
DOI 10.1007/s10898-005-0937-x
Journal of Global Optimization (2005) 33: 541–562 © Springer 2005

Interval Analysis on Directed Acyclic Graphs
for Global Optimization

HERMANN SCHICHL and ARNOLD NEUMAIER
Institut für Mathematik, Universität Wien, Nordbergstr. 15, A-1090 Wien, Austria (e-mail:
Hermann.Schichl@esi.ac.at, Arnold.Neumaier@univie.ac.at; www: http://www.mat.
univie.ac.at/∼neum)

(Received 18 November 2003; accepted in revised form 16 January 2005)

Abstract. A directed acyclic graph (DAG) representation of optimization problems repre-
sents each variable, each operation, and each constraint in the problem formulation by a
node of the DAG, with edges representing the flow of the computation. Using bounds on
ranges of intermediate results, represented as weights on the nodes and a suitable mix of
forward and backward evaluation, it is possible to give efficient implementations of interval
evaluation and automatic differentiation. It is shown how to combine this with constraint
propagation techniques to produce narrower interval derivatives and slopes than those pro-
vided by using only interval automatic differentiation preceded by constraint propagation.
The implementation is based on earlier work by L.V. Kolev, (1997), Reliable Comput., 3,
83–93 on optimal slopes and by C. Bliek, (1992), Computer Methods for Design Automa-
tion, PhD Thesis, Department of Ocean Engineering, Massachusetts Institute of Technol-
ogy on backward slope evaluation. Care is taken to ensure that rounding errors are treated
correctly. Interval techniques are presented for computing from the DAG useful redundant
constraints, in particular linear underestimators for the objective function, a constraint, or a
Lagrangian. The linear underestimators can be found either by slope computations, or by
recursive backward underestimation. For sufficiently sparse problems the work is propor-
tional to the number of operations in the calculation of the objective function (resp. the
Lagrangian).

Mathematics Subject Classifications (2000). primary 65G40, secondary 90C26.

Key words: automatic differentiation, constraint propagation, directed acyclic graphs, global
optimization, interval analysis, slope

1. Introduction

Deterministic algorithms for solving factorable global optimization prob-
lems [11, 20] usually use branch-and-bound like schemes [2, 12, 17, 24, 27].
The success of such a method heavily relies on the quality of the range esti-
mates computed for the functions involved.

This paper discusses a new representation technique for global optimi-
zation problems using directed acyclic graphs (DAGs). Traditionally, DAGs
have been used in automatic differentiation [6, 14] and in the theory of par-
allel computing [9]. We will show that the DAG representation of a global

542 H. SCHICHL AND A. NEUMAIER

optimization problem serves many purposes. In some global optimization
algorithms [17] and constraint propagation engines (e.g., ILOG solver), the
computational trees provided by the parsers of high-level programming lan-
guage compilers (FORTRAN 90, C++) are used, in others the parsers of
modelling languages like AMPL [13] or GAMS [8] provide the graph rep-
resentation of the mathematical problem.

In Sections 2 and 3, we will introduce the special DAGs used in
problem representation and talk about different interpretations and sim-
plification, and about the difference to computational trees. Section 4
explains the basic evaluation algorithms for computing function values,
ranges, derivatives, and slopes, using the DAG representation of a
function.

One of the strengths of the DAG concept is that it is suitable both for
efficient evaluation and for performing constraint propagation (CP). This
method for solving constraint satisfaction problems (CSPs) and global opti-
mization problems (GLOPs) was first developed in the discrete case [15]
and later transferred to the continuous case [7, 10, 16, 28]. The basics of
constraint propagation on DAGs are outlined in Section 5.

The results of constraint propagation, especially the ranges of the
inner nodes, can be used to improve the ranges of the standard evalua-
tion methods for interval derivatives, and slopes. The principles are out-
lined in Section 6. For global optimization algorithms not only range
estimates are relevant but also relaxations by models which are eas-
ier to solve. Section 7 describes methods for generating linear relax-
ations using the DAG representation. (Second order information such
as Hessians, second order slopes, quadratic enclosures and convex qua-
dratic relaxations can also be efficiently computed from the DAG rep-
resentation. Details will be presented elsewhere.) Finally, in Section 8,
we will make some statements about implementation issues and
performance.

The new representation is promising for two reasons. First, as can be
seen in the text, the estimates required in standard branch and bound
schemes produce less overestimation when evaluated on the DAG, so the
same algorithm will usually need fewer branching steps. In addition, the
DAG representation also greatly improves the speed of constraint propaga-
tion when compared to traditional methods, often by one or more orders
of magnitude, see Vu et al. [29].

Our notation follows the notation suggested in [22]. In particular,
inequalities between vectors are interpreted component-wise, I denotes the
identity matrix, intervals and boxes are written in bold face, and rad x =
1
2(x̄ −x) denotes the radius of a box x = [x, x̄] ∈ IR

n, here IR is the set of
real, possibly unbounded, intervals.

INTERVAL ANALYSIS ON DIRECTED ACYCLIC GRAPHS 543

2. Directed Acyclic Graphs

This section is devoted to the definition of the graphs used to represent
the global optimization problems. Although we will use the term directed
acyclic graph (DAG) throughout this paper to reference the graph struc-
ture of the problem representation, the mathematical structure used is actu-
ally a bit more specialized. Here we will describe the basic properties of the
graphs.

DEFINITION 2.1. A directed multigraph � = (V ,E,f) consists of a finite
set of vertices (nodes) V , a finite set of edges E, and a mapping f : E →
V ×V . For every edge e ∈E we define the source of e as s(e) := Pr1 ◦f (e)

and the target of e as t (e) := Pr2 ◦ f (e), where Pri denotes the projection
on the ith component in a cartesian product. An edge e with s(e)= t (e) is
called a loop. Edges e, e′ ∈E are called multiple, if f (e)=f (e′).

For every vertex v ∈V we define the set of in-edges

Ei(v) :={e∈E | t (e)=v}

as the set of all edges, which have v as their target, and the set of out-
edges analogously as the set

E◦(v) :={e∈E | s(e)=v}

of all edges with source v. The indegree of a vertex v ∈V is defined as the
number of in-edges indeg(v)=|Ei(v)|, and the outdegree of v as the num-
ber of out-edges outdeg(v)=|E◦(v)|.

A vertex v ∈V with indeg(v)= 0 is called a (local) source or leaf of the
graph, and a vertex v∈V with outdeg(v)=0 is called a (local) sink or root

of the graph.
The termini “root” and “leaf” come from directed trees, special directed

graphs, which are usually used to represent expressions or functions in
algorithms. They are not usually used in the context of directed graphs.

DEFINITION 2.2. Let � = (V ,E,f) be a directed multigraph. A directed
path from v ∈ V to v′ ∈ V is a sequence {e1, . . . , en} of edges with t (ei) =
s(ei+1) for i =1, . . . , n−1, v= s(e1), and v′ = t (en). A directed path is called
a closed path or a cycle, if v = v′. The multigraph � is called acyclic if it
does not contain a cycle.

An acyclic graph contains at least one source and at least one sink.

544 H. SCHICHL AND A. NEUMAIER

DEFINITION 2.3. A directed multigraph with ordered edges (DMGoe) �=
(V ,E,f,�) is a quadruple such that (V ,E,f) is a directed multigraph and
(E,�) is a linearly ordered set. As subsets of E, the in-edges Ei(v) and
out-edges E◦(v) for every vertex become linearly ordered as well.

We will represent every global optimization problem as computational
DMGoe (which we will in short call DAG), where every vertex corresponds
to an elementary operation and every edge represents the computational
flow. The reasons that we need multigraphs is the fact that some expres-
sions (e.g. xx) can take the same input more than once. The ordering of
the edges is primarily needed for non-commutative operators like division.
However, we will see in Section 8 that this also has a consequence for cer-
tain commutative operations.

For later use, we define the relationship between different vertices.

DEFINITION 2.4. Consider the directed acyclic multigraph � = (V ,E,f).
For two nodes v, v′ ∈V we say that v is a parent of v′ if there exists an edge
e∈E with s(e)=v′ and t (e)=v, and then we call v′ a child of v. Further-
more, v will be named an ancestor of v′ if there is a directed path from v′

to v, and v′ is then a descendant of v.

Now we have all the notions at hand that we will use to represent the
optimization problems.

PROPOSITION 2.5. For every directed acyclic multigraph � = (V ,E,f)

there is a linear order � on V such that for every vertex v and every ancestor
v′ of v we have v �v′.

3. Representing Global Optimization Problems

In this section, we will describe how we represent a global optimization
problem as a DAG. In Section 3.1 we will talk about simplifying the repre-
sentation without changing the mathematical model. Later, in Section 3.2,
we will show that DAGs can be used to transfer the mathematical prob-
lem to various different structures which are needed by specialized opti-
mization and constraint satisfaction algorithms like the ternary structure,
semi-separable form, and the like. Also sparsity-issues can be tackled by
the reinterpretation method described there.

Consider the factorable optimization problem

min f (x)

s.t. F(x)∈F, (1)

INTERVAL ANALYSIS ON DIRECTED ACYCLIC GRAPHS 545

where f : R
n → R and F : R

n → R
m. Since it is factorable, the functions f

and F can be expressed by sequences of arithmetic expressions and ele-
mentary functions. For every arithmetic operation ◦ or elementary function
involved we introduce a vertex in the graph. Every constant and variable
becomes a leaf. If g ◦h is part of one function, we introduce an edge from
h to g. The results of f and F become root nodes, of which the result of
f is distinguished as the result of the objective function. So with every ver-
tex we associate an arithmetic operation {+,∗, /,ˆ } or elementary function
{1/, exp, log, sin, cos, . . . }. For every edge e ∈ E we call the vertex t (e) the
result node and the vertex s(e) the argument node.

When we draw DAG pictures, we write the operation in the interior of
the circle representing the node, and mathematically we introduce a map
op :V →O to the set O of elementary operations. We also introduce a map-
ping rg : V → IR, the range map, which defines the feasible range of every
vertex. In the pictures representing the graphs in this paper, we will write
the result of the range map next to every vertex (and leave it out if rg(v)=
(−∞,∞)).

Consider for example the optimization problem

min (4x1 −x2x3)(x1x2 +x3),

s.t. x2
1 +x2

2 +x1x2 +x2x3 +x2 =0, (2)

exp(x1x2 +x2x3 +x2 +√
x3)∈ [−1,1],

x1 �0, x2 �0, x3 ∈ [−1,8].

This defines the DAG depicted in Figure 1. Here, we have introduced fur-
ther notation, the coefficient map cf :E →R. It multiplies the value of the
source of e with cf (e) before feeding it to the operation (or elementary
function) t (e). If the coefficient cf (e) is different from 1, we write it over
the edge in the picture. In some sense, the DAG in Figure 1 is optimally
small, because it contains every subexpression of the functions f and F

only once.

3.1. DAG transformations—simplification

If we start translating a function to a DAG, we introduce for every var-
iable, every constant, and every operation involved a vertex and connect
them by the necessary edges. The resulting DAG, however, is usually too
big. Every subexpression of f which appears more than once will be rep-
resented by more than one node (e.g. v1 and v2). Thus, the subexpression
will be recomputed many times in the evaluation routines, and during con-
straint propagation (see Section 5) the algorithms cannot make use of the
implicit equation v1 =v2.

546 H. SCHICHL AND A. NEUMAIER

Figure 1. DAG representation of Problem (2).

Of course, variables usually appear more than once, and many algo-
rithms for constraint propagation [1, 3, 25] use the principle that the vari-
able nodes of identical variables can be identified, hereby reducing the size
of the graph. However, this principle can be generalized.

DEFINITION 3.1. Two vertices v1 and v2 of the DAG �= (V ,E,f,�) are
called simply equivalent if they represent the same operation or elementary
function (i.e. op(v1)=op(v2)), and there is a monotone increasing bijective
map g :Ei(v1)→Ei(v2) with the property s(e)= s(g(e)) for all e∈Ei(v1). If
there are no distinct simply equivalent vertices in the DAG �, we call � a
reduced DAG.

The existence of the map g means nothing else than the fact that v1 and
v2 represent the same expression. They are the same operation taking the
same arguments in the same order. Therefore, any two simply equivalent
vertices can be substituted by one of them without changing the functions
represented by �.

In particular, every DAG � can be transformed to an equivalent reduced
DAG. We can start identifying the equivalent leaves and continue to
identify distinct simply equivalent nodes of � until all nodes are pairwise
simply inequivalent. The resulting DAG �′ is reduced. Note that this does
not mean that the graph does not contain any mathematically equivalent
subexpressions. This only implies that no computationally equivalent subex-
pressions exist. E.g., x2 = x ∗ x is mathematically the same but the corre-
sponding DAGs are not simply equivalent.

INTERVAL ANALYSIS ON DIRECTED ACYCLIC GRAPHS 547

These simple graph theoretic transformations can be complemented by
additional mathematical transformations. These come in three categories:

Constant Evaluation/Propagation: If all children v1, . . . , vk of a vertex v

are leaves representing constants, it can be replaced by a leaf representing
the constant which is the result of evaluating the operation op(v) on the
children: v′ := const(op(v)(v1, . . . , vk)). In a validated computation context,
however, you have to make sure that no roundoff errors are introduced in
this step.

Mathematical Equivalences: Typically, properties of elementary functions
are used to change the DAG layout. E.g., the rule

log(v1 · · ·vk)= log(v1)+· · ·+ log(vk)

replaces one log-node and one ∗–node by a +–node and a number of log–
nodes (or vice versa).

Substitution:Equations of the form, e.g.,

−v0 +v1 +· · ·+vk =0

can be used to replace the node v0 by v1 +· · ·+vk.

3.2. DAG interpretation

One strength of the DAG representation is that the mathematical formu-
lation of a problem can be transformed to an equivalent mathematical
description which serves the specific needs of some optimization algorithms
without having to change the DAG itself; just its interpretation is changed.

Consider again problem (2). The following problem is an equivalent for-
mulation

min x10

s.t. x2
1 +x2

2 +x7 =0

exp(x7 +√
x3)∈ [−1,1]

x2x3 −x4 =0

x6 +x3 −x5 =0

x1x2 −x6 =0

x8 +x2 −x7 =0

x4 +x6 −x8 =0

548 H. SCHICHL AND A. NEUMAIER

4x1 +x4 −x9 =0

x9x5 −x10 =0 (3)

of much higher dimension but with the property that the objective func-
tion is linear and that all constraints are ternary, i.e. involve at most three
variables. This is the required problem formulation for a variety of CP
algorithms.

Without changing the DAG we can get this representation just by chang-
ing the interpretation of the nodes. All intermediate nodes with more than
one child and the objective function node are just regarded as variables,
and an equation is added which connects the value of the variable with the
value of the node as it is computed from its children. No change of the
data structure is necessary.

Adding equations and changing the interpretation of intermediate nodes
to variable nodes increases the dimension of the problem but also increases
the sparsity. By carefully balancing the number of variables this method
can be used, e.g., to optimize the sparsity structure of the Hessian of the
Lagrangian.

4. Evaluation

There are several types of information which have to be computed for the
functions involved in the definition of an optimization problem:

• function values at points,
• function ranges over boxes,
• gradients at points,
• interval gradients over boxes,
• slopes over boxes with fixed center,
• linear enclosures.

To illustrate the techniques, we will use throughout the simple example

min f (x1, x2, x3)= (4x1 −x2x3)(x1x2 +x3)

s.t. x1 ∈ [1,2], x2 ∈ [3,4], x3 ∈ [3,4], (4)

whose DAG representation can be found in Figure 2.

4.1. forward evaluation scheme

The standard method of evaluating expressions works by feeding values to
the leaves and propagating these values through the DAG in the direction
of the edges. This is the reason why this evaluation method is called for-
ward mode.

INTERVAL ANALYSIS ON DIRECTED ACYCLIC GRAPHS 549

Figure 2. Directed acyclic graph representation of the Problem (4).

Figure 3. Function evaluation for (4).

Computing the function value f (2,4,4) proceeds as depicted in Figure 3.
Here, we have written the results for all nodes to the left of the circle rep-
resenting them.

In an analogous way we can compute a range estimate of f on the ini-
tial box [1,2] × [3,4] × [3,4]. Instead of using real numbers we plug inter-
vals into the leaves and use interval arithmetic instead of real arithmetic
and interval extensions of elementary functions instead of their real ver-
sions. Again, we show the process in Figure 4 by placing the ranges com-
puted for the nodes next to them.

550 H. SCHICHL AND A. NEUMAIER

Figure 4. Interval evaluation for (4).

4.2. backward evaluation scheme

Calculating derivatives or slopes could be done by the forward mode as
well, but then we would need to propagate vectors through the graph, and
at every node we would have to perform at least one full vector addition,
so the effort to calculate a gradient would be the number of variables times
the effort of calculating a function value.

However, it is well known from automatic differentiation that the num-
ber of operations can be reduced to be of the order of one function eval-
uation by reversing the direction of evaluation.

First, we consider the well known fact that the chain rule

∂

∂xi

(f ◦g)(x)=
∑

k

∂

∂xk

f (g(x)) · ∂

∂xi

gk(x)

holds (f : Rm →R, g : Rn →Rm). Hence, in the first step, during the compu-
tation of the function value, we construct a map dm : E → R which asso-
ciates with each edge the value of the partial derivative of the result node
with respect to the corresponding argument node. Then we start at the root
nodes, initializing them with 1, and proceed towards the leaves in the oppo-
site direction of the graph edges, multiplying by dm(e) as we traverse e.
When we reach the leaf representing variable xi , we add the resulting prod-
uct to the ith component of the gradient vector. The gradient at (2, 4, 4)
is calculated as in Figure 5. Here the values of dm are written next to the
edges, and the results are next to the nodes. The components of the gradi-
ent can be found next to the leaves. We have ∇f (2,4,4)= (16,−64,−56)T .

INTERVAL ANALYSIS ON DIRECTED ACYCLIC GRAPHS 551

Figure 5. Gradient evaluation for (4).

Figure 6. Interval gradient evaluation for (4).

There is hardly any difference in computing the interval gradient of f

over a given box x. Since the chain rule looks exactly the same as for
real gradients, the evaluation scheme is the same, as well. We only have to
replace real arithmetic by interval arithmetic and elementary functions by
their interval counterparts (inclusion functions), and the map idm :E → IR

becomes interval valued. In Figure 6 we compute ∇f (x) for x = [1,2] ×
[3,4]× [3,4].

552 H. SCHICHL AND A. NEUMAIER

Figure 7. Slopes for elementary operations.

A very useful tool for calculating enclosures of the range of f over a box
is a slope. This is a linear approximation of the form

f (x)=f (z)+f [z, x](x − z), (5)

see [18, 26]. In one dimension the slope is unique, in case it is continuous,
and we have then

f [z, x]=
{

f (x)−f (z)

x−z
x �= z.

f ′(z) x = z.

In higher dimensions the slope is non-unique (see, e.g., Section 8), but it
exists always if f is locally Lipschitz.

Using (5) we can find an enclosure of the range of f over the box x by

f (x)∈f (z)+f [z,x](x − z), for all x ∈x.

This is a centered form and has the quadratic approximation property (cf.
[21]). The most general slope definition is the one with interval center

f (x)⊆f (z)+f [z,x](x −z),

and the special case x =z gives f [z, z]=f ′(z) the interval derivative. Slopes
can be calculated automatically like derivatives, and a chain rule holds:

(f ◦g)[z,x]=f [g(z), g(x)] ·g[z,x].

As it was noticed by Bliek [6] for computational trees, we can use the back-
ward mode to compute the slopes on the DAG. The arithmetic operations
and the elementary functions look like those depicted in Figure 7. There
zf denotes the base point about which f is approximated, and sf the slope
of f .

INTERVAL ANALYSIS ON DIRECTED ACYCLIC GRAPHS 553

Figure 8. Slope evaluation for Problem (4).

We see from the pictures that for the elementary functions, the slopes ϕ[z,x]
have to be computed. It was shown by Kolev [18] that for convex and concave
functions the optimal slope is given by

ϕ[z,x]=�{(ϕ[z, x], ϕ[z, x]},

where �S denotes the smallest interval containing the set S. For other
functions the case is more difficult, but we always have

ϕ[z,x]⊆ϕ′(x).

To compute general slopes, we first calculate the values of the centers in for-
ward mode, which is an ordinary (interval) function evaluation. Then we change
the map dm to slm :E → IR storing the slope of the result node with respect to
the argument node during the forward pass, and then we use interval arithmetic
to compute the slope in backward mode. This can be seen in Figure 8, where we
separate the centers and the slopes by a comma at each node.

The result f [z,x]= ([−8,24], [−64,−34], [−56,−32]), where we chose z=
(2,4,4), is clearly slimmer than the interval derivative f ′(x) = ([−24,45],
[−72,−19], [−60,−19]) as it was expected, since slopes provide better
enclosures than interval derivatives.

5. Constraint Propagation on DAGs

As already mentioned, one strength of the DAG concept for global optimi-
zation is that knowledge of feasible points and the constraints can be used
to narrow the possible ranges of the variables, cf. [3, 25, 28].

554 H. SCHICHL AND A. NEUMAIER

If we have a feasible point xbest with function value fbest we can intro-
duce the new constraint f (x)≤ fbest without changing the solution of the
optimization problem (1). Then the ranges of the nodes can be propagated
through the DAG, refining the range map rg :V → IR in every step of the
constraint propagation (i.e. rg(n+1)(v) ⊆ rg(n)(v) for all v, if rg(n) denotes
the range map at step n). We stop when the reductions become too small.

Constraint propagation has two directions, forward and backward.
Assume that we are given values for f ,g, and h in an nth step and
improved bounds for some of those quantities in an (n + 1)st step. If we
want to find improved values for the remaining quantities, for the elemen-
tary functions the necessary propagation steps are as follows.

h=λf +µg :

forward propagation

h(n+1) := (λf (n+1) +µg(n+1))∩h(n),

backward propagation

f (n+1) := 1
λ
(h(n+1) −µg(n))∩f (n),

g(n+1) := 1
µ

(h(n+1) −λf (n))∩g(n).

h=fg :

forward propagation

h(n+1) := (f (n+1)g(n+1))∩h(n),

backward propagation

f (n+1) := (h(n+1)/g(n))∩f (n),

g(n+1) := (h(n+1)/f (n))∩g(n).

h=f /g :

forward propagation

h(n+1) := (f (n+1)/g(n+1))∩h(n),

INTERVAL ANALYSIS ON DIRECTED ACYCLIC GRAPHS 555

Figure 9. Constraint propagation for Problem (4) utilizing f (x)≤−96.

backward propagation

f (n+1) := (h(n+1)/g(n))∩f (n),

g(n+1) := (f (n)/h(n+1))∩g(n).

h=ϕ(f) :

forward propagation

h(n+1) :=ϕ(f (n+1))∩h(n),

backward propagation

f (n+1) :=ϕ−1(h(n+1))∩f (n).

Note that for the DAG representation we refine the range map for all
nodes not only for the leaf nodes. This is an important step because that
will help us in Section 6 to improve the ranges of interval derivatives and
slopes.

In Figure 9, we show the result of constraint propagation to our example,
if we use the function value −96 of the feasible point (2, 4, 4) to introduce
the constraint f (x)�−96. Note that the ranges of the variable nodes do not
change, so the traditional method of calculating interval related results is not
improved. The new ranges are printed in the picture in bold face.

556 H. SCHICHL AND A. NEUMAIER

Figure 10. Interval gradient evaluation for Problem (4) after constraint propagation.

Figure 11. Slope evaluation for Problem (4) after constraint propagation.

6. Combining CP and Evaluation

In this section we will use the range map rg : V → IR improved by con-
straint propagation to recompute the interval derivative and the slope. This
improves the ranges, in some tested examples the improvement was several
orders of magnitude.

Figure 10 contains the result of the interval gradient computation after
constraint propagation, and in Figure 11 we recompute the slope.

INTERVAL ANALYSIS ON DIRECTED ACYCLIC GRAPHS 557

Both results are clearly an improvement over what we had before:

f ′(x)⊆
⎛

⎝
[−16,24]

[−72,−32]
[−60,−32]

⎞

⎠⊂
⎛

⎝
[−24,45]

[−72,−19]
[−60,−19]

⎞

⎠ ,

f [z,x]⊆
⎛

⎝
[0,24]

[−64,−48]
[−56,−32]

⎞

⎠⊂
⎛

⎝
[−8,24]

[−64,−34]
[−56,−32]

⎞

⎠ .

7. Slopes and Linear Enclosures

The linear approximation (5) of a function f provided by slopes can be
used to construct an enclosure of f by linear functions. This in turn can
be used to construct a linear relaxation of the original problem.

PROPOSITION 7.1. Let s :=f [z,x] be a slope of the function f : Rn →R.
If z∈x then the function

f (x)=f +
n∑

i=1

s̄i (xi − zi)+ si(x̄i − zi)− s̄i (xi − zi)

x̄i −xi

(xi −xi)

is a linear function which underestimates f on x, i.e.,

f (x)�f (x) for all x ∈ x,

and the function

f̄ (x)= f̄ +
n∑

i=1

si(xi − zi)+ s̄i (x̄i − zi)− si(xi − zi)

x̄i −xi

(xi −xi)

is a linear overestimating function for f over x, where f (z)∈ [f , f̄].
Proof. Everything can be reduced to a series of one dimensional prob-

lems, and for those the proof is easy.

For problem (1) we have to consider the constraints componentwise. For
every component Fj(x)∈F j the constraints F j(x)� F̄j and F̄j (x)�F j are
valid linear constraints; here F j(x) and F̄j (x) are defined analogous to
f (x) and f̄ (x), respectively. They can be added as redundant constraints
to the problem without affecting the solution.

558 H. SCHICHL AND A. NEUMAIER

Alternatively, one could also compute the underestimating function f for
the objective function f . Then the linear program

min f (x)

s.t. F(x)� F̄

F̄ (x)�F

x ∈x,

where F(x) denotes the vector of all underestimating functions F j for all
components Fj , is a linear relaxation of (1).

For the example given by (2), we have already computed the slope for
the center (2,4,4) in Section 6. Calculating a linear underestimating func-
tion for the objective, as above, leads to the constraint

−24(x1 −2)−48(x2 −4)−32(x3 −4)�0.

Performing constraint propagation again on the problem with this addi-
tional redundant constraint leads to the domain reduction x2,3 ∈ [3.4, 4].
With previously known techniques but without (expensive) higher order
consistency, such a reduction would have required a split of the box.

Alternatively, it is possible to construct linear enclosures of the form

f (x)∈f + s(x − z), for x ∈x,

with thin slope s ∈R
n and thick constant term. This approach corresponds

to first order Taylor arithmetic as, e.g., presented in [4, 5, 23]. Since the
linear Taylor expressions also obey a chain rule similar to slopes, these
enclosures can be computed by backward evaluation with little effort quite
similar to “thick” slopes. Kolev [19] showed that propagating them in for-
ward mode leads to better enclosures; however, the effort for computing in
forward mode is n times higher.

8. Implementation Issues

8.1. multiplication and division

As it has been mentioned earlier, slopes in dimensions greater than one are
usually not unique. Two elementary operations, multiplication and division,
therefore provide us with a choice for implementation.

All possible slopes for multiplication are

x1x2 ∈ z1z2 +
(

λx2 + (1−λ)z2

λz1 + (1−λ)x1

)
·
(

x1 − z1

x2 − z2

)

INTERVAL ANALYSIS ON DIRECTED ACYCLIC GRAPHS 559

for some λ ∈ R (possibly dependent on the arguments), and for division
they are

x1

x2
∈ z1

z2
+
(

λ
z2

+ 1−λ
x2

− λ
z2

x1
x2

− 1−λ
x2

z1
z2

)
·
(

x1 − z1

x2 − z2

)
.

The best choice for division is λ = 1, because we can use the term x1/x2

after constraint propagation. It is the range enclosure of the division node,
for which the slope is being computed, and in addition there is no sub-
distributivity problem during slope backward evaluation. Hence the proper
choice for division is

s/ = 1
z2

(
1

−x1
x2

)
.

For multiplication we can choose a λ that minimizes the width of the
resulting range. A short computation shows that the minimal width is
obtained by

λ=
{

0 if rad(x1)|z2|� rad(x2)|z1|,
1 otherwise.

To avoid a case distinction in computing products, it is advisible to find a
good heuristics. Considering the Horner scheme for polynomial evaluation
gives the following hint: Sort the product by ascending complexity of the
factors (i.e., roughly, by increasing overestimation). Then set λ = 0, hence
choose the slope

s∗ =
(

z2

x1

)
.

8.2. rounding errors

Since enclosures of the form

f (x)∈f (z)+f [z,x](x − z),

are computed numerically, the direct evaluation of the term f (z) by float-
ing point arithmetic generally does not produce guaranteed enclosures.
Hence, it is important to take care for the rounding errors, in order to
avoid the occasional loss of solutions in a branch and bound scheme. There
are two possible approaches.

560 H. SCHICHL AND A. NEUMAIER

The first possibility is to change all calculations involving the center into
interval operations, providing a linear interval enclosure

f (x)∈f (z)+f [z,x](x −z)

with generally interval center z. This needs slopes of the form f [z,x] with
z⊆x for all elementary operations.

The second possibility is to allow approximate point evaluations at the
centers and elementary slopes with point centers f [z,x], but to take care
of the rounding errors in computing f (z) during propagation, by adapting
the chain rule appropriately. If

f (x)∈f +f [zf ,x](x − zf), f (zf)∈f , x ∈x

g(y)∈g +g[zg,y](y − zg), g(zg)∈g, y ∈y,

then, for arbitrary zg ≈f (zf),

g(f (x)) ∈ g +g[zg, f (x)](f +f [zf ,x](x − zf)− zg)

⊆g +g[zg, f (x)](f − zg)+g[zg, f (x)]f [zf ,x](x − zf).

The remaining decision is what to compute in forward, and what in back-
ward mode. Taking a third component provides the important hint:

h(t)∈h+h[zh, t](t − zh),

and we find

h(g(f (x)))∈h+h[zh, g(f (x))](g − zh +g[zg, f (x)](f − zg))

+h[zh, g(f (x))]g[zg, f (x)]f [zf ,x](x − zf)

if the center term is computed in forward mode. If it is computed back-
ward, the term is

h[zh, g(f (x))](g(f (x))− zh)+h[zh, g(f (x))]g[zg, f (x)](f − zg).

Because of subdistributivity, this is a worse or identical enclosure of the
center. Therefore, computing the center in forward mode gives generally a
tighter result.

References

1. ILOG Solver 5.1, 2001.
2. Androulakis, I.P., Maranas, C.D. and Floudas, C.A. (1995), αBB: a global optimization

method for general constrained nonconvex problems, J. Global Optim., 7, 337–363.

INTERVAL ANALYSIS ON DIRECTED ACYCLIC GRAPHS 561

3. Benhamou, F. and Older, W. (1997), Applying interval arithmetic to real, integer, and
boolean constraints, J. Logic Program.

4. Berz, M. (1997), COSY INFINITY version 8 reference manual. Technical report,
National Superconducting Cyclotron Lab., Michigan State University, East Lansing,
Mich., MSUCL–1008.

5. Berz, M. and Makino, K. (1998), Verified integration of ODEs and flows using differ-
ential algebraic methods on high-order Taylor models, Reliable Comput., 4, 361–369.

6. Bliel, C. (1992), Computer Methods for Design Automation. PhD thesis, Department of
Ocean Engineering, Massachusetts Institute of Technology.

7. Bliek, C., Spellucci, P., Vicente, L.N., Neumaier, A., Granvilliers, L., Monfroy,
E., Benhamouand, F., Huens, E., Van Hentenryck, P., Sam-Haroud, D. and Falt-
ings, B. (2001), Algorithms for Solving Nonlinear Constrained and Optimization Prob-
lems: The State of the Art. Report of the European Community funded project
COCONUT, Mathematisches Institut der Universitat Wien, http://www.mat.univie.ac.at/
∼neum/glopt/coconut/StArt.html.

8. Brooke, A., Kendrick, D. and Meeraus, A. (1992), GAMS – A User’s Guide (Release
2.25). Boyd & Eraser Publishing Company, Danvers, Massachusetts.

9. Chekuri, C., Johnson, R., Motwani, R., Natarajan, B., Ramakrishna Rau, B. and
Schlansker, M. S. (1996), Profile-driven instruction level parallel scheduling with appli-
cation to super blocks. in International Symposium on Microarchitecture, pp. 58–67.

10. Dallwig, S., Neumaier, A. and Schichl, H. (1997), GLOPT – A program for constrained
global optimization. in Bomze, I.M., Csendes, T., Horst, R. and Pardalos, P.M. (eds.),
Developments in Global Optimization, Kluwer, Dordrecht, pp. 19–36.

11. Dixon, L.C.W. and Szegö, G.P. (1975), Towards Global Optimization, Elsevier, New York.
12. Floudas, C.A. (1999), Deterministic Global Optimization: Theory, Algorithms and Appli-

cations, Kluwer, Dordrecht.
13. Fourer, R., Gay, D.M. and Kernighan, B.W. (2003), AMPL – A Mathematical Program-

ming Language, Thomson, second ed.
14. Griewank, A. and Corliss, G.F. (1991), Automatic Differentiation of Algorithms, SIAM

Publications, Philadelphia.
15. Jaffar, J. and Maher, M.J. (1994), Constraint logic programming: A survey, J. of Logic

Program., 19/20, 503–581.
16. Kearfott, R.B. (1991), Decomposition of arithmetic expressions to improve the behavior

of interval iteration for nonlinear systems, Computing, 47, 169–191.
17. Kearfott, R.B. (1996), Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht.
18. Kolev, L.V. (1997), Use of interval slopes for the irrational part of factorable functions,

Reliable Comput, 3, 83–93.
19. Kolev, L.V. (2002), An improved interval linearization for solving non-linear problems,

Manuscript.
20. McCormick, G.P. (1976), Computability of global solutions to factorable nonconvex

programs: Part I – Convex underestimating problems, Math. Program., 10, 147–175.
21. Neumaier, A. (1990), Interval Methods for Systems of Equations, Cambridge University

Press, Cambridge.
22. Neumaier, A. (2001), Introduction to Numerical Analysis, Cambridge University Press,

Cambridge.
23. Neumaier, A. (2002), Taylor forms – use and limits, Reliable Comput., 9, 43–79.
24. Sahinidis, N.V. (1996), BARON: A general purpose global optimization software pack-

age, J. Global Optim., 8, 201–205.
25. Sam-Haroud, D. and Faltings, B. (1996), Consistency techniques for continuous con-

straints, Constraints, 1(1&2), 85–118.

562 H. SCHICHL AND A. NEUMAIER

26. Shen, Z. and Neumaier, A. (1990), The Krawczyk operator and Kantorovich’s theorem,
J. Math. Anal. Appl, 149, 437–443.

27. Tawarmalani, M. and Sahinidis, N.V. (2002), Convexification and Global Optimization
in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software,
and Applications, Kluwer, Dordrecht.

28. Van Hentenryck, P., Michel, L. and Deville, Y. (1997), Numerica – A Modeling Lan-
guage for Global Optimization, MIT Press, Cambridge, MA.

29. Vu, X.-H., Schichl, H. and Sam-Haroud, D. (2004), Using directed acyclic graphs to
coordinate propagation and search for numerical constraint satisfaction problems. in
Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelli-
gence (ICTAI 2004). Florida, USA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

