
Interval-Affine Gaussian Algorithm for
Constrained Systems

RAMIL R. AKHMEROV
Mathematical Department, Altai State University, 90, Krasnoarmeiskii prosp., 656049 Barnaul,
Russia, e-mail: arr@ctta.ru

(Received: 3 November 2004; accepted: 28 February 2005)

Abstract.The paper presents interval-affine Gaussian algorithm for the interval linear systemsAx = b
subject to some constraints on real matrices A from the interval matrix A. The interval-affine method
is based on the so-called interval-affine arithmetic that allows to take the constraints into account
during the computation of interval enclosures of the united solution set of the system Ax = b, and to
make the estimates more accurate.

1. Introduction

Let us be given an interval matrix A IR
nn and an interval vector b IR

n. We
denote

uni(A b) = {x R
n | (A A) (b b) (Ax = b)}

a set that will be referred to as united solution set of the interval linear system
Ax = b.

Various problems can be stated with respect to uni(A b). In the present paper,
we are going to deal with the problem of its outer interval estimation:

find a box U R
n such that uni(A b) U

By the box, we mean a subset of R
n which is cartesian product of n intervals. We

are interested in U which estimates uni from the outside most closely in some
sense.

Suppose now that we have some constraints (ties) on coefficients of real point
systems whose solutions form the set uni. For example, imposing the restriction
that all the matrices A A must be symmetric we get the so-called symmetric
interval linear system. The united solution set to such systems can be defined in the
form

sym(A b) = {x R
n | (A A) (b b) (A = A� and Ax = b)}

The condition A = A� is a special case of linear ties on the elements of the matrix.
Similarly, one can define systems with the other constraint types. Quite a lot of

Reliable Computing (2005)
c© Springer 2005

11: 323–341
DOI: 10.1007/s11155-005-0040-5

324 RAMIL R. AKHMEROV

attention has been paid to interval linear systems with constraints (ties) in the
recent years, see e.g. [1], [2], [8].

Let tie(A b) be the united solution set of a constrained (tied) interval system.
It is obvious that tie uni. If the inclusion is strict, one should expect that
�tie �uni, where “�” is the interval hull of set. Indeed, there are examples
(e.g., [1]) of the solution sets of symmetric systems where the above is true. The
following question naturally arises:

How can we take into consideration the constraints on coefficients of the system
to make an outer estimate of tie more exact?

The interval Gaussian algorithm (see, e.g., [6]) is widely applied to the classi-
cal formulation of the outer interval estimation problem without constraints. The
interval version of Gaussian algorithm is a straightforward generalization of the
usual point Gaussian algorithm to the interval case. It substantially relies on the
classical interval arithmetic, with all its drawbacks and deficiencies. It particular,
the classical interval arithmetic is known to suffer from the so-called “dependency
problem,” which is due to the assumption that the interval quantities under opera-
tion are independent from each other. So, traditional interval Gaussian algorithm
is hardly able to take any dependence between the coefficients into account, even
such trivial like aij = aji for symmetric matrices. The equality aij = aji does not
imply aij = aji for all aij aij, aji aji.

A good idea would be to reconstruct the method on a basis of another arithmetic,
which is less subject to the dependency problem and which is able to take into
account the constraints on coefficients of the system. We are going to describe such
a method in the next sections.

2. Basic Concepts and Notation

Wedistinguish between the notions of “variable” and “value of variable.”Wedenote
variables by lower-case symbols in mathsf style (x y zu), while particular
values of these variables are denoted by ordinary symbols (x y z u). Interval
objects are traditionally denoted by symbols x yA (see [5]).

A set of all values a variable x can take under the current circumstances will be
called the range of values of the variable x.

The range of values of a variable can be assigned by various ways. For example,
when we say “a variable x runs over a set M” or “a variable x varies within M,” we
thereby inform one that M is the range of values of x. The range of values can also
be determined by a set of conditions the variable has to meet.

If the range of values of a variable is contained in R, then such a variable will
be called an one-dimensional (simple) real quantity. If the range of values of a
variable is contained in R

n for some natural n > 1, then the variable will be called
an n-dimensional real quantity or a multidimensional real quantity. In cases when
the dimension is clear from the context or does not matter, one-dimensional real
quantities or multidimensional real quantities will be also called just quantities.

INTERVAL-AFFINE GAUSSIAN ALGORITHM FOR CONSTRAINED SYSTEMS 325

Let us have n one-dimensional quantities x1 x2 xn with the ranges of values
M1M2Mn, respectively. There can exist ties and relations between the variables.
Let D R

n be a set of all possible values the tuple 〈x1 x2 xn〉 can take under
all the interrelations between the quantities x1 x2 xn. We will call this set the
joint range of values of the quantities x1 x2 xn or the range of values of the
tuple 〈x1 x2 xn〉. A particular value of the tuple 〈x1 x2 xn〉 will be denoted
by 〈x1 x2 xn〉. Thus, the statement

(〈x1 x2 xn〉) (〈x1 x2 xn〉 D)

is always true.

Remark 2.1. Sometimes it is senseless or inexpedient to consider some variables
jointly. For example, variables can be related to the matters that are different and
disconnected with each other, can be tied by quantifiers, summation signs, etc. In
such cases, we will say that the joint range of values of the variables is undefined
or unassigned. In our case, we suppose the range of values D of the variables
x1 x2 xn to be assigned.

Before going further, we need to introduce the following notation. Let
 = 〈a1 a2 as〉 be a tuple, of the length n, of arbitrary objects and
1 ≤ i1 < i2 < · · · < ik ≤ s. We denote

pri1 i2 ik = 〈ai1 ai2 aik〉

—a projection of the tuple to the axes i1 i2 ik. Let A be a set of tuples of the
length s. We denote

pri1 i2 ikA = {pri1 i2 ik | A}

—a projection of the set A to the axes i1 i2 ik.
Let D be the range of values of a tuple 〈x1 x2 xn〉 and 1 ≤ i1 < i2 < · · · <

ik ≤ n. The range of values of the tuple 〈xi1 xi2 xik〉 will take on the form
D = pri1 i2 ikD. In particular, the range of values Mi of each variable xi will be of
the form Mi = priD.

DEFINITION 2.1. Let D R
n be the joint range of values of one-dimensional

quantities x1 xn and a function :Rn → R
m be defined on D. We define the

range of the function (x1 xn) as a set in R
m of the form

ran (x1 xn)
df
= {y | (〈x1 xn〉)

(
y = (x1 xn)

)
} (2.1)

Remark 2.2. The designation “(〈x1 xn〉)” means “(〈x1 xn〉 D)”, since
D is the range of values of the tuple 〈x1 xn〉. This designation, in general, is
not equivalent to “(x1)(x2)(xn)”, which implicitly presumes the independent
choice of values of each xi from the corresponding sets.

326 RAMIL R. AKHMEROV

A particular value of a function (x1 xn) will be denoted by (x1 xn).
Here, the tuple 〈x1 xn〉 must be a particular value of the tuple 〈x1 xn〉. Thus,
the statement

(x1 xn) ran (x1 xn)

is always true.
If, in (2.1), we take (x1 xn)

df
= 〈x1 xn〉 for , this results in

ran〈x1 xn〉 = D.
Let 1 ≤ i1 < i2 < · · · < ik ≤ n. Then, it also follows from (2.1) that

ran〈xi1 xi2 xik〉 = pri1 i2 ik ran〈x1 xn〉 (2.2)

One can understand a tuple of quantities 〈x1 xn〉 as an n-dimensional quantity
xwith the range of values ran〈x1 xn〉 R

n. Consequently, (2.2) can be rewritten
as follows:

ran pri1 i2 ikx = pri1 i2 ik ran x

By using the construction “ran”, it is possible to denote the range of values of a
quantity or the joint range of values of quantities simply by ran x or ran〈x1 x2〉.
Before doing so, the corresponding sets must be assigned.

In the notation “ran (x)” we have two parameters, namely the function and
the variable x. If, instead of x, we take another variable z with different range of
values, then, generally speaking, the set ran (x) differs from the set ran (z).

Let an n-dimensional quantity x = 〈x1 xn〉 and a k-dimensional quantity
y = 〈y1 yk〉 be given. From the quantities x and y, we can made up the tuple
〈x y〉. We suppose, by definition, that

〈x y〉 df
= 〈x1 xn y1 yk〉

Therefore,

ran〈x y〉 = ran〈x1 xn y1 yk〉 R
n+k

For arbitrary quantities x and y, the inclusion ran〈x y〉 ran x ran y is always
true, where “” is Cartesian product of sets.

DEFINITION 2.2. We say that two quantities (simple or multidimensional) x and
y are independent from each other if there is the equality:

ran〈x y〉 = ran x ran y

Otherwise, x and y will be called dependent from each other or tied with each other
(see [8]).

INTERVAL-AFFINE GAUSSIAN ALGORITHM FOR CONSTRAINED SYSTEMS 327

For the quantities x and y that are independent from each other, the symbolical
statements “(〈x y〉)” and “(x)(y)” are equivalent. Additionally, projections of x
and y onto any axes are also independent from each other, i.e.

ran〈pri1 ikx prj1 jsy〉 = ran pri1 ikx ran prj1 jsy

= pri1 ik ran x prj1 jsran y

Sometimes, the terms “dependence” and “tie”, as applied to variables, are used
in the irrelative sense. For example, they say “an independent variable x” or “a
dependent variable y.” We are going to use such phrases too.

DEFINITION 2.3. An independent variable is a variable whose range of values is
assigned a priori and not determined by dependencies (ties) the variable has with
any other variables. Otherwise, a variable will be called a dependent variable.

If we have, for example, y = (x) and ran x = [−2 4], then x is an independent
variable, and y is dependent. But if assigned are y = (x) and ran y = {−3 6 8},
then y will be an independent variable. In both cases, x and y are dependent from
each other in case is not a constant over ran x.

Remark 2.3. From Definition 2.3, it follows that two independent variables x and
y are independent from each other. Hence, an independent variable can not have
two different names, i.e. we cannot say “independent variable x and independent
variable y and x = y.”

We will say that quantities x and y of the same dimensions are equivalent in
functional sense or simply equivalent, if ran (x − y) = {0̄}, where 0̄ denotes the
zero in the corresponding space.

We will say that quantities x and y are equivalent in global sense, if ran x = ran y.
The equality ran x = ran y implies that x and y have the same dimensions, i.e.
quantities of different dimensions can not be equivalent in global sense.

EXAMPLE 2.1. Assume that one-dimensional quantities x y z are given, ran x =
[0 1] R, and the relations y = x2 and z = x3 are valid. Then ran y = ran z = [0 1],
but ran (y− z) = ran x2(1− x) �= {0}, since, for example, 05 ran x2(1− x). Thus,
y and z are equivalent in global sense, but not equivalent in functional sense.

DEFINITION2.4. A quantity ywill be referred to as an outer estimate for a quantity
x, if ran x ran y. We also say that y estimates x from the outside.

Remark 2.4. The term “outer estimate” is usually applied to sets. They say that a
set A is an outer estimate for a set B, if B A. We arrive at this case if we put
ran y = A and ran x = B. On the other hand, under certain conditions we can, for
example, say that (x) + g(x y) is an outer estimate for h(x y) for some quantities
x y and functions g h. It is impossible in case of sets.

Let ran x ran y, x and y have the dimension n > 1 and 1 ≤ i1 < i2
< · · · < ik ≤ n. Then ran pri1 i2 ikx ran pri1 i2 iky. This follows from the

328 RAMIL R. AKHMEROV

fact that ran pri1 i2 ikx = pri1 i2 ik ran x and ran pri1 i2 iky = pri1 i2 ik ran y, and
from the properties of projections. Thus, an estimate for a quantity automatically
generates an estimate for any its projection.

It is obvious, if ran x ran y, then ran (x) ran (y) for any function which
is defined over ran y.

3. Interval Quantities

To construct of outer estimates of the objects of interest, we are going to use special
variables, the simplest of them being the so-called “interval quantities.”

DEFINITION 3.1. An interval quantity is an independent quantity with the range
of values being a box in the corresponding space.

Therefore, if x is an n-dimensional interval quantity, then ran x = [a1 b1]
[a2 b2] · · · [an bn] R

n for some intervals [ai bi] R.
The independence of interval quantities implies that the range of values of an

interval quantity is a specific determined set, and there is a simple way to describe
it. Namely, we first assign a box and then associate, with it, a variable that varies
within the box. If the range of values of a quantity is built in another way, we
shall not consider such a quantity as an interval quantity. For example, let x be
an one-dimensional interval quantity, i.e. ran x is an interval in R, and a function
:R → R be defined and continuous over ran x. Then the range of values of the
quantity y = (x) will also be an interval, but, in our understanding, y is not an
interval quantity at all.

All the components of a multidimensional interval quantity are independent
from each other. The range of values of the projection of an interval quantity to any
axes is a box. The joint range of values of several different interval quantities is a
box, too (see Remark 2.3).

For any positive integer n and for any box B R
n, we suppose that there is

a possibility to introduce a new interval quantity var, such that ran var = B. In
the latter, “var” is a certain new name that has not been used previously in our
consideration.

Let an arbitrary quantity x be given. An interval quantity x̃ that is an outer
estimate of x will be called an interval estimate of the quantity x.

Let x = 〈x1 xn〉 and ran x be a connected compact set in R
n for some n. Then

ran xi for every i will be an interval. An interval estimate x̃ of the quantity x, such
that ran x̃ = ran x1 · · · ran xn, will be called the best interval estimate for the
quantity x. The quantity x̃ is also called the interval hull of x.

4. Affine Quantities

DEFINITION4.1. An one-dimensional affine quantity is a quantity x of the form

x = a0 + a11 + a22 + · · · + ass

INTERVAL-AFFINE GAUSSIAN ALGORITHM FOR CONSTRAINED SYSTEMS 329

where ai R, i is a simple interval quantity, ran i = [−1 1] R for all i and
ai �= 0 for i �= 0.

A tuple of n one-dimensional affine quantities will be called a n-dimensional
affine quantity.

The quantities x and i are dependent from each other since the coefficient ai
in front of i in x is nonzero. By the definition of an interval quantity, i is an
independent quantity. Therefore, we can also say that x depends on i. The set of
interval quantities that a quantity x depends on will be called dependency set of the
affine quantity x.

Any n-dimensional affine quantity x can be represented in the form x = L(),
where ran = [−1 1] · · · [−1 1] R

k for some natural k and L is a linear
mapping from R

k to R
n. The range of values of x is a polyhedron in R

n named
a zonotope. The range of values of a projection of x onto any axis is a zonotope
too.

Let an affine quantity x depend on = 〈1 k〉 and the i-th component of x
have the form

xi = ai0 + ai1ji1 + ai2ji2 + · · · + aikijiki

where ji1 jiki is a subsequence of the sequence 1 k, depending on i. Then,
for the range of values of xi, we will have

ran xi =
[
ai0 −

ki∑
t=1

|ait| ai0 +
ki∑
t=1

|ait|
]

The latter allows us to easily construct the best interval estimate for the affine
quantity x.

On the contrary, for any interval quantity y, it is always possible to build such
an affine quantity x that ran x = ran y. To do that, one can, for example, associate
the affine quantity xi = mid(ran yi) + rad(ran yi)i with every interval component
yi = priy, where mid() and rad() denote the midpoint and the radius of interval
respectively.

An affine quantity x̂ which estimates an arbitrary quantity x from outside will
be called an affine estimate of the quantity x.

5. Construction of Outer Estimates

The classical problem of outer interval estimation (of range of values, of a solution
set, etc.) can be reformulated in our terminology as follows:

Given are a quantity x, an outer interval estimate x̃ for x and a
function defined over ran x.

Find an outer interval estimate ỹ for the quantity y = (x).
(5.1)

330 RAMIL R. AKHMEROV

In problem (5.1), we are interested in the most exact, ideally best, interval estimate
we can compute under the available computational capability.

We can understand the accuracy of the outer estimate in two senses: in global
(set-theoretic) sense and in functional sense. Let h be the Hausdorff metric in R

n.
By definition, for any two compact sets AB R

n,

h(AB) df
= max

{
max
aA

min
bB

‖a− b‖ max
bB

min
aA

‖a− b‖
}

where ‖ ‖ is the Euclidean norm in R
n. The metric h generates the Hausdorff metric

(more precisely, multimetric) H on the set of all quantities. For any quantities u v
of the same dimension

H(u v)
df
= h(ran u ran v)

= max
{
max

u
min

v
‖u− v‖ max

v
min

u
‖u− v‖

}

We remind that u and v are understood as particular values of the variables u and v,
and the designation of the form “max

u
” means “ max

uran u
”. For H , the axiom

H(u v) = 0 u = v

is not true. The metric H characterizes the closeness of the quantities in global
sense, i.e. the closeness of the ranges of values. The closeness of the quantities in
functional sense is characterized by the metric

(u v) df
= max ran ‖u − v‖ = max

〈u v〉
‖u− v‖

—the uniform metric. For simplicity, we suppose that the sets ran u, ran v and
ran〈u v〉 are closed, i.e. the metrics H and are correctly defined.

When searching an interval estimate ỹ for y in problem (5.1), one can aim to
minimize the distance H(y ỹ) or the distance (y ỹ). These distances will be called
the Hausdorff and functional errors of an estimate respectively. We note that, since
ran y ran ỹ, the distance H(y ỹ) has a simpler form:

H(y ỹ) = max
ỹ

min
y

‖ỹ− y‖

Insofar as the interval quantity ỹ is independent from y, it follows that

(y ỹ) = max
〈y ỹ〉

‖y− ỹ‖ ≥ diam(ran y) (5.2)

where diam() denotes diameter of the set.
In classical interval analysis, one usually tries to minimize the distance H .

Property (5.2) implies that we cannot reallyminimize the error (y ỹ) of the estimate
for sufficiently wide ranges by using only interval estimates. As we will see, it is
often more profitable to minimize exactly the functional error (y ỹ). To do that,
we will have to use another class of estimating quantities.

INTERVAL-AFFINE GAUSSIAN ALGORITHM FOR CONSTRAINED SYSTEMS 331

For rational function , the simplest way to solve problem (5.1) is to use a
special-purpose “estimative” arithmetic. Namely, we get an overall estimate of the
result by constructing the estimates consecutively for all intermediate quantities.

5.1. INTERVAL ARITHMETIC

Assume that we have an interval estimate ũ for a quantity u. The problem of outer
interval estimation for rational functions will be solved if, based on an estimate ũ
for u, we are able to compute an interval estimate for the quantity 〈u x � y〉, where
x, y are one-dimensional components of u and “�” is a arithmetical operation from
{+− ∗ }.

Let 〈x y〉 = pri ju for the axes i j and the corresponding components 〈x̃ ỹ〉 =
pri jũ from the estimate ũ are chosen. Assume that the operation “�” is defined over
ran〈x̃ ỹ〉 = ran x̃ ran ỹ. It is always true, except for the case when “�” is the
division operation “/” and 0 ran ỹ. The range of values of x̃ � ỹ is an interval:

ran x̃ � ỹ =
[
min
〈x̃ ỹ〉

x̃ � ỹ max
〈x̃ ỹ〉

x̃ � ỹ
]

We choose such a new interval quantity z̃ that ran z̃ = ran x̃� ỹ. Since ũ estimates
u, and z̃ is independent, it follows that

ran〈u x � y〉 ran〈ũ x̃ � ỹ〉 ran ũ ran x̃ � ỹ = ran〈ũ z̃〉

We have thus built an outer interval estimate 〈ũ z̃〉 for the quantity 〈u x � y〉.
Notice that, in computing z̃, we used only the quantities x̃ ỹ and the operation

“�”, and one can perceive the procedure for the computation of z̃ as a binary
operation over the interval quantities x̃ and ỹ.

DEFINITION 5.1. An interval arithmetical operation corresponding to a real
arithmetical operation “�” is such a binary operation “��” that, applied to any
two one-dimensional interval quantities vw, it produces a new interval quantity r
satisfying

ran r =
[
min
〈vw〉

v � w max
〈vw〉

v � w
]

We write briefly r := v�� w.

Remark 5.1. In Definition 5.1, we use the assignment operator “:=” instead of the
equality sign “=”, which is due to the fact that the operation “��” always generates a
new quantity. Therefore, the operation “��” is not single-valued. If we sequentially
compute r1 := v �� w, r2 := v �� w, then, in general, r1 �= r2. This is equivalent to
ran(r1 − r2) �= {0}.

For a function of interval quantities (x1 x2 xn), one can write its interval
analogue. To do that, one needs to rewrite all the operations from “putting then

332 RAMIL R. AKHMEROV

into the box �.” If, afterward, we perform all the interval operations in compliance
with Definition 5.1, we will get an outer interval estimate of (x1 x2 xn).

EXAMPLE 5.1. Let :R4 → R
2 and

(x1 x2 x3 x4) = 〈(x1 + x2 + x4) (x3 − x1) x4 ∗ (x2 − x1 x3)〉

where all of xi are interval quantities. Then

y := 〈(x1 �+ x2 �+ x4) (x3 �– x1) x4 �∗ (x2 �– x1 � x3)〉

will be an outer interval estimate for (x1 x2 x3 x4).

By construction, the interval quantity z̃ := x̃�� ỹ is an exact outer estimate of
x̃ � ỹ in the sense of the error H , since H(z̃ x̃ � ỹ) = 0. If we take into account
the overall environment and suppose that the quantities x̃ ỹ are further used in the
computational process jointly with z̃, we can conclude that the error

 = H(〈x̃ ỹ z̃〉 〈x̃ ỹ x̃ � ỹ〉)

is more appropriate in the situation. This error may be not equal to 0. For example,
for the operations “+” or “−”, one can compute that

 =
wid(ran x̃) + wid(ran ỹ)√

3

where wid() denotes the wide of an interval. For the operations “∗”, “”, it is
possible to get similar formulas for the error .

Let us compute the error (z̃ x̃ � ỹ). Inasmuch as ran z̃ = ran x̃ � ỹ and z̃ is
independent from x̃ � ỹ, we get

 = (z̃ x̃ � ỹ) = max ran |z̃ − x̃ � ỹ| = wid ran z̃ = wid(ran x̃ � ỹ)

The error is closely tied with . For example, it is possible to show that

wid(ran x̃ ỹ) = wid(ran x̃) + wid(ran ỹ)

That is, for the operations “+” and “−”, =
√
3. In most cases, >

√
3 for

the operations “∗”, “”. If we decrease the functional error (z̃ x̃ � ỹ), we therefore
decrease the Hausdorff error

H(〈x̃ ỹ z̃〉 〈x̃ ỹ x̃ � ỹ〉)

5.2. AFFINE ARITHMETIC

To construct outer estimates of ranges, we can use affine quantities. Assume that we
have an affine estimate û for a quantity u. Let x y be one-dimensional components
of u and “�” be an arithmetical operation from {+− ∗ }.

INTERVAL-AFFINE GAUSSIAN ALGORITHM FOR CONSTRAINED SYSTEMS 333

Let us, like in Section 5.1, be given 〈x y〉 = pri ju, 〈x̂ ŷ〉 = pri jû for some axes
i j and the operation “�” be defined over ran〈x̂ ŷ〉.

Note that for any real numbers a b c, the quantity p(x̂ ŷ) = ax̂ + bŷ + c is an
affine quantity. Denote t = x̂ � ŷ − p(x̂ ŷ) and = max ran|t|. We introduce a new
interval quantity , such that ran = [−1 1]. Then ran t ran = [−], and we
have

ran〈u x � y〉 ran〈û x̂ � ŷ〉 = ran〈û p(x̂ ŷ) + t〉
 ran〈û p(x̂ ŷ) + 〉

from the independence of . The quantity

ẑ = p(x̂ ŷ) + = ax̂ + bŷ + c +

is an affine quantity, and, therefore, 〈û ẑ〉 is an outer affine estimate of 〈u x � y〉.
We can compute the functional error of the estimate ẑ:

(ẑ x̂ � ŷ) = max ran |ax̂ + bŷ + c + − x̂ � ŷ|
= max ran | − t| = wid(ran) = 2

Since = max ran|t|, may be rewritten as

 = max
〈x̂ ŷ〉

|x̂ � ŷ− (ax̂ + bŷ + c)|

Choosing the numbers a b c in a proper way, we can decrease . By doing that, we
will decrease the error (ẑ x̂� ŷ), while the Hausdorff error H(ẑ x̂� ŷ) may increase
at the same time. But our task is to decrease the joint error H(〈û ẑ〉 〈û x̂ � ŷ〉), and
this can be reached by decreasing (ẑ x̂ � ŷ).

As in the interval case, we use only the quantities x̂ ŷ and the operation “�” to
compute ẑ . Let us define a binary operation on the set of affine quantities which
corresponds to the process.

DEFINITION 5.2. An affine arithmetical operation corresponding to a real arith-
metical operation “�” is a binary operation “�̂ ” such that, applied to any two
one-dimensional affine quantities vw, it produces an affine quantity r satisfying

r = av + bw + c +

where is a new interval quantity, ran = [−1 1],

 = max
〈vw〉

|v � w− (av + bw + c)|

and the real coefficients a b c are chosen to minimize .
For such v, w, and r, we will write r := v �̂ w.

The affine arithmetic [3], [9] has several properties that the interval arithmetic
does not. If we neglect the roundoff errors, multiplication by scalar, addition and

334 RAMIL R. AKHMEROV

�����

�����

�����

Figure 1. Interval-affine estimate of u in R
2.

subtraction are executed with zero functional error in the affine arithmetic, i.e.
exactly. For any one-dimensional affine quantities x y, the following equalities take
place:

x +̂ y = x + y
x −̂ y = x − y
x ∗̂ y = x ∗ y

(
wid(ran x) = 0 or wid(ran y) = 0

)

x ̂ y = x y
(
wid(ran y) = 0

)

In almost all other cases, the affine operations “�̂ ” are executed with an error
 > 0. Then, if we consecutively compute r1 := x �̂ y, r2 := x �̂ y, we will get two
different affine quantities r1 and r2, often strongly dependent on each other.

5.3. INTERVAL-AFFINE ARITHMETIC

The interval and affine estimation methods, based on interval and affine arithmetics,
have their own merits and faults. Below, we construct a method that combines the
strengths of these methods and, as experiments show, gives a considerable increase
in the accuracy of the resulting estimates.

Let u be a quantity. A pair {ũ û}, where ũ and û are interval and affine estimates
of u, will be called an outer interval-affine or mixed estimate of the quantity u.

Since ran u ran ũ and ran u ran û, ran u ran ũ ran û. In the two-
dimensional case, the illustrating picture will look like that at Figure 1.

Let 〈x y〉 = pri ju, 〈x̃ ỹ〉 = pri jũ 〈x̂ ŷ〉 = pri jû for some axes i j and an
operation “�” {+− ∗ } is defined over the set D = ran〈x̃ ỹ〉 ran〈x̂ ŷ〉.

INTERVAL-AFFINE GAUSSIAN ALGORITHM FOR CONSTRAINED SYSTEMS 335

We are going to compute an interval-affine estimate for 〈u x � y〉. An interval
constituent is easy to compute. This is such a new interval quantity z̃, that

ran z̃ =
[

min
()D

 � max
()D

 �
]

As an affine estimate, we will take

ẑ = ax̂ + bŷ + c +

where a b c R, is a new interval quantity, ran = [−1 1] and

 = max
()D

| � − (a + b + c)|

The mixed estimate {〈ũ z̃〉 〈û ẑ〉} will be an interval-affine estimate of
〈u x � y〉.

As a result, the problem reduces to searching for reals a b c in such a way
as to minimize . This is, basically, a problem of the best Tchebychev linear
approximation for the function () = � over the domain D. Since the
function () is already linear for the operations “+” and “−”, the problem is to
be solved for the operations “∗” and “” only.

Taking into account a simple form of D, an approximation close to the best
linear approximation of � can be found in O(n) computational time, where n
is the summary number of elements in the dependency sets of affine x̂ and ŷ (see
Section 4). The search problem for the best approximation of � over D in close
to O(n) computing time is open.

The procedure for the computation of the mixed estimate {z̃ ẑ} will be called
an interval-affine operation �̂� corresponding to a real arithmetical operation “�”,
and will be written as

{z̃ ẑ} := {x̃ x̂} �̂� {ỹ ŷ}

The algorithm for the computation of the operation �̂� can be represented as
follows:

Input

Mixed estimates {x̃ x̂} and {ỹ ŷ}, an operation “�”.

Output

{z̃ ẑ} := {x̃ x̂} �̂� {ỹ ŷ}.
Algorithm

construct the set D = ran 〈x̃ ỹ〉 ran 〈x̂ ŷ〉;

compute z̃, such that ran z̃ =
[

min
()D

(�) max
()D

(�)
]
;

find a linear approximation (a + b + c) for (�) over D;

336 RAMIL R. AKHMEROV

compute the approximation error = max
()D

|a + b + c− � |;

construct ẑ = ax̂ + bŷ + c + , where is a new interval quantity and ran =
[−1 1].

6. Interval-Affine Gaussian Algorithm

Let us be given an interval linear system Ax = b, where A = (aij) IR
nn,

b = (bi) IR
n, and uni(A b) is its united solution set.

Using the concept of “interval quantity” introduced in the preceding sections,
we can reformulate the problem of outer interval estimation of the set uni(A b).
We remind that, by “one-dimensional quantity,” we call a variable that takes its
values from R. Accordingly, an independent variable whose range of values is an
interval will be referred to as “one-dimensional interval quantity.” In other words,
“one-dimensional interval quantity” is an independent variable that is varying in an
interval.

We associate, with the intervals aij and bi, such interval quantities ãij and b̃i that
ran ãij = aij, ran b̃i = bi. Suppose that Ã = (ãij) and b̃ = (b̃i). The matrix Ã and the

vector b̃ can be understood as quantities, with the values from R
nn and R

n1 df
= R

n,
such that ran Ã = A and ran b̃ = b.

Let x be a quantity, with its values from R
n, tied with Ã and b̃ by the relation

Ãx = b̃. The range of values of x will have the form

ran x = {x | (〈Ã b̃〉) (Ãx = b̃)} (6.1)

One can consider this designation as generalizing (2.1) fromSection 2 for the case of
an implicit tie between the quantities Ã b̃, and x. Since the interval quantities Ã and
b̃ are independent, we can write “(Ã)(b̃)” instead of “(〈Ã b̃〉)” (see Remark 2.2).
Using the standard notation, (6.1) may be rewritten as follows:

ran x = {x R
n | (Ã ran Ã) (b̃ ran b̃) (Ãx = b̃)}

hence,

ran x = uni(A b)

The latter implies, in particular, that, if we have a method for the solution of the
real system Ãx = b̃ with respect to x, then rewriting it in interval arithmetic results
in a technique for computing interval estimates x̃ for x. In other words, we get an
algorithm for outer interval estimation of the solution set uni(A b).

Let us construct a matrix Â = (âij) and a vector b̂ = (b̂i) consisting of affine

quantities, such that ran〈Â b̂〉 = ran〈Ã b̃〉. All the elements of Ã and b̃ are indepen-
dent from each other, so the elements of Â and b̂ are independent from each other
too.

INTERVAL-AFFINE GAUSSIAN ALGORITHM FOR CONSTRAINED SYSTEMS 337

We suppose that ran ãij = ran ãji for any 1 ≤ i j ≤ n, i.e. the interval matrix
A is symmetric. Then the equalities ran âij = ran âji for any i j are also true for
the affine Â. Next, let us assign âji := âij for all 1 ≤ i < j ≤ n. After doing that,
we have âji = âij for any 1 ≤ i, j ≤ n, which is an inherent property of affine
quantities. For interval quantities, the equality ãji = ãij for different i j is possible
only if wid(ãij) = 0 and ran ãji = ran ãij, i.e. ãij and ãji are equal constants. After
the assignment procedure, we get ranÂ ran Ã, and if wid(ran ãij) > 0 for some
indexes i �= j, the inclusion is strict.

Let a quantity x be such that Âx = b̂. It is easy to show that

ran x = sym(A b)

The system Âx = b̂ can be solved by the same method as the system Ãx = b̃.
At this point, we have to use either affine arithmetic or more exact interval-affine
arithmetic. As a result, we will get an estimate for x, which is trivially converted to

an interval estimate for the set sym(A b). In solving the system Âx = b̂, we start

from the set ran〈Â b̂〉 which is more narrow than the set ran〈Ã b̃〉 in the solution
of the system Ãx = b̃. Therefore, one can expect that an estimate obtained for ran x
will be more narrow than the estimate for ran x.

We have considered the case of symmetric systems. Using a similar approach,
it is possible to take into account, partially or fully, any explicit ties. For example,
given the ties on the elements of the matrix A = (aij) A that have the form

akl = (ai1j1 ai2j2 aisjs) (6.2)

for some indexes k, l, {im}, and {jm}, we can perform the corresponding assign-
ment

âkl := ̂(âi1j1 âi2j2 âisjs) (6.3)

where ̂ denotes a function obtained from the function by replacing all the
operations to their affine counterparts. For nonlinear , the quantities âkl and
(âi1j1 âi2j2 âisjs) are not equal, but they are dependent on each other. That
gives a possibility to partially take the tie (6.2) into account when constructing an
enclosure of the solution set.

As a base method for the solution of linear real systems, we used Gaussian
elimination algorithm, having reimplemented it in our interval-affine arithmetic
with the calculation of ties. The overall method should be thus called the interval-
affine Gaussian algorithm for constrained systems. The final pseudocode of the
method is presented in Table 1, where mig means mignitude of the quantity.

When we solve, by our interval-affine method, an interval linear system with
the only constraint A = A�, it is natural to call the method symmetric interval-affine
Gaussian algorithm.

338 RAMIL R. AKHMEROV

Table 1. Interval-affine Gaussian algorithm for constrained systems.

Input
An interval matrix A = (aij) IR

nn.
An interval vector b = (bi) IR

n.
A set CS of constraints, similar to (6.2), written in some form.

Output
Either an interval vector x that is an outer interval estimate for the solution set tie(A b)

or the message “Method fails.”

Algorithm
Let A = (aij) and b = (bi) be an n n-matrix and an n-vector composed of interval-affine

quantities;
convert A A and b b;
compute the elements of A according to the constraints in CS in interval-affine arithmetic

in compliance with (6.3);
for k := 1 to n do
{ // reducing A to the “upper triangular” form

m := k;
for i := k + 1 to n do // find the “leading” element

if mig(aik) > mig(amk) then m := i ;
if mig(amk) = 0 then

stop with the message “Method fails”;
interchange the k-th and m-th rows of the matrix A and the elements bk and bm

of the vector b;
for j := k + 1 to n do

akj := akj �̂ akk;
bk := bk �̂ akk;
for i := k + 1 to n do
{ // “annuling” the column below the diagonal and modifying the right-hand side

for j := k to n do
aij := aij �̂– aik �̂∗ akj;

bi := bi �̂– aik �̂∗ bk;
}

}
let x be a n-vector of interval-affine quantities;
for i := n downto 1 do
{ // backward substitution

xi := bi;
for j := i + 1 to n do

xi := xi �̂– aij �̂∗ xj;
}
Convert x x;

7. Computational Experiments

Below we present the results of computational experiments with interval linear sys-
tems having symmetric matrices, as well as matrices called “semiskewsymmetric.”
A semiskewsymmetric matrix is a matrix A = (aij) such that aij = −aij for i �= j.

INTERVAL-AFFINE GAUSSIAN ALGORITHM FOR CONSTRAINED SYSTEMS 339

The main diagonal of the semiskewsymmetric matrix, i.e. the elements aii, is not
necessarily zero.

In all the examples, we solved interval linear systems, subject to various types
of constraints, by the interval-affine Gaussian algorithm.

EXAMPLE 7.1. Consider the interval 3 3-system from [4]

 [07 13] [−03 03] [−03 03]

[−03 03] [07 13] [−03 03]
[−03 03] [−03 03] [07 13]

 x =

 [−14−7]

[9 12]
[−3 3]

Gaussian algorithm produces the following interval enclosures of uni:

no constraints aij = aji aij = −aji (i �= j)

[−101 71]
[−6225 99]
[−90 90]

[−101 648]
[−5606 99]
[−90 90]

[−4658 2144]
[−1498 4203]
[−3133 3133]

In the above table, the underlined data show the changes of the estimates that
result from taking the constraints into account.

EXAMPLE 7.2. Let us consider a system from [7]

[15 17] [−3 301] [−3 301] [−3 301]
[−3 301] [15 17] [−3 299] [−3 299]
[−3 299] [−3 299] [15 17] [−3 301]
[−3 301] [−3 301] [−3 299] [15 17]

 x =

[−6−2]
[4 5]
[−2 4]
[8 10]

 (7.1)

whose matrix is neither symmetric nor semiskewsymmetric in the original form.
Still, we can modify it and consider the two cases: aji = aij (i < j) and aji = −aij
(i < j).

In the first case, the interval-affine method yields

no constraints aij = aji

[−10313 04958]
[−03472 09745]
[−07703 09190]
[01495 12524]

[−10312 04363]
[−02897 09745]
[−07610 09189]
[01735 12523]

And in the second case we get

340 RAMIL R. AKHMEROV

no constraints aij = −aji (i �= j)

[−10303 04948]
[−03470 09730]
[−07708 09170]
[01495 12510]

[−08536 03693]
[−02279 07831]
[−06104 07370]
[01672 09932]

EXAMPLE 7.3 (The random test with symmetric matrices). For a given order n
and a positive integer N, we generated N random interval systems Ax = b with
symmetric A. Each system was consecutively solved by interval, by interval-affine
and by symmetric interval-affine Gaussian algorithms.

The random system generation algorithm was taken as follows:

Input
n—order of the system;
c = [c c] IR rmax R—parameters of the system family (see below).

Output
A random matrix A IR

nn and a random vector b IR
n.

Algorithm
For all i j, such that 1 ≤ i ≤ j ≤ n, compute

aji := aij := rand(c c) + [rand(−rmax 0) rand(0 rmax)].

For all 1 ≤ i ≤ n, compute

bi := rand(c c) + [rand(−rmax 0) rand(0 rmax)].

In the above, rand() is a function for computing an equidistributed pseudoran-
dom number from the interval [].

The results of our experiments for several n’s are presented in Table 2. The
parameter c for all n was taken equal to [−104 104]. In the table, the meanings of
the columns is as follows:

N is the number of generated systems of the order n;

NintNiaffNsiaff are numbers of systems that have been successfully solved by
interval, by interval-affine and by symmetric interval-affine Gaussian algorithms
respectively;

Kave is arithmetic average of the ratios of the interval estimates’ diameters produced
by the interval-affine method to the diameters of the estimates produced by the
symmetric method. Kave was computed for the problems successfully solved by
both methods.

Table 2 shows that taking constraints into account allows us to increase the
number of successfully solved systems and to sharpen the accuracy of the estimates.

INTERVAL-AFFINE GAUSSIAN ALGORITHM FOR CONSTRAINED SYSTEMS 341

Table 2. Random test.

n rmax N Nint Niaff Nsiaff Kave

5 500 1000 422 652 668 2.21
10 100 200 0 151 156 9.62
15 35 200 0 157 162 4.79
20 23 200 0 124 144 4.30
25 15 50 0 22 26 2.42

The rating Kave depends on many quantities including n and rmax. Therefore, for
more qualitative analysis of how the accuracy of the estimates changes one has to
perform more experiments, with various algorithms for random system generation.

One can also see that the classical interval Gaussian algorithm was not able to
solve any one of our problems of the dimension greater or equal than n = 10.

In conclusion, we notice that the price ofmore qualitative results that the interval-
affine Gaussian algorithm computes is its higher complexity, which has the order
of O(n5). There are some ways to speed up the method at the expense of worsening
the estimates. We postpone their careful consideration till our next papers.

References

1. Alefeld, G., Kreinovich, V., and Mayer, G.: On Symmetric Solution Sets, in: Herzberger, J. (ed.),
Computing Supplement 16, Springer, Wien, New York, 2003, pp. 1–23.

2. Alefeld, G., Kreinovich, V., and Mayer, G.: On the Shape of the Symmetric, Persymmetric, and
Skew-Symmetric Solution Set, SIAM J. Matrix Anal. Appl. 18 (1997), pp. 693–705.

3. Comba, J. L. D. and Stolfi, J.: Affine Arithmetic and Its Applications to Computer Graphics, in:
Proceedings of VI SIBGRAPI, 1993, pp. 9–18.

4. Hansen, E.: Bounding the Solution of Interval Linear Equations, SIAM Journal on Numerical
Analysis 29 (5) (1992), pp. 1493–1503.

5. Kearfott, R. B., Nakao, M. T., Neumaier, A., Rump, S. M., Shary, S. P., and Van Hentensyck, P.:
Standardized Notation in Interval Analysis,
http://www.mat.univie.ac.at/neum/software/int

6. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cam-
bridge, 1990.

7. Ning, S. and Kearfott, R. B.: A Comparison of Some Methods for Solving Linear Interval Equa-
tions, SIAM Journal on Numerical Analysis 34 (4) (1997), pp. 1289–1305.

8. Shary, S. P.: SolvingTied Interval Linear Systems,Siberian Journal ofComputationalMathematics
7 (4) (2004), pp. 363–376 (in Russian).

9. Stolfi, J. and de Figueiredo, L. H.: Self-Validated Numerical Methods and Applications, in: Notes
of 21st Brazilian Mathematics Colloquium, 1997.

