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Generalized subinterval selection criteria for interval global
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The convergence properties of interval global optimization algorithms are studied which
select the next subinterval to be subdivided with the largest value of the indicator pf (fk,X) =
(fk − F(X))/(F(X) − F(X)). This time the more general case is investigated, when the
global minimum value is unknown, and thus its estimation fk in the iteration k has an impor-
tant role. A sharp necessary and sufficient condition is given on the fk values approximating
the global minimum value that ensure convergence of the optimization algorithm. The new
theoretical result enables new, more efficient implementations that utilize the advantages of the
pf ∗ based interval selection rule, even for the more general case when no reliable estimation
of the global minimum value is available.
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1. Introduction

The present paper extends the results of an earlier one [5] for the more general
case, when the global minimum value is not previously known.

Consider the bound constrained global optimization problem [10,19]

min
x∈X

f (x), (1)

where the n-dimensional interval X is the search region, and f (x) : R
n → R is the ob-

jective function. We assume that there exists at least one global minimizer point in X,
that is also a stationary point. Problems that have only not stationary global minimizer
points on the boundary of the search region, can be recognized by interval optimiza-
tion methods, and they can be solved usually in a relatively easy way, since then the
monotonicity test is usually efficient.

The algorithm considered is based on inclusion functions calculated by interval
arithmetic [15].
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Definition 1. A function F : I
n → I is an inclusion function of the objective function f

if for ∀Y ∈ I
n and ∀y ∈ Y f (y) ∈ F(Y ), where I stands for the set of all closed real

intervals.

In other words, f (Y ) ⊆ F(Y ) where f (Y ) is the range of f over Y . The lower
and upper bounds of an interval Y ∈ I

n are denoted by Y and Y , respectively. The width
of an interval is w(Y ) = Y − Y if Y ∈ I, and w(Y ) = maxi(Yi − Yi) if Y ∈ I

n is
an n-dimensional interval vector (also called a box). I(X) stands for all intervals in X.
Three important types or possible properties of inclusion functions are:

Definition 2. F is said to be an isotone inclusion function over X if for ∀Y,Z ∈ I(X),
Y ⊆ Z implies F(Y ) ⊆ F(Z).

Definition 3. We say that the inclusion function F has the zero convergence property,
if w(F(Zi)) → 0 holds for all the {Zi} interval sequences for which Zi ⊆ X for all
i = 1, 2, . . . and w(Zi) → 0.

Denote the global minimum value of the function f (x) on the search region X

by f ∗. Assume that we have an isotone inclusion function F(X) for f (x).
Several Branch-and-Bound (B&B) type algorithms have been suggested and

studied for the solution of (1) utilizing inclusion function information on the prob-
lem [9,11,15]. To allow a general discussion, we study the following algorithm frame-
work that can incorporate most of the features of the present procedures.

Algorithm.

Step 1. Let L be an empty list, the leading box A := X, and the iteration counter k := 1.
Set f̃ = F(X).

Step 2. Subdivide A into s subsets Ai (i = 1, . . . , s) satisfying A = ⋃
Ai so that

int(Ai) ∩ int(Aj ) = ∅ for all i �= j where int denotes the interior of a set.
Evaluate the inclusion function F(X) for all the new subintervals, and update
the upper bound of the global minimum: f̃ := min{f̃ , F (A1), . . . , F (As)}.

Step 3. Let L := L ∪ {(Ai, pf (fk,Ai))} for all i ∈ {1, . . . , s}.
Step 4. Use the accelerating devices: delete parts of the subintervals stored in L that

cannot contain a global minimizer point.

Step 5. Set A to be the that subinterval from the list L which has the largest pf value,
and remove the related pair from the list.

Step 6. While termination criteria do not hold let k := k + 1 and go to step 2.

In step 4, so called accelerating devices can be used that delete or shrink subin-
tervals without discarding a global minimizer point. Such accelerating devices can be
for example the cut-off test (for some implementations it is called midpoint test), the
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monotonicity test, the interval Newton step and the concavity test. It is important that no
global minimizer point is lost in this process.

In [5] the effects of the application of

pf (fk, Y ) = fk − F(Y )

F (Y ) − F(Y )
,

as an indicator that gives which interval is to be selected for subdivision were in-
vestigated. In the related algorithm that interval Y was chosen which had the max-
imal pf (fk, Y ) value. Here fk is the approximation of the global minimum value
in the iteration k, and in this way pf (fk, Y ) is a variant of the RejectIndex, pf ∗ =
(f ∗ − F(Y ))/(F(Y ) − F(Y )) [1–4].

In that earlier paper [5] the author investigated the convergence properties, and it
was found that the necessary and sufficient conditions for the convergence to a set of
global minimizer point were that the sequence {fk} converges to the global minimum
value f ∗ and there exist at most a finite number of fk values below f ∗.

Now we investigate such an algorithm that can utilize the new interval selection
rule without knowing a priori the global minimum value. Its approximation, the real
value fk in the k-th iteration is between the known best lower and upper bounds of f ∗:

f
k

= min
{
F

(
Y l

)
, l = 1, . . . , |L|} � fk < f̃k = f k,

where |L| stands for the cardinality of the elements of the list L. Here the list L is always
the actual list, i.e. the one available at the iteration number k.

2. Convergence condition

To investigate the convergence properties of the introduced algorithm, we assume
that the stopping conditions are either deleted, or they cannot be fulfilled.

Theorem 1. Assume that the inclusion function of the objective function is isotone and
it has the zero convergence property. Consider the interval branch-and-bound optimiza-
tion algorithm that uses the cut-off test, the monotonicity test, the interval Newton step
and the concavity test as accelerating devices, and that selects as next leading interval Z

from the working list which has the maximal pf (fk, Z) value.

1. The algorithm converges exclusively to global minimizer points if

f
k

� fk < δ
(
f k − f

k

) + f
k

holds for each iteration number k, where 0 < δ < 1.

2. The above condition is sharp in the sense that δ = 1 allows convergence to not
optimal points.

Proof. 1. Notice first that the maximal pf (fk, Y ) values are always nonnegative, since
fk is not less than the minimal lower bound of F . Due to fk < f̃ , the numerator of pf
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is less than f̃ − min{F(Y l), l = 1, . . . , |L|}. f
k

is conservative, i.e. it is monotonically
nondecreasing (based on the isotone inclusion functions). A similar property is ensured
for f k by the isotonicity of F(X), and by the updating of f̃ . Thus f

k
is monotonically

nondecreasing, and f k is monotonically nonincreasing. The sequence f
k

converges to a
value in [F(X), f ∗] depending on the actual problem instance.

Consider now an arbitrary point x′ ∈ X in such a way that f (x′) > f ∗, and that
there is a subsequence {Ykl

} of the leading boxes that converges to x′. For this point x′
the sequence of lower bounds F(Ykl

) converges to f (x′) due to the zero convergence
property, and obviously the sequence of upper bounds f̃k = f k on the minimum value
converges to a value not greater than f (x′). Now the fk values must be below f (x′)
from a certain iteration index, since they fulfill the condition

f
k

� fk < δ
(
f k − f

k

) + f
k

with a 0 < δ < 1, and the difference between f k and fk is larger than (1 − δ)(f k − f
k
)

which is at least (1 − δ)(f (x′) − f ∗) > 0 (since an f̃ below f (x′) would inhibit a
convergence to x′). Then the respective pf values are negative from an index.

If there are more such points x1, x2, . . . ∈ X for which f (xi) > f ∗, and for each of
them there exists a subsequence of the leading boxes that converges to the given point,
then the above reasoning holds for each of them. In other words, also in this case from a
certain index all pf values are negative.

On the other hand, there is always at least one global minimizer point, a station-
ary point in one of the subintervals in the list L. The respective subinterval cannot
be deleted by an accelerating step, and thus its pf (fk, Y ) value is nonnegative. But
this contradicts that a subinterval with a negative pf value is selected, i.e. no subse-
quence of the generated intervals can converge to a not optimal point of the search re-
gion.

2. The second statement is a consequence of theorem 3 and corollary 2 in [5]
that require the convergence of f̃ to the global minimum value to have the interval
B&B optimization algorithm with the pf (fk, Y ) based interval selection rule to converge
exclusively to global minimizer points. �

Notice that if we set fk = min{F(Y l), l = 1, . . . , |L|} then we have actually the
Moore–Skelboe algorithm, since then always that subinterval is selected which has the
minimal lower bound, since for these intervals the pf value will be zero while for each
other interval it will be negative. In this sense the present theorem is a generalization
of the convergence assertion on the Moore–Skelboe algorithm. Theorem 1 remains true
when some or all of the accelerating devices are not used in the algorithm.

The required isotonicity is easy to achieve also for non-isotone inclusion functions
by intersecting the new inclusion function value F(Y i) with that of the direct ancestor
interval Y (for which Y = ⋃

i Y
i).
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3. Implementation and numerical test results

The goal of the present computational test was to demonstrate the effect of the
new interval selection rule (utilizing the approximate optimum value known with 4 digit
precision obtained by a traditional optimization algorithm as the starting f̃ value) com-
pared to the old algorithm variants studied in [6]. This precision is usually not difficult to
achieve, and it costs about 1,000 to 10,000 additional function evaluations (not counted
in the corresponding table). To have a reliable method, the approximate value must be
validated by an interval based evaluation. The algorithm can improve the set starting f̃

value.
In the paper of [6] the numerical efficiency of several algorithm variants was inves-

tigated on 40 standard test functions. Three procedures were compared:

• the Moore–Skelboe algorithm that selects that subinterval for subdivision which has
the lowest lower bound on the objective function,

• the one that selects the subinterval with the maximal pf ∗ value, and

• a procedure that selects the subinterval with the maximal pf (fk,X) value, where
fk = (f

k
+ f k)/2.

The studied algorithms utilized only the cutoff test. For the investigated procedures
no derivative information was necessary. We used the traditional bisection and the sub-
division was made along the coordinate direction with the longest edge. The algorithms
were stopped when the diameter of a candidate interval was smaller than 0.01, or if the
length of the working list reached 20,000. This memory limitation is far from the phys-
ical one, still above this level, a larger and larger part of the computation must be spent
on administration in contrast to function evaluations.

The conclusion of the paper [6] was that when the global minimum value is known
it is the best to use it in the form of the pf ∗ based interval selection criterion. If it is not
available, then the fk = (f

k
+f k)/2 estimation can be used, and the resulting algorithm

will be more efficient for hard to solve problems than the Moore–Skelboe algorithm.
The results based on the known global minimum value were so much better than the
others, that it seems to be reasonable to use a good approximation of the minimum value
(e.g., obtained by a real arithmetic based traditional optimization).

The present numerical tests were also carried out on a Pentium-IV computer
(1,4 Ghz, 1 Gbyte RAM) under the Linux operating system. The programs were coded
in C++. The inclusion functions were implemented via the PROFIL/BIAS routines [12],
and the basis algorithm was that of the C++ Toolbox for Verified Computing [8]. The
standard time unit (the CPU time required to evaluate the Shekel 5 test function 1000
times at (4.0, 4.0, 4.0, 4.0)T) was 0.00076 seconds.

In contrast to our earlier paper discussing an extensive numerical study, our present
computational experiments used only those test problems, that were the most difficult to
solve among those in [6]. Thus now the problems Hartman-3 (H3), Hartman-6 (H6),
Goldstein-Price (GP), Six-Hump-Camel-Back (SHCB), Levy-3 (L3), Levy-5 (L5),
Schwefel-2.7 (Sch27), and EX2 from [7] were used. The search regions were the same
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Table 1
The maximal list length needed for the solution of the test problems.

Problem MLL

Name dim F (f k + f
k
)/2 % 4 digit approx. % pf ∗ %

H3 3 20,000 20,000 100 3,256 16 2,383 12
H6 6 20,000 20,000 100 20,000 100 20,000 100
GP 2 20,000 20,000 100 2,106 11 2,145 11
SHCB 2 20,000 17,643 88 762 4 762 4
L3 2 20,000 20,000 100 72 0 72 0
L5 2 20,000 20,000 100 37 0 37 0
Sch27 3 5,706 16 0 16 0 5,706 100
EX2 5 20,000 20,000 100 20,000 100 20,000 100

Table 2
The CPU time in seconds required for the solution.

Problem CPUt

Name dim. F (f k + f
k
)/2 % 4 digit approx. % pf ∗ %

H3 3 347.64 431.98 124 8.46 2 5.59 2
H6 6 444.75 439.99 99 375.53 84 368.55 83
GP 2 474.79 1, 760.60 371 3.09 1 3.48 1
SHCB 2 362.53 298.12 82 0.45 0 0.54 0
L3 2 387.02 443.24 115 0.07 0 0.09 0
L5 2 381.78 319.82 84 0.03 0 0.05 0
Sch27 3 114.40 0.06 0 0.04 0 115.27 101
EX2 5 358.43 354.16 99 311.11 87 328.91 92

as in other numerical tests [7,9,16,19]. The numerical results are demonstrated in ta-
bles 1–3.

In our test the most important indicator is the required number of list elements for
the solution of the given problems. In instances when the respective value is 20,000, the
related method was unable to solve the given problem, thus all further efficiency indi-
cators are incomparable for these cases. According to the maximal list length required
(MLL), it is definitely worth to use an approximation of the global minimum value, since
with this overhead, our new algorithm was able to solve all those problems, which were
otherwise solved only by the pf ∗ based method (that needs the a priori known global
minimum value). The MLL values were close to those obtained by the pf ∗ method, in
one instance (Schwefel 2.7 problem) it was even better.

According to table 2, the CPU times needed for the solution proved to be a success
story for the new method (denoted by 4 digit approx.): it could provide the minimal
requirements of the follow up two techniques, that of the (f k +f

k
)/2 based, and the pf ∗

based methods. It is remarkable, that all solved problems were handled within 10 sec.
The number of function evaluations and the number of iterations (NFE) go under-

standably in parallel, thus the later is not demonstrated here. Although the new method
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Table 3
The number of objective function evaluations needed for the solution.

Problem NFE

Name dim F (f k + f
k
)/2 % 4 digit approx. % pf ∗ %

H3 3 66,817 120,055 180 6,519 10 7,159 11
H6 6 64,105 68,074 106 40,135 63 60,202 94
GP 2 70,663 636,550 901 4,211 6 6,433 9
SHCB 2 78,883 129,211 164 1,553 2 2,329 3
L3 2 70,774 118,153 167 189 0 283 0
L5 2 69,223 87,520 126 81 0 121 0
Sch27 3 60,535 88 0 59 0 60,535 100
EX2 5 62,407 78,151 125 42,547 68 63,823 102

(4 digit approx.) is the best according to NFE in all comparable cases, still, remember,
that the new method involves an additional amount of function evaluations for the ap-
proximate optimization to obtain an estimated global minimum value. Notice that the
solution time difference between the best technique not using f ∗ and the new method
allows the preliminary approximate optimization, and provides a substantial saving in
the whole test set.

Summarizing the numerical experiences, we can conclude that according to the
tests made it is definitely worth to run a traditional, real arithmetic based optimization
algorithm to obtain an approximate minimum value, since it can well be utilized with
the pf (fk,X) indicator, and in the corresponding subinterval selection rule. As the effi-
ciency indicators show, it seems that the approximate minimum value can be well used
in the interval selection rule. We have repeated our computational tests with other preci-
sion values, and we have found that the savings were similar in a relatively large range
of precision, with 100% to 0.000001% relative error in the estimation of the global mini-
mum value. The large complexity savings open the way to heuristic reliable procedures,
which use iteratively estimated optimum values together with reliable interval optimiza-
tion techniques.

References

[1] L.G. Casado and I. García, New load balancing criterion for parallel interval global optimization
algorithm, in: Proc. of the 16th IASTED Internat. Conf., Garmisch-Partenkirchen, Germany, 1998,
pp. 321–323.

[2] L.G. Casado, I. García and T. Csendes, A new multisection technique in interval methods for global
optimization, Computing 65 (2000) 263–269.

[3] L.G. Casado, I. García and T. Csendes, A heuristic rejection criterion in interval global optimization
BIT 41 (2001) 683–692.

[4] L.G. Casado, I. García, T. Csendes and V.G. Ruiz, Heuristic rejection in interval global optimization,
J. Optim. Theory Appl. 118 (2003) 27–43.

[5] T. Csendes, Convergence properties of interval global optimization algorithms with a new class of
interval selection criteria, J. Global Optim. 19 (2001) 307–327.



100 T. Csendes / New subinterval selection in interval global optimization

[6] T. Csendes, Numerical experiences with a new generalized subinterval selection criterion for interval
global optimization, Reliable Comput. 9 (2003) 109–125.

[7] T. Csendes and D. Ratz, Subdivision direction selection in interval methods for global optimization,
SIAM J. Numer. Anal. 34 (1997) 922–938.

[8] R. Hammer, M. Hocks, U. Kulisch and D. Ratz, C++ Toolbox for Verified Computing (Springer,
Berlin, 1995).

[9] E. Hansen, Global Optimization Using Interval Analysis (Marcel Decker, New York, 1992).
[10] R. Horst and P.M. Pardalos, eds., Handbook of Global Optimization (Kluwer, Dordrecht, 1995).
[11] R.B. Kearfott, Rigorous Global Search: Continuous Problems (Kluwer, Dordrecht, 1996).
[12] O. Knüppel, BIAS – Basic Interval Arithmetic Subroutines, Technical Report 93.3, University of

Hamburg (1993).
[13] M.Cs. Markót, T. Csendes and A.E. Csallner, Multisection in interval branch-and-bound methods for

global optimization II. Numerical tests, J. Global Optim. 16 (2000) 219–228.
[14] R.E. Moore and H. Ratschek, Inclusion functions and global optimization II, Math. Programming 41

(1988) 341–356.
[15] H. Ratschek and J. Rokne, New Computer Methods for Global Optimization (Ellis Horwood, Chich-

ester, 1988).
[16] D. Ratz and T. Csendes, On the selection of subdivision directions in interval branch-and-bound meth-

ods for global optimization, J. Global Optim. 7 (1995) 183–207.
[17] S. Skelboe, Computation of rational functions, BIT 14 (1974) 87–95.
[18] R. Stateva and S. Tsvetkov, A diverse approach for the solution of the isothermal multiphase flash

problem, application to vapor-liquid-liquid systems, Canadian J. Chem. Engrg. 72 (1994) 722–734.
[19] A. Törn and A. Žilinskas, Global Optimization (Springer, Berlin, 1987).


