n-th iteration of the Prototype, the actual state of the lists is denoted by 
Z,,. For instance, .5!$ consists just of X. Let X, be a box of Z:, that satisfies 
min F(X,J s min F(Z) for every box 2 of .Z*. We call X,, the leading box of T,, . 
Let Y, : = min F(X,). Hence, y, is a lower bound of the function values f(x), 
x E X,. The union of the boxes of Tn is denoted by U,. Let again X* be the set of 
global minimizers off over X and f* the global minimum if it exists. 

Let us first consider Algorithm 1. One can show that 

(4 w(X,)+O as n-,03. 

This fact seems to be self-evident but it is not. For example, small modifications 
of the basic algorithm do not satisfy (a) as is the case with the cyclic bisection 
method ([31]). From the assumption 

w(F( Y)) - w( f( Y)) + 0 as w(Y) * 0( Y E I(X)) (4) 

it follows that 

(b) y, of* for any 12 , 
Yn'f" asn+a, 
f * - y, S w(F(X,)) (error estimate) . 

Assumption (4) is not very restrictive. It is almost always satisfied if natural 
interval extensions are used. However, (4) does not imply continuity, Lipschitz 
condition on f, etc. Let F now satisfy 

w(F(Y))+O as w(Y)+O. (5) 
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Clearly, (5) implies (4) and the continuity of jY Then 

(4 w(F(X,))+O as n-w 

(that is, the error estimate tends to 0 and can thus be used for termination 
criteria), 

(4 each accumulation point of the sequence (X,) is a global minimizer. 

The convergence order of the approach y, df* is described by the following two 
results: 

(e) Let any (Y > 0 and any converging sequence of reals be given. Then, to 
any f, there exists an inclusion function of order (Y for which (y,) 
converges slower than the given sequence. 

This result indicates that the convergence can be arbitrarily slow and that no 
worst case exists, which is usually taken in order to establish formulas for the 
convergence speed or convergence order. If, however, only isotone inclusion 
functions are considered then the following estimate of the convergence speed is 
valid. Practically this estimate characterizes the proper convergence theory since 
it is always possible to find isotone inclusion functions. 

(f) If F is isotone and of order (Y, then f* - y, = O(n-“‘m) . 

Algorithms 2 and 3 have nearly the same behaviour as Algorithm 1 if the 
convergence to f* is considered. Their properties with respect to a determination 
of X* are as follows: 

Let (U,) be the sequence of unions produced by Algorithm 2. If (5) is assumed 
then 

(g) the sequence (U,) is nested and converges (with respect to the Hausdorff- 
metrics for compact sets) to a superset D 2 X*. The probability, how- 
ever, that D # X* is zero. 

Let now (U,) be the sequence of unions produced by Algorithm 3. If (5) is 
assumed then 

(h) the sequence (U,) is nested and converges to X*. 

The convergence rate which is established by property (f) is due to a worst case 
analysis and shows exponential cost increase with respect to the dimension. 
Practically, the situation is not that pessimistic and even comparable with 
optimization methods for local problems. This is due to the incorporation of the 
interval Newton method when the boxes of the lists are sufficiently small, 
provided f is twice continuously differentiable. Hence the worst case rate is 
replaced by the convergence rate of the interval Newton method from a certain 
stage of the computation. 

An extensive number of numerical tests (up to dimension 75) is given in [46]. 
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8. Termination Criteria 

If only the determination off* is required, Algorithm 1 is appropriate. If we use 
the notation of the previous section then a reasonable criterion is 

if w(F(X,)) < E then terminate (6) 

where E > 0. Since f* E F(X,) the number w(F(X,)) is an upper bound for the 
absolute error when f* is approximated by F(X,) or any value n,, E F(X,), for 
example, 7, := y,. 

Practically one obtains better results when the criterion 

if f, - y, < E then terminate (7) 

is used. Here f,, is the smallest function value off which has been computed up to 
the n-th iteration. Since y, <f* sf,, we again have an upper estimate of the 
approximation error ) y, - f*l of 1 f, - f * 1 by f, - y,. 

The function values f, are in many cases available when the inclusion function 
values are computed. 

If no function value is available then, in general, 

f, := min max F(X,) 
i=l, , n 

will be the smallest upper bound off * known so far and it may be used in (7). 
So far we have ignored the effect of rounding errors. If Alg. 1 is implemented 

on a computer then the convergence properties are disturbed or destroyed due to 
rounding errors. Then instead of the intended values F(Y), so-called numerical 
values F(Y) are delivered which approximate F(Y). 

If, however, machine interval arithmetic is implemented then it causes the 
inclusion 

~KJ c 4XJ 

such that the global minimum remains included, 

f * E F(X,) . 
The termination condition w(F(X,)) < E, cf. (6), is then numerically realized as 
the condition 

w(F(X,)) < & . (8) 

If (8) is satisfied then it also follows that w(F(X,)) < E such that termination of 
the algorithm remains correct, and 

w<m, 1) < E 

is an absolute error bound off* - y,. It is possible that in a certain phase of the 
computation the rounding errors overwhelm the decrease of w(F(X,)), that is, 
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w(&)) does not tend to 0 even if w(F(X,))+O. Since such cases cannot be 
excluded, additional termination criteria are required. 

We will turn now to Alg. 2 and 3. The considerations done so far for Alg. 1 are 
also valid for Alg. 2 and could be carried over to Alg. 3 if the right boxes would 
be addressed. Since Alg. 2 and 3 are intended to enclose X*, termination criteria 
are expressed by the remaining boxes, that are shrinking to X*. A termination of 
these algorithm via the convergence of the leading boxes is not reasonable since it 
does not allow an error estimation of the approximation of the global minimizers 
by the leading boxes. 

For a unified treatment we take B = fl ;=I U,, > X* as the solution set of both 
algorithms where B = X* in case of Alg. 3; see Section 7. The following two 
termination criteria were provided by [9], [lo]. If B is at most denumerable and if 
B is to be included in a set with prescribed accuracy, then 

or 

~(Z,,)<E for i=l,...,Z, (10) 

will do, where I,, is the length of z,,. If B is nondenumerable then (9) will fail if 
the Lebesgue measure of B is at least equal to E. Condition (10) works 
independently of the measure of B. 

After having terminated, a list 55,, of boxes Znl, . . . , Znl, is left, and all we 
know is that 

x* c_ u, = z,, u * - . u Znl, 

and that (under reasonable conditions) X* # 0. There is no always working 
method for verifying that each of these boxes does contain a global minimizer in 
the strict sense of the definition. For practical purposes it does not matter and 
every such box can be assumed to contain global minimizers since, at this final 
stage of the computation, the function values of all these boxes are about f*. 
Hence, existence tests, cf. Section 6, would at most cause a shrinking of these 
boxes. 

The application of a uniqueness test, however, could lead to most insight if the 
boxes are connected and the box-hull of U,, is small. A positive result would then 
say that just one solution exists globally, which lies in one of these boxes. 

Besides of the uniqueness test of Section 6 and related ones, a test of Mancini 
[22] is worth mentioning. This test gives reasonable conditions for positive 
definiteness of the Hessian matrix off over a compact convex domain. Also, an 
integral Hessian matrix involved in an interval Newton-like method could be 
helpful ([23]). 
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9. Optimization over Unbounded Domains 

Almost all methods for solving global optimization problems need the assumption 
that a bounded domain which contains the solution point is known. The bounded- 
ness is necessary for the numerical computation as well as for guaranteeing the 
convergence properties. If such a bounded domain is not known, linear substitu- 
tions such as x = 1 /s are commonly used to transform the unbounded into 
bounded parts. These substitutions are, however, rather troublesome to program 
because of the many distinctions which may arise. In this section another 
technique for treating unbounded domains due to [39] is described which is simple 
and robust and which avoids such substitutions. This technique is based upon an 
arithmetic of infinite intervals and is applicable to the Prototype Algorithm. A 
few topological considerations are necessary in order to reduce the convergence 
properties of the unbounded case to a bounded case. 

LetR=RlJ{m,-a } be the two-point compactification of the real axis, R, then 
m R := (Z?)” is an appropriate compactification of R”. The Prototype can be 
applied to R” without any deeper modification. It is only necessary to define a 
width of intervals of R, which should be finite and, for the bisection, the 
“midpoint” of such intervals. Both cause no difficulties. Further, if the principle 
of natural interval extensions is extended to infinite intervals it is possible to 
determine the lower bounds. Then most of the convergence properties of Section 
7 apply to the case R” under slight modifications of the assumptions. 

It is obvious that the result gained in R” need a careful interpretation in order 
to gain the results for R”. For example, if f + = ---CD is the global minimum gained 
in R” then f is unbounded from below and no global minimizer off exists in R”. 
Or, if the only global minimizer gained in R” is not in R” and if f ’ = 0 then f has 
an infimum with value 0 but no global minimizer exists in R”. The last mentioned 
situation occurs if, for instance, f(x) = exp(x) is considered. 

The compactification is used only to simplify the discussion of the convergence 
properties. Thus, an arithmetic for compact intervals over R like [0, m] need not 
be introduced. However, in lower to determine the lower bound of f over 
unbounded domains, we define an arithmetic for the set of closed intervals over 
R 

Z, = Z U {[a, m) : a E R} u {(-w, a] : a E R) U ((-00, m)} 

A*B={a*b:u~A,b~B}if *E{+,-;}A,BEZ,. 

The quotient A lB for A, B E Z, , B # 0 is defined as the smallest interval of Z, or 
the union of the two smallest intervals of Z, that contain the set 

{ulb:uEA,b~B,b#0}. 

Hence, Z, is not closed with respect to division, the results like (-00, u] U [b, 00) 
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can occur. Since such cases are rare, we split up such results into two intervals of 
Z, rather than to introduce a representation for the unions of intervals. 

The arithmetic defined for Z, is oriented to the construction of natural interval 
extensions of functions over unbounded domains. This arithmetic and Kahan’s 
well-known arithmetic are therefore different, cf. [17]. 

Natural interval extensions of the common pre-declared functions to un- 
bounded intervals are defined as in Section 4: Let g be a predeclared function like 
sin, cos, exp, In and D its domain. Then if A E Z,, the natural interval extension 
of g to A, denoted by g(A) is defined as the smallest interval B E Z, which 
contains the set {g(x) : x E A II D}. Therefore, natural interval extensions of 
function expressions to boxes YE ZE can be defined recursively without dif- 
ficulties. 

The algorithms deal, as mentioned before, with compact boxes and intervals 
only. Hence, unbounded domains like R” as well as unbounded inclusions like 
[a, 00) which have gained by natural extensions, have first to get compactified with 
respect to R” or 2 before such data is submitted to the steps of the algorithm. 
This is, however, only of theoretical interest since all infinite intervals - whether 
compact or not - are rounded to machine representable intervals, when calculat- 
ing on a computer. ,Let L be the largest representable machine number of the 
computer under consideration. If, for example, f(x) = x2 + sin x, then f(R) = 
[0, w] + [-1, l] = [-1, w). Th e representation on the computer gives [0, L] + 
[-1, l] = [-1, L]. A s one can see, machine intervals containing L or -L need 
special attention, since L stands for [L, 00) or [L, ~1, and not for the number L if 
it occurs as the right endpoint of an interval, etc. 

There numerical results gained from the algorithms reflect and approximate the 
m situation of R . Thus they have to be reinterpreted in order to get the results 

from R”. For example, if the numerical result says that f’ = 1 and that X’ C 
Irr [lo”, L] where X+ is the set of global minimizers of the extended problem in R 

(with m = 1 for simplicity), then the logically sound conclusion is: The original 
problem in R” has either a set of global minimizers, X* C [lo”, a), with global 
minimum, f* = 1, or no global minimum exists, but lim,,, inf f(x) = 1. 

The monotonocity test as described in Section 5 can also be extended to the 
unbounded case and remains a very effective means for accelerating the computa- 
tion. Numerical tests can be found in [38], [39]. 

10. Nonsmooth Optimization 

A broad spectrum of mathematical programming problems can be rather easily 
reduced to the minimization of nondifferentiable problems without constraints or 
with simple constraints. Also exact nonsmooth penalty functions in problems of 
nonlinear programming, maximum functions or multi-criterion optimization gen- 
erate problems of nonsmooth optimization. Thus, the objective function, f, of the 
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optimization problem may look like 

where h E Cl. Other objective functions arising from penalty methods are of the 
typical form 

where f,, A E C’ and p > 0 is a (reciprocal) penalty factor. It is well known that 
nonsmooth objective functions may cause classical methods to fail, but it is a little 
surprising that interval methods have no difficulties at all to handle nonsmooth 
problems, cf. the discussion in [38]. That is, because neither the construction of 
inclusion functions nor the application of monotonicity tests depend on the 
smoothness of the objective function. I.e., nonsmooth functions have substitutes 
for the nonexisting gradients such as subgradients, generalized gradients, etc. But 
it does not make any difference for the application of interval methods whether a 
mean value f’(S) or a subgradient is included by intervals. 

For an example, let us consider generalized gradients (cf. [5]). Let X E I”, 
x E X and f : X+ R be Lipschitz near x, that shall mean, there exists an open 
neighbourhood of x, say u,, in which f satisfies a Lipschitz condition. It follows by 
a theorem of Rademacher that f is differentiable almost everywhere in U,. Let IR 
be the set of points in U, at which fin not differentiable, and let S be any other 
set of Lebesgue measure 0. Then the generalized gradient of f at x is defined as 

13f(x) = conv{i$- Vf(x,) : x,--f x, x, $ZS U iI> 

where conv denotes the convex hull. Let (x, y) c R” denote the open line 
segment between x and y. A theorem of Lebourg says that, if y E U, with 
(x, y) c 17, is given then some u E (x, y) exists such that 

f(Y) -f(x) E (Y - 4’vw . (11) 

Locally, (11) can be approximated by means of the Lipschitz constant. Globally, 
(11) can be used to find inclusion functions off of a meanvalue type explicitly: If 
G(Y) is a - not necessarily bounded box - that contains af(u) for any u E Y, then 

F(Y) =f(c) + (Y - c)*G(Y) for YE I(X) 

where c denotes the midpoint of Y (also any other point of Y may be chosen), is 
an inclusion function off. Further, G(Y) can be used for the monotonicity test: If 
only one component of G(Y) does not contain zero, then f is strictly monotone 
with respect to the corresponding direction. 

Therefore, the Prototype Algorithm, as well as the monotonicity test can be 
applied without modification, if the objective function off is nonsmooth. Numeri- 
cal tests are given in [38], [39]. 
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11. Constrained Optimization 

The interval principles which were developed in the previous sections are also 
useful for constrained problems, that is, 

(12) 
where M c R” means the feasible set defined by some constraints 

g,(x)<O,i=l,. . . ,k, 

hi(X) = 0, j = 1, . . . ) s . 

For simplicity, we assume that M c X for some box X E I”’ and that the 
functions f, gi and hi are defined on X. For a successful treatment of problem (12) 
we need inclusion functions F, Gi and Hi off, gi and hi, respectively which satisfy 
(5)fori=l,..., kandj=l,..., s. 

Then a typical means of interval arithmetic is the infeasibility test which is 
applicable to any YE Z(X): If either 

G,(Y)>0 for some iE(1,. . . , k} 

or if 

OeHj(Y) for some Z E (1, . . . , s} 

then all points of Y are infeasible. (The notation [a, b] > 0 or [a, b] =z 0 shall 
indicate that a > 0 or b < 0 holds, respectively.) Hence the box Y can never 
contain a solution of (12) such that y can be discarded from any procedure to 
solve (12). Conversely, if 

G,(Y)<Ofori=l,...,k 

and 

Hi(Y) = 0 for Z = 1, . . . , s 

then all points of Y are feasible (feasibility test), which is due to the inclusion 
principle, (3). However, if equality constraints are present the direct satisfaction 
of conditions like H,.(Y) = 0 is unlikely but they come into effect at variable 
reduction methods. 

Algorithmically, the Prototype Algorithm of Section 2 is also appropriate for 
the constraint problem. One has just to incorporate the infeasibility test as a 
box-deleting test and to adapt the tests that have already been mentioned in 
Section 5 to the constraint case. Also the knowledge of feasibility is important, 
since it is a first step before other tests can be applied, see below. 

It is frequently unnecessary to check whether a box V hurts the constraints. 
That is, if Gi( Y) < 0 has been verified for some box Y and for some i, then no 
subbox of Y hurts the constraint g,(x) < 0 so that the evaluations of G,(V) for 
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V E Z(Y) can be spared out, cf. [38], who use a flag-system or Hansen-Jaumard- 
Lu [14], who use Boolean expressions for controlling this information. 

When computationally verifying H,(Y) = 0 some tolerance E > 0 has to be 
conceded in oder to counterbalance the rounding errors. A way out where no 
tolerance is needed is suggested by [13]. Their method is based on existence tests 
(for instance, with an interval Newton method) and the implicit function 
theorem, cf. [ll], [38]. 

The box-deleting and box-diminishing tests of Section 5 can be used again. One 
has to be aware however, that the function values f” that are used for the midpoint 
test have to be taken from feasible points only. Also the monotonicity test is only 
allowed for the application to feasible areas, where, similarly to the unconstraint 
case, one has to pay attention to binding constraints. The nonconvexity test is best 
applied to feasible areas, but see also [27] who investigates this test in connection 
with the Lagrangian function setting. 

Interval Newton-like-techniques are of high importance as they are applied to 
the Lagrangian function in order to determine the Kuhn-Tucker points. Such a 
procedure was first described in [40]. 

Solving constraint problems with penalty methods can be found in [38]. If such 
methods are combined with the infeasibility test, there is no need for repeating 
the computations for the related unconstrained problems with an infinite number 
of penalty factors as is necessary, if nonexact penalty functions are used. We have 
to skip details. 

An extensive acknowledgement of the global constraint optimization problem is 
given in [ll], [12], [13], [27], [38], [41]. 

References 

1. Alefeld, G. and Herzberger, J. (1983), Introduction to Interval Computations, Academic Press, 
New York. 

2. Asaithambi, N. S., Shen, Z., and Moore, R. E. (1982), On Computing the Range of Values, 
Computing 28, 225-237. 

3. Bauch, H., Jahn, K. U., Oelschlagel, D., Siisse, H., and Wiebigke, V. (1987), Zntervall- 
mathematik, Teubner, Leipzig. 

4. Caprani, 0. and Madsen, K. (1979), Interval Methods for Global Optimization, Report NI 79-09, 
Technical University of Denmark. 

5. Clarke, F. H. (1983), Optimization and Nonsmooth Analysis, Wiley, New York. 
6. Dixon, L. C. W. and Fitzharris, A. M. (1985), Conjugate Gradients: An Interval Analysis, 

Technical Report Nr. 165. Numerical Optimization Center, Hatfield, Polytechnic, Hatfield. 
7. Dussel, R. (1972), EinschlieBung des Minimalpunktes einer streng konvexen Funktion auf einem 

N-Dimensionalen Quader, Dissertation, Universitat Karlsruhe. 
8. Fang, Yuo-Kang (1982), Interval Test on Unconstrained Global Optimization (in Chinese). 

Comm. Interval Anal., Math. Fat. of Liaoning Univ. 2, 43-59. 
9. Hansen, E. (1979) Global Optimization Using Interval Analysis -The One-Dimensional Case, 1. 

Optim. Theory Appl. 29, 331-344. 
10. Hansen, E. (1980), Global Optimization Using Interval Analysis - The Multi-Dimensional Case, 

Numer. Math. 34, 247-270. 



WHAT CAN INTERVAL -ANALYSIS DO? 129 

11. Hansen, E.: Interval Tools for Global Optimization, forthcoming. 
12. Hansen, E. and Sengupta, S. (1983), Summary and Steps of a Global Nonlinear Constrained 

Optimization Algorithm. Lockheed Missiles & Space Co. Report No. D 889778, Sunnyvale, 
California. 

13. Hansen, E. and Walster, G. W. (1987), Nonlinear Equations and Optimization, Preprint. 
14. Hansen, P., Jaumard, B., and Lu, S.-H. (1991) An Analytical Approach to Global Optimization. 

Math. Programming, Series B, forthcoming. 
15. Hors& R. and Tuy, H. (1990), Global Optimization, Springer-Verlag, Berlin. 
16. Ichida, K. and Fujii, Y. (1979), An Interval Arithmetic Method for Global Optimization 

Computing 23, 85-97. 
17. Kahan, W. M. (1968), A More Complete Interval Arithmetic. Lectures Notes at the University of 

Michigan, Michigan. 
18. Kearfott, R. B. (1987), Abstract Generalized Bisection and a Cost Bound, Mathem. of Computa- 

tion 49, 187-202. 
19. Krawczyk, R. (1969), Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, 

Computing 4, 187-201. 
20. Krawczyk, R. and Nickel, K. (1982), Die zentrische Form in der Intervallarithmetik, ihre 

quadratische Konvergenz und ihre Inklusions Isotonie, Computing 28, 117-137. 
21. Kulisch, U. and and Miranker, W. L. (1986), The Arithmetic of the Digital Computer: A New 

Approach, SIAM Review, March 1986, l-40. 
22. Mancini, L. J. (1975), Applications of Interval Arithmetic in Signomial Programming, Ph.D. 

Thesis. Stanford University. 
23. Mancini, L. J. and McCormick, G. P. (1979), Bounding Global Minima with Interval Arithmetic, 

Oper. Res. 27, 743-754. 
24. Mancini, L. J. and Wilde, D. J. (1978), Interval Arithmetic in Unidimensional Signomial 

Programming, .Z. Optim. Theory Appl. 26, 227-289. 
25. Mancini, L. J. and Wilde, D. J. (1979), Signomial Dual Kuhn-Tucker Intervals, .Z. Optim. Theory 

Appl. 28, 11-27. 
26. McCormick, G. P. (1981), Finding the Global Minimum of a Function of one Variable Using the 

Method of Constant Signed Higher Order Derivatives, in: Nonlinear Program. 4, ed. by 0. L. 
Mangasarian, R. R. Meyer, and S. M. Robinson, Academic Press, New York, 223-243 (1981); 

27. Mohd, I. B. (1986), Global Optimization Using Interval Arithmetic Ph. D. Thesis, Univ. of St. 
Andrews, St. Andrews, Scotland. 

28. Moore, R. E. (1966), Interval Analysis, Prentice-Hall, Englewood Cliffs. 
29. Moore, R. E. (1976), On Computing the Range of a Rational Function of n Variables over a 

Bounded Region, Computing 16, 1-15. 
30. Moore, R. E. (1977), A Test for Existence of Solutions to Nonlinear Systems, SIAM J. Numer. 

Analy. 14, , 611-615. 
31. Moore, R. E. (1979) Methods and Applications of Interval Analysis, SIAM, Philadelphia. 
32. Moore, R. E. and Ratschek, H. (1988), Inclusion Functions and Global Optimization II, Math. 

Programming 41, 341-356. 
33. Neumaier, A. (1991), Interval Methods for Systems of Equations, Cambridge University Press, 

Cambridge, forthcoming. 
34. Oelschlaegel, D. and Siisse, H. (1978), Fehlerabschatzung beim Verfahren von Wolfe zur Lasung 

quadratischer Optimierungsprobleme mit Hilfe der Intervallarithmetik, Math. Operationsforsch. 
Statist., Ser. Optimization 9, 389-396. 

35. Ratschek, H. (1985), Inclusion Functions and Global Optimization, Mathematical Programming 
33, 300-317. 

36. Ratschek, H. and Rokne, J. (1984), Computer Methods for the Range of Functions, Horwood, 
Chichester. 

37. Ratschek, H. and Rokne, J. (1987), Efficiency of a Global Optimization Algorithm, SIAM J. 
Numer. Analysis 24, 1191-1201. 

38. Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization, Horwood, 
Chichester. 

39. Ratschek, H. and Voller, R. L. (1990), Global Optimization over Unbounded Domains, SIAM J. 
Control Optimization 28, 528-539. 



130 H. RATSCHEK AND R. L. VOLLER 

40. Robinson, S. M. (1973), Computable Error Bounds for Nonlinear Programming, Math. Program- 
ming 5, 235-242. 

41. Sengupta, S. (1981), Global Nonlinear Constrained Optimization, Dissertation, Department of 
Pure and Applied Mathematics, Washington State University. 

42. Skelboe, S. (1974), Computation of Rational Interval Functions, BIT 4, 87-95. 
43. Stroem, T. (1971), Strict Estimation of the Maximum of a Function of one Variable, BIT 11, 

199-211. 
44. S&e, H. (1977), Intervallarithmetische Behandlung von Optimierungsproblemen und damit 

verbundener numerischer Aufgabenstellungen, Dissertation, Technische Hochschule Leuna- 
Merseburg. 

45. S&e, H. (1980), Intervallanalytische Behandlung nichtlinearer Optimierungsaufgaben, Disserta- 
tion zur Promotion B. Technische Hochschule “Carl Schorlemer”, Leuna-Merseburg. 

46. Walster, G. W., Hansen, E. R., and Sengupta, S. (1985), Test Results for a Global Optimization 
Algorithm, in: Numerical Optimization 1984, ed. by Boggs, P. T., Byrd, R. H., and Schnabel, R. 
B., Siam, pp. 272-282. 

47. Dussel, R. and Schmitt, B. (1970) Die Berechnung von Schranken fur den Wertebereich eines 
Polynoms in einem Interval& Computing 6, 35-60. 


