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Abstract. This article proposes an approach for investigating the exponential stability of a nonlinear
interval dynamical system with the nonlinearity of a quadratic type on the basis of the Lyapunov’s
direct method. It also constructs an inner estimate of the attraction domain to the origin for the system
under consideration.

1. Introduction

There are a considerable number of works devoted to the stability problem of
dynamical systems in the state space with interval uncertainty. Omitting a detailed
discussion of the advantages, disadvantages and computational complexity of each
approach offered before we only discuss here some questions that remain open.
At first sight, of the stability problem for interval dynamical systems given in

the state space (in the light of the result of the work [8]) appear to be deceptively
simple, even for the linear case. The unsuccessful attempts to generalize the result
of the work [8] for the case of interval matrices [3], [4], [7] and the results of the
book [9] show that the stability problem for interval matrices is NP-hard.
Unlike the linear case, there are fewer works devoted to the stability problem for

the class of nonlinear interval dynamical systems given in the state space, because
developing any investigation method for the class of nonlinear interval dynamical
systems is obviously more difficult than for the class of linear ones. In our paper
an approach developing the Lyapunov’s direct method for solving the exponential
stability problem for nonlinear interval dynamical systems given in the state space
with the quadratic nonlinearity is proposed. The condition obtained using this
approach for analyzing the exponential stability of the system under investigation
does not require much computational work.
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2. Problem Statement

The object of our attention is a dynamical system of which the perturbed motion can
be described in the state space using the following nonlinear differential equation
with uncertain parameters

ẋ(t) = (Ac + A)x(t) + X(t)(Bc + B)x(t), x(t0) = x0, t [t0, ), (2.1)

where t is the independent variable (time), x(t) = (xi(t)) is the state vector; the
components xi(t) of the state vector x(t) are continuously differentiable functions
on [t0, ), i.e. xi(t) C1[t0, ), i = 1, 2, …, n; at the initial time t0 the value of the
state vector is supposed to be known x0 and belong to some open vicinity D R

n

of the origin. The matrix X(t) is of the block-diagonal form

X(t) = Diag{xT (t), xT (t), …, xT (t)︸ ︷︷ ︸
n

},

i.e. X(t) has the same block-diagonal elements equal to the transposed state vector
xT (t). The constant matrices Ac R

n×n and Bc R
n2 ×n are known, the matrix Bc

has the following block view

Bc =



B1c
B2c
...
Bnc


 , (2.2)

where Bic R
n×n, i = 1, 2,…, n are the known constant matrices. Parameter uncer-

tainty in the system (2.1) is caused by two unknown constant matrices A R
n×n

and B R
n2 ×n. These matrices are supposed to be able to take values from the

given interval matrices [1], [10] with known bounds

A [− A, A], B [− B, B],

where A = | A| R
n×n, B = | B| R

n2 ×n are the given constant matrices, the
matrices B and B having the block view similar to (2.2)

B =




B1
B2
...
Bn


 , B =




B1

B2
...
Bn


 ,

where Bi, Bi R
n×n, i = 1, 2,…, n. The operation of taking absolute value | |

concerning matrices and vectors is understood componentwise. We also suppose,
that −Ac � [− A, A]. The latter condition denotes, that not all elements of the
interval matrix [Ac − A, Ac + A] contain zero simultanously.
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For any combination of fixed values of the matrices A [− A, A] and
B [− B, B] the differential equation (2.1) has a unique solution for the giv-
en x0 D R

n. For the zero initial value x0 = 0 we have the trivial solution
x(t, t0, x0) = x(t, t0, 0) 0, which is an equilibrium position of the system (2.1).

DEFINITION 2.1. The trivial solution x(t, t0, 0) 0 of the system (2.1) is said to be
exponentially stable when t → , if there exist such positive constants N and ,
that for any values A [− A, A] and B [− B, B] and any solution x(t, t0, x0)
for x0 D the following inequality

||x(t, t0, x0)||2 ≤ N||x(t0)||2 exp
(− (t − t0)

)
holds, where || ||2 is the Euclidean norm.
The system (2.1) can have the exponential stability property not for all initial

values x0 D, but for some subset D∗ D containing the origin. We shall call the
set of all those initial values x0 for which the system (2.1) is exponentially stable
an attraction domain to the origin for the exponential stability property.
Our task is to find the attraction domain or its inner estimation and condi-

tions under which the equilibrium position x(t, t0, 0) 0 of the nonlinear interval
dynamical system (2.1) is exponentially stable in the sense of Definition 2.1.

3. Main Result

To find exponential stability conditions we use the Lyapunov’s direct method and
choose Lyapunov’s function from the quadratic forms class

V(x) = xTHx, (3.1)

where H R
n×n, H = HT � 0 is the symmetric positive definite matrix to be

determined from the following matrix equation

ATc H + HAc + HH = −Q, (3.2)

where Q R
n×n, Q = QT � 0 is some symmetric positive definite matrix.

We enter the interval matrices Bi = [Bic − Bi , Bic + Bi], i = 1, 2,…, n and the
following value

l =
n∑
i=1

(
max
Bi Bi

�

(
1
2
(Bi + B

T
i )
))2

into consideration, where �( ) is the spectral radius of a real square matrix. The
minimal and maximal eigenvalues of a real square symmetric matrix are denoted
as ( ) and ( ) respectively.
In the space R n we construct the closed set

E(µ) = {x R
n | V(x) ≤ (H)µ / l}, (3.3)
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where µ R , µ > 0. The set (3.3) is a hyperellipsoid having its center in the origin
of R n. The value (H)µ / l is inversely proportional to the square of the major axis
length of the hyperellipsoid V(x) = 1.
The following theorem gives an exponential stability condition for the system

under consideration.

THEOREM 3.1. Let for the given matrices Ac, A R
n×n, Bc, B R

n2 ×n and
some symmetric positive definite matrix Q R

n×n, Q = QT � 0 the matrix equation
(3.2) has the symmetric positive definite solution H R

n×n, H = HT � 0, and the
inequality

(Q) > �( T
A |H| + |H| A)

holds. Then the trivial solution x(t, t0, 0) 0 of the system (2.1) is exponentially
stable for x0 E(µ), 0 < µ < (Q)− �( T

A |H| + |H| A), and the set (3.3) belongs
to the attraction domain to the origin.

Proof. We denote A = Ac + A and B = Bc + B for A [− A, A] and
B [− B, B]. After simple transformations one can obtain the following expres-
sion for the time derivative of the function (3.1) on the motion trajectories of the
system (2.1)

V̇(x) = ẋT(t)Hx(t) + xT (t)Hẋ(t)

=
(
Ax(t) + X(t)Bx(t)

)T
Hx(t) + xT (t)H

(
Ax(t) + X(t)Bx(t)

)
= xT (t)(ATH + HA)x(t) + xT (t)

(
BTXT(t)H + HX(t)B

)
x(t)

= xT (t)(ATH + HA + HH)x(t)− xT (t)
(
X(t)B− H

)T(
X(t)B− H

)
x(t)

+ xT (t)BTXT(t)X(t)Bx(t).

Since xT (t)(X(t)B− H)T(X(t)B− H)x(t) ≥ 0 we can write

V̇(x) ≤ xT (t)(ATH + HA + HH)x(t) + xT (t)BTXT(t)X(t)Bx(t)

≤ xT (t)(ATc H + HAc + HH)x(t) + |xT (t)|( T
A |H| + |H| A)|x(t)|

+ xT (t)BTXT(t)X(t)Bx(t).

Now we shall find an upper estimate for the first two items of the last
inequality

xT (t)(ATc H + HAc + HH)x(t) + |xT (t)|( T
A |H| + |H| A)|x(t)|

≤ − (Q)xT (t)x(t) + �( T
A |H| + |H| A)x

T (t)x(t).

Further, for positive values µ and µ satisfying the inequality 0 < µ < µ + µ <
(Q)− �( T

A |H| + |H| A) the following expression

−(
(Q) − �( T

A |H| + |H| A)
)
xT (t)x(t) + xT (t)BTXT(t)X(t)Bx(t)

< −(µ + µ)xT (t)x(t) + xT (t)BTXT(t)X(t)Bx(t)
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holds. Nowwe shall find a set of such x, that the right-hand side of the last expression
will be negative for any B = Bc+ B, B [− B, B]. It will be sufficient if we find
a set of such x, that for any B = Bc+ B, B [− B, B] the following inequality

µxT (t)x(t) − xT (t)BTXT(t)X(t)Bx(t) ≥ 0 (3.4)

holds. Taking the detailed representation of the expression xT (t)BTXT(t)X(t)Bx(t)
into account

xT (t)BTXT(t)X(t)Bx(t) = xT (t)( BT1 BT2 … BTn )Diag{x(t), x(t), …, x(t)︸ ︷︷ ︸
n

}

× Diag{xT (t), xT(t), …, xT (t)︸ ︷︷ ︸
n

}



B1
B2
…

Bn


 x(t)

= xT (t)( BT1 BT2 … BTn )

× Diag{x(t)xT (t), x(t)xT (t),…, x(t)xT (t)︸ ︷︷ ︸
n

}



B1
B2
…

Bn


x(t)

= xT (t)
n∑
i=1

(
BTi x(t)x

T (t)Bi
)
x(t)

=
n∑
i=1

xT (t)BTi x(t)x
T (t)Bix(t)

=
n∑
i=1

(
xT (t)Bix(t)

)2
,

where Bi = Bic + Bi, Bi [− Bi , Bi], we can obtain the inequality

xT (t)BTXT(t)X(t)Bx(t) ≤ (
xT (t)x(t)

)2 n∑
i=1

�2
(
1
2
(Bi + B

T
i )
)

≤ (
xT (t)x(t)

)2 n∑
i=1

(
max
Bi Bi

�

(
1
2
(Bi + B

T
i )
))2

=
(
xT (t)x(t)

)2
l.

Now it is easy to see, that for all x satisfying the inequality

µxT (t)x(t) ≥ (
xT (t)x(t)

)2
l

the relation (3.4) holds. The last inequality can be rewritten in the following equiv-
alent form

xT (t)x(t) = ||x(t)||22 ≤ µ / l,
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since l, µ > 0 and xT (t)x(t) ≥ 0.
On the other hand

V(x) = xT (t)Hx(t) ≥ (H)xT (t)x(t) = (H)||x(t)||22 .
Combining the last two relations one can write the following inequality

V(x) ≤ (H)µ / l.

If this inequality holds, then the inequality (3.4) will also hold. In other words,
for all x satisfying the last inequality, i.e. for x E(µ) the inequality (3.4) holds
for all B = Bc + B, B [− B, B]. Then in the set E(µ) the time derivative of
Lyapunov’s function (3.1) on the motion trajectories of the system (2.1) satisfies
the inequality

V̇(x) < −(µ + µ)xT (t)x(t) + xT (t)BTXT(t)X(t)Bx(t) ≤ − µxT(t)x(t)

uniformly on A [− A, A] and B [− B, B]. Thus, the time derivative of
Lyapunov’s function being a positive definite quadratic form is limited above with
a negative definite quadratic form. Applying some known results, for example [5],
[2], we conclude, that the trivial solution x(t, t0, 0) 0 is exponentially stable for
x0 E(µ). The set (3.3) belongs to the attraction domain to the origin. The values
and N in Definition 2.1 are determined as [5]

= (Q) /
(
2 (H)

)
, N =

√
(H) / (H).

The theorem is proved. �

Remark. To construct the set (3.3), which is an inner estimate of the attraction
domain to the origin, we must determine the value l. This calculation is a rather
difficult task. It is easy to see, that for constructing an inner estimate of the attraction
domain to the origin one can use an upper estimate for the value l. Now we shall
show how one can calculate upper estimate like this. Using arithmetical operations
of the classical interval arithmetic [1], [10] we calculate the interval matrices

Gi = (Bi + B
T
i ) / 2, i = 1, 2,…, n.

It is easy to note, that the following inequality

l =
n∑
i=1

(
max
Bi Bi

�

(
1
2
(Bi + B

T
i )
))2

≤
n∑
i=1

(
max

Gi =GTi Gi
�(Gi)

)2
holds, since

{Bi + BTi | Bi Bi} Gi, i = 1, 2, …, n,

where the inclusion sign is understood in the theoretical-set sense. Calculation of the
upper estimate for the value l is convenient in practice applying either Gershgorin’s
theorem [6] to the interval matrices Gi, or the following formula

max
Gi =GTi Gi

�(Gi) ≤ (Gic) + �( Gi),
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where Gi = [Gic − Gi ,Gic + Gi]. This formula can be easily obtained using the
results of [9].

4. Numeric Example

Let us consider the system (2.1) for n = 3 and the following matrices

Ac =


 −1.1 1 0

−0.95 −1 −0.05
0 0.05 −1


 , A =


 0.1 0 0
0.05 0 0.05
0 0.05 0


 ,

B1c =


 0.15 0 0

0 0 0
0 0 0


 , B1 =


 0.05 0 0

0 0 0
0 0 0


 ,

Bic = Bi = 0 for i = 2, 3.
For the matrix

Q = I =


 1 0 0
0 1 0
0 0 1




the solution of the matrix equation (3.2) is of the view

H �

 0.707151 −0.028814 −0.009662

−0.028814 0.762911 0.005555
−0.009662 0.005555 0.979233


 .

The matrix H in our case is symmetric positive definite ( 1(H) � 0.6948,
2(H) � 0.7747, 3(H) � 0.9798). Now we shall check the second condition of
the theorem. To do it we shall calculate the matrix

T
A |H| + |H| A �


 0.144312 0.041510 0.002685
0.041510 0.000555 0.087107
0.002685 0.087107 0.000555


 .

We have

(Q) = 1,

�( T
A |H| + |H| A) � 0.1607,

(Q)− �( T
A |H| + |H| A) � 0.8393 > 0.

Thus, all the conditions of the theorem are satisfied, therefore the system under
investigation is exponentially stable. Using the expressions given in the theorem
proof we can calculate the values and N

� 1
(2 0.9798)

� 0.5103, N �
√
0.9798
0.6948

� 1.1875.
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Figure 1. An inner estimate for the first component of x for x0 = (3.0, 3.0, 3.0)T and two
exponential curves for the found values and N.

To construct the set (3.3) one needs to find the matrices Gi, i = 1, 2, 3. It is easy
to check, that the matrices G2 and G3 are zero ones, but the matrix

G1 =


 [0.1, 0.2] 0 0

0 0 0
0 0 0


 .

By virtue of the special view of the matrices Gi, i = 1, 2, 3 it is not difficult to find
the value l = 0.04. For the matrix H found above we have (H) � 0.6948. On the
base of the proved theorem we infer, that the set (3.3) for the found values l, (H)
and 0 < µ < (Q)− �( T

A |H| + |H| A) � 0.8393 belongs to the attraction domain
to the origin for the system under consideration.
The results of graphical modelling of the system are shown in Figures 1 and 2.

Figure 1 shows an inner estimate for the first component of the state vector x of the
system under consideration when x0 belongs the hyperellipsoid. Similarly, Figure 2
shows an inner estimate for the second component of x. These figures also show
two exponential curves for the found values and N. As it can be easily seen from
these figures, the graphical results shown in these figures are in full agreement with
the theoretical results obtained above.

5. Conclusion

The approach offered in the paper on the base of the Lyapunov’s direct method
enables the investigation of exponential stability and to construct an inner estimate
of the attraction domain to the origin for nonlinear interval dynamical systems with
the quadratic nonlinearity. This approach does not require much computational
work. It is worth adding, that this approach can be also applied for investigating
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Figure 2. An inner estimate for the second component of x for x0 = (3.0, 3.0, 3.0)T and two
exponential curves for the found values and N.

the stability of nonlinear interval dynamical systems given in the state space with
nonlinearities of other types.

References

1. Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New
York, 1983.

2. Barbashin, E. A. and Tabuyeva, V. A.:Dynamical Systems with the Cylinder Phase Space, Nauka,
Moscow, 1969 (in Russian).

3. Barmish, B. R. and Hollot, C. V.: Counter-Example to a Recent Result on the Stability of Interval
Matrices by S. Bialas, Int. J. Contr. 39 (5) (1984), pp. 1103–1104.

4. Bialas, S.: A Necessary and Sufficient Condition for Stability of Interval Matrices, Int. J. Contr.
37 (4) (1983), pp. 717–722.

5. Demidovich, B. P.: Lectures on Mathematical Theory of Stability, Nauka, Moscow, 1967 (in
Russian).

6. Gantmacher, F. R.: The Theory of Matrices, Chelsea Publishing Company, New York, 1959.
7. Karl, W. C., Greschak, J. P., and Verghese, G. C.: Comments on “A Necessary and Sufficient
Condition for Stability of Interval Matrices”, Int. J. Contr. 39 (4) (1984), pp. 849–851.

8. Kharitonov, V. L.: About an Asymptotic Stability of the Equilibrium Position of Linear Dif-
ferential Equations Systems Family, Differential Equations 14 (11) (1978), pp. 2086–2088 (in
Russian).

9. Kreinovich, V., Lakeyev, A., Rohn, J., and Kahl, P.: Computational Complexity and Feasibility
of Data Processing and Interval Computations, Kluwer Academic Publishers, Dordrecht, 1997.

10. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cam-
bridge, 1990.


