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Abstract - -  Zusammenfassung 

Multicriterion Optimization Using Interval Analysis. Interval Analysis methods have been applied for 
obtaining the global optimum of the multimodal multivariable functions. We discuss here the multi- 
criterion optimization problem, where several objective functions must be optimized in conflicting 
situations. 

AMS Subject Classifications: 65G10, 65K10 

Key words: Interval analysis, multicriterion optimization, multiobjective optimization. 

Gleichzeitige Optimierong yon mehreren Kriterien mittels Intervallanalysis. Bei der Bestimmung des 
globalen Optimums werden in der Vektoroptimierung intervallanalytische Methoden angewendet. 
Hier diskutieren wir Optimierungsprobleme, bei denen mehrere Zielfunktionen in Konfliktsituationen 
optimiert werden miissen. 

1. Introduction 

Global optimization problems are difficult to solve since there are several or many 
local extrema [ l ] ,  [2]. Interval analysis methods have been successfully applied to 
these problems [3], [4], [5]. In interval analysis we extend the variables, constants 
and functions as intervals [6]. The original domain of variables is divided into 
subregions successively, and the lower and the upper bounds of the objective 
function are estimated on each subregions. By discarding subregions where the 
global solution cannot exist, one can always find the solution with a rigorous error 
bound. Interval form of the Newton method can be used to get rapid convergence 
and high accuracy [71 [8]. 

In engineering and management science optimization problems there often exist 
several criteria which must be considered in conflicting situations [9], [10]. This 
situation is formulated as a multicriterion optimization (multiperformance, multi- 
objective or vector optimization) problem where not a single objective function but 
several functions are to be minimized or maximized simultaneously. 

A multicriterion optimization problem is formulated as follows. 

Find the vector of decision variables x = [ x l , x  2 . . . .  ,Xn'] T which optimizes the 
vector function 
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subject to the constraints 

where 

and 
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~(x)= [f~ (t), f2(x) . . . . .  fk(x)] r 

t e X = {t e E"lg(x) ~ O,D(~) = O} 

g(~) = [gt(t), g2(t) . . . . .  g~(t)] r 

(t) 

(2) 

(3) 

k 

minimize ~ wicJi(~), (9) 
t:~X i=1 

where c~ (i = 1, 2 . . . .  , k) are constant multipliers chosen by decision-makers or tacitly 
1 

assumed as c~ = f ~ ,  where 

f o = rain fi(t) (10) 
XEX 

denotes the minimum value of the ith objective function. Or, using the utility 

Instead of (7), it may be used 

D(~) = [hi(x), h2(x),..., ht(~)] T (4) 

are r-dimensional and t-dimensional constraint functions, respectively. For  the sake 
of convenience we shall assume that all the objective functions are to be minimized. 
Functions to be maximized can be converted into the form which allows their 
minimization by 

maxfi(~) -- min(-f/(~)). (5) 

Since in general there exists no complete optimal solution ~* which satisfies 

f(t*) < ~(x) (6) 

for all ~ e 3E, we shall consider to determine a Pareto optimal solution. This optimum 
gives a set of non-inferior solutions, i.e., solutions for which there is no way of 
improving any criterion without worsening at least one other criterion [9]. The 
main approaches to global optimization problems are as follows. 

(i)  Weighting Method 

This method changes the multicriterion optimization problem to a scalar optimiza- 
tion problem by 

k 

minimize f ( ~ ) =  minimize ~ wifi(~ ) (7) 

where w~ > 0 are the weighting coefficients representing the relative importance of 
criteria. We usually assume that 

k 

Z w, = 1. (S) 
i=1 
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functions U~ (i = 1, 2 . . . . .  k), we t ransform (7) to the form 

k 
minimize ~ Ui(fi(t)). (11) 

�9 E ~  i = l  

( ii ) e-Constraint Method [11] 

This me thod  minimizes one of the objective functions considering the others as 
constraints,  i.e., 

minimize f~ (t) (12) 
xe.~ 

subject to 
f~(t) ___ ei (i = 1,2 . . . . .  k,i r r). (13) 

(iii) Minimax Method [9] 

The desirable solut ion is the one which gives the smallest value of the max imum 
values of all the objective functions, i.e., 

minimize max wlfi(~), (14) 
xe3[ l < i < k  

or equivalently, 

subject to 

minimize z (15) 
xe~  

w~f~(~) _< z (i = 1, 2 . . . . .  k). (16) 

(iv) Lp-Norm Method 

Without  loss of generality we assume f/(~) _> 0 (i = 1, 2 , . . . ,  k) for all �9 e ~. This 
me thod  utilizes the weighted Lp-norm as 

m~nim~zo, ~(~, ~-- m i - - e / ~  ~w,~'~< ~ " -~ ~-~ ~ 

I I 

(17) 
] 

Equat ion  (17) reduces to the weighting me thod  for p = 1 and to the minimax 
method  for p = oo. 

(v) Goal Programming 

If a decis ion-maker has goals f~ for each of the objective functions f~(t) (i = 1, 2 . . . . .  k), 
we can formulate  (17) as 

, , f ( x ) - f [ , p  = minimize F ~  w~, f / ( t ) -  f i , ' ]  1/p ( l < p <  oe), (18) minimize 
�9 e~ ~ L--i=I _1 

o r  

; min m zeE w  ' : ( l < p < o o )  (19) 
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when~- r 0. In particular,~ = (fl,f2 . . . . .  fk) r can be taken to be the minimum value 
f i0  0 0 = (f;  ,f~ . . . . .  fo )  of each of the objective functions (see equation (10)). 

2. Weighting Method 

In this section an interval analysis algorithm is described to obtain the global 
minimum of equation (7). This algorithm is based on the following two principles: 
(i) descarding subregions where no global minimum can exist, and (ii) calculating 
relative minima with interval Newton method. 

[i] Case of No Constraints 

Consider a hyperrectangle g[ = [a 1, bl] | [a 2, b2] |  | [a,, b~] which contains 
the global solution as an original region. We calculate the global minimum point 
of the function 

k 
f(~) = ~ wifi(~). (20) 

i=1 

In what follows capital letters A, F . . . .  denote the interval extentions of a, f,  . . . .  We 
suppose f(x) ~ C z and its first and second derivatives are 

, ~ X 2 , ' ' ' ,  

j = 

and 

respectively, and 

~x~ Oxl~x2 ~xlc~x, 
: : " .  : 

o2f o2f 
~x,~xx ~x,~xa ~x~ 

(22) 

d = det(j).  (23) 

[Algorithm] 

(1) The original region is divided successively. A remaining subregion having the 
largest side is bisected at the center of that side. We give the following test (2) ~ (4) 
for the remaining subregions. 

(2) Let two of the remaining subregions be 9.I, and ~Ij, and their interval function 
values be Fi = r(~Ii) = [~,f~] and Fj = F ( ~ )  = [~ , f j ] ,  respectively [3]. The letters 
with underscores and overscores mean that they are the lower bound and the upper 
bound of the interval values. Iff~ > j~, it is clear that 9.Ii can not have the minimum 
point and this subregion can bediscarded. The case o f f j  > ~ is treated in a similar 
way. Otherwise both 92[ i and 9.Ij are retained (Fig. 1). 



Multicriterion Optimization Using Interval Analysis 51 

f,-<6 

Figure I. Comparison of interval function values (weighting method). 

(3) The original domain  91 can be selected so that  the global minimum coincides 
with one of relative minima. This means that a subregion 9.1, can be discarded if 
VF ~ 0 in 9,1 v 

(4) If D ~ 0 in 9,I, (D is the interval extension of d), we apply the following interval 
Newton  formula [7-1: 

~ ( ~ r )  = m(~r)  + ~5~, 

-~+1 = 3E~ n 9 l ( ~ ) ,  (24) 

J~r = -VF ,  | 

J (r = 0, 1,2 . . . .  ;3~ o = 9.t,), 

and save the result when it converges in 9.1 v 

(5) In this way we apply the tests (2) --~ (4) until the largest side of the remaining 
subregions becomes less than a prescribed bound.  When f(~) has more  than one 
global min imum points, all of  them can be obtained. 

[ii] Case of Equality Constraints 

Find the global min imum of (20) under  the equali ty constraints 

h , ( t ) = 0  ( i =  1,2 . . . . .  t). (25) 

To  solve this problem the Lagrangean function 

L = f(x) + ~ 2,hi(x) (26) 
i = 1  

is introduced. Differentiating L with respect to x~ ( j  = 1, 2 , . . . ,  n) and 2, (i = 1, 2 , . . . ,  t) 
and setting the results equal to zero, we have the following equat ions 

aL ol Oh, } 
0xj -- 0x; + ,=1 21~x~ = 0 ( j  = 1, 2 . . . . .  n), (27) 

0 L _  
02 i h , ( x j = 0  ( i =  1,2 . . . . .  t). 
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All of the real roots of these simultaneous nonlinear equations can be obtained by 
the algorithm [i], and the global minimum point is determined from the solutions 
of (27). 

[ i i i ]  Case  o f  I n e q u a l i t y  Cons t ra in t s  

The problem to minimize f( t )  in (20) subject to 

g,(~) < 0 (i = 1,2,. . . ,r)  (28) 

is transformed to seek the stationary points of the Lagrangean function 

L = f(x) + 2,(g,(t) + x,,+,), (29) 
i=1 

where x,+ i (i = 1, 2 . . . .  , r) are the slack variables. Differentiating L with respect to 
x j  ( j  = 1, 2 . . . .  , n + r), 2 i (i = 1, 2 . . . .  , r) and setting the results equal to zero, we have 

OC_ Of ,& ag, 
~- 2 .2 i  = 0  ( j = l , 2 , . . . , n ) ,  

i=1 ~Xj Oxj Oxj 

OL 
c~x,+i - 22/x,+i = 0 (i = 1, 2 . . . . .  r), (30) 

OL 
_ _ =  2 = 0  ( i = 1 , 2  . . . . .  r). ~2 i gi(X) -t- Xn+ i 

Using the algorithm in [i], the global minimum can be obtained by solving (30) 
similarly as in [ii]. 

3. Minimax Method 

In this section we transform the multiobjective minimization problem as the follow- 
ing minimax problem: 

minimize max f~(x), 
XeX l~i<__k 

subject to (31) 

n < X ~  = { ~ E  I g ( ~ ) _ 0 ,  b(~ ) = 0 } .  

In this case the comparison of interval function values is modified as follows (see 
section 2[i3 (2)): 

Let the interval value of each of the objective function in subregions ~ ,  and 9Jp be 
F i = [- f / , j~]  (i = 1,2 . . . .  ,k) (Fig. 2). In this figure 

F, = [f , , j~]  = ] max fi, max f i l  (32) 

i 

- Li<i<k-- i<i<_k I 

denotes the maximum values of the lower and the upper bounds of the objective 
functions in ~ , .  Fa in 9~p is given in a similar way. Iffa < f , ,  then it is clear that 9~, 
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i 
- - -  

Figure  2. C o m p a r i s o n  of  in terval  values (min imax  method) .  

cannot have the optimal point and is discarded. In this way the global minimax 
solution is determined. 

However, this algorithm of dividing subregions and estimating the interval values 
of functions takes a great deal of computation time. To circumvent this difficulty, 
the Lagrangean function and the interval Newton method are used. 

We rewrite (31) as follows: 

minimize z, 

subject to 

f~(~) - z _< 0 

gi(~) < 0 

hi(z ) = 0 

(i = 1,2, . . . ,k),  l 

(i 1,2 . . . . .  r), | 

(i 1,2 . . . . .  t ) . j  | 

(33) 

The Lagrangean function corresponding to (33) is 
k ~ t 

2 2 
L = z + ~ ~i(fi(z) -- z + xn+~) + 2k+i(gi(~) + Xn+k+i) + ~ 2k+,+ihi(~ ). (34) 

i= l  i= l  i= l  

Differentiating L with respect to z, xl (i = 1, 2 . . . .  , n + k + r), 2i (i = 1, 2 . . . . .  k + r + t) 
and setting the result equal to zero, we have 

~L k 
dZ 1 -- ~ hi 0, 

i=1 

- -  ~ i=1 "~k+i~xj ~xj i=1 

t~hi 
+ ~ + ~ + , ~ - = o  ( j = 1 , 2  . . . .  , ~ ) ,  

i=1 uxj 

OL 
c~x.+i -- 22,x.+i = 0 (i = 1,2 . . . . .  k), 
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OL 

~Xn+k+i  
- -  - -  2 •k+iXn+k+ i = 0 (i = 1,2 . . . . .  r), 

~L 
- -  Xn+ i xT-~ = f /  z +  2 = 0  ( i = 1 , 2  . . . .  ,k), 

~L 

t3 )~ k + i 
2 = 0  

- -  g i  + Xn+k+i  (i = 1,2 . . . . .  r), 

OL 

O'~k+r+i 
- - = h  i = O  ( i =  1 ,2 , . . . , t ) .  (35) 

Solving the solution of (35), the optimal solution can be obtained. 

4. Numerical  Examples 

The following Rosenbrock functions are used as the objective functions. 

f l ( x l , x 2 )  = 100(x2 - x~) 2 + (1 - xi)  a + 1, 

f z ( x i , x 2 )  = 100(x z - x~) 2 + (2 - xl)  2 + 1, (36) 

0 < x 1 < 3 ,  0 ~.~x2 <~ 5. 

The calculation is terminated when the length of the largest side of the remaining 
subregions is less than e = 10 -l~ 

( I )  Weighting Method  

Changing the weighting factor w i (i = 1, 2), we calculate the minimum of the 
function 

f ( x l ,  x2) = w l f i ( x i ,  x2) + w2f2(x l ,  x2). (37) 

(i) wl = 1, w z =  0 

X 1 = [0.99999 99999 84890, 

X 2 =[0.99999 99999 69768, 

F = [ 1 . 0 0 0 0 0  00000 00000, 

1.00000 00000 15132], 

1.00000 00000 30278], 

1.00000 00000 00000]. 

The figures in [ , ]  denote the lower and the upper bound of the solution, respectively. 
The value of F corresponds to f o  in (10). 

(ii) w i - - � 8 8  2 = � 8 8  

X 1 = [1.24999 99999 96855, 

X 2 = [1,56250 00000 00000, 

F = [1.18749 99999 97640, 

1.25000 00000 03145], 

1.56250 00000 07873], 

1.18750 00000 02359]. 
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1 (iii) wl = wz - 2 

X a = [1.50000 00000 00000, 1.50000 00000 00218], 

X 2 = [2.24999 99999 99506, 2.25000 00000 00655], 

F = [1.24999 99999 99890, 1.25000 00000 00110]. 

( iv )  = �88 w2 = 

X I = [-1.74999 99999 91579, 1.75000 00000 084051, 

X 2 = [3.06249 99999 70524, 3.06250 00000 292451, 

F = [1.18749 99999 93689, 1.18750 00000 06311]. 

(v) w l = 0 , w  2 = 1  

X 1 = [1.99999 99999 99998, 2.00000 00000 00001], 

X z = [3.99999 99999 99994, 4.00000 00000 000051, 

F = [1.00000 00000 00000, 1.00000 00000 000001. 

The value of F corresponds to f o  in (10). 

(2 )  Min imax  Method  

(i) By dividing subregions and estimating the function values for the following 
minimax problem 

minimize max ~ f ~ ( x , , x z )  - f o  f z ( x l , x 2  ) _ f o ~  (38 )  
x~:~ ( .,'of1, ' TO j ' 

we have 

X1 = [1.49999 99998 25377, 

X 2 = [2.24999 90652 43173, 

F1 = [1.24999 99998 25377, 

F 2 = ]-1.24999 99998 25376, 

after dividing subregions 193199 times. 

(ii) Equation (38) can be rewritten as follows: 

miiaimize z 

subject to 

f l ( x l ,  x2) - f o  
fo 

f z ( x l ,  x2) -- f o  

f2 

1.50000 00001 746231, 

2.25000 09347 27722], 

1.25000 00002 62100], 

1.25000 00002 62099], 

- z _ < O ,  

- z < O .  

(39) 
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The Lagrangean function for (39) is 

) ~ ) \ fo z+x~ +)~z\ f~ - -z+x]  . 

By applying the interval Newton method, we obtain the following results: 

X1 = [1.50000 00000 00000, 1.50000 00000 00000], 

X 2 = [2.25000 00000 00000, 2.25000 00000 00000], 

X3 = [0.0, 0.22539 92852 19884 x 10-19], 

X 4 = [0.0, 0.0], 

A1 = [0.49999 99999 99999, 0.50000 00000 00000], 

A= = [0.49999 99999 99999, 0.50000 00000 00000], 

Z = [0.24999 99999 99999, 0.25000 00000 00000], 

F 1 = [1.25000 00000 00000, 1.25000 00000 00001], 

F2 = [1.24999 99999 99999, 1.25000 00000 00000]. 

The true values are 

3 9 
x l  = ~ ,  x2 = ~ ,  x3 = 0 ,  x4  = 0 ,  

1 1 1 

(40) 

5. Conclusion 

An interval analysis method is described for finding the global optimal solution 
of the multiobjective minimization problems. Interval analysis is applicable for 
the global optimization problems which contain a number of local extrema. It 
guarantees the true global optimum and the rigorous error bound; however, it takes 
more computation time and memory capacity than other methods. Further, these 
quantities increase rapidly when increasing the number of variables, objective func- 
tions and constraints. A further study is necessary for developing methods that 
reduce the amount of computation. 
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