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Abstract

Given anonsingular central matrix A., acentral vector b, and a prescribed interval solution vector x I
it is required to find the maximum allowable deviation AA or Ab so that the solution of the interval

linear system A”x = b’ iscontainedin x’. Special casesfor AA and Ab are considered and bounds

on theentries of A7 and b! are obtained either in a closed form, whenever possible, or via solving a
specially designed constrained optimization problem.

Key Words: Linear systems of equations, interval matrices, inequality constraints, constrained opti-
mization.

1. Introduction

The interval linear system of equations has been widely investigated since the
pioneer work of Oettli and Prager [7] in 1965. Consider a set of linear equations

Alx =p! D

in which A’ is an interval matrix and b’ is an interval vector. Such equations
have been of interest for years in both interval and noninterval contexts. As the
noninterval case, the interval linear systems of equations are currently of specia
interest because they arise in many applications. Algorithms for determining the
solution set of (1) are found in many references, e.g. [3]-{8].

However, in this paper we are interested in solving the inverse problem of the
interval linear system of equations. That is, given the central matrix A., the
central vector b. and the interval solution vector x/, it is required to find the
maximum allowable deviations AA and Ab from the nomina centra values A,
and b, respectively, such that the solution of the interval system is contained in
the prescribed solution vector x’.

Starting from the well-known Oettli-Prager Inequality [7], given by
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|Acx — be| < AAlx| + Ab 2

each vertex of the convex hull of the solution set of (1), X = {x : Ax = b, A €
A, b e b’} denoted by ConvX satisfies

|Acx — be] = AA|x| + Ab (3)
which isequivalent to 2" equations of the form
Acx — b, = T*(AAT x + Ab) 4

fore =1,2,...,2", where T* is adiagonal matrix with diagonal elements be-
longing to {—1, 1} and 7' is a diagonal matrix with diagonal elements equal to
sgn(x); i.e. |x| = T'x.

With the assumption that A ! exists, and no change of sign for the solution vector
components occurs, multiplying both sides of (4) by A1 yields

X —x. = ATIT(AAT x + Ab) (5)
which can be written in the form
(I — AZIT*AAT')(x — x0) = AZIT(AAT x + Ab) (6)
and by assuming that (1 — A7 1T AAT’) ! exists, yields
x—xe = — AT AAT) AT (AAT'x + Ab) @

With therequirementthat x < x < x,i.e x —x, <x —x. < X — x., it follows
that
—d < (I —A7XT“AAT) TAZIT“(AAT'x + Ab) < d (8)

whered = x, —x andd = ¥ — xe.

The goal is to define the space of maximum allowable deviations AA;; and Ab;,
i,j = 1,2, ...,n) satisfying inequalities (8). The dimension of the space of
parameters is, in general, (n x n + n). It isworth noting that our problem can
simply be considered as another approach suggested to tackle the well-known
linear tolerance problem [1], [9] and [10]. We believe that our approach can be
successfully applied to some practical problems, e.g. in the tolerance design or
tuning of alinear circuit with nodal equation Yv = i. Thetolerance problem isto
find theinterval entries of the admittance matrix Y so that the output voltage vector
v is within the performance acceptability range for some input current vector i.
For an illustrative redlistic design problem we consider in particular the tunable
active filter presented in [1] in which the grounded resistor R4, shown in [1, Fig.
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4], isasingle tunable element. The tuning range of R4 required for the voltage
V> to stay within the performance acceptability range can be achieved by applying
our method for the one nonzero element discussed in Subsection 3.1 of this present
work.

Infact, inthispaper we consider special casesof thegeneral problem (8). Thecases
to be considered are divided mainly into two types. Each typeisin turn divided
into subcases to simplify the problem. In Section 2 the first type is considered
where only uncertainty in the right hand side vector, b, is assumed. The second
type which considers only uncertainty in the matrix of coefficients, A, isdiscussed
in Section 3. In both types the problem is reduced to solving afinite set of linear
inequalities. For the single parameter cases closed form relations are obtained
whereas for each of the more than one parameter cases an optimization problem
with a suitably selected objective function is defined. The resulting optimization
problem is solved in Section 4. Numerical examples are given in Section 5.

2. Uncertainty in the Right Hand Side Vector
Considering b! = [b. — Ab, b. + Ab], itisrequired to find Ab so that the solution
of the interval system of eguations (1) is contained in the given interval solution
vector x/.

Put AA = 0in (8) to obtain the following set of inequalities
—d < A'T*Ab <d ©
fork =1,2,...,2" thisgives (2n x 2") scalar inequalities. Let d; = min{d,, d;}
fori = 1,2, ...,n andthevector d = (d;). It can be easily observed that the set
of inequalities given by (9) isthe set of inequalities of the form
1A Ab <d (10)
where | -| meansthe absol ute val ue of the array taken componentwise. To show that

(9) lead to (10), we present the following derivation. Inequalities (9) are rewritten
in the component form

n
—d; < Z(Ac_l)ijT,‘I;Abj <d (11)
i=1
fori = 1,2 ...,nandx = 1,2,...,2". Foreachi € {1,2,...,n}, say
i = ip, choose k1, where k1 € {1,2,...,2"}, so that (Ac—l)iojTj’;l > 0 for

dl j = 1,2,...n. Since we are interested only in nonnegative vaues of Ab;,
j=12...,n,andthefactthat d; > Oandd; > O, forali =1,2,...,n,
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inequalities (11) for i = ig and k = 1 can be written as follows

n
_dio = Z
j=1

(Ac_l)ioj Ab; < dj, (12)

Thus the left inequality of (12) becomes redundant. Next, choosing «2, where
k2ef{l,2, ..., 2”},suchthat(A;l),-ojTj’;2 <Ofordlj=1,2,...,n,inequalities
(11) for i = ip and k = k2 can be written as

—diy <Y ’(AZ Yioj| Abj < i, (13)
j=1

where the | eft inequality of (13) isredundant. From (12) and (13) we deduce that
for any i with suitable choices of «, wherex € {1, 2, ..., 2"}, inequalities (11)
produce the single vector inequality given by

n
>[4
j=1

Abj > d (14)

whered; = min{d;, d;}.

Thus inequalities (14) define the parameter space of the uncertainty vector Ab.
Thus our problem can be reformulated as an optimization problem with linear
constraints and an objective function chosen, linear or nonlinear, according to
practical considerations. Alternatively a certain region approximation can be used
to approximate the region defined by the above inequalities.

In the specia case of constant relative variationsin Ab = ¢|b.|, for some positive
scalar ¢, inequalities (14) iswritten in the form,

n

2

=1

(Ac_l)ij

elbe| < d; (15)

The solution, which now depends on evaluating ¢, can be easily obtained since

. d;
e=_min _ d (16)
1=1,4,...n —
(AYij | 1bg |

2

j=1
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n
provided that 3~ [(AZ1)ij| Ibe; | # O for at least onei.
j=1

3. Uncertainty in the Matrix of Coefficients

For the interval matrix A’, where AT = [A. — AA, A. + AA], itisrequired to
find AA such that the interval solution vector of the interval system of equations
(1) is contained in the given interval solution vector x!. Putting Ab = 0in (4), we
obtain

Acx — b, = TXAAT x
or,
(Ae — TSAAT )x = b,
With the assumption that (A, — T AAT’)~1 exists, then
x = (Ac — T*AAT") b,

Moreover, with the requirement that x < x < i , it followsthat AA must satisfy
the set of inequalities

x < (Ac —T*AAT) b, < & (17)

fore =1,2,...,2" Solving (17) for any genera A A isquite adifficult problem.
To simplify the problem and treat a reasonable problem; with respect to practical
considerations; we impose the assumption that A undergoes avariation that can be
represented by arank-one matrix AA.

To obtain the inverse of the matrix in (17), apply the Sherman—Morrison formula
for theinverse of amatrix with arank-one variation matrix. In fact, amatrix of the
form (B — ouv?)™1,witho € Rand u, v € R", hastheinverse

(B — oruvT)_1 =B1+ (o_l — vTB_lu)_lB_luvTB_1

provided that (0= — v7B~1u) # 0. Now, let T*AAT’ = ouv<’ for some
o € Rand u®, v € R". Thus,

(Ae = T*AAT) 1= A7 4+ (071 = ¥ AZL) LAtk AL (19)

Using (18), inequalities (17) are written as

<@ 1- v"TA,_lu")_lAc_lu’(v’(Txc <d (29

&

—d
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whered = x, —x andd = x — x.. But

T
T . T v x, B
(O.—l_v/( Ac—lu/() 1AC1quK Xp = TL . AC]'MK
(0= — k" A7 ux)

KT . . .
Noting that ( S ) isascaar, let A7lu* = o. Substituting in (19)
(

o—L1—vel AT Tyr)

we get

of < d; (20)

Without loss of generality, assume that (0—1 -3 v’.‘a’.‘> >0
j=1

Thus, multiplying both sides of (20) by <c7_1 — > v of ) would not ater the
j=1
sense of the inequalities yielding

n n n
-1 2 : K K 2 : K K -1 Kk k) 7.
j=1 j=1

=1
or,

n
Z vj'f(aj'fczi + xe;0f) < o d;
A (21

1

J
fori =1,2,...,nandx =1, 2,...,2". Thustheset of inequalities (21) consists
of (2n x 2™") scaar inequalities. Using inequalities (21), we proceed to solve for
AA inthefollowing cases:

n
K (K K -1
=1

(i) One nonzero element.

A A has one nonzero element in position, say (I, m). Dencte thiselement by §. In
thiscaselet o = 8, u* = T¥¢;, and V€ = T'e,, Where e; denotes a unit vector
with only the i*"* component equals 1 and all other components equal 0.

(if) One nonzero row.

A A has one nonzero row, say, the ' row which either
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(a) has equa valued components. Let o = §, where § isascaar, u“ = T*¢;, and
V¢ = T'e, Wwhere e € R" denotes the vector of theform (1, 1, ..., 17 ,i.e dlits
elements equal one, or

(b) it isageneral vector in R". Inthiscaseo = 1, u¥ = T¥¢;, and v = T'S
where § isavector in R".

(iii) One nonzero column.
A A has one nonzero column, say, the m** column, which either

(a) has equal valued components. Let o = d, where § isascalar, u* = T“e and
Ve =T'ey, o,

(b) itisagenerd vector in R". Inthiscaseo = 1, u* = T%§ and v* = T'ey,,
where o isavector in R".

3.1. One Parameter Cases
First we solve the single parameter cases for which o = §, wherethescalar § > 0.

In inequalities (21), let Z;’:l vj’.C (oej’.‘c?i + x¢; ;) be denoted by B} be denoted by
Bf and 3774 vf (ejd; — x;f) be denoted by Cf, thus

>l

Cz,' and Cl <

1

SIS

Bf <

d; (22a,b)

fori =21,2,...,n. Ifforanyi € {1,2,...,n} thereexistsax € {1,2, ..., 2"}
such that B > 0 then (22a) iswritten as
di

§ < (233)

3|

Also, for Cf > 0, from (22b)

§< =L (23b)
Infact, Bf and/or C¥ < Oforanyi € {1,2,...,n}, will giveredundant constraints
since this provides negative lower bounds on § and we are concerned with the
nonnegative values of § only.
Substituting for the different values of u* and v* yield:

(i) One nonzero element

For one nonzero element in the (I, m) position, witho = §, u* = T*¢; and
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o€ = Te,, yidlds

. d:

. oy 1
i AZYud; — xe, (AZHul (AT Y di + xe, (ATD);
2eee [(Ac )ml_, xcm( ¢ Ditl 1A ) md; xcm( ¢ il

(24)

(ii-a) One nonzero row with equal components

Equa I'* row deviation, o = 8, where § isascaar, u* = T¥¢; and v< = T'e
yields

d.

1

&

9
i=1,..n

7/, ((ATHd; + (A )

n
X 7 ((Actid; = (A,
]:

LU=

J

(iii-a) One nonzero column with equal components

Equal m" column deviation, o = §, where§ isascaar, u® = T“e andv* = T'e,,
yields

d; d;

1

| -1
Z [(Ac )mjii — (A )ijxcm|
j=1

5= min

9
i=1,...n n

A7 Y mdi + (AZYijxe,, |
j=1

(26)
3.2 n-Parameter Cases
For solving the n-parameter cases, let the scalar o = 1in (21), and hence
n -_ -—
Z vj'-C (ozj'-cdi + xj?‘af) <d;
i=1
! (27)

n
K K c K
D v @d; — xjof) < 4,
=1

Substituting for the different values of u* and v* yields
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(ii-b) One nonzero row with equal components

For unequal /' row deviations, let u“ = T*e¢; , and vy = T'8, where § is avector
in R™ with nonnegative entries. Since

n
af =Y (A7 Dijuf = (A7 DTy
j=1
substituting in (27), we obtain

n
T Z T/ (Xc,- (A7Yi + (Ac_l)jldi) <d;
j=1
: (29)
T )T (‘xc]- (A7 M+ (Ac_l)jlii) <d;
j=1

wherei =1,2,...nandec =1,2,...,2",i.e. (2n x 2") scalar inequalities define
the parameter space. ButasT)f € {—1, 1}, i.e. itacquiresonly two different values
for al «, this results in reducing the number to (2n x 2) scalar inequalities. In
fact, the number of effectiveinequalitiesturnsout to be only 2»n dueto redundancy.
Define -

Bij = (A7 Yjdi + (A7 Dirxj

_ _ (29)
Cij = (A7Hjd; — (A7Yiixe
Thus using (29), (28) is rewritten in matrix form as
/ 7 / 3
BT'$ <d, BT'§ <d (20)

CT's<d, —-CT's<d
8 > 0.These can be written in the compact form
Ps<r
for some suitably chosen matrix of coefficients P and right hand side vector r.
Thus the problem of finding the maximum alowable deviation of the I’ row
components of the matrix of coefficientsisformulated as an optimization problem
with afeasible region defined by (30).

(iii-b) One nonzero column with unequal components

For the nonzero m!”" column deviations with n parameters, let u* = T8, v* =
T’e,, and

n n
of =D (A = ) (AT
=1 =1
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Substituting in (27) yield
o (ZAc T+ 2 AT ) =d
mm <Z Ac ij]’;‘S d ZAC 1UT],;5 ) = di
j=1

or,
n
Tn/lm Tjj( c mjd +AL lj-x(,‘m)aj = d;
j=1
n (3D
Trilm T}’; (AL_lmJii A, lj-x(,‘m) 5] <d,;
j=1
Define L -
Bi/j = AL_ mjdi + AL ijXep (32)
C;j = Ac_lmjii AL_llj'xcm
Using (32), inequalities (31), written in matrix form, become
|B'T*§| <d and |C'T*S| <d (33)

fore =1,2,...,2", defining (2n x 2") scalar inequalities. But since §; > O,
d; >0,andd; > Ofordli =1,2,...n,only the set of inequalities found in the
positive orthant isconsidered. Thechoicesof « € {1, 2, ..., 2"} aresuch that (33)
isreduced to 2n inequalities of the form

|B'ls<d and |C'|8<d (34)

where | - | defines the absolute value of the array taken component wise. Again
(34) can be rewritten in the compact form P§ <r for specia choices of Pandr.

Itisworth noting that all the n-parameter problems as shown by (10), (30) and (34),
can be reformulated as optimization problems subject to the inequality constraints

Ps <, (35

for suitably chosen Pand r.

4. Solution of the Associated Optimization Problem

To deal with the set of inequdities (35), P§ < r, we choose a suitable linear or
quadratic objective function and solve the resulting optimization problem.
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(a) Linear objective function.

In this case the resulting optimization problem is a linear programming problem
of theform

Maximize 8; (PD)

n

i=1
subjectto P§ <, §>0.

The LP problem (P1) is solved using the Simplex method.

(i) Quadratic objective function.

Here the resulting optimization problem is a quadratic programming problem of
theform

n n
Maximize > 2wis — » 67 (P2)
i=1 i=1
subjectto PS§ <, §>0
where w;, i = 1,2, ..., n, are the components of aweight vector. The quadrat-

ic programming problem (P2) is solved via a complementary pivoting technique.
Note that the quadratic objective function is a concave function. This guarantees
that a computed local maximum is the global maximum. The contour levels of
the objective function are balls whose center is w. Two types of optimal solutions
are possible depending on the weight vector w: In typel the optimum lies in the
interior of the constraint region while in type2 the optimum is on the boundary of
the constraint region. Solution of quadratic programs through solving linear com-
plementary problemsisfound in [2] together with a guarantee of convergence for
the used pivoting algorithm. In fact, the Kuhn—Tucker conditions of the quadratic
programming problem (P2) reduce to the linear complementary problem

w—Mz=q, wlz=0, w,z>0

where

T P R ¢ )

with y denoting the vector of slack variables whereas u and v are the Lagrangian
multiplier vectors associated with the constraints P§ < r and § > 0, respectively.
Thus the complementary pivoting algorithm discussed in [2, sec.11.1] can be used
to find a Kuhn—Tucker point of (P2) with a guarantee of convergence in a finite
number of iterations [2, Theorem 11.2.4].

Remark. It isworth noting that if the quadratic objective function was chosen
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as the convex function f(8) = 678, then it leads to the quadratic programming
problem

n
Maximize 67
i=1
st.t. Ps<r, §>0 (P3)

Following the notations of [2,sec. 11.1] to solve (P3), it is required to minimize

T8+ 38" HS) where H = —21 and ¢ = 0. Thus H isanegative definite matrix,
and there is no guarantee of convergence.

5. Numerical Example

Given
4 -1 -1 0 0
-1 4 0 -1 0
Ae=|_7 0o a4 -1 %=1 1000
0 -1 -1 4 1000
then

xe =AYb, =(125 125 375 375)7, T =1

Given the prescribed interval solution vector
x! = ([110, 140], [110, 140], [360, 390], [360, 390])7,

it is required to analyze the given system of equations A’x = b’ w.r.t. the maxi-
mum allowabl edeviations of thevarious system parametersasdiscussed in Sections
2and 3.

5.1. Right-Hand-Sde Uncertainties

For arbitrary deviation vector, the set of constraints defining Ab is given by (10),
thus

P=1A7Y (i)
where

0.291667 0.083333 0.083333 0.0416667

0.083333 0.291667 0.0416667 0.083333

0.083333 0.0416667 0.291667  0.083333
0.0416667 0.083333 0.083333 0.291667

ri =min{d;, d;} =15 i=1234 (ii)

-1
AT~
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The maximum allowabl e deviation vector in the right hand sidewith P and r given
by (i) and (ii), respectively, for:

1. LPproblem (Pl), is
Ab = (29.999968, 30.00001, 30.00001, 30)”
2. QP problem (P2), with weight vector o = (50, 50, 50, 50)7 is
Ab = (29.999973, 29.999998, 29.999998, 30.000001)7 .
x,’e for the computed Ab as obtained by Rohn’s algorithm [8] is
([110, 140], [110, 140], [360, 390], [360, 390]) .

Solving (P2) with w; = 100, and al other w;’s equa 0 where i, j € {1, 2, 3,4}
andi # j, wefind that Ab; = 51.42852 and al other Ab;’sequal 0.

In the specia case in which Ab = ¢|b,|, for some positive scaar ¢, using (16)
gives Ab = (0,0, 40, 40)” where x} for the computed Ab is,

xh = ([120, 130], [120, 130], [360, 390], [360, 390])” .

Table 1. One nonzero deviation in the elements of the matrix of coefficients

d.m) AAp,  xk

(1,1) 0.367347 ([112.903,140], [121.44, 129.286], [371.544, 379.286], [373.272, 377.143])T
(1,2) 0.39779  ([110.963,140], [120.989, 129.286], [370.989, 379.286], [372.995, 377.143])T
(1,3) 0.135593 ([110.335, 140], [120.81, 129.286], [370.81, 379.285], [372.905, 377.143])T
(1,4) 0.136364 ([110.169, 140], [120.763, 129.286], [370.763, 379.286], [372.881, 377.143])7
(2,1) 0.39779  ([120.989, 129.286], [110.963, 140], [372.995, 377.143], [370.989, 379.286])
(2,2) 0.367347 ([121.544,129.286], [112.903, 140], [373.272, 377.143], [371.544, 379.286])T
(2,3) 0.136364 ([120.763,129.286], [110.169, 140], [372.881, 377.143], [370.763, 379.286])
(2,4) 0.135593 ([120.81,129.286], [110.335, 140], [372.905, 377.143], [370.81, 379.285]) "
(3,1) 0.39779 ([120.989, 129.286], [122.995, 127.143], [360.963, 390], [370.989, 379.286])”
(3,2) 0.404494 ([120.856,129.286], [122.928, 127.143],[360.497, 390, [ 370.86, 379.286])
(3,3) 0.131868 ([121.032,129.286],[123.016, 127.143],[361.111, 390], [371.032, 379.286])7
(3,4) 0.135593 ([120.81,129.286], [122.905, 127.143], [360.335, 390], [370.81, 379.286]) "
(4,1) 0.404494 ([122.988,127.143], [120.856, 129.286], [370.86, 379.286], [360.497, 390])”
(4,2) 039779 ([122.995,127.143], [120.989, 129.286], [370.989, 379.286], [360.963, 390]) 7
(4,3) 0.135593 ([122.905, 127.143], [120.81, 129.286], [370.81, 379.286], [360.335, 390])”
(4,4) 013868 ([123.016,127.143],[121.032, 129.286], [371.032, 379.286], [361.111, 390])7
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5.2. Uncertainty in the Matrix of Coefficients
Solving for the different cases considered:
(i) One nonzero element in position (I, m).
A A, isfound using (24). The maximum allowable deviation for each coefficient
Aij,iand j = 1,23 4, isfound in Table 1 with the corresponding computed
interval solution vector x%.
(ii) One nonzero row
For equal row components, the maximum allowable deviation for eachrow AA;, =

§(1,1,1, 17,1 = 1,2 3,4, where § is a scalar, computed according to (24), is
given in Table 2 with the corresponding computed interval solution vector x.

Table 2. Equal row deviations

I d xL
R

1 0.050139 (110.734,140], [120.924, 129.286], [370.924, 379.286], [372.962, 377.143]) T

2 0.050139 ([120.924,129.286],[110.734, 140], [372.962, 377.143], [370.924, 379.286])

3 0.050139 ([120.924, 129.286], [122.962, 127.143], [360.734, 390], [370.924, 379.286]) T

4

0.050139 [122.962, 127.143], [120.924, 129.286], [370.924, 379.286], [360.734, 390]) "

For unequal components, the set of constraints defining the vector § = AA;, for
eachl =1, 2, 3, 4, isgiven by (30), thus

BT’ d

— BT’ d N e
P=| cp r=|y (i), (ii)

—CT’ d

where T’ = I. Note that the set of constraintsis reduced from 4n to 2n inequality
due to redundancy; since the constraints of theform —BT’'8 <d and —CT’§ <d
are redundant constraintsas 7" = I, B > 0, and C > 0 component wise. For
example, for row number one with P and r given by (i) and (ii), respectively, we
obtain:

1. LP problem (P1), gives

AA; = (0,0.397779, 0, 0)T,

2. QP problem (P2), with w = (0.1, 0.1, 0.1, 0.1)7, gives
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AA; = (0.0777792, 0.079492, 0.039835, 0.040175)"
where x}e for the computed AA;. isfound to be,

xh = ([111, 140], [121, 129.286], [371, 379.286], [373, 377.143])7

Results for unequal row components are given in Table 3.

Table 3. Unequal row deviations. withw = (0.1, 0.1, 0.1, 0.1)T

l AA;

1 (0.077792, 0.079492, 0.03983, 0.040175) T
2 (0.079492, 0.077792, 0.40175, 0.03983) T
3 (0.079893, 0.080226, 0.039345, 0.041011) T
4 (0.080226, 0.079893, 0.0401011, 0.03934) T

(iii) One nonzero column

For equal column components, the maximum allowabl e deviation for each column

AA,, =68(1,1,1, 107, m=1,2 3,4, where§ isascaar computed according to

(26), isfound in Table 4 with the corresponding computed interval solution vector
1

Xp-

Table 4. Equal column deviations

1
d Xp-

0.214286  ([112.903, 140], [112.903, 140], [362.903, 390], [362.903, 390])”
0.214286  ([112.903, 140], [112.903, 140], [362.903, 390], [362.903, 390])”
0.076923  ([111.111, 140], [111.111, 140], [361.111, 390], [361.111, 390) T
0.076923  ([111.111,140], [111.111, 140], [361.111, 390], [361.111, 390]) 7
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For unegqual column components, the set of constraints defining the parameters
AA,,, foreachm =1, 2, 3, 4, isgiven by (34) or (35), with

B’ d L

P=(ier) = (a) @
where B’ and C’ are defined in (32). Note that the set of constraints consists of 2n
inequalities. For example, for column number one, with P and r given by (i) and
(i), respectively, we obtain:
1. LP problem (P1) gives

AA 1 = (0.214286, 0.214286, 0.214286, 0.214286)" ,

2. QP problem (P2), with w = (0.5, 0.5, 0.5, 0.5) gives

AA 1 = (0.214286, 0.214286, 0.214286, 0.214286) "
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with x4, for the computed AA 1 given by

xh = ([112.9, 140], [112.9, 140], [362.9, 390], [362.9, 390.000031])"

Results for unequal column components are found in Table 5.

Table 5. Unequal column deviations. » = (0.5, 0.5, 0.5, 0.5)T

AAm

(0.214286, 0.214286, 0.214286, 0.214286) T
(0.214286, 0.214286, 0.214286, 0.214286) T
(0.076923, 0.076923, 0.076923, 0.076923) T
(0.076923, 0.076923, 0.076923, 0.076923) T
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