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Abstract. The purpose of this paper is to inquire the connection between maximal inner interval
estimates of the solution sets to interval linear system and solutions of the dualization equation in
Kaucher interval arithmetic. The results of our work are as follows: 1) a criterion of inner interval
estimate of the solution set, 2) a criterion for a solution of dualization equation to be a maximal inner
interval estimate of the solution set, 3) a criterion for multiplication by an interval matrix to be upper
strictly isotone.

1. Notation

We use Latin letters for real objects: small for numbers and vectors (a, b, c, …) and
capital for matrices (A, B, C, …).

By interval, we call an object of the form [x, x] with x, x ∈ R (not necessarily
x ≤ x). If x ≤ x, then [x, x] is said to be aproper interval. At the same time, we
think of a proper interval [x, x] as the set of all real numbers between the pointsx
andx, i.e.,{x ∈ R | x ≤ x ≤ x}.

A vector (matrix) with interval components is called aninterval vector (matrix).
An interval vector (matrix) is said to beproper if all its components are proper
intervals. Similar to the one-dimensional case, we think of a proper interval vector
[x, x] := ([ x1, x1], …, [xn, xn])� as the set of all real vectors bounded by the vectors
x andx, i.e.,{x ∈ R

n | xj ≤ xj ≤ xj, j = 1, …,n}.
We use boldface Latin letters for interval objects: small for intervals and interval

vectors (a, b, c, …) and capital for interval matrices (A, B, C, …). The bold symbol
0 designates the interval [0, 0].

2. Introduction

In interval analysis, it is traditionally assumed that the data uncertainty expressed
in the form of intervals of possible values has the same nature for all the parameters
under consideration. Put it differently, we suppose that all these intervally uncertain
parameters do not “conflict” with each other, so that the resulting uncertainty caused
by all the input factors is summed over the separate parameters. However, it is not
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difficult to point out another practical situation: different parameters act on the
system in such a way that their actions suppress each other, while the interval data
uncertainties mutually compensate. The latter is especially typical e.g. in control
systems or in the decision making situations described by antagonistic games, when
the intervals of possible values of the parameters represent actions on the system
that are different by their nature: outer perturbations as opposed to our controls.

A mathematical formalization of this kind of problem statements within the
interval framework can be given by using the so-calledgeneralized solution sets
and in particularAE-solution sets [9], [12]–[14]. In the present paper, we are going
to consider the simplest interval linear systems whose parameters are subject to
conflicting actions. The first results in this field are also due to S. Shary [9], [11]
and we substantially rely upon these works. Let us turn to formal definitions.

Specifically, we deal with the following Main Problem:

Given:

1) a linear system of equationsAx = b as a symbolic description of an
operating Object (in this system,x is ann-vector of unknown variables,
A is anm × n-matrix of parameters,b is anm-vector of parameters);

2) a decomposition of all the parameters of the system into two nonin-
tersecting subsets. We shall call the parameters of the first subset by
A-parameters and those of the second subset byE-parameters a;

3) proper intervals of values for the parameters, i.e., a proper interval
matrix A = (aij) and a proper interval vectorb = (bi).

Wanted:

Proper intervals of values for the unknown variables, such that for all
values of unknowns and A-parameters from the respective intervals one
can find values of E-parameters from the respective intervals for the
Object operating. The intervals for values of unknown variables should
be as wide as possible.

a The terms “A-parameters” and “E-parameters” originate from the names of the logical
quantifiers “∀ ” and “∃ ”, that is,ALL (universal) quantifier andEXISTS (existential) quantifier
[3]. The distinction between A- and E-parameters would be clear from theWanted of the
Main Problem.

The above formulation is borrowed from [9], [12], [13], and its particular case
is, for instance, a popular linear tolerance problem [6], [7], [15].

In [11], S. Shary proposed to find solutions of the Main Problem among the
solutions of the so-calleddualization equation (defined in Section 6 later), and
the purpose of this paper is to inquire the connection between these solutions and
the solution sets to interval linear systems under estimation. The results of our
study will be formulated in Section 6, while Sections 3–5 are auxiliary: Section 3
represents the Main Problem in strict mathematical terms, Section 4 reminds some
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necessary facts of interval mathematics that are not widely known even among
specialists, and Section 5 expresses the Main Problem in interval form.

3. Reformulation of the Main Problem with the Use of Logical Formulas and
Set Inclusions

We are going to rewrite the Main Problem in convenient mathematical terms.
First, we shall transform theGiven item into a universal form suitable for every
decomposition of parameters into A- and E-groups. Letc be a parameter and a
proper intervalc represents its possible values. We associate with the parameterc
two parametersc∀ andc∃ by

c∀ :=

{
c, if c is an A-parameter,

0, if c is an E-parameter,

c∃ :=

{
0, if c is an A-parameter,

c, if c is an E-parameter.

Analogously, we associate with the intervalc two proper intervalsc ∀ andc ∃ by

c∀ :=

{
c, if c is an A-parameter,

0, if c is an E-parameter,

c ∃ :=

{
0, if c is an A-parameter,

c, if c is an E-parameter.

Hence, we arrive at

Given:

1) a symbolic system (A∀ + A ∃ )x = b∀ + b∃ , with A∀ = (a∀
ij ), A ∃ = (a∃

ij),
b∀ = (b∀

i ), b∃ = (b∃
i );

2) proper interval matricesA∀ = (a ∀
ij ), A∃ = (a∃

ij) and proper interval

vectorsb∀ = (b∀
i ), b ∃ = (b ∃

i ).

To reformulate what isWanted we introduce the following definitions:

DEFINITION 3.1. Thesolution set of the linear system (A∀ + A ∃ )x = b∀ + b∃ with
interval parameters A∀ , b∀ , A∃ , b∃ is the set�

Ξ = {x ∈ R
n | (∀ A∀ ∈ A∀ ) (∀ b∀ ∈ b∀ ) (∃ A ∃ ∈ A∃ ) (∃ b∃ ∈ b ∃ )(

(A∀ + A ∃ )x = b∀ + b∃ )}. (3.1)

� It is also calledAE-solution set of αβ-type in [14] or αβ-solution set in the previous works [9],
[11]–[13].
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DEFINITION 3.2. An inner interval estimate for the setΞ is a proper interval
vectorx such that

x ⊆ Ξ.

DEFINITION 3.3. An interval vectorx is said to be amaximal vector with a
propertyP, if

1) P holds forx and

2) for all the interval vectors strictly includingx the propertyP does not hold.�

Hence, we arrive at

Wanted:

Maximal inner interval estimate for the setΞ.

4. Kaucher Interval Arithmetic

4.1. INTERVAL ALGEBRAIC SYSTEM

Kaucher interval arithmetic is an the algebraic system

〈IR , ⊆, ≤, ∨, ∧, dual, pro, +,−, ⋅, /〉
with its components defined as follows:

Basic set. Intervals andproper intervals have been defined in Section 1, and the
basic setIR consists of all the intervals [x, x]:

IR = {x = [x, x] | x, x ∈ R }.

The numbersx and x are calledleft endpoint and right endpoint of the interval
x = [x, x] respectively. Two intervals are considered equal if their corresponding
endpoints are equal:

x = y deƒ⇐⇒ (x = y and x = y).

The set of all proper intervals is denoted by IR :

IR = {x = [x, x] | x ≤ x, x, x ∈ R }.

An interval [x, x] is called

improper if x > x,
backward if x ≥ x,

degenerate if x = x.
� Strict inclusion of interval vectors will be defined in Section 4. Here it is sufficient to know, that

for proper interval vectors it coincides with strict inclusion of sets.
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Figure 1. The setIR .
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x ⊇ y x ≥ y

x ≤ y x ⊆ y

Figure 2. The partial order relations onIR .

The set of degenerate intervals represents real numbers inIR . For brevity, we shall
usex instead [x, x] in interval operations.

Lattice structure. “ ⊆ ”, “≤” are partial order relations onIR defined by the order
relation “≤” on R (see Figures 1 and 2):

x ⊆ y deƒ⇐⇒ (x ≥ y and x ≤ y),

x ≤ y deƒ⇐⇒ (x ≤ y and x ≤ y).

“ ∨ ”, “ ∧ ” are lattice operations of inclusion supremum and inclusion infimum
respectively. They are defined by supremum and infimum operations onR as fol-
lows:∨

i ∈ I

xi = sup
i ∈ I

⊆ xi =
[
inf
i ∈ I

xi, sup
i ∈ I

xi

] for any family of intervals{xi}i ∈ I

that is upper bounded by inclusion,

∧
i ∈ I

xi = inf
i ∈ I

⊆ xi =
[
sup
i ∈ I

xi, inf
i ∈ I

xi

] for any family of intervals{xi}i ∈ I

that is lower bounded by inclusion.
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Unary operations.
“dual” is dualization:

dual [x, x] = [ x, x].

“pro” is proper projection:

prox =

{
x, if x is proper,
dualx, if x is improper.

Binary operations. We shall use the symbol “
∨∧x” (pronounced as “supinf

([su:‘pinf]) on x”) for conditional lattice operation over the interval x:

∨∧x
=




∨
x ∈ x

, if x is proper,∧
x ∈ dualx

, if x is improper.

The arithmetic operations +,−, ⋅, / are defined onIR through the corresponding
real operations and lattice operations∨ , ∧ [1], [2] so that

∀ ∗ ∈ {+,−, ⋅, /} x ∗ y =
∨∧x∨∧y

(x ∗ y). (4.1)

Interval sum and product are commutative and associative operations onIR [1],
[2].

Also, the following lattice operation distributivity will be useful for us:

x + (y ∨ z) = (x + y) ∨ (x + z). (4.2)

4.2. INTERVAL VECTORS ANDINTERVAL MATRICES

The interval vectors andinterval matrices have been introduced in Section 1. We
denote byIR n the set of alln-dimensional interval vectors and byIR m×n the set
of all interval m × n-matrices. The operations dual, pro,∨ , ∧ , +, − as well as
relations =,⊆ , ≤ on IR

n and onIR m×n are defined component-wise. For example,
dual matrix is the matrix of dual components, inclusion supremum of the interval
vectorsx, y ∈ IR

n is the vectorx ∨ y ∈ IR
n with (x ∨ y)i = xi ∨ yi, i = 1, …,n.

For a vectorx ∈ IR
n, the result ofmultiplication by a matrix C ∈ IR

m×n is a
vector fromIR

m defined as follows:

(C ⋅ x)i =
n∑

j= 1

cijxj, i = 1, …,m.

4.3. STRICT INCLUSION ISOTONICITY

We define the relation ofstrict inclusion (⊂ ) in IR
n by the rule

x ⊂ y deƒ⇐⇒ (x ⊆ y and x �= y).
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For interval vectors,x ⊂ y means also that(
∀ i ∈ {1, …,n} (xi ⊆ yi)

)
and

(
∃ k ∈ {1, …,n} (xk ⊂ yk)

)
. (4.3)

DEFINITION 4.1. A functionF : D(F) → IR
m, D(F) ⊆ IR

n, is called

1) (inclusion) isotone� if it retains the relation⊆ :

∀ x, y ∈ D(F)
(
x ⊆ y ⇒ F(x) ⊆ F(y)

)
,

2) strictly (inclusion) isotone if it retains the relation⊂ :

∀ x, y ∈ D(F)
(
x ⊂ y ⇒ F(x) ⊂ F(y)

)
.

EXAMPLE 4.1.

1) The arithmetic operations +,−, ⋅, / in IR are isotone [1], [2]. This fundamen-
tal property of Kaucher interval arithmetic implies that multiplication by an
interval matrix is isotone.

2) The arithmetic operation + inIR n is strictly isotone, i.e.,

∀ x, x′ , y, y ′ ∈ IR
n

(
x
y

)
⊂

(
x′
y′

)
⇒ x + y ⊂ x′ + y ′ .

This follows from the endpoint representation of the interval sum

∀ x, y ∈ IR x + y = [x + y, x + y]

and from the definition of strict inclusion:

for z, z ′ ∈ IR
k, z ⊂ z ′ means that the inequalitieszi ≥ z′i, zi ≤ z′i,

i ∈ {1, …,k}, hold and at least one of them is strict.

3) In general, multiplication by an interval is not strictly isotone. For example,
[−1, 1] ⋅ [1,−1] = [−1, 1] ⋅ [0, 0].

DEFINITION 4.2. We shall call the functionF : D(F) → IR
m, D(F) ⊆ IR

n, upper
strictly isotone in x if

∀ y ∈ D(F)
(
x ⊂ y ⇒ F(x) ⊂ F(y)

)
.

DEFINITION 4.3. We shall call the functionF : D(F) → IR
m, D(F) ⊆ IR , upper

strictly isotone inx

1) over left endpoint if

∀ y ∈ D(F)
(
(x > y and x ≤ y) ⇒ F(x) ⊂ F(y)

)
,

� In classical interval arithmetic, only inclusion isotone functions are considered, so they are often
called “(inclusion) monotone”. In Kaucher arithmetic, a necessity arises to consider both (inclusion)
isotone and antitone functions.
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2) over right endpoint if

∀ y ∈ D(F)
(
(x ≥ y and x < y) ⇒ F(x) ⊂ F(y)

)
.

Since for all intervalsx andy

x ⊂ y ⇐⇒ (
(x > y and x ≤ y) or (x ≥ y and x < y)

)
,

a function is upper strictly isotone inx ∈ IR if and only if it is upper strictly isotone
in x over both left and right endpoints.

LEMMA 4.1. Let x ∈ IR
n. Multiplication by an interval matrix C ∈ IR

m×n is
upper strictly isotone in x if and only if for each k ∈ {1, …,n} both the following
conditions hold:

1) there exists such a component clk that multiplication by it is upper strictly
isotone in xk over left endpoint, i.e.,

∃ l ∈ {1, …,m} ∀ u ∈ IR
(
(xk > u and xk ≤ u) ⇒ clkxk ⊂ clku

)
, (4.4)

2) there exists such a component crk that multiplication by it is upper strictly
isotone in xk over right endpoint, i.e.,

∃ r ∈ {1, …,m} ∀ v ∈ IR
(
(xk ≥ v and xk < v) ⇒ crkxk ⊂ crkv

)
. (4.5)

Proof. To begin with, let us spell out the assertion of the lemma. In point of fact,
we need to substantiate that the condition

∀ k
(
(4. 4) and (4. 5)

)
(4.6)

is equaivalent for

∀ y ∈ IR
n (x ⊂ y ⇒ Cx ⊂ Cy) (4.7)

to be true.

=⇒ Let y ∈ IR
n andx ⊂ y. It means

∀ j ∈ {1, …,n} (xj ⊆ yj) (4.8)

and

∃ k ∈ {1, …,n} (xk ⊂ yk). (4.9)

Obviously,xk ⊂ yk means

(xk > y
k

and xk ≤ yk) or (xk ≥ y
k

and xk < yk).

Applying (4.4) if (xk > y
k

andxk ≤ yk) or (4.5) if (xk ≥ y
k

andxk < yk) gives

∃ p ∈ {1, …,m} cpkxk ⊂ cpkyk. (4.10)
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Since interval product and sum are isotone, (4.8) implies

∀ i ∈ {1, …,m} (
(Cx)i ⊆ (Cy)i

)
(4.11)

and ∑
j �=k

cpjxj ⊆
∑
j �=k

cpjyj. (4.12)

It follows from the strict isotonicity of the interval sum, from (4.10) and from (4.12)
that

(Cx)p ⊂ (Cy)p. (4.13)

Combining (4.11) and (4.13) yields

Cx ⊂ Cy.

⇐= To prove that the condition (4.6) is necessary for (4.7), we suppose that
(4.6) is wrong, i.e.,

∃ k
((

(4. 4) does not hold
)

or
(
(4. 5) does not hold

))
.

((4.4) does not hold) means

∀ l ∈ {1, …,m} ∃ ul ∈ IR (xk > ul and xk ≤ ul and clkxk = clkul). (4.14)

((4.5) does not hold) means

∀ r ∈ {1, …,m} ∃ vr ∈ IR (xk ≥ vr and xk < vr and crkxk = crkvr). (4.15)

Let us introduce a vectory ∈ IR
n as follows:

yj =




xj, if j �= k,[
max

l
ul, xk

]
, if j = k and (4.14),[

xk, min
r

vr
]
, if j = k and (4.4) and (4.15).

The vectory is such thatx ⊂ y andCx = Cy, which means (4.7) is false. We have
thus obtained that (4.7) is not valid without (4.6). �

LEMMA 4.2. Let a function F : IR → IR
m be isotone.

1) The function F is upper strictly isotone in x over left endpoint if and only if

∃ ε > 0 ∀ δ
(
0 < δ ≤ ε ⇒ F(x) �= F([x − δ, x])

)
. (4.16)

2) The function F is upper strictly isotone in x over right endpoint if and only if

∃ ε > 0 ∀ δ
(
0 < δ ≤ ε ⇒ F(x) �= F([x, x + δ])

)
. (4.17)
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Table 1.

⋅ u > 0 u < 0 0 ⊆ u

c, c > 0 [c u, c u] [ c u, cu] [ c u, c u]
c, c < 0 [c u, c u] [ c u, c u] [ c u, c u]
0 ⊂ c [c u, c u] [ c u, c u] [min{c u, c u}, max{c u, c u}]
c ⊂ 0 [c u, c u] [ c u, c u] 0

Proof.

1) Obviously, the condition (4.16) is necessary for the functionF to be upper
strictly isotone inx over left endpoint. We shall prove that it is sufficient too.

Let (4.16) hold. For every intervaly such thatx > y and x ≤ y, we can
introduce an intervalz = [x − min{ε, x − y}, x]. The functionF is inclusion
isotone andx ⊂ z ⊆ y, thereforeF(x) ⊆ F(z) ⊆ F(y). The condition (4.16)
impliesF(x) �= F(z). Hence,F(x) ⊂ F(y).

2) The second part of Lemma 4.2 is proved analogously. �

To formulate our next result, we need the following notation:

�x� = max{|x|, |x|}, �x� = min{|x|, |x|} for x ∈ IR . (4.18)

THEOREM 4.1. Criterion for Multiplication by an Interval Matrix to Be Upper
Strictly Isotone.Let x ∈ IR n. Multiplication by an interval matrix C ∈ IR

m×n is
upper strictly isotone in x if and only if, for each k ∈ {1, …,n}, at least one of the
following three conditions holds:

(a) ∃ c ∈ {c1k, …,cmk} (0 � ∈ proc);

(b) (0 �⊆ xk) and
(
∃ c′ , c′′ ∈ {c1k, …,cmk} (0 ⊂ c′ and c′′ ⊂ 0)

)
;

(c) (0 ⊆ xk) and
(
∃ c ∈ {c1k, …,cmk} (0 ⊂ c and �c� ⋅ �xk� ≥ �c� ⋅ �xk�)

)
.

Proof consists of Preliminaries and Modification of Lemma 4.1.
1) Preliminaries.
Look at the Table 1 of multiplication of a proper intervalu by a nonzero interval

c. One can derive this table from

• either Kaucher table for interval product published in [2],

• or Lakeyev formulas for interval product [5]

x ⋅ y =
[
max{x+y+, x−y−} − max{x+y−, x−y+},

max{x+y+, x−y−} − max{x+y−, x−y+}],
where x+ = max{0, x}, x− = max{0,−x},

• or directly from the representation (4.1) of the interval product.
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The structure of the table is such that any formula for the endpoints of the interval
product is unchanged forsufficiently small inflation of the intervalu. Givenc and
u, Table 1 and Lemma 4.2 implies that

(I) if at least one of the endpoints ofcu is equal toc̃u with c̃ ∈ {c, c}, c̃ �= 0, then
the multiplication byc is upper strictly isotone inu over left endpoint,

(II) otherwise, the endpoints ofcu do not depend onu and the multiplication byc
is not upper strictly isotone inu over left endpoint.

The similar facts hold for isotonicity over right endpoint.

2) Modification of Lemma 4.1.
Now one can obtain Theorem 4.1 from Lemma 4.1 and Preliminaries. Givenxk,

the condition (a) of Theorem 4.1 corresponds to the first and second rows of Table;
if the condition (a) of Theorem 4.1 is false, then the condition (b) of Theorem 4.1
corresponds to the first and second columns and the condition (c) matches to the
last column of Table. The conditions (a) and (b) of Theorem 4.1 arise in an obvious
way. We need only to explain how the condition (c) comes into being.

The condition (c) describes the case

(0 ⊆ xk) and
(
∀ c ∈ {c1k, …,cmk} (c ⋅ c �> 0)

)
. (4.19)

Let us denotexk byu and assumec′ , c′′ ∈ {c1k, …,cmk}. According to Preliminaries,
the multiplication byc′ is upper strictly isotone inu over left endpoint if and only
if 0 ⊂ c ′ and

(c ′u ≤ c′u and c′ �= 0) or (c ′u ≥ c′u and c′ �= 0). (4.20)

For0 ⊆ u and0 ⊂ c′ , (4.20) is equivalent to

(|c ′ ||u| ≥ |c ′ ||u| and |c′ | �= 0) or (|c ′ ||u| ≥ |c ′ ||u| and |c ′ | �= 0). (4.21)

The formula (4.21) is equivalent to

max{|c ′ |, |c ′ |} ⋅ |u| ≥ min{|c ′ |, |c ′ |} ⋅ |u| and max{|c ′ |, |c ′ |} �= 0. (4.22)

For 0 ⊂ c′ , the condition max{|c ′ |, |c ′ |} �= 0 is always true and may be omitted, so
(4.22) in notations (4.18) is

�c ′�|u| ≥ �c ′�|u|. (4.23)

We have obtained that in the case (4.19) the first condition of Lemma 4.1 is
equivalent to

∃ c′ (0 ⊂ c′ and �c ′�|u| ≥ �c ′�|u|). (4.24)

Analogously, in the case (4.19) the second condition of Lemma 4.1 is equivalent
to

∃ c′′ (0 ⊂ c ′′ and �c ′′ �|u| ≥ �c′′ �|u|). (4.25)
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Since

|u| ≤ |u| ⇒ �c ′′ �|u| ≥ �c ′′ �|u|
and

|u| ≥ |u| ⇒ �c ′�|u| ≥ �c ′�|u|,
combining the formulas (4.24) and (4.25) yields

∃ c ∈ {c1k, …,cmk}
(
0 ⊂ c and �c� ⋅ �u� ≥ �c� ⋅ �u�). �

5. Reformulation of the Main Problem in Interval Terms

Let us return to the Main Problem.
In Kaucher interval arithmetic, the formula (3.1) for the setΞ can be rewrit-

ten [11] in a simpler form

Ξ = { x ∈ R
n | (dualA∃ + A∀ ) ⋅ x ⊆ b ∃ + dualb∀ }

or, briefly,

Ξ = Ξ(Ac, bc) = {x ∈ R
n | Ac x ⊆ bc}, (5.1)

whereAc = (ac
ij), bc = (bc

i ),

ac
ij =

{
aij, if aij is an A-parameter,

dualaij, if aij is an E-parameter,
(5.2)

bc
i =

{
dualbi, if bi is an A-parameter,

bi, if bi is an E-parameter.
(5.3)

THEOREM 5.1 Criterion of Inner Interval Estimate.Let C ∈ IR
m×n, d ∈ IR

m. A
vector y ∈ IR n is an inner estimate for the solution set Ξ(C, d) = {x ∈ R

n |
Cx ⊆ d} if and only if Cy ⊆ d.

Proof. We need to prove(
∀ y ∈ y (Cy ⊆ d)

) ⇐⇒ Cy ⊆ d.

⇐= The multiplication by an interval matrix is isotone, so∀ y ∈ y (Cy ⊆ Cy).
If Cy ⊆ d, then∀ y ∈ y (Cy ⊆ d) due to transitivity of inclusion.

=⇒ The least upper bound for an upper bounded family satisfies a common
nonstrict upper boundary, therefore

(
∀ y ∈ y (Cy ⊆ d)

)
⇒

( ∨
y ∈ y

Cy ⊆ d

)
.
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At the same time, it is easy to make sure that∨
y ∈ y

Cy = Cy

(see, for example, [11]�). Indeed, using (4.1) and distributivity of the operation “∨ ”
with respect to addition (4.2), we get(∨

y ∈ y
(C ⋅ y)

)
i

=
∨
y ∈ y

(C ⋅ y)i =
∨
y ∈ y

n∑
j=1

cijyj =
∨

y1 ∈ y1

∨
y2 ∈ y2

· · ·
∨

yn ∈ yn

n∑
j= 1

cijyj

=
n∑

j= 1

∨
yj ∈ yj

cijyj =
n∑

j=1

cijyj = (C ⋅ y)i.

This completes our proof. �

Remark. Theorem 5.1 allows one to reveal whether a proper interval vector is
an inner estimate for the setΞ(C, d) without actual finding this set. It turns out that,
to make sure that the inner estimation is really the case, we need only to carry out
certain operations in Kaucher arithmetic! Namely, we should multiply this vector
by an interval matrix and check the inclusion of two vectors.

Now we can reformulate the Main Problem in purely interval terms as fol-
lows:

Given:

An interval matrixAc and an interval vectorbc (defined by the input
data through (5.2) and (5.3)).

Wanted:

A maximal proper solution of the interval inclusionAcx ⊆ bc.

6. Reduced Problem

DEFINITION 6.1. The interval systemAc x = bc is calleddualization equation for
the Main Problem. An interval vectorxa is an(algebraic) solution of dualization
equation if Ac ⋅ xa = bc in Kaucher arithmetic.

S. Shary proposed in [11] to find solutions of the Main Problem among solutions
of the dualization equation, that is, to change searching solutions of the inclusion for
searching solutions of the equation. The main reasons of such a reduction are:

� Shary’s proof of the above fact in [11], being quite correct, is based on the equality (4.2).
However, the propertyx ∨ (y + z) = (x ∨ y) + (x ∨ z) Shary points out in the introductory part of the
paper [11] is wrong, which confuses much readers.
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1) Computing algebraic solutions to an equation is a computationally easier prob-
lem, and a number of efficient numerical methods for this purpose have been
elaborated for the years elapsed [8], [10].�

2) A proper solution of dualization equation is often a solution of the Main
Problem. For example,

• L. Kupriyanova proved [4] that if all parameters of the Main Problem are
E-parameters and each column of the initial interval matrixA has at least
one component that does not contain zero, then any proper solution of the
system (dualA) ⋅ x = b is a solution of the Main Problem.

• S. Shary proved [9], [11] that if a proper solution of the dualization equation
is maximal then it is a solution to the Main Problem.

Is there a necessary and sufficient condition for the solution of the dualization
equation to be a solution of the Main Problem?

THEOREM 6.1. Criterion for a Solution of Dualization Equation to Be a Maximal
Inner Interval Estimate.If xa is a proper solution of the dualization equation, then
the following conditions are equivalent:

(a) xa is a solution of the Main Problem;

(b) xa is a maximal inner interval estimate for the set Ξ;

(c) xa is a maximal solution of the interval inclusion Ac ⋅ x ⊆ bc;

(d) xa is a maximal solution of the dualization equation;

(e) multiplication by the matrix Ac is upper strictly isotone in xa.

Proof.
(a)⇔ (b) by reformulation of the Main Problem with the use of logical formulas

and set inclusions (Section 3).
(b) ⇔ (c) by reformulation of the Main Problem in the interval terms (Sec-

tion 5).
Let us prove that (c)⇔ (d) ⇔ (e). We are given thatxa is a solution of the

dualization equation and, obviously, a solution of the interval inclusionAc ⋅ x ⊆ bc.
Let y be an interval vector andxa ⊂ y. Since multiplication by an interval matrix is
isotone,Acxa ⊆ Acy. Therefore,

(Acxa �⊇ Acy) ⇔ (Acxa �= Acy) ⇔ (Acxa ⊂ Acy).

Substitutingbc for Acxa in the first and second formulas of the above equivalence
chain, we get

(Acy �⊆ bc) ⇔ (Acy �= bc) ⇔ (Acxa ⊂ Acy).
� One can download Shary’s algorithms for computing algebraic solutions to interval lin-

ear systems fromhttp://www.ict.nsc.ru/ftp/ict/interval, files subdiff.c,
subdiff.exe, re split.c, re split.exe. They are “public domain.”



ON MAXIMAL INNER ESTIMATION OF THE SOLUTION SETS... 423

Finally, applying Definitions 3.3 and 4.2 (of maximality and upper strict isotonicity)
completes the proof. �

In Theorem 6.1, each of the conditions (b)–(e) is both necessary and sufficient
for (a). The condition (e) can be easily verified using Theorem 4.1 whenxa is
known. To put it differently, (e) is an easily verifieda posteriori condition.

Still, sometimes we need to know whether the solution of the dualization equa-
tion is a solution of the Main Problem before the dualization equation is solved.
Corollary 6.1 gives such a sufficienta priori condition.

COROLLARY 6.1. If the proper interval matrix A of the initial Main Problem
has, in each column, at least one component that does not contain zero, then every
proper solution of the dualization equation is a solution of the Main Problem.

Proof. Make use of the following facts:

1) Theorem 6.1 (the equivalence (a)⇔(e)),

2) Theorem 4.1,

3) proAc = A. �

If the matrixA of the initial Main Problem consists only of E-parameters, then
the condition claimed in Corollary 6.1 is also necessary, and we arrive at

COROLLARY 6.2.Let the matrix A of the initial Main Problem consist only of
E-parameters. A proper solution of the dualization equation is a solution of the
Main Problem if and only if the interval matrix A has, in each column, at least one
component that does not contain zero.

Proof. Make use of the following facts:

1) Theorem 6.1 (the equivalence (a)⇔(e)),

2) Theorem 4.1,

3) Since the matrixA of the initial Main Problem consists only of E-parameters,
(5.2) impliesAc = dualA. The initial interval matrixA is proper, therefore
all the components of the matrixAc are backward intervals and cannot strictly
include zero. We can use this fact applying Theorem 4.1. �

Remark. In particular, Corollary 6.2 is applicable for maximal inner interval
estimation of theunited solution set

{x ∈ R
n | (∃ A ∈ A)(∃ b ∈ b) (Ax = b)},

as well as of thecontrollable solution set

{x ∈ R
n | (∀ b ∈ b)(∃ A ∈ A) (Ax = b)}.
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