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Abstract

Model reduction of high order linear-in-parameters discrete-time systems is considered. The main novelty of the paper is
that the coefficients of the original system model are assumed to be known only within given intervals, and the coefficients
of the derived reduced order model are also obtained in intervals, such that the complex value sets of the uncertain original
and reduced models will be optimally close to each other on the unit circle. The issue of inclusion of one value set in another
is also addressed in the paper. The meaning of model reduction is defined for linear-in-parameters systems. The algorithm
for obtaining the value sets of such systems is derived in the paper. Then, applying a novel approach, the infinity norm of
“distance” between two polygons representing the original and the reduced uncertain systems is minimized. A noteworthy
point is that by a special definition of this distance the problem is formulated as a linear semi-infinite programming problem
with linear constraints, thus reducing significantly the computational complexity. Numerical example is provided.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Many different methods of model reduction
are heavily exploited by control engineers in the
framework of classical control when the origi-
nal model is assumed absolutely known and fixed
[6,9,12,15–17,21–23,25]. However, in most “real
life” engineering systems, there are many sources of
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uncertainties and inaccuracies about the exact values
of the system’s parameters.

Then, the basic question is: what is the meaning of
model reduction for systems with uncertain parame-
ters?

This has not yet been thoroughly defined in the lit-
erature. Do we want the reduced order model to be a
fixed-coefficientsmodel approximating some kind of
a “nominal” model, or do we want the reduced order
model to beuncertainas well? Both possibilities have
their own applications and they are both equally im-
portant. The fixed-coefficients reduced model is appli-
cable when it is needed to simplify the complexities of
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the original system for purposes of simulation or anal-
ysis or design. It is absolutely necessary if it relates to
a controller which actually has to be realized. On the
other hand, the uncertain reduced model is applicable
when it is needed for stability analysis or for a worst
case analysis or for any other purpose of simulation
and design where retaining the uncertainty structure is
necessary.

Previous publications which relate to the problem of
model reduction of systems with uncertainties are very
few [2–4,7,10,14,18,20,24]. In [4], the balanced trun-
cation method is extended for uncertain systems using
linear matrix inequalities (LMIs) with constraints on
the minimal eigenvalue. In[14] the issue of inclusion
of the original set in the reduced one is addressed us-
ing an iterative algorithm. In[2,24] the iterative meth-
ods based on LMIs are presented resulting in local
convergence. All the above algorithms are character-
ized by high computational complexity. In[20,10] the
set-membership approach is utilized to obtain the re-
duced order model consistent with the measurements
and the assumptions on the noise. However,[20,10]
solve only a problem of inclusion of one specific value
set in another, and not their maximal similarity. Addi-
tionally, [10] provides only a suboptimal solution to
this problem and[20] finds just the value sets consis-
tent with the reduced system model and not the coef-
ficients of the reduced system. In[18] the “dominant
eigenvalue” method is extended using interval arith-
metics. In[3], the Routh–Pade approximation method
is extended for uncertain systems using interval arith-
metics. Naturally, the use of interval arithmetics re-
sults in conservative solutions. In[7], the first mean-
ing of model reduction of uncertain systems is treated.
A method to reduce an interval FIR system to a fixed-
coefficients system has been derived, applying a useful
novel definition of the “distance” between the original
and the reduced models. In the present paper, the sec-
ond meaning of model reduction of uncertain systems
is treated. The coefficients of the derived reduced or-
der model are obtained in intervals, such that the com-
plex value sets of the uncertain original and reduced
model will be optimally close to each other, on the
unit circle.

The derived method yields optimal results, with
regard to the specified criterion, for a class of single-
input single-output, linear, shift-invariant, discrete-
time systems. The considered class of transfer

functions of the system, to be defined in the next sec-
tion, includes, beside the interval polynomials (FIR
interval systems), polynomials whose coefficients are
linear functions of interval parameters, rational func-
tions with fixed denominator, and more. Furthermore,
an arbitrary interval rational transfer function can also
be treated by our method, but in a sub-optimal way:
firstly reduce the order of the denominator polynomial
by a fixed coefficients polynomial using the method in
[7], then use the method derived in the present paper
to reduce the rational function with fixed denominator.

Our method is based on an appropriate novel def-
inition of the “distance” between the two uncertain
systems: the original one and the reduced one. The
definition is such that when the value sets of the two
systems are identical at a certain frequency, the dis-
tance becomes zero at this frequency. This is not the
case in[4], for example. Also, if the uncertainty of the
systems tends to zero, the definition of the distance
becomes that of the geometrical distance between two
points in the complex plane, as is the case in model
reduction of fixed-coefficients systems.

The formulation of the method is carried out in such
a way that it becomes alinear semi-infinite program-
ming problem. This reduces significantly the compu-
tational complexity.

To summarize the above, the main contributions of
the present paper are:

1. An uncertain system model is reduced, retaining the
approximate original complex-valued uncertainty,
in the frequency domain. In[7], an uncertain system
model was reduced to a fixed-coefficients model,
without uncertainty. These two different objectives
are almost opposite.

2. The derived method is applicable to any transfer
function whose uncertainty is linear-in-parameters
and, in a sub-optimal way, to any rational inter-
val function. In[7], only interval polynomials were
considered.

3. Although in the present case the value-set of the
reduced model at each frequency is a convex poly-
gon in the complex plane and not a point as is the
case in[7], here, too, the formulation is carried
out in such a way that it becomes a linear semi-
infinite programming problem. Hence, the compu-
tational complexity is significantly reduced in the
same manner as done in the simpler case of[7].
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The structure of the paper is as follows. In Sec-
tion 2 we formulate the problem of model reduction.
Then, in Section 3 we derive an algorithm for obtain-
ing the value set of uncertain linear-in-parameters sys-
tem at each frequency. Based on the results of Section
3 we formulate in Section 4 a linear semi-infinite pro-
gramming problem which is equivalent to the origi-
nal model reduction problem. Finally, example is pro-
vided in Section 5. This is an illustrative example of
IIR system, which indicates the effectiveness of the
method. We conclude in Section 6.

2. Problem formulation

Consider systems with the following class of trans-
fer functions

f (z)=
N∑
i=0

ni Ni(z), ni ∈ [ni, ni], ni, ni ∈ R, (1)

whereNi(z) are any given continuous and derivable
functions of the complex variablez, andni , ni , i =
0, . . . , N are given real numbers, whereni�ni . Let
N ′ denote the number of interval coefficients off (z),
i.e., those for whichni >ni .

Several examples of frequently usedNi(z) are:
Ni(z) = z−i , Ni(z) = ∑C

j=0 c
(i)
j z

−j and Ni(z) =
z−i/

∑D
k=0dkz

−k.
We wish to find the reduced system of the form

f̃ (z)=
X∑
i=0

xi Xi(z), xi ∈ [xi, xi], xi, xi ∈ R,

(2)

whereX<N is a pre-determined number,Xi(z) are
any given continuous and derivable functions of the
complex variablez andxi , xi , i = 0, . . . , X are to be
determined.

In what follows we define the measure of similarity
between two uncertain systems of the form (1) and
(2), thus formulating the purpose of model reduction
for such systems.

We will adopt the idea of infinity-norm of error to
define the cost function for measuring the quality of
approximation of the original system. Mathematically,
we want to minimize the

max
�

d(f (ej�), f̃ (ej�)), (3)

Fig. 1. Example value set of a linear-in-parameters system together
with corresponding shaded-sectors containing (9).

whered denotes “distance”. It remains to define the
distanced(f (ej�), f̃ (ej�)) between the original un-
certain system and the reduced uncertain system at
each frequency�.

The value sets of both the original (1) and the re-
duced (2) systems are represented by convex combi-
nations of points in the complex plane. Consider, for
example, (2). It is represented by a convex combi-
nation of points

∑X
i=0 x̆iXi(z) where x̆i is eitherxi

or xi . Thus, the value set of any uncertain system of
the form (1) or (2) is represented, for each frequency
� = �0 (obviously,z = ej�), by a convex polygon in
the complex plane (Fig. 1).

Given two polygons representing (1) and (2), let us
define the distance between them to be themaximum
of the following set of distances: (1) the distances from
each vertex of polygon 1 to the polygon 2, (2) the
distances from each vertex of polygon 2 to the poly-
gon 1. For several examples of the distance between
polygons seeFig. 2. The distance so defined is zero
for identical polygons and is gradually increasing for
larger differences between the polygons. Furthermore,
this definition agrees with the usual definition of dis-
tance in the degenerate case of zero uncertainty in both
the original and the reduced systems. By requiring to
minimize this distance we effectively demand the first
polygon to be maximally inside the second polygon
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Fig. 2. Examples explaining the definition of distance between
polygons.

and at the same time we demand the second polygon
to be maximally inside the first one.

Note that the distance between a point and a poly-
gon (defined to be the geometrical distance to the clos-
est point of the polygon) is a nonlinear function of
the coordinates of the point and the vertices of the
polygon—mainly because of the operation of absolute
value involved in the calculation.

The resulting problem of minimizing max�
d(f (ej�), f̃ (ej�)) is an optimization problem with
infinite number of nonlinear constraints (for each
� ∈ [−�,�) we demand

d(f (ej�), f̃ (ej�))<max
�

d(f (ej�), f̃ (ej�)), (4)

which is nonlinear constraint onxi andxi). As men-
tioned in the Introduction, we will formulate the
derivation in such a way that it becomes a linear semi-
infinite programming problem with linear constraints,
reducing significantly the computational complexity.

For some applications it is important, that the value
set of the original system will be contained in the value
set of the reduced system at all frequencies, or, on the
contrary, that the value set of the reduced system will
be contained in the value set of the original system.
Our algorithm is capable of coping with this kind of
problems too, as remarked at the end of Section 4.

3. Obtaining the value set of linear-in-parameters
system

Firstly, we discuss how to obtain the polygon rep-
resenting an uncertain system of the form (1) at any

given frequency�0. Obviously, the same procedure is
applicable for (2) with appropriate substitutions. Let
us assume that the numbering of the polygon vertices
is done in the counterclockwise direction. It turns out
(see (5) below) that we can first calculate the slopes
of the edges of the polygon (independently of the co-
efficientsni) and then, depending on the actual coef-
ficientsni , to obtain the whole polygon. This separa-
tion into two stages is very important in the following
solution.

Due to the fact that every interval coefficientni can
take any values in[ni, ni] independentlyof other co-
efficients, it contributes to the polygon two boundary
(i.e., exposed) edges with the slopes arg(Ni(ej�0)) and
arg(Ni(ej�0))+�, where arg(�) denotes the phase of
�. Then, to obtain the order of the slopes when fol-
lowing the boundary of the polygon in the counter-
clockwise direction, find (by simple sort procedure)
the sequencesmi andai , so that{(arg(Nmi (e

j�0)) +
ai�)mod 2�} form an increasing sequence.

The important conclusion is that foranycoefficients
ni the following slopes

arg(Nmi (e
j�0))+ ai� (5)

will be observed when following the boundary of the
polygon in the counterclockwise direction.

To determine the values of the coefficients in (1)
corresponding to each vertexpk of the polygon, note
that every two adjacent vertices differ by only one
coefficient, namely,

pk+1 − pk = sk(nmk − nmk )Nmk (e
j�0),

sk ∈ {−1,1}. (6)

Consequently, when following the boundary of the
polygon in the counterclockwise direction and passing
the edge with the slope arg(Nmk (e

j�0)), all the coeffi-
cients of the new vertexpk+1 will be exactly the same
as in the previous vertexpk, except the coefficientnmk ,
which will change fromnmk to nmk . Similarly, when

passing the edge with the slope arg(Nmk (e
j�0))+� the

nmk will change fromnmk to nmk . It is easy to extend
this rule to get all the vertices of the polygon—for each
vertex we should note the slopes of previousN + 1
edges (i.e., theN +1 edges in the clockwise direction
starting from the given vertex) and apply the above
rule to calculate the correspondingN + 1 coefficients
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Fig. 3. Calculating coefficients of the vertexp0. To shorten the
notation eachNi(e

j�) is denoted byNi .

of the vertex (seeFig. 3). Namely, denoting

âk,i = a(N+k+[(i−k)mod(N+1)]+1)mod(2N+2), (7)

the vertices of the polygon are

pk(e
j�0)=

N∑
i=0

(âk,inmi + (1 − âk,i )nmi )Nmi (e
j�0),

k = 0, . . . ,2N + 1. (8)

Note that when some of the coefficients off (ej�0)

are fixed, the number of vertices decreases to 2N ′ re-
sulting in redundantpk ’s in (8). Changing the notation
and formulation to providepk ’s without redundancies
is rather a straightforward task but will not be explic-
itly written down here in order to avoid complicated
notation.

Note that the above procedure should be applied
at each frequency where we want to obtain the poly-
gon. However, for some widely used forms ofNi(z) it
is possible to avoid the computational burden of this
procedure. For example, forNi(z)= z−i andNi(z)=
z−i/

∑D
k=0 dkz

−k, following the Primary Algorithm
in [5], the frequency axis can be divided into a fi-
nite number of intervals such that on each interval
the vertices of the polygon, representing the uncer-
tain polynomial in the numerator, are described by
some fixed-coefficients polynomials and the order of
these polynomials is fixed. The Primary Algorithm

determines uniquely and analytically the above poly-
nomials. Whenever possible, use this highly efficient
algorithm in the solution.

4. Algorithm for model reduction

The solution of the problem (similar to several al-
gorithms for model reduction offixed-coefficientssys-
tems with infinity-norm cost function[12]) is based on
linear semi-infinite programming (LSIP) technique. In
order to use it, we should reformulate our problem as
a linear programming problem with infinite number of
linear constraints.

Consider a polygon representing some uncertain
system, f.e. (1), at some frequency�0. Given the
counterclockwise-ordered vertices of the polygon
representing (1), saypi, i = 0, . . . ,2N + 1, let us as-
sociate with each vertexpi a set of unit-norm vectors

ej�i , �i ∈ [arg{j (pi−1 − pi)},
arg{j (pi − pi+1)}), (9)

wherep−1 = p2N+1, p2N+2 = p0, etc.
Let us also define thesigned distancefrom a point,

sayx, to a polygon, sayP, to be the distance fromx
to the closest point ofP whenx is outsideP, and to
beminus the distancefrom x to the closest point on
the boundary ofP whenx is insideP.

Then, Theorem 1 from[7], slightly reformulated
here, is:

Theorem 1 (Dolgin and Zeheb [7] ). Given an
arbitrary point x and a polygon with vertices
pl, l = 0, . . . ,2N + 1 in the complex plane, cal-
culate the inner products of the vector(x − pl)

with all unit-norm vectors in the setej�l , namely,
Re{e−j�l (x − pl)}, for all verticespl . The maximum
of all these inner products is equal to the signed
distance from x to the polygon.

This theorem enables us to formulate the distance
from a point to a polygon representing some uncertain
system at some frequency as the maximum of an in-
finite number of functionsRe{e−j�l (x − pl)}. These
functions are linear in the coefficients of the fixed-
coefficients system (i.e.,x) but nonlinear in the coef-
ficients of the uncertain system (see (9)). This nonlin-
earity would cause a problem when formulating the
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distance from the vertices off (ej�0) to the polygon
representingf̃ (ej�0).

However, using (5) and (8), which imply that the
slope of the edge originating inpl is arg(Nml (e

j�0))+
al� when following the boundary of the polygon in
the counterclockwise direction, we obtain

arg{j (pl − pl+1)} = arg(Nml (e
j�0))+ al� − �

2
(10)

and thus does not depend on the actual values of the
coefficientsni . Now, from (9), (10) and Theorem 1,
we can formulate the signed distance from a point to
a polygon as a maximum oflinear functions of the
coefficients of both uncertain systems:

maxRe{e−j�l (x − pl)},

�l ∈
[
arg(Nml−1(e

j�0))+ al−1� − �
2
,arg(Nml (e

j�0))

+ al� − �
2

)
, l = {1, . . . ,2(N + 1)}. (11)

Proceeding further, for each� ∈ [−�,�), ob-
tain, using the procedure derived in Section 3, the
sequencesai(�) ∈ {0,1},mi(�) ∈ {0, . . . , N}, i =
{0, . . . ,2N + 1} corresponding to the uncertain
system (1) and, similarly, the sequencesbi(�) ∈
{0,1}, yi(�) ∈ {0, . . . , X}, i = {0, . . . ,2X + 1} cor-
responding to the uncertain system (2). Then, due to
(8), the vertices of the original system are

pk(e
j�)=

N∑
i=0

(âk,i (�)nmi(�) + (1 − âk,i (�))nmi(�))

×Nmi(�)(e
j�), k = 0, . . . ,2N + 1

(12)

and the vertices of the reduced system are

p̃l(e
j�)=

X∑
i=0

(b̂l,i (�)xyi(�) + (1 − b̂l,i (�))xyi(�))

×Xyi(�)(e
j�), l = 0, . . . ,2X + 1. (13)

Finally, the problem of finding thexi , xi so as to
minimize the distance between the original uncertain
system (1) and the reduced uncertain system (2) as
defined in Section 2, can be reformulated as a Linear
Semi-Infinite Programming problem, by introducing

the artificial quantityg:

minimize g, s.t.

Re{e−j�k(�,s)(p̃l(ej�)− pk(e
j�))}�g, (14a)

Re{e−j �̃l (�,s)(pk(ej�)− p̃l(e
j�))}�g, (14b)

∀� ∈ [−�,�), s ∈ [0,1), k = 1, . . . ,2N + 2,

l = 1, . . . ,2X + 2

xi − xi�0, i = 0, . . . , X. (14c)

Note that (see (7), (11), (12), (13)):

�k(�, s)

=
(
arg(Nmk−1(�)(e

j�))+ ak−1(�)� − �
2

)
(1 − s)

+
(
arg(Nmk(�)(e

j�))+ ak(�)� − �
2

)
s, (15a)

�̃l (�, s)

=
(
arg(Xyl−1(�)(e

j�))+ bl−1(�)� − �
2

)
(1 − s)

+
(
arg(Xyl(�)(e

j�))+ bl(�)� − �
2

)
s, (15b)

pk(e
j�)=

N∑
i=0

(âk,i (�)nmi(�)

+ (1 − âk,i (�))nmi(�))Nmi(�)(e
j�), (15c)

p̃l(e
j�)=

X∑
i=0

(b̂l,i (�)xyi(�)

+ (1 − b̂l,i (�))xyi(�))Xyi(�)(e
j�), (15d)

âk,i (�)
= a(N+k+[(i−k)mod(N+1)]+1)mod(2N+2)(�), (15e)

b̂l,i (�)
= b(X+l+[(i−l)mod(X+1)]+1)mod(2X+2)(�). (15f)

Note, that the constraints (14a) demand the poly-
gon of the reduced system to be maximally inside
the polygon of the original system at each frequency,
while the constraints (14b) demand, vice a versa, the
polygon of the original system to be maximally inside
the polygon of the reduced system at each frequency.
Moreover, if the value set of the reduced system is de-
sired to be contained in the value set of the original
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system at all these frequencies, then theg in the
constraints (14a) should be replaced by 0. If, on
the contrary, the value set of the original system is
desired to be contained in the value set of the re-
duced system, then theg in the constraints (14b)
should be replaced by 0. Note also, that when some
of the coefficients of (1) or (2) are fixed then some
of the above constraints are redundant and thus can
be removed.

This problem is a linear semi-infinite programming
problem (i.e., linear programming problem with infi-
nite number of linear constraints) which can be solved
by well-known efficient techniques[1,8,11,13,19].
Note, that most of the techniques are extensions of
the algorithms for regular linear programming case
and have similar properties. For example, there exists
simplex extension (see[1]) for semi-infinite linear
programming which is rather efficient and provides
the optimal solution. Also, a nonlinear system of
equations based on Kuhn–Tucker conditions may be
derived, from which an optimal solution of the LSIP
problem may be constructed (see[11]). Note, that
the solution of general (non-linear) semi-infinite pro-
gramming problems is also based on Kuhn–Tucker
conditions, but, the resulting system is much more
complicated and the optimality of the resulting so-
lution cannot be guaranteed in that (nonlinear) case.
Additionally, there exist interior-point methods for
linear semi-infinite programming problem (see[8]).

5. Example

In this example we consider an order reduction of
a linear-in-parameters uncertain system which is IIR
as well as polytopic.

Let the original transfer function be given by

f0(z
−1)= z−18

z−3 + 2z−2 + 5
+ 3z−17 − 4z−16

+ 15z−15 + 13z−14 + 10(z−13 + z−8)

− 8
z−12

z−2 + z−1 + 3
+ 23z−11 + 12z−10

+ 1z−9 + 18z−8 + 25z−7 − 13z−6

+ 34z−5 + 42z−4 − 32z−3 + 160z−2

+ 200z−1 + 100.

-4 -3 -2 -1 0 1 2 3 4
30

40

50

60

70

80

90

100

frequency

E
rr

or

Fig. 4. Approximation of linear-in-parameters uncertain system.
Reduction from order 18 to order 5.

We introduce 20% uncertainty in all the coefficients
(not including the fixed denominators) and we seek
for the reduced linear-in-parameters uncertain system
of order 5 of the form

5∑
i=0,i �=4

ãiz
−i + ã4

z−4

z−1 + 3
(16)

approximating the complex valued frequency be-
haviour of the original transfer function.

Applying the algorithm of model reduction derived
in this paper we obtain

f̃ (z−1)=
5∑

i=0,i �=4

ãiz
−i + ã4

z−4

z−1 + 3

where

ã0 = [64.69,121.45], ã1 = [164.14,247.56],
ã2 = [108.98,169.10], ã3 = [−29.26,−1.37],
ã4 = [127.13,127.13], ã5 = [37.89,111.36].

The error of approximation is shown inFig. 4. In
Fig. 5we show both the original (solid polygons) and
the reduced (dashed polygons) polynomials on some
grid of frequencies in[0,�] range. The complemen-
tary interval[−�,0] may be formed by symmetry con-
siderations. Qualitatively, we can conclude that the
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Fig. 5. Approximation of linear-in-parameters uncertain system. Reduction from order 18 to order 5.

reduced order polygons closely track the pattern of the
original polygons.

6. Conclusion

In this paper we discuss and define the meaning of
model reduction for uncertain systems. We propose
a new method for approximation of a given uncer-
tain linear-in-parameters system by uncertain linear-
in-parameters system of a pre-determined lower order.
Our method may be considered as a generalization
of the Complex Chebyshev Approximation problem
which makes the latter applicable to uncertain sys-
tems.A general algorithm for obtaining the value set of
uncertain linear-in-parameters system is proposed. In
special cases of systems with specific frequently used
transfer functions, the algorithm becomes even more
effective using some recently derived results. A major
advantage of the method derived in the present paper is
its formulation as a semi-infinite linear programming
problem. This significantly reduces the computational
complexity. Finally, an illustrative example indicates
that our method is capable of providing effective ap-
proximation to the original uncertain polynomial by a

lower order uncertain polynomial, with approximately
similar uncertainty structure.
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