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Abstract

Given a nonsingular central matrix Ac, a central vector bc and a prescribed interval solution vector xI ,
it is required to find the maximum allowable deviation 1A or 1b so that the solution of the interval
linear system AI x = bI is contained in xI . Special cases for 1A and 1b are considered and bounds
on the entries of AI and bI are obtained either in a closed form, whenever possible, or via solving a
specially designed constrained optimization problem.

Key Words: Linear systems of equations, interval matrices, inequality constraints, constrained opti-
mization.

1. Introduction

The interval linear system of equations has been widely investigated since the
pioneer work of Oettli and Prager [7] in 1965. Consider a set of linear equations

AIx = bI (1)

in which AI is an interval matrix and bI is an interval vector. Such equations
have been of interest for years in both interval and noninterval contexts. As the
noninterval case, the interval linear systems of equations are currently of special
interest because they arise in many applications. Algorithms for determining the
solution set of (1) are found in many references, e.g. [3]–[8].

However, in this paper we are interested in solving the inverse problem of the
interval linear system of equations. That is, given the central matrix Ac, the
central vector bc and the interval solution vector xI , it is required to find the
maximum allowable deviations 1A and 1b from the nominal central values Ac

and bc, respectively, such that the solution of the interval system is contained in
the prescribed solution vector xI .

Starting from the well-known Oettli-Prager Inequality [7], given by
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|Acx − bc| ≤ 1A|x| +1b (2)

each vertex of the convex hull of the solution set of (1), X = {x : Ax = b, A ∈
AI , b ∈ bI } denoted by ConvX satisfies

|Acx − bc| = 1A|x| +1b (3)

which is equivalent to 2n equations of the form

Acx − bc = T κ(1AT ′x +1b) (4)

for κ = 1, 2, . . . , 2n, where T κ is a diagonal matrix with diagonal elements be-
longing to {−1, 1} and T ′ is a diagonal matrix with diagonal elements equal to
sgn(x); i.e. |x| = T ′x.

With the assumption that A−1
c exists, and no change of sign for the solution vector

components occurs, multiplying both sides of (4) by A−1
c yields

x − xc = A−1
c T κ(1AT ′x +1b) (5)

which can be written in the form

(I − A−1
c T κ1AT ′)(x − xc) = A−1

c T κ(1AT ′x +1b) (6)

and by assuming that (I −A−1
c T κ1AT ′)−1 exists, yields

x − xc = (I −A−1
c T κ1AT ′)−1A−1

c T κ(1AT ′x +1b) (7)

With the requirement that x ≤ x ≤ x̄, i.e. x − xc ≤ x − xc ≤ x̄ − xc, it follows
that

−d ≤ (I −A−1
c T κ1AT ′)−1A−1

c T κ(1AT ′x +1b) ≤ d̄ (8)

where d = xc − x and d̄ = x̄ − xc.

The goal is to define the space of maximum allowable deviations 1Aij and 1bi ,
(i, j = 1, 2, . . . , n) satisfying inequalities (8). The dimension of the space of
parameters is, in general, (n × n + n). It is worth noting that our problem can
simply be considered as another approach suggested to tackle the well-known
linear tolerance problem [1], [9] and [10]. We believe that our approach can be
successfully applied to some practical problems, e.g. in the tolerance design or
tuning of a linear circuit with nodal equation Yv = i. The tolerance problem is to
find the interval entries of the admittance matrix Y so that the output voltage vector
v is within the performance acceptability range for some input current vector i.
For an illustrative realistic design problem we consider in particular the tunable
active filter presented in [1] in which the grounded resistor R4, shown in [1, Fig.
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4], is a single tunable element. The tuning range of R4 required for the voltage
V2 to stay within the performance acceptability range can be achieved by applying
our method for the one nonzero element discussed in Subsection 3.1 of this present
work.

In fact, in this paper we consider special cases of the general problem (8). The cases
to be considered are divided mainly into two types. Each type is in turn divided
into subcases to simplify the problem. In Section 2 the first type is considered
where only uncertainty in the right hand side vector, b, is assumed. The second
type which considers only uncertainty in the matrix of coefficients, A, is discussed
in Section 3. In both types the problem is reduced to solving a finite set of linear
inequalities. For the single parameter cases closed form relations are obtained
whereas for each of the more than one parameter cases an optimization problem
with a suitably selected objective function is defined. The resulting optimization
problem is solved in Section 4. Numerical examples are given in Section 5.

2. Uncertainty in the Right Hand Side Vector

Considering bI = [bc−1b, bc+1b], it is required to find 1b so that the solution
of the interval system of equations (1) is contained in the given interval solution
vector xI .

Put 1A = 0 in (8) to obtain the following set of inequalities

−d ≤ A−1
c T κ1b ≤ d̄ (9)

for κ = 1, 2, . . . , 2n, this gives (2n×2n) scalar inequalities. Let di = min{di, d̄i}
for i = 1, 2, . . . , n and the vector d = (di). It can be easily observed that the set
of inequalities given by (9) is the set of inequalities of the form

|A−1
c |1b ≤ d (10)

where |·|means the absolute value of the array taken componentwise. To show that
(9) lead to (10), we present the following derivation. Inequalities (9) are rewritten
in the component form

−di ≤
n∑

j=1

(A−1
c )ij T

κ
ij1bj ≤ d̄i (11)

for i = 1, 2, . . . , n and κ = 1, 2, . . . , 2n. For each i ∈ {1, 2, . . . , n}, say
i = i0, choose κ1, where κ1 ∈ {1, 2, . . . , 2n}, so that (A−1

c )i0j T
κ1

jj ≥ 0 for
all j = 1, 2, . . . n. Since we are interested only in nonnegative values of 1bj ,
j = 1, 2, . . . , n, and the fact that di ≥ 0 and d̄i ≥ 0, for all i = 1, 2, . . . , n,
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inequalities (11) for i = i0 and κ = κ1 can be written as follows

−di0
≤

n∑
j=1

∣∣∣(A−1
c )i0j

∣∣∣1bj ≤ d̄i0 (12)

Thus the left inequality of (12) becomes redundant. Next, choosing κ2, where
κ2 ∈ {1, 2, . . . , 2n}, such that (A−1

c )i0jT
κ2

jj ≤ 0 for all j = 1, 2, . . . , n, inequalities
(11) for i = i0 and κ = κ2 can be written as

−di0
≤

n∑
j=1

∣∣∣(A−1
c )i0j

∣∣∣1bj ≤ d̄i0 (13)

where the left inequality of (13) is redundant. From (12) and (13) we deduce that
for any i with suitable choices of κ , where κ ∈ {1, 2, . . . , 2n}, inequalities (11)
produce the single vector inequality given by

n∑
j=1

∣∣∣(A−1
c )i0j

∣∣∣1bj ≥ di (14)

where di = min{di, d̄i}.

Thus inequalities (14) define the parameter space of the uncertainty vector 1b.
Thus our problem can be reformulated as an optimization problem with linear
constraints and an objective function chosen, linear or nonlinear, according to
practical considerations. Alternatively a certain region approximation can be used
to approximate the region defined by the above inequalities.

In the special case of constant relative variations in 1b = ε|bc|, for some positive
scalar ε, inequalities (14) is written in the form,

n∑
j=1

∣∣∣(A−1
c )ij

∣∣∣ ε|bcj | ≤ di (15)

The solution, which now depends on evaluating ε, can be easily obtained since

ε = min
i=1,2,...n


di

n∑
j=1

∣∣∣(A−1
c )ij

∣∣∣ |bcj |

 (16)
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provided that
n∑

j=1

∣∣(A−1
c )ij

∣∣ |bcj | 6= 0 for at least one i.

3. Uncertainty in the Matrix of Coefficients

For the interval matrix AI , where AI = [Ac − 1A,Ac + 1A], it is required to
find 1A such that the interval solution vector of the interval system of equations
(1) is contained in the given interval solution vector xI . Putting 1b = 0 in (4), we
obtain

Acx − bc = T κ1AT ′x

or,

(Ac − T κ1AT ′)x = bc

With the assumption that (Ac − T κ1AT ′)−1 exists, then

x = (Ac − T κ1AT ′)−1bc

Moreover, with the requirement that x ≤ x ≤ x̄ , it follows that 1A must satisfy
the set of inequalities

x ≤ (Ac − T κ1AT ′)−1bc ≤ x̄ (17)

for κ = 1, 2, . . . , 2n. Solving (17) for any general 1A is quite a difficult problem.
To simplify the problem and treat a reasonable problem; with respect to practical
considerations; we impose the assumption that A undergoes a variation that can be
represented by a rank-one matrix 1A.

To obtain the inverse of the matrix in (17), apply the Sherman–Morrison formula
for the inverse of a matrix with a rank-one variation matrix. In fact, a matrix of the
form (B − σuvT )−1 , with σ ∈ R and u, v ∈ Rn, has the inverse

(B − σuvT )−1 = B−1 + (σ−1 − vT B−1u)−1B−1uvT B−1

provided that (σ−1 − vT B−1u) 6= 0. Now, let T κ1AT ′ = σuκvκT
for some

σ ∈ R and uκ, vκ ∈ Rn. Thus,

(Ac − T κ1AT ′)−1 = A−1
c + (σ−1 − vkT

A−1
c uκ)−1A−1

c uκvkT

A−1
c (18)

Using (18), inequalities (17) are written as

−d ≤ (σ−1 − vκT

A−1
c uκ)−1A−1

c uκvκT

xc ≤ d̄ (19)
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where d = xc − x and d̄ = x̄ − xc. But

(σ−1 − vκT

A−1
c uκ)−1A−1

c uκvκT

xc =
(

vκT
xc

(σ−1 − vκT
A−1

c uκ)

)
A−1

c uκ

Noting that

(
vκT

xc

(σ−1−vκT
A−1

c uκ )

)
is a scalar, let A−1

c uκ = ακ . Substituting in (19) ,

we get

−di ≤

n∑
j=1

vκ
j xcj(

σ−1 −
n∑

j=1
vκ
j ακ

j

)ακ
i ≤ d̄i (20)

Without loss of generality, assume that

(
σ−1 −

n∑
j=1

vκ
j ακ

j

)
> 0

Thus, multiplying both sides of (20) by

(
σ−1 −

n∑
j=1

vκ
j ακ

j

)
would not alter the

sense of the inequalities yielding

−
(

σ−1 −
n∑

j=1

vκ
j ακ

j

)
di ≤

n∑
j=1

vκ
j xcj α

κ
i ≤

(
σ−1 −

n∑
j=1

vκ
j ακ

j

)
d̄i

or,
n∑

j=1

vκ
j (ακ

j d̄i + xcj α
κ
i ) ≤ σ−1d̄i

n∑
j=1

vκ
j (ακ

j di − xcj α
κ
i ) ≤ σ−1di

(21)

for i = 1, 2, . . . , n and κ = 1, 2, . . . , 2n. Thus the set of inequalities (21) consists
of (2n × 2n) scalar inequalities. Using inequalities (21), we proceed to solve for
1A in the following cases:

(i) One nonzero element.

1A has one nonzero element in position, say (l,m). Denote this element by δ. In
this case let σ = δ, uκ = T κel , and vκ = T ′em where ei denotes a unit vector
with only the ith component equals 1 and all other components equal 0.

(ii) One nonzero row.

1A has one nonzero row, say, the lth row which either
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(a) has equal valued components. Let σ = δ, where δ is a scalar, uκ = T κel , and
vκ = T ′e, where e ∈ Rn denotes the vector of the form (1, 1, . . . , 1)T , i.e. all its
elements equal one, or

(b) it is a general vector in Rn. In this case σ = 1, uκ = T κel , and vκ = T ′δ ,
where δ is a vector in Rn.

(iii) One nonzero column.

1A has one nonzero column, say, the mth column, which either

(a) has equal valued components. Let σ = d, where δ is a scalar, uκ = T κe and
vκ = T ′em, or,

(b) it is a general vector in Rn. In this case σ = 1, uκ = T κδ and vκ = T ′em,
where σ is a vector in Rn.

3.1. One Parameter Cases

First we solve the single parameter cases for which σ = δ, where the scalar δ > 0.
In inequalities (21), let

∑n
j=1 vκ

j (ακ
j d̄i + xcj α

κ
i ) be denoted by Bκ

i be denoted by
Bκ

i and
∑n

j=1 vκ
j (αjdi − xcj α

κ
i ) be denoted by Cκ

i , thus

Bκ
i ≤

1

δ
d̄i and Cκ

i ≤
1

δ
di (22a,b)

for i = 1, 2, . . . , n. If for any i ∈ {1, 2, . . . , n} there exists a κ ∈ {1, 2, . . . , 2n}
such that Bκ

i > 0 then (22a) is written as

δ ≤ d̄i

Bκ
i

(23a)

Also, for Cκ
i > 0, from (22b)

δ ≤ di

Cκ
i

(23b)

In fact, Bκ
i and/or Cκ

i < 0 for any i ∈ {1, 2, . . . , n}, will give redundant constraints
since this provides negative lower bounds on δ and we are concerned with the
nonnegative values of δ only.

Substituting for the different values of uκ and vκ yield:

(i) One nonzero element

For one nonzero element in the (l,m) position, with σ = δ, uκ = T κel and
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vκ = T ′em yields

δ = min
i=1,...,n

{
di

|(A−1
c )mldi − xcm(A−1

c )il|
,

d̄i

|(A−1
c )mld̄i + xcm(A−1

c )il|

}
(24)

(ii-a) One nonzero row with equal components

Equal lth row deviation, σ = δ, where δ is a scalar, uκ = T κel and vκ = T ′e
yields

δ = (25)

min
i=1,...,n


di∣∣∣∣∣ n∑

j=1
T ′jj

(
(A−1

c )jldi − (A−1
c )ilxcj

)∣∣∣∣∣
,

d̄i∣∣∣∣∣ n∑
j=1

T ′jj
(
(A−1

c )jl d̄i + (A−1
c )ilxcj

)∣∣∣∣∣


(iii-a) One nonzero column with equal components

Equal mth column deviation, σ = δ, where δ is a scalar, uκ = T κe and vκ = T ′em,
yields

δ = min
i=1,...,n


di

n∑
j=1
|(A−1

c )mjdi − (A−1
c )ij xcm |

,
d̄i

n∑
j=1
|(A−1

c )mj d̄i + (A−1
c )ijxcm |


(26)

3.2 n-Parameter Cases

For solving the n-parameter cases, let the scalar σ = 1 in (21), and hence

n∑
j=1

vκ
j (ακ

j d̄i + xc
j ακ

i ) ≤ d̄i

n∑
j=1

vκ
j (ακ

j di − xc
j ακ

i ) ≤ di

(27)

Substituting for the different values of uκ and vκ yields
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(ii-b) One nonzero row with equal components

For unequal lth row deviations, let uκ = T κel , and vk = T ′δ, where δ is a vector
in Rn with nonnegative entries. Since

ακ
i =

n∑
j=1

(A−1
c )ij u

κ
j = (A−1

c )ilT
κ
ll

substituting in (27), we obtain

T κ
ll

n∑
j=1

T ′jj δj
(
xcj (A

−1
c )il + (A−1

c )jl d̄i

)
≤ d̄i

T κ
ll

n∑
j=1

T ′jj δj
(
−xcj (A

−1
c )il + (A−1

c )jldi

)
≤ di

(28)

where i = 1, 2, . . . n and κ = 1, 2, . . . , 2n, i.e. (2n×2n) scalar inequalities define
the parameter space. But as T κ

ll ∈ {−1, 1}, i.e. it acquires only two different values
for all κ , this results in reducing the number to (2n × 2) scalar inequalities. In
fact, the number of effective inequalities turns out to be only 2n due to redundancy.
Define

Bij = (A−1
c )jl d̄i + (A−1

c )ilxcj

Cij = (A−1
c )jldi − (A−1

c )ilxcj

(29)

Thus using (29), (28) is rewritten in matrix form as

BT ′δ ≤ d̄, −BT ′δ ≤ d̄

CT ′δ ≤ d, −CT ′δ ≤ d
(30)

δ ≥ 0 .These can be written in the compact form

Pδ ≤ r

for some suitably chosen matrix of coefficients P and right hand side vector r.
Thus the problem of finding the maximum allowable deviation of the lth row
components of the matrix of coefficients is formulated as an optimization problem
with a feasible region defined by (30).

(iii-b) One nonzero column with unequal components

For the nonzero mth column deviations with n parameters, let uκ = T κδ, vκ =
T ′em and

ακ
i =

n∑
j=1

(A−1
c )ij u

κ
j =

n∑
j=1

(A−1
c )ij T

κ
jj δj
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Substituting in (27) yield

T ′mm

(
n∑

j=1

A−1
c mjT

κ
jj δj d̄i + xcm

n∑
j=1

A−1
c ijT

κ
jj δj

)
≤ d̄i

T ′mm

(
n∑

j=1

A−1
c mjT

κ
jj δj di − xcm

n∑
j=1

A−1
c ijT

κ
jj δj

)
≤ di

or,

T ′mm

n∑
j=1

T κ
jj

(
A−1

c mj d̄i +A−1
c ij xcm

)
δj ≤ d̄i

T ′mm

n∑
j=1

T κ
jj

(
A−1

c mjdi −A−1
c ij xcm

)
δj ≤ di

(31)

Define
B′ij = A−1

c mj d̄i +A−1
c ij xcm

C′ij = A−1
c mjdi −A−1

c ij xcm

(32)

Using (32), inequalities (31), written in matrix form, become

|B′T κδ| ≤ d̄ and |C′T κδ| ≤ d (33)

for κ = 1, 2, . . . , 2n, defining (2n × 2n) scalar inequalities. But since δi ≥ 0,
d̄i ≥ 0, and di ≥ 0 for all i = 1, 2, . . . n, only the set of inequalities found in the
positive orthant is considered. The choices of κ ∈ {1, 2, . . . , 2n} are such that (33)
is reduced to 2n inequalities of the form

|B′|δ ≤ d̄ and |C′|δ ≤ d (34)

where | · | defines the absolute value of the array taken component wise. Again
(34) can be rewritten in the compact form Pδ ≤r for special choices of P and r.

It is worth noting that all the n-parameter problems as shown by (10), (30) and (34),
can be reformulated as optimization problems subject to the inequality constraints

Pδ ≤ r, (35)

for suitably chosen P and r.

4. Solution of the Associated Optimization Problem

To deal with the set of inequalities (35), Pδ ≤ r, we choose a suitable linear or
quadratic objective function and solve the resulting optimization problem.
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(a) Linear objective function.

In this case the resulting optimization problem is a linear programming problem
of the form

Maximize
n∑

i=1

δi (P1)

subject to Pδ ≤ r, δ ≥ 0.

The LP problem (P1) is solved using the Simplex method.

(ii) Quadratic objective function.

Here the resulting optimization problem is a quadratic programming problem of
the form

Maximize
n∑

i=1

2ωiδi −
n∑

i=1

δ2
i (P2)

subject to Pδ ≤ r, δ ≥ 0

where ωi , i = 1, 2, . . . , n, are the components of a weight vector. The quadrat-
ic programming problem (P2) is solved via a complementary pivoting technique.
Note that the quadratic objective function is a concave function. This guarantees
that a computed local maximum is the global maximum. The contour levels of
the objective function are balls whose center is ω. Two types of optimal solutions
are possible depending on the weight vector ω: In type1 the optimum lies in the
interior of the constraint region while in type2 the optimum is on the boundary of
the constraint region. Solution of quadratic programs through solving linear com-
plementary problems is found in [2] together with a guarantee of convergence for
the used pivoting algorithm. In fact, the Kuhn–Tucker conditions of the quadratic
programming problem (P2) reduce to the linear complementary problem

w −Mz = q, wT z = 0, w, z > 0

where

M =
( 0 −P

PT 2I

)
, q =

(
r
−2ω

)
, w =

(
y
v

)
, z =

(
u
δ

)
.

with y denoting the vector of slack variables whereas u and v are the Lagrangian
multiplier vectors associated with the constraints Pδ ≤ r and δ ≥ 0, respectively.
Thus the complementary pivoting algorithm discussed in [2, sec.11.1] can be used
to find a Kuhn–Tucker point of (P2) with a guarantee of convergence in a finite
number of iterations [2, Theorem 11.2.4].

Remark. It is worth noting that if the quadratic objective function was chosen
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as the convex function f (δ) = δT δ, then it leads to the quadratic programming
problem

Maximize
n∑

i=1

δ2
i

s.t. Pδ ≤ r, δ ≥ 0 (P3)

Following the notations of [2,sec. 11.1] to solve (P3), it is required to minimize
cT δ+ 1

2 (δT Hδ) where H = −2I and c = 0. Thus H is a negative definite matrix,
and there is no guarantee of convergence.

5. Numerical Example

Given

Ac =

 4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4

 , bc =

 0
0

1000
1000


then

xc = A−1
c bc = ( 125 125 375 375 )T , T = I

Given the prescribed interval solution vector

xI = ([110, 140], [110, 140], [360, 390], [360, 390])T ,

it is required to analyze the given system of equations AIx = bI w.r.t. the maxi-
mum allowable deviations of the various system parameters as discussed in Sections
2 and 3.

5.1. Right-Hand-Side Uncertainties

For arbitrary deviation vector, the set of constraints defining 1b is given by (10),
thus

P = |A−1
c | (i)

where

A−1
c ≈

 0.291667 0.083333 0.083333 0.0416667
0.083333 0.291667 0.0416667 0.083333
0.083333 0.0416667 0.291667 0.083333
0.0416667 0.083333 0.083333 0.291667


ri = min{di, d̄i} = 15, i = 1, 2, 3, 4. (ii)
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The maximum allowable deviation vector in the right hand side with P and r given
by (i) and (ii), respectively, for:

1. LP problem (P1), is

1b = (29.999968, 30.00001, 30.00001, 30)T

2. QP problem (P2), with weight vector ω = (50, 50, 50, 50)T is

1b = (29.999973, 29.999998, 29.999998, 30.000001)T .

xI
R for the computed 1b as obtained by Rohn’s algorithm [8] is

([110, 140], [110, 140], [360, 390], [360, 390])T .

Solving (P2) with ωi = 100, and all other ωj ’s equal 0 where i, j ∈ {1, 2, 3, 4}
and i 6= j , we find that 1bi = 51.42852 and all other 1bj ’s equal 0.

In the special case in which 1b = ε|bc|, for some positive scalar ε, using (16)
gives 1b = (0, 0, 40, 40)T where xI

R for the computed 1b is,

xI
R = ([120, 130], [120, 130], [360, 390], [360, 390])T .

Table 1. One nonzero deviation in the elements of the matrix of coefficients

(l,m) 1Alm xI
R

(1, 1) 0.367347 ([112.903,140], [121.44,129.286], [371.544,379.286], [373.272,377.143])T

(1, 2) 0.39779 ([110.963,140], [120.989,129.286], [370.989,379.286], [372.995,377.143])T

(1, 3) 0.135593 ([110.335,140], [120.81,129.286], [370.81,379.285], [372.905,377.143])T

(1, 4) 0.136364 ([110.169,140], [120.763,129.286], [370.763,379.286], [372.881,377.143])T

(2, 1) 0.39779 ([120.989,129.286], [110.963,140], [372.995,377.143], [370.989,379.286])T

(2, 2) 0.367347 ([121.544,129.286], [112.903,140], [373.272,377.143], [371.544,379.286])T

(2, 3) 0.136364 ([120.763,129.286], [110.169,140], [372.881,377.143], [370.763,379.286])T

(2, 4) 0.135593 ([120.81,129.286], [110.335,140], [372.905,377.143], [370.81,379.285])T

(3, 1) 0.39779 ([120.989,129.286], [122.995,127.143], [360.963,390], [370.989,379.286])T

(3, 2) 0.404494 ([120.856,129.286], [122.928,127.143], [360.497,390], [370.86,379.286])T

(3, 3) 0.131868 ([121.032,129.286], [123.016,127.143], [361.111,390], [371.032,379.286])T

(3, 4) 0.135593 ([120.81,129.286], [122.905,127.143], [360.335,390], [370.81,379.286])T

(4, 1) 0.404494 ([122.988,127.143], [120.856,129.286], [370.86,379.286], [360.497,390])T

(4, 2) 0.39779 ([122.995,127.143], [120.989,129.286], [370.989,379.286], [360.963,390])T

(4, 3) 0.135593 ([122.905,127.143], [120.81,129.286], [370.81,379.286], [360.335,390])T

(4, 4) 0.13868 ([123.016,127.143], [121.032,129.286], [371.032,379.286], [361.111,390])T
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5.2. Uncertainty in the Matrix of Coefficients

Solving for the different cases considered:

(i) One nonzero element in position (l,m).

1Alm is found using (24). The maximum allowable deviation for each coefficient
Aij , i and j = 1, 2, 3, 4, is found in Table 1 with the corresponding computed
interval solution vector xI

R .

(ii) One nonzero row

For equal row components, the maximum allowable deviation for each row 1Al. =
δ(1, 1, 1, 1)T , l = 1, 2, 3, 4, where δ is a scalar, computed according to (24), is
given in Table 2 with the corresponding computed interval solution vector xI

R .

Table 2. Equal row deviations

l d xI
R

1 0.050139 (110.734,140], [120.924,129.286], [370.924,379.286], [372.962,377.143])T

2 0.050139 ([120.924,129.286], [110.734,140], [372.962,377.143], [370.924,379.286])T

3 0.050139 ([120.924,129.286], [122.962,127.143], [360.734,390], [370.924,379.286])T

4 0.050139 [122.962,127.143], [120.924,129.286], [370.924,379.286], [360.734,390])T

For unequal components, the set of constraints defining the vector δ = 1Al., for
each l = 1, 2, 3, 4, is given by (30), thus

P =

 BT ′
−BT ′
CT ′
−CT ′

 r =

 d̄

d̄
d

d

 (i), (ii)

where T ′ = I . Note that the set of constraints is reduced from 4n to 2n inequality
due to redundancy; since the constraints of the form −BT ′δ ≤ d̄ and −CT ′δ ≤ d

are redundant constraints as T ′ = I , B ≥ 0, and C ≥ 0 component wise. For
example, for row number one with P and r given by (i) and (ii), respectively, we
obtain:

1. LP problem (P1), gives

1A1. = (0, 0.397779, 0, 0)T ,

2. QP problem (P2), with ω = (0.1, 0.1, 0.1, 0.1)T , gives
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1A1. = (0.0777792, 0.079492, 0.039835, 0.040175)T

where xI
R for the computed 1A1. is found to be,

xI
R = ([111, 140], [121, 129.286], [371, 379.286], [373, 377.143])T

Results for unequal row components are given in Table 3.

Table 3. Unequal row deviations. with ω = (0.1, 0.1, 0.1, 0.1)T

l 1Al.

1 (0.077792,0.079492,0.03983,0.040175)T

2 (0.079492,0.077792,0.40175,0.03983)T

3 (0.079893,0.080226,0.039345,0.041011)T

4 (0.080226,0.079893,0.0401011,0.03934)T

(iii) One nonzero column

For equal column components, the maximum allowable deviation for each column
1A.m = δ(1, 1, 1, 1)T , m = 1, 2, 3, 4, where δ is a scalar computed according to
(26), is found in Table 4 with the corresponding computed interval solution vector
xI
R .

Table 4. Equal column deviations

m d xI
R

.

1 0.214286 ([112.903,140], [112.903,140], [362.903,390], [362.903,390])T

2 0.214286 ([112.903,140], [112.903,140], [362.903,390], [362.903,390])T

3 0.076923 ([111.111,140], [111.111,140], [361.111,390], [361.111,390])T

4 0.076923 ([111.111,140], [111.111,140], [361.111,390], [361.111,390])T

For unequal column components, the set of constraints defining the parameters
1A.m, for each m = 1, 2, 3, 4, is given by (34) or (35), with

P =
( |B ′|
|C′|

)
, r =

(
d̄
d

)
(i), (ii)

where B′ and C′ are defined in (32). Note that the set of constraints consists of 2n
inequalities. For example, for column number one, with P and r given by (i) and
(ii), respectively, we obtain:

1. LP problem (P1) gives

1A.1 = (0.214286, 0.214286, 0.214286, 0.214286)T ,

2. QP problem (P2), with ω = (0.5, 0.5, 0.5, 0.5)T gives

1A.1 = (0.214286, 0.214286, 0.214286, 0.214286)T



200 N. P. Seif et al.: Inverse Problem of the Interval Linear System of Equations

with xI
R for the computed 1A.1 given by

xI
R = ([112.9, 140], [112.9, 140], [362.9, 390], [362.9, 390.000031])T

Results for unequal column components are found in Table 5.

Table 5. Unequal column deviations. ω = (0.5, 0.5, 0.5, 0.5)T

m 1A.m

1 (0.214286,0.214286,0.214286,0.214286)T

2 (0.214286,0.214286,0.214286,0.214286)T

3 (0.076923,0.076923,0.076923,0.076923)T

4 (0.076923,0.076923,0.076923,0.076923)T
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