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Abstract. In this paper we consider the asymptotic stability of linear interval time-delay systems on
the base of using Lyapunov’s direct method and methods of interval analysis. A sufficient condition
of asymptotic stability is obtained using the concept of Lyapunov–Krasovsky functional.

1. Introduction

A classical theory of stability was considered the last century and allows to inves-
tigate a rather wide spectrum of processes when having an exact mathematical
description. However, when constructing mathematical models of processes in
practice tolerances in model parameters may appear. One way to take into account
these tolerances is to specify intervals with known bounds. Mathematical models
of such processes can be represented using rules and terminology of intensively
developing interval mathematics.

First formulated in [4] and then studied and comprehensively solved in [6] the
investigation of asymptotic stability of a characteristic interval polynomial gave
an impetus to further research in this field. A further development of the theory
represented in [6] generalizes results for the case of interval quasipolynomials [8],
occurring when investigating differential time-delay equations. Among the subse-
quent researches considering the asymptotic stability of the equilibrium position
for differential time-delay equations one should mention [7] and the references
there. In that paper, which is a development of the theory represented in [8], some
sufficient conditions of the asymptotic stability of an interval quasipolynomial were
obtained on the base of four functions.

The field of dynamic properties of interval systems given in the state space is
somewhat different. Attempts to generalize the results of the paper [6] and to obtain
some analogues of Kharitonov’s theorems for interval matrices [2] failed. Nowadays
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there are a lot of papers considering the stability of linear interval systems given in
the state space. Among these papers the most fruitful one is the paper by Rohn [11].
There are very few papers devoted to dynamic properties of interval differential
time-delay equations given in the state space.

2. Notations and Statement of the Problem

Throughout the remaining part of the paper the bold font will denote interval
values, whereas the usual font will denote real (i.e., non-interval) ones. Underlining
and overlining an interval will denote the lower and upper bounds of an interval,
respectively; mid a = (a + a) / 2 is the midpoint of an interval a; rad a = (a − a) / 2
is the radius of an interval a. The operations mid, rad, taking lower and upper
bounds of intervals will be understood componentwise when applied to vectors and
matrices.

We consider the interval time-delay system, of which the mathematical model
is given in the state space by a differential time-delay equation in the following
vector-matrix representation

ẋ(t) = Ax(t) + Aτx(t − τ), x(θ) = ϕt0τ(θ), θ ∈ [t0 − τ; t0], (2.1)

where t ∈ [t0 − τ; ∞) is the independent variable (time); t0 ∈ R is the initial time;
τ ∈ R+ is the delay; x(t) is the state vector, x(t) = (xi(t)), xi(t) are continuous
functions on [t0 − τ; ∞), 1 ≤ i ≤ n; A, Aτ ∈ IR

n × n are given interval matrices,
A = (aij), aij = [aij, aij]; Aτ = (aτij), aτij = [aτij

, aτij], 1 ≤ i, j ≤ n; IR is the set of all
real intervals [1], [15]; ϕt0τ : [t0 − τ; t0] → R

n is the initial vector valued function
belonging to the space C[t0 − τ; t0] of continuous vector valued functions defined
on [t0 − τ; t0].

Throughout this paper a mathematical model of the system is a family of math-
ematical models of the systems

ẋ(t) = Ax(t) + Aτx(t − τ), x(θ) = ϕt0τ(θ), θ ∈ [t0 − τ; t0], (2.2)

where A ∈ A and Aτ ∈ Aτ . In a formal view all just said above will be written down
as

{x(t) ∈ R
n | ẋ(t) = Ax(t) + Aτx(t − τ),

x(θ) = ϕt0τ(θ), θ ∈ [t0 − τ; t0], A ∈ A, Aτ ∈ Aτ}. (2.3)

DEFINITION 2.1. The interval time-delay system (2.1) is called asymptotically
stable, if any system (2.2), where A ∈ A and Aτ ∈ Aτ is asymptotically stable, i.e.,
for any matrices A ∈ A, Aτ ∈ Aτ and for any ε > 0 one can find a δ > 0, such that
for any t ≥ t0 and for any initial function ϕt0τ(θ) given on the segment [t0 − τ; t0]
and satisfying the condition ||ϕt0τ||τ < δ , the solution x(t, ϕt0τ) of the system (2.2)
satisfies the conditions

||x(t, ϕt0τ)|| < ε
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and

lim
t→∞

||x(t, ϕt0τ)|| = 0,

where ||ϕt0τ||τ = max
t0 −τ≤θ ≤ t0

||ϕt0τ(θ)|| and || ⋅ || is the Euclidean norm in R
n.

In the following we consider conditions under which the interval time-delay
system (2.1) will be asymptotically stable in the sense of Definition 2.1.

3. Preliminaries

Nowadays there are two approaches to investigate the asymptotic stability of time-
delay control systems given in the state space. Both approaches are based on the
idea of using Lyapunov’s direct method. The essence of that concerning differ-
ential equations of the perturbed motion consists in choosing some continuous
function V(x1, x2, …, xn). It plays the role of a general distance from the origin
of coordinates. The decrease of the chosen function along motion trajectories of
the system under investigation means the asymptotic stability of the equilibrium
position x(t, ϕt0τ) ≡ 0. Since the direct extension of this method to the class of dif-
ferential time-delay equations has some limitations consisting, mainly, in severity
of finding conditions under which Lyapunov’s function decreases along the motion
trajectories of the system, in both approaches mentioned above the main effort was
done to overcome these difficulties. The first of them is based on Razumikhin’s
principle and scalar-optimization functions [10]. However, the idea by Krasovsky
[9] who proposed to use functionals possessing similar properties instead of Lya-
punov’s functions appears to be more fruitful. It is remarkable, that the second
theorem proved in [9] by Krasovsky on the asymptotic stability can be applied to
the class of interval differential time-delay equations (2.1) without any significant
changes. This theorem concerning (2.1) will be formulated as follows:

THEOREM 3.1. Let

||x(t)||τ2 =


 0∫

−τ

n∑
i= 1

x2
i (t + s) ds




1 / 2

.

The equilibrium position x(t, ϕt0τ) ≡ 0 with the initial function ϕt0τ(θ) ≡ 0,
t0 − τ ≤ θ ≤ t0 of the system (2.1) is asymptotically stable, if there exist a
functional V(x(t + s), t), some monotonic increasing functions W1(r), W2(r), r ≥ 0,
W1(0) = W2(0) = 0 and some continuous positive functions W(r) and ψ(r), r > 0,
such that

i) V
(
x(t + s), t

)
≤ W1

(
||x(t)||

)
+ W2

(
||x(t)||τ2

)
, (3.1)

ii) V
(
x(t + s), t

)
≥ W

(
||x(t)||

)
, (3.2)

iii) lim
∆t→+0

sup
∆V
∆t

≤ −ψ
(
||x(t)||

)
, (3.3)
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where the variable s changes within −τ ≤ s ≤ 0.

For the constant matrices A ∈ A and Aτ ∈ Aτ we can choose the functional in
the form V(x(t + s), t) = V(x(t + s)), i.e., it does not depend directly on t [9]. It is
easy to see, that the functional

V
(
x(t + s)

)
= xT (t)Hx(t) +

0∫
−τ

xT (t + ν)Dx(t + ν) dν, (3.4)

where H = HT ∈ R
n × n is a positive definite symmetric matrix, D =

diag{di > 0, 1 ≤ i ≤ n} is a diagonal matrix, satisfies the conditions (3.1)
and (3.2) of the theorem by Krasovsky. However, finding the right upper derivative

lim
∆t→+0

sup(∆V / ∆t) for the chosen functional (3.4) by virtue of (2.1), where supre-

mum is taken over all matrices A ∈ A and Aτ ∈ Aτ , may appear rather difficult in
practice. For thin matrices A ∈ A and Aτ ∈ Aτ the value of the right upper derivative
coincides with the usual time derivative of the functional (3.4) by virtue of (2.2).

4. Main result

In this section we shall prove Theorem 4.1 that gives us a sufficient condition for
the asymptotic stability of the equilibrium position x(t, ϕt0τ) ≡ 0 of the interval time-
delay system (2.1). For our further discussions we need the following definitions.

DEFINITION 4.1. An interval square matrix Q ∈ IR
n × n, Q = (qij), qij = [q

ij
, qij],

1 ≤ i, j ≤ n is said to be positive definite, if any matrix Q ∈ Q is positive definite,
i.e., xT Qx > 0 for all Q ∈ Q and all x ∈ R

n \ {0}.

DEFINITION 4.2. [5] Let Qsym, Qsym ∈ R
n × n be symmetric matrices and let the

inequality sign between matrices be understood componentwise. The set

Qsym = [Qsym, Qsym] = {Q ∈ R
n × n | Q = QT , Qsym ≤ Q ≤ Qsym},

is said to be a symmetric interval matrix. It is written as Qsym = (Qsym)T .

It is easy to see from Definition 4.2, that Qsym �∈ IR
n × n in the usual sense for

n > 1 when at least one off-diagonal element is a non-degenerate interval. In
[5] such matrices are called dependent interval matrices, since the off-diagonal
elements lying symmetrically relative to the main diagonal of this matrix depend
on each other.

In the present paper the solution of our task is based on the following quite
obvious assertion.

By virtue of the equations (2.2) let for arbitrary matrices A ∈ A and Aτ ∈ Aτ
the time derivative of the functional (3.4) be negative on the motion trajectories of
the system (2.2). Then the relation (3.3) is valid.
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According to the chosen approach let us find the time derivative of the functional
(3.4) along the trajectories of the system (2.2) for arbitrary, but fixed matrices A ∈ A
and Aτ ∈ Aτ:

dV(x(t + s))
dt

= ẋT(t)Hx(t) + xT (t)Hẋ(t) + xT (t)Dx(t) − xT (t − τ)Dx(t − τ)

=
(
xT (t)AT + xT (t − τ)AT

τ
)
Hx(t) + xT (t)H

(
Ax(t) + Aτx(t − τ)

)
+ xT (t)Dx(t) − xT (t − τ)Dx(t − τ)

= xT (t)(ATH + HA + D)x(t) + xT (t − τ)AT
τ Hx(t)

+ xT (t)HAτx(t − τ) − xT (t − τ)Dx(t − τ). (4.1)

Note, that the variable s takes here only the two values 0 and −τ [9]. Now we
introduce the vector y(t + s) = (yi(t + s)), 1 ≤ i ≤ 2n,

y(t + s) =
(

x(t)
x(t − τ)

)

and the matrix C ∈ R
2n × 2n

C =
(

ATH + HA + D HAτ
AT

τ H −D

)
. (4.2)

Then dV(x(t + s)) / dt can be rewritten as

dV(x(t + s))
dt

= yT(t + s)Cy(t + s). (4.3)

Therefore, if the time derivative (4.1) of the functional V(x(t + s)) is negative on
the motion trajectories of the system (2.2) for any matrices A ∈ A and Aτ ∈ Aτ ,
then the solution x(t) ≡ 0 of the system (2.2) is asymptotically stable for any A ∈ A
and Aτ ∈ Aτ . Hence, our interval time-delay system (2.1) is asymptotically stable
in the sense of Definition 2.1.

Let Qsym be some positive definite symmetric interval matrix. For the interval
matrices A and Qsym we now construct the following set of matrices H ∈ R

n × n

Σ∀∃(A, Qsym) = {H ∈ R
n × n | (∀A ∈ A)(∃Q ∈ Qsym)(ATH + HA = −Q)}

= {H ∈ R
n × n | (∀A ∈ A)(ATH + HA ∈ −Qsym)}. (4.4)

This set is called a tolerable solution set [13], [14] of Lyapunov’s interval matrix
equation

ATH + HA = −Qsym. (4.5)

The following theorem is valid.
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THEOREM 4.1. Let for the given interval matrix A and some positive definite
symmetric interval matrix Qsym the tolerable solution set (4.4) be not empty, i.e.,
Σ∀∃(A, Qsym) �= ∅. Assume that some symmetric matrix H̃ = H̃T ∈ Σ∀∃(A, Qsym) is
positive definite, and that there exist constants di > 0, 1 ≤ i ≤ n, such that for the
given interval matrix Aτ the interval matrix

C =

(
ATH̃ + H̃A + D H̃Aτ

AτH̃ −D

)
(4.6)

is negative definite. Then the equilibrium position x(t, ϕt0τ) ≡ 0 of the interval
time-delay system (2.1) is asymptotically stable.

Proof. By assumption for any matrices A ∈ A and Aτ ∈ Aτ the matrix

C̃ =
(

ATH̃ + H̃A + D H̃Aτ
AT

τ H̃ −D

)

is negative definite. By virtue of (4.3) the time derivative (4.1) of the functional
(3.4) is negative on the trajectories of (2.2) for any A ∈ A and Aτ ∈ Aτ , and for
H̃ instead of H. Thus, according to our assertion formulated above the conditions
of Theorem 4.1 are satisfied. Therefore the interval time-delay system (2.1) is
asymptotically stable. The theorem is proved. �

Now let us discuss how Theorem 4.1 can be applied in practice. The ques-
tions of choosing a positive definite symmetric interval matrix, positive constants
di > 0, 1 ≤ i ≤ n and investigating non-emptiness of the tolerable solution set
of Lyapunov’s interval matrix equation may appear. Choosing a positive definite
symmetric interval matrix is certainly an important task. Here we can only give
some small hints of its choice. One of the simplest way to construct a positive def-
inite symmetric interval matrix is to use Gershgorin’s circles that are well-known
in linear algebra. The same way is also suitable for choosing positive constants
di > 0, 1 ≤ i ≤ n. Besides this way one can use the natural interval extension
[15] of Silvester’s criterion of negative definiteness of a real matrix for choosing
positive constants di > 0, 1 ≤ i ≤ n, such that the interval matrix (4.6) is negative
definite. Applying this criterion allows to obtain algebraic inequalities concerning
di, 1 ≤ i ≤ n. It is also possible to apply this criterion for checking the positive
definiteness of the matrix H̃ (main diagonal minors of the matrix H̃ are positive).

Investigating non-emptiness of the tolerable solution set of interval systems
of linear algebraic equations is well studied now by Shary in the works [13],
[14]. However, as pointed out above, Qsym �∈ IR

n × n for n > 1 when at least one
off-diagonal element is a non-degenerate interval. Therefore, in order to apply the
results in [13], [14] for investigating non-emptiness of (4.5) we need some auxiliary
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constructions: using the given positive definite symmetric interval matrix Qsym we
construct the matrix Q = [Qsym; Qsym] ∈ IR

n × n and the set

Σ∀∃(A, Q) = {H ∈ R
n × n | (∀A ∈ A)(∃Q ∈ Q)(ATH + HA = −Q)}

= {H ∈ R
n × n | (∀A ∈ A)(ATH + HA ∈ −Q}

⊇ {H ∈ R
n × n | AT H + HA ⊆ −Q}, (4.7)

where AT H + HA is computed using interval arithmetic. The set (4.7) is a tolerable
solution set of the interval matrix equation

ATH + HA = −Q, (4.8)

having the interval matrix Q ∈ IR
n × n without dependencies in the right hand-

side. We shall call the equation (4.8) an auxiliary interval matrix equation of
Lyapunov.

THEOREM 4.2. Let the tolerable solution set (4.7) of the auxiliary interval matrix
equation of Lyapunov (4.8) be not empty, and let some symmetric matrix H̃ = H̃T

belong to this set, i.e.

H̃ = H̃T ∈ Σ∀∃(A, Q) �= ∅. (4.9)

Then

{H̃ ∈ R
n × n | H̃ ∈ Σ∀∃(A, Q), H̃ = H̃T} ⊆ Σ∀∃(A, Qsym). (4.10)

Proof. Since

(ATH̃ + H̃A)T = H̃TA + ATH̃T = H̃A + ATH̃ = ATH̃ + H̃A, ∀A ∈ A, (4.11)

the matrix AT H̃+H̃A is symmetric for any A ∈ A. Therefore, there exists a symmetric

matrix Q̃ = Q̃
T

∈ Q such that

ATH̃ + H̃A = −Q̃,

whence

ATH̃ + H̃A ∈ −Qsym.

Since the latter is true for any symmetric matrix H̃ satisfying (4.9) the inclusion
(4.10) is valid and the theorem is proved. �

In view of (4.7) we consider the following simple algebraic relation concerning
the matrix H:

|mid ATH + Hmid A + mid Q| ≤ rad Q − rad AT |H| − |H|rad A. (4.12)
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The relation (4.12) is similar to that offered by Rohn [12] and characterizes a class
of matrices H belonging to the set (4.7). From the relation (4.12) one can see, if the
matrix H̃ is a solution of the “midpoint” thin matrix equation of Lyapunov

(mid AT)H̃ + H̃(mid A) = −mid Q (4.13)

and satisfies the condition

rad AT |H̃| + |H̃|rad A ≤ rad Q, (4.14)

where the inequality sign is understood componentwise, then

H̃ ∈ Σ∀∃(A, Q).

The matrix equation (4.13) represents a system of linear algebraic equations. To
find its solution is possible by well-known methods of linear algebra. If the matrix
mid A is asymptotically stable, then the solution H̃ of the matrix equation (4.13)
is always symmetric for the symmetric matrix mid Q. We mentioned that non-
emptiness of the tolerable solution set of linear interval systems was also studied
in [13], [14].

5. Numeric example

Let us consider an interval time-delay system for n = 3


ẋ1(t) = [0; 0.01]x1(t) + x2(t) + [−0.01; 0.01]x2(t − τ),
ẋ2(t) = [−1;−0.9]x1(t) − x2(t) + [−0.1; 0]x3(t) + [0; 0.05]x1(t − τ),
ẋ3(t) = [0; 0.1]x2(t) − x3(t) + [0.1; 0.2]x2(t − τ) − [0.2; 0.4]x3(t − τ),

xi(θ) = ϕit0τ (θ), θ ∈ [t0 − τ, t0], 1 ≤ i ≤ 3.

It is easy to see, that

A =


 [0; 0.1] 1 0

[−1;−0.9] −1 [−0.1; 0]
0 [0; 0.1] −1


 , (5.1)

Aτ =


 0 [−0.01; 0.01] 0

[0; 0.05] 0 0
0 [0.1; 0.2] [−0.4;−0.2]


 .

The positive definite interval matrix

Q =


 [ 0.6; 1.4] [−0.2; 0.2] [−0.2; 0.2]

[−0.2; 0.2] [ 0.9; 1.1] [−0.2; 0.2]
[−0.2; 0.2] [−0.2; 0.2] [ 0.9; 1.1]


 (5.2)
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has the unit matrix as its midpoint, i.e.

mid Q = E =


 1 0 0

0 1 0
0 0 1


 .

The solution of the “midpoint” thin matrix equation of Lyapunov (4.13) for

mid A =


 0.05 1 0

−0.95 −1 −0.05
0 0.05 −1




and mid Q = E is:

H̃ =


 1.638414 0.612548 −0.011319

0.612548 1.111502 −0.020921
−0.011319 −0.020921 0.501046


 , (5.3)

that satisfies the matrix inequality (4.14), since

rad AT |H̃| + |H̃|rad A =


 0.2250962 0.08676845 0.0322394

0.08676845 0.0020921 0.0806274
0.0322394 0.0806274 0.0020921


 ,

rad Q =


 0.4 0.2 0.2

0.2 0.1 0.2
0.2 0.2 0.1


 , rad A =


 0.05 0 0

0.05 0 0.05
0 0.05 0


 .

The matrix (5.3) is positive definite, and therefore the interval matrix (5.1) under
consideration is asymptotically stable, as in [3]. Let us determine the matrix D from
the condition of negative definiteness of the matrix (4.6), so we have

AT
τ H̃ =


 [ 0.00000000; 0.03062730] [ 0.00000000; 0.05557510]

[−0.01864794;−0.01751604] [−0.01030966;−0.00821756]
[ 0.00226380; 0.00452760] [ 0.00418420; 0.00836840]

[−0.00104605; 0.00000000]
[ 0.05021779; 0.10032239]
[−0.20041840;−0.10020920]


,

H̃Aτ =


 [ 0.00000000; 0.03062730] [−0.01864794;−0.01751604]

[ 0.00000000; 0.05557510] [−0.01030966;−0.00821756]
[−0.00104605; 0.00000000] [ 0.05021779; 0.10032239]

[ 0.00226380; 0.00452760]
[ 0.00418420; 0.00836840]
[−0.20041840;−0.10020920]


.
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Rounding the obtained results to the nearest value having 3 digit after point we
write down the interval matrix C as

C =




[−1.225;−0.775] + d1 [−0.087; 0.087] [−0.032; 0.032]
[−0.087; 0.087] [−1.002;−0.998] + d2 [−0.081; 0.081]
[−0.032; 0.032] [−0.081; 0.081] [−1.002;−0.998] + d3

[ 0.000; 0.031] [ 0.000; 0.056] [−0.001; 0.000]
[−0.019;−0.018] [−0.010;−0.008] [ 0.050; 0.100]
[ 0.002; 0.005] [ 0.004; 0.008] [−0.200;−0.100]

[ 0.000; 0.031] [−0.019;−0.018] [ 0.002; 0.005]
[ 0.000; 0.056] [−0.010;−0.008] [ 0.004; 0.008]
[−0.001; 0.000] [ 0.050; 0.100] [−0.200;−0.100]

−d1 0 0
0 −d2 0
0 0 −d3




,

where C = CT , C = CT . It is easy to see, that the choice of d1 = 0.1 > 0,
d2 = 0.2 > 0, and d3 = 0.3 > 0 makes the interval matrix C negative definite,
because Gershgorin’s circles are in the left half-plane of the complex plane. The
last mentioned means, that the interval time-delay system (2.1) is asymptotically
stable.

6. Conclusion

Applying Lyapunov–Krasovsky functional for investigating the asymptotic stabil-
ity of interval time-delay system allows to obtain a sufficient condition of the
asymptotic stability of the indicated class of systems.
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